]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm,vmacache: count number of system-wide flushes
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
22fba335
KM
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
1da177e4 65 /* This context's GFP mask */
6daa0e28 66 gfp_t gfp_mask;
1da177e4 67
ee814fe2 68 /* Allocation order */
5ad333eb 69 int order;
66e1707b 70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
ee814fe2
JW
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 unsigned int hibernation_mode:1;
95
96 /* One of the zones is ready for compaction */
97 unsigned int compaction_ready:1;
98
99 /* Incremented by the number of inactive pages that were scanned */
100 unsigned long nr_scanned;
101
102 /* Number of pages freed so far during a call to shrink_zones() */
103 unsigned long nr_reclaimed;
1da177e4
LT
104};
105
1da177e4
LT
106#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
107
108#ifdef ARCH_HAS_PREFETCH
109#define prefetch_prev_lru_page(_page, _base, _field) \
110 do { \
111 if ((_page)->lru.prev != _base) { \
112 struct page *prev; \
113 \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetch(&prev->_field); \
116 } \
117 } while (0)
118#else
119#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
120#endif
121
122#ifdef ARCH_HAS_PREFETCHW
123#define prefetchw_prev_lru_page(_page, _base, _field) \
124 do { \
125 if ((_page)->lru.prev != _base) { \
126 struct page *prev; \
127 \
128 prev = lru_to_page(&(_page->lru)); \
129 prefetchw(&prev->_field); \
130 } \
131 } while (0)
132#else
133#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
134#endif
135
136/*
137 * From 0 .. 100. Higher means more swappy.
138 */
139int vm_swappiness = 60;
d0480be4
WSH
140/*
141 * The total number of pages which are beyond the high watermark within all
142 * zones.
143 */
144unsigned long vm_total_pages;
1da177e4
LT
145
146static LIST_HEAD(shrinker_list);
147static DECLARE_RWSEM(shrinker_rwsem);
148
c255a458 149#ifdef CONFIG_MEMCG
89b5fae5
JW
150static bool global_reclaim(struct scan_control *sc)
151{
f16015fb 152 return !sc->target_mem_cgroup;
89b5fae5 153}
91a45470 154#else
89b5fae5
JW
155static bool global_reclaim(struct scan_control *sc)
156{
157 return true;
158}
91a45470
KH
159#endif
160
a1c3bfb2 161static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
162{
163 int nr;
164
165 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
166 zone_page_state(zone, NR_INACTIVE_FILE);
167
168 if (get_nr_swap_pages() > 0)
169 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
170 zone_page_state(zone, NR_INACTIVE_ANON);
171
172 return nr;
173}
174
175bool zone_reclaimable(struct zone *zone)
176{
0d5d823a
MG
177 return zone_page_state(zone, NR_PAGES_SCANNED) <
178 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
179}
180
4d7dcca2 181static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 182{
c3c787e8 183 if (!mem_cgroup_disabled())
4d7dcca2 184 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 185
074291fe 186 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
187}
188
1da177e4 189/*
1d3d4437 190 * Add a shrinker callback to be called from the vm.
1da177e4 191 */
1d3d4437 192int register_shrinker(struct shrinker *shrinker)
1da177e4 193{
1d3d4437
GC
194 size_t size = sizeof(*shrinker->nr_deferred);
195
196 /*
197 * If we only have one possible node in the system anyway, save
198 * ourselves the trouble and disable NUMA aware behavior. This way we
199 * will save memory and some small loop time later.
200 */
201 if (nr_node_ids == 1)
202 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
203
204 if (shrinker->flags & SHRINKER_NUMA_AWARE)
205 size *= nr_node_ids;
206
207 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
208 if (!shrinker->nr_deferred)
209 return -ENOMEM;
210
8e1f936b
RR
211 down_write(&shrinker_rwsem);
212 list_add_tail(&shrinker->list, &shrinker_list);
213 up_write(&shrinker_rwsem);
1d3d4437 214 return 0;
1da177e4 215}
8e1f936b 216EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
217
218/*
219 * Remove one
220 */
8e1f936b 221void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
222{
223 down_write(&shrinker_rwsem);
224 list_del(&shrinker->list);
225 up_write(&shrinker_rwsem);
ae393321 226 kfree(shrinker->nr_deferred);
1da177e4 227}
8e1f936b 228EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
229
230#define SHRINK_BATCH 128
1d3d4437
GC
231
232static unsigned long
233shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
234 unsigned long nr_pages_scanned, unsigned long lru_pages)
235{
236 unsigned long freed = 0;
237 unsigned long long delta;
238 long total_scan;
d5bc5fd3 239 long freeable;
1d3d4437
GC
240 long nr;
241 long new_nr;
242 int nid = shrinkctl->nid;
243 long batch_size = shrinker->batch ? shrinker->batch
244 : SHRINK_BATCH;
245
d5bc5fd3
VD
246 freeable = shrinker->count_objects(shrinker, shrinkctl);
247 if (freeable == 0)
1d3d4437
GC
248 return 0;
249
250 /*
251 * copy the current shrinker scan count into a local variable
252 * and zero it so that other concurrent shrinker invocations
253 * don't also do this scanning work.
254 */
255 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
256
257 total_scan = nr;
258 delta = (4 * nr_pages_scanned) / shrinker->seeks;
d5bc5fd3 259 delta *= freeable;
1d3d4437
GC
260 do_div(delta, lru_pages + 1);
261 total_scan += delta;
262 if (total_scan < 0) {
8612c663 263 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 264 shrinker->scan_objects, total_scan);
d5bc5fd3 265 total_scan = freeable;
1d3d4437
GC
266 }
267
268 /*
269 * We need to avoid excessive windup on filesystem shrinkers
270 * due to large numbers of GFP_NOFS allocations causing the
271 * shrinkers to return -1 all the time. This results in a large
272 * nr being built up so when a shrink that can do some work
273 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 274 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
275 * memory.
276 *
277 * Hence only allow the shrinker to scan the entire cache when
278 * a large delta change is calculated directly.
279 */
d5bc5fd3
VD
280 if (delta < freeable / 4)
281 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
282
283 /*
284 * Avoid risking looping forever due to too large nr value:
285 * never try to free more than twice the estimate number of
286 * freeable entries.
287 */
d5bc5fd3
VD
288 if (total_scan > freeable * 2)
289 total_scan = freeable * 2;
1d3d4437
GC
290
291 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
292 nr_pages_scanned, lru_pages,
d5bc5fd3 293 freeable, delta, total_scan);
1d3d4437 294
0b1fb40a
VD
295 /*
296 * Normally, we should not scan less than batch_size objects in one
297 * pass to avoid too frequent shrinker calls, but if the slab has less
298 * than batch_size objects in total and we are really tight on memory,
299 * we will try to reclaim all available objects, otherwise we can end
300 * up failing allocations although there are plenty of reclaimable
301 * objects spread over several slabs with usage less than the
302 * batch_size.
303 *
304 * We detect the "tight on memory" situations by looking at the total
305 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 306 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
307 * scanning at high prio and therefore should try to reclaim as much as
308 * possible.
