]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/vmscan.c
mm/vmscan: don't mess with pgdat->flags in memcg reclaim
[mirror_ubuntu-kernels.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4 70
ee814fe2 71 /* Allocation order */
5ad333eb 72 int order;
66e1707b 73
ee814fe2
JW
74 /*
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
77 */
78 nodemask_t *nodemask;
9e3b2f8c 79
f16015fb
JW
80 /*
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
83 */
84 struct mem_cgroup *target_mem_cgroup;
66e1707b 85
ee814fe2
JW
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
88
b2e18757
MG
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
91
1276ad68 92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
93 unsigned int may_writepage:1;
94
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
97
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
100
d6622f63
YX
101 /*
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
105 */
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
241994ed 108
ee814fe2
JW
109 unsigned int hibernation_mode:1;
110
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
113
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
d108c772
AR
119
120 struct {
121 unsigned int dirty;
122 unsigned int unqueued_dirty;
123 unsigned int congested;
124 unsigned int writeback;
125 unsigned int immediate;
126 unsigned int file_taken;
127 unsigned int taken;
128 } nr;
1da177e4
LT
129};
130
1da177e4
LT
131#ifdef ARCH_HAS_PREFETCH
132#define prefetch_prev_lru_page(_page, _base, _field) \
133 do { \
134 if ((_page)->lru.prev != _base) { \
135 struct page *prev; \
136 \
137 prev = lru_to_page(&(_page->lru)); \
138 prefetch(&prev->_field); \
139 } \
140 } while (0)
141#else
142#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143#endif
144
145#ifdef ARCH_HAS_PREFETCHW
146#define prefetchw_prev_lru_page(_page, _base, _field) \
147 do { \
148 if ((_page)->lru.prev != _base) { \
149 struct page *prev; \
150 \
151 prev = lru_to_page(&(_page->lru)); \
152 prefetchw(&prev->_field); \
153 } \
154 } while (0)
155#else
156#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157#endif
158
159/*
160 * From 0 .. 100. Higher means more swappy.
161 */
162int vm_swappiness = 60;
d0480be4
WSH
163/*
164 * The total number of pages which are beyond the high watermark within all
165 * zones.
166 */
167unsigned long vm_total_pages;
1da177e4
LT
168
169static LIST_HEAD(shrinker_list);
170static DECLARE_RWSEM(shrinker_rwsem);
171
c255a458 172#ifdef CONFIG_MEMCG
89b5fae5
JW
173static bool global_reclaim(struct scan_control *sc)
174{
f16015fb 175 return !sc->target_mem_cgroup;
89b5fae5 176}
97c9341f
TH
177
178/**
179 * sane_reclaim - is the usual dirty throttling mechanism operational?
180 * @sc: scan_control in question
181 *
182 * The normal page dirty throttling mechanism in balance_dirty_pages() is
183 * completely broken with the legacy memcg and direct stalling in
184 * shrink_page_list() is used for throttling instead, which lacks all the
185 * niceties such as fairness, adaptive pausing, bandwidth proportional
186 * allocation and configurability.
187 *
188 * This function tests whether the vmscan currently in progress can assume
189 * that the normal dirty throttling mechanism is operational.
190 */
191static bool sane_reclaim(struct scan_control *sc)
192{
193 struct mem_cgroup *memcg = sc->target_mem_cgroup;
194
195 if (!memcg)
196 return true;
197#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 198 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
199 return true;
200#endif
201 return false;
202}
e3c1ac58
AR
203
204static void set_memcg_congestion(pg_data_t *pgdat,
205 struct mem_cgroup *memcg,
206 bool congested)
207{
208 struct mem_cgroup_per_node *mn;
209
210 if (!memcg)
211 return;
212
213 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
214 WRITE_ONCE(mn->congested, congested);
215}
216
217static bool memcg_congested(pg_data_t *pgdat,
218 struct mem_cgroup *memcg)
219{
220 struct mem_cgroup_per_node *mn;
221
222 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
223 return READ_ONCE(mn->congested);
224
225}
91a45470 226#else
89b5fae5
JW
227static bool global_reclaim(struct scan_control *sc)
228{
229 return true;
230}
97c9341f
TH
231
232static bool sane_reclaim(struct scan_control *sc)
233{
234 return true;
235}
e3c1ac58
AR
236
237static inline void set_memcg_congestion(struct pglist_data *pgdat,
238 struct mem_cgroup *memcg, bool congested)
239{
240}
241
242static inline bool memcg_congested(struct pglist_data *pgdat,
243 struct mem_cgroup *memcg)
244{
245 return false;
246
247}
91a45470
KH
248#endif
249
5a1c84b4
MG
250/*
251 * This misses isolated pages which are not accounted for to save counters.
252 * As the data only determines if reclaim or compaction continues, it is
253 * not expected that isolated pages will be a dominating factor.
254 */
255unsigned long zone_reclaimable_pages(struct zone *zone)
256{
257 unsigned long nr;
258
259 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
260 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
261 if (get_nr_swap_pages() > 0)
262 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
263 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
264
265 return nr;
266}
267
fd538803
MH
268/**
269 * lruvec_lru_size - Returns the number of pages on the given LRU list.
270 * @lruvec: lru vector
271 * @lru: lru to use
272 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
273 */
274unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 275{
fd538803
MH
276 unsigned long lru_size;
277 int zid;
278
c3c787e8 279 if (!mem_cgroup_disabled())
fd538803
MH
280 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
281 else
282 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 283
fd538803
MH
284 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
285 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
286 unsigned long size;
c9f299d9 287
fd538803
MH
288 if (!managed_zone(zone))
289 continue;
290
291 if (!mem_cgroup_disabled())
292 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
293 else
294 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
295 NR_ZONE_LRU_BASE + lru);
296 lru_size -= min(size, lru_size);
297 }
298
299 return lru_size;
b4536f0c 300
b4536f0c
MH
301}
302
1da177e4 303/*
1d3d4437 304 * Add a shrinker callback to be called from the vm.
1da177e4 305 */
1d3d4437 306int register_shrinker(struct shrinker *shrinker)
1da177e4 307{
1d3d4437
GC
308 size_t size = sizeof(*shrinker->nr_deferred);
309
1d3d4437
GC
310 if (shrinker->flags & SHRINKER_NUMA_AWARE)
311 size *= nr_node_ids;
312
313 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
314 if (!shrinker->nr_deferred)
315 return -ENOMEM;
316
8e1f936b
RR
317 down_write(&shrinker_rwsem);
318 list_add_tail(&shrinker->list, &shrinker_list);
319 up_write(&shrinker_rwsem);
1d3d4437 320 return 0;
1da177e4 321}
8e1f936b 322EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
323
324/*
325 * Remove one
326 */
8e1f936b 327void unregister_shrinker(struct shrinker *shrinker)
1da177e4 328{
bb422a73
TH
329 if (!shrinker->nr_deferred)
330 return;
1da177e4
LT
331 down_write(&shrinker_rwsem);
332 list_del(&shrinker->list);
333 up_write(&shrinker_rwsem);
ae393321 334 kfree(shrinker->nr_deferred);
bb422a73 335 shrinker->nr_deferred = NULL;
1da177e4 336}
8e1f936b 337EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
338
339#define SHRINK_BATCH 128
1d3d4437 340
cb731d6c 341static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 342 struct shrinker *shrinker, int priority)
1d3d4437
GC
343{
344 unsigned long freed = 0;
345 unsigned long long delta;
346 long total_scan;
d5bc5fd3 347 long freeable;
1d3d4437
GC
348 long nr;
349 long new_nr;
350 int nid = shrinkctl->nid;
351 long batch_size = shrinker->batch ? shrinker->batch
352 : SHRINK_BATCH;
5f33a080 353 long scanned = 0, next_deferred;
1d3d4437 354
d5bc5fd3
VD
355 freeable = shrinker->count_objects(shrinker, shrinkctl);
356 if (freeable == 0)
1d3d4437
GC
357 return 0;
358
359 /*
360 * copy the current shrinker scan count into a local variable
361 * and zero it so that other concurrent shrinker invocations
362 * don't also do this scanning work.
363 */
364 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
365
366 total_scan = nr;
9092c71b
JB
367 delta = freeable >> priority;
368 delta *= 4;
369 do_div(delta, shrinker->seeks);
1d3d4437
GC
370 total_scan += delta;
371 if (total_scan < 0) {
8612c663 372 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 373 shrinker->scan_objects, total_scan);
d5bc5fd3 374 total_scan = freeable;
5f33a080
SL
375 next_deferred = nr;
376 } else
377 next_deferred = total_scan;
1d3d4437
GC
378
379 /*
380 * We need to avoid excessive windup on filesystem shrinkers
381 * due to large numbers of GFP_NOFS allocations causing the
382 * shrinkers to return -1 all the time. This results in a large
383 * nr being built up so when a shrink that can do some work
384 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 385 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
386 * memory.
387 *
388 * Hence only allow the shrinker to scan the entire cache when
389 * a large delta change is calculated directly.
390 */
d5bc5fd3
VD
391 if (delta < freeable / 4)
392 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
393
394 /*
395 * Avoid risking looping forever due to too large nr value:
396 * never try to free more than twice the estimate number of
397 * freeable entries.
398 */
d5bc5fd3
VD
399 if (total_scan > freeable * 2)
400 total_scan = freeable * 2;
1d3d4437
GC
401
402 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 403 freeable, delta, total_scan, priority);
1d3d4437 404
0b1fb40a
VD
405 /*
406 * Normally, we should not scan less than batch_size objects in one
407 * pass to avoid too frequent shrinker calls, but if the slab has less
408 * than batch_size objects in total and we are really tight on memory,
409 * we will try to reclaim all available objects, otherwise we can end
410 * up failing allocations although there are plenty of reclaimable
411 * objects spread over several slabs with usage less than the
412 * batch_size.
413 *
414 * We detect the "tight on memory" situations by looking at the total
415 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 416 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
417 * scanning at high prio and therefore should try to reclaim as much as
418 * possible.
419 */
420 while (total_scan >= batch_size ||
d5bc5fd3 421 total_scan >= freeable) {
a0b02131 422 unsigned long ret;
0b1fb40a 423 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 424
0b1fb40a 425 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 426 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
427 ret = shrinker->scan_objects(shrinker, shrinkctl);
428 if (ret == SHRINK_STOP)
429 break;
430 freed += ret;
1d3d4437 431
d460acb5
CW
432 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
433 total_scan -= shrinkctl->nr_scanned;
434 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
435
436 cond_resched();
437 }
438
5f33a080
SL
439 if (next_deferred >= scanned)
440 next_deferred -= scanned;
441 else
442 next_deferred = 0;
1d3d4437
GC
443 /*
444 * move the unused scan count back into the shrinker in a
445 * manner that handles concurrent updates. If we exhausted the
446 * scan, there is no need to do an update.
447 */
5f33a080
SL
448 if (next_deferred > 0)
449 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
450 &shrinker->nr_deferred[nid]);
451 else
452 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
453
df9024a8 454 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 455 return freed;
1495f230
YH
456}
457
6b4f7799 458/**
cb731d6c 459 * shrink_slab - shrink slab caches
6b4f7799
JW
460 * @gfp_mask: allocation context
461 * @nid: node whose slab caches to target
cb731d6c 462 * @memcg: memory cgroup whose slab caches to target
9092c71b 463 * @priority: the reclaim priority
1da177e4 464 *
6b4f7799 465 * Call the shrink functions to age shrinkable caches.
1da177e4 466 *
6b4f7799
JW
467 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
468 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 469 *
cb731d6c
VD
470 * @memcg specifies the memory cgroup to target. If it is not NULL,
471 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
472 * objects from the memory cgroup specified. Otherwise, only unaware
473 * shrinkers are called.
cb731d6c 474 *
9092c71b
JB
475 * @priority is sc->priority, we take the number of objects and >> by priority
476 * in order to get the scan target.
b15e0905 477 *
6b4f7799 478 * Returns the number of reclaimed slab objects.
1da177e4 479 */
cb731d6c
VD
480static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
481 struct mem_cgroup *memcg,
9092c71b 482 int priority)
1da177e4
LT
483{
484 struct shrinker *shrinker;
24f7c6b9 485 unsigned long freed = 0;
1da177e4 486
0fc9f58a 487 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
488 return 0;
489
e830c63a 490 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 491 goto out;
1da177e4
LT
492
493 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
494 struct shrink_control sc = {
495 .gfp_mask = gfp_mask,
496 .nid = nid,
cb731d6c 497 .memcg = memcg,
6b4f7799 498 };
ec97097b 499
0fc9f58a
VD
500 /*
501 * If kernel memory accounting is disabled, we ignore
502 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
503 * passing NULL for memcg.
504 */
505 if (memcg_kmem_enabled() &&
506 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
507 continue;
508
6b4f7799
JW
509 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
510 sc.nid = 0;
1da177e4 511
9092c71b 512 freed += do_shrink_slab(&sc, shrinker, priority);
e496612c
MK
513 /*
514 * Bail out if someone want to register a new shrinker to
515 * prevent the regsitration from being stalled for long periods
516 * by parallel ongoing shrinking.
517 */
518 if (rwsem_is_contended(&shrinker_rwsem)) {
519 freed = freed ? : 1;
520 break;
521 }
1da177e4 522 }
6b4f7799 523
1da177e4 524 up_read(&shrinker_rwsem);
f06590bd
MK
525out:
526 cond_resched();
24f7c6b9 527 return freed;
1da177e4
LT
528}
529
cb731d6c
VD
530void drop_slab_node(int nid)
531{
532 unsigned long freed;
533
534 do {
535 struct mem_cgroup *memcg = NULL;
536
537 freed = 0;
538 do {
9092c71b 539 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
540 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
541 } while (freed > 10);
542}
543
544void drop_slab(void)
545{
546 int nid;
547
548 for_each_online_node(nid)
549 drop_slab_node(nid);
550}
551
1da177e4
LT
552static inline int is_page_cache_freeable(struct page *page)
553{
ceddc3a5
JW
554 /*
555 * A freeable page cache page is referenced only by the caller
556 * that isolated the page, the page cache radix tree and
557 * optional buffer heads at page->private.
558 */
bd4c82c2
HY
559 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
560 HPAGE_PMD_NR : 1;
561 return page_count(page) - page_has_private(page) == 1 + radix_pins;
1da177e4
LT
562}
563
703c2708 564static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 565{
930d9152 566 if (current->flags & PF_SWAPWRITE)
1da177e4 567 return 1;
703c2708 568 if (!inode_write_congested(inode))
1da177e4 569 return 1;
703c2708 570 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
571 return 1;
572 return 0;
573}
574
575/*
576 * We detected a synchronous write error writing a page out. Probably
577 * -ENOSPC. We need to propagate that into the address_space for a subsequent
578 * fsync(), msync() or close().
579 *
580 * The tricky part is that after writepage we cannot touch the mapping: nothing
581 * prevents it from being freed up. But we have a ref on the page and once
582 * that page is locked, the mapping is pinned.
583 *
584 * We're allowed to run sleeping lock_page() here because we know the caller has
585 * __GFP_FS.
586 */
587static void handle_write_error(struct address_space *mapping,
588 struct page *page, int error)
589{
7eaceacc 590 lock_page(page);
3e9f45bd
GC
591 if (page_mapping(page) == mapping)
592 mapping_set_error(mapping, error);
1da177e4
LT
593 unlock_page(page);
594}
595
04e62a29
CL
596/* possible outcome of pageout() */
597typedef enum {
598 /* failed to write page out, page is locked */
599 PAGE_KEEP,
600 /* move page to the active list, page is locked */
601 PAGE_ACTIVATE,
602 /* page has been sent to the disk successfully, page is unlocked */
603 PAGE_SUCCESS,
604 /* page is clean and locked */
605 PAGE_CLEAN,
606} pageout_t;
607
1da177e4 608/*
1742f19f
AM
609 * pageout is called by shrink_page_list() for each dirty page.
610 * Calls ->writepage().
1da177e4 611 */
c661b078 612static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 613 struct scan_control *sc)
1da177e4
LT
614{
615 /*
616 * If the page is dirty, only perform writeback if that write
617 * will be non-blocking. To prevent this allocation from being
618 * stalled by pagecache activity. But note that there may be
619 * stalls if we need to run get_block(). We could test
620 * PagePrivate for that.
621 *
8174202b 622 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
623 * this page's queue, we can perform writeback even if that
624 * will block.
625 *
626 * If the page is swapcache, write it back even if that would
627 * block, for some throttling. This happens by accident, because
628 * swap_backing_dev_info is bust: it doesn't reflect the
629 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
630 */
631 if (!is_page_cache_freeable(page))
632 return PAGE_KEEP;
633 if (!mapping) {
634 /*
635 * Some data journaling orphaned pages can have
636 * page->mapping == NULL while being dirty with clean buffers.
