]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/vmscan.c
mm: delete NR_PAGES_SCANNED and pgdat_reclaimable()
[mirror_ubuntu-kernels.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4 16#include <linux/mm.h>
5b3cc15a 17#include <linux/sched/mm.h>
1da177e4 18#include <linux/module.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/kernel_stat.h>
21#include <linux/swap.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/highmem.h>
70ddf637 25#include <linux/vmpressure.h>
e129b5c2 26#include <linux/vmstat.h>
1da177e4
LT
27#include <linux/file.h>
28#include <linux/writeback.h>
29#include <linux/blkdev.h>
30#include <linux/buffer_head.h> /* for try_to_release_page(),
31 buffer_heads_over_limit */
32#include <linux/mm_inline.h>
1da177e4
LT
33#include <linux/backing-dev.h>
34#include <linux/rmap.h>
35#include <linux/topology.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
3e7d3449 38#include <linux/compaction.h>
1da177e4
LT
39#include <linux/notifier.h>
40#include <linux/rwsem.h>
248a0301 41#include <linux/delay.h>
3218ae14 42#include <linux/kthread.h>
7dfb7103 43#include <linux/freezer.h>
66e1707b 44#include <linux/memcontrol.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
268bb0ce 48#include <linux/prefetch.h>
b1de0d13 49#include <linux/printk.h>
f9fe48be 50#include <linux/dax.h>
1da177e4
LT
51
52#include <asm/tlbflush.h>
53#include <asm/div64.h>
54
55#include <linux/swapops.h>
117aad1e 56#include <linux/balloon_compaction.h>
1da177e4 57
0f8053a5
NP
58#include "internal.h"
59
33906bc5
MG
60#define CREATE_TRACE_POINTS
61#include <trace/events/vmscan.h>
62
1da177e4 63struct scan_control {
22fba335
KM
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
1da177e4 67 /* This context's GFP mask */
6daa0e28 68 gfp_t gfp_mask;
1da177e4 69
ee814fe2 70 /* Allocation order */
5ad333eb 71 int order;
66e1707b 72
ee814fe2
JW
73 /*
74 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * are scanned.
76 */
77 nodemask_t *nodemask;
9e3b2f8c 78
f16015fb
JW
79 /*
80 * The memory cgroup that hit its limit and as a result is the
81 * primary target of this reclaim invocation.
82 */
83 struct mem_cgroup *target_mem_cgroup;
66e1707b 84
ee814fe2
JW
85 /* Scan (total_size >> priority) pages at once */
86 int priority;
87
b2e18757
MG
88 /* The highest zone to isolate pages for reclaim from */
89 enum zone_type reclaim_idx;
90
1276ad68 91 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
92 unsigned int may_writepage:1;
93
94 /* Can mapped pages be reclaimed? */
95 unsigned int may_unmap:1;
96
97 /* Can pages be swapped as part of reclaim? */
98 unsigned int may_swap:1;
99
241994ed
JW
100 /* Can cgroups be reclaimed below their normal consumption range? */
101 unsigned int may_thrash:1;
102
ee814fe2
JW
103 unsigned int hibernation_mode:1;
104
105 /* One of the zones is ready for compaction */
106 unsigned int compaction_ready:1;
107
108 /* Incremented by the number of inactive pages that were scanned */
109 unsigned long nr_scanned;
110
111 /* Number of pages freed so far during a call to shrink_zones() */
112 unsigned long nr_reclaimed;
1da177e4
LT
113};
114
1da177e4
LT
115#ifdef ARCH_HAS_PREFETCH
116#define prefetch_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetch(&prev->_field); \
123 } \
124 } while (0)
125#else
126#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
127#endif
128
129#ifdef ARCH_HAS_PREFETCHW
130#define prefetchw_prev_lru_page(_page, _base, _field) \
131 do { \
132 if ((_page)->lru.prev != _base) { \
133 struct page *prev; \
134 \
135 prev = lru_to_page(&(_page->lru)); \
136 prefetchw(&prev->_field); \
137 } \
138 } while (0)
139#else
140#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
141#endif
142
143/*
144 * From 0 .. 100. Higher means more swappy.
145 */
146int vm_swappiness = 60;
d0480be4
WSH
147/*
148 * The total number of pages which are beyond the high watermark within all
149 * zones.
150 */
151unsigned long vm_total_pages;
1da177e4
LT
152
153static LIST_HEAD(shrinker_list);
154static DECLARE_RWSEM(shrinker_rwsem);
155
c255a458 156#ifdef CONFIG_MEMCG
89b5fae5
JW
157static bool global_reclaim(struct scan_control *sc)
158{
f16015fb 159 return !sc->target_mem_cgroup;
89b5fae5 160}
97c9341f
TH
161
162/**
163 * sane_reclaim - is the usual dirty throttling mechanism operational?
164 * @sc: scan_control in question
165 *
166 * The normal page dirty throttling mechanism in balance_dirty_pages() is
167 * completely broken with the legacy memcg and direct stalling in
168 * shrink_page_list() is used for throttling instead, which lacks all the
169 * niceties such as fairness, adaptive pausing, bandwidth proportional
170 * allocation and configurability.
171 *
172 * This function tests whether the vmscan currently in progress can assume
173 * that the normal dirty throttling mechanism is operational.
174 */
175static bool sane_reclaim(struct scan_control *sc)
176{
177 struct mem_cgroup *memcg = sc->target_mem_cgroup;
178
179 if (!memcg)
180 return true;
181#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 182 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
183 return true;
184#endif
185 return false;
186}
91a45470 187#else
89b5fae5
JW
188static bool global_reclaim(struct scan_control *sc)
189{
190 return true;
191}
97c9341f
TH
192
193static bool sane_reclaim(struct scan_control *sc)
194{
195 return true;
196}
91a45470
KH
197#endif
198
5a1c84b4
MG
199/*
200 * This misses isolated pages which are not accounted for to save counters.
201 * As the data only determines if reclaim or compaction continues, it is
202 * not expected that isolated pages will be a dominating factor.
203 */
204unsigned long zone_reclaimable_pages(struct zone *zone)
205{
206 unsigned long nr;
207
208 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
209 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
210 if (get_nr_swap_pages() > 0)
211 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
212 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
213
214 return nr;
215}
216
599d0c95
MG
217unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
218{
219 unsigned long nr;
220
221 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
222 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
223 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
6e543d57
LD
224
225 if (get_nr_swap_pages() > 0)
599d0c95
MG
226 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
227 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
228 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
6e543d57
LD
229
230 return nr;
231}
232
fd538803
MH
233/**
234 * lruvec_lru_size - Returns the number of pages on the given LRU list.
235 * @lruvec: lru vector
236 * @lru: lru to use
237 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
238 */
239unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 240{
fd538803
MH
241 unsigned long lru_size;
242 int zid;
243
c3c787e8 244 if (!mem_cgroup_disabled())
fd538803
MH
245 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
246 else
247 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 248
fd538803
MH
249 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
250 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
251 unsigned long size;
c9f299d9 252
fd538803
MH
253 if (!managed_zone(zone))
254 continue;
255
256 if (!mem_cgroup_disabled())
257 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
258 else
259 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
260 NR_ZONE_LRU_BASE + lru);
261 lru_size -= min(size, lru_size);
262 }
263
264 return lru_size;
b4536f0c 265
b4536f0c
MH
266}
267
1da177e4 268/*
1d3d4437 269 * Add a shrinker callback to be called from the vm.
1da177e4 270 */
1d3d4437 271int register_shrinker(struct shrinker *shrinker)
1da177e4 272{
1d3d4437
GC
273 size_t size = sizeof(*shrinker->nr_deferred);
274
1d3d4437
GC
275 if (shrinker->flags & SHRINKER_NUMA_AWARE)
276 size *= nr_node_ids;
277
278 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
279 if (!shrinker->nr_deferred)
280 return -ENOMEM;
281
8e1f936b
RR
282 down_write(&shrinker_rwsem);
283 list_add_tail(&shrinker->list, &shrinker_list);
284 up_write(&shrinker_rwsem);
1d3d4437 285 return 0;
1da177e4 286}
8e1f936b 287EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
288
289/*
290 * Remove one
291 */
8e1f936b 292void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
293{
294 down_write(&shrinker_rwsem);
295 list_del(&shrinker->list);
296 up_write(&shrinker_rwsem);
ae393321 297 kfree(shrinker->nr_deferred);
1da177e4 298}
8e1f936b 299EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
300
301#define SHRINK_BATCH 128
1d3d4437 302
cb731d6c
VD
303static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
304 struct shrinker *shrinker,
305 unsigned long nr_scanned,
306 unsigned long nr_eligible)
1d3d4437
GC
307{
308 unsigned long freed = 0;
309 unsigned long long delta;
310 long total_scan;
d5bc5fd3 311 long freeable;
1d3d4437
GC
312 long nr;
313 long new_nr;
314 int nid = shrinkctl->nid;
315 long batch_size = shrinker->batch ? shrinker->batch
316 : SHRINK_BATCH;
5f33a080 317 long scanned = 0, next_deferred;
1d3d4437 318
d5bc5fd3
VD
319 freeable = shrinker->count_objects(shrinker, shrinkctl);
320 if (freeable == 0)
1d3d4437
GC
321 return 0;
322
323 /*
324 * copy the current shrinker scan count into a local variable
325 * and zero it so that other concurrent shrinker invocations
326 * don't also do this scanning work.
327 */
328 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
329
330 total_scan = nr;
6b4f7799 331 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 332 delta *= freeable;
6b4f7799 333 do_div(delta, nr_eligible + 1);
1d3d4437
GC
334 total_scan += delta;
335 if (total_scan < 0) {
8612c663 336 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 337 shrinker->scan_objects, total_scan);
d5bc5fd3 338 total_scan = freeable;
5f33a080
SL
339 next_deferred = nr;
340 } else
341 next_deferred = total_scan;
1d3d4437
GC
342
343 /*
344 * We need to avoid excessive windup on filesystem shrinkers
345 * due to large numbers of GFP_NOFS allocations causing the
346 * shrinkers to return -1 all the time. This results in a large
347 * nr being built up so when a shrink that can do some work
348 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 349 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
350 * memory.
351 *
352 * Hence only allow the shrinker to scan the entire cache when
353 * a large delta change is calculated directly.
354 */
d5bc5fd3
VD
355 if (delta < freeable / 4)
356 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
357
358 /*
359 * Avoid risking looping forever due to too large nr value:
360 * never try to free more than twice the estimate number of
361 * freeable entries.
362 */
d5bc5fd3
VD
363 if (total_scan > freeable * 2)
364 total_scan = freeable * 2;
1d3d4437
GC
365
366 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
367 nr_scanned, nr_eligible,
368 freeable, delta, total_scan);
1d3d4437 369
0b1fb40a
VD
370 /*
371 * Normally, we should not scan less than batch_size objects in one
372 * pass to avoid too frequent shrinker calls, but if the slab has less
373 * than batch_size objects in total and we are really tight on memory,
374 * we will try to reclaim all available objects, otherwise we can end
375 * up failing allocations although there are plenty of reclaimable
376 * objects spread over several slabs with usage less than the
377 * batch_size.
378 *
379 * We detect the "tight on memory" situations by looking at the total
380 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 381 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
382 * scanning at high prio and therefore should try to reclaim as much as
383 * possible.
384 */
385 while (total_scan >= batch_size ||
d5bc5fd3 386 total_scan >= freeable) {
a0b02131 387 unsigned long ret;
0b1fb40a 388 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 389
0b1fb40a 390 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
391 ret = shrinker->scan_objects(shrinker, shrinkctl);
392 if (ret == SHRINK_STOP)
393 break;
394 freed += ret;
1d3d4437 395
0b1fb40a
VD
396 count_vm_events(SLABS_SCANNED, nr_to_scan);
397 total_scan -= nr_to_scan;
5f33a080 398 scanned += nr_to_scan;
1d3d4437
GC
399
400 cond_resched();
401 }
402
5f33a080
SL
403 if (next_deferred >= scanned)
404 next_deferred -= scanned;
405 else
406 next_deferred = 0;
1d3d4437
GC
407 /*
408 * move the unused scan count back into the shrinker in a
409 * manner that handles concurrent updates. If we exhausted the
410 * scan, there is no need to do an update.
411 */
5f33a080
SL
412 if (next_deferred > 0)
413 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
414 &shrinker->nr_deferred[nid]);
415 else
416 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
417
df9024a8 418 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 419 return freed;
1495f230
YH
420}
421
6b4f7799 422/**
cb731d6c 423 * shrink_slab - shrink slab caches
6b4f7799
JW
424 * @gfp_mask: allocation context
425 * @nid: node whose slab caches to target
cb731d6c 426 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
427 * @nr_scanned: pressure numerator
428 * @nr_eligible: pressure denominator
1da177e4 429 *
6b4f7799 430 * Call the shrink functions to age shrinkable caches.
1da177e4 431 *
6b4f7799
JW
432 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
433 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 434 *
cb731d6c
VD
435 * @memcg specifies the memory cgroup to target. If it is not NULL,
436 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
437 * objects from the memory cgroup specified. Otherwise, only unaware
438 * shrinkers are called.
cb731d6c 439 *
6b4f7799
JW
440 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
441 * the available objects should be scanned. Page reclaim for example
442 * passes the number of pages scanned and the number of pages on the
443 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
444 * when it encountered mapped pages. The ratio is further biased by
445 * the ->seeks setting of the shrink function, which indicates the
446 * cost to recreate an object relative to that of an LRU page.
b15e0905 447 *
6b4f7799 448 * Returns the number of reclaimed slab objects.
1da177e4 449 */
cb731d6c
VD
450static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
451 struct mem_cgroup *memcg,
452 unsigned long nr_scanned,
453 unsigned long nr_eligible)
1da177e4
LT
454{
455 struct shrinker *shrinker;
24f7c6b9 456 unsigned long freed = 0;
1da177e4 457
0fc9f58a 458 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
459 return 0;
460
6b4f7799
JW
461 if (nr_scanned == 0)
462 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 463
f06590bd 464 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
465 /*
466 * If we would return 0, our callers would understand that we
467 * have nothing else to shrink and give up trying. By returning
468 * 1 we keep it going and assume we'll be able to shrink next
469 * time.
470 */
471 freed = 1;
f06590bd
MK
472 goto out;
473 }
1da177e4
LT
474
475 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
476 struct shrink_control sc = {
477 .gfp_mask = gfp_mask,
478 .nid = nid,
cb731d6c 479 .memcg = memcg,
6b4f7799 480 };
ec97097b 481
0fc9f58a
VD
482 /*
483 * If kernel memory accounting is disabled, we ignore
484 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
485 * passing NULL for memcg.
486 */
487 if (memcg_kmem_enabled() &&
488 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
489 continue;
490
6b4f7799
JW
491 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
492 sc.nid = 0;
1da177e4 493
cb731d6c 494 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 495 }
6b4f7799 496
1da177e4 497 up_read(&shrinker_rwsem);
f06590bd
MK
498out:
499 cond_resched();
24f7c6b9 500 return freed;
1da177e4
LT
501}
502
cb731d6c
VD
503void drop_slab_node(int nid)
504{
505 unsigned long freed;
506
507 do {
508 struct mem_cgroup *memcg = NULL;
509
510 freed = 0;
511 do {
512 freed += shrink_slab(GFP_KERNEL, nid, memcg,
513 1000, 1000);
514 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
515 } while (freed > 10);
516}
517
518void drop_slab(void)
519{
520 int nid;
521
522 for_each_online_node(nid)
523 drop_slab_node(nid);
524}
525
1da177e4
LT
526static inline int is_page_cache_freeable(struct page *page)
527{
ceddc3a5
JW
528 /*
529 * A freeable page cache page is referenced only by the caller
530 * that isolated the page, the page cache radix tree and
531 * optional buffer heads at page->private.
532 */
edcf4748 533 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
534}
535
703c2708 536static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 537{
930d9152 538 if (current->flags & PF_SWAPWRITE)
1da177e4 539 return 1;
703c2708 540 if (!inode_write_congested(inode))
1da177e4 541 return 1;
703c2708 542 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
543 return 1;
544 return 0;
545}
546
547/*
548 * We detected a synchronous write error writing a page out. Probably
549 * -ENOSPC. We need to propagate that into the address_space for a subsequent
550 * fsync(), msync() or close().
551 *
552 * The tricky part is that after writepage we cannot touch the mapping: nothing
553 * prevents it from being freed up. But we have a ref on the page and once
554 * that page is locked, the mapping is pinned.
