]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/vmscan.c
mm, vmscan: do not count freed pages as PGDEACTIVATE
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
f9fe48be 49#include <linux/dax.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53
54#include <linux/swapops.h>
117aad1e 55#include <linux/balloon_compaction.h>
1da177e4 56
0f8053a5
NP
57#include "internal.h"
58
33906bc5
MG
59#define CREATE_TRACE_POINTS
60#include <trace/events/vmscan.h>
61
1da177e4 62struct scan_control {
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4 68
ee814fe2 69 /* Allocation order */
5ad333eb 70 int order;
66e1707b 71
ee814fe2
JW
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
9e3b2f8c 77
f16015fb
JW
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
66e1707b 83
ee814fe2
JW
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
b2e18757
MG
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
89
ee814fe2
JW
90 unsigned int may_writepage:1;
91
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
94
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
97
241994ed
JW
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash:1;
100
ee814fe2
JW
101 unsigned int hibernation_mode:1;
102
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready:1;
105
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned;
108
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed;
1da177e4
LT
111};
112
1da177e4
LT
113#ifdef ARCH_HAS_PREFETCH
114#define prefetch_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127#ifdef ARCH_HAS_PREFETCHW
128#define prefetchw_prev_lru_page(_page, _base, _field) \
129 do { \
130 if ((_page)->lru.prev != _base) { \
131 struct page *prev; \
132 \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
135 } \
136 } while (0)
137#else
138#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139#endif
140
141/*
142 * From 0 .. 100. Higher means more swappy.
143 */
144int vm_swappiness = 60;
d0480be4
WSH
145/*
146 * The total number of pages which are beyond the high watermark within all
147 * zones.
148 */
149unsigned long vm_total_pages;
1da177e4
LT
150
151static LIST_HEAD(shrinker_list);
152static DECLARE_RWSEM(shrinker_rwsem);
153
c255a458 154#ifdef CONFIG_MEMCG
89b5fae5
JW
155static bool global_reclaim(struct scan_control *sc)
156{
f16015fb 157 return !sc->target_mem_cgroup;
89b5fae5 158}
97c9341f
TH
159
160/**
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
163 *
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
169 *
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
172 */
173static bool sane_reclaim(struct scan_control *sc)
174{
175 struct mem_cgroup *memcg = sc->target_mem_cgroup;
176
177 if (!memcg)
178 return true;
179#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
181 return true;
182#endif
183 return false;
184}
91a45470 185#else
89b5fae5
JW
186static bool global_reclaim(struct scan_control *sc)
187{
188 return true;
189}
97c9341f
TH
190
191static bool sane_reclaim(struct scan_control *sc)
192{
193 return true;
194}
91a45470
KH
195#endif
196
5a1c84b4
MG
197/*
198 * This misses isolated pages which are not accounted for to save counters.
199 * As the data only determines if reclaim or compaction continues, it is
200 * not expected that isolated pages will be a dominating factor.
201 */
202unsigned long zone_reclaimable_pages(struct zone *zone)
203{
204 unsigned long nr;
205
206 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
207 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
208 if (get_nr_swap_pages() > 0)
209 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
210 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
211
212 return nr;
213}
214
599d0c95
MG
215unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
216{
217 unsigned long nr;
218
219 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
220 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
221 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
6e543d57
LD
222
223 if (get_nr_swap_pages() > 0)
599d0c95
MG
224 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
225 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
226 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
6e543d57
LD
227
228 return nr;
229}
230
599d0c95 231bool pgdat_reclaimable(struct pglist_data *pgdat)
6e543d57 232{
599d0c95
MG
233 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
234 pgdat_reclaimable_pages(pgdat) * 6;
6e543d57
LD
235}
236
23047a96 237unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 238{
c3c787e8 239 if (!mem_cgroup_disabled())
4d7dcca2 240 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 241
599d0c95 242 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
243}
244
b4536f0c
MH
245unsigned long lruvec_zone_lru_size(struct lruvec *lruvec, enum lru_list lru,
246 int zone_idx)
247{
248 if (!mem_cgroup_disabled())
249 return mem_cgroup_get_zone_lru_size(lruvec, lru, zone_idx);
250
251 return zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zone_idx],
252 NR_ZONE_LRU_BASE + lru);
253}
254
1da177e4 255/*
1d3d4437 256 * Add a shrinker callback to be called from the vm.
1da177e4 257 */
1d3d4437 258int register_shrinker(struct shrinker *shrinker)
1da177e4 259{
1d3d4437
GC
260 size_t size = sizeof(*shrinker->nr_deferred);
261
1d3d4437
GC
262 if (shrinker->flags & SHRINKER_NUMA_AWARE)
263 size *= nr_node_ids;
264
265 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
266 if (!shrinker->nr_deferred)
267 return -ENOMEM;
268
8e1f936b
RR
269 down_write(&shrinker_rwsem);
270 list_add_tail(&shrinker->list, &shrinker_list);
271 up_write(&shrinker_rwsem);
1d3d4437 272 return 0;
1da177e4 273}
8e1f936b 274EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
275
276/*
277 * Remove one
278 */
8e1f936b 279void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
280{
281 down_write(&shrinker_rwsem);
282 list_del(&shrinker->list);
283 up_write(&shrinker_rwsem);
ae393321 284 kfree(shrinker->nr_deferred);
1da177e4 285}
8e1f936b 286EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
287
288#define SHRINK_BATCH 128
1d3d4437 289
cb731d6c
VD
290static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
291 struct shrinker *shrinker,
292 unsigned long nr_scanned,
293 unsigned long nr_eligible)
1d3d4437
GC
294{
295 unsigned long freed = 0;
296 unsigned long long delta;
297 long total_scan;
d5bc5fd3 298 long freeable;
1d3d4437
GC
299 long nr;
300 long new_nr;
301 int nid = shrinkctl->nid;
302 long batch_size = shrinker->batch ? shrinker->batch
303 : SHRINK_BATCH;
5f33a080 304 long scanned = 0, next_deferred;
1d3d4437 305
d5bc5fd3
VD
306 freeable = shrinker->count_objects(shrinker, shrinkctl);
307 if (freeable == 0)
1d3d4437
GC
308 return 0;
309
310 /*
311 * copy the current shrinker scan count into a local variable
312 * and zero it so that other concurrent shrinker invocations
313 * don't also do this scanning work.
314 */
315 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
316
317 total_scan = nr;
6b4f7799 318 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 319 delta *= freeable;
6b4f7799 320 do_div(delta, nr_eligible + 1);
1d3d4437
GC
321 total_scan += delta;
322 if (total_scan < 0) {
8612c663 323 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 324 shrinker->scan_objects, total_scan);
d5bc5fd3 325 total_scan = freeable;
5f33a080
SL
326 next_deferred = nr;
327 } else
328 next_deferred = total_scan;
1d3d4437
GC
329
330 /*
331 * We need to avoid excessive windup on filesystem shrinkers
332 * due to large numbers of GFP_NOFS allocations causing the
333 * shrinkers to return -1 all the time. This results in a large
334 * nr being built up so when a shrink that can do some work
335 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 336 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
337 * memory.
338 *
339 * Hence only allow the shrinker to scan the entire cache when
340 * a large delta change is calculated directly.
341 */
d5bc5fd3
VD
342 if (delta < freeable / 4)
343 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
344
345 /*
346 * Avoid risking looping forever due to too large nr value:
347 * never try to free more than twice the estimate number of
348 * freeable entries.
349 */
d5bc5fd3
VD
350 if (total_scan > freeable * 2)
351 total_scan = freeable * 2;
1d3d4437
GC
352
353 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
354 nr_scanned, nr_eligible,
355 freeable, delta, total_scan);
1d3d4437 356
0b1fb40a
VD
357 /*
358 * Normally, we should not scan less than batch_size objects in one
359 * pass to avoid too frequent shrinker calls, but if the slab has less
360 * than batch_size objects in total and we are really tight on memory,
361 * we will try to reclaim all available objects, otherwise we can end
362 * up failing allocations although there are plenty of reclaimable
363 * objects spread over several slabs with usage less than the
364 * batch_size.
365 *
366 * We detect the "tight on memory" situations by looking at the total
367 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 368 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
369 * scanning at high prio and therefore should try to reclaim as much as
370 * possible.
371 */
372 while (total_scan >= batch_size ||
d5bc5fd3 373 total_scan >= freeable) {
a0b02131 374 unsigned long ret;
0b1fb40a 375 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 376
0b1fb40a 377 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
378 ret = shrinker->scan_objects(shrinker, shrinkctl);
379 if (ret == SHRINK_STOP)
380 break;
381 freed += ret;
1d3d4437 382
0b1fb40a
VD
383 count_vm_events(SLABS_SCANNED, nr_to_scan);
384 total_scan -= nr_to_scan;
5f33a080 385 scanned += nr_to_scan;
1d3d4437
GC
386
387 cond_resched();
388 }
389
5f33a080
SL
390 if (next_deferred >= scanned)
391 next_deferred -= scanned;
392 else
393 next_deferred = 0;
1d3d4437
GC
394 /*
395 * move the unused scan count back into the shrinker in a
396 * manner that handles concurrent updates. If we exhausted the
397 * scan, there is no need to do an update.
398 */
5f33a080
SL
399 if (next_deferred > 0)
400 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
401 &shrinker->nr_deferred[nid]);
402 else
403 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
404
df9024a8 405 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 406 return freed;
1495f230
YH
407}
408
6b4f7799 409/**
cb731d6c 410 * shrink_slab - shrink slab caches
6b4f7799
JW
411 * @gfp_mask: allocation context
412 * @nid: node whose slab caches to target
cb731d6c 413 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
414 * @nr_scanned: pressure numerator
415 * @nr_eligible: pressure denominator
1da177e4 416 *
6b4f7799 417 * Call the shrink functions to age shrinkable caches.
1da177e4 418 *
6b4f7799
JW
419 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
420 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 421 *
cb731d6c
VD
422 * @memcg specifies the memory cgroup to target. If it is not NULL,
423 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
424 * objects from the memory cgroup specified. Otherwise, only unaware
425 * shrinkers are called.
cb731d6c 426 *
6b4f7799
JW
427 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
428 * the available objects should be scanned. Page reclaim for example
429 * passes the number of pages scanned and the number of pages on the
430 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
431 * when it encountered mapped pages. The ratio is further biased by
432 * the ->seeks setting of the shrink function, which indicates the
433 * cost to recreate an object relative to that of an LRU page.
b15e0905 434 *
6b4f7799 435 * Returns the number of reclaimed slab objects.
1da177e4 436 */
cb731d6c
VD
437static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
438 struct mem_cgroup *memcg,
439 unsigned long nr_scanned,
440 unsigned long nr_eligible)
1da177e4
LT
441{
442 struct shrinker *shrinker;
24f7c6b9 443 unsigned long freed = 0;
1da177e4 444
0fc9f58a 445 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
446 return 0;
447
6b4f7799
JW
448 if (nr_scanned == 0)
449 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 450
f06590bd 451 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
452 /*
453 * If we would return 0, our callers would understand that we
454 * have nothing else to shrink and give up trying. By returning
455 * 1 we keep it going and assume we'll be able to shrink next
456 * time.
457 */
458 freed = 1;
f06590bd
MK
459 goto out;
460 }
1da177e4
LT
461
462 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
463 struct shrink_control sc = {
464 .gfp_mask = gfp_mask,
465 .nid = nid,
cb731d6c 466 .memcg = memcg,
6b4f7799 467 };
ec97097b 468
0fc9f58a
VD
469 /*
470 * If kernel memory accounting is disabled, we ignore
471 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
472 * passing NULL for memcg.
473 */
474 if (memcg_kmem_enabled() &&
475 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
476 continue;
477
6b4f7799
JW
478 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
479 sc.nid = 0;
1da177e4 480
cb731d6c 481 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 482 }
6b4f7799 483
1da177e4 484 up_read(&shrinker_rwsem);
f06590bd
MK
485out:
486 cond_resched();
24f7c6b9 487 return freed;
1da177e4
LT
488}
489
cb731d6c
VD
490void drop_slab_node(int nid)
491{
492 unsigned long freed;
493
494 do {
495 struct mem_cgroup *memcg = NULL;
496
497 freed = 0;
498 do {
499 freed += shrink_slab(GFP_KERNEL, nid, memcg,
500 1000, 1000);
501 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
502 } while (freed > 10);
503}
504
505void drop_slab(void)
506{
507 int nid;
508
509 for_each_online_node(nid)
510 drop_slab_node(nid);
511}
512
1da177e4
LT
513static inline int is_page_cache_freeable(struct page *page)
514{
ceddc3a5
JW
515 /*
516 * A freeable page cache page is referenced only by the caller
517 * that isolated the page, the page cache radix tree and
518 * optional buffer heads at page->private.
519 */
edcf4748 520 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
521}
522
703c2708 523static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 524{
930d9152 525 if (current->flags & PF_SWAPWRITE)
1da177e4 526 return 1;
703c2708 527 if (!inode_write_congested(inode))
1da177e4 528 return 1;
703c2708 529 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
530 return 1;
531 return 0;
532}
533
534/*
535 * We detected a synchronous write error writing a page out. Probably
536 * -ENOSPC. We need to propagate that into the address_space for a subsequent
537 * fsync(), msync() or close().
538 *
539 * The tricky part is that after writepage we cannot touch the mapping: nothing
540 * prevents it from being freed up. But we have a ref on the page and once
541 * that page is locked, the mapping is pinned.
542 *
543 * We're allowed to run sleeping lock_page() here because we know the caller has
544 * __GFP_FS.
545 */
546static void handle_write_error(struct address_space *mapping,
547 struct page *page, int error)
548{
7eaceacc 549 lock_page(page);
3e9f45bd
GC
550 if (page_mapping(page) == mapping)
551 mapping_set_error(mapping, error);
1da177e4
LT
552 unlock_page(page);
553}
554
04e62a29
CL
555/* possible outcome of pageout() */
556typedef enum {
557 /* failed to write page out, page is locked */
558 PAGE_KEEP,
559 /* move page to the active list, page is locked */
560 PAGE_ACTIVATE,
561 /* page has been sent to the disk successfully, page is unlocked */
562 PAGE_SUCCESS,
563 /* page is clean and locked */
564 PAGE_CLEAN,
565} pageout_t;
566
1da177e4 567/*
1742f19f
AM
568 * pageout is called by shrink_page_list() for each dirty page.
569 * Calls ->writepage().
1da177e4 570 */
c661b078 571static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 572 struct scan_control *sc)
1da177e4
LT
573{
574 /*
575 * If the page is dirty, only perform writeback if that write
576 * will be non-blocking. To prevent this allocation from being
577 * stalled by pagecache activity. But note that there may be
578 * stalls if we need to run get_block(). We could test
579 * PagePrivate for that.
580 *
8174202b 581 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
582 * this page's queue, we can perform writeback even if that
583 * will block.
584 *
585 * If the page is swapcache, write it back even if that would
586 * block, for some throttling. This happens by accident, because
587 * swap_backing_dev_info is bust: it doesn't reflect the
588 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
589 */
590 if (!is_page_cache_freeable(page))
591 return PAGE_KEEP;
592 if (!mapping) {
593 /*
594 * Some data journaling orphaned pages can have
595 * page->mapping == NULL while being dirty with clean buffers.
596 */
266cf658 597 if (page_has_private(page)) {
1da177e4
LT
598 if (try_to_free_buffers(page)) {
599 ClearPageDirty(page);
b1de0d13 600 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
601 return PAGE_CLEAN;
602 }
603 }
604 return PAGE_KEEP;
605 }
606 if (mapping->a_ops->writepage == NULL)
607 return PAGE_ACTIVATE;
703c2708 608 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
609 return PAGE_KEEP;
610
611 if (clear_page_dirty_for_io(page)) {
612 int res;
613 struct writeback_control wbc = {
614 .sync_mode = WB_SYNC_NONE,
615 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
616 .range_start = 0,
617 .range_end = LLONG_MAX,
1da177e4
LT
618 .for_reclaim = 1,
619 };
620
621 SetPageReclaim(page);
622 res = mapping->a_ops->writepage(page, &wbc);
623 if (res < 0)
624 handle_write_error(mapping, page, res);
994fc28c 625 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
626 ClearPageReclaim(page);
627 return PAGE_ACTIVATE;
628 }
c661b078 629
1da177e4
LT
630 if (!PageWriteback(page)) {
631 /* synchronous write or broken a_ops? */
632 ClearPageReclaim(page);
633 }
3aa23851 634 trace_mm_vmscan_writepage(page);
c4a25635 635 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
636 return PAGE_SUCCESS;
637 }
638
639 return PAGE_CLEAN;
640}
641
a649fd92 642/*
e286781d
NP
643 * Same as remove_mapping, but if the page is removed from the mapping, it
644 * gets returned with a refcount of 0.
a649fd92 645 */
a528910e
JW
646static int __remove_mapping(struct address_space *mapping, struct page *page,
647 bool reclaimed)
49d2e9cc 648{
c4843a75 649 unsigned long flags;
c4843a75 650
28e4d965
NP
651 BUG_ON(!PageLocked(page));
652 BUG_ON(mapping != page_mapping(page));
49d2e9cc 653
c4843a75 654 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 655 /*
0fd0e6b0
NP
656 * The non racy check for a busy page.
