]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
fs/proc/page.c: add PageAnon check to surely detect thp
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
117aad1e 51#include <linux/balloon_compaction.h>
1da177e4 52
0f8053a5
NP
53#include "internal.h"
54
33906bc5
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/vmscan.h>
57
1da177e4 58struct scan_control {
1da177e4
LT
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
61
a79311c1
RR
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
64
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
7b51755c
KM
68 unsigned long hibernation_mode;
69
1da177e4 70 /* This context's GFP mask */
6daa0e28 71 gfp_t gfp_mask;
1da177e4
LT
72
73 int may_writepage;
74
a6dc60f8
JW
75 /* Can mapped pages be reclaimed? */
76 int may_unmap;
f1fd1067 77
2e2e4259
KM
78 /* Can pages be swapped as part of reclaim? */
79 int may_swap;
80
5ad333eb 81 int order;
66e1707b 82
9e3b2f8c
KK
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
f16015fb
JW
86 /*
87 * The memory cgroup that hit its limit and as a result is the
88 * primary target of this reclaim invocation.
89 */
90 struct mem_cgroup *target_mem_cgroup;
66e1707b 91
327c0e96
KH
92 /*
93 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 * are scanned.
95 */
96 nodemask_t *nodemask;
1da177e4
LT
97};
98
1da177e4
LT
99#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101#ifdef ARCH_HAS_PREFETCH
102#define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111#else
112#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113#endif
114
115#ifdef ARCH_HAS_PREFETCHW
116#define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125#else
126#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127#endif
128
129/*
130 * From 0 .. 100. Higher means more swappy.
131 */
132int vm_swappiness = 60;
b21e0b90 133unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
134
135static LIST_HEAD(shrinker_list);
136static DECLARE_RWSEM(shrinker_rwsem);
137
c255a458 138#ifdef CONFIG_MEMCG
89b5fae5
JW
139static bool global_reclaim(struct scan_control *sc)
140{
f16015fb 141 return !sc->target_mem_cgroup;
89b5fae5 142}
91a45470 143#else
89b5fae5
JW
144static bool global_reclaim(struct scan_control *sc)
145{
146 return true;
147}
91a45470
KH
148#endif
149
6e543d57
LD
150unsigned long zone_reclaimable_pages(struct zone *zone)
151{
152 int nr;
153
154 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 zone_page_state(zone, NR_INACTIVE_FILE);
156
157 if (get_nr_swap_pages() > 0)
158 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 zone_page_state(zone, NR_INACTIVE_ANON);
160
161 return nr;
162}
163
164bool zone_reclaimable(struct zone *zone)
165{
166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167}
168
4d7dcca2 169static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 170{
c3c787e8 171 if (!mem_cgroup_disabled())
4d7dcca2 172 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 173
074291fe 174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
175}
176
1da177e4 177/*
1d3d4437 178 * Add a shrinker callback to be called from the vm.
1da177e4 179 */
1d3d4437 180int register_shrinker(struct shrinker *shrinker)
1da177e4 181{
1d3d4437
GC
182 size_t size = sizeof(*shrinker->nr_deferred);
183
184 /*
185 * If we only have one possible node in the system anyway, save
186 * ourselves the trouble and disable NUMA aware behavior. This way we
187 * will save memory and some small loop time later.
188 */
189 if (nr_node_ids == 1)
190 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191
192 if (shrinker->flags & SHRINKER_NUMA_AWARE)
193 size *= nr_node_ids;
194
195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 if (!shrinker->nr_deferred)
197 return -ENOMEM;
198
8e1f936b
RR
199 down_write(&shrinker_rwsem);
200 list_add_tail(&shrinker->list, &shrinker_list);
201 up_write(&shrinker_rwsem);
1d3d4437 202 return 0;
1da177e4 203}
8e1f936b 204EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
205
206/*
207 * Remove one
208 */
8e1f936b 209void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
210{
211 down_write(&shrinker_rwsem);
212 list_del(&shrinker->list);
213 up_write(&shrinker_rwsem);
ae393321 214 kfree(shrinker->nr_deferred);
1da177e4 215}
8e1f936b 216EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
217
218#define SHRINK_BATCH 128
1d3d4437
GC
219
220static unsigned long
221shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
222 unsigned long nr_pages_scanned, unsigned long lru_pages)
223{
224 unsigned long freed = 0;
225 unsigned long long delta;
226 long total_scan;
227 long max_pass;
228 long nr;
229 long new_nr;
230 int nid = shrinkctl->nid;
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
233
a0b02131 234 max_pass = shrinker->count_objects(shrinker, shrinkctl);
1d3d4437
GC
235 if (max_pass == 0)
236 return 0;
237
238 /*
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
242 */
243 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
244
245 total_scan = nr;
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 delta *= max_pass;
248 do_div(delta, lru_pages + 1);
249 total_scan += delta;
250 if (total_scan < 0) {
251 printk(KERN_ERR
252 "shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 253 shrinker->scan_objects, total_scan);
1d3d4437
GC
254 total_scan = max_pass;
255 }
256
257 /*
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
264 * memory.
265 *
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
268 */
269 if (delta < max_pass / 4)
270 total_scan = min(total_scan, max_pass / 2);
271
272 /*
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
276 */
277 if (total_scan > max_pass * 2)
278 total_scan = max_pass * 2;
279
280 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
281 nr_pages_scanned, lru_pages,
282 max_pass, delta, total_scan);
283
284 while (total_scan >= batch_size) {
a0b02131 285 unsigned long ret;
1d3d4437 286
a0b02131
DC
287 shrinkctl->nr_to_scan = batch_size;
288 ret = shrinker->scan_objects(shrinker, shrinkctl);
289 if (ret == SHRINK_STOP)
290 break;
291 freed += ret;
1d3d4437
GC
292
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
295
296 cond_resched();
297 }
298
299 /*
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
303 */
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_deferred[nid]);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
309
310 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
311 return freed;
1495f230
YH
312}
313
1da177e4
LT
314/*
315 * Call the shrink functions to age shrinkable caches
316 *
317 * Here we assume it costs one seek to replace a lru page and that it also
318 * takes a seek to recreate a cache object. With this in mind we age equal
319 * percentages of the lru and ageable caches. This should balance the seeks
320 * generated by these structures.
321 *
183ff22b 322 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
323 * slab to avoid swapping.
324 *
325 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
326 *
327 * `lru_pages' represents the number of on-LRU pages in all the zones which
328 * are eligible for the caller's allocation attempt. It is used for balancing
329 * slab reclaim versus page reclaim.
b15e0905 330 *
331 * Returns the number of slab objects which we shrunk.
1da177e4 332 */
24f7c6b9 333unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 334 unsigned long nr_pages_scanned,
a09ed5e0 335 unsigned long lru_pages)
1da177e4
LT
336{
337 struct shrinker *shrinker;
24f7c6b9 338 unsigned long freed = 0;
1da177e4 339
1495f230
YH
340 if (nr_pages_scanned == 0)
341 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 342
f06590bd 343 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
344 /*
345 * If we would return 0, our callers would understand that we
346 * have nothing else to shrink and give up trying. By returning
347 * 1 we keep it going and assume we'll be able to shrink next
348 * time.
349 */
350 freed = 1;
f06590bd
MK
351 goto out;
352 }
1da177e4
LT
353
354 list_for_each_entry(shrinker, &shrinker_list, list) {
1d3d4437
GC
355 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
356 if (!node_online(shrinkctl->nid))
357 continue;
1da177e4 358
1d3d4437
GC
359 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
360 (shrinkctl->nid != 0))
1da177e4 361 break;
1da177e4 362
1d3d4437
GC
363 freed += shrink_slab_node(shrinkctl, shrinker,
364 nr_pages_scanned, lru_pages);
1da177e4 365
1da177e4 366 }
1da177e4
LT
367 }
368 up_read(&shrinker_rwsem);
f06590bd
MK
369out:
370 cond_resched();
24f7c6b9 371 return freed;
1da177e4
LT
372}
373
1da177e4
LT
374static inline int is_page_cache_freeable(struct page *page)
375{
ceddc3a5
JW
376 /*
377 * A freeable page cache page is referenced only by the caller
378 * that isolated the page, the page cache radix tree and
379 * optional buffer heads at page->private.
380 */
edcf4748 381 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
382}
383
7d3579e8
KM
384static int may_write_to_queue(struct backing_dev_info *bdi,
385 struct scan_control *sc)
1da177e4 386{
930d9152 387 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
388 return 1;
389 if (!bdi_write_congested(bdi))
390 return 1;
391 if (bdi == current->backing_dev_info)
392 return 1;
393 return 0;
394}
395
396/*
397 * We detected a synchronous write error writing a page out. Probably
398 * -ENOSPC. We need to propagate that into the address_space for a subsequent
399 * fsync(), msync() or close().
400 *
401 * The tricky part is that after writepage we cannot touch the mapping: nothing
402 * prevents it from being freed up. But we have a ref on the page and once
403 * that page is locked, the mapping is pinned.
404 *
405 * We're allowed to run sleeping lock_page() here because we know the caller has
406 * __GFP_FS.
407 */
408static void handle_write_error(struct address_space *mapping,
409 struct page *page, int error)
410{
7eaceacc 411 lock_page(page);
3e9f45bd
GC
412 if (page_mapping(page) == mapping)
413 mapping_set_error(mapping, error);
1da177e4
LT
414 unlock_page(page);
415}
416
04e62a29
CL
417/* possible outcome of pageout() */
418typedef enum {
419 /* failed to write page out, page is locked */
420 PAGE_KEEP,
421 /* move page to the active list, page is locked */
422 PAGE_ACTIVATE,
423 /* page has been sent to the disk successfully, page is unlocked */
424 PAGE_SUCCESS,
425 /* page is clean and locked */
426 PAGE_CLEAN,
427} pageout_t;
428
1da177e4 429/*
1742f19f
AM
430 * pageout is called by shrink_page_list() for each dirty page.
431 * Calls ->writepage().
1da177e4 432 */
c661b078 433static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 434 struct scan_control *sc)
1da177e4
LT
435{
436 /*
437 * If the page is dirty, only perform writeback if that write
438 * will be non-blocking. To prevent this allocation from being
439 * stalled by pagecache activity. But note that there may be
440 * stalls if we need to run get_block(). We could test
441 * PagePrivate for that.
442 *
6aceb53b 443 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
444 * this page's queue, we can perform writeback even if that
445 * will block.
446 *
447 * If the page is swapcache, write it back even if that would
448 * block, for some throttling. This happens by accident, because
449 * swap_backing_dev_info is bust: it doesn't reflect the
450 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
451 */
452 if (!is_page_cache_freeable(page))
453 return PAGE_KEEP;
454 if (!mapping) {
455 /*
456 * Some data journaling orphaned pages can have
457 * page->mapping == NULL while being dirty with clean buffers.
458 */
266cf658 459 if (page_has_private(page)) {
1da177e4
LT
460 if (try_to_free_buffers(page)) {
461 ClearPageDirty(page);
d40cee24 462 printk("%s: orphaned page\n", __func__);
1da177e4
LT
463 return PAGE_CLEAN;
464 }
465 }
466 return PAGE_KEEP;
467 }
468 if (mapping->a_ops->writepage == NULL)
469 return PAGE_ACTIVATE;
0e093d99 470 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
471 return PAGE_KEEP;
472
473 if (clear_page_dirty_for_io(page)) {
474 int res;
475 struct writeback_control wbc = {
476 .sync_mode = WB_SYNC_NONE,
477 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
478 .range_start = 0,
479 .range_end = LLONG_MAX,
1da177e4
LT
480 .for_reclaim = 1,
481 };
482
483 SetPageReclaim(page);
484 res = mapping->a_ops->writepage(page, &wbc);
485 if (res < 0)
486 handle_write_error(mapping, page, res);
994fc28c 487 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
488 ClearPageReclaim(page);
489 return PAGE_ACTIVATE;
490 }
c661b078 491
1da177e4
LT
492 if (!PageWriteback(page)) {
493 /* synchronous write or broken a_ops? */
494 ClearPageReclaim(page);
495 }
23b9da55 496 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 497 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
498 return PAGE_SUCCESS;
499 }
500
501 return PAGE_CLEAN;
502}
503
a649fd92 504/*
e286781d
NP
505 * Same as remove_mapping, but if the page is removed from the mapping, it
506 * gets returned with a refcount of 0.
a649fd92 507 */
e286781d 508static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 509{
28e4d965
NP
510 BUG_ON(!PageLocked(page));
511 BUG_ON(mapping != page_mapping(page));
49d2e9cc 512
19fd6231 513 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 514 /*
0fd0e6b0
NP
515 * The non racy check for a busy page.
516 *
517 * Must be careful with the order of the tests. When someone has
518 * a ref to the page, it may be possible that they dirty it then
519 * drop the reference. So if PageDirty is tested before page_count
520 * here, then the following race may occur:
521 *
522 * get_user_pages(&page);
523 * [user mapping goes away]
524 * write_to(page);
525 * !PageDirty(page) [good]
526 * SetPageDirty(page);
527 * put_page(page);
528 * !page_count(page) [good, discard it]
529 *
530 * [oops, our write_to data is lost]
531 *
532 * Reversing the order of the tests ensures such a situation cannot
533 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
534 * load is not satisfied before that of page->_count.
535 *
536 * Note that if SetPageDirty is always performed via set_page_dirty,
537 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 538 */
e286781d 539 if (!page_freeze_refs(page, 2))
49d2e9cc 540 goto cannot_free;
e286781d
NP
541 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
542 if (unlikely(PageDirty(page))) {
543 page_unfreeze_refs(page, 2);
49d2e9cc 544 goto cannot_free;
e286781d 545 }
49d2e9cc
CL
546
547 if (PageSwapCache(page)) {
548 swp_entry_t swap = { .val = page_private(page) };
549 __delete_from_swap_cache(page);
19fd6231 550 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 551 swapcache_free(swap, page);
e286781d 552 } else {
6072d13c
LT
553 void (*freepage)(struct page *);
554
555 freepage = mapping->a_ops->freepage;
556
e64a782f 557 __delete_from_page_cache(page);
19fd6231 558 spin_unlock_irq(&mapping->tree_lock);
e767e056 559 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
560
561 if (freepage != NULL)
562 freepage(page);
49d2e9cc
CL
563 }
564
49d2e9cc
CL
565 return 1;
566
567cannot_free:
19fd6231 568 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
569 return 0;
570}
571
e286781d
NP
572/*
573 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
574 * someone else has a ref on the page, abort and return 0. If it was
575 * successfully detached, return 1. Assumes the caller has a single ref on
576 * this page.
577 */
578int remove_mapping(struct address_space *mapping, struct page *page)
579{
580 if (__remove_mapping(mapping, page)) {
581 /*
582 * Unfreezing the refcount with 1 rather than 2 effectively
583 * drops the pagecache ref for us without requiring another
584 * atomic operation.
585 */
586 page_unfreeze_refs(page, 1);
587 return 1;
588 }
589 return 0;
590}
591
894bc310
LS
592/**
593 * putback_lru_page - put previously isolated page onto appropriate LRU list
594 * @page: page to be put back to appropriate lru list
595 *
596 * Add previously isolated @page to appropriate LRU list.
597 * Page may still be unevictable for other reasons.
598 *
599 * lru_lock must not be held, interrupts must be enabled.
600 */
894bc310
LS
601void putback_lru_page(struct page *page)
602{
0ec3b74c 603 bool is_unevictable;
bbfd28ee 604 int was_unevictable = PageUnevictable(page);
894bc310
LS
605
606 VM_BUG_ON(PageLRU(page));
607
608redo:
609 ClearPageUnevictable(page);
610
39b5f29a 611 if (page_evictable(page)) {
894bc310
LS
612 /*
613 * For evictable pages, we can use the cache.
