]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm: vmscan: do not writeback filesystem pages in direct reclaim
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
ee64fc93 57/*
f3a310bc
MG
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
ee64fc93
MG
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
f3a310bc 65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
3e7d3449 66 * order-0 pages and then compact the zone
ee64fc93 67 */
f3a310bc
MG
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
7d3579e8 74
1da177e4 75struct scan_control {
1da177e4
LT
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
a79311c1
RR
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
22fba335
KM
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
7b51755c
KM
85 unsigned long hibernation_mode;
86
1da177e4 87 /* This context's GFP mask */
6daa0e28 88 gfp_t gfp_mask;
1da177e4
LT
89
90 int may_writepage;
91
a6dc60f8
JW
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
f1fd1067 94
2e2e4259
KM
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
5ad333eb 98 int order;
66e1707b 99
5f53e762 100 /*
415b54e3
NK
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
5f53e762 103 */
f3a310bc 104 reclaim_mode_t reclaim_mode;
5f53e762 105
66e1707b
BS
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
108
327c0e96
KH
109 /*
110 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 * are scanned.
112 */
113 nodemask_t *nodemask;
1da177e4
LT
114};
115
1da177e4
LT
116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118#ifdef ARCH_HAS_PREFETCH
119#define prefetch_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetch(&prev->_field); \
126 } \
127 } while (0)
128#else
129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132#ifdef ARCH_HAS_PREFETCHW
133#define prefetchw_prev_lru_page(_page, _base, _field) \
134 do { \
135 if ((_page)->lru.prev != _base) { \
136 struct page *prev; \
137 \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetchw(&prev->_field); \
140 } \
141 } while (0)
142#else
143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146/*
147 * From 0 .. 100. Higher means more swappy.
148 */
149int vm_swappiness = 60;
bd1e22b8 150long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
00f0b825 155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 156#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 157#else
e72e2bd6 158#define scanning_global_lru(sc) (1)
91a45470
KH
159#endif
160
6e901571
KM
161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 struct scan_control *sc)
163{
e72e2bd6 164 if (!scanning_global_lru(sc))
3e2f41f1
KM
165 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
6e901571
KM
167 return &zone->reclaim_stat;
168}
169
0b217676
VL
170static unsigned long zone_nr_lru_pages(struct zone *zone,
171 struct scan_control *sc, enum lru_list lru)
c9f299d9 172{
e72e2bd6 173 if (!scanning_global_lru(sc))
bb2a0de9
KH
174 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175 zone_to_nid(zone), zone_idx(zone), BIT(lru));
a3d8e054 176
c9f299d9
KM
177 return zone_page_state(zone, NR_LRU_BASE + lru);
178}
179
180
1da177e4
LT
181/*
182 * Add a shrinker callback to be called from the vm
183 */
8e1f936b 184void register_shrinker(struct shrinker *shrinker)
1da177e4 185{
8e1f936b
RR
186 shrinker->nr = 0;
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
1da177e4 190}
8e1f936b 191EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
192
193/*
194 * Remove one
195 */
8e1f936b 196void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
197{
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
1da177e4 201}
8e1f936b 202EXPORT_SYMBOL(unregister_shrinker);
1da177e4 203
1495f230
YH
204static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 struct shrink_control *sc,
206 unsigned long nr_to_scan)
207{
208 sc->nr_to_scan = nr_to_scan;
209 return (*shrinker->shrink)(shrinker, sc);
210}
211
1da177e4
LT
212#define SHRINK_BATCH 128
213/*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object. With this in mind we age equal
218 * percentages of the lru and ageable caches. This should balance the seeks
219 * generated by these structures.
220 *
183ff22b 221 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt. It is used for balancing
228 * slab reclaim versus page reclaim.
b15e0905 229 *
230 * Returns the number of slab objects which we shrunk.
1da177e4 231 */
a09ed5e0 232unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 233 unsigned long nr_pages_scanned,
a09ed5e0 234 unsigned long lru_pages)
1da177e4
LT
235{
236 struct shrinker *shrinker;
69e05944 237 unsigned long ret = 0;
1da177e4 238
1495f230
YH
239 if (nr_pages_scanned == 0)
240 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 241
f06590bd
MK
242 if (!down_read_trylock(&shrinker_rwsem)) {
243 /* Assume we'll be able to shrink next time */
244 ret = 1;
245 goto out;
246 }
1da177e4
LT
247
248 list_for_each_entry(shrinker, &shrinker_list, list) {
249 unsigned long long delta;
250 unsigned long total_scan;
7f8275d0 251 unsigned long max_pass;
09576073 252 int shrink_ret = 0;
acf92b48
DC
253 long nr;
254 long new_nr;
e9299f50
DC
255 long batch_size = shrinker->batch ? shrinker->batch
256 : SHRINK_BATCH;
1da177e4 257
acf92b48
DC
258 /*
259 * copy the current shrinker scan count into a local variable
260 * and zero it so that other concurrent shrinker invocations
261 * don't also do this scanning work.
262 */
263 do {
264 nr = shrinker->nr;
265 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267 total_scan = nr;
1495f230
YH
268 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 270 delta *= max_pass;
1da177e4 271 do_div(delta, lru_pages + 1);
acf92b48
DC
272 total_scan += delta;
273 if (total_scan < 0) {
88c3bd70
DR
274 printk(KERN_ERR "shrink_slab: %pF negative objects to "
275 "delete nr=%ld\n",
acf92b48
DC
276 shrinker->shrink, total_scan);
277 total_scan = max_pass;
ea164d73
AA
278 }
279
3567b59a
DC
280 /*
281 * We need to avoid excessive windup on filesystem shrinkers
282 * due to large numbers of GFP_NOFS allocations causing the
283 * shrinkers to return -1 all the time. This results in a large
284 * nr being built up so when a shrink that can do some work
285 * comes along it empties the entire cache due to nr >>>
286 * max_pass. This is bad for sustaining a working set in
287 * memory.
288 *
289 * Hence only allow the shrinker to scan the entire cache when
290 * a large delta change is calculated directly.
291 */
292 if (delta < max_pass / 4)
293 total_scan = min(total_scan, max_pass / 2);
294
ea164d73
AA
295 /*
296 * Avoid risking looping forever due to too large nr value:
297 * never try to free more than twice the estimate number of
298 * freeable entries.
299 */
acf92b48
DC
300 if (total_scan > max_pass * 2)
301 total_scan = max_pass * 2;
1da177e4 302
acf92b48 303 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
304 nr_pages_scanned, lru_pages,
305 max_pass, delta, total_scan);
306
e9299f50 307 while (total_scan >= batch_size) {
b15e0905 308 int nr_before;
1da177e4 309
1495f230
YH
310 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 312 batch_size);
1da177e4
LT
313 if (shrink_ret == -1)
314 break;
b15e0905 315 if (shrink_ret < nr_before)
316 ret += nr_before - shrink_ret;
e9299f50
DC
317 count_vm_events(SLABS_SCANNED, batch_size);
318 total_scan -= batch_size;
1da177e4
LT
319
320 cond_resched();
321 }
322
acf92b48
DC
323 /*
324 * move the unused scan count back into the shrinker in a
325 * manner that handles concurrent updates. If we exhausted the
326 * scan, there is no need to do an update.
327 */
328 do {
329 nr = shrinker->nr;
330 new_nr = total_scan + nr;
331 if (total_scan <= 0)
332 break;
333 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
336 }
337 up_read(&shrinker_rwsem);
f06590bd
MK
338out:
339 cond_resched();
b15e0905 340 return ret;
1da177e4
LT
341}
342
f3a310bc 343static void set_reclaim_mode(int priority, struct scan_control *sc,
7d3579e8
KM
344 bool sync)
345{
f3a310bc 346 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
7d3579e8
KM
347
348 /*
3e7d3449
MG
349 * Initially assume we are entering either lumpy reclaim or
350 * reclaim/compaction.Depending on the order, we will either set the
351 * sync mode or just reclaim order-0 pages later.
7d3579e8 352 */
3e7d3449 353 if (COMPACTION_BUILD)
f3a310bc 354 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
3e7d3449 355 else
f3a310bc 356 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
7d3579e8
KM
357
358 /*
3e7d3449
MG
359 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360 * restricting when its set to either costly allocations or when
361 * under memory pressure
7d3579e8
KM
362 */
363 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
f3a310bc 364 sc->reclaim_mode |= syncmode;
7d3579e8 365 else if (sc->order && priority < DEF_PRIORITY - 2)
f3a310bc 366 sc->reclaim_mode |= syncmode;
7d3579e8 367 else
f3a310bc 368 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
369}
370
f3a310bc 371static void reset_reclaim_mode(struct scan_control *sc)
7d3579e8 372{
f3a310bc 373 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
374}
375
1da177e4
LT
376static inline int is_page_cache_freeable(struct page *page)
377{
ceddc3a5
JW
378 /*
379 * A freeable page cache page is referenced only by the caller
380 * that isolated the page, the page cache radix tree and
381 * optional buffer heads at page->private.
382 */
edcf4748 383 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
384}
385
7d3579e8
KM
386static int may_write_to_queue(struct backing_dev_info *bdi,
387 struct scan_control *sc)
1da177e4 388{
930d9152 389 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
390 return 1;
391 if (!bdi_write_congested(bdi))
392 return 1;
393 if (bdi == current->backing_dev_info)
394 return 1;
7d3579e8
KM
395
396 /* lumpy reclaim for hugepage often need a lot of write */
397 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398 return 1;
1da177e4
LT
399 return 0;
400}
401
402/*
403 * We detected a synchronous write error writing a page out. Probably
404 * -ENOSPC. We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
406 *
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up. But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
410 *
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
413 */
414static void handle_write_error(struct address_space *mapping,
415 struct page *page, int error)
416{
7eaceacc 417 lock_page(page);
3e9f45bd
GC
418 if (page_mapping(page) == mapping)
419 mapping_set_error(mapping, error);
1da177e4
LT
420 unlock_page(page);
421}
422
04e62a29
CL
423/* possible outcome of pageout() */
424typedef enum {
425 /* failed to write page out, page is locked */
426 PAGE_KEEP,
427 /* move page to the active list, page is locked */
428 PAGE_ACTIVATE,
429 /* page has been sent to the disk successfully, page is unlocked */
430 PAGE_SUCCESS,
431 /* page is clean and locked */
432 PAGE_CLEAN,
433} pageout_t;
434
1da177e4 435/*
1742f19f
AM
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
1da177e4 438 */
c661b078 439static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 440 struct scan_control *sc)
1da177e4
LT
441{
442 /*
443 * If the page is dirty, only perform writeback if that write
444 * will be non-blocking. To prevent this allocation from being
445 * stalled by pagecache activity. But note that there may be
446 * stalls if we need to run get_block(). We could test
447 * PagePrivate for that.
448 *
6aceb53b 449 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
450 * this page's queue, we can perform writeback even if that
451 * will block.
452 *
453 * If the page is swapcache, write it back even if that would
454 * block, for some throttling. This happens by accident, because
455 * swap_backing_dev_info is bust: it doesn't reflect the
456 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
457 */
458 if (!is_page_cache_freeable(page))
459 return PAGE_KEEP;
460 if (!mapping) {
461 /*
462 * Some data journaling orphaned pages can have
463 * page->mapping == NULL while being dirty with clean buffers.
464 */
266cf658 465 if (page_has_private(page)) {
1da177e4
LT
466 if (try_to_free_buffers(page)) {
467 ClearPageDirty(page);
d40cee24 468 printk("%s: orphaned page\n", __func__);
1da177e4
LT
469 return PAGE_CLEAN;
470 }
471 }
472 return PAGE_KEEP;
473 }
474 if (mapping->a_ops->writepage == NULL)
475 return PAGE_ACTIVATE;
0e093d99 476 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
477 return PAGE_KEEP;
478
479 if (clear_page_dirty_for_io(page)) {
480 int res;
481 struct writeback_control wbc = {
482 .sync_mode = WB_SYNC_NONE,
483 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
484 .range_start = 0,
485 .range_end = LLONG_MAX,
1da177e4
LT
486 .for_reclaim = 1,
487 };
488
489 SetPageReclaim(page);
490 res = mapping->a_ops->writepage(page, &wbc);
491 if (res < 0)
492 handle_write_error(mapping, page, res);
994fc28c 493 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
494 ClearPageReclaim(page);
495 return PAGE_ACTIVATE;
496 }
c661b078
AW
497
498 /*
499 * Wait on writeback if requested to. This happens when
500 * direct reclaiming a large contiguous area and the
501 * first attempt to free a range of pages fails.
502 */
7d3579e8 503 if (PageWriteback(page) &&
f3a310bc 504 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
c661b078
AW
505 wait_on_page_writeback(page);
506
1da177e4
LT
507 if (!PageWriteback(page)) {
508 /* synchronous write or broken a_ops? */
509 ClearPageReclaim(page);
510 }
755f0225 511 trace_mm_vmscan_writepage(page,
f3a310bc 512 trace_reclaim_flags(page, sc->reclaim_mode));
e129b5c2 513 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
514 return PAGE_SUCCESS;
515 }
516
517 return PAGE_CLEAN;
518}
519
a649fd92 520/*
e286781d
NP
521 * Same as remove_mapping, but if the page is removed from the mapping, it
522 * gets returned with a refcount of 0.
a649fd92 523 */
e286781d 524static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 525{
28e4d965
NP
526 BUG_ON(!PageLocked(page));
527 BUG_ON(mapping != page_mapping(page));
49d2e9cc 528
19fd6231 529 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 530 /*
0fd0e6b0
NP
531 * The non racy check for a busy page.
532 *
533 * Must be careful with the order of the tests. When someone has
534 * a ref to the page, it may be possible that they dirty it then
535 * drop the reference. So if PageDirty is tested before page_count
536 * here, then the following race may occur:
537 *
538 * get_user_pages(&page);
539 * [user mapping goes away]
540 * write_to(page);
541 * !PageDirty(page) [good]
542 * SetPageDirty(page);
543 * put_page(page);
544 * !page_count(page) [good, discard it]
545 *
546 * [oops, our write_to data is lost]
547 *
548 * Reversing the order of the tests ensures such a situation cannot
549 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550 * load is not satisfied before that of page->_count.
