]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm: add comments to explain mm_struct fields
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
ee64fc93 57/*
f3a310bc
MG
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
ee64fc93
MG
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
f3a310bc 65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
3e7d3449 66 * order-0 pages and then compact the zone
ee64fc93 67 */
f3a310bc
MG
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
7d3579e8 74
1da177e4 75struct scan_control {
1da177e4
LT
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
a79311c1
RR
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
22fba335
KM
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
7b51755c
KM
85 unsigned long hibernation_mode;
86
1da177e4 87 /* This context's GFP mask */
6daa0e28 88 gfp_t gfp_mask;
1da177e4
LT
89
90 int may_writepage;
91
a6dc60f8
JW
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
f1fd1067 94
2e2e4259
KM
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
5ad333eb 98 int order;
66e1707b 99
5f53e762 100 /*
415b54e3
NK
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
5f53e762 103 */
f3a310bc 104 reclaim_mode_t reclaim_mode;
5f53e762 105
66e1707b
BS
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
108
327c0e96
KH
109 /*
110 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 * are scanned.
112 */
113 nodemask_t *nodemask;
1da177e4
LT
114};
115
1da177e4
LT
116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118#ifdef ARCH_HAS_PREFETCH
119#define prefetch_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetch(&prev->_field); \
126 } \
127 } while (0)
128#else
129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132#ifdef ARCH_HAS_PREFETCHW
133#define prefetchw_prev_lru_page(_page, _base, _field) \
134 do { \
135 if ((_page)->lru.prev != _base) { \
136 struct page *prev; \
137 \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetchw(&prev->_field); \
140 } \
141 } while (0)
142#else
143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146/*
147 * From 0 .. 100. Higher means more swappy.
148 */
149int vm_swappiness = 60;
bd1e22b8 150long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
00f0b825 155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 156#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 157#else
e72e2bd6 158#define scanning_global_lru(sc) (1)
91a45470
KH
159#endif
160
6e901571
KM
161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 struct scan_control *sc)
163{
e72e2bd6 164 if (!scanning_global_lru(sc))
3e2f41f1
KM
165 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
6e901571
KM
167 return &zone->reclaim_stat;
168}
169
0b217676
VL
170static unsigned long zone_nr_lru_pages(struct zone *zone,
171 struct scan_control *sc, enum lru_list lru)
c9f299d9 172{
e72e2bd6 173 if (!scanning_global_lru(sc))
bb2a0de9
KH
174 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175 zone_to_nid(zone), zone_idx(zone), BIT(lru));
a3d8e054 176
c9f299d9
KM
177 return zone_page_state(zone, NR_LRU_BASE + lru);
178}
179
180
1da177e4
LT
181/*
182 * Add a shrinker callback to be called from the vm
183 */
8e1f936b 184void register_shrinker(struct shrinker *shrinker)
1da177e4 185{
8e1f936b
RR
186 shrinker->nr = 0;
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
1da177e4 190}
8e1f936b 191EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
192
193/*
194 * Remove one
195 */
8e1f936b 196void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
197{
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
1da177e4 201}
8e1f936b 202EXPORT_SYMBOL(unregister_shrinker);
1da177e4 203
1495f230
YH
204static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 struct shrink_control *sc,
206 unsigned long nr_to_scan)
207{
208 sc->nr_to_scan = nr_to_scan;
209 return (*shrinker->shrink)(shrinker, sc);
210}
211
1da177e4
LT
212#define SHRINK_BATCH 128
213/*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object. With this in mind we age equal
218 * percentages of the lru and ageable caches. This should balance the seeks
219 * generated by these structures.
220 *
183ff22b 221 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt. It is used for balancing
228 * slab reclaim versus page reclaim.
b15e0905 229 *
230 * Returns the number of slab objects which we shrunk.
1da177e4 231 */
a09ed5e0 232unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 233 unsigned long nr_pages_scanned,
a09ed5e0 234 unsigned long lru_pages)
1da177e4
LT
235{
236 struct shrinker *shrinker;
69e05944 237 unsigned long ret = 0;
1da177e4 238
1495f230
YH
239 if (nr_pages_scanned == 0)
240 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 241
f06590bd
MK
242 if (!down_read_trylock(&shrinker_rwsem)) {
243 /* Assume we'll be able to shrink next time */
244 ret = 1;
245 goto out;
246 }
1da177e4
LT
247
248 list_for_each_entry(shrinker, &shrinker_list, list) {
249 unsigned long long delta;
250 unsigned long total_scan;
7f8275d0 251 unsigned long max_pass;
09576073 252 int shrink_ret = 0;
acf92b48
DC
253 long nr;
254 long new_nr;
e9299f50
DC
255 long batch_size = shrinker->batch ? shrinker->batch
256 : SHRINK_BATCH;
1da177e4 257
acf92b48
DC
258 /*
259 * copy the current shrinker scan count into a local variable
260 * and zero it so that other concurrent shrinker invocations
261 * don't also do this scanning work.
262 */
263 do {
264 nr = shrinker->nr;
265 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267 total_scan = nr;
1495f230
YH
268 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 270 delta *= max_pass;
1da177e4 271 do_div(delta, lru_pages + 1);
acf92b48
DC
272 total_scan += delta;
273 if (total_scan < 0) {
88c3bd70
DR
274 printk(KERN_ERR "shrink_slab: %pF negative objects to "
275 "delete nr=%ld\n",
acf92b48
DC
276 shrinker->shrink, total_scan);
277 total_scan = max_pass;
ea164d73
AA
278 }
279
3567b59a
DC
280 /*
281 * We need to avoid excessive windup on filesystem shrinkers
282 * due to large numbers of GFP_NOFS allocations causing the
283 * shrinkers to return -1 all the time. This results in a large
284 * nr being built up so when a shrink that can do some work
285 * comes along it empties the entire cache due to nr >>>
286 * max_pass. This is bad for sustaining a working set in
287 * memory.
288 *
289 * Hence only allow the shrinker to scan the entire cache when
290 * a large delta change is calculated directly.
291 */
292 if (delta < max_pass / 4)
293 total_scan = min(total_scan, max_pass / 2);
294
ea164d73
AA
295 /*
296 * Avoid risking looping forever due to too large nr value:
297 * never try to free more than twice the estimate number of
298 * freeable entries.
299 */
acf92b48
DC
300 if (total_scan > max_pass * 2)
301 total_scan = max_pass * 2;
1da177e4 302
acf92b48 303 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
304 nr_pages_scanned, lru_pages,
305 max_pass, delta, total_scan);
306
e9299f50 307 while (total_scan >= batch_size) {
b15e0905 308 int nr_before;
1da177e4 309
1495f230
YH
310 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 312 batch_size);
1da177e4
LT
313 if (shrink_ret == -1)
314 break;
b15e0905 315 if (shrink_ret < nr_before)
316 ret += nr_before - shrink_ret;
e9299f50
DC
317 count_vm_events(SLABS_SCANNED, batch_size);
318 total_scan -= batch_size;
1da177e4
LT
319
320 cond_resched();
321 }
322
acf92b48
DC
323 /*
324 * move the unused scan count back into the shrinker in a
325 * manner that handles concurrent updates. If we exhausted the
326 * scan, there is no need to do an update.
327 */
328 do {
329 nr = shrinker->nr;
330 new_nr = total_scan + nr;
331 if (total_scan <= 0)
332 break;
333 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
336 }
337 up_read(&shrinker_rwsem);
f06590bd
MK
338out:
339 cond_resched();
b15e0905 340 return ret;
1da177e4
LT
341}
342
f3a310bc 343static void set_reclaim_mode(int priority, struct scan_control *sc,
7d3579e8
KM
344 bool sync)
345{
f3a310bc 346 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
7d3579e8
KM
347
348 /*
3e7d3449
MG
349 * Initially assume we are entering either lumpy reclaim or
350 * reclaim/compaction.Depending on the order, we will either set the
351 * sync mode or just reclaim order-0 pages later.
7d3579e8 352 */
3e7d3449 353 if (COMPACTION_BUILD)
f3a310bc 354 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
3e7d3449 355 else
f3a310bc 356 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
7d3579e8
KM
357
358 /*
3e7d3449
MG
359 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360 * restricting when its set to either costly allocations or when
361 * under memory pressure
7d3579e8
KM
362 */
363 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
f3a310bc 364 sc->reclaim_mode |= syncmode;
7d3579e8 365 else if (sc->order && priority < DEF_PRIORITY - 2)
f3a310bc 366 sc->reclaim_mode |= syncmode;
7d3579e8 367 else
f3a310bc 368 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
369}
370
f3a310bc 371static void reset_reclaim_mode(struct scan_control *sc)
7d3579e8 372{
f3a310bc 373 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
374}
375
1da177e4
LT
376static inline int is_page_cache_freeable(struct page *page)
377{
ceddc3a5
JW
378 /*
379 * A freeable page cache page is referenced only by the caller
380 * that isolated the page, the page cache radix tree and
381 * optional buffer heads at page->private.
382 */
edcf4748 383 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
384}
385
7d3579e8
KM
386static int may_write_to_queue(struct backing_dev_info *bdi,
387 struct scan_control *sc)
1da177e4 388{
930d9152 389 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
390 return 1;
391 if (!bdi_write_congested(bdi))
392 return 1;
393 if (bdi == current->backing_dev_info)
394 return 1;
7d3579e8
KM
395
396 /* lumpy reclaim for hugepage often need a lot of write */
397 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398 return 1;
1da177e4
LT
399 return 0;
400}
401
402/*
403 * We detected a synchronous write error writing a page out. Probably
404 * -ENOSPC. We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
406 *
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up. But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
410 *
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
413 */
414static void handle_write_error(struct address_space *mapping,
415 struct page *page, int error)
416{
7eaceacc 417 lock_page(page);
3e9f45bd
GC
418 if (page_mapping(page) == mapping)
419 mapping_set_error(mapping, error);
1da177e4
LT
420 unlock_page(page);
421}
422
04e62a29
CL
423/* possible outcome of pageout() */
424typedef enum {
425 /* failed to write page out, page is locked */
426 PAGE_KEEP,
427 /* move page to the active list, page is locked */
428 PAGE_ACTIVATE,
429 /* page has been sent to the disk successfully, page is unlocked */
430 PAGE_SUCCESS,
431 /* page is clean and locked */
432 PAGE_CLEAN,
433} pageout_t;
434
1da177e4 435/*
1742f19f
AM
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
1da177e4 438 */
c661b078 439static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 440 struct scan_control *sc)
1da177e4
LT
441{
442 /*
443 * If the page is dirty, only perform writeback if that write
444 * will be non-blocking. To prevent this allocation from being
445 * stalled by pagecache activity. But note that there may be
446 * stalls if we need to run get_block(). We could test
447 * PagePrivate for that.
448 *
6aceb53b 449 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
450 * this page's queue, we can perform writeback even if that
451 * will block.
452 *
453 * If the page is swapcache, write it back even if that would
454 * block, for some throttling. This happens by accident, because
455 * swap_backing_dev_info is bust: it doesn't reflect the
456 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
457 */
458 if (!is_page_cache_freeable(page))
459 return PAGE_KEEP;
460 if (!mapping) {
461 /*
462 * Some data journaling orphaned pages can have
463 * page->mapping == NULL while being dirty with clean buffers.
464 */
266cf658 465 if (page_has_private(page)) {
1da177e4
LT
466 if (try_to_free_buffers(page)) {
467 ClearPageDirty(page);
d40cee24 468 printk("%s: orphaned page\n", __func__);
1da177e4
LT
469 return PAGE_CLEAN;
470 }
471 }
472 return PAGE_KEEP;
473 }
474 if (mapping->a_ops->writepage == NULL)
475 return PAGE_ACTIVATE;
0e093d99 476 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
477 return PAGE_KEEP;
478
479 if (clear_page_dirty_for_io(page)) {
480 int res;
481 struct writeback_control wbc = {
482 .sync_mode = WB_SYNC_NONE,
483 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
484 .range_start = 0,
485 .range_end = LLONG_MAX,
1da177e4
LT
486 .for_reclaim = 1,
487 };
488
489 SetPageReclaim(page);
490 res = mapping->a_ops->writepage(page, &wbc);
491 if (res < 0)
492 handle_write_error(mapping, page, res);
994fc28c 493 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
494 ClearPageReclaim(page);
495 return PAGE_ACTIVATE;
496 }
c661b078
AW
497
498 /*
499 * Wait on writeback if requested to. This happens when
500 * direct reclaiming a large contiguous area and the
501 * first attempt to free a range of pages fails.
502 */
7d3579e8 503 if (PageWriteback(page) &&
f3a310bc 504 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
c661b078
AW
505 wait_on_page_writeback(page);
506
1da177e4
LT
507 if (!PageWriteback(page)) {
508 /* synchronous write or broken a_ops? */
509 ClearPageReclaim(page);
510 }
755f0225 511 trace_mm_vmscan_writepage(page,
f3a310bc 512 trace_reclaim_flags(page, sc->reclaim_mode));
e129b5c2 513 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
514 return PAGE_SUCCESS;
515 }
516
517 return PAGE_CLEAN;
518}
519
a649fd92 520/*
e286781d
NP
521 * Same as remove_mapping, but if the page is removed from the mapping, it
522 * gets returned with a refcount of 0.
a649fd92 523 */
e286781d 524static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 525{
28e4d965
NP
526 BUG_ON(!PageLocked(page));
527 BUG_ON(mapping != page_mapping(page));
49d2e9cc 528
19fd6231 529 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 530 /*
0fd0e6b0
NP
531 * The non racy check for a busy page.
532 *
533 * Must be careful with the order of the tests. When someone has
534 * a ref to the page, it may be possible that they dirty it then
535 * drop the reference. So if PageDirty is tested before page_count
536 * here, then the following race may occur:
537 *
538 * get_user_pages(&page);
539 * [user mapping goes away]
540 * write_to(page);
541 * !PageDirty(page) [good]
542 * SetPageDirty(page);
543 * put_page(page);
544 * !page_count(page) [good, discard it]
545 *
546 * [oops, our write_to data is lost]
547 *
548 * Reversing the order of the tests ensures such a situation cannot
549 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550 * load is not satisfied before that of page->_count.
