]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/vmscan.c
VFS: Handle lazytime in do_mount()
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4 70
ee814fe2 71 /* Allocation order */
5ad333eb 72 int order;
66e1707b 73
ee814fe2
JW
74 /*
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
77 */
78 nodemask_t *nodemask;
9e3b2f8c 79
f16015fb
JW
80 /*
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
83 */
84 struct mem_cgroup *target_mem_cgroup;
66e1707b 85
ee814fe2
JW
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
88
b2e18757
MG
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
91
1276ad68 92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
93 unsigned int may_writepage:1;
94
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
97
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
100
d6622f63
YX
101 /*
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
105 */
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
241994ed 108
ee814fe2
JW
109 unsigned int hibernation_mode:1;
110
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
113
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
1da177e4
LT
119};
120
1da177e4
LT
121#ifdef ARCH_HAS_PREFETCH
122#define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
126 \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
129 } \
130 } while (0)
131#else
132#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133#endif
134
135#ifdef ARCH_HAS_PREFETCHW
136#define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
140 \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
143 } \
144 } while (0)
145#else
146#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147#endif
148
149/*
150 * From 0 .. 100. Higher means more swappy.
151 */
152int vm_swappiness = 60;
d0480be4
WSH
153/*
154 * The total number of pages which are beyond the high watermark within all
155 * zones.
156 */
157unsigned long vm_total_pages;
1da177e4
LT
158
159static LIST_HEAD(shrinker_list);
160static DECLARE_RWSEM(shrinker_rwsem);
161
c255a458 162#ifdef CONFIG_MEMCG
89b5fae5
JW
163static bool global_reclaim(struct scan_control *sc)
164{
f16015fb 165 return !sc->target_mem_cgroup;
89b5fae5 166}
97c9341f
TH
167
168/**
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
171 *
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
177 *
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
180 */
181static bool sane_reclaim(struct scan_control *sc)
182{
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
184
185 if (!memcg)
186 return true;
187#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
189 return true;
190#endif
191 return false;
192}
91a45470 193#else
89b5fae5
JW
194static bool global_reclaim(struct scan_control *sc)
195{
196 return true;
197}
97c9341f
TH
198
199static bool sane_reclaim(struct scan_control *sc)
200{
201 return true;
202}
91a45470
KH
203#endif
204
5a1c84b4
MG
205/*
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
209 */
210unsigned long zone_reclaimable_pages(struct zone *zone)
211{
212 unsigned long nr;
213
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219
220 return nr;
221}
222
599d0c95
MG
223unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
224{
225 unsigned long nr;
226
227 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
229 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
6e543d57
LD
230
231 if (get_nr_swap_pages() > 0)
599d0c95
MG
232 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
234 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
6e543d57
LD
235
236 return nr;
237}
238
fd538803
MH
239/**
240 * lruvec_lru_size - Returns the number of pages on the given LRU list.
241 * @lruvec: lru vector
242 * @lru: lru to use
243 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
244 */
245unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 246{
fd538803
MH
247 unsigned long lru_size;
248 int zid;
249
c3c787e8 250 if (!mem_cgroup_disabled())
fd538803
MH
251 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
252 else
253 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 254
fd538803
MH
255 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
256 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
257 unsigned long size;
c9f299d9 258
fd538803
MH
259 if (!managed_zone(zone))
260 continue;
261
262 if (!mem_cgroup_disabled())
263 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
264 else
265 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
266 NR_ZONE_LRU_BASE + lru);
267 lru_size -= min(size, lru_size);
268 }
269
270 return lru_size;
b4536f0c 271
b4536f0c
MH
272}
273
1da177e4 274/*
1d3d4437 275 * Add a shrinker callback to be called from the vm.
1da177e4 276 */
1d3d4437 277int register_shrinker(struct shrinker *shrinker)
1da177e4 278{
1d3d4437
GC
279 size_t size = sizeof(*shrinker->nr_deferred);
280
1d3d4437
GC
281 if (shrinker->flags & SHRINKER_NUMA_AWARE)
282 size *= nr_node_ids;
283
284 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
285 if (!shrinker->nr_deferred)
286 return -ENOMEM;
287
8e1f936b
RR
288 down_write(&shrinker_rwsem);
289 list_add_tail(&shrinker->list, &shrinker_list);
290 up_write(&shrinker_rwsem);
1d3d4437 291 return 0;
1da177e4 292}
8e1f936b 293EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
294
295/*
296 * Remove one
297 */
8e1f936b 298void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
299{
300 down_write(&shrinker_rwsem);
301 list_del(&shrinker->list);
302 up_write(&shrinker_rwsem);
ae393321 303 kfree(shrinker->nr_deferred);
1da177e4 304}
8e1f936b 305EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
306
307#define SHRINK_BATCH 128
1d3d4437 308
cb731d6c
VD
309static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
310 struct shrinker *shrinker,
311 unsigned long nr_scanned,
312 unsigned long nr_eligible)
1d3d4437
GC
313{
314 unsigned long freed = 0;
315 unsigned long long delta;
316 long total_scan;
d5bc5fd3 317 long freeable;
1d3d4437
GC
318 long nr;
319 long new_nr;
320 int nid = shrinkctl->nid;
321 long batch_size = shrinker->batch ? shrinker->batch
322 : SHRINK_BATCH;
5f33a080 323 long scanned = 0, next_deferred;
1d3d4437 324
d5bc5fd3
VD
325 freeable = shrinker->count_objects(shrinker, shrinkctl);
326 if (freeable == 0)
1d3d4437
GC
327 return 0;
328
329 /*
330 * copy the current shrinker scan count into a local variable
331 * and zero it so that other concurrent shrinker invocations
332 * don't also do this scanning work.
333 */
334 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
335
336 total_scan = nr;
6b4f7799 337 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 338 delta *= freeable;
6b4f7799 339 do_div(delta, nr_eligible + 1);
1d3d4437
GC
340 total_scan += delta;
341 if (total_scan < 0) {
8612c663 342 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 343 shrinker->scan_objects, total_scan);
d5bc5fd3 344 total_scan = freeable;
5f33a080
SL
345 next_deferred = nr;
346 } else
347 next_deferred = total_scan;
1d3d4437
GC
348
349 /*
350 * We need to avoid excessive windup on filesystem shrinkers
351 * due to large numbers of GFP_NOFS allocations causing the
352 * shrinkers to return -1 all the time. This results in a large
353 * nr being built up so when a shrink that can do some work
354 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 355 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
356 * memory.
357 *
358 * Hence only allow the shrinker to scan the entire cache when
359 * a large delta change is calculated directly.
360 */
d5bc5fd3
VD
361 if (delta < freeable / 4)
362 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
363
364 /*
365 * Avoid risking looping forever due to too large nr value:
366 * never try to free more than twice the estimate number of
367 * freeable entries.
368 */
d5bc5fd3
VD
369 if (total_scan > freeable * 2)
370 total_scan = freeable * 2;
1d3d4437
GC
371
372 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
373 nr_scanned, nr_eligible,
374 freeable, delta, total_scan);
1d3d4437 375
0b1fb40a
VD
376 /*
377 * Normally, we should not scan less than batch_size objects in one
378 * pass to avoid too frequent shrinker calls, but if the slab has less
379 * than batch_size objects in total and we are really tight on memory,
380 * we will try to reclaim all available objects, otherwise we can end
381 * up failing allocations although there are plenty of reclaimable
382 * objects spread over several slabs with usage less than the
383 * batch_size.
384 *
385 * We detect the "tight on memory" situations by looking at the total
386 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 387 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
388 * scanning at high prio and therefore should try to reclaim as much as
389 * possible.
390 */
391 while (total_scan >= batch_size ||
d5bc5fd3 392 total_scan >= freeable) {
a0b02131 393 unsigned long ret;
0b1fb40a 394 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 395
0b1fb40a 396 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 397 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
398 ret = shrinker->scan_objects(shrinker, shrinkctl);
399 if (ret == SHRINK_STOP)
400 break;
401 freed += ret;
1d3d4437 402
d460acb5
CW
403 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
404 total_scan -= shrinkctl->nr_scanned;
405 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
406
407 cond_resched();
408 }
409
5f33a080
SL
410 if (next_deferred >= scanned)
411 next_deferred -= scanned;
412 else
413 next_deferred = 0;
1d3d4437
GC
414 /*
415 * move the unused scan count back into the shrinker in a
416 * manner that handles concurrent updates. If we exhausted the
417 * scan, there is no need to do an update.
418 */
5f33a080
SL
419 if (next_deferred > 0)
420 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
421 &shrinker->nr_deferred[nid]);
422 else
423 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
424
df9024a8 425 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 426 return freed;
1495f230
YH
427}
428
6b4f7799 429/**
cb731d6c 430 * shrink_slab - shrink slab caches
6b4f7799
JW
431 * @gfp_mask: allocation context
432 * @nid: node whose slab caches to target
cb731d6c 433 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
434 * @nr_scanned: pressure numerator
435 * @nr_eligible: pressure denominator
1da177e4 436 *
6b4f7799 437 * Call the shrink functions to age shrinkable caches.
1da177e4 438 *
6b4f7799
JW
439 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
440 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 441 *
cb731d6c
VD
442 * @memcg specifies the memory cgroup to target. If it is not NULL,
443 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
444 * objects from the memory cgroup specified. Otherwise, only unaware
445 * shrinkers are called.
cb731d6c 446 *
6b4f7799
JW
447 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
448 * the available objects should be scanned. Page reclaim for example
449 * passes the number of pages scanned and the number of pages on the
450 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
451 * when it encountered mapped pages. The ratio is further biased by
452 * the ->seeks setting of the shrink function, which indicates the
453 * cost to recreate an object relative to that of an LRU page.
b15e0905 454 *
6b4f7799 455 * Returns the number of reclaimed slab objects.
1da177e4 456 */
cb731d6c
VD
457static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
458 struct mem_cgroup *memcg,
459 unsigned long nr_scanned,
460 unsigned long nr_eligible)
1da177e4
LT
461{
462 struct shrinker *shrinker;
24f7c6b9 463 unsigned long freed = 0;
1da177e4 464
0fc9f58a 465 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
466 return 0;
467
6b4f7799
JW
468 if (nr_scanned == 0)
469 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 470
f06590bd 471 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
472 /*
473 * If we would return 0, our callers would understand that we
474 * have nothing else to shrink and give up trying. By returning
475 * 1 we keep it going and assume we'll be able to shrink next
476 * time.
477 */
478 freed = 1;
f06590bd
MK
479 goto out;
480 }
1da177e4
LT
481
482 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
483 struct shrink_control sc = {
484 .gfp_mask = gfp_mask,
485 .nid = nid,
cb731d6c 486 .memcg = memcg,
6b4f7799 487 };
ec97097b 488
0fc9f58a
VD
489 /*
490 * If kernel memory accounting is disabled, we ignore
491 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
492 * passing NULL for memcg.
493 */
494 if (memcg_kmem_enabled() &&
495 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
496 continue;
497
6b4f7799
JW
498 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
499 sc.nid = 0;
1da177e4 500
cb731d6c 501 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 502 }
6b4f7799 503
1da177e4 504 up_read(&shrinker_rwsem);
f06590bd
MK
505out:
506 cond_resched();
24f7c6b9 507 return freed;
1da177e4
LT
508}
509
cb731d6c
VD
510void drop_slab_node(int nid)
511{
512 unsigned long freed;
513
514 do {
515 struct mem_cgroup *memcg = NULL;
516
517 freed = 0;
518 do {
519 freed += shrink_slab(GFP_KERNEL, nid, memcg,
520 1000, 1000);
521 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
522 } while (freed > 10);
523}
524
525void drop_slab(void)
526{
527 int nid;
528
529 for_each_online_node(nid)
530 drop_slab_node(nid);
531}
532
1da177e4
LT
533static inline int is_page_cache_freeable(struct page *page)
534{
ceddc3a5
JW
535 /*
536 * A freeable page cache page is referenced only by the caller
537 * that isolated the page, the page cache radix tree and
538 * optional buffer heads at page->private.
539 */
bd4c82c2
HY
540 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
541 HPAGE_PMD_NR : 1;
542 return page_count(page) - page_has_private(page) == 1 + radix_pins;
1da177e4
LT
543}
544
703c2708 545static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 546{
930d9152 547 if (current->flags & PF_SWAPWRITE)
1da177e4 548 return 1;
703c2708 549 if (!inode_write_congested(inode))
1da177e4 550 return 1;
703c2708 551 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
552 return 1;
553 return 0;
554}
555
556/*
557 * We detected a synchronous write error writing a page out. Probably
558 * -ENOSPC. We need to propagate that into the address_space for a subsequent
559 * fsync(), msync() or close().
560 *
561 * The tricky part is that after writepage we cannot touch the mapping: nothing
562 * prevents it from being freed up. But we have a ref on the page and once
563 * that page is locked, the mapping is pinned.
564 *
565 * We're allowed to run sleeping lock_page() here because we know the caller has
566 * __GFP_FS.
567 */
568static void handle_write_error(struct address_space *mapping,
569 struct page *page, int error)
570{
7eaceacc 571 lock_page(page);
3e9f45bd
GC
572 if (page_mapping(page) == mapping)
573 mapping_set_error(mapping, error);
1da177e4
LT
574 unlock_page(page);
575}
576
04e62a29
CL
577/* possible outcome of pageout() */
578typedef enum {
579 /* failed to write page out, page is locked */
580 PAGE_KEEP,
581 /* move page to the active list, page is locked */
582 PAGE_ACTIVATE,
583 /* page has been sent to the disk successfully, page is unlocked */
584 PAGE_SUCCESS,
585 /* page is clean and locked */
586 PAGE_CLEAN,
587} pageout_t;
588
1da177e4 589/*
1742f19f
AM
590 * pageout is called by shrink_page_list() for each dirty page.
591 * Calls ->writepage().
1da177e4 592 */
c661b078 593static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 594 struct scan_control *sc)
1da177e4
LT
595{
596 /*
597 * If the page is dirty, only perform writeback if that write
598 * will be non-blocking. To prevent this allocation from being
599 * stalled by pagecache activity. But note that there may be
600 * stalls if we need to run get_block(). We could test
601 * PagePrivate for that.
602 *
8174202b 603 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
604 * this page's queue, we can perform writeback even if that
605 * will block.
606 *
607 * If the page is swapcache, write it back even if that would
608 * block, for some throttling. This happens by accident, because
609 * swap_backing_dev_info is bust: it doesn't reflect the
610 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
611 */
612 if (!is_page_cache_freeable(page))
613 return PAGE_KEEP;
614 if (!mapping) {
615 /*
616 * Some data journaling orphaned pages can have
617 * page->mapping == NULL while being dirty with clean buffers.
618 */
266cf658 619 if (page_has_private(page)) {
1da177e4
LT
620 if (try_to_free_buffers(page)) {
621 ClearPageDirty(page);
b1de0d13 622 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
623 return PAGE_CLEAN;
624 }
625 }
626 return PAGE_KEEP;
627 }
628 if (mapping->a_ops->writepage == NULL)
629 return PAGE_ACTIVATE;
703c2708 630 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
631 return PAGE_KEEP;
632
633 if (clear_page_dirty_for_io(page)) {
634 int res;
635 struct writeback_control wbc = {
636 .sync_mode = WB_SYNC_NONE,
637 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
638 .range_start = 0,
639 .range_end = LLONG_MAX,
1da177e4
LT
640 .for_reclaim = 1,
641 };
642
643 SetPageReclaim(page);
644 res = mapping->a_ops->writepage(page, &wbc);
645 if (res < 0)
646 handle_write_error(mapping, page, res);
994fc28c 647 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
648 ClearPageReclaim(page);
649 return PAGE_ACTIVATE;
650 }
c661b078 651
1da177e4
LT
652 if (!PageWriteback(page)) {
653 /* synchronous write or broken a_ops? */
654 ClearPageReclaim(page);
655 }
3aa23851 656 trace_mm_vmscan_writepage(page);
c4a25635 657 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
658 return PAGE_SUCCESS;
659 }
660
661 return PAGE_CLEAN;
662}
663
a649fd92 664/*
e286781d
NP
665 * Same as remove_mapping, but if the page is removed from the mapping, it
666 * gets returned with a refcount of 0.
a649fd92 667 */
a528910e
JW
668static int __remove_mapping(struct address_space *mapping, struct page *page,
669 bool reclaimed)
49d2e9cc 670{
c4843a75 671 unsigned long flags;
bd4c82c2 672 int refcount;
c4843a75 673
28e4d965
NP
674 BUG_ON(!PageLocked(page));
675 BUG_ON(mapping != page_mapping(page));
49d2e9cc 676
c4843a75 677 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 678 /*
0fd0e6b0
NP
679 * The non racy check for a busy page.