551 *
552 * Note that if SetPageDirty is always performed via set_page_dirty,
553 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 554 */
e286781d 555 if (!page_freeze_refs(page, 2))
49d2e9cc 556 goto cannot_free;
e286781d
NP
557 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558 if (unlikely(PageDirty(page))) {
559 page_unfreeze_refs(page, 2);
49d2e9cc 560 goto cannot_free;
e286781d 561 }
49d2e9cc
CL
562
563 if (PageSwapCache(page)) {
564 swp_entry_t swap = { .val = page_private(page) };
565 __delete_from_swap_cache(page);
19fd6231 566 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 567 swapcache_free(swap, page);
e286781d 568 } else {
6072d13c
LT
569 void (*freepage)(struct page *);
570
571 freepage = mapping->a_ops->freepage;
572
e64a782f 573 __delete_from_page_cache(page);
19fd6231 574 spin_unlock_irq(&mapping->tree_lock);
e767e056 575 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
576
577 if (freepage != NULL)
578 freepage(page);
49d2e9cc
CL
579 }
580
49d2e9cc
CL
581 return 1;
582
583cannot_free:
19fd6231 584 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
585 return 0;
586}
587
e286781d
NP
588/*
589 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
590 * someone else has a ref on the page, abort and return 0. If it was
591 * successfully detached, return 1. Assumes the caller has a single ref on
592 * this page.
593 */
594int remove_mapping(struct address_space *mapping, struct page *page)
595{
596 if (__remove_mapping(mapping, page)) {
597 /*
598 * Unfreezing the refcount with 1 rather than 2 effectively
599 * drops the pagecache ref for us without requiring another
600 * atomic operation.
601 */
602 page_unfreeze_refs(page, 1);
603 return 1;
604 }
605 return 0;
606}
607
894bc310
LS
608/**
609 * putback_lru_page - put previously isolated page onto appropriate LRU list
610 * @page: page to be put back to appropriate lru list
611 *
612 * Add previously isolated @page to appropriate LRU list.
613 * Page may still be unevictable for other reasons.
614 *
615 * lru_lock must not be held, interrupts must be enabled.
616 */
894bc310
LS
617void putback_lru_page(struct page *page)
618{
619 int lru;
620 int active = !!TestClearPageActive(page);
bbfd28ee 621 int was_unevictable = PageUnevictable(page);
894bc310
LS
622
623 VM_BUG_ON(PageLRU(page));
624
625redo:
626 ClearPageUnevictable(page);
627
628 if (page_evictable(page, NULL)) {
629 /*
630 * For evictable pages, we can use the cache.
631 * In event of a race, worst case is we end up with an
632 * unevictable page on [in]active list.
633 * We know how to handle that.
634 */
401a8e1c 635 lru = active + page_lru_base_type(page);
894bc310
LS
636 lru_cache_add_lru(page, lru);
637 } else {
638 /*
639 * Put unevictable pages directly on zone's unevictable
640 * list.
641 */
642 lru = LRU_UNEVICTABLE;
643 add_page_to_unevictable_list(page);
6a7b9548
JW
644 /*
645 * When racing with an mlock clearing (page is
646 * unlocked), make sure that if the other thread does
647 * not observe our setting of PG_lru and fails
648 * isolation, we see PG_mlocked cleared below and move
649 * the page back to the evictable list.
650 *
651 * The other side is TestClearPageMlocked().
652 */
653 smp_mb();
894bc310 654 }
894bc310
LS
655
656 /*
657 * page's status can change while we move it among lru. If an evictable
658 * page is on unevictable list, it never be freed. To avoid that,
659 * check after we added it to the list, again.
660 */
661 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
662 if (!isolate_lru_page(page)) {
663 put_page(page);
664 goto redo;
665 }
666 /* This means someone else dropped this page from LRU
667 * So, it will be freed or putback to LRU again. There is
668 * nothing to do here.
669 */
670 }
671
bbfd28ee
LS
672 if (was_unevictable && lru != LRU_UNEVICTABLE)
673 count_vm_event(UNEVICTABLE_PGRESCUED);
674 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
675 count_vm_event(UNEVICTABLE_PGCULLED);
676
894bc310
LS
677 put_page(page); /* drop ref from isolate */
678}
679
dfc8d636
JW
680enum page_references {
681 PAGEREF_RECLAIM,
682 PAGEREF_RECLAIM_CLEAN,
64574746 683 PAGEREF_KEEP,
dfc8d636
JW
684 PAGEREF_ACTIVATE,
685};
686
687static enum page_references page_check_references(struct page *page,
688 struct scan_control *sc)
689{
64574746 690 int referenced_ptes, referenced_page;
dfc8d636 691 unsigned long vm_flags;
dfc8d636 692
64574746
JW
693 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
694 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
695
696 /* Lumpy reclaim - ignore references */
f3a310bc 697 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
dfc8d636
JW
698 return PAGEREF_RECLAIM;
699
700 /*
701 * Mlock lost the isolation race with us. Let try_to_unmap()
702 * move the page to the unevictable list.
703 */
704 if (vm_flags & VM_LOCKED)
705 return PAGEREF_RECLAIM;
706
64574746
JW
707 if (referenced_ptes) {
708 if (PageAnon(page))
709 return PAGEREF_ACTIVATE;
710 /*
711 * All mapped pages start out with page table
712 * references from the instantiating fault, so we need
713 * to look twice if a mapped file page is used more
714 * than once.
715 *
716 * Mark it and spare it for another trip around the
717 * inactive list. Another page table reference will
718 * lead to its activation.
719 *
720 * Note: the mark is set for activated pages as well
721 * so that recently deactivated but used pages are
722 * quickly recovered.
723 */
724 SetPageReferenced(page);
725
726 if (referenced_page)
727 return PAGEREF_ACTIVATE;
728
729 return PAGEREF_KEEP;
730 }
dfc8d636
JW
731
732 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 733 if (referenced_page && !PageSwapBacked(page))
64574746
JW
734 return PAGEREF_RECLAIM_CLEAN;
735
736 return PAGEREF_RECLAIM;
dfc8d636
JW
737}
738
abe4c3b5
MG
739static noinline_for_stack void free_page_list(struct list_head *free_pages)
740{
741 struct pagevec freed_pvec;
742 struct page *page, *tmp;
743
744 pagevec_init(&freed_pvec, 1);
745
746 list_for_each_entry_safe(page, tmp, free_pages, lru) {
747 list_del(&page->lru);
748 if (!pagevec_add(&freed_pvec, page)) {
749 __pagevec_free(&freed_pvec);
750 pagevec_reinit(&freed_pvec);
751 }
752 }
753
754 pagevec_free(&freed_pvec);
755}
756
1da177e4 757/*
1742f19f 758 * shrink_page_list() returns the number of reclaimed pages
1da177e4 759 */
1742f19f 760static unsigned long shrink_page_list(struct list_head *page_list,
0e093d99 761 struct zone *zone,
7d3579e8 762 struct scan_control *sc)
1da177e4
LT
763{
764 LIST_HEAD(ret_pages);
abe4c3b5 765 LIST_HEAD(free_pages);
1da177e4 766 int pgactivate = 0;
0e093d99
MG
767 unsigned long nr_dirty = 0;
768 unsigned long nr_congested = 0;
05ff5137 769 unsigned long nr_reclaimed = 0;
1da177e4
LT
770
771 cond_resched();
772
1da177e4 773 while (!list_empty(page_list)) {
dfc8d636 774 enum page_references references;
1da177e4
LT
775 struct address_space *mapping;
776 struct page *page;
777 int may_enter_fs;
1da177e4
LT
778
779 cond_resched();
780
781 page = lru_to_page(page_list);
782 list_del(&page->lru);
783
529ae9aa 784 if (!trylock_page(page))
1da177e4
LT
785 goto keep;
786
725d704e 787 VM_BUG_ON(PageActive(page));
0e093d99 788 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
789
790 sc->nr_scanned++;
80e43426 791
b291f000
NP
792 if (unlikely(!page_evictable(page, NULL)))
793 goto cull_mlocked;
894bc310 794
a6dc60f8 795 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
796 goto keep_locked;
797
1da177e4
LT
798 /* Double the slab pressure for mapped and swapcache pages */
799 if (page_mapped(page) || PageSwapCache(page))
800 sc->nr_scanned++;
801
c661b078
AW
802 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
804
805 if (PageWriteback(page)) {
806 /*
807 * Synchronous reclaim is performed in two passes,
808 * first an asynchronous pass over the list to
809 * start parallel writeback, and a second synchronous
810 * pass to wait for the IO to complete. Wait here
811 * for any page for which writeback has already
812 * started.
813 */
f3a310bc 814 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
7d3579e8 815 may_enter_fs)
c661b078 816 wait_on_page_writeback(page);
7d3579e8
KM
817 else {
818 unlock_page(page);
819 goto keep_lumpy;
820 }
c661b078 821 }
1da177e4 822
dfc8d636
JW
823 references = page_check_references(page, sc);
824 switch (references) {
825 case PAGEREF_ACTIVATE:
1da177e4 826 goto activate_locked;
64574746
JW
827 case PAGEREF_KEEP:
828 goto keep_locked;
dfc8d636
JW
829 case PAGEREF_RECLAIM:
830 case PAGEREF_RECLAIM_CLEAN:
831 ; /* try to reclaim the page below */
832 }
1da177e4 833
1da177e4
LT
834 /*
835 * Anonymous process memory has backing store?
836 * Try to allocate it some swap space here.
837 */
b291f000 838 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
839 if (!(sc->gfp_mask & __GFP_IO))
840 goto keep_locked;
ac47b003 841 if (!add_to_swap(page))
1da177e4 842 goto activate_locked;
63eb6b93 843 may_enter_fs = 1;
b291f000 844 }
1da177e4
LT
845
846 mapping = page_mapping(page);
1da177e4
LT
847
848 /*
849 * The page is mapped into the page tables of one or more
850 * processes. Try to unmap it here.
851 */
852 if (page_mapped(page) && mapping) {
14fa31b8 853 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
854 case SWAP_FAIL:
855 goto activate_locked;
856 case SWAP_AGAIN:
857 goto keep_locked;
b291f000
NP
858 case SWAP_MLOCK:
859 goto cull_mlocked;
1da177e4
LT
860 case SWAP_SUCCESS:
861 ; /* try to free the page below */
862 }
863 }
864
865 if (PageDirty(page)) {
0e093d99
MG
866 nr_dirty++;
867
ee72886d
MG
868 /*
869 * Only kswapd can writeback filesystem pages to
870 * avoid risk of stack overflow
871 */
872 if (page_is_file_cache(page) && !current_is_kswapd()) {
873 inc_zone_page_state(page, NR_VMSCAN_WRITE_SKIP);
874 goto keep_locked;
875 }
876
dfc8d636 877 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 878 goto keep_locked;
4dd4b920 879 if (!may_enter_fs)
1da177e4 880 goto keep_locked;
52a8363e 881 if (!sc->may_writepage)
1da177e4
LT
882 goto keep_locked;
883
884 /* Page is dirty, try to write it out here */
7d3579e8 885 switch (pageout(page, mapping, sc)) {
1da177e4 886 case PAGE_KEEP:
0e093d99 887 nr_congested++;
1da177e4
LT
888 goto keep_locked;
889 case PAGE_ACTIVATE:
890 goto activate_locked;
891 case PAGE_SUCCESS:
7d3579e8
KM
892 if (PageWriteback(page))
893 goto keep_lumpy;
894 if (PageDirty(page))
1da177e4 895 goto keep;
7d3579e8 896
1da177e4
LT
897 /*
898 * A synchronous write - probably a ramdisk. Go
899 * ahead and try to reclaim the page.
900 */
529ae9aa 901 if (!trylock_page(page))
1da177e4
LT
902 goto keep;
903 if (PageDirty(page) || PageWriteback(page))
904 goto keep_locked;
905 mapping = page_mapping(page);
906 case PAGE_CLEAN:
907 ; /* try to free the page below */
908 }
909 }
910
911 /*
912 * If the page has buffers, try to free the buffer mappings
913 * associated with this page. If we succeed we try to free
914 * the page as well.
915 *
916 * We do this even if the page is PageDirty().
917 * try_to_release_page() does not perform I/O, but it is
918 * possible for a page to have PageDirty set, but it is actually
919 * clean (all its buffers are clean). This happens if the
920 * buffers were written out directly, with submit_bh(). ext3
894bc310 921 * will do this, as well as the blockdev mapping.
1da177e4
LT
922 * try_to_release_page() will discover that cleanness and will
923 * drop the buffers and mark the page clean - it can be freed.
924 *
925 * Rarely, pages can have buffers and no ->mapping. These are
926 * the pages which were not successfully invalidated in
927 * truncate_complete_page(). We try to drop those buffers here
928 * and if that worked, and the page is no longer mapped into
929 * process address space (page_count == 1) it can be freed.
930 * Otherwise, leave the page on the LRU so it is swappable.
931 */
266cf658 932 if (page_has_private(page)) {
1da177e4
LT
933 if (!try_to_release_page(page, sc->gfp_mask))
934 goto activate_locked;
e286781d
NP
935 if (!mapping && page_count(page) == 1) {
936 unlock_page(page);
937 if (put_page_testzero(page))
938 goto free_it;
939 else {
940 /*
941 * rare race with speculative reference.
942 * the speculative reference will free
943 * this page shortly, so we may
944 * increment nr_reclaimed here (and
945 * leave it off the LRU).
946 */
947 nr_reclaimed++;
948 continue;
949 }
950 }
1da177e4
LT
951 }
952
e286781d 953 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 954 goto keep_locked;
1da177e4 955
a978d6f5
NP
956 /*
957 * At this point, we have no other references and there is
958 * no way to pick any more up (removed from LRU, removed
959 * from pagecache). Can use non-atomic bitops now (and
960 * we obviously don't have to worry about waking up a process
961 * waiting on the page lock, because there are no references.