309 */
310 while (total_scan >= batch_size ||
d5bc5fd3 311 total_scan >= freeable) {
a0b02131 312 unsigned long ret;
0b1fb40a 313 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 314
0b1fb40a 315 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
316 ret = shrinker->scan_objects(shrinker, shrinkctl);
317 if (ret == SHRINK_STOP)
318 break;
319 freed += ret;
1d3d4437 320
0b1fb40a
VD
321 count_vm_events(SLABS_SCANNED, nr_to_scan);
322 total_scan -= nr_to_scan;
1d3d4437
GC
323
324 cond_resched();
325 }
326
327 /*
328 * move the unused scan count back into the shrinker in a
329 * manner that handles concurrent updates. If we exhausted the
330 * scan, there is no need to do an update.
331 */
332 if (total_scan > 0)
333 new_nr = atomic_long_add_return(total_scan,
334 &shrinker->nr_deferred[nid]);
335 else
336 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
337
df9024a8 338 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 339 return freed;
1495f230
YH
340}
341
1da177e4
LT
342/*
343 * Call the shrink functions to age shrinkable caches
344 *
345 * Here we assume it costs one seek to replace a lru page and that it also
346 * takes a seek to recreate a cache object. With this in mind we age equal
347 * percentages of the lru and ageable caches. This should balance the seeks
348 * generated by these structures.
349 *
183ff22b 350 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
351 * slab to avoid swapping.
352 *
353 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
354 *
355 * `lru_pages' represents the number of on-LRU pages in all the zones which
356 * are eligible for the caller's allocation attempt. It is used for balancing
357 * slab reclaim versus page reclaim.
b15e0905 358 *
359 * Returns the number of slab objects which we shrunk.
1da177e4 360 */
24f7c6b9 361unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 362 unsigned long nr_pages_scanned,
a09ed5e0 363 unsigned long lru_pages)
1da177e4
LT
364{
365 struct shrinker *shrinker;
24f7c6b9 366 unsigned long freed = 0;
1da177e4 367
1495f230
YH
368 if (nr_pages_scanned == 0)
369 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 370
f06590bd 371 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
372 /*
373 * If we would return 0, our callers would understand that we
374 * have nothing else to shrink and give up trying. By returning
375 * 1 we keep it going and assume we'll be able to shrink next
376 * time.
377 */
378 freed = 1;
f06590bd
MK
379 goto out;
380 }
1da177e4
LT
381
382 list_for_each_entry(shrinker, &shrinker_list, list) {
ec97097b
VD
383 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
384 shrinkctl->nid = 0;
1d3d4437 385 freed += shrink_slab_node(shrinkctl, shrinker,
ec97097b
VD
386 nr_pages_scanned, lru_pages);
387 continue;
388 }
389
390 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
391 if (node_online(shrinkctl->nid))
392 freed += shrink_slab_node(shrinkctl, shrinker,
393 nr_pages_scanned, lru_pages);
1da177e4 394
1da177e4 395 }
1da177e4
LT
396 }
397 up_read(&shrinker_rwsem);
f06590bd
MK
398out:
399 cond_resched();
24f7c6b9 400 return freed;
1da177e4
LT
401}
402
1da177e4
LT
403static inline int is_page_cache_freeable(struct page *page)
404{
ceddc3a5
JW
405 /*
406 * A freeable page cache page is referenced only by the caller
407 * that isolated the page, the page cache radix tree and
408 * optional buffer heads at page->private.
409 */
edcf4748 410 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
411}
412
7d3579e8
KM
413static int may_write_to_queue(struct backing_dev_info *bdi,
414 struct scan_control *sc)
1da177e4 415{
930d9152 416 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
417 return 1;
418 if (!bdi_write_congested(bdi))
419 return 1;
420 if (bdi == current->backing_dev_info)
421 return 1;
422 return 0;
423}
424
425/*
426 * We detected a synchronous write error writing a page out. Probably
427 * -ENOSPC. We need to propagate that into the address_space for a subsequent
428 * fsync(), msync() or close().
429 *
430 * The tricky part is that after writepage we cannot touch the mapping: nothing
431 * prevents it from being freed up. But we have a ref on the page and once
432 * that page is locked, the mapping is pinned.
433 *
434 * We're allowed to run sleeping lock_page() here because we know the caller has
435 * __GFP_FS.
436 */
437static void handle_write_error(struct address_space *mapping,
438 struct page *page, int error)
439{
7eaceacc 440 lock_page(page);
3e9f45bd
GC
441 if (page_mapping(page) == mapping)
442 mapping_set_error(mapping, error);
1da177e4
LT
443 unlock_page(page);
444}
445
04e62a29
CL
446/* possible outcome of pageout() */
447typedef enum {
448 /* failed to write page out, page is locked */
449 PAGE_KEEP,
450 /* move page to the active list, page is locked */
451 PAGE_ACTIVATE,
452 /* page has been sent to the disk successfully, page is unlocked */
453 PAGE_SUCCESS,
454 /* page is clean and locked */
455 PAGE_CLEAN,
456} pageout_t;
457
1da177e4 458/*
1742f19f
AM
459 * pageout is called by shrink_page_list() for each dirty page.
460 * Calls ->writepage().
1da177e4 461 */
c661b078 462static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 463 struct scan_control *sc)
1da177e4
LT
464{
465 /*
466 * If the page is dirty, only perform writeback if that write
467 * will be non-blocking. To prevent this allocation from being
468 * stalled by pagecache activity. But note that there may be
469 * stalls if we need to run get_block(). We could test
470 * PagePrivate for that.
471 *
8174202b 472 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
473 * this page's queue, we can perform writeback even if that
474 * will block.
475 *
476 * If the page is swapcache, write it back even if that would
477 * block, for some throttling. This happens by accident, because
478 * swap_backing_dev_info is bust: it doesn't reflect the
479 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
480 */
481 if (!is_page_cache_freeable(page))
482 return PAGE_KEEP;
483 if (!mapping) {
484 /*
485 * Some data journaling orphaned pages can have
486 * page->mapping == NULL while being dirty with clean buffers.
487 */
266cf658 488 if (page_has_private(page)) {
1da177e4
LT
489 if (try_to_free_buffers(page)) {
490 ClearPageDirty(page);
b1de0d13 491 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
492 return PAGE_CLEAN;
493 }
494 }
495 return PAGE_KEEP;
496 }
497 if (mapping->a_ops->writepage == NULL)
498 return PAGE_ACTIVATE;
0e093d99 499 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
500 return PAGE_KEEP;
501
502 if (clear_page_dirty_for_io(page)) {
503 int res;
504 struct writeback_control wbc = {
505 .sync_mode = WB_SYNC_NONE,
506 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
507 .range_start = 0,
508 .range_end = LLONG_MAX,
1da177e4
LT
509 .for_reclaim = 1,
510 };
511
512 SetPageReclaim(page);
513 res = mapping->a_ops->writepage(page, &wbc);
514 if (res < 0)
515 handle_write_error(mapping, page, res);
994fc28c 516 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
517 ClearPageReclaim(page);
518 return PAGE_ACTIVATE;
519 }
c661b078 520
1da177e4
LT
521 if (!PageWriteback(page)) {
522 /* synchronous write or broken a_ops? */
523 ClearPageReclaim(page);
524 }
23b9da55 525 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 526 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
527 return PAGE_SUCCESS;
528 }
529
530 return PAGE_CLEAN;
531}
532
a649fd92 533/*
e286781d
NP
534 * Same as remove_mapping, but if the page is removed from the mapping, it
535 * gets returned with a refcount of 0.
a649fd92 536 */
a528910e
JW
537static int __remove_mapping(struct address_space *mapping, struct page *page,
538 bool reclaimed)
49d2e9cc 539{
28e4d965
NP
540 BUG_ON(!PageLocked(page));
541 BUG_ON(mapping != page_mapping(page));
49d2e9cc 542
19fd6231 543 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 544 /*
0fd0e6b0
NP
545 * The non racy check for a busy page.
