]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/vmscan.c
mm: vmscan: evaluate the watermarks against the correct classzone
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
ee64fc93 57/*
f3a310bc
MG
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
ee64fc93
MG
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
f3a310bc 65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
3e7d3449 66 * order-0 pages and then compact the zone
ee64fc93 67 */
f3a310bc
MG
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
7d3579e8 74
1da177e4 75struct scan_control {
1da177e4
LT
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
a79311c1
RR
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
22fba335
KM
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
7b51755c
KM
85 unsigned long hibernation_mode;
86
1da177e4 87 /* This context's GFP mask */
6daa0e28 88 gfp_t gfp_mask;
1da177e4
LT
89
90 int may_writepage;
91
a6dc60f8
JW
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
f1fd1067 94
2e2e4259
KM
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
d6277db4 98 int swappiness;
408d8544 99
5ad333eb 100 int order;
66e1707b 101
5f53e762 102 /*
415b54e3
NK
103 * Intend to reclaim enough continuous memory rather than reclaim
104 * enough amount of memory. i.e, mode for high order allocation.
5f53e762 105 */
f3a310bc 106 reclaim_mode_t reclaim_mode;
5f53e762 107
66e1707b
BS
108 /* Which cgroup do we reclaim from */
109 struct mem_cgroup *mem_cgroup;
110
327c0e96
KH
111 /*
112 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113 * are scanned.
114 */
115 nodemask_t *nodemask;
1da177e4
LT
116};
117
1da177e4
LT
118#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119
120#ifdef ARCH_HAS_PREFETCH
121#define prefetch_prev_lru_page(_page, _base, _field) \
122 do { \
123 if ((_page)->lru.prev != _base) { \
124 struct page *prev; \
125 \
126 prev = lru_to_page(&(_page->lru)); \
127 prefetch(&prev->_field); \
128 } \
129 } while (0)
130#else
131#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132#endif
133
134#ifdef ARCH_HAS_PREFETCHW
135#define prefetchw_prev_lru_page(_page, _base, _field) \
136 do { \
137 if ((_page)->lru.prev != _base) { \
138 struct page *prev; \
139 \
140 prev = lru_to_page(&(_page->lru)); \
141 prefetchw(&prev->_field); \
142 } \
143 } while (0)
144#else
145#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146#endif
147
148/*
149 * From 0 .. 100. Higher means more swappy.
150 */
151int vm_swappiness = 60;
bd1e22b8 152long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
153
154static LIST_HEAD(shrinker_list);
155static DECLARE_RWSEM(shrinker_rwsem);
156
00f0b825 157#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 158#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 159#else
e72e2bd6 160#define scanning_global_lru(sc) (1)
91a45470
KH
161#endif
162
6e901571
KM
163static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164 struct scan_control *sc)
165{
e72e2bd6 166 if (!scanning_global_lru(sc))
3e2f41f1
KM
167 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168
6e901571
KM
169 return &zone->reclaim_stat;
170}
171
0b217676
VL
172static unsigned long zone_nr_lru_pages(struct zone *zone,
173 struct scan_control *sc, enum lru_list lru)
c9f299d9 174{
e72e2bd6 175 if (!scanning_global_lru(sc))
1bac180b 176 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
a3d8e054 177
c9f299d9
KM
178 return zone_page_state(zone, NR_LRU_BASE + lru);
179}
180
181
1da177e4
LT
182/*
183 * Add a shrinker callback to be called from the vm
184 */
8e1f936b 185void register_shrinker(struct shrinker *shrinker)
1da177e4 186{
8e1f936b
RR
187 shrinker->nr = 0;
188 down_write(&shrinker_rwsem);
189 list_add_tail(&shrinker->list, &shrinker_list);
190 up_write(&shrinker_rwsem);
1da177e4 191}
8e1f936b 192EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
193
194/*
195 * Remove one
196 */
8e1f936b 197void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
198{
199 down_write(&shrinker_rwsem);
200 list_del(&shrinker->list);
201 up_write(&shrinker_rwsem);
1da177e4 202}
8e1f936b 203EXPORT_SYMBOL(unregister_shrinker);
1da177e4 204
1495f230
YH
205static inline int do_shrinker_shrink(struct shrinker *shrinker,
206 struct shrink_control *sc,
207 unsigned long nr_to_scan)
208{
209 sc->nr_to_scan = nr_to_scan;
210 return (*shrinker->shrink)(shrinker, sc);
211}
212
1da177e4
LT
213#define SHRINK_BATCH 128
214/*
215 * Call the shrink functions to age shrinkable caches
216 *
217 * Here we assume it costs one seek to replace a lru page and that it also
218 * takes a seek to recreate a cache object. With this in mind we age equal
219 * percentages of the lru and ageable caches. This should balance the seeks
220 * generated by these structures.
221 *
183ff22b 222 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
223 * slab to avoid swapping.
224 *
225 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226 *
227 * `lru_pages' represents the number of on-LRU pages in all the zones which
228 * are eligible for the caller's allocation attempt. It is used for balancing
229 * slab reclaim versus page reclaim.
b15e0905 230 *
231 * Returns the number of slab objects which we shrunk.
1da177e4 232 */
a09ed5e0 233unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 234 unsigned long nr_pages_scanned,
a09ed5e0 235 unsigned long lru_pages)
1da177e4
LT
236{
237 struct shrinker *shrinker;
69e05944 238 unsigned long ret = 0;
1da177e4 239
1495f230
YH
240 if (nr_pages_scanned == 0)
241 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 242
f06590bd
MK
243 if (!down_read_trylock(&shrinker_rwsem)) {
244 /* Assume we'll be able to shrink next time */
245 ret = 1;
246 goto out;
247 }
1da177e4
LT
248
249 list_for_each_entry(shrinker, &shrinker_list, list) {
250 unsigned long long delta;
251 unsigned long total_scan;
7f8275d0 252 unsigned long max_pass;
1da177e4 253
1495f230
YH
254 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
255 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 256 delta *= max_pass;
1da177e4
LT
257 do_div(delta, lru_pages + 1);
258 shrinker->nr += delta;
ea164d73 259 if (shrinker->nr < 0) {
88c3bd70
DR
260 printk(KERN_ERR "shrink_slab: %pF negative objects to "
261 "delete nr=%ld\n",
262 shrinker->shrink, shrinker->nr);
ea164d73
AA
263 shrinker->nr = max_pass;
264 }
265
266 /*
267 * Avoid risking looping forever due to too large nr value:
268 * never try to free more than twice the estimate number of
269 * freeable entries.
270 */
271 if (shrinker->nr > max_pass * 2)
272 shrinker->nr = max_pass * 2;
1da177e4
LT
273
274 total_scan = shrinker->nr;
275 shrinker->nr = 0;
276
277 while (total_scan >= SHRINK_BATCH) {
278 long this_scan = SHRINK_BATCH;
279 int shrink_ret;
b15e0905 280 int nr_before;
1da177e4 281
1495f230
YH
282 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
283 shrink_ret = do_shrinker_shrink(shrinker, shrink,
284 this_scan);
1da177e4
LT
285 if (shrink_ret == -1)
286 break;
b15e0905 287 if (shrink_ret < nr_before)
288 ret += nr_before - shrink_ret;
f8891e5e 289 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
290 total_scan -= this_scan;
291
292 cond_resched();
293 }
294
295 shrinker->nr += total_scan;
296 }
297 up_read(&shrinker_rwsem);
f06590bd
MK
298out:
299 cond_resched();
b15e0905 300 return ret;
1da177e4
LT
301}
302
f3a310bc 303static void set_reclaim_mode(int priority, struct scan_control *sc,
7d3579e8
KM
304 bool sync)
305{
f3a310bc 306 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
7d3579e8
KM
307
308 /*
3e7d3449
MG
309 * Initially assume we are entering either lumpy reclaim or
310 * reclaim/compaction.Depending on the order, we will either set the
311 * sync mode or just reclaim order-0 pages later.
7d3579e8 312 */
3e7d3449 313 if (COMPACTION_BUILD)
f3a310bc 314 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
3e7d3449 315 else
f3a310bc 316 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
7d3579e8
KM
317
318 /*
3e7d3449
MG
319 * Avoid using lumpy reclaim or reclaim/compaction if possible by
320 * restricting when its set to either costly allocations or when
321 * under memory pressure
7d3579e8
KM
322 */
323 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
f3a310bc 324 sc->reclaim_mode |= syncmode;
7d3579e8 325 else if (sc->order && priority < DEF_PRIORITY - 2)
f3a310bc 326 sc->reclaim_mode |= syncmode;
7d3579e8 327 else
f3a310bc 328 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
329}
330
f3a310bc 331static void reset_reclaim_mode(struct scan_control *sc)
7d3579e8 332{
f3a310bc 333 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
334}
335
1da177e4
LT
336static inline int is_page_cache_freeable(struct page *page)
337{
ceddc3a5
JW
338 /*
339 * A freeable page cache page is referenced only by the caller
340 * that isolated the page, the page cache radix tree and
341 * optional buffer heads at page->private.
342 */
edcf4748 343 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
344}
345
7d3579e8
KM
346static int may_write_to_queue(struct backing_dev_info *bdi,
347 struct scan_control *sc)
1da177e4 348{
930d9152 349 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
350 return 1;
351 if (!bdi_write_congested(bdi))
352 return 1;
353 if (bdi == current->backing_dev_info)
354 return 1;
7d3579e8
KM
355
356 /* lumpy reclaim for hugepage often need a lot of write */
357 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
358 return 1;
1da177e4
LT
359 return 0;
360}
361
362/*
363 * We detected a synchronous write error writing a page out. Probably
364 * -ENOSPC. We need to propagate that into the address_space for a subsequent
365 * fsync(), msync() or close().
366 *
367 * The tricky part is that after writepage we cannot touch the mapping: nothing
368 * prevents it from being freed up. But we have a ref on the page and once
369 * that page is locked, the mapping is pinned.
370 *
371 * We're allowed to run sleeping lock_page() here because we know the caller has
372 * __GFP_FS.
373 */
374static void handle_write_error(struct address_space *mapping,
375 struct page *page, int error)
376{
7eaceacc 377 lock_page(page);
3e9f45bd
GC
378 if (page_mapping(page) == mapping)
379 mapping_set_error(mapping, error);
1da177e4
LT
380 unlock_page(page);
381}
382
04e62a29
CL
383/* possible outcome of pageout() */
384typedef enum {
385 /* failed to write page out, page is locked */
386 PAGE_KEEP,
387 /* move page to the active list, page is locked */
388 PAGE_ACTIVATE,
389 /* page has been sent to the disk successfully, page is unlocked */
390 PAGE_SUCCESS,
391 /* page is clean and locked */
392 PAGE_CLEAN,
393} pageout_t;
394
1da177e4 395/*
1742f19f
AM
396 * pageout is called by shrink_page_list() for each dirty page.
397 * Calls ->writepage().
1da177e4 398 */
c661b078 399static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 400 struct scan_control *sc)
1da177e4
LT
401{
402 /*
403 * If the page is dirty, only perform writeback if that write
404 * will be non-blocking. To prevent this allocation from being
405 * stalled by pagecache activity. But note that there may be
406 * stalls if we need to run get_block(). We could test
407 * PagePrivate for that.
408 *
6aceb53b 409 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
410 * this page's queue, we can perform writeback even if that
411 * will block.
412 *
413 * If the page is swapcache, write it back even if that would
414 * block, for some throttling. This happens by accident, because
415 * swap_backing_dev_info is bust: it doesn't reflect the
416 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
417 */
418 if (!is_page_cache_freeable(page))
419 return PAGE_KEEP;
420 if (!mapping) {
421 /*
422 * Some data journaling orphaned pages can have
423 * page->mapping == NULL while being dirty with clean buffers.
424 */
266cf658 425 if (page_has_private(page)) {
1da177e4
LT
426 if (try_to_free_buffers(page)) {
427 ClearPageDirty(page);
d40cee24 428 printk("%s: orphaned page\n", __func__);
1da177e4
LT
429 return PAGE_CLEAN;
430 }
431 }
432 return PAGE_KEEP;
433 }
434 if (mapping->a_ops->writepage == NULL)
435 return PAGE_ACTIVATE;
0e093d99 436 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
437 return PAGE_KEEP;
438
439 if (clear_page_dirty_for_io(page)) {
440 int res;
441 struct writeback_control wbc = {
442 .sync_mode = WB_SYNC_NONE,
443 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
444 .range_start = 0,
445 .range_end = LLONG_MAX,
1da177e4
LT
446 .for_reclaim = 1,
447 };
448
449 SetPageReclaim(page);
450 res = mapping->a_ops->writepage(page, &wbc);
451 if (res < 0)
452 handle_write_error(mapping, page, res);
994fc28c 453 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
454 ClearPageReclaim(page);
455 return PAGE_ACTIVATE;
456 }
c661b078
AW
457
458 /*
459 * Wait on writeback if requested to. This happens when
460 * direct reclaiming a large contiguous area and the
461 * first attempt to free a range of pages fails.
462 */
7d3579e8 463 if (PageWriteback(page) &&
f3a310bc 464 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
c661b078
AW
465 wait_on_page_writeback(page);
466
1da177e4
LT
467 if (!PageWriteback(page)) {
468 /* synchronous write or broken a_ops? */
469 ClearPageReclaim(page);
470 }
755f0225 471 trace_mm_vmscan_writepage(page,
f3a310bc 472 trace_reclaim_flags(page, sc->reclaim_mode));
e129b5c2 473 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
474 return PAGE_SUCCESS;
475 }
476
477 return PAGE_CLEAN;
478}
479
a649fd92 480/*
e286781d
NP
481 * Same as remove_mapping, but if the page is removed from the mapping, it
482 * gets returned with a refcount of 0.
a649fd92 483 */
e286781d 484static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 485{
28e4d965
NP
486 BUG_ON(!PageLocked(page));
487 BUG_ON(mapping != page_mapping(page));
49d2e9cc 488
19fd6231 489 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 490 /*
0fd0e6b0
NP
491 * The non racy check for a busy page.