962 */
963 __clear_page_locked(page);
e286781d 964free_it:
05ff5137 965 nr_reclaimed++;
abe4c3b5
MG
966
967 /*
968 * Is there need to periodically free_page_list? It would
969 * appear not as the counts should be low
970 */
971 list_add(&page->lru, &free_pages);
1da177e4
LT
972 continue;
973
b291f000 974cull_mlocked:
63d6c5ad
HD
975 if (PageSwapCache(page))
976 try_to_free_swap(page);
b291f000
NP
977 unlock_page(page);
978 putback_lru_page(page);
f3a310bc 979 reset_reclaim_mode(sc);
b291f000
NP
980 continue;
981
1da177e4 982activate_locked:
68a22394
RR
983 /* Not a candidate for swapping, so reclaim swap space. */
984 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 985 try_to_free_swap(page);
894bc310 986 VM_BUG_ON(PageActive(page));
1da177e4
LT
987 SetPageActive(page);
988 pgactivate++;
989keep_locked:
990 unlock_page(page);
991keep:
f3a310bc 992 reset_reclaim_mode(sc);
7d3579e8 993keep_lumpy:
1da177e4 994 list_add(&page->lru, &ret_pages);
b291f000 995 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 996 }
abe4c3b5 997
0e093d99
MG
998 /*
999 * Tag a zone as congested if all the dirty pages encountered were
1000 * backed by a congested BDI. In this case, reclaimers should just
1001 * back off and wait for congestion to clear because further reclaim
1002 * will encounter the same problem
1003 */
d6c438b6 1004 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
0e093d99
MG
1005 zone_set_flag(zone, ZONE_CONGESTED);
1006
abe4c3b5
MG
1007 free_page_list(&free_pages);
1008
1da177e4 1009 list_splice(&ret_pages, page_list);
f8891e5e 1010 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 1011 return nr_reclaimed;
1da177e4
LT
1012}
1013
5ad333eb
AW
1014/*
1015 * Attempt to remove the specified page from its LRU. Only take this page
1016 * if it is of the appropriate PageActive status. Pages which are being
1017 * freed elsewhere are also ignored.
1018 *
1019 * page: page to consider
1020 * mode: one of the LRU isolation modes defined above
1021 *
1022 * returns 0 on success, -ve errno on failure.
1023 */
4356f21d 1024int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
5ad333eb 1025{
4356f21d 1026 bool all_lru_mode;
5ad333eb
AW
1027 int ret = -EINVAL;
1028
1029 /* Only take pages on the LRU. */
1030 if (!PageLRU(page))
1031 return ret;
1032
4356f21d
MK
1033 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1034 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1035
5ad333eb
AW
1036 /*
1037 * When checking the active state, we need to be sure we are
1038 * dealing with comparible boolean values. Take the logical not
1039 * of each.
1040 */
4356f21d 1041 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
5ad333eb
AW
1042 return ret;
1043
4356f21d 1044 if (!all_lru_mode && !!page_is_file_cache(page) != file)
4f98a2fe
RR
1045 return ret;
1046
894bc310
LS
1047 /*
1048 * When this function is being called for lumpy reclaim, we
1049 * initially look into all LRU pages, active, inactive and
1050 * unevictable; only give shrink_page_list evictable pages.
1051 */
1052 if (PageUnevictable(page))
1053 return ret;
1054
5ad333eb 1055 ret = -EBUSY;
08e552c6 1056
39deaf85
MK
1057 if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1058 return ret;
1059
f80c0673
MK
1060 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1061 return ret;
1062
5ad333eb
AW
1063 if (likely(get_page_unless_zero(page))) {
1064 /*
1065 * Be careful not to clear PageLRU until after we're
1066 * sure the page is not being freed elsewhere -- the
1067 * page release code relies on it.
1068 */
1069 ClearPageLRU(page);
1070 ret = 0;
1071 }
1072
1073 return ret;
1074}
1075
1da177e4
LT
1076/*
1077 * zone->lru_lock is heavily contended. Some of the functions that
1078 * shrink the lists perform better by taking out a batch of pages
1079 * and working on them outside the LRU lock.
1080 *
1081 * For pagecache intensive workloads, this function is the hottest
1082 * spot in the kernel (apart from copy_*_user functions).
1083 *
1084 * Appropriate locks must be held before calling this function.
1085 *
1086 * @nr_to_scan: The number of pages to look through on the list.
1087 * @src: The LRU list to pull pages off.
1088 * @dst: The temp list to put pages on to.
1089 * @scanned: The number of pages that were scanned.
5ad333eb
AW
1090 * @order: The caller's attempted allocation order
1091 * @mode: One of the LRU isolation modes
4f98a2fe 1092 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
1093 *
1094 * returns how many pages were moved onto *@dst.
1095 */
69e05944
AM
1096static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1097 struct list_head *src, struct list_head *dst,
4356f21d
MK
1098 unsigned long *scanned, int order, isolate_mode_t mode,
1099 int file)
1da177e4 1100{
69e05944 1101 unsigned long nr_taken = 0;
a8a94d15
MG
1102 unsigned long nr_lumpy_taken = 0;
1103 unsigned long nr_lumpy_dirty = 0;
1104 unsigned long nr_lumpy_failed = 0;
c9b02d97 1105 unsigned long scan;
1da177e4 1106
c9b02d97 1107 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
1108 struct page *page;
1109 unsigned long pfn;
1110 unsigned long end_pfn;
1111 unsigned long page_pfn;
1112 int zone_id;
1113
1da177e4
LT
1114 page = lru_to_page(src);
1115 prefetchw_prev_lru_page(page, src, flags);
1116
725d704e 1117 VM_BUG_ON(!PageLRU(page));
8d438f96 1118
4f98a2fe 1119 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
1120 case 0:
1121 list_move(&page->lru, dst);
2ffebca6 1122 mem_cgroup_del_lru(page);
2c888cfb 1123 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1124 break;
1125
1126 case -EBUSY:
1127 /* else it is being freed elsewhere */
1128 list_move(&page->lru, src);
2ffebca6 1129 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 1130 continue;
46453a6e 1131
5ad333eb
AW
1132 default:
1133 BUG();
1134 }
1135
1136 if (!order)
1137 continue;
1138
1139 /*
1140 * Attempt to take all pages in the order aligned region
1141 * surrounding the tag page. Only take those pages of
1142 * the same active state as that tag page. We may safely
1143 * round the target page pfn down to the requested order
25985edc 1144 * as the mem_map is guaranteed valid out to MAX_ORDER,
5ad333eb
AW
1145 * where that page is in a different zone we will detect
1146 * it from its zone id and abort this block scan.
1147 */
1148 zone_id = page_zone_id(page);
1149 page_pfn = page_to_pfn(page);
1150 pfn = page_pfn & ~((1 << order) - 1);
1151 end_pfn = pfn + (1 << order);
1152 for (; pfn < end_pfn; pfn++) {
1153 struct page *cursor_page;
1154
1155 /* The target page is in the block, ignore it. */
1156 if (unlikely(pfn == page_pfn))
1157 continue;
1158
1159 /* Avoid holes within the zone. */
1160 if (unlikely(!pfn_valid_within(pfn)))
1161 break;
1162
1163 cursor_page = pfn_to_page(pfn);
4f98a2fe 1164
5ad333eb
AW
1165 /* Check that we have not crossed a zone boundary. */
1166 if (unlikely(page_zone_id(cursor_page) != zone_id))
08fc468f 1167 break;
de2e7567
MK
1168
1169 /*
1170 * If we don't have enough swap space, reclaiming of
1171 * anon page which don't already have a swap slot is
1172 * pointless.
1173 */
1174 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
08fc468f
KM
1175 !PageSwapCache(cursor_page))
1176 break;
de2e7567 1177
ee993b13 1178 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 1179 list_move(&cursor_page->lru, dst);
cb4cbcf6 1180 mem_cgroup_del_lru(cursor_page);
2c888cfb 1181 nr_taken += hpage_nr_pages(page);
a8a94d15
MG
1182 nr_lumpy_taken++;
1183 if (PageDirty(cursor_page))
1184 nr_lumpy_dirty++;
5ad333eb 1185 scan++;
a8a94d15 1186 } else {
d179e84b
AA
1187 /*
1188 * Check if the page is freed already.
1189 *
1190 * We can't use page_count() as that
1191 * requires compound_head and we don't
1192 * have a pin on the page here. If a
1193 * page is tail, we may or may not
1194 * have isolated the head, so assume
1195 * it's not free, it'd be tricky to
1196 * track the head status without a
1197 * page pin.
1198 */
1199 if (!PageTail(cursor_page) &&
1200 !atomic_read(&cursor_page->_count))
08fc468f
KM
1201 continue;
1202 break;
5ad333eb
AW
1203 }
1204 }
08fc468f
KM
1205
1206 /* If we break out of the loop above, lumpy reclaim failed */
1207 if (pfn < end_pfn)
1208 nr_lumpy_failed++;
1da177e4
LT
1209 }
1210
1211 *scanned = scan;
a8a94d15
MG
1212
1213 trace_mm_vmscan_lru_isolate(order,
1214 nr_to_scan, scan,
1215 nr_taken,
1216 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1217 mode);
1da177e4
LT
1218 return nr_taken;
1219}
1220
66e1707b
BS
1221static unsigned long isolate_pages_global(unsigned long nr,
1222 struct list_head *dst,
1223 unsigned long *scanned, int order,
4356f21d
MK
1224 isolate_mode_t mode,
1225 struct zone *z, int active, int file)
66e1707b 1226{
4f98a2fe 1227 int lru = LRU_BASE;
66e1707b 1228 if (active)
4f98a2fe
RR
1229 lru += LRU_ACTIVE;
1230 if (file)
1231 lru += LRU_FILE;
1232 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 1233 mode, file);
66e1707b
BS
1234}
1235
5ad333eb
AW
1236/*
1237 * clear_active_flags() is a helper for shrink_active_list(), clearing
1238 * any active bits from the pages in the list.
1239 */
4f98a2fe
RR
1240static unsigned long clear_active_flags(struct list_head *page_list,
1241 unsigned int *count)
5ad333eb
AW
1242{
1243 int nr_active = 0;
4f98a2fe 1244 int lru;
5ad333eb
AW
1245 struct page *page;
1246
4f98a2fe 1247 list_for_each_entry(page, page_list, lru) {
2c888cfb 1248 int numpages = hpage_nr_pages(page);
401a8e1c 1249 lru = page_lru_base_type(page);
5ad333eb 1250 if (PageActive(page)) {
4f98a2fe 1251 lru += LRU_ACTIVE;
5ad333eb 1252 ClearPageActive(page);
2c888cfb 1253 nr_active += numpages;
5ad333eb 1254 }
1489fa14 1255 if (count)
2c888cfb 1256 count[lru] += numpages;
4f98a2fe 1257 }
5ad333eb
AW
1258
1259 return nr_active;
1260}
1261
62695a84
NP
1262/**
1263 * isolate_lru_page - tries to isolate a page from its LRU list
1264 * @page: page to isolate from its LRU list
1265 *
1266 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1267 * vmstat statistic corresponding to whatever LRU list the page was on.
1268 *
1269 * Returns 0 if the page was removed from an LRU list.
1270 * Returns -EBUSY if the page was not on an LRU list.
1271 *
1272 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1273 * the active list, it will have PageActive set. If it was found on
1274 * the unevictable list, it will have the PageUnevictable bit set. That flag
1275 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1276 *
1277 * The vmstat statistic corresponding to the list on which the page was
1278 * found will be decremented.
1279 *
1280 * Restrictions:
1281 * (1) Must be called with an elevated refcount on the page. This is a
1282 * fundamentnal difference from isolate_lru_pages (which is called
1283 * without a stable reference).
1284 * (2) the lru_lock must not be held.
1285 * (3) interrupts must be enabled.
1286 */
1287int isolate_lru_page(struct page *page)
1288{
1289 int ret = -EBUSY;
1290
0c917313
KK
1291 VM_BUG_ON(!page_count(page));
1292
62695a84
NP
1293 if (PageLRU(page)) {
1294 struct zone *zone = page_zone(page);
1295
1296 spin_lock_irq(&zone->lru_lock);
0c917313 1297 if (PageLRU(page)) {
894bc310 1298 int lru = page_lru(page);
62695a84 1299 ret = 0;
0c917313 1300 get_page(page);
62695a84 1301 ClearPageLRU(page);
4f98a2fe 1302
4f98a2fe 1303 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1304 }
1305 spin_unlock_irq(&zone->lru_lock);
1306 }
1307 return ret;
1308}
1309
35cd7815
RR
1310/*
1311 * Are there way too many processes in the direct reclaim path already?
1312 */
1313static int too_many_isolated(struct zone *zone, int file,
1314 struct scan_control *sc)
1315{
1316 unsigned long inactive, isolated;
1317
1318 if (current_is_kswapd())
1319 return 0;
1320
1321 if (!scanning_global_lru(sc))
1322 return 0;
1323
1324 if (file) {
1325 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1326 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1327 } else {
1328 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1329 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1330 }
1331
1332 return isolated > inactive;
1333}
1334
66635629
MG
1335/*
1336 * TODO: Try merging with migrations version of putback_lru_pages
1337 */
1338static noinline_for_stack void
1489fa14 1339putback_lru_pages(struct zone *zone, struct scan_control *sc,
66635629
MG
1340 unsigned long nr_anon, unsigned long nr_file,
1341 struct list_head *page_list)
1342{
1343 struct page *page;
1344 struct pagevec pvec;
1489fa14 1345 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
66635629
MG
1346
1347 pagevec_init(&pvec, 1);
1348
1349 /*
1350 * Put back any unfreeable pages.
1351 */
1352 spin_lock(&zone->lru_lock);
1353 while (!list_empty(page_list)) {
1354 int lru;
1355 page = lru_to_page(page_list);
1356 VM_BUG_ON(PageLRU(page));
1357 list_del(&page->lru);
1358 if (unlikely(!page_evictable(page, NULL))) {
1359 spin_unlock_irq(&zone->lru_lock);
1360 putback_lru_page(page);
1361 spin_lock_irq(&zone->lru_lock);
1362 continue;
1363 }
7a608572 1364 SetPageLRU(page);
66635629 1365 lru = page_lru(page);
7a608572 1366 add_page_to_lru_list(zone, page, lru);
66635629
MG
1367 if (is_active_lru(lru)) {
1368 int file = is_file_lru(lru);
9992af10
RR
1369 int numpages = hpage_nr_pages(page);
1370 reclaim_stat->recent_rotated[file] += numpages;
66635629
MG
1371 }
1372 if (!pagevec_add(&pvec, page)) {
1373 spin_unlock_irq(&zone->lru_lock);
1374 __pagevec_release(&pvec);
1375 spin_lock_irq(&zone->lru_lock);
1376 }
1377 }
1378 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1379 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1380
1381 spin_unlock_irq(&zone->lru_lock);
1382 pagevec_release(&pvec);
1383}
1384
1489fa14
MG
1385static noinline_for_stack void update_isolated_counts(struct zone *zone,
1386 struct scan_control *sc,
1387 unsigned long *nr_anon,
1388 unsigned long *nr_file,
1389 struct list_head *isolated_list)
1390{
1391 unsigned long nr_active;
1392 unsigned int count[NR_LRU_LISTS] = { 0, };
1393 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1394
1395 nr_active = clear_active_flags(isolated_list, count);
1396 __count_vm_events(PGDEACTIVATE, nr_active);
1397
1398 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1399 -count[LRU_ACTIVE_FILE]);
1400 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1401 -count[LRU_INACTIVE_FILE]);
1402 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1403 -count[LRU_ACTIVE_ANON]);
1404 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1405 -count[LRU_INACTIVE_ANON]);
1406
1407 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1408 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1409 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1410 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1411
1412 reclaim_stat->recent_scanned[0] += *nr_anon;
1413 reclaim_stat->recent_scanned[1] += *nr_file;
1414}
1415
e31f3698
WF
1416/*
1417 * Returns true if the caller should wait to clean dirty/writeback pages.