546 *
547 * Must be careful with the order of the tests. When someone has
548 * a ref to the page, it may be possible that they dirty it then
549 * drop the reference. So if PageDirty is tested before page_count
550 * here, then the following race may occur:
551 *
552 * get_user_pages(&page);
553 * [user mapping goes away]
554 * write_to(page);
555 * !PageDirty(page) [good]
556 * SetPageDirty(page);
557 * put_page(page);
558 * !page_count(page) [good, discard it]
559 *
560 * [oops, our write_to data is lost]
561 *
562 * Reversing the order of the tests ensures such a situation cannot
563 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
564 * load is not satisfied before that of page->_count.
565 *
566 * Note that if SetPageDirty is always performed via set_page_dirty,
567 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 568 */
e286781d 569 if (!page_freeze_refs(page, 2))
49d2e9cc 570 goto cannot_free;
e286781d
NP
571 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
572 if (unlikely(PageDirty(page))) {
573 page_unfreeze_refs(page, 2);
49d2e9cc 574 goto cannot_free;
e286781d 575 }
49d2e9cc
CL
576
577 if (PageSwapCache(page)) {
578 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 579 mem_cgroup_swapout(page, swap);
49d2e9cc 580 __delete_from_swap_cache(page);
19fd6231 581 spin_unlock_irq(&mapping->tree_lock);
0a31bc97 582 swapcache_free(swap);
e286781d 583 } else {
6072d13c 584 void (*freepage)(struct page *);
a528910e 585 void *shadow = NULL;
6072d13c
LT
586
587 freepage = mapping->a_ops->freepage;
a528910e
JW
588 /*
589 * Remember a shadow entry for reclaimed file cache in
590 * order to detect refaults, thus thrashing, later on.
591 *
592 * But don't store shadows in an address space that is
593 * already exiting. This is not just an optizimation,
594 * inode reclaim needs to empty out the radix tree or
595 * the nodes are lost. Don't plant shadows behind its
596 * back.
597 */
598 if (reclaimed && page_is_file_cache(page) &&
599 !mapping_exiting(mapping))
600 shadow = workingset_eviction(mapping, page);
601 __delete_from_page_cache(page, shadow);
19fd6231 602 spin_unlock_irq(&mapping->tree_lock);
6072d13c
LT
603
604 if (freepage != NULL)
605 freepage(page);
49d2e9cc
CL
606 }
607
49d2e9cc
CL
608 return 1;
609
610cannot_free:
19fd6231 611 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
612 return 0;
613}
614
e286781d
NP
615/*
616 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
617 * someone else has a ref on the page, abort and return 0. If it was
618 * successfully detached, return 1. Assumes the caller has a single ref on
619 * this page.
620 */
621int remove_mapping(struct address_space *mapping, struct page *page)
622{
a528910e 623 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
624 /*
625 * Unfreezing the refcount with 1 rather than 2 effectively
626 * drops the pagecache ref for us without requiring another
627 * atomic operation.
628 */
629 page_unfreeze_refs(page, 1);
630 return 1;
631 }
632 return 0;
633}
634
894bc310
LS
635/**
636 * putback_lru_page - put previously isolated page onto appropriate LRU list
637 * @page: page to be put back to appropriate lru list
638 *
639 * Add previously isolated @page to appropriate LRU list.
640 * Page may still be unevictable for other reasons.
641 *
642 * lru_lock must not be held, interrupts must be enabled.
643 */
894bc310
LS
644void putback_lru_page(struct page *page)
645{
0ec3b74c 646 bool is_unevictable;
bbfd28ee 647 int was_unevictable = PageUnevictable(page);
894bc310 648
309381fe 649 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
650
651redo:
652 ClearPageUnevictable(page);
653
39b5f29a 654 if (page_evictable(page)) {
894bc310
LS
655 /*
656 * For evictable pages, we can use the cache.
657 * In event of a race, worst case is we end up with an
658 * unevictable page on [in]active list.
659 * We know how to handle that.
660 */
0ec3b74c 661 is_unevictable = false;
c53954a0 662 lru_cache_add(page);
894bc310
LS
663 } else {
664 /*
665 * Put unevictable pages directly on zone's unevictable
666 * list.
667 */
0ec3b74c 668 is_unevictable = true;
894bc310 669 add_page_to_unevictable_list(page);
6a7b9548 670 /*
21ee9f39
MK
671 * When racing with an mlock or AS_UNEVICTABLE clearing
672 * (page is unlocked) make sure that if the other thread
673 * does not observe our setting of PG_lru and fails
24513264 674 * isolation/check_move_unevictable_pages,
21ee9f39 675 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
676 * the page back to the evictable list.
677 *
21ee9f39 678 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
679 */
680 smp_mb();
894bc310 681 }
894bc310
LS
682
683 /*
684 * page's status can change while we move it among lru. If an evictable
685 * page is on unevictable list, it never be freed. To avoid that,
686 * check after we added it to the list, again.
687 */
0ec3b74c 688 if (is_unevictable && page_evictable(page)) {
894bc310
LS
689 if (!isolate_lru_page(page)) {
690 put_page(page);
691 goto redo;
692 }
693 /* This means someone else dropped this page from LRU
694 * So, it will be freed or putback to LRU again. There is
695 * nothing to do here.
696 */
697 }
698
0ec3b74c 699 if (was_unevictable && !is_unevictable)
bbfd28ee 700 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 701 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
702 count_vm_event(UNEVICTABLE_PGCULLED);
703
894bc310
LS
704 put_page(page); /* drop ref from isolate */
705}
706
dfc8d636
JW
707enum page_references {
708 PAGEREF_RECLAIM,
709 PAGEREF_RECLAIM_CLEAN,
64574746 710 PAGEREF_KEEP,
dfc8d636
JW
711 PAGEREF_ACTIVATE,
712};
713
714static enum page_references page_check_references(struct page *page,
715 struct scan_control *sc)
716{
64574746 717 int referenced_ptes, referenced_page;
dfc8d636 718 unsigned long vm_flags;
dfc8d636 719
c3ac9a8a
JW
720 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
721 &vm_flags);
64574746 722 referenced_page = TestClearPageReferenced(page);
dfc8d636 723
dfc8d636
JW
724 /*
725 * Mlock lost the isolation race with us. Let try_to_unmap()
726 * move the page to the unevictable list.
727 */
728 if (vm_flags & VM_LOCKED)
729 return PAGEREF_RECLAIM;
730
64574746 731 if (referenced_ptes) {
e4898273 732 if (PageSwapBacked(page))
64574746
JW
733 return PAGEREF_ACTIVATE;
734 /*
735 * All mapped pages start out with page table
736 * references from the instantiating fault, so we need
737 * to look twice if a mapped file page is used more
738 * than once.