637 */
266cf658 638 if (page_has_private(page)) {
1da177e4
LT
639 if (try_to_free_buffers(page)) {
640 ClearPageDirty(page);
b1de0d13 641 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
642 return PAGE_CLEAN;
643 }
644 }
645 return PAGE_KEEP;
646 }
647 if (mapping->a_ops->writepage == NULL)
648 return PAGE_ACTIVATE;
703c2708 649 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
650 return PAGE_KEEP;
651
652 if (clear_page_dirty_for_io(page)) {
653 int res;
654 struct writeback_control wbc = {
655 .sync_mode = WB_SYNC_NONE,
656 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
657 .range_start = 0,
658 .range_end = LLONG_MAX,
1da177e4
LT
659 .for_reclaim = 1,
660 };
661
662 SetPageReclaim(page);
663 res = mapping->a_ops->writepage(page, &wbc);
664 if (res < 0)
665 handle_write_error(mapping, page, res);
994fc28c 666 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
667 ClearPageReclaim(page);
668 return PAGE_ACTIVATE;
669 }
c661b078 670
1da177e4
LT
671 if (!PageWriteback(page)) {
672 /* synchronous write or broken a_ops? */
673 ClearPageReclaim(page);
674 }
3aa23851 675 trace_mm_vmscan_writepage(page);
c4a25635 676 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
677 return PAGE_SUCCESS;
678 }
679
680 return PAGE_CLEAN;
681}
682
a649fd92 683/*
e286781d
NP
684 * Same as remove_mapping, but if the page is removed from the mapping, it
685 * gets returned with a refcount of 0.
a649fd92 686 */
a528910e
JW
687static int __remove_mapping(struct address_space *mapping, struct page *page,
688 bool reclaimed)
49d2e9cc 689{
c4843a75 690 unsigned long flags;
bd4c82c2 691 int refcount;
c4843a75 692
28e4d965
NP
693 BUG_ON(!PageLocked(page));
694 BUG_ON(mapping != page_mapping(page));
49d2e9cc 695
c4843a75 696 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 697 /*
0fd0e6b0
NP
698 * The non racy check for a busy page.
699 *
700 * Must be careful with the order of the tests. When someone has
701 * a ref to the page, it may be possible that they dirty it then
702 * drop the reference. So if PageDirty is tested before page_count
703 * here, then the following race may occur:
704 *
705 * get_user_pages(&page);
706 * [user mapping goes away]
707 * write_to(page);
708 * !PageDirty(page) [good]
709 * SetPageDirty(page);
710 * put_page(page);
711 * !page_count(page) [good, discard it]
712 *
713 * [oops, our write_to data is lost]
714 *
715 * Reversing the order of the tests ensures such a situation cannot
716 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 717 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
718 *
719 * Note that if SetPageDirty is always performed via set_page_dirty,
720 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 721 */
bd4c82c2
HY
722 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
723 refcount = 1 + HPAGE_PMD_NR;
724 else
725 refcount = 2;
726 if (!page_ref_freeze(page, refcount))
49d2e9cc 727 goto cannot_free;
e286781d
NP
728 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
729 if (unlikely(PageDirty(page))) {
bd4c82c2 730 page_ref_unfreeze(page, refcount);
49d2e9cc 731 goto cannot_free;
e286781d 732 }
49d2e9cc
CL
733
734 if (PageSwapCache(page)) {
735 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 736 mem_cgroup_swapout(page, swap);
49d2e9cc 737 __delete_from_swap_cache(page);
c4843a75 738 spin_unlock_irqrestore(&mapping->tree_lock, flags);
75f6d6d2 739 put_swap_page(page, swap);
e286781d 740 } else {
6072d13c 741 void (*freepage)(struct page *);
a528910e 742 void *shadow = NULL;
6072d13c
LT
743
744 freepage = mapping->a_ops->freepage;
a528910e
JW
745 /*
746 * Remember a shadow entry for reclaimed file cache in
747 * order to detect refaults, thus thrashing, later on.
748 *
749 * But don't store shadows in an address space that is
750 * already exiting. This is not just an optizimation,
751 * inode reclaim needs to empty out the radix tree or
752 * the nodes are lost. Don't plant shadows behind its
753 * back.
f9fe48be
RZ
754 *
755 * We also don't store shadows for DAX mappings because the
756 * only page cache pages found in these are zero pages
757 * covering holes, and because we don't want to mix DAX
758 * exceptional entries and shadow exceptional entries in the
759 * same page_tree.
a528910e
JW
760 */
761 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 762 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 763 shadow = workingset_eviction(mapping, page);
62cccb8c 764 __delete_from_page_cache(page, shadow);
c4843a75 765 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
766
767 if (freepage != NULL)
768 freepage(page);
49d2e9cc
CL
769 }
770
49d2e9cc
CL
771 return 1;
772
773cannot_free:
c4843a75 774 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
775 return 0;
776}
777
e286781d
NP
778/*
779 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
780 * someone else has a ref on the page, abort and return 0. If it was
781 * successfully detached, return 1. Assumes the caller has a single ref on
782 * this page.
783 */
784int remove_mapping(struct address_space *mapping, struct page *page)
785{
a528910e 786 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
787 /*
788 * Unfreezing the refcount with 1 rather than 2 effectively
789 * drops the pagecache ref for us without requiring another
790 * atomic operation.
791 */
fe896d18 792 page_ref_unfreeze(page, 1);
e286781d
NP
793 return 1;
794 }
795 return 0;
796}
797
894bc310
LS
798/**
799 * putback_lru_page - put previously isolated page onto appropriate LRU list
800 * @page: page to be put back to appropriate lru list
801 *
802 * Add previously isolated @page to appropriate LRU list.
803 * Page may still be unevictable for other reasons.
804 *
805 * lru_lock must not be held, interrupts must be enabled.
806 */
894bc310
LS
807void putback_lru_page(struct page *page)
808{
9c4e6b1a 809 lru_cache_add(page);
894bc310
LS
810 put_page(page); /* drop ref from isolate */
811}
812
dfc8d636
JW
813enum page_references {
814 PAGEREF_RECLAIM,
815 PAGEREF_RECLAIM_CLEAN,
64574746 816 PAGEREF_KEEP,
dfc8d636
JW
817 PAGEREF_ACTIVATE,
818};
819
820static enum page_references page_check_references(struct page *page,
821 struct scan_control *sc)
822{
64574746 823 int referenced_ptes, referenced_page;
dfc8d636 824 unsigned long vm_flags;
dfc8d636 825
c3ac9a8a
JW
826 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
827 &vm_flags);
64574746 828 referenced_page = TestClearPageReferenced(page);
dfc8d636 829
dfc8d636
JW
830 /*
831 * Mlock lost the isolation race with us. Let try_to_unmap()
832 * move the page to the unevictable list.
833 */
834 if (vm_flags & VM_LOCKED)
835 return PAGEREF_RECLAIM;
836
64574746 837 if (referenced_ptes) {
e4898273 838 if (PageSwapBacked(page))
64574746
JW
839 return PAGEREF_ACTIVATE;
840 /*
841 * All mapped pages start out with page table
842 * references from the instantiating fault, so we need
843 * to look twice if a mapped file page is used more
844 * than once.
845 *
846 * Mark it and spare it for another trip around the
847 * inactive list. Another page table reference will
848 * lead to its activation.
849 *
850 * Note: the mark is set for activated pages as well
851 * so that recently deactivated but used pages are
852 * quickly recovered.
853 */
854 SetPageReferenced(page);
855
34dbc67a 856 if (referenced_page || referenced_ptes > 1)
64574746
JW
857 return PAGEREF_ACTIVATE;
858
c909e993
KK
859 /*
860 * Activate file-backed executable pages after first usage.
861 */
862 if (vm_flags & VM_EXEC)
863 return PAGEREF_ACTIVATE;
864
64574746
JW
865 return PAGEREF_KEEP;
866 }
dfc8d636
JW
867
868 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 869 if (referenced_page && !PageSwapBacked(page))
64574746
JW
870 return PAGEREF_RECLAIM_CLEAN;
871
872 return PAGEREF_RECLAIM;
dfc8d636
JW
873}
874
e2be15f6
MG
875/* Check if a page is dirty or under writeback */
876static void page_check_dirty_writeback(struct page *page,
877 bool *dirty, bool *writeback)
878{
b4597226
MG
879 struct address_space *mapping;
880
e2be15f6
MG
881 /*
882 * Anonymous pages are not handled by flushers and must be written
883 * from reclaim context. Do not stall reclaim based on them
884 */
802a3a92
SL
885 if (!page_is_file_cache(page) ||
886 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
887 *dirty = false;
888 *writeback = false;
889 return;
890 }
891
892 /* By default assume that the page flags are accurate */
893 *dirty = PageDirty(page);
894 *writeback = PageWriteback(page);
b4597226
MG
895
896 /* Verify dirty/writeback state if the filesystem supports it */
897 if (!page_has_private(page))
898 return;
899
900 mapping = page_mapping(page);
901 if (mapping && mapping->a_ops->is_dirty_writeback)
902 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
903}
904
3c710c1a
MH
905struct reclaim_stat {
906 unsigned nr_dirty;
907 unsigned nr_unqueued_dirty;
908 unsigned nr_congested;
909 unsigned nr_writeback;
910 unsigned nr_immediate;
5bccd166
MH
911 unsigned nr_activate;
912 unsigned nr_ref_keep;
913 unsigned nr_unmap_fail;
3c710c1a
MH
914};
915
1da177e4 916/*
1742f19f 917 * shrink_page_list() returns the number of reclaimed pages
1da177e4 918 */
1742f19f 919static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 920 struct pglist_data *pgdat,
f84f6e2b 921 struct scan_control *sc,
02c6de8d 922 enum ttu_flags ttu_flags,
3c710c1a 923 struct reclaim_stat *stat,
02c6de8d 924 bool force_reclaim)
1da177e4
LT
925{
926 LIST_HEAD(ret_pages);
abe4c3b5 927 LIST_HEAD(free_pages);
1da177e4 928 int pgactivate = 0;
3c710c1a
MH
929 unsigned nr_unqueued_dirty = 0;
930 unsigned nr_dirty = 0;
931 unsigned nr_congested = 0;
932 unsigned nr_reclaimed = 0;
933 unsigned nr_writeback = 0;
934 unsigned nr_immediate = 0;
5bccd166
MH
935 unsigned nr_ref_keep = 0;
936 unsigned nr_unmap_fail = 0;
1da177e4
LT
937
938 cond_resched();
939
1da177e4
LT
940 while (!list_empty(page_list)) {
941 struct address_space *mapping;
942 struct page *page;
943 int may_enter_fs;
02c6de8d 944 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 945 bool dirty, writeback;
1da177e4
LT
946
947 cond_resched();
948
949 page = lru_to_page(page_list);
950 list_del(&page->lru);
951
529ae9aa 952 if (!trylock_page(page))
1da177e4
LT
953 goto keep;
954
309381fe 955 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
956
957 sc->nr_scanned++;
80e43426 958
39b5f29a 959 if (unlikely(!page_evictable(page)))
ad6b6704 960 goto activate_locked;
894bc310 961
a6dc60f8 962 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
963 goto keep_locked;
964
1da177e4 965 /* Double the slab pressure for mapped and swapcache pages */
802a3a92
SL
966 if ((page_mapped(page) || PageSwapCache(page)) &&
967 !(PageAnon(page) && !PageSwapBacked(page)))
1da177e4
LT
968 sc->nr_scanned++;
969
c661b078
AW
970 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
971 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
972
e2be15f6 973 /*
894befec 974 * The number of dirty pages determines if a node is marked
e2be15f6
MG
975 * reclaim_congested which affects wait_iff_congested. kswapd
976 * will stall and start writing pages if the tail of the LRU
977 * is all dirty unqueued pages.
978 */
979 page_check_dirty_writeback(page, &dirty, &writeback);
980 if (dirty || writeback)
981 nr_dirty++;
982
983 if (dirty && !writeback)
984 nr_unqueued_dirty++;
985
d04e8acd
MG
986 /*
987 * Treat this page as congested if the underlying BDI is or if
988 * pages are cycling through the LRU so quickly that the
989 * pages marked for immediate reclaim are making it to the
990 * end of the LRU a second time.
991 */
e2be15f6 992 mapping = page_mapping(page);
1da58ee2 993 if (((dirty || writeback) && mapping &&
703c2708 994 inode_write_congested(mapping->host)) ||
d04e8acd 995 (writeback && PageReclaim(page)))
e2be15f6
MG
996 nr_congested++;
997
283aba9f
MG
998 /*
999 * If a page at the tail of the LRU is under writeback, there
1000 * are three cases to consider.
1001 *
1002 * 1) If reclaim is encountering an excessive number of pages
1003 * under writeback and this page is both under writeback and
1004 * PageReclaim then it indicates that pages are being queued
1005 * for IO but are being recycled through the LRU before the
1006 * IO can complete. Waiting on the page itself risks an
1007 * indefinite stall if it is impossible to writeback the
1008 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1009 * note that the LRU is being scanned too quickly and the
1010 * caller can stall after page list has been processed.
283aba9f 1011 *
97c9341f 1012 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1013 * not marked for immediate reclaim, or the caller does not
1014 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1015 * not to fs). In this case mark the page for immediate
97c9341f 1016 * reclaim and continue scanning.
283aba9f 1017 *
ecf5fc6e
MH
1018 * Require may_enter_fs because we would wait on fs, which
1019 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1020 * enter reclaim, and deadlock if it waits on a page for
1021 * which it is needed to do the write (loop masks off
1022 * __GFP_IO|__GFP_FS for this reason); but more thought
1023 * would probably show more reasons.
1024 *
7fadc820 1025 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1026 * PageReclaim. memcg does not have any dirty pages
1027 * throttling so we could easily OOM just because too many
1028 * pages are in writeback and there is nothing else to
1029 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1030 *
1031 * In cases 1) and 2) we activate the pages to get them out of
1032 * the way while we continue scanning for clean pages on the
1033 * inactive list and refilling from the active list. The
1034 * observation here is that waiting for disk writes is more
1035 * expensive than potentially causing reloads down the line.
1036 * Since they're marked for immediate reclaim, they won't put
1037 * memory pressure on the cache working set any longer than it
1038 * takes to write them to disk.
283aba9f 1039 */
c661b078 1040 if (PageWriteback(page)) {
283aba9f
MG
1041 /* Case 1 above */
1042 if (current_is_kswapd() &&
1043 PageReclaim(page) &&
599d0c95 1044 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e 1045 nr_immediate++;
c55e8d03 1046 goto activate_locked;
283aba9f
MG
1047
1048 /* Case 2 above */
97c9341f 1049 } else if (sane_reclaim(sc) ||
ecf5fc6e 1050 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1051 /*
1052 * This is slightly racy - end_page_writeback()
1053 * might have just cleared PageReclaim, then
1054 * setting PageReclaim here end up interpreted
1055 * as PageReadahead - but that does not matter
1056 * enough to care. What we do want is for this
1057 * page to have PageReclaim set next time memcg
1058 * reclaim reaches the tests above, so it will
1059 * then wait_on_page_writeback() to avoid OOM;
1060 * and it's also appropriate in global reclaim.
1061 */
1062 SetPageReclaim(page);
e62e384e 1063 nr_writeback++;
c55e8d03 1064 goto activate_locked;
283aba9f
MG
1065
1066 /* Case 3 above */
1067 } else {
7fadc820 1068 unlock_page(page);
283aba9f 1069 wait_on_page_writeback(page);
7fadc820
HD
1070 /* then go back and try same page again */
1071 list_add_tail(&page->lru, page_list);
1072 continue;
e62e384e 1073 }
c661b078 1074 }
1da177e4 1075
02c6de8d
MK
1076 if (!force_reclaim)
1077 references = page_check_references(page, sc);
1078
dfc8d636
JW
1079 switch (references) {
1080 case PAGEREF_ACTIVATE:
1da177e4 1081 goto activate_locked;
64574746 1082 case PAGEREF_KEEP:
5bccd166 1083 nr_ref_keep++;
64574746 1084 goto keep_locked;
dfc8d636
JW
1085 case PAGEREF_RECLAIM:
1086 case PAGEREF_RECLAIM_CLEAN:
1087 ; /* try to reclaim the page below */
1088 }
1da177e4 1089
1da177e4
LT
1090 /*
1091 * Anonymous process memory has backing store?
1092 * Try to allocate it some swap space here.