657 *
658 * Must be careful with the order of the tests. When someone has
659 * a ref to the page, it may be possible that they dirty it then
660 * drop the reference. So if PageDirty is tested before page_count
661 * here, then the following race may occur:
662 *
663 * get_user_pages(&page);
664 * [user mapping goes away]
665 * write_to(page);
666 * !PageDirty(page) [good]
667 * SetPageDirty(page);
668 * put_page(page);
669 * !page_count(page) [good, discard it]
670 *
671 * [oops, our write_to data is lost]
672 *
673 * Reversing the order of the tests ensures such a situation cannot
674 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 675 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
676 *
677 * Note that if SetPageDirty is always performed via set_page_dirty,
678 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 679 */
fe896d18 680 if (!page_ref_freeze(page, 2))
49d2e9cc 681 goto cannot_free;
e286781d
NP
682 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
683 if (unlikely(PageDirty(page))) {
fe896d18 684 page_ref_unfreeze(page, 2);
49d2e9cc 685 goto cannot_free;
e286781d 686 }
49d2e9cc
CL
687
688 if (PageSwapCache(page)) {
689 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 690 mem_cgroup_swapout(page, swap);
49d2e9cc 691 __delete_from_swap_cache(page);
c4843a75 692 spin_unlock_irqrestore(&mapping->tree_lock, flags);
0a31bc97 693 swapcache_free(swap);
e286781d 694 } else {
6072d13c 695 void (*freepage)(struct page *);
a528910e 696 void *shadow = NULL;
6072d13c
LT
697
698 freepage = mapping->a_ops->freepage;
a528910e
JW
699 /*
700 * Remember a shadow entry for reclaimed file cache in
701 * order to detect refaults, thus thrashing, later on.
702 *
703 * But don't store shadows in an address space that is
704 * already exiting. This is not just an optizimation,
705 * inode reclaim needs to empty out the radix tree or
706 * the nodes are lost. Don't plant shadows behind its
707 * back.
f9fe48be
RZ
708 *
709 * We also don't store shadows for DAX mappings because the
710 * only page cache pages found in these are zero pages
711 * covering holes, and because we don't want to mix DAX
712 * exceptional entries and shadow exceptional entries in the
713 * same page_tree.
a528910e
JW
714 */
715 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 716 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 717 shadow = workingset_eviction(mapping, page);
62cccb8c 718 __delete_from_page_cache(page, shadow);
c4843a75 719 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
720
721 if (freepage != NULL)
722 freepage(page);
49d2e9cc
CL
723 }
724
49d2e9cc
CL
725 return 1;
726
727cannot_free:
c4843a75 728 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
729 return 0;
730}
731
e286781d
NP
732/*
733 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
734 * someone else has a ref on the page, abort and return 0. If it was
735 * successfully detached, return 1. Assumes the caller has a single ref on
736 * this page.
737 */
738int remove_mapping(struct address_space *mapping, struct page *page)
739{
a528910e 740 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
741 /*
742 * Unfreezing the refcount with 1 rather than 2 effectively
743 * drops the pagecache ref for us without requiring another
744 * atomic operation.
745 */
fe896d18 746 page_ref_unfreeze(page, 1);
e286781d
NP
747 return 1;
748 }
749 return 0;
750}
751
894bc310
LS
752/**
753 * putback_lru_page - put previously isolated page onto appropriate LRU list
754 * @page: page to be put back to appropriate lru list
755 *
756 * Add previously isolated @page to appropriate LRU list.
757 * Page may still be unevictable for other reasons.
758 *
759 * lru_lock must not be held, interrupts must be enabled.
760 */
894bc310
LS
761void putback_lru_page(struct page *page)
762{
0ec3b74c 763 bool is_unevictable;
bbfd28ee 764 int was_unevictable = PageUnevictable(page);
894bc310 765
309381fe 766 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
767
768redo:
769 ClearPageUnevictable(page);
770
39b5f29a 771 if (page_evictable(page)) {
894bc310
LS
772 /*
773 * For evictable pages, we can use the cache.
774 * In event of a race, worst case is we end up with an
775 * unevictable page on [in]active list.
776 * We know how to handle that.
777 */
0ec3b74c 778 is_unevictable = false;
c53954a0 779 lru_cache_add(page);
894bc310
LS
780 } else {
781 /*
782 * Put unevictable pages directly on zone's unevictable
783 * list.
784 */
0ec3b74c 785 is_unevictable = true;
894bc310 786 add_page_to_unevictable_list(page);
6a7b9548 787 /*
21ee9f39
MK
788 * When racing with an mlock or AS_UNEVICTABLE clearing
789 * (page is unlocked) make sure that if the other thread
790 * does not observe our setting of PG_lru and fails
24513264 791 * isolation/check_move_unevictable_pages,
21ee9f39 792 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
793 * the page back to the evictable list.
794 *
21ee9f39 795 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
796 */
797 smp_mb();
894bc310 798 }
894bc310
LS
799
800 /*
801 * page's status can change while we move it among lru. If an evictable
802 * page is on unevictable list, it never be freed. To avoid that,
803 * check after we added it to the list, again.
804 */
0ec3b74c 805 if (is_unevictable && page_evictable(page)) {
894bc310
LS
806 if (!isolate_lru_page(page)) {
807 put_page(page);
808 goto redo;
809 }
810 /* This means someone else dropped this page from LRU
811 * So, it will be freed or putback to LRU again. There is
812 * nothing to do here.
813 */
814 }
815
0ec3b74c 816 if (was_unevictable && !is_unevictable)
bbfd28ee 817 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 818 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
819 count_vm_event(UNEVICTABLE_PGCULLED);
820
894bc310
LS
821 put_page(page); /* drop ref from isolate */
822}
823
dfc8d636
JW
824enum page_references {
825 PAGEREF_RECLAIM,
826 PAGEREF_RECLAIM_CLEAN,
64574746 827 PAGEREF_KEEP,
dfc8d636
JW
828 PAGEREF_ACTIVATE,
829};
830
831static enum page_references page_check_references(struct page *page,
832 struct scan_control *sc)
833{
64574746 834 int referenced_ptes, referenced_page;
dfc8d636 835 unsigned long vm_flags;
dfc8d636 836
c3ac9a8a
JW
837 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
838 &vm_flags);
64574746 839 referenced_page = TestClearPageReferenced(page);
dfc8d636 840
dfc8d636
JW
841 /*
842 * Mlock lost the isolation race with us. Let try_to_unmap()
843 * move the page to the unevictable list.
844 */
845 if (vm_flags & VM_LOCKED)
846 return PAGEREF_RECLAIM;
847
64574746 848 if (referenced_ptes) {
e4898273 849 if (PageSwapBacked(page))
64574746
JW
850 return PAGEREF_ACTIVATE;
851 /*
852 * All mapped pages start out with page table
853 * references from the instantiating fault, so we need
854 * to look twice if a mapped file page is used more
855 * than once.
856 *
857 * Mark it and spare it for another trip around the
858 * inactive list. Another page table reference will
859 * lead to its activation.
860 *
861 * Note: the mark is set for activated pages as well
862 * so that recently deactivated but used pages are
863 * quickly recovered.
864 */
865 SetPageReferenced(page);
866
34dbc67a 867 if (referenced_page || referenced_ptes > 1)
64574746
JW
868 return PAGEREF_ACTIVATE;
869
c909e993
KK
870 /*
871 * Activate file-backed executable pages after first usage.
872 */
873 if (vm_flags & VM_EXEC)
874 return PAGEREF_ACTIVATE;
875
64574746
JW
876 return PAGEREF_KEEP;
877 }
dfc8d636
JW
878
879 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 880 if (referenced_page && !PageSwapBacked(page))
64574746
JW
881 return PAGEREF_RECLAIM_CLEAN;
882
883 return PAGEREF_RECLAIM;
dfc8d636
JW
884}
885
e2be15f6
MG
886/* Check if a page is dirty or under writeback */
887static void page_check_dirty_writeback(struct page *page,
888 bool *dirty, bool *writeback)
889{
b4597226
MG
890 struct address_space *mapping;
891
e2be15f6
MG
892 /*
893 * Anonymous pages are not handled by flushers and must be written
894 * from reclaim context. Do not stall reclaim based on them
895 */
896 if (!page_is_file_cache(page)) {
897 *dirty = false;
898 *writeback = false;
899 return;
900 }
901
902 /* By default assume that the page flags are accurate */
903 *dirty = PageDirty(page);
904 *writeback = PageWriteback(page);
b4597226
MG
905
906 /* Verify dirty/writeback state if the filesystem supports it */
907 if (!page_has_private(page))
908 return;
909
910 mapping = page_mapping(page);
911 if (mapping && mapping->a_ops->is_dirty_writeback)
912 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
913}
914
3c710c1a
MH
915struct reclaim_stat {
916 unsigned nr_dirty;
917 unsigned nr_unqueued_dirty;
918 unsigned nr_congested;
919 unsigned nr_writeback;
920 unsigned nr_immediate;
5bccd166
MH
921 unsigned nr_activate;
922 unsigned nr_ref_keep;
923 unsigned nr_unmap_fail;
3c710c1a
MH
924};
925
1da177e4 926/*
1742f19f 927 * shrink_page_list() returns the number of reclaimed pages
1da177e4 928 */
1742f19f 929static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 930 struct pglist_data *pgdat,
f84f6e2b 931 struct scan_control *sc,
02c6de8d 932 enum ttu_flags ttu_flags,
3c710c1a 933 struct reclaim_stat *stat,
02c6de8d 934 bool force_reclaim)
1da177e4
LT
935{
936 LIST_HEAD(ret_pages);
abe4c3b5 937 LIST_HEAD(free_pages);
1da177e4 938 int pgactivate = 0;
3c710c1a
MH
939 unsigned nr_unqueued_dirty = 0;
940 unsigned nr_dirty = 0;
941 unsigned nr_congested = 0;
942 unsigned nr_reclaimed = 0;
943 unsigned nr_writeback = 0;
944 unsigned nr_immediate = 0;
5bccd166
MH
945 unsigned nr_ref_keep = 0;
946 unsigned nr_unmap_fail = 0;
1da177e4
LT
947
948 cond_resched();
949
1da177e4
LT
950 while (!list_empty(page_list)) {
951 struct address_space *mapping;
952 struct page *page;
953 int may_enter_fs;
02c6de8d 954 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 955 bool dirty, writeback;
854e9ed0
MK
956 bool lazyfree = false;
957 int ret = SWAP_SUCCESS;
1da177e4
LT
958
959 cond_resched();
960
961 page = lru_to_page(page_list);
962 list_del(&page->lru);
963
529ae9aa 964 if (!trylock_page(page))
1da177e4
LT
965 goto keep;
966
309381fe 967 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
968
969 sc->nr_scanned++;
80e43426 970
39b5f29a 971 if (unlikely(!page_evictable(page)))
b291f000 972 goto cull_mlocked;
894bc310 973
a6dc60f8 974 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
975 goto keep_locked;
976
1da177e4
LT
977 /* Double the slab pressure for mapped and swapcache pages */
978 if (page_mapped(page) || PageSwapCache(page))
979 sc->nr_scanned++;
980
c661b078
AW
981 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
982 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
983
e2be15f6
MG
984 /*
985 * The number of dirty pages determines if a zone is marked
986 * reclaim_congested which affects wait_iff_congested. kswapd
987 * will stall and start writing pages if the tail of the LRU
988 * is all dirty unqueued pages.
989 */
990 page_check_dirty_writeback(page, &dirty, &writeback);
991 if (dirty || writeback)
992 nr_dirty++;
993
994 if (dirty && !writeback)
995 nr_unqueued_dirty++;
996
d04e8acd
MG
997 /*
998 * Treat this page as congested if the underlying BDI is or if
999 * pages are cycling through the LRU so quickly that the
1000 * pages marked for immediate reclaim are making it to the
1001 * end of the LRU a second time.
1002 */
e2be15f6 1003 mapping = page_mapping(page);
1da58ee2 1004 if (((dirty || writeback) && mapping &&
703c2708 1005 inode_write_congested(mapping->host)) ||
d04e8acd 1006 (writeback && PageReclaim(page)))
e2be15f6
MG
1007 nr_congested++;
1008
283aba9f
MG
1009 /*
1010 * If a page at the tail of the LRU is under writeback, there
1011 * are three cases to consider.
1012 *
1013 * 1) If reclaim is encountering an excessive number of pages
1014 * under writeback and this page is both under writeback and
1015 * PageReclaim then it indicates that pages are being queued
1016 * for IO but are being recycled through the LRU before the
1017 * IO can complete. Waiting on the page itself risks an
1018 * indefinite stall if it is impossible to writeback the
1019 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1020 * note that the LRU is being scanned too quickly and the
1021 * caller can stall after page list has been processed.
283aba9f 1022 *
97c9341f 1023 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1024 * not marked for immediate reclaim, or the caller does not
1025 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1026 * not to fs). In this case mark the page for immediate
97c9341f 1027 * reclaim and continue scanning.
283aba9f 1028 *
ecf5fc6e
MH
1029 * Require may_enter_fs because we would wait on fs, which
1030 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1031 * enter reclaim, and deadlock if it waits on a page for
1032 * which it is needed to do the write (loop masks off
1033 * __GFP_IO|__GFP_FS for this reason); but more thought
1034 * would probably show more reasons.
1035 *
7fadc820 1036 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1037 * PageReclaim. memcg does not have any dirty pages
1038 * throttling so we could easily OOM just because too many
1039 * pages are in writeback and there is nothing else to
1040 * reclaim. Wait for the writeback to complete.
1041 */
c661b078 1042 if (PageWriteback(page)) {
283aba9f
MG
1043 /* Case 1 above */
1044 if (current_is_kswapd() &&
1045 PageReclaim(page) &&
599d0c95 1046 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e
MG
1047 nr_immediate++;
1048 goto keep_locked;
283aba9f
MG
1049
1050 /* Case 2 above */
97c9341f 1051 } else if (sane_reclaim(sc) ||
ecf5fc6e 1052 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1053 /*
1054 * This is slightly racy - end_page_writeback()
1055 * might have just cleared PageReclaim, then
1056 * setting PageReclaim here end up interpreted
1057 * as PageReadahead - but that does not matter
1058 * enough to care. What we do want is for this
1059 * page to have PageReclaim set next time memcg
1060 * reclaim reaches the tests above, so it will
1061 * then wait_on_page_writeback() to avoid OOM;
1062 * and it's also appropriate in global reclaim.
1063 */
1064 SetPageReclaim(page);
e62e384e 1065 nr_writeback++;
c3b94f44 1066 goto keep_locked;
283aba9f
MG
1067
1068 /* Case 3 above */
1069 } else {
7fadc820 1070 unlock_page(page);
283aba9f 1071 wait_on_page_writeback(page);
7fadc820
HD
1072 /* then go back and try same page again */
1073 list_add_tail(&page->lru, page_list);
1074 continue;
e62e384e 1075 }
c661b078 1076 }
1da177e4 1077
02c6de8d
MK
1078 if (!force_reclaim)
1079 references = page_check_references(page, sc);
1080
dfc8d636
JW
1081 switch (references) {
1082 case PAGEREF_ACTIVATE:
1da177e4 1083 goto activate_locked;
64574746 1084 case PAGEREF_KEEP:
5bccd166 1085 nr_ref_keep++;
64574746 1086 goto keep_locked;
dfc8d636
JW
1087 case PAGEREF_RECLAIM:
1088 case PAGEREF_RECLAIM_CLEAN:
1089 ; /* try to reclaim the page below */
1090 }
1da177e4 1091
1da177e4
LT
1092 /*
1093 * Anonymous process memory has backing store?