1418 *
1419 * If we are direct reclaiming for contiguous pages and we do not reclaim
1420 * everything in the list, try again and wait for writeback IO to complete.
1421 * This will stall high-order allocations noticeably. Only do that when really
1422 * need to free the pages under high memory pressure.
1423 */
1424static inline bool should_reclaim_stall(unsigned long nr_taken,
1425 unsigned long nr_freed,
1426 int priority,
1427 struct scan_control *sc)
1428{
1429 int lumpy_stall_priority;
1430
1431 /* kswapd should not stall on sync IO */
1432 if (current_is_kswapd())
1433 return false;
1434
1435 /* Only stall on lumpy reclaim */
f3a310bc 1436 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
e31f3698
WF
1437 return false;
1438
81d66c70 1439 /* If we have reclaimed everything on the isolated list, no stall */
e31f3698
WF
1440 if (nr_freed == nr_taken)
1441 return false;
1442
1443 /*
1444 * For high-order allocations, there are two stall thresholds.
1445 * High-cost allocations stall immediately where as lower
1446 * order allocations such as stacks require the scanning
1447 * priority to be much higher before stalling.
1448 */
1449 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1450 lumpy_stall_priority = DEF_PRIORITY;
1451 else
1452 lumpy_stall_priority = DEF_PRIORITY / 3;
1453
1454 return priority <= lumpy_stall_priority;
1455}
1456
1da177e4 1457/*
1742f19f
AM
1458 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1459 * of reclaimed pages
1da177e4 1460 */
66635629
MG
1461static noinline_for_stack unsigned long
1462shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1463 struct scan_control *sc, int priority, int file)
1da177e4
LT
1464{
1465 LIST_HEAD(page_list);
e247dbce 1466 unsigned long nr_scanned;
05ff5137 1467 unsigned long nr_reclaimed = 0;
e247dbce 1468 unsigned long nr_taken;
e247dbce
KM
1469 unsigned long nr_anon;
1470 unsigned long nr_file;
4356f21d 1471 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
78dc583d 1472
35cd7815 1473 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1474 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1475
1476 /* We are about to die and free our memory. Return now. */
1477 if (fatal_signal_pending(current))
1478 return SWAP_CLUSTER_MAX;
1479 }
1480
f3a310bc 1481 set_reclaim_mode(priority, sc, false);
4356f21d
MK
1482 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1483 reclaim_mode |= ISOLATE_ACTIVE;
1484
1da177e4 1485 lru_add_drain();
f80c0673
MK
1486
1487 if (!sc->may_unmap)
1488 reclaim_mode |= ISOLATE_UNMAPPED;
1489 if (!sc->may_writepage)
1490 reclaim_mode |= ISOLATE_CLEAN;
1491
1da177e4 1492 spin_lock_irq(&zone->lru_lock);
b35ea17b 1493
e247dbce 1494 if (scanning_global_lru(sc)) {
4356f21d
MK
1495 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1496 &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
e247dbce
KM
1497 zone->pages_scanned += nr_scanned;
1498 if (current_is_kswapd())
1499 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1500 nr_scanned);
1501 else
1502 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1503 nr_scanned);
1504 } else {
4356f21d
MK
1505 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1506 &nr_scanned, sc->order, reclaim_mode, zone,
1507 sc->mem_cgroup, 0, file);
e247dbce
KM
1508 /*
1509 * mem_cgroup_isolate_pages() keeps track of
1510 * scanned pages on its own.
1511 */
1512 }
b35ea17b 1513
66635629
MG
1514 if (nr_taken == 0) {
1515 spin_unlock_irq(&zone->lru_lock);
1516 return 0;
1517 }
5ad333eb 1518
1489fa14 1519 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1da177e4 1520
e247dbce 1521 spin_unlock_irq(&zone->lru_lock);
c661b078 1522
0e093d99 1523 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
c661b078 1524
e31f3698
WF
1525 /* Check if we should syncronously wait for writeback */
1526 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
f3a310bc 1527 set_reclaim_mode(priority, sc, true);
0e093d99 1528 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
e247dbce 1529 }
b35ea17b 1530
e247dbce
KM
1531 local_irq_disable();
1532 if (current_is_kswapd())
1533 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1534 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
a74609fa 1535
1489fa14 1536 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
e11da5b4
MG
1537
1538 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1539 zone_idx(zone),
1540 nr_scanned, nr_reclaimed,
1541 priority,
f3a310bc 1542 trace_shrink_flags(file, sc->reclaim_mode));
05ff5137 1543 return nr_reclaimed;
1da177e4
LT
1544}
1545
1546/*
1547 * This moves pages from the active list to the inactive list.
1548 *
1549 * We move them the other way if the page is referenced by one or more
1550 * processes, from rmap.
1551 *
1552 * If the pages are mostly unmapped, the processing is fast and it is
1553 * appropriate to hold zone->lru_lock across the whole operation. But if
1554 * the pages are mapped, the processing is slow (page_referenced()) so we
1555 * should drop zone->lru_lock around each page. It's impossible to balance
1556 * this, so instead we remove the pages from the LRU while processing them.
1557 * It is safe to rely on PG_active against the non-LRU pages in here because
1558 * nobody will play with that bit on a non-LRU page.
1559 *
1560 * The downside is that we have to touch page->_count against each page.
1561 * But we had to alter page->flags anyway.
1562 */
1cfb419b 1563
3eb4140f
WF
1564static void move_active_pages_to_lru(struct zone *zone,
1565 struct list_head *list,
1566 enum lru_list lru)
1567{
1568 unsigned long pgmoved = 0;
1569 struct pagevec pvec;
1570 struct page *page;
1571
1572 pagevec_init(&pvec, 1);
1573
1574 while (!list_empty(list)) {
1575 page = lru_to_page(list);
3eb4140f
WF
1576
1577 VM_BUG_ON(PageLRU(page));
1578 SetPageLRU(page);
1579
3eb4140f
WF
1580 list_move(&page->lru, &zone->lru[lru].list);
1581 mem_cgroup_add_lru_list(page, lru);
2c888cfb 1582 pgmoved += hpage_nr_pages(page);
3eb4140f
WF
1583
1584 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1585 spin_unlock_irq(&zone->lru_lock);
1586 if (buffer_heads_over_limit)
1587 pagevec_strip(&pvec);
1588 __pagevec_release(&pvec);
1589 spin_lock_irq(&zone->lru_lock);
1590 }
1591 }
1592 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1593 if (!is_active_lru(lru))
1594 __count_vm_events(PGDEACTIVATE, pgmoved);
1595}
1cfb419b 1596
1742f19f 1597static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1598 struct scan_control *sc, int priority, int file)
1da177e4 1599{
44c241f1 1600 unsigned long nr_taken;
69e05944 1601 unsigned long pgscanned;
6fe6b7e3 1602 unsigned long vm_flags;
1da177e4 1603 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1604 LIST_HEAD(l_active);
b69408e8 1605 LIST_HEAD(l_inactive);
1da177e4 1606 struct page *page;
6e901571 1607 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1608 unsigned long nr_rotated = 0;
f80c0673 1609 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1da177e4
LT
1610
1611 lru_add_drain();
f80c0673
MK
1612
1613 if (!sc->may_unmap)
1614 reclaim_mode |= ISOLATE_UNMAPPED;
1615 if (!sc->may_writepage)
1616 reclaim_mode |= ISOLATE_CLEAN;
1617
1da177e4 1618 spin_lock_irq(&zone->lru_lock);
e72e2bd6 1619 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1620 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1621 &pgscanned, sc->order,
f80c0673 1622 reclaim_mode, zone,
8b25c6d2 1623 1, file);
1cfb419b 1624 zone->pages_scanned += pgscanned;
8b25c6d2
JW
1625 } else {
1626 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1627 &pgscanned, sc->order,
f80c0673 1628 reclaim_mode, zone,
8b25c6d2
JW
1629 sc->mem_cgroup, 1, file);
1630 /*
1631 * mem_cgroup_isolate_pages() keeps track of
1632 * scanned pages on its own.
1633 */
4f98a2fe 1634 }
8b25c6d2 1635
b7c46d15 1636 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1637
3eb4140f 1638 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1639 if (file)
44c241f1 1640 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1641 else
44c241f1 1642 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1643 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1644 spin_unlock_irq(&zone->lru_lock);
1645
1da177e4
LT
1646 while (!list_empty(&l_hold)) {
1647 cond_resched();
1648 page = lru_to_page(&l_hold);
1649 list_del(&page->lru);
7e9cd484 1650
894bc310
LS
1651 if (unlikely(!page_evictable(page, NULL))) {
1652 putback_lru_page(page);
1653 continue;
1654 }
1655
64574746 1656 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
9992af10 1657 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1658 /*
1659 * Identify referenced, file-backed active pages and
1660 * give them one more trip around the active list. So
1661 * that executable code get better chances to stay in
1662 * memory under moderate memory pressure. Anon pages
1663 * are not likely to be evicted by use-once streaming
1664 * IO, plus JVM can create lots of anon VM_EXEC pages,
1665 * so we ignore them here.
1666 */
41e20983 1667 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1668 list_add(&page->lru, &l_active);
1669 continue;
1670 }
1671 }
7e9cd484 1672
5205e56e 1673 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1674 list_add(&page->lru, &l_inactive);
1675 }
1676
b555749a 1677 /*
8cab4754 1678 * Move pages back to the lru list.
b555749a 1679 */
2a1dc509 1680 spin_lock_irq(&zone->lru_lock);
556adecb 1681 /*
8cab4754
WF
1682 * Count referenced pages from currently used mappings as rotated,
1683 * even though only some of them are actually re-activated. This
1684 * helps balance scan pressure between file and anonymous pages in
1685 * get_scan_ratio.
7e9cd484 1686 */
b7c46d15 1687 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1688
3eb4140f
WF
1689 move_active_pages_to_lru(zone, &l_active,
1690 LRU_ACTIVE + file * LRU_FILE);
1691 move_active_pages_to_lru(zone, &l_inactive,
1692 LRU_BASE + file * LRU_FILE);
a731286d 1693 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1694 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1695}
1696
74e3f3c3 1697#ifdef CONFIG_SWAP
14797e23 1698static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1699{
1700 unsigned long active, inactive;
1701
1702 active = zone_page_state(zone, NR_ACTIVE_ANON);
1703 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1704
1705 if (inactive * zone->inactive_ratio < active)
1706 return 1;
1707
1708 return 0;
1709}
1710
14797e23
KM
1711/**
1712 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1713 * @zone: zone to check
1714 * @sc: scan control of this context
1715 *
1716 * Returns true if the zone does not have enough inactive anon pages,
1717 * meaning some active anon pages need to be deactivated.
1718 */
1719static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1720{
1721 int low;
1722
74e3f3c3
MK
1723 /*
1724 * If we don't have swap space, anonymous page deactivation
1725 * is pointless.
1726 */
1727 if (!total_swap_pages)
1728 return 0;
1729
e72e2bd6 1730 if (scanning_global_lru(sc))
14797e23
KM
1731 low = inactive_anon_is_low_global(zone);
1732 else
c772be93 1733 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1734 return low;
1735}
74e3f3c3
MK
1736#else
1737static inline int inactive_anon_is_low(struct zone *zone,
1738 struct scan_control *sc)
1739{
1740 return 0;
1741}
1742#endif
14797e23 1743
56e49d21
RR
1744static int inactive_file_is_low_global(struct zone *zone)
1745{
1746 unsigned long active, inactive;
1747
1748 active = zone_page_state(zone, NR_ACTIVE_FILE);
1749 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1750
1751 return (active > inactive);
1752}
1753
1754/**
1755 * inactive_file_is_low - check if file pages need to be deactivated
1756 * @zone: zone to check
1757 * @sc: scan control of this context
1758 *
1759 * When the system is doing streaming IO, memory pressure here
1760 * ensures that active file pages get deactivated, until more
1761 * than half of the file pages are on the inactive list.
1762 *
1763 * Once we get to that situation, protect the system's working
1764 * set from being evicted by disabling active file page aging.
1765 *
1766 * This uses a different ratio than the anonymous pages, because
1767 * the page cache uses a use-once replacement algorithm.
1768 */
1769static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1770{
1771 int low;
1772
1773 if (scanning_global_lru(sc))
1774 low = inactive_file_is_low_global(zone);
1775 else
1776 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1777 return low;
1778}
1779
b39415b2
RR
1780static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1781 int file)
1782{
1783 if (file)
1784 return inactive_file_is_low(zone, sc);
1785 else
1786 return inactive_anon_is_low(zone, sc);
1787}
1788
4f98a2fe 1789static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1790 struct zone *zone, struct scan_control *sc, int priority)
1791{
4f98a2fe
RR
1792 int file = is_file_lru(lru);
1793
b39415b2
RR
1794 if (is_active_lru(lru)) {
1795 if (inactive_list_is_low(zone, sc, file))
1796 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1797 return 0;
1798 }
1799
33c120ed 1800 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1801}
1802
1f4c025b
KH
1803static int vmscan_swappiness(struct scan_control *sc)
1804{
1805 if (scanning_global_lru(sc))
1806 return vm_swappiness;
1807 return mem_cgroup_swappiness(sc->mem_cgroup);
1808}
1809
4f98a2fe
RR
1810/*
1811 * Determine how aggressively the anon and file LRU lists should be
1812 * scanned. The relative value of each set of LRU lists is determined
1813 * by looking at the fraction of the pages scanned we did rotate back
1814 * onto the active list instead of evict.