551 *
552 * Note that if SetPageDirty is always performed via set_page_dirty,
553 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 554 */
e286781d 555 if (!page_freeze_refs(page, 2))
49d2e9cc 556 goto cannot_free;
e286781d
NP
557 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558 if (unlikely(PageDirty(page))) {
559 page_unfreeze_refs(page, 2);
49d2e9cc 560 goto cannot_free;
e286781d 561 }
49d2e9cc
CL
562
563 if (PageSwapCache(page)) {
564 swp_entry_t swap = { .val = page_private(page) };
565 __delete_from_swap_cache(page);
19fd6231 566 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 567 swapcache_free(swap, page);
e286781d 568 } else {
6072d13c
LT
569 void (*freepage)(struct page *);
570
571 freepage = mapping->a_ops->freepage;
572
e64a782f 573 __delete_from_page_cache(page);
19fd6231 574 spin_unlock_irq(&mapping->tree_lock);
e767e056 575 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
576
577 if (freepage != NULL)
578 freepage(page);
49d2e9cc
CL
579 }
580
49d2e9cc
CL
581 return 1;
582
583cannot_free:
19fd6231 584 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
585 return 0;
586}
587
e286781d
NP
588/*
589 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
590 * someone else has a ref on the page, abort and return 0. If it was
591 * successfully detached, return 1. Assumes the caller has a single ref on
592 * this page.
593 */
594int remove_mapping(struct address_space *mapping, struct page *page)
595{
596 if (__remove_mapping(mapping, page)) {
597 /*
598 * Unfreezing the refcount with 1 rather than 2 effectively
599 * drops the pagecache ref for us without requiring another
600 * atomic operation.
601 */
602 page_unfreeze_refs(page, 1);
603 return 1;
604 }
605 return 0;
606}
607
894bc310
LS
608/**
609 * putback_lru_page - put previously isolated page onto appropriate LRU list
610 * @page: page to be put back to appropriate lru list
611 *
612 * Add previously isolated @page to appropriate LRU list.
613 * Page may still be unevictable for other reasons.
614 *
615 * lru_lock must not be held, interrupts must be enabled.
616 */
894bc310
LS
617void putback_lru_page(struct page *page)
618{
619 int lru;
620 int active = !!TestClearPageActive(page);
bbfd28ee 621 int was_unevictable = PageUnevictable(page);
894bc310
LS
622
623 VM_BUG_ON(PageLRU(page));
624
625redo:
626 ClearPageUnevictable(page);
627
628 if (page_evictable(page, NULL)) {
629 /*
630 * For evictable pages, we can use the cache.
631 * In event of a race, worst case is we end up with an
632 * unevictable page on [in]active list.
633 * We know how to handle that.
634 */
401a8e1c 635 lru = active + page_lru_base_type(page);
894bc310
LS
636 lru_cache_add_lru(page, lru);
637 } else {
638 /*
639 * Put unevictable pages directly on zone's unevictable
640 * list.
641 */
642 lru = LRU_UNEVICTABLE;
643 add_page_to_unevictable_list(page);
6a7b9548
JW
644 /*
645 * When racing with an mlock clearing (page is
646 * unlocked), make sure that if the other thread does
647 * not observe our setting of PG_lru and fails
648 * isolation, we see PG_mlocked cleared below and move
649 * the page back to the evictable list.
650 *
651 * The other side is TestClearPageMlocked().
652 */
653 smp_mb();
894bc310 654 }
894bc310
LS
655
656 /*
657 * page's status can change while we move it among lru. If an evictable
658 * page is on unevictable list, it never be freed. To avoid that,
659 * check after we added it to the list, again.
660 */
661 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
662 if (!isolate_lru_page(page)) {
663 put_page(page);
664 goto redo;
665 }
666 /* This means someone else dropped this page from LRU
667 * So, it will be freed or putback to LRU again. There is
668 * nothing to do here.
669 */
670 }
671
bbfd28ee
LS
672 if (was_unevictable && lru != LRU_UNEVICTABLE)
673 count_vm_event(UNEVICTABLE_PGRESCUED);
674 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
675 count_vm_event(UNEVICTABLE_PGCULLED);
676
894bc310
LS
677 put_page(page); /* drop ref from isolate */
678}
679
dfc8d636
JW
680enum page_references {
681 PAGEREF_RECLAIM,
682 PAGEREF_RECLAIM_CLEAN,
64574746 683 PAGEREF_KEEP,
dfc8d636
JW
684 PAGEREF_ACTIVATE,
685};
686
687static enum page_references page_check_references(struct page *page,
688 struct scan_control *sc)
689{
64574746 690 int referenced_ptes, referenced_page;
dfc8d636 691 unsigned long vm_flags;
dfc8d636 692
64574746
JW
693 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
694 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
695
696 /* Lumpy reclaim - ignore references */
f3a310bc 697 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
dfc8d636
JW
698 return PAGEREF_RECLAIM;
699
700 /*
701 * Mlock lost the isolation race with us. Let try_to_unmap()
702 * move the page to the unevictable list.
703 */
704 if (vm_flags & VM_LOCKED)
705 return PAGEREF_RECLAIM;
706
64574746
JW
707 if (referenced_ptes) {
708 if (PageAnon(page))
709 return PAGEREF_ACTIVATE;
710 /*
711 * All mapped pages start out with page table
712 * references from the instantiating fault, so we need
713 * to look twice if a mapped file page is used more
714 * than once.
715 *
716 * Mark it and spare it for another trip around the
717 * inactive list. Another page table reference will
718 * lead to its activation.
719 *
720 * Note: the mark is set for activated pages as well
721 * so that recently deactivated but used pages are
722 * quickly recovered.
723 */
724 SetPageReferenced(page);
725
726 if (referenced_page)
727 return PAGEREF_ACTIVATE;
728
729 return PAGEREF_KEEP;
730 }
dfc8d636
JW
731
732 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 733 if (referenced_page && !PageSwapBacked(page))
64574746
JW
734 return PAGEREF_RECLAIM_CLEAN;
735
736 return PAGEREF_RECLAIM;
dfc8d636
JW
737}
738
abe4c3b5
MG
739static noinline_for_stack void free_page_list(struct list_head *free_pages)
740{
741 struct pagevec freed_pvec;
742 struct page *page, *tmp;
743
744 pagevec_init(&freed_pvec, 1);
745
746 list_for_each_entry_safe(page, tmp, free_pages, lru) {
747 list_del(&page->lru);
748 if (!pagevec_add(&freed_pvec, page)) {
749 __pagevec_free(&freed_pvec);
750 pagevec_reinit(&freed_pvec);
751 }
752 }
753
754 pagevec_free(&freed_pvec);
755}
756
1da177e4 757/*
1742f19f 758 * shrink_page_list() returns the number of reclaimed pages
1da177e4 759 */
1742f19f 760static unsigned long shrink_page_list(struct list_head *page_list,
0e093d99 761 struct zone *zone,
7d3579e8 762 struct scan_control *sc)
1da177e4
LT
763{
764 LIST_HEAD(ret_pages);
abe4c3b5 765 LIST_HEAD(free_pages);
1da177e4 766 int pgactivate = 0;
0e093d99
MG
767 unsigned long nr_dirty = 0;
768 unsigned long nr_congested = 0;
05ff5137 769 unsigned long nr_reclaimed = 0;
1da177e4
LT
770
771 cond_resched();
772
1da177e4 773 while (!list_empty(page_list)) {
dfc8d636 774 enum page_references references;
1da177e4
LT
775 struct address_space *mapping;
776 struct page *page;
777 int may_enter_fs;
1da177e4
LT
778
779 cond_resched();
780
781 page = lru_to_page(page_list);
782 list_del(&page->lru);
783
529ae9aa 784 if (!trylock_page(page))
1da177e4
LT
785 goto keep;
786
725d704e 787 VM_BUG_ON(PageActive(page));
0e093d99 788 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
789
790 sc->nr_scanned++;
80e43426 791
b291f000
NP
792 if (unlikely(!page_evictable(page, NULL)))
793 goto cull_mlocked;
894bc310 794
a6dc60f8 795 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
796 goto keep_locked;
797
1da177e4
LT
798 /* Double the slab pressure for mapped and swapcache pages */
799 if (page_mapped(page) || PageSwapCache(page))
800 sc->nr_scanned++;
801
c661b078
AW
802 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
804
805 if (PageWriteback(page)) {
806 /*
807 * Synchronous reclaim is performed in two passes,
808 * first an asynchronous pass over the list to
809 * start parallel writeback, and a second synchronous
810 * pass to wait for the IO to complete. Wait here
811 * for any page for which writeback has already
812 * started.
813 */
f3a310bc 814 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
7d3579e8 815 may_enter_fs)
c661b078 816 wait_on_page_writeback(page);
7d3579e8
KM
817 else {
818 unlock_page(page);
819 goto keep_lumpy;
820 }
c661b078 821 }
1da177e4 822
dfc8d636
JW
823 references = page_check_references(page, sc);
824 switch (references) {
825 case PAGEREF_ACTIVATE:
1da177e4 826 goto activate_locked;
64574746
JW
827 case PAGEREF_KEEP:
828 goto keep_locked;
dfc8d636
JW
829 case PAGEREF_RECLAIM:
830 case PAGEREF_RECLAIM_CLEAN:
831 ; /* try to reclaim the page below */
832 }
1da177e4 833
1da177e4
LT
834 /*
835 * Anonymous process memory has backing store?
836 * Try to allocate it some swap space here.
837 */
b291f000 838 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
839 if (!(sc->gfp_mask & __GFP_IO))
840 goto keep_locked;
ac47b003 841 if (!add_to_swap(page))
1da177e4 842 goto activate_locked;
63eb6b93 843 may_enter_fs = 1;
b291f000 844 }
1da177e4
LT
845
846 mapping = page_mapping(page);
1da177e4
LT
847
848 /*
849 * The page is mapped into the page tables of one or more
850 * processes. Try to unmap it here.
851 */
852 if (page_mapped(page) && mapping) {
14fa31b8 853 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
854 case SWAP_FAIL:
855 goto activate_locked;
856 case SWAP_AGAIN:
857 goto keep_locked;
b291f000
NP
858 case SWAP_MLOCK:
859 goto cull_mlocked;
1da177e4
LT
860 case SWAP_SUCCESS:
861 ; /* try to free the page below */
862 }
863 }
864
865 if (PageDirty(page)) {
0e093d99
MG
866 nr_dirty++;
867
dfc8d636 868 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 869 goto keep_locked;
4dd4b920 870 if (!may_enter_fs)
1da177e4 871 goto keep_locked;
52a8363e 872 if (!sc->may_writepage)
1da177e4
LT
873 goto keep_locked;
874
875 /* Page is dirty, try to write it out here */
7d3579e8 876 switch (pageout(page, mapping, sc)) {
1da177e4 877 case PAGE_KEEP:
0e093d99 878 nr_congested++;
1da177e4
LT
879 goto keep_locked;
880 case PAGE_ACTIVATE:
881 goto activate_locked;
882 case PAGE_SUCCESS:
7d3579e8
KM
883 if (PageWriteback(page))
884 goto keep_lumpy;
885 if (PageDirty(page))
1da177e4 886 goto keep;
7d3579e8 887
1da177e4
LT
888 /*
889 * A synchronous write - probably a ramdisk. Go
890 * ahead and try to reclaim the page.
891 */
529ae9aa 892 if (!trylock_page(page))
1da177e4
LT
893 goto keep;
894 if (PageDirty(page) || PageWriteback(page))
895 goto keep_locked;
896 mapping = page_mapping(page);
897 case PAGE_CLEAN:
898 ; /* try to free the page below */
899 }
900 }
901
902 /*
903 * If the page has buffers, try to free the buffer mappings
904 * associated with this page. If we succeed we try to free
905 * the page as well.
906 *
907 * We do this even if the page is PageDirty().
908 * try_to_release_page() does not perform I/O, but it is
909 * possible for a page to have PageDirty set, but it is actually
910 * clean (all its buffers are clean). This happens if the
911 * buffers were written out directly, with submit_bh(). ext3
894bc310 912 * will do this, as well as the blockdev mapping.
1da177e4
LT
913 * try_to_release_page() will discover that cleanness and will
914 * drop the buffers and mark the page clean - it can be freed.
915 *
916 * Rarely, pages can have buffers and no ->mapping. These are
917 * the pages which were not successfully invalidated in
918 * truncate_complete_page(). We try to drop those buffers here
919 * and if that worked, and the page is no longer mapped into
920 * process address space (page_count == 1) it can be freed.
921 * Otherwise, leave the page on the LRU so it is swappable.
922 */
266cf658 923 if (page_has_private(page)) {
1da177e4
LT
924 if (!try_to_release_page(page, sc->gfp_mask))
925 goto activate_locked;
e286781d
NP
926 if (!mapping && page_count(page) == 1) {
927 unlock_page(page);
928 if (put_page_testzero(page))
929 goto free_it;
930 else {
931 /*
932 * rare race with speculative reference.
933 * the speculative reference will free
934 * this page shortly, so we may
935 * increment nr_reclaimed here (and
936 * leave it off the LRU).
937 */
938 nr_reclaimed++;
939 continue;
940 }
941 }
1da177e4
LT
942 }
943
e286781d 944 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 945 goto keep_locked;
1da177e4 946
a978d6f5
NP
947 /*
948 * At this point, we have no other references and there is
949 * no way to pick any more up (removed from LRU, removed
950 * from pagecache). Can use non-atomic bitops now (and
951 * we obviously don't have to worry about waking up a process
952 * waiting on the page lock, because there are no references.