680 *
681 * Must be careful with the order of the tests. When someone has
682 * a ref to the page, it may be possible that they dirty it then
683 * drop the reference. So if PageDirty is tested before page_count
684 * here, then the following race may occur:
685 *
686 * get_user_pages(&page);
687 * [user mapping goes away]
688 * write_to(page);
689 * !PageDirty(page) [good]
690 * SetPageDirty(page);
691 * put_page(page);
692 * !page_count(page) [good, discard it]
693 *
694 * [oops, our write_to data is lost]
695 *
696 * Reversing the order of the tests ensures such a situation cannot
697 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 698 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
699 *
700 * Note that if SetPageDirty is always performed via set_page_dirty,
701 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 702 */
bd4c82c2
HY
703 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
704 refcount = 1 + HPAGE_PMD_NR;
705 else
706 refcount = 2;
707 if (!page_ref_freeze(page, refcount))
49d2e9cc 708 goto cannot_free;
e286781d
NP
709 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
710 if (unlikely(PageDirty(page))) {
bd4c82c2 711 page_ref_unfreeze(page, refcount);
49d2e9cc 712 goto cannot_free;
e286781d 713 }
49d2e9cc
CL
714
715 if (PageSwapCache(page)) {
716 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 717 mem_cgroup_swapout(page, swap);
49d2e9cc 718 __delete_from_swap_cache(page);
c4843a75 719 spin_unlock_irqrestore(&mapping->tree_lock, flags);
75f6d6d2 720 put_swap_page(page, swap);
e286781d 721 } else {
6072d13c 722 void (*freepage)(struct page *);
a528910e 723 void *shadow = NULL;
6072d13c
LT
724
725 freepage = mapping->a_ops->freepage;
a528910e
JW
726 /*
727 * Remember a shadow entry for reclaimed file cache in
728 * order to detect refaults, thus thrashing, later on.
729 *
730 * But don't store shadows in an address space that is
731 * already exiting. This is not just an optizimation,
732 * inode reclaim needs to empty out the radix tree or
733 * the nodes are lost. Don't plant shadows behind its
734 * back.
f9fe48be
RZ
735 *
736 * We also don't store shadows for DAX mappings because the
737 * only page cache pages found in these are zero pages
738 * covering holes, and because we don't want to mix DAX
739 * exceptional entries and shadow exceptional entries in the
740 * same page_tree.
a528910e
JW
741 */
742 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 743 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 744 shadow = workingset_eviction(mapping, page);
62cccb8c 745 __delete_from_page_cache(page, shadow);
c4843a75 746 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
747
748 if (freepage != NULL)
749 freepage(page);
49d2e9cc
CL
750 }
751
49d2e9cc
CL
752 return 1;
753
754cannot_free:
c4843a75 755 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
756 return 0;
757}
758
e286781d
NP
759/*
760 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
761 * someone else has a ref on the page, abort and return 0. If it was
762 * successfully detached, return 1. Assumes the caller has a single ref on
763 * this page.
764 */
765int remove_mapping(struct address_space *mapping, struct page *page)
766{
a528910e 767 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
768 /*
769 * Unfreezing the refcount with 1 rather than 2 effectively
770 * drops the pagecache ref for us without requiring another
771 * atomic operation.
772 */
fe896d18 773 page_ref_unfreeze(page, 1);
e286781d
NP
774 return 1;
775 }
776 return 0;
777}
778
894bc310
LS
779/**
780 * putback_lru_page - put previously isolated page onto appropriate LRU list
781 * @page: page to be put back to appropriate lru list
782 *
783 * Add previously isolated @page to appropriate LRU list.
784 * Page may still be unevictable for other reasons.
785 *
786 * lru_lock must not be held, interrupts must be enabled.
787 */
894bc310
LS
788void putback_lru_page(struct page *page)
789{
0ec3b74c 790 bool is_unevictable;
bbfd28ee 791 int was_unevictable = PageUnevictable(page);
894bc310 792
309381fe 793 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
794
795redo:
796 ClearPageUnevictable(page);
797
39b5f29a 798 if (page_evictable(page)) {
894bc310
LS
799 /*
800 * For evictable pages, we can use the cache.
801 * In event of a race, worst case is we end up with an
802 * unevictable page on [in]active list.
803 * We know how to handle that.
804 */
0ec3b74c 805 is_unevictable = false;
c53954a0 806 lru_cache_add(page);
894bc310
LS
807 } else {
808 /*
809 * Put unevictable pages directly on zone's unevictable
810 * list.
811 */
0ec3b74c 812 is_unevictable = true;
894bc310 813 add_page_to_unevictable_list(page);
6a7b9548 814 /*
21ee9f39
MK
815 * When racing with an mlock or AS_UNEVICTABLE clearing
816 * (page is unlocked) make sure that if the other thread
817 * does not observe our setting of PG_lru and fails
24513264 818 * isolation/check_move_unevictable_pages,
21ee9f39 819 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
820 * the page back to the evictable list.
821 *
21ee9f39 822 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
823 */
824 smp_mb();
894bc310 825 }
894bc310
LS
826
827 /*
828 * page's status can change while we move it among lru. If an evictable
829 * page is on unevictable list, it never be freed. To avoid that,
830 * check after we added it to the list, again.
831 */
0ec3b74c 832 if (is_unevictable && page_evictable(page)) {
894bc310
LS
833 if (!isolate_lru_page(page)) {
834 put_page(page);
835 goto redo;
836 }
837 /* This means someone else dropped this page from LRU
838 * So, it will be freed or putback to LRU again. There is
839 * nothing to do here.
840 */
841 }
842
0ec3b74c 843 if (was_unevictable && !is_unevictable)
bbfd28ee 844 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 845 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
846 count_vm_event(UNEVICTABLE_PGCULLED);
847
894bc310
LS
848 put_page(page); /* drop ref from isolate */
849}
850
dfc8d636
JW
851enum page_references {
852 PAGEREF_RECLAIM,
853 PAGEREF_RECLAIM_CLEAN,
64574746 854 PAGEREF_KEEP,
dfc8d636
JW
855 PAGEREF_ACTIVATE,
856};
857
858static enum page_references page_check_references(struct page *page,
859 struct scan_control *sc)
860{
64574746 861 int referenced_ptes, referenced_page;
dfc8d636 862 unsigned long vm_flags;
dfc8d636 863
c3ac9a8a
JW
864 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
865 &vm_flags);
64574746 866 referenced_page = TestClearPageReferenced(page);
dfc8d636 867
dfc8d636
JW
868 /*
869 * Mlock lost the isolation race with us. Let try_to_unmap()
870 * move the page to the unevictable list.
871 */
872 if (vm_flags & VM_LOCKED)
873 return PAGEREF_RECLAIM;
874
64574746 875 if (referenced_ptes) {
e4898273 876 if (PageSwapBacked(page))
64574746
JW
877 return PAGEREF_ACTIVATE;
878 /*
879 * All mapped pages start out with page table
880 * references from the instantiating fault, so we need
881 * to look twice if a mapped file page is used more
882 * than once.
883 *
884 * Mark it and spare it for another trip around the
885 * inactive list. Another page table reference will
886 * lead to its activation.
887 *
888 * Note: the mark is set for activated pages as well
889 * so that recently deactivated but used pages are
890 * quickly recovered.
891 */
892 SetPageReferenced(page);
893
34dbc67a 894 if (referenced_page || referenced_ptes > 1)
64574746
JW
895 return PAGEREF_ACTIVATE;
896
c909e993
KK
897 /*
898 * Activate file-backed executable pages after first usage.
899 */
900 if (vm_flags & VM_EXEC)
901 return PAGEREF_ACTIVATE;
902
64574746
JW
903 return PAGEREF_KEEP;
904 }
dfc8d636
JW
905
906 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 907 if (referenced_page && !PageSwapBacked(page))
64574746
JW
908 return PAGEREF_RECLAIM_CLEAN;
909
910 return PAGEREF_RECLAIM;
dfc8d636
JW
911}
912
e2be15f6
MG
913/* Check if a page is dirty or under writeback */
914static void page_check_dirty_writeback(struct page *page,
915 bool *dirty, bool *writeback)
916{
b4597226
MG
917 struct address_space *mapping;
918
e2be15f6
MG
919 /*
920 * Anonymous pages are not handled by flushers and must be written
921 * from reclaim context. Do not stall reclaim based on them
922 */
802a3a92
SL
923 if (!page_is_file_cache(page) ||
924 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
925 *dirty = false;
926 *writeback = false;
927 return;
928 }
929
930 /* By default assume that the page flags are accurate */
931 *dirty = PageDirty(page);
932 *writeback = PageWriteback(page);
b4597226
MG
933
934 /* Verify dirty/writeback state if the filesystem supports it */
935 if (!page_has_private(page))
936 return;
937
938 mapping = page_mapping(page);
939 if (mapping && mapping->a_ops->is_dirty_writeback)
940 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
941}
942
3c710c1a
MH
943struct reclaim_stat {
944 unsigned nr_dirty;
945 unsigned nr_unqueued_dirty;
946 unsigned nr_congested;
947 unsigned nr_writeback;
948 unsigned nr_immediate;
5bccd166
MH
949 unsigned nr_activate;
950 unsigned nr_ref_keep;
951 unsigned nr_unmap_fail;
3c710c1a
MH
952};
953
1da177e4 954/*
1742f19f 955 * shrink_page_list() returns the number of reclaimed pages
1da177e4 956 */
1742f19f 957static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 958 struct pglist_data *pgdat,
f84f6e2b 959 struct scan_control *sc,
02c6de8d 960 enum ttu_flags ttu_flags,
3c710c1a 961 struct reclaim_stat *stat,
02c6de8d 962 bool force_reclaim)
1da177e4
LT
963{
964 LIST_HEAD(ret_pages);
abe4c3b5 965 LIST_HEAD(free_pages);
1da177e4 966 int pgactivate = 0;
3c710c1a
MH
967 unsigned nr_unqueued_dirty = 0;
968 unsigned nr_dirty = 0;
969 unsigned nr_congested = 0;
970 unsigned nr_reclaimed = 0;
971 unsigned nr_writeback = 0;
972 unsigned nr_immediate = 0;
5bccd166
MH
973 unsigned nr_ref_keep = 0;
974 unsigned nr_unmap_fail = 0;
1da177e4
LT
975
976 cond_resched();
977
1da177e4
LT
978 while (!list_empty(page_list)) {
979 struct address_space *mapping;
980 struct page *page;
981 int may_enter_fs;
02c6de8d 982 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 983 bool dirty, writeback;
1da177e4
LT
984
985 cond_resched();
986
987 page = lru_to_page(page_list);
988 list_del(&page->lru);
989
529ae9aa 990 if (!trylock_page(page))
1da177e4
LT
991 goto keep;
992
309381fe 993 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
994
995 sc->nr_scanned++;
80e43426 996
39b5f29a 997 if (unlikely(!page_evictable(page)))
ad6b6704 998 goto activate_locked;
894bc310 999
a6dc60f8 1000 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1001 goto keep_locked;
1002
1da177e4 1003 /* Double the slab pressure for mapped and swapcache pages */
802a3a92
SL
1004 if ((page_mapped(page) || PageSwapCache(page)) &&
1005 !(PageAnon(page) && !PageSwapBacked(page)))
1da177e4
LT
1006 sc->nr_scanned++;
1007
c661b078
AW
1008 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1009 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1010
e2be15f6
MG
1011 /*
1012 * The number of dirty pages determines if a zone is marked
1013 * reclaim_congested which affects wait_iff_congested. kswapd
1014 * will stall and start writing pages if the tail of the LRU
1015 * is all dirty unqueued pages.
1016 */
1017 page_check_dirty_writeback(page, &dirty, &writeback);
1018 if (dirty || writeback)
1019 nr_dirty++;
1020
1021 if (dirty && !writeback)
1022 nr_unqueued_dirty++;
1023
d04e8acd
MG
1024 /*
1025 * Treat this page as congested if the underlying BDI is or if
1026 * pages are cycling through the LRU so quickly that the
1027 * pages marked for immediate reclaim are making it to the
1028 * end of the LRU a second time.
1029 */
e2be15f6 1030 mapping = page_mapping(page);
1da58ee2 1031 if (((dirty || writeback) && mapping &&
703c2708 1032 inode_write_congested(mapping->host)) ||
d04e8acd 1033 (writeback && PageReclaim(page)))
e2be15f6
MG
1034 nr_congested++;
1035
283aba9f
MG
1036 /*
1037 * If a page at the tail of the LRU is under writeback, there
1038 * are three cases to consider.
1039 *
1040 * 1) If reclaim is encountering an excessive number of pages
1041 * under writeback and this page is both under writeback and
1042 * PageReclaim then it indicates that pages are being queued
1043 * for IO but are being recycled through the LRU before the
1044 * IO can complete. Waiting on the page itself risks an
1045 * indefinite stall if it is impossible to writeback the
1046 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1047 * note that the LRU is being scanned too quickly and the
1048 * caller can stall after page list has been processed.
283aba9f 1049 *
97c9341f 1050 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1051 * not marked for immediate reclaim, or the caller does not
1052 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1053 * not to fs). In this case mark the page for immediate
97c9341f 1054 * reclaim and continue scanning.
283aba9f 1055 *
ecf5fc6e
MH
1056 * Require may_enter_fs because we would wait on fs, which
1057 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1058 * enter reclaim, and deadlock if it waits on a page for
1059 * which it is needed to do the write (loop masks off
1060 * __GFP_IO|__GFP_FS for this reason); but more thought
1061 * would probably show more reasons.
1062 *
7fadc820 1063 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1064 * PageReclaim. memcg does not have any dirty pages
1065 * throttling so we could easily OOM just because too many
1066 * pages are in writeback and there is nothing else to
1067 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1068 *
1069 * In cases 1) and 2) we activate the pages to get them out of
1070 * the way while we continue scanning for clean pages on the
1071 * inactive list and refilling from the active list. The
1072 * observation here is that waiting for disk writes is more
1073 * expensive than potentially causing reloads down the line.
1074 * Since they're marked for immediate reclaim, they won't put
1075 * memory pressure on the cache working set any longer than it
1076 * takes to write them to disk.
283aba9f 1077 */
c661b078 1078 if (PageWriteback(page)) {
283aba9f
MG
1079 /* Case 1 above */
1080 if (current_is_kswapd() &&
1081 PageReclaim(page) &&
599d0c95 1082 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e 1083 nr_immediate++;
c55e8d03 1084 goto activate_locked;
283aba9f
MG
1085
1086 /* Case 2 above */
97c9341f 1087 } else if (sane_reclaim(sc) ||
ecf5fc6e 1088 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1089 /*
1090 * This is slightly racy - end_page_writeback()
1091 * might have just cleared PageReclaim, then
1092 * setting PageReclaim here end up interpreted
1093 * as PageReadahead - but that does not matter
1094 * enough to care. What we do want is for this
1095 * page to have PageReclaim set next time memcg
1096 * reclaim reaches the tests above, so it will
1097 * then wait_on_page_writeback() to avoid OOM;
1098 * and it's also appropriate in global reclaim.
1099 */
1100 SetPageReclaim(page);
e62e384e 1101 nr_writeback++;
c55e8d03 1102 goto activate_locked;
283aba9f
MG
1103
1104 /* Case 3 above */
1105 } else {
7fadc820 1106 unlock_page(page);
283aba9f 1107 wait_on_page_writeback(page);
7fadc820
HD
1108 /* then go back and try same page again */
1109 list_add_tail(&page->lru, page_list);
1110 continue;
e62e384e 1111 }
c661b078 1112 }
1da177e4 1113
02c6de8d
MK
1114 if (!force_reclaim)
1115 references = page_check_references(page, sc);
1116
dfc8d636
JW
1117 switch (references) {
1118 case PAGEREF_ACTIVATE:
1da177e4 1119 goto activate_locked;
64574746 1120 case PAGEREF_KEEP:
5bccd166 1121 nr_ref_keep++;
64574746 1122 goto keep_locked;
dfc8d636
JW
1123 case PAGEREF_RECLAIM:
1124 case PAGEREF_RECLAIM_CLEAN:
1125 ; /* try to reclaim the page below */
1126 }
1da177e4 1127
1da177e4
LT
1128 /*
1129 * Anonymous process memory has backing store?