802a3a92 1093 * Lazyfree page could be freed directly
1da177e4 1094 */
bd4c82c2
HY
1095 if (PageAnon(page) && PageSwapBacked(page)) {
1096 if (!PageSwapCache(page)) {
1097 if (!(sc->gfp_mask & __GFP_IO))
1098 goto keep_locked;
1099 if (PageTransHuge(page)) {
1100 /* cannot split THP, skip it */
1101 if (!can_split_huge_page(page, NULL))
1102 goto activate_locked;
1103 /*
1104 * Split pages without a PMD map right
1105 * away. Chances are some or all of the
1106 * tail pages can be freed without IO.
1107 */
1108 if (!compound_mapcount(page) &&
1109 split_huge_page_to_list(page,
1110 page_list))
1111 goto activate_locked;
1112 }
1113 if (!add_to_swap(page)) {
1114 if (!PageTransHuge(page))
1115 goto activate_locked;
1116 /* Fallback to swap normal pages */
1117 if (split_huge_page_to_list(page,
1118 page_list))
1119 goto activate_locked;
fe490cc0
HY
1120#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1121 count_vm_event(THP_SWPOUT_FALLBACK);
1122#endif
bd4c82c2
HY
1123 if (!add_to_swap(page))
1124 goto activate_locked;
1125 }
0f074658 1126
bd4c82c2 1127 may_enter_fs = 1;
1da177e4 1128
bd4c82c2
HY
1129 /* Adding to swap updated mapping */
1130 mapping = page_mapping(page);
1131 }
7751b2da
KS
1132 } else if (unlikely(PageTransHuge(page))) {
1133 /* Split file THP */
1134 if (split_huge_page_to_list(page, page_list))
1135 goto keep_locked;
e2be15f6 1136 }
1da177e4
LT
1137
1138 /*
1139 * The page is mapped into the page tables of one or more
1140 * processes. Try to unmap it here.
1141 */
802a3a92 1142 if (page_mapped(page)) {
bd4c82c2
HY
1143 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1144
1145 if (unlikely(PageTransHuge(page)))
1146 flags |= TTU_SPLIT_HUGE_PMD;
1147 if (!try_to_unmap(page, flags)) {
5bccd166 1148 nr_unmap_fail++;
1da177e4 1149 goto activate_locked;
1da177e4
LT
1150 }
1151 }
1152
1153 if (PageDirty(page)) {
ee72886d 1154 /*
4eda4823
JW
1155 * Only kswapd can writeback filesystem pages
1156 * to avoid risk of stack overflow. But avoid
1157 * injecting inefficient single-page IO into
1158 * flusher writeback as much as possible: only
1159 * write pages when we've encountered many
1160 * dirty pages, and when we've already scanned
1161 * the rest of the LRU for clean pages and see
1162 * the same dirty pages again (PageReclaim).
ee72886d 1163 */
f84f6e2b 1164 if (page_is_file_cache(page) &&
4eda4823
JW
1165 (!current_is_kswapd() || !PageReclaim(page) ||
1166 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1167 /*
1168 * Immediately reclaim when written back.
1169 * Similar in principal to deactivate_page()
1170 * except we already have the page isolated
1171 * and know it's dirty
1172 */
c4a25635 1173 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1174 SetPageReclaim(page);
1175
c55e8d03 1176 goto activate_locked;
ee72886d
MG
1177 }
1178
dfc8d636 1179 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1180 goto keep_locked;
4dd4b920 1181 if (!may_enter_fs)
1da177e4 1182 goto keep_locked;
52a8363e 1183 if (!sc->may_writepage)
1da177e4
LT
1184 goto keep_locked;
1185
d950c947
MG
1186 /*
1187 * Page is dirty. Flush the TLB if a writable entry
1188 * potentially exists to avoid CPU writes after IO
1189 * starts and then write it out here.
1190 */
1191 try_to_unmap_flush_dirty();
7d3579e8 1192 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1193 case PAGE_KEEP:
1194 goto keep_locked;
1195 case PAGE_ACTIVATE:
1196 goto activate_locked;
1197 case PAGE_SUCCESS:
7d3579e8 1198 if (PageWriteback(page))
41ac1999 1199 goto keep;
7d3579e8 1200 if (PageDirty(page))
1da177e4 1201 goto keep;
7d3579e8 1202
1da177e4
LT
1203 /*
1204 * A synchronous write - probably a ramdisk. Go
1205 * ahead and try to reclaim the page.
1206 */
529ae9aa 1207 if (!trylock_page(page))
1da177e4
LT
1208 goto keep;
1209 if (PageDirty(page) || PageWriteback(page))
1210 goto keep_locked;
1211 mapping = page_mapping(page);
1212 case PAGE_CLEAN:
1213 ; /* try to free the page below */
1214 }
1215 }
1216
1217 /*
1218 * If the page has buffers, try to free the buffer mappings
1219 * associated with this page. If we succeed we try to free
1220 * the page as well.
1221 *
1222 * We do this even if the page is PageDirty().
1223 * try_to_release_page() does not perform I/O, but it is
1224 * possible for a page to have PageDirty set, but it is actually
1225 * clean (all its buffers are clean). This happens if the
1226 * buffers were written out directly, with submit_bh(). ext3
894bc310 1227 * will do this, as well as the blockdev mapping.
1da177e4
LT
1228 * try_to_release_page() will discover that cleanness and will
1229 * drop the buffers and mark the page clean - it can be freed.
1230 *
1231 * Rarely, pages can have buffers and no ->mapping. These are
1232 * the pages which were not successfully invalidated in
1233 * truncate_complete_page(). We try to drop those buffers here
1234 * and if that worked, and the page is no longer mapped into
1235 * process address space (page_count == 1) it can be freed.
1236 * Otherwise, leave the page on the LRU so it is swappable.
1237 */
266cf658 1238 if (page_has_private(page)) {
1da177e4
LT
1239 if (!try_to_release_page(page, sc->gfp_mask))
1240 goto activate_locked;
e286781d
NP
1241 if (!mapping && page_count(page) == 1) {
1242 unlock_page(page);
1243 if (put_page_testzero(page))
1244 goto free_it;
1245 else {
1246 /*
1247 * rare race with speculative reference.
1248 * the speculative reference will free
1249 * this page shortly, so we may
1250 * increment nr_reclaimed here (and
1251 * leave it off the LRU).
1252 */
1253 nr_reclaimed++;
1254 continue;
1255 }
1256 }
1da177e4
LT
1257 }
1258
802a3a92
SL
1259 if (PageAnon(page) && !PageSwapBacked(page)) {
1260 /* follow __remove_mapping for reference */
1261 if (!page_ref_freeze(page, 1))
1262 goto keep_locked;
1263 if (PageDirty(page)) {
1264 page_ref_unfreeze(page, 1);
1265 goto keep_locked;
1266 }
1da177e4 1267
802a3a92 1268 count_vm_event(PGLAZYFREED);
2262185c 1269 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1270 } else if (!mapping || !__remove_mapping(mapping, page, true))
1271 goto keep_locked;
a978d6f5
NP
1272 /*
1273 * At this point, we have no other references and there is
1274 * no way to pick any more up (removed from LRU, removed
1275 * from pagecache). Can use non-atomic bitops now (and
1276 * we obviously don't have to worry about waking up a process
1277 * waiting on the page lock, because there are no references.
1278 */
48c935ad 1279 __ClearPageLocked(page);
e286781d 1280free_it:
05ff5137 1281 nr_reclaimed++;
abe4c3b5
MG
1282
1283 /*
1284 * Is there need to periodically free_page_list? It would
1285 * appear not as the counts should be low
1286 */
bd4c82c2
HY
1287 if (unlikely(PageTransHuge(page))) {
1288 mem_cgroup_uncharge(page);
1289 (*get_compound_page_dtor(page))(page);
1290 } else
1291 list_add(&page->lru, &free_pages);
1da177e4
LT
1292 continue;
1293
1294activate_locked:
68a22394 1295 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1296 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1297 PageMlocked(page)))
a2c43eed 1298 try_to_free_swap(page);
309381fe 1299 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704
MK
1300 if (!PageMlocked(page)) {
1301 SetPageActive(page);
1302 pgactivate++;
2262185c 1303 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1304 }
1da177e4
LT
1305keep_locked:
1306 unlock_page(page);
1307keep:
1308 list_add(&page->lru, &ret_pages);
309381fe 1309 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1310 }
abe4c3b5 1311
747db954 1312 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1313 try_to_unmap_flush();
2d4894b5 1314 free_unref_page_list(&free_pages);
abe4c3b5 1315
1da177e4 1316 list_splice(&ret_pages, page_list);
f8891e5e 1317 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1318
3c710c1a
MH
1319 if (stat) {
1320 stat->nr_dirty = nr_dirty;
1321 stat->nr_congested = nr_congested;
1322 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1323 stat->nr_writeback = nr_writeback;
1324 stat->nr_immediate = nr_immediate;
5bccd166
MH
1325 stat->nr_activate = pgactivate;
1326 stat->nr_ref_keep = nr_ref_keep;
1327 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1328 }
05ff5137 1329 return nr_reclaimed;
1da177e4
LT
1330}
1331
02c6de8d
MK
1332unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1333 struct list_head *page_list)
1334{
1335 struct scan_control sc = {
1336 .gfp_mask = GFP_KERNEL,
1337 .priority = DEF_PRIORITY,
1338 .may_unmap = 1,
1339 };
3c710c1a 1340 unsigned long ret;
02c6de8d
MK
1341 struct page *page, *next;
1342 LIST_HEAD(clean_pages);
1343
1344 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1345 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1346 !__PageMovable(page)) {
02c6de8d
MK
1347 ClearPageActive(page);
1348 list_move(&page->lru, &clean_pages);
1349 }
1350 }
1351
599d0c95 1352 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
a128ca71 1353 TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1354 list_splice(&clean_pages, page_list);
599d0c95 1355 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1356 return ret;
1357}
1358
5ad333eb
AW
1359/*
1360 * Attempt to remove the specified page from its LRU. Only take this page
1361 * if it is of the appropriate PageActive status. Pages which are being
1362 * freed elsewhere are also ignored.
1363 *
1364 * page: page to consider
1365 * mode: one of the LRU isolation modes defined above
1366 *
1367 * returns 0 on success, -ve errno on failure.
1368 */
f3fd4a61 1369int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1370{
1371 int ret = -EINVAL;
1372
1373 /* Only take pages on the LRU. */
1374 if (!PageLRU(page))
1375 return ret;
1376
e46a2879
MK
1377 /* Compaction should not handle unevictable pages but CMA can do so */
1378 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1379 return ret;
1380
5ad333eb 1381 ret = -EBUSY;
08e552c6 1382
c8244935
MG
1383 /*
1384 * To minimise LRU disruption, the caller can indicate that it only
1385 * wants to isolate pages it will be able to operate on without
1386 * blocking - clean pages for the most part.
1387 *
c8244935
MG
1388 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1389 * that it is possible to migrate without blocking
1390 */
1276ad68 1391 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1392 /* All the caller can do on PageWriteback is block */
1393 if (PageWriteback(page))
1394 return ret;
1395
1396 if (PageDirty(page)) {
1397 struct address_space *mapping;
69d763fc 1398 bool migrate_dirty;
c8244935 1399
c8244935
MG
1400 /*
1401 * Only pages without mappings or that have a
1402 * ->migratepage callback are possible to migrate
69d763fc
MG
1403 * without blocking. However, we can be racing with
1404 * truncation so it's necessary to lock the page
1405 * to stabilise the mapping as truncation holds
1406 * the page lock until after the page is removed
1407 * from the page cache.
c8244935 1408 */
69d763fc
MG
1409 if (!trylock_page(page))
1410 return ret;
1411
c8244935 1412 mapping = page_mapping(page);
69d763fc
MG
1413 migrate_dirty = mapping && mapping->a_ops->migratepage;
1414 unlock_page(page);
1415 if (!migrate_dirty)
c8244935
MG
1416 return ret;
1417 }
1418 }
39deaf85 1419
f80c0673
MK
1420 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1421 return ret;
1422
5ad333eb
AW
1423 if (likely(get_page_unless_zero(page))) {
1424 /*
1425 * Be careful not to clear PageLRU until after we're
1426 * sure the page is not being freed elsewhere -- the
1427 * page release code relies on it.
1428 */
1429 ClearPageLRU(page);
1430 ret = 0;
1431 }
1432
1433 return ret;
1434}
1435
7ee36a14
MG
1436
1437/*
1438 * Update LRU sizes after isolating pages. The LRU size updates must
1439 * be complete before mem_cgroup_update_lru_size due to a santity check.
1440 */
1441static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1442 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1443{
7ee36a14
MG
1444 int zid;
1445
7ee36a14
MG
1446 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1447 if (!nr_zone_taken[zid])
1448 continue;
1449
1450 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1451#ifdef CONFIG_MEMCG
b4536f0c 1452 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1453#endif
b4536f0c
MH
1454 }
1455
7ee36a14
MG
1456}
1457
1da177e4 1458/*
a52633d8 1459 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1460 * shrink the lists perform better by taking out a batch of pages
1461 * and working on them outside the LRU lock.
1462 *
1463 * For pagecache intensive workloads, this function is the hottest
1464 * spot in the kernel (apart from copy_*_user functions).
1465 *
1466 * Appropriate locks must be held before calling this function.
1467 *
791b48b6 1468 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1469 * @lruvec: The LRU vector to pull pages from.
1da177e4 1470 * @dst: The temp list to put pages on to.
f626012d 1471 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1472 * @sc: The scan_control struct for this reclaim session
5ad333eb 1473 * @mode: One of the LRU isolation modes
3cb99451 1474 * @lru: LRU list id for isolating
1da177e4
LT
1475 *
1476 * returns how many pages were moved onto *@dst.
1477 */
69e05944 1478static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1479 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1480 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1481 isolate_mode_t mode, enum lru_list lru)
1da177e4 1482{
75b00af7 1483 struct list_head *src = &lruvec->lists[lru];
69e05944 1484 unsigned long nr_taken = 0;
599d0c95 1485 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1486 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1487 unsigned long skipped = 0;
791b48b6 1488 unsigned long scan, total_scan, nr_pages;
b2e18757 1489 LIST_HEAD(pages_skipped);
1da177e4 1490
791b48b6
MK
1491 scan = 0;
1492 for (total_scan = 0;
1493 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1494 total_scan++) {
5ad333eb 1495 struct page *page;
5ad333eb 1496
1da177e4
LT
1497 page = lru_to_page(src);
1498 prefetchw_prev_lru_page(page, src, flags);
1499
309381fe 1500 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1501
b2e18757
MG
1502 if (page_zonenum(page) > sc->reclaim_idx) {
1503 list_move(&page->lru, &pages_skipped);
7cc30fcf 1504 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1505 continue;
1506 }
1507
791b48b6
MK
1508 /*
1509 * Do not count skipped pages because that makes the function
1510 * return with no isolated pages if the LRU mostly contains
1511 * ineligible pages. This causes the VM to not reclaim any
1512 * pages, triggering a premature OOM.
1513 */
1514 scan++;
f3fd4a61 1515 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1516 case 0:
599d0c95
MG
1517 nr_pages = hpage_nr_pages(page);
1518 nr_taken += nr_pages;
1519 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1520 list_move(&page->lru, dst);
5ad333eb
AW
1521 break;
1522
1523 case -EBUSY:
1524 /* else it is being freed elsewhere */
1525 list_move(&page->lru, src);
1526 continue;
46453a6e 1527
5ad333eb
AW
1528 default:
1529 BUG();
1530 }
1da177e4
LT
1531 }
1532
b2e18757
MG
1533 /*
1534 * Splice any skipped pages to the start of the LRU list. Note that
1535 * this disrupts the LRU order when reclaiming for lower zones but
1536 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1537 * scanning would soon rescan the same pages to skip and put the
1538 * system at risk of premature OOM.
1539 */
7cc30fcf
MG
1540 if (!list_empty(&pages_skipped)) {
1541 int zid;
1542
3db65812 1543 list_splice(&pages_skipped, src);
7cc30fcf
MG
1544 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1545 if (!nr_skipped[zid])
1546 continue;
1547
1548 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1549 skipped += nr_skipped[zid];
7cc30fcf
MG
1550 }
1551 }
791b48b6 1552 *nr_scanned = total_scan;
1265e3a6 1553 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1554 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1555 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1556 return nr_taken;
1557}
1558
62695a84
NP
1559/**
1560 * isolate_lru_page - tries to isolate a page from its LRU list
1561 * @page: page to isolate from its LRU list
1562 *
1563 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1564 * vmstat statistic corresponding to whatever LRU list the page was on.
1565 *
1566 * Returns 0 if the page was removed from an LRU list.