953 */
954 __clear_page_locked(page);
e286781d 955free_it:
05ff5137 956 nr_reclaimed++;
abe4c3b5
MG
957
958 /*
959 * Is there need to periodically free_page_list? It would
960 * appear not as the counts should be low
961 */
962 list_add(&page->lru, &free_pages);
1da177e4
LT
963 continue;
964
b291f000 965cull_mlocked:
63d6c5ad
HD
966 if (PageSwapCache(page))
967 try_to_free_swap(page);
b291f000
NP
968 unlock_page(page);
969 putback_lru_page(page);
f3a310bc 970 reset_reclaim_mode(sc);
b291f000
NP
971 continue;
972
1da177e4 973activate_locked:
68a22394
RR
974 /* Not a candidate for swapping, so reclaim swap space. */
975 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 976 try_to_free_swap(page);
894bc310 977 VM_BUG_ON(PageActive(page));
1da177e4
LT
978 SetPageActive(page);
979 pgactivate++;
980keep_locked:
981 unlock_page(page);
982keep:
f3a310bc 983 reset_reclaim_mode(sc);
7d3579e8 984keep_lumpy:
1da177e4 985 list_add(&page->lru, &ret_pages);
b291f000 986 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 987 }
abe4c3b5 988
0e093d99
MG
989 /*
990 * Tag a zone as congested if all the dirty pages encountered were
991 * backed by a congested BDI. In this case, reclaimers should just
992 * back off and wait for congestion to clear because further reclaim
993 * will encounter the same problem
994 */
d6c438b6 995 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
0e093d99
MG
996 zone_set_flag(zone, ZONE_CONGESTED);
997
abe4c3b5
MG
998 free_page_list(&free_pages);
999
1da177e4 1000 list_splice(&ret_pages, page_list);
f8891e5e 1001 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 1002 return nr_reclaimed;
1da177e4
LT
1003}
1004
5ad333eb
AW
1005/*
1006 * Attempt to remove the specified page from its LRU. Only take this page
1007 * if it is of the appropriate PageActive status. Pages which are being
1008 * freed elsewhere are also ignored.
1009 *
1010 * page: page to consider
1011 * mode: one of the LRU isolation modes defined above
1012 *
1013 * returns 0 on success, -ve errno on failure.
1014 */
4356f21d 1015int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
5ad333eb 1016{
4356f21d 1017 bool all_lru_mode;
5ad333eb
AW
1018 int ret = -EINVAL;
1019
1020 /* Only take pages on the LRU. */
1021 if (!PageLRU(page))
1022 return ret;
1023
4356f21d
MK
1024 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1025 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1026
5ad333eb
AW
1027 /*
1028 * When checking the active state, we need to be sure we are
1029 * dealing with comparible boolean values. Take the logical not
1030 * of each.
1031 */
4356f21d 1032 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
5ad333eb
AW
1033 return ret;
1034
4356f21d 1035 if (!all_lru_mode && !!page_is_file_cache(page) != file)
4f98a2fe
RR
1036 return ret;
1037
894bc310
LS
1038 /*
1039 * When this function is being called for lumpy reclaim, we
1040 * initially look into all LRU pages, active, inactive and
1041 * unevictable; only give shrink_page_list evictable pages.
1042 */
1043 if (PageUnevictable(page))
1044 return ret;
1045
5ad333eb 1046 ret = -EBUSY;
08e552c6 1047
39deaf85
MK
1048 if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1049 return ret;
1050
f80c0673
MK
1051 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1052 return ret;
1053
5ad333eb
AW
1054 if (likely(get_page_unless_zero(page))) {
1055 /*
1056 * Be careful not to clear PageLRU until after we're
1057 * sure the page is not being freed elsewhere -- the
1058 * page release code relies on it.
1059 */
1060 ClearPageLRU(page);
1061 ret = 0;
1062 }
1063
1064 return ret;
1065}
1066
1da177e4
LT
1067/*
1068 * zone->lru_lock is heavily contended. Some of the functions that
1069 * shrink the lists perform better by taking out a batch of pages
1070 * and working on them outside the LRU lock.
1071 *
1072 * For pagecache intensive workloads, this function is the hottest
1073 * spot in the kernel (apart from copy_*_user functions).
1074 *
1075 * Appropriate locks must be held before calling this function.
1076 *
1077 * @nr_to_scan: The number of pages to look through on the list.
1078 * @src: The LRU list to pull pages off.
1079 * @dst: The temp list to put pages on to.
1080 * @scanned: The number of pages that were scanned.
5ad333eb
AW
1081 * @order: The caller's attempted allocation order
1082 * @mode: One of the LRU isolation modes
4f98a2fe 1083 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
1084 *
1085 * returns how many pages were moved onto *@dst.
1086 */
69e05944
AM
1087static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1088 struct list_head *src, struct list_head *dst,
4356f21d
MK
1089 unsigned long *scanned, int order, isolate_mode_t mode,
1090 int file)
1da177e4 1091{
69e05944 1092 unsigned long nr_taken = 0;
a8a94d15
MG
1093 unsigned long nr_lumpy_taken = 0;
1094 unsigned long nr_lumpy_dirty = 0;
1095 unsigned long nr_lumpy_failed = 0;
c9b02d97 1096 unsigned long scan;
1da177e4 1097
c9b02d97 1098 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
1099 struct page *page;
1100 unsigned long pfn;
1101 unsigned long end_pfn;
1102 unsigned long page_pfn;
1103 int zone_id;
1104
1da177e4
LT
1105 page = lru_to_page(src);
1106 prefetchw_prev_lru_page(page, src, flags);
1107
725d704e 1108 VM_BUG_ON(!PageLRU(page));
8d438f96 1109
4f98a2fe 1110 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
1111 case 0:
1112 list_move(&page->lru, dst);
2ffebca6 1113 mem_cgroup_del_lru(page);
2c888cfb 1114 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1115 break;
1116
1117 case -EBUSY:
1118 /* else it is being freed elsewhere */
1119 list_move(&page->lru, src);
2ffebca6 1120 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 1121 continue;
46453a6e 1122
5ad333eb
AW
1123 default:
1124 BUG();
1125 }
1126
1127 if (!order)
1128 continue;
1129
1130 /*
1131 * Attempt to take all pages in the order aligned region
1132 * surrounding the tag page. Only take those pages of
1133 * the same active state as that tag page. We may safely
1134 * round the target page pfn down to the requested order
25985edc 1135 * as the mem_map is guaranteed valid out to MAX_ORDER,
5ad333eb
AW
1136 * where that page is in a different zone we will detect
1137 * it from its zone id and abort this block scan.
1138 */
1139 zone_id = page_zone_id(page);
1140 page_pfn = page_to_pfn(page);
1141 pfn = page_pfn & ~((1 << order) - 1);
1142 end_pfn = pfn + (1 << order);
1143 for (; pfn < end_pfn; pfn++) {
1144 struct page *cursor_page;
1145
1146 /* The target page is in the block, ignore it. */
1147 if (unlikely(pfn == page_pfn))
1148 continue;
1149
1150 /* Avoid holes within the zone. */
1151 if (unlikely(!pfn_valid_within(pfn)))
1152 break;
1153
1154 cursor_page = pfn_to_page(pfn);
4f98a2fe 1155
5ad333eb
AW
1156 /* Check that we have not crossed a zone boundary. */
1157 if (unlikely(page_zone_id(cursor_page) != zone_id))
08fc468f 1158 break;
de2e7567
MK
1159
1160 /*
1161 * If we don't have enough swap space, reclaiming of
1162 * anon page which don't already have a swap slot is
1163 * pointless.
1164 */
1165 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
08fc468f
KM
1166 !PageSwapCache(cursor_page))
1167 break;
de2e7567 1168
ee993b13 1169 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 1170 list_move(&cursor_page->lru, dst);
cb4cbcf6 1171 mem_cgroup_del_lru(cursor_page);
2c888cfb 1172 nr_taken += hpage_nr_pages(page);
a8a94d15
MG
1173 nr_lumpy_taken++;
1174 if (PageDirty(cursor_page))
1175 nr_lumpy_dirty++;
5ad333eb 1176 scan++;
a8a94d15 1177 } else {
d179e84b
AA
1178 /*
1179 * Check if the page is freed already.
1180 *
1181 * We can't use page_count() as that
1182 * requires compound_head and we don't
1183 * have a pin on the page here. If a
1184 * page is tail, we may or may not
1185 * have isolated the head, so assume
1186 * it's not free, it'd be tricky to
1187 * track the head status without a
1188 * page pin.
1189 */
1190 if (!PageTail(cursor_page) &&
1191 !atomic_read(&cursor_page->_count))
08fc468f
KM
1192 continue;
1193 break;
5ad333eb
AW
1194 }
1195 }
08fc468f
KM
1196
1197 /* If we break out of the loop above, lumpy reclaim failed */
1198 if (pfn < end_pfn)
1199 nr_lumpy_failed++;
1da177e4
LT
1200 }
1201
1202 *scanned = scan;
a8a94d15
MG
1203
1204 trace_mm_vmscan_lru_isolate(order,
1205 nr_to_scan, scan,
1206 nr_taken,
1207 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1208 mode);
1da177e4
LT
1209 return nr_taken;
1210}
1211
66e1707b
BS
1212static unsigned long isolate_pages_global(unsigned long nr,
1213 struct list_head *dst,
1214 unsigned long *scanned, int order,
4356f21d
MK
1215 isolate_mode_t mode,
1216 struct zone *z, int active, int file)
66e1707b 1217{
4f98a2fe 1218 int lru = LRU_BASE;
66e1707b 1219 if (active)
4f98a2fe
RR
1220 lru += LRU_ACTIVE;
1221 if (file)
1222 lru += LRU_FILE;
1223 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 1224 mode, file);
66e1707b
BS
1225}
1226
5ad333eb
AW
1227/*
1228 * clear_active_flags() is a helper for shrink_active_list(), clearing
1229 * any active bits from the pages in the list.
1230 */
4f98a2fe
RR
1231static unsigned long clear_active_flags(struct list_head *page_list,
1232 unsigned int *count)
5ad333eb
AW
1233{
1234 int nr_active = 0;
4f98a2fe 1235 int lru;
5ad333eb
AW
1236 struct page *page;
1237
4f98a2fe 1238 list_for_each_entry(page, page_list, lru) {
2c888cfb 1239 int numpages = hpage_nr_pages(page);
401a8e1c 1240 lru = page_lru_base_type(page);
5ad333eb 1241 if (PageActive(page)) {
4f98a2fe 1242 lru += LRU_ACTIVE;
5ad333eb 1243 ClearPageActive(page);
2c888cfb 1244 nr_active += numpages;
5ad333eb 1245 }
1489fa14 1246 if (count)
2c888cfb 1247 count[lru] += numpages;
4f98a2fe 1248 }
5ad333eb
AW
1249
1250 return nr_active;
1251}
1252
62695a84
NP
1253/**
1254 * isolate_lru_page - tries to isolate a page from its LRU list
1255 * @page: page to isolate from its LRU list
1256 *
1257 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1258 * vmstat statistic corresponding to whatever LRU list the page was on.
1259 *
1260 * Returns 0 if the page was removed from an LRU list.
1261 * Returns -EBUSY if the page was not on an LRU list.
1262 *
1263 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1264 * the active list, it will have PageActive set. If it was found on
1265 * the unevictable list, it will have the PageUnevictable bit set. That flag
1266 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1267 *
1268 * The vmstat statistic corresponding to the list on which the page was
1269 * found will be decremented.
1270 *
1271 * Restrictions:
1272 * (1) Must be called with an elevated refcount on the page. This is a
1273 * fundamentnal difference from isolate_lru_pages (which is called
1274 * without a stable reference).
1275 * (2) the lru_lock must not be held.
1276 * (3) interrupts must be enabled.
1277 */
1278int isolate_lru_page(struct page *page)
1279{
1280 int ret = -EBUSY;
1281
0c917313
KK
1282 VM_BUG_ON(!page_count(page));
1283
62695a84
NP
1284 if (PageLRU(page)) {
1285 struct zone *zone = page_zone(page);
1286
1287 spin_lock_irq(&zone->lru_lock);
0c917313 1288 if (PageLRU(page)) {
894bc310 1289 int lru = page_lru(page);
62695a84 1290 ret = 0;
0c917313 1291 get_page(page);
62695a84 1292 ClearPageLRU(page);
4f98a2fe 1293
4f98a2fe 1294 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1295 }
1296 spin_unlock_irq(&zone->lru_lock);
1297 }
1298 return ret;
1299}
1300
35cd7815
RR
1301/*
1302 * Are there way too many processes in the direct reclaim path already?
1303 */
1304static int too_many_isolated(struct zone *zone, int file,
1305 struct scan_control *sc)
1306{
1307 unsigned long inactive, isolated;
1308
1309 if (current_is_kswapd())
1310 return 0;
1311
1312 if (!scanning_global_lru(sc))
1313 return 0;
1314
1315 if (file) {
1316 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1317 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1318 } else {
1319 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1320 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1321 }
1322
1323 return isolated > inactive;
1324}
1325
66635629
MG
1326/*
1327 * TODO: Try merging with migrations version of putback_lru_pages
1328 */
1329static noinline_for_stack void
1489fa14 1330putback_lru_pages(struct zone *zone, struct scan_control *sc,
66635629
MG
1331 unsigned long nr_anon, unsigned long nr_file,
1332 struct list_head *page_list)
1333{
1334 struct page *page;
1335 struct pagevec pvec;
1489fa14 1336 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
66635629
MG
1337
1338 pagevec_init(&pvec, 1);
1339
1340 /*
1341 * Put back any unfreeable pages.
1342 */
1343 spin_lock(&zone->lru_lock);
1344 while (!list_empty(page_list)) {
1345 int lru;
1346 page = lru_to_page(page_list);
1347 VM_BUG_ON(PageLRU(page));
1348 list_del(&page->lru);
1349 if (unlikely(!page_evictable(page, NULL))) {
1350 spin_unlock_irq(&zone->lru_lock);
1351 putback_lru_page(page);
1352 spin_lock_irq(&zone->lru_lock);
1353 continue;
1354 }
7a608572 1355 SetPageLRU(page);
66635629 1356 lru = page_lru(page);
7a608572 1357 add_page_to_lru_list(zone, page, lru);
66635629
MG
1358 if (is_active_lru(lru)) {
1359 int file = is_file_lru(lru);
9992af10
RR
1360 int numpages = hpage_nr_pages(page);
1361 reclaim_stat->recent_rotated[file] += numpages;
66635629
MG
1362 }
1363 if (!pagevec_add(&pvec, page)) {
1364 spin_unlock_irq(&zone->lru_lock);
1365 __pagevec_release(&pvec);
1366 spin_lock_irq(&zone->lru_lock);
1367 }
1368 }
1369 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1370 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1371
1372 spin_unlock_irq(&zone->lru_lock);
1373 pagevec_release(&pvec);
1374}
1375
1489fa14
MG
1376static noinline_for_stack void update_isolated_counts(struct zone *zone,
1377 struct scan_control *sc,
1378 unsigned long *nr_anon,
1379 unsigned long *nr_file,
1380 struct list_head *isolated_list)
1381{
1382 unsigned long nr_active;
1383 unsigned int count[NR_LRU_LISTS] = { 0, };
1384 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1385
1386 nr_active = clear_active_flags(isolated_list, count);
1387 __count_vm_events(PGDEACTIVATE, nr_active);
1388
1389 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1390 -count[LRU_ACTIVE_FILE]);
1391 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1392 -count[LRU_INACTIVE_FILE]);
1393 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1394 -count[LRU_ACTIVE_ANON]);
1395 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1396 -count[LRU_INACTIVE_ANON]);
1397
1398 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1399 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1400 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1401 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1402
1403 reclaim_stat->recent_scanned[0] += *nr_anon;
1404 reclaim_stat->recent_scanned[1] += *nr_file;
1405}
1406
e31f3698
WF
1407/*
1408 * Returns true if the caller should wait to clean dirty/writeback pages.