1130 * Try to allocate it some swap space here.
802a3a92 1131 * Lazyfree page could be freed directly
1da177e4 1132 */
bd4c82c2
HY
1133 if (PageAnon(page) && PageSwapBacked(page)) {
1134 if (!PageSwapCache(page)) {
1135 if (!(sc->gfp_mask & __GFP_IO))
1136 goto keep_locked;
1137 if (PageTransHuge(page)) {
1138 /* cannot split THP, skip it */
1139 if (!can_split_huge_page(page, NULL))
1140 goto activate_locked;
1141 /*
1142 * Split pages without a PMD map right
1143 * away. Chances are some or all of the
1144 * tail pages can be freed without IO.
1145 */
1146 if (!compound_mapcount(page) &&
1147 split_huge_page_to_list(page,
1148 page_list))
1149 goto activate_locked;
1150 }
1151 if (!add_to_swap(page)) {
1152 if (!PageTransHuge(page))
1153 goto activate_locked;
1154 /* Fallback to swap normal pages */
1155 if (split_huge_page_to_list(page,
1156 page_list))
1157 goto activate_locked;
fe490cc0
HY
1158#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1159 count_vm_event(THP_SWPOUT_FALLBACK);
1160#endif
bd4c82c2
HY
1161 if (!add_to_swap(page))
1162 goto activate_locked;
1163 }
0f074658 1164
bd4c82c2 1165 may_enter_fs = 1;
1da177e4 1166
bd4c82c2
HY
1167 /* Adding to swap updated mapping */
1168 mapping = page_mapping(page);
1169 }
7751b2da
KS
1170 } else if (unlikely(PageTransHuge(page))) {
1171 /* Split file THP */
1172 if (split_huge_page_to_list(page, page_list))
1173 goto keep_locked;
e2be15f6 1174 }
1da177e4
LT
1175
1176 /*
1177 * The page is mapped into the page tables of one or more
1178 * processes. Try to unmap it here.
1179 */
802a3a92 1180 if (page_mapped(page)) {
bd4c82c2
HY
1181 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1182
1183 if (unlikely(PageTransHuge(page)))
1184 flags |= TTU_SPLIT_HUGE_PMD;
1185 if (!try_to_unmap(page, flags)) {
5bccd166 1186 nr_unmap_fail++;
1da177e4 1187 goto activate_locked;
1da177e4
LT
1188 }
1189 }
1190
1191 if (PageDirty(page)) {
ee72886d 1192 /*
4eda4823
JW
1193 * Only kswapd can writeback filesystem pages
1194 * to avoid risk of stack overflow. But avoid
1195 * injecting inefficient single-page IO into
1196 * flusher writeback as much as possible: only
1197 * write pages when we've encountered many
1198 * dirty pages, and when we've already scanned
1199 * the rest of the LRU for clean pages and see
1200 * the same dirty pages again (PageReclaim).
ee72886d 1201 */
f84f6e2b 1202 if (page_is_file_cache(page) &&
4eda4823
JW
1203 (!current_is_kswapd() || !PageReclaim(page) ||
1204 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1205 /*
1206 * Immediately reclaim when written back.
1207 * Similar in principal to deactivate_page()
1208 * except we already have the page isolated
1209 * and know it's dirty
1210 */
c4a25635 1211 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1212 SetPageReclaim(page);
1213
c55e8d03 1214 goto activate_locked;
ee72886d
MG
1215 }
1216
dfc8d636 1217 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1218 goto keep_locked;
4dd4b920 1219 if (!may_enter_fs)
1da177e4 1220 goto keep_locked;
52a8363e 1221 if (!sc->may_writepage)
1da177e4
LT
1222 goto keep_locked;
1223
d950c947
MG
1224 /*
1225 * Page is dirty. Flush the TLB if a writable entry
1226 * potentially exists to avoid CPU writes after IO
1227 * starts and then write it out here.
1228 */
1229 try_to_unmap_flush_dirty();
7d3579e8 1230 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1231 case PAGE_KEEP:
1232 goto keep_locked;
1233 case PAGE_ACTIVATE:
1234 goto activate_locked;
1235 case PAGE_SUCCESS:
7d3579e8 1236 if (PageWriteback(page))
41ac1999 1237 goto keep;
7d3579e8 1238 if (PageDirty(page))
1da177e4 1239 goto keep;
7d3579e8 1240
1da177e4
LT
1241 /*
1242 * A synchronous write - probably a ramdisk. Go
1243 * ahead and try to reclaim the page.
1244 */
529ae9aa 1245 if (!trylock_page(page))
1da177e4
LT
1246 goto keep;
1247 if (PageDirty(page) || PageWriteback(page))
1248 goto keep_locked;
1249 mapping = page_mapping(page);
1250 case PAGE_CLEAN:
1251 ; /* try to free the page below */
1252 }
1253 }
1254
1255 /*
1256 * If the page has buffers, try to free the buffer mappings
1257 * associated with this page. If we succeed we try to free
1258 * the page as well.
1259 *
1260 * We do this even if the page is PageDirty().
1261 * try_to_release_page() does not perform I/O, but it is
1262 * possible for a page to have PageDirty set, but it is actually
1263 * clean (all its buffers are clean). This happens if the
1264 * buffers were written out directly, with submit_bh(). ext3
894bc310 1265 * will do this, as well as the blockdev mapping.
1da177e4
LT
1266 * try_to_release_page() will discover that cleanness and will
1267 * drop the buffers and mark the page clean - it can be freed.
1268 *
1269 * Rarely, pages can have buffers and no ->mapping. These are
1270 * the pages which were not successfully invalidated in
1271 * truncate_complete_page(). We try to drop those buffers here
1272 * and if that worked, and the page is no longer mapped into
1273 * process address space (page_count == 1) it can be freed.
1274 * Otherwise, leave the page on the LRU so it is swappable.
1275 */
266cf658 1276 if (page_has_private(page)) {
1da177e4
LT
1277 if (!try_to_release_page(page, sc->gfp_mask))
1278 goto activate_locked;
e286781d
NP
1279 if (!mapping && page_count(page) == 1) {
1280 unlock_page(page);
1281 if (put_page_testzero(page))
1282 goto free_it;
1283 else {
1284 /*
1285 * rare race with speculative reference.
1286 * the speculative reference will free
1287 * this page shortly, so we may
1288 * increment nr_reclaimed here (and
1289 * leave it off the LRU).
1290 */
1291 nr_reclaimed++;
1292 continue;
1293 }
1294 }
1da177e4
LT
1295 }
1296
802a3a92
SL
1297 if (PageAnon(page) && !PageSwapBacked(page)) {
1298 /* follow __remove_mapping for reference */
1299 if (!page_ref_freeze(page, 1))
1300 goto keep_locked;
1301 if (PageDirty(page)) {
1302 page_ref_unfreeze(page, 1);
1303 goto keep_locked;
1304 }
1da177e4 1305
802a3a92 1306 count_vm_event(PGLAZYFREED);
2262185c 1307 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1308 } else if (!mapping || !__remove_mapping(mapping, page, true))
1309 goto keep_locked;
a978d6f5
NP
1310 /*
1311 * At this point, we have no other references and there is
1312 * no way to pick any more up (removed from LRU, removed
1313 * from pagecache). Can use non-atomic bitops now (and
1314 * we obviously don't have to worry about waking up a process
1315 * waiting on the page lock, because there are no references.
1316 */
48c935ad 1317 __ClearPageLocked(page);
e286781d 1318free_it:
05ff5137 1319 nr_reclaimed++;
abe4c3b5
MG
1320
1321 /*
1322 * Is there need to periodically free_page_list? It would
1323 * appear not as the counts should be low
1324 */
bd4c82c2
HY
1325 if (unlikely(PageTransHuge(page))) {
1326 mem_cgroup_uncharge(page);
1327 (*get_compound_page_dtor(page))(page);
1328 } else
1329 list_add(&page->lru, &free_pages);
1da177e4
LT
1330 continue;
1331
1332activate_locked:
68a22394 1333 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1334 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1335 PageMlocked(page)))
a2c43eed 1336 try_to_free_swap(page);
309381fe 1337 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704
MK
1338 if (!PageMlocked(page)) {
1339 SetPageActive(page);
1340 pgactivate++;
2262185c 1341 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1342 }
1da177e4
LT
1343keep_locked:
1344 unlock_page(page);
1345keep:
1346 list_add(&page->lru, &ret_pages);
309381fe 1347 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1348 }
abe4c3b5 1349
747db954 1350 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1351 try_to_unmap_flush();
2d4894b5 1352 free_unref_page_list(&free_pages);
abe4c3b5 1353
1da177e4 1354 list_splice(&ret_pages, page_list);
f8891e5e 1355 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1356
3c710c1a
MH
1357 if (stat) {
1358 stat->nr_dirty = nr_dirty;
1359 stat->nr_congested = nr_congested;
1360 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1361 stat->nr_writeback = nr_writeback;
1362 stat->nr_immediate = nr_immediate;
5bccd166
MH
1363 stat->nr_activate = pgactivate;
1364 stat->nr_ref_keep = nr_ref_keep;
1365 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1366 }
05ff5137 1367 return nr_reclaimed;
1da177e4
LT
1368}
1369
02c6de8d
MK
1370unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1371 struct list_head *page_list)
1372{
1373 struct scan_control sc = {
1374 .gfp_mask = GFP_KERNEL,
1375 .priority = DEF_PRIORITY,
1376 .may_unmap = 1,
1377 };
3c710c1a 1378 unsigned long ret;
02c6de8d
MK
1379 struct page *page, *next;
1380 LIST_HEAD(clean_pages);
1381
1382 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1383 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1384 !__PageMovable(page)) {
02c6de8d
MK
1385 ClearPageActive(page);
1386 list_move(&page->lru, &clean_pages);
1387 }
1388 }
1389
599d0c95 1390 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
a128ca71 1391 TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1392 list_splice(&clean_pages, page_list);
599d0c95 1393 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1394 return ret;
1395}
1396
5ad333eb
AW
1397/*
1398 * Attempt to remove the specified page from its LRU. Only take this page
1399 * if it is of the appropriate PageActive status. Pages which are being
1400 * freed elsewhere are also ignored.
1401 *
1402 * page: page to consider
1403 * mode: one of the LRU isolation modes defined above
1404 *
1405 * returns 0 on success, -ve errno on failure.
1406 */
f3fd4a61 1407int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1408{
1409 int ret = -EINVAL;
1410
1411 /* Only take pages on the LRU. */
1412 if (!PageLRU(page))
1413 return ret;
1414
e46a2879
MK
1415 /* Compaction should not handle unevictable pages but CMA can do so */
1416 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1417 return ret;
1418
5ad333eb 1419 ret = -EBUSY;
08e552c6 1420
c8244935
MG
1421 /*
1422 * To minimise LRU disruption, the caller can indicate that it only
1423 * wants to isolate pages it will be able to operate on without
1424 * blocking - clean pages for the most part.
1425 *
c8244935
MG
1426 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1427 * that it is possible to migrate without blocking
1428 */
1276ad68 1429 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1430 /* All the caller can do on PageWriteback is block */
1431 if (PageWriteback(page))
1432 return ret;
1433
1434 if (PageDirty(page)) {
1435 struct address_space *mapping;
1436
c8244935
MG
1437 /*
1438 * Only pages without mappings or that have a
1439 * ->migratepage callback are possible to migrate
1440 * without blocking
1441 */
1442 mapping = page_mapping(page);
1443 if (mapping && !mapping->a_ops->migratepage)
1444 return ret;
1445 }
1446 }
39deaf85 1447
f80c0673
MK
1448 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1449 return ret;
1450
5ad333eb
AW
1451 if (likely(get_page_unless_zero(page))) {
1452 /*
1453 * Be careful not to clear PageLRU until after we're
1454 * sure the page is not being freed elsewhere -- the
1455 * page release code relies on it.
1456 */
1457 ClearPageLRU(page);
1458 ret = 0;
1459 }
1460
1461 return ret;
1462}
1463
7ee36a14
MG
1464
1465/*
1466 * Update LRU sizes after isolating pages. The LRU size updates must
1467 * be complete before mem_cgroup_update_lru_size due to a santity check.
1468 */
1469static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1470 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1471{
7ee36a14
MG
1472 int zid;
1473
7ee36a14
MG
1474 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1475 if (!nr_zone_taken[zid])
1476 continue;
1477
1478 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1479#ifdef CONFIG_MEMCG
b4536f0c 1480 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1481#endif
b4536f0c
MH
1482 }
1483
7ee36a14
MG
1484}
1485
1da177e4 1486/*
a52633d8 1487 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1488 * shrink the lists perform better by taking out a batch of pages
1489 * and working on them outside the LRU lock.
1490 *
1491 * For pagecache intensive workloads, this function is the hottest
1492 * spot in the kernel (apart from copy_*_user functions).
1493 *
1494 * Appropriate locks must be held before calling this function.
1495 *
791b48b6 1496 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1497 * @lruvec: The LRU vector to pull pages from.
1da177e4 1498 * @dst: The temp list to put pages on to.
f626012d 1499 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1500 * @sc: The scan_control struct for this reclaim session
5ad333eb 1501 * @mode: One of the LRU isolation modes
3cb99451 1502 * @lru: LRU list id for isolating
1da177e4
LT
1503 *
1504 * returns how many pages were moved onto *@dst.
1505 */
69e05944 1506static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1507 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1508 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1509 isolate_mode_t mode, enum lru_list lru)
1da177e4 1510{
75b00af7 1511 struct list_head *src = &lruvec->lists[lru];
69e05944 1512 unsigned long nr_taken = 0;
599d0c95 1513 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1514 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1515 unsigned long skipped = 0;
791b48b6 1516 unsigned long scan, total_scan, nr_pages;
b2e18757 1517 LIST_HEAD(pages_skipped);
1da177e4 1518
791b48b6
MK
1519 scan = 0;
1520 for (total_scan = 0;
1521 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1522 total_scan++) {
5ad333eb 1523 struct page *page;
5ad333eb 1524
1da177e4
LT
1525 page = lru_to_page(src);
1526 prefetchw_prev_lru_page(page, src, flags);
1527
309381fe 1528 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1529
b2e18757
MG
1530 if (page_zonenum(page) > sc->reclaim_idx) {
1531 list_move(&page->lru, &pages_skipped);
7cc30fcf 1532 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1533 continue;
1534 }
1535
791b48b6
MK
1536 /*
1537 * Do not count skipped pages because that makes the function
1538 * return with no isolated pages if the LRU mostly contains
1539 * ineligible pages. This causes the VM to not reclaim any
1540 * pages, triggering a premature OOM.
1541 */
1542 scan++;
f3fd4a61 1543 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1544 case 0:
599d0c95
MG
1545 nr_pages = hpage_nr_pages(page);
1546 nr_taken += nr_pages;
1547 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1548 list_move(&page->lru, dst);
5ad333eb
AW
1549 break;
1550
1551 case -EBUSY:
1552 /* else it is being freed elsewhere */
1553 list_move(&page->lru, src);
1554 continue;
46453a6e 1555
5ad333eb
AW
1556 default:
1557 BUG();
1558 }
1da177e4
LT
1559 }
1560
b2e18757
MG
1561 /*
1562 * Splice any skipped pages to the start of the LRU list. Note that
1563 * this disrupts the LRU order when reclaiming for lower zones but
1564 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1565 * scanning would soon rescan the same pages to skip and put the
1566 * system at risk of premature OOM.
1567 */
7cc30fcf
MG
1568 if (!list_empty(&pages_skipped)) {
1569 int zid;
1570
3db65812 1571 list_splice(&pages_skipped, src);
7cc30fcf
MG
1572 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1573 if (!nr_skipped[zid])
1574 continue;
1575
1576 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1577 skipped += nr_skipped[zid];
7cc30fcf
MG
1578 }
1579 }
791b48b6 1580 *nr_scanned = total_scan;
1265e3a6 1581 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1582 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1583 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1584 return nr_taken;
1585}
1586
62695a84
NP
1587/**
1588 * isolate_lru_page - tries to isolate a page from its LRU list
1589 * @page: page to isolate from its LRU list
1590 *
1591 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1592 * vmstat statistic corresponding to whatever LRU list the page was on.
1593 *
1594 * Returns 0 if the page was removed from an LRU list.
