]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/vmscan.c
mm: memcontrol: rename shrinker_map to shrinker_info
[mirror_ubuntu-kernels.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
64e3d12f 47#include <linux/pagevec.h>
268bb0ce 48#include <linux/prefetch.h>
b1de0d13 49#include <linux/printk.h>
f9fe48be 50#include <linux/dax.h>
eb414681 51#include <linux/psi.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
ee814fe2
JW
68 /*
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 * are scanned.
71 */
72 nodemask_t *nodemask;
9e3b2f8c 73
f16015fb
JW
74 /*
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
77 */
78 struct mem_cgroup *target_mem_cgroup;
66e1707b 79
7cf111bc
JW
80 /*
81 * Scan pressure balancing between anon and file LRUs
82 */
83 unsigned long anon_cost;
84 unsigned long file_cost;
85
b91ac374
JW
86 /* Can active pages be deactivated as part of reclaim? */
87#define DEACTIVATE_ANON 1
88#define DEACTIVATE_FILE 2
89 unsigned int may_deactivate:2;
90 unsigned int force_deactivate:1;
91 unsigned int skipped_deactivate:1;
92
1276ad68 93 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
94 unsigned int may_writepage:1;
95
96 /* Can mapped pages be reclaimed? */
97 unsigned int may_unmap:1;
98
99 /* Can pages be swapped as part of reclaim? */
100 unsigned int may_swap:1;
101
d6622f63
YX
102 /*
103 * Cgroups are not reclaimed below their configured memory.low,
104 * unless we threaten to OOM. If any cgroups are skipped due to
105 * memory.low and nothing was reclaimed, go back for memory.low.
106 */
107 unsigned int memcg_low_reclaim:1;
108 unsigned int memcg_low_skipped:1;
241994ed 109
ee814fe2
JW
110 unsigned int hibernation_mode:1;
111
112 /* One of the zones is ready for compaction */
113 unsigned int compaction_ready:1;
114
b91ac374
JW
115 /* There is easily reclaimable cold cache in the current node */
116 unsigned int cache_trim_mode:1;
117
53138cea
JW
118 /* The file pages on the current node are dangerously low */
119 unsigned int file_is_tiny:1;
120
bb451fdf
GT
121 /* Allocation order */
122 s8 order;
123
124 /* Scan (total_size >> priority) pages at once */
125 s8 priority;
126
127 /* The highest zone to isolate pages for reclaim from */
128 s8 reclaim_idx;
129
130 /* This context's GFP mask */
131 gfp_t gfp_mask;
132
ee814fe2
JW
133 /* Incremented by the number of inactive pages that were scanned */
134 unsigned long nr_scanned;
135
136 /* Number of pages freed so far during a call to shrink_zones() */
137 unsigned long nr_reclaimed;
d108c772
AR
138
139 struct {
140 unsigned int dirty;
141 unsigned int unqueued_dirty;
142 unsigned int congested;
143 unsigned int writeback;
144 unsigned int immediate;
145 unsigned int file_taken;
146 unsigned int taken;
147 } nr;
e5ca8071
YS
148
149 /* for recording the reclaimed slab by now */
150 struct reclaim_state reclaim_state;
1da177e4
LT
151};
152
1da177e4
LT
153#ifdef ARCH_HAS_PREFETCHW
154#define prefetchw_prev_lru_page(_page, _base, _field) \
155 do { \
156 if ((_page)->lru.prev != _base) { \
157 struct page *prev; \
158 \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
161 } \
162 } while (0)
163#else
164#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165#endif
166
167/*
c843966c 168 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
169 */
170int vm_swappiness = 60;
1da177e4 171
0a432dcb
YS
172static void set_task_reclaim_state(struct task_struct *task,
173 struct reclaim_state *rs)
174{
175 /* Check for an overwrite */
176 WARN_ON_ONCE(rs && task->reclaim_state);
177
178 /* Check for the nulling of an already-nulled member */
179 WARN_ON_ONCE(!rs && !task->reclaim_state);
180
181 task->reclaim_state = rs;
182}
183
1da177e4
LT
184static LIST_HEAD(shrinker_list);
185static DECLARE_RWSEM(shrinker_rwsem);
186
0a432dcb 187#ifdef CONFIG_MEMCG
a2fb1261 188static int shrinker_nr_max;
2bfd3637 189
a2fb1261
YS
190static inline int shrinker_map_size(int nr_items)
191{
192 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
193}
2bfd3637 194
e4262c4f
YS
195static int expand_one_shrinker_info(struct mem_cgroup *memcg,
196 int size, int old_size)
2bfd3637 197{
e4262c4f 198 struct shrinker_info *new, *old;
2bfd3637
YS
199 struct mem_cgroup_per_node *pn;
200 int nid;
201
2bfd3637
YS
202 for_each_node(nid) {
203 pn = memcg->nodeinfo[nid];
e4262c4f 204 old = rcu_dereference_protected(pn->shrinker_info, true);
2bfd3637
YS
205 /* Not yet online memcg */
206 if (!old)
207 return 0;
208
209 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
210 if (!new)
211 return -ENOMEM;
212
213 /* Set all old bits, clear all new bits */
214 memset(new->map, (int)0xff, old_size);
215 memset((void *)new->map + old_size, 0, size - old_size);
216
e4262c4f 217 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 218 kvfree_rcu(old, rcu);
2bfd3637
YS
219 }
220
221 return 0;
222}
223
e4262c4f 224void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
225{
226 struct mem_cgroup_per_node *pn;
e4262c4f 227 struct shrinker_info *info;
2bfd3637
YS
228 int nid;
229
230 if (mem_cgroup_is_root(memcg))
231 return;
232
233 for_each_node(nid) {
234 pn = memcg->nodeinfo[nid];
e4262c4f
YS
235 info = rcu_dereference_protected(pn->shrinker_info, true);
236 kvfree(info);
237 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
238 }
239}
240
e4262c4f 241int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 242{
e4262c4f 243 struct shrinker_info *info;
2bfd3637
YS
244 int nid, size, ret = 0;
245
246 if (mem_cgroup_is_root(memcg))
247 return 0;
248
d27cf2aa 249 down_write(&shrinker_rwsem);
a2fb1261 250 size = shrinker_map_size(shrinker_nr_max);
2bfd3637 251 for_each_node(nid) {
e4262c4f
YS
252 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
253 if (!info) {
254 free_shrinker_info(memcg);
2bfd3637
YS
255 ret = -ENOMEM;
256 break;
257 }
e4262c4f 258 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 259 }
d27cf2aa 260 up_write(&shrinker_rwsem);
2bfd3637
YS
261
262 return ret;
263}
264
e4262c4f 265static int expand_shrinker_info(int new_id)
2bfd3637
YS
266{
267 int size, old_size, ret = 0;
a2fb1261 268 int new_nr_max = new_id + 1;
2bfd3637
YS
269 struct mem_cgroup *memcg;
270
a2fb1261
YS
271 size = shrinker_map_size(new_nr_max);
272 old_size = shrinker_map_size(shrinker_nr_max);
2bfd3637 273 if (size <= old_size)
a2fb1261 274 goto out;
2bfd3637 275
2bfd3637 276 if (!root_mem_cgroup)
d27cf2aa
YS
277 goto out;
278
279 lockdep_assert_held(&shrinker_rwsem);
2bfd3637
YS
280
281 memcg = mem_cgroup_iter(NULL, NULL, NULL);
282 do {
283 if (mem_cgroup_is_root(memcg))
284 continue;
e4262c4f 285 ret = expand_one_shrinker_info(memcg, size, old_size);
2bfd3637
YS
286 if (ret) {
287 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 288 goto out;
2bfd3637
YS
289 }
290 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 291out:
2bfd3637 292 if (!ret)
a2fb1261 293 shrinker_nr_max = new_nr_max;
d27cf2aa 294
2bfd3637
YS
295 return ret;
296}
297
298void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
299{
300 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 301 struct shrinker_info *info;
2bfd3637
YS
302
303 rcu_read_lock();
e4262c4f 304 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
305 /* Pairs with smp mb in shrink_slab() */
306 smp_mb__before_atomic();
e4262c4f 307 set_bit(shrinker_id, info->map);
2bfd3637
YS
308 rcu_read_unlock();
309 }
310}
311
7e010df5
KT
312/*
313 * We allow subsystems to populate their shrinker-related
314 * LRU lists before register_shrinker_prepared() is called
315 * for the shrinker, since we don't want to impose
316 * restrictions on their internal registration order.
317 * In this case shrink_slab_memcg() may find corresponding
318 * bit is set in the shrinkers map.
319 *
320 * This value is used by the function to detect registering
321 * shrinkers and to skip do_shrink_slab() calls for them.
322 */
323#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
324
b4c2b231 325static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
326
327static int prealloc_memcg_shrinker(struct shrinker *shrinker)
328{
329 int id, ret = -ENOMEM;
330
331 down_write(&shrinker_rwsem);
332 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 333 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
334 if (id < 0)
335 goto unlock;
336
0a4465d3 337 if (id >= shrinker_nr_max) {
e4262c4f 338 if (expand_shrinker_info(id)) {
0a4465d3
KT
339 idr_remove(&shrinker_idr, id);
340 goto unlock;
341 }
0a4465d3 342 }
b4c2b231
KT
343 shrinker->id = id;
344 ret = 0;
345unlock:
346 up_write(&shrinker_rwsem);
347 return ret;
348}
349
350static void unregister_memcg_shrinker(struct shrinker *shrinker)
351{
352 int id = shrinker->id;
353
354 BUG_ON(id < 0);
355
356 down_write(&shrinker_rwsem);
357 idr_remove(&shrinker_idr, id);
358 up_write(&shrinker_rwsem);
359}
b4c2b231 360
b5ead35e 361static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 362{
b5ead35e 363 return sc->target_mem_cgroup;
89b5fae5 364}
97c9341f
TH
365
366/**
b5ead35e 367 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
368 * @sc: scan_control in question
369 *
370 * The normal page dirty throttling mechanism in balance_dirty_pages() is
371 * completely broken with the legacy memcg and direct stalling in
372 * shrink_page_list() is used for throttling instead, which lacks all the
373 * niceties such as fairness, adaptive pausing, bandwidth proportional
374 * allocation and configurability.
375 *
376 * This function tests whether the vmscan currently in progress can assume
377 * that the normal dirty throttling mechanism is operational.
378 */
b5ead35e 379static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 380{
b5ead35e 381 if (!cgroup_reclaim(sc))
97c9341f
TH
382 return true;
383#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 384 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
385 return true;
386#endif
387 return false;
388}
91a45470 389#else
0a432dcb
YS
390static int prealloc_memcg_shrinker(struct shrinker *shrinker)
391{
392 return 0;
393}
394
395static void unregister_memcg_shrinker(struct shrinker *shrinker)
396{
397}
398
b5ead35e 399static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 400{
b5ead35e 401 return false;
89b5fae5 402}
97c9341f 403
b5ead35e 404static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
405{
406 return true;
407}
91a45470
KH
408#endif
409
5a1c84b4
MG
410/*
411 * This misses isolated pages which are not accounted for to save counters.
412 * As the data only determines if reclaim or compaction continues, it is
413 * not expected that isolated pages will be a dominating factor.
414 */
415unsigned long zone_reclaimable_pages(struct zone *zone)
416{
417 unsigned long nr;
418
419 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
420 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
421 if (get_nr_swap_pages() > 0)
422 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
423 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
424
425 return nr;
426}
427
fd538803
MH
428/**
429 * lruvec_lru_size - Returns the number of pages on the given LRU list.
430 * @lruvec: lru vector
431 * @lru: lru to use
432 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
433 */
2091339d
YZ
434static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
435 int zone_idx)
c9f299d9 436{
de3b0150 437 unsigned long size = 0;
fd538803
MH
438 int zid;
439
de3b0150 440 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 441 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 442
fd538803
MH
443 if (!managed_zone(zone))
444 continue;
445
446 if (!mem_cgroup_disabled())
de3b0150 447 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 448 else
de3b0150 449 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 450 }
de3b0150 451 return size;
b4536f0c
MH
452}
453
1da177e4 454/*
1d3d4437 455 * Add a shrinker callback to be called from the vm.
1da177e4 456 */
8e04944f 457int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 458{
b9726c26 459 unsigned int size = sizeof(*shrinker->nr_deferred);
1d3d4437 460
1d3d4437
GC
461 if (shrinker->flags & SHRINKER_NUMA_AWARE)
462 size *= nr_node_ids;
463
464 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
465 if (!shrinker->nr_deferred)
466 return -ENOMEM;
b4c2b231
KT
467
468 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
469 if (prealloc_memcg_shrinker(shrinker))
470 goto free_deferred;
471 }
472
8e04944f 473 return 0;
b4c2b231
KT
474
475free_deferred:
476 kfree(shrinker->nr_deferred);
477 shrinker->nr_deferred = NULL;
478 return -ENOMEM;
8e04944f
TH
479}
480
481void free_prealloced_shrinker(struct shrinker *shrinker)
482{
b4c2b231
KT
483 if (!shrinker->nr_deferred)
484 return;
485
486 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
487 unregister_memcg_shrinker(shrinker);
488
8e04944f
TH
489 kfree(shrinker->nr_deferred);
490 shrinker->nr_deferred = NULL;
491}
1d3d4437 492
8e04944f
TH
493void register_shrinker_prepared(struct shrinker *shrinker)
494{
8e1f936b
RR
495 down_write(&shrinker_rwsem);
496 list_add_tail(&shrinker->list, &shrinker_list);
42a9a53b 497#ifdef CONFIG_MEMCG
8df4a44c
KT
498 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
499 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 500#endif
8e1f936b 501 up_write(&shrinker_rwsem);
8e04944f
TH
502}
503
504int register_shrinker(struct shrinker *shrinker)
505{
506 int err = prealloc_shrinker(shrinker);
507
508 if (err)
509 return err;
510 register_shrinker_prepared(shrinker);
1d3d4437 511 return 0;
1da177e4 512}
8e1f936b 513EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
514
515/*
516 * Remove one
517 */
8e1f936b 518void unregister_shrinker(struct shrinker *shrinker)
1da177e4 519{
bb422a73
TH
520 if (!shrinker->nr_deferred)
521 return;
b4c2b231
KT
522 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
523 unregister_memcg_shrinker(shrinker);
1da177e4
LT
524 down_write(&shrinker_rwsem);
525 list_del(&shrinker->list);
526 up_write(&shrinker_rwsem);
ae393321 527 kfree(shrinker->nr_deferred);
bb422a73 528 shrinker->nr_deferred = NULL;
1da177e4 529}
8e1f936b 530EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
531
532#define SHRINK_BATCH 128
1d3d4437 533
cb731d6c 534static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 535 struct shrinker *shrinker, int priority)
1d3d4437
GC
536{
537 unsigned long freed = 0;
538 unsigned long long delta;
539 long total_scan;
d5bc5fd3 540 long freeable;
1d3d4437
GC
541 long nr;
542 long new_nr;
543 int nid = shrinkctl->nid;
544 long batch_size = shrinker->batch ? shrinker->batch
545 : SHRINK_BATCH;
5f33a080 546 long scanned = 0, next_deferred;
1d3d4437 547
ac7fb3ad
KT
548 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
549 nid = 0;
550
d5bc5fd3 551 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
552 if (freeable == 0 || freeable == SHRINK_EMPTY)
553 return freeable;
1d3d4437
GC
554
555 /*
556 * copy the current shrinker scan count into a local variable
557 * and zero it so that other concurrent shrinker invocations
558 * don't also do this scanning work.
559 */
560 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
561
562 total_scan = nr;
4b85afbd
JW
563 if (shrinker->seeks) {
564 delta = freeable >> priority;
565 delta *= 4;
566 do_div(delta, shrinker->seeks);
567 } else {
568 /*
569 * These objects don't require any IO to create. Trim
570 * them aggressively under memory pressure to keep
571 * them from causing refetches in the IO caches.
572 */
573 delta = freeable / 2;
574 }
172b06c3 575
1d3d4437
GC
576 total_scan += delta;
577 if (total_scan < 0) {
d75f773c 578 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
a0b02131 579 shrinker->scan_objects, total_scan);
d5bc5fd3 580 total_scan = freeable;
5f33a080
SL
581 next_deferred = nr;
582 } else
583 next_deferred = total_scan;
1d3d4437
GC
584
585 /*
586 * We need to avoid excessive windup on filesystem shrinkers
587 * due to large numbers of GFP_NOFS allocations causing the
588 * shrinkers to return -1 all the time. This results in a large
589 * nr being built up so when a shrink that can do some work
590 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 591 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
592 * memory.
593 *
594 * Hence only allow the shrinker to scan the entire cache when
595 * a large delta change is calculated directly.
596 */
d5bc5fd3
VD
597 if (delta < freeable / 4)
598 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
599
600 /*
601 * Avoid risking looping forever due to too large nr value:
602 * never try to free more than twice the estimate number of
603 * freeable entries.
604 */
d5bc5fd3
VD
605 if (total_scan > freeable * 2)
606 total_scan = freeable * 2;
1d3d4437
GC
607
608 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 609 freeable, delta, total_scan, priority);
1d3d4437 610
0b1fb40a
VD
611 /*
612 * Normally, we should not scan less than batch_size objects in one
613 * pass to avoid too frequent shrinker calls, but if the slab has less
614 * than batch_size objects in total and we are really tight on memory,
615 * we will try to reclaim all available objects, otherwise we can end
616 * up failing allocations although there are plenty of reclaimable
617 * objects spread over several slabs with usage less than the
618 * batch_size.
619 *
620 * We detect the "tight on memory" situations by looking at the total
621 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 622 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
623 * scanning at high prio and therefore should try to reclaim as much as
624 * possible.
625 */
626 while (total_scan >= batch_size ||
d5bc5fd3 627 total_scan >= freeable) {
a0b02131 628 unsigned long ret;
0b1fb40a 629 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 630
0b1fb40a 631 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 632 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
633 ret = shrinker->scan_objects(shrinker, shrinkctl);
634 if (ret == SHRINK_STOP)
635 break;
636 freed += ret;
1d3d4437 637
d460acb5
CW
638 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
639 total_scan -= shrinkctl->nr_scanned;
640 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
641
642 cond_resched();
643 }
644
5f33a080
SL
645 if (next_deferred >= scanned)
646 next_deferred -= scanned;
647 else
648 next_deferred = 0;
1d3d4437
GC
649 /*
650 * move the unused scan count back into the shrinker in a
651 * manner that handles concurrent updates. If we exhausted the
652 * scan, there is no need to do an update.