614 * In event of a race, worst case is we end up with an
615 * unevictable page on [in]active list.
616 * We know how to handle that.
617 */
0ec3b74c 618 is_unevictable = false;
c53954a0 619 lru_cache_add(page);
894bc310
LS
620 } else {
621 /*
622 * Put unevictable pages directly on zone's unevictable
623 * list.
624 */
0ec3b74c 625 is_unevictable = true;
894bc310 626 add_page_to_unevictable_list(page);
6a7b9548 627 /*
21ee9f39
MK
628 * When racing with an mlock or AS_UNEVICTABLE clearing
629 * (page is unlocked) make sure that if the other thread
630 * does not observe our setting of PG_lru and fails
24513264 631 * isolation/check_move_unevictable_pages,
21ee9f39 632 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
633 * the page back to the evictable list.
634 *
21ee9f39 635 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
636 */
637 smp_mb();
894bc310 638 }
894bc310
LS
639
640 /*
641 * page's status can change while we move it among lru. If an evictable
642 * page is on unevictable list, it never be freed. To avoid that,
643 * check after we added it to the list, again.
644 */
0ec3b74c 645 if (is_unevictable && page_evictable(page)) {
894bc310
LS
646 if (!isolate_lru_page(page)) {
647 put_page(page);
648 goto redo;
649 }
650 /* This means someone else dropped this page from LRU
651 * So, it will be freed or putback to LRU again. There is
652 * nothing to do here.
653 */
654 }
655
0ec3b74c 656 if (was_unevictable && !is_unevictable)
bbfd28ee 657 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 658 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
659 count_vm_event(UNEVICTABLE_PGCULLED);
660
894bc310
LS
661 put_page(page); /* drop ref from isolate */
662}
663
dfc8d636
JW
664enum page_references {
665 PAGEREF_RECLAIM,
666 PAGEREF_RECLAIM_CLEAN,
64574746 667 PAGEREF_KEEP,
dfc8d636
JW
668 PAGEREF_ACTIVATE,
669};
670
671static enum page_references page_check_references(struct page *page,
672 struct scan_control *sc)
673{
64574746 674 int referenced_ptes, referenced_page;
dfc8d636 675 unsigned long vm_flags;
dfc8d636 676
c3ac9a8a
JW
677 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
678 &vm_flags);
64574746 679 referenced_page = TestClearPageReferenced(page);
dfc8d636 680
dfc8d636
JW
681 /*
682 * Mlock lost the isolation race with us. Let try_to_unmap()
683 * move the page to the unevictable list.
684 */
685 if (vm_flags & VM_LOCKED)
686 return PAGEREF_RECLAIM;
687
64574746 688 if (referenced_ptes) {
e4898273 689 if (PageSwapBacked(page))
64574746
JW
690 return PAGEREF_ACTIVATE;
691 /*
692 * All mapped pages start out with page table
693 * references from the instantiating fault, so we need
694 * to look twice if a mapped file page is used more
695 * than once.
696 *
697 * Mark it and spare it for another trip around the
698 * inactive list. Another page table reference will
699 * lead to its activation.
700 *
701 * Note: the mark is set for activated pages as well
702 * so that recently deactivated but used pages are
703 * quickly recovered.
704 */
705 SetPageReferenced(page);
706
34dbc67a 707 if (referenced_page || referenced_ptes > 1)
64574746
JW
708 return PAGEREF_ACTIVATE;
709
c909e993
KK
710 /*
711 * Activate file-backed executable pages after first usage.
712 */
713 if (vm_flags & VM_EXEC)
714 return PAGEREF_ACTIVATE;
715
64574746
JW
716 return PAGEREF_KEEP;
717 }
dfc8d636
JW
718
719 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 720 if (referenced_page && !PageSwapBacked(page))
64574746
JW
721 return PAGEREF_RECLAIM_CLEAN;
722
723 return PAGEREF_RECLAIM;
dfc8d636
JW
724}
725
e2be15f6
MG
726/* Check if a page is dirty or under writeback */
727static void page_check_dirty_writeback(struct page *page,
728 bool *dirty, bool *writeback)
729{
b4597226
MG
730 struct address_space *mapping;
731
e2be15f6
MG
732 /*
733 * Anonymous pages are not handled by flushers and must be written
734 * from reclaim context. Do not stall reclaim based on them
735 */
736 if (!page_is_file_cache(page)) {
737 *dirty = false;
738 *writeback = false;
739 return;
740 }
741
742 /* By default assume that the page flags are accurate */
743 *dirty = PageDirty(page);
744 *writeback = PageWriteback(page);
b4597226
MG
745
746 /* Verify dirty/writeback state if the filesystem supports it */
747 if (!page_has_private(page))
748 return;
749
750 mapping = page_mapping(page);
751 if (mapping && mapping->a_ops->is_dirty_writeback)
752 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
753}
754
1da177e4 755/*
1742f19f 756 * shrink_page_list() returns the number of reclaimed pages
1da177e4 757 */
1742f19f 758static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 759 struct zone *zone,
f84f6e2b 760 struct scan_control *sc,
02c6de8d 761 enum ttu_flags ttu_flags,
8e950282 762 unsigned long *ret_nr_dirty,
d43006d5 763 unsigned long *ret_nr_unqueued_dirty,
8e950282 764 unsigned long *ret_nr_congested,
02c6de8d 765 unsigned long *ret_nr_writeback,
b1a6f21e 766 unsigned long *ret_nr_immediate,
02c6de8d 767 bool force_reclaim)
1da177e4
LT
768{
769 LIST_HEAD(ret_pages);
abe4c3b5 770 LIST_HEAD(free_pages);
1da177e4 771 int pgactivate = 0;
d43006d5 772 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
773 unsigned long nr_dirty = 0;
774 unsigned long nr_congested = 0;
05ff5137 775 unsigned long nr_reclaimed = 0;
92df3a72 776 unsigned long nr_writeback = 0;
b1a6f21e 777 unsigned long nr_immediate = 0;
1da177e4
LT
778
779 cond_resched();
780
69980e31 781 mem_cgroup_uncharge_start();
1da177e4
LT
782 while (!list_empty(page_list)) {
783 struct address_space *mapping;
784 struct page *page;
785 int may_enter_fs;
02c6de8d 786 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 787 bool dirty, writeback;
1da177e4
LT
788
789 cond_resched();
790
791 page = lru_to_page(page_list);
792 list_del(&page->lru);
793
529ae9aa 794 if (!trylock_page(page))
1da177e4
LT
795 goto keep;
796
725d704e 797 VM_BUG_ON(PageActive(page));
6a18adb3 798 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
799
800 sc->nr_scanned++;
80e43426 801
39b5f29a 802 if (unlikely(!page_evictable(page)))
b291f000 803 goto cull_mlocked;
894bc310 804
a6dc60f8 805 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
806 goto keep_locked;
807
1da177e4
LT
808 /* Double the slab pressure for mapped and swapcache pages */
809 if (page_mapped(page) || PageSwapCache(page))
810 sc->nr_scanned++;
811
c661b078
AW
812 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
814
e2be15f6
MG
815 /*
816 * The number of dirty pages determines if a zone is marked
817 * reclaim_congested which affects wait_iff_congested. kswapd
818 * will stall and start writing pages if the tail of the LRU
819 * is all dirty unqueued pages.
820 */
821 page_check_dirty_writeback(page, &dirty, &writeback);
822 if (dirty || writeback)
823 nr_dirty++;
824
825 if (dirty && !writeback)
826 nr_unqueued_dirty++;
827
d04e8acd
MG
828 /*
829 * Treat this page as congested if the underlying BDI is or if
830 * pages are cycling through the LRU so quickly that the
831 * pages marked for immediate reclaim are making it to the
832 * end of the LRU a second time.
833 */
e2be15f6 834 mapping = page_mapping(page);
d04e8acd
MG
835 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
836 (writeback && PageReclaim(page)))
e2be15f6
MG
837 nr_congested++;
838
283aba9f
MG
839 /*
840 * If a page at the tail of the LRU is under writeback, there
841 * are three cases to consider.
842 *
843 * 1) If reclaim is encountering an excessive number of pages
844 * under writeback and this page is both under writeback and
845 * PageReclaim then it indicates that pages are being queued
846 * for IO but are being recycled through the LRU before the
847 * IO can complete. Waiting on the page itself risks an
848 * indefinite stall if it is impossible to writeback the
849 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
850 * note that the LRU is being scanned too quickly and the
851 * caller can stall after page list has been processed.
283aba9f
MG
852 *
853 * 2) Global reclaim encounters a page, memcg encounters a
854 * page that is not marked for immediate reclaim or
855 * the caller does not have __GFP_IO. In this case mark
856 * the page for immediate reclaim and continue scanning.
857 *
858 * __GFP_IO is checked because a loop driver thread might
859 * enter reclaim, and deadlock if it waits on a page for
860 * which it is needed to do the write (loop masks off
861 * __GFP_IO|__GFP_FS for this reason); but more thought
862 * would probably show more reasons.
863 *
864 * Don't require __GFP_FS, since we're not going into the
865 * FS, just waiting on its writeback completion. Worryingly,
866 * ext4 gfs2 and xfs allocate pages with
867 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
868 * may_enter_fs here is liable to OOM on them.
869 *
870 * 3) memcg encounters a page that is not already marked
871 * PageReclaim. memcg does not have any dirty pages
872 * throttling so we could easily OOM just because too many
873 * pages are in writeback and there is nothing else to
874 * reclaim. Wait for the writeback to complete.
875 */
c661b078 876 if (PageWriteback(page)) {
283aba9f
MG
877 /* Case 1 above */
878 if (current_is_kswapd() &&
879 PageReclaim(page) &&
880 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
881 nr_immediate++;
882 goto keep_locked;
283aba9f
MG
883
884 /* Case 2 above */
885 } else if (global_reclaim(sc) ||
c3b94f44
HD
886 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
887 /*
888 * This is slightly racy - end_page_writeback()
889 * might have just cleared PageReclaim, then
890 * setting PageReclaim here end up interpreted
891 * as PageReadahead - but that does not matter
892 * enough to care. What we do want is for this
893 * page to have PageReclaim set next time memcg
894 * reclaim reaches the tests above, so it will
895 * then wait_on_page_writeback() to avoid OOM;
896 * and it's also appropriate in global reclaim.
897 */
898 SetPageReclaim(page);
e62e384e 899 nr_writeback++;
283aba9f 900
c3b94f44 901 goto keep_locked;
283aba9f
MG
902
903 /* Case 3 above */
904 } else {
905 wait_on_page_writeback(page);
e62e384e 906 }
c661b078 907 }
1da177e4 908
02c6de8d
MK
909 if (!force_reclaim)
910 references = page_check_references(page, sc);
911
dfc8d636
JW
912 switch (references) {
913 case PAGEREF_ACTIVATE:
1da177e4 914 goto activate_locked;
64574746
JW
915 case PAGEREF_KEEP:
916 goto keep_locked;
dfc8d636
JW
917 case PAGEREF_RECLAIM:
918 case PAGEREF_RECLAIM_CLEAN:
919 ; /* try to reclaim the page below */
920 }
1da177e4 921
1da177e4
LT
922 /*
923 * Anonymous process memory has backing store?
924 * Try to allocate it some swap space here.
925 */
b291f000 926 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
927 if (!(sc->gfp_mask & __GFP_IO))
928 goto keep_locked;
5bc7b8ac 929 if (!add_to_swap(page, page_list))
1da177e4 930 goto activate_locked;
63eb6b93 931 may_enter_fs = 1;
1da177e4 932
e2be15f6
MG
933 /* Adding to swap updated mapping */
934 mapping = page_mapping(page);
935 }
1da177e4
LT
936
937 /*
938 * The page is mapped into the page tables of one or more
939 * processes. Try to unmap it here.
940 */
941 if (page_mapped(page) && mapping) {
02c6de8d 942 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
943 case SWAP_FAIL:
944 goto activate_locked;
945 case SWAP_AGAIN:
946 goto keep_locked;
b291f000
NP
947 case SWAP_MLOCK:
948 goto cull_mlocked;
1da177e4
LT
949 case SWAP_SUCCESS:
950 ; /* try to free the page below */
951 }
952 }
953
954 if (PageDirty(page)) {
ee72886d
MG
955 /*
956 * Only kswapd can writeback filesystem pages to
d43006d5
MG
957 * avoid risk of stack overflow but only writeback
958 * if many dirty pages have been encountered.
ee72886d 959 */
f84f6e2b 960 if (page_is_file_cache(page) &&
9e3b2f8c 961 (!current_is_kswapd() ||
d43006d5 962 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
963 /*
964 * Immediately reclaim when written back.
965 * Similar in principal to deactivate_page()
966 * except we already have the page isolated
967 * and know it's dirty
968 */
969 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
970 SetPageReclaim(page);
971
ee72886d
MG
972 goto keep_locked;
973 }
974
dfc8d636 975 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 976 goto keep_locked;
4dd4b920 977 if (!may_enter_fs)
1da177e4 978 goto keep_locked;
52a8363e 979 if (!sc->may_writepage)
1da177e4
LT
980 goto keep_locked;
981
982 /* Page is dirty, try to write it out here */
7d3579e8 983 switch (pageout(page, mapping, sc)) {
1da177e4
LT
984 case PAGE_KEEP:
985 goto keep_locked;
986 case PAGE_ACTIVATE:
987 goto activate_locked;
988 case PAGE_SUCCESS:
7d3579e8 989 if (PageWriteback(page))
41ac1999 990 goto keep;
7d3579e8 991 if (PageDirty(page))
1da177e4 992 goto keep;
7d3579e8 993
1da177e4
LT
994 /*
995 * A synchronous write - probably a ramdisk. Go
996 * ahead and try to reclaim the page.
997 */
529ae9aa 998 if (!trylock_page(page))
1da177e4
LT
999 goto keep;
1000 if (PageDirty(page) || PageWriteback(page))
1001 goto keep_locked;
1002 mapping = page_mapping(page);
1003 case PAGE_CLEAN:
1004 ; /* try to free the page below */
1005 }
1006 }
1007
1008 /*
1009 * If the page has buffers, try to free the buffer mappings
1010 * associated with this page. If we succeed we try to free
1011 * the page as well.
1012 *
1013 * We do this even if the page is PageDirty().
1014 * try_to_release_page() does not perform I/O, but it is
1015 * possible for a page to have PageDirty set, but it is actually
1016 * clean (all its buffers are clean). This happens if the
1017 * buffers were written out directly, with submit_bh(). ext3
894bc310 1018 * will do this, as well as the blockdev mapping.
1da177e4
LT
1019 * try_to_release_page() will discover that cleanness and will
1020 * drop the buffers and mark the page clean - it can be freed.
1021 *
1022 * Rarely, pages can have buffers and no ->mapping. These are
1023 * the pages which were not successfully invalidated in
1024 * truncate_complete_page(). We try to drop those buffers here
1025 * and if that worked, and the page is no longer mapped into
1026 * process address space (page_count == 1) it can be freed.
1027 * Otherwise, leave the page on the LRU so it is swappable.
1028 */
266cf658 1029 if (page_has_private(page)) {
1da177e4
LT
1030 if (!try_to_release_page(page, sc->gfp_mask))
1031 goto activate_locked;
e286781d
NP
1032 if (!mapping && page_count(page) == 1) {
1033 unlock_page(page);
1034 if (put_page_testzero(page))
1035 goto free_it;
1036 else {
1037 /*
1038 * rare race with speculative reference.