555 *
556 * We're allowed to run sleeping lock_page() here because we know the caller has
557 * __GFP_FS.
558 */
559static void handle_write_error(struct address_space *mapping,
560 struct page *page, int error)
561{
7eaceacc 562 lock_page(page);
3e9f45bd
GC
563 if (page_mapping(page) == mapping)
564 mapping_set_error(mapping, error);
1da177e4
LT
565 unlock_page(page);
566}
567
04e62a29
CL
568/* possible outcome of pageout() */
569typedef enum {
570 /* failed to write page out, page is locked */
571 PAGE_KEEP,
572 /* move page to the active list, page is locked */
573 PAGE_ACTIVATE,
574 /* page has been sent to the disk successfully, page is unlocked */
575 PAGE_SUCCESS,
576 /* page is clean and locked */
577 PAGE_CLEAN,
578} pageout_t;
579
1da177e4 580/*
1742f19f
AM
581 * pageout is called by shrink_page_list() for each dirty page.
582 * Calls ->writepage().
1da177e4 583 */
c661b078 584static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 585 struct scan_control *sc)
1da177e4
LT
586{
587 /*
588 * If the page is dirty, only perform writeback if that write
589 * will be non-blocking. To prevent this allocation from being
590 * stalled by pagecache activity. But note that there may be
591 * stalls if we need to run get_block(). We could test
592 * PagePrivate for that.
593 *
8174202b 594 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
595 * this page's queue, we can perform writeback even if that
596 * will block.
597 *
598 * If the page is swapcache, write it back even if that would
599 * block, for some throttling. This happens by accident, because
600 * swap_backing_dev_info is bust: it doesn't reflect the
601 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
602 */
603 if (!is_page_cache_freeable(page))
604 return PAGE_KEEP;
605 if (!mapping) {
606 /*
607 * Some data journaling orphaned pages can have
608 * page->mapping == NULL while being dirty with clean buffers.
609 */
266cf658 610 if (page_has_private(page)) {
1da177e4
LT
611 if (try_to_free_buffers(page)) {
612 ClearPageDirty(page);
b1de0d13 613 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
614 return PAGE_CLEAN;
615 }
616 }
617 return PAGE_KEEP;
618 }
619 if (mapping->a_ops->writepage == NULL)
620 return PAGE_ACTIVATE;
703c2708 621 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
622 return PAGE_KEEP;
623
624 if (clear_page_dirty_for_io(page)) {
625 int res;
626 struct writeback_control wbc = {
627 .sync_mode = WB_SYNC_NONE,
628 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
629 .range_start = 0,
630 .range_end = LLONG_MAX,
1da177e4
LT
631 .for_reclaim = 1,
632 };
633
634 SetPageReclaim(page);
635 res = mapping->a_ops->writepage(page, &wbc);
636 if (res < 0)
637 handle_write_error(mapping, page, res);
994fc28c 638 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
639 ClearPageReclaim(page);
640 return PAGE_ACTIVATE;
641 }
c661b078 642
1da177e4
LT
643 if (!PageWriteback(page)) {
644 /* synchronous write or broken a_ops? */
645 ClearPageReclaim(page);
646 }
3aa23851 647 trace_mm_vmscan_writepage(page);
c4a25635 648 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
649 return PAGE_SUCCESS;
650 }
651
652 return PAGE_CLEAN;
653}
654
a649fd92 655/*
e286781d
NP
656 * Same as remove_mapping, but if the page is removed from the mapping, it
657 * gets returned with a refcount of 0.
a649fd92 658 */
a528910e
JW
659static int __remove_mapping(struct address_space *mapping, struct page *page,
660 bool reclaimed)
49d2e9cc 661{
c4843a75 662 unsigned long flags;
c4843a75 663
28e4d965
NP
664 BUG_ON(!PageLocked(page));
665 BUG_ON(mapping != page_mapping(page));
49d2e9cc 666
c4843a75 667 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 668 /*
0fd0e6b0
NP
669 * The non racy check for a busy page.
670 *
671 * Must be careful with the order of the tests. When someone has
672 * a ref to the page, it may be possible that they dirty it then
673 * drop the reference. So if PageDirty is tested before page_count
674 * here, then the following race may occur:
675 *
676 * get_user_pages(&page);
677 * [user mapping goes away]
678 * write_to(page);
679 * !PageDirty(page) [good]
680 * SetPageDirty(page);
681 * put_page(page);
682 * !page_count(page) [good, discard it]
683 *
684 * [oops, our write_to data is lost]
685 *
686 * Reversing the order of the tests ensures such a situation cannot
687 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 688 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
689 *
690 * Note that if SetPageDirty is always performed via set_page_dirty,
691 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 692 */
fe896d18 693 if (!page_ref_freeze(page, 2))
49d2e9cc 694 goto cannot_free;
e286781d
NP
695 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
696 if (unlikely(PageDirty(page))) {
fe896d18 697 page_ref_unfreeze(page, 2);
49d2e9cc 698 goto cannot_free;
e286781d 699 }
49d2e9cc
CL
700
701 if (PageSwapCache(page)) {
702 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 703 mem_cgroup_swapout(page, swap);
49d2e9cc 704 __delete_from_swap_cache(page);
c4843a75 705 spin_unlock_irqrestore(&mapping->tree_lock, flags);
0a31bc97 706 swapcache_free(swap);
e286781d 707 } else {
6072d13c 708 void (*freepage)(struct page *);
a528910e 709 void *shadow = NULL;
6072d13c
LT
710
711 freepage = mapping->a_ops->freepage;
a528910e
JW
712 /*
713 * Remember a shadow entry for reclaimed file cache in
714 * order to detect refaults, thus thrashing, later on.
715 *
716 * But don't store shadows in an address space that is
717 * already exiting. This is not just an optizimation,
718 * inode reclaim needs to empty out the radix tree or
719 * the nodes are lost. Don't plant shadows behind its
720 * back.
f9fe48be
RZ
721 *
722 * We also don't store shadows for DAX mappings because the
723 * only page cache pages found in these are zero pages
724 * covering holes, and because we don't want to mix DAX
725 * exceptional entries and shadow exceptional entries in the
726 * same page_tree.
a528910e
JW
727 */
728 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 729 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 730 shadow = workingset_eviction(mapping, page);
62cccb8c 731 __delete_from_page_cache(page, shadow);
c4843a75 732 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
733
734 if (freepage != NULL)
735 freepage(page);
49d2e9cc
CL
736 }
737
49d2e9cc
CL
738 return 1;
739
740cannot_free:
c4843a75 741 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
742 return 0;
743}
744
e286781d
NP
745/*
746 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
747 * someone else has a ref on the page, abort and return 0. If it was
748 * successfully detached, return 1. Assumes the caller has a single ref on
749 * this page.
750 */
751int remove_mapping(struct address_space *mapping, struct page *page)
752{
a528910e 753 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
754 /*
755 * Unfreezing the refcount with 1 rather than 2 effectively
756 * drops the pagecache ref for us without requiring another
757 * atomic operation.
758 */
fe896d18 759 page_ref_unfreeze(page, 1);
e286781d
NP
760 return 1;
761 }
762 return 0;
763}
764
894bc310
LS
765/**
766 * putback_lru_page - put previously isolated page onto appropriate LRU list
767 * @page: page to be put back to appropriate lru list
768 *
769 * Add previously isolated @page to appropriate LRU list.
770 * Page may still be unevictable for other reasons.
771 *
772 * lru_lock must not be held, interrupts must be enabled.
773 */
894bc310
LS
774void putback_lru_page(struct page *page)
775{
0ec3b74c 776 bool is_unevictable;
bbfd28ee 777 int was_unevictable = PageUnevictable(page);
894bc310 778
309381fe 779 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
780
781redo:
782 ClearPageUnevictable(page);
783
39b5f29a 784 if (page_evictable(page)) {
894bc310
LS
785 /*
786 * For evictable pages, we can use the cache.
787 * In event of a race, worst case is we end up with an
788 * unevictable page on [in]active list.
789 * We know how to handle that.
790 */
0ec3b74c 791 is_unevictable = false;
c53954a0 792 lru_cache_add(page);
894bc310
LS
793 } else {
794 /*
795 * Put unevictable pages directly on zone's unevictable
796 * list.
797 */
0ec3b74c 798 is_unevictable = true;
894bc310 799 add_page_to_unevictable_list(page);
6a7b9548 800 /*
21ee9f39
MK
801 * When racing with an mlock or AS_UNEVICTABLE clearing
802 * (page is unlocked) make sure that if the other thread
803 * does not observe our setting of PG_lru and fails
24513264 804 * isolation/check_move_unevictable_pages,
21ee9f39 805 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
806 * the page back to the evictable list.
807 *
21ee9f39 808 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
809 */
810 smp_mb();
894bc310 811 }
894bc310
LS
812
813 /*
814 * page's status can change while we move it among lru. If an evictable
815 * page is on unevictable list, it never be freed. To avoid that,
816 * check after we added it to the list, again.
817 */
0ec3b74c 818 if (is_unevictable && page_evictable(page)) {
894bc310
LS
819 if (!isolate_lru_page(page)) {
820 put_page(page);
821 goto redo;
822 }
823 /* This means someone else dropped this page from LRU
824 * So, it will be freed or putback to LRU again. There is
825 * nothing to do here.
826 */
827 }
828
0ec3b74c 829 if (was_unevictable && !is_unevictable)
bbfd28ee 830 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 831 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
832 count_vm_event(UNEVICTABLE_PGCULLED);
833
894bc310
LS
834 put_page(page); /* drop ref from isolate */
835}
836
dfc8d636
JW
837enum page_references {
838 PAGEREF_RECLAIM,
839 PAGEREF_RECLAIM_CLEAN,
64574746 840 PAGEREF_KEEP,
dfc8d636
JW
841 PAGEREF_ACTIVATE,
842};
843
844static enum page_references page_check_references(struct page *page,
845 struct scan_control *sc)
846{
64574746 847 int referenced_ptes, referenced_page;
dfc8d636 848 unsigned long vm_flags;
dfc8d636 849
c3ac9a8a
JW
850 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
851 &vm_flags);
64574746 852 referenced_page = TestClearPageReferenced(page);
dfc8d636 853
dfc8d636
JW
854 /*
855 * Mlock lost the isolation race with us. Let try_to_unmap()
856 * move the page to the unevictable list.
857 */
858 if (vm_flags & VM_LOCKED)
859 return PAGEREF_RECLAIM;
860
64574746 861 if (referenced_ptes) {
e4898273 862 if (PageSwapBacked(page))
64574746
JW
863 return PAGEREF_ACTIVATE;
864 /*
865 * All mapped pages start out with page table
866 * references from the instantiating fault, so we need
867 * to look twice if a mapped file page is used more
868 * than once.
869 *
870 * Mark it and spare it for another trip around the
871 * inactive list. Another page table reference will
872 * lead to its activation.
873 *
874 * Note: the mark is set for activated pages as well
875 * so that recently deactivated but used pages are
876 * quickly recovered.
877 */
878 SetPageReferenced(page);
879
34dbc67a 880 if (referenced_page || referenced_ptes > 1)
64574746
JW
881 return PAGEREF_ACTIVATE;
882
c909e993
KK
883 /*
884 * Activate file-backed executable pages after first usage.
885 */
886 if (vm_flags & VM_EXEC)
887 return PAGEREF_ACTIVATE;
888
64574746
JW
889 return PAGEREF_KEEP;
890 }
dfc8d636
JW
891
892 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 893 if (referenced_page && !PageSwapBacked(page))
64574746
JW
894 return PAGEREF_RECLAIM_CLEAN;
895
896 return PAGEREF_RECLAIM;
dfc8d636
JW
897}
898
e2be15f6
MG
899/* Check if a page is dirty or under writeback */
900static void page_check_dirty_writeback(struct page *page,
901 bool *dirty, bool *writeback)
902{
b4597226
MG
903 struct address_space *mapping;
904
e2be15f6
MG
905 /*
906 * Anonymous pages are not handled by flushers and must be written
907 * from reclaim context. Do not stall reclaim based on them
908 */
909 if (!page_is_file_cache(page)) {
910 *dirty = false;
911 *writeback = false;
912 return;
913 }
914
915 /* By default assume that the page flags are accurate */
916 *dirty = PageDirty(page);
917 *writeback = PageWriteback(page);
b4597226
MG
918
919 /* Verify dirty/writeback state if the filesystem supports it */
920 if (!page_has_private(page))
921 return;
922
923 mapping = page_mapping(page);
924 if (mapping && mapping->a_ops->is_dirty_writeback)
925 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
926}
927
3c710c1a
MH
928struct reclaim_stat {
929 unsigned nr_dirty;
930 unsigned nr_unqueued_dirty;
931 unsigned nr_congested;
932 unsigned nr_writeback;
933 unsigned nr_immediate;
5bccd166
MH
934 unsigned nr_activate;
935 unsigned nr_ref_keep;
936 unsigned nr_unmap_fail;
3c710c1a
MH
937};
938
1da177e4 939/*
1742f19f 940 * shrink_page_list() returns the number of reclaimed pages
1da177e4 941 */
1742f19f 942static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 943 struct pglist_data *pgdat,
f84f6e2b 944 struct scan_control *sc,
02c6de8d 945 enum ttu_flags ttu_flags,
3c710c1a 946 struct reclaim_stat *stat,
02c6de8d 947 bool force_reclaim)
1da177e4
LT
948{
949 LIST_HEAD(ret_pages);
abe4c3b5 950 LIST_HEAD(free_pages);
1da177e4 951 int pgactivate = 0;
3c710c1a
MH
952 unsigned nr_unqueued_dirty = 0;
953 unsigned nr_dirty = 0;
954 unsigned nr_congested = 0;
955 unsigned nr_reclaimed = 0;
956 unsigned nr_writeback = 0;
957 unsigned nr_immediate = 0;
5bccd166
MH
958 unsigned nr_ref_keep = 0;
959 unsigned nr_unmap_fail = 0;
1da177e4
LT
960
961 cond_resched();
962
1da177e4
LT
963 while (!list_empty(page_list)) {
964 struct address_space *mapping;
965 struct page *page;
966 int may_enter_fs;
02c6de8d 967 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 968 bool dirty, writeback;
854e9ed0
MK
969 bool lazyfree = false;
970 int ret = SWAP_SUCCESS;
1da177e4
LT
971
972 cond_resched();
973
974 page = lru_to_page(page_list);
975 list_del(&page->lru);
976
529ae9aa 977 if (!trylock_page(page))
1da177e4
LT
978 goto keep;
979
309381fe 980 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
981
982 sc->nr_scanned++;
80e43426 983
39b5f29a 984 if (unlikely(!page_evictable(page)))
b291f000 985 goto cull_mlocked;
894bc310 986
a6dc60f8 987 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
988 goto keep_locked;
989
1da177e4
LT
990 /* Double the slab pressure for mapped and swapcache pages */
991 if (page_mapped(page) || PageSwapCache(page))
992 sc->nr_scanned++;
993
c661b078
AW
994 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
995 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
996
e2be15f6
MG
997 /*
998 * The number of dirty pages determines if a zone is marked
999 * reclaim_congested which affects wait_iff_congested. kswapd
1000 * will stall and start writing pages if the tail of the LRU
1001 * is all dirty unqueued pages.
1002 */
1003 page_check_dirty_writeback(page, &dirty, &writeback);
1004 if (dirty || writeback)
1005 nr_dirty++;
1006
1007 if (dirty && !writeback)
1008 nr_unqueued_dirty++;
1009
d04e8acd
MG
1010 /*
1011 * Treat this page as congested if the underlying BDI is or if
1012 * pages are cycling through the LRU so quickly that the
1013 * pages marked for immediate reclaim are making it to the
1014 * end of the LRU a second time.
1015 */
e2be15f6 1016 mapping = page_mapping(page);
1da58ee2 1017 if (((dirty || writeback) && mapping &&
703c2708 1018 inode_write_congested(mapping->host)) ||
d04e8acd 1019 (writeback && PageReclaim(page)))
e2be15f6
MG
1020 nr_congested++;
1021
283aba9f
MG
1022 /*
1023 * If a page at the tail of the LRU is under writeback, there
1024 * are three cases to consider.