739 *
740 * Mark it and spare it for another trip around the
741 * inactive list. Another page table reference will
742 * lead to its activation.
743 *
744 * Note: the mark is set for activated pages as well
745 * so that recently deactivated but used pages are
746 * quickly recovered.
747 */
748 SetPageReferenced(page);
749
34dbc67a 750 if (referenced_page || referenced_ptes > 1)
64574746
JW
751 return PAGEREF_ACTIVATE;
752
c909e993
KK
753 /*
754 * Activate file-backed executable pages after first usage.
755 */
756 if (vm_flags & VM_EXEC)
757 return PAGEREF_ACTIVATE;
758
64574746
JW
759 return PAGEREF_KEEP;
760 }
dfc8d636
JW
761
762 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 763 if (referenced_page && !PageSwapBacked(page))
64574746
JW
764 return PAGEREF_RECLAIM_CLEAN;
765
766 return PAGEREF_RECLAIM;
dfc8d636
JW
767}
768
e2be15f6
MG
769/* Check if a page is dirty or under writeback */
770static void page_check_dirty_writeback(struct page *page,
771 bool *dirty, bool *writeback)
772{
b4597226
MG
773 struct address_space *mapping;
774
e2be15f6
MG
775 /*
776 * Anonymous pages are not handled by flushers and must be written
777 * from reclaim context. Do not stall reclaim based on them
778 */
779 if (!page_is_file_cache(page)) {
780 *dirty = false;
781 *writeback = false;
782 return;
783 }
784
785 /* By default assume that the page flags are accurate */
786 *dirty = PageDirty(page);
787 *writeback = PageWriteback(page);
b4597226
MG
788
789 /* Verify dirty/writeback state if the filesystem supports it */
790 if (!page_has_private(page))
791 return;
792
793 mapping = page_mapping(page);
794 if (mapping && mapping->a_ops->is_dirty_writeback)
795 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
796}
797
1da177e4 798/*
1742f19f 799 * shrink_page_list() returns the number of reclaimed pages
1da177e4 800 */
1742f19f 801static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 802 struct zone *zone,
f84f6e2b 803 struct scan_control *sc,
02c6de8d 804 enum ttu_flags ttu_flags,
8e950282 805 unsigned long *ret_nr_dirty,
d43006d5 806 unsigned long *ret_nr_unqueued_dirty,
8e950282 807 unsigned long *ret_nr_congested,
02c6de8d 808 unsigned long *ret_nr_writeback,
b1a6f21e 809 unsigned long *ret_nr_immediate,
02c6de8d 810 bool force_reclaim)
1da177e4
LT
811{
812 LIST_HEAD(ret_pages);
abe4c3b5 813 LIST_HEAD(free_pages);
1da177e4 814 int pgactivate = 0;
d43006d5 815 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
816 unsigned long nr_dirty = 0;
817 unsigned long nr_congested = 0;
05ff5137 818 unsigned long nr_reclaimed = 0;
92df3a72 819 unsigned long nr_writeback = 0;
b1a6f21e 820 unsigned long nr_immediate = 0;
1da177e4
LT
821
822 cond_resched();
823
1da177e4
LT
824 while (!list_empty(page_list)) {
825 struct address_space *mapping;
826 struct page *page;
827 int may_enter_fs;
02c6de8d 828 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 829 bool dirty, writeback;
1da177e4
LT
830
831 cond_resched();
832
833 page = lru_to_page(page_list);
834 list_del(&page->lru);
835
529ae9aa 836 if (!trylock_page(page))
1da177e4
LT
837 goto keep;
838
309381fe
SL
839 VM_BUG_ON_PAGE(PageActive(page), page);
840 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
841
842 sc->nr_scanned++;
80e43426 843
39b5f29a 844 if (unlikely(!page_evictable(page)))
b291f000 845 goto cull_mlocked;
894bc310 846
a6dc60f8 847 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
848 goto keep_locked;
849
1da177e4
LT
850 /* Double the slab pressure for mapped and swapcache pages */
851 if (page_mapped(page) || PageSwapCache(page))
852 sc->nr_scanned++;
853
c661b078
AW
854 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
855 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
856
e2be15f6
MG
857 /*
858 * The number of dirty pages determines if a zone is marked
859 * reclaim_congested which affects wait_iff_congested. kswapd
860 * will stall and start writing pages if the tail of the LRU
861 * is all dirty unqueued pages.
862 */
863 page_check_dirty_writeback(page, &dirty, &writeback);
864 if (dirty || writeback)
865 nr_dirty++;
866
867 if (dirty && !writeback)
868 nr_unqueued_dirty++;
869
d04e8acd
MG
870 /*
871 * Treat this page as congested if the underlying BDI is or if
872 * pages are cycling through the LRU so quickly that the
873 * pages marked for immediate reclaim are making it to the
874 * end of the LRU a second time.
875 */
e2be15f6 876 mapping = page_mapping(page);
1da58ee2
JL
877 if (((dirty || writeback) && mapping &&
878 bdi_write_congested(mapping->backing_dev_info)) ||
d04e8acd 879 (writeback && PageReclaim(page)))
e2be15f6
MG
880 nr_congested++;
881
283aba9f
MG
882 /*
883 * If a page at the tail of the LRU is under writeback, there
884 * are three cases to consider.
885 *
886 * 1) If reclaim is encountering an excessive number of pages
887 * under writeback and this page is both under writeback and
888 * PageReclaim then it indicates that pages are being queued
889 * for IO but are being recycled through the LRU before the
890 * IO can complete. Waiting on the page itself risks an
891 * indefinite stall if it is impossible to writeback the
892 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
893 * note that the LRU is being scanned too quickly and the
894 * caller can stall after page list has been processed.
283aba9f
MG
895 *
896 * 2) Global reclaim encounters a page, memcg encounters a
897 * page that is not marked for immediate reclaim or
898 * the caller does not have __GFP_IO. In this case mark
899 * the page for immediate reclaim and continue scanning.
900 *
901 * __GFP_IO is checked because a loop driver thread might
902 * enter reclaim, and deadlock if it waits on a page for
903 * which it is needed to do the write (loop masks off
904 * __GFP_IO|__GFP_FS for this reason); but more thought
905 * would probably show more reasons.
906 *
907 * Don't require __GFP_FS, since we're not going into the
908 * FS, just waiting on its writeback completion. Worryingly,
909 * ext4 gfs2 and xfs allocate pages with
910 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
911 * may_enter_fs here is liable to OOM on them.
912 *
913 * 3) memcg encounters a page that is not already marked
914 * PageReclaim. memcg does not have any dirty pages
915 * throttling so we could easily OOM just because too many
916 * pages are in writeback and there is nothing else to
917 * reclaim. Wait for the writeback to complete.
918 */
c661b078 919 if (PageWriteback(page)) {
283aba9f
MG
920 /* Case 1 above */
921 if (current_is_kswapd() &&
922 PageReclaim(page) &&
57054651 923 test_bit(ZONE_WRITEBACK, &zone->flags)) {
b1a6f21e
MG
924 nr_immediate++;
925 goto keep_locked;
283aba9f
MG
926
927 /* Case 2 above */
928 } else if (global_reclaim(sc) ||
c3b94f44
HD
929 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
930 /*
931 * This is slightly racy - end_page_writeback()
932 * might have just cleared PageReclaim, then
933 * setting PageReclaim here end up interpreted
934 * as PageReadahead - but that does not matter
935 * enough to care. What we do want is for this
936 * page to have PageReclaim set next time memcg
937 * reclaim reaches the tests above, so it will
938 * then wait_on_page_writeback() to avoid OOM;
939 * and it's also appropriate in global reclaim.