1039 * the speculative reference will free
1040 * this page shortly, so we may
1041 * increment nr_reclaimed here (and
1042 * leave it off the LRU).
1043 */
1044 nr_reclaimed++;
1045 continue;
1046 }
1047 }
1da177e4
LT
1048 }
1049
e286781d 1050 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 1051 goto keep_locked;
1da177e4 1052
a978d6f5
NP
1053 /*
1054 * At this point, we have no other references and there is
1055 * no way to pick any more up (removed from LRU, removed
1056 * from pagecache). Can use non-atomic bitops now (and
1057 * we obviously don't have to worry about waking up a process
1058 * waiting on the page lock, because there are no references.
1059 */
1060 __clear_page_locked(page);
e286781d 1061free_it:
05ff5137 1062 nr_reclaimed++;
abe4c3b5
MG
1063
1064 /*
1065 * Is there need to periodically free_page_list? It would
1066 * appear not as the counts should be low
1067 */
1068 list_add(&page->lru, &free_pages);
1da177e4
LT
1069 continue;
1070
b291f000 1071cull_mlocked:
63d6c5ad
HD
1072 if (PageSwapCache(page))
1073 try_to_free_swap(page);
b291f000
NP
1074 unlock_page(page);
1075 putback_lru_page(page);
1076 continue;
1077
1da177e4 1078activate_locked:
68a22394
RR
1079 /* Not a candidate for swapping, so reclaim swap space. */
1080 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1081 try_to_free_swap(page);
894bc310 1082 VM_BUG_ON(PageActive(page));
1da177e4
LT
1083 SetPageActive(page);
1084 pgactivate++;
1085keep_locked:
1086 unlock_page(page);
1087keep:
1088 list_add(&page->lru, &ret_pages);
b291f000 1089 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 1090 }
abe4c3b5 1091
cc59850e 1092 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 1093
1da177e4 1094 list_splice(&ret_pages, page_list);
f8891e5e 1095 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1096 mem_cgroup_uncharge_end();
8e950282
MG
1097 *ret_nr_dirty += nr_dirty;
1098 *ret_nr_congested += nr_congested;
d43006d5 1099 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1100 *ret_nr_writeback += nr_writeback;
b1a6f21e 1101 *ret_nr_immediate += nr_immediate;
05ff5137 1102 return nr_reclaimed;
1da177e4
LT
1103}
1104
02c6de8d
MK
1105unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1106 struct list_head *page_list)
1107{
1108 struct scan_control sc = {
1109 .gfp_mask = GFP_KERNEL,
1110 .priority = DEF_PRIORITY,
1111 .may_unmap = 1,
1112 };
8e950282 1113 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1114 struct page *page, *next;
1115 LIST_HEAD(clean_pages);
1116
1117 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1118 if (page_is_file_cache(page) && !PageDirty(page) &&
1119 !isolated_balloon_page(page)) {
02c6de8d
MK
1120 ClearPageActive(page);
1121 list_move(&page->lru, &clean_pages);
1122 }
1123 }
1124
1125 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1126 TTU_UNMAP|TTU_IGNORE_ACCESS,
1127 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d
MK
1128 list_splice(&clean_pages, page_list);
1129 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1130 return ret;
1131}
1132
5ad333eb
AW
1133/*
1134 * Attempt to remove the specified page from its LRU. Only take this page
1135 * if it is of the appropriate PageActive status. Pages which are being
1136 * freed elsewhere are also ignored.
1137 *
1138 * page: page to consider
1139 * mode: one of the LRU isolation modes defined above
1140 *
1141 * returns 0 on success, -ve errno on failure.
1142 */
f3fd4a61 1143int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1144{
1145 int ret = -EINVAL;
1146
1147 /* Only take pages on the LRU. */
1148 if (!PageLRU(page))
1149 return ret;
1150
e46a2879
MK
1151 /* Compaction should not handle unevictable pages but CMA can do so */
1152 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1153 return ret;
1154
5ad333eb 1155 ret = -EBUSY;
08e552c6 1156
c8244935
MG
1157 /*
1158 * To minimise LRU disruption, the caller can indicate that it only
1159 * wants to isolate pages it will be able to operate on without
1160 * blocking - clean pages for the most part.
1161 *
1162 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1163 * is used by reclaim when it is cannot write to backing storage
1164 *
1165 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1166 * that it is possible to migrate without blocking
1167 */
1168 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1169 /* All the caller can do on PageWriteback is block */
1170 if (PageWriteback(page))
1171 return ret;
1172
1173 if (PageDirty(page)) {
1174 struct address_space *mapping;
1175
1176 /* ISOLATE_CLEAN means only clean pages */
1177 if (mode & ISOLATE_CLEAN)
1178 return ret;
1179
1180 /*
1181 * Only pages without mappings or that have a
1182 * ->migratepage callback are possible to migrate
1183 * without blocking
1184 */
1185 mapping = page_mapping(page);
1186 if (mapping && !mapping->a_ops->migratepage)
1187 return ret;
1188 }
1189 }
39deaf85 1190
f80c0673
MK
1191 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1192 return ret;
1193
5ad333eb
AW
1194 if (likely(get_page_unless_zero(page))) {
1195 /*
1196 * Be careful not to clear PageLRU until after we're
1197 * sure the page is not being freed elsewhere -- the
1198 * page release code relies on it.
1199 */
1200 ClearPageLRU(page);
1201 ret = 0;
1202 }
1203
1204 return ret;
1205}
1206
1da177e4
LT
1207/*
1208 * zone->lru_lock is heavily contended. Some of the functions that
1209 * shrink the lists perform better by taking out a batch of pages
1210 * and working on them outside the LRU lock.
1211 *
1212 * For pagecache intensive workloads, this function is the hottest
1213 * spot in the kernel (apart from copy_*_user functions).
1214 *
1215 * Appropriate locks must be held before calling this function.
1216 *
1217 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1218 * @lruvec: The LRU vector to pull pages from.
1da177e4 1219 * @dst: The temp list to put pages on to.
f626012d 1220 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1221 * @sc: The scan_control struct for this reclaim session
5ad333eb 1222 * @mode: One of the LRU isolation modes
3cb99451 1223 * @lru: LRU list id for isolating
1da177e4
LT
1224 *
1225 * returns how many pages were moved onto *@dst.
1226 */
69e05944 1227static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1228 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1229 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1230 isolate_mode_t mode, enum lru_list lru)
1da177e4 1231{
75b00af7 1232 struct list_head *src = &lruvec->lists[lru];
69e05944 1233 unsigned long nr_taken = 0;
c9b02d97 1234 unsigned long scan;
1da177e4 1235
c9b02d97 1236 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1237 struct page *page;
fa9add64 1238 int nr_pages;
5ad333eb 1239
1da177e4
LT
1240 page = lru_to_page(src);
1241 prefetchw_prev_lru_page(page, src, flags);
1242
725d704e 1243 VM_BUG_ON(!PageLRU(page));
8d438f96 1244
f3fd4a61 1245 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1246 case 0:
fa9add64
HD
1247 nr_pages = hpage_nr_pages(page);
1248 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1249 list_move(&page->lru, dst);
fa9add64 1250 nr_taken += nr_pages;
5ad333eb
AW
1251 break;
1252
1253 case -EBUSY:
1254 /* else it is being freed elsewhere */
1255 list_move(&page->lru, src);
1256 continue;
46453a6e 1257
5ad333eb
AW
1258 default:
1259 BUG();
1260 }
1da177e4
LT
1261 }
1262
f626012d 1263 *nr_scanned = scan;
75b00af7
HD
1264 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1265 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1266 return nr_taken;
1267}
1268
62695a84
NP
1269/**
1270 * isolate_lru_page - tries to isolate a page from its LRU list
1271 * @page: page to isolate from its LRU list
1272 *
1273 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1274 * vmstat statistic corresponding to whatever LRU list the page was on.
1275 *
1276 * Returns 0 if the page was removed from an LRU list.
1277 * Returns -EBUSY if the page was not on an LRU list.
1278 *
1279 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1280 * the active list, it will have PageActive set. If it was found on
1281 * the unevictable list, it will have the PageUnevictable bit set. That flag
1282 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1283 *
1284 * The vmstat statistic corresponding to the list on which the page was
1285 * found will be decremented.
1286 *
1287 * Restrictions:
1288 * (1) Must be called with an elevated refcount on the page. This is a
1289 * fundamentnal difference from isolate_lru_pages (which is called
1290 * without a stable reference).
1291 * (2) the lru_lock must not be held.
1292 * (3) interrupts must be enabled.
1293 */
1294int isolate_lru_page(struct page *page)
1295{
1296 int ret = -EBUSY;
1297
0c917313
KK
1298 VM_BUG_ON(!page_count(page));
1299
62695a84
NP
1300 if (PageLRU(page)) {
1301 struct zone *zone = page_zone(page);
fa9add64 1302 struct lruvec *lruvec;
62695a84
NP
1303
1304 spin_lock_irq(&zone->lru_lock);
fa9add64 1305 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1306 if (PageLRU(page)) {
894bc310 1307 int lru = page_lru(page);
0c917313 1308 get_page(page);
62695a84 1309 ClearPageLRU(page);
fa9add64
HD
1310 del_page_from_lru_list(page, lruvec, lru);
1311 ret = 0;
62695a84
NP
1312 }
1313 spin_unlock_irq(&zone->lru_lock);
1314 }
1315 return ret;
1316}
1317
35cd7815 1318/*
d37dd5dc
FW
1319 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1320 * then get resheduled. When there are massive number of tasks doing page
1321 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1322 * the LRU list will go small and be scanned faster than necessary, leading to
1323 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1324 */
1325static int too_many_isolated(struct zone *zone, int file,
1326 struct scan_control *sc)
1327{
1328 unsigned long inactive, isolated;
1329
1330 if (current_is_kswapd())
1331 return 0;
1332
89b5fae5 1333 if (!global_reclaim(sc))
35cd7815
RR
1334 return 0;
1335
1336 if (file) {
1337 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1338 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1339 } else {
1340 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1341 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1342 }
1343
3cf23841
FW
1344 /*
1345 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1346 * won't get blocked by normal direct-reclaimers, forming a circular
1347 * deadlock.
1348 */
1349 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1350 inactive >>= 3;
1351
35cd7815
RR
1352 return isolated > inactive;
1353}
1354
66635629 1355static noinline_for_stack void
75b00af7 1356putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1357{
27ac81d8
KK
1358 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1359 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1360 LIST_HEAD(pages_to_free);
66635629 1361
66635629
MG
1362 /*
1363 * Put back any unfreeable pages.
1364 */
66635629 1365 while (!list_empty(page_list)) {
3f79768f 1366 struct page *page = lru_to_page(page_list);
66635629 1367 int lru;
3f79768f 1368
66635629
MG
1369 VM_BUG_ON(PageLRU(page));
1370 list_del(&page->lru);
39b5f29a 1371 if (unlikely(!page_evictable(page))) {
66635629
MG
1372 spin_unlock_irq(&zone->lru_lock);
1373 putback_lru_page(page);
1374 spin_lock_irq(&zone->lru_lock);
1375 continue;
1376 }
fa9add64
HD
1377
1378 lruvec = mem_cgroup_page_lruvec(page, zone);
1379
7a608572 1380 SetPageLRU(page);
66635629 1381 lru = page_lru(page);
fa9add64
HD
1382 add_page_to_lru_list(page, lruvec, lru);
1383
66635629
MG
1384 if (is_active_lru(lru)) {
1385 int file = is_file_lru(lru);
9992af10
RR
1386 int numpages = hpage_nr_pages(page);
1387 reclaim_stat->recent_rotated[file] += numpages;
66635629 1388 }
2bcf8879
HD
1389 if (put_page_testzero(page)) {
1390 __ClearPageLRU(page);
1391 __ClearPageActive(page);
fa9add64 1392 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1393
1394 if (unlikely(PageCompound(page))) {
1395 spin_unlock_irq(&zone->lru_lock);
1396 (*get_compound_page_dtor(page))(page);
1397 spin_lock_irq(&zone->lru_lock);
1398 } else
1399 list_add(&page->lru, &pages_to_free);
66635629
MG
1400 }
1401 }
66635629 1402
3f79768f
HD
1403 /*
1404 * To save our caller's stack, now use input list for pages to free.
1405 */
1406 list_splice(&pages_to_free, page_list);
66635629
MG
1407}
1408
1da177e4 1409/*
1742f19f
AM
1410 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1411 * of reclaimed pages
1da177e4 1412 */
66635629 1413static noinline_for_stack unsigned long
1a93be0e 1414shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1415 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1416{
1417 LIST_HEAD(page_list);
e247dbce 1418 unsigned long nr_scanned;
05ff5137 1419 unsigned long nr_reclaimed = 0;
e247dbce 1420 unsigned long nr_taken;
8e950282
MG
1421 unsigned long nr_dirty = 0;
1422 unsigned long nr_congested = 0;
e2be15f6 1423 unsigned long nr_unqueued_dirty = 0;
92df3a72 1424 unsigned long nr_writeback = 0;
b1a6f21e 1425 unsigned long nr_immediate = 0;
f3fd4a61 1426 isolate_mode_t isolate_mode = 0;
3cb99451 1427 int file = is_file_lru(lru);
1a93be0e
KK
1428 struct zone *zone = lruvec_zone(lruvec);
1429 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1430
35cd7815 1431 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1432 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1433
1434 /* We are about to die and free our memory. Return now. */
1435 if (fatal_signal_pending(current))
1436 return SWAP_CLUSTER_MAX;
1437 }
1438
1da177e4 1439 lru_add_drain();
f80c0673
MK
1440
1441 if (!sc->may_unmap)
61317289 1442 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1443 if (!sc->may_writepage)
61317289 1444 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1445
1da177e4 1446 spin_lock_irq(&zone->lru_lock);
b35ea17b 1447
5dc35979
KK
1448 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1449 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1450
1451 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1452 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1453
89b5fae5 1454 if (global_reclaim(sc)) {
e247dbce
KM
1455 zone->pages_scanned += nr_scanned;
1456 if (current_is_kswapd())
75b00af7 1457 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1458 else
75b00af7 1459 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1460 }
d563c050 1461 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1462
d563c050 1463 if (nr_taken == 0)
66635629 1464 return 0;
5ad333eb 1465
02c6de8d 1466 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1467 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1468 &nr_writeback, &nr_immediate,
1469 false);
c661b078 1470
3f79768f
HD
1471 spin_lock_irq(&zone->lru_lock);
1472
95d918fc 1473 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1474
904249aa
YH
1475 if (global_reclaim(sc)) {
1476 if (current_is_kswapd())
1477 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1478 nr_reclaimed);
1479 else
1480 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1481 nr_reclaimed);
1482 }
a74609fa 1483
27ac81d8 1484 putback_inactive_pages(lruvec, &page_list);
3f79768f 1485
95d918fc 1486 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1487
1488 spin_unlock_irq(&zone->lru_lock);
1489
1490 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1491
92df3a72
MG
1492 /*
1493 * If reclaim is isolating dirty pages under writeback, it implies
1494 * that the long-lived page allocation rate is exceeding the page
1495 * laundering rate. Either the global limits are not being effective
1496 * at throttling processes due to the page distribution throughout
1497 * zones or there is heavy usage of a slow backing device. The
1498 * only option is to throttle from reclaim context which is not ideal
1499 * as there is no guarantee the dirtying process is throttled in the
1500 * same way balance_dirty_pages() manages.