1595 * Returns -EBUSY if the page was not on an LRU list.
1596 *
1597 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1598 * the active list, it will have PageActive set. If it was found on
1599 * the unevictable list, it will have the PageUnevictable bit set. That flag
1600 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1601 *
1602 * The vmstat statistic corresponding to the list on which the page was
1603 * found will be decremented.
1604 *
1605 * Restrictions:
1606 * (1) Must be called with an elevated refcount on the page. This is a
1607 * fundamentnal difference from isolate_lru_pages (which is called
1608 * without a stable reference).
1609 * (2) the lru_lock must not be held.
1610 * (3) interrupts must be enabled.
1611 */
1612int isolate_lru_page(struct page *page)
1613{
1614 int ret = -EBUSY;
1615
309381fe 1616 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1617 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1618
62695a84
NP
1619 if (PageLRU(page)) {
1620 struct zone *zone = page_zone(page);
fa9add64 1621 struct lruvec *lruvec;
62695a84 1622
a52633d8 1623 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1624 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1625 if (PageLRU(page)) {
894bc310 1626 int lru = page_lru(page);
0c917313 1627 get_page(page);
62695a84 1628 ClearPageLRU(page);
fa9add64
HD
1629 del_page_from_lru_list(page, lruvec, lru);
1630 ret = 0;
62695a84 1631 }
a52633d8 1632 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1633 }
1634 return ret;
1635}
1636
35cd7815 1637/*
d37dd5dc
FW
1638 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1639 * then get resheduled. When there are massive number of tasks doing page
1640 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1641 * the LRU list will go small and be scanned faster than necessary, leading to
1642 * unnecessary swapping, thrashing and OOM.
35cd7815 1643 */
599d0c95 1644static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1645 struct scan_control *sc)
1646{
1647 unsigned long inactive, isolated;
1648
1649 if (current_is_kswapd())
1650 return 0;
1651
97c9341f 1652 if (!sane_reclaim(sc))
35cd7815
RR
1653 return 0;
1654
1655 if (file) {
599d0c95
MG
1656 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1657 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1658 } else {
599d0c95
MG
1659 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1660 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1661 }
1662
3cf23841
FW
1663 /*
1664 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1665 * won't get blocked by normal direct-reclaimers, forming a circular
1666 * deadlock.
1667 */
d0164adc 1668 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1669 inactive >>= 3;
1670
35cd7815
RR
1671 return isolated > inactive;
1672}
1673
66635629 1674static noinline_for_stack void
75b00af7 1675putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1676{
27ac81d8 1677 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1678 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1679 LIST_HEAD(pages_to_free);
66635629 1680
66635629
MG
1681 /*
1682 * Put back any unfreeable pages.
1683 */
66635629 1684 while (!list_empty(page_list)) {
3f79768f 1685 struct page *page = lru_to_page(page_list);
66635629 1686 int lru;
3f79768f 1687
309381fe 1688 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1689 list_del(&page->lru);
39b5f29a 1690 if (unlikely(!page_evictable(page))) {
599d0c95 1691 spin_unlock_irq(&pgdat->lru_lock);
66635629 1692 putback_lru_page(page);
599d0c95 1693 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1694 continue;
1695 }
fa9add64 1696
599d0c95 1697 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1698
7a608572 1699 SetPageLRU(page);
66635629 1700 lru = page_lru(page);
fa9add64
HD
1701 add_page_to_lru_list(page, lruvec, lru);
1702
66635629
MG
1703 if (is_active_lru(lru)) {
1704 int file = is_file_lru(lru);
9992af10
RR
1705 int numpages = hpage_nr_pages(page);
1706 reclaim_stat->recent_rotated[file] += numpages;
66635629 1707 }
2bcf8879
HD
1708 if (put_page_testzero(page)) {
1709 __ClearPageLRU(page);
1710 __ClearPageActive(page);
fa9add64 1711 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1712
1713 if (unlikely(PageCompound(page))) {
599d0c95 1714 spin_unlock_irq(&pgdat->lru_lock);
747db954 1715 mem_cgroup_uncharge(page);
2bcf8879 1716 (*get_compound_page_dtor(page))(page);
599d0c95 1717 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1718 } else
1719 list_add(&page->lru, &pages_to_free);
66635629
MG
1720 }
1721 }
66635629 1722
3f79768f
HD
1723 /*
1724 * To save our caller's stack, now use input list for pages to free.
1725 */
1726 list_splice(&pages_to_free, page_list);
66635629
MG
1727}
1728
399ba0b9
N
1729/*
1730 * If a kernel thread (such as nfsd for loop-back mounts) services
1731 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1732 * In that case we should only throttle if the backing device it is
1733 * writing to is congested. In other cases it is safe to throttle.
1734 */
1735static int current_may_throttle(void)
1736{
1737 return !(current->flags & PF_LESS_THROTTLE) ||
1738 current->backing_dev_info == NULL ||
1739 bdi_write_congested(current->backing_dev_info);
1740}
1741
1da177e4 1742/*
b2e18757 1743 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1744 * of reclaimed pages
1da177e4 1745 */
66635629 1746static noinline_for_stack unsigned long
1a93be0e 1747shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1748 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1749{
1750 LIST_HEAD(page_list);
e247dbce 1751 unsigned long nr_scanned;
05ff5137 1752 unsigned long nr_reclaimed = 0;
e247dbce 1753 unsigned long nr_taken;
3c710c1a 1754 struct reclaim_stat stat = {};
f3fd4a61 1755 isolate_mode_t isolate_mode = 0;
3cb99451 1756 int file = is_file_lru(lru);
599d0c95 1757 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1758 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1759 bool stalled = false;
78dc583d 1760
599d0c95 1761 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1762 if (stalled)
1763 return 0;
1764
1765 /* wait a bit for the reclaimer. */
1766 msleep(100);
1767 stalled = true;
35cd7815
RR
1768
1769 /* We are about to die and free our memory. Return now. */
1770 if (fatal_signal_pending(current))
1771 return SWAP_CLUSTER_MAX;
1772 }
1773
1da177e4 1774 lru_add_drain();
f80c0673
MK
1775
1776 if (!sc->may_unmap)
61317289 1777 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1778
599d0c95 1779 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1780
5dc35979
KK
1781 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1782 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1783
599d0c95 1784 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1785 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1786
2262185c
RG
1787 if (current_is_kswapd()) {
1788 if (global_reclaim(sc))
599d0c95 1789 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
2262185c
RG
1790 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1791 nr_scanned);
1792 } else {
1793 if (global_reclaim(sc))
599d0c95 1794 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
2262185c
RG
1795 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1796 nr_scanned);
e247dbce 1797 }
599d0c95 1798 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1799
d563c050 1800 if (nr_taken == 0)
66635629 1801 return 0;
5ad333eb 1802
a128ca71 1803 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1804 &stat, false);
c661b078 1805
599d0c95 1806 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1807
2262185c
RG
1808 if (current_is_kswapd()) {
1809 if (global_reclaim(sc))
599d0c95 1810 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
2262185c
RG
1811 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1812 nr_reclaimed);
1813 } else {
1814 if (global_reclaim(sc))
599d0c95 1815 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
2262185c
RG
1816 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1817 nr_reclaimed);
904249aa 1818 }
a74609fa 1819
27ac81d8 1820 putback_inactive_pages(lruvec, &page_list);
3f79768f 1821
599d0c95 1822 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1823
599d0c95 1824 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1825
747db954 1826 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1827 free_unref_page_list(&page_list);
e11da5b4 1828
92df3a72
MG
1829 /*
1830 * If reclaim is isolating dirty pages under writeback, it implies
1831 * that the long-lived page allocation rate is exceeding the page
1832 * laundering rate. Either the global limits are not being effective
1833 * at throttling processes due to the page distribution throughout
1834 * zones or there is heavy usage of a slow backing device. The
1835 * only option is to throttle from reclaim context which is not ideal
1836 * as there is no guarantee the dirtying process is throttled in the
1837 * same way balance_dirty_pages() manages.
1838 *
8e950282
MG
1839 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1840 * of pages under pages flagged for immediate reclaim and stall if any
1841 * are encountered in the nr_immediate check below.
92df3a72 1842 */
3c710c1a 1843 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
599d0c95 1844 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1845
d43006d5 1846 /*
97c9341f
TH
1847 * Legacy memcg will stall in page writeback so avoid forcibly
1848 * stalling here.
d43006d5 1849 */
97c9341f 1850 if (sane_reclaim(sc)) {
8e950282
MG
1851 /*
1852 * Tag a zone as congested if all the dirty pages scanned were
1853 * backed by a congested BDI and wait_iff_congested will stall.
1854 */
3c710c1a 1855 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
599d0c95 1856 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1857
b1a6f21e
MG
1858 /*
1859 * If dirty pages are scanned that are not queued for IO, it
726d061f
JW
1860 * implies that flushers are not doing their job. This can
1861 * happen when memory pressure pushes dirty pages to the end of
1862 * the LRU before the dirty limits are breached and the dirty
1863 * data has expired. It can also happen when the proportion of
1864 * dirty pages grows not through writes but through memory
1865 * pressure reclaiming all the clean cache. And in some cases,
1866 * the flushers simply cannot keep up with the allocation
1867 * rate. Nudge the flusher threads in case they are asleep, but
1868 * also allow kswapd to start writing pages during reclaim.
b1a6f21e 1869 */
726d061f 1870 if (stat.nr_unqueued_dirty == nr_taken) {
9ba4b2df 1871 wakeup_flusher_threads(WB_REASON_VMSCAN);
599d0c95 1872 set_bit(PGDAT_DIRTY, &pgdat->flags);
726d061f 1873 }
b1a6f21e
MG
1874
1875 /*
b738d764
LT
1876 * If kswapd scans pages marked marked for immediate
1877 * reclaim and under writeback (nr_immediate), it implies
1878 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1879 * they are written so also forcibly stall.
1880 */
3c710c1a 1881 if (stat.nr_immediate && current_may_throttle())
b1a6f21e 1882 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1883 }
d43006d5 1884
8e950282
MG
1885 /*
1886 * Stall direct reclaim for IO completions if underlying BDIs or zone
1887 * is congested. Allow kswapd to continue until it starts encountering
1888 * unqueued dirty pages or cycling through the LRU too quickly.
1889 */
399ba0b9
N
1890 if (!sc->hibernation_mode && !current_is_kswapd() &&
1891 current_may_throttle())
599d0c95 1892 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1893
599d0c95
MG
1894 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1895 nr_scanned, nr_reclaimed,
5bccd166
MH
1896 stat.nr_dirty, stat.nr_writeback,
1897 stat.nr_congested, stat.nr_immediate,
1898 stat.nr_activate, stat.nr_ref_keep,
1899 stat.nr_unmap_fail,
ba5e9579 1900 sc->priority, file);
05ff5137 1901 return nr_reclaimed;
1da177e4
LT
1902}
1903
1904/*
1905 * This moves pages from the active list to the inactive list.
1906 *
1907 * We move them the other way if the page is referenced by one or more
1908 * processes, from rmap.
1909 *
1910 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1911 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1912 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1913 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1914 * this, so instead we remove the pages from the LRU while processing them.
1915 * It is safe to rely on PG_active against the non-LRU pages in here because
1916 * nobody will play with that bit on a non-LRU page.
1917 *
0139aa7b 1918 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1919 * But we had to alter page->flags anyway.
9d998b4f
MH
1920 *
1921 * Returns the number of pages moved to the given lru.
1da177e4 1922 */
1cfb419b 1923
9d998b4f 1924static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1925 struct list_head *list,
2bcf8879 1926 struct list_head *pages_to_free,
3eb4140f
WF
1927 enum lru_list lru)
1928{
599d0c95 1929 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1930 struct page *page;
fa9add64 1931 int nr_pages;
9d998b4f 1932 int nr_moved = 0;
3eb4140f 1933
3eb4140f
WF
1934 while (!list_empty(list)) {
1935 page = lru_to_page(list);
599d0c95 1936 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1937
309381fe 1938 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1939 SetPageLRU(page);
1940
fa9add64 1941 nr_pages = hpage_nr_pages(page);
599d0c95 1942 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1943 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 1944
2bcf8879
HD
1945 if (put_page_testzero(page)) {
1946 __ClearPageLRU(page);
1947 __ClearPageActive(page);
fa9add64 1948 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1949
1950 if (unlikely(PageCompound(page))) {
599d0c95 1951 spin_unlock_irq(&pgdat->lru_lock);
747db954 1952 mem_cgroup_uncharge(page);
2bcf8879 1953 (*get_compound_page_dtor(page))(page);
599d0c95 1954 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1955 } else
1956 list_add(&page->lru, pages_to_free);
9d998b4f
MH
1957 } else {
1958 nr_moved += nr_pages;
3eb4140f
WF
1959 }
1960 }
9d5e6a9f 1961
2262185c 1962 if (!is_active_lru(lru)) {
f0958906 1963 __count_vm_events(PGDEACTIVATE, nr_moved);
2262185c
RG
1964 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1965 nr_moved);
1966 }
9d998b4f
MH
1967
1968 return nr_moved;
3eb4140f 1969}
1cfb419b 1970
f626012d 1971static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1972 struct lruvec *lruvec,
f16015fb 1973 struct scan_control *sc,
9e3b2f8c 1974 enum lru_list lru)
1da177e4 1975{
44c241f1 1976 unsigned long nr_taken;
f626012d 1977 unsigned long nr_scanned;
6fe6b7e3 1978 unsigned long vm_flags;
1da177e4 1979 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1980 LIST_HEAD(l_active);
b69408e8 1981 LIST_HEAD(l_inactive);
1da177e4 1982 struct page *page;
1a93be0e 1983 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
1984 unsigned nr_deactivate, nr_activate;
1985 unsigned nr_rotated = 0;
f3fd4a61 1986 isolate_mode_t isolate_mode = 0;
3cb99451 1987 int file = is_file_lru(lru);
599d0c95 1988 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1989
1990 lru_add_drain();
f80c0673
MK
1991
1992 if (!sc->may_unmap)
61317289 1993 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1994
599d0c95 1995 spin_lock_irq(&pgdat->lru_lock);
925b7673 1996
5dc35979
KK
1997 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1998 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1999
599d0c95 2000 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2001 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2002
599d0c95 2003 __count_vm_events(PGREFILL, nr_scanned);
2262185c 2004 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2005
599d0c95 2006 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2007
1da177e4
LT
2008 while (!list_empty(&l_hold)) {
2009 cond_resched();
2010 page = lru_to_page(&l_hold);
2011 list_del(&page->lru);
7e9cd484 2012
39b5f29a 2013 if (unlikely(!page_evictable(page))) {
894bc310
LS
2014 putback_lru_page(page);
2015 continue;
2016 }
2017
cc715d99
MG
2018 if (unlikely(buffer_heads_over_limit)) {
2019 if (page_has_private(page) && trylock_page(page)) {
2020 if (page_has_private(page))
2021 try_to_release_page(page, 0);
2022 unlock_page(page);
2023 }
2024 }
2025
c3ac9a8a
JW
2026 if (page_referenced(page, 0, sc->target_mem_cgroup,
2027 &vm_flags)) {
9992af10 2028 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2029 /*
2030 * Identify referenced, file-backed active pages and
2031 * give them one more trip around the active list. So
2032 * that executable code get better chances to stay in
2033 * memory under moderate memory pressure. Anon pages
2034 * are not likely to be evicted by use-once streaming
2035 * IO, plus JVM can create lots of anon VM_EXEC pages,
2036 * so we ignore them here.
2037 */
41e20983 2038 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2039 list_add(&page->lru, &l_active);
2040 continue;
2041 }
2042 }
7e9cd484 2043
5205e56e 2044 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
2045 list_add(&page->lru, &l_inactive);
2046 }
2047
b555749a 2048 /*
8cab4754 2049 * Move pages back to the lru list.
b555749a 2050 */
599d0c95 2051 spin_lock_irq(&pgdat->lru_lock);
556adecb 2052 /*
8cab4754
WF
2053 * Count referenced pages from currently used mappings as rotated,
2054 * even though only some of them are actually re-activated. This
2055 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2056 * get_scan_count.
7e9cd484 2057 */
b7c46d15 2058 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2059
9d998b4f
MH
2060 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2061 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
2062 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2063 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2064
747db954 2065 mem_cgroup_uncharge_list(&l_hold);
2d4894b5 2066 free_unref_page_list(&l_hold);
9d998b4f
MH
2067 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2068 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2069}
2070
59dc76b0
RR
2071/*
2072 * The inactive anon list should be small enough that the VM never has
2073 * to do too much work.