1567 * Returns -EBUSY if the page was not on an LRU list.
1568 *
1569 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1570 * the active list, it will have PageActive set. If it was found on
1571 * the unevictable list, it will have the PageUnevictable bit set. That flag
1572 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1573 *
1574 * The vmstat statistic corresponding to the list on which the page was
1575 * found will be decremented.
1576 *
1577 * Restrictions:
a5d09bed 1578 *
62695a84
NP
1579 * (1) Must be called with an elevated refcount on the page. This is a
1580 * fundamentnal difference from isolate_lru_pages (which is called
1581 * without a stable reference).
1582 * (2) the lru_lock must not be held.
1583 * (3) interrupts must be enabled.
1584 */
1585int isolate_lru_page(struct page *page)
1586{
1587 int ret = -EBUSY;
1588
309381fe 1589 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1590 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1591
62695a84
NP
1592 if (PageLRU(page)) {
1593 struct zone *zone = page_zone(page);
fa9add64 1594 struct lruvec *lruvec;
62695a84 1595
a52633d8 1596 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1597 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1598 if (PageLRU(page)) {
894bc310 1599 int lru = page_lru(page);
0c917313 1600 get_page(page);
62695a84 1601 ClearPageLRU(page);
fa9add64
HD
1602 del_page_from_lru_list(page, lruvec, lru);
1603 ret = 0;
62695a84 1604 }
a52633d8 1605 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1606 }
1607 return ret;
1608}
1609
35cd7815 1610/*
d37dd5dc
FW
1611 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1612 * then get resheduled. When there are massive number of tasks doing page
1613 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1614 * the LRU list will go small and be scanned faster than necessary, leading to
1615 * unnecessary swapping, thrashing and OOM.
35cd7815 1616 */
599d0c95 1617static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1618 struct scan_control *sc)
1619{
1620 unsigned long inactive, isolated;
1621
1622 if (current_is_kswapd())
1623 return 0;
1624
97c9341f 1625 if (!sane_reclaim(sc))
35cd7815
RR
1626 return 0;
1627
1628 if (file) {
599d0c95
MG
1629 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1630 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1631 } else {
599d0c95
MG
1632 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1633 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1634 }
1635
3cf23841
FW
1636 /*
1637 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1638 * won't get blocked by normal direct-reclaimers, forming a circular
1639 * deadlock.
1640 */
d0164adc 1641 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1642 inactive >>= 3;
1643
35cd7815
RR
1644 return isolated > inactive;
1645}
1646
66635629 1647static noinline_for_stack void
75b00af7 1648putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1649{
27ac81d8 1650 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1651 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1652 LIST_HEAD(pages_to_free);
66635629 1653
66635629
MG
1654 /*
1655 * Put back any unfreeable pages.
1656 */
66635629 1657 while (!list_empty(page_list)) {
3f79768f 1658 struct page *page = lru_to_page(page_list);
66635629 1659 int lru;
3f79768f 1660
309381fe 1661 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1662 list_del(&page->lru);
39b5f29a 1663 if (unlikely(!page_evictable(page))) {
599d0c95 1664 spin_unlock_irq(&pgdat->lru_lock);
66635629 1665 putback_lru_page(page);
599d0c95 1666 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1667 continue;
1668 }
fa9add64 1669
599d0c95 1670 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1671
7a608572 1672 SetPageLRU(page);
66635629 1673 lru = page_lru(page);
fa9add64
HD
1674 add_page_to_lru_list(page, lruvec, lru);
1675
66635629
MG
1676 if (is_active_lru(lru)) {
1677 int file = is_file_lru(lru);
9992af10
RR
1678 int numpages = hpage_nr_pages(page);
1679 reclaim_stat->recent_rotated[file] += numpages;
66635629 1680 }
2bcf8879
HD
1681 if (put_page_testzero(page)) {
1682 __ClearPageLRU(page);
1683 __ClearPageActive(page);
fa9add64 1684 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1685
1686 if (unlikely(PageCompound(page))) {
599d0c95 1687 spin_unlock_irq(&pgdat->lru_lock);
747db954 1688 mem_cgroup_uncharge(page);
2bcf8879 1689 (*get_compound_page_dtor(page))(page);
599d0c95 1690 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1691 } else
1692 list_add(&page->lru, &pages_to_free);
66635629
MG
1693 }
1694 }
66635629 1695
3f79768f
HD
1696 /*
1697 * To save our caller's stack, now use input list for pages to free.
1698 */
1699 list_splice(&pages_to_free, page_list);
66635629
MG
1700}
1701
399ba0b9
N
1702/*
1703 * If a kernel thread (such as nfsd for loop-back mounts) services
1704 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1705 * In that case we should only throttle if the backing device it is
1706 * writing to is congested. In other cases it is safe to throttle.
1707 */
1708static int current_may_throttle(void)
1709{
1710 return !(current->flags & PF_LESS_THROTTLE) ||
1711 current->backing_dev_info == NULL ||
1712 bdi_write_congested(current->backing_dev_info);
1713}
1714
1da177e4 1715/*
b2e18757 1716 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1717 * of reclaimed pages
1da177e4 1718 */
66635629 1719static noinline_for_stack unsigned long
1a93be0e 1720shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1721 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1722{
1723 LIST_HEAD(page_list);
e247dbce 1724 unsigned long nr_scanned;
05ff5137 1725 unsigned long nr_reclaimed = 0;
e247dbce 1726 unsigned long nr_taken;
3c710c1a 1727 struct reclaim_stat stat = {};
f3fd4a61 1728 isolate_mode_t isolate_mode = 0;
3cb99451 1729 int file = is_file_lru(lru);
599d0c95 1730 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1731 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1732 bool stalled = false;
78dc583d 1733
599d0c95 1734 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1735 if (stalled)
1736 return 0;
1737
1738 /* wait a bit for the reclaimer. */
1739 msleep(100);
1740 stalled = true;
35cd7815
RR
1741
1742 /* We are about to die and free our memory. Return now. */
1743 if (fatal_signal_pending(current))
1744 return SWAP_CLUSTER_MAX;
1745 }
1746
1da177e4 1747 lru_add_drain();
f80c0673
MK
1748
1749 if (!sc->may_unmap)
61317289 1750 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1751
599d0c95 1752 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1753
5dc35979
KK
1754 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1755 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1756
599d0c95 1757 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1758 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1759
2262185c
RG
1760 if (current_is_kswapd()) {
1761 if (global_reclaim(sc))
599d0c95 1762 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
2262185c
RG
1763 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1764 nr_scanned);
1765 } else {
1766 if (global_reclaim(sc))
599d0c95 1767 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
2262185c
RG
1768 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1769 nr_scanned);
e247dbce 1770 }
599d0c95 1771 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1772
d563c050 1773 if (nr_taken == 0)
66635629 1774 return 0;
5ad333eb 1775
a128ca71 1776 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1777 &stat, false);
c661b078 1778
599d0c95 1779 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1780
2262185c
RG
1781 if (current_is_kswapd()) {
1782 if (global_reclaim(sc))
599d0c95 1783 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
2262185c
RG
1784 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1785 nr_reclaimed);
1786 } else {
1787 if (global_reclaim(sc))
599d0c95 1788 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
2262185c
RG
1789 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1790 nr_reclaimed);
904249aa 1791 }
a74609fa 1792
27ac81d8 1793 putback_inactive_pages(lruvec, &page_list);
3f79768f 1794
599d0c95 1795 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1796
599d0c95 1797 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1798
747db954 1799 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1800 free_unref_page_list(&page_list);
e11da5b4 1801
1c610d5f
AR
1802 /*
1803 * If dirty pages are scanned that are not queued for IO, it
1804 * implies that flushers are not doing their job. This can
1805 * happen when memory pressure pushes dirty pages to the end of
1806 * the LRU before the dirty limits are breached and the dirty
1807 * data has expired. It can also happen when the proportion of
1808 * dirty pages grows not through writes but through memory
1809 * pressure reclaiming all the clean cache. And in some cases,
1810 * the flushers simply cannot keep up with the allocation
1811 * rate. Nudge the flusher threads in case they are asleep.
1812 */
1813 if (stat.nr_unqueued_dirty == nr_taken)
1814 wakeup_flusher_threads(WB_REASON_VMSCAN);
1815
d108c772
AR
1816 sc->nr.dirty += stat.nr_dirty;
1817 sc->nr.congested += stat.nr_congested;
1818 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1819 sc->nr.writeback += stat.nr_writeback;
1820 sc->nr.immediate += stat.nr_immediate;
1821 sc->nr.taken += nr_taken;
1822 if (file)
1823 sc->nr.file_taken += nr_taken;
8e950282 1824
599d0c95
MG
1825 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1826 nr_scanned, nr_reclaimed,
5bccd166
MH
1827 stat.nr_dirty, stat.nr_writeback,
1828 stat.nr_congested, stat.nr_immediate,
1829 stat.nr_activate, stat.nr_ref_keep,
1830 stat.nr_unmap_fail,
ba5e9579 1831 sc->priority, file);
05ff5137 1832 return nr_reclaimed;
1da177e4
LT
1833}
1834
1835/*
1836 * This moves pages from the active list to the inactive list.
1837 *
1838 * We move them the other way if the page is referenced by one or more
1839 * processes, from rmap.
1840 *
1841 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1842 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1843 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1844 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1845 * this, so instead we remove the pages from the LRU while processing them.
1846 * It is safe to rely on PG_active against the non-LRU pages in here because
1847 * nobody will play with that bit on a non-LRU page.
1848 *
0139aa7b 1849 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1850 * But we had to alter page->flags anyway.
9d998b4f
MH
1851 *
1852 * Returns the number of pages moved to the given lru.
1da177e4 1853 */
1cfb419b 1854
9d998b4f 1855static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1856 struct list_head *list,
2bcf8879 1857 struct list_head *pages_to_free,
3eb4140f
WF
1858 enum lru_list lru)
1859{
599d0c95 1860 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1861 struct page *page;
fa9add64 1862 int nr_pages;
9d998b4f 1863 int nr_moved = 0;
3eb4140f 1864
3eb4140f
WF
1865 while (!list_empty(list)) {
1866 page = lru_to_page(list);
599d0c95 1867 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1868
309381fe 1869 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1870 SetPageLRU(page);
1871
fa9add64 1872 nr_pages = hpage_nr_pages(page);
599d0c95 1873 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1874 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 1875
2bcf8879
HD
1876 if (put_page_testzero(page)) {
1877 __ClearPageLRU(page);
1878 __ClearPageActive(page);
fa9add64 1879 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1880
1881 if (unlikely(PageCompound(page))) {
599d0c95 1882 spin_unlock_irq(&pgdat->lru_lock);
747db954 1883 mem_cgroup_uncharge(page);
2bcf8879 1884 (*get_compound_page_dtor(page))(page);
599d0c95 1885 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1886 } else
1887 list_add(&page->lru, pages_to_free);
9d998b4f
MH
1888 } else {
1889 nr_moved += nr_pages;
3eb4140f
WF
1890 }
1891 }
9d5e6a9f 1892
2262185c 1893 if (!is_active_lru(lru)) {
f0958906 1894 __count_vm_events(PGDEACTIVATE, nr_moved);
2262185c
RG
1895 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1896 nr_moved);
1897 }
9d998b4f
MH
1898
1899 return nr_moved;
3eb4140f 1900}
1cfb419b 1901
f626012d 1902static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1903 struct lruvec *lruvec,
f16015fb 1904 struct scan_control *sc,
9e3b2f8c 1905 enum lru_list lru)
1da177e4 1906{
44c241f1 1907 unsigned long nr_taken;
f626012d 1908 unsigned long nr_scanned;
6fe6b7e3 1909 unsigned long vm_flags;
1da177e4 1910 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1911 LIST_HEAD(l_active);
b69408e8 1912 LIST_HEAD(l_inactive);
1da177e4 1913 struct page *page;
1a93be0e 1914 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
1915 unsigned nr_deactivate, nr_activate;
1916 unsigned nr_rotated = 0;
f3fd4a61 1917 isolate_mode_t isolate_mode = 0;
3cb99451 1918 int file = is_file_lru(lru);
599d0c95 1919 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1920
1921 lru_add_drain();
f80c0673
MK
1922
1923 if (!sc->may_unmap)
61317289 1924 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1925
599d0c95 1926 spin_lock_irq(&pgdat->lru_lock);
925b7673 1927
5dc35979
KK
1928 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1929 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1930
599d0c95 1931 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1932 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1933
599d0c95 1934 __count_vm_events(PGREFILL, nr_scanned);
2262185c 1935 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 1936
599d0c95 1937 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 1938
1da177e4
LT
1939 while (!list_empty(&l_hold)) {
1940 cond_resched();
1941 page = lru_to_page(&l_hold);
1942 list_del(&page->lru);
7e9cd484 1943
39b5f29a 1944 if (unlikely(!page_evictable(page))) {
894bc310
LS
1945 putback_lru_page(page);
1946 continue;
1947 }
1948
cc715d99
MG
1949 if (unlikely(buffer_heads_over_limit)) {
1950 if (page_has_private(page) && trylock_page(page)) {
1951 if (page_has_private(page))
1952 try_to_release_page(page, 0);
1953 unlock_page(page);
1954 }
1955 }
1956
c3ac9a8a
JW
1957 if (page_referenced(page, 0, sc->target_mem_cgroup,
1958 &vm_flags)) {
9992af10 1959 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1960 /*
1961 * Identify referenced, file-backed active pages and
1962 * give them one more trip around the active list. So
1963 * that executable code get better chances to stay in
1964 * memory under moderate memory pressure. Anon pages
1965 * are not likely to be evicted by use-once streaming
1966 * IO, plus JVM can create lots of anon VM_EXEC pages,
1967 * so we ignore them here.
1968 */
41e20983 1969 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1970 list_add(&page->lru, &l_active);
1971 continue;
1972 }
1973 }
7e9cd484 1974
5205e56e 1975 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1976 list_add(&page->lru, &l_inactive);
1977 }
1978
b555749a 1979 /*
8cab4754 1980 * Move pages back to the lru list.
b555749a 1981 */
599d0c95 1982 spin_lock_irq(&pgdat->lru_lock);
556adecb 1983 /*
8cab4754
WF
1984 * Count referenced pages from currently used mappings as rotated,
1985 * even though only some of them are actually re-activated. This
1986 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1987 * get_scan_count.
7e9cd484 1988 */
b7c46d15 1989 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1990
9d998b4f
MH
1991 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1992 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
1993 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1994 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 1995
747db954 1996 mem_cgroup_uncharge_list(&l_hold);
2d4894b5 1997 free_unref_page_list(&l_hold);
9d998b4f
MH
1998 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
1999 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2000}
2001
59dc76b0
RR
2002/*
2003 * The inactive anon list should be small enough that the VM never has
2004 * to do too much work.
14797e23 2005 *
59dc76b0
RR
2006 * The inactive file list should be small enough to leave most memory
2007 * to the established workingset on the scan-resistant active list,
2008 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2009 *
59dc76b0
RR
2010 * Both inactive lists should also be large enough that each inactive
2011 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2012 *
2a2e4885
JW
2013 * If that fails and refaulting is observed, the inactive list grows.
2014 *
59dc76b0 2015 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2016 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2017 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2018 *
59dc76b0
RR
2019 * total target max
2020 * memory ratio inactive
2021 * -------------------------------------
2022 * 10MB 1 5MB
2023 * 100MB 1 50MB
2024 * 1GB 3 250MB
2025 * 10GB 10 0.9GB
2026 * 100GB 31 3GB
2027 * 1TB 101 10GB
2028 * 10TB 320 32GB
56e49d21 2029 */
f8d1a311 2030static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2a2e4885
JW
2031 struct mem_cgroup *memcg,
2032 struct scan_control *sc, bool actual_reclaim)
56e49d21 2033{
fd538803 2034 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2035 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2036 enum lru_list inactive_lru = file * LRU_FILE;
2037 unsigned long inactive, active;
2038 unsigned long inactive_ratio;
2039 unsigned long refaults;
59dc76b0 2040 unsigned long gb;
e3790144 2041
59dc76b0
RR
2042 /*
2043 * If we don't have swap space, anonymous page deactivation
2044 * is pointless.
2045 */
2046 if (!file && !total_swap_pages)
2047 return false;
56e49d21 2048
fd538803
MH
2049 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2050 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2051
2a2e4885 2052 if (memcg)
ccda7f43 2053 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
b39415b2 2054 else
2a2e4885
JW
2055 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2056
2057 /*
2058 * When refaults are being observed, it means a new workingset
2059 * is being established. Disable active list protection to get
2060 * rid of the stale workingset quickly.