1501 *
8e950282
MG
1502 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1503 * of pages under pages flagged for immediate reclaim and stall if any
1504 * are encountered in the nr_immediate check below.
92df3a72 1505 */
918fc718 1506 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1507 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1508
d43006d5 1509 /*
b1a6f21e
MG
1510 * memcg will stall in page writeback so only consider forcibly
1511 * stalling for global reclaim
d43006d5 1512 */
b1a6f21e 1513 if (global_reclaim(sc)) {
8e950282
MG
1514 /*
1515 * Tag a zone as congested if all the dirty pages scanned were
1516 * backed by a congested BDI and wait_iff_congested will stall.
1517 */
1518 if (nr_dirty && nr_dirty == nr_congested)
1519 zone_set_flag(zone, ZONE_CONGESTED);
1520
b1a6f21e
MG
1521 /*
1522 * If dirty pages are scanned that are not queued for IO, it
1523 * implies that flushers are not keeping up. In this case, flag
1524 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1525 * pages from reclaim context. It will forcibly stall in the
1526 * next check.
1527 */
1528 if (nr_unqueued_dirty == nr_taken)
1529 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1530
1531 /*
1532 * In addition, if kswapd scans pages marked marked for
1533 * immediate reclaim and under writeback (nr_immediate), it
1534 * implies that pages are cycling through the LRU faster than
1535 * they are written so also forcibly stall.
1536 */
1537 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1538 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1539 }
d43006d5 1540
8e950282
MG
1541 /*
1542 * Stall direct reclaim for IO completions if underlying BDIs or zone
1543 * is congested. Allow kswapd to continue until it starts encountering
1544 * unqueued dirty pages or cycling through the LRU too quickly.
1545 */
1546 if (!sc->hibernation_mode && !current_is_kswapd())
1547 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1548
e11da5b4
MG
1549 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1550 zone_idx(zone),
1551 nr_scanned, nr_reclaimed,
9e3b2f8c 1552 sc->priority,
23b9da55 1553 trace_shrink_flags(file));
05ff5137 1554 return nr_reclaimed;
1da177e4
LT
1555}
1556
1557/*
1558 * This moves pages from the active list to the inactive list.
1559 *
1560 * We move them the other way if the page is referenced by one or more
1561 * processes, from rmap.
1562 *
1563 * If the pages are mostly unmapped, the processing is fast and it is
1564 * appropriate to hold zone->lru_lock across the whole operation. But if
1565 * the pages are mapped, the processing is slow (page_referenced()) so we
1566 * should drop zone->lru_lock around each page. It's impossible to balance
1567 * this, so instead we remove the pages from the LRU while processing them.
1568 * It is safe to rely on PG_active against the non-LRU pages in here because
1569 * nobody will play with that bit on a non-LRU page.
1570 *
1571 * The downside is that we have to touch page->_count against each page.
1572 * But we had to alter page->flags anyway.
1573 */
1cfb419b 1574
fa9add64 1575static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1576 struct list_head *list,
2bcf8879 1577 struct list_head *pages_to_free,
3eb4140f
WF
1578 enum lru_list lru)
1579{
fa9add64 1580 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1581 unsigned long pgmoved = 0;
3eb4140f 1582 struct page *page;
fa9add64 1583 int nr_pages;
3eb4140f 1584
3eb4140f
WF
1585 while (!list_empty(list)) {
1586 page = lru_to_page(list);
fa9add64 1587 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1588
1589 VM_BUG_ON(PageLRU(page));
1590 SetPageLRU(page);
1591
fa9add64
HD
1592 nr_pages = hpage_nr_pages(page);
1593 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1594 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1595 pgmoved += nr_pages;
3eb4140f 1596
2bcf8879
HD
1597 if (put_page_testzero(page)) {
1598 __ClearPageLRU(page);
1599 __ClearPageActive(page);
fa9add64 1600 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1601
1602 if (unlikely(PageCompound(page))) {
1603 spin_unlock_irq(&zone->lru_lock);
1604 (*get_compound_page_dtor(page))(page);
1605 spin_lock_irq(&zone->lru_lock);
1606 } else
1607 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1608 }
1609 }
1610 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1611 if (!is_active_lru(lru))
1612 __count_vm_events(PGDEACTIVATE, pgmoved);
1613}
1cfb419b 1614
f626012d 1615static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1616 struct lruvec *lruvec,
f16015fb 1617 struct scan_control *sc,
9e3b2f8c 1618 enum lru_list lru)
1da177e4 1619{
44c241f1 1620 unsigned long nr_taken;
f626012d 1621 unsigned long nr_scanned;
6fe6b7e3 1622 unsigned long vm_flags;
1da177e4 1623 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1624 LIST_HEAD(l_active);
b69408e8 1625 LIST_HEAD(l_inactive);
1da177e4 1626 struct page *page;
1a93be0e 1627 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1628 unsigned long nr_rotated = 0;
f3fd4a61 1629 isolate_mode_t isolate_mode = 0;
3cb99451 1630 int file = is_file_lru(lru);
1a93be0e 1631 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1632
1633 lru_add_drain();
f80c0673
MK
1634
1635 if (!sc->may_unmap)
61317289 1636 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1637 if (!sc->may_writepage)
61317289 1638 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1639
1da177e4 1640 spin_lock_irq(&zone->lru_lock);
925b7673 1641
5dc35979
KK
1642 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1643 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1644 if (global_reclaim(sc))
f626012d 1645 zone->pages_scanned += nr_scanned;
89b5fae5 1646
b7c46d15 1647 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1648
f626012d 1649 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1650 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1651 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1652 spin_unlock_irq(&zone->lru_lock);
1653
1da177e4
LT
1654 while (!list_empty(&l_hold)) {
1655 cond_resched();
1656 page = lru_to_page(&l_hold);
1657 list_del(&page->lru);
7e9cd484 1658
39b5f29a 1659 if (unlikely(!page_evictable(page))) {
894bc310
LS
1660 putback_lru_page(page);
1661 continue;
1662 }
1663
cc715d99
MG
1664 if (unlikely(buffer_heads_over_limit)) {
1665 if (page_has_private(page) && trylock_page(page)) {
1666 if (page_has_private(page))
1667 try_to_release_page(page, 0);
1668 unlock_page(page);
1669 }
1670 }
1671
c3ac9a8a
JW
1672 if (page_referenced(page, 0, sc->target_mem_cgroup,
1673 &vm_flags)) {
9992af10 1674 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1675 /*
1676 * Identify referenced, file-backed active pages and
1677 * give them one more trip around the active list. So
1678 * that executable code get better chances to stay in
1679 * memory under moderate memory pressure. Anon pages
1680 * are not likely to be evicted by use-once streaming
1681 * IO, plus JVM can create lots of anon VM_EXEC pages,
1682 * so we ignore them here.
1683 */
41e20983 1684 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1685 list_add(&page->lru, &l_active);
1686 continue;
1687 }
1688 }
7e9cd484 1689
5205e56e 1690 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1691 list_add(&page->lru, &l_inactive);
1692 }
1693
b555749a 1694 /*
8cab4754 1695 * Move pages back to the lru list.
b555749a 1696 */
2a1dc509 1697 spin_lock_irq(&zone->lru_lock);
556adecb 1698 /*
8cab4754
WF
1699 * Count referenced pages from currently used mappings as rotated,
1700 * even though only some of them are actually re-activated. This
1701 * helps balance scan pressure between file and anonymous pages in
1702 * get_scan_ratio.
7e9cd484 1703 */
b7c46d15 1704 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1705
fa9add64
HD
1706 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1707 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1708 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1709 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1710
1711 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1712}
1713
74e3f3c3 1714#ifdef CONFIG_SWAP
14797e23 1715static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1716{
1717 unsigned long active, inactive;
1718
1719 active = zone_page_state(zone, NR_ACTIVE_ANON);
1720 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1721
1722 if (inactive * zone->inactive_ratio < active)
1723 return 1;
1724
1725 return 0;
1726}
1727
14797e23
KM
1728/**
1729 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1730 * @lruvec: LRU vector to check
14797e23
KM
1731 *
1732 * Returns true if the zone does not have enough inactive anon pages,
1733 * meaning some active anon pages need to be deactivated.
1734 */
c56d5c7d 1735static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1736{
74e3f3c3
MK
1737 /*
1738 * If we don't have swap space, anonymous page deactivation
1739 * is pointless.
1740 */
1741 if (!total_swap_pages)
1742 return 0;
1743
c3c787e8 1744 if (!mem_cgroup_disabled())
c56d5c7d 1745 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1746
c56d5c7d 1747 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1748}
74e3f3c3 1749#else
c56d5c7d 1750static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1751{
1752 return 0;
1753}
1754#endif
14797e23 1755
56e49d21
RR
1756/**
1757 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1758 * @lruvec: LRU vector to check
56e49d21
RR
1759 *
1760 * When the system is doing streaming IO, memory pressure here
1761 * ensures that active file pages get deactivated, until more
1762 * than half of the file pages are on the inactive list.
1763 *
1764 * Once we get to that situation, protect the system's working
1765 * set from being evicted by disabling active file page aging.
1766 *
1767 * This uses a different ratio than the anonymous pages, because
1768 * the page cache uses a use-once replacement algorithm.
1769 */
c56d5c7d 1770static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1771{
e3790144
JW
1772 unsigned long inactive;
1773 unsigned long active;
1774
1775 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1776 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1777
e3790144 1778 return active > inactive;
56e49d21
RR
1779}
1780
75b00af7 1781static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1782{
75b00af7 1783 if (is_file_lru(lru))
c56d5c7d 1784 return inactive_file_is_low(lruvec);
b39415b2 1785 else
c56d5c7d 1786 return inactive_anon_is_low(lruvec);
b39415b2
RR
1787}
1788
4f98a2fe 1789static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1790 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1791{
b39415b2 1792 if (is_active_lru(lru)) {
75b00af7 1793 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1794 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1795 return 0;
1796 }
1797
1a93be0e 1798 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1799}
1800
3d58ab5c 1801static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1802{
89b5fae5 1803 if (global_reclaim(sc))
1f4c025b 1804 return vm_swappiness;
3d58ab5c 1805 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1806}
1807
9a265114
JW
1808enum scan_balance {
1809 SCAN_EQUAL,
1810 SCAN_FRACT,
1811 SCAN_ANON,
1812 SCAN_FILE,
1813};
1814
4f98a2fe
RR
1815/*
1816 * Determine how aggressively the anon and file LRU lists should be
1817 * scanned. The relative value of each set of LRU lists is determined
1818 * by looking at the fraction of the pages scanned we did rotate back
1819 * onto the active list instead of evict.
1820 *
be7bd59d
WL
1821 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1822 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1823 */
90126375 1824static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1825 unsigned long *nr)
4f98a2fe 1826{
9a265114
JW
1827 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1828 u64 fraction[2];
1829 u64 denominator = 0; /* gcc */
1830 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1831 unsigned long anon_prio, file_prio;
9a265114
JW
1832 enum scan_balance scan_balance;
1833 unsigned long anon, file, free;
1834 bool force_scan = false;
4f98a2fe 1835 unsigned long ap, fp;
4111304d 1836 enum lru_list lru;
246e87a9 1837
f11c0ca5
JW
1838 /*
1839 * If the zone or memcg is small, nr[l] can be 0. This
1840 * results in no scanning on this priority and a potential
1841 * priority drop. Global direct reclaim can go to the next
1842 * zone and tends to have no problems. Global kswapd is for
1843 * zone balancing and it needs to scan a minimum amount. When
1844 * reclaiming for a memcg, a priority drop can cause high
1845 * latencies, so it's better to scan a minimum amount there as
1846 * well.
1847 */
6e543d57 1848 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1849 force_scan = true;
89b5fae5 1850 if (!global_reclaim(sc))
a4d3e9e7 1851 force_scan = true;
76a33fc3
SL
1852
1853 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1854 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1855 scan_balance = SCAN_FILE;
76a33fc3
SL
1856 goto out;
1857 }
4f98a2fe 1858
10316b31
JW
1859 /*
1860 * Global reclaim will swap to prevent OOM even with no
1861 * swappiness, but memcg users want to use this knob to
1862 * disable swapping for individual groups completely when
1863 * using the memory controller's swap limit feature would be
1864 * too expensive.
1865 */
1866 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1867 scan_balance = SCAN_FILE;
10316b31
JW
1868 goto out;
1869 }
1870
1871 /*
1872 * Do not apply any pressure balancing cleverness when the
1873 * system is close to OOM, scan both anon and file equally
1874 * (unless the swappiness setting disagrees with swapping).
1875 */
1876 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1877 scan_balance = SCAN_EQUAL;
10316b31
JW
1878 goto out;
1879 }
1880
4d7dcca2
HD
1881 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1882 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1883 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1884 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1885
11d16c25
JW
1886 /*
1887 * If it's foreseeable that reclaiming the file cache won't be
1888 * enough to get the zone back into a desirable shape, we have
1889 * to swap. Better start now and leave the - probably heavily
1890 * thrashing - remaining file pages alone.
1891 */
89b5fae5 1892 if (global_reclaim(sc)) {
11d16c25 1893 free = zone_page_state(zone, NR_FREE_PAGES);
90126375 1894 if (unlikely(file + free <= high_wmark_pages(zone))) {
9a265114 1895 scan_balance = SCAN_ANON;
76a33fc3 1896 goto out;
eeee9a8c 1897 }
4f98a2fe
RR
1898 }
1899
7c5bd705
JW
1900 /*
1901 * There is enough inactive page cache, do not reclaim
1902 * anything from the anonymous working set right now.
1903 */
1904 if (!inactive_file_is_low(lruvec)) {
9a265114 1905 scan_balance = SCAN_FILE;
7c5bd705
JW
1906 goto out;
1907 }
1908
9a265114
JW
1909 scan_balance = SCAN_FRACT;
1910
58c37f6e
KM
1911 /*
1912 * With swappiness at 100, anonymous and file have the same priority.
1913 * This scanning priority is essentially the inverse of IO cost.
1914 */
3d58ab5c 1915 anon_prio = vmscan_swappiness(sc);
75b00af7 1916 file_prio = 200 - anon_prio;
58c37f6e 1917
4f98a2fe
RR
1918 /*
1919 * OK, so we have swap space and a fair amount of page cache
1920 * pages. We use the recently rotated / recently scanned
1921 * ratios to determine how valuable each cache is.
1922 *
1923 * Because workloads change over time (and to avoid overflow)
1924 * we keep these statistics as a floating average, which ends
1925 * up weighing recent references more than old ones.
1926 *
1927 * anon in [0], file in [1]
1928 */
90126375 1929 spin_lock_irq(&zone->lru_lock);
6e901571 1930 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1931 reclaim_stat->recent_scanned[0] /= 2;
1932 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1933 }
1934
6e901571 1935 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1936 reclaim_stat->recent_scanned[1] /= 2;
1937 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1938 }
1939
4f98a2fe 1940 /*
00d8089c
RR
1941 * The amount of pressure on anon vs file pages is inversely
1942 * proportional to the fraction of recently scanned pages on
1943 * each list that were recently referenced and in active use.
