]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
hugetlb: fix resv_map leak in error path
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
1da177e4 56struct scan_control {
1da177e4
LT
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
a79311c1
RR
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
7b51755c
KM
66 unsigned long hibernation_mode;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4
LT
70
71 int may_writepage;
72
a6dc60f8
JW
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
f1fd1067 75
2e2e4259
KM
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
5ad333eb 79 int order;
66e1707b 80
f16015fb
JW
81 /*
82 * The memory cgroup that hit its limit and as a result is the
83 * primary target of this reclaim invocation.
84 */
85 struct mem_cgroup *target_mem_cgroup;
66e1707b 86
327c0e96
KH
87 /*
88 * Nodemask of nodes allowed by the caller. If NULL, all nodes
89 * are scanned.
90 */
91 nodemask_t *nodemask;
1da177e4
LT
92};
93
f16015fb
JW
94struct mem_cgroup_zone {
95 struct mem_cgroup *mem_cgroup;
96 struct zone *zone;
97};
98
1da177e4
LT
99#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101#ifdef ARCH_HAS_PREFETCH
102#define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111#else
112#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113#endif
114
115#ifdef ARCH_HAS_PREFETCHW
116#define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125#else
126#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127#endif
128
129/*
130 * From 0 .. 100. Higher means more swappy.
131 */
132int vm_swappiness = 60;
bd1e22b8 133long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
134
135static LIST_HEAD(shrinker_list);
136static DECLARE_RWSEM(shrinker_rwsem);
137
00f0b825 138#ifdef CONFIG_CGROUP_MEM_RES_CTLR
89b5fae5
JW
139static bool global_reclaim(struct scan_control *sc)
140{
f16015fb 141 return !sc->target_mem_cgroup;
89b5fae5
JW
142}
143
f16015fb 144static bool scanning_global_lru(struct mem_cgroup_zone *mz)
89b5fae5 145{
f16015fb 146 return !mz->mem_cgroup;
89b5fae5 147}
91a45470 148#else
89b5fae5
JW
149static bool global_reclaim(struct scan_control *sc)
150{
151 return true;
152}
153
f16015fb 154static bool scanning_global_lru(struct mem_cgroup_zone *mz)
89b5fae5
JW
155{
156 return true;
157}
91a45470
KH
158#endif
159
f16015fb 160static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
6e901571 161{
f16015fb
JW
162 if (!scanning_global_lru(mz))
163 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
3e2f41f1 164
f16015fb 165 return &mz->zone->reclaim_stat;
6e901571
KM
166}
167
f16015fb
JW
168static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
169 enum lru_list lru)
c9f299d9 170{
f16015fb
JW
171 if (!scanning_global_lru(mz))
172 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
173 zone_to_nid(mz->zone),
174 zone_idx(mz->zone),
175 BIT(lru));
a3d8e054 176
f16015fb 177 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
c9f299d9
KM
178}
179
180
1da177e4
LT
181/*
182 * Add a shrinker callback to be called from the vm
183 */
8e1f936b 184void register_shrinker(struct shrinker *shrinker)
1da177e4 185{
83aeeada 186 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
1da177e4 190}
8e1f936b 191EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
192
193/*
194 * Remove one
195 */
8e1f936b 196void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
197{
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
1da177e4 201}
8e1f936b 202EXPORT_SYMBOL(unregister_shrinker);
1da177e4 203
1495f230
YH
204static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 struct shrink_control *sc,
206 unsigned long nr_to_scan)
207{
208 sc->nr_to_scan = nr_to_scan;
209 return (*shrinker->shrink)(shrinker, sc);
210}
211
1da177e4
LT
212#define SHRINK_BATCH 128
213/*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object. With this in mind we age equal
218 * percentages of the lru and ageable caches. This should balance the seeks
219 * generated by these structures.
220 *
183ff22b 221 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt. It is used for balancing
228 * slab reclaim versus page reclaim.
b15e0905 229 *
230 * Returns the number of slab objects which we shrunk.
1da177e4 231 */
a09ed5e0 232unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 233 unsigned long nr_pages_scanned,
a09ed5e0 234 unsigned long lru_pages)
1da177e4
LT
235{
236 struct shrinker *shrinker;
69e05944 237 unsigned long ret = 0;
1da177e4 238
1495f230
YH
239 if (nr_pages_scanned == 0)
240 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 241
f06590bd
MK
242 if (!down_read_trylock(&shrinker_rwsem)) {
243 /* Assume we'll be able to shrink next time */
244 ret = 1;
245 goto out;
246 }
1da177e4
LT
247
248 list_for_each_entry(shrinker, &shrinker_list, list) {
249 unsigned long long delta;
635697c6
KK
250 long total_scan;
251 long max_pass;
09576073 252 int shrink_ret = 0;
acf92b48
DC
253 long nr;
254 long new_nr;
e9299f50
DC
255 long batch_size = shrinker->batch ? shrinker->batch
256 : SHRINK_BATCH;
1da177e4 257
635697c6
KK
258 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259 if (max_pass <= 0)
260 continue;
261
acf92b48
DC
262 /*
263 * copy the current shrinker scan count into a local variable
264 * and zero it so that other concurrent shrinker invocations
265 * don't also do this scanning work.
266 */
83aeeada 267 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
268
269 total_scan = nr;
1495f230 270 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 271 delta *= max_pass;
1da177e4 272 do_div(delta, lru_pages + 1);
acf92b48
DC
273 total_scan += delta;
274 if (total_scan < 0) {
88c3bd70
DR
275 printk(KERN_ERR "shrink_slab: %pF negative objects to "
276 "delete nr=%ld\n",
acf92b48
DC
277 shrinker->shrink, total_scan);
278 total_scan = max_pass;
ea164d73
AA
279 }
280
3567b59a
DC
281 /*
282 * We need to avoid excessive windup on filesystem shrinkers
283 * due to large numbers of GFP_NOFS allocations causing the
284 * shrinkers to return -1 all the time. This results in a large
285 * nr being built up so when a shrink that can do some work
286 * comes along it empties the entire cache due to nr >>>
287 * max_pass. This is bad for sustaining a working set in
288 * memory.
289 *
290 * Hence only allow the shrinker to scan the entire cache when
291 * a large delta change is calculated directly.
292 */
293 if (delta < max_pass / 4)
294 total_scan = min(total_scan, max_pass / 2);
295
ea164d73
AA
296 /*
297 * Avoid risking looping forever due to too large nr value:
298 * never try to free more than twice the estimate number of
299 * freeable entries.
300 */
acf92b48
DC
301 if (total_scan > max_pass * 2)
302 total_scan = max_pass * 2;
1da177e4 303
acf92b48 304 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
305 nr_pages_scanned, lru_pages,
306 max_pass, delta, total_scan);
307
e9299f50 308 while (total_scan >= batch_size) {
b15e0905 309 int nr_before;
1da177e4 310
1495f230
YH
311 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 313 batch_size);
1da177e4
LT
314 if (shrink_ret == -1)
315 break;
b15e0905 316 if (shrink_ret < nr_before)
317 ret += nr_before - shrink_ret;
e9299f50
DC
318 count_vm_events(SLABS_SCANNED, batch_size);
319 total_scan -= batch_size;
1da177e4
LT
320
321 cond_resched();
322 }
323
acf92b48
DC
324 /*
325 * move the unused scan count back into the shrinker in a
326 * manner that handles concurrent updates. If we exhausted the
327 * scan, there is no need to do an update.
328 */
83aeeada
KK
329 if (total_scan > 0)
330 new_nr = atomic_long_add_return(total_scan,
331 &shrinker->nr_in_batch);
332 else
333 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
334
335 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
336 }
337 up_read(&shrinker_rwsem);
f06590bd
MK
338out:
339 cond_resched();
b15e0905 340 return ret;
1da177e4
LT
341}
342
1da177e4
LT
343static inline int is_page_cache_freeable(struct page *page)
344{
ceddc3a5
JW
345 /*
346 * A freeable page cache page is referenced only by the caller
347 * that isolated the page, the page cache radix tree and
348 * optional buffer heads at page->private.
349 */
edcf4748 350 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
351}
352
7d3579e8
KM
353static int may_write_to_queue(struct backing_dev_info *bdi,
354 struct scan_control *sc)
1da177e4 355{
930d9152 356 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
357 return 1;
358 if (!bdi_write_congested(bdi))
359 return 1;
360 if (bdi == current->backing_dev_info)
361 return 1;
362 return 0;
363}
364
365/*
366 * We detected a synchronous write error writing a page out. Probably
367 * -ENOSPC. We need to propagate that into the address_space for a subsequent
368 * fsync(), msync() or close().
369 *
370 * The tricky part is that after writepage we cannot touch the mapping: nothing
371 * prevents it from being freed up. But we have a ref on the page and once
372 * that page is locked, the mapping is pinned.
373 *
374 * We're allowed to run sleeping lock_page() here because we know the caller has
375 * __GFP_FS.
376 */
377static void handle_write_error(struct address_space *mapping,
378 struct page *page, int error)
379{
7eaceacc 380 lock_page(page);
3e9f45bd
GC
381 if (page_mapping(page) == mapping)
382 mapping_set_error(mapping, error);
1da177e4
LT
383 unlock_page(page);
384}
385
04e62a29
CL
386/* possible outcome of pageout() */
387typedef enum {
388 /* failed to write page out, page is locked */
389 PAGE_KEEP,
390 /* move page to the active list, page is locked */
391 PAGE_ACTIVATE,
392 /* page has been sent to the disk successfully, page is unlocked */
393 PAGE_SUCCESS,
394 /* page is clean and locked */
395 PAGE_CLEAN,
396} pageout_t;
397
1da177e4 398/*
1742f19f
AM
399 * pageout is called by shrink_page_list() for each dirty page.
400 * Calls ->writepage().
1da177e4 401 */
c661b078 402static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 403 struct scan_control *sc)
1da177e4
LT
404{
405 /*
406 * If the page is dirty, only perform writeback if that write
407 * will be non-blocking. To prevent this allocation from being
408 * stalled by pagecache activity. But note that there may be
409 * stalls if we need to run get_block(). We could test
410 * PagePrivate for that.
411 *
6aceb53b 412 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
413 * this page's queue, we can perform writeback even if that
414 * will block.
415 *
416 * If the page is swapcache, write it back even if that would
417 * block, for some throttling. This happens by accident, because
418 * swap_backing_dev_info is bust: it doesn't reflect the
419 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
420 */
421 if (!is_page_cache_freeable(page))
422 return PAGE_KEEP;
423 if (!mapping) {
424 /*
425 * Some data journaling orphaned pages can have
426 * page->mapping == NULL while being dirty with clean buffers.
427 */
266cf658 428 if (page_has_private(page)) {
1da177e4
LT
429 if (try_to_free_buffers(page)) {
430 ClearPageDirty(page);
d40cee24 431 printk("%s: orphaned page\n", __func__);
1da177e4
LT
432 return PAGE_CLEAN;
433 }
434 }
435 return PAGE_KEEP;
436 }
437 if (mapping->a_ops->writepage == NULL)
438 return PAGE_ACTIVATE;
0e093d99 439 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
440 return PAGE_KEEP;
441
442 if (clear_page_dirty_for_io(page)) {
443 int res;
444 struct writeback_control wbc = {
445 .sync_mode = WB_SYNC_NONE,
446 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
447 .range_start = 0,
448 .range_end = LLONG_MAX,
1da177e4
LT
449 .for_reclaim = 1,
450 };
451
452 SetPageReclaim(page);
453 res = mapping->a_ops->writepage(page, &wbc);
454 if (res < 0)
455 handle_write_error(mapping, page, res);
994fc28c 456 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
457 ClearPageReclaim(page);
458 return PAGE_ACTIVATE;
459 }
c661b078 460
1da177e4
LT
461 if (!PageWriteback(page)) {
462 /* synchronous write or broken a_ops? */
463 ClearPageReclaim(page);
464 }
23b9da55 465 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 466 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
467 return PAGE_SUCCESS;
468 }
469
470 return PAGE_CLEAN;
471}
472
a649fd92 473/*
e286781d
NP
474 * Same as remove_mapping, but if the page is removed from the mapping, it
475 * gets returned with a refcount of 0.
a649fd92 476 */
e286781d 477static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 478{
28e4d965
NP
479 BUG_ON(!PageLocked(page));
480 BUG_ON(mapping != page_mapping(page));
49d2e9cc 481
19fd6231 482 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 483 /*
0fd0e6b0
NP
484 * The non racy check for a busy page.
485 *
486 * Must be careful with the order of the tests. When someone has
487 * a ref to the page, it may be possible that they dirty it then
488 * drop the reference. So if PageDirty is tested before page_count
489 * here, then the following race may occur:
490 *
491 * get_user_pages(&page);
492 * [user mapping goes away]
493 * write_to(page);
494 * !PageDirty(page) [good]
495 * SetPageDirty(page);
496 * put_page(page);
497 * !page_count(page) [good, discard it]
498 *
499 * [oops, our write_to data is lost]
500 *
501 * Reversing the order of the tests ensures such a situation cannot
502 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
503 * load is not satisfied before that of page->_count.
504 *
505 * Note that if SetPageDirty is always performed via set_page_dirty,
506 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 507 */
e286781d 508 if (!page_freeze_refs(page, 2))
49d2e9cc 509 goto cannot_free;
e286781d
NP
510 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
511 if (unlikely(PageDirty(page))) {
512 page_unfreeze_refs(page, 2);
49d2e9cc 513 goto cannot_free;
e286781d 514 }
49d2e9cc
CL
515
516 if (PageSwapCache(page)) {
517 swp_entry_t swap = { .val = page_private(page) };
518 __delete_from_swap_cache(page);
19fd6231 519 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 520 swapcache_free(swap, page);
e286781d 521 } else {
6072d13c
LT
522 void (*freepage)(struct page *);
523
524 freepage = mapping->a_ops->freepage;
525
e64a782f 526 __delete_from_page_cache(page);
19fd6231 527 spin_unlock_irq(&mapping->tree_lock);
e767e056 528 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
529
530 if (freepage != NULL)
531 freepage(page);
49d2e9cc
CL
532 }
533
49d2e9cc
CL
534 return 1;
535
536cannot_free:
19fd6231 537 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
538 return 0;
539}
540
e286781d
NP
541/*
542 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
543 * someone else has a ref on the page, abort and return 0. If it was
544 * successfully detached, return 1. Assumes the caller has a single ref on
545 * this page.