2061 */
2062 if (file && actual_reclaim && lruvec->refaults != refaults) {
2063 inactive_ratio = 0;
2064 } else {
2065 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2066 if (gb)
2067 inactive_ratio = int_sqrt(10 * gb);
2068 else
2069 inactive_ratio = 1;
2070 }
59dc76b0 2071
2a2e4885
JW
2072 if (actual_reclaim)
2073 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2074 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2075 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2076 inactive_ratio, file);
fd538803 2077
59dc76b0 2078 return inactive * inactive_ratio < active;
b39415b2
RR
2079}
2080
4f98a2fe 2081static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2a2e4885
JW
2082 struct lruvec *lruvec, struct mem_cgroup *memcg,
2083 struct scan_control *sc)
b69408e8 2084{
b39415b2 2085 if (is_active_lru(lru)) {
2a2e4885
JW
2086 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2087 memcg, sc, true))
1a93be0e 2088 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2089 return 0;
2090 }
2091
1a93be0e 2092 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2093}
2094
9a265114
JW
2095enum scan_balance {
2096 SCAN_EQUAL,
2097 SCAN_FRACT,
2098 SCAN_ANON,
2099 SCAN_FILE,
2100};
2101
4f98a2fe
RR
2102/*
2103 * Determine how aggressively the anon and file LRU lists should be
2104 * scanned. The relative value of each set of LRU lists is determined
2105 * by looking at the fraction of the pages scanned we did rotate back
2106 * onto the active list instead of evict.
2107 *
be7bd59d
WL
2108 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2109 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2110 */
33377678 2111static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2112 struct scan_control *sc, unsigned long *nr,
2113 unsigned long *lru_pages)
4f98a2fe 2114{
33377678 2115 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2116 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2117 u64 fraction[2];
2118 u64 denominator = 0; /* gcc */
599d0c95 2119 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2120 unsigned long anon_prio, file_prio;
9a265114 2121 enum scan_balance scan_balance;
0bf1457f 2122 unsigned long anon, file;
4f98a2fe 2123 unsigned long ap, fp;
4111304d 2124 enum lru_list lru;
76a33fc3
SL
2125
2126 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2127 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2128 scan_balance = SCAN_FILE;
76a33fc3
SL
2129 goto out;
2130 }
4f98a2fe 2131
10316b31
JW
2132 /*
2133 * Global reclaim will swap to prevent OOM even with no
2134 * swappiness, but memcg users want to use this knob to
2135 * disable swapping for individual groups completely when
2136 * using the memory controller's swap limit feature would be
2137 * too expensive.
2138 */
02695175 2139 if (!global_reclaim(sc) && !swappiness) {
9a265114 2140 scan_balance = SCAN_FILE;
10316b31
JW
2141 goto out;
2142 }
2143
2144 /*
2145 * Do not apply any pressure balancing cleverness when the
2146 * system is close to OOM, scan both anon and file equally
2147 * (unless the swappiness setting disagrees with swapping).
2148 */
02695175 2149 if (!sc->priority && swappiness) {
9a265114 2150 scan_balance = SCAN_EQUAL;
10316b31
JW
2151 goto out;
2152 }
2153
62376251
JW
2154 /*
2155 * Prevent the reclaimer from falling into the cache trap: as
2156 * cache pages start out inactive, every cache fault will tip
2157 * the scan balance towards the file LRU. And as the file LRU
2158 * shrinks, so does the window for rotation from references.
2159 * This means we have a runaway feedback loop where a tiny
2160 * thrashing file LRU becomes infinitely more attractive than
2161 * anon pages. Try to detect this based on file LRU size.
2162 */
2163 if (global_reclaim(sc)) {
599d0c95
MG
2164 unsigned long pgdatfile;
2165 unsigned long pgdatfree;
2166 int z;
2167 unsigned long total_high_wmark = 0;
2ab051e1 2168
599d0c95
MG
2169 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2170 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2171 node_page_state(pgdat, NR_INACTIVE_FILE);
2172
2173 for (z = 0; z < MAX_NR_ZONES; z++) {
2174 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2175 if (!managed_zone(zone))
599d0c95
MG
2176 continue;
2177
2178 total_high_wmark += high_wmark_pages(zone);
2179 }
62376251 2180
599d0c95 2181 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2182 /*
2183 * Force SCAN_ANON if there are enough inactive
2184 * anonymous pages on the LRU in eligible zones.
2185 * Otherwise, the small LRU gets thrashed.
2186 */
2187 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2188 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2189 >> sc->priority) {
2190 scan_balance = SCAN_ANON;
2191 goto out;
2192 }
62376251
JW
2193 }
2194 }
2195
7c5bd705 2196 /*
316bda0e
VD
2197 * If there is enough inactive page cache, i.e. if the size of the
2198 * inactive list is greater than that of the active list *and* the
2199 * inactive list actually has some pages to scan on this priority, we
2200 * do not reclaim anything from the anonymous working set right now.
2201 * Without the second condition we could end up never scanning an
2202 * lruvec even if it has plenty of old anonymous pages unless the
2203 * system is under heavy pressure.
7c5bd705 2204 */
2a2e4885 2205 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
71ab6cfe 2206 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2207 scan_balance = SCAN_FILE;
7c5bd705
JW
2208 goto out;
2209 }
2210
9a265114
JW
2211 scan_balance = SCAN_FRACT;
2212
58c37f6e
KM
2213 /*
2214 * With swappiness at 100, anonymous and file have the same priority.
2215 * This scanning priority is essentially the inverse of IO cost.
2216 */
02695175 2217 anon_prio = swappiness;
75b00af7 2218 file_prio = 200 - anon_prio;
58c37f6e 2219
4f98a2fe
RR
2220 /*
2221 * OK, so we have swap space and a fair amount of page cache
2222 * pages. We use the recently rotated / recently scanned
2223 * ratios to determine how valuable each cache is.
2224 *
2225 * Because workloads change over time (and to avoid overflow)
2226 * we keep these statistics as a floating average, which ends
2227 * up weighing recent references more than old ones.
2228 *
2229 * anon in [0], file in [1]
2230 */
2ab051e1 2231
fd538803
MH
2232 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2233 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2234 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2235 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2236
599d0c95 2237 spin_lock_irq(&pgdat->lru_lock);
6e901571 2238 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2239 reclaim_stat->recent_scanned[0] /= 2;
2240 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2241 }
2242
6e901571 2243 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2244 reclaim_stat->recent_scanned[1] /= 2;
2245 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2246 }
2247
4f98a2fe 2248 /*
00d8089c
RR
2249 * The amount of pressure on anon vs file pages is inversely
2250 * proportional to the fraction of recently scanned pages on
2251 * each list that were recently referenced and in active use.
4f98a2fe 2252 */
fe35004f 2253 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2254 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2255
fe35004f 2256 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2257 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2258 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2259
76a33fc3
SL
2260 fraction[0] = ap;
2261 fraction[1] = fp;
2262 denominator = ap + fp + 1;
2263out:
688035f7
JW
2264 *lru_pages = 0;
2265 for_each_evictable_lru(lru) {
2266 int file = is_file_lru(lru);
2267 unsigned long size;
2268 unsigned long scan;
6b4f7799 2269
688035f7
JW
2270 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2271 scan = size >> sc->priority;
2272 /*
2273 * If the cgroup's already been deleted, make sure to
2274 * scrape out the remaining cache.
2275 */
2276 if (!scan && !mem_cgroup_online(memcg))
2277 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2278
688035f7
JW
2279 switch (scan_balance) {
2280 case SCAN_EQUAL:
2281 /* Scan lists relative to size */
2282 break;
2283 case SCAN_FRACT:
9a265114 2284 /*
688035f7
JW
2285 * Scan types proportional to swappiness and
2286 * their relative recent reclaim efficiency.
9a265114 2287 */
688035f7
JW
2288 scan = div64_u64(scan * fraction[file],
2289 denominator);
2290 break;
2291 case SCAN_FILE:
2292 case SCAN_ANON:
2293 /* Scan one type exclusively */
2294 if ((scan_balance == SCAN_FILE) != file) {
2295 size = 0;
2296 scan = 0;
2297 }
2298 break;
2299 default:
2300 /* Look ma, no brain */
2301 BUG();
9a265114 2302 }
688035f7
JW
2303
2304 *lru_pages += size;
2305 nr[lru] = scan;
76a33fc3 2306 }
6e08a369 2307}
4f98a2fe 2308
9b4f98cd 2309/*
a9dd0a83 2310 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2311 */
a9dd0a83 2312static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2313 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2314{
ef8f2327 2315 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2316 unsigned long nr[NR_LRU_LISTS];
e82e0561 2317 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2318 unsigned long nr_to_scan;
2319 enum lru_list lru;
2320 unsigned long nr_reclaimed = 0;
2321 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2322 struct blk_plug plug;
1a501907 2323 bool scan_adjusted;
9b4f98cd 2324
33377678 2325 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2326
e82e0561
MG
2327 /* Record the original scan target for proportional adjustments later */
2328 memcpy(targets, nr, sizeof(nr));
2329
1a501907
MG
2330 /*
2331 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2332 * event that can occur when there is little memory pressure e.g.
2333 * multiple streaming readers/writers. Hence, we do not abort scanning
2334 * when the requested number of pages are reclaimed when scanning at
2335 * DEF_PRIORITY on the assumption that the fact we are direct
2336 * reclaiming implies that kswapd is not keeping up and it is best to
2337 * do a batch of work at once. For memcg reclaim one check is made to
2338 * abort proportional reclaim if either the file or anon lru has already
2339 * dropped to zero at the first pass.
2340 */
2341 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2342 sc->priority == DEF_PRIORITY);
2343
9b4f98cd
JW
2344 blk_start_plug(&plug);
2345 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2346 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2347 unsigned long nr_anon, nr_file, percentage;
2348 unsigned long nr_scanned;
2349
9b4f98cd
JW
2350 for_each_evictable_lru(lru) {
2351 if (nr[lru]) {
2352 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2353 nr[lru] -= nr_to_scan;
2354
2355 nr_reclaimed += shrink_list(lru, nr_to_scan,
2a2e4885 2356 lruvec, memcg, sc);
9b4f98cd
JW
2357 }
2358 }
e82e0561 2359
bd041733
MH
2360 cond_resched();
2361
e82e0561
MG
2362 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2363 continue;
2364
e82e0561
MG
2365 /*
2366 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2367 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2368 * proportionally what was requested by get_scan_count(). We
2369 * stop reclaiming one LRU and reduce the amount scanning
2370 * proportional to the original scan target.
2371 */
2372 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2373 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2374
1a501907
MG
2375 /*
2376 * It's just vindictive to attack the larger once the smaller
2377 * has gone to zero. And given the way we stop scanning the
2378 * smaller below, this makes sure that we only make one nudge
2379 * towards proportionality once we've got nr_to_reclaim.
2380 */
2381 if (!nr_file || !nr_anon)
2382 break;
2383
e82e0561
MG
2384 if (nr_file > nr_anon) {
2385 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2386 targets[LRU_ACTIVE_ANON] + 1;
2387 lru = LRU_BASE;
2388 percentage = nr_anon * 100 / scan_target;
2389 } else {
2390 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2391 targets[LRU_ACTIVE_FILE] + 1;
2392 lru = LRU_FILE;
2393 percentage = nr_file * 100 / scan_target;
2394 }
2395
2396 /* Stop scanning the smaller of the LRU */
2397 nr[lru] = 0;
2398 nr[lru + LRU_ACTIVE] = 0;
2399
2400 /*
2401 * Recalculate the other LRU scan count based on its original
2402 * scan target and the percentage scanning already complete
2403 */
2404 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2405 nr_scanned = targets[lru] - nr[lru];
2406 nr[lru] = targets[lru] * (100 - percentage) / 100;
2407 nr[lru] -= min(nr[lru], nr_scanned);
2408
2409 lru += LRU_ACTIVE;
2410 nr_scanned = targets[lru] - nr[lru];
2411 nr[lru] = targets[lru] * (100 - percentage) / 100;
2412 nr[lru] -= min(nr[lru], nr_scanned);
2413
2414 scan_adjusted = true;
9b4f98cd
JW
2415 }
2416 blk_finish_plug(&plug);
2417 sc->nr_reclaimed += nr_reclaimed;
2418
2419 /*
2420 * Even if we did not try to evict anon pages at all, we want to
2421 * rebalance the anon lru active/inactive ratio.
2422 */
2a2e4885 2423 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
9b4f98cd
JW
2424 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2425 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2426}
2427
23b9da55 2428/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2429static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2430{
d84da3f9 2431 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2432 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2433 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2434 return true;
2435
2436 return false;
2437}
2438
3e7d3449 2439/*
23b9da55
MG
2440 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2441 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2442 * true if more pages should be reclaimed such that when the page allocator
2443 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2444 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2445 */
a9dd0a83 2446static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2447 unsigned long nr_reclaimed,
2448 unsigned long nr_scanned,
2449 struct scan_control *sc)
2450{
2451 unsigned long pages_for_compaction;
2452 unsigned long inactive_lru_pages;
a9dd0a83 2453 int z;
3e7d3449
MG
2454
2455 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2456 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2457 return false;
2458
2876592f 2459 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2460 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2461 /*
dcda9b04 2462 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2463 * full LRU list has been scanned and we are still failing
2464 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2465 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2466 */
2467 if (!nr_reclaimed && !nr_scanned)
2468 return false;
2469 } else {
2470 /*
dcda9b04 2471 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2472 * fail without consequence, stop if we failed to reclaim
2473 * any pages from the last SWAP_CLUSTER_MAX number of
2474 * pages that were scanned. This will return to the
2475 * caller faster at the risk reclaim/compaction and
2476 * the resulting allocation attempt fails
2477 */
2478 if (!nr_reclaimed)
2479 return false;
2480 }
3e7d3449
MG
2481
2482 /*
2483 * If we have not reclaimed enough pages for compaction and the
2484 * inactive lists are large enough, continue reclaiming
2485 */
9861a62c 2486 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2487 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2488 if (get_nr_swap_pages() > 0)
a9dd0a83 2489 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2490 if (sc->nr_reclaimed < pages_for_compaction &&
2491 inactive_lru_pages > pages_for_compaction)
2492 return true;
2493
2494 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2495 for (z = 0; z <= sc->reclaim_idx; z++) {
2496 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2497 if (!managed_zone(zone))
a9dd0a83
MG
2498 continue;
2499
2500 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2501 case COMPACT_SUCCESS:
a9dd0a83
MG
2502 case COMPACT_CONTINUE:
2503 return false;
2504 default:
2505 /* check next zone */
2506 ;
2507 }
3e7d3449 2508 }
a9dd0a83 2509 return true;
3e7d3449
MG
2510}
2511
e3c1ac58
AR
2512static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2513{
2514 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2515 (memcg && memcg_congested(pgdat, memcg));
2516}
2517
970a39a3 2518static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2519{
cb731d6c 2520 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2521 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2522 bool reclaimable = false;
1da177e4 2523
9b4f98cd
JW
2524 do {
2525 struct mem_cgroup *root = sc->target_mem_cgroup;
2526 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2527 .pgdat = pgdat,
9b4f98cd
JW
2528 .priority = sc->priority,
2529 };
a9dd0a83 2530 unsigned long node_lru_pages = 0;
694fbc0f 2531 struct mem_cgroup *memcg;
3e7d3449 2532
d108c772
AR
2533 memset(&sc->nr, 0, sizeof(sc->nr));
2534
9b4f98cd
JW
2535 nr_reclaimed = sc->nr_reclaimed;
2536 nr_scanned = sc->nr_scanned;
1da177e4 2537
694fbc0f
AM
2538 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2539 do {
6b4f7799 2540 unsigned long lru_pages;
8e8ae645 2541 unsigned long reclaimed;
cb731d6c 2542 unsigned long scanned;
5660048c 2543
241994ed 2544 if (mem_cgroup_low(root, memcg)) {
d6622f63
YX
2545 if (!sc->memcg_low_reclaim) {
2546 sc->memcg_low_skipped = 1;
241994ed 2547 continue;
d6622f63 2548 }
31176c78 2549 mem_cgroup_event(memcg, MEMCG_LOW);
241994ed
JW
2550 }
2551
8e8ae645 2552 reclaimed = sc->nr_reclaimed;
cb731d6c 2553 scanned = sc->nr_scanned;
a9dd0a83
MG
2554 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2555 node_lru_pages += lru_pages;
f16015fb 2556
b5afba29 2557 if (memcg)
a9dd0a83 2558 shrink_slab(sc->gfp_mask, pgdat->node_id,
9092c71b 2559 memcg, sc->priority);
cb731d6c 2560
8e8ae645
JW
2561 /* Record the group's reclaim efficiency */
2562 vmpressure(sc->gfp_mask, memcg, false,
2563 sc->nr_scanned - scanned,
2564 sc->nr_reclaimed - reclaimed);
2565
9b4f98cd 2566 /*
a394cb8e
MH
2567 * Direct reclaim and kswapd have to scan all memory
2568 * cgroups to fulfill the overall scan target for the
a9dd0a83 2569 * node.
a394cb8e
MH
2570 *
2571 * Limit reclaim, on the other hand, only cares about
2572 * nr_to_reclaim pages to be reclaimed and it will
2573 * retry with decreasing priority if one round over the
2574 * whole hierarchy is not sufficient.