4f98a2fe 1944 */
fe35004f 1945 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1946 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1947
fe35004f 1948 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1949 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1950 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1951
76a33fc3
SL
1952 fraction[0] = ap;
1953 fraction[1] = fp;
1954 denominator = ap + fp + 1;
1955out:
4111304d
HD
1956 for_each_evictable_lru(lru) {
1957 int file = is_file_lru(lru);
d778df51 1958 unsigned long size;
76a33fc3 1959 unsigned long scan;
6e08a369 1960
d778df51 1961 size = get_lru_size(lruvec, lru);
10316b31 1962 scan = size >> sc->priority;
9a265114 1963
10316b31
JW
1964 if (!scan && force_scan)
1965 scan = min(size, SWAP_CLUSTER_MAX);
9a265114
JW
1966
1967 switch (scan_balance) {
1968 case SCAN_EQUAL:
1969 /* Scan lists relative to size */
1970 break;
1971 case SCAN_FRACT:
1972 /*
1973 * Scan types proportional to swappiness and
1974 * their relative recent reclaim efficiency.
1975 */
1976 scan = div64_u64(scan * fraction[file], denominator);
1977 break;
1978 case SCAN_FILE:
1979 case SCAN_ANON:
1980 /* Scan one type exclusively */
1981 if ((scan_balance == SCAN_FILE) != file)
1982 scan = 0;
1983 break;
1984 default:
1985 /* Look ma, no brain */
1986 BUG();
1987 }
4111304d 1988 nr[lru] = scan;
76a33fc3 1989 }
6e08a369 1990}
4f98a2fe 1991
9b4f98cd
JW
1992/*
1993 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1994 */
1995static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1996{
1997 unsigned long nr[NR_LRU_LISTS];
e82e0561 1998 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
1999 unsigned long nr_to_scan;
2000 enum lru_list lru;
2001 unsigned long nr_reclaimed = 0;
2002 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2003 struct blk_plug plug;
e82e0561 2004 bool scan_adjusted = false;
9b4f98cd
JW
2005
2006 get_scan_count(lruvec, sc, nr);
2007
e82e0561
MG
2008 /* Record the original scan target for proportional adjustments later */
2009 memcpy(targets, nr, sizeof(nr));
2010
9b4f98cd
JW
2011 blk_start_plug(&plug);
2012 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2013 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2014 unsigned long nr_anon, nr_file, percentage;
2015 unsigned long nr_scanned;
2016
9b4f98cd
JW
2017 for_each_evictable_lru(lru) {
2018 if (nr[lru]) {
2019 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2020 nr[lru] -= nr_to_scan;
2021
2022 nr_reclaimed += shrink_list(lru, nr_to_scan,
2023 lruvec, sc);
2024 }
2025 }
e82e0561
MG
2026
2027 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2028 continue;
2029
9b4f98cd 2030 /*
e82e0561
MG
2031 * For global direct reclaim, reclaim only the number of pages
2032 * requested. Less care is taken to scan proportionally as it
2033 * is more important to minimise direct reclaim stall latency
2034 * than it is to properly age the LRU lists.
9b4f98cd 2035 */
e82e0561 2036 if (global_reclaim(sc) && !current_is_kswapd())
9b4f98cd 2037 break;
e82e0561
MG
2038
2039 /*
2040 * For kswapd and memcg, reclaim at least the number of pages
2041 * requested. Ensure that the anon and file LRUs shrink
2042 * proportionally what was requested by get_scan_count(). We
2043 * stop reclaiming one LRU and reduce the amount scanning
2044 * proportional to the original scan target.
2045 */
2046 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2047 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2048
2049 if (nr_file > nr_anon) {
2050 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2051 targets[LRU_ACTIVE_ANON] + 1;
2052 lru = LRU_BASE;
2053 percentage = nr_anon * 100 / scan_target;
2054 } else {
2055 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2056 targets[LRU_ACTIVE_FILE] + 1;
2057 lru = LRU_FILE;
2058 percentage = nr_file * 100 / scan_target;
2059 }
2060
2061 /* Stop scanning the smaller of the LRU */
2062 nr[lru] = 0;
2063 nr[lru + LRU_ACTIVE] = 0;
2064
2065 /*
2066 * Recalculate the other LRU scan count based on its original
2067 * scan target and the percentage scanning already complete
2068 */
2069 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2070 nr_scanned = targets[lru] - nr[lru];
2071 nr[lru] = targets[lru] * (100 - percentage) / 100;
2072 nr[lru] -= min(nr[lru], nr_scanned);
2073
2074 lru += LRU_ACTIVE;
2075 nr_scanned = targets[lru] - nr[lru];
2076 nr[lru] = targets[lru] * (100 - percentage) / 100;
2077 nr[lru] -= min(nr[lru], nr_scanned);
2078
2079 scan_adjusted = true;
9b4f98cd
JW
2080 }
2081 blk_finish_plug(&plug);
2082 sc->nr_reclaimed += nr_reclaimed;
2083
2084 /*
2085 * Even if we did not try to evict anon pages at all, we want to
2086 * rebalance the anon lru active/inactive ratio.
2087 */
2088 if (inactive_anon_is_low(lruvec))
2089 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2090 sc, LRU_ACTIVE_ANON);
2091
2092 throttle_vm_writeout(sc->gfp_mask);
2093}
2094
23b9da55 2095/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2096static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2097{
d84da3f9 2098 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2099 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2100 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2101 return true;
2102
2103 return false;
2104}
2105
3e7d3449 2106/*
23b9da55
MG
2107 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2108 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2109 * true if more pages should be reclaimed such that when the page allocator
2110 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2111 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2112 */
9b4f98cd 2113static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2114 unsigned long nr_reclaimed,
2115 unsigned long nr_scanned,
2116 struct scan_control *sc)
2117{
2118 unsigned long pages_for_compaction;
2119 unsigned long inactive_lru_pages;
2120
2121 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2122 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2123 return false;
2124
2876592f
MG
2125 /* Consider stopping depending on scan and reclaim activity */
2126 if (sc->gfp_mask & __GFP_REPEAT) {
2127 /*
2128 * For __GFP_REPEAT allocations, stop reclaiming if the
2129 * full LRU list has been scanned and we are still failing
2130 * to reclaim pages. This full LRU scan is potentially
2131 * expensive but a __GFP_REPEAT caller really wants to succeed
2132 */
2133 if (!nr_reclaimed && !nr_scanned)
2134 return false;
2135 } else {
2136 /*
2137 * For non-__GFP_REPEAT allocations which can presumably
2138 * fail without consequence, stop if we failed to reclaim
2139 * any pages from the last SWAP_CLUSTER_MAX number of
2140 * pages that were scanned. This will return to the
2141 * caller faster at the risk reclaim/compaction and
2142 * the resulting allocation attempt fails
2143 */
2144 if (!nr_reclaimed)
2145 return false;
2146 }
3e7d3449
MG
2147
2148 /*
2149 * If we have not reclaimed enough pages for compaction and the
2150 * inactive lists are large enough, continue reclaiming
2151 */
2152 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2153 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2154 if (get_nr_swap_pages() > 0)
9b4f98cd 2155 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2156 if (sc->nr_reclaimed < pages_for_compaction &&
2157 inactive_lru_pages > pages_for_compaction)
2158 return true;
2159
2160 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2161 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2162 case COMPACT_PARTIAL:
2163 case COMPACT_CONTINUE:
2164 return false;
2165 default:
2166 return true;
2167 }
2168}
2169
0608f43d 2170static void shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2171{
f0fdc5e8 2172 unsigned long nr_reclaimed, nr_scanned;
1da177e4 2173
9b4f98cd
JW
2174 do {
2175 struct mem_cgroup *root = sc->target_mem_cgroup;
2176 struct mem_cgroup_reclaim_cookie reclaim = {
2177 .zone = zone,
2178 .priority = sc->priority,
2179 };
694fbc0f 2180 struct mem_cgroup *memcg;
3e7d3449 2181
9b4f98cd
JW
2182 nr_reclaimed = sc->nr_reclaimed;
2183 nr_scanned = sc->nr_scanned;
1da177e4 2184
694fbc0f
AM
2185 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2186 do {
9b4f98cd 2187 struct lruvec *lruvec;
5660048c 2188
9b4f98cd 2189 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2190
9b4f98cd 2191 shrink_lruvec(lruvec, sc);
f16015fb 2192
9b4f98cd 2193 /*
a394cb8e
MH
2194 * Direct reclaim and kswapd have to scan all memory
2195 * cgroups to fulfill the overall scan target for the
9b4f98cd 2196 * zone.
a394cb8e
MH
2197 *
2198 * Limit reclaim, on the other hand, only cares about
2199 * nr_to_reclaim pages to be reclaimed and it will
2200 * retry with decreasing priority if one round over the
2201 * whole hierarchy is not sufficient.
9b4f98cd 2202 */
a394cb8e
MH
2203 if (!global_reclaim(sc) &&
2204 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2205 mem_cgroup_iter_break(root, memcg);
2206 break;
2207 }
694fbc0f
AM
2208 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2209 } while (memcg);
70ddf637
AV
2210
2211 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2212 sc->nr_scanned - nr_scanned,
2213 sc->nr_reclaimed - nr_reclaimed);
2214
9b4f98cd
JW
2215 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2216 sc->nr_scanned - nr_scanned, sc));
f16015fb
JW
2217}
2218
fe4b1b24
MG
2219/* Returns true if compaction should go ahead for a high-order request */
2220static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2221{
2222 unsigned long balance_gap, watermark;
2223 bool watermark_ok;
2224
2225 /* Do not consider compaction for orders reclaim is meant to satisfy */
2226 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2227 return false;
2228
2229 /*
2230 * Compaction takes time to run and there are potentially other
2231 * callers using the pages just freed. Continue reclaiming until
2232 * there is a buffer of free pages available to give compaction
2233 * a reasonable chance of completing and allocating the page
2234 */
2235 balance_gap = min(low_wmark_pages(zone),
b40da049 2236 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
fe4b1b24
MG
2237 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2238 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2239 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2240
2241 /*
2242 * If compaction is deferred, reclaim up to a point where
2243 * compaction will have a chance of success when re-enabled
2244 */
aff62249 2245 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2246 return watermark_ok;
2247
2248 /* If compaction is not ready to start, keep reclaiming */
2249 if (!compaction_suitable(zone, sc->order))
2250 return false;
2251
2252 return watermark_ok;
2253}
2254
1da177e4
LT
2255/*
2256 * This is the direct reclaim path, for page-allocating processes. We only
2257 * try to reclaim pages from zones which will satisfy the caller's allocation
2258 * request.
2259 *
41858966
MG
2260 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2261 * Because:
1da177e4
LT
2262 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2263 * allocation or
41858966
MG
2264 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2265 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2266 * zone defense algorithm.
1da177e4 2267 *
1da177e4
LT
2268 * If a zone is deemed to be full of pinned pages then just give it a light
2269 * scan then give up on it.
e0c23279
MG
2270 *
2271 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2272 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2273 * the caller that it should consider retrying the allocation instead of
2274 * further reclaim.
1da177e4 2275 */
9e3b2f8c 2276static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2277{
dd1a239f 2278 struct zoneref *z;
54a6eb5c 2279 struct zone *zone;
0608f43d
AM
2280 unsigned long nr_soft_reclaimed;
2281 unsigned long nr_soft_scanned;
0cee34fd 2282 bool aborted_reclaim = false;
1cfb419b 2283
cc715d99
MG
2284 /*
2285 * If the number of buffer_heads in the machine exceeds the maximum
2286 * allowed level, force direct reclaim to scan the highmem zone as
2287 * highmem pages could be pinning lowmem pages storing buffer_heads
2288 */
2289 if (buffer_heads_over_limit)
2290 sc->gfp_mask |= __GFP_HIGHMEM;
2291
d4debc66
MG
2292 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2293 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2294 if (!populated_zone(zone))
1da177e4 2295 continue;
1cfb419b
KH
2296 /*
2297 * Take care memory controller reclaiming has small influence
2298 * to global LRU.
2299 */
89b5fae5 2300 if (global_reclaim(sc)) {
1cfb419b
KH
2301 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2302 continue;
6e543d57
LD
2303 if (sc->priority != DEF_PRIORITY &&
2304 !zone_reclaimable(zone))
1cfb419b 2305 continue; /* Let kswapd poll it */
d84da3f9 2306 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2307 /*
e0c23279
MG
2308 * If we already have plenty of memory free for
2309 * compaction in this zone, don't free any more.
2310 * Even though compaction is invoked for any
2311 * non-zero order, only frequent costly order
2312 * reclamation is disruptive enough to become a
c7cfa37b
CA
2313 * noticeable problem, like transparent huge
2314 * page allocations.
e0887c19 2315 */
fe4b1b24 2316 if (compaction_ready(zone, sc)) {
0cee34fd 2317 aborted_reclaim = true;
e0887c19 2318 continue;
e0c23279 2319 }
e0887c19 2320 }
0608f43d
AM
2321 /*
2322 * This steals pages from memory cgroups over softlimit
2323 * and returns the number of reclaimed pages and
2324 * scanned pages. This works for global memory pressure
2325 * and balancing, not for a memcg's limit.
2326 */
2327 nr_soft_scanned = 0;
2328 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2329 sc->order, sc->gfp_mask,
2330 &nr_soft_scanned);
2331 sc->nr_reclaimed += nr_soft_reclaimed;
2332 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2333 /* need some check for avoid more shrink_zone() */
1cfb419b 2334 }
408d8544 2335
9e3b2f8c 2336 shrink_zone(zone, sc);
1da177e4 2337 }
e0c23279 2338
0cee34fd 2339 return aborted_reclaim;
d1908362
MK
2340}
2341
929bea7c 2342/* All zones in zonelist are unreclaimable? */
d1908362
MK
2343static bool all_unreclaimable(struct zonelist *zonelist,
2344 struct scan_control *sc)
2345{
2346 struct zoneref *z;
2347 struct zone *zone;
d1908362
MK
2348
2349 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2350 gfp_zone(sc->gfp_mask), sc->nodemask) {
2351 if (!populated_zone(zone))
2352 continue;
2353 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2354 continue;
6e543d57 2355 if (zone_reclaimable(zone))
929bea7c 2356 return false;
d1908362
MK
2357 }
2358
929bea7c 2359 return true;
1da177e4 2360}
4f98a2fe 2361
1da177e4
LT
2362/*
2363 * This is the main entry point to direct page reclaim.
2364 *
2365 * If a full scan of the inactive list fails to free enough memory then we
2366 * are "out of memory" and something needs to be killed.
2367 *
2368 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2369 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2370 * caller can't do much about. We kick the writeback threads and take explicit
2371 * naps in the hope that some of these pages can be written. But if the
2372 * allocating task holds filesystem locks which prevent writeout this might not
2373 * work, and the allocation attempt will fail.
a41f24ea
NA
2374 *
2375 * returns: 0, if no pages reclaimed
2376 * else, the number of pages reclaimed
1da177e4 2377 */
dac1d27b 2378static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2379 struct scan_control *sc,
2380 struct shrink_control *shrink)
1da177e4 2381{
69e05944 2382 unsigned long total_scanned = 0;
1da177e4 2383 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2384 struct zoneref *z;
54a6eb5c 2385 struct zone *zone;
22fba335 2386 unsigned long writeback_threshold;
0cee34fd 2387 bool aborted_reclaim;
1da177e4 2388
873b4771
KK
2389 delayacct_freepages_start();
2390
89b5fae5 2391 if (global_reclaim(sc))
1cfb419b 2392 count_vm_event(ALLOCSTALL);
1da177e4 2393
9e3b2f8c 2394 do {
70ddf637
AV
2395 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2396 sc->priority);
66e1707b 2397 sc->nr_scanned = 0;
9e3b2f8c 2398 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2399
66e1707b 2400 /*
5a1c9cbc
MG
2401 * Don't shrink slabs when reclaiming memory from over limit
2402 * cgroups but do shrink slab at least once when aborting
2403 * reclaim for compaction to avoid unevenly scanning file/anon
2404 * LRU pages over slab pages.
