]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
vmscan: activate executable pages after first usage
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
ee64fc93 57/*
f3a310bc
MG
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
ee64fc93
MG
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
f3a310bc 65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
3e7d3449 66 * order-0 pages and then compact the zone
ee64fc93 67 */
f3a310bc
MG
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
7d3579e8 74
1da177e4 75struct scan_control {
1da177e4
LT
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
a79311c1
RR
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
22fba335
KM
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
7b51755c
KM
85 unsigned long hibernation_mode;
86
1da177e4 87 /* This context's GFP mask */
6daa0e28 88 gfp_t gfp_mask;
1da177e4
LT
89
90 int may_writepage;
91
a6dc60f8
JW
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
f1fd1067 94
2e2e4259
KM
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
5ad333eb 98 int order;
66e1707b 99
5f53e762 100 /*
415b54e3
NK
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
5f53e762 103 */
f3a310bc 104 reclaim_mode_t reclaim_mode;
5f53e762 105
66e1707b
BS
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
108
327c0e96
KH
109 /*
110 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 * are scanned.
112 */
113 nodemask_t *nodemask;
1da177e4
LT
114};
115
1da177e4
LT
116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118#ifdef ARCH_HAS_PREFETCH
119#define prefetch_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetch(&prev->_field); \
126 } \
127 } while (0)
128#else
129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132#ifdef ARCH_HAS_PREFETCHW
133#define prefetchw_prev_lru_page(_page, _base, _field) \
134 do { \
135 if ((_page)->lru.prev != _base) { \
136 struct page *prev; \
137 \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetchw(&prev->_field); \
140 } \
141 } while (0)
142#else
143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146/*
147 * From 0 .. 100. Higher means more swappy.
148 */
149int vm_swappiness = 60;
bd1e22b8 150long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
00f0b825 155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 156#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 157#else
e72e2bd6 158#define scanning_global_lru(sc) (1)
91a45470
KH
159#endif
160
6e901571
KM
161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 struct scan_control *sc)
163{
e72e2bd6 164 if (!scanning_global_lru(sc))
3e2f41f1
KM
165 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
6e901571
KM
167 return &zone->reclaim_stat;
168}
169
0b217676
VL
170static unsigned long zone_nr_lru_pages(struct zone *zone,
171 struct scan_control *sc, enum lru_list lru)
c9f299d9 172{
e72e2bd6 173 if (!scanning_global_lru(sc))
bb2a0de9
KH
174 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175 zone_to_nid(zone), zone_idx(zone), BIT(lru));
a3d8e054 176
c9f299d9
KM
177 return zone_page_state(zone, NR_LRU_BASE + lru);
178}
179
180
1da177e4
LT
181/*
182 * Add a shrinker callback to be called from the vm
183 */
8e1f936b 184void register_shrinker(struct shrinker *shrinker)
1da177e4 185{
83aeeada 186 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
1da177e4 190}
8e1f936b 191EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
192
193/*
194 * Remove one
195 */
8e1f936b 196void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
197{
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
1da177e4 201}
8e1f936b 202EXPORT_SYMBOL(unregister_shrinker);
1da177e4 203
1495f230
YH
204static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 struct shrink_control *sc,
206 unsigned long nr_to_scan)
207{
208 sc->nr_to_scan = nr_to_scan;
209 return (*shrinker->shrink)(shrinker, sc);
210}
211
1da177e4
LT
212#define SHRINK_BATCH 128
213/*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object. With this in mind we age equal
218 * percentages of the lru and ageable caches. This should balance the seeks
219 * generated by these structures.
220 *
183ff22b 221 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt. It is used for balancing
228 * slab reclaim versus page reclaim.
b15e0905 229 *
230 * Returns the number of slab objects which we shrunk.
1da177e4 231 */
a09ed5e0 232unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 233 unsigned long nr_pages_scanned,
a09ed5e0 234 unsigned long lru_pages)
1da177e4
LT
235{
236 struct shrinker *shrinker;
69e05944 237 unsigned long ret = 0;
1da177e4 238
1495f230
YH
239 if (nr_pages_scanned == 0)
240 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 241
f06590bd
MK
242 if (!down_read_trylock(&shrinker_rwsem)) {
243 /* Assume we'll be able to shrink next time */
244 ret = 1;
245 goto out;
246 }
1da177e4
LT
247
248 list_for_each_entry(shrinker, &shrinker_list, list) {
249 unsigned long long delta;
635697c6
KK
250 long total_scan;
251 long max_pass;
09576073 252 int shrink_ret = 0;
acf92b48
DC
253 long nr;
254 long new_nr;
e9299f50
DC
255 long batch_size = shrinker->batch ? shrinker->batch
256 : SHRINK_BATCH;
1da177e4 257
635697c6
KK
258 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259 if (max_pass <= 0)
260 continue;
261
acf92b48
DC
262 /*
263 * copy the current shrinker scan count into a local variable
264 * and zero it so that other concurrent shrinker invocations
265 * don't also do this scanning work.
266 */
83aeeada 267 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
268
269 total_scan = nr;
1495f230 270 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 271 delta *= max_pass;
1da177e4 272 do_div(delta, lru_pages + 1);
acf92b48
DC
273 total_scan += delta;
274 if (total_scan < 0) {
88c3bd70
DR
275 printk(KERN_ERR "shrink_slab: %pF negative objects to "
276 "delete nr=%ld\n",
acf92b48
DC
277 shrinker->shrink, total_scan);
278 total_scan = max_pass;
ea164d73
AA
279 }
280
3567b59a
DC
281 /*
282 * We need to avoid excessive windup on filesystem shrinkers
283 * due to large numbers of GFP_NOFS allocations causing the
284 * shrinkers to return -1 all the time. This results in a large
285 * nr being built up so when a shrink that can do some work
286 * comes along it empties the entire cache due to nr >>>
287 * max_pass. This is bad for sustaining a working set in
288 * memory.
289 *
290 * Hence only allow the shrinker to scan the entire cache when
291 * a large delta change is calculated directly.
292 */
293 if (delta < max_pass / 4)
294 total_scan = min(total_scan, max_pass / 2);
295
ea164d73
AA
296 /*
297 * Avoid risking looping forever due to too large nr value:
298 * never try to free more than twice the estimate number of
299 * freeable entries.
300 */
acf92b48
DC
301 if (total_scan > max_pass * 2)
302 total_scan = max_pass * 2;
1da177e4 303
acf92b48 304 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
305 nr_pages_scanned, lru_pages,
306 max_pass, delta, total_scan);
307
e9299f50 308 while (total_scan >= batch_size) {
b15e0905 309 int nr_before;
1da177e4 310
1495f230
YH
311 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 313 batch_size);
1da177e4
LT
314 if (shrink_ret == -1)
315 break;
b15e0905 316 if (shrink_ret < nr_before)
317 ret += nr_before - shrink_ret;
e9299f50
DC
318 count_vm_events(SLABS_SCANNED, batch_size);
319 total_scan -= batch_size;
1da177e4
LT
320
321 cond_resched();
322 }
323
acf92b48
DC
324 /*
325 * move the unused scan count back into the shrinker in a
326 * manner that handles concurrent updates. If we exhausted the
327 * scan, there is no need to do an update.
328 */
83aeeada
KK
329 if (total_scan > 0)
330 new_nr = atomic_long_add_return(total_scan,
331 &shrinker->nr_in_batch);
332 else
333 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
334
335 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
336 }
337 up_read(&shrinker_rwsem);
f06590bd
MK
338out:
339 cond_resched();
b15e0905 340 return ret;
1da177e4
LT
341}
342
f3a310bc 343static void set_reclaim_mode(int priority, struct scan_control *sc,
7d3579e8
KM
344 bool sync)
345{
f3a310bc 346 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
7d3579e8
KM
347
348 /*
3e7d3449
MG
349 * Initially assume we are entering either lumpy reclaim or
350 * reclaim/compaction.Depending on the order, we will either set the
351 * sync mode or just reclaim order-0 pages later.
7d3579e8 352 */
3e7d3449 353 if (COMPACTION_BUILD)
f3a310bc 354 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
3e7d3449 355 else
f3a310bc 356 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
7d3579e8
KM
357
358 /*
3e7d3449
MG
359 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360 * restricting when its set to either costly allocations or when
361 * under memory pressure
7d3579e8
KM
362 */
363 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
f3a310bc 364 sc->reclaim_mode |= syncmode;
7d3579e8 365 else if (sc->order && priority < DEF_PRIORITY - 2)
f3a310bc 366 sc->reclaim_mode |= syncmode;
7d3579e8 367 else
f3a310bc 368 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
369}
370
f3a310bc 371static void reset_reclaim_mode(struct scan_control *sc)
7d3579e8 372{
f3a310bc 373 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
374}
375
1da177e4
LT
376static inline int is_page_cache_freeable(struct page *page)
377{
ceddc3a5
JW
378 /*
379 * A freeable page cache page is referenced only by the caller
380 * that isolated the page, the page cache radix tree and
381 * optional buffer heads at page->private.
382 */
edcf4748 383 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
384}
385
7d3579e8
KM
386static int may_write_to_queue(struct backing_dev_info *bdi,
387 struct scan_control *sc)
1da177e4 388{
930d9152 389 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
390 return 1;
391 if (!bdi_write_congested(bdi))
392 return 1;
393 if (bdi == current->backing_dev_info)
394 return 1;
7d3579e8
KM
395
396 /* lumpy reclaim for hugepage often need a lot of write */
397 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398 return 1;
1da177e4
LT
399 return 0;
400}
401
402/*
403 * We detected a synchronous write error writing a page out. Probably
404 * -ENOSPC. We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
406 *
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up. But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
410 *
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
413 */
414static void handle_write_error(struct address_space *mapping,
415 struct page *page, int error)
416{
7eaceacc 417 lock_page(page);
3e9f45bd
GC
418 if (page_mapping(page) == mapping)
419 mapping_set_error(mapping, error);
1da177e4
LT
420 unlock_page(page);
421}
422
04e62a29
CL
423/* possible outcome of pageout() */
424typedef enum {
425 /* failed to write page out, page is locked */
426 PAGE_KEEP,
427 /* move page to the active list, page is locked */
428 PAGE_ACTIVATE,
429 /* page has been sent to the disk successfully, page is unlocked */
430 PAGE_SUCCESS,
431 /* page is clean and locked */
432 PAGE_CLEAN,
433} pageout_t;
434
1da177e4 435/*
1742f19f
AM
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
1da177e4 438 */
c661b078 439static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 440 struct scan_control *sc)
1da177e4
LT
441{
442 /*
443 * If the page is dirty, only perform writeback if that write
444 * will be non-blocking. To prevent this allocation from being
445 * stalled by pagecache activity. But note that there may be
446 * stalls if we need to run get_block(). We could test
447 * PagePrivate for that.
448 *
6aceb53b 449 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
450 * this page's queue, we can perform writeback even if that
451 * will block.
452 *
453 * If the page is swapcache, write it back even if that would
454 * block, for some throttling. This happens by accident, because
455 * swap_backing_dev_info is bust: it doesn't reflect the
456 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
457 */
458 if (!is_page_cache_freeable(page))
459 return PAGE_KEEP;
460 if (!mapping) {
461 /*
462 * Some data journaling orphaned pages can have
463 * page->mapping == NULL while being dirty with clean buffers.
464 */
266cf658 465 if (page_has_private(page)) {
1da177e4
LT
466 if (try_to_free_buffers(page)) {
467 ClearPageDirty(page);
d40cee24 468 printk("%s: orphaned page\n", __func__);
1da177e4
LT
469 return PAGE_CLEAN;
470 }
471 }
472 return PAGE_KEEP;
473 }
474 if (mapping->a_ops->writepage == NULL)
475 return PAGE_ACTIVATE;
0e093d99 476 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
477 return PAGE_KEEP;
478
479 if (clear_page_dirty_for_io(page)) {
480 int res;
481 struct writeback_control wbc = {
482 .sync_mode = WB_SYNC_NONE,
483 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
484 .range_start = 0,
485 .range_end = LLONG_MAX,
1da177e4
LT
486 .for_reclaim = 1,
487 };
488
489 SetPageReclaim(page);
490 res = mapping->a_ops->writepage(page, &wbc);
491 if (res < 0)
492 handle_write_error(mapping, page, res);
994fc28c 493 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
494 ClearPageReclaim(page);
495 return PAGE_ACTIVATE;
496 }
c661b078 497
1da177e4
LT
498 if (!PageWriteback(page)) {
499 /* synchronous write or broken a_ops? */
500 ClearPageReclaim(page);
501 }
755f0225 502 trace_mm_vmscan_writepage(page,
f3a310bc 503 trace_reclaim_flags(page, sc->reclaim_mode));
e129b5c2 504 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
505 return PAGE_SUCCESS;
506 }
507
508 return PAGE_CLEAN;
509}
510
a649fd92 511/*
e286781d
NP
512 * Same as remove_mapping, but if the page is removed from the mapping, it
513 * gets returned with a refcount of 0.
a649fd92 514 */
e286781d 515static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 516{
28e4d965
NP
517 BUG_ON(!PageLocked(page));
518 BUG_ON(mapping != page_mapping(page));
49d2e9cc 519
19fd6231 520 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 521 /*
0fd0e6b0
NP
522 * The non racy check for a busy page.
523 *
524 * Must be careful with the order of the tests. When someone has
525 * a ref to the page, it may be possible that they dirty it then
526 * drop the reference. So if PageDirty is tested before page_count
527 * here, then the following race may occur:
528 *
529 * get_user_pages(&page);
530 * [user mapping goes away]
531 * write_to(page);
532 * !PageDirty(page) [good]
533 * SetPageDirty(page);
534 * put_page(page);
535 * !page_count(page) [good, discard it]
536 *
537 * [oops, our write_to data is lost]
538 *
539 * Reversing the order of the tests ensures such a situation cannot
540 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541 * load is not satisfied before that of page->_count.
542 *
543 * Note that if SetPageDirty is always performed via set_page_dirty,
544 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 545 */
e286781d 546 if (!page_freeze_refs(page, 2))
49d2e9cc 547 goto cannot_free;
e286781d
NP
548 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549 if (unlikely(PageDirty(page))) {
550 page_unfreeze_refs(page, 2);
49d2e9cc 551 goto cannot_free;
e286781d 552 }
49d2e9cc
CL
553
554 if (PageSwapCache(page)) {
555 swp_entry_t swap = { .val = page_private(page) };
556 __delete_from_swap_cache(page);
19fd6231 557 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 558 swapcache_free(swap, page);
e286781d 559 } else {
6072d13c
LT
560 void (*freepage)(struct page *);
561
562 freepage = mapping->a_ops->freepage;
563
e64a782f 564 __delete_from_page_cache(page);
19fd6231 565 spin_unlock_irq(&mapping->tree_lock);
e767e056 566 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
567
568 if (freepage != NULL)
569 freepage(page);
49d2e9cc
CL
570 }
571
49d2e9cc
CL
572 return 1;
573
574cannot_free:
19fd6231 575 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
576 return 0;
577}
578
e286781d
NP
579/*
580 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
581 * someone else has a ref on the page, abort and return 0. If it was
582 * successfully detached, return 1. Assumes the caller has a single ref on
583 * this page.