546 */
547int remove_mapping(struct address_space *mapping, struct page *page)
548{
549 if (__remove_mapping(mapping, page)) {
550 /*
551 * Unfreezing the refcount with 1 rather than 2 effectively
552 * drops the pagecache ref for us without requiring another
553 * atomic operation.
554 */
555 page_unfreeze_refs(page, 1);
556 return 1;
557 }
558 return 0;
559}
560
894bc310
LS
561/**
562 * putback_lru_page - put previously isolated page onto appropriate LRU list
563 * @page: page to be put back to appropriate lru list
564 *
565 * Add previously isolated @page to appropriate LRU list.
566 * Page may still be unevictable for other reasons.
567 *
568 * lru_lock must not be held, interrupts must be enabled.
569 */
894bc310
LS
570void putback_lru_page(struct page *page)
571{
572 int lru;
573 int active = !!TestClearPageActive(page);
bbfd28ee 574 int was_unevictable = PageUnevictable(page);
894bc310
LS
575
576 VM_BUG_ON(PageLRU(page));
577
578redo:
579 ClearPageUnevictable(page);
580
581 if (page_evictable(page, NULL)) {
582 /*
583 * For evictable pages, we can use the cache.
584 * In event of a race, worst case is we end up with an
585 * unevictable page on [in]active list.
586 * We know how to handle that.
587 */
401a8e1c 588 lru = active + page_lru_base_type(page);
894bc310
LS
589 lru_cache_add_lru(page, lru);
590 } else {
591 /*
592 * Put unevictable pages directly on zone's unevictable
593 * list.
594 */
595 lru = LRU_UNEVICTABLE;
596 add_page_to_unevictable_list(page);
6a7b9548 597 /*
21ee9f39
MK
598 * When racing with an mlock or AS_UNEVICTABLE clearing
599 * (page is unlocked) make sure that if the other thread
600 * does not observe our setting of PG_lru and fails
24513264 601 * isolation/check_move_unevictable_pages,
21ee9f39 602 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
603 * the page back to the evictable list.
604 *
21ee9f39 605 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
606 */
607 smp_mb();
894bc310 608 }
894bc310
LS
609
610 /*
611 * page's status can change while we move it among lru. If an evictable
612 * page is on unevictable list, it never be freed. To avoid that,
613 * check after we added it to the list, again.
614 */
615 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
616 if (!isolate_lru_page(page)) {
617 put_page(page);
618 goto redo;
619 }
620 /* This means someone else dropped this page from LRU
621 * So, it will be freed or putback to LRU again. There is
622 * nothing to do here.
623 */
624 }
625
bbfd28ee
LS
626 if (was_unevictable && lru != LRU_UNEVICTABLE)
627 count_vm_event(UNEVICTABLE_PGRESCUED);
628 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
629 count_vm_event(UNEVICTABLE_PGCULLED);
630
894bc310
LS
631 put_page(page); /* drop ref from isolate */
632}
633
dfc8d636
JW
634enum page_references {
635 PAGEREF_RECLAIM,
636 PAGEREF_RECLAIM_CLEAN,
64574746 637 PAGEREF_KEEP,
dfc8d636
JW
638 PAGEREF_ACTIVATE,
639};
640
641static enum page_references page_check_references(struct page *page,
f16015fb 642 struct mem_cgroup_zone *mz,
dfc8d636
JW
643 struct scan_control *sc)
644{
64574746 645 int referenced_ptes, referenced_page;
dfc8d636 646 unsigned long vm_flags;
dfc8d636 647
c3ac9a8a
JW
648 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
649 &vm_flags);
64574746 650 referenced_page = TestClearPageReferenced(page);
dfc8d636 651
dfc8d636
JW
652 /*
653 * Mlock lost the isolation race with us. Let try_to_unmap()
654 * move the page to the unevictable list.
655 */
656 if (vm_flags & VM_LOCKED)
657 return PAGEREF_RECLAIM;
658
64574746 659 if (referenced_ptes) {
e4898273 660 if (PageSwapBacked(page))
64574746
JW
661 return PAGEREF_ACTIVATE;
662 /*
663 * All mapped pages start out with page table
664 * references from the instantiating fault, so we need
665 * to look twice if a mapped file page is used more
666 * than once.
667 *
668 * Mark it and spare it for another trip around the
669 * inactive list. Another page table reference will
670 * lead to its activation.
671 *
672 * Note: the mark is set for activated pages as well
673 * so that recently deactivated but used pages are
674 * quickly recovered.
675 */
676 SetPageReferenced(page);
677
34dbc67a 678 if (referenced_page || referenced_ptes > 1)
64574746
JW
679 return PAGEREF_ACTIVATE;
680
c909e993
KK
681 /*
682 * Activate file-backed executable pages after first usage.
683 */
684 if (vm_flags & VM_EXEC)
685 return PAGEREF_ACTIVATE;
686
64574746
JW
687 return PAGEREF_KEEP;
688 }
dfc8d636
JW
689
690 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 691 if (referenced_page && !PageSwapBacked(page))
64574746
JW
692 return PAGEREF_RECLAIM_CLEAN;
693
694 return PAGEREF_RECLAIM;
dfc8d636
JW
695}
696
1da177e4 697/*
1742f19f 698 * shrink_page_list() returns the number of reclaimed pages
1da177e4 699 */
1742f19f 700static unsigned long shrink_page_list(struct list_head *page_list,
f16015fb 701 struct mem_cgroup_zone *mz,
f84f6e2b 702 struct scan_control *sc,
92df3a72
MG
703 int priority,
704 unsigned long *ret_nr_dirty,
705 unsigned long *ret_nr_writeback)
1da177e4
LT
706{
707 LIST_HEAD(ret_pages);
abe4c3b5 708 LIST_HEAD(free_pages);
1da177e4 709 int pgactivate = 0;
0e093d99
MG
710 unsigned long nr_dirty = 0;
711 unsigned long nr_congested = 0;
05ff5137 712 unsigned long nr_reclaimed = 0;
92df3a72 713 unsigned long nr_writeback = 0;
1da177e4
LT
714
715 cond_resched();
716
1da177e4 717 while (!list_empty(page_list)) {
dfc8d636 718 enum page_references references;
1da177e4
LT
719 struct address_space *mapping;
720 struct page *page;
721 int may_enter_fs;
1da177e4
LT
722
723 cond_resched();
724
725 page = lru_to_page(page_list);
726 list_del(&page->lru);
727
529ae9aa 728 if (!trylock_page(page))
1da177e4
LT
729 goto keep;
730
725d704e 731 VM_BUG_ON(PageActive(page));
f16015fb 732 VM_BUG_ON(page_zone(page) != mz->zone);
1da177e4
LT
733
734 sc->nr_scanned++;
80e43426 735
b291f000
NP
736 if (unlikely(!page_evictable(page, NULL)))
737 goto cull_mlocked;
894bc310 738
a6dc60f8 739 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
740 goto keep_locked;
741
1da177e4
LT
742 /* Double the slab pressure for mapped and swapcache pages */
743 if (page_mapped(page) || PageSwapCache(page))
744 sc->nr_scanned++;
745
c661b078
AW
746 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
747 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
748
749 if (PageWriteback(page)) {
92df3a72 750 nr_writeback++;
41ac1999
MG
751 unlock_page(page);
752 goto keep;
c661b078 753 }
1da177e4 754
f16015fb 755 references = page_check_references(page, mz, sc);
dfc8d636
JW
756 switch (references) {
757 case PAGEREF_ACTIVATE:
1da177e4 758 goto activate_locked;
64574746
JW
759 case PAGEREF_KEEP:
760 goto keep_locked;
dfc8d636
JW
761 case PAGEREF_RECLAIM:
762 case PAGEREF_RECLAIM_CLEAN:
763 ; /* try to reclaim the page below */
764 }
1da177e4 765
1da177e4
LT
766 /*
767 * Anonymous process memory has backing store?
768 * Try to allocate it some swap space here.
769 */
b291f000 770 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
771 if (!(sc->gfp_mask & __GFP_IO))
772 goto keep_locked;
ac47b003 773 if (!add_to_swap(page))
1da177e4 774 goto activate_locked;
63eb6b93 775 may_enter_fs = 1;
b291f000 776 }
1da177e4
LT
777
778 mapping = page_mapping(page);
1da177e4
LT
779
780 /*
781 * The page is mapped into the page tables of one or more
782 * processes. Try to unmap it here.
783 */
784 if (page_mapped(page) && mapping) {
14fa31b8 785 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
786 case SWAP_FAIL:
787 goto activate_locked;
788 case SWAP_AGAIN:
789 goto keep_locked;
b291f000
NP
790 case SWAP_MLOCK:
791 goto cull_mlocked;
1da177e4
LT
792 case SWAP_SUCCESS:
793 ; /* try to free the page below */
794 }
795 }
796
797 if (PageDirty(page)) {
0e093d99
MG
798 nr_dirty++;
799
ee72886d
MG
800 /*
801 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
802 * avoid risk of stack overflow but do not writeback
803 * unless under significant pressure.
ee72886d 804 */
f84f6e2b
MG
805 if (page_is_file_cache(page) &&
806 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
807 /*
808 * Immediately reclaim when written back.
809 * Similar in principal to deactivate_page()
810 * except we already have the page isolated
811 * and know it's dirty
812 */
813 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
814 SetPageReclaim(page);
815
ee72886d
MG
816 goto keep_locked;
817 }
818
dfc8d636 819 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 820 goto keep_locked;
4dd4b920 821 if (!may_enter_fs)
1da177e4 822 goto keep_locked;
52a8363e 823 if (!sc->may_writepage)
1da177e4
LT
824 goto keep_locked;
825
826 /* Page is dirty, try to write it out here */
7d3579e8 827 switch (pageout(page, mapping, sc)) {
1da177e4 828 case PAGE_KEEP:
0e093d99 829 nr_congested++;
1da177e4
LT
830 goto keep_locked;
831 case PAGE_ACTIVATE:
832 goto activate_locked;
833 case PAGE_SUCCESS:
7d3579e8 834 if (PageWriteback(page))
41ac1999 835 goto keep;
7d3579e8 836 if (PageDirty(page))
1da177e4 837 goto keep;
7d3579e8 838
1da177e4
LT
839 /*
840 * A synchronous write - probably a ramdisk. Go
841 * ahead and try to reclaim the page.
842 */
529ae9aa 843 if (!trylock_page(page))
1da177e4
LT
844 goto keep;
845 if (PageDirty(page) || PageWriteback(page))
846 goto keep_locked;
847 mapping = page_mapping(page);
848 case PAGE_CLEAN:
849 ; /* try to free the page below */
850 }
851 }
852
853 /*
854 * If the page has buffers, try to free the buffer mappings
855 * associated with this page. If we succeed we try to free
856 * the page as well.
857 *
858 * We do this even if the page is PageDirty().
859 * try_to_release_page() does not perform I/O, but it is
860 * possible for a page to have PageDirty set, but it is actually
861 * clean (all its buffers are clean). This happens if the
862 * buffers were written out directly, with submit_bh(). ext3
894bc310 863 * will do this, as well as the blockdev mapping.
1da177e4
LT
864 * try_to_release_page() will discover that cleanness and will
865 * drop the buffers and mark the page clean - it can be freed.
866 *
867 * Rarely, pages can have buffers and no ->mapping. These are
868 * the pages which were not successfully invalidated in
869 * truncate_complete_page(). We try to drop those buffers here
870 * and if that worked, and the page is no longer mapped into
871 * process address space (page_count == 1) it can be freed.
872 * Otherwise, leave the page on the LRU so it is swappable.
873 */
266cf658 874 if (page_has_private(page)) {
1da177e4
LT
875 if (!try_to_release_page(page, sc->gfp_mask))
876 goto activate_locked;
e286781d
NP
877 if (!mapping && page_count(page) == 1) {
878 unlock_page(page);
879 if (put_page_testzero(page))
880 goto free_it;
881 else {
882 /*
883 * rare race with speculative reference.
884 * the speculative reference will free
885 * this page shortly, so we may
886 * increment nr_reclaimed here (and
887 * leave it off the LRU).
888 */
889 nr_reclaimed++;
890 continue;
891 }
892 }
1da177e4
LT
893 }
894
e286781d 895 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 896 goto keep_locked;
1da177e4 897
a978d6f5
NP
898 /*
899 * At this point, we have no other references and there is
900 * no way to pick any more up (removed from LRU, removed
901 * from pagecache). Can use non-atomic bitops now (and
902 * we obviously don't have to worry about waking up a process
903 * waiting on the page lock, because there are no references.
904 */
905 __clear_page_locked(page);
e286781d 906free_it:
05ff5137 907 nr_reclaimed++;
abe4c3b5
MG
908
909 /*
910 * Is there need to periodically free_page_list? It would
911 * appear not as the counts should be low
912 */
913 list_add(&page->lru, &free_pages);
1da177e4
LT
914 continue;
915
b291f000 916cull_mlocked:
63d6c5ad
HD
917 if (PageSwapCache(page))
918 try_to_free_swap(page);
b291f000
NP
919 unlock_page(page);
920 putback_lru_page(page);
921 continue;
922
1da177e4 923activate_locked:
68a22394
RR
924 /* Not a candidate for swapping, so reclaim swap space. */
925 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 926 try_to_free_swap(page);
894bc310 927 VM_BUG_ON(PageActive(page));
1da177e4
LT
928 SetPageActive(page);
929 pgactivate++;
930keep_locked:
931 unlock_page(page);
932keep:
933 list_add(&page->lru, &ret_pages);
b291f000 934 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 935 }
abe4c3b5 936
0e093d99
MG
937 /*
938 * Tag a zone as congested if all the dirty pages encountered were
939 * backed by a congested BDI. In this case, reclaimers should just
940 * back off and wait for congestion to clear because further reclaim
941 * will encounter the same problem
942 */
89b5fae5 943 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
f16015fb 944 zone_set_flag(mz->zone, ZONE_CONGESTED);
0e093d99 945
cc59850e 946 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 947
1da177e4 948 list_splice(&ret_pages, page_list);
f8891e5e 949 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
950 *ret_nr_dirty += nr_dirty;
951 *ret_nr_writeback += nr_writeback;
05ff5137 952 return nr_reclaimed;
1da177e4
LT
953}
954
5ad333eb
AW
955/*
956 * Attempt to remove the specified page from its LRU. Only take this page
957 * if it is of the appropriate PageActive status. Pages which are being
958 * freed elsewhere are also ignored.
959 *
960 * page: page to consider
961 * mode: one of the LRU isolation modes defined above
962 *
963 * returns 0 on success, -ve errno on failure.