1409 *
1410 * If we are direct reclaiming for contiguous pages and we do not reclaim
1411 * everything in the list, try again and wait for writeback IO to complete.
1412 * This will stall high-order allocations noticeably. Only do that when really
1413 * need to free the pages under high memory pressure.
1414 */
1415static inline bool should_reclaim_stall(unsigned long nr_taken,
1416 unsigned long nr_freed,
1417 int priority,
1418 struct scan_control *sc)
1419{
1420 int lumpy_stall_priority;
1421
1422 /* kswapd should not stall on sync IO */
1423 if (current_is_kswapd())
1424 return false;
1425
1426 /* Only stall on lumpy reclaim */
f3a310bc 1427 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
e31f3698
WF
1428 return false;
1429
81d66c70 1430 /* If we have reclaimed everything on the isolated list, no stall */
e31f3698
WF
1431 if (nr_freed == nr_taken)
1432 return false;
1433
1434 /*
1435 * For high-order allocations, there are two stall thresholds.
1436 * High-cost allocations stall immediately where as lower
1437 * order allocations such as stacks require the scanning
1438 * priority to be much higher before stalling.
1439 */
1440 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1441 lumpy_stall_priority = DEF_PRIORITY;
1442 else
1443 lumpy_stall_priority = DEF_PRIORITY / 3;
1444
1445 return priority <= lumpy_stall_priority;
1446}
1447
1da177e4 1448/*
1742f19f
AM
1449 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1450 * of reclaimed pages
1da177e4 1451 */
66635629
MG
1452static noinline_for_stack unsigned long
1453shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1454 struct scan_control *sc, int priority, int file)
1da177e4
LT
1455{
1456 LIST_HEAD(page_list);
e247dbce 1457 unsigned long nr_scanned;
05ff5137 1458 unsigned long nr_reclaimed = 0;
e247dbce 1459 unsigned long nr_taken;
e247dbce
KM
1460 unsigned long nr_anon;
1461 unsigned long nr_file;
4356f21d 1462 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
78dc583d 1463
35cd7815 1464 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1465 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1466
1467 /* We are about to die and free our memory. Return now. */
1468 if (fatal_signal_pending(current))
1469 return SWAP_CLUSTER_MAX;
1470 }
1471
f3a310bc 1472 set_reclaim_mode(priority, sc, false);
4356f21d
MK
1473 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1474 reclaim_mode |= ISOLATE_ACTIVE;
1475
1da177e4 1476 lru_add_drain();
f80c0673
MK
1477
1478 if (!sc->may_unmap)
1479 reclaim_mode |= ISOLATE_UNMAPPED;
1480 if (!sc->may_writepage)
1481 reclaim_mode |= ISOLATE_CLEAN;
1482
1da177e4 1483 spin_lock_irq(&zone->lru_lock);
b35ea17b 1484
e247dbce 1485 if (scanning_global_lru(sc)) {
4356f21d
MK
1486 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1487 &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
e247dbce
KM
1488 zone->pages_scanned += nr_scanned;
1489 if (current_is_kswapd())
1490 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1491 nr_scanned);
1492 else
1493 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1494 nr_scanned);
1495 } else {
4356f21d
MK
1496 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1497 &nr_scanned, sc->order, reclaim_mode, zone,
1498 sc->mem_cgroup, 0, file);
e247dbce
KM
1499 /*
1500 * mem_cgroup_isolate_pages() keeps track of
1501 * scanned pages on its own.
1502 */
1503 }
b35ea17b 1504
66635629
MG
1505 if (nr_taken == 0) {
1506 spin_unlock_irq(&zone->lru_lock);
1507 return 0;
1508 }
5ad333eb 1509
1489fa14 1510 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1da177e4 1511
e247dbce 1512 spin_unlock_irq(&zone->lru_lock);
c661b078 1513
0e093d99 1514 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
c661b078 1515
e31f3698
WF
1516 /* Check if we should syncronously wait for writeback */
1517 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
f3a310bc 1518 set_reclaim_mode(priority, sc, true);
0e093d99 1519 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
e247dbce 1520 }
b35ea17b 1521
e247dbce
KM
1522 local_irq_disable();
1523 if (current_is_kswapd())
1524 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1525 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
a74609fa 1526
1489fa14 1527 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
e11da5b4
MG
1528
1529 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1530 zone_idx(zone),
1531 nr_scanned, nr_reclaimed,
1532 priority,
f3a310bc 1533 trace_shrink_flags(file, sc->reclaim_mode));
05ff5137 1534 return nr_reclaimed;
1da177e4
LT
1535}
1536
1537/*
1538 * This moves pages from the active list to the inactive list.
1539 *
1540 * We move them the other way if the page is referenced by one or more
1541 * processes, from rmap.
1542 *
1543 * If the pages are mostly unmapped, the processing is fast and it is
1544 * appropriate to hold zone->lru_lock across the whole operation. But if
1545 * the pages are mapped, the processing is slow (page_referenced()) so we
1546 * should drop zone->lru_lock around each page. It's impossible to balance
1547 * this, so instead we remove the pages from the LRU while processing them.
1548 * It is safe to rely on PG_active against the non-LRU pages in here because
1549 * nobody will play with that bit on a non-LRU page.
1550 *
1551 * The downside is that we have to touch page->_count against each page.
1552 * But we had to alter page->flags anyway.
1553 */
1cfb419b 1554
3eb4140f
WF
1555static void move_active_pages_to_lru(struct zone *zone,
1556 struct list_head *list,
1557 enum lru_list lru)
1558{
1559 unsigned long pgmoved = 0;
1560 struct pagevec pvec;
1561 struct page *page;
1562
1563 pagevec_init(&pvec, 1);
1564
1565 while (!list_empty(list)) {
1566 page = lru_to_page(list);
3eb4140f
WF
1567
1568 VM_BUG_ON(PageLRU(page));
1569 SetPageLRU(page);
1570
3eb4140f
WF
1571 list_move(&page->lru, &zone->lru[lru].list);
1572 mem_cgroup_add_lru_list(page, lru);
2c888cfb 1573 pgmoved += hpage_nr_pages(page);
3eb4140f
WF
1574
1575 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1576 spin_unlock_irq(&zone->lru_lock);
1577 if (buffer_heads_over_limit)
1578 pagevec_strip(&pvec);
1579 __pagevec_release(&pvec);
1580 spin_lock_irq(&zone->lru_lock);
1581 }
1582 }
1583 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1584 if (!is_active_lru(lru))
1585 __count_vm_events(PGDEACTIVATE, pgmoved);
1586}
1cfb419b 1587
1742f19f 1588static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1589 struct scan_control *sc, int priority, int file)
1da177e4 1590{
44c241f1 1591 unsigned long nr_taken;
69e05944 1592 unsigned long pgscanned;
6fe6b7e3 1593 unsigned long vm_flags;
1da177e4 1594 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1595 LIST_HEAD(l_active);
b69408e8 1596 LIST_HEAD(l_inactive);
1da177e4 1597 struct page *page;
6e901571 1598 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1599 unsigned long nr_rotated = 0;
f80c0673 1600 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1da177e4
LT
1601
1602 lru_add_drain();
f80c0673
MK
1603
1604 if (!sc->may_unmap)
1605 reclaim_mode |= ISOLATE_UNMAPPED;
1606 if (!sc->may_writepage)
1607 reclaim_mode |= ISOLATE_CLEAN;
1608
1da177e4 1609 spin_lock_irq(&zone->lru_lock);
e72e2bd6 1610 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1611 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1612 &pgscanned, sc->order,
f80c0673 1613 reclaim_mode, zone,
8b25c6d2 1614 1, file);
1cfb419b 1615 zone->pages_scanned += pgscanned;
8b25c6d2
JW
1616 } else {
1617 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1618 &pgscanned, sc->order,
f80c0673 1619 reclaim_mode, zone,
8b25c6d2
JW
1620 sc->mem_cgroup, 1, file);
1621 /*
1622 * mem_cgroup_isolate_pages() keeps track of
1623 * scanned pages on its own.
1624 */
4f98a2fe 1625 }
8b25c6d2 1626
b7c46d15 1627 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1628
3eb4140f 1629 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1630 if (file)
44c241f1 1631 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1632 else
44c241f1 1633 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1634 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1635 spin_unlock_irq(&zone->lru_lock);
1636
1da177e4
LT
1637 while (!list_empty(&l_hold)) {
1638 cond_resched();
1639 page = lru_to_page(&l_hold);
1640 list_del(&page->lru);
7e9cd484 1641
894bc310
LS
1642 if (unlikely(!page_evictable(page, NULL))) {
1643 putback_lru_page(page);
1644 continue;
1645 }
1646
64574746 1647 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
9992af10 1648 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1649 /*
1650 * Identify referenced, file-backed active pages and
1651 * give them one more trip around the active list. So
1652 * that executable code get better chances to stay in
1653 * memory under moderate memory pressure. Anon pages
1654 * are not likely to be evicted by use-once streaming
1655 * IO, plus JVM can create lots of anon VM_EXEC pages,
1656 * so we ignore them here.
1657 */
41e20983 1658 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1659 list_add(&page->lru, &l_active);
1660 continue;
1661 }
1662 }
7e9cd484 1663
5205e56e 1664 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1665 list_add(&page->lru, &l_inactive);
1666 }
1667
b555749a 1668 /*
8cab4754 1669 * Move pages back to the lru list.
b555749a 1670 */
2a1dc509 1671 spin_lock_irq(&zone->lru_lock);
556adecb 1672 /*
8cab4754
WF
1673 * Count referenced pages from currently used mappings as rotated,
1674 * even though only some of them are actually re-activated. This
1675 * helps balance scan pressure between file and anonymous pages in
1676 * get_scan_ratio.
7e9cd484 1677 */
b7c46d15 1678 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1679
3eb4140f
WF
1680 move_active_pages_to_lru(zone, &l_active,
1681 LRU_ACTIVE + file * LRU_FILE);
1682 move_active_pages_to_lru(zone, &l_inactive,
1683 LRU_BASE + file * LRU_FILE);
a731286d 1684 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1685 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1686}
1687
74e3f3c3 1688#ifdef CONFIG_SWAP
14797e23 1689static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1690{
1691 unsigned long active, inactive;
1692
1693 active = zone_page_state(zone, NR_ACTIVE_ANON);
1694 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1695
1696 if (inactive * zone->inactive_ratio < active)
1697 return 1;
1698
1699 return 0;
1700}
1701
14797e23
KM
1702/**
1703 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1704 * @zone: zone to check
1705 * @sc: scan control of this context
1706 *
1707 * Returns true if the zone does not have enough inactive anon pages,
1708 * meaning some active anon pages need to be deactivated.
1709 */
1710static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1711{
1712 int low;
1713
74e3f3c3
MK
1714 /*
1715 * If we don't have swap space, anonymous page deactivation
1716 * is pointless.
1717 */
1718 if (!total_swap_pages)
1719 return 0;
1720
e72e2bd6 1721 if (scanning_global_lru(sc))
14797e23
KM
1722 low = inactive_anon_is_low_global(zone);
1723 else
c772be93 1724 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1725 return low;
1726}
74e3f3c3
MK
1727#else
1728static inline int inactive_anon_is_low(struct zone *zone,
1729 struct scan_control *sc)
1730{
1731 return 0;
1732}
1733#endif
14797e23 1734
56e49d21
RR
1735static int inactive_file_is_low_global(struct zone *zone)
1736{
1737 unsigned long active, inactive;
1738
1739 active = zone_page_state(zone, NR_ACTIVE_FILE);
1740 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1741
1742 return (active > inactive);
1743}
1744
1745/**
1746 * inactive_file_is_low - check if file pages need to be deactivated
1747 * @zone: zone to check
1748 * @sc: scan control of this context
1749 *
1750 * When the system is doing streaming IO, memory pressure here
1751 * ensures that active file pages get deactivated, until more
1752 * than half of the file pages are on the inactive list.
1753 *
1754 * Once we get to that situation, protect the system's working
1755 * set from being evicted by disabling active file page aging.
1756 *
1757 * This uses a different ratio than the anonymous pages, because
1758 * the page cache uses a use-once replacement algorithm.
1759 */
1760static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1761{
1762 int low;
1763
1764 if (scanning_global_lru(sc))
1765 low = inactive_file_is_low_global(zone);
1766 else
1767 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1768 return low;
1769}
1770
b39415b2
RR
1771static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1772 int file)
1773{
1774 if (file)
1775 return inactive_file_is_low(zone, sc);
1776 else
1777 return inactive_anon_is_low(zone, sc);
1778}
1779
4f98a2fe 1780static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1781 struct zone *zone, struct scan_control *sc, int priority)
1782{
4f98a2fe
RR
1783 int file = is_file_lru(lru);
1784
b39415b2
RR
1785 if (is_active_lru(lru)) {
1786 if (inactive_list_is_low(zone, sc, file))
1787 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1788 return 0;
1789 }
1790
33c120ed 1791 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1792}
1793
1f4c025b
KH
1794static int vmscan_swappiness(struct scan_control *sc)
1795{
1796 if (scanning_global_lru(sc))
1797 return vm_swappiness;
1798 return mem_cgroup_swappiness(sc->mem_cgroup);
1799}
1800
4f98a2fe
RR
1801/*
1802 * Determine how aggressively the anon and file LRU lists should be
1803 * scanned. The relative value of each set of LRU lists is determined
1804 * by looking at the fraction of the pages scanned we did rotate back
1805 * onto the active list instead of evict.