1815 *
76a33fc3 1816 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1817 */
76a33fc3
SL
1818static void get_scan_count(struct zone *zone, struct scan_control *sc,
1819 unsigned long *nr, int priority)
4f98a2fe
RR
1820{
1821 unsigned long anon, file, free;
1822 unsigned long anon_prio, file_prio;
1823 unsigned long ap, fp;
6e901571 1824 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
76a33fc3
SL
1825 u64 fraction[2], denominator;
1826 enum lru_list l;
1827 int noswap = 0;
a4d3e9e7 1828 bool force_scan = false;
246e87a9 1829
f11c0ca5
JW
1830 /*
1831 * If the zone or memcg is small, nr[l] can be 0. This
1832 * results in no scanning on this priority and a potential
1833 * priority drop. Global direct reclaim can go to the next
1834 * zone and tends to have no problems. Global kswapd is for
1835 * zone balancing and it needs to scan a minimum amount. When
1836 * reclaiming for a memcg, a priority drop can cause high
1837 * latencies, so it's better to scan a minimum amount there as
1838 * well.
1839 */
a4d3e9e7
JW
1840 if (scanning_global_lru(sc) && current_is_kswapd())
1841 force_scan = true;
a4d3e9e7
JW
1842 if (!scanning_global_lru(sc))
1843 force_scan = true;
76a33fc3
SL
1844
1845 /* If we have no swap space, do not bother scanning anon pages. */
1846 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1847 noswap = 1;
1848 fraction[0] = 0;
1849 fraction[1] = 1;
1850 denominator = 1;
1851 goto out;
1852 }
4f98a2fe 1853
a4d3e9e7
JW
1854 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1855 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1856 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1857 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1858
e72e2bd6 1859 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1860 free = zone_page_state(zone, NR_FREE_PAGES);
1861 /* If we have very few page cache pages,
1862 force-scan anon pages. */
41858966 1863 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1864 fraction[0] = 1;
1865 fraction[1] = 0;
1866 denominator = 1;
1867 goto out;
eeee9a8c 1868 }
4f98a2fe
RR
1869 }
1870
58c37f6e
KM
1871 /*
1872 * With swappiness at 100, anonymous and file have the same priority.
1873 * This scanning priority is essentially the inverse of IO cost.
1874 */
1f4c025b
KH
1875 anon_prio = vmscan_swappiness(sc);
1876 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1877
4f98a2fe
RR
1878 /*
1879 * OK, so we have swap space and a fair amount of page cache
1880 * pages. We use the recently rotated / recently scanned
1881 * ratios to determine how valuable each cache is.
1882 *
1883 * Because workloads change over time (and to avoid overflow)
1884 * we keep these statistics as a floating average, which ends
1885 * up weighing recent references more than old ones.
1886 *
1887 * anon in [0], file in [1]
1888 */
58c37f6e 1889 spin_lock_irq(&zone->lru_lock);
6e901571 1890 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1891 reclaim_stat->recent_scanned[0] /= 2;
1892 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1893 }
1894
6e901571 1895 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1896 reclaim_stat->recent_scanned[1] /= 2;
1897 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1898 }
1899
4f98a2fe 1900 /*
00d8089c
RR
1901 * The amount of pressure on anon vs file pages is inversely
1902 * proportional to the fraction of recently scanned pages on
1903 * each list that were recently referenced and in active use.
4f98a2fe 1904 */
6e901571
KM
1905 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1906 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1907
6e901571
KM
1908 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1909 fp /= reclaim_stat->recent_rotated[1] + 1;
58c37f6e 1910 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1911
76a33fc3
SL
1912 fraction[0] = ap;
1913 fraction[1] = fp;
1914 denominator = ap + fp + 1;
1915out:
1916 for_each_evictable_lru(l) {
1917 int file = is_file_lru(l);
1918 unsigned long scan;
6e08a369 1919
76a33fc3
SL
1920 scan = zone_nr_lru_pages(zone, sc, l);
1921 if (priority || noswap) {
1922 scan >>= priority;
f11c0ca5
JW
1923 if (!scan && force_scan)
1924 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1925 scan = div64_u64(scan * fraction[file], denominator);
1926 }
246e87a9 1927 nr[l] = scan;
76a33fc3 1928 }
6e08a369 1929}
4f98a2fe 1930
3e7d3449
MG
1931/*
1932 * Reclaim/compaction depends on a number of pages being freed. To avoid
1933 * disruption to the system, a small number of order-0 pages continue to be
1934 * rotated and reclaimed in the normal fashion. However, by the time we get
1935 * back to the allocator and call try_to_compact_zone(), we ensure that
1936 * there are enough free pages for it to be likely successful
1937 */
1938static inline bool should_continue_reclaim(struct zone *zone,
1939 unsigned long nr_reclaimed,
1940 unsigned long nr_scanned,
1941 struct scan_control *sc)
1942{
1943 unsigned long pages_for_compaction;
1944 unsigned long inactive_lru_pages;
1945
1946 /* If not in reclaim/compaction mode, stop */
f3a310bc 1947 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
3e7d3449
MG
1948 return false;
1949
2876592f
MG
1950 /* Consider stopping depending on scan and reclaim activity */
1951 if (sc->gfp_mask & __GFP_REPEAT) {
1952 /*
1953 * For __GFP_REPEAT allocations, stop reclaiming if the
1954 * full LRU list has been scanned and we are still failing
1955 * to reclaim pages. This full LRU scan is potentially
1956 * expensive but a __GFP_REPEAT caller really wants to succeed
1957 */
1958 if (!nr_reclaimed && !nr_scanned)
1959 return false;
1960 } else {
1961 /*
1962 * For non-__GFP_REPEAT allocations which can presumably
1963 * fail without consequence, stop if we failed to reclaim
1964 * any pages from the last SWAP_CLUSTER_MAX number of
1965 * pages that were scanned. This will return to the
1966 * caller faster at the risk reclaim/compaction and
1967 * the resulting allocation attempt fails
1968 */
1969 if (!nr_reclaimed)
1970 return false;
1971 }
3e7d3449
MG
1972
1973 /*
1974 * If we have not reclaimed enough pages for compaction and the
1975 * inactive lists are large enough, continue reclaiming
1976 */
1977 pages_for_compaction = (2UL << sc->order);
1978 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1979 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1980 if (sc->nr_reclaimed < pages_for_compaction &&
1981 inactive_lru_pages > pages_for_compaction)
1982 return true;
1983
1984 /* If compaction would go ahead or the allocation would succeed, stop */
1985 switch (compaction_suitable(zone, sc->order)) {
1986 case COMPACT_PARTIAL:
1987 case COMPACT_CONTINUE:
1988 return false;
1989 default:
1990 return true;
1991 }
1992}
1993
1da177e4
LT
1994/*
1995 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1996 */
a79311c1 1997static void shrink_zone(int priority, struct zone *zone,
05ff5137 1998 struct scan_control *sc)
1da177e4 1999{
b69408e8 2000 unsigned long nr[NR_LRU_LISTS];
8695949a 2001 unsigned long nr_to_scan;
b69408e8 2002 enum lru_list l;
f0fdc5e8 2003 unsigned long nr_reclaimed, nr_scanned;
22fba335 2004 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 2005 struct blk_plug plug;
e0f79b8f 2006
3e7d3449
MG
2007restart:
2008 nr_reclaimed = 0;
f0fdc5e8 2009 nr_scanned = sc->nr_scanned;
76a33fc3 2010 get_scan_count(zone, sc, nr, priority);
1da177e4 2011
3da367c3 2012 blk_start_plug(&plug);
556adecb
RR
2013 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2014 nr[LRU_INACTIVE_FILE]) {
894bc310 2015 for_each_evictable_lru(l) {
b69408e8 2016 if (nr[l]) {
ece74b2e
KM
2017 nr_to_scan = min_t(unsigned long,
2018 nr[l], SWAP_CLUSTER_MAX);
b69408e8 2019 nr[l] -= nr_to_scan;
1da177e4 2020
01dbe5c9
KM
2021 nr_reclaimed += shrink_list(l, nr_to_scan,
2022 zone, sc, priority);
b69408e8 2023 }
1da177e4 2024 }
a79311c1
RR
2025 /*
2026 * On large memory systems, scan >> priority can become
2027 * really large. This is fine for the starting priority;
2028 * we want to put equal scanning pressure on each zone.
2029 * However, if the VM has a harder time of freeing pages,
2030 * with multiple processes reclaiming pages, the total
2031 * freeing target can get unreasonably large.
2032 */
338fde90 2033 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 2034 break;
1da177e4 2035 }
3da367c3 2036 blk_finish_plug(&plug);
3e7d3449 2037 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 2038
556adecb
RR
2039 /*
2040 * Even if we did not try to evict anon pages at all, we want to
2041 * rebalance the anon lru active/inactive ratio.
2042 */
74e3f3c3 2043 if (inactive_anon_is_low(zone, sc))
556adecb
RR
2044 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2045
3e7d3449
MG
2046 /* reclaim/compaction might need reclaim to continue */
2047 if (should_continue_reclaim(zone, nr_reclaimed,
2048 sc->nr_scanned - nr_scanned, sc))
2049 goto restart;
2050
232ea4d6 2051 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
2052}
2053
2054/*
2055 * This is the direct reclaim path, for page-allocating processes. We only
2056 * try to reclaim pages from zones which will satisfy the caller's allocation
2057 * request.
2058 *
41858966
MG
2059 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2060 * Because:
1da177e4
LT
2061 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2062 * allocation or
41858966
MG
2063 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2064 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2065 * zone defense algorithm.
1da177e4 2066 *
1da177e4
LT
2067 * If a zone is deemed to be full of pinned pages then just give it a light
2068 * scan then give up on it.
2069 */
ac34a1a3 2070static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 2071 struct scan_control *sc)
1da177e4 2072{
dd1a239f 2073 struct zoneref *z;
54a6eb5c 2074 struct zone *zone;
d149e3b2
YH
2075 unsigned long nr_soft_reclaimed;
2076 unsigned long nr_soft_scanned;
1cfb419b 2077
d4debc66
MG
2078 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2079 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2080 if (!populated_zone(zone))
1da177e4 2081 continue;
1cfb419b
KH
2082 /*
2083 * Take care memory controller reclaiming has small influence
2084 * to global LRU.
2085 */
e72e2bd6 2086 if (scanning_global_lru(sc)) {
1cfb419b
KH
2087 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2088 continue;
93e4a89a 2089 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2090 continue; /* Let kswapd poll it */
ac34a1a3
KH
2091 /*
2092 * This steals pages from memory cgroups over softlimit
2093 * and returns the number of reclaimed pages and
2094 * scanned pages. This works for global memory pressure
2095 * and balancing, not for a memcg's limit.
2096 */
2097 nr_soft_scanned = 0;
2098 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2099 sc->order, sc->gfp_mask,
2100 &nr_soft_scanned);
2101 sc->nr_reclaimed += nr_soft_reclaimed;
2102 sc->nr_scanned += nr_soft_scanned;
2103 /* need some check for avoid more shrink_zone() */
1cfb419b 2104 }
408d8544 2105
a79311c1 2106 shrink_zone(priority, zone, sc);
1da177e4 2107 }
d1908362
MK
2108}
2109
2110static bool zone_reclaimable(struct zone *zone)
2111{
2112 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2113}
2114
929bea7c 2115/* All zones in zonelist are unreclaimable? */
d1908362
MK
2116static bool all_unreclaimable(struct zonelist *zonelist,
2117 struct scan_control *sc)
2118{
2119 struct zoneref *z;
2120 struct zone *zone;
d1908362
MK
2121
2122 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2123 gfp_zone(sc->gfp_mask), sc->nodemask) {
2124 if (!populated_zone(zone))
2125 continue;
2126 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2127 continue;
929bea7c
KM
2128 if (!zone->all_unreclaimable)
2129 return false;
d1908362
MK
2130 }
2131
929bea7c 2132 return true;
1da177e4 2133}
4f98a2fe 2134
1da177e4
LT
2135/*
2136 * This is the main entry point to direct page reclaim.
2137 *
2138 * If a full scan of the inactive list fails to free enough memory then we
2139 * are "out of memory" and something needs to be killed.
2140 *
2141 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2142 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2143 * caller can't do much about. We kick the writeback threads and take explicit
2144 * naps in the hope that some of these pages can be written. But if the
2145 * allocating task holds filesystem locks which prevent writeout this might not
2146 * work, and the allocation attempt will fail.
a41f24ea
NA
2147 *
2148 * returns: 0, if no pages reclaimed
2149 * else, the number of pages reclaimed
1da177e4 2150 */
dac1d27b 2151static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2152 struct scan_control *sc,
2153 struct shrink_control *shrink)
1da177e4
LT
2154{
2155 int priority;
69e05944 2156 unsigned long total_scanned = 0;
1da177e4 2157 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2158 struct zoneref *z;
54a6eb5c 2159 struct zone *zone;
22fba335 2160 unsigned long writeback_threshold;
1da177e4 2161
c0ff7453 2162 get_mems_allowed();
873b4771
KK
2163 delayacct_freepages_start();
2164
e72e2bd6 2165 if (scanning_global_lru(sc))
1cfb419b 2166 count_vm_event(ALLOCSTALL);
1da177e4
LT
2167
2168 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2169 sc->nr_scanned = 0;
f7b7fd8f 2170 if (!priority)
a433658c 2171 disable_swap_token(sc->mem_cgroup);
ac34a1a3 2172 shrink_zones(priority, zonelist, sc);
66e1707b
BS
2173 /*
2174 * Don't shrink slabs when reclaiming memory from
2175 * over limit cgroups
2176 */
e72e2bd6 2177 if (scanning_global_lru(sc)) {
c6a8a8c5 2178 unsigned long lru_pages = 0;
d4debc66
MG
2179 for_each_zone_zonelist(zone, z, zonelist,
2180 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2181 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2182 continue;
2183
2184 lru_pages += zone_reclaimable_pages(zone);
2185 }
2186
1495f230 2187 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2188 if (reclaim_state) {
a79311c1 2189 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2190 reclaim_state->reclaimed_slab = 0;
2191 }
1da177e4 2192 }
66e1707b 2193 total_scanned += sc->nr_scanned;
bb21c7ce 2194 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2195 goto out;
1da177e4
LT
2196
2197 /*
2198 * Try to write back as many pages as we just scanned. This
2199 * tends to cause slow streaming writers to write data to the
2200 * disk smoothly, at the dirtying rate, which is nice. But
2201 * that's undesirable in laptop mode, where we *want* lumpy
2202 * writeout. So in laptop mode, write out the whole world.