492 *
493 * Must be careful with the order of the tests. When someone has
494 * a ref to the page, it may be possible that they dirty it then
495 * drop the reference. So if PageDirty is tested before page_count
496 * here, then the following race may occur:
497 *
498 * get_user_pages(&page);
499 * [user mapping goes away]
500 * write_to(page);
501 * !PageDirty(page) [good]
502 * SetPageDirty(page);
503 * put_page(page);
504 * !page_count(page) [good, discard it]
505 *
506 * [oops, our write_to data is lost]
507 *
508 * Reversing the order of the tests ensures such a situation cannot
509 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
510 * load is not satisfied before that of page->_count.
511 *
512 * Note that if SetPageDirty is always performed via set_page_dirty,
513 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 514 */
e286781d 515 if (!page_freeze_refs(page, 2))
49d2e9cc 516 goto cannot_free;
e286781d
NP
517 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
518 if (unlikely(PageDirty(page))) {
519 page_unfreeze_refs(page, 2);
49d2e9cc 520 goto cannot_free;
e286781d 521 }
49d2e9cc
CL
522
523 if (PageSwapCache(page)) {
524 swp_entry_t swap = { .val = page_private(page) };
525 __delete_from_swap_cache(page);
19fd6231 526 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 527 swapcache_free(swap, page);
e286781d 528 } else {
6072d13c
LT
529 void (*freepage)(struct page *);
530
531 freepage = mapping->a_ops->freepage;
532
e64a782f 533 __delete_from_page_cache(page);
19fd6231 534 spin_unlock_irq(&mapping->tree_lock);
e767e056 535 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
536
537 if (freepage != NULL)
538 freepage(page);
49d2e9cc
CL
539 }
540
49d2e9cc
CL
541 return 1;
542
543cannot_free:
19fd6231 544 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
545 return 0;
546}
547
e286781d
NP
548/*
549 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
550 * someone else has a ref on the page, abort and return 0. If it was
551 * successfully detached, return 1. Assumes the caller has a single ref on
552 * this page.
553 */
554int remove_mapping(struct address_space *mapping, struct page *page)
555{
556 if (__remove_mapping(mapping, page)) {
557 /*
558 * Unfreezing the refcount with 1 rather than 2 effectively
559 * drops the pagecache ref for us without requiring another
560 * atomic operation.
561 */
562 page_unfreeze_refs(page, 1);
563 return 1;
564 }
565 return 0;
566}
567
894bc310
LS
568/**
569 * putback_lru_page - put previously isolated page onto appropriate LRU list
570 * @page: page to be put back to appropriate lru list
571 *
572 * Add previously isolated @page to appropriate LRU list.
573 * Page may still be unevictable for other reasons.
574 *
575 * lru_lock must not be held, interrupts must be enabled.
576 */
894bc310
LS
577void putback_lru_page(struct page *page)
578{
579 int lru;
580 int active = !!TestClearPageActive(page);
bbfd28ee 581 int was_unevictable = PageUnevictable(page);
894bc310
LS
582
583 VM_BUG_ON(PageLRU(page));
584
585redo:
586 ClearPageUnevictable(page);
587
588 if (page_evictable(page, NULL)) {
589 /*
590 * For evictable pages, we can use the cache.
591 * In event of a race, worst case is we end up with an
592 * unevictable page on [in]active list.
593 * We know how to handle that.
594 */
401a8e1c 595 lru = active + page_lru_base_type(page);
894bc310
LS
596 lru_cache_add_lru(page, lru);
597 } else {
598 /*
599 * Put unevictable pages directly on zone's unevictable
600 * list.
601 */
602 lru = LRU_UNEVICTABLE;
603 add_page_to_unevictable_list(page);
6a7b9548
JW
604 /*
605 * When racing with an mlock clearing (page is
606 * unlocked), make sure that if the other thread does
607 * not observe our setting of PG_lru and fails
608 * isolation, we see PG_mlocked cleared below and move
609 * the page back to the evictable list.
610 *
611 * The other side is TestClearPageMlocked().
612 */
613 smp_mb();
894bc310 614 }
894bc310
LS
615
616 /*
617 * page's status can change while we move it among lru. If an evictable
618 * page is on unevictable list, it never be freed. To avoid that,
619 * check after we added it to the list, again.
620 */
621 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
622 if (!isolate_lru_page(page)) {
623 put_page(page);
624 goto redo;
625 }
626 /* This means someone else dropped this page from LRU
627 * So, it will be freed or putback to LRU again. There is
628 * nothing to do here.
629 */
630 }
631
bbfd28ee
LS
632 if (was_unevictable && lru != LRU_UNEVICTABLE)
633 count_vm_event(UNEVICTABLE_PGRESCUED);
634 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
635 count_vm_event(UNEVICTABLE_PGCULLED);
636
894bc310
LS
637 put_page(page); /* drop ref from isolate */
638}
639
dfc8d636
JW
640enum page_references {
641 PAGEREF_RECLAIM,
642 PAGEREF_RECLAIM_CLEAN,
64574746 643 PAGEREF_KEEP,
dfc8d636
JW
644 PAGEREF_ACTIVATE,
645};
646
647static enum page_references page_check_references(struct page *page,
648 struct scan_control *sc)
649{
64574746 650 int referenced_ptes, referenced_page;
dfc8d636 651 unsigned long vm_flags;
dfc8d636 652
64574746
JW
653 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
654 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
655
656 /* Lumpy reclaim - ignore references */
f3a310bc 657 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
dfc8d636
JW
658 return PAGEREF_RECLAIM;
659
660 /*
661 * Mlock lost the isolation race with us. Let try_to_unmap()
662 * move the page to the unevictable list.
663 */
664 if (vm_flags & VM_LOCKED)
665 return PAGEREF_RECLAIM;
666
64574746
JW
667 if (referenced_ptes) {
668 if (PageAnon(page))
669 return PAGEREF_ACTIVATE;
670 /*
671 * All mapped pages start out with page table
672 * references from the instantiating fault, so we need
673 * to look twice if a mapped file page is used more
674 * than once.
675 *
676 * Mark it and spare it for another trip around the
677 * inactive list. Another page table reference will
678 * lead to its activation.
679 *
680 * Note: the mark is set for activated pages as well
681 * so that recently deactivated but used pages are
682 * quickly recovered.
683 */
684 SetPageReferenced(page);
685
686 if (referenced_page)
687 return PAGEREF_ACTIVATE;
688
689 return PAGEREF_KEEP;
690 }
dfc8d636
JW
691
692 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 693 if (referenced_page && !PageSwapBacked(page))
64574746
JW
694 return PAGEREF_RECLAIM_CLEAN;
695
696 return PAGEREF_RECLAIM;
dfc8d636
JW
697}
698
abe4c3b5
MG
699static noinline_for_stack void free_page_list(struct list_head *free_pages)
700{
701 struct pagevec freed_pvec;
702 struct page *page, *tmp;
703
704 pagevec_init(&freed_pvec, 1);
705
706 list_for_each_entry_safe(page, tmp, free_pages, lru) {
707 list_del(&page->lru);
708 if (!pagevec_add(&freed_pvec, page)) {
709 __pagevec_free(&freed_pvec);
710 pagevec_reinit(&freed_pvec);
711 }
712 }
713
714 pagevec_free(&freed_pvec);
715}
716
1da177e4 717/*
1742f19f 718 * shrink_page_list() returns the number of reclaimed pages
1da177e4 719 */
1742f19f 720static unsigned long shrink_page_list(struct list_head *page_list,
0e093d99 721 struct zone *zone,
7d3579e8 722 struct scan_control *sc)
1da177e4
LT
723{
724 LIST_HEAD(ret_pages);
abe4c3b5 725 LIST_HEAD(free_pages);
1da177e4 726 int pgactivate = 0;
0e093d99
MG
727 unsigned long nr_dirty = 0;
728 unsigned long nr_congested = 0;
05ff5137 729 unsigned long nr_reclaimed = 0;
1da177e4
LT
730
731 cond_resched();
732
1da177e4 733 while (!list_empty(page_list)) {
dfc8d636 734 enum page_references references;
1da177e4
LT
735 struct address_space *mapping;
736 struct page *page;
737 int may_enter_fs;
1da177e4
LT
738
739 cond_resched();
740
741 page = lru_to_page(page_list);
742 list_del(&page->lru);
743
529ae9aa 744 if (!trylock_page(page))
1da177e4
LT
745 goto keep;
746
725d704e 747 VM_BUG_ON(PageActive(page));
0e093d99 748 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
749
750 sc->nr_scanned++;
80e43426 751
b291f000
NP
752 if (unlikely(!page_evictable(page, NULL)))
753 goto cull_mlocked;
894bc310 754
a6dc60f8 755 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
756 goto keep_locked;
757
1da177e4
LT
758 /* Double the slab pressure for mapped and swapcache pages */
759 if (page_mapped(page) || PageSwapCache(page))
760 sc->nr_scanned++;
761
c661b078
AW
762 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
763 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
764
765 if (PageWriteback(page)) {
766 /*
767 * Synchronous reclaim is performed in two passes,
768 * first an asynchronous pass over the list to
769 * start parallel writeback, and a second synchronous
770 * pass to wait for the IO to complete. Wait here
771 * for any page for which writeback has already
772 * started.
773 */
f3a310bc 774 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
7d3579e8 775 may_enter_fs)
c661b078 776 wait_on_page_writeback(page);
7d3579e8
KM
777 else {
778 unlock_page(page);
779 goto keep_lumpy;
780 }
c661b078 781 }
1da177e4 782
dfc8d636
JW
783 references = page_check_references(page, sc);
784 switch (references) {
785 case PAGEREF_ACTIVATE:
1da177e4 786 goto activate_locked;
64574746
JW
787 case PAGEREF_KEEP:
788 goto keep_locked;
dfc8d636
JW
789 case PAGEREF_RECLAIM:
790 case PAGEREF_RECLAIM_CLEAN:
791 ; /* try to reclaim the page below */
792 }
1da177e4 793
1da177e4
LT
794 /*
795 * Anonymous process memory has backing store?
796 * Try to allocate it some swap space here.
797 */
b291f000 798 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
799 if (!(sc->gfp_mask & __GFP_IO))
800 goto keep_locked;
ac47b003 801 if (!add_to_swap(page))
1da177e4 802 goto activate_locked;
63eb6b93 803 may_enter_fs = 1;
b291f000 804 }
1da177e4
LT
805
806 mapping = page_mapping(page);
1da177e4
LT
807
808 /*
809 * The page is mapped into the page tables of one or more
810 * processes. Try to unmap it here.
811 */
812 if (page_mapped(page) && mapping) {
14fa31b8 813 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
814 case SWAP_FAIL:
815 goto activate_locked;
816 case SWAP_AGAIN:
817 goto keep_locked;
b291f000
NP
818 case SWAP_MLOCK:
819 goto cull_mlocked;
1da177e4
LT
820 case SWAP_SUCCESS:
821 ; /* try to free the page below */
822 }
823 }
824
825 if (PageDirty(page)) {
0e093d99
MG
826 nr_dirty++;
827
dfc8d636 828 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 829 goto keep_locked;
4dd4b920 830 if (!may_enter_fs)
1da177e4 831 goto keep_locked;
52a8363e 832 if (!sc->may_writepage)
1da177e4
LT
833 goto keep_locked;
834
835 /* Page is dirty, try to write it out here */
7d3579e8 836 switch (pageout(page, mapping, sc)) {
1da177e4 837 case PAGE_KEEP:
0e093d99 838 nr_congested++;
1da177e4
LT
839 goto keep_locked;
840 case PAGE_ACTIVATE:
841 goto activate_locked;
842 case PAGE_SUCCESS:
7d3579e8
KM
843 if (PageWriteback(page))
844 goto keep_lumpy;
845 if (PageDirty(page))
1da177e4 846 goto keep;
7d3579e8 847
1da177e4
LT
848 /*
849 * A synchronous write - probably a ramdisk. Go
850 * ahead and try to reclaim the page.
851 */
529ae9aa 852 if (!trylock_page(page))
1da177e4
LT
853 goto keep;
854 if (PageDirty(page) || PageWriteback(page))
855 goto keep_locked;
856 mapping = page_mapping(page);
857 case PAGE_CLEAN:
858 ; /* try to free the page below */
859 }
860 }
861
862 /*
863 * If the page has buffers, try to free the buffer mappings
864 * associated with this page. If we succeed we try to free
865 * the page as well.
866 *
867 * We do this even if the page is PageDirty().
868 * try_to_release_page() does not perform I/O, but it is
869 * possible for a page to have PageDirty set, but it is actually
870 * clean (all its buffers are clean). This happens if the
871 * buffers were written out directly, with submit_bh(). ext3
894bc310 872 * will do this, as well as the blockdev mapping.
1da177e4
LT
873 * try_to_release_page() will discover that cleanness and will
874 * drop the buffers and mark the page clean - it can be freed.
875 *
876 * Rarely, pages can have buffers and no ->mapping. These are
877 * the pages which were not successfully invalidated in
878 * truncate_complete_page(). We try to drop those buffers here
879 * and if that worked, and the page is no longer mapped into
880 * process address space (page_count == 1) it can be freed.
881 * Otherwise, leave the page on the LRU so it is swappable.
882 */
266cf658 883 if (page_has_private(page)) {
1da177e4
LT
884 if (!try_to_release_page(page, sc->gfp_mask))
885 goto activate_locked;
e286781d
NP
886 if (!mapping && page_count(page) == 1) {
887 unlock_page(page);
888 if (put_page_testzero(page))
889 goto free_it;
890 else {
891 /*
892 * rare race with speculative reference.
893 * the speculative reference will free
894 * this page shortly, so we may
895 * increment nr_reclaimed here (and
896 * leave it off the LRU).
897 */
898 nr_reclaimed++;
899 continue;
900 }
901 }
1da177e4
LT
902 }
903
e286781d 904 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 905 goto keep_locked;
1da177e4 906
a978d6f5
NP
907 /*
908 * At this point, we have no other references and there is
909 * no way to pick any more up (removed from LRU, removed
910 * from pagecache). Can use non-atomic bitops now (and
911 * we obviously don't have to worry about waking up a process
912 * waiting on the page lock, because there are no references.