584 */
585int remove_mapping(struct address_space *mapping, struct page *page)
586{
587 if (__remove_mapping(mapping, page)) {
588 /*
589 * Unfreezing the refcount with 1 rather than 2 effectively
590 * drops the pagecache ref for us without requiring another
591 * atomic operation.
592 */
593 page_unfreeze_refs(page, 1);
594 return 1;
595 }
596 return 0;
597}
598
894bc310
LS
599/**
600 * putback_lru_page - put previously isolated page onto appropriate LRU list
601 * @page: page to be put back to appropriate lru list
602 *
603 * Add previously isolated @page to appropriate LRU list.
604 * Page may still be unevictable for other reasons.
605 *
606 * lru_lock must not be held, interrupts must be enabled.
607 */
894bc310
LS
608void putback_lru_page(struct page *page)
609{
610 int lru;
611 int active = !!TestClearPageActive(page);
bbfd28ee 612 int was_unevictable = PageUnevictable(page);
894bc310
LS
613
614 VM_BUG_ON(PageLRU(page));
615
616redo:
617 ClearPageUnevictable(page);
618
619 if (page_evictable(page, NULL)) {
620 /*
621 * For evictable pages, we can use the cache.
622 * In event of a race, worst case is we end up with an
623 * unevictable page on [in]active list.
624 * We know how to handle that.
625 */
401a8e1c 626 lru = active + page_lru_base_type(page);
894bc310
LS
627 lru_cache_add_lru(page, lru);
628 } else {
629 /*
630 * Put unevictable pages directly on zone's unevictable
631 * list.
632 */
633 lru = LRU_UNEVICTABLE;
634 add_page_to_unevictable_list(page);
6a7b9548 635 /*
21ee9f39
MK
636 * When racing with an mlock or AS_UNEVICTABLE clearing
637 * (page is unlocked) make sure that if the other thread
638 * does not observe our setting of PG_lru and fails
639 * isolation/check_move_unevictable_page,
640 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
641 * the page back to the evictable list.
642 *
21ee9f39 643 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
644 */
645 smp_mb();
894bc310 646 }
894bc310
LS
647
648 /*
649 * page's status can change while we move it among lru. If an evictable
650 * page is on unevictable list, it never be freed. To avoid that,
651 * check after we added it to the list, again.
652 */
653 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654 if (!isolate_lru_page(page)) {
655 put_page(page);
656 goto redo;
657 }
658 /* This means someone else dropped this page from LRU
659 * So, it will be freed or putback to LRU again. There is
660 * nothing to do here.
661 */
662 }
663
bbfd28ee
LS
664 if (was_unevictable && lru != LRU_UNEVICTABLE)
665 count_vm_event(UNEVICTABLE_PGRESCUED);
666 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667 count_vm_event(UNEVICTABLE_PGCULLED);
668
894bc310
LS
669 put_page(page); /* drop ref from isolate */
670}
671
dfc8d636
JW
672enum page_references {
673 PAGEREF_RECLAIM,
674 PAGEREF_RECLAIM_CLEAN,
64574746 675 PAGEREF_KEEP,
dfc8d636
JW
676 PAGEREF_ACTIVATE,
677};
678
679static enum page_references page_check_references(struct page *page,
680 struct scan_control *sc)
681{
64574746 682 int referenced_ptes, referenced_page;
dfc8d636 683 unsigned long vm_flags;
dfc8d636 684
64574746
JW
685 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
687
688 /* Lumpy reclaim - ignore references */
f3a310bc 689 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
dfc8d636
JW
690 return PAGEREF_RECLAIM;
691
692 /*
693 * Mlock lost the isolation race with us. Let try_to_unmap()
694 * move the page to the unevictable list.
695 */
696 if (vm_flags & VM_LOCKED)
697 return PAGEREF_RECLAIM;
698
64574746
JW
699 if (referenced_ptes) {
700 if (PageAnon(page))
701 return PAGEREF_ACTIVATE;
702 /*
703 * All mapped pages start out with page table
704 * references from the instantiating fault, so we need
705 * to look twice if a mapped file page is used more
706 * than once.
707 *
708 * Mark it and spare it for another trip around the
709 * inactive list. Another page table reference will
710 * lead to its activation.
711 *
712 * Note: the mark is set for activated pages as well
713 * so that recently deactivated but used pages are
714 * quickly recovered.
715 */
716 SetPageReferenced(page);
717
34dbc67a 718 if (referenced_page || referenced_ptes > 1)
64574746
JW
719 return PAGEREF_ACTIVATE;
720
c909e993
KK
721 /*
722 * Activate file-backed executable pages after first usage.
723 */
724 if (vm_flags & VM_EXEC)
725 return PAGEREF_ACTIVATE;
726
64574746
JW
727 return PAGEREF_KEEP;
728 }
dfc8d636
JW
729
730 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 731 if (referenced_page && !PageSwapBacked(page))
64574746
JW
732 return PAGEREF_RECLAIM_CLEAN;
733
734 return PAGEREF_RECLAIM;
dfc8d636
JW
735}
736
abe4c3b5
MG
737static noinline_for_stack void free_page_list(struct list_head *free_pages)
738{
739 struct pagevec freed_pvec;
740 struct page *page, *tmp;
741
742 pagevec_init(&freed_pvec, 1);
743
744 list_for_each_entry_safe(page, tmp, free_pages, lru) {
745 list_del(&page->lru);
746 if (!pagevec_add(&freed_pvec, page)) {
747 __pagevec_free(&freed_pvec);
748 pagevec_reinit(&freed_pvec);
749 }
750 }
751
752 pagevec_free(&freed_pvec);
753}
754
1da177e4 755/*
1742f19f 756 * shrink_page_list() returns the number of reclaimed pages
1da177e4 757 */
1742f19f 758static unsigned long shrink_page_list(struct list_head *page_list,
0e093d99 759 struct zone *zone,
f84f6e2b 760 struct scan_control *sc,
92df3a72
MG
761 int priority,
762 unsigned long *ret_nr_dirty,
763 unsigned long *ret_nr_writeback)
1da177e4
LT
764{
765 LIST_HEAD(ret_pages);
abe4c3b5 766 LIST_HEAD(free_pages);
1da177e4 767 int pgactivate = 0;
0e093d99
MG
768 unsigned long nr_dirty = 0;
769 unsigned long nr_congested = 0;
05ff5137 770 unsigned long nr_reclaimed = 0;
92df3a72 771 unsigned long nr_writeback = 0;
1da177e4
LT
772
773 cond_resched();
774
1da177e4 775 while (!list_empty(page_list)) {
dfc8d636 776 enum page_references references;
1da177e4
LT
777 struct address_space *mapping;
778 struct page *page;
779 int may_enter_fs;
1da177e4
LT
780
781 cond_resched();
782
783 page = lru_to_page(page_list);
784 list_del(&page->lru);
785
529ae9aa 786 if (!trylock_page(page))
1da177e4
LT
787 goto keep;
788
725d704e 789 VM_BUG_ON(PageActive(page));
0e093d99 790 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
791
792 sc->nr_scanned++;
80e43426 793
b291f000
NP
794 if (unlikely(!page_evictable(page, NULL)))
795 goto cull_mlocked;
894bc310 796
a6dc60f8 797 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
798 goto keep_locked;
799
1da177e4
LT
800 /* Double the slab pressure for mapped and swapcache pages */
801 if (page_mapped(page) || PageSwapCache(page))
802 sc->nr_scanned++;
803
c661b078
AW
804 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
805 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
806
807 if (PageWriteback(page)) {
92df3a72 808 nr_writeback++;
c661b078 809 /*
a18bba06
MG
810 * Synchronous reclaim cannot queue pages for
811 * writeback due to the possibility of stack overflow
812 * but if it encounters a page under writeback, wait
813 * for the IO to complete.
c661b078 814 */
f3a310bc 815 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
7d3579e8 816 may_enter_fs)
c661b078 817 wait_on_page_writeback(page);
7d3579e8
KM
818 else {
819 unlock_page(page);
820 goto keep_lumpy;
821 }
c661b078 822 }
1da177e4 823
dfc8d636
JW
824 references = page_check_references(page, sc);
825 switch (references) {
826 case PAGEREF_ACTIVATE:
1da177e4 827 goto activate_locked;
64574746
JW
828 case PAGEREF_KEEP:
829 goto keep_locked;
dfc8d636
JW
830 case PAGEREF_RECLAIM:
831 case PAGEREF_RECLAIM_CLEAN:
832 ; /* try to reclaim the page below */
833 }
1da177e4 834
1da177e4
LT
835 /*
836 * Anonymous process memory has backing store?
837 * Try to allocate it some swap space here.
838 */
b291f000 839 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
840 if (!(sc->gfp_mask & __GFP_IO))
841 goto keep_locked;
ac47b003 842 if (!add_to_swap(page))
1da177e4 843 goto activate_locked;
63eb6b93 844 may_enter_fs = 1;
b291f000 845 }
1da177e4
LT
846
847 mapping = page_mapping(page);
1da177e4
LT
848
849 /*
850 * The page is mapped into the page tables of one or more
851 * processes. Try to unmap it here.
852 */
853 if (page_mapped(page) && mapping) {
14fa31b8 854 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
855 case SWAP_FAIL:
856 goto activate_locked;
857 case SWAP_AGAIN:
858 goto keep_locked;
b291f000
NP
859 case SWAP_MLOCK:
860 goto cull_mlocked;
1da177e4
LT
861 case SWAP_SUCCESS:
862 ; /* try to free the page below */
863 }
864 }
865
866 if (PageDirty(page)) {
0e093d99
MG
867 nr_dirty++;
868
ee72886d
MG
869 /*
870 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
871 * avoid risk of stack overflow but do not writeback
872 * unless under significant pressure.
ee72886d 873 */
f84f6e2b
MG
874 if (page_is_file_cache(page) &&
875 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
876 /*
877 * Immediately reclaim when written back.
878 * Similar in principal to deactivate_page()
879 * except we already have the page isolated
880 * and know it's dirty
881 */
882 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
883 SetPageReclaim(page);
884
ee72886d
MG
885 goto keep_locked;
886 }
887
dfc8d636 888 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 889 goto keep_locked;
4dd4b920 890 if (!may_enter_fs)
1da177e4 891 goto keep_locked;
52a8363e 892 if (!sc->may_writepage)
1da177e4
LT
893 goto keep_locked;
894
895 /* Page is dirty, try to write it out here */
7d3579e8 896 switch (pageout(page, mapping, sc)) {
1da177e4 897 case PAGE_KEEP:
0e093d99 898 nr_congested++;
1da177e4
LT
899 goto keep_locked;
900 case PAGE_ACTIVATE:
901 goto activate_locked;
902 case PAGE_SUCCESS:
7d3579e8
KM
903 if (PageWriteback(page))
904 goto keep_lumpy;
905 if (PageDirty(page))
1da177e4 906 goto keep;
7d3579e8 907
1da177e4
LT
908 /*
909 * A synchronous write - probably a ramdisk. Go
910 * ahead and try to reclaim the page.
911 */
529ae9aa 912 if (!trylock_page(page))
1da177e4
LT
913 goto keep;
914 if (PageDirty(page) || PageWriteback(page))
915 goto keep_locked;
916 mapping = page_mapping(page);
917 case PAGE_CLEAN:
918 ; /* try to free the page below */
919 }
920 }
921
922 /*
923 * If the page has buffers, try to free the buffer mappings
924 * associated with this page. If we succeed we try to free
925 * the page as well.
926 *
927 * We do this even if the page is PageDirty().
928 * try_to_release_page() does not perform I/O, but it is
929 * possible for a page to have PageDirty set, but it is actually
930 * clean (all its buffers are clean). This happens if the
931 * buffers were written out directly, with submit_bh(). ext3
894bc310 932 * will do this, as well as the blockdev mapping.
1da177e4
LT
933 * try_to_release_page() will discover that cleanness and will
934 * drop the buffers and mark the page clean - it can be freed.
935 *
936 * Rarely, pages can have buffers and no ->mapping. These are
937 * the pages which were not successfully invalidated in
938 * truncate_complete_page(). We try to drop those buffers here
939 * and if that worked, and the page is no longer mapped into
940 * process address space (page_count == 1) it can be freed.
941 * Otherwise, leave the page on the LRU so it is swappable.
942 */
266cf658 943 if (page_has_private(page)) {
1da177e4
LT
944 if (!try_to_release_page(page, sc->gfp_mask))
945 goto activate_locked;
e286781d
NP
946 if (!mapping && page_count(page) == 1) {
947 unlock_page(page);
948 if (put_page_testzero(page))
949 goto free_it;
950 else {
951 /*
952 * rare race with speculative reference.
953 * the speculative reference will free
954 * this page shortly, so we may
955 * increment nr_reclaimed here (and
956 * leave it off the LRU).
957 */
958 nr_reclaimed++;
959 continue;
960 }
961 }
1da177e4
LT
962 }
963
e286781d 964 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 965 goto keep_locked;
1da177e4 966
a978d6f5
NP
967 /*
968 * At this point, we have no other references and there is
969 * no way to pick any more up (removed from LRU, removed
970 * from pagecache). Can use non-atomic bitops now (and
971 * we obviously don't have to worry about waking up a process
972 * waiting on the page lock, because there are no references.