1806 *
76a33fc3 1807 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1808 */
76a33fc3
SL
1809static void get_scan_count(struct zone *zone, struct scan_control *sc,
1810 unsigned long *nr, int priority)
4f98a2fe
RR
1811{
1812 unsigned long anon, file, free;
1813 unsigned long anon_prio, file_prio;
1814 unsigned long ap, fp;
6e901571 1815 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
76a33fc3
SL
1816 u64 fraction[2], denominator;
1817 enum lru_list l;
1818 int noswap = 0;
a4d3e9e7 1819 bool force_scan = false;
246e87a9 1820
f11c0ca5
JW
1821 /*
1822 * If the zone or memcg is small, nr[l] can be 0. This
1823 * results in no scanning on this priority and a potential
1824 * priority drop. Global direct reclaim can go to the next
1825 * zone and tends to have no problems. Global kswapd is for
1826 * zone balancing and it needs to scan a minimum amount. When
1827 * reclaiming for a memcg, a priority drop can cause high
1828 * latencies, so it's better to scan a minimum amount there as
1829 * well.
1830 */
a4d3e9e7
JW
1831 if (scanning_global_lru(sc) && current_is_kswapd())
1832 force_scan = true;
a4d3e9e7
JW
1833 if (!scanning_global_lru(sc))
1834 force_scan = true;
76a33fc3
SL
1835
1836 /* If we have no swap space, do not bother scanning anon pages. */
1837 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1838 noswap = 1;
1839 fraction[0] = 0;
1840 fraction[1] = 1;
1841 denominator = 1;
1842 goto out;
1843 }
4f98a2fe 1844
a4d3e9e7
JW
1845 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1846 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1847 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1848 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1849
e72e2bd6 1850 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1851 free = zone_page_state(zone, NR_FREE_PAGES);
1852 /* If we have very few page cache pages,
1853 force-scan anon pages. */
41858966 1854 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1855 fraction[0] = 1;
1856 fraction[1] = 0;
1857 denominator = 1;
1858 goto out;
eeee9a8c 1859 }
4f98a2fe
RR
1860 }
1861
58c37f6e
KM
1862 /*
1863 * With swappiness at 100, anonymous and file have the same priority.
1864 * This scanning priority is essentially the inverse of IO cost.
1865 */
1f4c025b
KH
1866 anon_prio = vmscan_swappiness(sc);
1867 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1868
4f98a2fe
RR
1869 /*
1870 * OK, so we have swap space and a fair amount of page cache
1871 * pages. We use the recently rotated / recently scanned
1872 * ratios to determine how valuable each cache is.
1873 *
1874 * Because workloads change over time (and to avoid overflow)
1875 * we keep these statistics as a floating average, which ends
1876 * up weighing recent references more than old ones.
1877 *
1878 * anon in [0], file in [1]
1879 */
58c37f6e 1880 spin_lock_irq(&zone->lru_lock);
6e901571 1881 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1882 reclaim_stat->recent_scanned[0] /= 2;
1883 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1884 }
1885
6e901571 1886 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1887 reclaim_stat->recent_scanned[1] /= 2;
1888 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1889 }
1890
4f98a2fe 1891 /*
00d8089c
RR
1892 * The amount of pressure on anon vs file pages is inversely
1893 * proportional to the fraction of recently scanned pages on
1894 * each list that were recently referenced and in active use.
4f98a2fe 1895 */
6e901571
KM
1896 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1897 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1898
6e901571
KM
1899 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1900 fp /= reclaim_stat->recent_rotated[1] + 1;
58c37f6e 1901 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1902
76a33fc3
SL
1903 fraction[0] = ap;
1904 fraction[1] = fp;
1905 denominator = ap + fp + 1;
1906out:
1907 for_each_evictable_lru(l) {
1908 int file = is_file_lru(l);
1909 unsigned long scan;
6e08a369 1910
76a33fc3
SL
1911 scan = zone_nr_lru_pages(zone, sc, l);
1912 if (priority || noswap) {
1913 scan >>= priority;
f11c0ca5
JW
1914 if (!scan && force_scan)
1915 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1916 scan = div64_u64(scan * fraction[file], denominator);
1917 }
246e87a9 1918 nr[l] = scan;
76a33fc3 1919 }
6e08a369 1920}
4f98a2fe 1921
3e7d3449
MG
1922/*
1923 * Reclaim/compaction depends on a number of pages being freed. To avoid
1924 * disruption to the system, a small number of order-0 pages continue to be
1925 * rotated and reclaimed in the normal fashion. However, by the time we get
1926 * back to the allocator and call try_to_compact_zone(), we ensure that
1927 * there are enough free pages for it to be likely successful
1928 */
1929static inline bool should_continue_reclaim(struct zone *zone,
1930 unsigned long nr_reclaimed,
1931 unsigned long nr_scanned,
1932 struct scan_control *sc)
1933{
1934 unsigned long pages_for_compaction;
1935 unsigned long inactive_lru_pages;
1936
1937 /* If not in reclaim/compaction mode, stop */
f3a310bc 1938 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
3e7d3449
MG
1939 return false;
1940
2876592f
MG
1941 /* Consider stopping depending on scan and reclaim activity */
1942 if (sc->gfp_mask & __GFP_REPEAT) {
1943 /*
1944 * For __GFP_REPEAT allocations, stop reclaiming if the
1945 * full LRU list has been scanned and we are still failing
1946 * to reclaim pages. This full LRU scan is potentially
1947 * expensive but a __GFP_REPEAT caller really wants to succeed
1948 */
1949 if (!nr_reclaimed && !nr_scanned)
1950 return false;
1951 } else {
1952 /*
1953 * For non-__GFP_REPEAT allocations which can presumably
1954 * fail without consequence, stop if we failed to reclaim
1955 * any pages from the last SWAP_CLUSTER_MAX number of
1956 * pages that were scanned. This will return to the
1957 * caller faster at the risk reclaim/compaction and
1958 * the resulting allocation attempt fails
1959 */
1960 if (!nr_reclaimed)
1961 return false;
1962 }
3e7d3449
MG
1963
1964 /*
1965 * If we have not reclaimed enough pages for compaction and the
1966 * inactive lists are large enough, continue reclaiming
1967 */
1968 pages_for_compaction = (2UL << sc->order);
1969 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1970 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1971 if (sc->nr_reclaimed < pages_for_compaction &&
1972 inactive_lru_pages > pages_for_compaction)
1973 return true;
1974
1975 /* If compaction would go ahead or the allocation would succeed, stop */
1976 switch (compaction_suitable(zone, sc->order)) {
1977 case COMPACT_PARTIAL:
1978 case COMPACT_CONTINUE:
1979 return false;
1980 default:
1981 return true;
1982 }
1983}
1984
1da177e4
LT
1985/*
1986 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1987 */
a79311c1 1988static void shrink_zone(int priority, struct zone *zone,
05ff5137 1989 struct scan_control *sc)
1da177e4 1990{
b69408e8 1991 unsigned long nr[NR_LRU_LISTS];
8695949a 1992 unsigned long nr_to_scan;
b69408e8 1993 enum lru_list l;
f0fdc5e8 1994 unsigned long nr_reclaimed, nr_scanned;
22fba335 1995 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1996 struct blk_plug plug;
e0f79b8f 1997
3e7d3449
MG
1998restart:
1999 nr_reclaimed = 0;
f0fdc5e8 2000 nr_scanned = sc->nr_scanned;
76a33fc3 2001 get_scan_count(zone, sc, nr, priority);
1da177e4 2002
3da367c3 2003 blk_start_plug(&plug);
556adecb
RR
2004 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2005 nr[LRU_INACTIVE_FILE]) {
894bc310 2006 for_each_evictable_lru(l) {
b69408e8 2007 if (nr[l]) {
ece74b2e
KM
2008 nr_to_scan = min_t(unsigned long,
2009 nr[l], SWAP_CLUSTER_MAX);
b69408e8 2010 nr[l] -= nr_to_scan;
1da177e4 2011
01dbe5c9
KM
2012 nr_reclaimed += shrink_list(l, nr_to_scan,
2013 zone, sc, priority);
b69408e8 2014 }
1da177e4 2015 }
a79311c1
RR
2016 /*
2017 * On large memory systems, scan >> priority can become
2018 * really large. This is fine for the starting priority;
2019 * we want to put equal scanning pressure on each zone.
2020 * However, if the VM has a harder time of freeing pages,
2021 * with multiple processes reclaiming pages, the total
2022 * freeing target can get unreasonably large.
2023 */
338fde90 2024 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 2025 break;
1da177e4 2026 }
3da367c3 2027 blk_finish_plug(&plug);
3e7d3449 2028 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 2029
556adecb
RR
2030 /*
2031 * Even if we did not try to evict anon pages at all, we want to
2032 * rebalance the anon lru active/inactive ratio.
2033 */
74e3f3c3 2034 if (inactive_anon_is_low(zone, sc))
556adecb
RR
2035 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2036
3e7d3449
MG
2037 /* reclaim/compaction might need reclaim to continue */
2038 if (should_continue_reclaim(zone, nr_reclaimed,
2039 sc->nr_scanned - nr_scanned, sc))
2040 goto restart;
2041
232ea4d6 2042 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
2043}
2044
2045/*
2046 * This is the direct reclaim path, for page-allocating processes. We only
2047 * try to reclaim pages from zones which will satisfy the caller's allocation
2048 * request.
2049 *
41858966
MG
2050 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2051 * Because:
1da177e4
LT
2052 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2053 * allocation or
41858966
MG
2054 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2055 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2056 * zone defense algorithm.
1da177e4 2057 *
1da177e4
LT
2058 * If a zone is deemed to be full of pinned pages then just give it a light
2059 * scan then give up on it.
2060 */
ac34a1a3 2061static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 2062 struct scan_control *sc)
1da177e4 2063{
dd1a239f 2064 struct zoneref *z;
54a6eb5c 2065 struct zone *zone;
d149e3b2
YH
2066 unsigned long nr_soft_reclaimed;
2067 unsigned long nr_soft_scanned;
1cfb419b 2068
d4debc66
MG
2069 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2070 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2071 if (!populated_zone(zone))
1da177e4 2072 continue;
1cfb419b
KH
2073 /*
2074 * Take care memory controller reclaiming has small influence
2075 * to global LRU.
2076 */
e72e2bd6 2077 if (scanning_global_lru(sc)) {
1cfb419b
KH
2078 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2079 continue;
93e4a89a 2080 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2081 continue; /* Let kswapd poll it */
ac34a1a3
KH
2082 /*
2083 * This steals pages from memory cgroups over softlimit
2084 * and returns the number of reclaimed pages and
2085 * scanned pages. This works for global memory pressure
2086 * and balancing, not for a memcg's limit.
2087 */
2088 nr_soft_scanned = 0;
2089 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2090 sc->order, sc->gfp_mask,
2091 &nr_soft_scanned);
2092 sc->nr_reclaimed += nr_soft_reclaimed;
2093 sc->nr_scanned += nr_soft_scanned;
2094 /* need some check for avoid more shrink_zone() */
1cfb419b 2095 }
408d8544 2096
a79311c1 2097 shrink_zone(priority, zone, sc);
1da177e4 2098 }
d1908362
MK
2099}
2100
2101static bool zone_reclaimable(struct zone *zone)
2102{
2103 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2104}
2105
929bea7c 2106/* All zones in zonelist are unreclaimable? */
d1908362
MK
2107static bool all_unreclaimable(struct zonelist *zonelist,
2108 struct scan_control *sc)
2109{
2110 struct zoneref *z;
2111 struct zone *zone;
d1908362
MK
2112
2113 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2114 gfp_zone(sc->gfp_mask), sc->nodemask) {
2115 if (!populated_zone(zone))
2116 continue;
2117 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2118 continue;
929bea7c
KM
2119 if (!zone->all_unreclaimable)
2120 return false;
d1908362
MK
2121 }
2122
929bea7c 2123 return true;
1da177e4 2124}
4f98a2fe 2125
1da177e4
LT
2126/*
2127 * This is the main entry point to direct page reclaim.
2128 *
2129 * If a full scan of the inactive list fails to free enough memory then we
2130 * are "out of memory" and something needs to be killed.
2131 *
2132 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2133 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2134 * caller can't do much about. We kick the writeback threads and take explicit
2135 * naps in the hope that some of these pages can be written. But if the
2136 * allocating task holds filesystem locks which prevent writeout this might not
2137 * work, and the allocation attempt will fail.
a41f24ea
NA
2138 *
2139 * returns: 0, if no pages reclaimed
2140 * else, the number of pages reclaimed
1da177e4 2141 */
dac1d27b 2142static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2143 struct scan_control *sc,
2144 struct shrink_control *shrink)
1da177e4
LT
2145{
2146 int priority;
69e05944 2147 unsigned long total_scanned = 0;
1da177e4 2148 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2149 struct zoneref *z;
54a6eb5c 2150 struct zone *zone;
22fba335 2151 unsigned long writeback_threshold;
1da177e4 2152
c0ff7453 2153 get_mems_allowed();
873b4771
KK
2154 delayacct_freepages_start();
2155
e72e2bd6 2156 if (scanning_global_lru(sc))
1cfb419b 2157 count_vm_event(ALLOCSTALL);
1da177e4
LT
2158
2159 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2160 sc->nr_scanned = 0;
f7b7fd8f 2161 if (!priority)
a433658c 2162 disable_swap_token(sc->mem_cgroup);
ac34a1a3 2163 shrink_zones(priority, zonelist, sc);
66e1707b
BS
2164 /*
2165 * Don't shrink slabs when reclaiming memory from
2166 * over limit cgroups
2167 */
e72e2bd6 2168 if (scanning_global_lru(sc)) {
c6a8a8c5 2169 unsigned long lru_pages = 0;
d4debc66
MG
2170 for_each_zone_zonelist(zone, z, zonelist,
2171 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2172 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2173 continue;
2174
2175 lru_pages += zone_reclaimable_pages(zone);
2176 }
2177
1495f230 2178 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2179 if (reclaim_state) {
a79311c1 2180 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2181 reclaim_state->reclaimed_slab = 0;
2182 }
1da177e4 2183 }
66e1707b 2184 total_scanned += sc->nr_scanned;
bb21c7ce 2185 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2186 goto out;
1da177e4
LT
2187
2188 /*
2189 * Try to write back as many pages as we just scanned. This
2190 * tends to cause slow streaming writers to write data to the
2191 * disk smoothly, at the dirtying rate, which is nice. But
2192 * that's undesirable in laptop mode, where we *want* lumpy
2193 * writeout. So in laptop mode, write out the whole world.