1025 *
1026 * 1) If reclaim is encountering an excessive number of pages
1027 * under writeback and this page is both under writeback and
1028 * PageReclaim then it indicates that pages are being queued
1029 * for IO but are being recycled through the LRU before the
1030 * IO can complete. Waiting on the page itself risks an
1031 * indefinite stall if it is impossible to writeback the
1032 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1033 * note that the LRU is being scanned too quickly and the
1034 * caller can stall after page list has been processed.
283aba9f 1035 *
97c9341f 1036 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1037 * not marked for immediate reclaim, or the caller does not
1038 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1039 * not to fs). In this case mark the page for immediate
97c9341f 1040 * reclaim and continue scanning.
283aba9f 1041 *
ecf5fc6e
MH
1042 * Require may_enter_fs because we would wait on fs, which
1043 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1044 * enter reclaim, and deadlock if it waits on a page for
1045 * which it is needed to do the write (loop masks off
1046 * __GFP_IO|__GFP_FS for this reason); but more thought
1047 * would probably show more reasons.
1048 *
7fadc820 1049 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1050 * PageReclaim. memcg does not have any dirty pages
1051 * throttling so we could easily OOM just because too many
1052 * pages are in writeback and there is nothing else to
1053 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1054 *
1055 * In cases 1) and 2) we activate the pages to get them out of
1056 * the way while we continue scanning for clean pages on the
1057 * inactive list and refilling from the active list. The
1058 * observation here is that waiting for disk writes is more
1059 * expensive than potentially causing reloads down the line.
1060 * Since they're marked for immediate reclaim, they won't put
1061 * memory pressure on the cache working set any longer than it
1062 * takes to write them to disk.
283aba9f 1063 */
c661b078 1064 if (PageWriteback(page)) {
283aba9f
MG
1065 /* Case 1 above */
1066 if (current_is_kswapd() &&
1067 PageReclaim(page) &&
599d0c95 1068 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e 1069 nr_immediate++;
c55e8d03 1070 goto activate_locked;
283aba9f
MG
1071
1072 /* Case 2 above */
97c9341f 1073 } else if (sane_reclaim(sc) ||
ecf5fc6e 1074 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1075 /*
1076 * This is slightly racy - end_page_writeback()
1077 * might have just cleared PageReclaim, then
1078 * setting PageReclaim here end up interpreted
1079 * as PageReadahead - but that does not matter
1080 * enough to care. What we do want is for this
1081 * page to have PageReclaim set next time memcg
1082 * reclaim reaches the tests above, so it will
1083 * then wait_on_page_writeback() to avoid OOM;
1084 * and it's also appropriate in global reclaim.
1085 */
1086 SetPageReclaim(page);
e62e384e 1087 nr_writeback++;
c55e8d03 1088 goto activate_locked;
283aba9f
MG
1089
1090 /* Case 3 above */
1091 } else {
7fadc820 1092 unlock_page(page);
283aba9f 1093 wait_on_page_writeback(page);
7fadc820
HD
1094 /* then go back and try same page again */
1095 list_add_tail(&page->lru, page_list);
1096 continue;
e62e384e 1097 }
c661b078 1098 }
1da177e4 1099
02c6de8d
MK
1100 if (!force_reclaim)
1101 references = page_check_references(page, sc);
1102
dfc8d636
JW
1103 switch (references) {
1104 case PAGEREF_ACTIVATE:
1da177e4 1105 goto activate_locked;
64574746 1106 case PAGEREF_KEEP:
5bccd166 1107 nr_ref_keep++;
64574746 1108 goto keep_locked;
dfc8d636
JW
1109 case PAGEREF_RECLAIM:
1110 case PAGEREF_RECLAIM_CLEAN:
1111 ; /* try to reclaim the page below */
1112 }
1da177e4 1113
1da177e4
LT
1114 /*
1115 * Anonymous process memory has backing store?
1116 * Try to allocate it some swap space here.
1117 */
b291f000 1118 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1119 if (!(sc->gfp_mask & __GFP_IO))
1120 goto keep_locked;
5bc7b8ac 1121 if (!add_to_swap(page, page_list))
1da177e4 1122 goto activate_locked;
854e9ed0 1123 lazyfree = true;
63eb6b93 1124 may_enter_fs = 1;
1da177e4 1125
e2be15f6
MG
1126 /* Adding to swap updated mapping */
1127 mapping = page_mapping(page);
7751b2da
KS
1128 } else if (unlikely(PageTransHuge(page))) {
1129 /* Split file THP */
1130 if (split_huge_page_to_list(page, page_list))
1131 goto keep_locked;
e2be15f6 1132 }
1da177e4 1133
7751b2da
KS
1134 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1135
1da177e4
LT
1136 /*
1137 * The page is mapped into the page tables of one or more
1138 * processes. Try to unmap it here.
1139 */
1140 if (page_mapped(page) && mapping) {
854e9ed0
MK
1141 switch (ret = try_to_unmap(page, lazyfree ?
1142 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1143 (ttu_flags | TTU_BATCH_FLUSH))) {
1da177e4 1144 case SWAP_FAIL:
5bccd166 1145 nr_unmap_fail++;
1da177e4
LT
1146 goto activate_locked;
1147 case SWAP_AGAIN:
1148 goto keep_locked;
b291f000
NP
1149 case SWAP_MLOCK:
1150 goto cull_mlocked;
854e9ed0
MK
1151 case SWAP_LZFREE:
1152 goto lazyfree;
1da177e4
LT
1153 case SWAP_SUCCESS:
1154 ; /* try to free the page below */
1155 }
1156 }
1157
1158 if (PageDirty(page)) {
ee72886d 1159 /*
4eda4823
JW
1160 * Only kswapd can writeback filesystem pages
1161 * to avoid risk of stack overflow. But avoid
1162 * injecting inefficient single-page IO into
1163 * flusher writeback as much as possible: only
1164 * write pages when we've encountered many
1165 * dirty pages, and when we've already scanned
1166 * the rest of the LRU for clean pages and see
1167 * the same dirty pages again (PageReclaim).
ee72886d 1168 */
f84f6e2b 1169 if (page_is_file_cache(page) &&
4eda4823
JW
1170 (!current_is_kswapd() || !PageReclaim(page) ||
1171 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1172 /*
1173 * Immediately reclaim when written back.
1174 * Similar in principal to deactivate_page()
1175 * except we already have the page isolated
1176 * and know it's dirty
1177 */
c4a25635 1178 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1179 SetPageReclaim(page);
1180
c55e8d03 1181 goto activate_locked;
ee72886d
MG
1182 }
1183
dfc8d636 1184 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1185 goto keep_locked;
4dd4b920 1186 if (!may_enter_fs)
1da177e4 1187 goto keep_locked;
52a8363e 1188 if (!sc->may_writepage)
1da177e4
LT
1189 goto keep_locked;
1190
d950c947
MG
1191 /*
1192 * Page is dirty. Flush the TLB if a writable entry
1193 * potentially exists to avoid CPU writes after IO
1194 * starts and then write it out here.
1195 */
1196 try_to_unmap_flush_dirty();
7d3579e8 1197 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1198 case PAGE_KEEP:
1199 goto keep_locked;
1200 case PAGE_ACTIVATE:
1201 goto activate_locked;
1202 case PAGE_SUCCESS:
7d3579e8 1203 if (PageWriteback(page))
41ac1999 1204 goto keep;
7d3579e8 1205 if (PageDirty(page))
1da177e4 1206 goto keep;
7d3579e8 1207
1da177e4
LT
1208 /*
1209 * A synchronous write - probably a ramdisk. Go
1210 * ahead and try to reclaim the page.
1211 */
529ae9aa 1212 if (!trylock_page(page))
1da177e4
LT
1213 goto keep;
1214 if (PageDirty(page) || PageWriteback(page))
1215 goto keep_locked;
1216 mapping = page_mapping(page);
1217 case PAGE_CLEAN:
1218 ; /* try to free the page below */
1219 }
1220 }
1221
1222 /*
1223 * If the page has buffers, try to free the buffer mappings
1224 * associated with this page. If we succeed we try to free
1225 * the page as well.
1226 *
1227 * We do this even if the page is PageDirty().
1228 * try_to_release_page() does not perform I/O, but it is
1229 * possible for a page to have PageDirty set, but it is actually
1230 * clean (all its buffers are clean). This happens if the
1231 * buffers were written out directly, with submit_bh(). ext3
894bc310 1232 * will do this, as well as the blockdev mapping.
1da177e4
LT
1233 * try_to_release_page() will discover that cleanness and will
1234 * drop the buffers and mark the page clean - it can be freed.
1235 *
1236 * Rarely, pages can have buffers and no ->mapping. These are
1237 * the pages which were not successfully invalidated in
1238 * truncate_complete_page(). We try to drop those buffers here
1239 * and if that worked, and the page is no longer mapped into
1240 * process address space (page_count == 1) it can be freed.
1241 * Otherwise, leave the page on the LRU so it is swappable.
1242 */
266cf658 1243 if (page_has_private(page)) {
1da177e4
LT
1244 if (!try_to_release_page(page, sc->gfp_mask))
1245 goto activate_locked;
e286781d
NP
1246 if (!mapping && page_count(page) == 1) {
1247 unlock_page(page);
1248 if (put_page_testzero(page))
1249 goto free_it;
1250 else {
1251 /*
1252 * rare race with speculative reference.
1253 * the speculative reference will free
1254 * this page shortly, so we may
1255 * increment nr_reclaimed here (and
1256 * leave it off the LRU).
1257 */
1258 nr_reclaimed++;
1259 continue;
1260 }
1261 }
1da177e4
LT
1262 }
1263
854e9ed0 1264lazyfree:
a528910e 1265 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1266 goto keep_locked;
1da177e4 1267
a978d6f5
NP
1268 /*
1269 * At this point, we have no other references and there is
1270 * no way to pick any more up (removed from LRU, removed
1271 * from pagecache). Can use non-atomic bitops now (and
1272 * we obviously don't have to worry about waking up a process
1273 * waiting on the page lock, because there are no references.
1274 */
48c935ad 1275 __ClearPageLocked(page);
e286781d 1276free_it:
854e9ed0
MK
1277 if (ret == SWAP_LZFREE)
1278 count_vm_event(PGLAZYFREED);
1279
05ff5137 1280 nr_reclaimed++;
abe4c3b5
MG
1281
1282 /*
1283 * Is there need to periodically free_page_list? It would
1284 * appear not as the counts should be low
1285 */
1286 list_add(&page->lru, &free_pages);
1da177e4
LT
1287 continue;
1288
b291f000 1289cull_mlocked:
63d6c5ad
HD
1290 if (PageSwapCache(page))
1291 try_to_free_swap(page);
b291f000 1292 unlock_page(page);
c54839a7 1293 list_add(&page->lru, &ret_pages);
b291f000
NP
1294 continue;
1295
1da177e4 1296activate_locked:
68a22394 1297 /* Not a candidate for swapping, so reclaim swap space. */
5ccc5aba 1298 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
a2c43eed 1299 try_to_free_swap(page);
309381fe 1300 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1301 SetPageActive(page);
1302 pgactivate++;
1303keep_locked:
1304 unlock_page(page);
1305keep:
1306 list_add(&page->lru, &ret_pages);
309381fe 1307 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1308 }
abe4c3b5 1309
747db954 1310 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1311 try_to_unmap_flush();
b745bc85 1312 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1313
1da177e4 1314 list_splice(&ret_pages, page_list);
f8891e5e 1315 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1316
3c710c1a
MH
1317 if (stat) {
1318 stat->nr_dirty = nr_dirty;
1319 stat->nr_congested = nr_congested;
1320 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1321 stat->nr_writeback = nr_writeback;
1322 stat->nr_immediate = nr_immediate;
5bccd166
MH
1323 stat->nr_activate = pgactivate;
1324 stat->nr_ref_keep = nr_ref_keep;
1325 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1326 }
05ff5137 1327 return nr_reclaimed;
1da177e4
LT
1328}
1329
02c6de8d
MK
1330unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1331 struct list_head *page_list)
1332{
1333 struct scan_control sc = {
1334 .gfp_mask = GFP_KERNEL,
1335 .priority = DEF_PRIORITY,
1336 .may_unmap = 1,
1337 };
3c710c1a 1338 unsigned long ret;
02c6de8d
MK
1339 struct page *page, *next;
1340 LIST_HEAD(clean_pages);
1341
1342 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1343 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1344 !__PageMovable(page)) {
02c6de8d
MK
1345 ClearPageActive(page);
1346 list_move(&page->lru, &clean_pages);
1347 }
1348 }
1349
599d0c95 1350 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
3c710c1a 1351 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1352 list_splice(&clean_pages, page_list);
599d0c95 1353 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1354 return ret;
1355}
1356
5ad333eb
AW
1357/*
1358 * Attempt to remove the specified page from its LRU. Only take this page
1359 * if it is of the appropriate PageActive status. Pages which are being
1360 * freed elsewhere are also ignored.
1361 *
1362 * page: page to consider
1363 * mode: one of the LRU isolation modes defined above
1364 *
1365 * returns 0 on success, -ve errno on failure.
1366 */
f3fd4a61 1367int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1368{
1369 int ret = -EINVAL;
1370
1371 /* Only take pages on the LRU. */
1372 if (!PageLRU(page))
1373 return ret;
1374
e46a2879
MK
1375 /* Compaction should not handle unevictable pages but CMA can do so */
1376 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1377 return ret;
1378
5ad333eb 1379 ret = -EBUSY;
08e552c6 1380
c8244935
MG
1381 /*
1382 * To minimise LRU disruption, the caller can indicate that it only
1383 * wants to isolate pages it will be able to operate on without
1384 * blocking - clean pages for the most part.
1385 *
c8244935
MG
1386 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1387 * that it is possible to migrate without blocking
1388 */
1276ad68 1389 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1390 /* All the caller can do on PageWriteback is block */
1391 if (PageWriteback(page))
1392 return ret;
1393
1394 if (PageDirty(page)) {
1395 struct address_space *mapping;
1396
c8244935
MG
1397 /*
1398 * Only pages without mappings or that have a
1399 * ->migratepage callback are possible to migrate
1400 * without blocking
1401 */
1402 mapping = page_mapping(page);
1403 if (mapping && !mapping->a_ops->migratepage)
1404 return ret;
1405 }
1406 }
39deaf85 1407
f80c0673
MK
1408 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1409 return ret;
1410
5ad333eb
AW
1411 if (likely(get_page_unless_zero(page))) {
1412 /*
1413 * Be careful not to clear PageLRU until after we're
1414 * sure the page is not being freed elsewhere -- the
1415 * page release code relies on it.
1416 */
1417 ClearPageLRU(page);
1418 ret = 0;
1419 }
1420
1421 return ret;
1422}
1423
7ee36a14
MG
1424
1425/*
1426 * Update LRU sizes after isolating pages. The LRU size updates must
1427 * be complete before mem_cgroup_update_lru_size due to a santity check.
1428 */
1429static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1430 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1431{
7ee36a14
MG
1432 int zid;
1433
7ee36a14
MG
1434 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1435 if (!nr_zone_taken[zid])
1436 continue;
1437
1438 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1439#ifdef CONFIG_MEMCG
b4536f0c 1440 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1441#endif
b4536f0c
MH
1442 }
1443
7ee36a14
MG
1444}
1445
1da177e4 1446/*
a52633d8 1447 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1448 * shrink the lists perform better by taking out a batch of pages
1449 * and working on them outside the LRU lock.
1450 *
1451 * For pagecache intensive workloads, this function is the hottest
1452 * spot in the kernel (apart from copy_*_user functions).
1453 *
1454 * Appropriate locks must be held before calling this function.
1455 *
1456 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1457 * @lruvec: The LRU vector to pull pages from.
1da177e4 1458 * @dst: The temp list to put pages on to.
f626012d 1459 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1460 * @sc: The scan_control struct for this reclaim session
5ad333eb 1461 * @mode: One of the LRU isolation modes
3cb99451 1462 * @lru: LRU list id for isolating
1da177e4
LT
1463 *
1464 * returns how many pages were moved onto *@dst.