14797e23 2074 *
59dc76b0
RR
2075 * The inactive file list should be small enough to leave most memory
2076 * to the established workingset on the scan-resistant active list,
2077 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2078 *
59dc76b0
RR
2079 * Both inactive lists should also be large enough that each inactive
2080 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2081 *
2a2e4885
JW
2082 * If that fails and refaulting is observed, the inactive list grows.
2083 *
59dc76b0 2084 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2085 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2086 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2087 *
59dc76b0
RR
2088 * total target max
2089 * memory ratio inactive
2090 * -------------------------------------
2091 * 10MB 1 5MB
2092 * 100MB 1 50MB
2093 * 1GB 3 250MB
2094 * 10GB 10 0.9GB
2095 * 100GB 31 3GB
2096 * 1TB 101 10GB
2097 * 10TB 320 32GB
56e49d21 2098 */
f8d1a311 2099static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2a2e4885
JW
2100 struct mem_cgroup *memcg,
2101 struct scan_control *sc, bool actual_reclaim)
56e49d21 2102{
fd538803 2103 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2104 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2105 enum lru_list inactive_lru = file * LRU_FILE;
2106 unsigned long inactive, active;
2107 unsigned long inactive_ratio;
2108 unsigned long refaults;
59dc76b0 2109 unsigned long gb;
e3790144 2110
59dc76b0
RR
2111 /*
2112 * If we don't have swap space, anonymous page deactivation
2113 * is pointless.
2114 */
2115 if (!file && !total_swap_pages)
2116 return false;
56e49d21 2117
fd538803
MH
2118 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2119 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2120
2a2e4885 2121 if (memcg)
ccda7f43 2122 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
b39415b2 2123 else
2a2e4885
JW
2124 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2125
2126 /*
2127 * When refaults are being observed, it means a new workingset
2128 * is being established. Disable active list protection to get
2129 * rid of the stale workingset quickly.
2130 */
2131 if (file && actual_reclaim && lruvec->refaults != refaults) {
2132 inactive_ratio = 0;
2133 } else {
2134 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2135 if (gb)
2136 inactive_ratio = int_sqrt(10 * gb);
2137 else
2138 inactive_ratio = 1;
2139 }
59dc76b0 2140
2a2e4885
JW
2141 if (actual_reclaim)
2142 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2143 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2144 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2145 inactive_ratio, file);
fd538803 2146
59dc76b0 2147 return inactive * inactive_ratio < active;
b39415b2
RR
2148}
2149
4f98a2fe 2150static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2a2e4885
JW
2151 struct lruvec *lruvec, struct mem_cgroup *memcg,
2152 struct scan_control *sc)
b69408e8 2153{
b39415b2 2154 if (is_active_lru(lru)) {
2a2e4885
JW
2155 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2156 memcg, sc, true))
1a93be0e 2157 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2158 return 0;
2159 }
2160
1a93be0e 2161 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2162}
2163
9a265114
JW
2164enum scan_balance {
2165 SCAN_EQUAL,
2166 SCAN_FRACT,
2167 SCAN_ANON,
2168 SCAN_FILE,
2169};
2170
4f98a2fe
RR
2171/*
2172 * Determine how aggressively the anon and file LRU lists should be
2173 * scanned. The relative value of each set of LRU lists is determined
2174 * by looking at the fraction of the pages scanned we did rotate back
2175 * onto the active list instead of evict.
2176 *
be7bd59d
WL
2177 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2178 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2179 */
33377678 2180static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2181 struct scan_control *sc, unsigned long *nr,
2182 unsigned long *lru_pages)
4f98a2fe 2183{
33377678 2184 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2185 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2186 u64 fraction[2];
2187 u64 denominator = 0; /* gcc */
599d0c95 2188 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2189 unsigned long anon_prio, file_prio;
9a265114 2190 enum scan_balance scan_balance;
0bf1457f 2191 unsigned long anon, file;
4f98a2fe 2192 unsigned long ap, fp;
4111304d 2193 enum lru_list lru;
76a33fc3
SL
2194
2195 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2196 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2197 scan_balance = SCAN_FILE;
76a33fc3
SL
2198 goto out;
2199 }
4f98a2fe 2200
10316b31
JW
2201 /*
2202 * Global reclaim will swap to prevent OOM even with no
2203 * swappiness, but memcg users want to use this knob to
2204 * disable swapping for individual groups completely when
2205 * using the memory controller's swap limit feature would be
2206 * too expensive.
2207 */
02695175 2208 if (!global_reclaim(sc) && !swappiness) {
9a265114 2209 scan_balance = SCAN_FILE;
10316b31
JW
2210 goto out;
2211 }
2212
2213 /*
2214 * Do not apply any pressure balancing cleverness when the
2215 * system is close to OOM, scan both anon and file equally
2216 * (unless the swappiness setting disagrees with swapping).
2217 */
02695175 2218 if (!sc->priority && swappiness) {
9a265114 2219 scan_balance = SCAN_EQUAL;
10316b31
JW
2220 goto out;
2221 }
2222
62376251
JW
2223 /*
2224 * Prevent the reclaimer from falling into the cache trap: as
2225 * cache pages start out inactive, every cache fault will tip
2226 * the scan balance towards the file LRU. And as the file LRU
2227 * shrinks, so does the window for rotation from references.
2228 * This means we have a runaway feedback loop where a tiny
2229 * thrashing file LRU becomes infinitely more attractive than
2230 * anon pages. Try to detect this based on file LRU size.
2231 */
2232 if (global_reclaim(sc)) {
599d0c95
MG
2233 unsigned long pgdatfile;
2234 unsigned long pgdatfree;
2235 int z;
2236 unsigned long total_high_wmark = 0;
2ab051e1 2237
599d0c95
MG
2238 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2239 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2240 node_page_state(pgdat, NR_INACTIVE_FILE);
2241
2242 for (z = 0; z < MAX_NR_ZONES; z++) {
2243 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2244 if (!managed_zone(zone))
599d0c95
MG
2245 continue;
2246
2247 total_high_wmark += high_wmark_pages(zone);
2248 }
62376251 2249
599d0c95 2250 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2251 /*
2252 * Force SCAN_ANON if there are enough inactive
2253 * anonymous pages on the LRU in eligible zones.
2254 * Otherwise, the small LRU gets thrashed.
2255 */
2256 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2257 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2258 >> sc->priority) {
2259 scan_balance = SCAN_ANON;
2260 goto out;
2261 }
62376251
JW
2262 }
2263 }
2264
7c5bd705 2265 /*
316bda0e
VD
2266 * If there is enough inactive page cache, i.e. if the size of the
2267 * inactive list is greater than that of the active list *and* the
2268 * inactive list actually has some pages to scan on this priority, we
2269 * do not reclaim anything from the anonymous working set right now.
2270 * Without the second condition we could end up never scanning an
2271 * lruvec even if it has plenty of old anonymous pages unless the
2272 * system is under heavy pressure.
7c5bd705 2273 */
2a2e4885 2274 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
71ab6cfe 2275 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2276 scan_balance = SCAN_FILE;
7c5bd705
JW
2277 goto out;
2278 }
2279
9a265114
JW
2280 scan_balance = SCAN_FRACT;
2281
58c37f6e
KM
2282 /*
2283 * With swappiness at 100, anonymous and file have the same priority.
2284 * This scanning priority is essentially the inverse of IO cost.
2285 */
02695175 2286 anon_prio = swappiness;
75b00af7 2287 file_prio = 200 - anon_prio;
58c37f6e 2288
4f98a2fe
RR
2289 /*
2290 * OK, so we have swap space and a fair amount of page cache
2291 * pages. We use the recently rotated / recently scanned
2292 * ratios to determine how valuable each cache is.
2293 *
2294 * Because workloads change over time (and to avoid overflow)
2295 * we keep these statistics as a floating average, which ends
2296 * up weighing recent references more than old ones.
2297 *
2298 * anon in [0], file in [1]
2299 */
2ab051e1 2300
fd538803
MH
2301 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2302 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2303 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2304 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2305
599d0c95 2306 spin_lock_irq(&pgdat->lru_lock);
6e901571 2307 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2308 reclaim_stat->recent_scanned[0] /= 2;
2309 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2310 }
2311
6e901571 2312 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2313 reclaim_stat->recent_scanned[1] /= 2;
2314 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2315 }
2316
4f98a2fe 2317 /*
00d8089c
RR
2318 * The amount of pressure on anon vs file pages is inversely
2319 * proportional to the fraction of recently scanned pages on
2320 * each list that were recently referenced and in active use.
4f98a2fe 2321 */
fe35004f 2322 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2323 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2324
fe35004f 2325 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2326 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2327 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2328
76a33fc3
SL
2329 fraction[0] = ap;
2330 fraction[1] = fp;
2331 denominator = ap + fp + 1;
2332out:
688035f7
JW
2333 *lru_pages = 0;
2334 for_each_evictable_lru(lru) {
2335 int file = is_file_lru(lru);
2336 unsigned long size;
2337 unsigned long scan;
6b4f7799 2338
688035f7
JW
2339 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2340 scan = size >> sc->priority;
2341 /*
2342 * If the cgroup's already been deleted, make sure to
2343 * scrape out the remaining cache.
2344 */
2345 if (!scan && !mem_cgroup_online(memcg))
2346 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2347
688035f7
JW
2348 switch (scan_balance) {
2349 case SCAN_EQUAL:
2350 /* Scan lists relative to size */
2351 break;
2352 case SCAN_FRACT:
9a265114 2353 /*
688035f7
JW
2354 * Scan types proportional to swappiness and
2355 * their relative recent reclaim efficiency.
9a265114 2356 */
688035f7
JW
2357 scan = div64_u64(scan * fraction[file],
2358 denominator);
2359 break;
2360 case SCAN_FILE:
2361 case SCAN_ANON:
2362 /* Scan one type exclusively */
2363 if ((scan_balance == SCAN_FILE) != file) {
2364 size = 0;
2365 scan = 0;
2366 }
2367 break;
2368 default:
2369 /* Look ma, no brain */
2370 BUG();
9a265114 2371 }
688035f7
JW
2372
2373 *lru_pages += size;
2374 nr[lru] = scan;
76a33fc3 2375 }
6e08a369 2376}
4f98a2fe 2377
9b4f98cd 2378/*
a9dd0a83 2379 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2380 */
a9dd0a83 2381static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2382 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2383{
ef8f2327 2384 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2385 unsigned long nr[NR_LRU_LISTS];
e82e0561 2386 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2387 unsigned long nr_to_scan;
2388 enum lru_list lru;
2389 unsigned long nr_reclaimed = 0;
2390 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2391 struct blk_plug plug;
1a501907 2392 bool scan_adjusted;
9b4f98cd 2393
33377678 2394 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2395
e82e0561
MG
2396 /* Record the original scan target for proportional adjustments later */
2397 memcpy(targets, nr, sizeof(nr));
2398
1a501907
MG
2399 /*
2400 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2401 * event that can occur when there is little memory pressure e.g.
2402 * multiple streaming readers/writers. Hence, we do not abort scanning
2403 * when the requested number of pages are reclaimed when scanning at
2404 * DEF_PRIORITY on the assumption that the fact we are direct
2405 * reclaiming implies that kswapd is not keeping up and it is best to
2406 * do a batch of work at once. For memcg reclaim one check is made to
2407 * abort proportional reclaim if either the file or anon lru has already
2408 * dropped to zero at the first pass.
2409 */
2410 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2411 sc->priority == DEF_PRIORITY);
2412
9b4f98cd
JW
2413 blk_start_plug(&plug);
2414 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2415 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2416 unsigned long nr_anon, nr_file, percentage;
2417 unsigned long nr_scanned;
2418
9b4f98cd
JW
2419 for_each_evictable_lru(lru) {
2420 if (nr[lru]) {
2421 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2422 nr[lru] -= nr_to_scan;
2423
2424 nr_reclaimed += shrink_list(lru, nr_to_scan,
2a2e4885 2425 lruvec, memcg, sc);
9b4f98cd
JW
2426 }
2427 }
e82e0561 2428
bd041733
MH
2429 cond_resched();
2430
e82e0561
MG
2431 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2432 continue;
2433
e82e0561
MG
2434 /*
2435 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2436 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2437 * proportionally what was requested by get_scan_count(). We
2438 * stop reclaiming one LRU and reduce the amount scanning
2439 * proportional to the original scan target.
2440 */
2441 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2442 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2443
1a501907
MG
2444 /*
2445 * It's just vindictive to attack the larger once the smaller
2446 * has gone to zero. And given the way we stop scanning the
2447 * smaller below, this makes sure that we only make one nudge
2448 * towards proportionality once we've got nr_to_reclaim.
2449 */
2450 if (!nr_file || !nr_anon)
2451 break;
2452
e82e0561
MG
2453 if (nr_file > nr_anon) {
2454 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2455 targets[LRU_ACTIVE_ANON] + 1;
2456 lru = LRU_BASE;
2457 percentage = nr_anon * 100 / scan_target;
2458 } else {
2459 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2460 targets[LRU_ACTIVE_FILE] + 1;
2461 lru = LRU_FILE;
2462 percentage = nr_file * 100 / scan_target;
2463 }
2464
2465 /* Stop scanning the smaller of the LRU */
2466 nr[lru] = 0;
2467 nr[lru + LRU_ACTIVE] = 0;
2468
2469 /*
2470 * Recalculate the other LRU scan count based on its original
2471 * scan target and the percentage scanning already complete
2472 */
2473 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2474 nr_scanned = targets[lru] - nr[lru];
2475 nr[lru] = targets[lru] * (100 - percentage) / 100;
2476 nr[lru] -= min(nr[lru], nr_scanned);
2477
2478 lru += LRU_ACTIVE;
2479 nr_scanned = targets[lru] - nr[lru];
2480 nr[lru] = targets[lru] * (100 - percentage) / 100;
2481 nr[lru] -= min(nr[lru], nr_scanned);
2482
2483 scan_adjusted = true;
9b4f98cd
JW
2484 }
2485 blk_finish_plug(&plug);
2486 sc->nr_reclaimed += nr_reclaimed;
2487
2488 /*
2489 * Even if we did not try to evict anon pages at all, we want to
2490 * rebalance the anon lru active/inactive ratio.