66e1707b 2405 */
89b5fae5 2406 if (global_reclaim(sc)) {
c6a8a8c5 2407 unsigned long lru_pages = 0;
0ce3d744
DC
2408
2409 nodes_clear(shrink->nodes_to_scan);
d4debc66
MG
2410 for_each_zone_zonelist(zone, z, zonelist,
2411 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2412 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2413 continue;
2414
2415 lru_pages += zone_reclaimable_pages(zone);
0ce3d744
DC
2416 node_set(zone_to_nid(zone),
2417 shrink->nodes_to_scan);
c6a8a8c5
KM
2418 }
2419
1495f230 2420 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2421 if (reclaim_state) {
a79311c1 2422 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2423 reclaim_state->reclaimed_slab = 0;
2424 }
1da177e4 2425 }
66e1707b 2426 total_scanned += sc->nr_scanned;
bb21c7ce 2427 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2428 goto out;
1da177e4 2429
0e50ce3b
MK
2430 /*
2431 * If we're getting trouble reclaiming, start doing
2432 * writepage even in laptop mode.
2433 */
2434 if (sc->priority < DEF_PRIORITY - 2)
2435 sc->may_writepage = 1;
2436
1da177e4
LT
2437 /*
2438 * Try to write back as many pages as we just scanned. This
2439 * tends to cause slow streaming writers to write data to the
2440 * disk smoothly, at the dirtying rate, which is nice. But
2441 * that's undesirable in laptop mode, where we *want* lumpy
2442 * writeout. So in laptop mode, write out the whole world.
2443 */
22fba335
KM
2444 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2445 if (total_scanned > writeback_threshold) {
0e175a18
CW
2446 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2447 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2448 sc->may_writepage = 1;
1da177e4 2449 }
5a1c9cbc 2450 } while (--sc->priority >= 0 && !aborted_reclaim);
bb21c7ce 2451
1da177e4 2452out:
873b4771
KK
2453 delayacct_freepages_end();
2454
bb21c7ce
KM
2455 if (sc->nr_reclaimed)
2456 return sc->nr_reclaimed;
2457
929bea7c
KM
2458 /*
2459 * As hibernation is going on, kswapd is freezed so that it can't mark
2460 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2461 * check.
2462 */
2463 if (oom_killer_disabled)
2464 return 0;
2465
0cee34fd
MG
2466 /* Aborted reclaim to try compaction? don't OOM, then */
2467 if (aborted_reclaim)
7335084d
MG
2468 return 1;
2469
bb21c7ce 2470 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2471 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2472 return 1;
2473
2474 return 0;
1da177e4
LT
2475}
2476
5515061d
MG
2477static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2478{
2479 struct zone *zone;
2480 unsigned long pfmemalloc_reserve = 0;
2481 unsigned long free_pages = 0;
2482 int i;
2483 bool wmark_ok;
2484
2485 for (i = 0; i <= ZONE_NORMAL; i++) {
2486 zone = &pgdat->node_zones[i];
2487 pfmemalloc_reserve += min_wmark_pages(zone);
2488 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2489 }
2490
2491 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2492
2493 /* kswapd must be awake if processes are being throttled */
2494 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2495 pgdat->classzone_idx = min(pgdat->classzone_idx,
2496 (enum zone_type)ZONE_NORMAL);
2497 wake_up_interruptible(&pgdat->kswapd_wait);
2498 }
2499
2500 return wmark_ok;
2501}
2502
2503/*
2504 * Throttle direct reclaimers if backing storage is backed by the network
2505 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2506 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2507 * when the low watermark is reached.
2508 *
2509 * Returns true if a fatal signal was delivered during throttling. If this
2510 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2511 */
50694c28 2512static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2513 nodemask_t *nodemask)
2514{
2515 struct zone *zone;
2516 int high_zoneidx = gfp_zone(gfp_mask);
2517 pg_data_t *pgdat;
2518
2519 /*
2520 * Kernel threads should not be throttled as they may be indirectly
2521 * responsible for cleaning pages necessary for reclaim to make forward
2522 * progress. kjournald for example may enter direct reclaim while
2523 * committing a transaction where throttling it could forcing other
2524 * processes to block on log_wait_commit().
2525 */
2526 if (current->flags & PF_KTHREAD)
50694c28
MG
2527 goto out;
2528
2529 /*
2530 * If a fatal signal is pending, this process should not throttle.
2531 * It should return quickly so it can exit and free its memory
2532 */
2533 if (fatal_signal_pending(current))
2534 goto out;
5515061d
MG
2535
2536 /* Check if the pfmemalloc reserves are ok */
2537 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2538 pgdat = zone->zone_pgdat;
2539 if (pfmemalloc_watermark_ok(pgdat))
50694c28 2540 goto out;
5515061d 2541
68243e76
MG
2542 /* Account for the throttling */
2543 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2544
5515061d
MG
2545 /*
2546 * If the caller cannot enter the filesystem, it's possible that it
2547 * is due to the caller holding an FS lock or performing a journal
2548 * transaction in the case of a filesystem like ext[3|4]. In this case,
2549 * it is not safe to block on pfmemalloc_wait as kswapd could be
2550 * blocked waiting on the same lock. Instead, throttle for up to a
2551 * second before continuing.
2552 */
2553 if (!(gfp_mask & __GFP_FS)) {
2554 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2555 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2556
2557 goto check_pending;
5515061d
MG
2558 }
2559
2560 /* Throttle until kswapd wakes the process */
2561 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2562 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2563
2564check_pending:
2565 if (fatal_signal_pending(current))
2566 return true;
2567
2568out:
2569 return false;
5515061d
MG
2570}
2571
dac1d27b 2572unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2573 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2574{
33906bc5 2575 unsigned long nr_reclaimed;
66e1707b 2576 struct scan_control sc = {
21caf2fc 2577 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2578 .may_writepage = !laptop_mode,
22fba335 2579 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2580 .may_unmap = 1,
2e2e4259 2581 .may_swap = 1,
66e1707b 2582 .order = order,
9e3b2f8c 2583 .priority = DEF_PRIORITY,
f16015fb 2584 .target_mem_cgroup = NULL,
327c0e96 2585 .nodemask = nodemask,
66e1707b 2586 };
a09ed5e0
YH
2587 struct shrink_control shrink = {
2588 .gfp_mask = sc.gfp_mask,
2589 };
66e1707b 2590
5515061d 2591 /*
50694c28
MG
2592 * Do not enter reclaim if fatal signal was delivered while throttled.
2593 * 1 is returned so that the page allocator does not OOM kill at this
2594 * point.
5515061d 2595 */
50694c28 2596 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2597 return 1;
2598
33906bc5
MG
2599 trace_mm_vmscan_direct_reclaim_begin(order,
2600 sc.may_writepage,
2601 gfp_mask);
2602
a09ed5e0 2603 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2604
2605 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2606
2607 return nr_reclaimed;
66e1707b
BS
2608}
2609
c255a458 2610#ifdef CONFIG_MEMCG
66e1707b 2611
72835c86 2612unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2613 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2614 struct zone *zone,
2615 unsigned long *nr_scanned)
4e416953
BS
2616{
2617 struct scan_control sc = {
0ae5e89c 2618 .nr_scanned = 0,
b8f5c566 2619 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2620 .may_writepage = !laptop_mode,
2621 .may_unmap = 1,
2622 .may_swap = !noswap,
4e416953 2623 .order = 0,
9e3b2f8c 2624 .priority = 0,
72835c86 2625 .target_mem_cgroup = memcg,
4e416953 2626 };
f9be23d6 2627 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2628
4e416953
BS
2629 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2630 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2631
9e3b2f8c 2632 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2633 sc.may_writepage,
2634 sc.gfp_mask);
2635
4e416953
BS
2636 /*
2637 * NOTE: Although we can get the priority field, using it
2638 * here is not a good idea, since it limits the pages we can scan.
2639 * if we don't reclaim here, the shrink_zone from balance_pgdat
2640 * will pick up pages from other mem cgroup's as well. We hack
2641 * the priority and make it zero.
2642 */
f9be23d6 2643 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2644
2645 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2646
0ae5e89c 2647 *nr_scanned = sc.nr_scanned;
4e416953
BS
2648 return sc.nr_reclaimed;
2649}
2650
72835c86 2651unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2652 gfp_t gfp_mask,
185efc0f 2653 bool noswap)
66e1707b 2654{
4e416953 2655 struct zonelist *zonelist;
bdce6d9e 2656 unsigned long nr_reclaimed;
889976db 2657 int nid;
66e1707b 2658 struct scan_control sc = {
66e1707b 2659 .may_writepage = !laptop_mode,
a6dc60f8 2660 .may_unmap = 1,
2e2e4259 2661 .may_swap = !noswap,
22fba335 2662 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2663 .order = 0,
9e3b2f8c 2664 .priority = DEF_PRIORITY,
72835c86 2665 .target_mem_cgroup = memcg,
327c0e96 2666 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2667 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2668 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2669 };
2670 struct shrink_control shrink = {
2671 .gfp_mask = sc.gfp_mask,
66e1707b 2672 };
66e1707b 2673
889976db
YH
2674 /*
2675 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2676 * take care of from where we get pages. So the node where we start the
2677 * scan does not need to be the current node.
2678 */
72835c86 2679 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2680
2681 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2682
2683 trace_mm_vmscan_memcg_reclaim_begin(0,
2684 sc.may_writepage,
2685 sc.gfp_mask);
2686
a09ed5e0 2687 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2688
2689 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2690
2691 return nr_reclaimed;
66e1707b
BS
2692}
2693#endif
2694
9e3b2f8c 2695static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2696{
b95a2f2d 2697 struct mem_cgroup *memcg;
f16015fb 2698
b95a2f2d
JW
2699 if (!total_swap_pages)
2700 return;
2701
2702 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2703 do {
c56d5c7d 2704 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2705
c56d5c7d 2706 if (inactive_anon_is_low(lruvec))
1a93be0e 2707 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2708 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2709
2710 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2711 } while (memcg);
f16015fb
JW
2712}
2713
60cefed4
JW
2714static bool zone_balanced(struct zone *zone, int order,
2715 unsigned long balance_gap, int classzone_idx)
2716{
2717 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2718 balance_gap, classzone_idx, 0))
2719 return false;
2720
d84da3f9
KS
2721 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2722 !compaction_suitable(zone, order))
60cefed4
JW
2723 return false;
2724
2725 return true;
2726}
2727
1741c877 2728/*
4ae0a48b
ZC
2729 * pgdat_balanced() is used when checking if a node is balanced.
2730 *
2731 * For order-0, all zones must be balanced!
2732 *
2733 * For high-order allocations only zones that meet watermarks and are in a
2734 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2735 * total of balanced pages must be at least 25% of the zones allowed by
2736 * classzone_idx for the node to be considered balanced. Forcing all zones to
2737 * be balanced for high orders can cause excessive reclaim when there are
2738 * imbalanced zones.
1741c877
MG
2739 * The choice of 25% is due to
2740 * o a 16M DMA zone that is balanced will not balance a zone on any
2741 * reasonable sized machine
2742 * o On all other machines, the top zone must be at least a reasonable
25985edc 2743 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2744 * would need to be at least 256M for it to be balance a whole node.
2745 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2746 * to balance a node on its own. These seemed like reasonable ratios.
2747 */
4ae0a48b 2748static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2749{
b40da049 2750 unsigned long managed_pages = 0;
4ae0a48b 2751 unsigned long balanced_pages = 0;
1741c877
MG
2752 int i;
2753
4ae0a48b
ZC
2754 /* Check the watermark levels */
2755 for (i = 0; i <= classzone_idx; i++) {
2756 struct zone *zone = pgdat->node_zones + i;
1741c877 2757
4ae0a48b
ZC
2758 if (!populated_zone(zone))
2759 continue;
2760
b40da049 2761 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2762
2763 /*
2764 * A special case here:
2765 *
2766 * balance_pgdat() skips over all_unreclaimable after
2767 * DEF_PRIORITY. Effectively, it considers them balanced so
2768 * they must be considered balanced here as well!
2769 */
6e543d57 2770 if (!zone_reclaimable(zone)) {
b40da049 2771 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2772 continue;
2773 }
2774
2775 if (zone_balanced(zone, order, 0, i))
b40da049 2776 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2777 else if (!order)
2778 return false;
2779 }
2780
2781 if (order)
b40da049 2782 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2783 else
2784 return true;
1741c877
MG
2785}
2786
5515061d
MG
2787/*
2788 * Prepare kswapd for sleeping. This verifies that there are no processes
2789 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2790 *
2791 * Returns true if kswapd is ready to sleep
2792 */
2793static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2794 int classzone_idx)
f50de2d3 2795{
f50de2d3
MG
2796 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2797 if (remaining)
5515061d
MG
2798 return false;
2799
2800 /*
2801 * There is a potential race between when kswapd checks its watermarks
2802 * and a process gets throttled. There is also a potential race if
2803 * processes get throttled, kswapd wakes, a large process exits therby
2804 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2805 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2806 * so wake them now if necessary. If necessary, processes will wake
2807 * kswapd and get throttled again
2808 */
2809 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2810 wake_up(&pgdat->pfmemalloc_wait);
2811 return false;
2812 }
f50de2d3 2813
4ae0a48b 2814 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2815}
2816
75485363
MG
2817/*
2818 * kswapd shrinks the zone by the number of pages required to reach
2819 * the high watermark.
b8e83b94
MG
2820 *
2821 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2822 * reclaim or if the lack of progress was due to pages under writeback.
2823 * This is used to determine if the scanning priority needs to be raised.
75485363 2824 */
b8e83b94 2825static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2826 int classzone_idx,
75485363 2827 struct scan_control *sc,
2ab44f43
MG
2828 unsigned long lru_pages,
2829 unsigned long *nr_attempted)
75485363 2830{
7c954f6d
MG
2831 int testorder = sc->order;
2832 unsigned long balance_gap;
75485363
MG
2833 struct reclaim_state *reclaim_state = current->reclaim_state;
2834 struct shrink_control shrink = {
2835 .gfp_mask = sc->gfp_mask,
2836 };
7c954f6d 2837 bool lowmem_pressure;
75485363
MG
2838
2839 /* Reclaim above the high watermark. */
2840 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2841
2842 /*
2843 * Kswapd reclaims only single pages with compaction enabled. Trying
2844 * too hard to reclaim until contiguous free pages have become
2845 * available can hurt performance by evicting too much useful data
2846 * from memory. Do not reclaim more than needed for compaction.
2847 */
2848 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2849 compaction_suitable(zone, sc->order) !=
2850 COMPACT_SKIPPED)
2851 testorder = 0;
2852
2853 /*
2854 * We put equal pressure on every zone, unless one zone has way too
2855 * many pages free already. The "too many pages" is defined as the
2856 * high wmark plus a "gap" where the gap is either the low
2857 * watermark or 1% of the zone, whichever is smaller.
2858 */
2859 balance_gap = min(low_wmark_pages(zone),
2860 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2861 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2862
2863 /*
2864 * If there is no low memory pressure or the zone is balanced then no
2865 * reclaim is necessary
2866 */
2867 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2868 if (!lowmem_pressure && zone_balanced(zone, testorder,
2869 balance_gap, classzone_idx))
2870 return true;
2871
75485363 2872 shrink_zone(zone, sc);
0ce3d744
DC
2873 nodes_clear(shrink.nodes_to_scan);
2874 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2875
2876 reclaim_state->reclaimed_slab = 0;
6e543d57 2877 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2878 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2879
2ab44f43
MG
2880 /* Account for the number of pages attempted to reclaim */
2881 *nr_attempted += sc->nr_to_reclaim;
2882
283aba9f
MG
2883 zone_clear_flag(zone, ZONE_WRITEBACK);
2884
7c954f6d
MG
2885 /*
2886 * If a zone reaches its high watermark, consider it to be no longer
2887 * congested. It's possible there are dirty pages backed by congested
2888 * BDIs but as pressure is relieved, speculatively avoid congestion
2889 * waits.