1094 * Try to allocate it some swap space here.
1095 */
b291f000 1096 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1097 if (!(sc->gfp_mask & __GFP_IO))
1098 goto keep_locked;
5bc7b8ac 1099 if (!add_to_swap(page, page_list))
1da177e4 1100 goto activate_locked;
854e9ed0 1101 lazyfree = true;
63eb6b93 1102 may_enter_fs = 1;
1da177e4 1103
e2be15f6
MG
1104 /* Adding to swap updated mapping */
1105 mapping = page_mapping(page);
7751b2da
KS
1106 } else if (unlikely(PageTransHuge(page))) {
1107 /* Split file THP */
1108 if (split_huge_page_to_list(page, page_list))
1109 goto keep_locked;
e2be15f6 1110 }
1da177e4 1111
7751b2da
KS
1112 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1113
1da177e4
LT
1114 /*
1115 * The page is mapped into the page tables of one or more
1116 * processes. Try to unmap it here.
1117 */
1118 if (page_mapped(page) && mapping) {
854e9ed0
MK
1119 switch (ret = try_to_unmap(page, lazyfree ?
1120 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1121 (ttu_flags | TTU_BATCH_FLUSH))) {
1da177e4 1122 case SWAP_FAIL:
5bccd166 1123 nr_unmap_fail++;
1da177e4
LT
1124 goto activate_locked;
1125 case SWAP_AGAIN:
1126 goto keep_locked;
b291f000
NP
1127 case SWAP_MLOCK:
1128 goto cull_mlocked;
854e9ed0
MK
1129 case SWAP_LZFREE:
1130 goto lazyfree;
1da177e4
LT
1131 case SWAP_SUCCESS:
1132 ; /* try to free the page below */
1133 }
1134 }
1135
1136 if (PageDirty(page)) {
ee72886d
MG
1137 /*
1138 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1139 * avoid risk of stack overflow but only writeback
1140 * if many dirty pages have been encountered.
ee72886d 1141 */
f84f6e2b 1142 if (page_is_file_cache(page) &&
9e3b2f8c 1143 (!current_is_kswapd() ||
599d0c95 1144 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1145 /*
1146 * Immediately reclaim when written back.
1147 * Similar in principal to deactivate_page()
1148 * except we already have the page isolated
1149 * and know it's dirty
1150 */
c4a25635 1151 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1152 SetPageReclaim(page);
1153
ee72886d
MG
1154 goto keep_locked;
1155 }
1156
dfc8d636 1157 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1158 goto keep_locked;
4dd4b920 1159 if (!may_enter_fs)
1da177e4 1160 goto keep_locked;
52a8363e 1161 if (!sc->may_writepage)
1da177e4
LT
1162 goto keep_locked;
1163
d950c947
MG
1164 /*
1165 * Page is dirty. Flush the TLB if a writable entry
1166 * potentially exists to avoid CPU writes after IO
1167 * starts and then write it out here.
1168 */
1169 try_to_unmap_flush_dirty();
7d3579e8 1170 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1171 case PAGE_KEEP:
1172 goto keep_locked;
1173 case PAGE_ACTIVATE:
1174 goto activate_locked;
1175 case PAGE_SUCCESS:
7d3579e8 1176 if (PageWriteback(page))
41ac1999 1177 goto keep;
7d3579e8 1178 if (PageDirty(page))
1da177e4 1179 goto keep;
7d3579e8 1180
1da177e4
LT
1181 /*
1182 * A synchronous write - probably a ramdisk. Go
1183 * ahead and try to reclaim the page.
1184 */
529ae9aa 1185 if (!trylock_page(page))
1da177e4
LT
1186 goto keep;
1187 if (PageDirty(page) || PageWriteback(page))
1188 goto keep_locked;
1189 mapping = page_mapping(page);
1190 case PAGE_CLEAN:
1191 ; /* try to free the page below */
1192 }
1193 }
1194
1195 /*
1196 * If the page has buffers, try to free the buffer mappings
1197 * associated with this page. If we succeed we try to free
1198 * the page as well.
1199 *
1200 * We do this even if the page is PageDirty().
1201 * try_to_release_page() does not perform I/O, but it is
1202 * possible for a page to have PageDirty set, but it is actually
1203 * clean (all its buffers are clean). This happens if the
1204 * buffers were written out directly, with submit_bh(). ext3
894bc310 1205 * will do this, as well as the blockdev mapping.
1da177e4
LT
1206 * try_to_release_page() will discover that cleanness and will
1207 * drop the buffers and mark the page clean - it can be freed.
1208 *
1209 * Rarely, pages can have buffers and no ->mapping. These are
1210 * the pages which were not successfully invalidated in
1211 * truncate_complete_page(). We try to drop those buffers here
1212 * and if that worked, and the page is no longer mapped into
1213 * process address space (page_count == 1) it can be freed.
1214 * Otherwise, leave the page on the LRU so it is swappable.
1215 */
266cf658 1216 if (page_has_private(page)) {
1da177e4
LT
1217 if (!try_to_release_page(page, sc->gfp_mask))
1218 goto activate_locked;
e286781d
NP
1219 if (!mapping && page_count(page) == 1) {
1220 unlock_page(page);
1221 if (put_page_testzero(page))
1222 goto free_it;
1223 else {
1224 /*
1225 * rare race with speculative reference.
1226 * the speculative reference will free
1227 * this page shortly, so we may
1228 * increment nr_reclaimed here (and
1229 * leave it off the LRU).
1230 */
1231 nr_reclaimed++;
1232 continue;
1233 }
1234 }
1da177e4
LT
1235 }
1236
854e9ed0 1237lazyfree:
a528910e 1238 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1239 goto keep_locked;
1da177e4 1240
a978d6f5
NP
1241 /*
1242 * At this point, we have no other references and there is
1243 * no way to pick any more up (removed from LRU, removed
1244 * from pagecache). Can use non-atomic bitops now (and
1245 * we obviously don't have to worry about waking up a process
1246 * waiting on the page lock, because there are no references.
1247 */
48c935ad 1248 __ClearPageLocked(page);
e286781d 1249free_it:
854e9ed0
MK
1250 if (ret == SWAP_LZFREE)
1251 count_vm_event(PGLAZYFREED);
1252
05ff5137 1253 nr_reclaimed++;
abe4c3b5
MG
1254
1255 /*
1256 * Is there need to periodically free_page_list? It would
1257 * appear not as the counts should be low
1258 */
1259 list_add(&page->lru, &free_pages);
1da177e4
LT
1260 continue;
1261
b291f000 1262cull_mlocked:
63d6c5ad
HD
1263 if (PageSwapCache(page))
1264 try_to_free_swap(page);
b291f000 1265 unlock_page(page);
c54839a7 1266 list_add(&page->lru, &ret_pages);
b291f000
NP
1267 continue;
1268
1da177e4 1269activate_locked:
68a22394 1270 /* Not a candidate for swapping, so reclaim swap space. */
5ccc5aba 1271 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
a2c43eed 1272 try_to_free_swap(page);
309381fe 1273 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1274 SetPageActive(page);
1275 pgactivate++;
1276keep_locked:
1277 unlock_page(page);
1278keep:
1279 list_add(&page->lru, &ret_pages);
309381fe 1280 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1281 }
abe4c3b5 1282
747db954 1283 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1284 try_to_unmap_flush();
b745bc85 1285 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1286
1da177e4 1287 list_splice(&ret_pages, page_list);
f8891e5e 1288 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1289
3c710c1a
MH
1290 if (stat) {
1291 stat->nr_dirty = nr_dirty;
1292 stat->nr_congested = nr_congested;
1293 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1294 stat->nr_writeback = nr_writeback;
1295 stat->nr_immediate = nr_immediate;
5bccd166
MH
1296 stat->nr_activate = pgactivate;
1297 stat->nr_ref_keep = nr_ref_keep;
1298 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1299 }
05ff5137 1300 return nr_reclaimed;
1da177e4
LT
1301}
1302
02c6de8d
MK
1303unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1304 struct list_head *page_list)
1305{
1306 struct scan_control sc = {
1307 .gfp_mask = GFP_KERNEL,
1308 .priority = DEF_PRIORITY,
1309 .may_unmap = 1,
1310 };
3c710c1a 1311 unsigned long ret;
02c6de8d
MK
1312 struct page *page, *next;
1313 LIST_HEAD(clean_pages);
1314
1315 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1316 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1317 !__PageMovable(page)) {
02c6de8d
MK
1318 ClearPageActive(page);
1319 list_move(&page->lru, &clean_pages);
1320 }
1321 }
1322
599d0c95 1323 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
3c710c1a 1324 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1325 list_splice(&clean_pages, page_list);
599d0c95 1326 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1327 return ret;
1328}
1329
5ad333eb
AW
1330/*
1331 * Attempt to remove the specified page from its LRU. Only take this page
1332 * if it is of the appropriate PageActive status. Pages which are being
1333 * freed elsewhere are also ignored.
1334 *
1335 * page: page to consider
1336 * mode: one of the LRU isolation modes defined above
1337 *
1338 * returns 0 on success, -ve errno on failure.
1339 */
f3fd4a61 1340int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1341{
1342 int ret = -EINVAL;
1343
1344 /* Only take pages on the LRU. */
1345 if (!PageLRU(page))
1346 return ret;
1347
e46a2879
MK
1348 /* Compaction should not handle unevictable pages but CMA can do so */
1349 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1350 return ret;
1351
5ad333eb 1352 ret = -EBUSY;
08e552c6 1353
c8244935
MG
1354 /*
1355 * To minimise LRU disruption, the caller can indicate that it only
1356 * wants to isolate pages it will be able to operate on without
1357 * blocking - clean pages for the most part.
1358 *
1359 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1360 * is used by reclaim when it is cannot write to backing storage
1361 *
1362 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1363 * that it is possible to migrate without blocking
1364 */
1365 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1366 /* All the caller can do on PageWriteback is block */
1367 if (PageWriteback(page))
1368 return ret;
1369
1370 if (PageDirty(page)) {
1371 struct address_space *mapping;
1372
1373 /* ISOLATE_CLEAN means only clean pages */
1374 if (mode & ISOLATE_CLEAN)
1375 return ret;
1376
1377 /*
1378 * Only pages without mappings or that have a
1379 * ->migratepage callback are possible to migrate
1380 * without blocking
1381 */
1382 mapping = page_mapping(page);
1383 if (mapping && !mapping->a_ops->migratepage)
1384 return ret;
1385 }
1386 }
39deaf85 1387
f80c0673
MK
1388 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1389 return ret;
1390
5ad333eb
AW
1391 if (likely(get_page_unless_zero(page))) {
1392 /*
1393 * Be careful not to clear PageLRU until after we're
1394 * sure the page is not being freed elsewhere -- the
1395 * page release code relies on it.
1396 */
1397 ClearPageLRU(page);
1398 ret = 0;
1399 }
1400
1401 return ret;
1402}
1403
7ee36a14
MG
1404
1405/*
1406 * Update LRU sizes after isolating pages. The LRU size updates must
1407 * be complete before mem_cgroup_update_lru_size due to a santity check.
1408 */
1409static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1410 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1411{
7ee36a14
MG
1412 int zid;
1413
7ee36a14
MG
1414 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1415 if (!nr_zone_taken[zid])
1416 continue;
1417
1418 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1419#ifdef CONFIG_MEMCG
b4536f0c 1420 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1421#endif
b4536f0c
MH
1422 }
1423
7ee36a14
MG
1424}
1425
1da177e4 1426/*
a52633d8 1427 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1428 * shrink the lists perform better by taking out a batch of pages
1429 * and working on them outside the LRU lock.
1430 *
1431 * For pagecache intensive workloads, this function is the hottest
1432 * spot in the kernel (apart from copy_*_user functions).
1433 *
1434 * Appropriate locks must be held before calling this function.
1435 *
1436 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1437 * @lruvec: The LRU vector to pull pages from.
1da177e4 1438 * @dst: The temp list to put pages on to.
f626012d 1439 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1440 * @sc: The scan_control struct for this reclaim session
5ad333eb 1441 * @mode: One of the LRU isolation modes
3cb99451 1442 * @lru: LRU list id for isolating
1da177e4
LT
1443 *
1444 * returns how many pages were moved onto *@dst.
1445 */
69e05944 1446static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1447 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1448 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1449 isolate_mode_t mode, enum lru_list lru)
1da177e4 1450{
75b00af7 1451 struct list_head *src = &lruvec->lists[lru];
69e05944 1452 unsigned long nr_taken = 0;
599d0c95 1453 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1454 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1265e3a6 1455 unsigned long skipped = 0, total_skipped = 0;
599d0c95 1456 unsigned long scan, nr_pages;
b2e18757 1457 LIST_HEAD(pages_skipped);
1da177e4 1458
0b802f10 1459 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
d7f05528 1460 !list_empty(src);) {
5ad333eb 1461 struct page *page;
5ad333eb 1462
1da177e4
LT
1463 page = lru_to_page(src);
1464 prefetchw_prev_lru_page(page, src, flags);
1465
309381fe 1466 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1467
b2e18757
MG
1468 if (page_zonenum(page) > sc->reclaim_idx) {
1469 list_move(&page->lru, &pages_skipped);
7cc30fcf 1470 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1471 continue;
1472 }
1473
d7f05528
MG
1474 /*
1475 * Account for scanned and skipped separetly to avoid the pgdat
1476 * being prematurely marked unreclaimable by pgdat_reclaimable.
1477 */
1478 scan++;
1479
f3fd4a61 1480 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1481 case 0:
599d0c95
MG
1482 nr_pages = hpage_nr_pages(page);
1483 nr_taken += nr_pages;
1484 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1485 list_move(&page->lru, dst);
5ad333eb
AW
1486 break;
1487
1488 case -EBUSY:
1489 /* else it is being freed elsewhere */
1490 list_move(&page->lru, src);
1491 continue;
46453a6e 1492
5ad333eb
AW
1493 default:
1494 BUG();
1495 }
1da177e4
LT
1496 }
1497
b2e18757
MG
1498 /*
1499 * Splice any skipped pages to the start of the LRU list. Note that
1500 * this disrupts the LRU order when reclaiming for lower zones but
1501 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1502 * scanning would soon rescan the same pages to skip and put the
1503 * system at risk of premature OOM.
1504 */
7cc30fcf
MG
1505 if (!list_empty(&pages_skipped)) {
1506 int zid;
1507
7cc30fcf
MG
1508 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1509 if (!nr_skipped[zid])
1510 continue;
1511
1512 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1513 skipped += nr_skipped[zid];
7cc30fcf 1514 }
d7f05528
MG
1515
1516 /*
1517 * Account skipped pages as a partial scan as the pgdat may be
1518 * close to unreclaimable. If the LRU list is empty, account
1519 * skipped pages as a full scan.
1520 */
1265e3a6 1521 total_skipped = list_empty(src) ? skipped : skipped >> 2;
d7f05528
MG
1522
1523 list_splice(&pages_skipped, src);
7cc30fcf 1524 }
1265e3a6
MH
1525 *nr_scanned = scan + total_skipped;
1526 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
32b3f297 1527 scan, skipped, nr_taken, mode, lru);
b4536f0c 1528 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1529 return nr_taken;
1530}
1531
62695a84
NP
1532/**
1533 * isolate_lru_page - tries to isolate a page from its LRU list
1534 * @page: page to isolate from its LRU list
1535 *
1536 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1537 * vmstat statistic corresponding to whatever LRU list the page was on.
1538 *
1539 * Returns 0 if the page was removed from an LRU list.
1540 * Returns -EBUSY if the page was not on an LRU list.
1541 *
1542 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1543 * the active list, it will have PageActive set. If it was found on
1544 * the unevictable list, it will have the PageUnevictable bit set. That flag
1545 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1546 *
1547 * The vmstat statistic corresponding to the list on which the page was
1548 * found will be decremented.
1549 *
1550 * Restrictions:
1551 * (1) Must be called with an elevated refcount on the page. This is a
1552 * fundamentnal difference from isolate_lru_pages (which is called
1553 * without a stable reference).
1554 * (2) the lru_lock must not be held.
1555 * (3) interrupts must be enabled.