964 */
4356f21d 965int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
5ad333eb 966{
4356f21d 967 bool all_lru_mode;
5ad333eb
AW
968 int ret = -EINVAL;
969
970 /* Only take pages on the LRU. */
971 if (!PageLRU(page))
972 return ret;
973
4356f21d
MK
974 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
975 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
976
5ad333eb
AW
977 /*
978 * When checking the active state, we need to be sure we are
979 * dealing with comparible boolean values. Take the logical not
980 * of each.
981 */
4356f21d 982 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
5ad333eb
AW
983 return ret;
984
4356f21d 985 if (!all_lru_mode && !!page_is_file_cache(page) != file)
4f98a2fe
RR
986 return ret;
987
c53919ad 988 /* Do not give back unevictable pages for compaction */
894bc310
LS
989 if (PageUnevictable(page))
990 return ret;
991
5ad333eb 992 ret = -EBUSY;
08e552c6 993
c8244935
MG
994 /*
995 * To minimise LRU disruption, the caller can indicate that it only
996 * wants to isolate pages it will be able to operate on without
997 * blocking - clean pages for the most part.
998 *
999 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1000 * is used by reclaim when it is cannot write to backing storage
1001 *
1002 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1003 * that it is possible to migrate without blocking
1004 */
1005 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1006 /* All the caller can do on PageWriteback is block */
1007 if (PageWriteback(page))
1008 return ret;
1009
1010 if (PageDirty(page)) {
1011 struct address_space *mapping;
1012
1013 /* ISOLATE_CLEAN means only clean pages */
1014 if (mode & ISOLATE_CLEAN)
1015 return ret;
1016
1017 /*
1018 * Only pages without mappings or that have a
1019 * ->migratepage callback are possible to migrate
1020 * without blocking
1021 */
1022 mapping = page_mapping(page);
1023 if (mapping && !mapping->a_ops->migratepage)
1024 return ret;
1025 }
1026 }
39deaf85 1027
f80c0673
MK
1028 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1029 return ret;
1030
5ad333eb
AW
1031 if (likely(get_page_unless_zero(page))) {
1032 /*
1033 * Be careful not to clear PageLRU until after we're
1034 * sure the page is not being freed elsewhere -- the
1035 * page release code relies on it.
1036 */
1037 ClearPageLRU(page);
1038 ret = 0;
1039 }
1040
1041 return ret;
1042}
1043
1da177e4
LT
1044/*
1045 * zone->lru_lock is heavily contended. Some of the functions that
1046 * shrink the lists perform better by taking out a batch of pages
1047 * and working on them outside the LRU lock.
1048 *
1049 * For pagecache intensive workloads, this function is the hottest
1050 * spot in the kernel (apart from copy_*_user functions).
1051 *
1052 * Appropriate locks must be held before calling this function.
1053 *
1054 * @nr_to_scan: The number of pages to look through on the list.
f626012d 1055 * @mz: The mem_cgroup_zone to pull pages from.
1da177e4 1056 * @dst: The temp list to put pages on to.
f626012d 1057 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1058 * @sc: The scan_control struct for this reclaim session
5ad333eb 1059 * @mode: One of the LRU isolation modes
f626012d 1060 * @active: True [1] if isolating active pages
4f98a2fe 1061 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
1062 *
1063 * returns how many pages were moved onto *@dst.
1064 */
69e05944 1065static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
f626012d 1066 struct mem_cgroup_zone *mz, struct list_head *dst,
fe2c2a10
RR
1067 unsigned long *nr_scanned, struct scan_control *sc,
1068 isolate_mode_t mode, int active, int file)
1da177e4 1069{
f626012d
HD
1070 struct lruvec *lruvec;
1071 struct list_head *src;
69e05944 1072 unsigned long nr_taken = 0;
c9b02d97 1073 unsigned long scan;
f626012d
HD
1074 int lru = LRU_BASE;
1075
1076 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1077 if (active)
1078 lru += LRU_ACTIVE;
1079 if (file)
1080 lru += LRU_FILE;
1081 src = &lruvec->lists[lru];
1da177e4 1082
c9b02d97 1083 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1084 struct page *page;
5ad333eb 1085
1da177e4
LT
1086 page = lru_to_page(src);
1087 prefetchw_prev_lru_page(page, src, flags);
1088
725d704e 1089 VM_BUG_ON(!PageLRU(page));
8d438f96 1090
4f98a2fe 1091 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb 1092 case 0:
925b7673 1093 mem_cgroup_lru_del(page);
5ad333eb 1094 list_move(&page->lru, dst);
2c888cfb 1095 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1096 break;
1097
1098 case -EBUSY:
1099 /* else it is being freed elsewhere */
1100 list_move(&page->lru, src);
1101 continue;
46453a6e 1102
5ad333eb
AW
1103 default:
1104 BUG();
1105 }
1da177e4
LT
1106 }
1107
f626012d 1108 *nr_scanned = scan;
a8a94d15 1109
fe2c2a10 1110 trace_mm_vmscan_lru_isolate(sc->order,
a8a94d15
MG
1111 nr_to_scan, scan,
1112 nr_taken,
ea4d349f 1113 mode, file);
1da177e4
LT
1114 return nr_taken;
1115}
1116
62695a84
NP
1117/**
1118 * isolate_lru_page - tries to isolate a page from its LRU list
1119 * @page: page to isolate from its LRU list
1120 *
1121 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1122 * vmstat statistic corresponding to whatever LRU list the page was on.
1123 *
1124 * Returns 0 if the page was removed from an LRU list.
1125 * Returns -EBUSY if the page was not on an LRU list.
1126 *
1127 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1128 * the active list, it will have PageActive set. If it was found on
1129 * the unevictable list, it will have the PageUnevictable bit set. That flag
1130 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1131 *
1132 * The vmstat statistic corresponding to the list on which the page was
1133 * found will be decremented.
1134 *
1135 * Restrictions:
1136 * (1) Must be called with an elevated refcount on the page. This is a
1137 * fundamentnal difference from isolate_lru_pages (which is called
1138 * without a stable reference).
1139 * (2) the lru_lock must not be held.
1140 * (3) interrupts must be enabled.
1141 */
1142int isolate_lru_page(struct page *page)
1143{
1144 int ret = -EBUSY;
1145
0c917313
KK
1146 VM_BUG_ON(!page_count(page));
1147
62695a84
NP
1148 if (PageLRU(page)) {
1149 struct zone *zone = page_zone(page);
1150
1151 spin_lock_irq(&zone->lru_lock);
0c917313 1152 if (PageLRU(page)) {
894bc310 1153 int lru = page_lru(page);
62695a84 1154 ret = 0;
0c917313 1155 get_page(page);
62695a84 1156 ClearPageLRU(page);
4f98a2fe 1157
4f98a2fe 1158 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1159 }
1160 spin_unlock_irq(&zone->lru_lock);
1161 }
1162 return ret;
1163}
1164
35cd7815
RR
1165/*
1166 * Are there way too many processes in the direct reclaim path already?
1167 */
1168static int too_many_isolated(struct zone *zone, int file,
1169 struct scan_control *sc)
1170{
1171 unsigned long inactive, isolated;
1172
1173 if (current_is_kswapd())
1174 return 0;
1175
89b5fae5 1176 if (!global_reclaim(sc))
35cd7815
RR
1177 return 0;
1178
1179 if (file) {
1180 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1181 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1182 } else {
1183 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1184 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1185 }
1186
1187 return isolated > inactive;
1188}
1189
66635629 1190static noinline_for_stack void
3f79768f
HD
1191putback_inactive_pages(struct mem_cgroup_zone *mz,
1192 struct list_head *page_list)
66635629 1193{
f16015fb 1194 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
3f79768f
HD
1195 struct zone *zone = mz->zone;
1196 LIST_HEAD(pages_to_free);
66635629 1197
66635629
MG
1198 /*
1199 * Put back any unfreeable pages.
1200 */
66635629 1201 while (!list_empty(page_list)) {
3f79768f 1202 struct page *page = lru_to_page(page_list);
66635629 1203 int lru;
3f79768f 1204
66635629
MG
1205 VM_BUG_ON(PageLRU(page));
1206 list_del(&page->lru);
1207 if (unlikely(!page_evictable(page, NULL))) {
1208 spin_unlock_irq(&zone->lru_lock);
1209 putback_lru_page(page);
1210 spin_lock_irq(&zone->lru_lock);
1211 continue;
1212 }
7a608572 1213 SetPageLRU(page);
66635629 1214 lru = page_lru(page);
7a608572 1215 add_page_to_lru_list(zone, page, lru);
66635629
MG
1216 if (is_active_lru(lru)) {
1217 int file = is_file_lru(lru);
9992af10
RR
1218 int numpages = hpage_nr_pages(page);
1219 reclaim_stat->recent_rotated[file] += numpages;
66635629 1220 }
2bcf8879
HD
1221 if (put_page_testzero(page)) {
1222 __ClearPageLRU(page);
1223 __ClearPageActive(page);
1224 del_page_from_lru_list(zone, page, lru);
1225
1226 if (unlikely(PageCompound(page))) {
1227 spin_unlock_irq(&zone->lru_lock);
1228 (*get_compound_page_dtor(page))(page);
1229 spin_lock_irq(&zone->lru_lock);
1230 } else
1231 list_add(&page->lru, &pages_to_free);
66635629
MG
1232 }
1233 }
66635629 1234
3f79768f
HD
1235 /*
1236 * To save our caller's stack, now use input list for pages to free.
1237 */
1238 list_splice(&pages_to_free, page_list);
66635629
MG
1239}
1240
f16015fb
JW
1241static noinline_for_stack void
1242update_isolated_counts(struct mem_cgroup_zone *mz,
3f79768f 1243 struct list_head *page_list,
f16015fb 1244 unsigned long *nr_anon,
3f79768f 1245 unsigned long *nr_file)
1489fa14 1246{
f16015fb 1247 struct zone *zone = mz->zone;
1489fa14 1248 unsigned int count[NR_LRU_LISTS] = { 0, };
3f79768f
HD
1249 unsigned long nr_active = 0;
1250 struct page *page;
1251 int lru;
1252
1253 /*
1254 * Count pages and clear active flags
1255 */
1256 list_for_each_entry(page, page_list, lru) {
1257 int numpages = hpage_nr_pages(page);
1258 lru = page_lru_base_type(page);
1259 if (PageActive(page)) {
1260 lru += LRU_ACTIVE;
1261 ClearPageActive(page);
1262 nr_active += numpages;
1263 }
1264 count[lru] += numpages;
1265 }
1489fa14 1266
d563c050 1267 preempt_disable();
1489fa14
MG
1268 __count_vm_events(PGDEACTIVATE, nr_active);
1269
1270 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1271 -count[LRU_ACTIVE_FILE]);
1272 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1273 -count[LRU_INACTIVE_FILE]);
1274 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1275 -count[LRU_ACTIVE_ANON]);
1276 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1277 -count[LRU_INACTIVE_ANON]);
1278
1279 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1280 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1489fa14 1281
d563c050
HD
1282 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1283 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1284 preempt_enable();
1489fa14
MG
1285}
1286
1da177e4 1287/*
1742f19f
AM
1288 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1289 * of reclaimed pages
1da177e4 1290 */
66635629 1291static noinline_for_stack unsigned long
f16015fb
JW
1292shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1293 struct scan_control *sc, int priority, int file)
1da177e4
LT
1294{
1295 LIST_HEAD(page_list);
e247dbce 1296 unsigned long nr_scanned;
05ff5137 1297 unsigned long nr_reclaimed = 0;
e247dbce 1298 unsigned long nr_taken;
e247dbce
KM
1299 unsigned long nr_anon;
1300 unsigned long nr_file;
92df3a72
MG
1301 unsigned long nr_dirty = 0;
1302 unsigned long nr_writeback = 0;
61317289 1303 isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
f16015fb 1304 struct zone *zone = mz->zone;
d563c050 1305 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
78dc583d 1306
35cd7815 1307 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1308 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1309
1310 /* We are about to die and free our memory. Return now. */
1311 if (fatal_signal_pending(current))
1312 return SWAP_CLUSTER_MAX;
1313 }
1314
1da177e4 1315 lru_add_drain();
f80c0673
MK
1316
1317 if (!sc->may_unmap)
61317289 1318 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1319 if (!sc->may_writepage)
61317289 1320 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1321
1da177e4 1322 spin_lock_irq(&zone->lru_lock);
b35ea17b 1323
fe2c2a10
RR
1324 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1325 sc, isolate_mode, 0, file);
89b5fae5 1326 if (global_reclaim(sc)) {
e247dbce
KM
1327 zone->pages_scanned += nr_scanned;
1328 if (current_is_kswapd())
1329 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1330 nr_scanned);
1331 else
1332 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1333 nr_scanned);
e247dbce 1334 }
d563c050 1335 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1336
d563c050 1337 if (nr_taken == 0)
66635629 1338 return 0;
5ad333eb 1339
3f79768f
HD
1340 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1341
f16015fb 1342 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
92df3a72 1343 &nr_dirty, &nr_writeback);
c661b078 1344
3f79768f
HD
1345 spin_lock_irq(&zone->lru_lock);
1346
d563c050
HD
1347 reclaim_stat->recent_scanned[0] += nr_anon;
1348 reclaim_stat->recent_scanned[1] += nr_file;
1349
904249aa
YH
1350 if (global_reclaim(sc)) {
1351 if (current_is_kswapd())
1352 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1353 nr_reclaimed);
1354 else
1355 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1356 nr_reclaimed);
1357 }
a74609fa 1358
3f79768f
HD
1359 putback_inactive_pages(mz, &page_list);
1360
1361 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1362 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1363
1364 spin_unlock_irq(&zone->lru_lock);
1365
1366 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1367
92df3a72
MG
1368 /*
1369 * If reclaim is isolating dirty pages under writeback, it implies
1370 * that the long-lived page allocation rate is exceeding the page
1371 * laundering rate. Either the global limits are not being effective
1372 * at throttling processes due to the page distribution throughout
1373 * zones or there is heavy usage of a slow backing device. The
1374 * only option is to throttle from reclaim context which is not ideal
1375 * as there is no guarantee the dirtying process is throttled in the
1376 * same way balance_dirty_pages() manages.
1377 *
1378 * This scales the number of dirty pages that must be under writeback
1379 * before throttling depending on priority. It is a simple backoff
1380 * function that has the most effect in the range DEF_PRIORITY to
1381 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1382 * in trouble and reclaim is considered to be in trouble.