2203 */
22fba335
KM
2204 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2205 if (total_scanned > writeback_threshold) {
03ba3782 2206 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 2207 sc->may_writepage = 1;
1da177e4
LT
2208 }
2209
2210 /* Take a nap, wait for some writeback to complete */
7b51755c 2211 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2212 priority < DEF_PRIORITY - 2) {
2213 struct zone *preferred_zone;
2214
2215 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2216 &cpuset_current_mems_allowed,
2217 &preferred_zone);
0e093d99
MG
2218 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2219 }
1da177e4 2220 }
bb21c7ce 2221
1da177e4 2222out:
873b4771 2223 delayacct_freepages_end();
c0ff7453 2224 put_mems_allowed();
873b4771 2225
bb21c7ce
KM
2226 if (sc->nr_reclaimed)
2227 return sc->nr_reclaimed;
2228
929bea7c
KM
2229 /*
2230 * As hibernation is going on, kswapd is freezed so that it can't mark
2231 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2232 * check.
2233 */
2234 if (oom_killer_disabled)
2235 return 0;
2236
bb21c7ce 2237 /* top priority shrink_zones still had more to do? don't OOM, then */
d1908362 2238 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2239 return 1;
2240
2241 return 0;
1da177e4
LT
2242}
2243
dac1d27b 2244unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2245 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2246{
33906bc5 2247 unsigned long nr_reclaimed;
66e1707b
BS
2248 struct scan_control sc = {
2249 .gfp_mask = gfp_mask,
2250 .may_writepage = !laptop_mode,
22fba335 2251 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2252 .may_unmap = 1,
2e2e4259 2253 .may_swap = 1,
66e1707b
BS
2254 .order = order,
2255 .mem_cgroup = NULL,
327c0e96 2256 .nodemask = nodemask,
66e1707b 2257 };
a09ed5e0
YH
2258 struct shrink_control shrink = {
2259 .gfp_mask = sc.gfp_mask,
2260 };
66e1707b 2261
33906bc5
MG
2262 trace_mm_vmscan_direct_reclaim_begin(order,
2263 sc.may_writepage,
2264 gfp_mask);
2265
a09ed5e0 2266 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2267
2268 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2269
2270 return nr_reclaimed;
66e1707b
BS
2271}
2272
00f0b825 2273#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2274
4e416953
BS
2275unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2276 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2277 struct zone *zone,
2278 unsigned long *nr_scanned)
4e416953
BS
2279{
2280 struct scan_control sc = {
0ae5e89c 2281 .nr_scanned = 0,
b8f5c566 2282 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2283 .may_writepage = !laptop_mode,
2284 .may_unmap = 1,
2285 .may_swap = !noswap,
4e416953
BS
2286 .order = 0,
2287 .mem_cgroup = mem,
4e416953 2288 };
0ae5e89c 2289
4e416953
BS
2290 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2291 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2292
2293 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2294 sc.may_writepage,
2295 sc.gfp_mask);
2296
4e416953
BS
2297 /*
2298 * NOTE: Although we can get the priority field, using it
2299 * here is not a good idea, since it limits the pages we can scan.
2300 * if we don't reclaim here, the shrink_zone from balance_pgdat
2301 * will pick up pages from other mem cgroup's as well. We hack
2302 * the priority and make it zero.
2303 */
2304 shrink_zone(0, zone, &sc);
bdce6d9e
KM
2305
2306 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2307
0ae5e89c 2308 *nr_scanned = sc.nr_scanned;
4e416953
BS
2309 return sc.nr_reclaimed;
2310}
2311
e1a1cd59 2312unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8 2313 gfp_t gfp_mask,
185efc0f 2314 bool noswap)
66e1707b 2315{
4e416953 2316 struct zonelist *zonelist;
bdce6d9e 2317 unsigned long nr_reclaimed;
889976db 2318 int nid;
66e1707b 2319 struct scan_control sc = {
66e1707b 2320 .may_writepage = !laptop_mode,
a6dc60f8 2321 .may_unmap = 1,
2e2e4259 2322 .may_swap = !noswap,
22fba335 2323 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b
BS
2324 .order = 0,
2325 .mem_cgroup = mem_cont,
327c0e96 2326 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2327 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2328 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2329 };
2330 struct shrink_control shrink = {
2331 .gfp_mask = sc.gfp_mask,
66e1707b 2332 };
66e1707b 2333
889976db
YH
2334 /*
2335 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2336 * take care of from where we get pages. So the node where we start the
2337 * scan does not need to be the current node.
2338 */
2339 nid = mem_cgroup_select_victim_node(mem_cont);
2340
2341 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2342
2343 trace_mm_vmscan_memcg_reclaim_begin(0,
2344 sc.may_writepage,
2345 sc.gfp_mask);
2346
a09ed5e0 2347 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2348
2349 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2350
2351 return nr_reclaimed;
66e1707b
BS
2352}
2353#endif
2354
1741c877
MG
2355/*
2356 * pgdat_balanced is used when checking if a node is balanced for high-order
2357 * allocations. Only zones that meet watermarks and are in a zone allowed
2358 * by the callers classzone_idx are added to balanced_pages. The total of
2359 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2360 * for the node to be considered balanced. Forcing all zones to be balanced
2361 * for high orders can cause excessive reclaim when there are imbalanced zones.
2362 * The choice of 25% is due to
2363 * o a 16M DMA zone that is balanced will not balance a zone on any
2364 * reasonable sized machine
2365 * o On all other machines, the top zone must be at least a reasonable
25985edc 2366 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2367 * would need to be at least 256M for it to be balance a whole node.
2368 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2369 * to balance a node on its own. These seemed like reasonable ratios.
2370 */
2371static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2372 int classzone_idx)
2373{
2374 unsigned long present_pages = 0;
2375 int i;
2376
2377 for (i = 0; i <= classzone_idx; i++)
2378 present_pages += pgdat->node_zones[i].present_pages;
2379
4746efde
SL
2380 /* A special case here: if zone has no page, we think it's balanced */
2381 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2382}
2383
f50de2d3 2384/* is kswapd sleeping prematurely? */
dc83edd9
MG
2385static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2386 int classzone_idx)
f50de2d3 2387{
bb3ab596 2388 int i;
1741c877
MG
2389 unsigned long balanced = 0;
2390 bool all_zones_ok = true;
f50de2d3
MG
2391
2392 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2393 if (remaining)
dc83edd9 2394 return true;
f50de2d3 2395
0abdee2b 2396 /* Check the watermark levels */
08951e54 2397 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2398 struct zone *zone = pgdat->node_zones + i;
2399
2400 if (!populated_zone(zone))
2401 continue;
2402
355b09c4
MG
2403 /*
2404 * balance_pgdat() skips over all_unreclaimable after
2405 * DEF_PRIORITY. Effectively, it considers them balanced so
2406 * they must be considered balanced here as well if kswapd
2407 * is to sleep
2408 */
2409 if (zone->all_unreclaimable) {
2410 balanced += zone->present_pages;
de3fab39 2411 continue;
355b09c4 2412 }
de3fab39 2413
88f5acf8 2414 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2415 i, 0))
1741c877
MG
2416 all_zones_ok = false;
2417 else
2418 balanced += zone->present_pages;
bb3ab596 2419 }
f50de2d3 2420
1741c877
MG
2421 /*
2422 * For high-order requests, the balanced zones must contain at least
2423 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2424 * must be balanced
2425 */
2426 if (order)
afc7e326 2427 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2428 else
2429 return !all_zones_ok;
f50de2d3
MG
2430}
2431
1da177e4
LT
2432/*
2433 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2434 * they are all at high_wmark_pages(zone).
1da177e4 2435 *
0abdee2b 2436 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2437 *
2438 * There is special handling here for zones which are full of pinned pages.
2439 * This can happen if the pages are all mlocked, or if they are all used by
2440 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2441 * What we do is to detect the case where all pages in the zone have been
2442 * scanned twice and there has been zero successful reclaim. Mark the zone as
2443 * dead and from now on, only perform a short scan. Basically we're polling
2444 * the zone for when the problem goes away.
2445 *
2446 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2447 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2448 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2449 * lower zones regardless of the number of free pages in the lower zones. This
2450 * interoperates with the page allocator fallback scheme to ensure that aging
2451 * of pages is balanced across the zones.
1da177e4 2452 */
99504748 2453static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2454 int *classzone_idx)
1da177e4 2455{
1da177e4 2456 int all_zones_ok;
1741c877 2457 unsigned long balanced;
1da177e4
LT
2458 int priority;
2459 int i;
99504748 2460 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2461 unsigned long total_scanned;
1da177e4 2462 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2463 unsigned long nr_soft_reclaimed;
2464 unsigned long nr_soft_scanned;
179e9639
AM
2465 struct scan_control sc = {
2466 .gfp_mask = GFP_KERNEL,
a6dc60f8 2467 .may_unmap = 1,
2e2e4259 2468 .may_swap = 1,
22fba335
KM
2469 /*
2470 * kswapd doesn't want to be bailed out while reclaim. because
2471 * we want to put equal scanning pressure on each zone.
2472 */
2473 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2474 .order = order,
66e1707b 2475 .mem_cgroup = NULL,
179e9639 2476 };
a09ed5e0
YH
2477 struct shrink_control shrink = {
2478 .gfp_mask = sc.gfp_mask,
2479 };
1da177e4
LT
2480loop_again:
2481 total_scanned = 0;
a79311c1 2482 sc.nr_reclaimed = 0;
c0bbbc73 2483 sc.may_writepage = !laptop_mode;
f8891e5e 2484 count_vm_event(PAGEOUTRUN);
1da177e4 2485
1da177e4 2486 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2487 unsigned long lru_pages = 0;
bb3ab596 2488 int has_under_min_watermark_zone = 0;
1da177e4 2489
f7b7fd8f
RR
2490 /* The swap token gets in the way of swapout... */
2491 if (!priority)
a433658c 2492 disable_swap_token(NULL);
f7b7fd8f 2493
1da177e4 2494 all_zones_ok = 1;
1741c877 2495 balanced = 0;
1da177e4 2496
d6277db4
RW
2497 /*
2498 * Scan in the highmem->dma direction for the highest
2499 * zone which needs scanning
2500 */
2501 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2502 struct zone *zone = pgdat->node_zones + i;
1da177e4 2503
d6277db4
RW
2504 if (!populated_zone(zone))
2505 continue;
1da177e4 2506
93e4a89a 2507 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2508 continue;
1da177e4 2509
556adecb
RR
2510 /*
2511 * Do some background aging of the anon list, to give
2512 * pages a chance to be referenced before reclaiming.
2513 */
14797e23 2514 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2515 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2516 &sc, priority, 0);
2517
88f5acf8 2518 if (!zone_watermark_ok_safe(zone, order,
41858966 2519 high_wmark_pages(zone), 0, 0)) {
d6277db4 2520 end_zone = i;
e1dbeda6 2521 break;
439423f6
SL
2522 } else {
2523 /* If balanced, clear the congested flag */
2524 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2525 }
1da177e4 2526 }
e1dbeda6
AM
2527 if (i < 0)
2528 goto out;
2529
1da177e4
LT
2530 for (i = 0; i <= end_zone; i++) {
2531 struct zone *zone = pgdat->node_zones + i;
2532
adea02a1 2533 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2534 }
2535
2536 /*
2537 * Now scan the zone in the dma->highmem direction, stopping
2538 * at the last zone which needs scanning.
2539 *
2540 * We do this because the page allocator works in the opposite
2541 * direction. This prevents the page allocator from allocating
2542 * pages behind kswapd's direction of progress, which would
2543 * cause too much scanning of the lower zones.
2544 */
2545 for (i = 0; i <= end_zone; i++) {
2546 struct zone *zone = pgdat->node_zones + i;
b15e0905 2547 int nr_slab;
8afdcece 2548 unsigned long balance_gap;
1da177e4 2549
f3fe6512 2550 if (!populated_zone(zone))
1da177e4
LT
2551 continue;
2552
93e4a89a 2553 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2554 continue;
2555
1da177e4 2556 sc.nr_scanned = 0;
4e416953 2557
0ae5e89c 2558 nr_soft_scanned = 0;
4e416953
BS
2559 /*
2560 * Call soft limit reclaim before calling shrink_zone.
4e416953 2561 */
0ae5e89c
YH
2562 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2563 order, sc.gfp_mask,
2564 &nr_soft_scanned);
2565 sc.nr_reclaimed += nr_soft_reclaimed;
2566 total_scanned += nr_soft_scanned;
00918b6a 2567
32a4330d 2568 /*
8afdcece
MG
2569 * We put equal pressure on every zone, unless
2570 * one zone has way too many pages free
2571 * already. The "too many pages" is defined
2572 * as the high wmark plus a "gap" where the
2573 * gap is either the low watermark or 1%
2574 * of the zone, whichever is smaller.
32a4330d 2575 */
8afdcece
MG
2576 balance_gap = min(low_wmark_pages(zone),
2577 (zone->present_pages +
2578 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2579 KSWAPD_ZONE_BALANCE_GAP_RATIO);
88f5acf8 2580 if (!zone_watermark_ok_safe(zone, order,
8afdcece 2581 high_wmark_pages(zone) + balance_gap,
d7868dae 2582 end_zone, 0)) {
a79311c1 2583 shrink_zone(priority, zone, &sc);
5a03b051 2584
d7868dae
MG
2585 reclaim_state->reclaimed_slab = 0;
2586 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2587 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2588 total_scanned += sc.nr_scanned;
2589
2590 if (nr_slab == 0 && !zone_reclaimable(zone))
2591 zone->all_unreclaimable = 1;
2592 }
2593
1da177e4
LT
2594 /*
2595 * If we've done a decent amount of scanning and
2596 * the reclaim ratio is low, start doing writepage
2597 * even in laptop mode
2598 */
2599 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2600 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2601 sc.may_writepage = 1;
bb3ab596 2602
215ddd66
MG
2603 if (zone->all_unreclaimable) {
2604 if (end_zone && end_zone == i)
2605 end_zone--;
d7868dae 2606 continue;
215ddd66 2607 }
d7868dae 2608
88f5acf8 2609 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2610 high_wmark_pages(zone), end_zone, 0)) {
2611 all_zones_ok = 0;
2612 /*
2613 * We are still under min water mark. This
2614 * means that we have a GFP_ATOMIC allocation
2615 * failure risk. Hurry up!