973 */
974 __clear_page_locked(page);
e286781d 975free_it:
05ff5137 976 nr_reclaimed++;
abe4c3b5
MG
977
978 /*
979 * Is there need to periodically free_page_list? It would
980 * appear not as the counts should be low
981 */
982 list_add(&page->lru, &free_pages);
1da177e4
LT
983 continue;
984
b291f000 985cull_mlocked:
63d6c5ad
HD
986 if (PageSwapCache(page))
987 try_to_free_swap(page);
b291f000
NP
988 unlock_page(page);
989 putback_lru_page(page);
f3a310bc 990 reset_reclaim_mode(sc);
b291f000
NP
991 continue;
992
1da177e4 993activate_locked:
68a22394
RR
994 /* Not a candidate for swapping, so reclaim swap space. */
995 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 996 try_to_free_swap(page);
894bc310 997 VM_BUG_ON(PageActive(page));
1da177e4
LT
998 SetPageActive(page);
999 pgactivate++;
1000keep_locked:
1001 unlock_page(page);
1002keep:
f3a310bc 1003 reset_reclaim_mode(sc);
7d3579e8 1004keep_lumpy:
1da177e4 1005 list_add(&page->lru, &ret_pages);
b291f000 1006 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 1007 }
abe4c3b5 1008
0e093d99
MG
1009 /*
1010 * Tag a zone as congested if all the dirty pages encountered were
1011 * backed by a congested BDI. In this case, reclaimers should just
1012 * back off and wait for congestion to clear because further reclaim
1013 * will encounter the same problem
1014 */
d6c438b6 1015 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
0e093d99
MG
1016 zone_set_flag(zone, ZONE_CONGESTED);
1017
abe4c3b5
MG
1018 free_page_list(&free_pages);
1019
1da177e4 1020 list_splice(&ret_pages, page_list);
f8891e5e 1021 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
1022 *ret_nr_dirty += nr_dirty;
1023 *ret_nr_writeback += nr_writeback;
05ff5137 1024 return nr_reclaimed;
1da177e4
LT
1025}
1026
5ad333eb
AW
1027/*
1028 * Attempt to remove the specified page from its LRU. Only take this page
1029 * if it is of the appropriate PageActive status. Pages which are being
1030 * freed elsewhere are also ignored.
1031 *
1032 * page: page to consider
1033 * mode: one of the LRU isolation modes defined above
1034 *
1035 * returns 0 on success, -ve errno on failure.
1036 */
4356f21d 1037int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
5ad333eb 1038{
4356f21d 1039 bool all_lru_mode;
5ad333eb
AW
1040 int ret = -EINVAL;
1041
1042 /* Only take pages on the LRU. */
1043 if (!PageLRU(page))
1044 return ret;
1045
4356f21d
MK
1046 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1047 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1048
5ad333eb
AW
1049 /*
1050 * When checking the active state, we need to be sure we are
1051 * dealing with comparible boolean values. Take the logical not
1052 * of each.
1053 */
4356f21d 1054 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
5ad333eb
AW
1055 return ret;
1056
4356f21d 1057 if (!all_lru_mode && !!page_is_file_cache(page) != file)
4f98a2fe
RR
1058 return ret;
1059
894bc310
LS
1060 /*
1061 * When this function is being called for lumpy reclaim, we
1062 * initially look into all LRU pages, active, inactive and
1063 * unevictable; only give shrink_page_list evictable pages.
1064 */
1065 if (PageUnevictable(page))
1066 return ret;
1067
5ad333eb 1068 ret = -EBUSY;
08e552c6 1069
39deaf85
MK
1070 if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1071 return ret;
1072
f80c0673
MK
1073 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1074 return ret;
1075
5ad333eb
AW
1076 if (likely(get_page_unless_zero(page))) {
1077 /*
1078 * Be careful not to clear PageLRU until after we're
1079 * sure the page is not being freed elsewhere -- the
1080 * page release code relies on it.
1081 */
1082 ClearPageLRU(page);
1083 ret = 0;
1084 }
1085
1086 return ret;
1087}
1088
1da177e4
LT
1089/*
1090 * zone->lru_lock is heavily contended. Some of the functions that
1091 * shrink the lists perform better by taking out a batch of pages
1092 * and working on them outside the LRU lock.
1093 *
1094 * For pagecache intensive workloads, this function is the hottest
1095 * spot in the kernel (apart from copy_*_user functions).
1096 *
1097 * Appropriate locks must be held before calling this function.
1098 *
1099 * @nr_to_scan: The number of pages to look through on the list.
1100 * @src: The LRU list to pull pages off.
1101 * @dst: The temp list to put pages on to.
1102 * @scanned: The number of pages that were scanned.
5ad333eb
AW
1103 * @order: The caller's attempted allocation order
1104 * @mode: One of the LRU isolation modes
4f98a2fe 1105 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
1106 *
1107 * returns how many pages were moved onto *@dst.
1108 */
69e05944
AM
1109static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1110 struct list_head *src, struct list_head *dst,
4356f21d
MK
1111 unsigned long *scanned, int order, isolate_mode_t mode,
1112 int file)
1da177e4 1113{
69e05944 1114 unsigned long nr_taken = 0;
a8a94d15
MG
1115 unsigned long nr_lumpy_taken = 0;
1116 unsigned long nr_lumpy_dirty = 0;
1117 unsigned long nr_lumpy_failed = 0;
c9b02d97 1118 unsigned long scan;
1da177e4 1119
c9b02d97 1120 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
1121 struct page *page;
1122 unsigned long pfn;
1123 unsigned long end_pfn;
1124 unsigned long page_pfn;
1125 int zone_id;
1126
1da177e4
LT
1127 page = lru_to_page(src);
1128 prefetchw_prev_lru_page(page, src, flags);
1129
725d704e 1130 VM_BUG_ON(!PageLRU(page));
8d438f96 1131
4f98a2fe 1132 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
1133 case 0:
1134 list_move(&page->lru, dst);
2ffebca6 1135 mem_cgroup_del_lru(page);
2c888cfb 1136 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1137 break;
1138
1139 case -EBUSY:
1140 /* else it is being freed elsewhere */
1141 list_move(&page->lru, src);
2ffebca6 1142 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 1143 continue;
46453a6e 1144
5ad333eb
AW
1145 default:
1146 BUG();
1147 }
1148
1149 if (!order)
1150 continue;
1151
1152 /*
1153 * Attempt to take all pages in the order aligned region
1154 * surrounding the tag page. Only take those pages of
1155 * the same active state as that tag page. We may safely
1156 * round the target page pfn down to the requested order
25985edc 1157 * as the mem_map is guaranteed valid out to MAX_ORDER,
5ad333eb
AW
1158 * where that page is in a different zone we will detect
1159 * it from its zone id and abort this block scan.
1160 */
1161 zone_id = page_zone_id(page);
1162 page_pfn = page_to_pfn(page);
1163 pfn = page_pfn & ~((1 << order) - 1);
1164 end_pfn = pfn + (1 << order);
1165 for (; pfn < end_pfn; pfn++) {
1166 struct page *cursor_page;
1167
1168 /* The target page is in the block, ignore it. */
1169 if (unlikely(pfn == page_pfn))
1170 continue;
1171
1172 /* Avoid holes within the zone. */
1173 if (unlikely(!pfn_valid_within(pfn)))
1174 break;
1175
1176 cursor_page = pfn_to_page(pfn);
4f98a2fe 1177
5ad333eb
AW
1178 /* Check that we have not crossed a zone boundary. */
1179 if (unlikely(page_zone_id(cursor_page) != zone_id))
08fc468f 1180 break;
de2e7567
MK
1181
1182 /*
1183 * If we don't have enough swap space, reclaiming of
1184 * anon page which don't already have a swap slot is
1185 * pointless.
1186 */
1187 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
08fc468f
KM
1188 !PageSwapCache(cursor_page))
1189 break;
de2e7567 1190
ee993b13 1191 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 1192 list_move(&cursor_page->lru, dst);
cb4cbcf6 1193 mem_cgroup_del_lru(cursor_page);
2c888cfb 1194 nr_taken += hpage_nr_pages(page);
a8a94d15
MG
1195 nr_lumpy_taken++;
1196 if (PageDirty(cursor_page))
1197 nr_lumpy_dirty++;
5ad333eb 1198 scan++;
a8a94d15 1199 } else {
d179e84b
AA
1200 /*
1201 * Check if the page is freed already.
1202 *
1203 * We can't use page_count() as that
1204 * requires compound_head and we don't
1205 * have a pin on the page here. If a
1206 * page is tail, we may or may not
1207 * have isolated the head, so assume
1208 * it's not free, it'd be tricky to
1209 * track the head status without a
1210 * page pin.
1211 */
1212 if (!PageTail(cursor_page) &&
1213 !atomic_read(&cursor_page->_count))
08fc468f
KM
1214 continue;
1215 break;
5ad333eb
AW
1216 }
1217 }
08fc468f
KM
1218
1219 /* If we break out of the loop above, lumpy reclaim failed */
1220 if (pfn < end_pfn)
1221 nr_lumpy_failed++;
1da177e4
LT
1222 }
1223
1224 *scanned = scan;
a8a94d15
MG
1225
1226 trace_mm_vmscan_lru_isolate(order,
1227 nr_to_scan, scan,
1228 nr_taken,
1229 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1230 mode);
1da177e4
LT
1231 return nr_taken;
1232}
1233
66e1707b
BS
1234static unsigned long isolate_pages_global(unsigned long nr,
1235 struct list_head *dst,
1236 unsigned long *scanned, int order,
4356f21d
MK
1237 isolate_mode_t mode,
1238 struct zone *z, int active, int file)
66e1707b 1239{
4f98a2fe 1240 int lru = LRU_BASE;
66e1707b 1241 if (active)
4f98a2fe
RR
1242 lru += LRU_ACTIVE;
1243 if (file)
1244 lru += LRU_FILE;
1245 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 1246 mode, file);
66e1707b
BS
1247}
1248
5ad333eb
AW
1249/*
1250 * clear_active_flags() is a helper for shrink_active_list(), clearing
1251 * any active bits from the pages in the list.
1252 */
4f98a2fe
RR
1253static unsigned long clear_active_flags(struct list_head *page_list,
1254 unsigned int *count)
5ad333eb
AW
1255{
1256 int nr_active = 0;
4f98a2fe 1257 int lru;
5ad333eb
AW
1258 struct page *page;
1259
4f98a2fe 1260 list_for_each_entry(page, page_list, lru) {
2c888cfb 1261 int numpages = hpage_nr_pages(page);
401a8e1c 1262 lru = page_lru_base_type(page);
5ad333eb 1263 if (PageActive(page)) {
4f98a2fe 1264 lru += LRU_ACTIVE;
5ad333eb 1265 ClearPageActive(page);
2c888cfb 1266 nr_active += numpages;
5ad333eb 1267 }
1489fa14 1268 if (count)
2c888cfb 1269 count[lru] += numpages;
4f98a2fe 1270 }
5ad333eb
AW
1271
1272 return nr_active;
1273}
1274
62695a84
NP
1275/**
1276 * isolate_lru_page - tries to isolate a page from its LRU list
1277 * @page: page to isolate from its LRU list
1278 *
1279 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1280 * vmstat statistic corresponding to whatever LRU list the page was on.
1281 *
1282 * Returns 0 if the page was removed from an LRU list.
1283 * Returns -EBUSY if the page was not on an LRU list.
1284 *
1285 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1286 * the active list, it will have PageActive set. If it was found on
1287 * the unevictable list, it will have the PageUnevictable bit set. That flag
1288 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1289 *
1290 * The vmstat statistic corresponding to the list on which the page was
1291 * found will be decremented.
1292 *
1293 * Restrictions:
1294 * (1) Must be called with an elevated refcount on the page. This is a
1295 * fundamentnal difference from isolate_lru_pages (which is called
1296 * without a stable reference).
1297 * (2) the lru_lock must not be held.
1298 * (3) interrupts must be enabled.
1299 */
1300int isolate_lru_page(struct page *page)
1301{
1302 int ret = -EBUSY;
1303
0c917313
KK
1304 VM_BUG_ON(!page_count(page));
1305
62695a84
NP
1306 if (PageLRU(page)) {
1307 struct zone *zone = page_zone(page);
1308
1309 spin_lock_irq(&zone->lru_lock);
0c917313 1310 if (PageLRU(page)) {
894bc310 1311 int lru = page_lru(page);
62695a84 1312 ret = 0;
0c917313 1313 get_page(page);
62695a84 1314 ClearPageLRU(page);
4f98a2fe 1315
4f98a2fe 1316 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1317 }
1318 spin_unlock_irq(&zone->lru_lock);
1319 }
1320 return ret;
1321}
1322
35cd7815
RR
1323/*
1324 * Are there way too many processes in the direct reclaim path already?
1325 */
1326static int too_many_isolated(struct zone *zone, int file,
1327 struct scan_control *sc)
1328{
1329 unsigned long inactive, isolated;
1330
1331 if (current_is_kswapd())
1332 return 0;
1333
1334 if (!scanning_global_lru(sc))
1335 return 0;
1336
1337 if (file) {
1338 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1339 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1340 } else {
1341 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1342 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1343 }
1344
1345 return isolated > inactive;
1346}
1347
66635629
MG
1348/*
1349 * TODO: Try merging with migrations version of putback_lru_pages
1350 */
1351static noinline_for_stack void
1489fa14 1352putback_lru_pages(struct zone *zone, struct scan_control *sc,
66635629
MG
1353 unsigned long nr_anon, unsigned long nr_file,
1354 struct list_head *page_list)
1355{
1356 struct page *page;
1357 struct pagevec pvec;
1489fa14 1358 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
66635629
MG
1359
1360 pagevec_init(&pvec, 1);
1361
1362 /*
1363 * Put back any unfreeable pages.
1364 */
1365 spin_lock(&zone->lru_lock);
1366 while (!list_empty(page_list)) {
1367 int lru;
1368 page = lru_to_page(page_list);
1369 VM_BUG_ON(PageLRU(page));
1370 list_del(&page->lru);
1371 if (unlikely(!page_evictable(page, NULL))) {
1372 spin_unlock_irq(&zone->lru_lock);
1373 putback_lru_page(page);
1374 spin_lock_irq(&zone->lru_lock);
1375 continue;
1376 }
7a608572 1377 SetPageLRU(page);
66635629 1378 lru = page_lru(page);
7a608572 1379 add_page_to_lru_list(zone, page, lru);
66635629
MG
1380 if (is_active_lru(lru)) {
1381 int file = is_file_lru(lru);
9992af10
RR
1382 int numpages = hpage_nr_pages(page);
1383 reclaim_stat->recent_rotated[file] += numpages;
66635629
MG
1384 }
1385 if (!pagevec_add(&pvec, page)) {
1386 spin_unlock_irq(&zone->lru_lock);
1387 __pagevec_release(&pvec);
1388 spin_lock_irq(&zone->lru_lock);
1389 }
1390 }
1391 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1392 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1393
1394 spin_unlock_irq(&zone->lru_lock);
1395 pagevec_release(&pvec);
1396}
1397
1489fa14
MG
1398static noinline_for_stack void update_isolated_counts(struct zone *zone,
1399 struct scan_control *sc,
1400 unsigned long *nr_anon,
1401 unsigned long *nr_file,
1402 struct list_head *isolated_list)
1403{
1404 unsigned long nr_active;
1405 unsigned int count[NR_LRU_LISTS] = { 0, };
1406 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1407
1408 nr_active = clear_active_flags(isolated_list, count);
1409 __count_vm_events(PGDEACTIVATE, nr_active);
1410
1411 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1412 -count[LRU_ACTIVE_FILE]);
1413 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1414 -count[LRU_INACTIVE_FILE]);
1415 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1416 -count[LRU_ACTIVE_ANON]);
1417 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1418 -count[LRU_INACTIVE_ANON]);
1419
1420 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1421 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1422 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1423 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1424
1425 reclaim_stat->recent_scanned[0] += *nr_anon;
1426 reclaim_stat->recent_scanned[1] += *nr_file;
1427}
1428
e31f3698 1429/*
a18bba06 1430 * Returns true if a direct reclaim should wait on pages under writeback.
e31f3698
WF
1431 *
1432 * If we are direct reclaiming for contiguous pages and we do not reclaim
1433 * everything in the list, try again and wait for writeback IO to complete.