2491 */
2a2e4885 2492 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
9b4f98cd
JW
2493 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2494 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2495}
2496
23b9da55 2497/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2498static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2499{
d84da3f9 2500 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2501 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2502 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2503 return true;
2504
2505 return false;
2506}
2507
3e7d3449 2508/*
23b9da55
MG
2509 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2510 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2511 * true if more pages should be reclaimed such that when the page allocator
2512 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2513 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2514 */
a9dd0a83 2515static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2516 unsigned long nr_reclaimed,
2517 unsigned long nr_scanned,
2518 struct scan_control *sc)
2519{
2520 unsigned long pages_for_compaction;
2521 unsigned long inactive_lru_pages;
a9dd0a83 2522 int z;
3e7d3449
MG
2523
2524 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2525 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2526 return false;
2527
2876592f 2528 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2529 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2530 /*
dcda9b04 2531 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2532 * full LRU list has been scanned and we are still failing
2533 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2534 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2535 */
2536 if (!nr_reclaimed && !nr_scanned)
2537 return false;
2538 } else {
2539 /*
dcda9b04 2540 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2541 * fail without consequence, stop if we failed to reclaim
2542 * any pages from the last SWAP_CLUSTER_MAX number of
2543 * pages that were scanned. This will return to the
2544 * caller faster at the risk reclaim/compaction and
2545 * the resulting allocation attempt fails
2546 */
2547 if (!nr_reclaimed)
2548 return false;
2549 }
3e7d3449
MG
2550
2551 /*
2552 * If we have not reclaimed enough pages for compaction and the
2553 * inactive lists are large enough, continue reclaiming
2554 */
9861a62c 2555 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2556 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2557 if (get_nr_swap_pages() > 0)
a9dd0a83 2558 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2559 if (sc->nr_reclaimed < pages_for_compaction &&
2560 inactive_lru_pages > pages_for_compaction)
2561 return true;
2562
2563 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2564 for (z = 0; z <= sc->reclaim_idx; z++) {
2565 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2566 if (!managed_zone(zone))
a9dd0a83
MG
2567 continue;
2568
2569 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2570 case COMPACT_SUCCESS:
a9dd0a83
MG
2571 case COMPACT_CONTINUE:
2572 return false;
2573 default:
2574 /* check next zone */
2575 ;
2576 }
3e7d3449 2577 }
a9dd0a83 2578 return true;
3e7d3449
MG
2579}
2580
970a39a3 2581static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2582{
cb731d6c 2583 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2584 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2585 bool reclaimable = false;
1da177e4 2586
9b4f98cd
JW
2587 do {
2588 struct mem_cgroup *root = sc->target_mem_cgroup;
2589 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2590 .pgdat = pgdat,
9b4f98cd
JW
2591 .priority = sc->priority,
2592 };
a9dd0a83 2593 unsigned long node_lru_pages = 0;
694fbc0f 2594 struct mem_cgroup *memcg;
3e7d3449 2595
9b4f98cd
JW
2596 nr_reclaimed = sc->nr_reclaimed;
2597 nr_scanned = sc->nr_scanned;
1da177e4 2598
694fbc0f
AM
2599 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2600 do {
6b4f7799 2601 unsigned long lru_pages;
8e8ae645 2602 unsigned long reclaimed;
cb731d6c 2603 unsigned long scanned;
5660048c 2604
241994ed 2605 if (mem_cgroup_low(root, memcg)) {
d6622f63
YX
2606 if (!sc->memcg_low_reclaim) {
2607 sc->memcg_low_skipped = 1;
241994ed 2608 continue;
d6622f63 2609 }
31176c78 2610 mem_cgroup_event(memcg, MEMCG_LOW);
241994ed
JW
2611 }
2612
8e8ae645 2613 reclaimed = sc->nr_reclaimed;
cb731d6c 2614 scanned = sc->nr_scanned;
f9be23d6 2615
a9dd0a83
MG
2616 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2617 node_lru_pages += lru_pages;
f16015fb 2618
b5afba29 2619 if (memcg)
a9dd0a83 2620 shrink_slab(sc->gfp_mask, pgdat->node_id,
cb731d6c
VD
2621 memcg, sc->nr_scanned - scanned,
2622 lru_pages);
2623
8e8ae645
JW
2624 /* Record the group's reclaim efficiency */
2625 vmpressure(sc->gfp_mask, memcg, false,
2626 sc->nr_scanned - scanned,
2627 sc->nr_reclaimed - reclaimed);
2628
9b4f98cd 2629 /*
a394cb8e
MH
2630 * Direct reclaim and kswapd have to scan all memory
2631 * cgroups to fulfill the overall scan target for the
a9dd0a83 2632 * node.
a394cb8e
MH
2633 *
2634 * Limit reclaim, on the other hand, only cares about
2635 * nr_to_reclaim pages to be reclaimed and it will
2636 * retry with decreasing priority if one round over the
2637 * whole hierarchy is not sufficient.
9b4f98cd 2638 */
a394cb8e
MH
2639 if (!global_reclaim(sc) &&
2640 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2641 mem_cgroup_iter_break(root, memcg);
2642 break;
2643 }
241994ed 2644 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2645
6b4f7799
JW
2646 /*
2647 * Shrink the slab caches in the same proportion that
2648 * the eligible LRU pages were scanned.
2649 */
b2e18757 2650 if (global_reclaim(sc))
a9dd0a83 2651 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
cb731d6c 2652 sc->nr_scanned - nr_scanned,
a9dd0a83 2653 node_lru_pages);
cb731d6c
VD
2654
2655 if (reclaim_state) {
2656 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2657 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2658 }
2659
8e8ae645
JW
2660 /* Record the subtree's reclaim efficiency */
2661 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2662 sc->nr_scanned - nr_scanned,
2663 sc->nr_reclaimed - nr_reclaimed);
2664
2344d7e4
JW
2665 if (sc->nr_reclaimed - nr_reclaimed)
2666 reclaimable = true;
2667
a9dd0a83 2668 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2669 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2670
c73322d0
JW
2671 /*
2672 * Kswapd gives up on balancing particular nodes after too
2673 * many failures to reclaim anything from them and goes to
2674 * sleep. On reclaim progress, reset the failure counter. A
2675 * successful direct reclaim run will revive a dormant kswapd.
2676 */
2677 if (reclaimable)
2678 pgdat->kswapd_failures = 0;
2679
2344d7e4 2680 return reclaimable;
f16015fb
JW
2681}
2682
53853e2d 2683/*
fdd4c614
VB
2684 * Returns true if compaction should go ahead for a costly-order request, or
2685 * the allocation would already succeed without compaction. Return false if we
2686 * should reclaim first.
53853e2d 2687 */
4f588331 2688static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2689{
31483b6a 2690 unsigned long watermark;
fdd4c614 2691 enum compact_result suitable;
fe4b1b24 2692
fdd4c614
VB
2693 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2694 if (suitable == COMPACT_SUCCESS)
2695 /* Allocation should succeed already. Don't reclaim. */
2696 return true;
2697 if (suitable == COMPACT_SKIPPED)
2698 /* Compaction cannot yet proceed. Do reclaim. */
2699 return false;
fe4b1b24 2700
53853e2d 2701 /*
fdd4c614
VB
2702 * Compaction is already possible, but it takes time to run and there
2703 * are potentially other callers using the pages just freed. So proceed
2704 * with reclaim to make a buffer of free pages available to give
2705 * compaction a reasonable chance of completing and allocating the page.
2706 * Note that we won't actually reclaim the whole buffer in one attempt
2707 * as the target watermark in should_continue_reclaim() is lower. But if
2708 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2709 */
fdd4c614 2710 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2711
fdd4c614 2712 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2713}
2714
1da177e4
LT
2715/*
2716 * This is the direct reclaim path, for page-allocating processes. We only
2717 * try to reclaim pages from zones which will satisfy the caller's allocation
2718 * request.
2719 *
1da177e4
LT
2720 * If a zone is deemed to be full of pinned pages then just give it a light
2721 * scan then give up on it.
2722 */
0a0337e0 2723static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2724{
dd1a239f 2725 struct zoneref *z;
54a6eb5c 2726 struct zone *zone;
0608f43d
AM
2727 unsigned long nr_soft_reclaimed;
2728 unsigned long nr_soft_scanned;
619d0d76 2729 gfp_t orig_mask;
79dafcdc 2730 pg_data_t *last_pgdat = NULL;
1cfb419b 2731
cc715d99
MG
2732 /*
2733 * If the number of buffer_heads in the machine exceeds the maximum
2734 * allowed level, force direct reclaim to scan the highmem zone as
2735 * highmem pages could be pinning lowmem pages storing buffer_heads
2736 */
619d0d76 2737 orig_mask = sc->gfp_mask;
b2e18757 2738 if (buffer_heads_over_limit) {
cc715d99 2739 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2740 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2741 }
cc715d99 2742
d4debc66 2743 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2744 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2745 /*
2746 * Take care memory controller reclaiming has small influence
2747 * to global LRU.
2748 */
89b5fae5 2749 if (global_reclaim(sc)) {
344736f2
VD
2750 if (!cpuset_zone_allowed(zone,
2751 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2752 continue;
65ec02cb 2753
0b06496a
JW
2754 /*
2755 * If we already have plenty of memory free for
2756 * compaction in this zone, don't free any more.
2757 * Even though compaction is invoked for any
2758 * non-zero order, only frequent costly order
2759 * reclamation is disruptive enough to become a
2760 * noticeable problem, like transparent huge
2761 * page allocations.
2762 */
2763 if (IS_ENABLED(CONFIG_COMPACTION) &&
2764 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2765 compaction_ready(zone, sc)) {
0b06496a
JW
2766 sc->compaction_ready = true;
2767 continue;
e0887c19 2768 }
0b06496a 2769
79dafcdc
MG
2770 /*
2771 * Shrink each node in the zonelist once. If the
2772 * zonelist is ordered by zone (not the default) then a
2773 * node may be shrunk multiple times but in that case
2774 * the user prefers lower zones being preserved.
2775 */
2776 if (zone->zone_pgdat == last_pgdat)
2777 continue;
2778
0608f43d
AM
2779 /*
2780 * This steals pages from memory cgroups over softlimit
2781 * and returns the number of reclaimed pages and
2782 * scanned pages. This works for global memory pressure
2783 * and balancing, not for a memcg's limit.
2784 */
2785 nr_soft_scanned = 0;
ef8f2327 2786 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2787 sc->order, sc->gfp_mask,
2788 &nr_soft_scanned);
2789 sc->nr_reclaimed += nr_soft_reclaimed;
2790 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2791 /* need some check for avoid more shrink_zone() */
1cfb419b 2792 }
408d8544 2793
79dafcdc
MG
2794 /* See comment about same check for global reclaim above */
2795 if (zone->zone_pgdat == last_pgdat)
2796 continue;
2797 last_pgdat = zone->zone_pgdat;
970a39a3 2798 shrink_node(zone->zone_pgdat, sc);
1da177e4 2799 }
e0c23279 2800
619d0d76
WY
2801 /*
2802 * Restore to original mask to avoid the impact on the caller if we
2803 * promoted it to __GFP_HIGHMEM.
2804 */
2805 sc->gfp_mask = orig_mask;
1da177e4 2806}
4f98a2fe 2807
2a2e4885
JW
2808static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2809{
2810 struct mem_cgroup *memcg;
2811
2812 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2813 do {
2814 unsigned long refaults;
2815 struct lruvec *lruvec;
2816
2817 if (memcg)
ccda7f43 2818 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2a2e4885
JW
2819 else
2820 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2821
2822 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2823 lruvec->refaults = refaults;
2824 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2825}
2826
1da177e4
LT
2827/*
2828 * This is the main entry point to direct page reclaim.
2829 *
2830 * If a full scan of the inactive list fails to free enough memory then we
2831 * are "out of memory" and something needs to be killed.
2832 *
2833 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2834 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2835 * caller can't do much about. We kick the writeback threads and take explicit
2836 * naps in the hope that some of these pages can be written. But if the
2837 * allocating task holds filesystem locks which prevent writeout this might not
2838 * work, and the allocation attempt will fail.
a41f24ea
NA
2839 *
2840 * returns: 0, if no pages reclaimed
2841 * else, the number of pages reclaimed
1da177e4 2842 */
dac1d27b 2843static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2844 struct scan_control *sc)
1da177e4 2845{
241994ed 2846 int initial_priority = sc->priority;
2a2e4885
JW
2847 pg_data_t *last_pgdat;
2848 struct zoneref *z;
2849 struct zone *zone;
241994ed 2850retry:
873b4771
KK
2851 delayacct_freepages_start();
2852
89b5fae5 2853 if (global_reclaim(sc))
7cc30fcf 2854 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2855
9e3b2f8c 2856 do {
70ddf637
AV
2857 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2858 sc->priority);
66e1707b 2859 sc->nr_scanned = 0;
0a0337e0 2860 shrink_zones(zonelist, sc);
c6a8a8c5 2861
bb21c7ce 2862 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2863 break;
2864
2865 if (sc->compaction_ready)
2866 break;
1da177e4 2867
0e50ce3b
MK
2868 /*
2869 * If we're getting trouble reclaiming, start doing
2870 * writepage even in laptop mode.
2871 */
2872 if (sc->priority < DEF_PRIORITY - 2)
2873 sc->may_writepage = 1;
0b06496a 2874 } while (--sc->priority >= 0);
bb21c7ce 2875
2a2e4885
JW
2876 last_pgdat = NULL;
2877 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2878 sc->nodemask) {
2879 if (zone->zone_pgdat == last_pgdat)
2880 continue;
2881 last_pgdat = zone->zone_pgdat;
2882 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2883 }
2884
873b4771
KK
2885 delayacct_freepages_end();
2886
bb21c7ce
KM
2887 if (sc->nr_reclaimed)
2888 return sc->nr_reclaimed;
2889
0cee34fd 2890 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2891 if (sc->compaction_ready)
7335084d
MG
2892 return 1;
2893
241994ed 2894 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 2895 if (sc->memcg_low_skipped) {
241994ed 2896 sc->priority = initial_priority;
d6622f63
YX
2897 sc->memcg_low_reclaim = 1;
2898 sc->memcg_low_skipped = 0;
241994ed
JW
2899 goto retry;
2900 }
2901
bb21c7ce 2902 return 0;
1da177e4
LT
2903}
2904
c73322d0 2905static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
2906{
2907 struct zone *zone;
2908 unsigned long pfmemalloc_reserve = 0;
2909 unsigned long free_pages = 0;
2910 int i;
2911 bool wmark_ok;
2912
c73322d0
JW
2913 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2914 return true;
2915
5515061d
MG
2916 for (i = 0; i <= ZONE_NORMAL; i++) {
2917 zone = &pgdat->node_zones[i];
d450abd8
JW
2918 if (!managed_zone(zone))
2919 continue;
2920
2921 if (!zone_reclaimable_pages(zone))
675becce
MG
2922 continue;
2923
5515061d
MG
2924 pfmemalloc_reserve += min_wmark_pages(zone);
2925 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2926 }
2927
675becce
MG
2928 /* If there are no reserves (unexpected config) then do not throttle */
2929 if (!pfmemalloc_reserve)
2930 return true;
2931
5515061d
MG
2932 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2933
2934 /* kswapd must be awake if processes are being throttled */
2935 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2936 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2937 (enum zone_type)ZONE_NORMAL);
2938 wake_up_interruptible(&pgdat->kswapd_wait);
2939 }
2940
2941 return wmark_ok;
2942}
2943
2944/*
2945 * Throttle direct reclaimers if backing storage is backed by the network
2946 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2947 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2948 * when the low watermark is reached.
2949 *
2950 * Returns true if a fatal signal was delivered during throttling. If this
2951 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2952 */
50694c28 2953static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2954 nodemask_t *nodemask)
2955{
675becce 2956 struct zoneref *z;
5515061d 2957 struct zone *zone;
675becce 2958 pg_data_t *pgdat = NULL;
5515061d
MG
2959
2960 /*
2961 * Kernel threads should not be throttled as they may be indirectly
2962 * responsible for cleaning pages necessary for reclaim to make forward
2963 * progress. kjournald for example may enter direct reclaim while
2964 * committing a transaction where throttling it could forcing other
2965 * processes to block on log_wait_commit().
2966 */
2967 if (current->flags & PF_KTHREAD)
50694c28
MG
2968 goto out;
2969
2970 /*
2971 * If a fatal signal is pending, this process should not throttle.
2972 * It should return quickly so it can exit and free its memory
2973 */
2974 if (fatal_signal_pending(current))
2975 goto out;
5515061d 2976
675becce
MG
2977 /*
2978 * Check if the pfmemalloc reserves are ok by finding the first node
2979 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2980 * GFP_KERNEL will be required for allocating network buffers when
2981 * swapping over the network so ZONE_HIGHMEM is unusable.
2982 *
2983 * Throttling is based on the first usable node and throttled processes
2984 * wait on a queue until kswapd makes progress and wakes them. There
2985 * is an affinity then between processes waking up and where reclaim
2986 * progress has been made assuming the process wakes on the same node.
2987 * More importantly, processes running on remote nodes will not compete
2988 * for remote pfmemalloc reserves and processes on different nodes
2989 * should make reasonable progress.
2990 */
2991 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2992 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2993 if (zone_idx(zone) > ZONE_NORMAL)
2994 continue;
2995
2996 /* Throttle based on the first usable node */
2997 pgdat = zone->zone_pgdat;
c73322d0 2998 if (allow_direct_reclaim(pgdat))
675becce
MG
2999 goto out;
3000 break;
3001 }
3002
3003 /* If no zone was usable by the allocation flags then do not throttle */
3004 if (!pgdat)
50694c28 3005 goto out;
5515061d 3006
68243e76
MG
3007 /* Account for the throttling */
3008 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3009
5515061d
MG
3010 /*
3011 * If the caller cannot enter the filesystem, it's possible that it
3012 * is due to the caller holding an FS lock or performing a journal
3013 * transaction in the case of a filesystem like ext[3|4]. In this case,
3014 * it is not safe to block on pfmemalloc_wait as kswapd could be
3015 * blocked waiting on the same lock. Instead, throttle for up to a
3016 * second before continuing.