913 */
914 __clear_page_locked(page);
e286781d 915free_it:
05ff5137 916 nr_reclaimed++;
abe4c3b5
MG
917
918 /*
919 * Is there need to periodically free_page_list? It would
920 * appear not as the counts should be low
921 */
922 list_add(&page->lru, &free_pages);
1da177e4
LT
923 continue;
924
b291f000 925cull_mlocked:
63d6c5ad
HD
926 if (PageSwapCache(page))
927 try_to_free_swap(page);
b291f000
NP
928 unlock_page(page);
929 putback_lru_page(page);
f3a310bc 930 reset_reclaim_mode(sc);
b291f000
NP
931 continue;
932
1da177e4 933activate_locked:
68a22394
RR
934 /* Not a candidate for swapping, so reclaim swap space. */
935 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 936 try_to_free_swap(page);
894bc310 937 VM_BUG_ON(PageActive(page));
1da177e4
LT
938 SetPageActive(page);
939 pgactivate++;
940keep_locked:
941 unlock_page(page);
942keep:
f3a310bc 943 reset_reclaim_mode(sc);
7d3579e8 944keep_lumpy:
1da177e4 945 list_add(&page->lru, &ret_pages);
b291f000 946 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 947 }
abe4c3b5 948
0e093d99
MG
949 /*
950 * Tag a zone as congested if all the dirty pages encountered were
951 * backed by a congested BDI. In this case, reclaimers should just
952 * back off and wait for congestion to clear because further reclaim
953 * will encounter the same problem
954 */
d6c438b6 955 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
0e093d99
MG
956 zone_set_flag(zone, ZONE_CONGESTED);
957
abe4c3b5
MG
958 free_page_list(&free_pages);
959
1da177e4 960 list_splice(&ret_pages, page_list);
f8891e5e 961 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 962 return nr_reclaimed;
1da177e4
LT
963}
964
5ad333eb
AW
965/*
966 * Attempt to remove the specified page from its LRU. Only take this page
967 * if it is of the appropriate PageActive status. Pages which are being
968 * freed elsewhere are also ignored.
969 *
970 * page: page to consider
971 * mode: one of the LRU isolation modes defined above
972 *
973 * returns 0 on success, -ve errno on failure.
974 */
4f98a2fe 975int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
976{
977 int ret = -EINVAL;
978
979 /* Only take pages on the LRU. */
980 if (!PageLRU(page))
981 return ret;
982
983 /*
984 * When checking the active state, we need to be sure we are
985 * dealing with comparible boolean values. Take the logical not
986 * of each.
987 */
988 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
989 return ret;
990
6c0b1351 991 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
4f98a2fe
RR
992 return ret;
993
894bc310
LS
994 /*
995 * When this function is being called for lumpy reclaim, we
996 * initially look into all LRU pages, active, inactive and
997 * unevictable; only give shrink_page_list evictable pages.
998 */
999 if (PageUnevictable(page))
1000 return ret;
1001
5ad333eb 1002 ret = -EBUSY;
08e552c6 1003
5ad333eb
AW
1004 if (likely(get_page_unless_zero(page))) {
1005 /*
1006 * Be careful not to clear PageLRU until after we're
1007 * sure the page is not being freed elsewhere -- the
1008 * page release code relies on it.
1009 */
1010 ClearPageLRU(page);
1011 ret = 0;
1012 }
1013
1014 return ret;
1015}
1016
1da177e4
LT
1017/*
1018 * zone->lru_lock is heavily contended. Some of the functions that
1019 * shrink the lists perform better by taking out a batch of pages
1020 * and working on them outside the LRU lock.
1021 *
1022 * For pagecache intensive workloads, this function is the hottest
1023 * spot in the kernel (apart from copy_*_user functions).
1024 *
1025 * Appropriate locks must be held before calling this function.
1026 *
1027 * @nr_to_scan: The number of pages to look through on the list.
1028 * @src: The LRU list to pull pages off.
1029 * @dst: The temp list to put pages on to.
1030 * @scanned: The number of pages that were scanned.
5ad333eb
AW
1031 * @order: The caller's attempted allocation order
1032 * @mode: One of the LRU isolation modes
4f98a2fe 1033 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
1034 *
1035 * returns how many pages were moved onto *@dst.
1036 */
69e05944
AM
1037static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1038 struct list_head *src, struct list_head *dst,
4f98a2fe 1039 unsigned long *scanned, int order, int mode, int file)
1da177e4 1040{
69e05944 1041 unsigned long nr_taken = 0;
a8a94d15
MG
1042 unsigned long nr_lumpy_taken = 0;
1043 unsigned long nr_lumpy_dirty = 0;
1044 unsigned long nr_lumpy_failed = 0;
c9b02d97 1045 unsigned long scan;
1da177e4 1046
c9b02d97 1047 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
1048 struct page *page;
1049 unsigned long pfn;
1050 unsigned long end_pfn;
1051 unsigned long page_pfn;
1052 int zone_id;
1053
1da177e4
LT
1054 page = lru_to_page(src);
1055 prefetchw_prev_lru_page(page, src, flags);
1056
725d704e 1057 VM_BUG_ON(!PageLRU(page));
8d438f96 1058
4f98a2fe 1059 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
1060 case 0:
1061 list_move(&page->lru, dst);
2ffebca6 1062 mem_cgroup_del_lru(page);
2c888cfb 1063 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1064 break;
1065
1066 case -EBUSY:
1067 /* else it is being freed elsewhere */
1068 list_move(&page->lru, src);
2ffebca6 1069 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 1070 continue;
46453a6e 1071
5ad333eb
AW
1072 default:
1073 BUG();
1074 }
1075
1076 if (!order)
1077 continue;
1078
1079 /*
1080 * Attempt to take all pages in the order aligned region
1081 * surrounding the tag page. Only take those pages of
1082 * the same active state as that tag page. We may safely
1083 * round the target page pfn down to the requested order
25985edc 1084 * as the mem_map is guaranteed valid out to MAX_ORDER,
5ad333eb
AW
1085 * where that page is in a different zone we will detect
1086 * it from its zone id and abort this block scan.
1087 */
1088 zone_id = page_zone_id(page);
1089 page_pfn = page_to_pfn(page);
1090 pfn = page_pfn & ~((1 << order) - 1);
1091 end_pfn = pfn + (1 << order);
1092 for (; pfn < end_pfn; pfn++) {
1093 struct page *cursor_page;
1094
1095 /* The target page is in the block, ignore it. */
1096 if (unlikely(pfn == page_pfn))
1097 continue;
1098
1099 /* Avoid holes within the zone. */
1100 if (unlikely(!pfn_valid_within(pfn)))
1101 break;
1102
1103 cursor_page = pfn_to_page(pfn);
4f98a2fe 1104
5ad333eb
AW
1105 /* Check that we have not crossed a zone boundary. */
1106 if (unlikely(page_zone_id(cursor_page) != zone_id))
08fc468f 1107 break;
de2e7567
MK
1108
1109 /*
1110 * If we don't have enough swap space, reclaiming of
1111 * anon page which don't already have a swap slot is
1112 * pointless.
1113 */
1114 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
08fc468f
KM
1115 !PageSwapCache(cursor_page))
1116 break;
de2e7567 1117
ee993b13 1118 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 1119 list_move(&cursor_page->lru, dst);
cb4cbcf6 1120 mem_cgroup_del_lru(cursor_page);
2c888cfb 1121 nr_taken += hpage_nr_pages(page);
a8a94d15
MG
1122 nr_lumpy_taken++;
1123 if (PageDirty(cursor_page))
1124 nr_lumpy_dirty++;
5ad333eb 1125 scan++;
a8a94d15 1126 } else {
d179e84b
AA
1127 /*
1128 * Check if the page is freed already.
1129 *
1130 * We can't use page_count() as that
1131 * requires compound_head and we don't
1132 * have a pin on the page here. If a
1133 * page is tail, we may or may not
1134 * have isolated the head, so assume
1135 * it's not free, it'd be tricky to
1136 * track the head status without a
1137 * page pin.
1138 */
1139 if (!PageTail(cursor_page) &&
1140 !atomic_read(&cursor_page->_count))
08fc468f
KM
1141 continue;
1142 break;
5ad333eb
AW
1143 }
1144 }
08fc468f
KM
1145
1146 /* If we break out of the loop above, lumpy reclaim failed */
1147 if (pfn < end_pfn)
1148 nr_lumpy_failed++;
1da177e4
LT
1149 }
1150
1151 *scanned = scan;
a8a94d15
MG
1152
1153 trace_mm_vmscan_lru_isolate(order,
1154 nr_to_scan, scan,
1155 nr_taken,
1156 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1157 mode);
1da177e4
LT
1158 return nr_taken;
1159}
1160
66e1707b
BS
1161static unsigned long isolate_pages_global(unsigned long nr,
1162 struct list_head *dst,
1163 unsigned long *scanned, int order,
1164 int mode, struct zone *z,
4f98a2fe 1165 int active, int file)
66e1707b 1166{
4f98a2fe 1167 int lru = LRU_BASE;
66e1707b 1168 if (active)
4f98a2fe
RR
1169 lru += LRU_ACTIVE;
1170 if (file)
1171 lru += LRU_FILE;
1172 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 1173 mode, file);
66e1707b
BS
1174}
1175
5ad333eb
AW
1176/*
1177 * clear_active_flags() is a helper for shrink_active_list(), clearing
1178 * any active bits from the pages in the list.
1179 */
4f98a2fe
RR
1180static unsigned long clear_active_flags(struct list_head *page_list,
1181 unsigned int *count)
5ad333eb
AW
1182{
1183 int nr_active = 0;
4f98a2fe 1184 int lru;
5ad333eb
AW
1185 struct page *page;
1186
4f98a2fe 1187 list_for_each_entry(page, page_list, lru) {
2c888cfb 1188 int numpages = hpage_nr_pages(page);
401a8e1c 1189 lru = page_lru_base_type(page);
5ad333eb 1190 if (PageActive(page)) {
4f98a2fe 1191 lru += LRU_ACTIVE;
5ad333eb 1192 ClearPageActive(page);
2c888cfb 1193 nr_active += numpages;
5ad333eb 1194 }
1489fa14 1195 if (count)
2c888cfb 1196 count[lru] += numpages;
4f98a2fe 1197 }
5ad333eb
AW
1198
1199 return nr_active;
1200}
1201
62695a84
NP
1202/**
1203 * isolate_lru_page - tries to isolate a page from its LRU list
1204 * @page: page to isolate from its LRU list
1205 *
1206 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1207 * vmstat statistic corresponding to whatever LRU list the page was on.
1208 *
1209 * Returns 0 if the page was removed from an LRU list.
1210 * Returns -EBUSY if the page was not on an LRU list.
1211 *
1212 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1213 * the active list, it will have PageActive set. If it was found on
1214 * the unevictable list, it will have the PageUnevictable bit set. That flag
1215 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1216 *
1217 * The vmstat statistic corresponding to the list on which the page was
1218 * found will be decremented.
1219 *
1220 * Restrictions:
1221 * (1) Must be called with an elevated refcount on the page. This is a
1222 * fundamentnal difference from isolate_lru_pages (which is called
1223 * without a stable reference).
1224 * (2) the lru_lock must not be held.
1225 * (3) interrupts must be enabled.
1226 */
1227int isolate_lru_page(struct page *page)
1228{
1229 int ret = -EBUSY;
1230
0c917313
KK
1231 VM_BUG_ON(!page_count(page));
1232
62695a84
NP
1233 if (PageLRU(page)) {
1234 struct zone *zone = page_zone(page);
1235
1236 spin_lock_irq(&zone->lru_lock);
0c917313 1237 if (PageLRU(page)) {
894bc310 1238 int lru = page_lru(page);
62695a84 1239 ret = 0;
0c917313 1240 get_page(page);
62695a84 1241 ClearPageLRU(page);
4f98a2fe 1242
4f98a2fe 1243 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1244 }
1245 spin_unlock_irq(&zone->lru_lock);
1246 }
1247 return ret;
1248}
1249
35cd7815
RR
1250/*
1251 * Are there way too many processes in the direct reclaim path already?
1252 */
1253static int too_many_isolated(struct zone *zone, int file,
1254 struct scan_control *sc)
1255{
1256 unsigned long inactive, isolated;
1257
1258 if (current_is_kswapd())
1259 return 0;
1260
1261 if (!scanning_global_lru(sc))
1262 return 0;
1263
1264 if (file) {
1265 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1266 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1267 } else {
1268 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1269 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1270 }
1271
1272 return isolated > inactive;
1273}
1274
66635629
MG
1275/*
1276 * TODO: Try merging with migrations version of putback_lru_pages
1277 */
1278static noinline_for_stack void
1489fa14 1279putback_lru_pages(struct zone *zone, struct scan_control *sc,
66635629
MG
1280 unsigned long nr_anon, unsigned long nr_file,
1281 struct list_head *page_list)
1282{
1283 struct page *page;
1284 struct pagevec pvec;
1489fa14 1285 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
66635629
MG
1286
1287 pagevec_init(&pvec, 1);
1288
1289 /*
1290 * Put back any unfreeable pages.
1291 */
1292 spin_lock(&zone->lru_lock);
1293 while (!list_empty(page_list)) {
1294 int lru;
1295 page = lru_to_page(page_list);
1296 VM_BUG_ON(PageLRU(page));
1297 list_del(&page->lru);
1298 if (unlikely(!page_evictable(page, NULL))) {
1299 spin_unlock_irq(&zone->lru_lock);
1300 putback_lru_page(page);
1301 spin_lock_irq(&zone->lru_lock);
1302 continue;
1303 }
7a608572 1304 SetPageLRU(page);
66635629 1305 lru = page_lru(page);
7a608572 1306 add_page_to_lru_list(zone, page, lru);
66635629
MG
1307 if (is_active_lru(lru)) {
1308 int file = is_file_lru(lru);
9992af10
RR
1309 int numpages = hpage_nr_pages(page);
1310 reclaim_stat->recent_rotated[file] += numpages;
66635629
MG
1311 }
1312 if (!pagevec_add(&pvec, page)) {
1313 spin_unlock_irq(&zone->lru_lock);
1314 __pagevec_release(&pvec);
1315 spin_lock_irq(&zone->lru_lock);
1316 }
1317 }
1318 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1319 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1320
1321 spin_unlock_irq(&zone->lru_lock);
1322 pagevec_release(&pvec);
1323}
1324
1489fa14
MG
1325static noinline_for_stack void update_isolated_counts(struct zone *zone,
1326 struct scan_control *sc,
1327 unsigned long *nr_anon,
1328 unsigned long *nr_file,
1329 struct list_head *isolated_list)
1330{
1331 unsigned long nr_active;
1332 unsigned int count[NR_LRU_LISTS] = { 0, };
1333 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1334
1335 nr_active = clear_active_flags(isolated_list, count);
1336 __count_vm_events(PGDEACTIVATE, nr_active);
1337
1338 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1339 -count[LRU_ACTIVE_FILE]);
1340 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1341 -count[LRU_INACTIVE_FILE]);
1342 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1343 -count[LRU_ACTIVE_ANON]);
1344 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1345 -count[LRU_INACTIVE_ANON]);
1346
1347 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1348 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1349 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1350 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1351
1352 reclaim_stat->recent_scanned[0] += *nr_anon;
1353 reclaim_stat->recent_scanned[1] += *nr_file;
1354}
1355
e31f3698
WF
1356/*
1357 * Returns true if the caller should wait to clean dirty/writeback pages.