653 */
5f33a080
SL
654 if (next_deferred > 0)
655 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
656 &shrinker->nr_deferred[nid]);
657 else
658 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
659
8efb4b59 660 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 661 return freed;
1495f230
YH
662}
663
0a432dcb 664#ifdef CONFIG_MEMCG
b0dedc49
KT
665static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
666 struct mem_cgroup *memcg, int priority)
667{
e4262c4f 668 struct shrinker_info *info;
b8e57efa
KT
669 unsigned long ret, freed = 0;
670 int i;
b0dedc49 671
0a432dcb 672 if (!mem_cgroup_online(memcg))
b0dedc49
KT
673 return 0;
674
675 if (!down_read_trylock(&shrinker_rwsem))
676 return 0;
677
e4262c4f
YS
678 info = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
679 true);
680 if (unlikely(!info))
b0dedc49
KT
681 goto unlock;
682
e4262c4f 683 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
684 struct shrink_control sc = {
685 .gfp_mask = gfp_mask,
686 .nid = nid,
687 .memcg = memcg,
688 };
689 struct shrinker *shrinker;
690
691 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
692 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
693 if (!shrinker)
e4262c4f 694 clear_bit(i, info->map);
b0dedc49
KT
695 continue;
696 }
697
0a432dcb
YS
698 /* Call non-slab shrinkers even though kmem is disabled */
699 if (!memcg_kmem_enabled() &&
700 !(shrinker->flags & SHRINKER_NONSLAB))
701 continue;
702
b0dedc49 703 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 704 if (ret == SHRINK_EMPTY) {
e4262c4f 705 clear_bit(i, info->map);
f90280d6
KT
706 /*
707 * After the shrinker reported that it had no objects to
708 * free, but before we cleared the corresponding bit in
709 * the memcg shrinker map, a new object might have been
710 * added. To make sure, we have the bit set in this
711 * case, we invoke the shrinker one more time and reset
712 * the bit if it reports that it is not empty anymore.
713 * The memory barrier here pairs with the barrier in
2bfd3637 714 * set_shrinker_bit():
f90280d6
KT
715 *
716 * list_lru_add() shrink_slab_memcg()
717 * list_add_tail() clear_bit()
718 * <MB> <MB>
719 * set_bit() do_shrink_slab()
720 */
721 smp_mb__after_atomic();
722 ret = do_shrink_slab(&sc, shrinker, priority);
723 if (ret == SHRINK_EMPTY)
724 ret = 0;
725 else
2bfd3637 726 set_shrinker_bit(memcg, nid, i);
f90280d6 727 }
b0dedc49
KT
728 freed += ret;
729
730 if (rwsem_is_contended(&shrinker_rwsem)) {
731 freed = freed ? : 1;
732 break;
733 }
734 }
735unlock:
736 up_read(&shrinker_rwsem);
737 return freed;
738}
0a432dcb 739#else /* CONFIG_MEMCG */
b0dedc49
KT
740static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
741 struct mem_cgroup *memcg, int priority)
742{
743 return 0;
744}
0a432dcb 745#endif /* CONFIG_MEMCG */
b0dedc49 746
6b4f7799 747/**
cb731d6c 748 * shrink_slab - shrink slab caches
6b4f7799
JW
749 * @gfp_mask: allocation context
750 * @nid: node whose slab caches to target
cb731d6c 751 * @memcg: memory cgroup whose slab caches to target
9092c71b 752 * @priority: the reclaim priority
1da177e4 753 *
6b4f7799 754 * Call the shrink functions to age shrinkable caches.
1da177e4 755 *
6b4f7799
JW
756 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
757 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 758 *
aeed1d32
VD
759 * @memcg specifies the memory cgroup to target. Unaware shrinkers
760 * are called only if it is the root cgroup.
cb731d6c 761 *
9092c71b
JB
762 * @priority is sc->priority, we take the number of objects and >> by priority
763 * in order to get the scan target.
b15e0905 764 *
6b4f7799 765 * Returns the number of reclaimed slab objects.
1da177e4 766 */
cb731d6c
VD
767static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
768 struct mem_cgroup *memcg,
9092c71b 769 int priority)
1da177e4 770{
b8e57efa 771 unsigned long ret, freed = 0;
1da177e4
LT
772 struct shrinker *shrinker;
773
fa1e512f
YS
774 /*
775 * The root memcg might be allocated even though memcg is disabled
776 * via "cgroup_disable=memory" boot parameter. This could make
777 * mem_cgroup_is_root() return false, then just run memcg slab
778 * shrink, but skip global shrink. This may result in premature
779 * oom.
780 */
781 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 782 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 783
e830c63a 784 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 785 goto out;
1da177e4
LT
786
787 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
788 struct shrink_control sc = {
789 .gfp_mask = gfp_mask,
790 .nid = nid,
cb731d6c 791 .memcg = memcg,
6b4f7799 792 };
ec97097b 793
9b996468
KT
794 ret = do_shrink_slab(&sc, shrinker, priority);
795 if (ret == SHRINK_EMPTY)
796 ret = 0;
797 freed += ret;
e496612c
MK
798 /*
799 * Bail out if someone want to register a new shrinker to
55b65a57 800 * prevent the registration from being stalled for long periods
e496612c
MK
801 * by parallel ongoing shrinking.
802 */
803 if (rwsem_is_contended(&shrinker_rwsem)) {
804 freed = freed ? : 1;
805 break;
806 }
1da177e4 807 }
6b4f7799 808
1da177e4 809 up_read(&shrinker_rwsem);
f06590bd
MK
810out:
811 cond_resched();
24f7c6b9 812 return freed;
1da177e4
LT
813}
814
cb731d6c
VD
815void drop_slab_node(int nid)
816{
817 unsigned long freed;
818
819 do {
820 struct mem_cgroup *memcg = NULL;
821
069c411d
CZ
822 if (fatal_signal_pending(current))
823 return;
824
cb731d6c 825 freed = 0;
aeed1d32 826 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 827 do {
9092c71b 828 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
829 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
830 } while (freed > 10);
831}
832
833void drop_slab(void)
834{
835 int nid;
836
837 for_each_online_node(nid)
838 drop_slab_node(nid);
839}
840
1da177e4
LT
841static inline int is_page_cache_freeable(struct page *page)
842{
ceddc3a5
JW
843 /*
844 * A freeable page cache page is referenced only by the caller
67891fff
MW
845 * that isolated the page, the page cache and optional buffer
846 * heads at page->private.
ceddc3a5 847 */
3efe62e4 848 int page_cache_pins = thp_nr_pages(page);
67891fff 849 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
850}
851
cb16556d 852static int may_write_to_inode(struct inode *inode)
1da177e4 853{
930d9152 854 if (current->flags & PF_SWAPWRITE)
1da177e4 855 return 1;
703c2708 856 if (!inode_write_congested(inode))
1da177e4 857 return 1;
703c2708 858 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
859 return 1;
860 return 0;
861}
862
863/*
864 * We detected a synchronous write error writing a page out. Probably
865 * -ENOSPC. We need to propagate that into the address_space for a subsequent
866 * fsync(), msync() or close().
867 *
868 * The tricky part is that after writepage we cannot touch the mapping: nothing
869 * prevents it from being freed up. But we have a ref on the page and once
870 * that page is locked, the mapping is pinned.
871 *
872 * We're allowed to run sleeping lock_page() here because we know the caller has
873 * __GFP_FS.
874 */
875static void handle_write_error(struct address_space *mapping,
876 struct page *page, int error)
877{
7eaceacc 878 lock_page(page);
3e9f45bd
GC
879 if (page_mapping(page) == mapping)
880 mapping_set_error(mapping, error);
1da177e4
LT
881 unlock_page(page);
882}
883
04e62a29
CL
884/* possible outcome of pageout() */
885typedef enum {
886 /* failed to write page out, page is locked */
887 PAGE_KEEP,
888 /* move page to the active list, page is locked */
889 PAGE_ACTIVATE,
890 /* page has been sent to the disk successfully, page is unlocked */
891 PAGE_SUCCESS,
892 /* page is clean and locked */
893 PAGE_CLEAN,
894} pageout_t;
895
1da177e4 896/*
1742f19f
AM
897 * pageout is called by shrink_page_list() for each dirty page.
898 * Calls ->writepage().
1da177e4 899 */
cb16556d 900static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
901{
902 /*
903 * If the page is dirty, only perform writeback if that write
904 * will be non-blocking. To prevent this allocation from being
905 * stalled by pagecache activity. But note that there may be
906 * stalls if we need to run get_block(). We could test
907 * PagePrivate for that.
908 *
8174202b 909 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
910 * this page's queue, we can perform writeback even if that
911 * will block.
912 *
913 * If the page is swapcache, write it back even if that would
914 * block, for some throttling. This happens by accident, because
915 * swap_backing_dev_info is bust: it doesn't reflect the
916 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
917 */
918 if (!is_page_cache_freeable(page))
919 return PAGE_KEEP;
920 if (!mapping) {
921 /*
922 * Some data journaling orphaned pages can have
923 * page->mapping == NULL while being dirty with clean buffers.
924 */
266cf658 925 if (page_has_private(page)) {
1da177e4
LT
926 if (try_to_free_buffers(page)) {
927 ClearPageDirty(page);
b1de0d13 928 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
929 return PAGE_CLEAN;
930 }
931 }
932 return PAGE_KEEP;
933 }
934 if (mapping->a_ops->writepage == NULL)
935 return PAGE_ACTIVATE;
cb16556d 936 if (!may_write_to_inode(mapping->host))
1da177e4
LT
937 return PAGE_KEEP;
938
939 if (clear_page_dirty_for_io(page)) {
940 int res;
941 struct writeback_control wbc = {
942 .sync_mode = WB_SYNC_NONE,
943 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
944 .range_start = 0,
945 .range_end = LLONG_MAX,
1da177e4
LT
946 .for_reclaim = 1,
947 };
948
949 SetPageReclaim(page);
950 res = mapping->a_ops->writepage(page, &wbc);
951 if (res < 0)
952 handle_write_error(mapping, page, res);
994fc28c 953 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
954 ClearPageReclaim(page);
955 return PAGE_ACTIVATE;
956 }
c661b078 957
1da177e4
LT
958 if (!PageWriteback(page)) {
959 /* synchronous write or broken a_ops? */
960 ClearPageReclaim(page);
961 }
3aa23851 962 trace_mm_vmscan_writepage(page);
c4a25635 963 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
964 return PAGE_SUCCESS;
965 }
966
967 return PAGE_CLEAN;
968}
969
a649fd92 970/*
e286781d
NP
971 * Same as remove_mapping, but if the page is removed from the mapping, it
972 * gets returned with a refcount of 0.
a649fd92 973 */
a528910e 974static int __remove_mapping(struct address_space *mapping, struct page *page,
b910718a 975 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 976{
c4843a75 977 unsigned long flags;
bd4c82c2 978 int refcount;
aae466b0 979 void *shadow = NULL;
c4843a75 980
28e4d965
NP
981 BUG_ON(!PageLocked(page));
982 BUG_ON(mapping != page_mapping(page));
49d2e9cc 983
b93b0163 984 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 985 /*
0fd0e6b0
NP
986 * The non racy check for a busy page.
987 *
988 * Must be careful with the order of the tests. When someone has
989 * a ref to the page, it may be possible that they dirty it then
990 * drop the reference. So if PageDirty is tested before page_count
991 * here, then the following race may occur:
992 *
993 * get_user_pages(&page);
994 * [user mapping goes away]
995 * write_to(page);
996 * !PageDirty(page) [good]
997 * SetPageDirty(page);
998 * put_page(page);
999 * !page_count(page) [good, discard it]
1000 *
1001 * [oops, our write_to data is lost]
1002 *
1003 * Reversing the order of the tests ensures such a situation cannot
1004 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1005 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1006 *
1007 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1008 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1009 */
906d278d 1010 refcount = 1 + compound_nr(page);
bd4c82c2 1011 if (!page_ref_freeze(page, refcount))
49d2e9cc 1012 goto cannot_free;
1c4c3b99 1013 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 1014 if (unlikely(PageDirty(page))) {
bd4c82c2 1015 page_ref_unfreeze(page, refcount);
49d2e9cc 1016 goto cannot_free;
e286781d 1017 }
49d2e9cc
CL
1018
1019 if (PageSwapCache(page)) {
1020 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 1021 mem_cgroup_swapout(page, swap);
aae466b0
JK
1022 if (reclaimed && !mapping_exiting(mapping))
1023 shadow = workingset_eviction(page, target_memcg);
1024 __delete_from_swap_cache(page, swap, shadow);
b93b0163 1025 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 1026 put_swap_page(page, swap);
e286781d 1027 } else {
6072d13c
LT
1028 void (*freepage)(struct page *);
1029
1030 freepage = mapping->a_ops->freepage;
a528910e
JW
1031 /*
1032 * Remember a shadow entry for reclaimed file cache in
1033 * order to detect refaults, thus thrashing, later on.
1034 *
1035 * But don't store shadows in an address space that is
238c3046 1036 * already exiting. This is not just an optimization,
a528910e
JW
1037 * inode reclaim needs to empty out the radix tree or
1038 * the nodes are lost. Don't plant shadows behind its
1039 * back.
f9fe48be
RZ
1040 *
1041 * We also don't store shadows for DAX mappings because the
1042 * only page cache pages found in these are zero pages
1043 * covering holes, and because we don't want to mix DAX
1044 * exceptional entries and shadow exceptional entries in the
b93b0163 1045 * same address_space.
a528910e 1046 */
9de4f22a 1047 if (reclaimed && page_is_file_lru(page) &&
f9fe48be 1048 !mapping_exiting(mapping) && !dax_mapping(mapping))
b910718a 1049 shadow = workingset_eviction(page, target_memcg);
62cccb8c 1050 __delete_from_page_cache(page, shadow);
b93b0163 1051 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
1052
1053 if (freepage != NULL)
1054 freepage(page);
49d2e9cc
CL
1055 }
1056
49d2e9cc
CL
1057 return 1;
1058
1059cannot_free:
b93b0163 1060 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
1061 return 0;
1062}
1063
e286781d
NP
1064/*
1065 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1066 * someone else has a ref on the page, abort and return 0. If it was
1067 * successfully detached, return 1. Assumes the caller has a single ref on
1068 * this page.
1069 */
1070int remove_mapping(struct address_space *mapping, struct page *page)
1071{
b910718a 1072 if (__remove_mapping(mapping, page, false, NULL)) {
e286781d
NP
1073 /*
1074 * Unfreezing the refcount with 1 rather than 2 effectively
1075 * drops the pagecache ref for us without requiring another
1076 * atomic operation.
1077 */
fe896d18 1078 page_ref_unfreeze(page, 1);
e286781d
NP
1079 return 1;
1080 }
1081 return 0;
1082}
1083
894bc310
LS
1084/**
1085 * putback_lru_page - put previously isolated page onto appropriate LRU list
1086 * @page: page to be put back to appropriate lru list
1087 *
1088 * Add previously isolated @page to appropriate LRU list.
1089 * Page may still be unevictable for other reasons.
1090 *
1091 * lru_lock must not be held, interrupts must be enabled.
1092 */
894bc310
LS
1093void putback_lru_page(struct page *page)
1094{
9c4e6b1a 1095 lru_cache_add(page);
894bc310
LS
1096 put_page(page); /* drop ref from isolate */
1097}
1098
dfc8d636
JW
1099enum page_references {
1100 PAGEREF_RECLAIM,
1101 PAGEREF_RECLAIM_CLEAN,
64574746 1102 PAGEREF_KEEP,
dfc8d636
JW
1103 PAGEREF_ACTIVATE,
1104};
1105
1106static enum page_references page_check_references(struct page *page,
1107 struct scan_control *sc)
1108{
64574746 1109 int referenced_ptes, referenced_page;
dfc8d636 1110 unsigned long vm_flags;
dfc8d636 1111
c3ac9a8a
JW
1112 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1113 &vm_flags);
64574746 1114 referenced_page = TestClearPageReferenced(page);
dfc8d636 1115
dfc8d636
JW
1116 /*
1117 * Mlock lost the isolation race with us. Let try_to_unmap()
1118 * move the page to the unevictable list.
1119 */
1120 if (vm_flags & VM_LOCKED)
1121 return PAGEREF_RECLAIM;
1122
64574746 1123 if (referenced_ptes) {
64574746
JW
1124 /*
1125 * All mapped pages start out with page table
1126 * references from the instantiating fault, so we need
1127 * to look twice if a mapped file page is used more
1128 * than once.
1129 *
1130 * Mark it and spare it for another trip around the
1131 * inactive list. Another page table reference will
1132 * lead to its activation.
1133 *
1134 * Note: the mark is set for activated pages as well
1135 * so that recently deactivated but used pages are
1136 * quickly recovered.
1137 */
1138 SetPageReferenced(page);
1139
34dbc67a 1140 if (referenced_page || referenced_ptes > 1)
64574746
JW
1141 return PAGEREF_ACTIVATE;
1142
c909e993
KK
1143 /*
1144 * Activate file-backed executable pages after first usage.
1145 */
b518154e 1146 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
c909e993
KK
1147 return PAGEREF_ACTIVATE;
1148
64574746
JW
1149 return PAGEREF_KEEP;
1150 }
dfc8d636
JW
1151
1152 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1153 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1154 return PAGEREF_RECLAIM_CLEAN;
1155
1156 return PAGEREF_RECLAIM;
dfc8d636
JW
1157}
1158
e2be15f6
MG
1159/* Check if a page is dirty or under writeback */
1160static void page_check_dirty_writeback(struct page *page,
1161 bool *dirty, bool *writeback)
1162{
b4597226
MG
1163 struct address_space *mapping;
1164
e2be15f6
MG
1165 /*
1166 * Anonymous pages are not handled by flushers and must be written
1167 * from reclaim context. Do not stall reclaim based on them
1168 */
9de4f22a 1169 if (!page_is_file_lru(page) ||
802a3a92 1170 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1171 *dirty = false;
1172 *writeback = false;
1173 return;
1174 }
1175
1176 /* By default assume that the page flags are accurate */
1177 *dirty = PageDirty(page);
1178 *writeback = PageWriteback(page);
b4597226
MG
1179
1180 /* Verify dirty/writeback state if the filesystem supports it */
1181 if (!page_has_private(page))
1182 return;
1183
1184 mapping = page_mapping(page);
1185 if (mapping && mapping->a_ops->is_dirty_writeback)
1186 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1187}
1188
1da177e4 1189/*
1742f19f 1190 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1191 */
730ec8c0
MS
1192static unsigned int shrink_page_list(struct list_head *page_list,
1193 struct pglist_data *pgdat,
1194 struct scan_control *sc,
730ec8c0
MS
1195 struct reclaim_stat *stat,
1196 bool ignore_references)
1da177e4
LT
1197{
1198 LIST_HEAD(ret_pages);
abe4c3b5 1199 LIST_HEAD(free_pages);
730ec8c0
MS
1200 unsigned int nr_reclaimed = 0;
1201 unsigned int pgactivate = 0;
1da177e4 1202
060f005f 1203 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1204 cond_resched();
1205
1da177e4
LT
1206 while (!list_empty(page_list)) {
1207 struct address_space *mapping;
1208 struct page *page;
8940b34a 1209 enum page_references references = PAGEREF_RECLAIM;
4b793062 1210 bool dirty, writeback, may_enter_fs;
98879b3b 1211 unsigned int nr_pages;
1da177e4
LT
1212
1213 cond_resched();
1214
1215 page = lru_to_page(page_list);
1216 list_del(&page->lru);
1217
529ae9aa 1218 if (!trylock_page(page))
1da177e4
LT
1219 goto keep;
1220
309381fe 1221 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1222
d8c6546b 1223 nr_pages = compound_nr(page);
98879b3b
YS
1224
1225 /* Account the number of base pages even though THP */
1226 sc->nr_scanned += nr_pages;
80e43426 1227
39b5f29a 1228 if (unlikely(!page_evictable(page)))
ad6b6704 1229 goto activate_locked;
894bc310 1230
a6dc60f8 1231 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1232 goto keep_locked;
1233
c661b078
AW
1234 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1235 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1236
e2be15f6 1237 /*
894befec 1238 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1239 * reclaim_congested which affects wait_iff_congested. kswapd
1240 * will stall and start writing pages if the tail of the LRU
1241 * is all dirty unqueued pages.