1465 */
69e05944 1466static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1467 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1468 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1469 isolate_mode_t mode, enum lru_list lru)
1da177e4 1470{
75b00af7 1471 struct list_head *src = &lruvec->lists[lru];
69e05944 1472 unsigned long nr_taken = 0;
599d0c95 1473 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1474 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1265e3a6 1475 unsigned long skipped = 0, total_skipped = 0;
599d0c95 1476 unsigned long scan, nr_pages;
b2e18757 1477 LIST_HEAD(pages_skipped);
1da177e4 1478
0b802f10 1479 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
d7f05528 1480 !list_empty(src);) {
5ad333eb 1481 struct page *page;
5ad333eb 1482
1da177e4
LT
1483 page = lru_to_page(src);
1484 prefetchw_prev_lru_page(page, src, flags);
1485
309381fe 1486 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1487
b2e18757
MG
1488 if (page_zonenum(page) > sc->reclaim_idx) {
1489 list_move(&page->lru, &pages_skipped);
7cc30fcf 1490 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1491 continue;
1492 }
1493
d7f05528
MG
1494 /*
1495 * Account for scanned and skipped separetly to avoid the pgdat
1496 * being prematurely marked unreclaimable by pgdat_reclaimable.
1497 */
1498 scan++;
1499
f3fd4a61 1500 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1501 case 0:
599d0c95
MG
1502 nr_pages = hpage_nr_pages(page);
1503 nr_taken += nr_pages;
1504 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1505 list_move(&page->lru, dst);
5ad333eb
AW
1506 break;
1507
1508 case -EBUSY:
1509 /* else it is being freed elsewhere */
1510 list_move(&page->lru, src);
1511 continue;
46453a6e 1512
5ad333eb
AW
1513 default:
1514 BUG();
1515 }
1da177e4
LT
1516 }
1517
b2e18757
MG
1518 /*
1519 * Splice any skipped pages to the start of the LRU list. Note that
1520 * this disrupts the LRU order when reclaiming for lower zones but
1521 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1522 * scanning would soon rescan the same pages to skip and put the
1523 * system at risk of premature OOM.
1524 */
7cc30fcf
MG
1525 if (!list_empty(&pages_skipped)) {
1526 int zid;
1527
7cc30fcf
MG
1528 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1529 if (!nr_skipped[zid])
1530 continue;
1531
1532 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1533 skipped += nr_skipped[zid];
7cc30fcf 1534 }
d7f05528
MG
1535
1536 /*
1537 * Account skipped pages as a partial scan as the pgdat may be
1538 * close to unreclaimable. If the LRU list is empty, account
1539 * skipped pages as a full scan.
1540 */
1265e3a6 1541 total_skipped = list_empty(src) ? skipped : skipped >> 2;
d7f05528
MG
1542
1543 list_splice(&pages_skipped, src);
7cc30fcf 1544 }
1265e3a6
MH
1545 *nr_scanned = scan + total_skipped;
1546 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
32b3f297 1547 scan, skipped, nr_taken, mode, lru);
b4536f0c 1548 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1549 return nr_taken;
1550}
1551
62695a84
NP
1552/**
1553 * isolate_lru_page - tries to isolate a page from its LRU list
1554 * @page: page to isolate from its LRU list
1555 *
1556 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1557 * vmstat statistic corresponding to whatever LRU list the page was on.
1558 *
1559 * Returns 0 if the page was removed from an LRU list.
1560 * Returns -EBUSY if the page was not on an LRU list.
1561 *
1562 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1563 * the active list, it will have PageActive set. If it was found on
1564 * the unevictable list, it will have the PageUnevictable bit set. That flag
1565 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1566 *
1567 * The vmstat statistic corresponding to the list on which the page was
1568 * found will be decremented.
1569 *
1570 * Restrictions:
1571 * (1) Must be called with an elevated refcount on the page. This is a
1572 * fundamentnal difference from isolate_lru_pages (which is called
1573 * without a stable reference).
1574 * (2) the lru_lock must not be held.
1575 * (3) interrupts must be enabled.
1576 */
1577int isolate_lru_page(struct page *page)
1578{
1579 int ret = -EBUSY;
1580
309381fe 1581 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1582 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1583
62695a84
NP
1584 if (PageLRU(page)) {
1585 struct zone *zone = page_zone(page);
fa9add64 1586 struct lruvec *lruvec;
62695a84 1587
a52633d8 1588 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1589 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1590 if (PageLRU(page)) {
894bc310 1591 int lru = page_lru(page);
0c917313 1592 get_page(page);
62695a84 1593 ClearPageLRU(page);
fa9add64
HD
1594 del_page_from_lru_list(page, lruvec, lru);
1595 ret = 0;
62695a84 1596 }
a52633d8 1597 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1598 }
1599 return ret;
1600}
1601
35cd7815 1602/*
d37dd5dc
FW
1603 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1604 * then get resheduled. When there are massive number of tasks doing page
1605 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1606 * the LRU list will go small and be scanned faster than necessary, leading to
1607 * unnecessary swapping, thrashing and OOM.
35cd7815 1608 */
599d0c95 1609static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1610 struct scan_control *sc)
1611{
1612 unsigned long inactive, isolated;
1613
1614 if (current_is_kswapd())
1615 return 0;
1616
97c9341f 1617 if (!sane_reclaim(sc))
35cd7815
RR
1618 return 0;
1619
1620 if (file) {
599d0c95
MG
1621 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1622 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1623 } else {
599d0c95
MG
1624 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1625 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1626 }
1627
3cf23841
FW
1628 /*
1629 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1630 * won't get blocked by normal direct-reclaimers, forming a circular
1631 * deadlock.
1632 */
d0164adc 1633 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1634 inactive >>= 3;
1635
35cd7815
RR
1636 return isolated > inactive;
1637}
1638
66635629 1639static noinline_for_stack void
75b00af7 1640putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1641{
27ac81d8 1642 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1643 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1644 LIST_HEAD(pages_to_free);
66635629 1645
66635629
MG
1646 /*
1647 * Put back any unfreeable pages.
1648 */
66635629 1649 while (!list_empty(page_list)) {
3f79768f 1650 struct page *page = lru_to_page(page_list);
66635629 1651 int lru;
3f79768f 1652
309381fe 1653 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1654 list_del(&page->lru);
39b5f29a 1655 if (unlikely(!page_evictable(page))) {
599d0c95 1656 spin_unlock_irq(&pgdat->lru_lock);
66635629 1657 putback_lru_page(page);
599d0c95 1658 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1659 continue;
1660 }
fa9add64 1661
599d0c95 1662 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1663
7a608572 1664 SetPageLRU(page);
66635629 1665 lru = page_lru(page);
fa9add64
HD
1666 add_page_to_lru_list(page, lruvec, lru);
1667
66635629
MG
1668 if (is_active_lru(lru)) {
1669 int file = is_file_lru(lru);
9992af10
RR
1670 int numpages = hpage_nr_pages(page);
1671 reclaim_stat->recent_rotated[file] += numpages;
66635629 1672 }
2bcf8879
HD
1673 if (put_page_testzero(page)) {
1674 __ClearPageLRU(page);
1675 __ClearPageActive(page);
fa9add64 1676 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1677
1678 if (unlikely(PageCompound(page))) {
599d0c95 1679 spin_unlock_irq(&pgdat->lru_lock);
747db954 1680 mem_cgroup_uncharge(page);
2bcf8879 1681 (*get_compound_page_dtor(page))(page);
599d0c95 1682 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1683 } else
1684 list_add(&page->lru, &pages_to_free);
66635629
MG
1685 }
1686 }
66635629 1687
3f79768f
HD
1688 /*
1689 * To save our caller's stack, now use input list for pages to free.
1690 */
1691 list_splice(&pages_to_free, page_list);
66635629
MG
1692}
1693
399ba0b9
N
1694/*
1695 * If a kernel thread (such as nfsd for loop-back mounts) services
1696 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1697 * In that case we should only throttle if the backing device it is
1698 * writing to is congested. In other cases it is safe to throttle.
1699 */
1700static int current_may_throttle(void)
1701{
1702 return !(current->flags & PF_LESS_THROTTLE) ||
1703 current->backing_dev_info == NULL ||
1704 bdi_write_congested(current->backing_dev_info);
1705}
1706
1da177e4 1707/*
b2e18757 1708 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1709 * of reclaimed pages
1da177e4 1710 */
66635629 1711static noinline_for_stack unsigned long
1a93be0e 1712shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1713 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1714{
1715 LIST_HEAD(page_list);
e247dbce 1716 unsigned long nr_scanned;
05ff5137 1717 unsigned long nr_reclaimed = 0;
e247dbce 1718 unsigned long nr_taken;
3c710c1a 1719 struct reclaim_stat stat = {};
f3fd4a61 1720 isolate_mode_t isolate_mode = 0;
3cb99451 1721 int file = is_file_lru(lru);
599d0c95 1722 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1723 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1724
599d0c95 1725 while (unlikely(too_many_isolated(pgdat, file, sc))) {
58355c78 1726 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1727
1728 /* We are about to die and free our memory. Return now. */
1729 if (fatal_signal_pending(current))
1730 return SWAP_CLUSTER_MAX;
1731 }
1732
1da177e4 1733 lru_add_drain();
f80c0673
MK
1734
1735 if (!sc->may_unmap)
61317289 1736 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1737
599d0c95 1738 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1739
5dc35979
KK
1740 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1741 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1742
599d0c95 1743 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1744 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1745
89b5fae5 1746 if (global_reclaim(sc)) {
e247dbce 1747 if (current_is_kswapd())
599d0c95 1748 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
e247dbce 1749 else
599d0c95 1750 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
e247dbce 1751 }
599d0c95 1752 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1753
d563c050 1754 if (nr_taken == 0)
66635629 1755 return 0;
5ad333eb 1756
599d0c95 1757 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
3c710c1a 1758 &stat, false);
c661b078 1759
599d0c95 1760 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1761
904249aa
YH
1762 if (global_reclaim(sc)) {
1763 if (current_is_kswapd())
599d0c95 1764 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
904249aa 1765 else
599d0c95 1766 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
904249aa 1767 }
a74609fa 1768
27ac81d8 1769 putback_inactive_pages(lruvec, &page_list);
3f79768f 1770
599d0c95 1771 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1772
599d0c95 1773 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1774
747db954 1775 mem_cgroup_uncharge_list(&page_list);
b745bc85 1776 free_hot_cold_page_list(&page_list, true);
e11da5b4 1777
92df3a72
MG
1778 /*
1779 * If reclaim is isolating dirty pages under writeback, it implies
1780 * that the long-lived page allocation rate is exceeding the page
1781 * laundering rate. Either the global limits are not being effective
1782 * at throttling processes due to the page distribution throughout
1783 * zones or there is heavy usage of a slow backing device. The
1784 * only option is to throttle from reclaim context which is not ideal
1785 * as there is no guarantee the dirtying process is throttled in the
1786 * same way balance_dirty_pages() manages.
1787 *
8e950282
MG
1788 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1789 * of pages under pages flagged for immediate reclaim and stall if any
1790 * are encountered in the nr_immediate check below.
92df3a72 1791 */
3c710c1a 1792 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
599d0c95 1793 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1794
d43006d5 1795 /*
97c9341f
TH
1796 * Legacy memcg will stall in page writeback so avoid forcibly
1797 * stalling here.
d43006d5 1798 */
97c9341f 1799 if (sane_reclaim(sc)) {
8e950282
MG
1800 /*
1801 * Tag a zone as congested if all the dirty pages scanned were
1802 * backed by a congested BDI and wait_iff_congested will stall.
1803 */
3c710c1a 1804 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
599d0c95 1805 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1806
b1a6f21e
MG
1807 /*
1808 * If dirty pages are scanned that are not queued for IO, it
726d061f
JW
1809 * implies that flushers are not doing their job. This can
1810 * happen when memory pressure pushes dirty pages to the end of
1811 * the LRU before the dirty limits are breached and the dirty
1812 * data has expired. It can also happen when the proportion of
1813 * dirty pages grows not through writes but through memory
1814 * pressure reclaiming all the clean cache. And in some cases,
1815 * the flushers simply cannot keep up with the allocation
1816 * rate. Nudge the flusher threads in case they are asleep, but
1817 * also allow kswapd to start writing pages during reclaim.
b1a6f21e 1818 */
726d061f
JW
1819 if (stat.nr_unqueued_dirty == nr_taken) {
1820 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
599d0c95 1821 set_bit(PGDAT_DIRTY, &pgdat->flags);
726d061f 1822 }
b1a6f21e
MG
1823
1824 /*
b738d764
LT
1825 * If kswapd scans pages marked marked for immediate
1826 * reclaim and under writeback (nr_immediate), it implies
1827 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1828 * they are written so also forcibly stall.
1829 */
3c710c1a 1830 if (stat.nr_immediate && current_may_throttle())
b1a6f21e 1831 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1832 }
d43006d5 1833
8e950282
MG
1834 /*
1835 * Stall direct reclaim for IO completions if underlying BDIs or zone
1836 * is congested. Allow kswapd to continue until it starts encountering
1837 * unqueued dirty pages or cycling through the LRU too quickly.
1838 */
399ba0b9
N
1839 if (!sc->hibernation_mode && !current_is_kswapd() &&
1840 current_may_throttle())
599d0c95 1841 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1842
599d0c95
MG
1843 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1844 nr_scanned, nr_reclaimed,
5bccd166
MH
1845 stat.nr_dirty, stat.nr_writeback,
1846 stat.nr_congested, stat.nr_immediate,
1847 stat.nr_activate, stat.nr_ref_keep,
1848 stat.nr_unmap_fail,
ba5e9579 1849 sc->priority, file);
05ff5137 1850 return nr_reclaimed;
1da177e4
LT
1851}
1852
1853/*
1854 * This moves pages from the active list to the inactive list.
1855 *
1856 * We move them the other way if the page is referenced by one or more
1857 * processes, from rmap.
1858 *
1859 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1860 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1861 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1862 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1863 * this, so instead we remove the pages from the LRU while processing them.
1864 * It is safe to rely on PG_active against the non-LRU pages in here because
1865 * nobody will play with that bit on a non-LRU page.
1866 *
0139aa7b 1867 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1868 * But we had to alter page->flags anyway.
9d998b4f
MH
1869 *
1870 * Returns the number of pages moved to the given lru.
1da177e4 1871 */
1cfb419b 1872
9d998b4f 1873static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1874 struct list_head *list,
2bcf8879 1875 struct list_head *pages_to_free,
3eb4140f
WF
1876 enum lru_list lru)
1877{
599d0c95 1878 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1879 struct page *page;
fa9add64 1880 int nr_pages;
9d998b4f 1881 int nr_moved = 0;
3eb4140f 1882
3eb4140f
WF
1883 while (!list_empty(list)) {
1884 page = lru_to_page(list);
599d0c95 1885 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1886
309381fe 1887 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1888 SetPageLRU(page);
1889
fa9add64 1890 nr_pages = hpage_nr_pages(page);
599d0c95 1891 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1892 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 1893
2bcf8879
HD
1894 if (put_page_testzero(page)) {
1895 __ClearPageLRU(page);
1896 __ClearPageActive(page);
fa9add64 1897 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1898
1899 if (unlikely(PageCompound(page))) {
599d0c95 1900 spin_unlock_irq(&pgdat->lru_lock);
747db954 1901 mem_cgroup_uncharge(page);
2bcf8879 1902 (*get_compound_page_dtor(page))(page);
599d0c95 1903 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1904 } else
1905 list_add(&page->lru, pages_to_free);
9d998b4f
MH
1906 } else {
1907 nr_moved += nr_pages;
3eb4140f
WF
1908 }
1909 }
9d5e6a9f 1910
3eb4140f 1911 if (!is_active_lru(lru))
f0958906 1912 __count_vm_events(PGDEACTIVATE, nr_moved);
9d998b4f
MH
1913
1914 return nr_moved;
3eb4140f 1915}
1cfb419b 1916
f626012d 1917static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1918 struct lruvec *lruvec,
f16015fb 1919 struct scan_control *sc,
9e3b2f8c 1920 enum lru_list lru)
1da177e4 1921{
44c241f1 1922 unsigned long nr_taken;
f626012d 1923 unsigned long nr_scanned;
6fe6b7e3 1924 unsigned long vm_flags;
1da177e4 1925 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1926 LIST_HEAD(l_active);
b69408e8 1927 LIST_HEAD(l_inactive);
1da177e4 1928 struct page *page;
1a93be0e 1929 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
1930 unsigned nr_deactivate, nr_activate;
1931 unsigned nr_rotated = 0;
f3fd4a61 1932 isolate_mode_t isolate_mode = 0;
3cb99451 1933 int file = is_file_lru(lru);
599d0c95 1934 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1935
1936 lru_add_drain();
f80c0673
MK
1937
1938 if (!sc->may_unmap)
61317289 1939 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1940
599d0c95 1941 spin_lock_irq(&pgdat->lru_lock);
925b7673 1942
5dc35979
KK
1943 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1944 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1945
599d0c95 1946 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1947 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1948
599d0c95 1949 __count_vm_events(PGREFILL, nr_scanned);
9d5e6a9f 1950
599d0c95 1951 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 1952
1da177e4
LT
1953 while (!list_empty(&l_hold)) {
1954 cond_resched();
1955 page = lru_to_page(&l_hold);
1956 list_del(&page->lru);
7e9cd484 1957
39b5f29a 1958 if (unlikely(!page_evictable(page))) {
894bc310
LS
1959 putback_lru_page(page);
1960 continue;
1961 }
1962
cc715d99
MG
1963 if (unlikely(buffer_heads_over_limit)) {
1964 if (page_has_private(page) && trylock_page(page)) {
1965 if (page_has_private(page))
1966 try_to_release_page(page, 0);
1967 unlock_page(page);
1968 }
1969 }
1970
c3ac9a8a
JW
1971 if (page_referenced(page, 0, sc->target_mem_cgroup,
1972 &vm_flags)) {
9992af10 1973 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1974 /*
1975 * Identify referenced, file-backed active pages and
1976 * give them one more trip around the active list. So
1977 * that executable code get better chances to stay in
1978 * memory under moderate memory pressure. Anon pages
1979 * are not likely to be evicted by use-once streaming
1980 * IO, plus JVM can create lots of anon VM_EXEC pages,
1981 * so we ignore them here.