1358 *
1359 * If we are direct reclaiming for contiguous pages and we do not reclaim
1360 * everything in the list, try again and wait for writeback IO to complete.
1361 * This will stall high-order allocations noticeably. Only do that when really
1362 * need to free the pages under high memory pressure.
1363 */
1364static inline bool should_reclaim_stall(unsigned long nr_taken,
1365 unsigned long nr_freed,
1366 int priority,
1367 struct scan_control *sc)
1368{
1369 int lumpy_stall_priority;
1370
1371 /* kswapd should not stall on sync IO */
1372 if (current_is_kswapd())
1373 return false;
1374
1375 /* Only stall on lumpy reclaim */
f3a310bc 1376 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
e31f3698
WF
1377 return false;
1378
1379 /* If we have relaimed everything on the isolated list, no stall */
1380 if (nr_freed == nr_taken)
1381 return false;
1382
1383 /*
1384 * For high-order allocations, there are two stall thresholds.
1385 * High-cost allocations stall immediately where as lower
1386 * order allocations such as stacks require the scanning
1387 * priority to be much higher before stalling.
1388 */
1389 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1390 lumpy_stall_priority = DEF_PRIORITY;
1391 else
1392 lumpy_stall_priority = DEF_PRIORITY / 3;
1393
1394 return priority <= lumpy_stall_priority;
1395}
1396
1da177e4 1397/*
1742f19f
AM
1398 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1399 * of reclaimed pages
1da177e4 1400 */
66635629
MG
1401static noinline_for_stack unsigned long
1402shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1403 struct scan_control *sc, int priority, int file)
1da177e4
LT
1404{
1405 LIST_HEAD(page_list);
e247dbce 1406 unsigned long nr_scanned;
05ff5137 1407 unsigned long nr_reclaimed = 0;
e247dbce 1408 unsigned long nr_taken;
e247dbce
KM
1409 unsigned long nr_anon;
1410 unsigned long nr_file;
78dc583d 1411
35cd7815 1412 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1413 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1414
1415 /* We are about to die and free our memory. Return now. */
1416 if (fatal_signal_pending(current))
1417 return SWAP_CLUSTER_MAX;
1418 }
1419
f3a310bc 1420 set_reclaim_mode(priority, sc, false);
1da177e4
LT
1421 lru_add_drain();
1422 spin_lock_irq(&zone->lru_lock);
b35ea17b 1423
e247dbce
KM
1424 if (scanning_global_lru(sc)) {
1425 nr_taken = isolate_pages_global(nr_to_scan,
1426 &page_list, &nr_scanned, sc->order,
f3a310bc 1427 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
3e7d3449 1428 ISOLATE_BOTH : ISOLATE_INACTIVE,
e247dbce
KM
1429 zone, 0, file);
1430 zone->pages_scanned += nr_scanned;
1431 if (current_is_kswapd())
1432 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1433 nr_scanned);
1434 else
1435 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1436 nr_scanned);
1437 } else {
1438 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1439 &page_list, &nr_scanned, sc->order,
f3a310bc 1440 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
3e7d3449 1441 ISOLATE_BOTH : ISOLATE_INACTIVE,
e247dbce
KM
1442 zone, sc->mem_cgroup,
1443 0, file);
1444 /*
1445 * mem_cgroup_isolate_pages() keeps track of
1446 * scanned pages on its own.
1447 */
1448 }
b35ea17b 1449
66635629
MG
1450 if (nr_taken == 0) {
1451 spin_unlock_irq(&zone->lru_lock);
1452 return 0;
1453 }
5ad333eb 1454
1489fa14 1455 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1da177e4 1456
e247dbce 1457 spin_unlock_irq(&zone->lru_lock);
c661b078 1458
0e093d99 1459 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
c661b078 1460
e31f3698
WF
1461 /* Check if we should syncronously wait for writeback */
1462 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
f3a310bc 1463 set_reclaim_mode(priority, sc, true);
0e093d99 1464 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
e247dbce 1465 }
b35ea17b 1466
e247dbce
KM
1467 local_irq_disable();
1468 if (current_is_kswapd())
1469 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1470 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
a74609fa 1471
1489fa14 1472 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
e11da5b4
MG
1473
1474 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1475 zone_idx(zone),
1476 nr_scanned, nr_reclaimed,
1477 priority,
f3a310bc 1478 trace_shrink_flags(file, sc->reclaim_mode));
05ff5137 1479 return nr_reclaimed;
1da177e4
LT
1480}
1481
1482/*
1483 * This moves pages from the active list to the inactive list.
1484 *
1485 * We move them the other way if the page is referenced by one or more
1486 * processes, from rmap.
1487 *
1488 * If the pages are mostly unmapped, the processing is fast and it is
1489 * appropriate to hold zone->lru_lock across the whole operation. But if
1490 * the pages are mapped, the processing is slow (page_referenced()) so we
1491 * should drop zone->lru_lock around each page. It's impossible to balance
1492 * this, so instead we remove the pages from the LRU while processing them.
1493 * It is safe to rely on PG_active against the non-LRU pages in here because
1494 * nobody will play with that bit on a non-LRU page.
1495 *
1496 * The downside is that we have to touch page->_count against each page.
1497 * But we had to alter page->flags anyway.
1498 */
1cfb419b 1499
3eb4140f
WF
1500static void move_active_pages_to_lru(struct zone *zone,
1501 struct list_head *list,
1502 enum lru_list lru)
1503{
1504 unsigned long pgmoved = 0;
1505 struct pagevec pvec;
1506 struct page *page;
1507
1508 pagevec_init(&pvec, 1);
1509
1510 while (!list_empty(list)) {
1511 page = lru_to_page(list);
3eb4140f
WF
1512
1513 VM_BUG_ON(PageLRU(page));
1514 SetPageLRU(page);
1515
3eb4140f
WF
1516 list_move(&page->lru, &zone->lru[lru].list);
1517 mem_cgroup_add_lru_list(page, lru);
2c888cfb 1518 pgmoved += hpage_nr_pages(page);
3eb4140f
WF
1519
1520 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1521 spin_unlock_irq(&zone->lru_lock);
1522 if (buffer_heads_over_limit)
1523 pagevec_strip(&pvec);
1524 __pagevec_release(&pvec);
1525 spin_lock_irq(&zone->lru_lock);
1526 }
1527 }
1528 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1529 if (!is_active_lru(lru))
1530 __count_vm_events(PGDEACTIVATE, pgmoved);
1531}
1cfb419b 1532
1742f19f 1533static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1534 struct scan_control *sc, int priority, int file)
1da177e4 1535{
44c241f1 1536 unsigned long nr_taken;
69e05944 1537 unsigned long pgscanned;
6fe6b7e3 1538 unsigned long vm_flags;
1da177e4 1539 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1540 LIST_HEAD(l_active);
b69408e8 1541 LIST_HEAD(l_inactive);
1da177e4 1542 struct page *page;
6e901571 1543 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1544 unsigned long nr_rotated = 0;
1da177e4
LT
1545
1546 lru_add_drain();
1547 spin_lock_irq(&zone->lru_lock);
e72e2bd6 1548 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1549 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1550 &pgscanned, sc->order,
1551 ISOLATE_ACTIVE, zone,
1552 1, file);
1cfb419b 1553 zone->pages_scanned += pgscanned;
8b25c6d2
JW
1554 } else {
1555 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1556 &pgscanned, sc->order,
1557 ISOLATE_ACTIVE, zone,
1558 sc->mem_cgroup, 1, file);
1559 /*
1560 * mem_cgroup_isolate_pages() keeps track of
1561 * scanned pages on its own.
1562 */
4f98a2fe 1563 }
8b25c6d2 1564
b7c46d15 1565 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1566
3eb4140f 1567 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1568 if (file)
44c241f1 1569 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1570 else
44c241f1 1571 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1572 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1573 spin_unlock_irq(&zone->lru_lock);
1574
1da177e4
LT
1575 while (!list_empty(&l_hold)) {
1576 cond_resched();
1577 page = lru_to_page(&l_hold);
1578 list_del(&page->lru);
7e9cd484 1579
894bc310
LS
1580 if (unlikely(!page_evictable(page, NULL))) {
1581 putback_lru_page(page);
1582 continue;
1583 }
1584
64574746 1585 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
9992af10 1586 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1587 /*
1588 * Identify referenced, file-backed active pages and
1589 * give them one more trip around the active list. So
1590 * that executable code get better chances to stay in
1591 * memory under moderate memory pressure. Anon pages
1592 * are not likely to be evicted by use-once streaming
1593 * IO, plus JVM can create lots of anon VM_EXEC pages,
1594 * so we ignore them here.
1595 */
41e20983 1596 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1597 list_add(&page->lru, &l_active);
1598 continue;
1599 }
1600 }
7e9cd484 1601
5205e56e 1602 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1603 list_add(&page->lru, &l_inactive);
1604 }
1605
b555749a 1606 /*
8cab4754 1607 * Move pages back to the lru list.
b555749a 1608 */
2a1dc509 1609 spin_lock_irq(&zone->lru_lock);
556adecb 1610 /*
8cab4754
WF
1611 * Count referenced pages from currently used mappings as rotated,
1612 * even though only some of them are actually re-activated. This
1613 * helps balance scan pressure between file and anonymous pages in
1614 * get_scan_ratio.
7e9cd484 1615 */
b7c46d15 1616 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1617
3eb4140f
WF
1618 move_active_pages_to_lru(zone, &l_active,
1619 LRU_ACTIVE + file * LRU_FILE);
1620 move_active_pages_to_lru(zone, &l_inactive,
1621 LRU_BASE + file * LRU_FILE);
a731286d 1622 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1623 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1624}
1625
74e3f3c3 1626#ifdef CONFIG_SWAP
14797e23 1627static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1628{
1629 unsigned long active, inactive;
1630
1631 active = zone_page_state(zone, NR_ACTIVE_ANON);
1632 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1633
1634 if (inactive * zone->inactive_ratio < active)
1635 return 1;
1636
1637 return 0;
1638}
1639
14797e23
KM
1640/**
1641 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1642 * @zone: zone to check
1643 * @sc: scan control of this context
1644 *
1645 * Returns true if the zone does not have enough inactive anon pages,
1646 * meaning some active anon pages need to be deactivated.
1647 */
1648static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1649{
1650 int low;
1651
74e3f3c3
MK
1652 /*
1653 * If we don't have swap space, anonymous page deactivation
1654 * is pointless.
1655 */
1656 if (!total_swap_pages)
1657 return 0;
1658
e72e2bd6 1659 if (scanning_global_lru(sc))
14797e23
KM
1660 low = inactive_anon_is_low_global(zone);
1661 else
c772be93 1662 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1663 return low;
1664}
74e3f3c3
MK
1665#else
1666static inline int inactive_anon_is_low(struct zone *zone,
1667 struct scan_control *sc)
1668{
1669 return 0;
1670}
1671#endif
14797e23 1672
56e49d21
RR
1673static int inactive_file_is_low_global(struct zone *zone)
1674{
1675 unsigned long active, inactive;
1676
1677 active = zone_page_state(zone, NR_ACTIVE_FILE);
1678 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1679
1680 return (active > inactive);
1681}
1682
1683/**
1684 * inactive_file_is_low - check if file pages need to be deactivated
1685 * @zone: zone to check
1686 * @sc: scan control of this context
1687 *
1688 * When the system is doing streaming IO, memory pressure here
1689 * ensures that active file pages get deactivated, until more
1690 * than half of the file pages are on the inactive list.
1691 *
1692 * Once we get to that situation, protect the system's working
1693 * set from being evicted by disabling active file page aging.
1694 *
1695 * This uses a different ratio than the anonymous pages, because
1696 * the page cache uses a use-once replacement algorithm.
1697 */
1698static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1699{
1700 int low;
1701
1702 if (scanning_global_lru(sc))
1703 low = inactive_file_is_low_global(zone);
1704 else
1705 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1706 return low;
1707}
1708
b39415b2
RR
1709static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1710 int file)
1711{
1712 if (file)
1713 return inactive_file_is_low(zone, sc);
1714 else
1715 return inactive_anon_is_low(zone, sc);
1716}
1717
4f98a2fe 1718static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1719 struct zone *zone, struct scan_control *sc, int priority)
1720{
4f98a2fe
RR
1721 int file = is_file_lru(lru);
1722
b39415b2
RR
1723 if (is_active_lru(lru)) {
1724 if (inactive_list_is_low(zone, sc, file))
1725 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1726 return 0;
1727 }
1728
33c120ed 1729 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1730}
1731
1732/*
1733 * Determine how aggressively the anon and file LRU lists should be
1734 * scanned. The relative value of each set of LRU lists is determined
1735 * by looking at the fraction of the pages scanned we did rotate back
1736 * onto the active list instead of evict.