1242 */
1243 page_check_dirty_writeback(page, &dirty, &writeback);
1244 if (dirty || writeback)
060f005f 1245 stat->nr_dirty++;
e2be15f6
MG
1246
1247 if (dirty && !writeback)
060f005f 1248 stat->nr_unqueued_dirty++;
e2be15f6 1249
d04e8acd
MG
1250 /*
1251 * Treat this page as congested if the underlying BDI is or if
1252 * pages are cycling through the LRU so quickly that the
1253 * pages marked for immediate reclaim are making it to the
1254 * end of the LRU a second time.
1255 */
e2be15f6 1256 mapping = page_mapping(page);
1da58ee2 1257 if (((dirty || writeback) && mapping &&
703c2708 1258 inode_write_congested(mapping->host)) ||
d04e8acd 1259 (writeback && PageReclaim(page)))
060f005f 1260 stat->nr_congested++;
e2be15f6 1261
283aba9f
MG
1262 /*
1263 * If a page at the tail of the LRU is under writeback, there
1264 * are three cases to consider.
1265 *
1266 * 1) If reclaim is encountering an excessive number of pages
1267 * under writeback and this page is both under writeback and
1268 * PageReclaim then it indicates that pages are being queued
1269 * for IO but are being recycled through the LRU before the
1270 * IO can complete. Waiting on the page itself risks an
1271 * indefinite stall if it is impossible to writeback the
1272 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1273 * note that the LRU is being scanned too quickly and the
1274 * caller can stall after page list has been processed.
283aba9f 1275 *
97c9341f 1276 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1277 * not marked for immediate reclaim, or the caller does not
1278 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1279 * not to fs). In this case mark the page for immediate
97c9341f 1280 * reclaim and continue scanning.
283aba9f 1281 *
ecf5fc6e
MH
1282 * Require may_enter_fs because we would wait on fs, which
1283 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1284 * enter reclaim, and deadlock if it waits on a page for
1285 * which it is needed to do the write (loop masks off
1286 * __GFP_IO|__GFP_FS for this reason); but more thought
1287 * would probably show more reasons.
1288 *
7fadc820 1289 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1290 * PageReclaim. memcg does not have any dirty pages
1291 * throttling so we could easily OOM just because too many
1292 * pages are in writeback and there is nothing else to
1293 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1294 *
1295 * In cases 1) and 2) we activate the pages to get them out of
1296 * the way while we continue scanning for clean pages on the
1297 * inactive list and refilling from the active list. The
1298 * observation here is that waiting for disk writes is more
1299 * expensive than potentially causing reloads down the line.
1300 * Since they're marked for immediate reclaim, they won't put
1301 * memory pressure on the cache working set any longer than it
1302 * takes to write them to disk.
283aba9f 1303 */
c661b078 1304 if (PageWriteback(page)) {
283aba9f
MG
1305 /* Case 1 above */
1306 if (current_is_kswapd() &&
1307 PageReclaim(page) &&
599d0c95 1308 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1309 stat->nr_immediate++;
c55e8d03 1310 goto activate_locked;
283aba9f
MG
1311
1312 /* Case 2 above */
b5ead35e 1313 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1314 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1315 /*
1316 * This is slightly racy - end_page_writeback()
1317 * might have just cleared PageReclaim, then
1318 * setting PageReclaim here end up interpreted
1319 * as PageReadahead - but that does not matter
1320 * enough to care. What we do want is for this
1321 * page to have PageReclaim set next time memcg
1322 * reclaim reaches the tests above, so it will
1323 * then wait_on_page_writeback() to avoid OOM;
1324 * and it's also appropriate in global reclaim.
1325 */
1326 SetPageReclaim(page);
060f005f 1327 stat->nr_writeback++;
c55e8d03 1328 goto activate_locked;
283aba9f
MG
1329
1330 /* Case 3 above */
1331 } else {
7fadc820 1332 unlock_page(page);
283aba9f 1333 wait_on_page_writeback(page);
7fadc820
HD
1334 /* then go back and try same page again */
1335 list_add_tail(&page->lru, page_list);
1336 continue;
e62e384e 1337 }
c661b078 1338 }
1da177e4 1339
8940b34a 1340 if (!ignore_references)
02c6de8d
MK
1341 references = page_check_references(page, sc);
1342
dfc8d636
JW
1343 switch (references) {
1344 case PAGEREF_ACTIVATE:
1da177e4 1345 goto activate_locked;
64574746 1346 case PAGEREF_KEEP:
98879b3b 1347 stat->nr_ref_keep += nr_pages;
64574746 1348 goto keep_locked;
dfc8d636
JW
1349 case PAGEREF_RECLAIM:
1350 case PAGEREF_RECLAIM_CLEAN:
1351 ; /* try to reclaim the page below */
1352 }
1da177e4 1353
1da177e4
LT
1354 /*
1355 * Anonymous process memory has backing store?
1356 * Try to allocate it some swap space here.
802a3a92 1357 * Lazyfree page could be freed directly
1da177e4 1358 */
bd4c82c2
HY
1359 if (PageAnon(page) && PageSwapBacked(page)) {
1360 if (!PageSwapCache(page)) {
1361 if (!(sc->gfp_mask & __GFP_IO))
1362 goto keep_locked;
feb889fb
LT
1363 if (page_maybe_dma_pinned(page))
1364 goto keep_locked;
bd4c82c2
HY
1365 if (PageTransHuge(page)) {
1366 /* cannot split THP, skip it */
1367 if (!can_split_huge_page(page, NULL))
1368 goto activate_locked;
1369 /*
1370 * Split pages without a PMD map right
1371 * away. Chances are some or all of the
1372 * tail pages can be freed without IO.
1373 */
1374 if (!compound_mapcount(page) &&
1375 split_huge_page_to_list(page,
1376 page_list))
1377 goto activate_locked;
1378 }
1379 if (!add_to_swap(page)) {
1380 if (!PageTransHuge(page))
98879b3b 1381 goto activate_locked_split;
bd4c82c2
HY
1382 /* Fallback to swap normal pages */
1383 if (split_huge_page_to_list(page,
1384 page_list))
1385 goto activate_locked;
fe490cc0
HY
1386#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1387 count_vm_event(THP_SWPOUT_FALLBACK);
1388#endif
bd4c82c2 1389 if (!add_to_swap(page))
98879b3b 1390 goto activate_locked_split;
bd4c82c2 1391 }
0f074658 1392
4b793062 1393 may_enter_fs = true;
1da177e4 1394
bd4c82c2
HY
1395 /* Adding to swap updated mapping */
1396 mapping = page_mapping(page);
1397 }
7751b2da
KS
1398 } else if (unlikely(PageTransHuge(page))) {
1399 /* Split file THP */
1400 if (split_huge_page_to_list(page, page_list))
1401 goto keep_locked;
e2be15f6 1402 }
1da177e4 1403
98879b3b
YS
1404 /*
1405 * THP may get split above, need minus tail pages and update
1406 * nr_pages to avoid accounting tail pages twice.
1407 *
1408 * The tail pages that are added into swap cache successfully
1409 * reach here.
1410 */
1411 if ((nr_pages > 1) && !PageTransHuge(page)) {
1412 sc->nr_scanned -= (nr_pages - 1);
1413 nr_pages = 1;
1414 }
1415
1da177e4
LT
1416 /*
1417 * The page is mapped into the page tables of one or more
1418 * processes. Try to unmap it here.
1419 */
802a3a92 1420 if (page_mapped(page)) {
013339df 1421 enum ttu_flags flags = TTU_BATCH_FLUSH;
1f318a9b 1422 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2
HY
1423
1424 if (unlikely(PageTransHuge(page)))
1425 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1426
bd4c82c2 1427 if (!try_to_unmap(page, flags)) {
98879b3b 1428 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1429 if (!was_swapbacked && PageSwapBacked(page))
1430 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1431 goto activate_locked;
1da177e4
LT
1432 }
1433 }
1434
1435 if (PageDirty(page)) {
ee72886d 1436 /*
4eda4823
JW
1437 * Only kswapd can writeback filesystem pages
1438 * to avoid risk of stack overflow. But avoid
1439 * injecting inefficient single-page IO into
1440 * flusher writeback as much as possible: only
1441 * write pages when we've encountered many
1442 * dirty pages, and when we've already scanned
1443 * the rest of the LRU for clean pages and see
1444 * the same dirty pages again (PageReclaim).
ee72886d 1445 */
9de4f22a 1446 if (page_is_file_lru(page) &&
4eda4823
JW
1447 (!current_is_kswapd() || !PageReclaim(page) ||
1448 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1449 /*
1450 * Immediately reclaim when written back.
1451 * Similar in principal to deactivate_page()
1452 * except we already have the page isolated
1453 * and know it's dirty
1454 */
c4a25635 1455 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1456 SetPageReclaim(page);
1457
c55e8d03 1458 goto activate_locked;
ee72886d
MG
1459 }
1460
dfc8d636 1461 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1462 goto keep_locked;
4dd4b920 1463 if (!may_enter_fs)
1da177e4 1464 goto keep_locked;
52a8363e 1465 if (!sc->may_writepage)
1da177e4
LT
1466 goto keep_locked;
1467
d950c947
MG
1468 /*
1469 * Page is dirty. Flush the TLB if a writable entry
1470 * potentially exists to avoid CPU writes after IO
1471 * starts and then write it out here.
1472 */
1473 try_to_unmap_flush_dirty();
cb16556d 1474 switch (pageout(page, mapping)) {
1da177e4
LT
1475 case PAGE_KEEP:
1476 goto keep_locked;
1477 case PAGE_ACTIVATE:
1478 goto activate_locked;
1479 case PAGE_SUCCESS:
6c357848 1480 stat->nr_pageout += thp_nr_pages(page);
96f8bf4f 1481
7d3579e8 1482 if (PageWriteback(page))
41ac1999 1483 goto keep;
7d3579e8 1484 if (PageDirty(page))
1da177e4 1485 goto keep;
7d3579e8 1486
1da177e4
LT
1487 /*
1488 * A synchronous write - probably a ramdisk. Go
1489 * ahead and try to reclaim the page.
1490 */
529ae9aa 1491 if (!trylock_page(page))
1da177e4
LT
1492 goto keep;
1493 if (PageDirty(page) || PageWriteback(page))
1494 goto keep_locked;
1495 mapping = page_mapping(page);
01359eb2 1496 fallthrough;
1da177e4
LT
1497 case PAGE_CLEAN:
1498 ; /* try to free the page below */
1499 }
1500 }
1501
1502 /*
1503 * If the page has buffers, try to free the buffer mappings
1504 * associated with this page. If we succeed we try to free
1505 * the page as well.
1506 *
1507 * We do this even if the page is PageDirty().
1508 * try_to_release_page() does not perform I/O, but it is
1509 * possible for a page to have PageDirty set, but it is actually
1510 * clean (all its buffers are clean). This happens if the
1511 * buffers were written out directly, with submit_bh(). ext3
894bc310 1512 * will do this, as well as the blockdev mapping.
1da177e4
LT
1513 * try_to_release_page() will discover that cleanness and will
1514 * drop the buffers and mark the page clean - it can be freed.
1515 *
1516 * Rarely, pages can have buffers and no ->mapping. These are
1517 * the pages which were not successfully invalidated in
d12b8951 1518 * truncate_cleanup_page(). We try to drop those buffers here
1da177e4
LT
1519 * and if that worked, and the page is no longer mapped into
1520 * process address space (page_count == 1) it can be freed.
1521 * Otherwise, leave the page on the LRU so it is swappable.
1522 */
266cf658 1523 if (page_has_private(page)) {
1da177e4
LT
1524 if (!try_to_release_page(page, sc->gfp_mask))
1525 goto activate_locked;
e286781d
NP
1526 if (!mapping && page_count(page) == 1) {
1527 unlock_page(page);
1528 if (put_page_testzero(page))
1529 goto free_it;
1530 else {
1531 /*
1532 * rare race with speculative reference.
1533 * the speculative reference will free
1534 * this page shortly, so we may
1535 * increment nr_reclaimed here (and
1536 * leave it off the LRU).
1537 */
1538 nr_reclaimed++;
1539 continue;
1540 }
1541 }
1da177e4
LT
1542 }
1543
802a3a92
SL
1544 if (PageAnon(page) && !PageSwapBacked(page)) {
1545 /* follow __remove_mapping for reference */
1546 if (!page_ref_freeze(page, 1))
1547 goto keep_locked;
1548 if (PageDirty(page)) {
1549 page_ref_unfreeze(page, 1);
1550 goto keep_locked;
1551 }
1da177e4 1552
802a3a92 1553 count_vm_event(PGLAZYFREED);
2262185c 1554 count_memcg_page_event(page, PGLAZYFREED);
b910718a
JW
1555 } else if (!mapping || !__remove_mapping(mapping, page, true,
1556 sc->target_mem_cgroup))
802a3a92 1557 goto keep_locked;
9a1ea439
HD
1558
1559 unlock_page(page);
e286781d 1560free_it:
98879b3b
YS
1561 /*
1562 * THP may get swapped out in a whole, need account
1563 * all base pages.
1564 */
1565 nr_reclaimed += nr_pages;
abe4c3b5
MG
1566
1567 /*
1568 * Is there need to periodically free_page_list? It would
1569 * appear not as the counts should be low
1570 */
7ae88534 1571 if (unlikely(PageTransHuge(page)))
ff45fc3c 1572 destroy_compound_page(page);
7ae88534 1573 else
bd4c82c2 1574 list_add(&page->lru, &free_pages);
1da177e4
LT
1575 continue;
1576
98879b3b
YS
1577activate_locked_split:
1578 /*
1579 * The tail pages that are failed to add into swap cache
1580 * reach here. Fixup nr_scanned and nr_pages.
1581 */
1582 if (nr_pages > 1) {
1583 sc->nr_scanned -= (nr_pages - 1);
1584 nr_pages = 1;
1585 }
1da177e4 1586activate_locked:
68a22394 1587 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1588 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1589 PageMlocked(page)))
a2c43eed 1590 try_to_free_swap(page);
309381fe 1591 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1592 if (!PageMlocked(page)) {
9de4f22a 1593 int type = page_is_file_lru(page);
ad6b6704 1594 SetPageActive(page);
98879b3b 1595 stat->nr_activate[type] += nr_pages;
2262185c 1596 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1597 }
1da177e4
LT
1598keep_locked:
1599 unlock_page(page);
1600keep:
1601 list_add(&page->lru, &ret_pages);
309381fe 1602 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1603 }
abe4c3b5 1604
98879b3b
YS
1605 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1606
747db954 1607 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1608 try_to_unmap_flush();
2d4894b5 1609 free_unref_page_list(&free_pages);
abe4c3b5 1610
1da177e4 1611 list_splice(&ret_pages, page_list);
886cf190 1612 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1613
05ff5137 1614 return nr_reclaimed;
1da177e4
LT
1615}
1616
730ec8c0 1617unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1618 struct list_head *page_list)
1619{
1620 struct scan_control sc = {
1621 .gfp_mask = GFP_KERNEL,
1622 .priority = DEF_PRIORITY,
1623 .may_unmap = 1,
1624 };
1f318a9b 1625 struct reclaim_stat stat;
730ec8c0 1626 unsigned int nr_reclaimed;
02c6de8d
MK
1627 struct page *page, *next;
1628 LIST_HEAD(clean_pages);
1629
1630 list_for_each_entry_safe(page, next, page_list, lru) {
ae37c7ff
OS
1631 if (!PageHuge(page) && page_is_file_lru(page) &&
1632 !PageDirty(page) && !__PageMovable(page) &&
1633 !PageUnevictable(page)) {
02c6de8d
MK
1634 ClearPageActive(page);
1635 list_move(&page->lru, &clean_pages);
1636 }
1637 }
1638
1f318a9b 1639 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 1640 &stat, true);
02c6de8d 1641 list_splice(&clean_pages, page_list);
2da9f630
NP
1642 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1643 -(long)nr_reclaimed);
1f318a9b
JK
1644 /*
1645 * Since lazyfree pages are isolated from file LRU from the beginning,
1646 * they will rotate back to anonymous LRU in the end if it failed to
1647 * discard so isolated count will be mismatched.
1648 * Compensate the isolated count for both LRU lists.
1649 */
1650 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1651 stat.nr_lazyfree_fail);
1652 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 1653 -(long)stat.nr_lazyfree_fail);
1f318a9b 1654 return nr_reclaimed;
02c6de8d
MK
1655}
1656
5ad333eb
AW
1657/*
1658 * Attempt to remove the specified page from its LRU. Only take this page
1659 * if it is of the appropriate PageActive status. Pages which are being
1660 * freed elsewhere are also ignored.
1661 *
1662 * page: page to consider
1663 * mode: one of the LRU isolation modes defined above
1664 *
c2135f7c 1665 * returns true on success, false on failure.