940 */
941 SetPageReclaim(page);
e62e384e 942 nr_writeback++;
283aba9f 943
c3b94f44 944 goto keep_locked;
283aba9f
MG
945
946 /* Case 3 above */
947 } else {
948 wait_on_page_writeback(page);
e62e384e 949 }
c661b078 950 }
1da177e4 951
02c6de8d
MK
952 if (!force_reclaim)
953 references = page_check_references(page, sc);
954
dfc8d636
JW
955 switch (references) {
956 case PAGEREF_ACTIVATE:
1da177e4 957 goto activate_locked;
64574746
JW
958 case PAGEREF_KEEP:
959 goto keep_locked;
dfc8d636
JW
960 case PAGEREF_RECLAIM:
961 case PAGEREF_RECLAIM_CLEAN:
962 ; /* try to reclaim the page below */
963 }
1da177e4 964
1da177e4
LT
965 /*
966 * Anonymous process memory has backing store?
967 * Try to allocate it some swap space here.
968 */
b291f000 969 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
970 if (!(sc->gfp_mask & __GFP_IO))
971 goto keep_locked;
5bc7b8ac 972 if (!add_to_swap(page, page_list))
1da177e4 973 goto activate_locked;
63eb6b93 974 may_enter_fs = 1;
1da177e4 975
e2be15f6
MG
976 /* Adding to swap updated mapping */
977 mapping = page_mapping(page);
978 }
1da177e4
LT
979
980 /*
981 * The page is mapped into the page tables of one or more
982 * processes. Try to unmap it here.
983 */
984 if (page_mapped(page) && mapping) {
02c6de8d 985 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
986 case SWAP_FAIL:
987 goto activate_locked;
988 case SWAP_AGAIN:
989 goto keep_locked;
b291f000
NP
990 case SWAP_MLOCK:
991 goto cull_mlocked;
1da177e4
LT
992 case SWAP_SUCCESS:
993 ; /* try to free the page below */
994 }
995 }
996
997 if (PageDirty(page)) {
ee72886d
MG
998 /*
999 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1000 * avoid risk of stack overflow but only writeback
1001 * if many dirty pages have been encountered.
ee72886d 1002 */
f84f6e2b 1003 if (page_is_file_cache(page) &&
9e3b2f8c 1004 (!current_is_kswapd() ||
57054651 1005 !test_bit(ZONE_DIRTY, &zone->flags))) {
49ea7eb6
MG
1006 /*
1007 * Immediately reclaim when written back.
1008 * Similar in principal to deactivate_page()
1009 * except we already have the page isolated
1010 * and know it's dirty
1011 */
1012 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1013 SetPageReclaim(page);
1014
ee72886d
MG
1015 goto keep_locked;
1016 }
1017
dfc8d636 1018 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1019 goto keep_locked;
4dd4b920 1020 if (!may_enter_fs)
1da177e4 1021 goto keep_locked;
52a8363e 1022 if (!sc->may_writepage)
1da177e4
LT
1023 goto keep_locked;
1024
1025 /* Page is dirty, try to write it out here */
7d3579e8 1026 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1027 case PAGE_KEEP:
1028 goto keep_locked;
1029 case PAGE_ACTIVATE:
1030 goto activate_locked;
1031 case PAGE_SUCCESS:
7d3579e8 1032 if (PageWriteback(page))
41ac1999 1033 goto keep;
7d3579e8 1034 if (PageDirty(page))
1da177e4 1035 goto keep;
7d3579e8 1036
1da177e4
LT
1037 /*
1038 * A synchronous write - probably a ramdisk. Go
1039 * ahead and try to reclaim the page.
1040 */
529ae9aa 1041 if (!trylock_page(page))
1da177e4
LT
1042 goto keep;
1043 if (PageDirty(page) || PageWriteback(page))
1044 goto keep_locked;
1045 mapping = page_mapping(page);
1046 case PAGE_CLEAN:
1047 ; /* try to free the page below */
1048 }
1049 }
1050
1051 /*
1052 * If the page has buffers, try to free the buffer mappings
1053 * associated with this page. If we succeed we try to free
1054 * the page as well.
1055 *
1056 * We do this even if the page is PageDirty().
1057 * try_to_release_page() does not perform I/O, but it is
1058 * possible for a page to have PageDirty set, but it is actually
1059 * clean (all its buffers are clean). This happens if the
1060 * buffers were written out directly, with submit_bh(). ext3
894bc310 1061 * will do this, as well as the blockdev mapping.
1da177e4
LT
1062 * try_to_release_page() will discover that cleanness and will
1063 * drop the buffers and mark the page clean - it can be freed.
1064 *
1065 * Rarely, pages can have buffers and no ->mapping. These are
1066 * the pages which were not successfully invalidated in
1067 * truncate_complete_page(). We try to drop those buffers here
1068 * and if that worked, and the page is no longer mapped into
1069 * process address space (page_count == 1) it can be freed.
1070 * Otherwise, leave the page on the LRU so it is swappable.
1071 */
266cf658 1072 if (page_has_private(page)) {
1da177e4
LT
1073 if (!try_to_release_page(page, sc->gfp_mask))
1074 goto activate_locked;
e286781d
NP
1075 if (!mapping && page_count(page) == 1) {
1076 unlock_page(page);
1077 if (put_page_testzero(page))
1078 goto free_it;
1079 else {
1080 /*
1081 * rare race with speculative reference.
1082 * the speculative reference will free
1083 * this page shortly, so we may
1084 * increment nr_reclaimed here (and
1085 * leave it off the LRU).
1086 */
1087 nr_reclaimed++;
1088 continue;
1089 }
1090 }
1da177e4
LT
1091 }
1092
a528910e 1093 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1094 goto keep_locked;
1da177e4 1095
a978d6f5
NP
1096 /*
1097 * At this point, we have no other references and there is
1098 * no way to pick any more up (removed from LRU, removed
1099 * from pagecache). Can use non-atomic bitops now (and
1100 * we obviously don't have to worry about waking up a process
1101 * waiting on the page lock, because there are no references.