1737 *
76a33fc3 1738 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1739 */
76a33fc3
SL
1740static void get_scan_count(struct zone *zone, struct scan_control *sc,
1741 unsigned long *nr, int priority)
4f98a2fe
RR
1742{
1743 unsigned long anon, file, free;
1744 unsigned long anon_prio, file_prio;
1745 unsigned long ap, fp;
6e901571 1746 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
76a33fc3
SL
1747 u64 fraction[2], denominator;
1748 enum lru_list l;
1749 int noswap = 0;
246e87a9
KH
1750 int force_scan = 0;
1751
1752
1753 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1754 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1755 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1756 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1757
1758 if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
1759 /* kswapd does zone balancing and need to scan this zone */
1760 if (scanning_global_lru(sc) && current_is_kswapd())
1761 force_scan = 1;
1762 /* memcg may have small limit and need to avoid priority drop */
1763 if (!scanning_global_lru(sc))
1764 force_scan = 1;
1765 }
76a33fc3
SL
1766
1767 /* If we have no swap space, do not bother scanning anon pages. */
1768 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1769 noswap = 1;
1770 fraction[0] = 0;
1771 fraction[1] = 1;
1772 denominator = 1;
1773 goto out;
1774 }
4f98a2fe 1775
e72e2bd6 1776 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1777 free = zone_page_state(zone, NR_FREE_PAGES);
1778 /* If we have very few page cache pages,
1779 force-scan anon pages. */
41858966 1780 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1781 fraction[0] = 1;
1782 fraction[1] = 0;
1783 denominator = 1;
1784 goto out;
eeee9a8c 1785 }
4f98a2fe
RR
1786 }
1787
58c37f6e
KM
1788 /*
1789 * With swappiness at 100, anonymous and file have the same priority.
1790 * This scanning priority is essentially the inverse of IO cost.
1791 */
1792 anon_prio = sc->swappiness;
1793 file_prio = 200 - sc->swappiness;
1794
4f98a2fe
RR
1795 /*
1796 * OK, so we have swap space and a fair amount of page cache
1797 * pages. We use the recently rotated / recently scanned
1798 * ratios to determine how valuable each cache is.
1799 *
1800 * Because workloads change over time (and to avoid overflow)
1801 * we keep these statistics as a floating average, which ends
1802 * up weighing recent references more than old ones.
1803 *
1804 * anon in [0], file in [1]
1805 */
58c37f6e 1806 spin_lock_irq(&zone->lru_lock);
6e901571 1807 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1808 reclaim_stat->recent_scanned[0] /= 2;
1809 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1810 }
1811
6e901571 1812 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1813 reclaim_stat->recent_scanned[1] /= 2;
1814 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1815 }
1816
4f98a2fe 1817 /*
00d8089c
RR
1818 * The amount of pressure on anon vs file pages is inversely
1819 * proportional to the fraction of recently scanned pages on
1820 * each list that were recently referenced and in active use.
4f98a2fe 1821 */
6e901571
KM
1822 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1823 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1824
6e901571
KM
1825 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1826 fp /= reclaim_stat->recent_rotated[1] + 1;
58c37f6e 1827 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1828
76a33fc3
SL
1829 fraction[0] = ap;
1830 fraction[1] = fp;
1831 denominator = ap + fp + 1;
1832out:
1833 for_each_evictable_lru(l) {
1834 int file = is_file_lru(l);
1835 unsigned long scan;
6e08a369 1836
76a33fc3
SL
1837 scan = zone_nr_lru_pages(zone, sc, l);
1838 if (priority || noswap) {
1839 scan >>= priority;
1840 scan = div64_u64(scan * fraction[file], denominator);
1841 }
246e87a9
KH
1842
1843 /*
1844 * If zone is small or memcg is small, nr[l] can be 0.
1845 * This results no-scan on this priority and priority drop down.
1846 * For global direct reclaim, it can visit next zone and tend
1847 * not to have problems. For global kswapd, it's for zone
1848 * balancing and it need to scan a small amounts. When using
1849 * memcg, priority drop can cause big latency. So, it's better
1850 * to scan small amount. See may_noscan above.
1851 */
1852 if (!scan && force_scan) {
1853 if (file)
1854 scan = SWAP_CLUSTER_MAX;
1855 else if (!noswap)
1856 scan = SWAP_CLUSTER_MAX;
1857 }
1858 nr[l] = scan;
76a33fc3 1859 }
6e08a369 1860}
4f98a2fe 1861
3e7d3449
MG
1862/*
1863 * Reclaim/compaction depends on a number of pages being freed. To avoid
1864 * disruption to the system, a small number of order-0 pages continue to be
1865 * rotated and reclaimed in the normal fashion. However, by the time we get
1866 * back to the allocator and call try_to_compact_zone(), we ensure that
1867 * there are enough free pages for it to be likely successful
1868 */
1869static inline bool should_continue_reclaim(struct zone *zone,
1870 unsigned long nr_reclaimed,
1871 unsigned long nr_scanned,
1872 struct scan_control *sc)
1873{
1874 unsigned long pages_for_compaction;
1875 unsigned long inactive_lru_pages;
1876
1877 /* If not in reclaim/compaction mode, stop */
f3a310bc 1878 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
3e7d3449
MG
1879 return false;
1880
2876592f
MG
1881 /* Consider stopping depending on scan and reclaim activity */
1882 if (sc->gfp_mask & __GFP_REPEAT) {
1883 /*
1884 * For __GFP_REPEAT allocations, stop reclaiming if the
1885 * full LRU list has been scanned and we are still failing
1886 * to reclaim pages. This full LRU scan is potentially
1887 * expensive but a __GFP_REPEAT caller really wants to succeed
1888 */
1889 if (!nr_reclaimed && !nr_scanned)
1890 return false;
1891 } else {
1892 /*
1893 * For non-__GFP_REPEAT allocations which can presumably
1894 * fail without consequence, stop if we failed to reclaim
1895 * any pages from the last SWAP_CLUSTER_MAX number of
1896 * pages that were scanned. This will return to the
1897 * caller faster at the risk reclaim/compaction and
1898 * the resulting allocation attempt fails
1899 */
1900 if (!nr_reclaimed)
1901 return false;
1902 }
3e7d3449
MG
1903
1904 /*
1905 * If we have not reclaimed enough pages for compaction and the
1906 * inactive lists are large enough, continue reclaiming
1907 */
1908 pages_for_compaction = (2UL << sc->order);
1909 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1910 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1911 if (sc->nr_reclaimed < pages_for_compaction &&
1912 inactive_lru_pages > pages_for_compaction)
1913 return true;
1914
1915 /* If compaction would go ahead or the allocation would succeed, stop */
1916 switch (compaction_suitable(zone, sc->order)) {
1917 case COMPACT_PARTIAL:
1918 case COMPACT_CONTINUE:
1919 return false;
1920 default:
1921 return true;
1922 }
1923}
1924
1da177e4
LT
1925/*
1926 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1927 */
a79311c1 1928static void shrink_zone(int priority, struct zone *zone,
05ff5137 1929 struct scan_control *sc)
1da177e4 1930{
b69408e8 1931 unsigned long nr[NR_LRU_LISTS];
8695949a 1932 unsigned long nr_to_scan;
b69408e8 1933 enum lru_list l;
f0fdc5e8 1934 unsigned long nr_reclaimed, nr_scanned;
22fba335 1935 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
e0f79b8f 1936
3e7d3449
MG
1937restart:
1938 nr_reclaimed = 0;
f0fdc5e8 1939 nr_scanned = sc->nr_scanned;
76a33fc3 1940 get_scan_count(zone, sc, nr, priority);
1da177e4 1941
556adecb
RR
1942 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1943 nr[LRU_INACTIVE_FILE]) {
894bc310 1944 for_each_evictable_lru(l) {
b69408e8 1945 if (nr[l]) {
ece74b2e
KM
1946 nr_to_scan = min_t(unsigned long,
1947 nr[l], SWAP_CLUSTER_MAX);
b69408e8 1948 nr[l] -= nr_to_scan;
1da177e4 1949
01dbe5c9
KM
1950 nr_reclaimed += shrink_list(l, nr_to_scan,
1951 zone, sc, priority);
b69408e8 1952 }
1da177e4 1953 }
a79311c1
RR
1954 /*
1955 * On large memory systems, scan >> priority can become
1956 * really large. This is fine for the starting priority;
1957 * we want to put equal scanning pressure on each zone.
1958 * However, if the VM has a harder time of freeing pages,
1959 * with multiple processes reclaiming pages, the total
1960 * freeing target can get unreasonably large.
1961 */
338fde90 1962 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1963 break;
1da177e4 1964 }
3e7d3449 1965 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1966
556adecb
RR
1967 /*
1968 * Even if we did not try to evict anon pages at all, we want to
1969 * rebalance the anon lru active/inactive ratio.
1970 */
74e3f3c3 1971 if (inactive_anon_is_low(zone, sc))
556adecb
RR
1972 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1973
3e7d3449
MG
1974 /* reclaim/compaction might need reclaim to continue */
1975 if (should_continue_reclaim(zone, nr_reclaimed,
1976 sc->nr_scanned - nr_scanned, sc))
1977 goto restart;
1978
232ea4d6 1979 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1980}
1981
1982/*
1983 * This is the direct reclaim path, for page-allocating processes. We only
1984 * try to reclaim pages from zones which will satisfy the caller's allocation
1985 * request.
1986 *
41858966
MG
1987 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1988 * Because:
1da177e4
LT
1989 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1990 * allocation or
41858966
MG
1991 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1992 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1993 * zone defense algorithm.
1da177e4 1994 *
1da177e4
LT
1995 * If a zone is deemed to be full of pinned pages then just give it a light
1996 * scan then give up on it.
1997 */
ac34a1a3 1998static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1999 struct scan_control *sc)
1da177e4 2000{
dd1a239f 2001 struct zoneref *z;
54a6eb5c 2002 struct zone *zone;
d149e3b2
YH
2003 unsigned long nr_soft_reclaimed;
2004 unsigned long nr_soft_scanned;
1cfb419b 2005
d4debc66
MG
2006 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2007 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2008 if (!populated_zone(zone))
1da177e4 2009 continue;
1cfb419b
KH
2010 /*
2011 * Take care memory controller reclaiming has small influence
2012 * to global LRU.
2013 */
e72e2bd6 2014 if (scanning_global_lru(sc)) {
1cfb419b
KH
2015 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2016 continue;
93e4a89a 2017 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2018 continue; /* Let kswapd poll it */
ac34a1a3
KH
2019 /*
2020 * This steals pages from memory cgroups over softlimit
2021 * and returns the number of reclaimed pages and
2022 * scanned pages. This works for global memory pressure
2023 * and balancing, not for a memcg's limit.
2024 */
2025 nr_soft_scanned = 0;
2026 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2027 sc->order, sc->gfp_mask,
2028 &nr_soft_scanned);
2029 sc->nr_reclaimed += nr_soft_reclaimed;
2030 sc->nr_scanned += nr_soft_scanned;
2031 /* need some check for avoid more shrink_zone() */
1cfb419b 2032 }
408d8544 2033
a79311c1 2034 shrink_zone(priority, zone, sc);
1da177e4 2035 }
d1908362
MK
2036}
2037
2038static bool zone_reclaimable(struct zone *zone)
2039{
2040 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2041}
2042
929bea7c 2043/* All zones in zonelist are unreclaimable? */
d1908362
MK
2044static bool all_unreclaimable(struct zonelist *zonelist,
2045 struct scan_control *sc)
2046{
2047 struct zoneref *z;
2048 struct zone *zone;
d1908362
MK
2049
2050 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2051 gfp_zone(sc->gfp_mask), sc->nodemask) {
2052 if (!populated_zone(zone))
2053 continue;
2054 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2055 continue;
929bea7c
KM
2056 if (!zone->all_unreclaimable)
2057 return false;
d1908362
MK
2058 }
2059
929bea7c 2060 return true;
1da177e4 2061}
4f98a2fe 2062
1da177e4
LT
2063/*
2064 * This is the main entry point to direct page reclaim.
2065 *
2066 * If a full scan of the inactive list fails to free enough memory then we
2067 * are "out of memory" and something needs to be killed.
2068 *
2069 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2070 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2071 * caller can't do much about. We kick the writeback threads and take explicit
2072 * naps in the hope that some of these pages can be written. But if the
2073 * allocating task holds filesystem locks which prevent writeout this might not
2074 * work, and the allocation attempt will fail.
a41f24ea
NA
2075 *
2076 * returns: 0, if no pages reclaimed
2077 * else, the number of pages reclaimed
1da177e4 2078 */
dac1d27b 2079static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2080 struct scan_control *sc,
2081 struct shrink_control *shrink)
1da177e4
LT
2082{
2083 int priority;
69e05944 2084 unsigned long total_scanned = 0;
1da177e4 2085 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2086 struct zoneref *z;
54a6eb5c 2087 struct zone *zone;
22fba335 2088 unsigned long writeback_threshold;
1da177e4 2089
c0ff7453 2090 get_mems_allowed();
873b4771
KK
2091 delayacct_freepages_start();
2092
e72e2bd6 2093 if (scanning_global_lru(sc))
1cfb419b 2094 count_vm_event(ALLOCSTALL);
1da177e4
LT
2095
2096 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2097 sc->nr_scanned = 0;
f7b7fd8f 2098 if (!priority)
a433658c 2099 disable_swap_token(sc->mem_cgroup);
ac34a1a3 2100 shrink_zones(priority, zonelist, sc);
66e1707b
BS
2101 /*
2102 * Don't shrink slabs when reclaiming memory from
2103 * over limit cgroups
2104 */
e72e2bd6 2105 if (scanning_global_lru(sc)) {
c6a8a8c5 2106 unsigned long lru_pages = 0;
d4debc66
MG
2107 for_each_zone_zonelist(zone, z, zonelist,
2108 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2109 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2110 continue;
2111
2112 lru_pages += zone_reclaimable_pages(zone);
2113 }
2114
1495f230 2115 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2116 if (reclaim_state) {
a79311c1 2117 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2118 reclaim_state->reclaimed_slab = 0;
2119 }
1da177e4 2120 }
66e1707b 2121 total_scanned += sc->nr_scanned;
bb21c7ce 2122 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2123 goto out;
1da177e4
LT
2124
2125 /*
2126 * Try to write back as many pages as we just scanned. This
2127 * tends to cause slow streaming writers to write data to the
2128 * disk smoothly, at the dirtying rate, which is nice. But
2129 * that's undesirable in laptop mode, where we *want* lumpy
2130 * writeout. So in laptop mode, write out the whole world.