5ad333eb 1666 */
c2135f7c 1667bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
5ad333eb 1668{
5ad333eb
AW
1669 /* Only take pages on the LRU. */
1670 if (!PageLRU(page))
c2135f7c 1671 return false;
5ad333eb 1672
e46a2879
MK
1673 /* Compaction should not handle unevictable pages but CMA can do so */
1674 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
c2135f7c 1675 return false;
894bc310 1676
c8244935
MG
1677 /*
1678 * To minimise LRU disruption, the caller can indicate that it only
1679 * wants to isolate pages it will be able to operate on without
1680 * blocking - clean pages for the most part.
1681 *
c8244935
MG
1682 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1683 * that it is possible to migrate without blocking
1684 */
1276ad68 1685 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1686 /* All the caller can do on PageWriteback is block */
1687 if (PageWriteback(page))
c2135f7c 1688 return false;
c8244935
MG
1689
1690 if (PageDirty(page)) {
1691 struct address_space *mapping;
69d763fc 1692 bool migrate_dirty;
c8244935 1693
c8244935
MG
1694 /*
1695 * Only pages without mappings or that have a
1696 * ->migratepage callback are possible to migrate
69d763fc
MG
1697 * without blocking. However, we can be racing with
1698 * truncation so it's necessary to lock the page
1699 * to stabilise the mapping as truncation holds
1700 * the page lock until after the page is removed
1701 * from the page cache.
c8244935 1702 */
69d763fc 1703 if (!trylock_page(page))
c2135f7c 1704 return false;
69d763fc 1705
c8244935 1706 mapping = page_mapping(page);
145e1a71 1707 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1708 unlock_page(page);
1709 if (!migrate_dirty)
c2135f7c 1710 return false;
c8244935
MG
1711 }
1712 }
39deaf85 1713
f80c0673 1714 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
c2135f7c 1715 return false;
f80c0673 1716
c2135f7c 1717 return true;
5ad333eb
AW
1718}
1719
7ee36a14
MG
1720/*
1721 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 1722 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
1723 */
1724static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1725 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1726{
7ee36a14
MG
1727 int zid;
1728
7ee36a14
MG
1729 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1730 if (!nr_zone_taken[zid])
1731 continue;
1732
a892cb6b 1733 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
1734 }
1735
7ee36a14
MG
1736}
1737
f4b7e272 1738/**
15b44736
HD
1739 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1740 *
1741 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1742 * shrink the lists perform better by taking out a batch of pages
1743 * and working on them outside the LRU lock.
1744 *
1745 * For pagecache intensive workloads, this function is the hottest
1746 * spot in the kernel (apart from copy_*_user functions).
1747 *
15b44736 1748 * Lru_lock must be held before calling this function.
1da177e4 1749 *
791b48b6 1750 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1751 * @lruvec: The LRU vector to pull pages from.
1da177e4 1752 * @dst: The temp list to put pages on to.
f626012d 1753 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1754 * @sc: The scan_control struct for this reclaim session
3cb99451 1755 * @lru: LRU list id for isolating
1da177e4
LT
1756 *
1757 * returns how many pages were moved onto *@dst.
1758 */
69e05944 1759static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1760 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1761 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1762 enum lru_list lru)
1da177e4 1763{
75b00af7 1764 struct list_head *src = &lruvec->lists[lru];
69e05944 1765 unsigned long nr_taken = 0;
599d0c95 1766 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1767 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1768 unsigned long skipped = 0;
791b48b6 1769 unsigned long scan, total_scan, nr_pages;
b2e18757 1770 LIST_HEAD(pages_skipped);
a9e7c39f 1771 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1772
98879b3b 1773 total_scan = 0;
791b48b6 1774 scan = 0;
98879b3b 1775 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1776 struct page *page;
5ad333eb 1777
1da177e4
LT
1778 page = lru_to_page(src);
1779 prefetchw_prev_lru_page(page, src, flags);
1780
d8c6546b 1781 nr_pages = compound_nr(page);
98879b3b
YS
1782 total_scan += nr_pages;
1783
b2e18757
MG
1784 if (page_zonenum(page) > sc->reclaim_idx) {
1785 list_move(&page->lru, &pages_skipped);
98879b3b 1786 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1787 continue;
1788 }
1789
791b48b6
MK
1790 /*
1791 * Do not count skipped pages because that makes the function
1792 * return with no isolated pages if the LRU mostly contains
1793 * ineligible pages. This causes the VM to not reclaim any
1794 * pages, triggering a premature OOM.
98879b3b
YS
1795 *
1796 * Account all tail pages of THP. This would not cause
1797 * premature OOM since __isolate_lru_page() returns -EBUSY
1798 * only when the page is being freed somewhere else.
791b48b6 1799 */
98879b3b 1800 scan += nr_pages;
c2135f7c
AS
1801 if (!__isolate_lru_page_prepare(page, mode)) {
1802 /* It is being freed elsewhere */
1803 list_move(&page->lru, src);
1804 continue;
1805 }
1806 /*
1807 * Be careful not to clear PageLRU until after we're
1808 * sure the page is not being freed elsewhere -- the
1809 * page release code relies on it.
1810 */
1811 if (unlikely(!get_page_unless_zero(page))) {
1812 list_move(&page->lru, src);
1813 continue;
1814 }
5ad333eb 1815
c2135f7c
AS
1816 if (!TestClearPageLRU(page)) {
1817 /* Another thread is already isolating this page */
1818 put_page(page);
5ad333eb 1819 list_move(&page->lru, src);
c2135f7c 1820 continue;
5ad333eb 1821 }
c2135f7c
AS
1822
1823 nr_taken += nr_pages;
1824 nr_zone_taken[page_zonenum(page)] += nr_pages;
1825 list_move(&page->lru, dst);
1da177e4
LT
1826 }
1827
b2e18757
MG
1828 /*
1829 * Splice any skipped pages to the start of the LRU list. Note that
1830 * this disrupts the LRU order when reclaiming for lower zones but
1831 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1832 * scanning would soon rescan the same pages to skip and put the
1833 * system at risk of premature OOM.
1834 */
7cc30fcf
MG
1835 if (!list_empty(&pages_skipped)) {
1836 int zid;
1837
3db65812 1838 list_splice(&pages_skipped, src);
7cc30fcf
MG
1839 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1840 if (!nr_skipped[zid])
1841 continue;
1842
1843 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1844 skipped += nr_skipped[zid];
7cc30fcf
MG
1845 }
1846 }
791b48b6 1847 *nr_scanned = total_scan;
1265e3a6 1848 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1849 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1850 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1851 return nr_taken;
1852}
1853
62695a84
NP
1854/**
1855 * isolate_lru_page - tries to isolate a page from its LRU list
1856 * @page: page to isolate from its LRU list
1857 *
1858 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1859 * vmstat statistic corresponding to whatever LRU list the page was on.
1860 *
1861 * Returns 0 if the page was removed from an LRU list.
1862 * Returns -EBUSY if the page was not on an LRU list.
1863 *
1864 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1865 * the active list, it will have PageActive set. If it was found on
1866 * the unevictable list, it will have the PageUnevictable bit set. That flag
1867 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1868 *
1869 * The vmstat statistic corresponding to the list on which the page was
1870 * found will be decremented.
1871 *
1872 * Restrictions:
a5d09bed 1873 *
62695a84 1874 * (1) Must be called with an elevated refcount on the page. This is a
01c4776b 1875 * fundamental difference from isolate_lru_pages (which is called
62695a84
NP
1876 * without a stable reference).
1877 * (2) the lru_lock must not be held.
1878 * (3) interrupts must be enabled.
1879 */
1880int isolate_lru_page(struct page *page)
1881{
1882 int ret = -EBUSY;
1883
309381fe 1884 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1885 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1886
d25b5bd8 1887 if (TestClearPageLRU(page)) {
fa9add64 1888 struct lruvec *lruvec;
62695a84 1889
d25b5bd8 1890 get_page(page);
6168d0da 1891 lruvec = lock_page_lruvec_irq(page);
46ae6b2c 1892 del_page_from_lru_list(page, lruvec);
6168d0da 1893 unlock_page_lruvec_irq(lruvec);
d25b5bd8 1894 ret = 0;
62695a84 1895 }
d25b5bd8 1896
62695a84
NP
1897 return ret;
1898}
1899
35cd7815 1900/*
d37dd5dc 1901 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 1902 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
1903 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1904 * the LRU list will go small and be scanned faster than necessary, leading to
1905 * unnecessary swapping, thrashing and OOM.
35cd7815 1906 */
599d0c95 1907static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1908 struct scan_control *sc)
1909{
1910 unsigned long inactive, isolated;
1911
1912 if (current_is_kswapd())
1913 return 0;
1914
b5ead35e 1915 if (!writeback_throttling_sane(sc))
35cd7815
RR
1916 return 0;
1917
1918 if (file) {
599d0c95
MG
1919 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1920 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1921 } else {
599d0c95
MG
1922 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1923 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1924 }
1925
3cf23841
FW
1926 /*
1927 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1928 * won't get blocked by normal direct-reclaimers, forming a circular
1929 * deadlock.
1930 */
d0164adc 1931 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1932 inactive >>= 3;
1933
35cd7815
RR
1934 return isolated > inactive;
1935}
1936
a222f341 1937/*
15b44736
HD
1938 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
1939 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
1940 *
1941 * Returns the number of pages moved to the given lruvec.
1942 */
a222f341
KT
1943static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1944 struct list_head *list)
66635629 1945{
a222f341 1946 int nr_pages, nr_moved = 0;
3f79768f 1947 LIST_HEAD(pages_to_free);
a222f341 1948 struct page *page;
66635629 1949
a222f341
KT
1950 while (!list_empty(list)) {
1951 page = lru_to_page(list);
309381fe 1952 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 1953 list_del(&page->lru);
39b5f29a 1954 if (unlikely(!page_evictable(page))) {
6168d0da 1955 spin_unlock_irq(&lruvec->lru_lock);
66635629 1956 putback_lru_page(page);
6168d0da 1957 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
1958 continue;
1959 }
fa9add64 1960
3d06afab
AS
1961 /*
1962 * The SetPageLRU needs to be kept here for list integrity.
1963 * Otherwise:
1964 * #0 move_pages_to_lru #1 release_pages
1965 * if !put_page_testzero
1966 * if (put_page_testzero())
1967 * !PageLRU //skip lru_lock
1968 * SetPageLRU()
1969 * list_add(&page->lru,)
1970 * list_add(&page->lru,)
1971 */
7a608572 1972 SetPageLRU(page);
a222f341 1973
3d06afab 1974 if (unlikely(put_page_testzero(page))) {
87560179 1975 __clear_page_lru_flags(page);
2bcf8879
HD
1976
1977 if (unlikely(PageCompound(page))) {
6168d0da 1978 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 1979 destroy_compound_page(page);
6168d0da 1980 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
1981 } else
1982 list_add(&page->lru, &pages_to_free);
3d06afab
AS
1983
1984 continue;
66635629 1985 }
3d06afab 1986
afca9157
AS
1987 /*
1988 * All pages were isolated from the same lruvec (and isolation
1989 * inhibits memcg migration).
1990 */
2a5e4e34 1991 VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page);
3a9c9788 1992 add_page_to_lru_list(page, lruvec);
3d06afab 1993 nr_pages = thp_nr_pages(page);
3d06afab
AS
1994 nr_moved += nr_pages;
1995 if (PageActive(page))
1996 workingset_age_nonresident(lruvec, nr_pages);
66635629 1997 }
66635629 1998
3f79768f
HD
1999 /*
2000 * To save our caller's stack, now use input list for pages to free.
2001 */
a222f341
KT
2002 list_splice(&pages_to_free, list);
2003
2004 return nr_moved;
66635629
MG
2005}
2006
399ba0b9
N
2007/*
2008 * If a kernel thread (such as nfsd for loop-back mounts) services
a37b0715 2009 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
399ba0b9
N
2010 * In that case we should only throttle if the backing device it is
2011 * writing to is congested. In other cases it is safe to throttle.
2012 */
2013static int current_may_throttle(void)
2014{
a37b0715 2015 return !(current->flags & PF_LOCAL_THROTTLE) ||
399ba0b9
N
2016 current->backing_dev_info == NULL ||
2017 bdi_write_congested(current->backing_dev_info);
2018}
2019
1da177e4 2020/*
b2e18757 2021 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2022 * of reclaimed pages
1da177e4 2023 */
66635629 2024static noinline_for_stack unsigned long
1a93be0e 2025shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2026 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2027{
2028 LIST_HEAD(page_list);
e247dbce 2029 unsigned long nr_scanned;
730ec8c0 2030 unsigned int nr_reclaimed = 0;
e247dbce 2031 unsigned long nr_taken;
060f005f 2032 struct reclaim_stat stat;
497a6c1b 2033 bool file = is_file_lru(lru);
f46b7912 2034 enum vm_event_item item;
599d0c95 2035 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2036 bool stalled = false;
78dc583d 2037
599d0c95 2038 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2039 if (stalled)
2040 return 0;
2041
2042 /* wait a bit for the reclaimer. */
2043 msleep(100);
2044 stalled = true;
35cd7815
RR
2045
2046 /* We are about to die and free our memory. Return now. */
2047 if (fatal_signal_pending(current))
2048 return SWAP_CLUSTER_MAX;
2049 }
2050
1da177e4 2051 lru_add_drain();
f80c0673 2052
6168d0da 2053 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2054
5dc35979 2055 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2056 &nr_scanned, sc, lru);
95d918fc 2057
599d0c95 2058 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2059 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2060 if (!cgroup_reclaim(sc))
f46b7912
KT
2061 __count_vm_events(item, nr_scanned);
2062 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2063 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2064
6168d0da 2065 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2066
d563c050 2067 if (nr_taken == 0)
66635629 2068 return 0;
5ad333eb 2069
013339df 2070 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2071
6168d0da 2072 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2073 move_pages_to_lru(lruvec, &page_list);
2074
2075 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2076 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2077 if (!cgroup_reclaim(sc))
f46b7912
KT
2078 __count_vm_events(item, nr_reclaimed);
2079 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2080 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2081 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2082
75cc3c91 2083 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2084 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2085 free_unref_page_list(&page_list);
e11da5b4 2086
1c610d5f
AR
2087 /*
2088 * If dirty pages are scanned that are not queued for IO, it
2089 * implies that flushers are not doing their job. This can
2090 * happen when memory pressure pushes dirty pages to the end of
2091 * the LRU before the dirty limits are breached and the dirty
2092 * data has expired. It can also happen when the proportion of
2093 * dirty pages grows not through writes but through memory
2094 * pressure reclaiming all the clean cache. And in some cases,
2095 * the flushers simply cannot keep up with the allocation
2096 * rate. Nudge the flusher threads in case they are asleep.
2097 */
2098 if (stat.nr_unqueued_dirty == nr_taken)
2099 wakeup_flusher_threads(WB_REASON_VMSCAN);
2100
d108c772
AR
2101 sc->nr.dirty += stat.nr_dirty;
2102 sc->nr.congested += stat.nr_congested;
2103 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2104 sc->nr.writeback += stat.nr_writeback;
2105 sc->nr.immediate += stat.nr_immediate;
2106 sc->nr.taken += nr_taken;
2107 if (file)
2108 sc->nr.file_taken += nr_taken;
8e950282 2109
599d0c95 2110 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2111 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2112 return nr_reclaimed;
1da177e4
LT
2113}
2114
15b44736
HD
2115/*
2116 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2117 *
2118 * We move them the other way if the page is referenced by one or more
2119 * processes.
2120 *
2121 * If the pages are mostly unmapped, the processing is fast and it is
2122 * appropriate to hold lru_lock across the whole operation. But if
2123 * the pages are mapped, the processing is slow (page_referenced()), so
2124 * we should drop lru_lock around each page. It's impossible to balance
2125 * this, so instead we remove the pages from the LRU while processing them.
2126 * It is safe to rely on PG_active against the non-LRU pages in here because
2127 * nobody will play with that bit on a non-LRU page.
2128 *
2129 * The downside is that we have to touch page->_refcount against each page.
2130 * But we had to alter page->flags anyway.
2131 */
f626012d 2132static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2133 struct lruvec *lruvec,
f16015fb 2134 struct scan_control *sc,
9e3b2f8c 2135 enum lru_list lru)
1da177e4 2136{
44c241f1 2137 unsigned long nr_taken;
f626012d 2138 unsigned long nr_scanned;
6fe6b7e3 2139 unsigned long vm_flags;
1da177e4 2140 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2141 LIST_HEAD(l_active);
b69408e8 2142 LIST_HEAD(l_inactive);
1da177e4 2143 struct page *page;
9d998b4f
MH
2144 unsigned nr_deactivate, nr_activate;
2145 unsigned nr_rotated = 0;
3cb99451 2146 int file = is_file_lru(lru);
599d0c95 2147 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2148
2149 lru_add_drain();
f80c0673 2150
6168d0da 2151 spin_lock_irq(&lruvec->lru_lock);
925b7673 2152
5dc35979 2153 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2154 &nr_scanned, sc, lru);
89b5fae5 2155
599d0c95 2156 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2157
912c0572
SB
2158 if (!cgroup_reclaim(sc))
2159 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2160 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2161
6168d0da 2162 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2163
1da177e4
LT
2164 while (!list_empty(&l_hold)) {
2165 cond_resched();
2166 page = lru_to_page(&l_hold);
2167 list_del(&page->lru);
7e9cd484 2168
39b5f29a 2169 if (unlikely(!page_evictable(page))) {
894bc310
LS
2170 putback_lru_page(page);
2171 continue;
2172 }
2173
cc715d99
MG
2174 if (unlikely(buffer_heads_over_limit)) {
2175 if (page_has_private(page) && trylock_page(page)) {
2176 if (page_has_private(page))
2177 try_to_release_page(page, 0);
2178 unlock_page(page);
2179 }
2180 }
2181
c3ac9a8a
JW
2182 if (page_referenced(page, 0, sc->target_mem_cgroup,
2183 &vm_flags)) {
8cab4754
WF
2184 /*
2185 * Identify referenced, file-backed active pages and
2186 * give them one more trip around the active list. So
2187 * that executable code get better chances to stay in
2188 * memory under moderate memory pressure. Anon pages
2189 * are not likely to be evicted by use-once streaming
2190 * IO, plus JVM can create lots of anon VM_EXEC pages,
2191 * so we ignore them here.