1982 */
41e20983 1983 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1984 list_add(&page->lru, &l_active);
1985 continue;
1986 }
1987 }
7e9cd484 1988
5205e56e 1989 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1990 list_add(&page->lru, &l_inactive);
1991 }
1992
b555749a 1993 /*
8cab4754 1994 * Move pages back to the lru list.
b555749a 1995 */
599d0c95 1996 spin_lock_irq(&pgdat->lru_lock);
556adecb 1997 /*
8cab4754
WF
1998 * Count referenced pages from currently used mappings as rotated,
1999 * even though only some of them are actually re-activated. This
2000 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2001 * get_scan_count.
7e9cd484 2002 */
b7c46d15 2003 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2004
9d998b4f
MH
2005 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2006 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
2007 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2008 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2009
747db954 2010 mem_cgroup_uncharge_list(&l_hold);
b745bc85 2011 free_hot_cold_page_list(&l_hold, true);
9d998b4f
MH
2012 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2013 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2014}
2015
59dc76b0
RR
2016/*
2017 * The inactive anon list should be small enough that the VM never has
2018 * to do too much work.
14797e23 2019 *
59dc76b0
RR
2020 * The inactive file list should be small enough to leave most memory
2021 * to the established workingset on the scan-resistant active list,
2022 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2023 *
59dc76b0
RR
2024 * Both inactive lists should also be large enough that each inactive
2025 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2026 *
59dc76b0
RR
2027 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2028 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2029 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2030 *
59dc76b0
RR
2031 * total target max
2032 * memory ratio inactive
2033 * -------------------------------------
2034 * 10MB 1 5MB
2035 * 100MB 1 50MB
2036 * 1GB 3 250MB
2037 * 10GB 10 0.9GB
2038 * 100GB 31 3GB
2039 * 1TB 101 10GB
2040 * 10TB 320 32GB
56e49d21 2041 */
f8d1a311 2042static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
dcec0b60 2043 struct scan_control *sc, bool trace)
56e49d21 2044{
59dc76b0 2045 unsigned long inactive_ratio;
fd538803
MH
2046 unsigned long inactive, active;
2047 enum lru_list inactive_lru = file * LRU_FILE;
2048 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
59dc76b0 2049 unsigned long gb;
e3790144 2050
59dc76b0
RR
2051 /*
2052 * If we don't have swap space, anonymous page deactivation
2053 * is pointless.
2054 */
2055 if (!file && !total_swap_pages)
2056 return false;
56e49d21 2057
fd538803
MH
2058 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2059 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2060
59dc76b0
RR
2061 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2062 if (gb)
2063 inactive_ratio = int_sqrt(10 * gb);
b39415b2 2064 else
59dc76b0
RR
2065 inactive_ratio = 1;
2066
dcec0b60 2067 if (trace)
fd538803 2068 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
dcec0b60 2069 sc->reclaim_idx,
fd538803
MH
2070 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2071 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2072 inactive_ratio, file);
2073
59dc76b0 2074 return inactive * inactive_ratio < active;
b39415b2
RR
2075}
2076
4f98a2fe 2077static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 2078 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2079{
b39415b2 2080 if (is_active_lru(lru)) {
dcec0b60 2081 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2082 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2083 return 0;
2084 }
2085
1a93be0e 2086 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2087}
2088
9a265114
JW
2089enum scan_balance {
2090 SCAN_EQUAL,
2091 SCAN_FRACT,
2092 SCAN_ANON,
2093 SCAN_FILE,
2094};
2095
4f98a2fe
RR
2096/*
2097 * Determine how aggressively the anon and file LRU lists should be
2098 * scanned. The relative value of each set of LRU lists is determined
2099 * by looking at the fraction of the pages scanned we did rotate back
2100 * onto the active list instead of evict.
2101 *
be7bd59d
WL
2102 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2103 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2104 */
33377678 2105static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2106 struct scan_control *sc, unsigned long *nr,
2107 unsigned long *lru_pages)
4f98a2fe 2108{
33377678 2109 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2110 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2111 u64 fraction[2];
2112 u64 denominator = 0; /* gcc */
599d0c95 2113 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2114 unsigned long anon_prio, file_prio;
9a265114 2115 enum scan_balance scan_balance;
0bf1457f 2116 unsigned long anon, file;
4f98a2fe 2117 unsigned long ap, fp;
4111304d 2118 enum lru_list lru;
76a33fc3
SL
2119
2120 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2121 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2122 scan_balance = SCAN_FILE;
76a33fc3
SL
2123 goto out;
2124 }
4f98a2fe 2125
10316b31
JW
2126 /*
2127 * Global reclaim will swap to prevent OOM even with no
2128 * swappiness, but memcg users want to use this knob to
2129 * disable swapping for individual groups completely when
2130 * using the memory controller's swap limit feature would be
2131 * too expensive.
2132 */
02695175 2133 if (!global_reclaim(sc) && !swappiness) {
9a265114 2134 scan_balance = SCAN_FILE;
10316b31
JW
2135 goto out;
2136 }
2137
2138 /*
2139 * Do not apply any pressure balancing cleverness when the
2140 * system is close to OOM, scan both anon and file equally
2141 * (unless the swappiness setting disagrees with swapping).
2142 */
02695175 2143 if (!sc->priority && swappiness) {
9a265114 2144 scan_balance = SCAN_EQUAL;
10316b31
JW
2145 goto out;
2146 }
2147
62376251
JW
2148 /*
2149 * Prevent the reclaimer from falling into the cache trap: as
2150 * cache pages start out inactive, every cache fault will tip
2151 * the scan balance towards the file LRU. And as the file LRU
2152 * shrinks, so does the window for rotation from references.
2153 * This means we have a runaway feedback loop where a tiny
2154 * thrashing file LRU becomes infinitely more attractive than
2155 * anon pages. Try to detect this based on file LRU size.
2156 */
2157 if (global_reclaim(sc)) {
599d0c95
MG
2158 unsigned long pgdatfile;
2159 unsigned long pgdatfree;
2160 int z;
2161 unsigned long total_high_wmark = 0;
2ab051e1 2162
599d0c95
MG
2163 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2164 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2165 node_page_state(pgdat, NR_INACTIVE_FILE);
2166
2167 for (z = 0; z < MAX_NR_ZONES; z++) {
2168 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2169 if (!managed_zone(zone))
599d0c95
MG
2170 continue;
2171
2172 total_high_wmark += high_wmark_pages(zone);
2173 }
62376251 2174
599d0c95 2175 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
62376251
JW
2176 scan_balance = SCAN_ANON;
2177 goto out;
2178 }
2179 }
2180
7c5bd705 2181 /*
316bda0e
VD
2182 * If there is enough inactive page cache, i.e. if the size of the
2183 * inactive list is greater than that of the active list *and* the
2184 * inactive list actually has some pages to scan on this priority, we
2185 * do not reclaim anything from the anonymous working set right now.
2186 * Without the second condition we could end up never scanning an
2187 * lruvec even if it has plenty of old anonymous pages unless the
2188 * system is under heavy pressure.
7c5bd705 2189 */
dcec0b60 2190 if (!inactive_list_is_low(lruvec, true, sc, false) &&
71ab6cfe 2191 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2192 scan_balance = SCAN_FILE;
7c5bd705
JW
2193 goto out;
2194 }
2195
9a265114
JW
2196 scan_balance = SCAN_FRACT;
2197
58c37f6e
KM
2198 /*
2199 * With swappiness at 100, anonymous and file have the same priority.
2200 * This scanning priority is essentially the inverse of IO cost.
2201 */
02695175 2202 anon_prio = swappiness;
75b00af7 2203 file_prio = 200 - anon_prio;
58c37f6e 2204
4f98a2fe
RR
2205 /*
2206 * OK, so we have swap space and a fair amount of page cache
2207 * pages. We use the recently rotated / recently scanned
2208 * ratios to determine how valuable each cache is.
2209 *
2210 * Because workloads change over time (and to avoid overflow)
2211 * we keep these statistics as a floating average, which ends
2212 * up weighing recent references more than old ones.
2213 *
2214 * anon in [0], file in [1]
2215 */
2ab051e1 2216
fd538803
MH
2217 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2218 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2219 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2220 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2221
599d0c95 2222 spin_lock_irq(&pgdat->lru_lock);
6e901571 2223 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2224 reclaim_stat->recent_scanned[0] /= 2;
2225 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2226 }
2227
6e901571 2228 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2229 reclaim_stat->recent_scanned[1] /= 2;
2230 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2231 }
2232
4f98a2fe 2233 /*
00d8089c
RR
2234 * The amount of pressure on anon vs file pages is inversely
2235 * proportional to the fraction of recently scanned pages on
2236 * each list that were recently referenced and in active use.
4f98a2fe 2237 */
fe35004f 2238 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2239 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2240
fe35004f 2241 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2242 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2243 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2244
76a33fc3
SL
2245 fraction[0] = ap;
2246 fraction[1] = fp;
2247 denominator = ap + fp + 1;
2248out:
688035f7
JW
2249 *lru_pages = 0;
2250 for_each_evictable_lru(lru) {
2251 int file = is_file_lru(lru);
2252 unsigned long size;
2253 unsigned long scan;
6b4f7799 2254
688035f7
JW
2255 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2256 scan = size >> sc->priority;
2257 /*
2258 * If the cgroup's already been deleted, make sure to
2259 * scrape out the remaining cache.
2260 */
2261 if (!scan && !mem_cgroup_online(memcg))
2262 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2263
688035f7
JW
2264 switch (scan_balance) {
2265 case SCAN_EQUAL:
2266 /* Scan lists relative to size */
2267 break;
2268 case SCAN_FRACT:
9a265114 2269 /*
688035f7
JW
2270 * Scan types proportional to swappiness and
2271 * their relative recent reclaim efficiency.
9a265114 2272 */
688035f7
JW
2273 scan = div64_u64(scan * fraction[file],
2274 denominator);
2275 break;
2276 case SCAN_FILE:
2277 case SCAN_ANON:
2278 /* Scan one type exclusively */
2279 if ((scan_balance == SCAN_FILE) != file) {
2280 size = 0;
2281 scan = 0;
2282 }
2283 break;
2284 default:
2285 /* Look ma, no brain */
2286 BUG();
9a265114 2287 }
688035f7
JW
2288
2289 *lru_pages += size;
2290 nr[lru] = scan;
76a33fc3 2291 }
6e08a369 2292}
4f98a2fe 2293
9b4f98cd 2294/*
a9dd0a83 2295 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2296 */
a9dd0a83 2297static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2298 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2299{
ef8f2327 2300 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2301 unsigned long nr[NR_LRU_LISTS];
e82e0561 2302 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2303 unsigned long nr_to_scan;
2304 enum lru_list lru;
2305 unsigned long nr_reclaimed = 0;
2306 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2307 struct blk_plug plug;
1a501907 2308 bool scan_adjusted;
9b4f98cd 2309
33377678 2310 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2311
e82e0561
MG
2312 /* Record the original scan target for proportional adjustments later */
2313 memcpy(targets, nr, sizeof(nr));
2314
1a501907
MG
2315 /*
2316 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2317 * event that can occur when there is little memory pressure e.g.
2318 * multiple streaming readers/writers. Hence, we do not abort scanning
2319 * when the requested number of pages are reclaimed when scanning at
2320 * DEF_PRIORITY on the assumption that the fact we are direct
2321 * reclaiming implies that kswapd is not keeping up and it is best to
2322 * do a batch of work at once. For memcg reclaim one check is made to
2323 * abort proportional reclaim if either the file or anon lru has already
2324 * dropped to zero at the first pass.
2325 */
2326 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2327 sc->priority == DEF_PRIORITY);
2328
9b4f98cd
JW
2329 blk_start_plug(&plug);
2330 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2331 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2332 unsigned long nr_anon, nr_file, percentage;
2333 unsigned long nr_scanned;
2334
9b4f98cd
JW
2335 for_each_evictable_lru(lru) {
2336 if (nr[lru]) {
2337 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2338 nr[lru] -= nr_to_scan;
2339
2340 nr_reclaimed += shrink_list(lru, nr_to_scan,
2341 lruvec, sc);
2342 }
2343 }
e82e0561 2344
bd041733
MH
2345 cond_resched();
2346
e82e0561
MG
2347 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2348 continue;
2349
e82e0561
MG
2350 /*
2351 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2352 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2353 * proportionally what was requested by get_scan_count(). We
2354 * stop reclaiming one LRU and reduce the amount scanning
2355 * proportional to the original scan target.
2356 */
2357 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2358 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2359
1a501907
MG
2360 /*
2361 * It's just vindictive to attack the larger once the smaller
2362 * has gone to zero. And given the way we stop scanning the
2363 * smaller below, this makes sure that we only make one nudge
2364 * towards proportionality once we've got nr_to_reclaim.
2365 */
2366 if (!nr_file || !nr_anon)
2367 break;
2368
e82e0561
MG
2369 if (nr_file > nr_anon) {
2370 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2371 targets[LRU_ACTIVE_ANON] + 1;
2372 lru = LRU_BASE;
2373 percentage = nr_anon * 100 / scan_target;
2374 } else {
2375 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2376 targets[LRU_ACTIVE_FILE] + 1;
2377 lru = LRU_FILE;
2378 percentage = nr_file * 100 / scan_target;
2379 }
2380
2381 /* Stop scanning the smaller of the LRU */
2382 nr[lru] = 0;
2383 nr[lru + LRU_ACTIVE] = 0;
2384
2385 /*
2386 * Recalculate the other LRU scan count based on its original
2387 * scan target and the percentage scanning already complete
2388 */
2389 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2390 nr_scanned = targets[lru] - nr[lru];
2391 nr[lru] = targets[lru] * (100 - percentage) / 100;
2392 nr[lru] -= min(nr[lru], nr_scanned);
2393
2394 lru += LRU_ACTIVE;
2395 nr_scanned = targets[lru] - nr[lru];
2396 nr[lru] = targets[lru] * (100 - percentage) / 100;
2397 nr[lru] -= min(nr[lru], nr_scanned);
2398
2399 scan_adjusted = true;
9b4f98cd
JW
2400 }
2401 blk_finish_plug(&plug);
2402 sc->nr_reclaimed += nr_reclaimed;
2403
2404 /*
2405 * Even if we did not try to evict anon pages at all, we want to
2406 * rebalance the anon lru active/inactive ratio.