2194 */
22fba335
KM
2195 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2196 if (total_scanned > writeback_threshold) {
03ba3782 2197 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 2198 sc->may_writepage = 1;
1da177e4
LT
2199 }
2200
2201 /* Take a nap, wait for some writeback to complete */
7b51755c 2202 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2203 priority < DEF_PRIORITY - 2) {
2204 struct zone *preferred_zone;
2205
2206 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2207 &cpuset_current_mems_allowed,
2208 &preferred_zone);
0e093d99
MG
2209 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2210 }
1da177e4 2211 }
bb21c7ce 2212
1da177e4 2213out:
873b4771 2214 delayacct_freepages_end();
c0ff7453 2215 put_mems_allowed();
873b4771 2216
bb21c7ce
KM
2217 if (sc->nr_reclaimed)
2218 return sc->nr_reclaimed;
2219
929bea7c
KM
2220 /*
2221 * As hibernation is going on, kswapd is freezed so that it can't mark
2222 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2223 * check.
2224 */
2225 if (oom_killer_disabled)
2226 return 0;
2227
bb21c7ce 2228 /* top priority shrink_zones still had more to do? don't OOM, then */
d1908362 2229 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2230 return 1;
2231
2232 return 0;
1da177e4
LT
2233}
2234
dac1d27b 2235unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2236 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2237{
33906bc5 2238 unsigned long nr_reclaimed;
66e1707b
BS
2239 struct scan_control sc = {
2240 .gfp_mask = gfp_mask,
2241 .may_writepage = !laptop_mode,
22fba335 2242 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2243 .may_unmap = 1,
2e2e4259 2244 .may_swap = 1,
66e1707b
BS
2245 .order = order,
2246 .mem_cgroup = NULL,
327c0e96 2247 .nodemask = nodemask,
66e1707b 2248 };
a09ed5e0
YH
2249 struct shrink_control shrink = {
2250 .gfp_mask = sc.gfp_mask,
2251 };
66e1707b 2252
33906bc5
MG
2253 trace_mm_vmscan_direct_reclaim_begin(order,
2254 sc.may_writepage,
2255 gfp_mask);
2256
a09ed5e0 2257 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2258
2259 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2260
2261 return nr_reclaimed;
66e1707b
BS
2262}
2263
00f0b825 2264#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2265
4e416953
BS
2266unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2267 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2268 struct zone *zone,
2269 unsigned long *nr_scanned)
4e416953
BS
2270{
2271 struct scan_control sc = {
0ae5e89c 2272 .nr_scanned = 0,
b8f5c566 2273 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2274 .may_writepage = !laptop_mode,
2275 .may_unmap = 1,
2276 .may_swap = !noswap,
4e416953
BS
2277 .order = 0,
2278 .mem_cgroup = mem,
4e416953 2279 };
0ae5e89c 2280
4e416953
BS
2281 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2282 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2283
2284 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2285 sc.may_writepage,
2286 sc.gfp_mask);
2287
4e416953
BS
2288 /*
2289 * NOTE: Although we can get the priority field, using it
2290 * here is not a good idea, since it limits the pages we can scan.
2291 * if we don't reclaim here, the shrink_zone from balance_pgdat
2292 * will pick up pages from other mem cgroup's as well. We hack
2293 * the priority and make it zero.
2294 */
2295 shrink_zone(0, zone, &sc);
bdce6d9e
KM
2296
2297 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2298
0ae5e89c 2299 *nr_scanned = sc.nr_scanned;
4e416953
BS
2300 return sc.nr_reclaimed;
2301}
2302
e1a1cd59 2303unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8 2304 gfp_t gfp_mask,
185efc0f 2305 bool noswap)
66e1707b 2306{
4e416953 2307 struct zonelist *zonelist;
bdce6d9e 2308 unsigned long nr_reclaimed;
889976db 2309 int nid;
66e1707b 2310 struct scan_control sc = {
66e1707b 2311 .may_writepage = !laptop_mode,
a6dc60f8 2312 .may_unmap = 1,
2e2e4259 2313 .may_swap = !noswap,
22fba335 2314 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b
BS
2315 .order = 0,
2316 .mem_cgroup = mem_cont,
327c0e96 2317 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2318 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2319 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2320 };
2321 struct shrink_control shrink = {
2322 .gfp_mask = sc.gfp_mask,
66e1707b 2323 };
66e1707b 2324
889976db
YH
2325 /*
2326 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2327 * take care of from where we get pages. So the node where we start the
2328 * scan does not need to be the current node.
2329 */
2330 nid = mem_cgroup_select_victim_node(mem_cont);
2331
2332 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2333
2334 trace_mm_vmscan_memcg_reclaim_begin(0,
2335 sc.may_writepage,
2336 sc.gfp_mask);
2337
a09ed5e0 2338 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2339
2340 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2341
2342 return nr_reclaimed;
66e1707b
BS
2343}
2344#endif
2345
1741c877
MG
2346/*
2347 * pgdat_balanced is used when checking if a node is balanced for high-order
2348 * allocations. Only zones that meet watermarks and are in a zone allowed
2349 * by the callers classzone_idx are added to balanced_pages. The total of
2350 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2351 * for the node to be considered balanced. Forcing all zones to be balanced
2352 * for high orders can cause excessive reclaim when there are imbalanced zones.
2353 * The choice of 25% is due to
2354 * o a 16M DMA zone that is balanced will not balance a zone on any
2355 * reasonable sized machine
2356 * o On all other machines, the top zone must be at least a reasonable
25985edc 2357 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2358 * would need to be at least 256M for it to be balance a whole node.
2359 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2360 * to balance a node on its own. These seemed like reasonable ratios.
2361 */
2362static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2363 int classzone_idx)
2364{
2365 unsigned long present_pages = 0;
2366 int i;
2367
2368 for (i = 0; i <= classzone_idx; i++)
2369 present_pages += pgdat->node_zones[i].present_pages;
2370
4746efde
SL
2371 /* A special case here: if zone has no page, we think it's balanced */
2372 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2373}
2374
f50de2d3 2375/* is kswapd sleeping prematurely? */
dc83edd9
MG
2376static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2377 int classzone_idx)
f50de2d3 2378{
bb3ab596 2379 int i;
1741c877
MG
2380 unsigned long balanced = 0;
2381 bool all_zones_ok = true;
f50de2d3
MG
2382
2383 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2384 if (remaining)
dc83edd9 2385 return true;
f50de2d3 2386
0abdee2b 2387 /* Check the watermark levels */
08951e54 2388 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2389 struct zone *zone = pgdat->node_zones + i;
2390
2391 if (!populated_zone(zone))
2392 continue;
2393
355b09c4
MG
2394 /*
2395 * balance_pgdat() skips over all_unreclaimable after
2396 * DEF_PRIORITY. Effectively, it considers them balanced so
2397 * they must be considered balanced here as well if kswapd
2398 * is to sleep
2399 */
2400 if (zone->all_unreclaimable) {
2401 balanced += zone->present_pages;
de3fab39 2402 continue;
355b09c4 2403 }
de3fab39 2404
88f5acf8 2405 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2406 i, 0))
1741c877
MG
2407 all_zones_ok = false;
2408 else
2409 balanced += zone->present_pages;
bb3ab596 2410 }
f50de2d3 2411
1741c877
MG
2412 /*
2413 * For high-order requests, the balanced zones must contain at least
2414 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2415 * must be balanced
2416 */
2417 if (order)
afc7e326 2418 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2419 else
2420 return !all_zones_ok;
f50de2d3
MG
2421}
2422
1da177e4
LT
2423/*
2424 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2425 * they are all at high_wmark_pages(zone).
1da177e4 2426 *
0abdee2b 2427 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2428 *
2429 * There is special handling here for zones which are full of pinned pages.
2430 * This can happen if the pages are all mlocked, or if they are all used by
2431 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2432 * What we do is to detect the case where all pages in the zone have been
2433 * scanned twice and there has been zero successful reclaim. Mark the zone as
2434 * dead and from now on, only perform a short scan. Basically we're polling
2435 * the zone for when the problem goes away.
2436 *
2437 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2438 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2439 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2440 * lower zones regardless of the number of free pages in the lower zones. This
2441 * interoperates with the page allocator fallback scheme to ensure that aging
2442 * of pages is balanced across the zones.
1da177e4 2443 */
99504748 2444static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2445 int *classzone_idx)
1da177e4 2446{
1da177e4 2447 int all_zones_ok;
1741c877 2448 unsigned long balanced;
1da177e4
LT
2449 int priority;
2450 int i;
99504748 2451 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2452 unsigned long total_scanned;
1da177e4 2453 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2454 unsigned long nr_soft_reclaimed;
2455 unsigned long nr_soft_scanned;
179e9639
AM
2456 struct scan_control sc = {
2457 .gfp_mask = GFP_KERNEL,
a6dc60f8 2458 .may_unmap = 1,
2e2e4259 2459 .may_swap = 1,
22fba335
KM
2460 /*
2461 * kswapd doesn't want to be bailed out while reclaim. because
2462 * we want to put equal scanning pressure on each zone.
2463 */
2464 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2465 .order = order,
66e1707b 2466 .mem_cgroup = NULL,
179e9639 2467 };
a09ed5e0
YH
2468 struct shrink_control shrink = {
2469 .gfp_mask = sc.gfp_mask,
2470 };
1da177e4
LT
2471loop_again:
2472 total_scanned = 0;
a79311c1 2473 sc.nr_reclaimed = 0;
c0bbbc73 2474 sc.may_writepage = !laptop_mode;
f8891e5e 2475 count_vm_event(PAGEOUTRUN);
1da177e4 2476
1da177e4 2477 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2478 unsigned long lru_pages = 0;
bb3ab596 2479 int has_under_min_watermark_zone = 0;
1da177e4 2480
f7b7fd8f
RR
2481 /* The swap token gets in the way of swapout... */
2482 if (!priority)
a433658c 2483 disable_swap_token(NULL);
f7b7fd8f 2484
1da177e4 2485 all_zones_ok = 1;
1741c877 2486 balanced = 0;
1da177e4 2487
d6277db4
RW
2488 /*
2489 * Scan in the highmem->dma direction for the highest
2490 * zone which needs scanning
2491 */
2492 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2493 struct zone *zone = pgdat->node_zones + i;
1da177e4 2494
d6277db4
RW
2495 if (!populated_zone(zone))
2496 continue;
1da177e4 2497
93e4a89a 2498 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2499 continue;
1da177e4 2500
556adecb
RR
2501 /*
2502 * Do some background aging of the anon list, to give
2503 * pages a chance to be referenced before reclaiming.
2504 */
14797e23 2505 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2506 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2507 &sc, priority, 0);
2508
88f5acf8 2509 if (!zone_watermark_ok_safe(zone, order,
41858966 2510 high_wmark_pages(zone), 0, 0)) {
d6277db4 2511 end_zone = i;
e1dbeda6 2512 break;
439423f6
SL
2513 } else {
2514 /* If balanced, clear the congested flag */
2515 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2516 }
1da177e4 2517 }
e1dbeda6
AM
2518 if (i < 0)
2519 goto out;
2520
1da177e4
LT
2521 for (i = 0; i <= end_zone; i++) {
2522 struct zone *zone = pgdat->node_zones + i;
2523
adea02a1 2524 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2525 }
2526
2527 /*
2528 * Now scan the zone in the dma->highmem direction, stopping
2529 * at the last zone which needs scanning.
2530 *
2531 * We do this because the page allocator works in the opposite
2532 * direction. This prevents the page allocator from allocating
2533 * pages behind kswapd's direction of progress, which would
2534 * cause too much scanning of the lower zones.
2535 */
2536 for (i = 0; i <= end_zone; i++) {
2537 struct zone *zone = pgdat->node_zones + i;
b15e0905 2538 int nr_slab;
8afdcece 2539 unsigned long balance_gap;
1da177e4 2540
f3fe6512 2541 if (!populated_zone(zone))
1da177e4
LT
2542 continue;
2543
93e4a89a 2544 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2545 continue;
2546
1da177e4 2547 sc.nr_scanned = 0;
4e416953 2548
0ae5e89c 2549 nr_soft_scanned = 0;
4e416953
BS
2550 /*
2551 * Call soft limit reclaim before calling shrink_zone.
4e416953 2552 */
0ae5e89c
YH
2553 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2554 order, sc.gfp_mask,
2555 &nr_soft_scanned);
2556 sc.nr_reclaimed += nr_soft_reclaimed;
2557 total_scanned += nr_soft_scanned;
00918b6a 2558
32a4330d 2559 /*
8afdcece
MG
2560 * We put equal pressure on every zone, unless
2561 * one zone has way too many pages free
2562 * already. The "too many pages" is defined
2563 * as the high wmark plus a "gap" where the
2564 * gap is either the low watermark or 1%
2565 * of the zone, whichever is smaller.
32a4330d 2566 */
8afdcece
MG
2567 balance_gap = min(low_wmark_pages(zone),
2568 (zone->present_pages +
2569 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2570 KSWAPD_ZONE_BALANCE_GAP_RATIO);
88f5acf8 2571 if (!zone_watermark_ok_safe(zone, order,
8afdcece 2572 high_wmark_pages(zone) + balance_gap,
d7868dae 2573 end_zone, 0)) {
a79311c1 2574 shrink_zone(priority, zone, &sc);
5a03b051 2575
d7868dae
MG
2576 reclaim_state->reclaimed_slab = 0;
2577 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2578 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2579 total_scanned += sc.nr_scanned;
2580
2581 if (nr_slab == 0 && !zone_reclaimable(zone))
2582 zone->all_unreclaimable = 1;
2583 }
2584
1da177e4
LT
2585 /*
2586 * If we've done a decent amount of scanning and
2587 * the reclaim ratio is low, start doing writepage
2588 * even in laptop mode
2589 */
2590 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2591 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2592 sc.may_writepage = 1;
bb3ab596 2593
215ddd66
MG
2594 if (zone->all_unreclaimable) {
2595 if (end_zone && end_zone == i)
2596 end_zone--;
d7868dae 2597 continue;
215ddd66 2598 }
d7868dae 2599
88f5acf8 2600 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2601 high_wmark_pages(zone), end_zone, 0)) {
2602 all_zones_ok = 0;
2603 /*
2604 * We are still under min water mark. This
2605 * means that we have a GFP_ATOMIC allocation
2606 * failure risk. Hurry up!