2192 */
9de4f22a 2193 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2194 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2195 list_add(&page->lru, &l_active);
2196 continue;
2197 }
2198 }
7e9cd484 2199
5205e56e 2200 ClearPageActive(page); /* we are de-activating */
1899ad18 2201 SetPageWorkingset(page);
1da177e4
LT
2202 list_add(&page->lru, &l_inactive);
2203 }
2204
b555749a 2205 /*
8cab4754 2206 * Move pages back to the lru list.
b555749a 2207 */
6168d0da 2208 spin_lock_irq(&lruvec->lru_lock);
556adecb 2209
a222f341
KT
2210 nr_activate = move_pages_to_lru(lruvec, &l_active);
2211 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2212 /* Keep all free pages in l_active list */
2213 list_splice(&l_inactive, &l_active);
9851ac13
KT
2214
2215 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2216 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2217
599d0c95 2218 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2219 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2220
f372d89e
KT
2221 mem_cgroup_uncharge_list(&l_active);
2222 free_unref_page_list(&l_active);
9d998b4f
MH
2223 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2224 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2225}
2226
1a4e58cc
MK
2227unsigned long reclaim_pages(struct list_head *page_list)
2228{
f661d007 2229 int nid = NUMA_NO_NODE;
730ec8c0 2230 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2231 LIST_HEAD(node_page_list);
2232 struct reclaim_stat dummy_stat;
2233 struct page *page;
2234 struct scan_control sc = {
2235 .gfp_mask = GFP_KERNEL,
2236 .priority = DEF_PRIORITY,
2237 .may_writepage = 1,
2238 .may_unmap = 1,
2239 .may_swap = 1,
2240 };
2241
2242 while (!list_empty(page_list)) {
2243 page = lru_to_page(page_list);
f661d007 2244 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2245 nid = page_to_nid(page);
2246 INIT_LIST_HEAD(&node_page_list);
2247 }
2248
2249 if (nid == page_to_nid(page)) {
2250 ClearPageActive(page);
2251 list_move(&page->lru, &node_page_list);
2252 continue;
2253 }
2254
2255 nr_reclaimed += shrink_page_list(&node_page_list,
2256 NODE_DATA(nid),
013339df 2257 &sc, &dummy_stat, false);
1a4e58cc
MK
2258 while (!list_empty(&node_page_list)) {
2259 page = lru_to_page(&node_page_list);
2260 list_del(&page->lru);
2261 putback_lru_page(page);
2262 }
2263
f661d007 2264 nid = NUMA_NO_NODE;
1a4e58cc
MK
2265 }
2266
2267 if (!list_empty(&node_page_list)) {
2268 nr_reclaimed += shrink_page_list(&node_page_list,
2269 NODE_DATA(nid),
013339df 2270 &sc, &dummy_stat, false);
1a4e58cc
MK
2271 while (!list_empty(&node_page_list)) {
2272 page = lru_to_page(&node_page_list);
2273 list_del(&page->lru);
2274 putback_lru_page(page);
2275 }
2276 }
2277
2278 return nr_reclaimed;
2279}
2280
b91ac374
JW
2281static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2282 struct lruvec *lruvec, struct scan_control *sc)
2283{
2284 if (is_active_lru(lru)) {
2285 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2286 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2287 else
2288 sc->skipped_deactivate = 1;
2289 return 0;
2290 }
2291
2292 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2293}
2294
59dc76b0
RR
2295/*
2296 * The inactive anon list should be small enough that the VM never has
2297 * to do too much work.
14797e23 2298 *
59dc76b0
RR
2299 * The inactive file list should be small enough to leave most memory
2300 * to the established workingset on the scan-resistant active list,
2301 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2302 *
59dc76b0
RR
2303 * Both inactive lists should also be large enough that each inactive
2304 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2305 *
2a2e4885
JW
2306 * If that fails and refaulting is observed, the inactive list grows.
2307 *
59dc76b0 2308 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2309 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2310 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2311 *
59dc76b0
RR
2312 * total target max
2313 * memory ratio inactive
2314 * -------------------------------------
2315 * 10MB 1 5MB
2316 * 100MB 1 50MB
2317 * 1GB 3 250MB
2318 * 10GB 10 0.9GB
2319 * 100GB 31 3GB
2320 * 1TB 101 10GB
2321 * 10TB 320 32GB
56e49d21 2322 */
b91ac374 2323static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2324{
b91ac374 2325 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2326 unsigned long inactive, active;
2327 unsigned long inactive_ratio;
59dc76b0 2328 unsigned long gb;
e3790144 2329
b91ac374
JW
2330 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2331 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2332
b91ac374 2333 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2334 if (gb)
b91ac374
JW
2335 inactive_ratio = int_sqrt(10 * gb);
2336 else
2337 inactive_ratio = 1;
fd538803 2338
59dc76b0 2339 return inactive * inactive_ratio < active;
b39415b2
RR
2340}
2341
9a265114
JW
2342enum scan_balance {
2343 SCAN_EQUAL,
2344 SCAN_FRACT,
2345 SCAN_ANON,
2346 SCAN_FILE,
2347};
2348
4f98a2fe
RR
2349/*
2350 * Determine how aggressively the anon and file LRU lists should be
2351 * scanned. The relative value of each set of LRU lists is determined
2352 * by looking at the fraction of the pages scanned we did rotate back
2353 * onto the active list instead of evict.
2354 *
be7bd59d
WL
2355 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2356 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2357 */
afaf07a6
JW
2358static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2359 unsigned long *nr)
4f98a2fe 2360{
afaf07a6 2361 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2362 unsigned long anon_cost, file_cost, total_cost;
33377678 2363 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2364 u64 fraction[ANON_AND_FILE];
9a265114 2365 u64 denominator = 0; /* gcc */
9a265114 2366 enum scan_balance scan_balance;
4f98a2fe 2367 unsigned long ap, fp;
4111304d 2368 enum lru_list lru;
76a33fc3
SL
2369
2370 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2371 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2372 scan_balance = SCAN_FILE;
76a33fc3
SL
2373 goto out;
2374 }
4f98a2fe 2375
10316b31
JW
2376 /*
2377 * Global reclaim will swap to prevent OOM even with no
2378 * swappiness, but memcg users want to use this knob to
2379 * disable swapping for individual groups completely when
2380 * using the memory controller's swap limit feature would be
2381 * too expensive.
2382 */
b5ead35e 2383 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2384 scan_balance = SCAN_FILE;
10316b31
JW
2385 goto out;
2386 }
2387
2388 /*
2389 * Do not apply any pressure balancing cleverness when the
2390 * system is close to OOM, scan both anon and file equally
2391 * (unless the swappiness setting disagrees with swapping).
2392 */
02695175 2393 if (!sc->priority && swappiness) {
9a265114 2394 scan_balance = SCAN_EQUAL;
10316b31
JW
2395 goto out;
2396 }
2397
62376251 2398 /*
53138cea 2399 * If the system is almost out of file pages, force-scan anon.
62376251 2400 */
b91ac374 2401 if (sc->file_is_tiny) {
53138cea
JW
2402 scan_balance = SCAN_ANON;
2403 goto out;
62376251
JW
2404 }
2405
7c5bd705 2406 /*
b91ac374
JW
2407 * If there is enough inactive page cache, we do not reclaim
2408 * anything from the anonymous working right now.
7c5bd705 2409 */
b91ac374 2410 if (sc->cache_trim_mode) {
9a265114 2411 scan_balance = SCAN_FILE;
7c5bd705
JW
2412 goto out;
2413 }
2414
9a265114 2415 scan_balance = SCAN_FRACT;
58c37f6e 2416 /*
314b57fb
JW
2417 * Calculate the pressure balance between anon and file pages.
2418 *
2419 * The amount of pressure we put on each LRU is inversely
2420 * proportional to the cost of reclaiming each list, as
2421 * determined by the share of pages that are refaulting, times
2422 * the relative IO cost of bringing back a swapped out
2423 * anonymous page vs reloading a filesystem page (swappiness).
2424 *
d483a5dd
JW
2425 * Although we limit that influence to ensure no list gets
2426 * left behind completely: at least a third of the pressure is
2427 * applied, before swappiness.
2428 *
314b57fb 2429 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2430 */
d483a5dd
JW
2431 total_cost = sc->anon_cost + sc->file_cost;
2432 anon_cost = total_cost + sc->anon_cost;
2433 file_cost = total_cost + sc->file_cost;
2434 total_cost = anon_cost + file_cost;
58c37f6e 2435
d483a5dd
JW
2436 ap = swappiness * (total_cost + 1);
2437 ap /= anon_cost + 1;
4f98a2fe 2438
d483a5dd
JW
2439 fp = (200 - swappiness) * (total_cost + 1);
2440 fp /= file_cost + 1;
4f98a2fe 2441
76a33fc3
SL
2442 fraction[0] = ap;
2443 fraction[1] = fp;
a4fe1631 2444 denominator = ap + fp;
76a33fc3 2445out:
688035f7
JW
2446 for_each_evictable_lru(lru) {
2447 int file = is_file_lru(lru);
9783aa99 2448 unsigned long lruvec_size;
688035f7 2449 unsigned long scan;
1bc63fb1 2450 unsigned long protection;
9783aa99
CD
2451
2452 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
22f7496f
YS
2453 protection = mem_cgroup_protection(sc->target_mem_cgroup,
2454 memcg,
1bc63fb1 2455 sc->memcg_low_reclaim);
9783aa99 2456
1bc63fb1 2457 if (protection) {
9783aa99
CD
2458 /*
2459 * Scale a cgroup's reclaim pressure by proportioning
2460 * its current usage to its memory.low or memory.min
2461 * setting.
2462 *
2463 * This is important, as otherwise scanning aggression
2464 * becomes extremely binary -- from nothing as we
2465 * approach the memory protection threshold, to totally
2466 * nominal as we exceed it. This results in requiring
2467 * setting extremely liberal protection thresholds. It
2468 * also means we simply get no protection at all if we
2469 * set it too low, which is not ideal.
1bc63fb1
CD
2470 *
2471 * If there is any protection in place, we reduce scan
2472 * pressure by how much of the total memory used is
2473 * within protection thresholds.
9783aa99 2474 *
9de7ca46
CD
2475 * There is one special case: in the first reclaim pass,
2476 * we skip over all groups that are within their low
2477 * protection. If that fails to reclaim enough pages to
2478 * satisfy the reclaim goal, we come back and override
2479 * the best-effort low protection. However, we still
2480 * ideally want to honor how well-behaved groups are in
2481 * that case instead of simply punishing them all
2482 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2483 * memory they are using, reducing the scan pressure
2484 * again by how much of the total memory used is under
2485 * hard protection.
9783aa99 2486 */
1bc63fb1
CD
2487 unsigned long cgroup_size = mem_cgroup_size(memcg);
2488
2489 /* Avoid TOCTOU with earlier protection check */
2490 cgroup_size = max(cgroup_size, protection);
2491
2492 scan = lruvec_size - lruvec_size * protection /
2493 cgroup_size;
9783aa99
CD
2494
2495 /*
1bc63fb1 2496 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2497 * reclaim moving forwards, avoiding decrementing
9de7ca46 2498 * sc->priority further than desirable.
9783aa99 2499 */
1bc63fb1 2500 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2501 } else {
2502 scan = lruvec_size;
2503 }
2504
2505 scan >>= sc->priority;
6b4f7799 2506
688035f7
JW
2507 /*
2508 * If the cgroup's already been deleted, make sure to
2509 * scrape out the remaining cache.
2510 */
2511 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2512 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2513
688035f7
JW
2514 switch (scan_balance) {
2515 case SCAN_EQUAL:
2516 /* Scan lists relative to size */
2517 break;
2518 case SCAN_FRACT:
9a265114 2519 /*
688035f7
JW
2520 * Scan types proportional to swappiness and
2521 * their relative recent reclaim efficiency.
76073c64
GS
2522 * Make sure we don't miss the last page on
2523 * the offlined memory cgroups because of a
2524 * round-off error.
9a265114 2525 */
76073c64
GS
2526 scan = mem_cgroup_online(memcg) ?
2527 div64_u64(scan * fraction[file], denominator) :
2528 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2529 denominator);
688035f7
JW
2530 break;
2531 case SCAN_FILE:
2532 case SCAN_ANON:
2533 /* Scan one type exclusively */
e072bff6 2534 if ((scan_balance == SCAN_FILE) != file)
688035f7 2535 scan = 0;
688035f7
JW
2536 break;
2537 default:
2538 /* Look ma, no brain */
2539 BUG();
9a265114 2540 }
688035f7 2541
688035f7 2542 nr[lru] = scan;
76a33fc3 2543 }
6e08a369 2544}
4f98a2fe 2545
afaf07a6 2546static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2547{
2548 unsigned long nr[NR_LRU_LISTS];
e82e0561 2549 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2550 unsigned long nr_to_scan;
2551 enum lru_list lru;
2552 unsigned long nr_reclaimed = 0;
2553 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2554 struct blk_plug plug;
1a501907 2555 bool scan_adjusted;
9b4f98cd 2556
afaf07a6 2557 get_scan_count(lruvec, sc, nr);
9b4f98cd 2558
e82e0561
MG
2559 /* Record the original scan target for proportional adjustments later */
2560 memcpy(targets, nr, sizeof(nr));
2561
1a501907
MG
2562 /*
2563 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2564 * event that can occur when there is little memory pressure e.g.
2565 * multiple streaming readers/writers. Hence, we do not abort scanning
2566 * when the requested number of pages are reclaimed when scanning at
2567 * DEF_PRIORITY on the assumption that the fact we are direct
2568 * reclaiming implies that kswapd is not keeping up and it is best to
2569 * do a batch of work at once. For memcg reclaim one check is made to
2570 * abort proportional reclaim if either the file or anon lru has already
2571 * dropped to zero at the first pass.
2572 */
b5ead35e 2573 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2574 sc->priority == DEF_PRIORITY);
2575
9b4f98cd
JW
2576 blk_start_plug(&plug);
2577 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2578 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2579 unsigned long nr_anon, nr_file, percentage;
2580 unsigned long nr_scanned;
2581
9b4f98cd
JW
2582 for_each_evictable_lru(lru) {
2583 if (nr[lru]) {
2584 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2585 nr[lru] -= nr_to_scan;
2586
2587 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2588 lruvec, sc);
9b4f98cd
JW
2589 }
2590 }
e82e0561 2591
bd041733
MH
2592 cond_resched();
2593
e82e0561
MG
2594 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2595 continue;
2596
e82e0561
MG
2597 /*
2598 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2599 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2600 * proportionally what was requested by get_scan_count(). We
2601 * stop reclaiming one LRU and reduce the amount scanning
2602 * proportional to the original scan target.
2603 */
2604 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2605 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2606
1a501907
MG
2607 /*
2608 * It's just vindictive to attack the larger once the smaller
2609 * has gone to zero. And given the way we stop scanning the
2610 * smaller below, this makes sure that we only make one nudge
2611 * towards proportionality once we've got nr_to_reclaim.
2612 */
2613 if (!nr_file || !nr_anon)
2614 break;
2615
e82e0561
MG
2616 if (nr_file > nr_anon) {
2617 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2618 targets[LRU_ACTIVE_ANON] + 1;
2619 lru = LRU_BASE;
2620 percentage = nr_anon * 100 / scan_target;
2621 } else {
2622 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2623 targets[LRU_ACTIVE_FILE] + 1;
2624 lru = LRU_FILE;
2625 percentage = nr_file * 100 / scan_target;
2626 }
2627
2628 /* Stop scanning the smaller of the LRU */
2629 nr[lru] = 0;
2630 nr[lru + LRU_ACTIVE] = 0;
2631
2632 /*
2633 * Recalculate the other LRU scan count based on its original
2634 * scan target and the percentage scanning already complete
2635 */
2636 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2637 nr_scanned = targets[lru] - nr[lru];
2638 nr[lru] = targets[lru] * (100 - percentage) / 100;
2639 nr[lru] -= min(nr[lru], nr_scanned);
2640
2641 lru += LRU_ACTIVE;
2642 nr_scanned = targets[lru] - nr[lru];
2643 nr[lru] = targets[lru] * (100 - percentage) / 100;
2644 nr[lru] -= min(nr[lru], nr_scanned);
2645
2646 scan_adjusted = true;
9b4f98cd
JW
2647 }
2648 blk_finish_plug(&plug);
2649 sc->nr_reclaimed += nr_reclaimed;
2650
2651 /*
2652 * Even if we did not try to evict anon pages at all, we want to
2653 * rebalance the anon lru active/inactive ratio.
2654 */
b91ac374 2655 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
2656 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2657 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2658}
2659
23b9da55 2660/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2661static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2662{
d84da3f9 2663 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2664 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2665 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2666 return true;
2667
2668 return false;
2669}
2670
3e7d3449 2671/*
23b9da55
MG
2672 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2673 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2674 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 2675 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 2676 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2677 */
a9dd0a83 2678static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 2679 unsigned long nr_reclaimed,
3e7d3449
MG
2680 struct scan_control *sc)
2681{
2682 unsigned long pages_for_compaction;
2683 unsigned long inactive_lru_pages;
a9dd0a83 2684 int z;
3e7d3449
MG
2685
2686 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2687 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2688 return false;
2689
5ee04716
VB
2690 /*
2691 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2692 * number of pages that were scanned. This will return to the caller
2693 * with the risk reclaim/compaction and the resulting allocation attempt
2694 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2695 * allocations through requiring that the full LRU list has been scanned
2696 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2697 * scan, but that approximation was wrong, and there were corner cases
2698 * where always a non-zero amount of pages were scanned.
2699 */
2700 if (!nr_reclaimed)
2701 return false;
3e7d3449 2702
3e7d3449 2703 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2704 for (z = 0; z <= sc->reclaim_idx; z++) {
2705 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2706 if (!managed_zone(zone))
a9dd0a83
MG
2707 continue;
2708
2709 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2710 case COMPACT_SUCCESS:
a9dd0a83
MG
2711 case COMPACT_CONTINUE:
2712 return false;
2713 default:
2714 /* check next zone */
2715 ;
2716 }
3e7d3449 2717 }
1c6c1597
HD
2718
2719 /*
2720 * If we have not reclaimed enough pages for compaction and the
2721 * inactive lists are large enough, continue reclaiming
2722 */
2723 pages_for_compaction = compact_gap(sc->order);
2724 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2725 if (get_nr_swap_pages() > 0)
2726 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2727
5ee04716 2728 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
2729}
2730
0f6a5cff 2731static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2732{
0f6a5cff 2733 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 2734 struct mem_cgroup *memcg;
1da177e4 2735
0f6a5cff 2736 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 2737 do {
afaf07a6 2738 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
2739 unsigned long reclaimed;
2740 unsigned long scanned;
5660048c 2741
e3336cab
XP
2742 /*
2743 * This loop can become CPU-bound when target memcgs
2744 * aren't eligible for reclaim - either because they
2745 * don't have any reclaimable pages, or because their
2746 * memory is explicitly protected. Avoid soft lockups.
2747 */
2748 cond_resched();
2749
45c7f7e1
CD
2750 mem_cgroup_calculate_protection(target_memcg, memcg);
2751
2752 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
2753 /*
2754 * Hard protection.