2407 */
dcec0b60 2408 if (inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2409 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2410 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2411}
2412
23b9da55 2413/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2414static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2415{
d84da3f9 2416 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2417 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2418 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2419 return true;
2420
2421 return false;
2422}
2423
3e7d3449 2424/*
23b9da55
MG
2425 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2426 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2427 * true if more pages should be reclaimed such that when the page allocator
2428 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2429 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2430 */
a9dd0a83 2431static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2432 unsigned long nr_reclaimed,
2433 unsigned long nr_scanned,
2434 struct scan_control *sc)
2435{
2436 unsigned long pages_for_compaction;
2437 unsigned long inactive_lru_pages;
a9dd0a83 2438 int z;
3e7d3449
MG
2439
2440 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2441 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2442 return false;
2443
2876592f
MG
2444 /* Consider stopping depending on scan and reclaim activity */
2445 if (sc->gfp_mask & __GFP_REPEAT) {
2446 /*
2447 * For __GFP_REPEAT allocations, stop reclaiming if the
2448 * full LRU list has been scanned and we are still failing
2449 * to reclaim pages. This full LRU scan is potentially
2450 * expensive but a __GFP_REPEAT caller really wants to succeed
2451 */
2452 if (!nr_reclaimed && !nr_scanned)
2453 return false;
2454 } else {
2455 /*
2456 * For non-__GFP_REPEAT allocations which can presumably
2457 * fail without consequence, stop if we failed to reclaim
2458 * any pages from the last SWAP_CLUSTER_MAX number of
2459 * pages that were scanned. This will return to the
2460 * caller faster at the risk reclaim/compaction and
2461 * the resulting allocation attempt fails
2462 */
2463 if (!nr_reclaimed)
2464 return false;
2465 }
3e7d3449
MG
2466
2467 /*
2468 * If we have not reclaimed enough pages for compaction and the
2469 * inactive lists are large enough, continue reclaiming
2470 */
9861a62c 2471 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2472 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2473 if (get_nr_swap_pages() > 0)
a9dd0a83 2474 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2475 if (sc->nr_reclaimed < pages_for_compaction &&
2476 inactive_lru_pages > pages_for_compaction)
2477 return true;
2478
2479 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2480 for (z = 0; z <= sc->reclaim_idx; z++) {
2481 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2482 if (!managed_zone(zone))
a9dd0a83
MG
2483 continue;
2484
2485 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2486 case COMPACT_SUCCESS:
a9dd0a83
MG
2487 case COMPACT_CONTINUE:
2488 return false;
2489 default:
2490 /* check next zone */
2491 ;
2492 }
3e7d3449 2493 }
a9dd0a83 2494 return true;
3e7d3449
MG
2495}
2496
970a39a3 2497static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2498{
cb731d6c 2499 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2500 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2501 bool reclaimable = false;
1da177e4 2502
9b4f98cd
JW
2503 do {
2504 struct mem_cgroup *root = sc->target_mem_cgroup;
2505 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2506 .pgdat = pgdat,
9b4f98cd
JW
2507 .priority = sc->priority,
2508 };
a9dd0a83 2509 unsigned long node_lru_pages = 0;
694fbc0f 2510 struct mem_cgroup *memcg;
3e7d3449 2511
9b4f98cd
JW
2512 nr_reclaimed = sc->nr_reclaimed;
2513 nr_scanned = sc->nr_scanned;
1da177e4 2514
694fbc0f
AM
2515 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2516 do {
6b4f7799 2517 unsigned long lru_pages;
8e8ae645 2518 unsigned long reclaimed;
cb731d6c 2519 unsigned long scanned;
5660048c 2520
241994ed
JW
2521 if (mem_cgroup_low(root, memcg)) {
2522 if (!sc->may_thrash)
2523 continue;
2524 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2525 }
2526
8e8ae645 2527 reclaimed = sc->nr_reclaimed;
cb731d6c 2528 scanned = sc->nr_scanned;
f9be23d6 2529
a9dd0a83
MG
2530 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2531 node_lru_pages += lru_pages;
f16015fb 2532
b5afba29 2533 if (memcg)
a9dd0a83 2534 shrink_slab(sc->gfp_mask, pgdat->node_id,
cb731d6c
VD
2535 memcg, sc->nr_scanned - scanned,
2536 lru_pages);
2537
8e8ae645
JW
2538 /* Record the group's reclaim efficiency */
2539 vmpressure(sc->gfp_mask, memcg, false,
2540 sc->nr_scanned - scanned,
2541 sc->nr_reclaimed - reclaimed);
2542
9b4f98cd 2543 /*
a394cb8e
MH
2544 * Direct reclaim and kswapd have to scan all memory
2545 * cgroups to fulfill the overall scan target for the
a9dd0a83 2546 * node.
a394cb8e
MH
2547 *
2548 * Limit reclaim, on the other hand, only cares about
2549 * nr_to_reclaim pages to be reclaimed and it will
2550 * retry with decreasing priority if one round over the
2551 * whole hierarchy is not sufficient.
9b4f98cd 2552 */
a394cb8e
MH
2553 if (!global_reclaim(sc) &&
2554 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2555 mem_cgroup_iter_break(root, memcg);
2556 break;
2557 }
241994ed 2558 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2559
6b4f7799
JW
2560 /*
2561 * Shrink the slab caches in the same proportion that
2562 * the eligible LRU pages were scanned.
2563 */
b2e18757 2564 if (global_reclaim(sc))
a9dd0a83 2565 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
cb731d6c 2566 sc->nr_scanned - nr_scanned,
a9dd0a83 2567 node_lru_pages);
cb731d6c
VD
2568
2569 if (reclaim_state) {
2570 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2571 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2572 }
2573
8e8ae645
JW
2574 /* Record the subtree's reclaim efficiency */
2575 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2576 sc->nr_scanned - nr_scanned,
2577 sc->nr_reclaimed - nr_reclaimed);
2578
2344d7e4
JW
2579 if (sc->nr_reclaimed - nr_reclaimed)
2580 reclaimable = true;
2581
a9dd0a83 2582 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2583 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2584
c73322d0
JW
2585 /*
2586 * Kswapd gives up on balancing particular nodes after too
2587 * many failures to reclaim anything from them and goes to
2588 * sleep. On reclaim progress, reset the failure counter. A
2589 * successful direct reclaim run will revive a dormant kswapd.
2590 */
2591 if (reclaimable)
2592 pgdat->kswapd_failures = 0;
2593
2344d7e4 2594 return reclaimable;
f16015fb
JW
2595}
2596
53853e2d 2597/*
fdd4c614
VB
2598 * Returns true if compaction should go ahead for a costly-order request, or
2599 * the allocation would already succeed without compaction. Return false if we
2600 * should reclaim first.
53853e2d 2601 */
4f588331 2602static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2603{
31483b6a 2604 unsigned long watermark;
fdd4c614 2605 enum compact_result suitable;
fe4b1b24 2606
fdd4c614
VB
2607 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2608 if (suitable == COMPACT_SUCCESS)
2609 /* Allocation should succeed already. Don't reclaim. */
2610 return true;
2611 if (suitable == COMPACT_SKIPPED)
2612 /* Compaction cannot yet proceed. Do reclaim. */
2613 return false;
fe4b1b24 2614
53853e2d 2615 /*
fdd4c614
VB
2616 * Compaction is already possible, but it takes time to run and there
2617 * are potentially other callers using the pages just freed. So proceed
2618 * with reclaim to make a buffer of free pages available to give
2619 * compaction a reasonable chance of completing and allocating the page.
2620 * Note that we won't actually reclaim the whole buffer in one attempt
2621 * as the target watermark in should_continue_reclaim() is lower. But if
2622 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2623 */
fdd4c614 2624 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2625
fdd4c614 2626 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2627}
2628
1da177e4
LT
2629/*
2630 * This is the direct reclaim path, for page-allocating processes. We only
2631 * try to reclaim pages from zones which will satisfy the caller's allocation
2632 * request.
2633 *
1da177e4
LT
2634 * If a zone is deemed to be full of pinned pages then just give it a light
2635 * scan then give up on it.
2636 */
0a0337e0 2637static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2638{
dd1a239f 2639 struct zoneref *z;
54a6eb5c 2640 struct zone *zone;
0608f43d
AM
2641 unsigned long nr_soft_reclaimed;
2642 unsigned long nr_soft_scanned;
619d0d76 2643 gfp_t orig_mask;
79dafcdc 2644 pg_data_t *last_pgdat = NULL;
1cfb419b 2645
cc715d99
MG
2646 /*
2647 * If the number of buffer_heads in the machine exceeds the maximum
2648 * allowed level, force direct reclaim to scan the highmem zone as
2649 * highmem pages could be pinning lowmem pages storing buffer_heads
2650 */
619d0d76 2651 orig_mask = sc->gfp_mask;
b2e18757 2652 if (buffer_heads_over_limit) {
cc715d99 2653 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2654 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2655 }
cc715d99 2656
d4debc66 2657 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2658 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2659 /*
2660 * Take care memory controller reclaiming has small influence
2661 * to global LRU.
2662 */
89b5fae5 2663 if (global_reclaim(sc)) {
344736f2
VD
2664 if (!cpuset_zone_allowed(zone,
2665 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2666 continue;
65ec02cb 2667
0b06496a
JW
2668 /*
2669 * If we already have plenty of memory free for
2670 * compaction in this zone, don't free any more.
2671 * Even though compaction is invoked for any
2672 * non-zero order, only frequent costly order
2673 * reclamation is disruptive enough to become a
2674 * noticeable problem, like transparent huge
2675 * page allocations.
2676 */
2677 if (IS_ENABLED(CONFIG_COMPACTION) &&
2678 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2679 compaction_ready(zone, sc)) {
0b06496a
JW
2680 sc->compaction_ready = true;
2681 continue;
e0887c19 2682 }
0b06496a 2683
79dafcdc
MG
2684 /*
2685 * Shrink each node in the zonelist once. If the
2686 * zonelist is ordered by zone (not the default) then a
2687 * node may be shrunk multiple times but in that case
2688 * the user prefers lower zones being preserved.
2689 */
2690 if (zone->zone_pgdat == last_pgdat)
2691 continue;
2692
0608f43d
AM
2693 /*
2694 * This steals pages from memory cgroups over softlimit
2695 * and returns the number of reclaimed pages and
2696 * scanned pages. This works for global memory pressure
2697 * and balancing, not for a memcg's limit.
2698 */
2699 nr_soft_scanned = 0;
ef8f2327 2700 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2701 sc->order, sc->gfp_mask,
2702 &nr_soft_scanned);
2703 sc->nr_reclaimed += nr_soft_reclaimed;
2704 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2705 /* need some check for avoid more shrink_zone() */
1cfb419b 2706 }
408d8544 2707
79dafcdc
MG
2708 /* See comment about same check for global reclaim above */
2709 if (zone->zone_pgdat == last_pgdat)
2710 continue;
2711 last_pgdat = zone->zone_pgdat;
970a39a3 2712 shrink_node(zone->zone_pgdat, sc);
1da177e4 2713 }
e0c23279 2714
619d0d76
WY
2715 /*
2716 * Restore to original mask to avoid the impact on the caller if we
2717 * promoted it to __GFP_HIGHMEM.
2718 */
2719 sc->gfp_mask = orig_mask;
1da177e4 2720}
4f98a2fe 2721
1da177e4
LT
2722/*
2723 * This is the main entry point to direct page reclaim.
2724 *
2725 * If a full scan of the inactive list fails to free enough memory then we
2726 * are "out of memory" and something needs to be killed.
2727 *
2728 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2729 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2730 * caller can't do much about. We kick the writeback threads and take explicit
2731 * naps in the hope that some of these pages can be written. But if the
2732 * allocating task holds filesystem locks which prevent writeout this might not
2733 * work, and the allocation attempt will fail.
a41f24ea
NA
2734 *
2735 * returns: 0, if no pages reclaimed
2736 * else, the number of pages reclaimed
1da177e4 2737 */
dac1d27b 2738static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2739 struct scan_control *sc)
1da177e4 2740{
241994ed 2741 int initial_priority = sc->priority;
241994ed 2742retry:
873b4771
KK
2743 delayacct_freepages_start();
2744
89b5fae5 2745 if (global_reclaim(sc))
7cc30fcf 2746 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2747
9e3b2f8c 2748 do {
70ddf637
AV
2749 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2750 sc->priority);
66e1707b 2751 sc->nr_scanned = 0;
0a0337e0 2752 shrink_zones(zonelist, sc);
c6a8a8c5 2753
bb21c7ce 2754 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2755 break;
2756
2757 if (sc->compaction_ready)
2758 break;
1da177e4 2759
0e50ce3b
MK
2760 /*
2761 * If we're getting trouble reclaiming, start doing
2762 * writepage even in laptop mode.
2763 */
2764 if (sc->priority < DEF_PRIORITY - 2)
2765 sc->may_writepage = 1;
0b06496a 2766 } while (--sc->priority >= 0);
bb21c7ce 2767
873b4771
KK
2768 delayacct_freepages_end();
2769
bb21c7ce
KM
2770 if (sc->nr_reclaimed)
2771 return sc->nr_reclaimed;
2772
0cee34fd 2773 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2774 if (sc->compaction_ready)
7335084d
MG
2775 return 1;
2776
241994ed
JW
2777 /* Untapped cgroup reserves? Don't OOM, retry. */
2778 if (!sc->may_thrash) {
2779 sc->priority = initial_priority;
2780 sc->may_thrash = 1;
2781 goto retry;
2782 }
2783
bb21c7ce 2784 return 0;
1da177e4
LT
2785}
2786
c73322d0 2787static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
2788{
2789 struct zone *zone;
2790 unsigned long pfmemalloc_reserve = 0;
2791 unsigned long free_pages = 0;
2792 int i;
2793 bool wmark_ok;
2794
c73322d0
JW
2795 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2796 return true;
2797
5515061d
MG
2798 for (i = 0; i <= ZONE_NORMAL; i++) {
2799 zone = &pgdat->node_zones[i];
d450abd8
JW
2800 if (!managed_zone(zone))
2801 continue;
2802
2803 if (!zone_reclaimable_pages(zone))
675becce
MG
2804 continue;
2805
5515061d
MG
2806 pfmemalloc_reserve += min_wmark_pages(zone);
2807 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2808 }
2809
675becce
MG
2810 /* If there are no reserves (unexpected config) then do not throttle */
2811 if (!pfmemalloc_reserve)
2812 return true;
2813
5515061d
MG
2814 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2815
2816 /* kswapd must be awake if processes are being throttled */
2817 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2818 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2819 (enum zone_type)ZONE_NORMAL);
2820 wake_up_interruptible(&pgdat->kswapd_wait);
2821 }
2822
2823 return wmark_ok;
2824}
2825
2826/*
2827 * Throttle direct reclaimers if backing storage is backed by the network
2828 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2829 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2830 * when the low watermark is reached.
2831 *
2832 * Returns true if a fatal signal was delivered during throttling. If this
2833 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2834 */
50694c28 2835static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2836 nodemask_t *nodemask)
2837{
675becce 2838 struct zoneref *z;
5515061d 2839 struct zone *zone;
675becce 2840 pg_data_t *pgdat = NULL;
5515061d
MG
2841
2842 /*
2843 * Kernel threads should not be throttled as they may be indirectly
2844 * responsible for cleaning pages necessary for reclaim to make forward
2845 * progress. kjournald for example may enter direct reclaim while
2846 * committing a transaction where throttling it could forcing other
2847 * processes to block on log_wait_commit().
2848 */
2849 if (current->flags & PF_KTHREAD)
50694c28
MG
2850 goto out;
2851
2852 /*
2853 * If a fatal signal is pending, this process should not throttle.
2854 * It should return quickly so it can exit and free its memory
2855 */
2856 if (fatal_signal_pending(current))
2857 goto out;
5515061d 2858
675becce
MG
2859 /*
2860 * Check if the pfmemalloc reserves are ok by finding the first node
2861 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2862 * GFP_KERNEL will be required for allocating network buffers when
2863 * swapping over the network so ZONE_HIGHMEM is unusable.
2864 *
2865 * Throttling is based on the first usable node and throttled processes
2866 * wait on a queue until kswapd makes progress and wakes them. There
2867 * is an affinity then between processes waking up and where reclaim
2868 * progress has been made assuming the process wakes on the same node.
2869 * More importantly, processes running on remote nodes will not compete
2870 * for remote pfmemalloc reserves and processes on different nodes
2871 * should make reasonable progress.
2872 */
2873 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2874 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2875 if (zone_idx(zone) > ZONE_NORMAL)
2876 continue;
2877
2878 /* Throttle based on the first usable node */
2879 pgdat = zone->zone_pgdat;
c73322d0 2880 if (allow_direct_reclaim(pgdat))
675becce
MG
2881 goto out;
2882 break;
2883 }
2884
2885 /* If no zone was usable by the allocation flags then do not throttle */
2886 if (!pgdat)
50694c28 2887 goto out;
5515061d 2888
68243e76
MG
2889 /* Account for the throttling */
2890 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2891
5515061d
MG
2892 /*
2893 * If the caller cannot enter the filesystem, it's possible that it
2894 * is due to the caller holding an FS lock or performing a journal
2895 * transaction in the case of a filesystem like ext[3|4]. In this case,
2896 * it is not safe to block on pfmemalloc_wait as kswapd could be
2897 * blocked waiting on the same lock. Instead, throttle for up to a
2898 * second before continuing.