1556 */
1557int isolate_lru_page(struct page *page)
1558{
1559 int ret = -EBUSY;
1560
309381fe 1561 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1562 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1563
62695a84
NP
1564 if (PageLRU(page)) {
1565 struct zone *zone = page_zone(page);
fa9add64 1566 struct lruvec *lruvec;
62695a84 1567
a52633d8 1568 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1569 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1570 if (PageLRU(page)) {
894bc310 1571 int lru = page_lru(page);
0c917313 1572 get_page(page);
62695a84 1573 ClearPageLRU(page);
fa9add64
HD
1574 del_page_from_lru_list(page, lruvec, lru);
1575 ret = 0;
62695a84 1576 }
a52633d8 1577 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1578 }
1579 return ret;
1580}
1581
35cd7815 1582/*
d37dd5dc
FW
1583 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1584 * then get resheduled. When there are massive number of tasks doing page
1585 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1586 * the LRU list will go small and be scanned faster than necessary, leading to
1587 * unnecessary swapping, thrashing and OOM.
35cd7815 1588 */
599d0c95 1589static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1590 struct scan_control *sc)
1591{
1592 unsigned long inactive, isolated;
1593
1594 if (current_is_kswapd())
1595 return 0;
1596
97c9341f 1597 if (!sane_reclaim(sc))
35cd7815
RR
1598 return 0;
1599
1600 if (file) {
599d0c95
MG
1601 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1602 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1603 } else {
599d0c95
MG
1604 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1605 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1606 }
1607
3cf23841
FW
1608 /*
1609 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1610 * won't get blocked by normal direct-reclaimers, forming a circular
1611 * deadlock.
1612 */
d0164adc 1613 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1614 inactive >>= 3;
1615
35cd7815
RR
1616 return isolated > inactive;
1617}
1618
66635629 1619static noinline_for_stack void
75b00af7 1620putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1621{
27ac81d8 1622 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1623 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1624 LIST_HEAD(pages_to_free);
66635629 1625
66635629
MG
1626 /*
1627 * Put back any unfreeable pages.
1628 */
66635629 1629 while (!list_empty(page_list)) {
3f79768f 1630 struct page *page = lru_to_page(page_list);
66635629 1631 int lru;
3f79768f 1632
309381fe 1633 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1634 list_del(&page->lru);
39b5f29a 1635 if (unlikely(!page_evictable(page))) {
599d0c95 1636 spin_unlock_irq(&pgdat->lru_lock);
66635629 1637 putback_lru_page(page);
599d0c95 1638 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1639 continue;
1640 }
fa9add64 1641
599d0c95 1642 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1643
7a608572 1644 SetPageLRU(page);
66635629 1645 lru = page_lru(page);
fa9add64
HD
1646 add_page_to_lru_list(page, lruvec, lru);
1647
66635629
MG
1648 if (is_active_lru(lru)) {
1649 int file = is_file_lru(lru);
9992af10
RR
1650 int numpages = hpage_nr_pages(page);
1651 reclaim_stat->recent_rotated[file] += numpages;
66635629 1652 }
2bcf8879
HD
1653 if (put_page_testzero(page)) {
1654 __ClearPageLRU(page);
1655 __ClearPageActive(page);
fa9add64 1656 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1657
1658 if (unlikely(PageCompound(page))) {
599d0c95 1659 spin_unlock_irq(&pgdat->lru_lock);
747db954 1660 mem_cgroup_uncharge(page);
2bcf8879 1661 (*get_compound_page_dtor(page))(page);
599d0c95 1662 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1663 } else
1664 list_add(&page->lru, &pages_to_free);
66635629
MG
1665 }
1666 }
66635629 1667
3f79768f
HD
1668 /*
1669 * To save our caller's stack, now use input list for pages to free.
1670 */
1671 list_splice(&pages_to_free, page_list);
66635629
MG
1672}
1673
399ba0b9
N
1674/*
1675 * If a kernel thread (such as nfsd for loop-back mounts) services
1676 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1677 * In that case we should only throttle if the backing device it is
1678 * writing to is congested. In other cases it is safe to throttle.
1679 */
1680static int current_may_throttle(void)
1681{
1682 return !(current->flags & PF_LESS_THROTTLE) ||
1683 current->backing_dev_info == NULL ||
1684 bdi_write_congested(current->backing_dev_info);
1685}
1686
91dcade4
MK
1687static bool inactive_reclaimable_pages(struct lruvec *lruvec,
1688 struct scan_control *sc, enum lru_list lru)
1689{
1690 int zid;
1691 struct zone *zone;
1692 int file = is_file_lru(lru);
1693 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1694
1695 if (!global_reclaim(sc))
1696 return true;
1697
1698 for (zid = sc->reclaim_idx; zid >= 0; zid--) {
1699 zone = &pgdat->node_zones[zid];
6aa303de 1700 if (!managed_zone(zone))
91dcade4
MK
1701 continue;
1702
1703 if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
1704 LRU_FILE * file) >= SWAP_CLUSTER_MAX)
1705 return true;
1706 }
1707
1708 return false;
1709}
1710
1da177e4 1711/*
b2e18757 1712 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1713 * of reclaimed pages
1da177e4 1714 */
66635629 1715static noinline_for_stack unsigned long
1a93be0e 1716shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1717 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1718{
1719 LIST_HEAD(page_list);
e247dbce 1720 unsigned long nr_scanned;
05ff5137 1721 unsigned long nr_reclaimed = 0;
e247dbce 1722 unsigned long nr_taken;
3c710c1a 1723 struct reclaim_stat stat = {};
f3fd4a61 1724 isolate_mode_t isolate_mode = 0;
3cb99451 1725 int file = is_file_lru(lru);
599d0c95 1726 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1727 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1728
91dcade4
MK
1729 if (!inactive_reclaimable_pages(lruvec, sc, lru))
1730 return 0;
1731
599d0c95 1732 while (unlikely(too_many_isolated(pgdat, file, sc))) {
58355c78 1733 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1734
1735 /* We are about to die and free our memory. Return now. */
1736 if (fatal_signal_pending(current))
1737 return SWAP_CLUSTER_MAX;
1738 }
1739
1da177e4 1740 lru_add_drain();
f80c0673
MK
1741
1742 if (!sc->may_unmap)
61317289 1743 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1744 if (!sc->may_writepage)
61317289 1745 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1746
599d0c95 1747 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1748
5dc35979
KK
1749 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1750 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1751
599d0c95 1752 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1753 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1754
89b5fae5 1755 if (global_reclaim(sc)) {
599d0c95 1756 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1757 if (current_is_kswapd())
599d0c95 1758 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
e247dbce 1759 else
599d0c95 1760 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
e247dbce 1761 }
599d0c95 1762 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1763
d563c050 1764 if (nr_taken == 0)
66635629 1765 return 0;
5ad333eb 1766
599d0c95 1767 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
3c710c1a 1768 &stat, false);
c661b078 1769
599d0c95 1770 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1771
904249aa
YH
1772 if (global_reclaim(sc)) {
1773 if (current_is_kswapd())
599d0c95 1774 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
904249aa 1775 else
599d0c95 1776 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
904249aa 1777 }
a74609fa 1778
27ac81d8 1779 putback_inactive_pages(lruvec, &page_list);
3f79768f 1780
599d0c95 1781 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1782
599d0c95 1783 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1784
747db954 1785 mem_cgroup_uncharge_list(&page_list);
b745bc85 1786 free_hot_cold_page_list(&page_list, true);
e11da5b4 1787
92df3a72
MG
1788 /*
1789 * If reclaim is isolating dirty pages under writeback, it implies
1790 * that the long-lived page allocation rate is exceeding the page
1791 * laundering rate. Either the global limits are not being effective
1792 * at throttling processes due to the page distribution throughout
1793 * zones or there is heavy usage of a slow backing device. The
1794 * only option is to throttle from reclaim context which is not ideal
1795 * as there is no guarantee the dirtying process is throttled in the
1796 * same way balance_dirty_pages() manages.
1797 *
8e950282
MG
1798 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1799 * of pages under pages flagged for immediate reclaim and stall if any
1800 * are encountered in the nr_immediate check below.
92df3a72 1801 */
3c710c1a 1802 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
599d0c95 1803 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1804
d43006d5 1805 /*
97c9341f
TH
1806 * Legacy memcg will stall in page writeback so avoid forcibly
1807 * stalling here.
d43006d5 1808 */
97c9341f 1809 if (sane_reclaim(sc)) {
8e950282
MG
1810 /*
1811 * Tag a zone as congested if all the dirty pages scanned were
1812 * backed by a congested BDI and wait_iff_congested will stall.
1813 */
3c710c1a 1814 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
599d0c95 1815 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1816
b1a6f21e
MG
1817 /*
1818 * If dirty pages are scanned that are not queued for IO, it
1819 * implies that flushers are not keeping up. In this case, flag
599d0c95 1820 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
57054651 1821 * reclaim context.
b1a6f21e 1822 */
3c710c1a 1823 if (stat.nr_unqueued_dirty == nr_taken)
599d0c95 1824 set_bit(PGDAT_DIRTY, &pgdat->flags);
b1a6f21e
MG
1825
1826 /*
b738d764
LT
1827 * If kswapd scans pages marked marked for immediate
1828 * reclaim and under writeback (nr_immediate), it implies
1829 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1830 * they are written so also forcibly stall.
1831 */
3c710c1a 1832 if (stat.nr_immediate && current_may_throttle())
b1a6f21e 1833 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1834 }
d43006d5 1835
8e950282
MG
1836 /*
1837 * Stall direct reclaim for IO completions if underlying BDIs or zone
1838 * is congested. Allow kswapd to continue until it starts encountering
1839 * unqueued dirty pages or cycling through the LRU too quickly.
1840 */
399ba0b9
N
1841 if (!sc->hibernation_mode && !current_is_kswapd() &&
1842 current_may_throttle())
599d0c95 1843 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1844
599d0c95
MG
1845 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1846 nr_scanned, nr_reclaimed,
5bccd166
MH
1847 stat.nr_dirty, stat.nr_writeback,
1848 stat.nr_congested, stat.nr_immediate,
1849 stat.nr_activate, stat.nr_ref_keep,
1850 stat.nr_unmap_fail,
ba5e9579 1851 sc->priority, file);
05ff5137 1852 return nr_reclaimed;
1da177e4
LT
1853}
1854
1855/*
1856 * This moves pages from the active list to the inactive list.
1857 *
1858 * We move them the other way if the page is referenced by one or more
1859 * processes, from rmap.
1860 *
1861 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1862 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1863 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1864 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1865 * this, so instead we remove the pages from the LRU while processing them.
1866 * It is safe to rely on PG_active against the non-LRU pages in here because
1867 * nobody will play with that bit on a non-LRU page.
1868 *
0139aa7b 1869 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1870 * But we had to alter page->flags anyway.
9d998b4f
MH
1871 *
1872 * Returns the number of pages moved to the given lru.
1da177e4 1873 */
1cfb419b 1874
9d998b4f 1875static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1876 struct list_head *list,
2bcf8879 1877 struct list_head *pages_to_free,
3eb4140f
WF
1878 enum lru_list lru)
1879{
599d0c95 1880 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1881 struct page *page;
fa9add64 1882 int nr_pages;
9d998b4f 1883 int nr_moved = 0;
3eb4140f 1884
3eb4140f
WF
1885 while (!list_empty(list)) {
1886 page = lru_to_page(list);
599d0c95 1887 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1888
309381fe 1889 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1890 SetPageLRU(page);
1891
fa9add64 1892 nr_pages = hpage_nr_pages(page);
599d0c95 1893 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1894 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 1895
2bcf8879
HD
1896 if (put_page_testzero(page)) {
1897 __ClearPageLRU(page);
1898 __ClearPageActive(page);
fa9add64 1899 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1900
1901 if (unlikely(PageCompound(page))) {
599d0c95 1902 spin_unlock_irq(&pgdat->lru_lock);
747db954 1903 mem_cgroup_uncharge(page);
2bcf8879 1904 (*get_compound_page_dtor(page))(page);
599d0c95 1905 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1906 } else
1907 list_add(&page->lru, pages_to_free);
9d998b4f
MH
1908 } else {
1909 nr_moved += nr_pages;
3eb4140f
WF
1910 }
1911 }
9d5e6a9f 1912
3eb4140f 1913 if (!is_active_lru(lru))
f0958906 1914 __count_vm_events(PGDEACTIVATE, nr_moved);
9d998b4f
MH
1915
1916 return nr_moved;
3eb4140f 1917}
1cfb419b 1918
f626012d 1919static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1920 struct lruvec *lruvec,
f16015fb 1921 struct scan_control *sc,
9e3b2f8c 1922 enum lru_list lru)
1da177e4 1923{
44c241f1 1924 unsigned long nr_taken;
f626012d 1925 unsigned long nr_scanned;
6fe6b7e3 1926 unsigned long vm_flags;
1da177e4 1927 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1928 LIST_HEAD(l_active);
b69408e8 1929 LIST_HEAD(l_inactive);
1da177e4 1930 struct page *page;
1a93be0e 1931 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
1932 unsigned nr_deactivate, nr_activate;
1933 unsigned nr_rotated = 0;
f3fd4a61 1934 isolate_mode_t isolate_mode = 0;
3cb99451 1935 int file = is_file_lru(lru);
599d0c95 1936 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1937
1938 lru_add_drain();
f80c0673
MK
1939
1940 if (!sc->may_unmap)
61317289 1941 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1942 if (!sc->may_writepage)
61317289 1943 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1944
599d0c95 1945 spin_lock_irq(&pgdat->lru_lock);
925b7673 1946
5dc35979
KK
1947 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1948 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1949
599d0c95 1950 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1951 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1952
9d5e6a9f 1953 if (global_reclaim(sc))
599d0c95
MG
1954 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1955 __count_vm_events(PGREFILL, nr_scanned);
9d5e6a9f 1956
599d0c95 1957 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 1958
1da177e4
LT
1959 while (!list_empty(&l_hold)) {
1960 cond_resched();
1961 page = lru_to_page(&l_hold);
1962 list_del(&page->lru);
7e9cd484 1963
39b5f29a 1964 if (unlikely(!page_evictable(page))) {
894bc310
LS
1965 putback_lru_page(page);
1966 continue;
1967 }
1968
cc715d99
MG
1969 if (unlikely(buffer_heads_over_limit)) {
1970 if (page_has_private(page) && trylock_page(page)) {
1971 if (page_has_private(page))
1972 try_to_release_page(page, 0);
1973 unlock_page(page);
1974 }
1975 }
1976
c3ac9a8a
JW
1977 if (page_referenced(page, 0, sc->target_mem_cgroup,
1978 &vm_flags)) {
9992af10 1979 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1980 /*
1981 * Identify referenced, file-backed active pages and
1982 * give them one more trip around the active list. So
1983 * that executable code get better chances to stay in
1984 * memory under moderate memory pressure. Anon pages
1985 * are not likely to be evicted by use-once streaming
1986 * IO, plus JVM can create lots of anon VM_EXEC pages,
1987 * so we ignore them here.
1988 */
41e20983 1989 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1990 list_add(&page->lru, &l_active);
1991 continue;
1992 }
1993 }
7e9cd484 1994
5205e56e 1995 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1996 list_add(&page->lru, &l_inactive);
1997 }
1998
b555749a 1999 /*
8cab4754 2000 * Move pages back to the lru list.
b555749a 2001 */
599d0c95 2002 spin_lock_irq(&pgdat->lru_lock);
556adecb 2003 /*
8cab4754
WF
2004 * Count referenced pages from currently used mappings as rotated,
2005 * even though only some of them are actually re-activated. This
2006 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2007 * get_scan_count.
7e9cd484 2008 */
b7c46d15 2009 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2010
9d998b4f
MH
2011 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2012 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
2013 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2014 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2015
747db954 2016 mem_cgroup_uncharge_list(&l_hold);
b745bc85 2017 free_hot_cold_page_list(&l_hold, true);
9d998b4f
MH
2018 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2019 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2020}
2021
59dc76b0
RR
2022/*
2023 * The inactive anon list should be small enough that the VM never has
2024 * to do too much work.