1383 *
1384 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1385 * DEF_PRIORITY-1 50% must be PageWriteback
1386 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1387 * ...
1388 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1389 * isolated page is PageWriteback
1390 */
1391 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1392 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1393
e11da5b4
MG
1394 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1395 zone_idx(zone),
1396 nr_scanned, nr_reclaimed,
1397 priority,
23b9da55 1398 trace_shrink_flags(file));
05ff5137 1399 return nr_reclaimed;
1da177e4
LT
1400}
1401
1402/*
1403 * This moves pages from the active list to the inactive list.
1404 *
1405 * We move them the other way if the page is referenced by one or more
1406 * processes, from rmap.
1407 *
1408 * If the pages are mostly unmapped, the processing is fast and it is
1409 * appropriate to hold zone->lru_lock across the whole operation. But if
1410 * the pages are mapped, the processing is slow (page_referenced()) so we
1411 * should drop zone->lru_lock around each page. It's impossible to balance
1412 * this, so instead we remove the pages from the LRU while processing them.
1413 * It is safe to rely on PG_active against the non-LRU pages in here because
1414 * nobody will play with that bit on a non-LRU page.
1415 *
1416 * The downside is that we have to touch page->_count against each page.
1417 * But we had to alter page->flags anyway.
1418 */
1cfb419b 1419
3eb4140f
WF
1420static void move_active_pages_to_lru(struct zone *zone,
1421 struct list_head *list,
2bcf8879 1422 struct list_head *pages_to_free,
3eb4140f
WF
1423 enum lru_list lru)
1424{
1425 unsigned long pgmoved = 0;
3eb4140f
WF
1426 struct page *page;
1427
3eb4140f 1428 while (!list_empty(list)) {
925b7673
JW
1429 struct lruvec *lruvec;
1430
3eb4140f 1431 page = lru_to_page(list);
3eb4140f
WF
1432
1433 VM_BUG_ON(PageLRU(page));
1434 SetPageLRU(page);
1435
925b7673
JW
1436 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1437 list_move(&page->lru, &lruvec->lists[lru]);
2c888cfb 1438 pgmoved += hpage_nr_pages(page);
3eb4140f 1439
2bcf8879
HD
1440 if (put_page_testzero(page)) {
1441 __ClearPageLRU(page);
1442 __ClearPageActive(page);
1443 del_page_from_lru_list(zone, page, lru);
1444
1445 if (unlikely(PageCompound(page))) {
1446 spin_unlock_irq(&zone->lru_lock);
1447 (*get_compound_page_dtor(page))(page);
1448 spin_lock_irq(&zone->lru_lock);
1449 } else
1450 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1451 }
1452 }
1453 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1454 if (!is_active_lru(lru))
1455 __count_vm_events(PGDEACTIVATE, pgmoved);
1456}
1cfb419b 1457
f626012d 1458static void shrink_active_list(unsigned long nr_to_scan,
f16015fb
JW
1459 struct mem_cgroup_zone *mz,
1460 struct scan_control *sc,
1461 int priority, int file)
1da177e4 1462{
44c241f1 1463 unsigned long nr_taken;
f626012d 1464 unsigned long nr_scanned;
6fe6b7e3 1465 unsigned long vm_flags;
1da177e4 1466 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1467 LIST_HEAD(l_active);
b69408e8 1468 LIST_HEAD(l_inactive);
1da177e4 1469 struct page *page;
f16015fb 1470 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
44c241f1 1471 unsigned long nr_rotated = 0;
61317289 1472 isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
f16015fb 1473 struct zone *zone = mz->zone;
1da177e4
LT
1474
1475 lru_add_drain();
f80c0673
MK
1476
1477 if (!sc->may_unmap)
61317289 1478 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1479 if (!sc->may_writepage)
61317289 1480 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1481
1da177e4 1482 spin_lock_irq(&zone->lru_lock);
925b7673 1483
fe2c2a10 1484 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
61317289 1485 isolate_mode, 1, file);
89b5fae5 1486 if (global_reclaim(sc))
f626012d 1487 zone->pages_scanned += nr_scanned;
89b5fae5 1488
b7c46d15 1489 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1490
f626012d 1491 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
4f98a2fe 1492 if (file)
44c241f1 1493 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1494 else
44c241f1 1495 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1496 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1497 spin_unlock_irq(&zone->lru_lock);
1498
1da177e4
LT
1499 while (!list_empty(&l_hold)) {
1500 cond_resched();
1501 page = lru_to_page(&l_hold);
1502 list_del(&page->lru);
7e9cd484 1503
894bc310
LS
1504 if (unlikely(!page_evictable(page, NULL))) {
1505 putback_lru_page(page);
1506 continue;
1507 }
1508
cc715d99
MG
1509 if (unlikely(buffer_heads_over_limit)) {
1510 if (page_has_private(page) && trylock_page(page)) {
1511 if (page_has_private(page))
1512 try_to_release_page(page, 0);
1513 unlock_page(page);
1514 }
1515 }
1516
c3ac9a8a
JW
1517 if (page_referenced(page, 0, sc->target_mem_cgroup,
1518 &vm_flags)) {
9992af10 1519 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1520 /*
1521 * Identify referenced, file-backed active pages and
1522 * give them one more trip around the active list. So
1523 * that executable code get better chances to stay in
1524 * memory under moderate memory pressure. Anon pages
1525 * are not likely to be evicted by use-once streaming
1526 * IO, plus JVM can create lots of anon VM_EXEC pages,
1527 * so we ignore them here.
1528 */
41e20983 1529 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1530 list_add(&page->lru, &l_active);
1531 continue;
1532 }
1533 }
7e9cd484 1534
5205e56e 1535 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1536 list_add(&page->lru, &l_inactive);
1537 }
1538
b555749a 1539 /*
8cab4754 1540 * Move pages back to the lru list.
b555749a 1541 */
2a1dc509 1542 spin_lock_irq(&zone->lru_lock);
556adecb 1543 /*
8cab4754
WF
1544 * Count referenced pages from currently used mappings as rotated,
1545 * even though only some of them are actually re-activated. This
1546 * helps balance scan pressure between file and anonymous pages in
1547 * get_scan_ratio.
7e9cd484 1548 */
b7c46d15 1549 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1550
2bcf8879 1551 move_active_pages_to_lru(zone, &l_active, &l_hold,
3eb4140f 1552 LRU_ACTIVE + file * LRU_FILE);
2bcf8879 1553 move_active_pages_to_lru(zone, &l_inactive, &l_hold,
3eb4140f 1554 LRU_BASE + file * LRU_FILE);
a731286d 1555 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1556 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1557
1558 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1559}
1560
74e3f3c3 1561#ifdef CONFIG_SWAP
14797e23 1562static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1563{
1564 unsigned long active, inactive;
1565
1566 active = zone_page_state(zone, NR_ACTIVE_ANON);
1567 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1568
1569 if (inactive * zone->inactive_ratio < active)
1570 return 1;
1571
1572 return 0;
1573}
1574
14797e23
KM
1575/**
1576 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1577 * @zone: zone to check
1578 * @sc: scan control of this context
1579 *
1580 * Returns true if the zone does not have enough inactive anon pages,
1581 * meaning some active anon pages need to be deactivated.
1582 */
f16015fb 1583static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
14797e23 1584{
74e3f3c3
MK
1585 /*
1586 * If we don't have swap space, anonymous page deactivation
1587 * is pointless.
1588 */
1589 if (!total_swap_pages)
1590 return 0;
1591
f16015fb
JW
1592 if (!scanning_global_lru(mz))
1593 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1594 mz->zone);
1595
1596 return inactive_anon_is_low_global(mz->zone);
14797e23 1597}
74e3f3c3 1598#else
f16015fb 1599static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
74e3f3c3
MK
1600{
1601 return 0;
1602}
1603#endif
14797e23 1604
56e49d21
RR
1605static int inactive_file_is_low_global(struct zone *zone)
1606{
1607 unsigned long active, inactive;
1608
1609 active = zone_page_state(zone, NR_ACTIVE_FILE);
1610 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1611
1612 return (active > inactive);
1613}
1614
1615/**
1616 * inactive_file_is_low - check if file pages need to be deactivated
f16015fb 1617 * @mz: memory cgroup and zone to check
56e49d21
RR
1618 *
1619 * When the system is doing streaming IO, memory pressure here
1620 * ensures that active file pages get deactivated, until more
1621 * than half of the file pages are on the inactive list.
1622 *
1623 * Once we get to that situation, protect the system's working
1624 * set from being evicted by disabling active file page aging.
1625 *
1626 * This uses a different ratio than the anonymous pages, because
1627 * the page cache uses a use-once replacement algorithm.
1628 */
f16015fb 1629static int inactive_file_is_low(struct mem_cgroup_zone *mz)
56e49d21 1630{
f16015fb
JW
1631 if (!scanning_global_lru(mz))
1632 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1633 mz->zone);
56e49d21 1634
f16015fb 1635 return inactive_file_is_low_global(mz->zone);
56e49d21
RR
1636}
1637
f16015fb 1638static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
b39415b2
RR
1639{
1640 if (file)
f16015fb 1641 return inactive_file_is_low(mz);
b39415b2 1642 else
f16015fb 1643 return inactive_anon_is_low(mz);
b39415b2
RR
1644}
1645
4f98a2fe 1646static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
f16015fb
JW
1647 struct mem_cgroup_zone *mz,
1648 struct scan_control *sc, int priority)
b69408e8 1649{
4f98a2fe
RR
1650 int file = is_file_lru(lru);
1651
b39415b2 1652 if (is_active_lru(lru)) {
f16015fb
JW
1653 if (inactive_list_is_low(mz, file))
1654 shrink_active_list(nr_to_scan, mz, sc, priority, file);
556adecb
RR
1655 return 0;
1656 }
1657
f16015fb 1658 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
4f98a2fe
RR
1659}
1660
f16015fb
JW
1661static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1662 struct scan_control *sc)
1f4c025b 1663{
89b5fae5 1664 if (global_reclaim(sc))
1f4c025b 1665 return vm_swappiness;
f16015fb 1666 return mem_cgroup_swappiness(mz->mem_cgroup);
1f4c025b
KH
1667}
1668
4f98a2fe
RR
1669/*
1670 * Determine how aggressively the anon and file LRU lists should be
1671 * scanned. The relative value of each set of LRU lists is determined
1672 * by looking at the fraction of the pages scanned we did rotate back
1673 * onto the active list instead of evict.
1674 *
76a33fc3 1675 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1676 */
f16015fb
JW
1677static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1678 unsigned long *nr, int priority)
4f98a2fe
RR
1679{
1680 unsigned long anon, file, free;
1681 unsigned long anon_prio, file_prio;
1682 unsigned long ap, fp;
f16015fb 1683 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
76a33fc3 1684 u64 fraction[2], denominator;
4111304d 1685 enum lru_list lru;
76a33fc3 1686 int noswap = 0;
a4d3e9e7 1687 bool force_scan = false;
246e87a9 1688
f11c0ca5
JW
1689 /*
1690 * If the zone or memcg is small, nr[l] can be 0. This
1691 * results in no scanning on this priority and a potential
1692 * priority drop. Global direct reclaim can go to the next
1693 * zone and tends to have no problems. Global kswapd is for
1694 * zone balancing and it needs to scan a minimum amount. When
1695 * reclaiming for a memcg, a priority drop can cause high
1696 * latencies, so it's better to scan a minimum amount there as
1697 * well.
1698 */
b95a2f2d 1699 if (current_is_kswapd() && mz->zone->all_unreclaimable)
a4d3e9e7 1700 force_scan = true;
89b5fae5 1701 if (!global_reclaim(sc))
a4d3e9e7 1702 force_scan = true;
76a33fc3
SL
1703
1704 /* If we have no swap space, do not bother scanning anon pages. */
1705 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1706 noswap = 1;
1707 fraction[0] = 0;
1708 fraction[1] = 1;
1709 denominator = 1;
1710 goto out;
1711 }
4f98a2fe 1712
f16015fb
JW
1713 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1714 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1715 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1716 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
a4d3e9e7 1717
89b5fae5 1718 if (global_reclaim(sc)) {
f16015fb 1719 free = zone_page_state(mz->zone, NR_FREE_PAGES);
eeee9a8c
KM
1720 /* If we have very few page cache pages,
1721 force-scan anon pages. */
f16015fb 1722 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
76a33fc3
SL
1723 fraction[0] = 1;
1724 fraction[1] = 0;
1725 denominator = 1;
1726 goto out;
eeee9a8c 1727 }
4f98a2fe
RR
1728 }
1729
58c37f6e
KM
1730 /*
1731 * With swappiness at 100, anonymous and file have the same priority.
1732 * This scanning priority is essentially the inverse of IO cost.
1733 */
f16015fb
JW
1734 anon_prio = vmscan_swappiness(mz, sc);
1735 file_prio = 200 - vmscan_swappiness(mz, sc);
58c37f6e 1736
4f98a2fe
RR
1737 /*
1738 * OK, so we have swap space and a fair amount of page cache
1739 * pages. We use the recently rotated / recently scanned
1740 * ratios to determine how valuable each cache is.
1741 *
1742 * Because workloads change over time (and to avoid overflow)
1743 * we keep these statistics as a floating average, which ends
1744 * up weighing recent references more than old ones.
1745 *
1746 * anon in [0], file in [1]
1747 */
f16015fb 1748 spin_lock_irq(&mz->zone->lru_lock);
6e901571 1749 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1750 reclaim_stat->recent_scanned[0] /= 2;
1751 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1752 }
1753
6e901571 1754 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1755 reclaim_stat->recent_scanned[1] /= 2;
1756 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1757 }
1758
4f98a2fe 1759 /*
00d8089c
RR
1760 * The amount of pressure on anon vs file pages is inversely
1761 * proportional to the fraction of recently scanned pages on
1762 * each list that were recently referenced and in active use.