2607 */
88f5acf8 2608 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2609 min_wmark_pages(zone), end_zone, 0))
2610 has_under_min_watermark_zone = 1;
0e093d99
MG
2611 } else {
2612 /*
2613 * If a zone reaches its high watermark,
2614 * consider it to be no longer congested. It's
2615 * possible there are dirty pages backed by
2616 * congested BDIs but as pressure is relieved,
2617 * spectulatively avoid congestion waits
2618 */
2619 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2620 if (i <= *classzone_idx)
1741c877 2621 balanced += zone->present_pages;
45973d74 2622 }
bb3ab596 2623
1da177e4 2624 }
dc83edd9 2625 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2626 break; /* kswapd: all done */
2627 /*
2628 * OK, kswapd is getting into trouble. Take a nap, then take
2629 * another pass across the zones.
2630 */
bb3ab596
KM
2631 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2632 if (has_under_min_watermark_zone)
2633 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2634 else
2635 congestion_wait(BLK_RW_ASYNC, HZ/10);
2636 }
1da177e4
LT
2637
2638 /*
2639 * We do this so kswapd doesn't build up large priorities for
2640 * example when it is freeing in parallel with allocators. It
2641 * matches the direct reclaim path behaviour in terms of impact
2642 * on zone->*_priority.
2643 */
a79311c1 2644 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2645 break;
2646 }
2647out:
99504748
MG
2648
2649 /*
2650 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2651 * high-order: Balanced zones must make up at least 25% of the node
2652 * for the node to be balanced
99504748 2653 */
dc83edd9 2654 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2655 cond_resched();
8357376d
RW
2656
2657 try_to_freeze();
2658
73ce02e9
KM
2659 /*
2660 * Fragmentation may mean that the system cannot be
2661 * rebalanced for high-order allocations in all zones.
2662 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2663 * it means the zones have been fully scanned and are still
2664 * not balanced. For high-order allocations, there is
2665 * little point trying all over again as kswapd may
2666 * infinite loop.
2667 *
2668 * Instead, recheck all watermarks at order-0 as they
2669 * are the most important. If watermarks are ok, kswapd will go
2670 * back to sleep. High-order users can still perform direct
2671 * reclaim if they wish.
2672 */
2673 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2674 order = sc.order = 0;
2675
1da177e4
LT
2676 goto loop_again;
2677 }
2678
99504748
MG
2679 /*
2680 * If kswapd was reclaiming at a higher order, it has the option of
2681 * sleeping without all zones being balanced. Before it does, it must
2682 * ensure that the watermarks for order-0 on *all* zones are met and
2683 * that the congestion flags are cleared. The congestion flag must
2684 * be cleared as kswapd is the only mechanism that clears the flag
2685 * and it is potentially going to sleep here.
2686 */
2687 if (order) {
2688 for (i = 0; i <= end_zone; i++) {
2689 struct zone *zone = pgdat->node_zones + i;
2690
2691 if (!populated_zone(zone))
2692 continue;
2693
2694 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2695 continue;
2696
2697 /* Confirm the zone is balanced for order-0 */
2698 if (!zone_watermark_ok(zone, 0,
2699 high_wmark_pages(zone), 0, 0)) {
2700 order = sc.order = 0;
2701 goto loop_again;
2702 }
2703
2704 /* If balanced, clear the congested flag */
2705 zone_clear_flag(zone, ZONE_CONGESTED);
2706 }
2707 }
2708
0abdee2b
MG
2709 /*
2710 * Return the order we were reclaiming at so sleeping_prematurely()
2711 * makes a decision on the order we were last reclaiming at. However,
2712 * if another caller entered the allocator slow path while kswapd
2713 * was awake, order will remain at the higher level
2714 */
dc83edd9 2715 *classzone_idx = end_zone;
0abdee2b 2716 return order;
1da177e4
LT
2717}
2718
dc83edd9 2719static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2720{
2721 long remaining = 0;
2722 DEFINE_WAIT(wait);
2723
2724 if (freezing(current) || kthread_should_stop())
2725 return;
2726
2727 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2728
2729 /* Try to sleep for a short interval */
dc83edd9 2730 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2731 remaining = schedule_timeout(HZ/10);
2732 finish_wait(&pgdat->kswapd_wait, &wait);
2733 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2734 }
2735
2736 /*
2737 * After a short sleep, check if it was a premature sleep. If not, then
2738 * go fully to sleep until explicitly woken up.
2739 */
dc83edd9 2740 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2741 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2742
2743 /*
2744 * vmstat counters are not perfectly accurate and the estimated
2745 * value for counters such as NR_FREE_PAGES can deviate from the
2746 * true value by nr_online_cpus * threshold. To avoid the zone
2747 * watermarks being breached while under pressure, we reduce the
2748 * per-cpu vmstat threshold while kswapd is awake and restore
2749 * them before going back to sleep.
2750 */
2751 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2752 schedule();
2753 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2754 } else {
2755 if (remaining)
2756 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2757 else
2758 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2759 }
2760 finish_wait(&pgdat->kswapd_wait, &wait);
2761}
2762
1da177e4
LT
2763/*
2764 * The background pageout daemon, started as a kernel thread
4f98a2fe 2765 * from the init process.
1da177e4
LT
2766 *
2767 * This basically trickles out pages so that we have _some_
2768 * free memory available even if there is no other activity
2769 * that frees anything up. This is needed for things like routing
2770 * etc, where we otherwise might have all activity going on in
2771 * asynchronous contexts that cannot page things out.
2772 *
2773 * If there are applications that are active memory-allocators
2774 * (most normal use), this basically shouldn't matter.
2775 */
2776static int kswapd(void *p)
2777{
215ddd66
MG
2778 unsigned long order, new_order;
2779 int classzone_idx, new_classzone_idx;
1da177e4
LT
2780 pg_data_t *pgdat = (pg_data_t*)p;
2781 struct task_struct *tsk = current;
f0bc0a60 2782
1da177e4
LT
2783 struct reclaim_state reclaim_state = {
2784 .reclaimed_slab = 0,
2785 };
a70f7302 2786 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2787
cf40bd16
NP
2788 lockdep_set_current_reclaim_state(GFP_KERNEL);
2789
174596a0 2790 if (!cpumask_empty(cpumask))
c5f59f08 2791 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2792 current->reclaim_state = &reclaim_state;
2793
2794 /*
2795 * Tell the memory management that we're a "memory allocator",
2796 * and that if we need more memory we should get access to it
2797 * regardless (see "__alloc_pages()"). "kswapd" should
2798 * never get caught in the normal page freeing logic.
2799 *
2800 * (Kswapd normally doesn't need memory anyway, but sometimes
2801 * you need a small amount of memory in order to be able to
2802 * page out something else, and this flag essentially protects
2803 * us from recursively trying to free more memory as we're
2804 * trying to free the first piece of memory in the first place).
2805 */
930d9152 2806 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2807 set_freezable();
1da177e4 2808
215ddd66
MG
2809 order = new_order = 0;
2810 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
1da177e4 2811 for ( ; ; ) {
8fe23e05 2812 int ret;
3e1d1d28 2813
215ddd66
MG
2814 /*
2815 * If the last balance_pgdat was unsuccessful it's unlikely a
2816 * new request of a similar or harder type will succeed soon
2817 * so consider going to sleep on the basis we reclaimed at
2818 */
2819 if (classzone_idx >= new_classzone_idx && order == new_order) {
2820 new_order = pgdat->kswapd_max_order;
2821 new_classzone_idx = pgdat->classzone_idx;
2822 pgdat->kswapd_max_order = 0;
2823 pgdat->classzone_idx = pgdat->nr_zones - 1;
2824 }
2825
99504748 2826 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2827 /*
2828 * Don't sleep if someone wants a larger 'order'
99504748 2829 * allocation or has tigher zone constraints
1da177e4
LT
2830 */
2831 order = new_order;
99504748 2832 classzone_idx = new_classzone_idx;
1da177e4 2833 } else {
dc83edd9 2834 kswapd_try_to_sleep(pgdat, order, classzone_idx);
1da177e4 2835 order = pgdat->kswapd_max_order;
99504748 2836 classzone_idx = pgdat->classzone_idx;
4d40502e 2837 pgdat->kswapd_max_order = 0;
215ddd66 2838 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2839 }
1da177e4 2840
8fe23e05
DR
2841 ret = try_to_freeze();
2842 if (kthread_should_stop())
2843 break;
2844
2845 /*
2846 * We can speed up thawing tasks if we don't call balance_pgdat
2847 * after returning from the refrigerator
2848 */
33906bc5
MG
2849 if (!ret) {
2850 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
dc83edd9 2851 order = balance_pgdat(pgdat, order, &classzone_idx);
33906bc5 2852 }
1da177e4
LT
2853 }
2854 return 0;
2855}
2856
2857/*
2858 * A zone is low on free memory, so wake its kswapd task to service it.
2859 */
99504748 2860void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2861{
2862 pg_data_t *pgdat;
2863
f3fe6512 2864 if (!populated_zone(zone))
1da177e4
LT
2865 return;
2866
88f5acf8 2867 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2868 return;
88f5acf8 2869 pgdat = zone->zone_pgdat;
99504748 2870 if (pgdat->kswapd_max_order < order) {
1da177e4 2871 pgdat->kswapd_max_order = order;
99504748
MG
2872 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2873 }
8d0986e2 2874 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2875 return;
88f5acf8
MG
2876 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2877 return;
2878
2879 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2880 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2881}
2882
adea02a1
WF
2883/*
2884 * The reclaimable count would be mostly accurate.
2885 * The less reclaimable pages may be
2886 * - mlocked pages, which will be moved to unevictable list when encountered
2887 * - mapped pages, which may require several travels to be reclaimed
2888 * - dirty pages, which is not "instantly" reclaimable
2889 */
2890unsigned long global_reclaimable_pages(void)
4f98a2fe 2891{
adea02a1
WF
2892 int nr;
2893
2894 nr = global_page_state(NR_ACTIVE_FILE) +
2895 global_page_state(NR_INACTIVE_FILE);
2896
2897 if (nr_swap_pages > 0)
2898 nr += global_page_state(NR_ACTIVE_ANON) +
2899 global_page_state(NR_INACTIVE_ANON);
2900
2901 return nr;
2902}
2903
2904unsigned long zone_reclaimable_pages(struct zone *zone)
2905{
2906 int nr;
2907
2908 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2909 zone_page_state(zone, NR_INACTIVE_FILE);
2910
2911 if (nr_swap_pages > 0)
2912 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2913 zone_page_state(zone, NR_INACTIVE_ANON);
2914
2915 return nr;
4f98a2fe
RR
2916}
2917
c6f37f12 2918#ifdef CONFIG_HIBERNATION
1da177e4 2919/*
7b51755c 2920 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2921 * freed pages.
2922 *
2923 * Rather than trying to age LRUs the aim is to preserve the overall
2924 * LRU order by reclaiming preferentially
2925 * inactive > active > active referenced > active mapped
1da177e4 2926 */
7b51755c 2927unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2928{
d6277db4 2929 struct reclaim_state reclaim_state;
d6277db4 2930 struct scan_control sc = {
7b51755c
KM
2931 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2932 .may_swap = 1,
2933 .may_unmap = 1,
d6277db4 2934 .may_writepage = 1,
7b51755c
KM
2935 .nr_to_reclaim = nr_to_reclaim,
2936 .hibernation_mode = 1,
7b51755c 2937 .order = 0,
1da177e4 2938 };
a09ed5e0
YH
2939 struct shrink_control shrink = {
2940 .gfp_mask = sc.gfp_mask,
2941 };
2942 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2943 struct task_struct *p = current;
2944 unsigned long nr_reclaimed;
1da177e4 2945
7b51755c
KM
2946 p->flags |= PF_MEMALLOC;
2947 lockdep_set_current_reclaim_state(sc.gfp_mask);
2948 reclaim_state.reclaimed_slab = 0;
2949 p->reclaim_state = &reclaim_state;
d6277db4 2950
a09ed5e0 2951 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2952
7b51755c
KM
2953 p->reclaim_state = NULL;
2954 lockdep_clear_current_reclaim_state();
2955 p->flags &= ~PF_MEMALLOC;
d6277db4 2956
7b51755c 2957 return nr_reclaimed;
1da177e4 2958}
c6f37f12 2959#endif /* CONFIG_HIBERNATION */
1da177e4 2960
1da177e4
LT
2961/* It's optimal to keep kswapds on the same CPUs as their memory, but
2962 not required for correctness. So if the last cpu in a node goes
2963 away, we get changed to run anywhere: as the first one comes back,
2964 restore their cpu bindings. */
9c7b216d 2965static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2966 unsigned long action, void *hcpu)
1da177e4 2967{
58c0a4a7 2968 int nid;
1da177e4 2969
8bb78442 2970 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2971 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2972 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2973 const struct cpumask *mask;
2974
2975 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2976
3e597945 2977 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2978 /* One of our CPUs online: restore mask */
c5f59f08 2979 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2980 }
2981 }
2982 return NOTIFY_OK;
2983}
1da177e4 2984
3218ae14
YG
2985/*
2986 * This kswapd start function will be called by init and node-hot-add.
2987 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2988 */
2989int kswapd_run(int nid)
2990{
2991 pg_data_t *pgdat = NODE_DATA(nid);
2992 int ret = 0;
2993
2994 if (pgdat->kswapd)
2995 return 0;
2996
2997 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2998 if (IS_ERR(pgdat->kswapd)) {
2999 /* failure at boot is fatal */
3000 BUG_ON(system_state == SYSTEM_BOOTING);
3001 printk("Failed to start kswapd on node %d\n",nid);
3002 ret = -1;
3003 }
3004 return ret;
3005}
3006
8fe23e05
DR
3007/*
3008 * Called by memory hotplug when all memory in a node is offlined.