14797e23 2025 *
59dc76b0
RR
2026 * The inactive file list should be small enough to leave most memory
2027 * to the established workingset on the scan-resistant active list,
2028 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2029 *
59dc76b0
RR
2030 * Both inactive lists should also be large enough that each inactive
2031 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2032 *
59dc76b0
RR
2033 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2034 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2035 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2036 *
59dc76b0
RR
2037 * total target max
2038 * memory ratio inactive
2039 * -------------------------------------
2040 * 10MB 1 5MB
2041 * 100MB 1 50MB
2042 * 1GB 3 250MB
2043 * 10GB 10 0.9GB
2044 * 100GB 31 3GB
2045 * 1TB 101 10GB
2046 * 10TB 320 32GB
56e49d21 2047 */
f8d1a311 2048static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
dcec0b60 2049 struct scan_control *sc, bool trace)
56e49d21 2050{
59dc76b0 2051 unsigned long inactive_ratio;
dcec0b60
MH
2052 unsigned long total_inactive, inactive;
2053 unsigned long total_active, active;
59dc76b0 2054 unsigned long gb;
f8d1a311
MG
2055 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2056 int zid;
e3790144 2057
59dc76b0
RR
2058 /*
2059 * If we don't have swap space, anonymous page deactivation
2060 * is pointless.
2061 */
2062 if (!file && !total_swap_pages)
2063 return false;
56e49d21 2064
dcec0b60
MH
2065 total_inactive = inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
2066 total_active = active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
56e49d21 2067
f8d1a311
MG
2068 /*
2069 * For zone-constrained allocations, it is necessary to check if
2070 * deactivations are required for lowmem to be reclaimed. This
2071 * calculates the inactive/active pages available in eligible zones.
2072 */
2073 for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) {
2074 struct zone *zone = &pgdat->node_zones[zid];
2075 unsigned long inactive_zone, active_zone;
2076
6aa303de 2077 if (!managed_zone(zone))
f8d1a311
MG
2078 continue;
2079
b4536f0c
MH
2080 inactive_zone = lruvec_zone_lru_size(lruvec, file * LRU_FILE, zid);
2081 active_zone = lruvec_zone_lru_size(lruvec, (file * LRU_FILE) + LRU_ACTIVE, zid);
f8d1a311
MG
2082
2083 inactive -= min(inactive, inactive_zone);
2084 active -= min(active, active_zone);
2085 }
2086
59dc76b0
RR
2087 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2088 if (gb)
2089 inactive_ratio = int_sqrt(10 * gb);
b39415b2 2090 else
59dc76b0
RR
2091 inactive_ratio = 1;
2092
dcec0b60
MH
2093 if (trace)
2094 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id,
2095 sc->reclaim_idx,
2096 total_inactive, inactive,
2097 total_active, active, inactive_ratio, file);
59dc76b0 2098 return inactive * inactive_ratio < active;
b39415b2
RR
2099}
2100
4f98a2fe 2101static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 2102 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2103{
b39415b2 2104 if (is_active_lru(lru)) {
dcec0b60 2105 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2106 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2107 return 0;
2108 }
2109
1a93be0e 2110 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2111}
2112
9a265114
JW
2113enum scan_balance {
2114 SCAN_EQUAL,
2115 SCAN_FRACT,
2116 SCAN_ANON,
2117 SCAN_FILE,
2118};
2119
4f98a2fe
RR
2120/*
2121 * Determine how aggressively the anon and file LRU lists should be
2122 * scanned. The relative value of each set of LRU lists is determined
2123 * by looking at the fraction of the pages scanned we did rotate back
2124 * onto the active list instead of evict.
2125 *
be7bd59d
WL
2126 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2127 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2128 */
33377678 2129static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2130 struct scan_control *sc, unsigned long *nr,
2131 unsigned long *lru_pages)
4f98a2fe 2132{
33377678 2133 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2134 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2135 u64 fraction[2];
2136 u64 denominator = 0; /* gcc */
599d0c95 2137 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2138 unsigned long anon_prio, file_prio;
9a265114 2139 enum scan_balance scan_balance;
0bf1457f 2140 unsigned long anon, file;
9a265114 2141 bool force_scan = false;
4f98a2fe 2142 unsigned long ap, fp;
4111304d 2143 enum lru_list lru;
6f04f48d
SS
2144 bool some_scanned;
2145 int pass;
246e87a9 2146
f11c0ca5
JW
2147 /*
2148 * If the zone or memcg is small, nr[l] can be 0. This
2149 * results in no scanning on this priority and a potential
2150 * priority drop. Global direct reclaim can go to the next
2151 * zone and tends to have no problems. Global kswapd is for
2152 * zone balancing and it needs to scan a minimum amount. When
2153 * reclaiming for a memcg, a priority drop can cause high
2154 * latencies, so it's better to scan a minimum amount there as
2155 * well.
2156 */
90cbc250 2157 if (current_is_kswapd()) {
599d0c95 2158 if (!pgdat_reclaimable(pgdat))
90cbc250 2159 force_scan = true;
eb01aaab 2160 if (!mem_cgroup_online(memcg))
90cbc250
VD
2161 force_scan = true;
2162 }
89b5fae5 2163 if (!global_reclaim(sc))
a4d3e9e7 2164 force_scan = true;
76a33fc3
SL
2165
2166 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2167 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2168 scan_balance = SCAN_FILE;
76a33fc3
SL
2169 goto out;
2170 }
4f98a2fe 2171
10316b31
JW
2172 /*
2173 * Global reclaim will swap to prevent OOM even with no
2174 * swappiness, but memcg users want to use this knob to
2175 * disable swapping for individual groups completely when
2176 * using the memory controller's swap limit feature would be
2177 * too expensive.
2178 */
02695175 2179 if (!global_reclaim(sc) && !swappiness) {
9a265114 2180 scan_balance = SCAN_FILE;
10316b31
JW
2181 goto out;
2182 }
2183
2184 /*
2185 * Do not apply any pressure balancing cleverness when the
2186 * system is close to OOM, scan both anon and file equally
2187 * (unless the swappiness setting disagrees with swapping).
2188 */
02695175 2189 if (!sc->priority && swappiness) {
9a265114 2190 scan_balance = SCAN_EQUAL;
10316b31
JW
2191 goto out;
2192 }
2193
62376251
JW
2194 /*
2195 * Prevent the reclaimer from falling into the cache trap: as
2196 * cache pages start out inactive, every cache fault will tip
2197 * the scan balance towards the file LRU. And as the file LRU
2198 * shrinks, so does the window for rotation from references.
2199 * This means we have a runaway feedback loop where a tiny
2200 * thrashing file LRU becomes infinitely more attractive than
2201 * anon pages. Try to detect this based on file LRU size.
2202 */
2203 if (global_reclaim(sc)) {
599d0c95
MG
2204 unsigned long pgdatfile;
2205 unsigned long pgdatfree;
2206 int z;
2207 unsigned long total_high_wmark = 0;
2ab051e1 2208
599d0c95
MG
2209 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2210 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2211 node_page_state(pgdat, NR_INACTIVE_FILE);
2212
2213 for (z = 0; z < MAX_NR_ZONES; z++) {
2214 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2215 if (!managed_zone(zone))
599d0c95
MG
2216 continue;
2217
2218 total_high_wmark += high_wmark_pages(zone);
2219 }
62376251 2220
599d0c95 2221 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
62376251
JW
2222 scan_balance = SCAN_ANON;
2223 goto out;
2224 }
2225 }
2226
7c5bd705 2227 /*
316bda0e
VD
2228 * If there is enough inactive page cache, i.e. if the size of the
2229 * inactive list is greater than that of the active list *and* the
2230 * inactive list actually has some pages to scan on this priority, we
2231 * do not reclaim anything from the anonymous working set right now.
2232 * Without the second condition we could end up never scanning an
2233 * lruvec even if it has plenty of old anonymous pages unless the
2234 * system is under heavy pressure.
7c5bd705 2235 */
dcec0b60 2236 if (!inactive_list_is_low(lruvec, true, sc, false) &&
23047a96 2237 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
9a265114 2238 scan_balance = SCAN_FILE;
7c5bd705
JW
2239 goto out;
2240 }
2241
9a265114
JW
2242 scan_balance = SCAN_FRACT;
2243
58c37f6e
KM
2244 /*
2245 * With swappiness at 100, anonymous and file have the same priority.
2246 * This scanning priority is essentially the inverse of IO cost.
2247 */
02695175 2248 anon_prio = swappiness;
75b00af7 2249 file_prio = 200 - anon_prio;
58c37f6e 2250
4f98a2fe
RR
2251 /*
2252 * OK, so we have swap space and a fair amount of page cache
2253 * pages. We use the recently rotated / recently scanned
2254 * ratios to determine how valuable each cache is.
2255 *
2256 * Because workloads change over time (and to avoid overflow)
2257 * we keep these statistics as a floating average, which ends
2258 * up weighing recent references more than old ones.
2259 *
2260 * anon in [0], file in [1]
2261 */
2ab051e1 2262
23047a96
JW
2263 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2264 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2265 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2266 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2ab051e1 2267
599d0c95 2268 spin_lock_irq(&pgdat->lru_lock);
6e901571 2269 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2270 reclaim_stat->recent_scanned[0] /= 2;
2271 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2272 }
2273
6e901571 2274 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2275 reclaim_stat->recent_scanned[1] /= 2;
2276 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2277 }
2278
4f98a2fe 2279 /*
00d8089c
RR
2280 * The amount of pressure on anon vs file pages is inversely
2281 * proportional to the fraction of recently scanned pages on
2282 * each list that were recently referenced and in active use.
4f98a2fe 2283 */
fe35004f 2284 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2285 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2286
fe35004f 2287 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2288 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2289 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2290
76a33fc3
SL
2291 fraction[0] = ap;
2292 fraction[1] = fp;
2293 denominator = ap + fp + 1;
2294out:
6f04f48d
SS
2295 some_scanned = false;
2296 /* Only use force_scan on second pass. */
2297 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2298 *lru_pages = 0;
6f04f48d
SS
2299 for_each_evictable_lru(lru) {
2300 int file = is_file_lru(lru);
2301 unsigned long size;
2302 unsigned long scan;
6e08a369 2303
23047a96 2304 size = lruvec_lru_size(lruvec, lru);
6f04f48d 2305 scan = size >> sc->priority;
9a265114 2306
6f04f48d
SS
2307 if (!scan && pass && force_scan)
2308 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2309
6f04f48d
SS
2310 switch (scan_balance) {
2311 case SCAN_EQUAL:
2312 /* Scan lists relative to size */
2313 break;
2314 case SCAN_FRACT:
2315 /*
2316 * Scan types proportional to swappiness and
2317 * their relative recent reclaim efficiency.
2318 */
2319 scan = div64_u64(scan * fraction[file],
2320 denominator);
2321 break;
2322 case SCAN_FILE:
2323 case SCAN_ANON:
2324 /* Scan one type exclusively */
6b4f7799
JW
2325 if ((scan_balance == SCAN_FILE) != file) {
2326 size = 0;
6f04f48d 2327 scan = 0;
6b4f7799 2328 }
6f04f48d
SS
2329 break;
2330 default:
2331 /* Look ma, no brain */
2332 BUG();
2333 }
6b4f7799
JW
2334
2335 *lru_pages += size;
6f04f48d 2336 nr[lru] = scan;
6b4f7799 2337
9a265114 2338 /*
6f04f48d
SS
2339 * Skip the second pass and don't force_scan,
2340 * if we found something to scan.
9a265114 2341 */
6f04f48d 2342 some_scanned |= !!scan;
9a265114 2343 }
76a33fc3 2344 }
6e08a369 2345}
4f98a2fe 2346
9b4f98cd 2347/*
a9dd0a83 2348 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2349 */
a9dd0a83 2350static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2351 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2352{
ef8f2327 2353 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2354 unsigned long nr[NR_LRU_LISTS];
e82e0561 2355 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2356 unsigned long nr_to_scan;
2357 enum lru_list lru;
2358 unsigned long nr_reclaimed = 0;
2359 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2360 struct blk_plug plug;
1a501907 2361 bool scan_adjusted;
9b4f98cd 2362
33377678 2363 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2364
e82e0561
MG
2365 /* Record the original scan target for proportional adjustments later */
2366 memcpy(targets, nr, sizeof(nr));
2367
1a501907
MG
2368 /*
2369 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2370 * event that can occur when there is little memory pressure e.g.
2371 * multiple streaming readers/writers. Hence, we do not abort scanning
2372 * when the requested number of pages are reclaimed when scanning at
2373 * DEF_PRIORITY on the assumption that the fact we are direct
2374 * reclaiming implies that kswapd is not keeping up and it is best to
2375 * do a batch of work at once. For memcg reclaim one check is made to
2376 * abort proportional reclaim if either the file or anon lru has already
2377 * dropped to zero at the first pass.
2378 */
2379 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2380 sc->priority == DEF_PRIORITY);
2381
9b4f98cd
JW
2382 blk_start_plug(&plug);
2383 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2384 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2385 unsigned long nr_anon, nr_file, percentage;
2386 unsigned long nr_scanned;
2387
9b4f98cd
JW
2388 for_each_evictable_lru(lru) {
2389 if (nr[lru]) {
2390 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2391 nr[lru] -= nr_to_scan;
2392
2393 nr_reclaimed += shrink_list(lru, nr_to_scan,
2394 lruvec, sc);
2395 }
2396 }
e82e0561 2397
bd041733
MH
2398 cond_resched();
2399
e82e0561
MG
2400 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2401 continue;
2402
e82e0561
MG
2403 /*
2404 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2405 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2406 * proportionally what was requested by get_scan_count(). We
2407 * stop reclaiming one LRU and reduce the amount scanning
2408 * proportional to the original scan target.
2409 */
2410 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2411 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2412
1a501907
MG
2413 /*
2414 * It's just vindictive to attack the larger once the smaller
2415 * has gone to zero. And given the way we stop scanning the
2416 * smaller below, this makes sure that we only make one nudge
2417 * towards proportionality once we've got nr_to_reclaim.
2418 */
2419 if (!nr_file || !nr_anon)
2420 break;
2421
e82e0561
MG
2422 if (nr_file > nr_anon) {
2423 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2424 targets[LRU_ACTIVE_ANON] + 1;
2425 lru = LRU_BASE;
2426 percentage = nr_anon * 100 / scan_target;
2427 } else {
2428 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2429 targets[LRU_ACTIVE_FILE] + 1;
2430 lru = LRU_FILE;
2431 percentage = nr_file * 100 / scan_target;
2432 }
2433
2434 /* Stop scanning the smaller of the LRU */
2435 nr[lru] = 0;
2436 nr[lru + LRU_ACTIVE] = 0;
2437
2438 /*
2439 * Recalculate the other LRU scan count based on its original
2440 * scan target and the percentage scanning already complete
2441 */
2442 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2443 nr_scanned = targets[lru] - nr[lru];
2444 nr[lru] = targets[lru] * (100 - percentage) / 100;
2445 nr[lru] -= min(nr[lru], nr_scanned);
2446
2447 lru += LRU_ACTIVE;
2448 nr_scanned = targets[lru] - nr[lru];
2449 nr[lru] = targets[lru] * (100 - percentage) / 100;
2450 nr[lru] -= min(nr[lru], nr_scanned);
2451
2452 scan_adjusted = true;
9b4f98cd
JW
2453 }
2454 blk_finish_plug(&plug);
2455 sc->nr_reclaimed += nr_reclaimed;
2456
2457 /*
2458 * Even if we did not try to evict anon pages at all, we want to
2459 * rebalance the anon lru active/inactive ratio.