1434 * This will stall high-order allocations noticeably. Only do that when really
1435 * need to free the pages under high memory pressure.
1436 */
1437static inline bool should_reclaim_stall(unsigned long nr_taken,
1438 unsigned long nr_freed,
1439 int priority,
1440 struct scan_control *sc)
1441{
1442 int lumpy_stall_priority;
1443
1444 /* kswapd should not stall on sync IO */
1445 if (current_is_kswapd())
1446 return false;
1447
1448 /* Only stall on lumpy reclaim */
f3a310bc 1449 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
e31f3698
WF
1450 return false;
1451
81d66c70 1452 /* If we have reclaimed everything on the isolated list, no stall */
e31f3698
WF
1453 if (nr_freed == nr_taken)
1454 return false;
1455
1456 /*
1457 * For high-order allocations, there are two stall thresholds.
1458 * High-cost allocations stall immediately where as lower
1459 * order allocations such as stacks require the scanning
1460 * priority to be much higher before stalling.
1461 */
1462 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1463 lumpy_stall_priority = DEF_PRIORITY;
1464 else
1465 lumpy_stall_priority = DEF_PRIORITY / 3;
1466
1467 return priority <= lumpy_stall_priority;
1468}
1469
1da177e4 1470/*
1742f19f
AM
1471 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1472 * of reclaimed pages
1da177e4 1473 */
66635629
MG
1474static noinline_for_stack unsigned long
1475shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1476 struct scan_control *sc, int priority, int file)
1da177e4
LT
1477{
1478 LIST_HEAD(page_list);
e247dbce 1479 unsigned long nr_scanned;
05ff5137 1480 unsigned long nr_reclaimed = 0;
e247dbce 1481 unsigned long nr_taken;
e247dbce
KM
1482 unsigned long nr_anon;
1483 unsigned long nr_file;
92df3a72
MG
1484 unsigned long nr_dirty = 0;
1485 unsigned long nr_writeback = 0;
4356f21d 1486 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
78dc583d 1487
35cd7815 1488 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1489 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1490
1491 /* We are about to die and free our memory. Return now. */
1492 if (fatal_signal_pending(current))
1493 return SWAP_CLUSTER_MAX;
1494 }
1495
f3a310bc 1496 set_reclaim_mode(priority, sc, false);
4356f21d
MK
1497 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1498 reclaim_mode |= ISOLATE_ACTIVE;
1499
1da177e4 1500 lru_add_drain();
f80c0673
MK
1501
1502 if (!sc->may_unmap)
1503 reclaim_mode |= ISOLATE_UNMAPPED;
1504 if (!sc->may_writepage)
1505 reclaim_mode |= ISOLATE_CLEAN;
1506
1da177e4 1507 spin_lock_irq(&zone->lru_lock);
b35ea17b 1508
e247dbce 1509 if (scanning_global_lru(sc)) {
4356f21d
MK
1510 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1511 &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
e247dbce
KM
1512 zone->pages_scanned += nr_scanned;
1513 if (current_is_kswapd())
1514 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1515 nr_scanned);
1516 else
1517 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1518 nr_scanned);
1519 } else {
4356f21d
MK
1520 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1521 &nr_scanned, sc->order, reclaim_mode, zone,
1522 sc->mem_cgroup, 0, file);
e247dbce
KM
1523 /*
1524 * mem_cgroup_isolate_pages() keeps track of
1525 * scanned pages on its own.
1526 */
1527 }
b35ea17b 1528
66635629
MG
1529 if (nr_taken == 0) {
1530 spin_unlock_irq(&zone->lru_lock);
1531 return 0;
1532 }
5ad333eb 1533
1489fa14 1534 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1da177e4 1535
e247dbce 1536 spin_unlock_irq(&zone->lru_lock);
c661b078 1537
92df3a72
MG
1538 nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1539 &nr_dirty, &nr_writeback);
c661b078 1540
e31f3698
WF
1541 /* Check if we should syncronously wait for writeback */
1542 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
f3a310bc 1543 set_reclaim_mode(priority, sc, true);
92df3a72
MG
1544 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1545 priority, &nr_dirty, &nr_writeback);
e247dbce 1546 }
b35ea17b 1547
e247dbce
KM
1548 local_irq_disable();
1549 if (current_is_kswapd())
1550 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1551 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
a74609fa 1552
1489fa14 1553 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
e11da5b4 1554
92df3a72
MG
1555 /*
1556 * If reclaim is isolating dirty pages under writeback, it implies
1557 * that the long-lived page allocation rate is exceeding the page
1558 * laundering rate. Either the global limits are not being effective
1559 * at throttling processes due to the page distribution throughout
1560 * zones or there is heavy usage of a slow backing device. The
1561 * only option is to throttle from reclaim context which is not ideal
1562 * as there is no guarantee the dirtying process is throttled in the
1563 * same way balance_dirty_pages() manages.
1564 *
1565 * This scales the number of dirty pages that must be under writeback
1566 * before throttling depending on priority. It is a simple backoff
1567 * function that has the most effect in the range DEF_PRIORITY to
1568 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1569 * in trouble and reclaim is considered to be in trouble.
1570 *
1571 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1572 * DEF_PRIORITY-1 50% must be PageWriteback
1573 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1574 * ...
1575 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1576 * isolated page is PageWriteback
1577 */
1578 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1579 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1580
e11da5b4
MG
1581 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1582 zone_idx(zone),
1583 nr_scanned, nr_reclaimed,
1584 priority,
f3a310bc 1585 trace_shrink_flags(file, sc->reclaim_mode));
05ff5137 1586 return nr_reclaimed;
1da177e4
LT
1587}
1588
1589/*
1590 * This moves pages from the active list to the inactive list.
1591 *
1592 * We move them the other way if the page is referenced by one or more
1593 * processes, from rmap.
1594 *
1595 * If the pages are mostly unmapped, the processing is fast and it is
1596 * appropriate to hold zone->lru_lock across the whole operation. But if
1597 * the pages are mapped, the processing is slow (page_referenced()) so we
1598 * should drop zone->lru_lock around each page. It's impossible to balance
1599 * this, so instead we remove the pages from the LRU while processing them.
1600 * It is safe to rely on PG_active against the non-LRU pages in here because
1601 * nobody will play with that bit on a non-LRU page.
1602 *
1603 * The downside is that we have to touch page->_count against each page.
1604 * But we had to alter page->flags anyway.
1605 */
1cfb419b 1606
3eb4140f
WF
1607static void move_active_pages_to_lru(struct zone *zone,
1608 struct list_head *list,
1609 enum lru_list lru)
1610{
1611 unsigned long pgmoved = 0;
1612 struct pagevec pvec;
1613 struct page *page;
1614
1615 pagevec_init(&pvec, 1);
1616
1617 while (!list_empty(list)) {
1618 page = lru_to_page(list);
3eb4140f
WF
1619
1620 VM_BUG_ON(PageLRU(page));
1621 SetPageLRU(page);
1622
3eb4140f
WF
1623 list_move(&page->lru, &zone->lru[lru].list);
1624 mem_cgroup_add_lru_list(page, lru);
2c888cfb 1625 pgmoved += hpage_nr_pages(page);
3eb4140f
WF
1626
1627 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1628 spin_unlock_irq(&zone->lru_lock);
1629 if (buffer_heads_over_limit)
1630 pagevec_strip(&pvec);
1631 __pagevec_release(&pvec);
1632 spin_lock_irq(&zone->lru_lock);
1633 }
1634 }
1635 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1636 if (!is_active_lru(lru))
1637 __count_vm_events(PGDEACTIVATE, pgmoved);
1638}
1cfb419b 1639
1742f19f 1640static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1641 struct scan_control *sc, int priority, int file)
1da177e4 1642{
44c241f1 1643 unsigned long nr_taken;
69e05944 1644 unsigned long pgscanned;
6fe6b7e3 1645 unsigned long vm_flags;
1da177e4 1646 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1647 LIST_HEAD(l_active);
b69408e8 1648 LIST_HEAD(l_inactive);
1da177e4 1649 struct page *page;
6e901571 1650 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1651 unsigned long nr_rotated = 0;
f80c0673 1652 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1da177e4
LT
1653
1654 lru_add_drain();
f80c0673
MK
1655
1656 if (!sc->may_unmap)
1657 reclaim_mode |= ISOLATE_UNMAPPED;
1658 if (!sc->may_writepage)
1659 reclaim_mode |= ISOLATE_CLEAN;
1660
1da177e4 1661 spin_lock_irq(&zone->lru_lock);
e72e2bd6 1662 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1663 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1664 &pgscanned, sc->order,
f80c0673 1665 reclaim_mode, zone,
8b25c6d2 1666 1, file);
1cfb419b 1667 zone->pages_scanned += pgscanned;
8b25c6d2
JW
1668 } else {
1669 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1670 &pgscanned, sc->order,
f80c0673 1671 reclaim_mode, zone,
8b25c6d2
JW
1672 sc->mem_cgroup, 1, file);
1673 /*
1674 * mem_cgroup_isolate_pages() keeps track of
1675 * scanned pages on its own.
1676 */
4f98a2fe 1677 }
8b25c6d2 1678
b7c46d15 1679 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1680
3eb4140f 1681 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1682 if (file)
44c241f1 1683 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1684 else
44c241f1 1685 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1686 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1687 spin_unlock_irq(&zone->lru_lock);
1688
1da177e4
LT
1689 while (!list_empty(&l_hold)) {
1690 cond_resched();
1691 page = lru_to_page(&l_hold);
1692 list_del(&page->lru);
7e9cd484 1693
894bc310
LS
1694 if (unlikely(!page_evictable(page, NULL))) {
1695 putback_lru_page(page);
1696 continue;
1697 }
1698
64574746 1699 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
9992af10 1700 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1701 /*
1702 * Identify referenced, file-backed active pages and
1703 * give them one more trip around the active list. So
1704 * that executable code get better chances to stay in
1705 * memory under moderate memory pressure. Anon pages
1706 * are not likely to be evicted by use-once streaming
1707 * IO, plus JVM can create lots of anon VM_EXEC pages,
1708 * so we ignore them here.
1709 */
41e20983 1710 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1711 list_add(&page->lru, &l_active);
1712 continue;
1713 }
1714 }
7e9cd484 1715
5205e56e 1716 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1717 list_add(&page->lru, &l_inactive);
1718 }
1719
b555749a 1720 /*
8cab4754 1721 * Move pages back to the lru list.
b555749a 1722 */
2a1dc509 1723 spin_lock_irq(&zone->lru_lock);
556adecb 1724 /*
8cab4754
WF
1725 * Count referenced pages from currently used mappings as rotated,
1726 * even though only some of them are actually re-activated. This
1727 * helps balance scan pressure between file and anonymous pages in
1728 * get_scan_ratio.
7e9cd484 1729 */
b7c46d15 1730 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1731
3eb4140f
WF
1732 move_active_pages_to_lru(zone, &l_active,
1733 LRU_ACTIVE + file * LRU_FILE);
1734 move_active_pages_to_lru(zone, &l_inactive,
1735 LRU_BASE + file * LRU_FILE);
a731286d 1736 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1737 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1738}
1739
74e3f3c3 1740#ifdef CONFIG_SWAP
14797e23 1741static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1742{
1743 unsigned long active, inactive;
1744
1745 active = zone_page_state(zone, NR_ACTIVE_ANON);
1746 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1747
1748 if (inactive * zone->inactive_ratio < active)
1749 return 1;
1750
1751 return 0;
1752}
1753
14797e23
KM
1754/**
1755 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1756 * @zone: zone to check
1757 * @sc: scan control of this context
1758 *
1759 * Returns true if the zone does not have enough inactive anon pages,
1760 * meaning some active anon pages need to be deactivated.
1761 */
1762static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1763{
1764 int low;
1765
74e3f3c3
MK
1766 /*
1767 * If we don't have swap space, anonymous page deactivation
1768 * is pointless.
1769 */
1770 if (!total_swap_pages)
1771 return 0;
1772
e72e2bd6 1773 if (scanning_global_lru(sc))
14797e23
KM
1774 low = inactive_anon_is_low_global(zone);
1775 else
9b272977 1776 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
14797e23
KM
1777 return low;
1778}
74e3f3c3
MK
1779#else
1780static inline int inactive_anon_is_low(struct zone *zone,
1781 struct scan_control *sc)
1782{
1783 return 0;
1784}
1785#endif
14797e23 1786
56e49d21
RR
1787static int inactive_file_is_low_global(struct zone *zone)
1788{
1789 unsigned long active, inactive;
1790
1791 active = zone_page_state(zone, NR_ACTIVE_FILE);
1792 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1793
1794 return (active > inactive);
1795}
1796
1797/**
1798 * inactive_file_is_low - check if file pages need to be deactivated
1799 * @zone: zone to check
1800 * @sc: scan control of this context
1801 *
1802 * When the system is doing streaming IO, memory pressure here
1803 * ensures that active file pages get deactivated, until more
1804 * than half of the file pages are on the inactive list.
1805 *
1806 * Once we get to that situation, protect the system's working
1807 * set from being evicted by disabling active file page aging.
1808 *
1809 * This uses a different ratio than the anonymous pages, because
1810 * the page cache uses a use-once replacement algorithm.