9b4f98cd 2575 */
a394cb8e
MH
2576 if (!global_reclaim(sc) &&
2577 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2578 mem_cgroup_iter_break(root, memcg);
2579 break;
2580 }
241994ed 2581 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2582
b2e18757 2583 if (global_reclaim(sc))
a9dd0a83 2584 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
9092c71b 2585 sc->priority);
cb731d6c
VD
2586
2587 if (reclaim_state) {
2588 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2589 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2590 }
2591
8e8ae645
JW
2592 /* Record the subtree's reclaim efficiency */
2593 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2594 sc->nr_scanned - nr_scanned,
2595 sc->nr_reclaimed - nr_reclaimed);
2596
2344d7e4
JW
2597 if (sc->nr_reclaimed - nr_reclaimed)
2598 reclaimable = true;
2599
e3c1ac58
AR
2600 if (current_is_kswapd()) {
2601 /*
2602 * If reclaim is isolating dirty pages under writeback,
2603 * it implies that the long-lived page allocation rate
2604 * is exceeding the page laundering rate. Either the
2605 * global limits are not being effective at throttling
2606 * processes due to the page distribution throughout
2607 * zones or there is heavy usage of a slow backing
2608 * device. The only option is to throttle from reclaim
2609 * context which is not ideal as there is no guarantee
2610 * the dirtying process is throttled in the same way
2611 * balance_dirty_pages() manages.
2612 *
2613 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2614 * count the number of pages under pages flagged for
2615 * immediate reclaim and stall if any are encountered
2616 * in the nr_immediate check below.
2617 */
2618 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2619 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2620
d108c772
AR
2621 /*
2622 * Tag a node as congested if all the dirty pages
2623 * scanned were backed by a congested BDI and
2624 * wait_iff_congested will stall.
2625 */
2626 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2627 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2628
2629 /* Allow kswapd to start writing pages during reclaim.*/
2630 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2631 set_bit(PGDAT_DIRTY, &pgdat->flags);
2632
2633 /*
2634 * If kswapd scans pages marked marked for immediate
2635 * reclaim and under writeback (nr_immediate), it
2636 * implies that pages are cycling through the LRU
2637 * faster than they are written so also forcibly stall.
2638 */
2639 if (sc->nr.immediate)
2640 congestion_wait(BLK_RW_ASYNC, HZ/10);
2641 }
2642
e3c1ac58
AR
2643 /*
2644 * Legacy memcg will stall in page writeback so avoid forcibly
2645 * stalling in wait_iff_congested().
2646 */
2647 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2648 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2649 set_memcg_congestion(pgdat, root, true);
2650
d108c772
AR
2651 /*
2652 * Stall direct reclaim for IO completions if underlying BDIs
2653 * and node is congested. Allow kswapd to continue until it
2654 * starts encountering unqueued dirty pages or cycling through
2655 * the LRU too quickly.
2656 */
2657 if (!sc->hibernation_mode && !current_is_kswapd() &&
e3c1ac58
AR
2658 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2659 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2660
a9dd0a83 2661 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2662 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2663
c73322d0
JW
2664 /*
2665 * Kswapd gives up on balancing particular nodes after too
2666 * many failures to reclaim anything from them and goes to
2667 * sleep. On reclaim progress, reset the failure counter. A
2668 * successful direct reclaim run will revive a dormant kswapd.
2669 */
2670 if (reclaimable)
2671 pgdat->kswapd_failures = 0;
2672
2344d7e4 2673 return reclaimable;
f16015fb
JW
2674}
2675
53853e2d 2676/*
fdd4c614
VB
2677 * Returns true if compaction should go ahead for a costly-order request, or
2678 * the allocation would already succeed without compaction. Return false if we
2679 * should reclaim first.
53853e2d 2680 */
4f588331 2681static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2682{
31483b6a 2683 unsigned long watermark;
fdd4c614 2684 enum compact_result suitable;
fe4b1b24 2685
fdd4c614
VB
2686 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2687 if (suitable == COMPACT_SUCCESS)
2688 /* Allocation should succeed already. Don't reclaim. */
2689 return true;
2690 if (suitable == COMPACT_SKIPPED)
2691 /* Compaction cannot yet proceed. Do reclaim. */
2692 return false;
fe4b1b24 2693
53853e2d 2694 /*
fdd4c614
VB
2695 * Compaction is already possible, but it takes time to run and there
2696 * are potentially other callers using the pages just freed. So proceed
2697 * with reclaim to make a buffer of free pages available to give
2698 * compaction a reasonable chance of completing and allocating the page.
2699 * Note that we won't actually reclaim the whole buffer in one attempt
2700 * as the target watermark in should_continue_reclaim() is lower. But if
2701 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2702 */
fdd4c614 2703 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2704
fdd4c614 2705 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2706}
2707
1da177e4
LT
2708/*
2709 * This is the direct reclaim path, for page-allocating processes. We only
2710 * try to reclaim pages from zones which will satisfy the caller's allocation
2711 * request.
2712 *
1da177e4
LT
2713 * If a zone is deemed to be full of pinned pages then just give it a light
2714 * scan then give up on it.
2715 */
0a0337e0 2716static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2717{
dd1a239f 2718 struct zoneref *z;
54a6eb5c 2719 struct zone *zone;
0608f43d
AM
2720 unsigned long nr_soft_reclaimed;
2721 unsigned long nr_soft_scanned;
619d0d76 2722 gfp_t orig_mask;
79dafcdc 2723 pg_data_t *last_pgdat = NULL;
1cfb419b 2724
cc715d99
MG
2725 /*
2726 * If the number of buffer_heads in the machine exceeds the maximum
2727 * allowed level, force direct reclaim to scan the highmem zone as
2728 * highmem pages could be pinning lowmem pages storing buffer_heads
2729 */
619d0d76 2730 orig_mask = sc->gfp_mask;
b2e18757 2731 if (buffer_heads_over_limit) {
cc715d99 2732 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2733 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2734 }
cc715d99 2735
d4debc66 2736 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2737 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2738 /*
2739 * Take care memory controller reclaiming has small influence
2740 * to global LRU.
2741 */
89b5fae5 2742 if (global_reclaim(sc)) {
344736f2
VD
2743 if (!cpuset_zone_allowed(zone,
2744 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2745 continue;
65ec02cb 2746
0b06496a
JW
2747 /*
2748 * If we already have plenty of memory free for
2749 * compaction in this zone, don't free any more.
2750 * Even though compaction is invoked for any
2751 * non-zero order, only frequent costly order
2752 * reclamation is disruptive enough to become a
2753 * noticeable problem, like transparent huge
2754 * page allocations.
2755 */
2756 if (IS_ENABLED(CONFIG_COMPACTION) &&
2757 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2758 compaction_ready(zone, sc)) {
0b06496a
JW
2759 sc->compaction_ready = true;
2760 continue;
e0887c19 2761 }
0b06496a 2762
79dafcdc
MG
2763 /*
2764 * Shrink each node in the zonelist once. If the
2765 * zonelist is ordered by zone (not the default) then a
2766 * node may be shrunk multiple times but in that case
2767 * the user prefers lower zones being preserved.
2768 */
2769 if (zone->zone_pgdat == last_pgdat)
2770 continue;
2771
0608f43d
AM
2772 /*
2773 * This steals pages from memory cgroups over softlimit
2774 * and returns the number of reclaimed pages and
2775 * scanned pages. This works for global memory pressure
2776 * and balancing, not for a memcg's limit.
2777 */
2778 nr_soft_scanned = 0;
ef8f2327 2779 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2780 sc->order, sc->gfp_mask,
2781 &nr_soft_scanned);
2782 sc->nr_reclaimed += nr_soft_reclaimed;
2783 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2784 /* need some check for avoid more shrink_zone() */
1cfb419b 2785 }
408d8544 2786
79dafcdc
MG
2787 /* See comment about same check for global reclaim above */
2788 if (zone->zone_pgdat == last_pgdat)
2789 continue;
2790 last_pgdat = zone->zone_pgdat;
970a39a3 2791 shrink_node(zone->zone_pgdat, sc);
1da177e4 2792 }
e0c23279 2793
619d0d76
WY
2794 /*
2795 * Restore to original mask to avoid the impact on the caller if we
2796 * promoted it to __GFP_HIGHMEM.
2797 */
2798 sc->gfp_mask = orig_mask;
1da177e4 2799}
4f98a2fe 2800
2a2e4885
JW
2801static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2802{
2803 struct mem_cgroup *memcg;
2804
2805 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2806 do {
2807 unsigned long refaults;
2808 struct lruvec *lruvec;
2809
2810 if (memcg)
ccda7f43 2811 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2a2e4885
JW
2812 else
2813 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2814
2815 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2816 lruvec->refaults = refaults;
2817 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2818}
2819
1da177e4
LT
2820/*
2821 * This is the main entry point to direct page reclaim.
2822 *
2823 * If a full scan of the inactive list fails to free enough memory then we
2824 * are "out of memory" and something needs to be killed.
2825 *
2826 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2827 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2828 * caller can't do much about. We kick the writeback threads and take explicit
2829 * naps in the hope that some of these pages can be written. But if the
2830 * allocating task holds filesystem locks which prevent writeout this might not
2831 * work, and the allocation attempt will fail.
a41f24ea
NA
2832 *
2833 * returns: 0, if no pages reclaimed
2834 * else, the number of pages reclaimed
1da177e4 2835 */
dac1d27b 2836static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2837 struct scan_control *sc)
1da177e4 2838{
241994ed 2839 int initial_priority = sc->priority;
2a2e4885
JW
2840 pg_data_t *last_pgdat;
2841 struct zoneref *z;
2842 struct zone *zone;
241994ed 2843retry:
873b4771
KK
2844 delayacct_freepages_start();
2845
89b5fae5 2846 if (global_reclaim(sc))
7cc30fcf 2847 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2848
9e3b2f8c 2849 do {
70ddf637
AV
2850 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2851 sc->priority);
66e1707b 2852 sc->nr_scanned = 0;
0a0337e0 2853 shrink_zones(zonelist, sc);
c6a8a8c5 2854
bb21c7ce 2855 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2856 break;
2857
2858 if (sc->compaction_ready)
2859 break;
1da177e4 2860
0e50ce3b
MK
2861 /*
2862 * If we're getting trouble reclaiming, start doing
2863 * writepage even in laptop mode.
2864 */
2865 if (sc->priority < DEF_PRIORITY - 2)
2866 sc->may_writepage = 1;
0b06496a 2867 } while (--sc->priority >= 0);
bb21c7ce 2868
2a2e4885
JW
2869 last_pgdat = NULL;
2870 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2871 sc->nodemask) {
2872 if (zone->zone_pgdat == last_pgdat)
2873 continue;
2874 last_pgdat = zone->zone_pgdat;
2875 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
e3c1ac58 2876 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2a2e4885
JW
2877 }
2878
873b4771
KK
2879 delayacct_freepages_end();
2880
bb21c7ce
KM
2881 if (sc->nr_reclaimed)
2882 return sc->nr_reclaimed;
2883
0cee34fd 2884 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2885 if (sc->compaction_ready)
7335084d
MG
2886 return 1;
2887
241994ed 2888 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 2889 if (sc->memcg_low_skipped) {
241994ed 2890 sc->priority = initial_priority;
d6622f63
YX
2891 sc->memcg_low_reclaim = 1;
2892 sc->memcg_low_skipped = 0;
241994ed
JW
2893 goto retry;
2894 }
2895
bb21c7ce 2896 return 0;
1da177e4
LT
2897}
2898
c73322d0 2899static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
2900{
2901 struct zone *zone;
2902 unsigned long pfmemalloc_reserve = 0;
2903 unsigned long free_pages = 0;
2904 int i;
2905 bool wmark_ok;
2906
c73322d0
JW
2907 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2908 return true;
2909
5515061d
MG
2910 for (i = 0; i <= ZONE_NORMAL; i++) {
2911 zone = &pgdat->node_zones[i];
d450abd8
JW
2912 if (!managed_zone(zone))
2913 continue;
2914
2915 if (!zone_reclaimable_pages(zone))
675becce
MG
2916 continue;
2917
5515061d
MG
2918 pfmemalloc_reserve += min_wmark_pages(zone);
2919 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2920 }
2921
675becce
MG
2922 /* If there are no reserves (unexpected config) then do not throttle */
2923 if (!pfmemalloc_reserve)
2924 return true;
2925
5515061d
MG
2926 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2927
2928 /* kswapd must be awake if processes are being throttled */
2929 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2930 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2931 (enum zone_type)ZONE_NORMAL);
2932 wake_up_interruptible(&pgdat->kswapd_wait);
2933 }
2934
2935 return wmark_ok;
2936}
2937
2938/*
2939 * Throttle direct reclaimers if backing storage is backed by the network
2940 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2941 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2942 * when the low watermark is reached.
2943 *
2944 * Returns true if a fatal signal was delivered during throttling. If this
2945 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2946 */
50694c28 2947static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2948 nodemask_t *nodemask)
2949{
675becce 2950 struct zoneref *z;
5515061d 2951 struct zone *zone;
675becce 2952 pg_data_t *pgdat = NULL;
5515061d
MG
2953
2954 /*
2955 * Kernel threads should not be throttled as they may be indirectly
2956 * responsible for cleaning pages necessary for reclaim to make forward
2957 * progress. kjournald for example may enter direct reclaim while
2958 * committing a transaction where throttling it could forcing other
2959 * processes to block on log_wait_commit().
2960 */
2961 if (current->flags & PF_KTHREAD)
50694c28
MG
2962 goto out;
2963
2964 /*
2965 * If a fatal signal is pending, this process should not throttle.
2966 * It should return quickly so it can exit and free its memory
2967 */
2968 if (fatal_signal_pending(current))
2969 goto out;
5515061d 2970
675becce
MG
2971 /*
2972 * Check if the pfmemalloc reserves are ok by finding the first node
2973 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2974 * GFP_KERNEL will be required for allocating network buffers when
2975 * swapping over the network so ZONE_HIGHMEM is unusable.
2976 *
2977 * Throttling is based on the first usable node and throttled processes
2978 * wait on a queue until kswapd makes progress and wakes them. There
2979 * is an affinity then between processes waking up and where reclaim
2980 * progress has been made assuming the process wakes on the same node.
2981 * More importantly, processes running on remote nodes will not compete
2982 * for remote pfmemalloc reserves and processes on different nodes
2983 * should make reasonable progress.
2984 */
2985 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2986 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2987 if (zone_idx(zone) > ZONE_NORMAL)
2988 continue;
2989
2990 /* Throttle based on the first usable node */
2991 pgdat = zone->zone_pgdat;
c73322d0 2992 if (allow_direct_reclaim(pgdat))
675becce
MG
2993 goto out;
2994 break;
2995 }
2996
2997 /* If no zone was usable by the allocation flags then do not throttle */
2998 if (!pgdat)
50694c28 2999 goto out;
5515061d 3000
68243e76
MG
3001 /* Account for the throttling */
3002 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3003
5515061d
MG
3004 /*
3005 * If the caller cannot enter the filesystem, it's possible that it
3006 * is due to the caller holding an FS lock or performing a journal
3007 * transaction in the case of a filesystem like ext[3|4]. In this case,
3008 * it is not safe to block on pfmemalloc_wait as kswapd could be
3009 * blocked waiting on the same lock. Instead, throttle for up to a
3010 * second before continuing.
3011 */
3012 if (!(gfp_mask & __GFP_FS)) {
3013 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3014 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3015
3016 goto check_pending;
5515061d
MG
3017 }
3018
3019 /* Throttle until kswapd wakes the process */
3020 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3021 allow_direct_reclaim(pgdat));
50694c28
MG
3022
3023check_pending:
3024 if (fatal_signal_pending(current))
3025 return true;
3026
3027out:
3028 return false;
5515061d
MG
3029}
3030
dac1d27b 3031unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3032 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3033{
33906bc5 3034 unsigned long nr_reclaimed;
66e1707b 3035 struct scan_control sc = {
ee814fe2 3036 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3037 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3038 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3039 .order = order,
3040 .nodemask = nodemask,
3041 .priority = DEF_PRIORITY,
66e1707b 3042 .may_writepage = !laptop_mode,
a6dc60f8 3043 .may_unmap = 1,
2e2e4259 3044 .may_swap = 1,
66e1707b
BS
3045 };
3046
5515061d 3047 /*
50694c28
MG
3048 * Do not enter reclaim if fatal signal was delivered while throttled.