2460 */
dcec0b60 2461 if (inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2462 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2463 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2464}
2465
23b9da55 2466/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2467static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2468{
d84da3f9 2469 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2470 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2471 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2472 return true;
2473
2474 return false;
2475}
2476
3e7d3449 2477/*
23b9da55
MG
2478 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2479 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2480 * true if more pages should be reclaimed such that when the page allocator
2481 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2482 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2483 */
a9dd0a83 2484static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2485 unsigned long nr_reclaimed,
2486 unsigned long nr_scanned,
2487 struct scan_control *sc)
2488{
2489 unsigned long pages_for_compaction;
2490 unsigned long inactive_lru_pages;
a9dd0a83 2491 int z;
3e7d3449
MG
2492
2493 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2494 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2495 return false;
2496
2876592f
MG
2497 /* Consider stopping depending on scan and reclaim activity */
2498 if (sc->gfp_mask & __GFP_REPEAT) {
2499 /*
2500 * For __GFP_REPEAT allocations, stop reclaiming if the
2501 * full LRU list has been scanned and we are still failing
2502 * to reclaim pages. This full LRU scan is potentially
2503 * expensive but a __GFP_REPEAT caller really wants to succeed
2504 */
2505 if (!nr_reclaimed && !nr_scanned)
2506 return false;
2507 } else {
2508 /*
2509 * For non-__GFP_REPEAT allocations which can presumably
2510 * fail without consequence, stop if we failed to reclaim
2511 * any pages from the last SWAP_CLUSTER_MAX number of
2512 * pages that were scanned. This will return to the
2513 * caller faster at the risk reclaim/compaction and
2514 * the resulting allocation attempt fails
2515 */
2516 if (!nr_reclaimed)
2517 return false;
2518 }
3e7d3449
MG
2519
2520 /*
2521 * If we have not reclaimed enough pages for compaction and the
2522 * inactive lists are large enough, continue reclaiming
2523 */
9861a62c 2524 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2525 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2526 if (get_nr_swap_pages() > 0)
a9dd0a83 2527 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2528 if (sc->nr_reclaimed < pages_for_compaction &&
2529 inactive_lru_pages > pages_for_compaction)
2530 return true;
2531
2532 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2533 for (z = 0; z <= sc->reclaim_idx; z++) {
2534 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2535 if (!managed_zone(zone))
a9dd0a83
MG
2536 continue;
2537
2538 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2539 case COMPACT_SUCCESS:
a9dd0a83
MG
2540 case COMPACT_CONTINUE:
2541 return false;
2542 default:
2543 /* check next zone */
2544 ;
2545 }
3e7d3449 2546 }
a9dd0a83 2547 return true;
3e7d3449
MG
2548}
2549
970a39a3 2550static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2551{
cb731d6c 2552 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2553 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2554 bool reclaimable = false;
1da177e4 2555
9b4f98cd
JW
2556 do {
2557 struct mem_cgroup *root = sc->target_mem_cgroup;
2558 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2559 .pgdat = pgdat,
9b4f98cd
JW
2560 .priority = sc->priority,
2561 };
a9dd0a83 2562 unsigned long node_lru_pages = 0;
694fbc0f 2563 struct mem_cgroup *memcg;
3e7d3449 2564
9b4f98cd
JW
2565 nr_reclaimed = sc->nr_reclaimed;
2566 nr_scanned = sc->nr_scanned;
1da177e4 2567
694fbc0f
AM
2568 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2569 do {
6b4f7799 2570 unsigned long lru_pages;
8e8ae645 2571 unsigned long reclaimed;
cb731d6c 2572 unsigned long scanned;
5660048c 2573
241994ed
JW
2574 if (mem_cgroup_low(root, memcg)) {
2575 if (!sc->may_thrash)
2576 continue;
2577 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2578 }
2579
8e8ae645 2580 reclaimed = sc->nr_reclaimed;
cb731d6c 2581 scanned = sc->nr_scanned;
f9be23d6 2582
a9dd0a83
MG
2583 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2584 node_lru_pages += lru_pages;
f16015fb 2585
b5afba29 2586 if (memcg)
a9dd0a83 2587 shrink_slab(sc->gfp_mask, pgdat->node_id,
cb731d6c
VD
2588 memcg, sc->nr_scanned - scanned,
2589 lru_pages);
2590
8e8ae645
JW
2591 /* Record the group's reclaim efficiency */
2592 vmpressure(sc->gfp_mask, memcg, false,
2593 sc->nr_scanned - scanned,
2594 sc->nr_reclaimed - reclaimed);
2595
9b4f98cd 2596 /*
a394cb8e
MH
2597 * Direct reclaim and kswapd have to scan all memory
2598 * cgroups to fulfill the overall scan target for the
a9dd0a83 2599 * node.
a394cb8e
MH
2600 *
2601 * Limit reclaim, on the other hand, only cares about
2602 * nr_to_reclaim pages to be reclaimed and it will
2603 * retry with decreasing priority if one round over the
2604 * whole hierarchy is not sufficient.
9b4f98cd 2605 */
a394cb8e
MH
2606 if (!global_reclaim(sc) &&
2607 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2608 mem_cgroup_iter_break(root, memcg);
2609 break;
2610 }
241994ed 2611 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2612
6b4f7799
JW
2613 /*
2614 * Shrink the slab caches in the same proportion that
2615 * the eligible LRU pages were scanned.
2616 */
b2e18757 2617 if (global_reclaim(sc))
a9dd0a83 2618 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
cb731d6c 2619 sc->nr_scanned - nr_scanned,
a9dd0a83 2620 node_lru_pages);
cb731d6c
VD
2621
2622 if (reclaim_state) {
2623 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2624 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2625 }
2626
8e8ae645
JW
2627 /* Record the subtree's reclaim efficiency */
2628 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2629 sc->nr_scanned - nr_scanned,
2630 sc->nr_reclaimed - nr_reclaimed);
2631
2344d7e4
JW
2632 if (sc->nr_reclaimed - nr_reclaimed)
2633 reclaimable = true;
2634
a9dd0a83 2635 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2636 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2637
2638 return reclaimable;
f16015fb
JW
2639}
2640
53853e2d 2641/*
fdd4c614
VB
2642 * Returns true if compaction should go ahead for a costly-order request, or
2643 * the allocation would already succeed without compaction. Return false if we
2644 * should reclaim first.
53853e2d 2645 */
4f588331 2646static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2647{
31483b6a 2648 unsigned long watermark;
fdd4c614 2649 enum compact_result suitable;
fe4b1b24 2650
fdd4c614
VB
2651 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2652 if (suitable == COMPACT_SUCCESS)
2653 /* Allocation should succeed already. Don't reclaim. */
2654 return true;
2655 if (suitable == COMPACT_SKIPPED)
2656 /* Compaction cannot yet proceed. Do reclaim. */
2657 return false;
fe4b1b24 2658
53853e2d 2659 /*
fdd4c614
VB
2660 * Compaction is already possible, but it takes time to run and there
2661 * are potentially other callers using the pages just freed. So proceed
2662 * with reclaim to make a buffer of free pages available to give
2663 * compaction a reasonable chance of completing and allocating the page.
2664 * Note that we won't actually reclaim the whole buffer in one attempt
2665 * as the target watermark in should_continue_reclaim() is lower. But if
2666 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2667 */
fdd4c614 2668 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2669
fdd4c614 2670 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2671}
2672
1da177e4
LT
2673/*
2674 * This is the direct reclaim path, for page-allocating processes. We only
2675 * try to reclaim pages from zones which will satisfy the caller's allocation
2676 * request.
2677 *
1da177e4
LT
2678 * If a zone is deemed to be full of pinned pages then just give it a light
2679 * scan then give up on it.
2680 */
0a0337e0 2681static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2682{
dd1a239f 2683 struct zoneref *z;
54a6eb5c 2684 struct zone *zone;
0608f43d
AM
2685 unsigned long nr_soft_reclaimed;
2686 unsigned long nr_soft_scanned;
619d0d76 2687 gfp_t orig_mask;
79dafcdc 2688 pg_data_t *last_pgdat = NULL;
1cfb419b 2689
cc715d99
MG
2690 /*
2691 * If the number of buffer_heads in the machine exceeds the maximum
2692 * allowed level, force direct reclaim to scan the highmem zone as
2693 * highmem pages could be pinning lowmem pages storing buffer_heads
2694 */
619d0d76 2695 orig_mask = sc->gfp_mask;
b2e18757 2696 if (buffer_heads_over_limit) {
cc715d99 2697 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2698 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2699 }
cc715d99 2700
d4debc66 2701 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2702 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2703 /*
2704 * Take care memory controller reclaiming has small influence
2705 * to global LRU.
2706 */
89b5fae5 2707 if (global_reclaim(sc)) {
344736f2
VD
2708 if (!cpuset_zone_allowed(zone,
2709 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2710 continue;
65ec02cb 2711
6e543d57 2712 if (sc->priority != DEF_PRIORITY &&
599d0c95 2713 !pgdat_reclaimable(zone->zone_pgdat))
1cfb419b 2714 continue; /* Let kswapd poll it */
0b06496a
JW
2715
2716 /*
2717 * If we already have plenty of memory free for
2718 * compaction in this zone, don't free any more.
2719 * Even though compaction is invoked for any
2720 * non-zero order, only frequent costly order
2721 * reclamation is disruptive enough to become a
2722 * noticeable problem, like transparent huge
2723 * page allocations.
2724 */
2725 if (IS_ENABLED(CONFIG_COMPACTION) &&
2726 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2727 compaction_ready(zone, sc)) {
0b06496a
JW
2728 sc->compaction_ready = true;
2729 continue;
e0887c19 2730 }
0b06496a 2731
79dafcdc
MG
2732 /*
2733 * Shrink each node in the zonelist once. If the
2734 * zonelist is ordered by zone (not the default) then a
2735 * node may be shrunk multiple times but in that case
2736 * the user prefers lower zones being preserved.
2737 */
2738 if (zone->zone_pgdat == last_pgdat)
2739 continue;
2740
0608f43d
AM
2741 /*
2742 * This steals pages from memory cgroups over softlimit
2743 * and returns the number of reclaimed pages and
2744 * scanned pages. This works for global memory pressure
2745 * and balancing, not for a memcg's limit.
2746 */
2747 nr_soft_scanned = 0;
ef8f2327 2748 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2749 sc->order, sc->gfp_mask,
2750 &nr_soft_scanned);
2751 sc->nr_reclaimed += nr_soft_reclaimed;
2752 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2753 /* need some check for avoid more shrink_zone() */
1cfb419b 2754 }
408d8544 2755
79dafcdc
MG
2756 /* See comment about same check for global reclaim above */
2757 if (zone->zone_pgdat == last_pgdat)
2758 continue;
2759 last_pgdat = zone->zone_pgdat;
970a39a3 2760 shrink_node(zone->zone_pgdat, sc);
1da177e4 2761 }
e0c23279 2762
619d0d76
WY
2763 /*
2764 * Restore to original mask to avoid the impact on the caller if we
2765 * promoted it to __GFP_HIGHMEM.
2766 */
2767 sc->gfp_mask = orig_mask;
1da177e4 2768}
4f98a2fe 2769
1da177e4
LT
2770/*
2771 * This is the main entry point to direct page reclaim.
2772 *
2773 * If a full scan of the inactive list fails to free enough memory then we
2774 * are "out of memory" and something needs to be killed.
2775 *
2776 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2777 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2778 * caller can't do much about. We kick the writeback threads and take explicit
2779 * naps in the hope that some of these pages can be written. But if the
2780 * allocating task holds filesystem locks which prevent writeout this might not
2781 * work, and the allocation attempt will fail.
a41f24ea
NA
2782 *
2783 * returns: 0, if no pages reclaimed
2784 * else, the number of pages reclaimed
1da177e4 2785 */
dac1d27b 2786static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2787 struct scan_control *sc)
1da177e4 2788{
241994ed 2789 int initial_priority = sc->priority;
69e05944 2790 unsigned long total_scanned = 0;
22fba335 2791 unsigned long writeback_threshold;
241994ed 2792retry:
873b4771
KK
2793 delayacct_freepages_start();
2794
89b5fae5 2795 if (global_reclaim(sc))
7cc30fcf 2796 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2797
9e3b2f8c 2798 do {
70ddf637
AV
2799 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2800 sc->priority);
66e1707b 2801 sc->nr_scanned = 0;
0a0337e0 2802 shrink_zones(zonelist, sc);
c6a8a8c5 2803
66e1707b 2804 total_scanned += sc->nr_scanned;
bb21c7ce 2805 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2806 break;
2807
2808 if (sc->compaction_ready)
2809 break;
1da177e4 2810
0e50ce3b
MK
2811 /*
2812 * If we're getting trouble reclaiming, start doing
2813 * writepage even in laptop mode.
2814 */
2815 if (sc->priority < DEF_PRIORITY - 2)
2816 sc->may_writepage = 1;
2817
1da177e4
LT
2818 /*
2819 * Try to write back as many pages as we just scanned. This
2820 * tends to cause slow streaming writers to write data to the
2821 * disk smoothly, at the dirtying rate, which is nice. But
2822 * that's undesirable in laptop mode, where we *want* lumpy
2823 * writeout. So in laptop mode, write out the whole world.
2824 */
22fba335
KM
2825 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2826 if (total_scanned > writeback_threshold) {
0e175a18
CW
2827 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2828 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2829 sc->may_writepage = 1;
1da177e4 2830 }
0b06496a 2831 } while (--sc->priority >= 0);
bb21c7ce 2832
873b4771
KK
2833 delayacct_freepages_end();
2834
bb21c7ce
KM
2835 if (sc->nr_reclaimed)
2836 return sc->nr_reclaimed;
2837
0cee34fd 2838 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2839 if (sc->compaction_ready)
7335084d
MG
2840 return 1;
2841
241994ed
JW
2842 /* Untapped cgroup reserves? Don't OOM, retry. */
2843 if (!sc->may_thrash) {
2844 sc->priority = initial_priority;
2845 sc->may_thrash = 1;
2846 goto retry;
2847 }
2848
bb21c7ce 2849 return 0;
1da177e4
LT
2850}
2851
5515061d
MG
2852static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2853{
2854 struct zone *zone;
2855 unsigned long pfmemalloc_reserve = 0;
2856 unsigned long free_pages = 0;
2857 int i;
2858 bool wmark_ok;
2859
2860 for (i = 0; i <= ZONE_NORMAL; i++) {
2861 zone = &pgdat->node_zones[i];
6aa303de 2862 if (!managed_zone(zone) ||
599d0c95 2863 pgdat_reclaimable_pages(pgdat) == 0)
675becce
MG
2864 continue;
2865
5515061d
MG
2866 pfmemalloc_reserve += min_wmark_pages(zone);
2867 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2868 }
2869
675becce
MG
2870 /* If there are no reserves (unexpected config) then do not throttle */
2871 if (!pfmemalloc_reserve)
2872 return true;
2873
5515061d
MG
2874 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2875
2876 /* kswapd must be awake if processes are being throttled */
2877 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2878 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2879 (enum zone_type)ZONE_NORMAL);
2880 wake_up_interruptible(&pgdat->kswapd_wait);
2881 }
2882
2883 return wmark_ok;
2884}
2885
2886/*
2887 * Throttle direct reclaimers if backing storage is backed by the network
2888 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2889 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2890 * when the low watermark is reached.
2891 *
2892 * Returns true if a fatal signal was delivered during throttling. If this
2893 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2894 */
50694c28 2895static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2896 nodemask_t *nodemask)
2897{
675becce 2898 struct zoneref *z;
5515061d 2899 struct zone *zone;
675becce 2900 pg_data_t *pgdat = NULL;
5515061d
MG
2901
2902 /*
2903 * Kernel threads should not be throttled as they may be indirectly
2904 * responsible for cleaning pages necessary for reclaim to make forward
2905 * progress. kjournald for example may enter direct reclaim while
2906 * committing a transaction where throttling it could forcing other
2907 * processes to block on log_wait_commit().
2908 */
2909 if (current->flags & PF_KTHREAD)
50694c28
MG
2910 goto out;
2911
2912 /*
2913 * If a fatal signal is pending, this process should not throttle.
2914 * It should return quickly so it can exit and free its memory
2915 */
2916 if (fatal_signal_pending(current))
2917 goto out;
5515061d 2918
675becce
MG
2919 /*
2920 * Check if the pfmemalloc reserves are ok by finding the first node
2921 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2922 * GFP_KERNEL will be required for allocating network buffers when
2923 * swapping over the network so ZONE_HIGHMEM is unusable.
2924 *
2925 * Throttling is based on the first usable node and throttled processes
2926 * wait on a queue until kswapd makes progress and wakes them. There
2927 * is an affinity then between processes waking up and where reclaim
2928 * progress has been made assuming the process wakes on the same node.
2929 * More importantly, processes running on remote nodes will not compete
2930 * for remote pfmemalloc reserves and processes on different nodes
2931 * should make reasonable progress.
2932 */
2933 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2934 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2935 if (zone_idx(zone) > ZONE_NORMAL)
2936 continue;
2937
2938 /* Throttle based on the first usable node */
2939 pgdat = zone->zone_pgdat;
2940 if (pfmemalloc_watermark_ok(pgdat))
2941 goto out;
2942 break;
2943 }
2944
2945 /* If no zone was usable by the allocation flags then do not throttle */
2946 if (!pgdat)
50694c28 2947 goto out;
5515061d 2948
68243e76
MG
2949 /* Account for the throttling */
2950 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2951
5515061d
MG
2952 /*
2953 * If the caller cannot enter the filesystem, it's possible that it
2954 * is due to the caller holding an FS lock or performing a journal
2955 * transaction in the case of a filesystem like ext[3|4]. In this case,
2956 * it is not safe to block on pfmemalloc_wait as kswapd could be
2957 * blocked waiting on the same lock. Instead, throttle for up to a
2958 * second before continuing.