1102 */
1103 __clear_page_locked(page);
e286781d 1104free_it:
05ff5137 1105 nr_reclaimed++;
abe4c3b5
MG
1106
1107 /*
1108 * Is there need to periodically free_page_list? It would
1109 * appear not as the counts should be low
1110 */
1111 list_add(&page->lru, &free_pages);
1da177e4
LT
1112 continue;
1113
b291f000 1114cull_mlocked:
63d6c5ad
HD
1115 if (PageSwapCache(page))
1116 try_to_free_swap(page);
b291f000
NP
1117 unlock_page(page);
1118 putback_lru_page(page);
1119 continue;
1120
1da177e4 1121activate_locked:
68a22394
RR
1122 /* Not a candidate for swapping, so reclaim swap space. */
1123 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1124 try_to_free_swap(page);
309381fe 1125 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1126 SetPageActive(page);
1127 pgactivate++;
1128keep_locked:
1129 unlock_page(page);
1130keep:
1131 list_add(&page->lru, &ret_pages);
309381fe 1132 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1133 }
abe4c3b5 1134
747db954 1135 mem_cgroup_uncharge_list(&free_pages);
b745bc85 1136 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1137
1da177e4 1138 list_splice(&ret_pages, page_list);
f8891e5e 1139 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1140
8e950282
MG
1141 *ret_nr_dirty += nr_dirty;
1142 *ret_nr_congested += nr_congested;
d43006d5 1143 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1144 *ret_nr_writeback += nr_writeback;
b1a6f21e 1145 *ret_nr_immediate += nr_immediate;
05ff5137 1146 return nr_reclaimed;
1da177e4
LT
1147}
1148
02c6de8d
MK
1149unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1150 struct list_head *page_list)
1151{
1152 struct scan_control sc = {
1153 .gfp_mask = GFP_KERNEL,
1154 .priority = DEF_PRIORITY,
1155 .may_unmap = 1,
1156 };
8e950282 1157 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1158 struct page *page, *next;
1159 LIST_HEAD(clean_pages);
1160
1161 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1162 if (page_is_file_cache(page) && !PageDirty(page) &&
1163 !isolated_balloon_page(page)) {
02c6de8d
MK
1164 ClearPageActive(page);
1165 list_move(&page->lru, &clean_pages);
1166 }
1167 }
1168
1169 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1170 TTU_UNMAP|TTU_IGNORE_ACCESS,
1171 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1172 list_splice(&clean_pages, page_list);
83da7510 1173 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1174 return ret;
1175}
1176
5ad333eb
AW
1177/*
1178 * Attempt to remove the specified page from its LRU. Only take this page
1179 * if it is of the appropriate PageActive status. Pages which are being
1180 * freed elsewhere are also ignored.
1181 *
1182 * page: page to consider
1183 * mode: one of the LRU isolation modes defined above
1184 *
1185 * returns 0 on success, -ve errno on failure.
1186 */
f3fd4a61 1187int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1188{
1189 int ret = -EINVAL;
1190
1191 /* Only take pages on the LRU. */
1192 if (!PageLRU(page))
1193 return ret;
1194
e46a2879
MK
1195 /* Compaction should not handle unevictable pages but CMA can do so */
1196 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1197 return ret;
1198
5ad333eb 1199 ret = -EBUSY;
08e552c6 1200
c8244935
MG
1201 /*
1202 * To minimise LRU disruption, the caller can indicate that it only
1203 * wants to isolate pages it will be able to operate on without
1204 * blocking - clean pages for the most part.
1205 *
1206 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1207 * is used by reclaim when it is cannot write to backing storage
1208 *
1209 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1210 * that it is possible to migrate without blocking
1211 */
1212 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1213 /* All the caller can do on PageWriteback is block */
1214 if (PageWriteback(page))
1215 return ret;
1216
1217 if (PageDirty(page)) {
1218 struct address_space *mapping;
1219
1220 /* ISOLATE_CLEAN means only clean pages */
1221 if (mode & ISOLATE_CLEAN)
1222 return ret;
1223
1224 /*
1225 * Only pages without mappings or that have a
1226 * ->migratepage callback are possible to migrate
1227 * without blocking
1228 */
1229 mapping = page_mapping(page);
1230 if (mapping && !mapping->a_ops->migratepage)
1231 return ret;
1232 }
1233 }
39deaf85 1234
f80c0673
MK
1235 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1236 return ret;
1237
5ad333eb
AW
1238 if (likely(get_page_unless_zero(page))) {
1239 /*
1240 * Be careful not to clear PageLRU until after we're
1241 * sure the page is not being freed elsewhere -- the
1242 * page release code relies on it.
1243 */
1244 ClearPageLRU(page);
1245 ret = 0;
1246 }
1247
1248 return ret;
1249}
1250
1da177e4
LT
1251/*
1252 * zone->lru_lock is heavily contended. Some of the functions that
1253 * shrink the lists perform better by taking out a batch of pages
1254 * and working on them outside the LRU lock.
1255 *
1256 * For pagecache intensive workloads, this function is the hottest
1257 * spot in the kernel (apart from copy_*_user functions).
1258 *
1259 * Appropriate locks must be held before calling this function.
1260 *
1261 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1262 * @lruvec: The LRU vector to pull pages from.
1da177e4 1263 * @dst: The temp list to put pages on to.
f626012d 1264 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1265 * @sc: The scan_control struct for this reclaim session
5ad333eb 1266 * @mode: One of the LRU isolation modes
3cb99451 1267 * @lru: LRU list id for isolating
1da177e4
LT
1268 *
1269 * returns how many pages were moved onto *@dst.
1270 */
69e05944 1271static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1272 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1273 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1274 isolate_mode_t mode, enum lru_list lru)
1da177e4 1275{
75b00af7 1276 struct list_head *src = &lruvec->lists[lru];
69e05944 1277 unsigned long nr_taken = 0;
c9b02d97 1278 unsigned long scan;
1da177e4 1279
c9b02d97 1280 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1281 struct page *page;
fa9add64 1282 int nr_pages;
5ad333eb 1283
1da177e4
LT
1284 page = lru_to_page(src);
1285 prefetchw_prev_lru_page(page, src, flags);
1286
309381fe 1287 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1288
f3fd4a61 1289 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1290 case 0:
fa9add64
HD
1291 nr_pages = hpage_nr_pages(page);
1292 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1293 list_move(&page->lru, dst);
fa9add64 1294 nr_taken += nr_pages;
5ad333eb
AW
1295 break;
1296
1297 case -EBUSY:
1298 /* else it is being freed elsewhere */
1299 list_move(&page->lru, src);
1300 continue;
46453a6e 1301
5ad333eb
AW
1302 default:
1303 BUG();
1304 }
1da177e4
LT
1305 }
1306
f626012d 1307 *nr_scanned = scan;
75b00af7
HD
1308 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1309 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1310 return nr_taken;
1311}
1312
62695a84
NP
1313/**
1314 * isolate_lru_page - tries to isolate a page from its LRU list
1315 * @page: page to isolate from its LRU list
1316 *
1317 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1318 * vmstat statistic corresponding to whatever LRU list the page was on.
1319 *
1320 * Returns 0 if the page was removed from an LRU list.
1321 * Returns -EBUSY if the page was not on an LRU list.
1322 *
1323 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1324 * the active list, it will have PageActive set. If it was found on
1325 * the unevictable list, it will have the PageUnevictable bit set. That flag
1326 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1327 *
1328 * The vmstat statistic corresponding to the list on which the page was
1329 * found will be decremented.
1330 *
1331 * Restrictions:
1332 * (1) Must be called with an elevated refcount on the page. This is a
1333 * fundamentnal difference from isolate_lru_pages (which is called
1334 * without a stable reference).
1335 * (2) the lru_lock must not be held.
1336 * (3) interrupts must be enabled.