4f98a2fe 1763 */
6e901571
KM
1764 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1765 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1766
6e901571
KM
1767 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1768 fp /= reclaim_stat->recent_rotated[1] + 1;
f16015fb 1769 spin_unlock_irq(&mz->zone->lru_lock);
4f98a2fe 1770
76a33fc3
SL
1771 fraction[0] = ap;
1772 fraction[1] = fp;
1773 denominator = ap + fp + 1;
1774out:
4111304d
HD
1775 for_each_evictable_lru(lru) {
1776 int file = is_file_lru(lru);
76a33fc3 1777 unsigned long scan;
6e08a369 1778
4111304d 1779 scan = zone_nr_lru_pages(mz, lru);
76a33fc3
SL
1780 if (priority || noswap) {
1781 scan >>= priority;
f11c0ca5
JW
1782 if (!scan && force_scan)
1783 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1784 scan = div64_u64(scan * fraction[file], denominator);
1785 }
4111304d 1786 nr[lru] = scan;
76a33fc3 1787 }
6e08a369 1788}
4f98a2fe 1789
23b9da55
MG
1790/* Use reclaim/compaction for costly allocs or under memory pressure */
1791static bool in_reclaim_compaction(int priority, struct scan_control *sc)
1792{
1793 if (COMPACTION_BUILD && sc->order &&
1794 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1795 priority < DEF_PRIORITY - 2))
1796 return true;
1797
1798 return false;
1799}
1800
3e7d3449 1801/*
23b9da55
MG
1802 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1803 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1804 * true if more pages should be reclaimed such that when the page allocator
1805 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1806 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1807 */
f16015fb 1808static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
3e7d3449
MG
1809 unsigned long nr_reclaimed,
1810 unsigned long nr_scanned,
23b9da55 1811 int priority,
3e7d3449
MG
1812 struct scan_control *sc)
1813{
1814 unsigned long pages_for_compaction;
1815 unsigned long inactive_lru_pages;
1816
1817 /* If not in reclaim/compaction mode, stop */
23b9da55 1818 if (!in_reclaim_compaction(priority, sc))
3e7d3449
MG
1819 return false;
1820
2876592f
MG
1821 /* Consider stopping depending on scan and reclaim activity */
1822 if (sc->gfp_mask & __GFP_REPEAT) {
1823 /*
1824 * For __GFP_REPEAT allocations, stop reclaiming if the
1825 * full LRU list has been scanned and we are still failing
1826 * to reclaim pages. This full LRU scan is potentially
1827 * expensive but a __GFP_REPEAT caller really wants to succeed
1828 */
1829 if (!nr_reclaimed && !nr_scanned)
1830 return false;
1831 } else {
1832 /*
1833 * For non-__GFP_REPEAT allocations which can presumably
1834 * fail without consequence, stop if we failed to reclaim
1835 * any pages from the last SWAP_CLUSTER_MAX number of
1836 * pages that were scanned. This will return to the
1837 * caller faster at the risk reclaim/compaction and
1838 * the resulting allocation attempt fails
1839 */
1840 if (!nr_reclaimed)
1841 return false;
1842 }
3e7d3449
MG
1843
1844 /*
1845 * If we have not reclaimed enough pages for compaction and the
1846 * inactive lists are large enough, continue reclaiming
1847 */
1848 pages_for_compaction = (2UL << sc->order);
f16015fb 1849 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
86cfd3a4 1850 if (nr_swap_pages > 0)
f16015fb 1851 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
3e7d3449
MG
1852 if (sc->nr_reclaimed < pages_for_compaction &&
1853 inactive_lru_pages > pages_for_compaction)
1854 return true;
1855
1856 /* If compaction would go ahead or the allocation would succeed, stop */
f16015fb 1857 switch (compaction_suitable(mz->zone, sc->order)) {
3e7d3449
MG
1858 case COMPACT_PARTIAL:
1859 case COMPACT_CONTINUE:
1860 return false;
1861 default:
1862 return true;
1863 }
1864}
1865
1da177e4
LT
1866/*
1867 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1868 */
f16015fb
JW
1869static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
1870 struct scan_control *sc)
1da177e4 1871{
b69408e8 1872 unsigned long nr[NR_LRU_LISTS];
8695949a 1873 unsigned long nr_to_scan;
4111304d 1874 enum lru_list lru;
f0fdc5e8 1875 unsigned long nr_reclaimed, nr_scanned;
22fba335 1876 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1877 struct blk_plug plug;
e0f79b8f 1878
3e7d3449
MG
1879restart:
1880 nr_reclaimed = 0;
f0fdc5e8 1881 nr_scanned = sc->nr_scanned;
f16015fb 1882 get_scan_count(mz, sc, nr, priority);
1da177e4 1883
3da367c3 1884 blk_start_plug(&plug);
556adecb
RR
1885 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1886 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1887 for_each_evictable_lru(lru) {
1888 if (nr[lru]) {
ece74b2e 1889 nr_to_scan = min_t(unsigned long,
4111304d
HD
1890 nr[lru], SWAP_CLUSTER_MAX);
1891 nr[lru] -= nr_to_scan;
1da177e4 1892
4111304d 1893 nr_reclaimed += shrink_list(lru, nr_to_scan,
f16015fb 1894 mz, sc, priority);
b69408e8 1895 }
1da177e4 1896 }
a79311c1
RR
1897 /*
1898 * On large memory systems, scan >> priority can become
1899 * really large. This is fine for the starting priority;
1900 * we want to put equal scanning pressure on each zone.
1901 * However, if the VM has a harder time of freeing pages,
1902 * with multiple processes reclaiming pages, the total
1903 * freeing target can get unreasonably large.
1904 */
41c93088 1905 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1906 break;
1da177e4 1907 }
3da367c3 1908 blk_finish_plug(&plug);
3e7d3449 1909 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1910
556adecb
RR
1911 /*
1912 * Even if we did not try to evict anon pages at all, we want to
1913 * rebalance the anon lru active/inactive ratio.
1914 */
f16015fb
JW
1915 if (inactive_anon_is_low(mz))
1916 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
556adecb 1917
3e7d3449 1918 /* reclaim/compaction might need reclaim to continue */
f16015fb 1919 if (should_continue_reclaim(mz, nr_reclaimed,
23b9da55
MG
1920 sc->nr_scanned - nr_scanned,
1921 priority, sc))
3e7d3449
MG
1922 goto restart;
1923
232ea4d6 1924 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1925}
1926
f16015fb
JW
1927static void shrink_zone(int priority, struct zone *zone,
1928 struct scan_control *sc)
1929{
5660048c
JW
1930 struct mem_cgroup *root = sc->target_mem_cgroup;
1931 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 1932 .zone = zone,
5660048c 1933 .priority = priority,
f16015fb 1934 };
5660048c
JW
1935 struct mem_cgroup *memcg;
1936
5660048c
JW
1937 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1938 do {
1939 struct mem_cgroup_zone mz = {
1940 .mem_cgroup = memcg,
1941 .zone = zone,
1942 };
f16015fb 1943
5660048c
JW
1944 shrink_mem_cgroup_zone(priority, &mz, sc);
1945 /*
1946 * Limit reclaim has historically picked one memcg and
1947 * scanned it with decreasing priority levels until
1948 * nr_to_reclaim had been reclaimed. This priority
1949 * cycle is thus over after a single memcg.
b95a2f2d
JW
1950 *
1951 * Direct reclaim and kswapd, on the other hand, have
1952 * to scan all memory cgroups to fulfill the overall
1953 * scan target for the zone.
5660048c
JW
1954 */
1955 if (!global_reclaim(sc)) {
1956 mem_cgroup_iter_break(root, memcg);
1957 break;
1958 }
1959 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1960 } while (memcg);
f16015fb
JW
1961}
1962
fe4b1b24
MG
1963/* Returns true if compaction should go ahead for a high-order request */
1964static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1965{
1966 unsigned long balance_gap, watermark;
1967 bool watermark_ok;
1968
1969 /* Do not consider compaction for orders reclaim is meant to satisfy */
1970 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1971 return false;
1972
1973 /*
1974 * Compaction takes time to run and there are potentially other
1975 * callers using the pages just freed. Continue reclaiming until
1976 * there is a buffer of free pages available to give compaction
1977 * a reasonable chance of completing and allocating the page
1978 */
1979 balance_gap = min(low_wmark_pages(zone),
1980 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1981 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1982 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1983 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1984
1985 /*
1986 * If compaction is deferred, reclaim up to a point where
1987 * compaction will have a chance of success when re-enabled
1988 */
aff62249 1989 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
1990 return watermark_ok;
1991
1992 /* If compaction is not ready to start, keep reclaiming */
1993 if (!compaction_suitable(zone, sc->order))
1994 return false;
1995
1996 return watermark_ok;
1997}
1998
1da177e4
LT
1999/*
2000 * This is the direct reclaim path, for page-allocating processes. We only
2001 * try to reclaim pages from zones which will satisfy the caller's allocation
2002 * request.
2003 *
41858966
MG
2004 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2005 * Because:
1da177e4
LT
2006 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2007 * allocation or
41858966
MG
2008 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2009 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2010 * zone defense algorithm.
1da177e4 2011 *
1da177e4
LT
2012 * If a zone is deemed to be full of pinned pages then just give it a light
2013 * scan then give up on it.
e0c23279
MG
2014 *
2015 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2016 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2017 * the caller that it should consider retrying the allocation instead of
2018 * further reclaim.
1da177e4 2019 */
e0c23279 2020static bool shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 2021 struct scan_control *sc)
1da177e4 2022{
dd1a239f 2023 struct zoneref *z;
54a6eb5c 2024 struct zone *zone;
d149e3b2
YH
2025 unsigned long nr_soft_reclaimed;
2026 unsigned long nr_soft_scanned;
0cee34fd 2027 bool aborted_reclaim = false;
1cfb419b 2028
cc715d99
MG
2029 /*
2030 * If the number of buffer_heads in the machine exceeds the maximum
2031 * allowed level, force direct reclaim to scan the highmem zone as
2032 * highmem pages could be pinning lowmem pages storing buffer_heads
2033 */
2034 if (buffer_heads_over_limit)
2035 sc->gfp_mask |= __GFP_HIGHMEM;
2036
d4debc66
MG
2037 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2038 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2039 if (!populated_zone(zone))
1da177e4 2040 continue;
1cfb419b
KH
2041 /*
2042 * Take care memory controller reclaiming has small influence
2043 * to global LRU.
2044 */
89b5fae5 2045 if (global_reclaim(sc)) {
1cfb419b
KH
2046 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2047 continue;
93e4a89a 2048 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2049 continue; /* Let kswapd poll it */
e0887c19
RR
2050 if (COMPACTION_BUILD) {
2051 /*
e0c23279
MG
2052 * If we already have plenty of memory free for
2053 * compaction in this zone, don't free any more.
2054 * Even though compaction is invoked for any
2055 * non-zero order, only frequent costly order
2056 * reclamation is disruptive enough to become a
c7cfa37b
CA
2057 * noticeable problem, like transparent huge
2058 * page allocations.
e0887c19 2059 */
fe4b1b24 2060 if (compaction_ready(zone, sc)) {
0cee34fd 2061 aborted_reclaim = true;
e0887c19 2062 continue;
e0c23279 2063 }
e0887c19 2064 }
ac34a1a3
KH
2065 /*
2066 * This steals pages from memory cgroups over softlimit
2067 * and returns the number of reclaimed pages and
2068 * scanned pages. This works for global memory pressure
2069 * and balancing, not for a memcg's limit.
2070 */
2071 nr_soft_scanned = 0;
2072 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2073 sc->order, sc->gfp_mask,
2074 &nr_soft_scanned);
2075 sc->nr_reclaimed += nr_soft_reclaimed;
2076 sc->nr_scanned += nr_soft_scanned;
2077 /* need some check for avoid more shrink_zone() */
1cfb419b 2078 }
408d8544 2079
a79311c1 2080 shrink_zone(priority, zone, sc);
1da177e4 2081 }
e0c23279 2082
0cee34fd 2083 return aborted_reclaim;
d1908362
MK
2084}
2085
2086static bool zone_reclaimable(struct zone *zone)
2087{
2088 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2089}
2090
929bea7c 2091/* All zones in zonelist are unreclaimable? */
d1908362
MK
2092static bool all_unreclaimable(struct zonelist *zonelist,
2093 struct scan_control *sc)
2094{
2095 struct zoneref *z;
2096 struct zone *zone;
d1908362
MK
2097
2098 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2099 gfp_zone(sc->gfp_mask), sc->nodemask) {
2100 if (!populated_zone(zone))
2101 continue;
2102 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2103 continue;
929bea7c
KM
2104 if (!zone->all_unreclaimable)
2105 return false;
d1908362
MK
2106 }
2107
929bea7c 2108 return true;
1da177e4 2109}
4f98a2fe 2110
1da177e4
LT
2111/*
2112 * This is the main entry point to direct page reclaim.
2113 *
2114 * If a full scan of the inactive list fails to free enough memory then we
2115 * are "out of memory" and something needs to be killed.
2116 *
2117 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2118 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2119 * caller can't do much about. We kick the writeback threads and take explicit
2120 * naps in the hope that some of these pages can be written. But if the
2121 * allocating task holds filesystem locks which prevent writeout this might not
2122 * work, and the allocation attempt will fail.
a41f24ea
NA
2123 *
2124 * returns: 0, if no pages reclaimed
2125 * else, the number of pages reclaimed
1da177e4 2126 */
dac1d27b 2127static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2128 struct scan_control *sc,
2129 struct shrink_control *shrink)
1da177e4
LT
2130{
2131 int priority;
69e05944 2132 unsigned long total_scanned = 0;
1da177e4 2133 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2134 struct zoneref *z;
54a6eb5c 2135 struct zone *zone;
22fba335 2136 unsigned long writeback_threshold;
0cee34fd 2137 bool aborted_reclaim;
1da177e4 2138
873b4771
KK
2139 delayacct_freepages_start();
2140
89b5fae5 2141 if (global_reclaim(sc))
1cfb419b 2142 count_vm_event(ALLOCSTALL);
1da177e4
LT
2143
2144 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2145 sc->nr_scanned = 0;
0cee34fd 2146 aborted_reclaim = shrink_zones(priority, zonelist, sc);
e0c23279 2147
66e1707b
BS
2148 /*
2149 * Don't shrink slabs when reclaiming memory from
2150 * over limit cgroups
2151 */
89b5fae5 2152 if (global_reclaim(sc)) {
c6a8a8c5 2153 unsigned long lru_pages = 0;
d4debc66
MG
2154 for_each_zone_zonelist(zone, z, zonelist,
2155 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2156 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2157 continue;
2158
2159 lru_pages += zone_reclaimable_pages(zone);
2160 }
2161
1495f230 2162 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2163 if (reclaim_state) {
a79311c1 2164 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2165 reclaim_state->reclaimed_slab = 0;
2166 }
1da177e4 2167 }
66e1707b 2168 total_scanned += sc->nr_scanned;
bb21c7ce 2169 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2170 goto out;
1da177e4
LT
2171
2172 /*
2173 * Try to write back as many pages as we just scanned. This
2174 * tends to cause slow streaming writers to write data to the
2175 * disk smoothly, at the dirtying rate, which is nice. But
2176 * that's undesirable in laptop mode, where we *want* lumpy
2177 * writeout. So in laptop mode, write out the whole world.