2959 */
2960 if (!(gfp_mask & __GFP_FS)) {
2961 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2962 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2963
2964 goto check_pending;
5515061d
MG
2965 }
2966
2967 /* Throttle until kswapd wakes the process */
2968 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2969 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2970
2971check_pending:
2972 if (fatal_signal_pending(current))
2973 return true;
2974
2975out:
2976 return false;
5515061d
MG
2977}
2978
dac1d27b 2979unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2980 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2981{
33906bc5 2982 unsigned long nr_reclaimed;
66e1707b 2983 struct scan_control sc = {
ee814fe2 2984 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2985 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
b2e18757 2986 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
2987 .order = order,
2988 .nodemask = nodemask,
2989 .priority = DEF_PRIORITY,
66e1707b 2990 .may_writepage = !laptop_mode,
a6dc60f8 2991 .may_unmap = 1,
2e2e4259 2992 .may_swap = 1,
66e1707b
BS
2993 };
2994
5515061d 2995 /*
50694c28
MG
2996 * Do not enter reclaim if fatal signal was delivered while throttled.
2997 * 1 is returned so that the page allocator does not OOM kill at this
2998 * point.
5515061d 2999 */
50694c28 3000 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
3001 return 1;
3002
33906bc5
MG
3003 trace_mm_vmscan_direct_reclaim_begin(order,
3004 sc.may_writepage,
e5146b12
MG
3005 gfp_mask,
3006 sc.reclaim_idx);
33906bc5 3007
3115cd91 3008 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3009
3010 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3011
3012 return nr_reclaimed;
66e1707b
BS
3013}
3014
c255a458 3015#ifdef CONFIG_MEMCG
66e1707b 3016
a9dd0a83 3017unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3018 gfp_t gfp_mask, bool noswap,
ef8f2327 3019 pg_data_t *pgdat,
0ae5e89c 3020 unsigned long *nr_scanned)
4e416953
BS
3021{
3022 struct scan_control sc = {
b8f5c566 3023 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3024 .target_mem_cgroup = memcg,
4e416953
BS
3025 .may_writepage = !laptop_mode,
3026 .may_unmap = 1,
b2e18757 3027 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3028 .may_swap = !noswap,
4e416953 3029 };
6b4f7799 3030 unsigned long lru_pages;
0ae5e89c 3031
4e416953
BS
3032 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3033 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3034
9e3b2f8c 3035 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 3036 sc.may_writepage,
e5146b12
MG
3037 sc.gfp_mask,
3038 sc.reclaim_idx);
bdce6d9e 3039
4e416953
BS
3040 /*
3041 * NOTE: Although we can get the priority field, using it
3042 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3043 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3044 * will pick up pages from other mem cgroup's as well. We hack
3045 * the priority and make it zero.
3046 */
ef8f2327 3047 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3048
3049 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3050
0ae5e89c 3051 *nr_scanned = sc.nr_scanned;
4e416953
BS
3052 return sc.nr_reclaimed;
3053}
3054
72835c86 3055unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3056 unsigned long nr_pages,
a7885eb8 3057 gfp_t gfp_mask,
b70a2a21 3058 bool may_swap)
66e1707b 3059{
4e416953 3060 struct zonelist *zonelist;
bdce6d9e 3061 unsigned long nr_reclaimed;
889976db 3062 int nid;
66e1707b 3063 struct scan_control sc = {
b70a2a21 3064 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
3065 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3066 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3067 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3068 .target_mem_cgroup = memcg,
3069 .priority = DEF_PRIORITY,
3070 .may_writepage = !laptop_mode,
3071 .may_unmap = 1,
b70a2a21 3072 .may_swap = may_swap,
a09ed5e0 3073 };
66e1707b 3074
889976db
YH
3075 /*
3076 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3077 * take care of from where we get pages. So the node where we start the
3078 * scan does not need to be the current node.
3079 */
72835c86 3080 nid = mem_cgroup_select_victim_node(memcg);
889976db 3081
c9634cf0 3082 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3083
3084 trace_mm_vmscan_memcg_reclaim_begin(0,
3085 sc.may_writepage,
e5146b12
MG
3086 sc.gfp_mask,
3087 sc.reclaim_idx);
bdce6d9e 3088
89a28483 3089 current->flags |= PF_MEMALLOC;
3115cd91 3090 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
89a28483 3091 current->flags &= ~PF_MEMALLOC;
bdce6d9e
KM
3092
3093 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3094
3095 return nr_reclaimed;
66e1707b
BS
3096}
3097#endif
3098
1d82de61 3099static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3100 struct scan_control *sc)
f16015fb 3101{
b95a2f2d 3102 struct mem_cgroup *memcg;
f16015fb 3103
b95a2f2d
JW
3104 if (!total_swap_pages)
3105 return;
3106
3107 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3108 do {
ef8f2327 3109 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3110
dcec0b60 3111 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3112 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3113 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3114
3115 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3116 } while (memcg);
f16015fb
JW
3117}
3118
31483b6a 3119static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
60cefed4 3120{
31483b6a 3121 unsigned long mark = high_wmark_pages(zone);
60cefed4 3122
6256c6b4
MG
3123 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3124 return false;
3125
3126 /*
3127 * If any eligible zone is balanced then the node is not considered
3128 * to be congested or dirty
3129 */
3130 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3131 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3132
3133 return true;
60cefed4
JW
3134}
3135
5515061d
MG
3136/*
3137 * Prepare kswapd for sleeping. This verifies that there are no processes
3138 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3139 *
3140 * Returns true if kswapd is ready to sleep
3141 */
d9f21d42 3142static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3143{
1d82de61
MG
3144 int i;
3145
5515061d 3146 /*
9e5e3661
VB
3147 * The throttled processes are normally woken up in balance_pgdat() as
3148 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3149 * race between when kswapd checks the watermarks and a process gets
3150 * throttled. There is also a potential race if processes get
3151 * throttled, kswapd wakes, a large process exits thereby balancing the
3152 * zones, which causes kswapd to exit balance_pgdat() before reaching
3153 * the wake up checks. If kswapd is going to sleep, no process should
3154 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3155 * the wake up is premature, processes will wake kswapd and get
3156 * throttled again. The difference from wake ups in balance_pgdat() is
3157 * that here we are under prepare_to_wait().
5515061d 3158 */
9e5e3661
VB
3159 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3160 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3161
1d82de61
MG
3162 for (i = 0; i <= classzone_idx; i++) {
3163 struct zone *zone = pgdat->node_zones + i;
3164
6aa303de 3165 if (!managed_zone(zone))
1d82de61
MG
3166 continue;
3167
38087d9b
MG
3168 if (!zone_balanced(zone, order, classzone_idx))
3169 return false;
1d82de61
MG
3170 }
3171
38087d9b 3172 return true;
f50de2d3
MG
3173}
3174
75485363 3175/*
1d82de61
MG
3176 * kswapd shrinks a node of pages that are at or below the highest usable
3177 * zone that is currently unbalanced.
b8e83b94
MG
3178 *
3179 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3180 * reclaim or if the lack of progress was due to pages under writeback.
3181 * This is used to determine if the scanning priority needs to be raised.
75485363 3182 */
1d82de61 3183static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3184 struct scan_control *sc)
75485363 3185{
1d82de61
MG
3186 struct zone *zone;
3187 int z;
75485363 3188
1d82de61
MG
3189 /* Reclaim a number of pages proportional to the number of zones */
3190 sc->nr_to_reclaim = 0;
970a39a3 3191 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3192 zone = pgdat->node_zones + z;
6aa303de 3193 if (!managed_zone(zone))
1d82de61 3194 continue;
7c954f6d 3195
1d82de61
MG
3196 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3197 }
7c954f6d
MG
3198
3199 /*
1d82de61
MG
3200 * Historically care was taken to put equal pressure on all zones but
3201 * now pressure is applied based on node LRU order.
7c954f6d 3202 */
970a39a3 3203 shrink_node(pgdat, sc);
283aba9f 3204
7c954f6d 3205 /*
1d82de61
MG
3206 * Fragmentation may mean that the system cannot be rebalanced for
3207 * high-order allocations. If twice the allocation size has been
3208 * reclaimed then recheck watermarks only at order-0 to prevent
3209 * excessive reclaim. Assume that a process requested a high-order
3210 * can direct reclaim/compact.
7c954f6d 3211 */
9861a62c 3212 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3213 sc->order = 0;
7c954f6d 3214
b8e83b94 3215 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3216}
3217
1da177e4 3218/*
1d82de61
MG
3219 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3220 * that are eligible for use by the caller until at least one zone is
3221 * balanced.
1da177e4 3222 *
1d82de61 3223 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3224 *
3225 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3226 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3227 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3228 * or lower is eligible for reclaim until at least one usable zone is
3229 * balanced.
1da177e4 3230 */
accf6242 3231static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3232{
1da177e4 3233 int i;
0608f43d
AM
3234 unsigned long nr_soft_reclaimed;
3235 unsigned long nr_soft_scanned;
1d82de61 3236 struct zone *zone;
179e9639
AM
3237 struct scan_control sc = {
3238 .gfp_mask = GFP_KERNEL,
ee814fe2 3239 .order = order,
b8e83b94 3240 .priority = DEF_PRIORITY,
ee814fe2 3241 .may_writepage = !laptop_mode,
a6dc60f8 3242 .may_unmap = 1,
2e2e4259 3243 .may_swap = 1,
179e9639 3244 };
f8891e5e 3245 count_vm_event(PAGEOUTRUN);
1da177e4 3246
9e3b2f8c 3247 do {
b8e83b94
MG
3248 bool raise_priority = true;
3249
3250 sc.nr_reclaimed = 0;
84c7a777 3251 sc.reclaim_idx = classzone_idx;
1da177e4 3252
86c79f6b 3253 /*
84c7a777
MG
3254 * If the number of buffer_heads exceeds the maximum allowed
3255 * then consider reclaiming from all zones. This has a dual
3256 * purpose -- on 64-bit systems it is expected that
3257 * buffer_heads are stripped during active rotation. On 32-bit
3258 * systems, highmem pages can pin lowmem memory and shrinking
3259 * buffers can relieve lowmem pressure. Reclaim may still not
3260 * go ahead if all eligible zones for the original allocation
3261 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3262 */
3263 if (buffer_heads_over_limit) {
3264 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3265 zone = pgdat->node_zones + i;
6aa303de 3266 if (!managed_zone(zone))
86c79f6b 3267 continue;
cc715d99 3268
970a39a3 3269 sc.reclaim_idx = i;
e1dbeda6 3270 break;
1da177e4 3271 }
1da177e4 3272 }
dafcb73e 3273
86c79f6b
MG
3274 /*
3275 * Only reclaim if there are no eligible zones. Check from
3276 * high to low zone as allocations prefer higher zones.
3277 * Scanning from low to high zone would allow congestion to be
3278 * cleared during a very small window when a small low
3279 * zone was balanced even under extreme pressure when the
84c7a777
MG
3280 * overall node may be congested. Note that sc.reclaim_idx
3281 * is not used as buffer_heads_over_limit may have adjusted
3282 * it.
86c79f6b 3283 */
84c7a777 3284 for (i = classzone_idx; i >= 0; i--) {
86c79f6b 3285 zone = pgdat->node_zones + i;
6aa303de 3286 if (!managed_zone(zone))
86c79f6b
MG
3287 continue;
3288
84c7a777 3289 if (zone_balanced(zone, sc.order, classzone_idx))
86c79f6b
MG
3290 goto out;
3291 }
e1dbeda6 3292
1d82de61
MG
3293 /*
3294 * Do some background aging of the anon list, to give
3295 * pages a chance to be referenced before reclaiming. All
3296 * pages are rotated regardless of classzone as this is
3297 * about consistent aging.
3298 */
ef8f2327 3299 age_active_anon(pgdat, &sc);
1d82de61 3300
b7ea3c41
MG
3301 /*
3302 * If we're getting trouble reclaiming, start doing writepage
3303 * even in laptop mode.
3304 */
1d82de61 3305 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
b7ea3c41
MG
3306 sc.may_writepage = 1;
3307
1d82de61
MG
3308 /* Call soft limit reclaim before calling shrink_node. */
3309 sc.nr_scanned = 0;
3310 nr_soft_scanned = 0;
ef8f2327 3311 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3312 sc.gfp_mask, &nr_soft_scanned);
3313 sc.nr_reclaimed += nr_soft_reclaimed;
3314
1da177e4 3315 /*
1d82de61
MG
3316 * There should be no need to raise the scanning priority if
3317 * enough pages are already being scanned that that high
3318 * watermark would be met at 100% efficiency.
1da177e4 3319 */
970a39a3 3320 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3321 raise_priority = false;
5515061d
MG
3322
3323 /*
3324 * If the low watermark is met there is no need for processes
3325 * to be throttled on pfmemalloc_wait as they should not be
3326 * able to safely make forward progress. Wake them
3327 */
3328 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3329 pfmemalloc_watermark_ok(pgdat))
cfc51155 3330 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3331
b8e83b94
MG
3332 /* Check if kswapd should be suspending */
3333 if (try_to_freeze() || kthread_should_stop())
3334 break;
8357376d 3335
73ce02e9 3336 /*
b8e83b94
MG
3337 * Raise priority if scanning rate is too low or there was no
3338 * progress in reclaiming pages
73ce02e9 3339 */
b8e83b94
MG
3340 if (raise_priority || !sc.nr_reclaimed)
3341 sc.priority--;
1d82de61 3342 } while (sc.priority >= 1);
1da177e4 3343
b8e83b94 3344out:
0abdee2b 3345 /*
1d82de61
MG
3346 * Return the order kswapd stopped reclaiming at as
3347 * prepare_kswapd_sleep() takes it into account. If another caller
3348 * entered the allocator slow path while kswapd was awake, order will
3349 * remain at the higher level.
0abdee2b 3350 */
1d82de61 3351 return sc.order;
1da177e4
LT
3352}
3353
38087d9b
MG
3354static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3355 unsigned int classzone_idx)
f0bc0a60
KM
3356{
3357 long remaining = 0;
3358 DEFINE_WAIT(wait);
3359
3360 if (freezing(current) || kthread_should_stop())
3361 return;
3362
3363 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3364
3365 /* Try to sleep for a short interval */
d9f21d42 3366 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3367 /*
3368 * Compaction records what page blocks it recently failed to
3369 * isolate pages from and skips them in the future scanning.
3370 * When kswapd is going to sleep, it is reasonable to assume
3371 * that pages and compaction may succeed so reset the cache.
3372 */
3373 reset_isolation_suitable(pgdat);
3374
3375 /*
3376 * We have freed the memory, now we should compact it to make
3377 * allocation of the requested order possible.
3378 */
38087d9b 3379 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3380
f0bc0a60 3381 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3382
3383 /*
3384 * If woken prematurely then reset kswapd_classzone_idx and
3385 * order. The values will either be from a wakeup request or
3386 * the previous request that slept prematurely.
3387 */
3388 if (remaining) {
3389 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3390 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3391 }
3392
f0bc0a60
KM
3393 finish_wait(&pgdat->kswapd_wait, &wait);
3394 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3395 }
3396
3397 /*
3398 * After a short sleep, check if it was a premature sleep. If not, then
3399 * go fully to sleep until explicitly woken up.
3400 */
d9f21d42
MG
3401 if (!remaining &&
3402 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3403 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3404
3405 /*
3406 * vmstat counters are not perfectly accurate and the estimated
3407 * value for counters such as NR_FREE_PAGES can deviate from the
3408 * true value by nr_online_cpus * threshold. To avoid the zone
3409 * watermarks being breached while under pressure, we reduce the
3410 * per-cpu vmstat threshold while kswapd is awake and restore
3411 * them before going back to sleep.
3412 */
3413 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3414
3415 if (!kthread_should_stop())
3416 schedule();
3417
f0bc0a60
KM
3418 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3419 } else {
3420 if (remaining)
3421 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3422 else
3423 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3424 }
3425 finish_wait(&pgdat->kswapd_wait, &wait);
3426}
3427
1da177e4
LT
3428/*
3429 * The background pageout daemon, started as a kernel thread
4f98a2fe 3430 * from the init process.