1811 */
1812static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1813{
1814 int low;
1815
1816 if (scanning_global_lru(sc))
1817 low = inactive_file_is_low_global(zone);
1818 else
9b272977 1819 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
56e49d21
RR
1820 return low;
1821}
1822
b39415b2
RR
1823static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1824 int file)
1825{
1826 if (file)
1827 return inactive_file_is_low(zone, sc);
1828 else
1829 return inactive_anon_is_low(zone, sc);
1830}
1831
4f98a2fe 1832static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1833 struct zone *zone, struct scan_control *sc, int priority)
1834{
4f98a2fe
RR
1835 int file = is_file_lru(lru);
1836
b39415b2
RR
1837 if (is_active_lru(lru)) {
1838 if (inactive_list_is_low(zone, sc, file))
1839 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1840 return 0;
1841 }
1842
33c120ed 1843 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1844}
1845
1f4c025b
KH
1846static int vmscan_swappiness(struct scan_control *sc)
1847{
1848 if (scanning_global_lru(sc))
1849 return vm_swappiness;
1850 return mem_cgroup_swappiness(sc->mem_cgroup);
1851}
1852
4f98a2fe
RR
1853/*
1854 * Determine how aggressively the anon and file LRU lists should be
1855 * scanned. The relative value of each set of LRU lists is determined
1856 * by looking at the fraction of the pages scanned we did rotate back
1857 * onto the active list instead of evict.
1858 *
76a33fc3 1859 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1860 */
76a33fc3
SL
1861static void get_scan_count(struct zone *zone, struct scan_control *sc,
1862 unsigned long *nr, int priority)
4f98a2fe
RR
1863{
1864 unsigned long anon, file, free;
1865 unsigned long anon_prio, file_prio;
1866 unsigned long ap, fp;
6e901571 1867 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
76a33fc3
SL
1868 u64 fraction[2], denominator;
1869 enum lru_list l;
1870 int noswap = 0;
a4d3e9e7 1871 bool force_scan = false;
246e87a9 1872
f11c0ca5
JW
1873 /*
1874 * If the zone or memcg is small, nr[l] can be 0. This
1875 * results in no scanning on this priority and a potential
1876 * priority drop. Global direct reclaim can go to the next
1877 * zone and tends to have no problems. Global kswapd is for
1878 * zone balancing and it needs to scan a minimum amount. When
1879 * reclaiming for a memcg, a priority drop can cause high
1880 * latencies, so it's better to scan a minimum amount there as
1881 * well.
1882 */
a4d3e9e7
JW
1883 if (scanning_global_lru(sc) && current_is_kswapd())
1884 force_scan = true;
a4d3e9e7
JW
1885 if (!scanning_global_lru(sc))
1886 force_scan = true;
76a33fc3
SL
1887
1888 /* If we have no swap space, do not bother scanning anon pages. */
1889 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1890 noswap = 1;
1891 fraction[0] = 0;
1892 fraction[1] = 1;
1893 denominator = 1;
1894 goto out;
1895 }
4f98a2fe 1896
a4d3e9e7
JW
1897 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1898 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1899 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1900 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1901
e72e2bd6 1902 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1903 free = zone_page_state(zone, NR_FREE_PAGES);
1904 /* If we have very few page cache pages,
1905 force-scan anon pages. */
41858966 1906 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1907 fraction[0] = 1;
1908 fraction[1] = 0;
1909 denominator = 1;
1910 goto out;
eeee9a8c 1911 }
4f98a2fe
RR
1912 }
1913
58c37f6e
KM
1914 /*
1915 * With swappiness at 100, anonymous and file have the same priority.
1916 * This scanning priority is essentially the inverse of IO cost.
1917 */
1f4c025b
KH
1918 anon_prio = vmscan_swappiness(sc);
1919 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1920
4f98a2fe
RR
1921 /*
1922 * OK, so we have swap space and a fair amount of page cache
1923 * pages. We use the recently rotated / recently scanned
1924 * ratios to determine how valuable each cache is.
1925 *
1926 * Because workloads change over time (and to avoid overflow)
1927 * we keep these statistics as a floating average, which ends
1928 * up weighing recent references more than old ones.
1929 *
1930 * anon in [0], file in [1]
1931 */
58c37f6e 1932 spin_lock_irq(&zone->lru_lock);
6e901571 1933 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1934 reclaim_stat->recent_scanned[0] /= 2;
1935 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1936 }
1937
6e901571 1938 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1939 reclaim_stat->recent_scanned[1] /= 2;
1940 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1941 }
1942
4f98a2fe 1943 /*
00d8089c
RR
1944 * The amount of pressure on anon vs file pages is inversely
1945 * proportional to the fraction of recently scanned pages on
1946 * each list that were recently referenced and in active use.
4f98a2fe 1947 */
6e901571
KM
1948 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1949 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1950
6e901571
KM
1951 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1952 fp /= reclaim_stat->recent_rotated[1] + 1;
58c37f6e 1953 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1954
76a33fc3
SL
1955 fraction[0] = ap;
1956 fraction[1] = fp;
1957 denominator = ap + fp + 1;
1958out:
1959 for_each_evictable_lru(l) {
1960 int file = is_file_lru(l);
1961 unsigned long scan;
6e08a369 1962
76a33fc3
SL
1963 scan = zone_nr_lru_pages(zone, sc, l);
1964 if (priority || noswap) {
1965 scan >>= priority;
f11c0ca5
JW
1966 if (!scan && force_scan)
1967 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1968 scan = div64_u64(scan * fraction[file], denominator);
1969 }
246e87a9 1970 nr[l] = scan;
76a33fc3 1971 }
6e08a369 1972}
4f98a2fe 1973
3e7d3449
MG
1974/*
1975 * Reclaim/compaction depends on a number of pages being freed. To avoid
1976 * disruption to the system, a small number of order-0 pages continue to be
1977 * rotated and reclaimed in the normal fashion. However, by the time we get
1978 * back to the allocator and call try_to_compact_zone(), we ensure that
1979 * there are enough free pages for it to be likely successful
1980 */
1981static inline bool should_continue_reclaim(struct zone *zone,
1982 unsigned long nr_reclaimed,
1983 unsigned long nr_scanned,
1984 struct scan_control *sc)
1985{
1986 unsigned long pages_for_compaction;
1987 unsigned long inactive_lru_pages;
1988
1989 /* If not in reclaim/compaction mode, stop */
f3a310bc 1990 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
3e7d3449
MG
1991 return false;
1992
2876592f
MG
1993 /* Consider stopping depending on scan and reclaim activity */
1994 if (sc->gfp_mask & __GFP_REPEAT) {
1995 /*
1996 * For __GFP_REPEAT allocations, stop reclaiming if the
1997 * full LRU list has been scanned and we are still failing
1998 * to reclaim pages. This full LRU scan is potentially
1999 * expensive but a __GFP_REPEAT caller really wants to succeed
2000 */
2001 if (!nr_reclaimed && !nr_scanned)
2002 return false;
2003 } else {
2004 /*
2005 * For non-__GFP_REPEAT allocations which can presumably
2006 * fail without consequence, stop if we failed to reclaim
2007 * any pages from the last SWAP_CLUSTER_MAX number of
2008 * pages that were scanned. This will return to the
2009 * caller faster at the risk reclaim/compaction and
2010 * the resulting allocation attempt fails
2011 */
2012 if (!nr_reclaimed)
2013 return false;
2014 }
3e7d3449
MG
2015
2016 /*
2017 * If we have not reclaimed enough pages for compaction and the
2018 * inactive lists are large enough, continue reclaiming
2019 */
2020 pages_for_compaction = (2UL << sc->order);
2021 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2022 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2023 if (sc->nr_reclaimed < pages_for_compaction &&
2024 inactive_lru_pages > pages_for_compaction)
2025 return true;
2026
2027 /* If compaction would go ahead or the allocation would succeed, stop */
2028 switch (compaction_suitable(zone, sc->order)) {
2029 case COMPACT_PARTIAL:
2030 case COMPACT_CONTINUE:
2031 return false;
2032 default:
2033 return true;
2034 }
2035}
2036
1da177e4
LT
2037/*
2038 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2039 */
a79311c1 2040static void shrink_zone(int priority, struct zone *zone,
05ff5137 2041 struct scan_control *sc)
1da177e4 2042{
b69408e8 2043 unsigned long nr[NR_LRU_LISTS];
8695949a 2044 unsigned long nr_to_scan;
b69408e8 2045 enum lru_list l;
f0fdc5e8 2046 unsigned long nr_reclaimed, nr_scanned;
22fba335 2047 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 2048 struct blk_plug plug;
e0f79b8f 2049
3e7d3449
MG
2050restart:
2051 nr_reclaimed = 0;
f0fdc5e8 2052 nr_scanned = sc->nr_scanned;
76a33fc3 2053 get_scan_count(zone, sc, nr, priority);
1da177e4 2054
3da367c3 2055 blk_start_plug(&plug);
556adecb
RR
2056 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2057 nr[LRU_INACTIVE_FILE]) {
894bc310 2058 for_each_evictable_lru(l) {
b69408e8 2059 if (nr[l]) {
ece74b2e
KM
2060 nr_to_scan = min_t(unsigned long,
2061 nr[l], SWAP_CLUSTER_MAX);
b69408e8 2062 nr[l] -= nr_to_scan;
1da177e4 2063
01dbe5c9
KM
2064 nr_reclaimed += shrink_list(l, nr_to_scan,
2065 zone, sc, priority);
b69408e8 2066 }
1da177e4 2067 }
a79311c1
RR
2068 /*
2069 * On large memory systems, scan >> priority can become
2070 * really large. This is fine for the starting priority;
2071 * we want to put equal scanning pressure on each zone.
2072 * However, if the VM has a harder time of freeing pages,
2073 * with multiple processes reclaiming pages, the total
2074 * freeing target can get unreasonably large.
2075 */
338fde90 2076 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 2077 break;
1da177e4 2078 }
3da367c3 2079 blk_finish_plug(&plug);
3e7d3449 2080 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 2081
556adecb
RR
2082 /*
2083 * Even if we did not try to evict anon pages at all, we want to
2084 * rebalance the anon lru active/inactive ratio.
2085 */
74e3f3c3 2086 if (inactive_anon_is_low(zone, sc))
556adecb
RR
2087 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2088
3e7d3449
MG
2089 /* reclaim/compaction might need reclaim to continue */
2090 if (should_continue_reclaim(zone, nr_reclaimed,
2091 sc->nr_scanned - nr_scanned, sc))
2092 goto restart;
2093
232ea4d6 2094 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
2095}
2096
2097/*
2098 * This is the direct reclaim path, for page-allocating processes. We only
2099 * try to reclaim pages from zones which will satisfy the caller's allocation
2100 * request.
2101 *
41858966
MG
2102 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2103 * Because:
1da177e4
LT
2104 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2105 * allocation or
41858966
MG
2106 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2107 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2108 * zone defense algorithm.
1da177e4 2109 *
1da177e4
LT
2110 * If a zone is deemed to be full of pinned pages then just give it a light
2111 * scan then give up on it.
e0c23279
MG
2112 *
2113 * This function returns true if a zone is being reclaimed for a costly
2114 * high-order allocation and compaction is either ready to begin or deferred.
2115 * This indicates to the caller that it should retry the allocation or fail.
1da177e4 2116 */
e0c23279 2117static bool shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 2118 struct scan_control *sc)
1da177e4 2119{
dd1a239f 2120 struct zoneref *z;
54a6eb5c 2121 struct zone *zone;
d149e3b2
YH
2122 unsigned long nr_soft_reclaimed;
2123 unsigned long nr_soft_scanned;
e0c23279 2124 bool should_abort_reclaim = false;
1cfb419b 2125
d4debc66
MG
2126 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2127 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2128 if (!populated_zone(zone))
1da177e4 2129 continue;
1cfb419b
KH
2130 /*
2131 * Take care memory controller reclaiming has small influence
2132 * to global LRU.
2133 */
e72e2bd6 2134 if (scanning_global_lru(sc)) {
1cfb419b
KH
2135 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2136 continue;
93e4a89a 2137 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2138 continue; /* Let kswapd poll it */
e0887c19
RR
2139 if (COMPACTION_BUILD) {
2140 /*
e0c23279
MG
2141 * If we already have plenty of memory free for
2142 * compaction in this zone, don't free any more.
2143 * Even though compaction is invoked for any
2144 * non-zero order, only frequent costly order
2145 * reclamation is disruptive enough to become a
2146 * noticable problem, like transparent huge page
2147 * allocations.
e0887c19
RR
2148 */
2149 if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2150 (compaction_suitable(zone, sc->order) ||
e0c23279
MG
2151 compaction_deferred(zone))) {
2152 should_abort_reclaim = true;
e0887c19 2153 continue;
e0c23279 2154 }
e0887c19 2155 }
ac34a1a3
KH
2156 /*
2157 * This steals pages from memory cgroups over softlimit
2158 * and returns the number of reclaimed pages and
2159 * scanned pages. This works for global memory pressure
2160 * and balancing, not for a memcg's limit.
2161 */
2162 nr_soft_scanned = 0;
2163 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2164 sc->order, sc->gfp_mask,
2165 &nr_soft_scanned);
2166 sc->nr_reclaimed += nr_soft_reclaimed;
2167 sc->nr_scanned += nr_soft_scanned;
2168 /* need some check for avoid more shrink_zone() */
1cfb419b 2169 }
408d8544 2170
a79311c1 2171 shrink_zone(priority, zone, sc);
1da177e4 2172 }
e0c23279
MG
2173
2174 return should_abort_reclaim;
d1908362
MK
2175}
2176
2177static bool zone_reclaimable(struct zone *zone)
2178{
2179 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2180}
2181
929bea7c 2182/* All zones in zonelist are unreclaimable? */
d1908362
MK
2183static bool all_unreclaimable(struct zonelist *zonelist,
2184 struct scan_control *sc)
2185{
2186 struct zoneref *z;
2187 struct zone *zone;
d1908362
MK
2188
2189 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2190 gfp_zone(sc->gfp_mask), sc->nodemask) {
2191 if (!populated_zone(zone))
2192 continue;
2193 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2194 continue;
929bea7c
KM
2195 if (!zone->all_unreclaimable)
2196 return false;
d1908362
MK
2197 }
2198
929bea7c 2199 return true;
1da177e4 2200}
4f98a2fe 2201
1da177e4
LT
2202/*
2203 * This is the main entry point to direct page reclaim.
2204 *
2205 * If a full scan of the inactive list fails to free enough memory then we
2206 * are "out of memory" and something needs to be killed.