2178 */
22fba335
KM
2179 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2180 if (total_scanned > writeback_threshold) {
0e175a18
CW
2181 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2182 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2183 sc->may_writepage = 1;
1da177e4
LT
2184 }
2185
2186 /* Take a nap, wait for some writeback to complete */
7b51755c 2187 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2188 priority < DEF_PRIORITY - 2) {
2189 struct zone *preferred_zone;
2190
2191 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2192 &cpuset_current_mems_allowed,
2193 &preferred_zone);
0e093d99
MG
2194 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2195 }
1da177e4 2196 }
bb21c7ce 2197
1da177e4 2198out:
873b4771
KK
2199 delayacct_freepages_end();
2200
bb21c7ce
KM
2201 if (sc->nr_reclaimed)
2202 return sc->nr_reclaimed;
2203
929bea7c
KM
2204 /*
2205 * As hibernation is going on, kswapd is freezed so that it can't mark
2206 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2207 * check.
2208 */
2209 if (oom_killer_disabled)
2210 return 0;
2211
0cee34fd
MG
2212 /* Aborted reclaim to try compaction? don't OOM, then */
2213 if (aborted_reclaim)
7335084d
MG
2214 return 1;
2215
bb21c7ce 2216 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2217 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2218 return 1;
2219
2220 return 0;
1da177e4
LT
2221}
2222
dac1d27b 2223unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2224 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2225{
33906bc5 2226 unsigned long nr_reclaimed;
66e1707b
BS
2227 struct scan_control sc = {
2228 .gfp_mask = gfp_mask,
2229 .may_writepage = !laptop_mode,
22fba335 2230 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2231 .may_unmap = 1,
2e2e4259 2232 .may_swap = 1,
66e1707b 2233 .order = order,
f16015fb 2234 .target_mem_cgroup = NULL,
327c0e96 2235 .nodemask = nodemask,
66e1707b 2236 };
a09ed5e0
YH
2237 struct shrink_control shrink = {
2238 .gfp_mask = sc.gfp_mask,
2239 };
66e1707b 2240
33906bc5
MG
2241 trace_mm_vmscan_direct_reclaim_begin(order,
2242 sc.may_writepage,
2243 gfp_mask);
2244
a09ed5e0 2245 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2246
2247 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2248
2249 return nr_reclaimed;
66e1707b
BS
2250}
2251
00f0b825 2252#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2253
72835c86 2254unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2255 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2256 struct zone *zone,
2257 unsigned long *nr_scanned)
4e416953
BS
2258{
2259 struct scan_control sc = {
0ae5e89c 2260 .nr_scanned = 0,
b8f5c566 2261 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2262 .may_writepage = !laptop_mode,
2263 .may_unmap = 1,
2264 .may_swap = !noswap,
4e416953 2265 .order = 0,
72835c86 2266 .target_mem_cgroup = memcg,
4e416953 2267 };
5660048c 2268 struct mem_cgroup_zone mz = {
72835c86 2269 .mem_cgroup = memcg,
5660048c
JW
2270 .zone = zone,
2271 };
0ae5e89c 2272
4e416953
BS
2273 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2274 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2275
2276 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2277 sc.may_writepage,
2278 sc.gfp_mask);
2279
4e416953
BS
2280 /*
2281 * NOTE: Although we can get the priority field, using it
2282 * here is not a good idea, since it limits the pages we can scan.
2283 * if we don't reclaim here, the shrink_zone from balance_pgdat
2284 * will pick up pages from other mem cgroup's as well. We hack
2285 * the priority and make it zero.
2286 */
5660048c 2287 shrink_mem_cgroup_zone(0, &mz, &sc);
bdce6d9e
KM
2288
2289 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2290
0ae5e89c 2291 *nr_scanned = sc.nr_scanned;
4e416953
BS
2292 return sc.nr_reclaimed;
2293}
2294
72835c86 2295unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2296 gfp_t gfp_mask,
185efc0f 2297 bool noswap)
66e1707b 2298{
4e416953 2299 struct zonelist *zonelist;
bdce6d9e 2300 unsigned long nr_reclaimed;
889976db 2301 int nid;
66e1707b 2302 struct scan_control sc = {
66e1707b 2303 .may_writepage = !laptop_mode,
a6dc60f8 2304 .may_unmap = 1,
2e2e4259 2305 .may_swap = !noswap,
22fba335 2306 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2307 .order = 0,
72835c86 2308 .target_mem_cgroup = memcg,
327c0e96 2309 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2310 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2311 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2312 };
2313 struct shrink_control shrink = {
2314 .gfp_mask = sc.gfp_mask,
66e1707b 2315 };
66e1707b 2316
889976db
YH
2317 /*
2318 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2319 * take care of from where we get pages. So the node where we start the
2320 * scan does not need to be the current node.
2321 */
72835c86 2322 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2323
2324 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2325
2326 trace_mm_vmscan_memcg_reclaim_begin(0,
2327 sc.may_writepage,
2328 sc.gfp_mask);
2329
a09ed5e0 2330 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2331
2332 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2333
2334 return nr_reclaimed;
66e1707b
BS
2335}
2336#endif
2337
f16015fb
JW
2338static void age_active_anon(struct zone *zone, struct scan_control *sc,
2339 int priority)
2340{
b95a2f2d 2341 struct mem_cgroup *memcg;
f16015fb 2342
b95a2f2d
JW
2343 if (!total_swap_pages)
2344 return;
2345
2346 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2347 do {
2348 struct mem_cgroup_zone mz = {
2349 .mem_cgroup = memcg,
2350 .zone = zone,
2351 };
2352
2353 if (inactive_anon_is_low(&mz))
2354 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2355 sc, priority, 0);
2356
2357 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2358 } while (memcg);
f16015fb
JW
2359}
2360
1741c877
MG
2361/*
2362 * pgdat_balanced is used when checking if a node is balanced for high-order
2363 * allocations. Only zones that meet watermarks and are in a zone allowed
2364 * by the callers classzone_idx are added to balanced_pages. The total of
2365 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2366 * for the node to be considered balanced. Forcing all zones to be balanced
2367 * for high orders can cause excessive reclaim when there are imbalanced zones.
2368 * The choice of 25% is due to
2369 * o a 16M DMA zone that is balanced will not balance a zone on any
2370 * reasonable sized machine
2371 * o On all other machines, the top zone must be at least a reasonable
25985edc 2372 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2373 * would need to be at least 256M for it to be balance a whole node.
2374 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2375 * to balance a node on its own. These seemed like reasonable ratios.
2376 */
2377static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2378 int classzone_idx)
2379{
2380 unsigned long present_pages = 0;
2381 int i;
2382
2383 for (i = 0; i <= classzone_idx; i++)
2384 present_pages += pgdat->node_zones[i].present_pages;
2385
4746efde
SL
2386 /* A special case here: if zone has no page, we think it's balanced */
2387 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2388}
2389
f50de2d3 2390/* is kswapd sleeping prematurely? */
dc83edd9
MG
2391static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2392 int classzone_idx)
f50de2d3 2393{
bb3ab596 2394 int i;
1741c877
MG
2395 unsigned long balanced = 0;
2396 bool all_zones_ok = true;
f50de2d3
MG
2397
2398 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2399 if (remaining)
dc83edd9 2400 return true;
f50de2d3 2401
0abdee2b 2402 /* Check the watermark levels */
08951e54 2403 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2404 struct zone *zone = pgdat->node_zones + i;
2405
2406 if (!populated_zone(zone))
2407 continue;
2408
355b09c4
MG
2409 /*
2410 * balance_pgdat() skips over all_unreclaimable after
2411 * DEF_PRIORITY. Effectively, it considers them balanced so
2412 * they must be considered balanced here as well if kswapd
2413 * is to sleep
2414 */
2415 if (zone->all_unreclaimable) {
2416 balanced += zone->present_pages;
de3fab39 2417 continue;
355b09c4 2418 }
de3fab39 2419
88f5acf8 2420 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2421 i, 0))
1741c877
MG
2422 all_zones_ok = false;
2423 else
2424 balanced += zone->present_pages;
bb3ab596 2425 }
f50de2d3 2426
1741c877
MG
2427 /*
2428 * For high-order requests, the balanced zones must contain at least
2429 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2430 * must be balanced
2431 */
2432 if (order)
afc7e326 2433 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2434 else
2435 return !all_zones_ok;
f50de2d3
MG
2436}
2437
1da177e4
LT
2438/*
2439 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2440 * they are all at high_wmark_pages(zone).
1da177e4 2441 *
0abdee2b 2442 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2443 *
2444 * There is special handling here for zones which are full of pinned pages.
2445 * This can happen if the pages are all mlocked, or if they are all used by
2446 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2447 * What we do is to detect the case where all pages in the zone have been
2448 * scanned twice and there has been zero successful reclaim. Mark the zone as
2449 * dead and from now on, only perform a short scan. Basically we're polling
2450 * the zone for when the problem goes away.
2451 *
2452 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2453 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2454 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2455 * lower zones regardless of the number of free pages in the lower zones. This
2456 * interoperates with the page allocator fallback scheme to ensure that aging
2457 * of pages is balanced across the zones.
1da177e4 2458 */
99504748 2459static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2460 int *classzone_idx)
1da177e4 2461{
1da177e4 2462 int all_zones_ok;
1741c877 2463 unsigned long balanced;
1da177e4
LT
2464 int priority;
2465 int i;
99504748 2466 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2467 unsigned long total_scanned;
1da177e4 2468 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2469 unsigned long nr_soft_reclaimed;
2470 unsigned long nr_soft_scanned;
179e9639
AM
2471 struct scan_control sc = {
2472 .gfp_mask = GFP_KERNEL,
a6dc60f8 2473 .may_unmap = 1,
2e2e4259 2474 .may_swap = 1,
22fba335
KM
2475 /*
2476 * kswapd doesn't want to be bailed out while reclaim. because
2477 * we want to put equal scanning pressure on each zone.
2478 */
2479 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2480 .order = order,
f16015fb 2481 .target_mem_cgroup = NULL,
179e9639 2482 };
a09ed5e0
YH
2483 struct shrink_control shrink = {
2484 .gfp_mask = sc.gfp_mask,
2485 };
1da177e4
LT
2486loop_again:
2487 total_scanned = 0;
a79311c1 2488 sc.nr_reclaimed = 0;
c0bbbc73 2489 sc.may_writepage = !laptop_mode;
f8891e5e 2490 count_vm_event(PAGEOUTRUN);
1da177e4 2491
1da177e4 2492 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2493 unsigned long lru_pages = 0;
bb3ab596 2494 int has_under_min_watermark_zone = 0;
1da177e4
LT
2495
2496 all_zones_ok = 1;
1741c877 2497 balanced = 0;
1da177e4 2498
d6277db4
RW
2499 /*
2500 * Scan in the highmem->dma direction for the highest
2501 * zone which needs scanning
2502 */
2503 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2504 struct zone *zone = pgdat->node_zones + i;
1da177e4 2505
d6277db4
RW
2506 if (!populated_zone(zone))
2507 continue;
1da177e4 2508
93e4a89a 2509 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2510 continue;
1da177e4 2511
556adecb
RR
2512 /*
2513 * Do some background aging of the anon list, to give
2514 * pages a chance to be referenced before reclaiming.
2515 */
f16015fb 2516 age_active_anon(zone, &sc, priority);
556adecb 2517
cc715d99
MG
2518 /*
2519 * If the number of buffer_heads in the machine
2520 * exceeds the maximum allowed level and this node
2521 * has a highmem zone, force kswapd to reclaim from
2522 * it to relieve lowmem pressure.
2523 */
2524 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2525 end_zone = i;
2526 break;
2527 }
2528
88f5acf8 2529 if (!zone_watermark_ok_safe(zone, order,
41858966 2530 high_wmark_pages(zone), 0, 0)) {
d6277db4 2531 end_zone = i;
e1dbeda6 2532 break;
439423f6
SL
2533 } else {
2534 /* If balanced, clear the congested flag */
2535 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2536 }
1da177e4 2537 }
e1dbeda6
AM
2538 if (i < 0)
2539 goto out;
2540
1da177e4
LT
2541 for (i = 0; i <= end_zone; i++) {
2542 struct zone *zone = pgdat->node_zones + i;
2543
adea02a1 2544 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2545 }
2546
2547 /*
2548 * Now scan the zone in the dma->highmem direction, stopping
2549 * at the last zone which needs scanning.
2550 *
2551 * We do this because the page allocator works in the opposite
2552 * direction. This prevents the page allocator from allocating
2553 * pages behind kswapd's direction of progress, which would
2554 * cause too much scanning of the lower zones.
2555 */
2556 for (i = 0; i <= end_zone; i++) {
2557 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2558 int nr_slab, testorder;
8afdcece 2559 unsigned long balance_gap;
1da177e4 2560
f3fe6512 2561 if (!populated_zone(zone))
1da177e4
LT
2562 continue;
2563
93e4a89a 2564 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2565 continue;
2566
1da177e4 2567 sc.nr_scanned = 0;
4e416953 2568
0ae5e89c 2569 nr_soft_scanned = 0;
4e416953
BS
2570 /*
2571 * Call soft limit reclaim before calling shrink_zone.
4e416953 2572 */
0ae5e89c
YH
2573 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2574 order, sc.gfp_mask,
2575 &nr_soft_scanned);
2576 sc.nr_reclaimed += nr_soft_reclaimed;
2577 total_scanned += nr_soft_scanned;
00918b6a 2578
32a4330d 2579 /*
8afdcece
MG
2580 * We put equal pressure on every zone, unless
2581 * one zone has way too many pages free
2582 * already. The "too many pages" is defined
2583 * as the high wmark plus a "gap" where the
2584 * gap is either the low watermark or 1%
2585 * of the zone, whichever is smaller.
32a4330d 2586 */
8afdcece
MG
2587 balance_gap = min(low_wmark_pages(zone),
2588 (zone->present_pages +
2589 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2590 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2591 /*
2592 * Kswapd reclaims only single pages with compaction
2593 * enabled. Trying too hard to reclaim until contiguous
2594 * free pages have become available can hurt performance
2595 * by evicting too much useful data from memory.