2616 */
88f5acf8 2617 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2618 min_wmark_pages(zone), end_zone, 0))
2619 has_under_min_watermark_zone = 1;
0e093d99
MG
2620 } else {
2621 /*
2622 * If a zone reaches its high watermark,
2623 * consider it to be no longer congested. It's
2624 * possible there are dirty pages backed by
2625 * congested BDIs but as pressure is relieved,
2626 * spectulatively avoid congestion waits
2627 */
2628 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2629 if (i <= *classzone_idx)
1741c877 2630 balanced += zone->present_pages;
45973d74 2631 }
bb3ab596 2632
1da177e4 2633 }
dc83edd9 2634 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2635 break; /* kswapd: all done */
2636 /*
2637 * OK, kswapd is getting into trouble. Take a nap, then take
2638 * another pass across the zones.
2639 */
bb3ab596
KM
2640 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2641 if (has_under_min_watermark_zone)
2642 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2643 else
2644 congestion_wait(BLK_RW_ASYNC, HZ/10);
2645 }
1da177e4
LT
2646
2647 /*
2648 * We do this so kswapd doesn't build up large priorities for
2649 * example when it is freeing in parallel with allocators. It
2650 * matches the direct reclaim path behaviour in terms of impact
2651 * on zone->*_priority.
2652 */
a79311c1 2653 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2654 break;
2655 }
2656out:
99504748
MG
2657
2658 /*
2659 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2660 * high-order: Balanced zones must make up at least 25% of the node
2661 * for the node to be balanced
99504748 2662 */
dc83edd9 2663 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2664 cond_resched();
8357376d
RW
2665
2666 try_to_freeze();
2667
73ce02e9
KM
2668 /*
2669 * Fragmentation may mean that the system cannot be
2670 * rebalanced for high-order allocations in all zones.
2671 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2672 * it means the zones have been fully scanned and are still
2673 * not balanced. For high-order allocations, there is
2674 * little point trying all over again as kswapd may
2675 * infinite loop.
2676 *
2677 * Instead, recheck all watermarks at order-0 as they
2678 * are the most important. If watermarks are ok, kswapd will go
2679 * back to sleep. High-order users can still perform direct
2680 * reclaim if they wish.
2681 */
2682 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2683 order = sc.order = 0;
2684
1da177e4
LT
2685 goto loop_again;
2686 }
2687
99504748
MG
2688 /*
2689 * If kswapd was reclaiming at a higher order, it has the option of
2690 * sleeping without all zones being balanced. Before it does, it must
2691 * ensure that the watermarks for order-0 on *all* zones are met and
2692 * that the congestion flags are cleared. The congestion flag must
2693 * be cleared as kswapd is the only mechanism that clears the flag
2694 * and it is potentially going to sleep here.
2695 */
2696 if (order) {
2697 for (i = 0; i <= end_zone; i++) {
2698 struct zone *zone = pgdat->node_zones + i;
2699
2700 if (!populated_zone(zone))
2701 continue;
2702
2703 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2704 continue;
2705
2706 /* Confirm the zone is balanced for order-0 */
2707 if (!zone_watermark_ok(zone, 0,
2708 high_wmark_pages(zone), 0, 0)) {
2709 order = sc.order = 0;
2710 goto loop_again;
2711 }
2712
2713 /* If balanced, clear the congested flag */
2714 zone_clear_flag(zone, ZONE_CONGESTED);
2715 }
2716 }
2717
0abdee2b
MG
2718 /*
2719 * Return the order we were reclaiming at so sleeping_prematurely()
2720 * makes a decision on the order we were last reclaiming at. However,
2721 * if another caller entered the allocator slow path while kswapd
2722 * was awake, order will remain at the higher level
2723 */
dc83edd9 2724 *classzone_idx = end_zone;
0abdee2b 2725 return order;
1da177e4
LT
2726}
2727
dc83edd9 2728static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2729{
2730 long remaining = 0;
2731 DEFINE_WAIT(wait);
2732
2733 if (freezing(current) || kthread_should_stop())
2734 return;
2735
2736 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2737
2738 /* Try to sleep for a short interval */
dc83edd9 2739 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2740 remaining = schedule_timeout(HZ/10);
2741 finish_wait(&pgdat->kswapd_wait, &wait);
2742 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2743 }
2744
2745 /*
2746 * After a short sleep, check if it was a premature sleep. If not, then
2747 * go fully to sleep until explicitly woken up.
2748 */
dc83edd9 2749 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2750 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2751
2752 /*
2753 * vmstat counters are not perfectly accurate and the estimated
2754 * value for counters such as NR_FREE_PAGES can deviate from the
2755 * true value by nr_online_cpus * threshold. To avoid the zone
2756 * watermarks being breached while under pressure, we reduce the
2757 * per-cpu vmstat threshold while kswapd is awake and restore
2758 * them before going back to sleep.
2759 */
2760 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2761 schedule();
2762 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2763 } else {
2764 if (remaining)
2765 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2766 else
2767 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2768 }
2769 finish_wait(&pgdat->kswapd_wait, &wait);
2770}
2771
1da177e4
LT
2772/*
2773 * The background pageout daemon, started as a kernel thread
4f98a2fe 2774 * from the init process.
1da177e4
LT
2775 *
2776 * This basically trickles out pages so that we have _some_
2777 * free memory available even if there is no other activity
2778 * that frees anything up. This is needed for things like routing
2779 * etc, where we otherwise might have all activity going on in
2780 * asynchronous contexts that cannot page things out.
2781 *
2782 * If there are applications that are active memory-allocators
2783 * (most normal use), this basically shouldn't matter.
2784 */
2785static int kswapd(void *p)
2786{
215ddd66
MG
2787 unsigned long order, new_order;
2788 int classzone_idx, new_classzone_idx;
1da177e4
LT
2789 pg_data_t *pgdat = (pg_data_t*)p;
2790 struct task_struct *tsk = current;
f0bc0a60 2791
1da177e4
LT
2792 struct reclaim_state reclaim_state = {
2793 .reclaimed_slab = 0,
2794 };
a70f7302 2795 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2796
cf40bd16
NP
2797 lockdep_set_current_reclaim_state(GFP_KERNEL);
2798
174596a0 2799 if (!cpumask_empty(cpumask))
c5f59f08 2800 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2801 current->reclaim_state = &reclaim_state;
2802
2803 /*
2804 * Tell the memory management that we're a "memory allocator",
2805 * and that if we need more memory we should get access to it
2806 * regardless (see "__alloc_pages()"). "kswapd" should
2807 * never get caught in the normal page freeing logic.
2808 *
2809 * (Kswapd normally doesn't need memory anyway, but sometimes
2810 * you need a small amount of memory in order to be able to
2811 * page out something else, and this flag essentially protects
2812 * us from recursively trying to free more memory as we're
2813 * trying to free the first piece of memory in the first place).
2814 */
930d9152 2815 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2816 set_freezable();
1da177e4 2817
215ddd66
MG
2818 order = new_order = 0;
2819 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
1da177e4 2820 for ( ; ; ) {
8fe23e05 2821 int ret;
3e1d1d28 2822
215ddd66
MG
2823 /*
2824 * If the last balance_pgdat was unsuccessful it's unlikely a
2825 * new request of a similar or harder type will succeed soon
2826 * so consider going to sleep on the basis we reclaimed at
2827 */
2828 if (classzone_idx >= new_classzone_idx && order == new_order) {
2829 new_order = pgdat->kswapd_max_order;
2830 new_classzone_idx = pgdat->classzone_idx;
2831 pgdat->kswapd_max_order = 0;
2832 pgdat->classzone_idx = pgdat->nr_zones - 1;
2833 }
2834
99504748 2835 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2836 /*
2837 * Don't sleep if someone wants a larger 'order'
99504748 2838 * allocation or has tigher zone constraints
1da177e4
LT
2839 */
2840 order = new_order;
99504748 2841 classzone_idx = new_classzone_idx;
1da177e4 2842 } else {
dc83edd9 2843 kswapd_try_to_sleep(pgdat, order, classzone_idx);
1da177e4 2844 order = pgdat->kswapd_max_order;
99504748 2845 classzone_idx = pgdat->classzone_idx;
4d40502e 2846 pgdat->kswapd_max_order = 0;
215ddd66 2847 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2848 }
1da177e4 2849
8fe23e05
DR
2850 ret = try_to_freeze();
2851 if (kthread_should_stop())
2852 break;
2853
2854 /*
2855 * We can speed up thawing tasks if we don't call balance_pgdat
2856 * after returning from the refrigerator
2857 */
33906bc5
MG
2858 if (!ret) {
2859 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
dc83edd9 2860 order = balance_pgdat(pgdat, order, &classzone_idx);
33906bc5 2861 }
1da177e4
LT
2862 }
2863 return 0;
2864}
2865
2866/*
2867 * A zone is low on free memory, so wake its kswapd task to service it.
2868 */
99504748 2869void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2870{
2871 pg_data_t *pgdat;
2872
f3fe6512 2873 if (!populated_zone(zone))
1da177e4
LT
2874 return;
2875
88f5acf8 2876 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2877 return;
88f5acf8 2878 pgdat = zone->zone_pgdat;
99504748 2879 if (pgdat->kswapd_max_order < order) {
1da177e4 2880 pgdat->kswapd_max_order = order;
99504748
MG
2881 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2882 }
8d0986e2 2883 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2884 return;
88f5acf8
MG
2885 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2886 return;
2887
2888 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2889 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2890}
2891
adea02a1
WF
2892/*
2893 * The reclaimable count would be mostly accurate.
2894 * The less reclaimable pages may be
2895 * - mlocked pages, which will be moved to unevictable list when encountered
2896 * - mapped pages, which may require several travels to be reclaimed
2897 * - dirty pages, which is not "instantly" reclaimable
2898 */
2899unsigned long global_reclaimable_pages(void)
4f98a2fe 2900{
adea02a1
WF
2901 int nr;
2902
2903 nr = global_page_state(NR_ACTIVE_FILE) +
2904 global_page_state(NR_INACTIVE_FILE);
2905
2906 if (nr_swap_pages > 0)
2907 nr += global_page_state(NR_ACTIVE_ANON) +
2908 global_page_state(NR_INACTIVE_ANON);
2909
2910 return nr;
2911}
2912
2913unsigned long zone_reclaimable_pages(struct zone *zone)
2914{
2915 int nr;
2916
2917 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2918 zone_page_state(zone, NR_INACTIVE_FILE);
2919
2920 if (nr_swap_pages > 0)
2921 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2922 zone_page_state(zone, NR_INACTIVE_ANON);
2923
2924 return nr;
4f98a2fe
RR
2925}
2926
c6f37f12 2927#ifdef CONFIG_HIBERNATION
1da177e4 2928/*
7b51755c 2929 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2930 * freed pages.
2931 *
2932 * Rather than trying to age LRUs the aim is to preserve the overall
2933 * LRU order by reclaiming preferentially
2934 * inactive > active > active referenced > active mapped
1da177e4 2935 */
7b51755c 2936unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2937{
d6277db4 2938 struct reclaim_state reclaim_state;
d6277db4 2939 struct scan_control sc = {
7b51755c
KM
2940 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2941 .may_swap = 1,
2942 .may_unmap = 1,
d6277db4 2943 .may_writepage = 1,
7b51755c
KM
2944 .nr_to_reclaim = nr_to_reclaim,
2945 .hibernation_mode = 1,
7b51755c 2946 .order = 0,
1da177e4 2947 };
a09ed5e0
YH
2948 struct shrink_control shrink = {
2949 .gfp_mask = sc.gfp_mask,
2950 };
2951 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2952 struct task_struct *p = current;
2953 unsigned long nr_reclaimed;
1da177e4 2954
7b51755c
KM
2955 p->flags |= PF_MEMALLOC;
2956 lockdep_set_current_reclaim_state(sc.gfp_mask);
2957 reclaim_state.reclaimed_slab = 0;
2958 p->reclaim_state = &reclaim_state;
d6277db4 2959
a09ed5e0 2960 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2961
7b51755c
KM
2962 p->reclaim_state = NULL;
2963 lockdep_clear_current_reclaim_state();
2964 p->flags &= ~PF_MEMALLOC;
d6277db4 2965
7b51755c 2966 return nr_reclaimed;
1da177e4 2967}
c6f37f12 2968#endif /* CONFIG_HIBERNATION */
1da177e4 2969
1da177e4
LT
2970/* It's optimal to keep kswapds on the same CPUs as their memory, but
2971 not required for correctness. So if the last cpu in a node goes
2972 away, we get changed to run anywhere: as the first one comes back,
2973 restore their cpu bindings. */
9c7b216d 2974static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2975 unsigned long action, void *hcpu)
1da177e4 2976{
58c0a4a7 2977 int nid;
1da177e4 2978
8bb78442 2979 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2980 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2981 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2982 const struct cpumask *mask;
2983
2984 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2985
3e597945 2986 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2987 /* One of our CPUs online: restore mask */
c5f59f08 2988 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2989 }
2990 }
2991 return NOTIFY_OK;
2992}
1da177e4 2993
3218ae14
YG
2994/*
2995 * This kswapd start function will be called by init and node-hot-add.
2996 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2997 */
2998int kswapd_run(int nid)
2999{
3000 pg_data_t *pgdat = NODE_DATA(nid);
3001 int ret = 0;
3002
3003 if (pgdat->kswapd)
3004 return 0;
3005
3006 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3007 if (IS_ERR(pgdat->kswapd)) {
3008 /* failure at boot is fatal */
3009 BUG_ON(system_state == SYSTEM_BOOTING);
3010 printk("Failed to start kswapd on node %d\n",nid);
3011 ret = -1;
3012 }
3013 return ret;
3014}
3015
8fe23e05
DR
3016/*
3017 * Called by memory hotplug when all memory in a node is offlined.