3009 */
3010void kswapd_stop(int nid)
3011{
3012 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3013
3014 if (kswapd)
3015 kthread_stop(kswapd);
3016}
3017
1da177e4
LT
3018static int __init kswapd_init(void)
3019{
3218ae14 3020 int nid;
69e05944 3021
1da177e4 3022 swap_setup();
9422ffba 3023 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3024 kswapd_run(nid);
1da177e4
LT
3025 hotcpu_notifier(cpu_callback, 0);
3026 return 0;
3027}
3028
3029module_init(kswapd_init)
9eeff239
CL
3030
3031#ifdef CONFIG_NUMA
3032/*
3033 * Zone reclaim mode
3034 *
3035 * If non-zero call zone_reclaim when the number of free pages falls below
3036 * the watermarks.
9eeff239
CL
3037 */
3038int zone_reclaim_mode __read_mostly;
3039
1b2ffb78 3040#define RECLAIM_OFF 0
7d03431c 3041#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3042#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3043#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3044
a92f7126
CL
3045/*
3046 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3047 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3048 * a zone.
3049 */
3050#define ZONE_RECLAIM_PRIORITY 4
3051
9614634f
CL
3052/*
3053 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3054 * occur.
3055 */
3056int sysctl_min_unmapped_ratio = 1;
3057
0ff38490
CL
3058/*
3059 * If the number of slab pages in a zone grows beyond this percentage then
3060 * slab reclaim needs to occur.
3061 */
3062int sysctl_min_slab_ratio = 5;
3063
90afa5de
MG
3064static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3065{
3066 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3067 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3068 zone_page_state(zone, NR_ACTIVE_FILE);
3069
3070 /*
3071 * It's possible for there to be more file mapped pages than
3072 * accounted for by the pages on the file LRU lists because
3073 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3074 */
3075 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3076}
3077
3078/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3079static long zone_pagecache_reclaimable(struct zone *zone)
3080{
3081 long nr_pagecache_reclaimable;
3082 long delta = 0;
3083
3084 /*
3085 * If RECLAIM_SWAP is set, then all file pages are considered
3086 * potentially reclaimable. Otherwise, we have to worry about
3087 * pages like swapcache and zone_unmapped_file_pages() provides
3088 * a better estimate
3089 */
3090 if (zone_reclaim_mode & RECLAIM_SWAP)
3091 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3092 else
3093 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3094
3095 /* If we can't clean pages, remove dirty pages from consideration */
3096 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3097 delta += zone_page_state(zone, NR_FILE_DIRTY);
3098
3099 /* Watch for any possible underflows due to delta */
3100 if (unlikely(delta > nr_pagecache_reclaimable))
3101 delta = nr_pagecache_reclaimable;
3102
3103 return nr_pagecache_reclaimable - delta;
3104}
3105
9eeff239
CL
3106/*
3107 * Try to free up some pages from this zone through reclaim.
3108 */
179e9639 3109static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3110{
7fb2d46d 3111 /* Minimum pages needed in order to stay on node */
69e05944 3112 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3113 struct task_struct *p = current;
3114 struct reclaim_state reclaim_state;
8695949a 3115 int priority;
179e9639
AM
3116 struct scan_control sc = {
3117 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3118 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3119 .may_swap = 1,
22fba335
KM
3120 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3121 SWAP_CLUSTER_MAX),
179e9639 3122 .gfp_mask = gfp_mask,
bd2f6199 3123 .order = order,
179e9639 3124 };
a09ed5e0
YH
3125 struct shrink_control shrink = {
3126 .gfp_mask = sc.gfp_mask,
3127 };
15748048 3128 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3129
9eeff239 3130 cond_resched();
d4f7796e
CL
3131 /*
3132 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3133 * and we also need to be able to write out pages for RECLAIM_WRITE
3134 * and RECLAIM_SWAP.
3135 */
3136 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3137 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3138 reclaim_state.reclaimed_slab = 0;
3139 p->reclaim_state = &reclaim_state;
c84db23c 3140
90afa5de 3141 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3142 /*
3143 * Free memory by calling shrink zone with increasing
3144 * priorities until we have enough memory freed.
3145 */
3146 priority = ZONE_RECLAIM_PRIORITY;
3147 do {
a79311c1 3148 shrink_zone(priority, zone, &sc);
0ff38490 3149 priority--;
a79311c1 3150 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3151 }
c84db23c 3152
15748048
KM
3153 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3154 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3155 /*
7fb2d46d 3156 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3157 * many pages were freed in this zone. So we take the current
3158 * number of slab pages and shake the slab until it is reduced
3159 * by the same nr_pages that we used for reclaiming unmapped
3160 * pages.
2a16e3f4 3161 *
0ff38490
CL
3162 * Note that shrink_slab will free memory on all zones and may
3163 * take a long time.
2a16e3f4 3164 */
4dc4b3d9
KM
3165 for (;;) {
3166 unsigned long lru_pages = zone_reclaimable_pages(zone);
3167
3168 /* No reclaimable slab or very low memory pressure */
1495f230 3169 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3170 break;
3171
3172 /* Freed enough memory */
3173 nr_slab_pages1 = zone_page_state(zone,
3174 NR_SLAB_RECLAIMABLE);
3175 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3176 break;
3177 }
83e33a47
CL
3178
3179 /*
3180 * Update nr_reclaimed by the number of slab pages we
3181 * reclaimed from this zone.
3182 */
15748048
KM
3183 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3184 if (nr_slab_pages1 < nr_slab_pages0)
3185 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3186 }
3187
9eeff239 3188 p->reclaim_state = NULL;
d4f7796e 3189 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3190 lockdep_clear_current_reclaim_state();
a79311c1 3191 return sc.nr_reclaimed >= nr_pages;
9eeff239 3192}
179e9639
AM
3193
3194int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3195{
179e9639 3196 int node_id;
d773ed6b 3197 int ret;
179e9639
AM
3198
3199 /*
0ff38490
CL
3200 * Zone reclaim reclaims unmapped file backed pages and
3201 * slab pages if we are over the defined limits.
34aa1330 3202 *
9614634f
CL
3203 * A small portion of unmapped file backed pages is needed for
3204 * file I/O otherwise pages read by file I/O will be immediately
3205 * thrown out if the zone is overallocated. So we do not reclaim
3206 * if less than a specified percentage of the zone is used by
3207 * unmapped file backed pages.
179e9639 3208 */
90afa5de
MG
3209 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3210 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3211 return ZONE_RECLAIM_FULL;
179e9639 3212
93e4a89a 3213 if (zone->all_unreclaimable)
fa5e084e 3214 return ZONE_RECLAIM_FULL;
d773ed6b 3215
179e9639 3216 /*
d773ed6b 3217 * Do not scan if the allocation should not be delayed.
179e9639 3218 */
d773ed6b 3219 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3220 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3221
3222 /*
3223 * Only run zone reclaim on the local zone or on zones that do not
3224 * have associated processors. This will favor the local processor
3225 * over remote processors and spread off node memory allocations
3226 * as wide as possible.
3227 */
89fa3024 3228 node_id = zone_to_nid(zone);
37c0708d 3229 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3230 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3231
3232 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3233 return ZONE_RECLAIM_NOSCAN;
3234
d773ed6b
DR
3235 ret = __zone_reclaim(zone, gfp_mask, order);
3236 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3237
24cf7251
MG
3238 if (!ret)
3239 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3240
d773ed6b 3241 return ret;
179e9639 3242}
9eeff239 3243#endif
894bc310 3244
894bc310
LS
3245/*
3246 * page_evictable - test whether a page is evictable
3247 * @page: the page to test
3248 * @vma: the VMA in which the page is or will be mapped, may be NULL
3249 *
3250 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3251 * lists vs unevictable list. The vma argument is !NULL when called from the
3252 * fault path to determine how to instantate a new page.
894bc310
LS
3253 *
3254 * Reasons page might not be evictable:
ba9ddf49 3255 * (1) page's mapping marked unevictable
b291f000 3256 * (2) page is part of an mlocked VMA
ba9ddf49 3257 *
894bc310
LS
3258 */
3259int page_evictable(struct page *page, struct vm_area_struct *vma)
3260{
3261
ba9ddf49
LS
3262 if (mapping_unevictable(page_mapping(page)))
3263 return 0;
3264
b291f000
NP
3265 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3266 return 0;
894bc310
LS
3267
3268 return 1;
3269}
89e004ea
LS
3270
3271/**
3272 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3273 * @page: page to check evictability and move to appropriate lru list
3274 * @zone: zone page is in
3275 *
3276 * Checks a page for evictability and moves the page to the appropriate
3277 * zone lru list.
3278 *
3279 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3280 * have PageUnevictable set.
3281 */
3282static void check_move_unevictable_page(struct page *page, struct zone *zone)
3283{
3284 VM_BUG_ON(PageActive(page));
3285
3286retry:
3287 ClearPageUnevictable(page);
3288 if (page_evictable(page, NULL)) {
401a8e1c 3289 enum lru_list l = page_lru_base_type(page);
af936a16 3290
89e004ea
LS
3291 __dec_zone_state(zone, NR_UNEVICTABLE);
3292 list_move(&page->lru, &zone->lru[l].list);
08e552c6 3293 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
3294 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3295 __count_vm_event(UNEVICTABLE_PGRESCUED);
3296 } else {
3297 /*
3298 * rotate unevictable list
3299 */
3300 SetPageUnevictable(page);
3301 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 3302 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
3303 if (page_evictable(page, NULL))
3304 goto retry;
3305 }
3306}
3307
3308/**
3309 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3310 * @mapping: struct address_space to scan for evictable pages
3311 *
3312 * Scan all pages in mapping. Check unevictable pages for
3313 * evictability and move them to the appropriate zone lru list.
3314 */
3315void scan_mapping_unevictable_pages(struct address_space *mapping)
3316{
3317 pgoff_t next = 0;
3318 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3319 PAGE_CACHE_SHIFT;
3320 struct zone *zone;
3321 struct pagevec pvec;
3322
3323 if (mapping->nrpages == 0)
3324 return;
3325
3326 pagevec_init(&pvec, 0);
3327 while (next < end &&
3328 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3329 int i;
3330 int pg_scanned = 0;
3331
3332 zone = NULL;
3333
3334 for (i = 0; i < pagevec_count(&pvec); i++) {
3335 struct page *page = pvec.pages[i];
3336 pgoff_t page_index = page->index;
3337 struct zone *pagezone = page_zone(page);
3338
3339 pg_scanned++;
3340 if (page_index > next)
3341 next = page_index;
3342 next++;
3343
3344 if (pagezone != zone) {
3345 if (zone)
3346 spin_unlock_irq(&zone->lru_lock);
3347 zone = pagezone;
3348 spin_lock_irq(&zone->lru_lock);
3349 }
3350
3351 if (PageLRU(page) && PageUnevictable(page))
3352 check_move_unevictable_page(page, zone);
3353 }
3354 if (zone)
3355 spin_unlock_irq(&zone->lru_lock);
3356 pagevec_release(&pvec);
3357
3358 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3359 }
3360
3361}
af936a16
LS
3362
3363/**
3364 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3365 * @zone - zone of which to scan the unevictable list
3366 *
3367 * Scan @zone's unevictable LRU lists to check for pages that have become
3368 * evictable. Move those that have to @zone's inactive list where they
3369 * become candidates for reclaim, unless shrink_inactive_zone() decides
3370 * to reactivate them. Pages that are still unevictable are rotated
3371 * back onto @zone's unevictable list.
3372 */
3373#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 3374static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
3375{
3376 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3377 unsigned long scan;
3378 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3379
3380 while (nr_to_scan > 0) {
3381 unsigned long batch_size = min(nr_to_scan,
3382 SCAN_UNEVICTABLE_BATCH_SIZE);
3383
3384 spin_lock_irq(&zone->lru_lock);
3385 for (scan = 0; scan < batch_size; scan++) {
3386 struct page *page = lru_to_page(l_unevictable);
3387
3388 if (!trylock_page(page))
3389 continue;
3390
3391 prefetchw_prev_lru_page(page, l_unevictable, flags);
3392
3393 if (likely(PageLRU(page) && PageUnevictable(page)))
3394 check_move_unevictable_page(page, zone);
3395
3396 unlock_page(page);
3397 }
3398 spin_unlock_irq(&zone->lru_lock);
3399
3400 nr_to_scan -= batch_size;
3401 }
3402}
3403
3404
3405/**
3406 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3407 *
3408 * A really big hammer: scan all zones' unevictable LRU lists to check for
3409 * pages that have become evictable. Move those back to the zones'
3410 * inactive list where they become candidates for reclaim.
3411 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3412 * and we add swap to the system. As such, it runs in the context of a task
3413 * that has possibly/probably made some previously unevictable pages
3414 * evictable.
3415 */
ff30153b 3416static void scan_all_zones_unevictable_pages(void)
af936a16
LS
3417{
3418 struct zone *zone;
3419
3420 for_each_zone(zone) {
3421 scan_zone_unevictable_pages(zone);
3422 }
3423}
3424
3425/*
3426 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3427 * all nodes' unevictable lists for evictable pages
3428 */
3429unsigned long scan_unevictable_pages;
3430
3431int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3432 void __user *buffer,
af936a16
LS
3433 size_t *length, loff_t *ppos)
3434{
8d65af78 3435 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3436
3437 if (write && *(unsigned long *)table->data)
3438 scan_all_zones_unevictable_pages();
3439
3440 scan_unevictable_pages = 0;
3441 return 0;
3442}
3443
e4455abb 3444#ifdef CONFIG_NUMA
af936a16
LS
3445/*
3446 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3447 * a specified node's per zone unevictable lists for evictable pages.
3448 */
3449
3450static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3451 struct sysdev_attribute *attr,
3452 char *buf)
3453{
3454 return sprintf(buf, "0\n"); /* always zero; should fit... */
3455}
3456
3457static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3458 struct sysdev_attribute *attr,
3459 const char *buf, size_t count)
3460{
3461 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3462 struct zone *zone;
3463 unsigned long res;
3464 unsigned long req = strict_strtoul(buf, 10, &res);
3465
3466 if (!req)
3467 return 1; /* zero is no-op */
3468
3469 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3470 if (!populated_zone(zone))
3471 continue;
3472 scan_zone_unevictable_pages(zone);
3473 }
3474 return 1;
3475}
3476
3477
3478static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3479 read_scan_unevictable_node,
3480 write_scan_unevictable_node);
3481
3482int scan_unevictable_register_node(struct node *node)
3483{
3484 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3485}
3486
3487void scan_unevictable_unregister_node(struct node *node)
3488{
3489 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3490}
e4455abb 3491#endif