2131 */
22fba335
KM
2132 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2133 if (total_scanned > writeback_threshold) {
03ba3782 2134 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 2135 sc->may_writepage = 1;
1da177e4
LT
2136 }
2137
2138 /* Take a nap, wait for some writeback to complete */
7b51755c 2139 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2140 priority < DEF_PRIORITY - 2) {
2141 struct zone *preferred_zone;
2142
2143 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2144 &cpuset_current_mems_allowed,
2145 &preferred_zone);
0e093d99
MG
2146 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2147 }
1da177e4 2148 }
bb21c7ce 2149
1da177e4 2150out:
873b4771 2151 delayacct_freepages_end();
c0ff7453 2152 put_mems_allowed();
873b4771 2153
bb21c7ce
KM
2154 if (sc->nr_reclaimed)
2155 return sc->nr_reclaimed;
2156
929bea7c
KM
2157 /*
2158 * As hibernation is going on, kswapd is freezed so that it can't mark
2159 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2160 * check.
2161 */
2162 if (oom_killer_disabled)
2163 return 0;
2164
bb21c7ce 2165 /* top priority shrink_zones still had more to do? don't OOM, then */
d1908362 2166 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2167 return 1;
2168
2169 return 0;
1da177e4
LT
2170}
2171
dac1d27b 2172unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2173 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2174{
33906bc5 2175 unsigned long nr_reclaimed;
66e1707b
BS
2176 struct scan_control sc = {
2177 .gfp_mask = gfp_mask,
2178 .may_writepage = !laptop_mode,
22fba335 2179 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2180 .may_unmap = 1,
2e2e4259 2181 .may_swap = 1,
66e1707b
BS
2182 .swappiness = vm_swappiness,
2183 .order = order,
2184 .mem_cgroup = NULL,
327c0e96 2185 .nodemask = nodemask,
66e1707b 2186 };
a09ed5e0
YH
2187 struct shrink_control shrink = {
2188 .gfp_mask = sc.gfp_mask,
2189 };
66e1707b 2190
33906bc5
MG
2191 trace_mm_vmscan_direct_reclaim_begin(order,
2192 sc.may_writepage,
2193 gfp_mask);
2194
a09ed5e0 2195 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2196
2197 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2198
2199 return nr_reclaimed;
66e1707b
BS
2200}
2201
00f0b825 2202#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2203
4e416953
BS
2204unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2205 gfp_t gfp_mask, bool noswap,
2206 unsigned int swappiness,
0ae5e89c
YH
2207 struct zone *zone,
2208 unsigned long *nr_scanned)
4e416953
BS
2209{
2210 struct scan_control sc = {
0ae5e89c 2211 .nr_scanned = 0,
b8f5c566 2212 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2213 .may_writepage = !laptop_mode,
2214 .may_unmap = 1,
2215 .may_swap = !noswap,
4e416953
BS
2216 .swappiness = swappiness,
2217 .order = 0,
2218 .mem_cgroup = mem,
4e416953 2219 };
0ae5e89c 2220
4e416953
BS
2221 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2222 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2223
2224 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2225 sc.may_writepage,
2226 sc.gfp_mask);
2227
4e416953
BS
2228 /*
2229 * NOTE: Although we can get the priority field, using it
2230 * here is not a good idea, since it limits the pages we can scan.
2231 * if we don't reclaim here, the shrink_zone from balance_pgdat
2232 * will pick up pages from other mem cgroup's as well. We hack
2233 * the priority and make it zero.
2234 */
2235 shrink_zone(0, zone, &sc);
bdce6d9e
KM
2236
2237 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2238
0ae5e89c 2239 *nr_scanned = sc.nr_scanned;
4e416953
BS
2240 return sc.nr_reclaimed;
2241}
2242
e1a1cd59 2243unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
2244 gfp_t gfp_mask,
2245 bool noswap,
2246 unsigned int swappiness)
66e1707b 2247{
4e416953 2248 struct zonelist *zonelist;
bdce6d9e 2249 unsigned long nr_reclaimed;
889976db 2250 int nid;
66e1707b 2251 struct scan_control sc = {
66e1707b 2252 .may_writepage = !laptop_mode,
a6dc60f8 2253 .may_unmap = 1,
2e2e4259 2254 .may_swap = !noswap,
22fba335 2255 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a7885eb8 2256 .swappiness = swappiness,
66e1707b
BS
2257 .order = 0,
2258 .mem_cgroup = mem_cont,
327c0e96 2259 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2260 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2261 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2262 };
2263 struct shrink_control shrink = {
2264 .gfp_mask = sc.gfp_mask,
66e1707b 2265 };
66e1707b 2266
889976db
YH
2267 /*
2268 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2269 * take care of from where we get pages. So the node where we start the
2270 * scan does not need to be the current node.
2271 */
2272 nid = mem_cgroup_select_victim_node(mem_cont);
2273
2274 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2275
2276 trace_mm_vmscan_memcg_reclaim_begin(0,
2277 sc.may_writepage,
2278 sc.gfp_mask);
2279
a09ed5e0 2280 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2281
2282 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2283
2284 return nr_reclaimed;
66e1707b
BS
2285}
2286#endif
2287
1741c877
MG
2288/*
2289 * pgdat_balanced is used when checking if a node is balanced for high-order
2290 * allocations. Only zones that meet watermarks and are in a zone allowed
2291 * by the callers classzone_idx are added to balanced_pages. The total of
2292 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2293 * for the node to be considered balanced. Forcing all zones to be balanced
2294 * for high orders can cause excessive reclaim when there are imbalanced zones.
2295 * The choice of 25% is due to
2296 * o a 16M DMA zone that is balanced will not balance a zone on any
2297 * reasonable sized machine
2298 * o On all other machines, the top zone must be at least a reasonable
25985edc 2299 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2300 * would need to be at least 256M for it to be balance a whole node.
2301 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2302 * to balance a node on its own. These seemed like reasonable ratios.
2303 */
2304static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2305 int classzone_idx)
2306{
2307 unsigned long present_pages = 0;
2308 int i;
2309
2310 for (i = 0; i <= classzone_idx; i++)
2311 present_pages += pgdat->node_zones[i].present_pages;
2312
2313 return balanced_pages > (present_pages >> 2);
2314}
2315
f50de2d3 2316/* is kswapd sleeping prematurely? */
dc83edd9
MG
2317static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2318 int classzone_idx)
f50de2d3 2319{
bb3ab596 2320 int i;
1741c877
MG
2321 unsigned long balanced = 0;
2322 bool all_zones_ok = true;
f50de2d3
MG
2323
2324 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2325 if (remaining)
dc83edd9 2326 return true;
f50de2d3 2327
0abdee2b 2328 /* Check the watermark levels */
08951e54 2329 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2330 struct zone *zone = pgdat->node_zones + i;
2331
2332 if (!populated_zone(zone))
2333 continue;
2334
355b09c4
MG
2335 /*
2336 * balance_pgdat() skips over all_unreclaimable after
2337 * DEF_PRIORITY. Effectively, it considers them balanced so
2338 * they must be considered balanced here as well if kswapd
2339 * is to sleep
2340 */
2341 if (zone->all_unreclaimable) {
2342 balanced += zone->present_pages;
de3fab39 2343 continue;
355b09c4 2344 }
de3fab39 2345
88f5acf8 2346 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2347 i, 0))
1741c877
MG
2348 all_zones_ok = false;
2349 else
2350 balanced += zone->present_pages;
bb3ab596 2351 }
f50de2d3 2352
1741c877
MG
2353 /*
2354 * For high-order requests, the balanced zones must contain at least
2355 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2356 * must be balanced
2357 */
2358 if (order)
afc7e326 2359 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2360 else
2361 return !all_zones_ok;
f50de2d3
MG
2362}
2363
1da177e4
LT
2364/*
2365 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2366 * they are all at high_wmark_pages(zone).
1da177e4 2367 *
0abdee2b 2368 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2369 *
2370 * There is special handling here for zones which are full of pinned pages.
2371 * This can happen if the pages are all mlocked, or if they are all used by
2372 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2373 * What we do is to detect the case where all pages in the zone have been
2374 * scanned twice and there has been zero successful reclaim. Mark the zone as
2375 * dead and from now on, only perform a short scan. Basically we're polling
2376 * the zone for when the problem goes away.
2377 *
2378 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2379 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2380 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2381 * lower zones regardless of the number of free pages in the lower zones. This
2382 * interoperates with the page allocator fallback scheme to ensure that aging
2383 * of pages is balanced across the zones.
1da177e4 2384 */
99504748 2385static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2386 int *classzone_idx)
1da177e4 2387{
1da177e4 2388 int all_zones_ok;
1741c877 2389 unsigned long balanced;
1da177e4
LT
2390 int priority;
2391 int i;
99504748 2392 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2393 unsigned long total_scanned;
1da177e4 2394 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2395 unsigned long nr_soft_reclaimed;
2396 unsigned long nr_soft_scanned;
179e9639
AM
2397 struct scan_control sc = {
2398 .gfp_mask = GFP_KERNEL,
a6dc60f8 2399 .may_unmap = 1,
2e2e4259 2400 .may_swap = 1,
22fba335
KM
2401 /*
2402 * kswapd doesn't want to be bailed out while reclaim. because
2403 * we want to put equal scanning pressure on each zone.
2404 */
2405 .nr_to_reclaim = ULONG_MAX,
d6277db4 2406 .swappiness = vm_swappiness,
5ad333eb 2407 .order = order,
66e1707b 2408 .mem_cgroup = NULL,
179e9639 2409 };
a09ed5e0
YH
2410 struct shrink_control shrink = {
2411 .gfp_mask = sc.gfp_mask,
2412 };
1da177e4
LT
2413loop_again:
2414 total_scanned = 0;
a79311c1 2415 sc.nr_reclaimed = 0;
c0bbbc73 2416 sc.may_writepage = !laptop_mode;
f8891e5e 2417 count_vm_event(PAGEOUTRUN);
1da177e4 2418
1da177e4 2419 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2420 unsigned long lru_pages = 0;
bb3ab596 2421 int has_under_min_watermark_zone = 0;
1da177e4 2422
f7b7fd8f
RR
2423 /* The swap token gets in the way of swapout... */
2424 if (!priority)
a433658c 2425 disable_swap_token(NULL);
f7b7fd8f 2426
1da177e4 2427 all_zones_ok = 1;
1741c877 2428 balanced = 0;
1da177e4 2429
d6277db4
RW
2430 /*
2431 * Scan in the highmem->dma direction for the highest
2432 * zone which needs scanning
2433 */
2434 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2435 struct zone *zone = pgdat->node_zones + i;
1da177e4 2436
d6277db4
RW
2437 if (!populated_zone(zone))
2438 continue;
1da177e4 2439
93e4a89a 2440 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2441 continue;
1da177e4 2442
556adecb
RR
2443 /*
2444 * Do some background aging of the anon list, to give
2445 * pages a chance to be referenced before reclaiming.
2446 */
14797e23 2447 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2448 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2449 &sc, priority, 0);
2450
88f5acf8 2451 if (!zone_watermark_ok_safe(zone, order,
41858966 2452 high_wmark_pages(zone), 0, 0)) {
d6277db4 2453 end_zone = i;
dc83edd9 2454 *classzone_idx = i;
e1dbeda6 2455 break;
1da177e4 2456 }
1da177e4 2457 }
e1dbeda6
AM
2458 if (i < 0)
2459 goto out;
2460
1da177e4
LT
2461 for (i = 0; i <= end_zone; i++) {
2462 struct zone *zone = pgdat->node_zones + i;
2463
adea02a1 2464 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2465 }
2466
2467 /*
2468 * Now scan the zone in the dma->highmem direction, stopping
2469 * at the last zone which needs scanning.
2470 *
2471 * We do this because the page allocator works in the opposite
2472 * direction. This prevents the page allocator from allocating
2473 * pages behind kswapd's direction of progress, which would
2474 * cause too much scanning of the lower zones.
2475 */
2476 for (i = 0; i <= end_zone; i++) {
2477 struct zone *zone = pgdat->node_zones + i;
b15e0905 2478 int nr_slab;
8afdcece 2479 unsigned long balance_gap;
1da177e4 2480
f3fe6512 2481 if (!populated_zone(zone))
1da177e4
LT
2482 continue;
2483
93e4a89a 2484 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2485 continue;
2486
1da177e4 2487 sc.nr_scanned = 0;
4e416953 2488
0ae5e89c 2489 nr_soft_scanned = 0;
4e416953
BS
2490 /*
2491 * Call soft limit reclaim before calling shrink_zone.
4e416953 2492 */
0ae5e89c
YH
2493 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2494 order, sc.gfp_mask,
2495 &nr_soft_scanned);
2496 sc.nr_reclaimed += nr_soft_reclaimed;
2497 total_scanned += nr_soft_scanned;
00918b6a 2498
32a4330d 2499 /*
8afdcece
MG
2500 * We put equal pressure on every zone, unless
2501 * one zone has way too many pages free
2502 * already. The "too many pages" is defined
2503 * as the high wmark plus a "gap" where the
2504 * gap is either the low watermark or 1%
2505 * of the zone, whichever is smaller.
32a4330d 2506 */
8afdcece
MG
2507 balance_gap = min(low_wmark_pages(zone),
2508 (zone->present_pages +
2509 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2510 KSWAPD_ZONE_BALANCE_GAP_RATIO);
88f5acf8 2511 if (!zone_watermark_ok_safe(zone, order,
8afdcece 2512 high_wmark_pages(zone) + balance_gap,
d7868dae 2513 end_zone, 0)) {
a79311c1 2514 shrink_zone(priority, zone, &sc);
5a03b051 2515
d7868dae
MG
2516 reclaim_state->reclaimed_slab = 0;
2517 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2518 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2519 total_scanned += sc.nr_scanned;
2520
2521 if (nr_slab == 0 && !zone_reclaimable(zone))
2522 zone->all_unreclaimable = 1;
2523 }
2524
1da177e4
LT
2525 /*
2526 * If we've done a decent amount of scanning and
2527 * the reclaim ratio is low, start doing writepage
2528 * even in laptop mode
2529 */
2530 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2531 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2532 sc.may_writepage = 1;
bb3ab596 2533
d7868dae
MG
2534 if (zone->all_unreclaimable)
2535 continue;
2536
88f5acf8 2537 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2538 high_wmark_pages(zone), end_zone, 0)) {
2539 all_zones_ok = 0;
2540 /*
2541 * We are still under min water mark. This
2542 * means that we have a GFP_ATOMIC allocation
2543 * failure risk. Hurry up!