2755 * If there is no reclaimable memory, OOM.
2756 */
2757 continue;
45c7f7e1 2758 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
2759 /*
2760 * Soft protection.
2761 * Respect the protection only as long as
2762 * there is an unprotected supply
2763 * of reclaimable memory from other cgroups.
2764 */
2765 if (!sc->memcg_low_reclaim) {
2766 sc->memcg_low_skipped = 1;
bf8d5d52 2767 continue;
241994ed 2768 }
d2af3397 2769 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 2770 }
241994ed 2771
d2af3397
JW
2772 reclaimed = sc->nr_reclaimed;
2773 scanned = sc->nr_scanned;
afaf07a6
JW
2774
2775 shrink_lruvec(lruvec, sc);
70ddf637 2776
d2af3397
JW
2777 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2778 sc->priority);
6b4f7799 2779
d2af3397
JW
2780 /* Record the group's reclaim efficiency */
2781 vmpressure(sc->gfp_mask, memcg, false,
2782 sc->nr_scanned - scanned,
2783 sc->nr_reclaimed - reclaimed);
70ddf637 2784
0f6a5cff
JW
2785 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2786}
2787
6c9e0907 2788static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
2789{
2790 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 2791 unsigned long nr_reclaimed, nr_scanned;
1b05117d 2792 struct lruvec *target_lruvec;
0f6a5cff 2793 bool reclaimable = false;
b91ac374 2794 unsigned long file;
0f6a5cff 2795
1b05117d
JW
2796 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2797
0f6a5cff
JW
2798again:
2799 memset(&sc->nr, 0, sizeof(sc->nr));
2800
2801 nr_reclaimed = sc->nr_reclaimed;
2802 nr_scanned = sc->nr_scanned;
2803
7cf111bc
JW
2804 /*
2805 * Determine the scan balance between anon and file LRUs.
2806 */
6168d0da 2807 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
2808 sc->anon_cost = target_lruvec->anon_cost;
2809 sc->file_cost = target_lruvec->file_cost;
6168d0da 2810 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 2811
b91ac374
JW
2812 /*
2813 * Target desirable inactive:active list ratios for the anon
2814 * and file LRU lists.
2815 */
2816 if (!sc->force_deactivate) {
2817 unsigned long refaults;
2818
170b04b7
JK
2819 refaults = lruvec_page_state(target_lruvec,
2820 WORKINGSET_ACTIVATE_ANON);
2821 if (refaults != target_lruvec->refaults[0] ||
2822 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
2823 sc->may_deactivate |= DEACTIVATE_ANON;
2824 else
2825 sc->may_deactivate &= ~DEACTIVATE_ANON;
2826
2827 /*
2828 * When refaults are being observed, it means a new
2829 * workingset is being established. Deactivate to get
2830 * rid of any stale active pages quickly.
2831 */
2832 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
2833 WORKINGSET_ACTIVATE_FILE);
2834 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
2835 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2836 sc->may_deactivate |= DEACTIVATE_FILE;
2837 else
2838 sc->may_deactivate &= ~DEACTIVATE_FILE;
2839 } else
2840 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2841
2842 /*
2843 * If we have plenty of inactive file pages that aren't
2844 * thrashing, try to reclaim those first before touching
2845 * anonymous pages.
2846 */
2847 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2848 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2849 sc->cache_trim_mode = 1;
2850 else
2851 sc->cache_trim_mode = 0;
2852
53138cea
JW
2853 /*
2854 * Prevent the reclaimer from falling into the cache trap: as
2855 * cache pages start out inactive, every cache fault will tip
2856 * the scan balance towards the file LRU. And as the file LRU
2857 * shrinks, so does the window for rotation from references.
2858 * This means we have a runaway feedback loop where a tiny
2859 * thrashing file LRU becomes infinitely more attractive than
2860 * anon pages. Try to detect this based on file LRU size.
2861 */
2862 if (!cgroup_reclaim(sc)) {
53138cea 2863 unsigned long total_high_wmark = 0;
b91ac374
JW
2864 unsigned long free, anon;
2865 int z;
53138cea
JW
2866
2867 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2868 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2869 node_page_state(pgdat, NR_INACTIVE_FILE);
2870
2871 for (z = 0; z < MAX_NR_ZONES; z++) {
2872 struct zone *zone = &pgdat->node_zones[z];
2873 if (!managed_zone(zone))
2874 continue;
2875
2876 total_high_wmark += high_wmark_pages(zone);
2877 }
2878
b91ac374
JW
2879 /*
2880 * Consider anon: if that's low too, this isn't a
2881 * runaway file reclaim problem, but rather just
2882 * extreme pressure. Reclaim as per usual then.
2883 */
2884 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2885
2886 sc->file_is_tiny =
2887 file + free <= total_high_wmark &&
2888 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2889 anon >> sc->priority;
53138cea
JW
2890 }
2891
0f6a5cff 2892 shrink_node_memcgs(pgdat, sc);
2344d7e4 2893
d2af3397
JW
2894 if (reclaim_state) {
2895 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2896 reclaim_state->reclaimed_slab = 0;
2897 }
d108c772 2898
d2af3397 2899 /* Record the subtree's reclaim efficiency */
1b05117d 2900 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
2901 sc->nr_scanned - nr_scanned,
2902 sc->nr_reclaimed - nr_reclaimed);
d108c772 2903
d2af3397
JW
2904 if (sc->nr_reclaimed - nr_reclaimed)
2905 reclaimable = true;
d108c772 2906
d2af3397
JW
2907 if (current_is_kswapd()) {
2908 /*
2909 * If reclaim is isolating dirty pages under writeback,
2910 * it implies that the long-lived page allocation rate
2911 * is exceeding the page laundering rate. Either the
2912 * global limits are not being effective at throttling
2913 * processes due to the page distribution throughout
2914 * zones or there is heavy usage of a slow backing
2915 * device. The only option is to throttle from reclaim
2916 * context which is not ideal as there is no guarantee
2917 * the dirtying process is throttled in the same way
2918 * balance_dirty_pages() manages.
2919 *
2920 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2921 * count the number of pages under pages flagged for
2922 * immediate reclaim and stall if any are encountered
2923 * in the nr_immediate check below.
2924 */
2925 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2926 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2927
d2af3397
JW
2928 /* Allow kswapd to start writing pages during reclaim.*/
2929 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2930 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 2931
d108c772 2932 /*
1eba09c1 2933 * If kswapd scans pages marked for immediate
d2af3397
JW
2934 * reclaim and under writeback (nr_immediate), it
2935 * implies that pages are cycling through the LRU
2936 * faster than they are written so also forcibly stall.
d108c772 2937 */
d2af3397
JW
2938 if (sc->nr.immediate)
2939 congestion_wait(BLK_RW_ASYNC, HZ/10);
2940 }
2941
2942 /*
1b05117d
JW
2943 * Tag a node/memcg as congested if all the dirty pages
2944 * scanned were backed by a congested BDI and
2945 * wait_iff_congested will stall.
2946 *
d2af3397
JW
2947 * Legacy memcg will stall in page writeback so avoid forcibly
2948 * stalling in wait_iff_congested().
2949 */
1b05117d
JW
2950 if ((current_is_kswapd() ||
2951 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 2952 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 2953 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
2954
2955 /*
2956 * Stall direct reclaim for IO completions if underlying BDIs
2957 * and node is congested. Allow kswapd to continue until it
2958 * starts encountering unqueued dirty pages or cycling through
2959 * the LRU too quickly.
2960 */
1b05117d
JW
2961 if (!current_is_kswapd() && current_may_throttle() &&
2962 !sc->hibernation_mode &&
2963 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
d2af3397 2964 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2965
d2af3397
JW
2966 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2967 sc))
2968 goto again;
2344d7e4 2969
c73322d0
JW
2970 /*
2971 * Kswapd gives up on balancing particular nodes after too
2972 * many failures to reclaim anything from them and goes to
2973 * sleep. On reclaim progress, reset the failure counter. A
2974 * successful direct reclaim run will revive a dormant kswapd.
2975 */
2976 if (reclaimable)
2977 pgdat->kswapd_failures = 0;
f16015fb
JW
2978}
2979
53853e2d 2980/*
fdd4c614
VB
2981 * Returns true if compaction should go ahead for a costly-order request, or
2982 * the allocation would already succeed without compaction. Return false if we
2983 * should reclaim first.
53853e2d 2984 */
4f588331 2985static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2986{
31483b6a 2987 unsigned long watermark;
fdd4c614 2988 enum compact_result suitable;
fe4b1b24 2989
fdd4c614
VB
2990 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2991 if (suitable == COMPACT_SUCCESS)
2992 /* Allocation should succeed already. Don't reclaim. */
2993 return true;
2994 if (suitable == COMPACT_SKIPPED)
2995 /* Compaction cannot yet proceed. Do reclaim. */
2996 return false;
fe4b1b24 2997
53853e2d 2998 /*
fdd4c614
VB
2999 * Compaction is already possible, but it takes time to run and there
3000 * are potentially other callers using the pages just freed. So proceed
3001 * with reclaim to make a buffer of free pages available to give
3002 * compaction a reasonable chance of completing and allocating the page.
3003 * Note that we won't actually reclaim the whole buffer in one attempt
3004 * as the target watermark in should_continue_reclaim() is lower. But if
3005 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3006 */
fdd4c614 3007 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3008
fdd4c614 3009 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3010}
3011
1da177e4
LT
3012/*
3013 * This is the direct reclaim path, for page-allocating processes. We only
3014 * try to reclaim pages from zones which will satisfy the caller's allocation
3015 * request.
3016 *
1da177e4
LT
3017 * If a zone is deemed to be full of pinned pages then just give it a light
3018 * scan then give up on it.
3019 */
0a0337e0 3020static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3021{
dd1a239f 3022 struct zoneref *z;
54a6eb5c 3023 struct zone *zone;
0608f43d
AM
3024 unsigned long nr_soft_reclaimed;
3025 unsigned long nr_soft_scanned;
619d0d76 3026 gfp_t orig_mask;
79dafcdc 3027 pg_data_t *last_pgdat = NULL;
1cfb419b 3028
cc715d99
MG
3029 /*
3030 * If the number of buffer_heads in the machine exceeds the maximum
3031 * allowed level, force direct reclaim to scan the highmem zone as
3032 * highmem pages could be pinning lowmem pages storing buffer_heads
3033 */
619d0d76 3034 orig_mask = sc->gfp_mask;
b2e18757 3035 if (buffer_heads_over_limit) {
cc715d99 3036 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3037 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3038 }
cc715d99 3039
d4debc66 3040 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3041 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3042 /*
3043 * Take care memory controller reclaiming has small influence
3044 * to global LRU.
3045 */
b5ead35e 3046 if (!cgroup_reclaim(sc)) {
344736f2
VD
3047 if (!cpuset_zone_allowed(zone,
3048 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3049 continue;
65ec02cb 3050
0b06496a
JW
3051 /*
3052 * If we already have plenty of memory free for
3053 * compaction in this zone, don't free any more.
3054 * Even though compaction is invoked for any
3055 * non-zero order, only frequent costly order
3056 * reclamation is disruptive enough to become a
3057 * noticeable problem, like transparent huge
3058 * page allocations.
3059 */
3060 if (IS_ENABLED(CONFIG_COMPACTION) &&
3061 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3062 compaction_ready(zone, sc)) {
0b06496a
JW
3063 sc->compaction_ready = true;
3064 continue;
e0887c19 3065 }
0b06496a 3066
79dafcdc
MG
3067 /*
3068 * Shrink each node in the zonelist once. If the
3069 * zonelist is ordered by zone (not the default) then a
3070 * node may be shrunk multiple times but in that case
3071 * the user prefers lower zones being preserved.
3072 */
3073 if (zone->zone_pgdat == last_pgdat)
3074 continue;
3075
0608f43d
AM
3076 /*
3077 * This steals pages from memory cgroups over softlimit
3078 * and returns the number of reclaimed pages and
3079 * scanned pages. This works for global memory pressure
3080 * and balancing, not for a memcg's limit.
3081 */
3082 nr_soft_scanned = 0;
ef8f2327 3083 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3084 sc->order, sc->gfp_mask,
3085 &nr_soft_scanned);
3086 sc->nr_reclaimed += nr_soft_reclaimed;
3087 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3088 /* need some check for avoid more shrink_zone() */
1cfb419b 3089 }
408d8544 3090
79dafcdc
MG
3091 /* See comment about same check for global reclaim above */
3092 if (zone->zone_pgdat == last_pgdat)
3093 continue;
3094 last_pgdat = zone->zone_pgdat;
970a39a3 3095 shrink_node(zone->zone_pgdat, sc);
1da177e4 3096 }
e0c23279 3097
619d0d76
WY
3098 /*
3099 * Restore to original mask to avoid the impact on the caller if we
3100 * promoted it to __GFP_HIGHMEM.
3101 */
3102 sc->gfp_mask = orig_mask;
1da177e4 3103}
4f98a2fe 3104
b910718a 3105static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3106{
b910718a
JW
3107 struct lruvec *target_lruvec;
3108 unsigned long refaults;
2a2e4885 3109
b910718a 3110 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3111 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3112 target_lruvec->refaults[0] = refaults;
3113 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3114 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3115}
3116
1da177e4
LT
3117/*
3118 * This is the main entry point to direct page reclaim.
3119 *
3120 * If a full scan of the inactive list fails to free enough memory then we
3121 * are "out of memory" and something needs to be killed.
3122 *
3123 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3124 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3125 * caller can't do much about. We kick the writeback threads and take explicit
3126 * naps in the hope that some of these pages can be written. But if the
3127 * allocating task holds filesystem locks which prevent writeout this might not
3128 * work, and the allocation attempt will fail.
a41f24ea
NA
3129 *
3130 * returns: 0, if no pages reclaimed
3131 * else, the number of pages reclaimed
1da177e4 3132 */
dac1d27b 3133static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3134 struct scan_control *sc)
1da177e4 3135{
241994ed 3136 int initial_priority = sc->priority;
2a2e4885
JW
3137 pg_data_t *last_pgdat;
3138 struct zoneref *z;
3139 struct zone *zone;
241994ed 3140retry:
873b4771
KK
3141 delayacct_freepages_start();
3142
b5ead35e 3143 if (!cgroup_reclaim(sc))
7cc30fcf 3144 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3145
9e3b2f8c 3146 do {
70ddf637
AV
3147 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3148 sc->priority);
66e1707b 3149 sc->nr_scanned = 0;
0a0337e0 3150 shrink_zones(zonelist, sc);
c6a8a8c5 3151
bb21c7ce 3152 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3153 break;
3154
3155 if (sc->compaction_ready)
3156 break;
1da177e4 3157
0e50ce3b
MK
3158 /*
3159 * If we're getting trouble reclaiming, start doing
3160 * writepage even in laptop mode.
3161 */
3162 if (sc->priority < DEF_PRIORITY - 2)
3163 sc->may_writepage = 1;
0b06496a 3164 } while (--sc->priority >= 0);
bb21c7ce 3165
2a2e4885
JW
3166 last_pgdat = NULL;
3167 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3168 sc->nodemask) {
3169 if (zone->zone_pgdat == last_pgdat)
3170 continue;
3171 last_pgdat = zone->zone_pgdat;
1b05117d 3172
2a2e4885 3173 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3174
3175 if (cgroup_reclaim(sc)) {
3176 struct lruvec *lruvec;
3177
3178 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3179 zone->zone_pgdat);
3180 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3181 }
2a2e4885
JW
3182 }
3183
873b4771
KK
3184 delayacct_freepages_end();
3185
bb21c7ce
KM
3186 if (sc->nr_reclaimed)
3187 return sc->nr_reclaimed;
3188
0cee34fd 3189 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3190 if (sc->compaction_ready)
7335084d
MG
3191 return 1;
3192
b91ac374
JW
3193 /*
3194 * We make inactive:active ratio decisions based on the node's
3195 * composition of memory, but a restrictive reclaim_idx or a
3196 * memory.low cgroup setting can exempt large amounts of
3197 * memory from reclaim. Neither of which are very common, so
3198 * instead of doing costly eligibility calculations of the
3199 * entire cgroup subtree up front, we assume the estimates are
3200 * good, and retry with forcible deactivation if that fails.
3201 */
3202 if (sc->skipped_deactivate) {
3203 sc->priority = initial_priority;
3204 sc->force_deactivate = 1;
3205 sc->skipped_deactivate = 0;
3206 goto retry;
3207 }
3208
241994ed 3209 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3210 if (sc->memcg_low_skipped) {
241994ed 3211 sc->priority = initial_priority;
b91ac374 3212 sc->force_deactivate = 0;
d6622f63
YX
3213 sc->memcg_low_reclaim = 1;
3214 sc->memcg_low_skipped = 0;
241994ed
JW
3215 goto retry;
3216 }
3217
bb21c7ce 3218 return 0;
1da177e4
LT
3219}
3220
c73322d0 3221static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3222{
3223 struct zone *zone;
3224 unsigned long pfmemalloc_reserve = 0;
3225 unsigned long free_pages = 0;
3226 int i;
3227 bool wmark_ok;
3228
c73322d0
JW
3229 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3230 return true;
3231
5515061d
MG
3232 for (i = 0; i <= ZONE_NORMAL; i++) {
3233 zone = &pgdat->node_zones[i];
d450abd8
JW
3234 if (!managed_zone(zone))
3235 continue;
3236
3237 if (!zone_reclaimable_pages(zone))
675becce
MG
3238 continue;
3239
5515061d
MG
3240 pfmemalloc_reserve += min_wmark_pages(zone);
3241 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3242 }
3243
675becce
MG
3244 /* If there are no reserves (unexpected config) then do not throttle */
3245 if (!pfmemalloc_reserve)
3246 return true;
3247
5515061d
MG
3248 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3249
3250 /* kswapd must be awake if processes are being throttled */
3251 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3252 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3253 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3254
5515061d
MG
3255 wake_up_interruptible(&pgdat->kswapd_wait);
3256 }
3257
3258 return wmark_ok;
3259}
3260
3261/*
3262 * Throttle direct reclaimers if backing storage is backed by the network
3263 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3264 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3265 * when the low watermark is reached.
3266 *
3267 * Returns true if a fatal signal was delivered during throttling. If this
3268 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3269 */
50694c28 3270static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3271 nodemask_t *nodemask)
3272{
675becce 3273 struct zoneref *z;
5515061d 3274 struct zone *zone;
675becce 3275 pg_data_t *pgdat = NULL;
5515061d
MG
3276
3277 /*
3278 * Kernel threads should not be throttled as they may be indirectly
3279 * responsible for cleaning pages necessary for reclaim to make forward
3280 * progress. kjournald for example may enter direct reclaim while
3281 * committing a transaction where throttling it could forcing other
3282 * processes to block on log_wait_commit().