2890 */
6e543d57 2891 if (zone_reclaimable(zone) &&
7c954f6d
MG
2892 zone_balanced(zone, testorder, 0, classzone_idx)) {
2893 zone_clear_flag(zone, ZONE_CONGESTED);
2894 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2895 }
2896
b8e83b94 2897 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2898}
2899
1da177e4
LT
2900/*
2901 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2902 * they are all at high_wmark_pages(zone).
1da177e4 2903 *
0abdee2b 2904 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2905 *
2906 * There is special handling here for zones which are full of pinned pages.
2907 * This can happen if the pages are all mlocked, or if they are all used by
2908 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2909 * What we do is to detect the case where all pages in the zone have been
2910 * scanned twice and there has been zero successful reclaim. Mark the zone as
2911 * dead and from now on, only perform a short scan. Basically we're polling
2912 * the zone for when the problem goes away.
2913 *
2914 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2915 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2916 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2917 * lower zones regardless of the number of free pages in the lower zones. This
2918 * interoperates with the page allocator fallback scheme to ensure that aging
2919 * of pages is balanced across the zones.
1da177e4 2920 */
99504748 2921static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2922 int *classzone_idx)
1da177e4 2923{
1da177e4 2924 int i;
99504748 2925 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
2926 unsigned long nr_soft_reclaimed;
2927 unsigned long nr_soft_scanned;
179e9639
AM
2928 struct scan_control sc = {
2929 .gfp_mask = GFP_KERNEL,
b8e83b94 2930 .priority = DEF_PRIORITY,
a6dc60f8 2931 .may_unmap = 1,
2e2e4259 2932 .may_swap = 1,
b8e83b94 2933 .may_writepage = !laptop_mode,
5ad333eb 2934 .order = order,
f16015fb 2935 .target_mem_cgroup = NULL,
179e9639 2936 };
f8891e5e 2937 count_vm_event(PAGEOUTRUN);
1da177e4 2938
9e3b2f8c 2939 do {
1da177e4 2940 unsigned long lru_pages = 0;
2ab44f43 2941 unsigned long nr_attempted = 0;
b8e83b94 2942 bool raise_priority = true;
2ab44f43 2943 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
2944
2945 sc.nr_reclaimed = 0;
1da177e4 2946
d6277db4
RW
2947 /*
2948 * Scan in the highmem->dma direction for the highest
2949 * zone which needs scanning
2950 */
2951 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2952 struct zone *zone = pgdat->node_zones + i;
1da177e4 2953
d6277db4
RW
2954 if (!populated_zone(zone))
2955 continue;
1da177e4 2956
6e543d57
LD
2957 if (sc.priority != DEF_PRIORITY &&
2958 !zone_reclaimable(zone))
d6277db4 2959 continue;
1da177e4 2960
556adecb
RR
2961 /*
2962 * Do some background aging of the anon list, to give
2963 * pages a chance to be referenced before reclaiming.
2964 */
9e3b2f8c 2965 age_active_anon(zone, &sc);
556adecb 2966
cc715d99
MG
2967 /*
2968 * If the number of buffer_heads in the machine
2969 * exceeds the maximum allowed level and this node
2970 * has a highmem zone, force kswapd to reclaim from
2971 * it to relieve lowmem pressure.
2972 */
2973 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2974 end_zone = i;
2975 break;
2976 }
2977
60cefed4 2978 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 2979 end_zone = i;
e1dbeda6 2980 break;
439423f6 2981 } else {
d43006d5
MG
2982 /*
2983 * If balanced, clear the dirty and congested
2984 * flags
2985 */
439423f6 2986 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 2987 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 2988 }
1da177e4 2989 }
dafcb73e 2990
b8e83b94 2991 if (i < 0)
e1dbeda6
AM
2992 goto out;
2993
1da177e4
LT
2994 for (i = 0; i <= end_zone; i++) {
2995 struct zone *zone = pgdat->node_zones + i;
2996
2ab44f43
MG
2997 if (!populated_zone(zone))
2998 continue;
2999
adea02a1 3000 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
3001
3002 /*
3003 * If any zone is currently balanced then kswapd will
3004 * not call compaction as it is expected that the
3005 * necessary pages are already available.
3006 */
3007 if (pgdat_needs_compaction &&
3008 zone_watermark_ok(zone, order,
3009 low_wmark_pages(zone),
3010 *classzone_idx, 0))
3011 pgdat_needs_compaction = false;
1da177e4
LT
3012 }
3013
b7ea3c41
MG
3014 /*
3015 * If we're getting trouble reclaiming, start doing writepage
3016 * even in laptop mode.
3017 */
3018 if (sc.priority < DEF_PRIORITY - 2)
3019 sc.may_writepage = 1;
3020
1da177e4
LT
3021 /*
3022 * Now scan the zone in the dma->highmem direction, stopping
3023 * at the last zone which needs scanning.
3024 *
3025 * We do this because the page allocator works in the opposite
3026 * direction. This prevents the page allocator from allocating
3027 * pages behind kswapd's direction of progress, which would
3028 * cause too much scanning of the lower zones.
3029 */
3030 for (i = 0; i <= end_zone; i++) {
3031 struct zone *zone = pgdat->node_zones + i;
3032
f3fe6512 3033 if (!populated_zone(zone))
1da177e4
LT
3034 continue;
3035
6e543d57
LD
3036 if (sc.priority != DEF_PRIORITY &&
3037 !zone_reclaimable(zone))
1da177e4
LT
3038 continue;
3039
1da177e4 3040 sc.nr_scanned = 0;
4e416953 3041
0608f43d
AM
3042 nr_soft_scanned = 0;
3043 /*
3044 * Call soft limit reclaim before calling shrink_zone.
3045 */
3046 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3047 order, sc.gfp_mask,
3048 &nr_soft_scanned);
3049 sc.nr_reclaimed += nr_soft_reclaimed;
3050
32a4330d 3051 /*
7c954f6d
MG
3052 * There should be no need to raise the scanning
3053 * priority if enough pages are already being scanned
3054 * that that high watermark would be met at 100%
3055 * efficiency.
fe2c2a10 3056 */
7c954f6d
MG
3057 if (kswapd_shrink_zone(zone, end_zone, &sc,
3058 lru_pages, &nr_attempted))
3059 raise_priority = false;
1da177e4 3060 }
5515061d
MG
3061
3062 /*
3063 * If the low watermark is met there is no need for processes
3064 * to be throttled on pfmemalloc_wait as they should not be
3065 * able to safely make forward progress. Wake them
3066 */
3067 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3068 pfmemalloc_watermark_ok(pgdat))
3069 wake_up(&pgdat->pfmemalloc_wait);
3070
1da177e4 3071 /*
b8e83b94
MG
3072 * Fragmentation may mean that the system cannot be rebalanced
3073 * for high-order allocations in all zones. If twice the
3074 * allocation size has been reclaimed and the zones are still
3075 * not balanced then recheck the watermarks at order-0 to
3076 * prevent kswapd reclaiming excessively. Assume that a
3077 * process requested a high-order can direct reclaim/compact.
1da177e4 3078 */
b8e83b94
MG
3079 if (order && sc.nr_reclaimed >= 2UL << order)
3080 order = sc.order = 0;
8357376d 3081
b8e83b94
MG
3082 /* Check if kswapd should be suspending */
3083 if (try_to_freeze() || kthread_should_stop())
3084 break;
8357376d 3085
2ab44f43
MG
3086 /*
3087 * Compact if necessary and kswapd is reclaiming at least the
3088 * high watermark number of pages as requsted
3089 */
3090 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3091 compact_pgdat(pgdat, order);
3092
73ce02e9 3093 /*
b8e83b94
MG
3094 * Raise priority if scanning rate is too low or there was no
3095 * progress in reclaiming pages
73ce02e9 3096 */
b8e83b94
MG
3097 if (raise_priority || !sc.nr_reclaimed)
3098 sc.priority--;
9aa41348 3099 } while (sc.priority >= 1 &&
b8e83b94 3100 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3101
b8e83b94 3102out:
0abdee2b 3103 /*
5515061d 3104 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3105 * makes a decision on the order we were last reclaiming at. However,
3106 * if another caller entered the allocator slow path while kswapd
3107 * was awake, order will remain at the higher level
3108 */
dc83edd9 3109 *classzone_idx = end_zone;
0abdee2b 3110 return order;
1da177e4
LT
3111}
3112
dc83edd9 3113static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3114{
3115 long remaining = 0;
3116 DEFINE_WAIT(wait);
3117
3118 if (freezing(current) || kthread_should_stop())
3119 return;
3120
3121 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3122
3123 /* Try to sleep for a short interval */
5515061d 3124 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3125 remaining = schedule_timeout(HZ/10);
3126 finish_wait(&pgdat->kswapd_wait, &wait);
3127 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3128 }
3129
3130 /*
3131 * After a short sleep, check if it was a premature sleep. If not, then
3132 * go fully to sleep until explicitly woken up.
3133 */
5515061d 3134 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3135 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3136
3137 /*
3138 * vmstat counters are not perfectly accurate and the estimated
3139 * value for counters such as NR_FREE_PAGES can deviate from the
3140 * true value by nr_online_cpus * threshold. To avoid the zone
3141 * watermarks being breached while under pressure, we reduce the
3142 * per-cpu vmstat threshold while kswapd is awake and restore
3143 * them before going back to sleep.
3144 */
3145 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3146
62997027
MG
3147 /*
3148 * Compaction records what page blocks it recently failed to
3149 * isolate pages from and skips them in the future scanning.
3150 * When kswapd is going to sleep, it is reasonable to assume
3151 * that pages and compaction may succeed so reset the cache.
3152 */
3153 reset_isolation_suitable(pgdat);
3154
1c7e7f6c
AK
3155 if (!kthread_should_stop())
3156 schedule();
3157
f0bc0a60
KM
3158 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3159 } else {
3160 if (remaining)
3161 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3162 else
3163 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3164 }
3165 finish_wait(&pgdat->kswapd_wait, &wait);
3166}
3167
1da177e4
LT
3168/*
3169 * The background pageout daemon, started as a kernel thread
4f98a2fe 3170 * from the init process.
1da177e4
LT
3171 *
3172 * This basically trickles out pages so that we have _some_
3173 * free memory available even if there is no other activity
3174 * that frees anything up. This is needed for things like routing
3175 * etc, where we otherwise might have all activity going on in
3176 * asynchronous contexts that cannot page things out.
3177 *
3178 * If there are applications that are active memory-allocators
3179 * (most normal use), this basically shouldn't matter.
3180 */
3181static int kswapd(void *p)
3182{
215ddd66 3183 unsigned long order, new_order;
d2ebd0f6 3184 unsigned balanced_order;
215ddd66 3185 int classzone_idx, new_classzone_idx;
d2ebd0f6 3186 int balanced_classzone_idx;
1da177e4
LT
3187 pg_data_t *pgdat = (pg_data_t*)p;
3188 struct task_struct *tsk = current;
f0bc0a60 3189
1da177e4
LT
3190 struct reclaim_state reclaim_state = {
3191 .reclaimed_slab = 0,
3192 };
a70f7302 3193 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3194
cf40bd16
NP
3195 lockdep_set_current_reclaim_state(GFP_KERNEL);
3196
174596a0 3197 if (!cpumask_empty(cpumask))
c5f59f08 3198 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3199 current->reclaim_state = &reclaim_state;
3200
3201 /*
3202 * Tell the memory management that we're a "memory allocator",
3203 * and that if we need more memory we should get access to it
3204 * regardless (see "__alloc_pages()"). "kswapd" should
3205 * never get caught in the normal page freeing logic.
3206 *
3207 * (Kswapd normally doesn't need memory anyway, but sometimes
3208 * you need a small amount of memory in order to be able to
3209 * page out something else, and this flag essentially protects
3210 * us from recursively trying to free more memory as we're
3211 * trying to free the first piece of memory in the first place).
3212 */
930d9152 3213 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3214 set_freezable();
1da177e4 3215
215ddd66 3216 order = new_order = 0;
d2ebd0f6 3217 balanced_order = 0;
215ddd66 3218 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3219 balanced_classzone_idx = classzone_idx;
1da177e4 3220 for ( ; ; ) {
6f6313d4 3221 bool ret;
3e1d1d28 3222
215ddd66
MG
3223 /*
3224 * If the last balance_pgdat was unsuccessful it's unlikely a
3225 * new request of a similar or harder type will succeed soon
3226 * so consider going to sleep on the basis we reclaimed at
3227 */
d2ebd0f6
AS
3228 if (balanced_classzone_idx >= new_classzone_idx &&
3229 balanced_order == new_order) {
215ddd66
MG
3230 new_order = pgdat->kswapd_max_order;
3231 new_classzone_idx = pgdat->classzone_idx;
3232 pgdat->kswapd_max_order = 0;
3233 pgdat->classzone_idx = pgdat->nr_zones - 1;
3234 }
3235
99504748 3236 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3237 /*
3238 * Don't sleep if someone wants a larger 'order'
99504748 3239 * allocation or has tigher zone constraints
1da177e4
LT
3240 */
3241 order = new_order;
99504748 3242 classzone_idx = new_classzone_idx;
1da177e4 3243 } else {
d2ebd0f6
AS
3244 kswapd_try_to_sleep(pgdat, balanced_order,
3245 balanced_classzone_idx);
1da177e4 3246 order = pgdat->kswapd_max_order;
99504748 3247 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3248 new_order = order;
3249 new_classzone_idx = classzone_idx;
4d40502e 3250 pgdat->kswapd_max_order = 0;
215ddd66 3251 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3252 }
1da177e4 3253
8fe23e05
DR
3254 ret = try_to_freeze();
3255 if (kthread_should_stop())
3256 break;
3257
3258 /*
3259 * We can speed up thawing tasks if we don't call balance_pgdat
3260 * after returning from the refrigerator
3261 */
33906bc5
MG
3262 if (!ret) {
3263 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3264 balanced_classzone_idx = classzone_idx;
3265 balanced_order = balance_pgdat(pgdat, order,
3266 &balanced_classzone_idx);
33906bc5 3267 }
1da177e4 3268 }
b0a8cc58
TY
3269
3270 current->reclaim_state = NULL;
1da177e4
LT
3271 return 0;
3272}
3273
3274/*
3275 * A zone is low on free memory, so wake its kswapd task to service it.
3276 */
99504748 3277void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3278{
3279 pg_data_t *pgdat;
3280
f3fe6512 3281 if (!populated_zone(zone))
1da177e4
LT
3282 return;
3283
88f5acf8 3284 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3285 return;
88f5acf8 3286 pgdat = zone->zone_pgdat;
99504748 3287 if (pgdat->kswapd_max_order < order) {
1da177e4 3288 pgdat->kswapd_max_order = order;
99504748
MG
3289 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3290 }
8d0986e2 3291 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3292 return;
892f795d 3293 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3294 return;
3295
3296 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3297 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3298}
3299
adea02a1
WF
3300/*
3301 * The reclaimable count would be mostly accurate.