1da177e4
LT
3431 *
3432 * This basically trickles out pages so that we have _some_
3433 * free memory available even if there is no other activity
3434 * that frees anything up. This is needed for things like routing
3435 * etc, where we otherwise might have all activity going on in
3436 * asynchronous contexts that cannot page things out.
3437 *
3438 * If there are applications that are active memory-allocators
3439 * (most normal use), this basically shouldn't matter.
3440 */
3441static int kswapd(void *p)
3442{
38087d9b 3443 unsigned int alloc_order, reclaim_order, classzone_idx;
1da177e4
LT
3444 pg_data_t *pgdat = (pg_data_t*)p;
3445 struct task_struct *tsk = current;
f0bc0a60 3446
1da177e4
LT
3447 struct reclaim_state reclaim_state = {
3448 .reclaimed_slab = 0,
3449 };
a70f7302 3450 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3451
cf40bd16
NP
3452 lockdep_set_current_reclaim_state(GFP_KERNEL);
3453
174596a0 3454 if (!cpumask_empty(cpumask))
c5f59f08 3455 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3456 current->reclaim_state = &reclaim_state;
3457
3458 /*
3459 * Tell the memory management that we're a "memory allocator",
3460 * and that if we need more memory we should get access to it
3461 * regardless (see "__alloc_pages()"). "kswapd" should
3462 * never get caught in the normal page freeing logic.
3463 *
3464 * (Kswapd normally doesn't need memory anyway, but sometimes
3465 * you need a small amount of memory in order to be able to
3466 * page out something else, and this flag essentially protects
3467 * us from recursively trying to free more memory as we're
3468 * trying to free the first piece of memory in the first place).
3469 */
930d9152 3470 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3471 set_freezable();
1da177e4 3472
38087d9b
MG
3473 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3474 pgdat->kswapd_classzone_idx = classzone_idx = 0;
1da177e4 3475 for ( ; ; ) {
6f6313d4 3476 bool ret;
3e1d1d28 3477
38087d9b
MG
3478kswapd_try_sleep:
3479 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3480 classzone_idx);
215ddd66 3481
38087d9b
MG
3482 /* Read the new order and classzone_idx */
3483 alloc_order = reclaim_order = pgdat->kswapd_order;
3484 classzone_idx = pgdat->kswapd_classzone_idx;
3485 pgdat->kswapd_order = 0;
3486 pgdat->kswapd_classzone_idx = 0;
1da177e4 3487
8fe23e05
DR
3488 ret = try_to_freeze();
3489 if (kthread_should_stop())
3490 break;
3491
3492 /*
3493 * We can speed up thawing tasks if we don't call balance_pgdat
3494 * after returning from the refrigerator
3495 */
38087d9b
MG
3496 if (ret)
3497 continue;
3498
3499 /*
3500 * Reclaim begins at the requested order but if a high-order
3501 * reclaim fails then kswapd falls back to reclaiming for
3502 * order-0. If that happens, kswapd will consider sleeping
3503 * for the order it finished reclaiming at (reclaim_order)
3504 * but kcompactd is woken to compact for the original
3505 * request (alloc_order).
3506 */
e5146b12
MG
3507 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3508 alloc_order);
38087d9b
MG
3509 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3510 if (reclaim_order < alloc_order)
3511 goto kswapd_try_sleep;
1d82de61 3512
38087d9b
MG
3513 alloc_order = reclaim_order = pgdat->kswapd_order;
3514 classzone_idx = pgdat->kswapd_classzone_idx;
1da177e4 3515 }
b0a8cc58 3516
71abdc15 3517 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3518 current->reclaim_state = NULL;
71abdc15
JW
3519 lockdep_clear_current_reclaim_state();
3520
1da177e4
LT
3521 return 0;
3522}
3523
3524/*
3525 * A zone is low on free memory, so wake its kswapd task to service it.
3526 */
99504748 3527void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3528{
3529 pg_data_t *pgdat;
e1a55637 3530 int z;
1da177e4 3531
6aa303de 3532 if (!managed_zone(zone))
1da177e4
LT
3533 return;
3534
344736f2 3535 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3536 return;
88f5acf8 3537 pgdat = zone->zone_pgdat;
38087d9b
MG
3538 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3539 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3540 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3541 return;
e1a55637
MG
3542
3543 /* Only wake kswapd if all zones are unbalanced */
3544 for (z = 0; z <= classzone_idx; z++) {
3545 zone = pgdat->node_zones + z;
6aa303de 3546 if (!managed_zone(zone))
e1a55637
MG
3547 continue;
3548
3549 if (zone_balanced(zone, order, classzone_idx))
3550 return;
3551 }
88f5acf8
MG
3552
3553 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3554 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3555}
3556
c6f37f12 3557#ifdef CONFIG_HIBERNATION
1da177e4 3558/*
7b51755c 3559 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3560 * freed pages.
3561 *
3562 * Rather than trying to age LRUs the aim is to preserve the overall
3563 * LRU order by reclaiming preferentially
3564 * inactive > active > active referenced > active mapped
1da177e4 3565 */
7b51755c 3566unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3567{
d6277db4 3568 struct reclaim_state reclaim_state;
d6277db4 3569 struct scan_control sc = {
ee814fe2 3570 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3571 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3572 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3573 .priority = DEF_PRIORITY,
d6277db4 3574 .may_writepage = 1,
ee814fe2
JW
3575 .may_unmap = 1,
3576 .may_swap = 1,
7b51755c 3577 .hibernation_mode = 1,
1da177e4 3578 };
a09ed5e0 3579 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3580 struct task_struct *p = current;
3581 unsigned long nr_reclaimed;
1da177e4 3582
7b51755c
KM
3583 p->flags |= PF_MEMALLOC;
3584 lockdep_set_current_reclaim_state(sc.gfp_mask);
3585 reclaim_state.reclaimed_slab = 0;
3586 p->reclaim_state = &reclaim_state;
d6277db4 3587
3115cd91 3588 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3589
7b51755c
KM
3590 p->reclaim_state = NULL;
3591 lockdep_clear_current_reclaim_state();
3592 p->flags &= ~PF_MEMALLOC;
d6277db4 3593
7b51755c 3594 return nr_reclaimed;
1da177e4 3595}
c6f37f12 3596#endif /* CONFIG_HIBERNATION */
1da177e4 3597
1da177e4
LT
3598/* It's optimal to keep kswapds on the same CPUs as their memory, but
3599 not required for correctness. So if the last cpu in a node goes
3600 away, we get changed to run anywhere: as the first one comes back,
3601 restore their cpu bindings. */
517bbed9 3602static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3603{
58c0a4a7 3604 int nid;
1da177e4 3605
517bbed9
SAS
3606 for_each_node_state(nid, N_MEMORY) {
3607 pg_data_t *pgdat = NODE_DATA(nid);
3608 const struct cpumask *mask;
a70f7302 3609
517bbed9 3610 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3611
517bbed9
SAS
3612 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3613 /* One of our CPUs online: restore mask */
3614 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3615 }
517bbed9 3616 return 0;
1da177e4 3617}
1da177e4 3618
3218ae14
YG
3619/*
3620 * This kswapd start function will be called by init and node-hot-add.
3621 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3622 */
3623int kswapd_run(int nid)
3624{
3625 pg_data_t *pgdat = NODE_DATA(nid);
3626 int ret = 0;
3627
3628 if (pgdat->kswapd)
3629 return 0;
3630
3631 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3632 if (IS_ERR(pgdat->kswapd)) {
3633 /* failure at boot is fatal */
3634 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3635 pr_err("Failed to start kswapd on node %d\n", nid);
3636 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3637 pgdat->kswapd = NULL;
3218ae14
YG
3638 }
3639 return ret;
3640}
3641
8fe23e05 3642/*
d8adde17 3643 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3644 * hold mem_hotplug_begin/end().
8fe23e05
DR
3645 */
3646void kswapd_stop(int nid)
3647{
3648 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3649
d8adde17 3650 if (kswapd) {
8fe23e05 3651 kthread_stop(kswapd);
d8adde17
JL
3652 NODE_DATA(nid)->kswapd = NULL;
3653 }
8fe23e05
DR
3654}
3655
1da177e4
LT
3656static int __init kswapd_init(void)
3657{
517bbed9 3658 int nid, ret;
69e05944 3659
1da177e4 3660 swap_setup();
48fb2e24 3661 for_each_node_state(nid, N_MEMORY)
3218ae14 3662 kswapd_run(nid);
517bbed9
SAS
3663 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3664 "mm/vmscan:online", kswapd_cpu_online,
3665 NULL);
3666 WARN_ON(ret < 0);
1da177e4
LT
3667 return 0;
3668}
3669
3670module_init(kswapd_init)
9eeff239
CL
3671
3672#ifdef CONFIG_NUMA
3673/*
a5f5f91d 3674 * Node reclaim mode
9eeff239 3675 *
a5f5f91d 3676 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3677 * the watermarks.
9eeff239 3678 */
a5f5f91d 3679int node_reclaim_mode __read_mostly;
9eeff239 3680
1b2ffb78 3681#define RECLAIM_OFF 0
7d03431c 3682#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3683#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3684#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3685
a92f7126 3686/*
a5f5f91d 3687 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3688 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3689 * a zone.
3690 */
a5f5f91d 3691#define NODE_RECLAIM_PRIORITY 4
a92f7126 3692
9614634f 3693/*
a5f5f91d 3694 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3695 * occur.
3696 */
3697int sysctl_min_unmapped_ratio = 1;
3698
0ff38490
CL
3699/*
3700 * If the number of slab pages in a zone grows beyond this percentage then
3701 * slab reclaim needs to occur.
3702 */
3703int sysctl_min_slab_ratio = 5;
3704
11fb9989 3705static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3706{
11fb9989
MG
3707 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3708 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3709 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3710
3711 /*
3712 * It's possible for there to be more file mapped pages than
3713 * accounted for by the pages on the file LRU lists because
3714 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3715 */
3716 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3717}
3718
3719/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3720static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3721{
d031a157
AM
3722 unsigned long nr_pagecache_reclaimable;
3723 unsigned long delta = 0;
90afa5de
MG
3724
3725 /*
95bbc0c7 3726 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3727 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3728 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3729 * a better estimate
3730 */
a5f5f91d
MG
3731 if (node_reclaim_mode & RECLAIM_UNMAP)
3732 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3733 else
a5f5f91d 3734 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3735
3736 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3737 if (!(node_reclaim_mode & RECLAIM_WRITE))
3738 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3739
3740 /* Watch for any possible underflows due to delta */
3741 if (unlikely(delta > nr_pagecache_reclaimable))
3742 delta = nr_pagecache_reclaimable;
3743
3744 return nr_pagecache_reclaimable - delta;
3745}
3746
9eeff239 3747/*
a5f5f91d 3748 * Try to free up some pages from this node through reclaim.
9eeff239 3749 */
a5f5f91d 3750static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3751{
7fb2d46d 3752 /* Minimum pages needed in order to stay on node */
69e05944 3753 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3754 struct task_struct *p = current;
3755 struct reclaim_state reclaim_state;
a5f5f91d 3756 int classzone_idx = gfp_zone(gfp_mask);
179e9639 3757 struct scan_control sc = {
62b726c1 3758 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3759 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3760 .order = order,
a5f5f91d
MG
3761 .priority = NODE_RECLAIM_PRIORITY,
3762 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3763 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3764 .may_swap = 1,
a5f5f91d 3765 .reclaim_idx = classzone_idx,
179e9639 3766 };
9eeff239 3767
9eeff239 3768 cond_resched();
d4f7796e 3769 /*
95bbc0c7 3770 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3771 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3772 * and RECLAIM_UNMAP.
d4f7796e
CL
3773 */
3774 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3775 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3776 reclaim_state.reclaimed_slab = 0;
3777 p->reclaim_state = &reclaim_state;
c84db23c 3778
a5f5f91d 3779 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3780 /*
3781 * Free memory by calling shrink zone with increasing
3782 * priorities until we have enough memory freed.
3783 */
0ff38490 3784 do {
970a39a3 3785 shrink_node(pgdat, &sc);
9e3b2f8c 3786 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3787 }
c84db23c 3788
9eeff239 3789 p->reclaim_state = NULL;
d4f7796e 3790 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3791 lockdep_clear_current_reclaim_state();
a79311c1 3792 return sc.nr_reclaimed >= nr_pages;
9eeff239 3793}
179e9639 3794
a5f5f91d 3795int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3796{
d773ed6b 3797 int ret;
179e9639
AM
3798
3799 /*
a5f5f91d 3800 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3801 * slab pages if we are over the defined limits.
34aa1330 3802 *
9614634f
CL
3803 * A small portion of unmapped file backed pages is needed for
3804 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3805 * thrown out if the node is overallocated. So we do not reclaim
3806 * if less than a specified percentage of the node is used by
9614634f 3807 * unmapped file backed pages.
179e9639 3808 */
a5f5f91d
MG
3809 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3810 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3811 return NODE_RECLAIM_FULL;
179e9639 3812
a5f5f91d
MG
3813 if (!pgdat_reclaimable(pgdat))
3814 return NODE_RECLAIM_FULL;
d773ed6b 3815
179e9639 3816 /*
d773ed6b 3817 * Do not scan if the allocation should not be delayed.
179e9639 3818 */
d0164adc 3819 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3820 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3821
3822 /*
a5f5f91d 3823 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3824 * have associated processors. This will favor the local processor
3825 * over remote processors and spread off node memory allocations
3826 * as wide as possible.
3827 */
a5f5f91d
MG
3828 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3829 return NODE_RECLAIM_NOSCAN;
d773ed6b 3830
a5f5f91d
MG
3831 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3832 return NODE_RECLAIM_NOSCAN;
fa5e084e 3833
a5f5f91d
MG
3834 ret = __node_reclaim(pgdat, gfp_mask, order);
3835 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3836
24cf7251
MG
3837 if (!ret)
3838 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3839
d773ed6b 3840 return ret;
179e9639 3841}
9eeff239 3842#endif
894bc310 3843
894bc310
LS
3844/*
3845 * page_evictable - test whether a page is evictable
3846 * @page: the page to test
894bc310
LS
3847 *
3848 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3849 * lists vs unevictable list.
894bc310
LS
3850 *
3851 * Reasons page might not be evictable:
ba9ddf49 3852 * (1) page's mapping marked unevictable
b291f000 3853 * (2) page is part of an mlocked VMA
ba9ddf49 3854 *
894bc310 3855 */
39b5f29a 3856int page_evictable(struct page *page)
894bc310 3857{
39b5f29a 3858 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3859}
89e004ea 3860
85046579 3861#ifdef CONFIG_SHMEM
89e004ea 3862/**
24513264
HD
3863 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3864 * @pages: array of pages to check
3865 * @nr_pages: number of pages to check
89e004ea 3866 *
24513264 3867 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3868 *
3869 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3870 */
24513264 3871void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3872{
925b7673 3873 struct lruvec *lruvec;
785b99fe 3874 struct pglist_data *pgdat = NULL;
24513264
HD
3875 int pgscanned = 0;
3876 int pgrescued = 0;
3877 int i;
89e004ea 3878
24513264
HD
3879 for (i = 0; i < nr_pages; i++) {
3880 struct page *page = pages[i];
785b99fe 3881 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 3882
24513264 3883 pgscanned++;
785b99fe
MG
3884 if (pagepgdat != pgdat) {
3885 if (pgdat)
3886 spin_unlock_irq(&pgdat->lru_lock);
3887 pgdat = pagepgdat;
3888 spin_lock_irq(&pgdat->lru_lock);
24513264 3889 }
785b99fe 3890 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 3891
24513264
HD
3892 if (!PageLRU(page) || !PageUnevictable(page))
3893 continue;
89e004ea 3894
39b5f29a 3895 if (page_evictable(page)) {
24513264
HD
3896 enum lru_list lru = page_lru_base_type(page);
3897
309381fe 3898 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3899 ClearPageUnevictable(page);
fa9add64
HD
3900 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3901 add_page_to_lru_list(page, lruvec, lru);
24513264 3902 pgrescued++;
89e004ea 3903 }
24513264 3904 }
89e004ea 3905
785b99fe 3906 if (pgdat) {
24513264
HD
3907 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3908 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 3909 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 3910 }
89e004ea 3911}
85046579 3912#endif /* CONFIG_SHMEM */