3018 */
3019void kswapd_stop(int nid)
3020{
3021 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3022
3023 if (kswapd)
3024 kthread_stop(kswapd);
3025}
3026
1da177e4
LT
3027static int __init kswapd_init(void)
3028{
3218ae14 3029 int nid;
69e05944 3030
1da177e4 3031 swap_setup();
9422ffba 3032 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3033 kswapd_run(nid);
1da177e4
LT
3034 hotcpu_notifier(cpu_callback, 0);
3035 return 0;
3036}
3037
3038module_init(kswapd_init)
9eeff239
CL
3039
3040#ifdef CONFIG_NUMA
3041/*
3042 * Zone reclaim mode
3043 *
3044 * If non-zero call zone_reclaim when the number of free pages falls below
3045 * the watermarks.
9eeff239
CL
3046 */
3047int zone_reclaim_mode __read_mostly;
3048
1b2ffb78 3049#define RECLAIM_OFF 0
7d03431c 3050#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3051#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3052#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3053
a92f7126
CL
3054/*
3055 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3056 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3057 * a zone.
3058 */
3059#define ZONE_RECLAIM_PRIORITY 4
3060
9614634f
CL
3061/*
3062 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3063 * occur.
3064 */
3065int sysctl_min_unmapped_ratio = 1;
3066
0ff38490
CL
3067/*
3068 * If the number of slab pages in a zone grows beyond this percentage then
3069 * slab reclaim needs to occur.
3070 */
3071int sysctl_min_slab_ratio = 5;
3072
90afa5de
MG
3073static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3074{
3075 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3076 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3077 zone_page_state(zone, NR_ACTIVE_FILE);
3078
3079 /*
3080 * It's possible for there to be more file mapped pages than
3081 * accounted for by the pages on the file LRU lists because
3082 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3083 */
3084 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3085}
3086
3087/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3088static long zone_pagecache_reclaimable(struct zone *zone)
3089{
3090 long nr_pagecache_reclaimable;
3091 long delta = 0;
3092
3093 /*
3094 * If RECLAIM_SWAP is set, then all file pages are considered
3095 * potentially reclaimable. Otherwise, we have to worry about
3096 * pages like swapcache and zone_unmapped_file_pages() provides
3097 * a better estimate
3098 */
3099 if (zone_reclaim_mode & RECLAIM_SWAP)
3100 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3101 else
3102 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3103
3104 /* If we can't clean pages, remove dirty pages from consideration */
3105 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3106 delta += zone_page_state(zone, NR_FILE_DIRTY);
3107
3108 /* Watch for any possible underflows due to delta */
3109 if (unlikely(delta > nr_pagecache_reclaimable))
3110 delta = nr_pagecache_reclaimable;
3111
3112 return nr_pagecache_reclaimable - delta;
3113}
3114
9eeff239
CL
3115/*
3116 * Try to free up some pages from this zone through reclaim.
3117 */
179e9639 3118static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3119{
7fb2d46d 3120 /* Minimum pages needed in order to stay on node */
69e05944 3121 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3122 struct task_struct *p = current;
3123 struct reclaim_state reclaim_state;
8695949a 3124 int priority;
179e9639
AM
3125 struct scan_control sc = {
3126 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3127 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3128 .may_swap = 1,
22fba335
KM
3129 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3130 SWAP_CLUSTER_MAX),
179e9639 3131 .gfp_mask = gfp_mask,
bd2f6199 3132 .order = order,
179e9639 3133 };
a09ed5e0
YH
3134 struct shrink_control shrink = {
3135 .gfp_mask = sc.gfp_mask,
3136 };
15748048 3137 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3138
9eeff239 3139 cond_resched();
d4f7796e
CL
3140 /*
3141 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3142 * and we also need to be able to write out pages for RECLAIM_WRITE
3143 * and RECLAIM_SWAP.
3144 */
3145 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3146 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3147 reclaim_state.reclaimed_slab = 0;
3148 p->reclaim_state = &reclaim_state;
c84db23c 3149
90afa5de 3150 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3151 /*
3152 * Free memory by calling shrink zone with increasing
3153 * priorities until we have enough memory freed.
3154 */
3155 priority = ZONE_RECLAIM_PRIORITY;
3156 do {
a79311c1 3157 shrink_zone(priority, zone, &sc);
0ff38490 3158 priority--;
a79311c1 3159 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3160 }
c84db23c 3161
15748048
KM
3162 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3163 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3164 /*
7fb2d46d 3165 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3166 * many pages were freed in this zone. So we take the current
3167 * number of slab pages and shake the slab until it is reduced
3168 * by the same nr_pages that we used for reclaiming unmapped
3169 * pages.
2a16e3f4 3170 *
0ff38490
CL
3171 * Note that shrink_slab will free memory on all zones and may
3172 * take a long time.
2a16e3f4 3173 */
4dc4b3d9
KM
3174 for (;;) {
3175 unsigned long lru_pages = zone_reclaimable_pages(zone);
3176
3177 /* No reclaimable slab or very low memory pressure */
1495f230 3178 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3179 break;
3180
3181 /* Freed enough memory */
3182 nr_slab_pages1 = zone_page_state(zone,
3183 NR_SLAB_RECLAIMABLE);
3184 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3185 break;
3186 }
83e33a47
CL
3187
3188 /*
3189 * Update nr_reclaimed by the number of slab pages we
3190 * reclaimed from this zone.
3191 */
15748048
KM
3192 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3193 if (nr_slab_pages1 < nr_slab_pages0)
3194 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3195 }
3196
9eeff239 3197 p->reclaim_state = NULL;
d4f7796e 3198 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3199 lockdep_clear_current_reclaim_state();
a79311c1 3200 return sc.nr_reclaimed >= nr_pages;
9eeff239 3201}
179e9639
AM
3202
3203int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3204{
179e9639 3205 int node_id;
d773ed6b 3206 int ret;
179e9639
AM
3207
3208 /*
0ff38490
CL
3209 * Zone reclaim reclaims unmapped file backed pages and
3210 * slab pages if we are over the defined limits.
34aa1330 3211 *
9614634f
CL
3212 * A small portion of unmapped file backed pages is needed for
3213 * file I/O otherwise pages read by file I/O will be immediately
3214 * thrown out if the zone is overallocated. So we do not reclaim
3215 * if less than a specified percentage of the zone is used by
3216 * unmapped file backed pages.
179e9639 3217 */
90afa5de
MG
3218 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3219 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3220 return ZONE_RECLAIM_FULL;
179e9639 3221
93e4a89a 3222 if (zone->all_unreclaimable)
fa5e084e 3223 return ZONE_RECLAIM_FULL;
d773ed6b 3224
179e9639 3225 /*
d773ed6b 3226 * Do not scan if the allocation should not be delayed.
179e9639 3227 */
d773ed6b 3228 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3229 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3230
3231 /*
3232 * Only run zone reclaim on the local zone or on zones that do not
3233 * have associated processors. This will favor the local processor
3234 * over remote processors and spread off node memory allocations
3235 * as wide as possible.
3236 */
89fa3024 3237 node_id = zone_to_nid(zone);
37c0708d 3238 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3239 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3240
3241 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3242 return ZONE_RECLAIM_NOSCAN;
3243
d773ed6b
DR
3244 ret = __zone_reclaim(zone, gfp_mask, order);
3245 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3246
24cf7251
MG
3247 if (!ret)
3248 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3249
d773ed6b 3250 return ret;
179e9639 3251}
9eeff239 3252#endif
894bc310 3253
894bc310
LS
3254/*
3255 * page_evictable - test whether a page is evictable
3256 * @page: the page to test
3257 * @vma: the VMA in which the page is or will be mapped, may be NULL
3258 *
3259 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3260 * lists vs unevictable list. The vma argument is !NULL when called from the
3261 * fault path to determine how to instantate a new page.
894bc310
LS
3262 *
3263 * Reasons page might not be evictable:
ba9ddf49 3264 * (1) page's mapping marked unevictable
b291f000 3265 * (2) page is part of an mlocked VMA
ba9ddf49 3266 *
894bc310
LS
3267 */
3268int page_evictable(struct page *page, struct vm_area_struct *vma)
3269{
3270
ba9ddf49
LS
3271 if (mapping_unevictable(page_mapping(page)))
3272 return 0;
3273
b291f000
NP
3274 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3275 return 0;
894bc310
LS
3276
3277 return 1;
3278}
89e004ea
LS
3279
3280/**
3281 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3282 * @page: page to check evictability and move to appropriate lru list
3283 * @zone: zone page is in
3284 *
3285 * Checks a page for evictability and moves the page to the appropriate
3286 * zone lru list.
3287 *
3288 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3289 * have PageUnevictable set.
3290 */
3291static void check_move_unevictable_page(struct page *page, struct zone *zone)
3292{
3293 VM_BUG_ON(PageActive(page));
3294
3295retry:
3296 ClearPageUnevictable(page);
3297 if (page_evictable(page, NULL)) {
401a8e1c 3298 enum lru_list l = page_lru_base_type(page);
af936a16 3299
89e004ea
LS
3300 __dec_zone_state(zone, NR_UNEVICTABLE);
3301 list_move(&page->lru, &zone->lru[l].list);
08e552c6 3302 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
3303 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3304 __count_vm_event(UNEVICTABLE_PGRESCUED);
3305 } else {
3306 /*
3307 * rotate unevictable list
3308 */
3309 SetPageUnevictable(page);
3310 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 3311 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
3312 if (page_evictable(page, NULL))
3313 goto retry;
3314 }
3315}
3316
3317/**
3318 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3319 * @mapping: struct address_space to scan for evictable pages
3320 *
3321 * Scan all pages in mapping. Check unevictable pages for
3322 * evictability and move them to the appropriate zone lru list.
3323 */
3324void scan_mapping_unevictable_pages(struct address_space *mapping)
3325{
3326 pgoff_t next = 0;
3327 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3328 PAGE_CACHE_SHIFT;
3329 struct zone *zone;
3330 struct pagevec pvec;
3331
3332 if (mapping->nrpages == 0)
3333 return;
3334
3335 pagevec_init(&pvec, 0);
3336 while (next < end &&
3337 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3338 int i;
3339 int pg_scanned = 0;
3340
3341 zone = NULL;
3342
3343 for (i = 0; i < pagevec_count(&pvec); i++) {
3344 struct page *page = pvec.pages[i];
3345 pgoff_t page_index = page->index;
3346 struct zone *pagezone = page_zone(page);
3347
3348 pg_scanned++;
3349 if (page_index > next)
3350 next = page_index;
3351 next++;
3352
3353 if (pagezone != zone) {
3354 if (zone)
3355 spin_unlock_irq(&zone->lru_lock);
3356 zone = pagezone;
3357 spin_lock_irq(&zone->lru_lock);
3358 }
3359
3360 if (PageLRU(page) && PageUnevictable(page))
3361 check_move_unevictable_page(page, zone);
3362 }
3363 if (zone)
3364 spin_unlock_irq(&zone->lru_lock);
3365 pagevec_release(&pvec);
3366
3367 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3368 }
3369
3370}
af936a16
LS
3371
3372/**
3373 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3374 * @zone - zone of which to scan the unevictable list
3375 *
3376 * Scan @zone's unevictable LRU lists to check for pages that have become
3377 * evictable. Move those that have to @zone's inactive list where they
3378 * become candidates for reclaim, unless shrink_inactive_zone() decides
3379 * to reactivate them. Pages that are still unevictable are rotated
3380 * back onto @zone's unevictable list.
3381 */
3382#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 3383static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
3384{
3385 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3386 unsigned long scan;
3387 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3388
3389 while (nr_to_scan > 0) {
3390 unsigned long batch_size = min(nr_to_scan,
3391 SCAN_UNEVICTABLE_BATCH_SIZE);
3392
3393 spin_lock_irq(&zone->lru_lock);
3394 for (scan = 0; scan < batch_size; scan++) {
3395 struct page *page = lru_to_page(l_unevictable);
3396
3397 if (!trylock_page(page))
3398 continue;
3399
3400 prefetchw_prev_lru_page(page, l_unevictable, flags);
3401
3402 if (likely(PageLRU(page) && PageUnevictable(page)))
3403 check_move_unevictable_page(page, zone);
3404
3405 unlock_page(page);
3406 }
3407 spin_unlock_irq(&zone->lru_lock);
3408
3409 nr_to_scan -= batch_size;
3410 }
3411}
3412
3413
3414/**
3415 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3416 *
3417 * A really big hammer: scan all zones' unevictable LRU lists to check for
3418 * pages that have become evictable. Move those back to the zones'
3419 * inactive list where they become candidates for reclaim.
3420 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3421 * and we add swap to the system. As such, it runs in the context of a task
3422 * that has possibly/probably made some previously unevictable pages
3423 * evictable.
3424 */
ff30153b 3425static void scan_all_zones_unevictable_pages(void)
af936a16
LS
3426{
3427 struct zone *zone;
3428
3429 for_each_zone(zone) {
3430 scan_zone_unevictable_pages(zone);
3431 }
3432}
3433
3434/*
3435 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3436 * all nodes' unevictable lists for evictable pages
3437 */
3438unsigned long scan_unevictable_pages;
3439
3440int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3441 void __user *buffer,
af936a16
LS
3442 size_t *length, loff_t *ppos)
3443{
8d65af78 3444 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3445
3446 if (write && *(unsigned long *)table->data)
3447 scan_all_zones_unevictable_pages();
3448
3449 scan_unevictable_pages = 0;
3450 return 0;
3451}
3452
e4455abb 3453#ifdef CONFIG_NUMA
af936a16
LS
3454/*
3455 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3456 * a specified node's per zone unevictable lists for evictable pages.
3457 */
3458
3459static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3460 struct sysdev_attribute *attr,
3461 char *buf)
3462{
3463 return sprintf(buf, "0\n"); /* always zero; should fit... */
3464}
3465
3466static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3467 struct sysdev_attribute *attr,
3468 const char *buf, size_t count)
3469{
3470 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3471 struct zone *zone;
3472 unsigned long res;
3473 unsigned long req = strict_strtoul(buf, 10, &res);
3474
3475 if (!req)
3476 return 1; /* zero is no-op */
3477
3478 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3479 if (!populated_zone(zone))
3480 continue;
3481 scan_zone_unevictable_pages(zone);
3482 }
3483 return 1;
3484}
3485
3486
3487static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3488 read_scan_unevictable_node,
3489 write_scan_unevictable_node);
3490
3491int scan_unevictable_register_node(struct node *node)
3492{
3493 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3494}
3495
3496void scan_unevictable_unregister_node(struct node *node)
3497{
3498 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3499}
e4455abb 3500#endif