1337 */
1338int isolate_lru_page(struct page *page)
1339{
1340 int ret = -EBUSY;
1341
309381fe 1342 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1343
62695a84
NP
1344 if (PageLRU(page)) {
1345 struct zone *zone = page_zone(page);
fa9add64 1346 struct lruvec *lruvec;
62695a84
NP
1347
1348 spin_lock_irq(&zone->lru_lock);
fa9add64 1349 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1350 if (PageLRU(page)) {
894bc310 1351 int lru = page_lru(page);
0c917313 1352 get_page(page);
62695a84 1353 ClearPageLRU(page);
fa9add64
HD
1354 del_page_from_lru_list(page, lruvec, lru);
1355 ret = 0;
62695a84
NP
1356 }
1357 spin_unlock_irq(&zone->lru_lock);
1358 }
1359 return ret;
1360}
1361
35cd7815 1362/*
d37dd5dc
FW
1363 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1364 * then get resheduled. When there are massive number of tasks doing page
1365 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1366 * the LRU list will go small and be scanned faster than necessary, leading to
1367 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1368 */
1369static int too_many_isolated(struct zone *zone, int file,
1370 struct scan_control *sc)
1371{
1372 unsigned long inactive, isolated;
1373
1374 if (current_is_kswapd())
1375 return 0;
1376
89b5fae5 1377 if (!global_reclaim(sc))
35cd7815
RR
1378 return 0;
1379
1380 if (file) {
1381 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1382 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1383 } else {
1384 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1385 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1386 }
1387
3cf23841
FW
1388 /*
1389 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1390 * won't get blocked by normal direct-reclaimers, forming a circular
1391 * deadlock.
1392 */
1393 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1394 inactive >>= 3;
1395
35cd7815
RR
1396 return isolated > inactive;
1397}
1398
66635629 1399static noinline_for_stack void
75b00af7 1400putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1401{
27ac81d8
KK
1402 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1403 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1404 LIST_HEAD(pages_to_free);
66635629 1405
66635629
MG
1406 /*
1407 * Put back any unfreeable pages.
1408 */
66635629 1409 while (!list_empty(page_list)) {
3f79768f 1410 struct page *page = lru_to_page(page_list);
66635629 1411 int lru;
3f79768f 1412
309381fe 1413 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1414 list_del(&page->lru);
39b5f29a 1415 if (unlikely(!page_evictable(page))) {
66635629
MG
1416 spin_unlock_irq(&zone->lru_lock);
1417 putback_lru_page(page);
1418 spin_lock_irq(&zone->lru_lock);
1419 continue;
1420 }
fa9add64
HD
1421
1422 lruvec = mem_cgroup_page_lruvec(page, zone);
1423
7a608572 1424 SetPageLRU(page);
66635629 1425 lru = page_lru(page);
fa9add64
HD
1426 add_page_to_lru_list(page, lruvec, lru);
1427
66635629
MG
1428 if (is_active_lru(lru)) {
1429 int file = is_file_lru(lru);
9992af10
RR
1430 int numpages = hpage_nr_pages(page);
1431 reclaim_stat->recent_rotated[file] += numpages;
66635629 1432 }
2bcf8879
HD
1433 if (put_page_testzero(page)) {
1434 __ClearPageLRU(page);
1435 __ClearPageActive(page);
fa9add64 1436 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1437
1438 if (unlikely(PageCompound(page))) {
1439 spin_unlock_irq(&zone->lru_lock);
747db954 1440 mem_cgroup_uncharge(page);
2bcf8879
HD
1441 (*get_compound_page_dtor(page))(page);
1442 spin_lock_irq(&zone->lru_lock);
1443 } else
1444 list_add(&page->lru, &pages_to_free);
66635629
MG
1445 }
1446 }
66635629 1447
3f79768f
HD
1448 /*
1449 * To save our caller's stack, now use input list for pages to free.
1450 */
1451 list_splice(&pages_to_free, page_list);
66635629
MG
1452}
1453
399ba0b9
N
1454/*
1455 * If a kernel thread (such as nfsd for loop-back mounts) services
1456 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1457 * In that case we should only throttle if the backing device it is
1458 * writing to is congested. In other cases it is safe to throttle.
1459 */
1460static int current_may_throttle(void)
1461{
1462 return !(current->flags & PF_LESS_THROTTLE) ||
1463 current->backing_dev_info == NULL ||
1464 bdi_write_congested(current->backing_dev_info);
1465}
1466
1da177e4 1467/*
1742f19f
AM
1468 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1469 * of reclaimed pages
1da177e4 1470 */
66635629 1471static noinline_for_stack unsigned long
1a93be0e 1472shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1473 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1474{
1475 LIST_HEAD(page_list);
e247dbce 1476 unsigned long nr_scanned;
05ff5137 1477 unsigned long nr_reclaimed = 0;
e247dbce 1478 unsigned long nr_taken;
8e950282
MG
1479 unsigned long nr_dirty = 0;
1480 unsigned long nr_congested = 0;
e2be15f6 1481 unsigned long nr_unqueued_dirty = 0;
92df3a72 1482 unsigned long nr_writeback = 0;
b1a6f21e 1483 unsigned long nr_immediate = 0;
f3fd4a61 1484 isolate_mode_t isolate_mode = 0;
3cb99451 1485 int file = is_file_lru(lru);
1a93be0e
KK
1486 struct zone *zone = lruvec_zone(lruvec);
1487 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1488
35cd7815 1489 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1490 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1491
1492 /* We are about to die and free our memory. Return now. */
1493 if (fatal_signal_pending(current))
1494 return SWAP_CLUSTER_MAX;
1495 }
1496
1da177e4 1497 lru_add_drain();
f80c0673
MK
1498
1499 if (!sc->may_unmap)
61317289 1500 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1501 if (!sc->may_writepage)
61317289 1502 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1503
1da177e4 1504 spin_lock_irq(&zone->lru_lock);
b35ea17b 1505
5dc35979
KK
1506 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1507 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1508
1509 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1510 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1511
89b5fae5 1512 if (global_reclaim(sc)) {
0d5d823a 1513 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1514 if (current_is_kswapd())
75b00af7 1515 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1516 else
75b00af7 1517 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1518 }
d563c050 1519 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1520
d563c050 1521 if (nr_taken == 0)
66635629 1522 return 0;
5ad333eb 1523
02c6de8d 1524 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1525 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1526 &nr_writeback, &nr_immediate,
1527 false);
c661b078 1528
3f79768f
HD
1529 spin_lock_irq(&zone->lru_lock);
1530
95d918fc 1531 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1532
904249aa
YH
1533 if (global_reclaim(sc)) {
1534 if (current_is_kswapd())
1535 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1536 nr_reclaimed);
1537 else
1538 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1539 nr_reclaimed);
1540 }
a74609fa 1541
27ac81d8 1542 putback_inactive_pages(lruvec, &page_list);
3f79768f 1543
95d918fc 1544 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1545
1546 spin_unlock_irq(&zone->lru_lock);
1547
747db954 1548 mem_cgroup_uncharge_list(&page_list);
b745bc85 1549 free_hot_cold_page_list(&page_list, true);
e11da5b4 1550
92df3a72
MG
1551 /*
1552 * If reclaim is isolating dirty pages under writeback, it implies
1553 * that the long-lived page allocation rate is exceeding the page
1554 * laundering rate. Either the global limits are not being effective
1555 * at throttling processes due to the page distribution throughout
1556 * zones or there is heavy usage of a slow backing device. The
1557 * only option is to throttle from reclaim context which is not ideal
1558 * as there is no guarantee the dirtying process is throttled in the
1559 * same way balance_dirty_pages() manages.