3283 */
3284 if (current->flags & PF_KTHREAD)
50694c28
MG
3285 goto out;
3286
3287 /*
3288 * If a fatal signal is pending, this process should not throttle.
3289 * It should return quickly so it can exit and free its memory
3290 */
3291 if (fatal_signal_pending(current))
3292 goto out;
5515061d 3293
675becce
MG
3294 /*
3295 * Check if the pfmemalloc reserves are ok by finding the first node
3296 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3297 * GFP_KERNEL will be required for allocating network buffers when
3298 * swapping over the network so ZONE_HIGHMEM is unusable.
3299 *
3300 * Throttling is based on the first usable node and throttled processes
3301 * wait on a queue until kswapd makes progress and wakes them. There
3302 * is an affinity then between processes waking up and where reclaim
3303 * progress has been made assuming the process wakes on the same node.
3304 * More importantly, processes running on remote nodes will not compete
3305 * for remote pfmemalloc reserves and processes on different nodes
3306 * should make reasonable progress.
3307 */
3308 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3309 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3310 if (zone_idx(zone) > ZONE_NORMAL)
3311 continue;
3312
3313 /* Throttle based on the first usable node */
3314 pgdat = zone->zone_pgdat;
c73322d0 3315 if (allow_direct_reclaim(pgdat))
675becce
MG
3316 goto out;
3317 break;
3318 }
3319
3320 /* If no zone was usable by the allocation flags then do not throttle */
3321 if (!pgdat)
50694c28 3322 goto out;
5515061d 3323
68243e76
MG
3324 /* Account for the throttling */
3325 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3326
5515061d
MG
3327 /*
3328 * If the caller cannot enter the filesystem, it's possible that it
3329 * is due to the caller holding an FS lock or performing a journal
3330 * transaction in the case of a filesystem like ext[3|4]. In this case,
3331 * it is not safe to block on pfmemalloc_wait as kswapd could be
3332 * blocked waiting on the same lock. Instead, throttle for up to a
3333 * second before continuing.
3334 */
3335 if (!(gfp_mask & __GFP_FS)) {
3336 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3337 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3338
3339 goto check_pending;
5515061d
MG
3340 }
3341
3342 /* Throttle until kswapd wakes the process */
3343 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3344 allow_direct_reclaim(pgdat));
50694c28
MG
3345
3346check_pending:
3347 if (fatal_signal_pending(current))
3348 return true;
3349
3350out:
3351 return false;
5515061d
MG
3352}
3353
dac1d27b 3354unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3355 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3356{
33906bc5 3357 unsigned long nr_reclaimed;
66e1707b 3358 struct scan_control sc = {
ee814fe2 3359 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3360 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3361 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3362 .order = order,
3363 .nodemask = nodemask,
3364 .priority = DEF_PRIORITY,
66e1707b 3365 .may_writepage = !laptop_mode,
a6dc60f8 3366 .may_unmap = 1,
2e2e4259 3367 .may_swap = 1,
66e1707b
BS
3368 };
3369
bb451fdf
GT
3370 /*
3371 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3372 * Confirm they are large enough for max values.
3373 */
3374 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3375 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3376 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3377
5515061d 3378 /*
50694c28
MG
3379 * Do not enter reclaim if fatal signal was delivered while throttled.
3380 * 1 is returned so that the page allocator does not OOM kill at this
3381 * point.
5515061d 3382 */
f2f43e56 3383 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3384 return 1;
3385
1732d2b0 3386 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3387 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3388
3115cd91 3389 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3390
3391 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3392 set_task_reclaim_state(current, NULL);
33906bc5
MG
3393
3394 return nr_reclaimed;
66e1707b
BS
3395}
3396
c255a458 3397#ifdef CONFIG_MEMCG
66e1707b 3398
d2e5fb92 3399/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3400unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3401 gfp_t gfp_mask, bool noswap,
ef8f2327 3402 pg_data_t *pgdat,
0ae5e89c 3403 unsigned long *nr_scanned)
4e416953 3404{
afaf07a6 3405 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3406 struct scan_control sc = {
b8f5c566 3407 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3408 .target_mem_cgroup = memcg,
4e416953
BS
3409 .may_writepage = !laptop_mode,
3410 .may_unmap = 1,
b2e18757 3411 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3412 .may_swap = !noswap,
4e416953 3413 };
0ae5e89c 3414
d2e5fb92
MH
3415 WARN_ON_ONCE(!current->reclaim_state);
3416
4e416953
BS
3417 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3418 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3419
9e3b2f8c 3420 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3421 sc.gfp_mask);
bdce6d9e 3422
4e416953
BS
3423 /*
3424 * NOTE: Although we can get the priority field, using it
3425 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3426 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3427 * will pick up pages from other mem cgroup's as well. We hack
3428 * the priority and make it zero.
3429 */
afaf07a6 3430 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3431
3432 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3433
0ae5e89c 3434 *nr_scanned = sc.nr_scanned;
0308f7cf 3435
4e416953
BS
3436 return sc.nr_reclaimed;
3437}
3438
72835c86 3439unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3440 unsigned long nr_pages,
a7885eb8 3441 gfp_t gfp_mask,
b70a2a21 3442 bool may_swap)
66e1707b 3443{
bdce6d9e 3444 unsigned long nr_reclaimed;
499118e9 3445 unsigned int noreclaim_flag;
66e1707b 3446 struct scan_control sc = {
b70a2a21 3447 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3448 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3449 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3450 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3451 .target_mem_cgroup = memcg,
3452 .priority = DEF_PRIORITY,
3453 .may_writepage = !laptop_mode,
3454 .may_unmap = 1,
b70a2a21 3455 .may_swap = may_swap,
a09ed5e0 3456 };
889976db 3457 /*
fa40d1ee
SB
3458 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3459 * equal pressure on all the nodes. This is based on the assumption that
3460 * the reclaim does not bail out early.
889976db 3461 */
fa40d1ee 3462 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3463
fa40d1ee 3464 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3465 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3466 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3467
3115cd91 3468 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3469
499118e9 3470 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3471 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3472 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3473
3474 return nr_reclaimed;
66e1707b
BS
3475}
3476#endif
3477
1d82de61 3478static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3479 struct scan_control *sc)
f16015fb 3480{
b95a2f2d 3481 struct mem_cgroup *memcg;
b91ac374 3482 struct lruvec *lruvec;
f16015fb 3483
b95a2f2d
JW
3484 if (!total_swap_pages)
3485 return;
3486
b91ac374
JW
3487 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3488 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3489 return;
3490
b95a2f2d
JW
3491 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3492 do {
b91ac374
JW
3493 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3494 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3495 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3496 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3497 } while (memcg);
f16015fb
JW
3498}
3499
97a225e6 3500static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3501{
3502 int i;
3503 struct zone *zone;
3504
3505 /*
3506 * Check for watermark boosts top-down as the higher zones
3507 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3508 * should not be checked at the same time as reclaim would
1c30844d
MG
3509 * start prematurely when there is no boosting and a lower
3510 * zone is balanced.
3511 */
97a225e6 3512 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3513 zone = pgdat->node_zones + i;
3514 if (!managed_zone(zone))
3515 continue;
3516
3517 if (zone->watermark_boost)
3518 return true;
3519 }
3520
3521 return false;
3522}
3523
e716f2eb
MG
3524/*
3525 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3526 * and highest_zoneidx
e716f2eb 3527 */
97a225e6 3528static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3529{
e716f2eb
MG
3530 int i;
3531 unsigned long mark = -1;
3532 struct zone *zone;
60cefed4 3533
1c30844d
MG
3534 /*
3535 * Check watermarks bottom-up as lower zones are more likely to
3536 * meet watermarks.
3537 */
97a225e6 3538 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3539 zone = pgdat->node_zones + i;
6256c6b4 3540
e716f2eb
MG
3541 if (!managed_zone(zone))
3542 continue;
3543
3544 mark = high_wmark_pages(zone);
97a225e6 3545 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3546 return true;
3547 }
3548
3549 /*
97a225e6 3550 * If a node has no populated zone within highest_zoneidx, it does not
e716f2eb
MG
3551 * need balancing by definition. This can happen if a zone-restricted
3552 * allocation tries to wake a remote kswapd.
3553 */
3554 if (mark == -1)
3555 return true;
3556
3557 return false;
60cefed4
JW
3558}
3559
631b6e08
MG
3560/* Clear pgdat state for congested, dirty or under writeback. */
3561static void clear_pgdat_congested(pg_data_t *pgdat)
3562{
1b05117d
JW
3563 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3564
3565 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3566 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3567 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3568}
3569
5515061d
MG
3570/*
3571 * Prepare kswapd for sleeping. This verifies that there are no processes
3572 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3573 *
3574 * Returns true if kswapd is ready to sleep
3575 */
97a225e6
JK
3576static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3577 int highest_zoneidx)
f50de2d3 3578{
5515061d 3579 /*
9e5e3661 3580 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3581 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3582 * race between when kswapd checks the watermarks and a process gets
3583 * throttled. There is also a potential race if processes get
3584 * throttled, kswapd wakes, a large process exits thereby balancing the
3585 * zones, which causes kswapd to exit balance_pgdat() before reaching
3586 * the wake up checks. If kswapd is going to sleep, no process should
3587 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3588 * the wake up is premature, processes will wake kswapd and get
3589 * throttled again. The difference from wake ups in balance_pgdat() is
3590 * that here we are under prepare_to_wait().
5515061d 3591 */
9e5e3661
VB
3592 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3593 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3594
c73322d0
JW
3595 /* Hopeless node, leave it to direct reclaim */
3596 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3597 return true;
3598
97a225e6 3599 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3600 clear_pgdat_congested(pgdat);
3601 return true;
1d82de61
MG
3602 }
3603
333b0a45 3604 return false;
f50de2d3
MG
3605}
3606
75485363 3607/*
1d82de61
MG
3608 * kswapd shrinks a node of pages that are at or below the highest usable
3609 * zone that is currently unbalanced.
b8e83b94
MG
3610 *
3611 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3612 * reclaim or if the lack of progress was due to pages under writeback.
3613 * This is used to determine if the scanning priority needs to be raised.
75485363 3614 */
1d82de61 3615static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3616 struct scan_control *sc)
75485363 3617{
1d82de61
MG
3618 struct zone *zone;
3619 int z;
75485363 3620
1d82de61
MG
3621 /* Reclaim a number of pages proportional to the number of zones */
3622 sc->nr_to_reclaim = 0;
970a39a3 3623 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3624 zone = pgdat->node_zones + z;
6aa303de 3625 if (!managed_zone(zone))
1d82de61 3626 continue;
7c954f6d 3627
1d82de61
MG
3628 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3629 }
7c954f6d
MG
3630
3631 /*
1d82de61
MG
3632 * Historically care was taken to put equal pressure on all zones but
3633 * now pressure is applied based on node LRU order.
7c954f6d 3634 */
970a39a3 3635 shrink_node(pgdat, sc);
283aba9f 3636
7c954f6d 3637 /*
1d82de61
MG
3638 * Fragmentation may mean that the system cannot be rebalanced for
3639 * high-order allocations. If twice the allocation size has been
3640 * reclaimed then recheck watermarks only at order-0 to prevent
3641 * excessive reclaim. Assume that a process requested a high-order
3642 * can direct reclaim/compact.
7c954f6d 3643 */
9861a62c 3644 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3645 sc->order = 0;
7c954f6d 3646
b8e83b94 3647 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3648}
3649
1da177e4 3650/*
1d82de61
MG
3651 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3652 * that are eligible for use by the caller until at least one zone is
3653 * balanced.
1da177e4 3654 *
1d82de61 3655 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3656 *
3657 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3658 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3659 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3660 * or lower is eligible for reclaim until at least one usable zone is
3661 * balanced.
1da177e4 3662 */
97a225e6 3663static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 3664{
1da177e4 3665 int i;
0608f43d
AM
3666 unsigned long nr_soft_reclaimed;
3667 unsigned long nr_soft_scanned;
eb414681 3668 unsigned long pflags;
1c30844d
MG
3669 unsigned long nr_boost_reclaim;
3670 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3671 bool boosted;
1d82de61 3672 struct zone *zone;
179e9639
AM
3673 struct scan_control sc = {
3674 .gfp_mask = GFP_KERNEL,
ee814fe2 3675 .order = order,
a6dc60f8 3676 .may_unmap = 1,
179e9639 3677 };
93781325 3678
1732d2b0 3679 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3680 psi_memstall_enter(&pflags);
93781325
OS
3681 __fs_reclaim_acquire();
3682
f8891e5e 3683 count_vm_event(PAGEOUTRUN);
1da177e4 3684
1c30844d
MG
3685 /*
3686 * Account for the reclaim boost. Note that the zone boost is left in
3687 * place so that parallel allocations that are near the watermark will
3688 * stall or direct reclaim until kswapd is finished.
3689 */
3690 nr_boost_reclaim = 0;
97a225e6 3691 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3692 zone = pgdat->node_zones + i;
3693 if (!managed_zone(zone))
3694 continue;
3695
3696 nr_boost_reclaim += zone->watermark_boost;
3697 zone_boosts[i] = zone->watermark_boost;
3698 }
3699 boosted = nr_boost_reclaim;
3700
3701restart:
3702 sc.priority = DEF_PRIORITY;
9e3b2f8c 3703 do {
c73322d0 3704 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3705 bool raise_priority = true;
1c30844d 3706 bool balanced;
93781325 3707 bool ret;
b8e83b94 3708
97a225e6 3709 sc.reclaim_idx = highest_zoneidx;
1da177e4 3710
86c79f6b 3711 /*
84c7a777
MG
3712 * If the number of buffer_heads exceeds the maximum allowed
3713 * then consider reclaiming from all zones. This has a dual
3714 * purpose -- on 64-bit systems it is expected that
3715 * buffer_heads are stripped during active rotation. On 32-bit
3716 * systems, highmem pages can pin lowmem memory and shrinking
3717 * buffers can relieve lowmem pressure. Reclaim may still not
3718 * go ahead if all eligible zones for the original allocation
3719 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3720 */
3721 if (buffer_heads_over_limit) {
3722 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3723 zone = pgdat->node_zones + i;
6aa303de 3724 if (!managed_zone(zone))
86c79f6b 3725 continue;
cc715d99 3726
970a39a3 3727 sc.reclaim_idx = i;
e1dbeda6 3728 break;
1da177e4 3729 }
1da177e4 3730 }
dafcb73e 3731
86c79f6b 3732 /*
1c30844d
MG
3733 * If the pgdat is imbalanced then ignore boosting and preserve
3734 * the watermarks for a later time and restart. Note that the
3735 * zone watermarks will be still reset at the end of balancing
3736 * on the grounds that the normal reclaim should be enough to
3737 * re-evaluate if boosting is required when kswapd next wakes.
3738 */
97a225e6 3739 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
3740 if (!balanced && nr_boost_reclaim) {
3741 nr_boost_reclaim = 0;
3742 goto restart;
3743 }
3744
3745 /*
3746 * If boosting is not active then only reclaim if there are no
3747 * eligible zones. Note that sc.reclaim_idx is not used as
3748 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3749 */
1c30844d 3750 if (!nr_boost_reclaim && balanced)
e716f2eb 3751 goto out;
e1dbeda6 3752
1c30844d
MG
3753 /* Limit the priority of boosting to avoid reclaim writeback */
3754 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3755 raise_priority = false;
3756
3757 /*
3758 * Do not writeback or swap pages for boosted reclaim. The
3759 * intent is to relieve pressure not issue sub-optimal IO
3760 * from reclaim context. If no pages are reclaimed, the
3761 * reclaim will be aborted.
3762 */
3763 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3764 sc.may_swap = !nr_boost_reclaim;
1c30844d 3765
1d82de61
MG
3766 /*
3767 * Do some background aging of the anon list, to give
3768 * pages a chance to be referenced before reclaiming. All
3769 * pages are rotated regardless of classzone as this is
3770 * about consistent aging.
3771 */
ef8f2327 3772 age_active_anon(pgdat, &sc);
1d82de61 3773
b7ea3c41
MG
3774 /*
3775 * If we're getting trouble reclaiming, start doing writepage
3776 * even in laptop mode.
3777 */
047d72c3 3778 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3779 sc.may_writepage = 1;
3780
1d82de61
MG
3781 /* Call soft limit reclaim before calling shrink_node. */
3782 sc.nr_scanned = 0;
3783 nr_soft_scanned = 0;
ef8f2327 3784 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3785 sc.gfp_mask, &nr_soft_scanned);
3786 sc.nr_reclaimed += nr_soft_reclaimed;
3787
1da177e4 3788 /*
1d82de61
MG
3789 * There should be no need to raise the scanning priority if
3790 * enough pages are already being scanned that that high
3791 * watermark would be met at 100% efficiency.
1da177e4 3792 */
970a39a3 3793 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3794 raise_priority = false;
5515061d
MG
3795
3796 /*
3797 * If the low watermark is met there is no need for processes
3798 * to be throttled on pfmemalloc_wait as they should not be
3799 * able to safely make forward progress. Wake them
3800 */
3801 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3802 allow_direct_reclaim(pgdat))
cfc51155 3803 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3804
b8e83b94 3805 /* Check if kswapd should be suspending */
93781325
OS
3806 __fs_reclaim_release();
3807 ret = try_to_freeze();
3808 __fs_reclaim_acquire();
3809 if (ret || kthread_should_stop())
b8e83b94 3810 break;
8357376d 3811
73ce02e9 3812 /*
b8e83b94
MG
3813 * Raise priority if scanning rate is too low or there was no
3814 * progress in reclaiming pages
73ce02e9 3815 */
c73322d0 3816 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3817 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3818
3819 /*
3820 * If reclaim made no progress for a boost, stop reclaim as
3821 * IO cannot be queued and it could be an infinite loop in
3822 * extreme circumstances.
3823 */
3824 if (nr_boost_reclaim && !nr_reclaimed)
3825 break;
3826
c73322d0 3827 if (raise_priority || !nr_reclaimed)
b8e83b94 3828 sc.priority--;
1d82de61 3829 } while (sc.priority >= 1);
1da177e4 3830
c73322d0
JW
3831 if (!sc.nr_reclaimed)
3832 pgdat->kswapd_failures++;
3833
b8e83b94 3834out:
1c30844d
MG
3835 /* If reclaim was boosted, account for the reclaim done in this pass */
3836 if (boosted) {
3837 unsigned long flags;
3838
97a225e6 3839 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3840 if (!zone_boosts[i])
3841 continue;
3842
3843 /* Increments are under the zone lock */
3844 zone = pgdat->node_zones + i;
3845 spin_lock_irqsave(&zone->lock, flags);
3846 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3847 spin_unlock_irqrestore(&zone->lock, flags);
3848 }
3849
3850 /*
3851 * As there is now likely space, wakeup kcompact to defragment
3852 * pageblocks.