3049 * 1 is returned so that the page allocator does not OOM kill at this
3050 * point.
5515061d 3051 */
f2f43e56 3052 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3053 return 1;
3054
33906bc5
MG
3055 trace_mm_vmscan_direct_reclaim_begin(order,
3056 sc.may_writepage,
f2f43e56 3057 sc.gfp_mask,
e5146b12 3058 sc.reclaim_idx);
33906bc5 3059
3115cd91 3060 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3061
3062 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3063
3064 return nr_reclaimed;
66e1707b
BS
3065}
3066
c255a458 3067#ifdef CONFIG_MEMCG
66e1707b 3068
a9dd0a83 3069unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3070 gfp_t gfp_mask, bool noswap,
ef8f2327 3071 pg_data_t *pgdat,
0ae5e89c 3072 unsigned long *nr_scanned)
4e416953
BS
3073{
3074 struct scan_control sc = {
b8f5c566 3075 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3076 .target_mem_cgroup = memcg,
4e416953
BS
3077 .may_writepage = !laptop_mode,
3078 .may_unmap = 1,
b2e18757 3079 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3080 .may_swap = !noswap,
4e416953 3081 };
6b4f7799 3082 unsigned long lru_pages;
0ae5e89c 3083
4e416953
BS
3084 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3085 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3086
9e3b2f8c 3087 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 3088 sc.may_writepage,
e5146b12
MG
3089 sc.gfp_mask,
3090 sc.reclaim_idx);
bdce6d9e 3091
4e416953
BS
3092 /*
3093 * NOTE: Although we can get the priority field, using it
3094 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3095 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3096 * will pick up pages from other mem cgroup's as well. We hack
3097 * the priority and make it zero.
3098 */
ef8f2327 3099 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3100
3101 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3102
0ae5e89c 3103 *nr_scanned = sc.nr_scanned;
4e416953
BS
3104 return sc.nr_reclaimed;
3105}
3106
72835c86 3107unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3108 unsigned long nr_pages,
a7885eb8 3109 gfp_t gfp_mask,
b70a2a21 3110 bool may_swap)
66e1707b 3111{
4e416953 3112 struct zonelist *zonelist;
bdce6d9e 3113 unsigned long nr_reclaimed;
889976db 3114 int nid;
499118e9 3115 unsigned int noreclaim_flag;
66e1707b 3116 struct scan_control sc = {
b70a2a21 3117 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3118 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3119 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3120 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3121 .target_mem_cgroup = memcg,
3122 .priority = DEF_PRIORITY,
3123 .may_writepage = !laptop_mode,
3124 .may_unmap = 1,
b70a2a21 3125 .may_swap = may_swap,
a09ed5e0 3126 };
66e1707b 3127
889976db
YH
3128 /*
3129 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3130 * take care of from where we get pages. So the node where we start the
3131 * scan does not need to be the current node.
3132 */
72835c86 3133 nid = mem_cgroup_select_victim_node(memcg);
889976db 3134
c9634cf0 3135 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3136
3137 trace_mm_vmscan_memcg_reclaim_begin(0,
3138 sc.may_writepage,
e5146b12
MG
3139 sc.gfp_mask,
3140 sc.reclaim_idx);
bdce6d9e 3141
499118e9 3142 noreclaim_flag = memalloc_noreclaim_save();
3115cd91 3143 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
499118e9 3144 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e
KM
3145
3146 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3147
3148 return nr_reclaimed;
66e1707b
BS
3149}
3150#endif
3151
1d82de61 3152static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3153 struct scan_control *sc)
f16015fb 3154{
b95a2f2d 3155 struct mem_cgroup *memcg;
f16015fb 3156
b95a2f2d
JW
3157 if (!total_swap_pages)
3158 return;
3159
3160 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3161 do {
ef8f2327 3162 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3163
2a2e4885 3164 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
1a93be0e 3165 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3166 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3167
3168 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3169 } while (memcg);
f16015fb
JW
3170}
3171
e716f2eb
MG
3172/*
3173 * Returns true if there is an eligible zone balanced for the request order
3174 * and classzone_idx
3175 */
3176static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3177{
e716f2eb
MG
3178 int i;
3179 unsigned long mark = -1;
3180 struct zone *zone;
60cefed4 3181
e716f2eb
MG
3182 for (i = 0; i <= classzone_idx; i++) {
3183 zone = pgdat->node_zones + i;
6256c6b4 3184
e716f2eb
MG
3185 if (!managed_zone(zone))
3186 continue;
3187
3188 mark = high_wmark_pages(zone);
3189 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3190 return true;
3191 }
3192
3193 /*
3194 * If a node has no populated zone within classzone_idx, it does not
3195 * need balancing by definition. This can happen if a zone-restricted
3196 * allocation tries to wake a remote kswapd.
3197 */
3198 if (mark == -1)
3199 return true;
3200
3201 return false;
60cefed4
JW
3202}
3203
631b6e08
MG
3204/* Clear pgdat state for congested, dirty or under writeback. */
3205static void clear_pgdat_congested(pg_data_t *pgdat)
3206{
3207 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3208 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3209 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3210}
3211
5515061d
MG
3212/*
3213 * Prepare kswapd for sleeping. This verifies that there are no processes
3214 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3215 *
3216 * Returns true if kswapd is ready to sleep
3217 */
d9f21d42 3218static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3219{
5515061d 3220 /*
9e5e3661 3221 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3222 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3223 * race between when kswapd checks the watermarks and a process gets
3224 * throttled. There is also a potential race if processes get
3225 * throttled, kswapd wakes, a large process exits thereby balancing the
3226 * zones, which causes kswapd to exit balance_pgdat() before reaching
3227 * the wake up checks. If kswapd is going to sleep, no process should
3228 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3229 * the wake up is premature, processes will wake kswapd and get
3230 * throttled again. The difference from wake ups in balance_pgdat() is
3231 * that here we are under prepare_to_wait().
5515061d 3232 */
9e5e3661
VB
3233 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3234 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3235
c73322d0
JW
3236 /* Hopeless node, leave it to direct reclaim */
3237 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3238 return true;
3239
e716f2eb
MG
3240 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3241 clear_pgdat_congested(pgdat);
3242 return true;
1d82de61
MG
3243 }
3244
333b0a45 3245 return false;
f50de2d3
MG
3246}
3247
75485363 3248/*
1d82de61
MG
3249 * kswapd shrinks a node of pages that are at or below the highest usable
3250 * zone that is currently unbalanced.
b8e83b94
MG
3251 *
3252 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3253 * reclaim or if the lack of progress was due to pages under writeback.
3254 * This is used to determine if the scanning priority needs to be raised.
75485363 3255 */
1d82de61 3256static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3257 struct scan_control *sc)
75485363 3258{
1d82de61
MG
3259 struct zone *zone;
3260 int z;
75485363 3261
1d82de61
MG
3262 /* Reclaim a number of pages proportional to the number of zones */
3263 sc->nr_to_reclaim = 0;
970a39a3 3264 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3265 zone = pgdat->node_zones + z;
6aa303de 3266 if (!managed_zone(zone))
1d82de61 3267 continue;
7c954f6d 3268
1d82de61
MG
3269 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3270 }
7c954f6d
MG
3271
3272 /*
1d82de61
MG
3273 * Historically care was taken to put equal pressure on all zones but
3274 * now pressure is applied based on node LRU order.
7c954f6d 3275 */
970a39a3 3276 shrink_node(pgdat, sc);
283aba9f 3277
7c954f6d 3278 /*
1d82de61
MG
3279 * Fragmentation may mean that the system cannot be rebalanced for
3280 * high-order allocations. If twice the allocation size has been
3281 * reclaimed then recheck watermarks only at order-0 to prevent
3282 * excessive reclaim. Assume that a process requested a high-order
3283 * can direct reclaim/compact.
7c954f6d 3284 */
9861a62c 3285 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3286 sc->order = 0;
7c954f6d 3287
b8e83b94 3288 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3289}
3290
1da177e4 3291/*
1d82de61
MG
3292 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3293 * that are eligible for use by the caller until at least one zone is
3294 * balanced.
1da177e4 3295 *
1d82de61 3296 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3297 *
3298 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3299 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3300 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3301 * or lower is eligible for reclaim until at least one usable zone is
3302 * balanced.
1da177e4 3303 */
accf6242 3304static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3305{
1da177e4 3306 int i;
0608f43d
AM
3307 unsigned long nr_soft_reclaimed;
3308 unsigned long nr_soft_scanned;
1d82de61 3309 struct zone *zone;
179e9639
AM
3310 struct scan_control sc = {
3311 .gfp_mask = GFP_KERNEL,
ee814fe2 3312 .order = order,
b8e83b94 3313 .priority = DEF_PRIORITY,
ee814fe2 3314 .may_writepage = !laptop_mode,
a6dc60f8 3315 .may_unmap = 1,
2e2e4259 3316 .may_swap = 1,
179e9639 3317 };
f8891e5e 3318 count_vm_event(PAGEOUTRUN);
1da177e4 3319
9e3b2f8c 3320 do {
c73322d0 3321 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94
MG
3322 bool raise_priority = true;
3323
84c7a777 3324 sc.reclaim_idx = classzone_idx;
1da177e4 3325
86c79f6b 3326 /*
84c7a777
MG
3327 * If the number of buffer_heads exceeds the maximum allowed
3328 * then consider reclaiming from all zones. This has a dual
3329 * purpose -- on 64-bit systems it is expected that
3330 * buffer_heads are stripped during active rotation. On 32-bit
3331 * systems, highmem pages can pin lowmem memory and shrinking
3332 * buffers can relieve lowmem pressure. Reclaim may still not
3333 * go ahead if all eligible zones for the original allocation
3334 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3335 */
3336 if (buffer_heads_over_limit) {
3337 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3338 zone = pgdat->node_zones + i;
6aa303de 3339 if (!managed_zone(zone))
86c79f6b 3340 continue;
cc715d99 3341
970a39a3 3342 sc.reclaim_idx = i;
e1dbeda6 3343 break;
1da177e4 3344 }
1da177e4 3345 }
dafcb73e 3346
86c79f6b 3347 /*
e716f2eb
MG
3348 * Only reclaim if there are no eligible zones. Note that
3349 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3350 * have adjusted it.
86c79f6b 3351 */
e716f2eb
MG
3352 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3353 goto out;
e1dbeda6 3354
1d82de61
MG
3355 /*
3356 * Do some background aging of the anon list, to give
3357 * pages a chance to be referenced before reclaiming. All
3358 * pages are rotated regardless of classzone as this is
3359 * about consistent aging.
3360 */
ef8f2327 3361 age_active_anon(pgdat, &sc);
1d82de61 3362
b7ea3c41
MG
3363 /*
3364 * If we're getting trouble reclaiming, start doing writepage
3365 * even in laptop mode.
3366 */
047d72c3 3367 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3368 sc.may_writepage = 1;
3369
1d82de61
MG
3370 /* Call soft limit reclaim before calling shrink_node. */
3371 sc.nr_scanned = 0;
3372 nr_soft_scanned = 0;
ef8f2327 3373 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3374 sc.gfp_mask, &nr_soft_scanned);
3375 sc.nr_reclaimed += nr_soft_reclaimed;
3376
1da177e4 3377 /*
1d82de61
MG
3378 * There should be no need to raise the scanning priority if
3379 * enough pages are already being scanned that that high
3380 * watermark would be met at 100% efficiency.
1da177e4 3381 */
970a39a3 3382 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3383 raise_priority = false;
5515061d
MG
3384
3385 /*
3386 * If the low watermark is met there is no need for processes
3387 * to be throttled on pfmemalloc_wait as they should not be
3388 * able to safely make forward progress. Wake them
3389 */
3390 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3391 allow_direct_reclaim(pgdat))
cfc51155 3392 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3393
b8e83b94
MG
3394 /* Check if kswapd should be suspending */
3395 if (try_to_freeze() || kthread_should_stop())
3396 break;
8357376d 3397
73ce02e9 3398 /*
b8e83b94
MG
3399 * Raise priority if scanning rate is too low or there was no
3400 * progress in reclaiming pages
73ce02e9 3401 */
c73322d0
JW
3402 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3403 if (raise_priority || !nr_reclaimed)
b8e83b94 3404 sc.priority--;
1d82de61 3405 } while (sc.priority >= 1);
1da177e4 3406
c73322d0
JW
3407 if (!sc.nr_reclaimed)
3408 pgdat->kswapd_failures++;
3409
b8e83b94 3410out:
2a2e4885 3411 snapshot_refaults(NULL, pgdat);
0abdee2b 3412 /*
1d82de61
MG
3413 * Return the order kswapd stopped reclaiming at as
3414 * prepare_kswapd_sleep() takes it into account. If another caller
3415 * entered the allocator slow path while kswapd was awake, order will
3416 * remain at the higher level.
0abdee2b 3417 */
1d82de61 3418 return sc.order;
1da177e4
LT
3419}
3420
e716f2eb
MG
3421/*
3422 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3423 * allocation request woke kswapd for. When kswapd has not woken recently,
3424 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3425 * given classzone and returns it or the highest classzone index kswapd
3426 * was recently woke for.
3427 */
3428static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3429 enum zone_type classzone_idx)
3430{
3431 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3432 return classzone_idx;
3433
3434 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3435}
3436
38087d9b
MG
3437static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3438 unsigned int classzone_idx)
f0bc0a60
KM
3439{
3440 long remaining = 0;
3441 DEFINE_WAIT(wait);
3442
3443 if (freezing(current) || kthread_should_stop())
3444 return;
3445
3446 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3447
333b0a45
SG
3448 /*
3449 * Try to sleep for a short interval. Note that kcompactd will only be
3450 * woken if it is possible to sleep for a short interval. This is
3451 * deliberate on the assumption that if reclaim cannot keep an
3452 * eligible zone balanced that it's also unlikely that compaction will
3453 * succeed.
3454 */
d9f21d42 3455 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3456 /*
3457 * Compaction records what page blocks it recently failed to
3458 * isolate pages from and skips them in the future scanning.
3459 * When kswapd is going to sleep, it is reasonable to assume
3460 * that pages and compaction may succeed so reset the cache.
3461 */
3462 reset_isolation_suitable(pgdat);
3463
3464 /*
3465 * We have freed the memory, now we should compact it to make
3466 * allocation of the requested order possible.
3467 */
38087d9b 3468 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3469
f0bc0a60 3470 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3471
3472 /*
3473 * If woken prematurely then reset kswapd_classzone_idx and
3474 * order. The values will either be from a wakeup request or
3475 * the previous request that slept prematurely.
3476 */
3477 if (remaining) {
e716f2eb 3478 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3479 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3480 }
3481
f0bc0a60
KM
3482 finish_wait(&pgdat->kswapd_wait, &wait);
3483 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3484 }
3485
3486 /*
3487 * After a short sleep, check if it was a premature sleep. If not, then
3488 * go fully to sleep until explicitly woken up.
3489 */
d9f21d42
MG
3490 if (!remaining &&
3491 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3492 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3493
3494 /*
3495 * vmstat counters are not perfectly accurate and the estimated
3496 * value for counters such as NR_FREE_PAGES can deviate from the
3497 * true value by nr_online_cpus * threshold. To avoid the zone
3498 * watermarks being breached while under pressure, we reduce the
3499 * per-cpu vmstat threshold while kswapd is awake and restore
3500 * them before going back to sleep.
3501 */
3502 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3503
3504 if (!kthread_should_stop())
3505 schedule();
3506
f0bc0a60
KM
3507 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3508 } else {
3509 if (remaining)
3510 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3511 else
3512 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3513 }
3514 finish_wait(&pgdat->kswapd_wait, &wait);
3515}
3516
1da177e4
LT
3517/*
3518 * The background pageout daemon, started as a kernel thread
4f98a2fe 3519 * from the init process.
1da177e4
LT
3520 *
3521 * This basically trickles out pages so that we have _some_
3522 * free memory available even if there is no other activity
3523 * that frees anything up. This is needed for things like routing
3524 * etc, where we otherwise might have all activity going on in
3525 * asynchronous contexts that cannot page things out.
3526 *
3527 * If there are applications that are active memory-allocators
3528 * (most normal use), this basically shouldn't matter.