3017 */
3018 if (!(gfp_mask & __GFP_FS)) {
3019 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3020 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3021
3022 goto check_pending;
5515061d
MG
3023 }
3024
3025 /* Throttle until kswapd wakes the process */
3026 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3027 allow_direct_reclaim(pgdat));
50694c28
MG
3028
3029check_pending:
3030 if (fatal_signal_pending(current))
3031 return true;
3032
3033out:
3034 return false;
5515061d
MG
3035}
3036
dac1d27b 3037unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3038 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3039{
33906bc5 3040 unsigned long nr_reclaimed;
66e1707b 3041 struct scan_control sc = {
ee814fe2 3042 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3043 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3044 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3045 .order = order,
3046 .nodemask = nodemask,
3047 .priority = DEF_PRIORITY,
66e1707b 3048 .may_writepage = !laptop_mode,
a6dc60f8 3049 .may_unmap = 1,
2e2e4259 3050 .may_swap = 1,
66e1707b
BS
3051 };
3052
5515061d 3053 /*
50694c28
MG
3054 * Do not enter reclaim if fatal signal was delivered while throttled.
3055 * 1 is returned so that the page allocator does not OOM kill at this
3056 * point.
5515061d 3057 */
f2f43e56 3058 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3059 return 1;
3060
33906bc5
MG
3061 trace_mm_vmscan_direct_reclaim_begin(order,
3062 sc.may_writepage,
f2f43e56 3063 sc.gfp_mask,
e5146b12 3064 sc.reclaim_idx);
33906bc5 3065
3115cd91 3066 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3067
3068 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3069
3070 return nr_reclaimed;
66e1707b
BS
3071}
3072
c255a458 3073#ifdef CONFIG_MEMCG
66e1707b 3074
a9dd0a83 3075unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3076 gfp_t gfp_mask, bool noswap,
ef8f2327 3077 pg_data_t *pgdat,
0ae5e89c 3078 unsigned long *nr_scanned)
4e416953
BS
3079{
3080 struct scan_control sc = {
b8f5c566 3081 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3082 .target_mem_cgroup = memcg,
4e416953
BS
3083 .may_writepage = !laptop_mode,
3084 .may_unmap = 1,
b2e18757 3085 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3086 .may_swap = !noswap,
4e416953 3087 };
6b4f7799 3088 unsigned long lru_pages;
0ae5e89c 3089
4e416953
BS
3090 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3091 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3092
9e3b2f8c 3093 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 3094 sc.may_writepage,
e5146b12
MG
3095 sc.gfp_mask,
3096 sc.reclaim_idx);
bdce6d9e 3097
4e416953
BS
3098 /*
3099 * NOTE: Although we can get the priority field, using it
3100 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3101 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3102 * will pick up pages from other mem cgroup's as well. We hack
3103 * the priority and make it zero.
3104 */
ef8f2327 3105 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3106
3107 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3108
0ae5e89c 3109 *nr_scanned = sc.nr_scanned;
4e416953
BS
3110 return sc.nr_reclaimed;
3111}
3112
72835c86 3113unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3114 unsigned long nr_pages,
a7885eb8 3115 gfp_t gfp_mask,
b70a2a21 3116 bool may_swap)
66e1707b 3117{
4e416953 3118 struct zonelist *zonelist;
bdce6d9e 3119 unsigned long nr_reclaimed;
889976db 3120 int nid;
499118e9 3121 unsigned int noreclaim_flag;
66e1707b 3122 struct scan_control sc = {
b70a2a21 3123 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3124 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3125 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3126 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3127 .target_mem_cgroup = memcg,
3128 .priority = DEF_PRIORITY,
3129 .may_writepage = !laptop_mode,
3130 .may_unmap = 1,
b70a2a21 3131 .may_swap = may_swap,
a09ed5e0 3132 };
66e1707b 3133
889976db
YH
3134 /*
3135 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3136 * take care of from where we get pages. So the node where we start the
3137 * scan does not need to be the current node.
3138 */
72835c86 3139 nid = mem_cgroup_select_victim_node(memcg);
889976db 3140
c9634cf0 3141 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3142
3143 trace_mm_vmscan_memcg_reclaim_begin(0,
3144 sc.may_writepage,
e5146b12
MG
3145 sc.gfp_mask,
3146 sc.reclaim_idx);
bdce6d9e 3147
499118e9 3148 noreclaim_flag = memalloc_noreclaim_save();
3115cd91 3149 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
499118e9 3150 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e
KM
3151
3152 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3153
3154 return nr_reclaimed;
66e1707b
BS
3155}
3156#endif
3157
1d82de61 3158static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3159 struct scan_control *sc)
f16015fb 3160{
b95a2f2d 3161 struct mem_cgroup *memcg;
f16015fb 3162
b95a2f2d
JW
3163 if (!total_swap_pages)
3164 return;
3165
3166 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3167 do {
ef8f2327 3168 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3169
2a2e4885 3170 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
1a93be0e 3171 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3172 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3173
3174 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3175 } while (memcg);
f16015fb
JW
3176}
3177
e716f2eb
MG
3178/*
3179 * Returns true if there is an eligible zone balanced for the request order
3180 * and classzone_idx
3181 */
3182static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3183{
e716f2eb
MG
3184 int i;
3185 unsigned long mark = -1;
3186 struct zone *zone;
60cefed4 3187
e716f2eb
MG
3188 for (i = 0; i <= classzone_idx; i++) {
3189 zone = pgdat->node_zones + i;
6256c6b4 3190
e716f2eb
MG
3191 if (!managed_zone(zone))
3192 continue;
3193
3194 mark = high_wmark_pages(zone);
3195 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3196 return true;
3197 }
3198
3199 /*
3200 * If a node has no populated zone within classzone_idx, it does not
3201 * need balancing by definition. This can happen if a zone-restricted
3202 * allocation tries to wake a remote kswapd.
3203 */
3204 if (mark == -1)
3205 return true;
3206
3207 return false;
60cefed4
JW
3208}
3209
631b6e08
MG
3210/* Clear pgdat state for congested, dirty or under writeback. */
3211static void clear_pgdat_congested(pg_data_t *pgdat)
3212{
3213 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3214 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3215 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3216}
3217
5515061d
MG
3218/*
3219 * Prepare kswapd for sleeping. This verifies that there are no processes
3220 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3221 *
3222 * Returns true if kswapd is ready to sleep
3223 */
d9f21d42 3224static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3225{
5515061d 3226 /*
9e5e3661 3227 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3228 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3229 * race between when kswapd checks the watermarks and a process gets
3230 * throttled. There is also a potential race if processes get
3231 * throttled, kswapd wakes, a large process exits thereby balancing the
3232 * zones, which causes kswapd to exit balance_pgdat() before reaching
3233 * the wake up checks. If kswapd is going to sleep, no process should
3234 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3235 * the wake up is premature, processes will wake kswapd and get
3236 * throttled again. The difference from wake ups in balance_pgdat() is
3237 * that here we are under prepare_to_wait().
5515061d 3238 */
9e5e3661
VB
3239 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3240 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3241
c73322d0
JW
3242 /* Hopeless node, leave it to direct reclaim */
3243 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3244 return true;
3245
e716f2eb
MG
3246 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3247 clear_pgdat_congested(pgdat);
3248 return true;
1d82de61
MG
3249 }
3250
333b0a45 3251 return false;
f50de2d3
MG
3252}
3253
75485363 3254/*
1d82de61
MG
3255 * kswapd shrinks a node of pages that are at or below the highest usable
3256 * zone that is currently unbalanced.
b8e83b94
MG
3257 *
3258 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3259 * reclaim or if the lack of progress was due to pages under writeback.
3260 * This is used to determine if the scanning priority needs to be raised.
75485363 3261 */
1d82de61 3262static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3263 struct scan_control *sc)
75485363 3264{
1d82de61
MG
3265 struct zone *zone;
3266 int z;
75485363 3267
1d82de61
MG
3268 /* Reclaim a number of pages proportional to the number of zones */
3269 sc->nr_to_reclaim = 0;
970a39a3 3270 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3271 zone = pgdat->node_zones + z;
6aa303de 3272 if (!managed_zone(zone))
1d82de61 3273 continue;
7c954f6d 3274
1d82de61
MG
3275 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3276 }
7c954f6d
MG
3277
3278 /*
1d82de61
MG
3279 * Historically care was taken to put equal pressure on all zones but
3280 * now pressure is applied based on node LRU order.
7c954f6d 3281 */
970a39a3 3282 shrink_node(pgdat, sc);
283aba9f 3283
7c954f6d 3284 /*
1d82de61
MG
3285 * Fragmentation may mean that the system cannot be rebalanced for
3286 * high-order allocations. If twice the allocation size has been
3287 * reclaimed then recheck watermarks only at order-0 to prevent
3288 * excessive reclaim. Assume that a process requested a high-order
3289 * can direct reclaim/compact.
7c954f6d 3290 */
9861a62c 3291 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3292 sc->order = 0;
7c954f6d 3293
b8e83b94 3294 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3295}
3296
1da177e4 3297/*
1d82de61
MG
3298 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3299 * that are eligible for use by the caller until at least one zone is
3300 * balanced.
1da177e4 3301 *
1d82de61 3302 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3303 *
3304 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3305 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3306 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3307 * or lower is eligible for reclaim until at least one usable zone is
3308 * balanced.
1da177e4 3309 */
accf6242 3310static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3311{
1da177e4 3312 int i;
0608f43d
AM
3313 unsigned long nr_soft_reclaimed;
3314 unsigned long nr_soft_scanned;
1d82de61 3315 struct zone *zone;
179e9639
AM
3316 struct scan_control sc = {
3317 .gfp_mask = GFP_KERNEL,
ee814fe2 3318 .order = order,
b8e83b94 3319 .priority = DEF_PRIORITY,
ee814fe2 3320 .may_writepage = !laptop_mode,
a6dc60f8 3321 .may_unmap = 1,
2e2e4259 3322 .may_swap = 1,
179e9639 3323 };
f8891e5e 3324 count_vm_event(PAGEOUTRUN);
1da177e4 3325
9e3b2f8c 3326 do {
c73322d0 3327 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94
MG
3328 bool raise_priority = true;
3329
84c7a777 3330 sc.reclaim_idx = classzone_idx;
1da177e4 3331
86c79f6b 3332 /*
84c7a777
MG
3333 * If the number of buffer_heads exceeds the maximum allowed
3334 * then consider reclaiming from all zones. This has a dual
3335 * purpose -- on 64-bit systems it is expected that
3336 * buffer_heads are stripped during active rotation. On 32-bit
3337 * systems, highmem pages can pin lowmem memory and shrinking
3338 * buffers can relieve lowmem pressure. Reclaim may still not
3339 * go ahead if all eligible zones for the original allocation
3340 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3341 */
3342 if (buffer_heads_over_limit) {
3343 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3344 zone = pgdat->node_zones + i;
6aa303de 3345 if (!managed_zone(zone))
86c79f6b 3346 continue;
cc715d99 3347
970a39a3 3348 sc.reclaim_idx = i;
e1dbeda6 3349 break;
1da177e4 3350 }
1da177e4 3351 }
dafcb73e 3352
86c79f6b 3353 /*
e716f2eb
MG
3354 * Only reclaim if there are no eligible zones. Note that
3355 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3356 * have adjusted it.
86c79f6b 3357 */
e716f2eb
MG
3358 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3359 goto out;
e1dbeda6 3360
1d82de61
MG
3361 /*
3362 * Do some background aging of the anon list, to give
3363 * pages a chance to be referenced before reclaiming. All
3364 * pages are rotated regardless of classzone as this is
3365 * about consistent aging.
3366 */
ef8f2327 3367 age_active_anon(pgdat, &sc);
1d82de61 3368
b7ea3c41
MG
3369 /*
3370 * If we're getting trouble reclaiming, start doing writepage
3371 * even in laptop mode.
3372 */
047d72c3 3373 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3374 sc.may_writepage = 1;
3375
1d82de61
MG
3376 /* Call soft limit reclaim before calling shrink_node. */
3377 sc.nr_scanned = 0;
3378 nr_soft_scanned = 0;
ef8f2327 3379 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3380 sc.gfp_mask, &nr_soft_scanned);
3381 sc.nr_reclaimed += nr_soft_reclaimed;
3382
1da177e4 3383 /*
1d82de61
MG
3384 * There should be no need to raise the scanning priority if
3385 * enough pages are already being scanned that that high
3386 * watermark would be met at 100% efficiency.
1da177e4 3387 */
970a39a3 3388 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3389 raise_priority = false;
5515061d
MG
3390
3391 /*
3392 * If the low watermark is met there is no need for processes
3393 * to be throttled on pfmemalloc_wait as they should not be
3394 * able to safely make forward progress. Wake them
3395 */
3396 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3397 allow_direct_reclaim(pgdat))
cfc51155 3398 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3399
b8e83b94
MG
3400 /* Check if kswapd should be suspending */
3401 if (try_to_freeze() || kthread_should_stop())
3402 break;
8357376d 3403
73ce02e9 3404 /*
b8e83b94
MG
3405 * Raise priority if scanning rate is too low or there was no
3406 * progress in reclaiming pages
73ce02e9 3407 */
c73322d0
JW
3408 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3409 if (raise_priority || !nr_reclaimed)
b8e83b94 3410 sc.priority--;
1d82de61 3411 } while (sc.priority >= 1);
1da177e4 3412
c73322d0
JW
3413 if (!sc.nr_reclaimed)
3414 pgdat->kswapd_failures++;
3415
b8e83b94 3416out:
2a2e4885 3417 snapshot_refaults(NULL, pgdat);
0abdee2b 3418 /*
1d82de61
MG
3419 * Return the order kswapd stopped reclaiming at as
3420 * prepare_kswapd_sleep() takes it into account. If another caller
3421 * entered the allocator slow path while kswapd was awake, order will
3422 * remain at the higher level.
0abdee2b 3423 */
1d82de61 3424 return sc.order;
1da177e4
LT
3425}
3426
e716f2eb
MG
3427/*
3428 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3429 * allocation request woke kswapd for. When kswapd has not woken recently,
3430 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3431 * given classzone and returns it or the highest classzone index kswapd
3432 * was recently woke for.
3433 */
3434static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3435 enum zone_type classzone_idx)
3436{
3437 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3438 return classzone_idx;
3439
3440 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3441}
3442
38087d9b
MG
3443static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3444 unsigned int classzone_idx)
f0bc0a60
KM
3445{
3446 long remaining = 0;
3447 DEFINE_WAIT(wait);
3448
3449 if (freezing(current) || kthread_should_stop())
3450 return;
3451
3452 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3453
333b0a45
SG
3454 /*
3455 * Try to sleep for a short interval. Note that kcompactd will only be
3456 * woken if it is possible to sleep for a short interval. This is
3457 * deliberate on the assumption that if reclaim cannot keep an
3458 * eligible zone balanced that it's also unlikely that compaction will
3459 * succeed.
3460 */
d9f21d42 3461 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3462 /*
3463 * Compaction records what page blocks it recently failed to
3464 * isolate pages from and skips them in the future scanning.
3465 * When kswapd is going to sleep, it is reasonable to assume
3466 * that pages and compaction may succeed so reset the cache.
3467 */
3468 reset_isolation_suitable(pgdat);
3469
3470 /*
3471 * We have freed the memory, now we should compact it to make
3472 * allocation of the requested order possible.
3473 */
38087d9b 3474 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3475
f0bc0a60 3476 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3477
3478 /*
3479 * If woken prematurely then reset kswapd_classzone_idx and
3480 * order. The values will either be from a wakeup request or
3481 * the previous request that slept prematurely.
3482 */
3483 if (remaining) {
e716f2eb 3484 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3485 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3486 }
3487
f0bc0a60
KM
3488 finish_wait(&pgdat->kswapd_wait, &wait);
3489 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3490 }
3491
3492 /*
3493 * After a short sleep, check if it was a premature sleep. If not, then
3494 * go fully to sleep until explicitly woken up.
3495 */
d9f21d42
MG
3496 if (!remaining &&
3497 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3498 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3499
3500 /*
3501 * vmstat counters are not perfectly accurate and the estimated
3502 * value for counters such as NR_FREE_PAGES can deviate from the
3503 * true value by nr_online_cpus * threshold. To avoid the zone
3504 * watermarks being breached while under pressure, we reduce the
3505 * per-cpu vmstat threshold while kswapd is awake and restore
3506 * them before going back to sleep.
3507 */
3508 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3509
3510 if (!kthread_should_stop())
3511 schedule();
3512
f0bc0a60
KM
3513 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3514 } else {
3515 if (remaining)
3516 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3517 else
3518 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3519 }
3520 finish_wait(&pgdat->kswapd_wait, &wait);
3521}
3522
1da177e4
LT
3523/*
3524 * The background pageout daemon, started as a kernel thread
4f98a2fe 3525 * from the init process.