2544 */
88f5acf8 2545 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2546 min_wmark_pages(zone), end_zone, 0))
2547 has_under_min_watermark_zone = 1;
0e093d99
MG
2548 } else {
2549 /*
2550 * If a zone reaches its high watermark,
2551 * consider it to be no longer congested. It's
2552 * possible there are dirty pages backed by
2553 * congested BDIs but as pressure is relieved,
2554 * spectulatively avoid congestion waits
2555 */
2556 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2557 if (i <= *classzone_idx)
1741c877 2558 balanced += zone->present_pages;
45973d74 2559 }
bb3ab596 2560
1da177e4 2561 }
dc83edd9 2562 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2563 break; /* kswapd: all done */
2564 /*
2565 * OK, kswapd is getting into trouble. Take a nap, then take
2566 * another pass across the zones.
2567 */
bb3ab596
KM
2568 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2569 if (has_under_min_watermark_zone)
2570 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2571 else
2572 congestion_wait(BLK_RW_ASYNC, HZ/10);
2573 }
1da177e4
LT
2574
2575 /*
2576 * We do this so kswapd doesn't build up large priorities for
2577 * example when it is freeing in parallel with allocators. It
2578 * matches the direct reclaim path behaviour in terms of impact
2579 * on zone->*_priority.
2580 */
a79311c1 2581 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2582 break;
2583 }
2584out:
99504748
MG
2585
2586 /*
2587 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2588 * high-order: Balanced zones must make up at least 25% of the node
2589 * for the node to be balanced
99504748 2590 */
dc83edd9 2591 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2592 cond_resched();
8357376d
RW
2593
2594 try_to_freeze();
2595
73ce02e9
KM
2596 /*
2597 * Fragmentation may mean that the system cannot be
2598 * rebalanced for high-order allocations in all zones.
2599 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2600 * it means the zones have been fully scanned and are still
2601 * not balanced. For high-order allocations, there is
2602 * little point trying all over again as kswapd may
2603 * infinite loop.
2604 *
2605 * Instead, recheck all watermarks at order-0 as they
2606 * are the most important. If watermarks are ok, kswapd will go
2607 * back to sleep. High-order users can still perform direct
2608 * reclaim if they wish.
2609 */
2610 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2611 order = sc.order = 0;
2612
1da177e4
LT
2613 goto loop_again;
2614 }
2615
99504748
MG
2616 /*
2617 * If kswapd was reclaiming at a higher order, it has the option of
2618 * sleeping without all zones being balanced. Before it does, it must
2619 * ensure that the watermarks for order-0 on *all* zones are met and
2620 * that the congestion flags are cleared. The congestion flag must
2621 * be cleared as kswapd is the only mechanism that clears the flag
2622 * and it is potentially going to sleep here.
2623 */
2624 if (order) {
2625 for (i = 0; i <= end_zone; i++) {
2626 struct zone *zone = pgdat->node_zones + i;
2627
2628 if (!populated_zone(zone))
2629 continue;
2630
2631 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2632 continue;
2633
2634 /* Confirm the zone is balanced for order-0 */
2635 if (!zone_watermark_ok(zone, 0,
2636 high_wmark_pages(zone), 0, 0)) {
2637 order = sc.order = 0;
2638 goto loop_again;
2639 }
2640
2641 /* If balanced, clear the congested flag */
2642 zone_clear_flag(zone, ZONE_CONGESTED);
2643 }
2644 }
2645
0abdee2b
MG
2646 /*
2647 * Return the order we were reclaiming at so sleeping_prematurely()
2648 * makes a decision on the order we were last reclaiming at. However,
2649 * if another caller entered the allocator slow path while kswapd
2650 * was awake, order will remain at the higher level
2651 */
dc83edd9 2652 *classzone_idx = end_zone;
0abdee2b 2653 return order;
1da177e4
LT
2654}
2655
dc83edd9 2656static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2657{
2658 long remaining = 0;
2659 DEFINE_WAIT(wait);
2660
2661 if (freezing(current) || kthread_should_stop())
2662 return;
2663
2664 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2665
2666 /* Try to sleep for a short interval */
dc83edd9 2667 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2668 remaining = schedule_timeout(HZ/10);
2669 finish_wait(&pgdat->kswapd_wait, &wait);
2670 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2671 }
2672
2673 /*
2674 * After a short sleep, check if it was a premature sleep. If not, then
2675 * go fully to sleep until explicitly woken up.
2676 */
dc83edd9 2677 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2678 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2679
2680 /*
2681 * vmstat counters are not perfectly accurate and the estimated
2682 * value for counters such as NR_FREE_PAGES can deviate from the
2683 * true value by nr_online_cpus * threshold. To avoid the zone
2684 * watermarks being breached while under pressure, we reduce the
2685 * per-cpu vmstat threshold while kswapd is awake and restore
2686 * them before going back to sleep.
2687 */
2688 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2689 schedule();
2690 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2691 } else {
2692 if (remaining)
2693 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2694 else
2695 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2696 }
2697 finish_wait(&pgdat->kswapd_wait, &wait);
2698}
2699
1da177e4
LT
2700/*
2701 * The background pageout daemon, started as a kernel thread
4f98a2fe 2702 * from the init process.
1da177e4
LT
2703 *
2704 * This basically trickles out pages so that we have _some_
2705 * free memory available even if there is no other activity
2706 * that frees anything up. This is needed for things like routing
2707 * etc, where we otherwise might have all activity going on in
2708 * asynchronous contexts that cannot page things out.
2709 *
2710 * If there are applications that are active memory-allocators
2711 * (most normal use), this basically shouldn't matter.
2712 */
2713static int kswapd(void *p)
2714{
2715 unsigned long order;
99504748 2716 int classzone_idx;
1da177e4
LT
2717 pg_data_t *pgdat = (pg_data_t*)p;
2718 struct task_struct *tsk = current;
f0bc0a60 2719
1da177e4
LT
2720 struct reclaim_state reclaim_state = {
2721 .reclaimed_slab = 0,
2722 };
a70f7302 2723 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2724
cf40bd16
NP
2725 lockdep_set_current_reclaim_state(GFP_KERNEL);
2726
174596a0 2727 if (!cpumask_empty(cpumask))
c5f59f08 2728 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2729 current->reclaim_state = &reclaim_state;
2730
2731 /*
2732 * Tell the memory management that we're a "memory allocator",
2733 * and that if we need more memory we should get access to it
2734 * regardless (see "__alloc_pages()"). "kswapd" should
2735 * never get caught in the normal page freeing logic.
2736 *
2737 * (Kswapd normally doesn't need memory anyway, but sometimes
2738 * you need a small amount of memory in order to be able to
2739 * page out something else, and this flag essentially protects
2740 * us from recursively trying to free more memory as we're
2741 * trying to free the first piece of memory in the first place).
2742 */
930d9152 2743 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2744 set_freezable();
1da177e4
LT
2745
2746 order = 0;
99504748 2747 classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
2748 for ( ; ; ) {
2749 unsigned long new_order;
99504748 2750 int new_classzone_idx;
8fe23e05 2751 int ret;
3e1d1d28 2752
1da177e4 2753 new_order = pgdat->kswapd_max_order;
99504748 2754 new_classzone_idx = pgdat->classzone_idx;
1da177e4 2755 pgdat->kswapd_max_order = 0;
99504748
MG
2756 pgdat->classzone_idx = MAX_NR_ZONES - 1;
2757 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2758 /*
2759 * Don't sleep if someone wants a larger 'order'
99504748 2760 * allocation or has tigher zone constraints
1da177e4
LT
2761 */
2762 order = new_order;
99504748 2763 classzone_idx = new_classzone_idx;
1da177e4 2764 } else {
dc83edd9 2765 kswapd_try_to_sleep(pgdat, order, classzone_idx);
1da177e4 2766 order = pgdat->kswapd_max_order;
99504748 2767 classzone_idx = pgdat->classzone_idx;
4d40502e
MG
2768 pgdat->kswapd_max_order = 0;
2769 pgdat->classzone_idx = MAX_NR_ZONES - 1;
1da177e4 2770 }
1da177e4 2771
8fe23e05
DR
2772 ret = try_to_freeze();
2773 if (kthread_should_stop())
2774 break;
2775
2776 /*
2777 * We can speed up thawing tasks if we don't call balance_pgdat
2778 * after returning from the refrigerator
2779 */
33906bc5
MG
2780 if (!ret) {
2781 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
dc83edd9 2782 order = balance_pgdat(pgdat, order, &classzone_idx);
33906bc5 2783 }
1da177e4
LT
2784 }
2785 return 0;
2786}
2787
2788/*
2789 * A zone is low on free memory, so wake its kswapd task to service it.
2790 */
99504748 2791void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2792{
2793 pg_data_t *pgdat;
2794
f3fe6512 2795 if (!populated_zone(zone))
1da177e4
LT
2796 return;
2797
88f5acf8 2798 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2799 return;
88f5acf8 2800 pgdat = zone->zone_pgdat;
99504748 2801 if (pgdat->kswapd_max_order < order) {
1da177e4 2802 pgdat->kswapd_max_order = order;
99504748
MG
2803 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2804 }
8d0986e2 2805 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2806 return;
88f5acf8
MG
2807 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2808 return;
2809
2810 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2811 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2812}
2813
adea02a1
WF
2814/*
2815 * The reclaimable count would be mostly accurate.
2816 * The less reclaimable pages may be
2817 * - mlocked pages, which will be moved to unevictable list when encountered
2818 * - mapped pages, which may require several travels to be reclaimed
2819 * - dirty pages, which is not "instantly" reclaimable
2820 */
2821unsigned long global_reclaimable_pages(void)
4f98a2fe 2822{
adea02a1
WF
2823 int nr;
2824
2825 nr = global_page_state(NR_ACTIVE_FILE) +
2826 global_page_state(NR_INACTIVE_FILE);
2827
2828 if (nr_swap_pages > 0)
2829 nr += global_page_state(NR_ACTIVE_ANON) +
2830 global_page_state(NR_INACTIVE_ANON);
2831
2832 return nr;
2833}
2834
2835unsigned long zone_reclaimable_pages(struct zone *zone)
2836{
2837 int nr;
2838
2839 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2840 zone_page_state(zone, NR_INACTIVE_FILE);
2841
2842 if (nr_swap_pages > 0)
2843 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2844 zone_page_state(zone, NR_INACTIVE_ANON);
2845
2846 return nr;
4f98a2fe
RR
2847}
2848
c6f37f12 2849#ifdef CONFIG_HIBERNATION
1da177e4 2850/*
7b51755c 2851 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2852 * freed pages.
2853 *
2854 * Rather than trying to age LRUs the aim is to preserve the overall
2855 * LRU order by reclaiming preferentially
2856 * inactive > active > active referenced > active mapped
1da177e4 2857 */
7b51755c 2858unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2859{
d6277db4 2860 struct reclaim_state reclaim_state;
d6277db4 2861 struct scan_control sc = {
7b51755c
KM
2862 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2863 .may_swap = 1,
2864 .may_unmap = 1,
d6277db4 2865 .may_writepage = 1,
7b51755c
KM
2866 .nr_to_reclaim = nr_to_reclaim,
2867 .hibernation_mode = 1,
2868 .swappiness = vm_swappiness,
2869 .order = 0,
1da177e4 2870 };
a09ed5e0
YH
2871 struct shrink_control shrink = {
2872 .gfp_mask = sc.gfp_mask,
2873 };
2874 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2875 struct task_struct *p = current;
2876 unsigned long nr_reclaimed;
1da177e4 2877
7b51755c
KM
2878 p->flags |= PF_MEMALLOC;
2879 lockdep_set_current_reclaim_state(sc.gfp_mask);
2880 reclaim_state.reclaimed_slab = 0;
2881 p->reclaim_state = &reclaim_state;
d6277db4 2882
a09ed5e0 2883 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2884
7b51755c
KM
2885 p->reclaim_state = NULL;
2886 lockdep_clear_current_reclaim_state();
2887 p->flags &= ~PF_MEMALLOC;
d6277db4 2888
7b51755c 2889 return nr_reclaimed;
1da177e4 2890}
c6f37f12 2891#endif /* CONFIG_HIBERNATION */
1da177e4 2892
1da177e4
LT
2893/* It's optimal to keep kswapds on the same CPUs as their memory, but
2894 not required for correctness. So if the last cpu in a node goes
2895 away, we get changed to run anywhere: as the first one comes back,
2896 restore their cpu bindings. */
9c7b216d 2897static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2898 unsigned long action, void *hcpu)
1da177e4 2899{
58c0a4a7 2900 int nid;
1da177e4 2901
8bb78442 2902 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2903 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2904 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2905 const struct cpumask *mask;
2906
2907 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2908
3e597945 2909 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2910 /* One of our CPUs online: restore mask */
c5f59f08 2911 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2912 }
2913 }
2914 return NOTIFY_OK;
2915}
1da177e4 2916
3218ae14
YG
2917/*
2918 * This kswapd start function will be called by init and node-hot-add.
2919 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2920 */
2921int kswapd_run(int nid)
2922{
2923 pg_data_t *pgdat = NODE_DATA(nid);
2924 int ret = 0;
2925
2926 if (pgdat->kswapd)
2927 return 0;
2928
2929 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2930 if (IS_ERR(pgdat->kswapd)) {
2931 /* failure at boot is fatal */
2932 BUG_ON(system_state == SYSTEM_BOOTING);
2933 printk("Failed to start kswapd on node %d\n",nid);
2934 ret = -1;
2935 }
2936 return ret;
2937}
2938
8fe23e05
DR
2939/*
2940 * Called by memory hotplug when all memory in a node is offlined.
2941 */
2942void kswapd_stop(int nid)
2943{
2944 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2945
2946 if (kswapd)
2947 kthread_stop(kswapd);
2948}
2949
1da177e4
LT
2950static int __init kswapd_init(void)
2951{
3218ae14 2952 int nid;
69e05944 2953
1da177e4 2954 swap_setup();
9422ffba 2955 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2956 kswapd_run(nid);
1da177e4
LT
2957 hotcpu_notifier(cpu_callback, 0);
2958 return 0;
2959}
2960
2961module_init(kswapd_init)
9eeff239
CL
2962
2963#ifdef CONFIG_NUMA
2964/*
2965 * Zone reclaim mode
2966 *
2967 * If non-zero call zone_reclaim when the number of free pages falls below
2968 * the watermarks.