2207 *
2208 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2209 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2210 * caller can't do much about. We kick the writeback threads and take explicit
2211 * naps in the hope that some of these pages can be written. But if the
2212 * allocating task holds filesystem locks which prevent writeout this might not
2213 * work, and the allocation attempt will fail.
a41f24ea
NA
2214 *
2215 * returns: 0, if no pages reclaimed
2216 * else, the number of pages reclaimed
1da177e4 2217 */
dac1d27b 2218static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2219 struct scan_control *sc,
2220 struct shrink_control *shrink)
1da177e4
LT
2221{
2222 int priority;
69e05944 2223 unsigned long total_scanned = 0;
1da177e4 2224 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2225 struct zoneref *z;
54a6eb5c 2226 struct zone *zone;
22fba335 2227 unsigned long writeback_threshold;
1da177e4 2228
c0ff7453 2229 get_mems_allowed();
873b4771
KK
2230 delayacct_freepages_start();
2231
e72e2bd6 2232 if (scanning_global_lru(sc))
1cfb419b 2233 count_vm_event(ALLOCSTALL);
1da177e4
LT
2234
2235 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2236 sc->nr_scanned = 0;
f7b7fd8f 2237 if (!priority)
a433658c 2238 disable_swap_token(sc->mem_cgroup);
e0c23279
MG
2239 if (shrink_zones(priority, zonelist, sc))
2240 break;
2241
66e1707b
BS
2242 /*
2243 * Don't shrink slabs when reclaiming memory from
2244 * over limit cgroups
2245 */
e72e2bd6 2246 if (scanning_global_lru(sc)) {
c6a8a8c5 2247 unsigned long lru_pages = 0;
d4debc66
MG
2248 for_each_zone_zonelist(zone, z, zonelist,
2249 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2250 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2251 continue;
2252
2253 lru_pages += zone_reclaimable_pages(zone);
2254 }
2255
1495f230 2256 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2257 if (reclaim_state) {
a79311c1 2258 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2259 reclaim_state->reclaimed_slab = 0;
2260 }
1da177e4 2261 }
66e1707b 2262 total_scanned += sc->nr_scanned;
bb21c7ce 2263 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2264 goto out;
1da177e4
LT
2265
2266 /*
2267 * Try to write back as many pages as we just scanned. This
2268 * tends to cause slow streaming writers to write data to the
2269 * disk smoothly, at the dirtying rate, which is nice. But
2270 * that's undesirable in laptop mode, where we *want* lumpy
2271 * writeout. So in laptop mode, write out the whole world.
2272 */
22fba335
KM
2273 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2274 if (total_scanned > writeback_threshold) {
0e175a18
CW
2275 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2276 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2277 sc->may_writepage = 1;
1da177e4
LT
2278 }
2279
2280 /* Take a nap, wait for some writeback to complete */
7b51755c 2281 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2282 priority < DEF_PRIORITY - 2) {
2283 struct zone *preferred_zone;
2284
2285 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2286 &cpuset_current_mems_allowed,
2287 &preferred_zone);
0e093d99
MG
2288 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2289 }
1da177e4 2290 }
bb21c7ce 2291
1da177e4 2292out:
873b4771 2293 delayacct_freepages_end();
c0ff7453 2294 put_mems_allowed();
873b4771 2295
bb21c7ce
KM
2296 if (sc->nr_reclaimed)
2297 return sc->nr_reclaimed;
2298
929bea7c
KM
2299 /*
2300 * As hibernation is going on, kswapd is freezed so that it can't mark
2301 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2302 * check.
2303 */
2304 if (oom_killer_disabled)
2305 return 0;
2306
bb21c7ce 2307 /* top priority shrink_zones still had more to do? don't OOM, then */
d1908362 2308 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2309 return 1;
2310
2311 return 0;
1da177e4
LT
2312}
2313
dac1d27b 2314unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2315 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2316{
33906bc5 2317 unsigned long nr_reclaimed;
66e1707b
BS
2318 struct scan_control sc = {
2319 .gfp_mask = gfp_mask,
2320 .may_writepage = !laptop_mode,
22fba335 2321 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2322 .may_unmap = 1,
2e2e4259 2323 .may_swap = 1,
66e1707b
BS
2324 .order = order,
2325 .mem_cgroup = NULL,
327c0e96 2326 .nodemask = nodemask,
66e1707b 2327 };
a09ed5e0
YH
2328 struct shrink_control shrink = {
2329 .gfp_mask = sc.gfp_mask,
2330 };
66e1707b 2331
33906bc5
MG
2332 trace_mm_vmscan_direct_reclaim_begin(order,
2333 sc.may_writepage,
2334 gfp_mask);
2335
a09ed5e0 2336 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2337
2338 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2339
2340 return nr_reclaimed;
66e1707b
BS
2341}
2342
00f0b825 2343#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2344
4e416953
BS
2345unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2346 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2347 struct zone *zone,
2348 unsigned long *nr_scanned)
4e416953
BS
2349{
2350 struct scan_control sc = {
0ae5e89c 2351 .nr_scanned = 0,
b8f5c566 2352 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2353 .may_writepage = !laptop_mode,
2354 .may_unmap = 1,
2355 .may_swap = !noswap,
4e416953
BS
2356 .order = 0,
2357 .mem_cgroup = mem,
4e416953 2358 };
0ae5e89c 2359
4e416953
BS
2360 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2361 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2362
2363 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2364 sc.may_writepage,
2365 sc.gfp_mask);
2366
4e416953
BS
2367 /*
2368 * NOTE: Although we can get the priority field, using it
2369 * here is not a good idea, since it limits the pages we can scan.
2370 * if we don't reclaim here, the shrink_zone from balance_pgdat
2371 * will pick up pages from other mem cgroup's as well. We hack
2372 * the priority and make it zero.
2373 */
2374 shrink_zone(0, zone, &sc);
bdce6d9e
KM
2375
2376 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2377
0ae5e89c 2378 *nr_scanned = sc.nr_scanned;
4e416953
BS
2379 return sc.nr_reclaimed;
2380}
2381
e1a1cd59 2382unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8 2383 gfp_t gfp_mask,
185efc0f 2384 bool noswap)
66e1707b 2385{
4e416953 2386 struct zonelist *zonelist;
bdce6d9e 2387 unsigned long nr_reclaimed;
889976db 2388 int nid;
66e1707b 2389 struct scan_control sc = {
66e1707b 2390 .may_writepage = !laptop_mode,
a6dc60f8 2391 .may_unmap = 1,
2e2e4259 2392 .may_swap = !noswap,
22fba335 2393 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b
BS
2394 .order = 0,
2395 .mem_cgroup = mem_cont,
327c0e96 2396 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2397 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2398 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2399 };
2400 struct shrink_control shrink = {
2401 .gfp_mask = sc.gfp_mask,
66e1707b 2402 };
66e1707b 2403
889976db
YH
2404 /*
2405 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2406 * take care of from where we get pages. So the node where we start the
2407 * scan does not need to be the current node.
2408 */
2409 nid = mem_cgroup_select_victim_node(mem_cont);
2410
2411 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2412
2413 trace_mm_vmscan_memcg_reclaim_begin(0,
2414 sc.may_writepage,
2415 sc.gfp_mask);
2416
a09ed5e0 2417 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2418
2419 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2420
2421 return nr_reclaimed;
66e1707b
BS
2422}
2423#endif
2424
1741c877
MG
2425/*
2426 * pgdat_balanced is used when checking if a node is balanced for high-order
2427 * allocations. Only zones that meet watermarks and are in a zone allowed
2428 * by the callers classzone_idx are added to balanced_pages. The total of
2429 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2430 * for the node to be considered balanced. Forcing all zones to be balanced
2431 * for high orders can cause excessive reclaim when there are imbalanced zones.
2432 * The choice of 25% is due to
2433 * o a 16M DMA zone that is balanced will not balance a zone on any
2434 * reasonable sized machine
2435 * o On all other machines, the top zone must be at least a reasonable
25985edc 2436 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2437 * would need to be at least 256M for it to be balance a whole node.
2438 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2439 * to balance a node on its own. These seemed like reasonable ratios.
2440 */
2441static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2442 int classzone_idx)
2443{
2444 unsigned long present_pages = 0;
2445 int i;
2446
2447 for (i = 0; i <= classzone_idx; i++)
2448 present_pages += pgdat->node_zones[i].present_pages;
2449
4746efde
SL
2450 /* A special case here: if zone has no page, we think it's balanced */
2451 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2452}
2453
f50de2d3 2454/* is kswapd sleeping prematurely? */
dc83edd9
MG
2455static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2456 int classzone_idx)
f50de2d3 2457{
bb3ab596 2458 int i;
1741c877
MG
2459 unsigned long balanced = 0;
2460 bool all_zones_ok = true;
f50de2d3
MG
2461
2462 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2463 if (remaining)
dc83edd9 2464 return true;
f50de2d3 2465
0abdee2b 2466 /* Check the watermark levels */
08951e54 2467 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2468 struct zone *zone = pgdat->node_zones + i;
2469
2470 if (!populated_zone(zone))
2471 continue;
2472
355b09c4
MG
2473 /*
2474 * balance_pgdat() skips over all_unreclaimable after
2475 * DEF_PRIORITY. Effectively, it considers them balanced so
2476 * they must be considered balanced here as well if kswapd
2477 * is to sleep
2478 */
2479 if (zone->all_unreclaimable) {
2480 balanced += zone->present_pages;
de3fab39 2481 continue;
355b09c4 2482 }
de3fab39 2483
88f5acf8 2484 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2485 i, 0))
1741c877
MG
2486 all_zones_ok = false;
2487 else
2488 balanced += zone->present_pages;
bb3ab596 2489 }
f50de2d3 2490
1741c877
MG
2491 /*
2492 * For high-order requests, the balanced zones must contain at least
2493 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2494 * must be balanced
2495 */
2496 if (order)
afc7e326 2497 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2498 else
2499 return !all_zones_ok;
f50de2d3
MG
2500}
2501
1da177e4
LT
2502/*
2503 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2504 * they are all at high_wmark_pages(zone).
1da177e4 2505 *
0abdee2b 2506 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2507 *
2508 * There is special handling here for zones which are full of pinned pages.
2509 * This can happen if the pages are all mlocked, or if they are all used by
2510 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2511 * What we do is to detect the case where all pages in the zone have been
2512 * scanned twice and there has been zero successful reclaim. Mark the zone as
2513 * dead and from now on, only perform a short scan. Basically we're polling
2514 * the zone for when the problem goes away.
2515 *
2516 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2517 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2518 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2519 * lower zones regardless of the number of free pages in the lower zones. This
2520 * interoperates with the page allocator fallback scheme to ensure that aging
2521 * of pages is balanced across the zones.
1da177e4 2522 */
99504748 2523static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2524 int *classzone_idx)
1da177e4 2525{
1da177e4 2526 int all_zones_ok;
1741c877 2527 unsigned long balanced;
1da177e4
LT
2528 int priority;
2529 int i;
99504748 2530 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2531 unsigned long total_scanned;
1da177e4 2532 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2533 unsigned long nr_soft_reclaimed;
2534 unsigned long nr_soft_scanned;
179e9639
AM
2535 struct scan_control sc = {
2536 .gfp_mask = GFP_KERNEL,
a6dc60f8 2537 .may_unmap = 1,
2e2e4259 2538 .may_swap = 1,
22fba335
KM
2539 /*
2540 * kswapd doesn't want to be bailed out while reclaim. because
2541 * we want to put equal scanning pressure on each zone.
2542 */
2543 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2544 .order = order,
66e1707b 2545 .mem_cgroup = NULL,
179e9639 2546 };
a09ed5e0
YH
2547 struct shrink_control shrink = {
2548 .gfp_mask = sc.gfp_mask,
2549 };
1da177e4
LT
2550loop_again:
2551 total_scanned = 0;
a79311c1 2552 sc.nr_reclaimed = 0;
c0bbbc73 2553 sc.may_writepage = !laptop_mode;
f8891e5e 2554 count_vm_event(PAGEOUTRUN);
1da177e4 2555
1da177e4 2556 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2557 unsigned long lru_pages = 0;
bb3ab596 2558 int has_under_min_watermark_zone = 0;
1da177e4 2559
f7b7fd8f
RR
2560 /* The swap token gets in the way of swapout... */
2561 if (!priority)
a433658c 2562 disable_swap_token(NULL);
f7b7fd8f 2563
1da177e4 2564 all_zones_ok = 1;
1741c877 2565 balanced = 0;
1da177e4 2566
d6277db4
RW
2567 /*
2568 * Scan in the highmem->dma direction for the highest
2569 * zone which needs scanning
2570 */
2571 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2572 struct zone *zone = pgdat->node_zones + i;
1da177e4 2573
d6277db4
RW
2574 if (!populated_zone(zone))
2575 continue;
1da177e4 2576
93e4a89a 2577 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2578 continue;
1da177e4 2579
556adecb
RR
2580 /*
2581 * Do some background aging of the anon list, to give
2582 * pages a chance to be referenced before reclaiming.
2583 */
14797e23 2584 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2585 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2586 &sc, priority, 0);
2587
88f5acf8 2588 if (!zone_watermark_ok_safe(zone, order,
41858966 2589 high_wmark_pages(zone), 0, 0)) {
d6277db4 2590 end_zone = i;
e1dbeda6 2591 break;
439423f6
SL
2592 } else {
2593 /* If balanced, clear the congested flag */
2594 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2595 }
1da177e4 2596 }
e1dbeda6
AM
2597 if (i < 0)
2598 goto out;
2599
1da177e4
LT
2600 for (i = 0; i <= end_zone; i++) {
2601 struct zone *zone = pgdat->node_zones + i;
2602
adea02a1 2603 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2604 }
2605
2606 /*
2607 * Now scan the zone in the dma->highmem direction, stopping
2608 * at the last zone which needs scanning.
2609 *
2610 * We do this because the page allocator works in the opposite
2611 * direction. This prevents the page allocator from allocating
2612 * pages behind kswapd's direction of progress, which would
2613 * cause too much scanning of the lower zones.
2614 */
2615 for (i = 0; i <= end_zone; i++) {
2616 struct zone *zone = pgdat->node_zones + i;
b15e0905 2617 int nr_slab;
8afdcece 2618 unsigned long balance_gap;
1da177e4 2619
f3fe6512 2620 if (!populated_zone(zone))
1da177e4
LT
2621 continue;
2622
93e4a89a 2623 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2624 continue;
2625
1da177e4 2626 sc.nr_scanned = 0;
4e416953 2627
0ae5e89c 2628 nr_soft_scanned = 0;
4e416953
BS
2629 /*
2630 * Call soft limit reclaim before calling shrink_zone.
4e416953 2631 */
0ae5e89c
YH
2632 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2633 order, sc.gfp_mask,
2634 &nr_soft_scanned);
2635 sc.nr_reclaimed += nr_soft_reclaimed;
2636 total_scanned += nr_soft_scanned;
00918b6a 2637
32a4330d 2638 /*
8afdcece
MG
2639 * We put equal pressure on every zone, unless
2640 * one zone has way too many pages free
2641 * already. The "too many pages" is defined
2642 * as the high wmark plus a "gap" where the
2643 * gap is either the low watermark or 1%
2644 * of the zone, whichever is smaller.