3853 */
97a225e6 3854 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
3855 }
3856
2a2e4885 3857 snapshot_refaults(NULL, pgdat);
93781325 3858 __fs_reclaim_release();
eb414681 3859 psi_memstall_leave(&pflags);
1732d2b0 3860 set_task_reclaim_state(current, NULL);
e5ca8071 3861
0abdee2b 3862 /*
1d82de61
MG
3863 * Return the order kswapd stopped reclaiming at as
3864 * prepare_kswapd_sleep() takes it into account. If another caller
3865 * entered the allocator slow path while kswapd was awake, order will
3866 * remain at the higher level.
0abdee2b 3867 */
1d82de61 3868 return sc.order;
1da177e4
LT
3869}
3870
e716f2eb 3871/*
97a225e6
JK
3872 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3873 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3874 * not a valid index then either kswapd runs for first time or kswapd couldn't
3875 * sleep after previous reclaim attempt (node is still unbalanced). In that
3876 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 3877 */
97a225e6
JK
3878static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3879 enum zone_type prev_highest_zoneidx)
e716f2eb 3880{
97a225e6 3881 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 3882
97a225e6 3883 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
3884}
3885
38087d9b 3886static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 3887 unsigned int highest_zoneidx)
f0bc0a60
KM
3888{
3889 long remaining = 0;
3890 DEFINE_WAIT(wait);
3891
3892 if (freezing(current) || kthread_should_stop())
3893 return;
3894
3895 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3896
333b0a45
SG
3897 /*
3898 * Try to sleep for a short interval. Note that kcompactd will only be
3899 * woken if it is possible to sleep for a short interval. This is
3900 * deliberate on the assumption that if reclaim cannot keep an
3901 * eligible zone balanced that it's also unlikely that compaction will
3902 * succeed.
3903 */
97a225e6 3904 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
3905 /*
3906 * Compaction records what page blocks it recently failed to
3907 * isolate pages from and skips them in the future scanning.
3908 * When kswapd is going to sleep, it is reasonable to assume
3909 * that pages and compaction may succeed so reset the cache.
3910 */
3911 reset_isolation_suitable(pgdat);
3912
3913 /*
3914 * We have freed the memory, now we should compact it to make
3915 * allocation of the requested order possible.
3916 */
97a225e6 3917 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 3918
f0bc0a60 3919 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3920
3921 /*
97a225e6 3922 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
3923 * order. The values will either be from a wakeup request or
3924 * the previous request that slept prematurely.
3925 */
3926 if (remaining) {
97a225e6
JK
3927 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3928 kswapd_highest_zoneidx(pgdat,
3929 highest_zoneidx));
5644e1fb
QC
3930
3931 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3932 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
3933 }
3934
f0bc0a60
KM
3935 finish_wait(&pgdat->kswapd_wait, &wait);
3936 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3937 }
3938
3939 /*
3940 * After a short sleep, check if it was a premature sleep. If not, then
3941 * go fully to sleep until explicitly woken up.
3942 */
d9f21d42 3943 if (!remaining &&
97a225e6 3944 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
3945 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3946
3947 /*
3948 * vmstat counters are not perfectly accurate and the estimated
3949 * value for counters such as NR_FREE_PAGES can deviate from the
3950 * true value by nr_online_cpus * threshold. To avoid the zone
3951 * watermarks being breached while under pressure, we reduce the
3952 * per-cpu vmstat threshold while kswapd is awake and restore
3953 * them before going back to sleep.
3954 */
3955 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3956
3957 if (!kthread_should_stop())
3958 schedule();
3959
f0bc0a60
KM
3960 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3961 } else {
3962 if (remaining)
3963 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3964 else
3965 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3966 }
3967 finish_wait(&pgdat->kswapd_wait, &wait);
3968}
3969
1da177e4
LT
3970/*
3971 * The background pageout daemon, started as a kernel thread
4f98a2fe 3972 * from the init process.
1da177e4
LT
3973 *
3974 * This basically trickles out pages so that we have _some_
3975 * free memory available even if there is no other activity
3976 * that frees anything up. This is needed for things like routing
3977 * etc, where we otherwise might have all activity going on in
3978 * asynchronous contexts that cannot page things out.
3979 *
3980 * If there are applications that are active memory-allocators
3981 * (most normal use), this basically shouldn't matter.
3982 */
3983static int kswapd(void *p)
3984{
e716f2eb 3985 unsigned int alloc_order, reclaim_order;
97a225e6 3986 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
1da177e4
LT
3987 pg_data_t *pgdat = (pg_data_t*)p;
3988 struct task_struct *tsk = current;
a70f7302 3989 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3990
174596a0 3991 if (!cpumask_empty(cpumask))
c5f59f08 3992 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3993
3994 /*
3995 * Tell the memory management that we're a "memory allocator",
3996 * and that if we need more memory we should get access to it
3997 * regardless (see "__alloc_pages()"). "kswapd" should
3998 * never get caught in the normal page freeing logic.
3999 *
4000 * (Kswapd normally doesn't need memory anyway, but sometimes
4001 * you need a small amount of memory in order to be able to
4002 * page out something else, and this flag essentially protects
4003 * us from recursively trying to free more memory as we're
4004 * trying to free the first piece of memory in the first place).
4005 */
930d9152 4006 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 4007 set_freezable();
1da177e4 4008
5644e1fb 4009 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4010 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4011 for ( ; ; ) {
6f6313d4 4012 bool ret;
3e1d1d28 4013
5644e1fb 4014 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4015 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4016 highest_zoneidx);
e716f2eb 4017
38087d9b
MG
4018kswapd_try_sleep:
4019 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4020 highest_zoneidx);
215ddd66 4021
97a225e6 4022 /* Read the new order and highest_zoneidx */
2b47a24c 4023 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4024 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4025 highest_zoneidx);
5644e1fb 4026 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4027 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4028
8fe23e05
DR
4029 ret = try_to_freeze();
4030 if (kthread_should_stop())
4031 break;
4032
4033 /*
4034 * We can speed up thawing tasks if we don't call balance_pgdat
4035 * after returning from the refrigerator
4036 */
38087d9b
MG
4037 if (ret)
4038 continue;
4039
4040 /*
4041 * Reclaim begins at the requested order but if a high-order
4042 * reclaim fails then kswapd falls back to reclaiming for
4043 * order-0. If that happens, kswapd will consider sleeping
4044 * for the order it finished reclaiming at (reclaim_order)
4045 * but kcompactd is woken to compact for the original
4046 * request (alloc_order).
4047 */
97a225e6 4048 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4049 alloc_order);
97a225e6
JK
4050 reclaim_order = balance_pgdat(pgdat, alloc_order,
4051 highest_zoneidx);
38087d9b
MG
4052 if (reclaim_order < alloc_order)
4053 goto kswapd_try_sleep;
1da177e4 4054 }
b0a8cc58 4055
71abdc15 4056 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 4057
1da177e4
LT
4058 return 0;
4059}
4060
4061/*
5ecd9d40
DR
4062 * A zone is low on free memory or too fragmented for high-order memory. If
4063 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4064 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4065 * has failed or is not needed, still wake up kcompactd if only compaction is
4066 * needed.
1da177e4 4067 */
5ecd9d40 4068void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4069 enum zone_type highest_zoneidx)
1da177e4
LT
4070{
4071 pg_data_t *pgdat;
5644e1fb 4072 enum zone_type curr_idx;
1da177e4 4073
6aa303de 4074 if (!managed_zone(zone))
1da177e4
LT
4075 return;
4076
5ecd9d40 4077 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4078 return;
5644e1fb 4079
88f5acf8 4080 pgdat = zone->zone_pgdat;
97a225e6 4081 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4082
97a225e6
JK
4083 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4084 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4085
4086 if (READ_ONCE(pgdat->kswapd_order) < order)
4087 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4088
8d0986e2 4089 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4090 return;
e1a55637 4091
5ecd9d40
DR
4092 /* Hopeless node, leave it to direct reclaim if possible */
4093 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4094 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4095 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4096 /*
4097 * There may be plenty of free memory available, but it's too
4098 * fragmented for high-order allocations. Wake up kcompactd
4099 * and rely on compaction_suitable() to determine if it's
4100 * needed. If it fails, it will defer subsequent attempts to
4101 * ratelimit its work.
4102 */
4103 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4104 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4105 return;
5ecd9d40 4106 }
88f5acf8 4107
97a225e6 4108 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4109 gfp_flags);
8d0986e2 4110 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4111}
4112
c6f37f12 4113#ifdef CONFIG_HIBERNATION
1da177e4 4114/*
7b51755c 4115 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4116 * freed pages.
4117 *
4118 * Rather than trying to age LRUs the aim is to preserve the overall
4119 * LRU order by reclaiming preferentially
4120 * inactive > active > active referenced > active mapped
1da177e4 4121 */
7b51755c 4122unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4123{
d6277db4 4124 struct scan_control sc = {
ee814fe2 4125 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4126 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4127 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4128 .priority = DEF_PRIORITY,
d6277db4 4129 .may_writepage = 1,
ee814fe2
JW
4130 .may_unmap = 1,
4131 .may_swap = 1,
7b51755c 4132 .hibernation_mode = 1,
1da177e4 4133 };
a09ed5e0 4134 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4135 unsigned long nr_reclaimed;
499118e9 4136 unsigned int noreclaim_flag;
1da177e4 4137
d92a8cfc 4138 fs_reclaim_acquire(sc.gfp_mask);
93781325 4139 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4140 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4141
3115cd91 4142 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4143
1732d2b0 4144 set_task_reclaim_state(current, NULL);
499118e9 4145 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4146 fs_reclaim_release(sc.gfp_mask);
d6277db4 4147
7b51755c 4148 return nr_reclaimed;
1da177e4 4149}
c6f37f12 4150#endif /* CONFIG_HIBERNATION */
1da177e4 4151
3218ae14
YG
4152/*
4153 * This kswapd start function will be called by init and node-hot-add.
4154 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4155 */
4156int kswapd_run(int nid)
4157{
4158 pg_data_t *pgdat = NODE_DATA(nid);
4159 int ret = 0;
4160
4161 if (pgdat->kswapd)
4162 return 0;
4163
4164 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4165 if (IS_ERR(pgdat->kswapd)) {
4166 /* failure at boot is fatal */
c6202adf 4167 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
4168 pr_err("Failed to start kswapd on node %d\n", nid);
4169 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4170 pgdat->kswapd = NULL;
3218ae14
YG
4171 }
4172 return ret;
4173}
4174
8fe23e05 4175/*
d8adde17 4176 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4177 * hold mem_hotplug_begin/end().
8fe23e05
DR
4178 */
4179void kswapd_stop(int nid)
4180{
4181 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4182
d8adde17 4183 if (kswapd) {
8fe23e05 4184 kthread_stop(kswapd);
d8adde17
JL
4185 NODE_DATA(nid)->kswapd = NULL;
4186 }
8fe23e05
DR
4187}
4188
1da177e4
LT
4189static int __init kswapd_init(void)
4190{
6b700b5b 4191 int nid;
69e05944 4192
1da177e4 4193 swap_setup();
48fb2e24 4194 for_each_node_state(nid, N_MEMORY)
3218ae14 4195 kswapd_run(nid);
1da177e4
LT
4196 return 0;
4197}
4198
4199module_init(kswapd_init)
9eeff239
CL
4200
4201#ifdef CONFIG_NUMA
4202/*
a5f5f91d 4203 * Node reclaim mode
9eeff239 4204 *
a5f5f91d 4205 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4206 * the watermarks.
9eeff239 4207 */
a5f5f91d 4208int node_reclaim_mode __read_mostly;
9eeff239 4209
a92f7126 4210/*
a5f5f91d 4211 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4212 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4213 * a zone.
4214 */
a5f5f91d 4215#define NODE_RECLAIM_PRIORITY 4
a92f7126 4216
9614634f 4217/*
a5f5f91d 4218 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4219 * occur.
4220 */
4221int sysctl_min_unmapped_ratio = 1;
4222
0ff38490
CL
4223/*
4224 * If the number of slab pages in a zone grows beyond this percentage then
4225 * slab reclaim needs to occur.
4226 */
4227int sysctl_min_slab_ratio = 5;
4228
11fb9989 4229static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4230{
11fb9989
MG
4231 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4232 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4233 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4234
4235 /*
4236 * It's possible for there to be more file mapped pages than
4237 * accounted for by the pages on the file LRU lists because
4238 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4239 */
4240 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4241}
4242
4243/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4244static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4245{
d031a157
AM
4246 unsigned long nr_pagecache_reclaimable;
4247 unsigned long delta = 0;
90afa5de
MG
4248
4249 /*
95bbc0c7 4250 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4251 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4252 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4253 * a better estimate
4254 */
a5f5f91d
MG
4255 if (node_reclaim_mode & RECLAIM_UNMAP)
4256 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4257 else
a5f5f91d 4258 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4259
4260 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4261 if (!(node_reclaim_mode & RECLAIM_WRITE))
4262 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4263
4264 /* Watch for any possible underflows due to delta */
4265 if (unlikely(delta > nr_pagecache_reclaimable))
4266 delta = nr_pagecache_reclaimable;
4267
4268 return nr_pagecache_reclaimable - delta;
4269}
4270
9eeff239 4271/*
a5f5f91d 4272 * Try to free up some pages from this node through reclaim.
9eeff239 4273 */
a5f5f91d 4274static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4275{
7fb2d46d 4276 /* Minimum pages needed in order to stay on node */
69e05944 4277 const unsigned long nr_pages = 1 << order;
9eeff239 4278 struct task_struct *p = current;
499118e9 4279 unsigned int noreclaim_flag;
179e9639 4280 struct scan_control sc = {
62b726c1 4281 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4282 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4283 .order = order,
a5f5f91d
MG
4284 .priority = NODE_RECLAIM_PRIORITY,
4285 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4286 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4287 .may_swap = 1,
f2f43e56 4288 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4289 };
9eeff239 4290
132bb8cf
YS
4291 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4292 sc.gfp_mask);
4293
9eeff239 4294 cond_resched();
93781325 4295 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4296 /*
95bbc0c7 4297 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4298 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4299 * and RECLAIM_UNMAP.
d4f7796e 4300 */
499118e9
VB
4301 noreclaim_flag = memalloc_noreclaim_save();
4302 p->flags |= PF_SWAPWRITE;
1732d2b0 4303 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4304
a5f5f91d 4305 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4306 /*
894befec 4307 * Free memory by calling shrink node with increasing
0ff38490
CL
4308 * priorities until we have enough memory freed.
4309 */
0ff38490 4310 do {
970a39a3 4311 shrink_node(pgdat, &sc);
9e3b2f8c 4312 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4313 }
c84db23c 4314
1732d2b0 4315 set_task_reclaim_state(p, NULL);
499118e9
VB
4316 current->flags &= ~PF_SWAPWRITE;
4317 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4318 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4319
4320 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4321
a79311c1 4322 return sc.nr_reclaimed >= nr_pages;
9eeff239 4323}
179e9639 4324
a5f5f91d 4325int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4326{
d773ed6b 4327 int ret;
179e9639
AM
4328
4329 /*
a5f5f91d 4330 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4331 * slab pages if we are over the defined limits.
34aa1330 4332 *
9614634f
CL
4333 * A small portion of unmapped file backed pages is needed for
4334 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4335 * thrown out if the node is overallocated. So we do not reclaim
4336 * if less than a specified percentage of the node is used by
9614634f 4337 * unmapped file backed pages.
179e9639 4338 */
a5f5f91d 4339 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4340 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4341 pgdat->min_slab_pages)
a5f5f91d 4342 return NODE_RECLAIM_FULL;
179e9639
AM
4343
4344 /*
d773ed6b 4345 * Do not scan if the allocation should not be delayed.
179e9639 4346 */
d0164adc 4347 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4348 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4349
4350 /*
a5f5f91d 4351 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4352 * have associated processors. This will favor the local processor
4353 * over remote processors and spread off node memory allocations
4354 * as wide as possible.
4355 */
a5f5f91d
MG
4356 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4357 return NODE_RECLAIM_NOSCAN;
d773ed6b 4358
a5f5f91d
MG
4359 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4360 return NODE_RECLAIM_NOSCAN;
fa5e084e 4361
a5f5f91d
MG
4362 ret = __node_reclaim(pgdat, gfp_mask, order);
4363 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4364
24cf7251
MG
4365 if (!ret)
4366 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4367
d773ed6b 4368 return ret;
179e9639 4369}
9eeff239 4370#endif
894bc310 4371
89e004ea 4372/**
64e3d12f
KHY
4373 * check_move_unevictable_pages - check pages for evictability and move to
4374 * appropriate zone lru list
4375 * @pvec: pagevec with lru pages to check
89e004ea 4376 *
64e3d12f
KHY
4377 * Checks pages for evictability, if an evictable page is in the unevictable
4378 * lru list, moves it to the appropriate evictable lru list. This function
4379 * should be only used for lru pages.
89e004ea 4380 */
64e3d12f 4381void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4382{
6168d0da 4383 struct lruvec *lruvec = NULL;
24513264
HD
4384 int pgscanned = 0;
4385 int pgrescued = 0;
4386 int i;
89e004ea 4387
64e3d12f
KHY
4388 for (i = 0; i < pvec->nr; i++) {
4389 struct page *page = pvec->pages[i];
8d8869ca
HD
4390 int nr_pages;
4391
4392 if (PageTransTail(page))
4393 continue;
4394
4395 nr_pages = thp_nr_pages(page);
4396 pgscanned += nr_pages;
89e004ea 4397
d25b5bd8
AS
4398 /* block memcg migration during page moving between lru */
4399 if (!TestClearPageLRU(page))
4400 continue;
4401
2a5e4e34 4402 lruvec = relock_page_lruvec_irq(page, lruvec);
d25b5bd8 4403 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4404 del_page_from_lru_list(page, lruvec);
24513264 4405 ClearPageUnevictable(page);
3a9c9788 4406 add_page_to_lru_list(page, lruvec);
8d8869ca 4407 pgrescued += nr_pages;
89e004ea 4408 }
d25b5bd8 4409 SetPageLRU(page);
24513264 4410 }
89e004ea 4411
6168d0da 4412 if (lruvec) {
24513264
HD
4413 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4414 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4415 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4416 } else if (pgscanned) {
4417 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4418 }
89e004ea 4419}
64e3d12f 4420EXPORT_SYMBOL_GPL(check_move_unevictable_pages);