1da177e4
LT
3526 *
3527 * This basically trickles out pages so that we have _some_
3528 * free memory available even if there is no other activity
3529 * that frees anything up. This is needed for things like routing
3530 * etc, where we otherwise might have all activity going on in
3531 * asynchronous contexts that cannot page things out.
3532 *
3533 * If there are applications that are active memory-allocators
3534 * (most normal use), this basically shouldn't matter.
3535 */
3536static int kswapd(void *p)
3537{
e716f2eb
MG
3538 unsigned int alloc_order, reclaim_order;
3539 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3540 pg_data_t *pgdat = (pg_data_t*)p;
3541 struct task_struct *tsk = current;
f0bc0a60 3542
1da177e4
LT
3543 struct reclaim_state reclaim_state = {
3544 .reclaimed_slab = 0,
3545 };
a70f7302 3546 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3547
174596a0 3548 if (!cpumask_empty(cpumask))
c5f59f08 3549 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3550 current->reclaim_state = &reclaim_state;
3551
3552 /*
3553 * Tell the memory management that we're a "memory allocator",
3554 * and that if we need more memory we should get access to it
3555 * regardless (see "__alloc_pages()"). "kswapd" should
3556 * never get caught in the normal page freeing logic.
3557 *
3558 * (Kswapd normally doesn't need memory anyway, but sometimes
3559 * you need a small amount of memory in order to be able to
3560 * page out something else, and this flag essentially protects
3561 * us from recursively trying to free more memory as we're
3562 * trying to free the first piece of memory in the first place).
3563 */
930d9152 3564 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3565 set_freezable();
1da177e4 3566
e716f2eb
MG
3567 pgdat->kswapd_order = 0;
3568 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3569 for ( ; ; ) {
6f6313d4 3570 bool ret;
3e1d1d28 3571
e716f2eb
MG
3572 alloc_order = reclaim_order = pgdat->kswapd_order;
3573 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3574
38087d9b
MG
3575kswapd_try_sleep:
3576 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3577 classzone_idx);
215ddd66 3578
38087d9b
MG
3579 /* Read the new order and classzone_idx */
3580 alloc_order = reclaim_order = pgdat->kswapd_order;
e716f2eb 3581 classzone_idx = kswapd_classzone_idx(pgdat, 0);
38087d9b 3582 pgdat->kswapd_order = 0;
e716f2eb 3583 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3584
8fe23e05
DR
3585 ret = try_to_freeze();
3586 if (kthread_should_stop())
3587 break;
3588
3589 /*
3590 * We can speed up thawing tasks if we don't call balance_pgdat
3591 * after returning from the refrigerator
3592 */
38087d9b
MG
3593 if (ret)
3594 continue;
3595
3596 /*
3597 * Reclaim begins at the requested order but if a high-order
3598 * reclaim fails then kswapd falls back to reclaiming for
3599 * order-0. If that happens, kswapd will consider sleeping
3600 * for the order it finished reclaiming at (reclaim_order)
3601 * but kcompactd is woken to compact for the original
3602 * request (alloc_order).
3603 */
e5146b12
MG
3604 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3605 alloc_order);
d92a8cfc 3606 fs_reclaim_acquire(GFP_KERNEL);
38087d9b 3607 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
d92a8cfc 3608 fs_reclaim_release(GFP_KERNEL);
38087d9b
MG
3609 if (reclaim_order < alloc_order)
3610 goto kswapd_try_sleep;
1da177e4 3611 }
b0a8cc58 3612
71abdc15 3613 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3614 current->reclaim_state = NULL;
71abdc15 3615
1da177e4
LT
3616 return 0;
3617}
3618
3619/*
3620 * A zone is low on free memory, so wake its kswapd task to service it.
3621 */
99504748 3622void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3623{
3624 pg_data_t *pgdat;
3625
6aa303de 3626 if (!managed_zone(zone))
1da177e4
LT
3627 return;
3628
344736f2 3629 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3630 return;
88f5acf8 3631 pgdat = zone->zone_pgdat;
e716f2eb
MG
3632 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3633 classzone_idx);
38087d9b 3634 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3635 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3636 return;
e1a55637 3637
c73322d0
JW
3638 /* Hopeless node, leave it to direct reclaim */
3639 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3640 return;
3641
e716f2eb
MG
3642 if (pgdat_balanced(pgdat, order, classzone_idx))
3643 return;
88f5acf8 3644
e716f2eb 3645 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
8d0986e2 3646 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3647}
3648
c6f37f12 3649#ifdef CONFIG_HIBERNATION
1da177e4 3650/*
7b51755c 3651 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3652 * freed pages.
3653 *
3654 * Rather than trying to age LRUs the aim is to preserve the overall
3655 * LRU order by reclaiming preferentially
3656 * inactive > active > active referenced > active mapped
1da177e4 3657 */
7b51755c 3658unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3659{
d6277db4 3660 struct reclaim_state reclaim_state;
d6277db4 3661 struct scan_control sc = {
ee814fe2 3662 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3663 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3664 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3665 .priority = DEF_PRIORITY,
d6277db4 3666 .may_writepage = 1,
ee814fe2
JW
3667 .may_unmap = 1,
3668 .may_swap = 1,
7b51755c 3669 .hibernation_mode = 1,
1da177e4 3670 };
a09ed5e0 3671 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3672 struct task_struct *p = current;
3673 unsigned long nr_reclaimed;
499118e9 3674 unsigned int noreclaim_flag;
1da177e4 3675
499118e9 3676 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3677 fs_reclaim_acquire(sc.gfp_mask);
7b51755c
KM
3678 reclaim_state.reclaimed_slab = 0;
3679 p->reclaim_state = &reclaim_state;
d6277db4 3680
3115cd91 3681 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3682
7b51755c 3683 p->reclaim_state = NULL;
d92a8cfc 3684 fs_reclaim_release(sc.gfp_mask);
499118e9 3685 memalloc_noreclaim_restore(noreclaim_flag);
d6277db4 3686
7b51755c 3687 return nr_reclaimed;
1da177e4 3688}
c6f37f12 3689#endif /* CONFIG_HIBERNATION */
1da177e4 3690
1da177e4
LT
3691/* It's optimal to keep kswapds on the same CPUs as their memory, but
3692 not required for correctness. So if the last cpu in a node goes
3693 away, we get changed to run anywhere: as the first one comes back,
3694 restore their cpu bindings. */
517bbed9 3695static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3696{
58c0a4a7 3697 int nid;
1da177e4 3698
517bbed9
SAS
3699 for_each_node_state(nid, N_MEMORY) {
3700 pg_data_t *pgdat = NODE_DATA(nid);
3701 const struct cpumask *mask;
a70f7302 3702
517bbed9 3703 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3704
517bbed9
SAS
3705 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3706 /* One of our CPUs online: restore mask */
3707 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3708 }
517bbed9 3709 return 0;
1da177e4 3710}
1da177e4 3711
3218ae14
YG
3712/*
3713 * This kswapd start function will be called by init and node-hot-add.
3714 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3715 */
3716int kswapd_run(int nid)
3717{
3718 pg_data_t *pgdat = NODE_DATA(nid);
3719 int ret = 0;
3720
3721 if (pgdat->kswapd)
3722 return 0;
3723
3724 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3725 if (IS_ERR(pgdat->kswapd)) {
3726 /* failure at boot is fatal */
c6202adf 3727 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
3728 pr_err("Failed to start kswapd on node %d\n", nid);
3729 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3730 pgdat->kswapd = NULL;
3218ae14
YG
3731 }
3732 return ret;
3733}
3734
8fe23e05 3735/*
d8adde17 3736 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3737 * hold mem_hotplug_begin/end().
8fe23e05
DR
3738 */
3739void kswapd_stop(int nid)
3740{
3741 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3742
d8adde17 3743 if (kswapd) {
8fe23e05 3744 kthread_stop(kswapd);
d8adde17
JL
3745 NODE_DATA(nid)->kswapd = NULL;
3746 }
8fe23e05
DR
3747}
3748
1da177e4
LT
3749static int __init kswapd_init(void)
3750{
517bbed9 3751 int nid, ret;
69e05944 3752
1da177e4 3753 swap_setup();
48fb2e24 3754 for_each_node_state(nid, N_MEMORY)
3218ae14 3755 kswapd_run(nid);
517bbed9
SAS
3756 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3757 "mm/vmscan:online", kswapd_cpu_online,
3758 NULL);
3759 WARN_ON(ret < 0);
1da177e4
LT
3760 return 0;
3761}
3762
3763module_init(kswapd_init)
9eeff239
CL
3764
3765#ifdef CONFIG_NUMA
3766/*
a5f5f91d 3767 * Node reclaim mode
9eeff239 3768 *
a5f5f91d 3769 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3770 * the watermarks.
9eeff239 3771 */
a5f5f91d 3772int node_reclaim_mode __read_mostly;
9eeff239 3773
1b2ffb78 3774#define RECLAIM_OFF 0
7d03431c 3775#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3776#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3777#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3778
a92f7126 3779/*
a5f5f91d 3780 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3781 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3782 * a zone.
3783 */
a5f5f91d 3784#define NODE_RECLAIM_PRIORITY 4
a92f7126 3785
9614634f 3786/*
a5f5f91d 3787 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3788 * occur.
3789 */
3790int sysctl_min_unmapped_ratio = 1;
3791
0ff38490
CL
3792/*
3793 * If the number of slab pages in a zone grows beyond this percentage then
3794 * slab reclaim needs to occur.
3795 */
3796int sysctl_min_slab_ratio = 5;
3797
11fb9989 3798static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3799{
11fb9989
MG
3800 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3801 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3802 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3803
3804 /*
3805 * It's possible for there to be more file mapped pages than
3806 * accounted for by the pages on the file LRU lists because
3807 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3808 */
3809 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3810}
3811
3812/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3813static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3814{
d031a157
AM
3815 unsigned long nr_pagecache_reclaimable;
3816 unsigned long delta = 0;
90afa5de
MG
3817
3818 /*
95bbc0c7 3819 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3820 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3821 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3822 * a better estimate
3823 */
a5f5f91d
MG
3824 if (node_reclaim_mode & RECLAIM_UNMAP)
3825 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3826 else
a5f5f91d 3827 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3828
3829 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3830 if (!(node_reclaim_mode & RECLAIM_WRITE))
3831 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3832
3833 /* Watch for any possible underflows due to delta */
3834 if (unlikely(delta > nr_pagecache_reclaimable))
3835 delta = nr_pagecache_reclaimable;
3836
3837 return nr_pagecache_reclaimable - delta;
3838}
3839
9eeff239 3840/*
a5f5f91d 3841 * Try to free up some pages from this node through reclaim.
9eeff239 3842 */
a5f5f91d 3843static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3844{
7fb2d46d 3845 /* Minimum pages needed in order to stay on node */
69e05944 3846 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3847 struct task_struct *p = current;
3848 struct reclaim_state reclaim_state;
499118e9 3849 unsigned int noreclaim_flag;
179e9639 3850 struct scan_control sc = {
62b726c1 3851 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 3852 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 3853 .order = order,
a5f5f91d
MG
3854 .priority = NODE_RECLAIM_PRIORITY,
3855 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3856 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3857 .may_swap = 1,
f2f43e56 3858 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 3859 };
9eeff239 3860
9eeff239 3861 cond_resched();
d4f7796e 3862 /*
95bbc0c7 3863 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3864 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3865 * and RECLAIM_UNMAP.
d4f7796e 3866 */
499118e9
VB
3867 noreclaim_flag = memalloc_noreclaim_save();
3868 p->flags |= PF_SWAPWRITE;
d92a8cfc 3869 fs_reclaim_acquire(sc.gfp_mask);
9eeff239
CL
3870 reclaim_state.reclaimed_slab = 0;
3871 p->reclaim_state = &reclaim_state;
c84db23c 3872
a5f5f91d 3873 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3874 /*
3875 * Free memory by calling shrink zone with increasing
3876 * priorities until we have enough memory freed.
3877 */
0ff38490 3878 do {
970a39a3 3879 shrink_node(pgdat, &sc);
9e3b2f8c 3880 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3881 }
c84db23c 3882
9eeff239 3883 p->reclaim_state = NULL;
d92a8cfc 3884 fs_reclaim_release(gfp_mask);
499118e9
VB
3885 current->flags &= ~PF_SWAPWRITE;
3886 memalloc_noreclaim_restore(noreclaim_flag);
a79311c1 3887 return sc.nr_reclaimed >= nr_pages;
9eeff239 3888}
179e9639 3889
a5f5f91d 3890int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3891{
d773ed6b 3892 int ret;
179e9639
AM
3893
3894 /*
a5f5f91d 3895 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3896 * slab pages if we are over the defined limits.
34aa1330 3897 *
9614634f
CL
3898 * A small portion of unmapped file backed pages is needed for
3899 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3900 * thrown out if the node is overallocated. So we do not reclaim
3901 * if less than a specified percentage of the node is used by
9614634f 3902 * unmapped file backed pages.
179e9639 3903 */
a5f5f91d 3904 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 3905 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 3906 return NODE_RECLAIM_FULL;
179e9639
AM
3907
3908 /*
d773ed6b 3909 * Do not scan if the allocation should not be delayed.
179e9639 3910 */
d0164adc 3911 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3912 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3913
3914 /*
a5f5f91d 3915 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3916 * have associated processors. This will favor the local processor
3917 * over remote processors and spread off node memory allocations
3918 * as wide as possible.
3919 */
a5f5f91d
MG
3920 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3921 return NODE_RECLAIM_NOSCAN;
d773ed6b 3922
a5f5f91d
MG
3923 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3924 return NODE_RECLAIM_NOSCAN;
fa5e084e 3925
a5f5f91d
MG
3926 ret = __node_reclaim(pgdat, gfp_mask, order);
3927 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3928
24cf7251
MG
3929 if (!ret)
3930 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3931
d773ed6b 3932 return ret;
179e9639 3933}
9eeff239 3934#endif
894bc310 3935
894bc310
LS
3936/*
3937 * page_evictable - test whether a page is evictable
3938 * @page: the page to test
894bc310
LS
3939 *
3940 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3941 * lists vs unevictable list.
894bc310
LS
3942 *
3943 * Reasons page might not be evictable:
ba9ddf49 3944 * (1) page's mapping marked unevictable
b291f000 3945 * (2) page is part of an mlocked VMA
ba9ddf49 3946 *
894bc310 3947 */
39b5f29a 3948int page_evictable(struct page *page)
894bc310 3949{
39b5f29a 3950 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3951}
89e004ea 3952
85046579 3953#ifdef CONFIG_SHMEM
89e004ea 3954/**
24513264
HD
3955 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3956 * @pages: array of pages to check
3957 * @nr_pages: number of pages to check
89e004ea 3958 *
24513264 3959 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3960 *
3961 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3962 */
24513264 3963void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3964{
925b7673 3965 struct lruvec *lruvec;
785b99fe 3966 struct pglist_data *pgdat = NULL;
24513264
HD
3967 int pgscanned = 0;
3968 int pgrescued = 0;
3969 int i;
89e004ea 3970
24513264
HD
3971 for (i = 0; i < nr_pages; i++) {
3972 struct page *page = pages[i];
785b99fe 3973 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 3974
24513264 3975 pgscanned++;
785b99fe
MG
3976 if (pagepgdat != pgdat) {
3977 if (pgdat)
3978 spin_unlock_irq(&pgdat->lru_lock);
3979 pgdat = pagepgdat;
3980 spin_lock_irq(&pgdat->lru_lock);
24513264 3981 }
785b99fe 3982 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 3983
24513264
HD
3984 if (!PageLRU(page) || !PageUnevictable(page))
3985 continue;
89e004ea 3986
39b5f29a 3987 if (page_evictable(page)) {
24513264
HD
3988 enum lru_list lru = page_lru_base_type(page);
3989
309381fe 3990 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3991 ClearPageUnevictable(page);
fa9add64
HD
3992 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3993 add_page_to_lru_list(page, lruvec, lru);
24513264 3994 pgrescued++;
89e004ea 3995 }
24513264 3996 }
89e004ea 3997
785b99fe 3998 if (pgdat) {
24513264
HD
3999 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4000 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4001 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4002 }
89e004ea 4003}
85046579 4004#endif /* CONFIG_SHMEM */