3529 */
3530static int kswapd(void *p)
3531{
e716f2eb
MG
3532 unsigned int alloc_order, reclaim_order;
3533 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3534 pg_data_t *pgdat = (pg_data_t*)p;
3535 struct task_struct *tsk = current;
f0bc0a60 3536
1da177e4
LT
3537 struct reclaim_state reclaim_state = {
3538 .reclaimed_slab = 0,
3539 };
a70f7302 3540 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3541
174596a0 3542 if (!cpumask_empty(cpumask))
c5f59f08 3543 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3544 current->reclaim_state = &reclaim_state;
3545
3546 /*
3547 * Tell the memory management that we're a "memory allocator",
3548 * and that if we need more memory we should get access to it
3549 * regardless (see "__alloc_pages()"). "kswapd" should
3550 * never get caught in the normal page freeing logic.
3551 *
3552 * (Kswapd normally doesn't need memory anyway, but sometimes
3553 * you need a small amount of memory in order to be able to
3554 * page out something else, and this flag essentially protects
3555 * us from recursively trying to free more memory as we're
3556 * trying to free the first piece of memory in the first place).
3557 */
930d9152 3558 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3559 set_freezable();
1da177e4 3560
e716f2eb
MG
3561 pgdat->kswapd_order = 0;
3562 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3563 for ( ; ; ) {
6f6313d4 3564 bool ret;
3e1d1d28 3565
e716f2eb
MG
3566 alloc_order = reclaim_order = pgdat->kswapd_order;
3567 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3568
38087d9b
MG
3569kswapd_try_sleep:
3570 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3571 classzone_idx);
215ddd66 3572
38087d9b
MG
3573 /* Read the new order and classzone_idx */
3574 alloc_order = reclaim_order = pgdat->kswapd_order;
e716f2eb 3575 classzone_idx = kswapd_classzone_idx(pgdat, 0);
38087d9b 3576 pgdat->kswapd_order = 0;
e716f2eb 3577 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3578
8fe23e05
DR
3579 ret = try_to_freeze();
3580 if (kthread_should_stop())
3581 break;
3582
3583 /*
3584 * We can speed up thawing tasks if we don't call balance_pgdat
3585 * after returning from the refrigerator
3586 */
38087d9b
MG
3587 if (ret)
3588 continue;
3589
3590 /*
3591 * Reclaim begins at the requested order but if a high-order
3592 * reclaim fails then kswapd falls back to reclaiming for
3593 * order-0. If that happens, kswapd will consider sleeping
3594 * for the order it finished reclaiming at (reclaim_order)
3595 * but kcompactd is woken to compact for the original
3596 * request (alloc_order).
3597 */
e5146b12
MG
3598 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3599 alloc_order);
d92a8cfc 3600 fs_reclaim_acquire(GFP_KERNEL);
38087d9b 3601 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
d92a8cfc 3602 fs_reclaim_release(GFP_KERNEL);
38087d9b
MG
3603 if (reclaim_order < alloc_order)
3604 goto kswapd_try_sleep;
1da177e4 3605 }
b0a8cc58 3606
71abdc15 3607 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3608 current->reclaim_state = NULL;
71abdc15 3609
1da177e4
LT
3610 return 0;
3611}
3612
3613/*
5ecd9d40
DR
3614 * A zone is low on free memory or too fragmented for high-order memory. If
3615 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3616 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3617 * has failed or is not needed, still wake up kcompactd if only compaction is
3618 * needed.
1da177e4 3619 */
5ecd9d40
DR
3620void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3621 enum zone_type classzone_idx)
1da177e4
LT
3622{
3623 pg_data_t *pgdat;
3624
6aa303de 3625 if (!managed_zone(zone))
1da177e4
LT
3626 return;
3627
5ecd9d40 3628 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3629 return;
88f5acf8 3630 pgdat = zone->zone_pgdat;
e716f2eb
MG
3631 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3632 classzone_idx);
38087d9b 3633 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3634 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3635 return;
e1a55637 3636
5ecd9d40
DR
3637 /* Hopeless node, leave it to direct reclaim if possible */
3638 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3639 pgdat_balanced(pgdat, order, classzone_idx)) {
3640 /*
3641 * There may be plenty of free memory available, but it's too
3642 * fragmented for high-order allocations. Wake up kcompactd
3643 * and rely on compaction_suitable() to determine if it's
3644 * needed. If it fails, it will defer subsequent attempts to
3645 * ratelimit its work.
3646 */
3647 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3648 wakeup_kcompactd(pgdat, order, classzone_idx);
e716f2eb 3649 return;
5ecd9d40 3650 }
88f5acf8 3651
5ecd9d40
DR
3652 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3653 gfp_flags);
8d0986e2 3654 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3655}
3656
c6f37f12 3657#ifdef CONFIG_HIBERNATION
1da177e4 3658/*
7b51755c 3659 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3660 * freed pages.
3661 *
3662 * Rather than trying to age LRUs the aim is to preserve the overall
3663 * LRU order by reclaiming preferentially
3664 * inactive > active > active referenced > active mapped
1da177e4 3665 */
7b51755c 3666unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3667{
d6277db4 3668 struct reclaim_state reclaim_state;
d6277db4 3669 struct scan_control sc = {
ee814fe2 3670 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3671 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3672 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3673 .priority = DEF_PRIORITY,
d6277db4 3674 .may_writepage = 1,
ee814fe2
JW
3675 .may_unmap = 1,
3676 .may_swap = 1,
7b51755c 3677 .hibernation_mode = 1,
1da177e4 3678 };
a09ed5e0 3679 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3680 struct task_struct *p = current;
3681 unsigned long nr_reclaimed;
499118e9 3682 unsigned int noreclaim_flag;
1da177e4 3683
499118e9 3684 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3685 fs_reclaim_acquire(sc.gfp_mask);
7b51755c
KM
3686 reclaim_state.reclaimed_slab = 0;
3687 p->reclaim_state = &reclaim_state;
d6277db4 3688
3115cd91 3689 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3690
7b51755c 3691 p->reclaim_state = NULL;
d92a8cfc 3692 fs_reclaim_release(sc.gfp_mask);
499118e9 3693 memalloc_noreclaim_restore(noreclaim_flag);
d6277db4 3694
7b51755c 3695 return nr_reclaimed;
1da177e4 3696}
c6f37f12 3697#endif /* CONFIG_HIBERNATION */
1da177e4 3698
1da177e4
LT
3699/* It's optimal to keep kswapds on the same CPUs as their memory, but
3700 not required for correctness. So if the last cpu in a node goes
3701 away, we get changed to run anywhere: as the first one comes back,
3702 restore their cpu bindings. */
517bbed9 3703static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3704{
58c0a4a7 3705 int nid;
1da177e4 3706
517bbed9
SAS
3707 for_each_node_state(nid, N_MEMORY) {
3708 pg_data_t *pgdat = NODE_DATA(nid);
3709 const struct cpumask *mask;
a70f7302 3710
517bbed9 3711 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3712
517bbed9
SAS
3713 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3714 /* One of our CPUs online: restore mask */
3715 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3716 }
517bbed9 3717 return 0;
1da177e4 3718}
1da177e4 3719
3218ae14
YG
3720/*
3721 * This kswapd start function will be called by init and node-hot-add.
3722 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3723 */
3724int kswapd_run(int nid)
3725{
3726 pg_data_t *pgdat = NODE_DATA(nid);
3727 int ret = 0;
3728
3729 if (pgdat->kswapd)
3730 return 0;
3731
3732 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3733 if (IS_ERR(pgdat->kswapd)) {
3734 /* failure at boot is fatal */
c6202adf 3735 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
3736 pr_err("Failed to start kswapd on node %d\n", nid);
3737 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3738 pgdat->kswapd = NULL;
3218ae14
YG
3739 }
3740 return ret;
3741}
3742
8fe23e05 3743/*
d8adde17 3744 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3745 * hold mem_hotplug_begin/end().
8fe23e05
DR
3746 */
3747void kswapd_stop(int nid)
3748{
3749 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3750
d8adde17 3751 if (kswapd) {
8fe23e05 3752 kthread_stop(kswapd);
d8adde17
JL
3753 NODE_DATA(nid)->kswapd = NULL;
3754 }
8fe23e05
DR
3755}
3756
1da177e4
LT
3757static int __init kswapd_init(void)
3758{
517bbed9 3759 int nid, ret;
69e05944 3760
1da177e4 3761 swap_setup();
48fb2e24 3762 for_each_node_state(nid, N_MEMORY)
3218ae14 3763 kswapd_run(nid);
517bbed9
SAS
3764 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3765 "mm/vmscan:online", kswapd_cpu_online,
3766 NULL);
3767 WARN_ON(ret < 0);
1da177e4
LT
3768 return 0;
3769}
3770
3771module_init(kswapd_init)
9eeff239
CL
3772
3773#ifdef CONFIG_NUMA
3774/*
a5f5f91d 3775 * Node reclaim mode
9eeff239 3776 *
a5f5f91d 3777 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3778 * the watermarks.
9eeff239 3779 */
a5f5f91d 3780int node_reclaim_mode __read_mostly;
9eeff239 3781
1b2ffb78 3782#define RECLAIM_OFF 0
7d03431c 3783#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3784#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3785#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3786
a92f7126 3787/*
a5f5f91d 3788 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3789 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3790 * a zone.
3791 */
a5f5f91d 3792#define NODE_RECLAIM_PRIORITY 4
a92f7126 3793
9614634f 3794/*
a5f5f91d 3795 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3796 * occur.
3797 */
3798int sysctl_min_unmapped_ratio = 1;
3799
0ff38490
CL
3800/*
3801 * If the number of slab pages in a zone grows beyond this percentage then
3802 * slab reclaim needs to occur.
3803 */
3804int sysctl_min_slab_ratio = 5;
3805
11fb9989 3806static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3807{
11fb9989
MG
3808 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3809 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3810 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3811
3812 /*
3813 * It's possible for there to be more file mapped pages than
3814 * accounted for by the pages on the file LRU lists because
3815 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3816 */
3817 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3818}
3819
3820/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3821static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3822{
d031a157
AM
3823 unsigned long nr_pagecache_reclaimable;
3824 unsigned long delta = 0;
90afa5de
MG
3825
3826 /*
95bbc0c7 3827 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3828 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3829 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3830 * a better estimate
3831 */
a5f5f91d
MG
3832 if (node_reclaim_mode & RECLAIM_UNMAP)
3833 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3834 else
a5f5f91d 3835 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3836
3837 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3838 if (!(node_reclaim_mode & RECLAIM_WRITE))
3839 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3840
3841 /* Watch for any possible underflows due to delta */
3842 if (unlikely(delta > nr_pagecache_reclaimable))
3843 delta = nr_pagecache_reclaimable;
3844
3845 return nr_pagecache_reclaimable - delta;
3846}
3847
9eeff239 3848/*
a5f5f91d 3849 * Try to free up some pages from this node through reclaim.
9eeff239 3850 */
a5f5f91d 3851static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3852{
7fb2d46d 3853 /* Minimum pages needed in order to stay on node */
69e05944 3854 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3855 struct task_struct *p = current;
3856 struct reclaim_state reclaim_state;
499118e9 3857 unsigned int noreclaim_flag;
179e9639 3858 struct scan_control sc = {
62b726c1 3859 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 3860 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 3861 .order = order,
a5f5f91d
MG
3862 .priority = NODE_RECLAIM_PRIORITY,
3863 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3864 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3865 .may_swap = 1,
f2f43e56 3866 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 3867 };
9eeff239 3868
9eeff239 3869 cond_resched();
d4f7796e 3870 /*
95bbc0c7 3871 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3872 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3873 * and RECLAIM_UNMAP.
d4f7796e 3874 */
499118e9
VB
3875 noreclaim_flag = memalloc_noreclaim_save();
3876 p->flags |= PF_SWAPWRITE;
d92a8cfc 3877 fs_reclaim_acquire(sc.gfp_mask);
9eeff239
CL
3878 reclaim_state.reclaimed_slab = 0;
3879 p->reclaim_state = &reclaim_state;
c84db23c 3880
a5f5f91d 3881 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 3882 /*
894befec 3883 * Free memory by calling shrink node with increasing
0ff38490
CL
3884 * priorities until we have enough memory freed.
3885 */
0ff38490 3886 do {
970a39a3 3887 shrink_node(pgdat, &sc);
9e3b2f8c 3888 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3889 }
c84db23c 3890
9eeff239 3891 p->reclaim_state = NULL;
d92a8cfc 3892 fs_reclaim_release(gfp_mask);
499118e9
VB
3893 current->flags &= ~PF_SWAPWRITE;
3894 memalloc_noreclaim_restore(noreclaim_flag);
a79311c1 3895 return sc.nr_reclaimed >= nr_pages;
9eeff239 3896}
179e9639 3897
a5f5f91d 3898int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3899{
d773ed6b 3900 int ret;
179e9639
AM
3901
3902 /*
a5f5f91d 3903 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3904 * slab pages if we are over the defined limits.
34aa1330 3905 *
9614634f
CL
3906 * A small portion of unmapped file backed pages is needed for
3907 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3908 * thrown out if the node is overallocated. So we do not reclaim
3909 * if less than a specified percentage of the node is used by
9614634f 3910 * unmapped file backed pages.
179e9639 3911 */
a5f5f91d 3912 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 3913 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 3914 return NODE_RECLAIM_FULL;
179e9639
AM
3915
3916 /*
d773ed6b 3917 * Do not scan if the allocation should not be delayed.
179e9639 3918 */
d0164adc 3919 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3920 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3921
3922 /*
a5f5f91d 3923 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3924 * have associated processors. This will favor the local processor
3925 * over remote processors and spread off node memory allocations
3926 * as wide as possible.
3927 */
a5f5f91d
MG
3928 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3929 return NODE_RECLAIM_NOSCAN;
d773ed6b 3930
a5f5f91d
MG
3931 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3932 return NODE_RECLAIM_NOSCAN;
fa5e084e 3933
a5f5f91d
MG
3934 ret = __node_reclaim(pgdat, gfp_mask, order);
3935 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3936
24cf7251
MG
3937 if (!ret)
3938 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3939
d773ed6b 3940 return ret;
179e9639 3941}
9eeff239 3942#endif
894bc310 3943
894bc310
LS
3944/*
3945 * page_evictable - test whether a page is evictable
3946 * @page: the page to test
894bc310
LS
3947 *
3948 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3949 * lists vs unevictable list.
894bc310
LS
3950 *
3951 * Reasons page might not be evictable:
ba9ddf49 3952 * (1) page's mapping marked unevictable
b291f000 3953 * (2) page is part of an mlocked VMA
ba9ddf49 3954 *
894bc310 3955 */
39b5f29a 3956int page_evictable(struct page *page)
894bc310 3957{
e92bb4dd
HY
3958 int ret;
3959
3960 /* Prevent address_space of inode and swap cache from being freed */
3961 rcu_read_lock();
3962 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3963 rcu_read_unlock();
3964 return ret;
894bc310 3965}
89e004ea 3966
85046579 3967#ifdef CONFIG_SHMEM
89e004ea 3968/**
24513264
HD
3969 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3970 * @pages: array of pages to check
3971 * @nr_pages: number of pages to check
89e004ea 3972 *
24513264 3973 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3974 *
3975 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3976 */
24513264 3977void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3978{
925b7673 3979 struct lruvec *lruvec;
785b99fe 3980 struct pglist_data *pgdat = NULL;
24513264
HD
3981 int pgscanned = 0;
3982 int pgrescued = 0;
3983 int i;
89e004ea 3984
24513264
HD
3985 for (i = 0; i < nr_pages; i++) {
3986 struct page *page = pages[i];
785b99fe 3987 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 3988
24513264 3989 pgscanned++;
785b99fe
MG
3990 if (pagepgdat != pgdat) {
3991 if (pgdat)
3992 spin_unlock_irq(&pgdat->lru_lock);
3993 pgdat = pagepgdat;
3994 spin_lock_irq(&pgdat->lru_lock);
24513264 3995 }
785b99fe 3996 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 3997
24513264
HD
3998 if (!PageLRU(page) || !PageUnevictable(page))
3999 continue;
89e004ea 4000
39b5f29a 4001 if (page_evictable(page)) {
24513264
HD
4002 enum lru_list lru = page_lru_base_type(page);
4003
309381fe 4004 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4005 ClearPageUnevictable(page);
fa9add64
HD
4006 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4007 add_page_to_lru_list(page, lruvec, lru);
24513264 4008 pgrescued++;
89e004ea 4009 }
24513264 4010 }
89e004ea 4011
785b99fe 4012 if (pgdat) {
24513264
HD
4013 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4014 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4015 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4016 }
89e004ea 4017}
85046579 4018#endif /* CONFIG_SHMEM */