32a4330d 2645 */
8afdcece
MG
2646 balance_gap = min(low_wmark_pages(zone),
2647 (zone->present_pages +
2648 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2649 KSWAPD_ZONE_BALANCE_GAP_RATIO);
88f5acf8 2650 if (!zone_watermark_ok_safe(zone, order,
8afdcece 2651 high_wmark_pages(zone) + balance_gap,
d7868dae 2652 end_zone, 0)) {
a79311c1 2653 shrink_zone(priority, zone, &sc);
5a03b051 2654
d7868dae
MG
2655 reclaim_state->reclaimed_slab = 0;
2656 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2657 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2658 total_scanned += sc.nr_scanned;
2659
2660 if (nr_slab == 0 && !zone_reclaimable(zone))
2661 zone->all_unreclaimable = 1;
2662 }
2663
1da177e4
LT
2664 /*
2665 * If we've done a decent amount of scanning and
2666 * the reclaim ratio is low, start doing writepage
2667 * even in laptop mode
2668 */
2669 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2670 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2671 sc.may_writepage = 1;
bb3ab596 2672
215ddd66
MG
2673 if (zone->all_unreclaimable) {
2674 if (end_zone && end_zone == i)
2675 end_zone--;
d7868dae 2676 continue;
215ddd66 2677 }
d7868dae 2678
88f5acf8 2679 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2680 high_wmark_pages(zone), end_zone, 0)) {
2681 all_zones_ok = 0;
2682 /*
2683 * We are still under min water mark. This
2684 * means that we have a GFP_ATOMIC allocation
2685 * failure risk. Hurry up!
2686 */
88f5acf8 2687 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2688 min_wmark_pages(zone), end_zone, 0))
2689 has_under_min_watermark_zone = 1;
0e093d99
MG
2690 } else {
2691 /*
2692 * If a zone reaches its high watermark,
2693 * consider it to be no longer congested. It's
2694 * possible there are dirty pages backed by
2695 * congested BDIs but as pressure is relieved,
2696 * spectulatively avoid congestion waits
2697 */
2698 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2699 if (i <= *classzone_idx)
1741c877 2700 balanced += zone->present_pages;
45973d74 2701 }
bb3ab596 2702
1da177e4 2703 }
dc83edd9 2704 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2705 break; /* kswapd: all done */
2706 /*
2707 * OK, kswapd is getting into trouble. Take a nap, then take
2708 * another pass across the zones.
2709 */
bb3ab596
KM
2710 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2711 if (has_under_min_watermark_zone)
2712 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2713 else
2714 congestion_wait(BLK_RW_ASYNC, HZ/10);
2715 }
1da177e4
LT
2716
2717 /*
2718 * We do this so kswapd doesn't build up large priorities for
2719 * example when it is freeing in parallel with allocators. It
2720 * matches the direct reclaim path behaviour in terms of impact
2721 * on zone->*_priority.
2722 */
a79311c1 2723 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2724 break;
2725 }
2726out:
99504748
MG
2727
2728 /*
2729 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2730 * high-order: Balanced zones must make up at least 25% of the node
2731 * for the node to be balanced
99504748 2732 */
dc83edd9 2733 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2734 cond_resched();
8357376d
RW
2735
2736 try_to_freeze();
2737
73ce02e9
KM
2738 /*
2739 * Fragmentation may mean that the system cannot be
2740 * rebalanced for high-order allocations in all zones.
2741 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2742 * it means the zones have been fully scanned and are still
2743 * not balanced. For high-order allocations, there is
2744 * little point trying all over again as kswapd may
2745 * infinite loop.
2746 *
2747 * Instead, recheck all watermarks at order-0 as they
2748 * are the most important. If watermarks are ok, kswapd will go
2749 * back to sleep. High-order users can still perform direct
2750 * reclaim if they wish.
2751 */
2752 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2753 order = sc.order = 0;
2754
1da177e4
LT
2755 goto loop_again;
2756 }
2757
99504748
MG
2758 /*
2759 * If kswapd was reclaiming at a higher order, it has the option of
2760 * sleeping without all zones being balanced. Before it does, it must
2761 * ensure that the watermarks for order-0 on *all* zones are met and
2762 * that the congestion flags are cleared. The congestion flag must
2763 * be cleared as kswapd is the only mechanism that clears the flag
2764 * and it is potentially going to sleep here.
2765 */
2766 if (order) {
2767 for (i = 0; i <= end_zone; i++) {
2768 struct zone *zone = pgdat->node_zones + i;
2769
2770 if (!populated_zone(zone))
2771 continue;
2772
2773 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2774 continue;
2775
2776 /* Confirm the zone is balanced for order-0 */
2777 if (!zone_watermark_ok(zone, 0,
2778 high_wmark_pages(zone), 0, 0)) {
2779 order = sc.order = 0;
2780 goto loop_again;
2781 }
2782
2783 /* If balanced, clear the congested flag */
2784 zone_clear_flag(zone, ZONE_CONGESTED);
16fb9512
SL
2785 if (i <= *classzone_idx)
2786 balanced += zone->present_pages;
99504748
MG
2787 }
2788 }
2789
0abdee2b
MG
2790 /*
2791 * Return the order we were reclaiming at so sleeping_prematurely()
2792 * makes a decision on the order we were last reclaiming at. However,
2793 * if another caller entered the allocator slow path while kswapd
2794 * was awake, order will remain at the higher level
2795 */
dc83edd9 2796 *classzone_idx = end_zone;
0abdee2b 2797 return order;
1da177e4
LT
2798}
2799
dc83edd9 2800static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2801{
2802 long remaining = 0;
2803 DEFINE_WAIT(wait);
2804
2805 if (freezing(current) || kthread_should_stop())
2806 return;
2807
2808 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2809
2810 /* Try to sleep for a short interval */
dc83edd9 2811 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2812 remaining = schedule_timeout(HZ/10);
2813 finish_wait(&pgdat->kswapd_wait, &wait);
2814 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2815 }
2816
2817 /*
2818 * After a short sleep, check if it was a premature sleep. If not, then
2819 * go fully to sleep until explicitly woken up.
2820 */
dc83edd9 2821 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2822 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2823
2824 /*
2825 * vmstat counters are not perfectly accurate and the estimated
2826 * value for counters such as NR_FREE_PAGES can deviate from the
2827 * true value by nr_online_cpus * threshold. To avoid the zone
2828 * watermarks being breached while under pressure, we reduce the
2829 * per-cpu vmstat threshold while kswapd is awake and restore
2830 * them before going back to sleep.
2831 */
2832 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2833 schedule();
2834 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2835 } else {
2836 if (remaining)
2837 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2838 else
2839 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2840 }
2841 finish_wait(&pgdat->kswapd_wait, &wait);
2842}
2843
1da177e4
LT
2844/*
2845 * The background pageout daemon, started as a kernel thread
4f98a2fe 2846 * from the init process.
1da177e4
LT
2847 *
2848 * This basically trickles out pages so that we have _some_
2849 * free memory available even if there is no other activity
2850 * that frees anything up. This is needed for things like routing
2851 * etc, where we otherwise might have all activity going on in
2852 * asynchronous contexts that cannot page things out.
2853 *
2854 * If there are applications that are active memory-allocators
2855 * (most normal use), this basically shouldn't matter.
2856 */
2857static int kswapd(void *p)
2858{
215ddd66 2859 unsigned long order, new_order;
d2ebd0f6 2860 unsigned balanced_order;
215ddd66 2861 int classzone_idx, new_classzone_idx;
d2ebd0f6 2862 int balanced_classzone_idx;
1da177e4
LT
2863 pg_data_t *pgdat = (pg_data_t*)p;
2864 struct task_struct *tsk = current;
f0bc0a60 2865
1da177e4
LT
2866 struct reclaim_state reclaim_state = {
2867 .reclaimed_slab = 0,
2868 };
a70f7302 2869 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2870
cf40bd16
NP
2871 lockdep_set_current_reclaim_state(GFP_KERNEL);
2872
174596a0 2873 if (!cpumask_empty(cpumask))
c5f59f08 2874 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2875 current->reclaim_state = &reclaim_state;
2876
2877 /*
2878 * Tell the memory management that we're a "memory allocator",
2879 * and that if we need more memory we should get access to it
2880 * regardless (see "__alloc_pages()"). "kswapd" should
2881 * never get caught in the normal page freeing logic.
2882 *
2883 * (Kswapd normally doesn't need memory anyway, but sometimes
2884 * you need a small amount of memory in order to be able to
2885 * page out something else, and this flag essentially protects
2886 * us from recursively trying to free more memory as we're
2887 * trying to free the first piece of memory in the first place).
2888 */
930d9152 2889 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2890 set_freezable();
1da177e4 2891
215ddd66 2892 order = new_order = 0;
d2ebd0f6 2893 balanced_order = 0;
215ddd66 2894 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2895 balanced_classzone_idx = classzone_idx;
1da177e4 2896 for ( ; ; ) {
8fe23e05 2897 int ret;
3e1d1d28 2898
215ddd66
MG
2899 /*
2900 * If the last balance_pgdat was unsuccessful it's unlikely a
2901 * new request of a similar or harder type will succeed soon
2902 * so consider going to sleep on the basis we reclaimed at
2903 */
d2ebd0f6
AS
2904 if (balanced_classzone_idx >= new_classzone_idx &&
2905 balanced_order == new_order) {
215ddd66
MG
2906 new_order = pgdat->kswapd_max_order;
2907 new_classzone_idx = pgdat->classzone_idx;
2908 pgdat->kswapd_max_order = 0;
2909 pgdat->classzone_idx = pgdat->nr_zones - 1;
2910 }
2911
99504748 2912 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2913 /*
2914 * Don't sleep if someone wants a larger 'order'
99504748 2915 * allocation or has tigher zone constraints
1da177e4
LT
2916 */
2917 order = new_order;
99504748 2918 classzone_idx = new_classzone_idx;
1da177e4 2919 } else {
d2ebd0f6
AS
2920 kswapd_try_to_sleep(pgdat, balanced_order,
2921 balanced_classzone_idx);
1da177e4 2922 order = pgdat->kswapd_max_order;
99504748 2923 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2924 new_order = order;
2925 new_classzone_idx = classzone_idx;
4d40502e 2926 pgdat->kswapd_max_order = 0;
215ddd66 2927 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2928 }
1da177e4 2929
8fe23e05
DR
2930 ret = try_to_freeze();
2931 if (kthread_should_stop())
2932 break;
2933
2934 /*
2935 * We can speed up thawing tasks if we don't call balance_pgdat
2936 * after returning from the refrigerator
2937 */
33906bc5
MG
2938 if (!ret) {
2939 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
2940 balanced_classzone_idx = classzone_idx;
2941 balanced_order = balance_pgdat(pgdat, order,
2942 &balanced_classzone_idx);
33906bc5 2943 }
1da177e4
LT
2944 }
2945 return 0;
2946}
2947
2948/*
2949 * A zone is low on free memory, so wake its kswapd task to service it.
2950 */
99504748 2951void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2952{
2953 pg_data_t *pgdat;
2954
f3fe6512 2955 if (!populated_zone(zone))
1da177e4
LT
2956 return;
2957
88f5acf8 2958 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2959 return;
88f5acf8 2960 pgdat = zone->zone_pgdat;
99504748 2961 if (pgdat->kswapd_max_order < order) {
1da177e4 2962 pgdat->kswapd_max_order = order;
99504748
MG
2963 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2964 }
8d0986e2 2965 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2966 return;
88f5acf8
MG
2967 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2968 return;
2969
2970 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2971 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2972}
2973
adea02a1
WF
2974/*
2975 * The reclaimable count would be mostly accurate.
2976 * The less reclaimable pages may be
2977 * - mlocked pages, which will be moved to unevictable list when encountered
2978 * - mapped pages, which may require several travels to be reclaimed
2979 * - dirty pages, which is not "instantly" reclaimable
2980 */
2981unsigned long global_reclaimable_pages(void)
4f98a2fe 2982{
adea02a1
WF
2983 int nr;
2984
2985 nr = global_page_state(NR_ACTIVE_FILE) +
2986 global_page_state(NR_INACTIVE_FILE);
2987
2988 if (nr_swap_pages > 0)
2989 nr += global_page_state(NR_ACTIVE_ANON) +
2990 global_page_state(NR_INACTIVE_ANON);
2991
2992 return nr;
2993}
2994
2995unsigned long zone_reclaimable_pages(struct zone *zone)
2996{
2997 int nr;
2998
2999 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3000 zone_page_state(zone, NR_INACTIVE_FILE);
3001
3002 if (nr_swap_pages > 0)
3003 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3004 zone_page_state(zone, NR_INACTIVE_ANON);
3005
3006 return nr;
4f98a2fe
RR
3007}
3008
c6f37f12 3009#ifdef CONFIG_HIBERNATION
1da177e4 3010/*
7b51755c 3011 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3012 * freed pages.
3013 *
3014 * Rather than trying to age LRUs the aim is to preserve the overall
3015 * LRU order by reclaiming preferentially
3016 * inactive > active > active referenced > active mapped
1da177e4 3017 */
7b51755c 3018unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3019{
d6277db4 3020 struct reclaim_state reclaim_state;
d6277db4 3021 struct scan_control sc = {
7b51755c
KM
3022 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3023 .may_swap = 1,
3024 .may_unmap = 1,
d6277db4 3025 .may_writepage = 1,
7b51755c
KM
3026 .nr_to_reclaim = nr_to_reclaim,
3027 .hibernation_mode = 1,
7b51755c 3028 .order = 0,
1da177e4 3029 };
a09ed5e0
YH
3030 struct shrink_control shrink = {
3031 .gfp_mask = sc.gfp_mask,
3032 };
3033 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3034 struct task_struct *p = current;
3035 unsigned long nr_reclaimed;
1da177e4 3036
7b51755c
KM
3037 p->flags |= PF_MEMALLOC;
3038 lockdep_set_current_reclaim_state(sc.gfp_mask);
3039 reclaim_state.reclaimed_slab = 0;
3040 p->reclaim_state = &reclaim_state;
d6277db4 3041
a09ed5e0 3042 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3043
7b51755c
KM
3044 p->reclaim_state = NULL;
3045 lockdep_clear_current_reclaim_state();
3046 p->flags &= ~PF_MEMALLOC;
d6277db4 3047
7b51755c 3048 return nr_reclaimed;
1da177e4 3049}
c6f37f12 3050#endif /* CONFIG_HIBERNATION */
1da177e4 3051
1da177e4
LT
3052/* It's optimal to keep kswapds on the same CPUs as their memory, but
3053 not required for correctness. So if the last cpu in a node goes
3054 away, we get changed to run anywhere: as the first one comes back,
3055 restore their cpu bindings. */
9c7b216d 3056static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 3057 unsigned long action, void *hcpu)
1da177e4 3058{
58c0a4a7 3059 int nid;
1da177e4 3060
8bb78442 3061 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 3062 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 3063 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3064 const struct cpumask *mask;
3065
3066 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3067
3e597945 3068 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3069 /* One of our CPUs online: restore mask */
c5f59f08 3070 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3071 }
3072 }
3073 return NOTIFY_OK;
3074}
1da177e4 3075
3218ae14
YG
3076/*
3077 * This kswapd start function will be called by init and node-hot-add.