2596 * Do not reclaim more than needed for compaction.
2597 */
2598 testorder = order;
2599 if (COMPACTION_BUILD && order &&
2600 compaction_suitable(zone, order) !=
2601 COMPACT_SKIPPED)
2602 testorder = 0;
2603
cc715d99 2604 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
643ac9fc 2605 !zone_watermark_ok_safe(zone, testorder,
8afdcece 2606 high_wmark_pages(zone) + balance_gap,
d7868dae 2607 end_zone, 0)) {
a79311c1 2608 shrink_zone(priority, zone, &sc);
5a03b051 2609
d7868dae
MG
2610 reclaim_state->reclaimed_slab = 0;
2611 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2612 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2613 total_scanned += sc.nr_scanned;
2614
2615 if (nr_slab == 0 && !zone_reclaimable(zone))
2616 zone->all_unreclaimable = 1;
2617 }
2618
1da177e4
LT
2619 /*
2620 * If we've done a decent amount of scanning and
2621 * the reclaim ratio is low, start doing writepage
2622 * even in laptop mode
2623 */
2624 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2625 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2626 sc.may_writepage = 1;
bb3ab596 2627
215ddd66
MG
2628 if (zone->all_unreclaimable) {
2629 if (end_zone && end_zone == i)
2630 end_zone--;
d7868dae 2631 continue;
215ddd66 2632 }
d7868dae 2633
fe2c2a10 2634 if (!zone_watermark_ok_safe(zone, testorder,
45973d74
MK
2635 high_wmark_pages(zone), end_zone, 0)) {
2636 all_zones_ok = 0;
2637 /*
2638 * We are still under min water mark. This
2639 * means that we have a GFP_ATOMIC allocation
2640 * failure risk. Hurry up!
2641 */
88f5acf8 2642 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2643 min_wmark_pages(zone), end_zone, 0))
2644 has_under_min_watermark_zone = 1;
0e093d99
MG
2645 } else {
2646 /*
2647 * If a zone reaches its high watermark,
2648 * consider it to be no longer congested. It's
2649 * possible there are dirty pages backed by
2650 * congested BDIs but as pressure is relieved,
2651 * spectulatively avoid congestion waits
2652 */
2653 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2654 if (i <= *classzone_idx)
1741c877 2655 balanced += zone->present_pages;
45973d74 2656 }
bb3ab596 2657
1da177e4 2658 }
dc83edd9 2659 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2660 break; /* kswapd: all done */
2661 /*
2662 * OK, kswapd is getting into trouble. Take a nap, then take
2663 * another pass across the zones.
2664 */
bb3ab596
KM
2665 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2666 if (has_under_min_watermark_zone)
2667 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2668 else
2669 congestion_wait(BLK_RW_ASYNC, HZ/10);
2670 }
1da177e4
LT
2671
2672 /*
2673 * We do this so kswapd doesn't build up large priorities for
2674 * example when it is freeing in parallel with allocators. It
2675 * matches the direct reclaim path behaviour in terms of impact
2676 * on zone->*_priority.
2677 */
a79311c1 2678 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2679 break;
2680 }
2681out:
99504748
MG
2682
2683 /*
2684 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2685 * high-order: Balanced zones must make up at least 25% of the node
2686 * for the node to be balanced
99504748 2687 */
dc83edd9 2688 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2689 cond_resched();
8357376d
RW
2690
2691 try_to_freeze();
2692
73ce02e9
KM
2693 /*
2694 * Fragmentation may mean that the system cannot be
2695 * rebalanced for high-order allocations in all zones.
2696 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2697 * it means the zones have been fully scanned and are still
2698 * not balanced. For high-order allocations, there is
2699 * little point trying all over again as kswapd may
2700 * infinite loop.
2701 *
2702 * Instead, recheck all watermarks at order-0 as they
2703 * are the most important. If watermarks are ok, kswapd will go
2704 * back to sleep. High-order users can still perform direct
2705 * reclaim if they wish.
2706 */
2707 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2708 order = sc.order = 0;
2709
1da177e4
LT
2710 goto loop_again;
2711 }
2712
99504748
MG
2713 /*
2714 * If kswapd was reclaiming at a higher order, it has the option of
2715 * sleeping without all zones being balanced. Before it does, it must
2716 * ensure that the watermarks for order-0 on *all* zones are met and
2717 * that the congestion flags are cleared. The congestion flag must
2718 * be cleared as kswapd is the only mechanism that clears the flag
2719 * and it is potentially going to sleep here.
2720 */
2721 if (order) {
7be62de9
RR
2722 int zones_need_compaction = 1;
2723
99504748
MG
2724 for (i = 0; i <= end_zone; i++) {
2725 struct zone *zone = pgdat->node_zones + i;
2726
2727 if (!populated_zone(zone))
2728 continue;
2729
2730 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2731 continue;
2732
fe2c2a10 2733 /* Would compaction fail due to lack of free memory? */
496b919b
RR
2734 if (COMPACTION_BUILD &&
2735 compaction_suitable(zone, order) == COMPACT_SKIPPED)
fe2c2a10
RR
2736 goto loop_again;
2737
99504748
MG
2738 /* Confirm the zone is balanced for order-0 */
2739 if (!zone_watermark_ok(zone, 0,
2740 high_wmark_pages(zone), 0, 0)) {
2741 order = sc.order = 0;
2742 goto loop_again;
2743 }
2744
7be62de9
RR
2745 /* Check if the memory needs to be defragmented. */
2746 if (zone_watermark_ok(zone, order,
2747 low_wmark_pages(zone), *classzone_idx, 0))
2748 zones_need_compaction = 0;
2749
99504748
MG
2750 /* If balanced, clear the congested flag */
2751 zone_clear_flag(zone, ZONE_CONGESTED);
2752 }
7be62de9
RR
2753
2754 if (zones_need_compaction)
2755 compact_pgdat(pgdat, order);
99504748
MG
2756 }
2757
0abdee2b
MG
2758 /*
2759 * Return the order we were reclaiming at so sleeping_prematurely()
2760 * makes a decision on the order we were last reclaiming at. However,
2761 * if another caller entered the allocator slow path while kswapd
2762 * was awake, order will remain at the higher level
2763 */
dc83edd9 2764 *classzone_idx = end_zone;
0abdee2b 2765 return order;
1da177e4
LT
2766}
2767
dc83edd9 2768static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2769{
2770 long remaining = 0;
2771 DEFINE_WAIT(wait);
2772
2773 if (freezing(current) || kthread_should_stop())
2774 return;
2775
2776 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2777
2778 /* Try to sleep for a short interval */
dc83edd9 2779 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2780 remaining = schedule_timeout(HZ/10);
2781 finish_wait(&pgdat->kswapd_wait, &wait);
2782 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2783 }
2784
2785 /*
2786 * After a short sleep, check if it was a premature sleep. If not, then
2787 * go fully to sleep until explicitly woken up.
2788 */
dc83edd9 2789 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2790 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2791
2792 /*
2793 * vmstat counters are not perfectly accurate and the estimated
2794 * value for counters such as NR_FREE_PAGES can deviate from the
2795 * true value by nr_online_cpus * threshold. To avoid the zone
2796 * watermarks being breached while under pressure, we reduce the
2797 * per-cpu vmstat threshold while kswapd is awake and restore
2798 * them before going back to sleep.
2799 */
2800 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2801 schedule();
2802 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2803 } else {
2804 if (remaining)
2805 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2806 else
2807 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2808 }
2809 finish_wait(&pgdat->kswapd_wait, &wait);
2810}
2811
1da177e4
LT
2812/*
2813 * The background pageout daemon, started as a kernel thread
4f98a2fe 2814 * from the init process.
1da177e4
LT
2815 *
2816 * This basically trickles out pages so that we have _some_
2817 * free memory available even if there is no other activity
2818 * that frees anything up. This is needed for things like routing
2819 * etc, where we otherwise might have all activity going on in
2820 * asynchronous contexts that cannot page things out.
2821 *
2822 * If there are applications that are active memory-allocators
2823 * (most normal use), this basically shouldn't matter.
2824 */
2825static int kswapd(void *p)
2826{
215ddd66 2827 unsigned long order, new_order;
d2ebd0f6 2828 unsigned balanced_order;
215ddd66 2829 int classzone_idx, new_classzone_idx;
d2ebd0f6 2830 int balanced_classzone_idx;
1da177e4
LT
2831 pg_data_t *pgdat = (pg_data_t*)p;
2832 struct task_struct *tsk = current;
f0bc0a60 2833
1da177e4
LT
2834 struct reclaim_state reclaim_state = {
2835 .reclaimed_slab = 0,
2836 };
a70f7302 2837 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2838
cf40bd16
NP
2839 lockdep_set_current_reclaim_state(GFP_KERNEL);
2840
174596a0 2841 if (!cpumask_empty(cpumask))
c5f59f08 2842 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2843 current->reclaim_state = &reclaim_state;
2844
2845 /*
2846 * Tell the memory management that we're a "memory allocator",
2847 * and that if we need more memory we should get access to it
2848 * regardless (see "__alloc_pages()"). "kswapd" should
2849 * never get caught in the normal page freeing logic.
2850 *
2851 * (Kswapd normally doesn't need memory anyway, but sometimes
2852 * you need a small amount of memory in order to be able to
2853 * page out something else, and this flag essentially protects
2854 * us from recursively trying to free more memory as we're
2855 * trying to free the first piece of memory in the first place).
2856 */
930d9152 2857 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2858 set_freezable();
1da177e4 2859
215ddd66 2860 order = new_order = 0;
d2ebd0f6 2861 balanced_order = 0;
215ddd66 2862 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2863 balanced_classzone_idx = classzone_idx;
1da177e4 2864 for ( ; ; ) {
8fe23e05 2865 int ret;
3e1d1d28 2866
215ddd66
MG
2867 /*
2868 * If the last balance_pgdat was unsuccessful it's unlikely a
2869 * new request of a similar or harder type will succeed soon
2870 * so consider going to sleep on the basis we reclaimed at
2871 */
d2ebd0f6
AS
2872 if (balanced_classzone_idx >= new_classzone_idx &&
2873 balanced_order == new_order) {
215ddd66
MG
2874 new_order = pgdat->kswapd_max_order;
2875 new_classzone_idx = pgdat->classzone_idx;
2876 pgdat->kswapd_max_order = 0;
2877 pgdat->classzone_idx = pgdat->nr_zones - 1;
2878 }
2879
99504748 2880 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2881 /*
2882 * Don't sleep if someone wants a larger 'order'
99504748 2883 * allocation or has tigher zone constraints
1da177e4
LT
2884 */
2885 order = new_order;
99504748 2886 classzone_idx = new_classzone_idx;
1da177e4 2887 } else {
d2ebd0f6
AS
2888 kswapd_try_to_sleep(pgdat, balanced_order,
2889 balanced_classzone_idx);
1da177e4 2890 order = pgdat->kswapd_max_order;
99504748 2891 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2892 new_order = order;
2893 new_classzone_idx = classzone_idx;
4d40502e 2894 pgdat->kswapd_max_order = 0;
215ddd66 2895 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2896 }
1da177e4 2897
8fe23e05
DR
2898 ret = try_to_freeze();
2899 if (kthread_should_stop())
2900 break;
2901
2902 /*
2903 * We can speed up thawing tasks if we don't call balance_pgdat
2904 * after returning from the refrigerator
2905 */
33906bc5
MG
2906 if (!ret) {
2907 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
2908 balanced_classzone_idx = classzone_idx;
2909 balanced_order = balance_pgdat(pgdat, order,
2910 &balanced_classzone_idx);
33906bc5 2911 }
1da177e4
LT
2912 }
2913 return 0;
2914}
2915
2916/*
2917 * A zone is low on free memory, so wake its kswapd task to service it.
2918 */
99504748 2919void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2920{
2921 pg_data_t *pgdat;
2922
f3fe6512 2923 if (!populated_zone(zone))
1da177e4
LT
2924 return;
2925
88f5acf8 2926 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2927 return;
88f5acf8 2928 pgdat = zone->zone_pgdat;
99504748 2929 if (pgdat->kswapd_max_order < order) {
1da177e4 2930 pgdat->kswapd_max_order = order;
99504748
MG
2931 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2932 }
8d0986e2 2933 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2934 return;
88f5acf8
MG
2935 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2936 return;
2937
2938 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2939 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2940}
2941
adea02a1
WF
2942/*
2943 * The reclaimable count would be mostly accurate.
2944 * The less reclaimable pages may be
2945 * - mlocked pages, which will be moved to unevictable list when encountered
2946 * - mapped pages, which may require several travels to be reclaimed
2947 * - dirty pages, which is not "instantly" reclaimable
2948 */
2949unsigned long global_reclaimable_pages(void)
4f98a2fe 2950{
adea02a1
WF
2951 int nr;
2952
2953 nr = global_page_state(NR_ACTIVE_FILE) +
2954 global_page_state(NR_INACTIVE_FILE);
2955
2956 if (nr_swap_pages > 0)
2957 nr += global_page_state(NR_ACTIVE_ANON) +
2958 global_page_state(NR_INACTIVE_ANON);
2959
2960 return nr;
2961}
2962
2963unsigned long zone_reclaimable_pages(struct zone *zone)
2964{
2965 int nr;
2966
2967 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2968 zone_page_state(zone, NR_INACTIVE_FILE);
2969
2970 if (nr_swap_pages > 0)
2971 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2972 zone_page_state(zone, NR_INACTIVE_ANON);
2973
2974 return nr;
4f98a2fe
RR
2975}
2976
c6f37f12 2977#ifdef CONFIG_HIBERNATION
1da177e4 2978/*
7b51755c 2979 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2980 * freed pages.