3302 * The less reclaimable pages may be
3303 * - mlocked pages, which will be moved to unevictable list when encountered
3304 * - mapped pages, which may require several travels to be reclaimed
3305 * - dirty pages, which is not "instantly" reclaimable
3306 */
3307unsigned long global_reclaimable_pages(void)
4f98a2fe 3308{
adea02a1
WF
3309 int nr;
3310
3311 nr = global_page_state(NR_ACTIVE_FILE) +
3312 global_page_state(NR_INACTIVE_FILE);
3313
ec8acf20 3314 if (get_nr_swap_pages() > 0)
adea02a1
WF
3315 nr += global_page_state(NR_ACTIVE_ANON) +
3316 global_page_state(NR_INACTIVE_ANON);
3317
3318 return nr;
3319}
3320
c6f37f12 3321#ifdef CONFIG_HIBERNATION
1da177e4 3322/*
7b51755c 3323 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3324 * freed pages.
3325 *
3326 * Rather than trying to age LRUs the aim is to preserve the overall
3327 * LRU order by reclaiming preferentially
3328 * inactive > active > active referenced > active mapped
1da177e4 3329 */
7b51755c 3330unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3331{
d6277db4 3332 struct reclaim_state reclaim_state;
d6277db4 3333 struct scan_control sc = {
7b51755c
KM
3334 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3335 .may_swap = 1,
3336 .may_unmap = 1,
d6277db4 3337 .may_writepage = 1,
7b51755c
KM
3338 .nr_to_reclaim = nr_to_reclaim,
3339 .hibernation_mode = 1,
7b51755c 3340 .order = 0,
9e3b2f8c 3341 .priority = DEF_PRIORITY,
1da177e4 3342 };
a09ed5e0
YH
3343 struct shrink_control shrink = {
3344 .gfp_mask = sc.gfp_mask,
3345 };
3346 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3347 struct task_struct *p = current;
3348 unsigned long nr_reclaimed;
1da177e4 3349
7b51755c
KM
3350 p->flags |= PF_MEMALLOC;
3351 lockdep_set_current_reclaim_state(sc.gfp_mask);
3352 reclaim_state.reclaimed_slab = 0;
3353 p->reclaim_state = &reclaim_state;
d6277db4 3354
a09ed5e0 3355 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3356
7b51755c
KM
3357 p->reclaim_state = NULL;
3358 lockdep_clear_current_reclaim_state();
3359 p->flags &= ~PF_MEMALLOC;
d6277db4 3360
7b51755c 3361 return nr_reclaimed;
1da177e4 3362}
c6f37f12 3363#endif /* CONFIG_HIBERNATION */
1da177e4 3364
1da177e4
LT
3365/* It's optimal to keep kswapds on the same CPUs as their memory, but
3366 not required for correctness. So if the last cpu in a node goes
3367 away, we get changed to run anywhere: as the first one comes back,
3368 restore their cpu bindings. */
fcb35a9b
GKH
3369static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3370 void *hcpu)
1da177e4 3371{
58c0a4a7 3372 int nid;
1da177e4 3373
8bb78442 3374 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3375 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3376 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3377 const struct cpumask *mask;
3378
3379 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3380
3e597945 3381 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3382 /* One of our CPUs online: restore mask */
c5f59f08 3383 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3384 }
3385 }
3386 return NOTIFY_OK;
3387}
1da177e4 3388
3218ae14
YG
3389/*
3390 * This kswapd start function will be called by init and node-hot-add.
3391 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3392 */
3393int kswapd_run(int nid)
3394{
3395 pg_data_t *pgdat = NODE_DATA(nid);
3396 int ret = 0;
3397
3398 if (pgdat->kswapd)
3399 return 0;
3400
3401 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3402 if (IS_ERR(pgdat->kswapd)) {
3403 /* failure at boot is fatal */
3404 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3405 pr_err("Failed to start kswapd on node %d\n", nid);
3406 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3407 pgdat->kswapd = NULL;
3218ae14
YG
3408 }
3409 return ret;
3410}
3411
8fe23e05 3412/*
d8adde17
JL
3413 * Called by memory hotplug when all memory in a node is offlined. Caller must
3414 * hold lock_memory_hotplug().
8fe23e05
DR
3415 */
3416void kswapd_stop(int nid)
3417{
3418 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3419
d8adde17 3420 if (kswapd) {
8fe23e05 3421 kthread_stop(kswapd);
d8adde17
JL
3422 NODE_DATA(nid)->kswapd = NULL;
3423 }
8fe23e05
DR
3424}
3425
1da177e4
LT
3426static int __init kswapd_init(void)
3427{
3218ae14 3428 int nid;
69e05944 3429
1da177e4 3430 swap_setup();
48fb2e24 3431 for_each_node_state(nid, N_MEMORY)
3218ae14 3432 kswapd_run(nid);
1da177e4
LT
3433 hotcpu_notifier(cpu_callback, 0);
3434 return 0;
3435}
3436
3437module_init(kswapd_init)
9eeff239
CL
3438
3439#ifdef CONFIG_NUMA
3440/*
3441 * Zone reclaim mode
3442 *
3443 * If non-zero call zone_reclaim when the number of free pages falls below
3444 * the watermarks.
9eeff239
CL
3445 */
3446int zone_reclaim_mode __read_mostly;
3447
1b2ffb78 3448#define RECLAIM_OFF 0
7d03431c 3449#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3450#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3451#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3452
a92f7126
CL
3453/*
3454 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3455 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3456 * a zone.
3457 */
3458#define ZONE_RECLAIM_PRIORITY 4
3459
9614634f
CL
3460/*
3461 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3462 * occur.
3463 */
3464int sysctl_min_unmapped_ratio = 1;
3465
0ff38490
CL
3466/*
3467 * If the number of slab pages in a zone grows beyond this percentage then
3468 * slab reclaim needs to occur.
3469 */
3470int sysctl_min_slab_ratio = 5;
3471
90afa5de
MG
3472static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3473{
3474 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3475 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3476 zone_page_state(zone, NR_ACTIVE_FILE);
3477
3478 /*
3479 * It's possible for there to be more file mapped pages than
3480 * accounted for by the pages on the file LRU lists because
3481 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3482 */
3483 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3484}
3485
3486/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3487static long zone_pagecache_reclaimable(struct zone *zone)
3488{
3489 long nr_pagecache_reclaimable;
3490 long delta = 0;
3491
3492 /*
3493 * If RECLAIM_SWAP is set, then all file pages are considered
3494 * potentially reclaimable. Otherwise, we have to worry about
3495 * pages like swapcache and zone_unmapped_file_pages() provides
3496 * a better estimate
3497 */
3498 if (zone_reclaim_mode & RECLAIM_SWAP)
3499 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3500 else
3501 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3502
3503 /* If we can't clean pages, remove dirty pages from consideration */
3504 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3505 delta += zone_page_state(zone, NR_FILE_DIRTY);
3506
3507 /* Watch for any possible underflows due to delta */
3508 if (unlikely(delta > nr_pagecache_reclaimable))
3509 delta = nr_pagecache_reclaimable;
3510
3511 return nr_pagecache_reclaimable - delta;
3512}
3513
9eeff239
CL
3514/*
3515 * Try to free up some pages from this zone through reclaim.
3516 */
179e9639 3517static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3518{
7fb2d46d 3519 /* Minimum pages needed in order to stay on node */
69e05944 3520 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3521 struct task_struct *p = current;
3522 struct reclaim_state reclaim_state;
179e9639
AM
3523 struct scan_control sc = {
3524 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3525 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3526 .may_swap = 1,
62b726c1 3527 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3528 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3529 .order = order,
9e3b2f8c 3530 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3531 };
a09ed5e0
YH
3532 struct shrink_control shrink = {
3533 .gfp_mask = sc.gfp_mask,
3534 };
15748048 3535 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3536
9eeff239 3537 cond_resched();
d4f7796e
CL
3538 /*
3539 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3540 * and we also need to be able to write out pages for RECLAIM_WRITE
3541 * and RECLAIM_SWAP.
3542 */
3543 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3544 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3545 reclaim_state.reclaimed_slab = 0;
3546 p->reclaim_state = &reclaim_state;
c84db23c 3547
90afa5de 3548 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3549 /*
3550 * Free memory by calling shrink zone with increasing
3551 * priorities until we have enough memory freed.
3552 */
0ff38490 3553 do {
9e3b2f8c
KK
3554 shrink_zone(zone, &sc);
3555 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3556 }
c84db23c 3557
15748048
KM
3558 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3559 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3560 /*
7fb2d46d 3561 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3562 * many pages were freed in this zone. So we take the current
3563 * number of slab pages and shake the slab until it is reduced
3564 * by the same nr_pages that we used for reclaiming unmapped
3565 * pages.
2a16e3f4 3566 */
0ce3d744
DC
3567 nodes_clear(shrink.nodes_to_scan);
3568 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3569 for (;;) {
3570 unsigned long lru_pages = zone_reclaimable_pages(zone);
3571
3572 /* No reclaimable slab or very low memory pressure */
1495f230 3573 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3574 break;
3575
3576 /* Freed enough memory */
3577 nr_slab_pages1 = zone_page_state(zone,
3578 NR_SLAB_RECLAIMABLE);
3579 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3580 break;
3581 }
83e33a47
CL
3582
3583 /*
3584 * Update nr_reclaimed by the number of slab pages we
3585 * reclaimed from this zone.
3586 */
15748048
KM
3587 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3588 if (nr_slab_pages1 < nr_slab_pages0)
3589 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3590 }
3591
9eeff239 3592 p->reclaim_state = NULL;
d4f7796e 3593 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3594 lockdep_clear_current_reclaim_state();
a79311c1 3595 return sc.nr_reclaimed >= nr_pages;
9eeff239 3596}
179e9639
AM
3597
3598int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3599{
179e9639 3600 int node_id;
d773ed6b 3601 int ret;
179e9639
AM
3602
3603 /*
0ff38490
CL
3604 * Zone reclaim reclaims unmapped file backed pages and
3605 * slab pages if we are over the defined limits.
34aa1330 3606 *
9614634f
CL
3607 * A small portion of unmapped file backed pages is needed for
3608 * file I/O otherwise pages read by file I/O will be immediately
3609 * thrown out if the zone is overallocated. So we do not reclaim
3610 * if less than a specified percentage of the zone is used by
3611 * unmapped file backed pages.
179e9639 3612 */
90afa5de
MG
3613 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3614 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3615 return ZONE_RECLAIM_FULL;
179e9639 3616
6e543d57 3617 if (!zone_reclaimable(zone))
fa5e084e 3618 return ZONE_RECLAIM_FULL;
d773ed6b 3619
179e9639 3620 /*
d773ed6b 3621 * Do not scan if the allocation should not be delayed.
179e9639 3622 */
d773ed6b 3623 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3624 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3625
3626 /*
3627 * Only run zone reclaim on the local zone or on zones that do not
3628 * have associated processors. This will favor the local processor
3629 * over remote processors and spread off node memory allocations
3630 * as wide as possible.
3631 */
89fa3024 3632 node_id = zone_to_nid(zone);
37c0708d 3633 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3634 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3635
3636 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3637 return ZONE_RECLAIM_NOSCAN;
3638
d773ed6b
DR
3639 ret = __zone_reclaim(zone, gfp_mask, order);
3640 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3641
24cf7251
MG
3642 if (!ret)
3643 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3644
d773ed6b 3645 return ret;
179e9639 3646}
9eeff239 3647#endif
894bc310 3648
894bc310
LS
3649/*
3650 * page_evictable - test whether a page is evictable
3651 * @page: the page to test
894bc310
LS
3652 *
3653 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3654 * lists vs unevictable list.
894bc310
LS
3655 *
3656 * Reasons page might not be evictable:
ba9ddf49 3657 * (1) page's mapping marked unevictable
b291f000 3658 * (2) page is part of an mlocked VMA
ba9ddf49 3659 *
894bc310 3660 */
39b5f29a 3661int page_evictable(struct page *page)
894bc310 3662{
39b5f29a 3663 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3664}
89e004ea 3665
85046579 3666#ifdef CONFIG_SHMEM
89e004ea 3667/**
24513264
HD
3668 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3669 * @pages: array of pages to check
3670 * @nr_pages: number of pages to check
89e004ea 3671 *
24513264 3672 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3673 *
3674 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3675 */
24513264 3676void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3677{
925b7673 3678 struct lruvec *lruvec;
24513264
HD
3679 struct zone *zone = NULL;
3680 int pgscanned = 0;
3681 int pgrescued = 0;
3682 int i;
89e004ea 3683
24513264
HD
3684 for (i = 0; i < nr_pages; i++) {
3685 struct page *page = pages[i];
3686 struct zone *pagezone;
89e004ea 3687
24513264
HD
3688 pgscanned++;
3689 pagezone = page_zone(page);
3690 if (pagezone != zone) {
3691 if (zone)
3692 spin_unlock_irq(&zone->lru_lock);
3693 zone = pagezone;
3694 spin_lock_irq(&zone->lru_lock);
3695 }
fa9add64 3696 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3697
24513264
HD
3698 if (!PageLRU(page) || !PageUnevictable(page))
3699 continue;
89e004ea 3700
39b5f29a 3701 if (page_evictable(page)) {
24513264
HD
3702 enum lru_list lru = page_lru_base_type(page);
3703
3704 VM_BUG_ON(PageActive(page));
3705 ClearPageUnevictable(page);
fa9add64
HD
3706 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3707 add_page_to_lru_list(page, lruvec, lru);
24513264 3708 pgrescued++;
89e004ea 3709 }
24513264 3710 }
89e004ea 3711
24513264
HD
3712 if (zone) {
3713 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3714 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3715 spin_unlock_irq(&zone->lru_lock);
89e004ea 3716 }
89e004ea 3717}
85046579 3718#endif /* CONFIG_SHMEM */
af936a16 3719
264e56d8 3720static void warn_scan_unevictable_pages(void)
af936a16 3721{
264e56d8 3722 printk_once(KERN_WARNING
25bd91bd 3723 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3724 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3725 "one, please send an email to linux-mm@kvack.org.\n",
3726 current->comm);
af936a16
LS
3727}
3728
3729/*
3730 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3731 * all nodes' unevictable lists for evictable pages
3732 */
3733unsigned long scan_unevictable_pages;
3734
3735int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3736 void __user *buffer,
af936a16
LS
3737 size_t *length, loff_t *ppos)
3738{
264e56d8 3739 warn_scan_unevictable_pages();
8d65af78 3740 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3741 scan_unevictable_pages = 0;
3742 return 0;
3743}
3744
e4455abb 3745#ifdef CONFIG_NUMA
af936a16
LS
3746/*
3747 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3748 * a specified node's per zone unevictable lists for evictable pages.
3749 */
3750
10fbcf4c
KS
3751static ssize_t read_scan_unevictable_node(struct device *dev,
3752 struct device_attribute *attr,
af936a16
LS
3753 char *buf)
3754{
264e56d8 3755 warn_scan_unevictable_pages();
af936a16
LS
3756 return sprintf(buf, "0\n"); /* always zero; should fit... */
3757}
3758
10fbcf4c
KS
3759static ssize_t write_scan_unevictable_node(struct device *dev,
3760 struct device_attribute *attr,
af936a16
LS
3761 const char *buf, size_t count)
3762{
264e56d8 3763 warn_scan_unevictable_pages();
af936a16
LS
3764 return 1;
3765}
3766
3767
10fbcf4c 3768static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3769 read_scan_unevictable_node,
3770 write_scan_unevictable_node);
3771
3772int scan_unevictable_register_node(struct node *node)
3773{
10fbcf4c 3774 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3775}
3776
3777void scan_unevictable_unregister_node(struct node *node)
3778{
10fbcf4c 3779 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3780}
e4455abb 3781#endif