2899 */
2900 if (!(gfp_mask & __GFP_FS)) {
2901 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 2902 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
2903
2904 goto check_pending;
5515061d
MG
2905 }
2906
2907 /* Throttle until kswapd wakes the process */
2908 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 2909 allow_direct_reclaim(pgdat));
50694c28
MG
2910
2911check_pending:
2912 if (fatal_signal_pending(current))
2913 return true;
2914
2915out:
2916 return false;
5515061d
MG
2917}
2918
dac1d27b 2919unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2920 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2921{
33906bc5 2922 unsigned long nr_reclaimed;
66e1707b 2923 struct scan_control sc = {
ee814fe2 2924 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2925 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
b2e18757 2926 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
2927 .order = order,
2928 .nodemask = nodemask,
2929 .priority = DEF_PRIORITY,
66e1707b 2930 .may_writepage = !laptop_mode,
a6dc60f8 2931 .may_unmap = 1,
2e2e4259 2932 .may_swap = 1,
66e1707b
BS
2933 };
2934
5515061d 2935 /*
50694c28
MG
2936 * Do not enter reclaim if fatal signal was delivered while throttled.
2937 * 1 is returned so that the page allocator does not OOM kill at this
2938 * point.
5515061d 2939 */
50694c28 2940 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2941 return 1;
2942
33906bc5
MG
2943 trace_mm_vmscan_direct_reclaim_begin(order,
2944 sc.may_writepage,
e5146b12
MG
2945 gfp_mask,
2946 sc.reclaim_idx);
33906bc5 2947
3115cd91 2948 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2949
2950 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2951
2952 return nr_reclaimed;
66e1707b
BS
2953}
2954
c255a458 2955#ifdef CONFIG_MEMCG
66e1707b 2956
a9dd0a83 2957unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 2958 gfp_t gfp_mask, bool noswap,
ef8f2327 2959 pg_data_t *pgdat,
0ae5e89c 2960 unsigned long *nr_scanned)
4e416953
BS
2961{
2962 struct scan_control sc = {
b8f5c566 2963 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2964 .target_mem_cgroup = memcg,
4e416953
BS
2965 .may_writepage = !laptop_mode,
2966 .may_unmap = 1,
b2e18757 2967 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 2968 .may_swap = !noswap,
4e416953 2969 };
6b4f7799 2970 unsigned long lru_pages;
0ae5e89c 2971
4e416953
BS
2972 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2973 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2974
9e3b2f8c 2975 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 2976 sc.may_writepage,
e5146b12
MG
2977 sc.gfp_mask,
2978 sc.reclaim_idx);
bdce6d9e 2979
4e416953
BS
2980 /*
2981 * NOTE: Although we can get the priority field, using it
2982 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 2983 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
2984 * will pick up pages from other mem cgroup's as well. We hack
2985 * the priority and make it zero.
2986 */
ef8f2327 2987 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
2988
2989 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2990
0ae5e89c 2991 *nr_scanned = sc.nr_scanned;
4e416953
BS
2992 return sc.nr_reclaimed;
2993}
2994
72835c86 2995unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2996 unsigned long nr_pages,
a7885eb8 2997 gfp_t gfp_mask,
b70a2a21 2998 bool may_swap)
66e1707b 2999{
4e416953 3000 struct zonelist *zonelist;
bdce6d9e 3001 unsigned long nr_reclaimed;
889976db 3002 int nid;
66e1707b 3003 struct scan_control sc = {
b70a2a21 3004 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
3005 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3006 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3007 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3008 .target_mem_cgroup = memcg,
3009 .priority = DEF_PRIORITY,
3010 .may_writepage = !laptop_mode,
3011 .may_unmap = 1,
b70a2a21 3012 .may_swap = may_swap,
a09ed5e0 3013 };
66e1707b 3014
889976db
YH
3015 /*
3016 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3017 * take care of from where we get pages. So the node where we start the
3018 * scan does not need to be the current node.
3019 */
72835c86 3020 nid = mem_cgroup_select_victim_node(memcg);
889976db 3021
c9634cf0 3022 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3023
3024 trace_mm_vmscan_memcg_reclaim_begin(0,
3025 sc.may_writepage,
e5146b12
MG
3026 sc.gfp_mask,
3027 sc.reclaim_idx);
bdce6d9e 3028
89a28483 3029 current->flags |= PF_MEMALLOC;
3115cd91 3030 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
89a28483 3031 current->flags &= ~PF_MEMALLOC;
bdce6d9e
KM
3032
3033 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3034
3035 return nr_reclaimed;
66e1707b
BS
3036}
3037#endif
3038
1d82de61 3039static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3040 struct scan_control *sc)
f16015fb 3041{
b95a2f2d 3042 struct mem_cgroup *memcg;
f16015fb 3043
b95a2f2d
JW
3044 if (!total_swap_pages)
3045 return;
3046
3047 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3048 do {
ef8f2327 3049 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3050
dcec0b60 3051 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3052 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3053 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3054
3055 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3056 } while (memcg);
f16015fb
JW
3057}
3058
31483b6a 3059static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
60cefed4 3060{
31483b6a 3061 unsigned long mark = high_wmark_pages(zone);
60cefed4 3062
6256c6b4
MG
3063 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3064 return false;
3065
3066 /*
3067 * If any eligible zone is balanced then the node is not considered
3068 * to be congested or dirty
3069 */
3070 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3071 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
c2f83143 3072 clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
6256c6b4
MG
3073
3074 return true;
60cefed4
JW
3075}
3076
5515061d
MG
3077/*
3078 * Prepare kswapd for sleeping. This verifies that there are no processes
3079 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3080 *
3081 * Returns true if kswapd is ready to sleep
3082 */
d9f21d42 3083static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3084{
1d82de61
MG
3085 int i;
3086
5515061d 3087 /*
9e5e3661 3088 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3089 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3090 * race between when kswapd checks the watermarks and a process gets
3091 * throttled. There is also a potential race if processes get
3092 * throttled, kswapd wakes, a large process exits thereby balancing the
3093 * zones, which causes kswapd to exit balance_pgdat() before reaching
3094 * the wake up checks. If kswapd is going to sleep, no process should
3095 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3096 * the wake up is premature, processes will wake kswapd and get
3097 * throttled again. The difference from wake ups in balance_pgdat() is
3098 * that here we are under prepare_to_wait().
5515061d 3099 */
9e5e3661
VB
3100 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3101 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3102
c73322d0
JW
3103 /* Hopeless node, leave it to direct reclaim */
3104 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3105 return true;
3106
1d82de61
MG
3107 for (i = 0; i <= classzone_idx; i++) {
3108 struct zone *zone = pgdat->node_zones + i;
3109
6aa303de 3110 if (!managed_zone(zone))
1d82de61
MG
3111 continue;
3112
38087d9b
MG
3113 if (!zone_balanced(zone, order, classzone_idx))
3114 return false;
1d82de61
MG
3115 }
3116
38087d9b 3117 return true;
f50de2d3
MG
3118}
3119
75485363 3120/*
1d82de61
MG
3121 * kswapd shrinks a node of pages that are at or below the highest usable
3122 * zone that is currently unbalanced.
b8e83b94
MG
3123 *
3124 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3125 * reclaim or if the lack of progress was due to pages under writeback.
3126 * This is used to determine if the scanning priority needs to be raised.
75485363 3127 */
1d82de61 3128static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3129 struct scan_control *sc)
75485363 3130{
1d82de61
MG
3131 struct zone *zone;
3132 int z;
75485363 3133
1d82de61
MG
3134 /* Reclaim a number of pages proportional to the number of zones */
3135 sc->nr_to_reclaim = 0;
970a39a3 3136 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3137 zone = pgdat->node_zones + z;
6aa303de 3138 if (!managed_zone(zone))
1d82de61 3139 continue;
7c954f6d 3140
1d82de61
MG
3141 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3142 }
7c954f6d
MG
3143
3144 /*
1d82de61
MG
3145 * Historically care was taken to put equal pressure on all zones but
3146 * now pressure is applied based on node LRU order.
7c954f6d 3147 */
970a39a3 3148 shrink_node(pgdat, sc);
283aba9f 3149
7c954f6d 3150 /*
1d82de61
MG
3151 * Fragmentation may mean that the system cannot be rebalanced for
3152 * high-order allocations. If twice the allocation size has been
3153 * reclaimed then recheck watermarks only at order-0 to prevent
3154 * excessive reclaim. Assume that a process requested a high-order
3155 * can direct reclaim/compact.
7c954f6d 3156 */
9861a62c 3157 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3158 sc->order = 0;
7c954f6d 3159
b8e83b94 3160 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3161}
3162
1da177e4 3163/*
1d82de61
MG
3164 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3165 * that are eligible for use by the caller until at least one zone is
3166 * balanced.
1da177e4 3167 *
1d82de61 3168 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3169 *
3170 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3171 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3172 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3173 * or lower is eligible for reclaim until at least one usable zone is
3174 * balanced.
1da177e4 3175 */
accf6242 3176static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3177{
1da177e4 3178 int i;
0608f43d
AM
3179 unsigned long nr_soft_reclaimed;
3180 unsigned long nr_soft_scanned;
1d82de61 3181 struct zone *zone;
179e9639
AM
3182 struct scan_control sc = {
3183 .gfp_mask = GFP_KERNEL,
ee814fe2 3184 .order = order,
b8e83b94 3185 .priority = DEF_PRIORITY,
ee814fe2 3186 .may_writepage = !laptop_mode,
a6dc60f8 3187 .may_unmap = 1,
2e2e4259 3188 .may_swap = 1,
179e9639 3189 };
f8891e5e 3190 count_vm_event(PAGEOUTRUN);
1da177e4 3191
9e3b2f8c 3192 do {
c73322d0 3193 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94
MG
3194 bool raise_priority = true;
3195
84c7a777 3196 sc.reclaim_idx = classzone_idx;
1da177e4 3197
86c79f6b 3198 /*
84c7a777
MG
3199 * If the number of buffer_heads exceeds the maximum allowed
3200 * then consider reclaiming from all zones. This has a dual
3201 * purpose -- on 64-bit systems it is expected that
3202 * buffer_heads are stripped during active rotation. On 32-bit
3203 * systems, highmem pages can pin lowmem memory and shrinking
3204 * buffers can relieve lowmem pressure. Reclaim may still not
3205 * go ahead if all eligible zones for the original allocation
3206 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3207 */
3208 if (buffer_heads_over_limit) {
3209 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3210 zone = pgdat->node_zones + i;
6aa303de 3211 if (!managed_zone(zone))
86c79f6b 3212 continue;
cc715d99 3213
970a39a3 3214 sc.reclaim_idx = i;
e1dbeda6 3215 break;
1da177e4 3216 }
1da177e4 3217 }
dafcb73e 3218
86c79f6b
MG
3219 /*
3220 * Only reclaim if there are no eligible zones. Check from
3221 * high to low zone as allocations prefer higher zones.
3222 * Scanning from low to high zone would allow congestion to be
3223 * cleared during a very small window when a small low
3224 * zone was balanced even under extreme pressure when the
84c7a777
MG
3225 * overall node may be congested. Note that sc.reclaim_idx
3226 * is not used as buffer_heads_over_limit may have adjusted
3227 * it.
86c79f6b 3228 */
84c7a777 3229 for (i = classzone_idx; i >= 0; i--) {
86c79f6b 3230 zone = pgdat->node_zones + i;
6aa303de 3231 if (!managed_zone(zone))
86c79f6b
MG
3232 continue;
3233
84c7a777 3234 if (zone_balanced(zone, sc.order, classzone_idx))
86c79f6b
MG
3235 goto out;
3236 }
e1dbeda6 3237
1d82de61
MG
3238 /*
3239 * Do some background aging of the anon list, to give
3240 * pages a chance to be referenced before reclaiming. All
3241 * pages are rotated regardless of classzone as this is
3242 * about consistent aging.
3243 */
ef8f2327 3244 age_active_anon(pgdat, &sc);
1d82de61 3245
b7ea3c41
MG
3246 /*
3247 * If we're getting trouble reclaiming, start doing writepage
3248 * even in laptop mode.
3249 */
047d72c3 3250 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3251 sc.may_writepage = 1;
3252
1d82de61
MG
3253 /* Call soft limit reclaim before calling shrink_node. */
3254 sc.nr_scanned = 0;
3255 nr_soft_scanned = 0;
ef8f2327 3256 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3257 sc.gfp_mask, &nr_soft_scanned);
3258 sc.nr_reclaimed += nr_soft_reclaimed;
3259
1da177e4 3260 /*
1d82de61
MG
3261 * There should be no need to raise the scanning priority if
3262 * enough pages are already being scanned that that high
3263 * watermark would be met at 100% efficiency.
1da177e4 3264 */
970a39a3 3265 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3266 raise_priority = false;
5515061d
MG
3267
3268 /*
3269 * If the low watermark is met there is no need for processes
3270 * to be throttled on pfmemalloc_wait as they should not be
3271 * able to safely make forward progress. Wake them
3272 */
3273 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3274 allow_direct_reclaim(pgdat))
cfc51155 3275 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3276
b8e83b94
MG
3277 /* Check if kswapd should be suspending */
3278 if (try_to_freeze() || kthread_should_stop())
3279 break;
8357376d 3280
73ce02e9 3281 /*
b8e83b94
MG
3282 * Raise priority if scanning rate is too low or there was no
3283 * progress in reclaiming pages
73ce02e9 3284 */
c73322d0
JW
3285 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3286 if (raise_priority || !nr_reclaimed)
b8e83b94 3287 sc.priority--;
1d82de61 3288 } while (sc.priority >= 1);
1da177e4 3289
c73322d0
JW
3290 if (!sc.nr_reclaimed)
3291 pgdat->kswapd_failures++;
3292
b8e83b94 3293out:
0abdee2b 3294 /*
1d82de61
MG
3295 * Return the order kswapd stopped reclaiming at as
3296 * prepare_kswapd_sleep() takes it into account. If another caller
3297 * entered the allocator slow path while kswapd was awake, order will
3298 * remain at the higher level.
0abdee2b 3299 */
1d82de61 3300 return sc.order;
1da177e4
LT
3301}
3302
38087d9b
MG
3303static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3304 unsigned int classzone_idx)
f0bc0a60
KM
3305{
3306 long remaining = 0;
3307 DEFINE_WAIT(wait);
3308
3309 if (freezing(current) || kthread_should_stop())
3310 return;
3311
3312 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3313
3314 /* Try to sleep for a short interval */
d9f21d42 3315 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3316 /*
3317 * Compaction records what page blocks it recently failed to
3318 * isolate pages from and skips them in the future scanning.
3319 * When kswapd is going to sleep, it is reasonable to assume
3320 * that pages and compaction may succeed so reset the cache.
3321 */
3322 reset_isolation_suitable(pgdat);
3323
3324 /*
3325 * We have freed the memory, now we should compact it to make
3326 * allocation of the requested order possible.
3327 */
38087d9b 3328 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3329
f0bc0a60 3330 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3331
3332 /*
3333 * If woken prematurely then reset kswapd_classzone_idx and
3334 * order. The values will either be from a wakeup request or
3335 * the previous request that slept prematurely.
3336 */
3337 if (remaining) {
3338 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3339 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3340 }
3341
f0bc0a60
KM
3342 finish_wait(&pgdat->kswapd_wait, &wait);
3343 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3344 }
3345
3346 /*
3347 * After a short sleep, check if it was a premature sleep. If not, then
3348 * go fully to sleep until explicitly woken up.
3349 */
d9f21d42
MG
3350 if (!remaining &&
3351 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3352 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3353
3354 /*
3355 * vmstat counters are not perfectly accurate and the estimated
3356 * value for counters such as NR_FREE_PAGES can deviate from the
3357 * true value by nr_online_cpus * threshold. To avoid the zone
3358 * watermarks being breached while under pressure, we reduce the
3359 * per-cpu vmstat threshold while kswapd is awake and restore
3360 * them before going back to sleep.
3361 */
3362 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3363
3364 if (!kthread_should_stop())
3365 schedule();
3366
f0bc0a60
KM
3367 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3368 } else {
3369 if (remaining)
3370 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3371 else
3372 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3373 }
3374 finish_wait(&pgdat->kswapd_wait, &wait);
3375}
3376
1da177e4
LT
3377/*
3378 * The background pageout daemon, started as a kernel thread
4f98a2fe 3379 * from the init process.