3078 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3079 */
3080int kswapd_run(int nid)
3081{
3082 pg_data_t *pgdat = NODE_DATA(nid);
3083 int ret = 0;
3084
3085 if (pgdat->kswapd)
3086 return 0;
3087
3088 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3089 if (IS_ERR(pgdat->kswapd)) {
3090 /* failure at boot is fatal */
3091 BUG_ON(system_state == SYSTEM_BOOTING);
3092 printk("Failed to start kswapd on node %d\n",nid);
3093 ret = -1;
3094 }
3095 return ret;
3096}
3097
8fe23e05
DR
3098/*
3099 * Called by memory hotplug when all memory in a node is offlined.
3100 */
3101void kswapd_stop(int nid)
3102{
3103 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3104
3105 if (kswapd)
3106 kthread_stop(kswapd);
3107}
3108
1da177e4
LT
3109static int __init kswapd_init(void)
3110{
3218ae14 3111 int nid;
69e05944 3112
1da177e4 3113 swap_setup();
9422ffba 3114 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3115 kswapd_run(nid);
1da177e4
LT
3116 hotcpu_notifier(cpu_callback, 0);
3117 return 0;
3118}
3119
3120module_init(kswapd_init)
9eeff239
CL
3121
3122#ifdef CONFIG_NUMA
3123/*
3124 * Zone reclaim mode
3125 *
3126 * If non-zero call zone_reclaim when the number of free pages falls below
3127 * the watermarks.
9eeff239
CL
3128 */
3129int zone_reclaim_mode __read_mostly;
3130
1b2ffb78 3131#define RECLAIM_OFF 0
7d03431c 3132#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3133#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3134#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3135
a92f7126
CL
3136/*
3137 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3138 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3139 * a zone.
3140 */
3141#define ZONE_RECLAIM_PRIORITY 4
3142
9614634f
CL
3143/*
3144 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3145 * occur.
3146 */
3147int sysctl_min_unmapped_ratio = 1;
3148
0ff38490
CL
3149/*
3150 * If the number of slab pages in a zone grows beyond this percentage then
3151 * slab reclaim needs to occur.
3152 */
3153int sysctl_min_slab_ratio = 5;
3154
90afa5de
MG
3155static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3156{
3157 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3158 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3159 zone_page_state(zone, NR_ACTIVE_FILE);
3160
3161 /*
3162 * It's possible for there to be more file mapped pages than
3163 * accounted for by the pages on the file LRU lists because
3164 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3165 */
3166 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3167}
3168
3169/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3170static long zone_pagecache_reclaimable(struct zone *zone)
3171{
3172 long nr_pagecache_reclaimable;
3173 long delta = 0;
3174
3175 /*
3176 * If RECLAIM_SWAP is set, then all file pages are considered
3177 * potentially reclaimable. Otherwise, we have to worry about
3178 * pages like swapcache and zone_unmapped_file_pages() provides
3179 * a better estimate
3180 */
3181 if (zone_reclaim_mode & RECLAIM_SWAP)
3182 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3183 else
3184 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3185
3186 /* If we can't clean pages, remove dirty pages from consideration */
3187 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3188 delta += zone_page_state(zone, NR_FILE_DIRTY);
3189
3190 /* Watch for any possible underflows due to delta */
3191 if (unlikely(delta > nr_pagecache_reclaimable))
3192 delta = nr_pagecache_reclaimable;
3193
3194 return nr_pagecache_reclaimable - delta;
3195}
3196
9eeff239
CL
3197/*
3198 * Try to free up some pages from this zone through reclaim.
3199 */
179e9639 3200static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3201{
7fb2d46d 3202 /* Minimum pages needed in order to stay on node */
69e05944 3203 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3204 struct task_struct *p = current;
3205 struct reclaim_state reclaim_state;
8695949a 3206 int priority;
179e9639
AM
3207 struct scan_control sc = {
3208 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3209 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3210 .may_swap = 1,
22fba335
KM
3211 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3212 SWAP_CLUSTER_MAX),
179e9639 3213 .gfp_mask = gfp_mask,
bd2f6199 3214 .order = order,
179e9639 3215 };
a09ed5e0
YH
3216 struct shrink_control shrink = {
3217 .gfp_mask = sc.gfp_mask,
3218 };
15748048 3219 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3220
9eeff239 3221 cond_resched();
d4f7796e
CL
3222 /*
3223 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3224 * and we also need to be able to write out pages for RECLAIM_WRITE
3225 * and RECLAIM_SWAP.
3226 */
3227 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3228 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3229 reclaim_state.reclaimed_slab = 0;
3230 p->reclaim_state = &reclaim_state;
c84db23c 3231
90afa5de 3232 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3233 /*
3234 * Free memory by calling shrink zone with increasing
3235 * priorities until we have enough memory freed.
3236 */
3237 priority = ZONE_RECLAIM_PRIORITY;
3238 do {
a79311c1 3239 shrink_zone(priority, zone, &sc);
0ff38490 3240 priority--;
a79311c1 3241 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3242 }
c84db23c 3243
15748048
KM
3244 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3245 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3246 /*
7fb2d46d 3247 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3248 * many pages were freed in this zone. So we take the current
3249 * number of slab pages and shake the slab until it is reduced
3250 * by the same nr_pages that we used for reclaiming unmapped
3251 * pages.
2a16e3f4 3252 *
0ff38490
CL
3253 * Note that shrink_slab will free memory on all zones and may
3254 * take a long time.
2a16e3f4 3255 */
4dc4b3d9
KM
3256 for (;;) {
3257 unsigned long lru_pages = zone_reclaimable_pages(zone);
3258
3259 /* No reclaimable slab or very low memory pressure */
1495f230 3260 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3261 break;
3262
3263 /* Freed enough memory */
3264 nr_slab_pages1 = zone_page_state(zone,
3265 NR_SLAB_RECLAIMABLE);
3266 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3267 break;
3268 }
83e33a47
CL
3269
3270 /*
3271 * Update nr_reclaimed by the number of slab pages we
3272 * reclaimed from this zone.
3273 */
15748048
KM
3274 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3275 if (nr_slab_pages1 < nr_slab_pages0)
3276 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3277 }
3278
9eeff239 3279 p->reclaim_state = NULL;
d4f7796e 3280 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3281 lockdep_clear_current_reclaim_state();
a79311c1 3282 return sc.nr_reclaimed >= nr_pages;
9eeff239 3283}
179e9639
AM
3284
3285int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3286{
179e9639 3287 int node_id;
d773ed6b 3288 int ret;
179e9639
AM
3289
3290 /*
0ff38490
CL
3291 * Zone reclaim reclaims unmapped file backed pages and
3292 * slab pages if we are over the defined limits.
34aa1330 3293 *
9614634f
CL
3294 * A small portion of unmapped file backed pages is needed for
3295 * file I/O otherwise pages read by file I/O will be immediately
3296 * thrown out if the zone is overallocated. So we do not reclaim
3297 * if less than a specified percentage of the zone is used by
3298 * unmapped file backed pages.
179e9639 3299 */
90afa5de
MG
3300 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3301 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3302 return ZONE_RECLAIM_FULL;
179e9639 3303
93e4a89a 3304 if (zone->all_unreclaimable)
fa5e084e 3305 return ZONE_RECLAIM_FULL;
d773ed6b 3306
179e9639 3307 /*
d773ed6b 3308 * Do not scan if the allocation should not be delayed.
179e9639 3309 */
d773ed6b 3310 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3311 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3312
3313 /*
3314 * Only run zone reclaim on the local zone or on zones that do not
3315 * have associated processors. This will favor the local processor
3316 * over remote processors and spread off node memory allocations
3317 * as wide as possible.
3318 */
89fa3024 3319 node_id = zone_to_nid(zone);
37c0708d 3320 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3321 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3322
3323 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3324 return ZONE_RECLAIM_NOSCAN;
3325
d773ed6b
DR
3326 ret = __zone_reclaim(zone, gfp_mask, order);
3327 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3328
24cf7251
MG
3329 if (!ret)
3330 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3331
d773ed6b 3332 return ret;
179e9639 3333}
9eeff239 3334#endif
894bc310 3335
894bc310
LS
3336/*
3337 * page_evictable - test whether a page is evictable
3338 * @page: the page to test
3339 * @vma: the VMA in which the page is or will be mapped, may be NULL
3340 *
3341 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3342 * lists vs unevictable list. The vma argument is !NULL when called from the
3343 * fault path to determine how to instantate a new page.
894bc310
LS
3344 *
3345 * Reasons page might not be evictable:
ba9ddf49 3346 * (1) page's mapping marked unevictable
b291f000 3347 * (2) page is part of an mlocked VMA
ba9ddf49 3348 *
894bc310
LS
3349 */
3350int page_evictable(struct page *page, struct vm_area_struct *vma)
3351{
3352
ba9ddf49
LS
3353 if (mapping_unevictable(page_mapping(page)))
3354 return 0;
3355
b291f000
NP
3356 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3357 return 0;
894bc310
LS
3358
3359 return 1;
3360}
89e004ea
LS
3361
3362/**
3363 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3364 * @page: page to check evictability and move to appropriate lru list
3365 * @zone: zone page is in
3366 *
3367 * Checks a page for evictability and moves the page to the appropriate
3368 * zone lru list.
3369 *
3370 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3371 * have PageUnevictable set.
3372 */
3373static void check_move_unevictable_page(struct page *page, struct zone *zone)
3374{
3375 VM_BUG_ON(PageActive(page));
3376
3377retry:
3378 ClearPageUnevictable(page);
3379 if (page_evictable(page, NULL)) {
401a8e1c 3380 enum lru_list l = page_lru_base_type(page);
af936a16 3381
89e004ea
LS
3382 __dec_zone_state(zone, NR_UNEVICTABLE);
3383 list_move(&page->lru, &zone->lru[l].list);
08e552c6 3384 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
3385 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3386 __count_vm_event(UNEVICTABLE_PGRESCUED);
3387 } else {
3388 /*
3389 * rotate unevictable list
3390 */
3391 SetPageUnevictable(page);
3392 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 3393 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
3394 if (page_evictable(page, NULL))
3395 goto retry;
3396 }
3397}
3398
3399/**
3400 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3401 * @mapping: struct address_space to scan for evictable pages
3402 *
3403 * Scan all pages in mapping. Check unevictable pages for
3404 * evictability and move them to the appropriate zone lru list.
3405 */
3406void scan_mapping_unevictable_pages(struct address_space *mapping)
3407{
3408 pgoff_t next = 0;
3409 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3410 PAGE_CACHE_SHIFT;
3411 struct zone *zone;
3412 struct pagevec pvec;
3413
3414 if (mapping->nrpages == 0)
3415 return;
3416
3417 pagevec_init(&pvec, 0);
3418 while (next < end &&
3419 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3420 int i;
3421 int pg_scanned = 0;
3422
3423 zone = NULL;
3424
3425 for (i = 0; i < pagevec_count(&pvec); i++) {
3426 struct page *page = pvec.pages[i];
3427 pgoff_t page_index = page->index;
3428 struct zone *pagezone = page_zone(page);
3429
3430 pg_scanned++;
3431 if (page_index > next)
3432 next = page_index;
3433 next++;
3434
3435 if (pagezone != zone) {
3436 if (zone)
3437 spin_unlock_irq(&zone->lru_lock);
3438 zone = pagezone;
3439 spin_lock_irq(&zone->lru_lock);
3440 }
3441
3442 if (PageLRU(page) && PageUnevictable(page))
3443 check_move_unevictable_page(page, zone);
3444 }
3445 if (zone)
3446 spin_unlock_irq(&zone->lru_lock);
3447 pagevec_release(&pvec);
3448
3449 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3450 }
3451
3452}
af936a16 3453
264e56d8 3454static void warn_scan_unevictable_pages(void)
af936a16 3455{
264e56d8
JW
3456 printk_once(KERN_WARNING
3457 "The scan_unevictable_pages sysctl/node-interface has been "
3458 "disabled for lack of a legitimate use case. If you have "
3459 "one, please send an email to linux-mm@kvack.org.\n");
af936a16
LS
3460}
3461
3462/*
3463 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3464 * all nodes' unevictable lists for evictable pages
3465 */
3466unsigned long scan_unevictable_pages;
3467
3468int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3469 void __user *buffer,
af936a16
LS
3470 size_t *length, loff_t *ppos)
3471{
264e56d8 3472 warn_scan_unevictable_pages();
8d65af78 3473 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3474 scan_unevictable_pages = 0;
3475 return 0;
3476}
3477
e4455abb 3478#ifdef CONFIG_NUMA
af936a16
LS
3479/*
3480 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3481 * a specified node's per zone unevictable lists for evictable pages.
3482 */
3483
10fbcf4c
KS
3484static ssize_t read_scan_unevictable_node(struct device *dev,
3485 struct device_attribute *attr,
af936a16
LS
3486 char *buf)
3487{
264e56d8 3488 warn_scan_unevictable_pages();
af936a16
LS
3489 return sprintf(buf, "0\n"); /* always zero; should fit... */
3490}
3491
10fbcf4c
KS
3492static ssize_t write_scan_unevictable_node(struct device *dev,
3493 struct device_attribute *attr,
af936a16
LS
3494 const char *buf, size_t count)
3495{
264e56d8 3496 warn_scan_unevictable_pages();
af936a16
LS
3497 return 1;
3498}
3499
3500
10fbcf4c 3501static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3502 read_scan_unevictable_node,
3503 write_scan_unevictable_node);
3504
3505int scan_unevictable_register_node(struct node *node)
3506{
10fbcf4c 3507 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3508}
3509
3510void scan_unevictable_unregister_node(struct node *node)
3511{
10fbcf4c 3512 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3513}
e4455abb 3514#endif