2981 *
2982 * Rather than trying to age LRUs the aim is to preserve the overall
2983 * LRU order by reclaiming preferentially
2984 * inactive > active > active referenced > active mapped
1da177e4 2985 */
7b51755c 2986unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2987{
d6277db4 2988 struct reclaim_state reclaim_state;
d6277db4 2989 struct scan_control sc = {
7b51755c
KM
2990 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2991 .may_swap = 1,
2992 .may_unmap = 1,
d6277db4 2993 .may_writepage = 1,
7b51755c
KM
2994 .nr_to_reclaim = nr_to_reclaim,
2995 .hibernation_mode = 1,
7b51755c 2996 .order = 0,
1da177e4 2997 };
a09ed5e0
YH
2998 struct shrink_control shrink = {
2999 .gfp_mask = sc.gfp_mask,
3000 };
3001 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3002 struct task_struct *p = current;
3003 unsigned long nr_reclaimed;
1da177e4 3004
7b51755c
KM
3005 p->flags |= PF_MEMALLOC;
3006 lockdep_set_current_reclaim_state(sc.gfp_mask);
3007 reclaim_state.reclaimed_slab = 0;
3008 p->reclaim_state = &reclaim_state;
d6277db4 3009
a09ed5e0 3010 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3011
7b51755c
KM
3012 p->reclaim_state = NULL;
3013 lockdep_clear_current_reclaim_state();
3014 p->flags &= ~PF_MEMALLOC;
d6277db4 3015
7b51755c 3016 return nr_reclaimed;
1da177e4 3017}
c6f37f12 3018#endif /* CONFIG_HIBERNATION */
1da177e4 3019
1da177e4
LT
3020/* It's optimal to keep kswapds on the same CPUs as their memory, but
3021 not required for correctness. So if the last cpu in a node goes
3022 away, we get changed to run anywhere: as the first one comes back,
3023 restore their cpu bindings. */
9c7b216d 3024static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 3025 unsigned long action, void *hcpu)
1da177e4 3026{
58c0a4a7 3027 int nid;
1da177e4 3028
8bb78442 3029 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 3030 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 3031 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3032 const struct cpumask *mask;
3033
3034 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3035
3e597945 3036 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3037 /* One of our CPUs online: restore mask */
c5f59f08 3038 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3039 }
3040 }
3041 return NOTIFY_OK;
3042}
1da177e4 3043
3218ae14
YG
3044/*
3045 * This kswapd start function will be called by init and node-hot-add.
3046 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3047 */
3048int kswapd_run(int nid)
3049{
3050 pg_data_t *pgdat = NODE_DATA(nid);
3051 int ret = 0;
3052
3053 if (pgdat->kswapd)
3054 return 0;
3055
3056 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3057 if (IS_ERR(pgdat->kswapd)) {
3058 /* failure at boot is fatal */
3059 BUG_ON(system_state == SYSTEM_BOOTING);
3060 printk("Failed to start kswapd on node %d\n",nid);
3061 ret = -1;
3062 }
3063 return ret;
3064}
3065
8fe23e05
DR
3066/*
3067 * Called by memory hotplug when all memory in a node is offlined.
3068 */
3069void kswapd_stop(int nid)
3070{
3071 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3072
3073 if (kswapd)
3074 kthread_stop(kswapd);
3075}
3076
1da177e4
LT
3077static int __init kswapd_init(void)
3078{
3218ae14 3079 int nid;
69e05944 3080
1da177e4 3081 swap_setup();
9422ffba 3082 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3083 kswapd_run(nid);
1da177e4
LT
3084 hotcpu_notifier(cpu_callback, 0);
3085 return 0;
3086}
3087
3088module_init(kswapd_init)
9eeff239
CL
3089
3090#ifdef CONFIG_NUMA
3091/*
3092 * Zone reclaim mode
3093 *
3094 * If non-zero call zone_reclaim when the number of free pages falls below
3095 * the watermarks.
9eeff239
CL
3096 */
3097int zone_reclaim_mode __read_mostly;
3098
1b2ffb78 3099#define RECLAIM_OFF 0
7d03431c 3100#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3101#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3102#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3103
a92f7126
CL
3104/*
3105 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3106 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3107 * a zone.
3108 */
3109#define ZONE_RECLAIM_PRIORITY 4
3110
9614634f
CL
3111/*
3112 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3113 * occur.
3114 */
3115int sysctl_min_unmapped_ratio = 1;
3116
0ff38490
CL
3117/*
3118 * If the number of slab pages in a zone grows beyond this percentage then
3119 * slab reclaim needs to occur.
3120 */
3121int sysctl_min_slab_ratio = 5;
3122
90afa5de
MG
3123static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3124{
3125 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3126 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3127 zone_page_state(zone, NR_ACTIVE_FILE);
3128
3129 /*
3130 * It's possible for there to be more file mapped pages than
3131 * accounted for by the pages on the file LRU lists because
3132 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3133 */
3134 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3135}
3136
3137/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3138static long zone_pagecache_reclaimable(struct zone *zone)
3139{
3140 long nr_pagecache_reclaimable;
3141 long delta = 0;
3142
3143 /*
3144 * If RECLAIM_SWAP is set, then all file pages are considered
3145 * potentially reclaimable. Otherwise, we have to worry about
3146 * pages like swapcache and zone_unmapped_file_pages() provides
3147 * a better estimate
3148 */
3149 if (zone_reclaim_mode & RECLAIM_SWAP)
3150 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3151 else
3152 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3153
3154 /* If we can't clean pages, remove dirty pages from consideration */
3155 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3156 delta += zone_page_state(zone, NR_FILE_DIRTY);
3157
3158 /* Watch for any possible underflows due to delta */
3159 if (unlikely(delta > nr_pagecache_reclaimable))
3160 delta = nr_pagecache_reclaimable;
3161
3162 return nr_pagecache_reclaimable - delta;
3163}
3164
9eeff239
CL
3165/*
3166 * Try to free up some pages from this zone through reclaim.
3167 */
179e9639 3168static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3169{
7fb2d46d 3170 /* Minimum pages needed in order to stay on node */
69e05944 3171 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3172 struct task_struct *p = current;
3173 struct reclaim_state reclaim_state;
8695949a 3174 int priority;
179e9639
AM
3175 struct scan_control sc = {
3176 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3177 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3178 .may_swap = 1,
22fba335
KM
3179 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3180 SWAP_CLUSTER_MAX),
179e9639 3181 .gfp_mask = gfp_mask,
bd2f6199 3182 .order = order,
179e9639 3183 };
a09ed5e0
YH
3184 struct shrink_control shrink = {
3185 .gfp_mask = sc.gfp_mask,
3186 };
15748048 3187 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3188
9eeff239 3189 cond_resched();
d4f7796e
CL
3190 /*
3191 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3192 * and we also need to be able to write out pages for RECLAIM_WRITE
3193 * and RECLAIM_SWAP.
3194 */
3195 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3196 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3197 reclaim_state.reclaimed_slab = 0;
3198 p->reclaim_state = &reclaim_state;
c84db23c 3199
90afa5de 3200 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3201 /*
3202 * Free memory by calling shrink zone with increasing
3203 * priorities until we have enough memory freed.
3204 */
3205 priority = ZONE_RECLAIM_PRIORITY;
3206 do {
a79311c1 3207 shrink_zone(priority, zone, &sc);
0ff38490 3208 priority--;
a79311c1 3209 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3210 }
c84db23c 3211
15748048
KM
3212 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3213 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3214 /*
7fb2d46d 3215 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3216 * many pages were freed in this zone. So we take the current
3217 * number of slab pages and shake the slab until it is reduced
3218 * by the same nr_pages that we used for reclaiming unmapped
3219 * pages.
2a16e3f4 3220 *
0ff38490
CL
3221 * Note that shrink_slab will free memory on all zones and may
3222 * take a long time.
2a16e3f4 3223 */
4dc4b3d9
KM
3224 for (;;) {
3225 unsigned long lru_pages = zone_reclaimable_pages(zone);
3226
3227 /* No reclaimable slab or very low memory pressure */
1495f230 3228 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3229 break;
3230
3231 /* Freed enough memory */
3232 nr_slab_pages1 = zone_page_state(zone,
3233 NR_SLAB_RECLAIMABLE);
3234 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3235 break;
3236 }
83e33a47
CL
3237
3238 /*
3239 * Update nr_reclaimed by the number of slab pages we
3240 * reclaimed from this zone.
3241 */
15748048
KM
3242 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3243 if (nr_slab_pages1 < nr_slab_pages0)
3244 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3245 }
3246
9eeff239 3247 p->reclaim_state = NULL;
d4f7796e 3248 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3249 lockdep_clear_current_reclaim_state();
a79311c1 3250 return sc.nr_reclaimed >= nr_pages;
9eeff239 3251}
179e9639
AM
3252
3253int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3254{
179e9639 3255 int node_id;
d773ed6b 3256 int ret;
179e9639
AM
3257
3258 /*
0ff38490
CL
3259 * Zone reclaim reclaims unmapped file backed pages and
3260 * slab pages if we are over the defined limits.
34aa1330 3261 *
9614634f
CL
3262 * A small portion of unmapped file backed pages is needed for
3263 * file I/O otherwise pages read by file I/O will be immediately
3264 * thrown out if the zone is overallocated. So we do not reclaim
3265 * if less than a specified percentage of the zone is used by
3266 * unmapped file backed pages.
179e9639 3267 */
90afa5de
MG
3268 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3269 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3270 return ZONE_RECLAIM_FULL;
179e9639 3271
93e4a89a 3272 if (zone->all_unreclaimable)
fa5e084e 3273 return ZONE_RECLAIM_FULL;
d773ed6b 3274
179e9639 3275 /*
d773ed6b 3276 * Do not scan if the allocation should not be delayed.
179e9639 3277 */
d773ed6b 3278 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3279 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3280
3281 /*
3282 * Only run zone reclaim on the local zone or on zones that do not
3283 * have associated processors. This will favor the local processor
3284 * over remote processors and spread off node memory allocations
3285 * as wide as possible.
3286 */
89fa3024 3287 node_id = zone_to_nid(zone);
37c0708d 3288 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3289 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3290
3291 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3292 return ZONE_RECLAIM_NOSCAN;
3293
d773ed6b
DR
3294 ret = __zone_reclaim(zone, gfp_mask, order);
3295 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3296
24cf7251
MG
3297 if (!ret)
3298 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3299
d773ed6b 3300 return ret;
179e9639 3301}
9eeff239 3302#endif
894bc310 3303
894bc310
LS
3304/*
3305 * page_evictable - test whether a page is evictable
3306 * @page: the page to test
3307 * @vma: the VMA in which the page is or will be mapped, may be NULL
3308 *
3309 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3310 * lists vs unevictable list. The vma argument is !NULL when called from the
3311 * fault path to determine how to instantate a new page.
894bc310
LS
3312 *
3313 * Reasons page might not be evictable:
ba9ddf49 3314 * (1) page's mapping marked unevictable
b291f000 3315 * (2) page is part of an mlocked VMA
ba9ddf49 3316 *
894bc310
LS
3317 */
3318int page_evictable(struct page *page, struct vm_area_struct *vma)
3319{
3320
ba9ddf49
LS
3321 if (mapping_unevictable(page_mapping(page)))
3322 return 0;
3323
096a7cf4 3324 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
b291f000 3325 return 0;
894bc310
LS
3326
3327 return 1;
3328}
89e004ea 3329
85046579 3330#ifdef CONFIG_SHMEM
89e004ea 3331/**
24513264
HD
3332 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3333 * @pages: array of pages to check
3334 * @nr_pages: number of pages to check
89e004ea 3335 *
24513264 3336 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3337 *
3338 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3339 */
24513264 3340void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3341{
925b7673 3342 struct lruvec *lruvec;
24513264
HD
3343 struct zone *zone = NULL;
3344 int pgscanned = 0;
3345 int pgrescued = 0;
3346 int i;
89e004ea 3347
24513264
HD
3348 for (i = 0; i < nr_pages; i++) {
3349 struct page *page = pages[i];
3350 struct zone *pagezone;
89e004ea 3351
24513264
HD
3352 pgscanned++;
3353 pagezone = page_zone(page);
3354 if (pagezone != zone) {
3355 if (zone)
3356 spin_unlock_irq(&zone->lru_lock);
3357 zone = pagezone;
3358 spin_lock_irq(&zone->lru_lock);
3359 }
89e004ea 3360
24513264
HD
3361 if (!PageLRU(page) || !PageUnevictable(page))
3362 continue;
89e004ea 3363
24513264
HD
3364 if (page_evictable(page, NULL)) {
3365 enum lru_list lru = page_lru_base_type(page);
3366
3367 VM_BUG_ON(PageActive(page));
3368 ClearPageUnevictable(page);
3369 __dec_zone_state(zone, NR_UNEVICTABLE);
3370 lruvec = mem_cgroup_lru_move_lists(zone, page,
3371 LRU_UNEVICTABLE, lru);
3372 list_move(&page->lru, &lruvec->lists[lru]);
3373 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3374 pgrescued++;
89e004ea 3375 }
24513264 3376 }
89e004ea 3377
24513264
HD
3378 if (zone) {
3379 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3380 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3381 spin_unlock_irq(&zone->lru_lock);
89e004ea 3382 }
89e004ea 3383}
85046579 3384#endif /* CONFIG_SHMEM */
af936a16 3385
264e56d8 3386static void warn_scan_unevictable_pages(void)
af936a16 3387{
264e56d8 3388 printk_once(KERN_WARNING
25bd91bd 3389 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3390 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3391 "one, please send an email to linux-mm@kvack.org.\n",
3392 current->comm);
af936a16
LS
3393}
3394
3395/*
3396 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3397 * all nodes' unevictable lists for evictable pages
3398 */
3399unsigned long scan_unevictable_pages;
3400
3401int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3402 void __user *buffer,
af936a16
LS
3403 size_t *length, loff_t *ppos)
3404{
264e56d8 3405 warn_scan_unevictable_pages();
8d65af78 3406 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3407 scan_unevictable_pages = 0;
3408 return 0;
3409}
3410
e4455abb 3411#ifdef CONFIG_NUMA
af936a16
LS
3412/*
3413 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3414 * a specified node's per zone unevictable lists for evictable pages.
3415 */
3416
10fbcf4c
KS
3417static ssize_t read_scan_unevictable_node(struct device *dev,
3418 struct device_attribute *attr,
af936a16
LS
3419 char *buf)
3420{
264e56d8 3421 warn_scan_unevictable_pages();
af936a16
LS
3422 return sprintf(buf, "0\n"); /* always zero; should fit... */
3423}
3424
10fbcf4c
KS
3425static ssize_t write_scan_unevictable_node(struct device *dev,
3426 struct device_attribute *attr,
af936a16
LS
3427 const char *buf, size_t count)
3428{
264e56d8 3429 warn_scan_unevictable_pages();
af936a16
LS
3430 return 1;
3431}
3432
3433
10fbcf4c 3434static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3435 read_scan_unevictable_node,
3436 write_scan_unevictable_node);
3437
3438int scan_unevictable_register_node(struct node *node)
3439{
10fbcf4c 3440 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3441}
3442
3443void scan_unevictable_unregister_node(struct node *node)
3444{
10fbcf4c 3445 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3446}
e4455abb 3447#endif