1da177e4
LT
3380 *
3381 * This basically trickles out pages so that we have _some_
3382 * free memory available even if there is no other activity
3383 * that frees anything up. This is needed for things like routing
3384 * etc, where we otherwise might have all activity going on in
3385 * asynchronous contexts that cannot page things out.
3386 *
3387 * If there are applications that are active memory-allocators
3388 * (most normal use), this basically shouldn't matter.
3389 */
3390static int kswapd(void *p)
3391{
38087d9b 3392 unsigned int alloc_order, reclaim_order, classzone_idx;
1da177e4
LT
3393 pg_data_t *pgdat = (pg_data_t*)p;
3394 struct task_struct *tsk = current;
f0bc0a60 3395
1da177e4
LT
3396 struct reclaim_state reclaim_state = {
3397 .reclaimed_slab = 0,
3398 };
a70f7302 3399 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3400
cf40bd16
NP
3401 lockdep_set_current_reclaim_state(GFP_KERNEL);
3402
174596a0 3403 if (!cpumask_empty(cpumask))
c5f59f08 3404 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3405 current->reclaim_state = &reclaim_state;
3406
3407 /*
3408 * Tell the memory management that we're a "memory allocator",
3409 * and that if we need more memory we should get access to it
3410 * regardless (see "__alloc_pages()"). "kswapd" should
3411 * never get caught in the normal page freeing logic.
3412 *
3413 * (Kswapd normally doesn't need memory anyway, but sometimes
3414 * you need a small amount of memory in order to be able to
3415 * page out something else, and this flag essentially protects
3416 * us from recursively trying to free more memory as we're
3417 * trying to free the first piece of memory in the first place).
3418 */
930d9152 3419 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3420 set_freezable();
1da177e4 3421
38087d9b
MG
3422 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3423 pgdat->kswapd_classzone_idx = classzone_idx = 0;
1da177e4 3424 for ( ; ; ) {
6f6313d4 3425 bool ret;
3e1d1d28 3426
38087d9b
MG
3427kswapd_try_sleep:
3428 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3429 classzone_idx);
215ddd66 3430
38087d9b
MG
3431 /* Read the new order and classzone_idx */
3432 alloc_order = reclaim_order = pgdat->kswapd_order;
3433 classzone_idx = pgdat->kswapd_classzone_idx;
3434 pgdat->kswapd_order = 0;
3435 pgdat->kswapd_classzone_idx = 0;
1da177e4 3436
8fe23e05
DR
3437 ret = try_to_freeze();
3438 if (kthread_should_stop())
3439 break;
3440
3441 /*
3442 * We can speed up thawing tasks if we don't call balance_pgdat
3443 * after returning from the refrigerator
3444 */
38087d9b
MG
3445 if (ret)
3446 continue;
3447
3448 /*
3449 * Reclaim begins at the requested order but if a high-order
3450 * reclaim fails then kswapd falls back to reclaiming for
3451 * order-0. If that happens, kswapd will consider sleeping
3452 * for the order it finished reclaiming at (reclaim_order)
3453 * but kcompactd is woken to compact for the original
3454 * request (alloc_order).
3455 */
e5146b12
MG
3456 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3457 alloc_order);
38087d9b
MG
3458 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3459 if (reclaim_order < alloc_order)
3460 goto kswapd_try_sleep;
1d82de61 3461
38087d9b
MG
3462 alloc_order = reclaim_order = pgdat->kswapd_order;
3463 classzone_idx = pgdat->kswapd_classzone_idx;
1da177e4 3464 }
b0a8cc58 3465
71abdc15 3466 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3467 current->reclaim_state = NULL;
71abdc15
JW
3468 lockdep_clear_current_reclaim_state();
3469
1da177e4
LT
3470 return 0;
3471}
3472
3473/*
3474 * A zone is low on free memory, so wake its kswapd task to service it.
3475 */
99504748 3476void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3477{
3478 pg_data_t *pgdat;
e1a55637 3479 int z;
1da177e4 3480
6aa303de 3481 if (!managed_zone(zone))
1da177e4
LT
3482 return;
3483
344736f2 3484 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3485 return;
88f5acf8 3486 pgdat = zone->zone_pgdat;
38087d9b
MG
3487 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3488 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3489 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3490 return;
e1a55637 3491
c73322d0
JW
3492 /* Hopeless node, leave it to direct reclaim */
3493 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3494 return;
3495
e1a55637
MG
3496 /* Only wake kswapd if all zones are unbalanced */
3497 for (z = 0; z <= classzone_idx; z++) {
3498 zone = pgdat->node_zones + z;
6aa303de 3499 if (!managed_zone(zone))
e1a55637
MG
3500 continue;
3501
3502 if (zone_balanced(zone, order, classzone_idx))
3503 return;
3504 }
88f5acf8
MG
3505
3506 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3507 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3508}
3509
c6f37f12 3510#ifdef CONFIG_HIBERNATION
1da177e4 3511/*
7b51755c 3512 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3513 * freed pages.
3514 *
3515 * Rather than trying to age LRUs the aim is to preserve the overall
3516 * LRU order by reclaiming preferentially
3517 * inactive > active > active referenced > active mapped
1da177e4 3518 */
7b51755c 3519unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3520{
d6277db4 3521 struct reclaim_state reclaim_state;
d6277db4 3522 struct scan_control sc = {
ee814fe2 3523 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3524 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3525 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3526 .priority = DEF_PRIORITY,
d6277db4 3527 .may_writepage = 1,
ee814fe2
JW
3528 .may_unmap = 1,
3529 .may_swap = 1,
7b51755c 3530 .hibernation_mode = 1,
1da177e4 3531 };
a09ed5e0 3532 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3533 struct task_struct *p = current;
3534 unsigned long nr_reclaimed;
1da177e4 3535
7b51755c
KM
3536 p->flags |= PF_MEMALLOC;
3537 lockdep_set_current_reclaim_state(sc.gfp_mask);
3538 reclaim_state.reclaimed_slab = 0;
3539 p->reclaim_state = &reclaim_state;
d6277db4 3540
3115cd91 3541 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3542
7b51755c
KM
3543 p->reclaim_state = NULL;
3544 lockdep_clear_current_reclaim_state();
3545 p->flags &= ~PF_MEMALLOC;
d6277db4 3546
7b51755c 3547 return nr_reclaimed;
1da177e4 3548}
c6f37f12 3549#endif /* CONFIG_HIBERNATION */
1da177e4 3550
1da177e4
LT
3551/* It's optimal to keep kswapds on the same CPUs as their memory, but
3552 not required for correctness. So if the last cpu in a node goes
3553 away, we get changed to run anywhere: as the first one comes back,
3554 restore their cpu bindings. */
517bbed9 3555static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3556{
58c0a4a7 3557 int nid;
1da177e4 3558
517bbed9
SAS
3559 for_each_node_state(nid, N_MEMORY) {
3560 pg_data_t *pgdat = NODE_DATA(nid);
3561 const struct cpumask *mask;
a70f7302 3562
517bbed9 3563 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3564
517bbed9
SAS
3565 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3566 /* One of our CPUs online: restore mask */
3567 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3568 }
517bbed9 3569 return 0;
1da177e4 3570}
1da177e4 3571
3218ae14
YG
3572/*
3573 * This kswapd start function will be called by init and node-hot-add.
3574 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3575 */
3576int kswapd_run(int nid)
3577{
3578 pg_data_t *pgdat = NODE_DATA(nid);
3579 int ret = 0;
3580
3581 if (pgdat->kswapd)
3582 return 0;
3583
3584 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3585 if (IS_ERR(pgdat->kswapd)) {
3586 /* failure at boot is fatal */
3587 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3588 pr_err("Failed to start kswapd on node %d\n", nid);
3589 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3590 pgdat->kswapd = NULL;
3218ae14
YG
3591 }
3592 return ret;
3593}
3594
8fe23e05 3595/*
d8adde17 3596 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3597 * hold mem_hotplug_begin/end().
8fe23e05
DR
3598 */
3599void kswapd_stop(int nid)
3600{
3601 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3602
d8adde17 3603 if (kswapd) {
8fe23e05 3604 kthread_stop(kswapd);
d8adde17
JL
3605 NODE_DATA(nid)->kswapd = NULL;
3606 }
8fe23e05
DR
3607}
3608
1da177e4
LT
3609static int __init kswapd_init(void)
3610{
517bbed9 3611 int nid, ret;
69e05944 3612
1da177e4 3613 swap_setup();
48fb2e24 3614 for_each_node_state(nid, N_MEMORY)
3218ae14 3615 kswapd_run(nid);
517bbed9
SAS
3616 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3617 "mm/vmscan:online", kswapd_cpu_online,
3618 NULL);
3619 WARN_ON(ret < 0);
1da177e4
LT
3620 return 0;
3621}
3622
3623module_init(kswapd_init)
9eeff239
CL
3624
3625#ifdef CONFIG_NUMA
3626/*
a5f5f91d 3627 * Node reclaim mode
9eeff239 3628 *
a5f5f91d 3629 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3630 * the watermarks.
9eeff239 3631 */
a5f5f91d 3632int node_reclaim_mode __read_mostly;
9eeff239 3633
1b2ffb78 3634#define RECLAIM_OFF 0
7d03431c 3635#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3636#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3637#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3638
a92f7126 3639/*
a5f5f91d 3640 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3641 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3642 * a zone.
3643 */
a5f5f91d 3644#define NODE_RECLAIM_PRIORITY 4
a92f7126 3645
9614634f 3646/*
a5f5f91d 3647 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3648 * occur.
3649 */
3650int sysctl_min_unmapped_ratio = 1;
3651
0ff38490
CL
3652/*
3653 * If the number of slab pages in a zone grows beyond this percentage then
3654 * slab reclaim needs to occur.
3655 */
3656int sysctl_min_slab_ratio = 5;
3657
11fb9989 3658static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3659{
11fb9989
MG
3660 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3661 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3662 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3663
3664 /*
3665 * It's possible for there to be more file mapped pages than
3666 * accounted for by the pages on the file LRU lists because
3667 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3668 */
3669 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3670}
3671
3672/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3673static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3674{
d031a157
AM
3675 unsigned long nr_pagecache_reclaimable;
3676 unsigned long delta = 0;
90afa5de
MG
3677
3678 /*
95bbc0c7 3679 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3680 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3681 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3682 * a better estimate
3683 */
a5f5f91d
MG
3684 if (node_reclaim_mode & RECLAIM_UNMAP)
3685 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3686 else
a5f5f91d 3687 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3688
3689 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3690 if (!(node_reclaim_mode & RECLAIM_WRITE))
3691 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3692
3693 /* Watch for any possible underflows due to delta */
3694 if (unlikely(delta > nr_pagecache_reclaimable))
3695 delta = nr_pagecache_reclaimable;
3696
3697 return nr_pagecache_reclaimable - delta;
3698}
3699
9eeff239 3700/*
a5f5f91d 3701 * Try to free up some pages from this node through reclaim.
9eeff239 3702 */
a5f5f91d 3703static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3704{
7fb2d46d 3705 /* Minimum pages needed in order to stay on node */
69e05944 3706 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3707 struct task_struct *p = current;
3708 struct reclaim_state reclaim_state;
a5f5f91d 3709 int classzone_idx = gfp_zone(gfp_mask);
179e9639 3710 struct scan_control sc = {
62b726c1 3711 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3712 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3713 .order = order,
a5f5f91d
MG
3714 .priority = NODE_RECLAIM_PRIORITY,
3715 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3716 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3717 .may_swap = 1,
a5f5f91d 3718 .reclaim_idx = classzone_idx,
179e9639 3719 };
9eeff239 3720
9eeff239 3721 cond_resched();
d4f7796e 3722 /*
95bbc0c7 3723 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3724 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3725 * and RECLAIM_UNMAP.
d4f7796e
CL
3726 */
3727 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3728 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3729 reclaim_state.reclaimed_slab = 0;
3730 p->reclaim_state = &reclaim_state;
c84db23c 3731
a5f5f91d 3732 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3733 /*
3734 * Free memory by calling shrink zone with increasing
3735 * priorities until we have enough memory freed.
3736 */
0ff38490 3737 do {
970a39a3 3738 shrink_node(pgdat, &sc);
9e3b2f8c 3739 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3740 }
c84db23c 3741
9eeff239 3742 p->reclaim_state = NULL;
d4f7796e 3743 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3744 lockdep_clear_current_reclaim_state();
a79311c1 3745 return sc.nr_reclaimed >= nr_pages;
9eeff239 3746}
179e9639 3747
a5f5f91d 3748int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3749{
d773ed6b 3750 int ret;
179e9639
AM
3751
3752 /*
a5f5f91d 3753 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3754 * slab pages if we are over the defined limits.
34aa1330 3755 *
9614634f
CL
3756 * A small portion of unmapped file backed pages is needed for
3757 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3758 * thrown out if the node is overallocated. So we do not reclaim
3759 * if less than a specified percentage of the node is used by
9614634f 3760 * unmapped file backed pages.
179e9639 3761 */
a5f5f91d
MG
3762 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3763 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3764 return NODE_RECLAIM_FULL;
179e9639
AM
3765
3766 /*
d773ed6b 3767 * Do not scan if the allocation should not be delayed.
179e9639 3768 */
d0164adc 3769 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3770 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3771
3772 /*
a5f5f91d 3773 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3774 * have associated processors. This will favor the local processor
3775 * over remote processors and spread off node memory allocations
3776 * as wide as possible.
3777 */
a5f5f91d
MG
3778 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3779 return NODE_RECLAIM_NOSCAN;
d773ed6b 3780
a5f5f91d
MG
3781 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3782 return NODE_RECLAIM_NOSCAN;
fa5e084e 3783
a5f5f91d
MG
3784 ret = __node_reclaim(pgdat, gfp_mask, order);
3785 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3786
24cf7251
MG
3787 if (!ret)
3788 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3789
d773ed6b 3790 return ret;
179e9639 3791}
9eeff239 3792#endif
894bc310 3793
894bc310
LS
3794/*
3795 * page_evictable - test whether a page is evictable
3796 * @page: the page to test
894bc310
LS
3797 *
3798 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3799 * lists vs unevictable list.
894bc310
LS
3800 *
3801 * Reasons page might not be evictable:
ba9ddf49 3802 * (1) page's mapping marked unevictable
b291f000 3803 * (2) page is part of an mlocked VMA
ba9ddf49 3804 *
894bc310 3805 */
39b5f29a 3806int page_evictable(struct page *page)
894bc310 3807{
39b5f29a 3808 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3809}
89e004ea 3810
85046579 3811#ifdef CONFIG_SHMEM
89e004ea 3812/**
24513264
HD
3813 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3814 * @pages: array of pages to check
3815 * @nr_pages: number of pages to check
89e004ea 3816 *
24513264 3817 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3818 *
3819 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3820 */
24513264 3821void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3822{
925b7673 3823 struct lruvec *lruvec;
785b99fe 3824 struct pglist_data *pgdat = NULL;
24513264
HD
3825 int pgscanned = 0;
3826 int pgrescued = 0;
3827 int i;
89e004ea 3828
24513264
HD
3829 for (i = 0; i < nr_pages; i++) {
3830 struct page *page = pages[i];
785b99fe 3831 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 3832
24513264 3833 pgscanned++;
785b99fe
MG
3834 if (pagepgdat != pgdat) {
3835 if (pgdat)
3836 spin_unlock_irq(&pgdat->lru_lock);
3837 pgdat = pagepgdat;
3838 spin_lock_irq(&pgdat->lru_lock);
24513264 3839 }
785b99fe 3840 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 3841
24513264
HD
3842 if (!PageLRU(page) || !PageUnevictable(page))
3843 continue;
89e004ea 3844
39b5f29a 3845 if (page_evictable(page)) {
24513264
HD
3846 enum lru_list lru = page_lru_base_type(page);
3847
309381fe 3848 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3849 ClearPageUnevictable(page);
fa9add64
HD
3850 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3851 add_page_to_lru_list(page, lruvec, lru);
24513264 3852 pgrescued++;
89e004ea 3853 }
24513264 3854 }
89e004ea 3855
785b99fe 3856 if (pgdat) {
24513264
HD
3857 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3858 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 3859 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 3860 }
89e004ea 3861}
85046579 3862#endif /* CONFIG_SHMEM */