9eeff239
CL
2969 */
2970int zone_reclaim_mode __read_mostly;
2971
1b2ffb78 2972#define RECLAIM_OFF 0
7d03431c 2973#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2974#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2975#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2976
a92f7126
CL
2977/*
2978 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2979 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2980 * a zone.
2981 */
2982#define ZONE_RECLAIM_PRIORITY 4
2983
9614634f
CL
2984/*
2985 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2986 * occur.
2987 */
2988int sysctl_min_unmapped_ratio = 1;
2989
0ff38490
CL
2990/*
2991 * If the number of slab pages in a zone grows beyond this percentage then
2992 * slab reclaim needs to occur.
2993 */
2994int sysctl_min_slab_ratio = 5;
2995
90afa5de
MG
2996static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2997{
2998 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2999 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3000 zone_page_state(zone, NR_ACTIVE_FILE);
3001
3002 /*
3003 * It's possible for there to be more file mapped pages than
3004 * accounted for by the pages on the file LRU lists because
3005 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3006 */
3007 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3008}
3009
3010/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3011static long zone_pagecache_reclaimable(struct zone *zone)
3012{
3013 long nr_pagecache_reclaimable;
3014 long delta = 0;
3015
3016 /*
3017 * If RECLAIM_SWAP is set, then all file pages are considered
3018 * potentially reclaimable. Otherwise, we have to worry about
3019 * pages like swapcache and zone_unmapped_file_pages() provides
3020 * a better estimate
3021 */
3022 if (zone_reclaim_mode & RECLAIM_SWAP)
3023 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3024 else
3025 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3026
3027 /* If we can't clean pages, remove dirty pages from consideration */
3028 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3029 delta += zone_page_state(zone, NR_FILE_DIRTY);
3030
3031 /* Watch for any possible underflows due to delta */
3032 if (unlikely(delta > nr_pagecache_reclaimable))
3033 delta = nr_pagecache_reclaimable;
3034
3035 return nr_pagecache_reclaimable - delta;
3036}
3037
9eeff239
CL
3038/*
3039 * Try to free up some pages from this zone through reclaim.
3040 */
179e9639 3041static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3042{
7fb2d46d 3043 /* Minimum pages needed in order to stay on node */
69e05944 3044 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3045 struct task_struct *p = current;
3046 struct reclaim_state reclaim_state;
8695949a 3047 int priority;
179e9639
AM
3048 struct scan_control sc = {
3049 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3050 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3051 .may_swap = 1,
22fba335
KM
3052 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3053 SWAP_CLUSTER_MAX),
179e9639 3054 .gfp_mask = gfp_mask,
d6277db4 3055 .swappiness = vm_swappiness,
bd2f6199 3056 .order = order,
179e9639 3057 };
a09ed5e0
YH
3058 struct shrink_control shrink = {
3059 .gfp_mask = sc.gfp_mask,
3060 };
15748048 3061 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3062
9eeff239 3063 cond_resched();
d4f7796e
CL
3064 /*
3065 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3066 * and we also need to be able to write out pages for RECLAIM_WRITE
3067 * and RECLAIM_SWAP.
3068 */
3069 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3070 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3071 reclaim_state.reclaimed_slab = 0;
3072 p->reclaim_state = &reclaim_state;
c84db23c 3073
90afa5de 3074 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3075 /*
3076 * Free memory by calling shrink zone with increasing
3077 * priorities until we have enough memory freed.
3078 */
3079 priority = ZONE_RECLAIM_PRIORITY;
3080 do {
a79311c1 3081 shrink_zone(priority, zone, &sc);
0ff38490 3082 priority--;
a79311c1 3083 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3084 }
c84db23c 3085
15748048
KM
3086 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3087 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3088 /*
7fb2d46d 3089 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3090 * many pages were freed in this zone. So we take the current
3091 * number of slab pages and shake the slab until it is reduced
3092 * by the same nr_pages that we used for reclaiming unmapped
3093 * pages.
2a16e3f4 3094 *
0ff38490
CL
3095 * Note that shrink_slab will free memory on all zones and may
3096 * take a long time.
2a16e3f4 3097 */
4dc4b3d9
KM
3098 for (;;) {
3099 unsigned long lru_pages = zone_reclaimable_pages(zone);
3100
3101 /* No reclaimable slab or very low memory pressure */
1495f230 3102 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3103 break;
3104
3105 /* Freed enough memory */
3106 nr_slab_pages1 = zone_page_state(zone,
3107 NR_SLAB_RECLAIMABLE);
3108 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3109 break;
3110 }
83e33a47
CL
3111
3112 /*
3113 * Update nr_reclaimed by the number of slab pages we
3114 * reclaimed from this zone.
3115 */
15748048
KM
3116 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3117 if (nr_slab_pages1 < nr_slab_pages0)
3118 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3119 }
3120
9eeff239 3121 p->reclaim_state = NULL;
d4f7796e 3122 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3123 lockdep_clear_current_reclaim_state();
a79311c1 3124 return sc.nr_reclaimed >= nr_pages;
9eeff239 3125}
179e9639
AM
3126
3127int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3128{
179e9639 3129 int node_id;
d773ed6b 3130 int ret;
179e9639
AM
3131
3132 /*
0ff38490
CL
3133 * Zone reclaim reclaims unmapped file backed pages and
3134 * slab pages if we are over the defined limits.
34aa1330 3135 *
9614634f
CL
3136 * A small portion of unmapped file backed pages is needed for
3137 * file I/O otherwise pages read by file I/O will be immediately
3138 * thrown out if the zone is overallocated. So we do not reclaim
3139 * if less than a specified percentage of the zone is used by
3140 * unmapped file backed pages.
179e9639 3141 */
90afa5de
MG
3142 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3143 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3144 return ZONE_RECLAIM_FULL;
179e9639 3145
93e4a89a 3146 if (zone->all_unreclaimable)
fa5e084e 3147 return ZONE_RECLAIM_FULL;
d773ed6b 3148
179e9639 3149 /*
d773ed6b 3150 * Do not scan if the allocation should not be delayed.
179e9639 3151 */
d773ed6b 3152 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3153 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3154
3155 /*
3156 * Only run zone reclaim on the local zone or on zones that do not
3157 * have associated processors. This will favor the local processor
3158 * over remote processors and spread off node memory allocations
3159 * as wide as possible.
3160 */
89fa3024 3161 node_id = zone_to_nid(zone);
37c0708d 3162 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3163 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3164
3165 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3166 return ZONE_RECLAIM_NOSCAN;
3167
d773ed6b
DR
3168 ret = __zone_reclaim(zone, gfp_mask, order);
3169 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3170
24cf7251
MG
3171 if (!ret)
3172 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3173
d773ed6b 3174 return ret;
179e9639 3175}
9eeff239 3176#endif
894bc310 3177
894bc310
LS
3178/*
3179 * page_evictable - test whether a page is evictable
3180 * @page: the page to test
3181 * @vma: the VMA in which the page is or will be mapped, may be NULL
3182 *
3183 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3184 * lists vs unevictable list. The vma argument is !NULL when called from the
3185 * fault path to determine how to instantate a new page.
894bc310
LS
3186 *
3187 * Reasons page might not be evictable:
ba9ddf49 3188 * (1) page's mapping marked unevictable
b291f000 3189 * (2) page is part of an mlocked VMA
ba9ddf49 3190 *
894bc310
LS
3191 */
3192int page_evictable(struct page *page, struct vm_area_struct *vma)
3193{
3194
ba9ddf49
LS
3195 if (mapping_unevictable(page_mapping(page)))
3196 return 0;
3197
b291f000
NP
3198 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3199 return 0;
894bc310
LS
3200
3201 return 1;
3202}
89e004ea
LS
3203
3204/**
3205 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3206 * @page: page to check evictability and move to appropriate lru list
3207 * @zone: zone page is in
3208 *
3209 * Checks a page for evictability and moves the page to the appropriate
3210 * zone lru list.
3211 *
3212 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3213 * have PageUnevictable set.
3214 */
3215static void check_move_unevictable_page(struct page *page, struct zone *zone)
3216{
3217 VM_BUG_ON(PageActive(page));
3218
3219retry:
3220 ClearPageUnevictable(page);
3221 if (page_evictable(page, NULL)) {
401a8e1c 3222 enum lru_list l = page_lru_base_type(page);
af936a16 3223
89e004ea
LS
3224 __dec_zone_state(zone, NR_UNEVICTABLE);
3225 list_move(&page->lru, &zone->lru[l].list);
08e552c6 3226 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
3227 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3228 __count_vm_event(UNEVICTABLE_PGRESCUED);
3229 } else {
3230 /*
3231 * rotate unevictable list
3232 */
3233 SetPageUnevictable(page);
3234 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 3235 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
3236 if (page_evictable(page, NULL))
3237 goto retry;
3238 }
3239}
3240
3241/**
3242 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3243 * @mapping: struct address_space to scan for evictable pages
3244 *
3245 * Scan all pages in mapping. Check unevictable pages for
3246 * evictability and move them to the appropriate zone lru list.
3247 */
3248void scan_mapping_unevictable_pages(struct address_space *mapping)
3249{
3250 pgoff_t next = 0;
3251 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3252 PAGE_CACHE_SHIFT;
3253 struct zone *zone;
3254 struct pagevec pvec;
3255
3256 if (mapping->nrpages == 0)
3257 return;
3258
3259 pagevec_init(&pvec, 0);
3260 while (next < end &&
3261 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3262 int i;
3263 int pg_scanned = 0;
3264
3265 zone = NULL;
3266
3267 for (i = 0; i < pagevec_count(&pvec); i++) {
3268 struct page *page = pvec.pages[i];
3269 pgoff_t page_index = page->index;
3270 struct zone *pagezone = page_zone(page);
3271
3272 pg_scanned++;
3273 if (page_index > next)
3274 next = page_index;
3275 next++;
3276
3277 if (pagezone != zone) {
3278 if (zone)
3279 spin_unlock_irq(&zone->lru_lock);
3280 zone = pagezone;
3281 spin_lock_irq(&zone->lru_lock);
3282 }
3283
3284 if (PageLRU(page) && PageUnevictable(page))
3285 check_move_unevictable_page(page, zone);
3286 }
3287 if (zone)
3288 spin_unlock_irq(&zone->lru_lock);
3289 pagevec_release(&pvec);
3290
3291 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3292 }
3293
3294}
af936a16
LS
3295
3296/**
3297 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3298 * @zone - zone of which to scan the unevictable list
3299 *
3300 * Scan @zone's unevictable LRU lists to check for pages that have become
3301 * evictable. Move those that have to @zone's inactive list where they
3302 * become candidates for reclaim, unless shrink_inactive_zone() decides
3303 * to reactivate them. Pages that are still unevictable are rotated
3304 * back onto @zone's unevictable list.
3305 */
3306#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 3307static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
3308{
3309 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3310 unsigned long scan;
3311 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3312
3313 while (nr_to_scan > 0) {
3314 unsigned long batch_size = min(nr_to_scan,
3315 SCAN_UNEVICTABLE_BATCH_SIZE);
3316
3317 spin_lock_irq(&zone->lru_lock);
3318 for (scan = 0; scan < batch_size; scan++) {
3319 struct page *page = lru_to_page(l_unevictable);
3320
3321 if (!trylock_page(page))
3322 continue;
3323
3324 prefetchw_prev_lru_page(page, l_unevictable, flags);
3325
3326 if (likely(PageLRU(page) && PageUnevictable(page)))
3327 check_move_unevictable_page(page, zone);
3328
3329 unlock_page(page);
3330 }
3331 spin_unlock_irq(&zone->lru_lock);
3332
3333 nr_to_scan -= batch_size;
3334 }
3335}
3336
3337
3338/**
3339 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3340 *
3341 * A really big hammer: scan all zones' unevictable LRU lists to check for
3342 * pages that have become evictable. Move those back to the zones'
3343 * inactive list where they become candidates for reclaim.
3344 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3345 * and we add swap to the system. As such, it runs in the context of a task
3346 * that has possibly/probably made some previously unevictable pages
3347 * evictable.
3348 */
ff30153b 3349static void scan_all_zones_unevictable_pages(void)
af936a16
LS
3350{
3351 struct zone *zone;
3352
3353 for_each_zone(zone) {
3354 scan_zone_unevictable_pages(zone);
3355 }
3356}
3357
3358/*
3359 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3360 * all nodes' unevictable lists for evictable pages
3361 */
3362unsigned long scan_unevictable_pages;
3363
3364int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3365 void __user *buffer,
af936a16
LS
3366 size_t *length, loff_t *ppos)
3367{
8d65af78 3368 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3369
3370 if (write && *(unsigned long *)table->data)
3371 scan_all_zones_unevictable_pages();
3372
3373 scan_unevictable_pages = 0;
3374 return 0;
3375}
3376
e4455abb 3377#ifdef CONFIG_NUMA
af936a16
LS
3378/*
3379 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3380 * a specified node's per zone unevictable lists for evictable pages.
3381 */
3382
3383static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3384 struct sysdev_attribute *attr,
3385 char *buf)
3386{
3387 return sprintf(buf, "0\n"); /* always zero; should fit... */
3388}
3389
3390static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3391 struct sysdev_attribute *attr,
3392 const char *buf, size_t count)
3393{
3394 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3395 struct zone *zone;
3396 unsigned long res;
3397 unsigned long req = strict_strtoul(buf, 10, &res);
3398
3399 if (!req)
3400 return 1; /* zero is no-op */
3401
3402 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3403 if (!populated_zone(zone))
3404 continue;
3405 scan_zone_unevictable_pages(zone);
3406 }
3407 return 1;
3408}
3409
3410
3411static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3412 read_scan_unevictable_node,
3413 write_scan_unevictable_node);
3414
3415int scan_unevictable_register_node(struct node *node)
3416{
3417 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3418}
3419
3420void scan_unevictable_unregister_node(struct node *node)
3421{
3422 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3423}
e4455abb 3424#endif