1560 *
8e950282
MG
1561 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1562 * of pages under pages flagged for immediate reclaim and stall if any
1563 * are encountered in the nr_immediate check below.
92df3a72 1564 */
918fc718 1565 if (nr_writeback && nr_writeback == nr_taken)
57054651 1566 set_bit(ZONE_WRITEBACK, &zone->flags);
92df3a72 1567
d43006d5 1568 /*
b1a6f21e
MG
1569 * memcg will stall in page writeback so only consider forcibly
1570 * stalling for global reclaim
d43006d5 1571 */
b1a6f21e 1572 if (global_reclaim(sc)) {
8e950282
MG
1573 /*
1574 * Tag a zone as congested if all the dirty pages scanned were
1575 * backed by a congested BDI and wait_iff_congested will stall.
1576 */
1577 if (nr_dirty && nr_dirty == nr_congested)
57054651 1578 set_bit(ZONE_CONGESTED, &zone->flags);
8e950282 1579
b1a6f21e
MG
1580 /*
1581 * If dirty pages are scanned that are not queued for IO, it
1582 * implies that flushers are not keeping up. In this case, flag
57054651
JW
1583 * the zone ZONE_DIRTY and kswapd will start writing pages from
1584 * reclaim context.
b1a6f21e
MG
1585 */
1586 if (nr_unqueued_dirty == nr_taken)
57054651 1587 set_bit(ZONE_DIRTY, &zone->flags);
b1a6f21e
MG
1588
1589 /*
b738d764
LT
1590 * If kswapd scans pages marked marked for immediate
1591 * reclaim and under writeback (nr_immediate), it implies
1592 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1593 * they are written so also forcibly stall.
1594 */
b738d764 1595 if (nr_immediate && current_may_throttle())
b1a6f21e 1596 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1597 }
d43006d5 1598
8e950282
MG
1599 /*
1600 * Stall direct reclaim for IO completions if underlying BDIs or zone
1601 * is congested. Allow kswapd to continue until it starts encountering
1602 * unqueued dirty pages or cycling through the LRU too quickly.
1603 */
399ba0b9
N
1604 if (!sc->hibernation_mode && !current_is_kswapd() &&
1605 current_may_throttle())
8e950282
MG
1606 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1607
e11da5b4
MG
1608 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1609 zone_idx(zone),
1610 nr_scanned, nr_reclaimed,
9e3b2f8c 1611 sc->priority,
23b9da55 1612 trace_shrink_flags(file));
05ff5137 1613 return nr_reclaimed;
1da177e4
LT
1614}
1615
1616/*
1617 * This moves pages from the active list to the inactive list.
1618 *
1619 * We move them the other way if the page is referenced by one or more
1620 * processes, from rmap.
1621 *
1622 * If the pages are mostly unmapped, the processing is fast and it is
1623 * appropriate to hold zone->lru_lock across the whole operation. But if
1624 * the pages are mapped, the processing is slow (page_referenced()) so we
1625 * should drop zone->lru_lock around each page. It's impossible to balance
1626 * this, so instead we remove the pages from the LRU while processing them.
1627 * It is safe to rely on PG_active against the non-LRU pages in here because
1628 * nobody will play with that bit on a non-LRU page.
1629 *
1630 * The downside is that we have to touch page->_count against each page.
1631 * But we had to alter page->flags anyway.
1632 */
1cfb419b 1633
fa9add64 1634static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1635 struct list_head *list,
2bcf8879 1636 struct list_head *pages_to_free,
3eb4140f
WF
1637 enum lru_list lru)
1638{
fa9add64 1639 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1640 unsigned long pgmoved = 0;
3eb4140f 1641 struct page *page;
fa9add64 1642 int nr_pages;
3eb4140f 1643
3eb4140f
WF
1644 while (!list_empty(list)) {
1645 page = lru_to_page(list);
fa9add64 1646 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1647
309381fe 1648 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1649 SetPageLRU(page);
1650
fa9add64
HD
1651 nr_pages = hpage_nr_pages(page);
1652 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1653 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1654 pgmoved += nr_pages;
3eb4140f 1655
2bcf8879
HD
1656 if (put_page_testzero(page)) {
1657 __ClearPageLRU(page);
1658 __ClearPageActive(page);
fa9add64 1659 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1660
1661 if (unlikely(PageCompound(page))) {
1662 spin_unlock_irq(&zone->lru_lock);
747db954 1663 mem_cgroup_uncharge(page);
2bcf8879
HD
1664 (*get_compound_page_dtor(page))(page);
1665 spin_lock_irq(&zone->lru_lock);
1666 } else
1667 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1668 }
1669 }
1670 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1671 if (!is_active_lru(lru))
1672 __count_vm_events(PGDEACTIVATE, pgmoved);
1673}
1cfb419b 1674
f626012d 1675static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1676 struct lruvec *lruvec,
f16015fb 1677 struct scan_control *sc,
9e3b2f8c 1678 enum lru_list lru)
1da177e4 1679{
44c241f1 1680 unsigned long nr_taken;
f626012d 1681 unsigned long nr_scanned;
6fe6b7e3 1682 unsigned long vm_flags;
1da177e4 1683 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1684 LIST_HEAD(l_active);
b69408e8 1685 LIST_HEAD(l_inactive);
1da177e4 1686 struct page *page;
1a93be0e 1687 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1688 unsigned long nr_rotated = 0;
f3fd4a61 1689 isolate_mode_t isolate_mode = 0;
3cb99451 1690 int file = is_file_lru(lru);
1a93be0e 1691 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1692
1693 lru_add_drain();
f80c0673
MK
1694
1695 if (!sc->may_unmap)
61317289 1696 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1697 if (!sc->may_writepage)
61317289 1698 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1699
1da177e4 1700 spin_lock_irq(&zone->lru_lock);
925b7673 1701
5dc35979
KK
1702 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1703 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1704 if (global_reclaim(sc))
0d5d823a 1705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
89b5fae5 1706
b7c46d15 1707 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1708
f626012d 1709 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1710 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1711 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1712 spin_unlock_irq(&zone->lru_lock);
1713
1da177e4
LT
1714 while (!list_empty(&l_hold)) {
1715 cond_resched();
1716 page = lru_to_page(&l_hold);
1717 list_del(&page->lru);
7e9cd484 1718
39b5f29a 1719 if (unlikely(!page_evictable(page))) {
894bc310
LS
1720 putback_lru_page(page);
1721 continue;
1722 }
1723
cc715d99
MG
1724 if (unlikely(buffer_heads_over_limit)) {
1725 if (page_has_private(page) && trylock_page(page)) {
1726 if (page_has_private(page))
1727 try_to_release_page(page, 0);
1728 unlock_page(page);
1729 }
1730 }
1731
c3ac9a8a
JW
1732 if (page_referenced(page, 0, sc->target_mem_cgroup,
1733 &vm_flags)) {
9992af10 1734 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1735 /*
1736 * Identify referenced, file-backed active pages and
1737 * give them one more trip around the active list. So
1738 * that executable code get better chances to stay in
1739 * memory under moderate memory pressure. Anon pages
1740 * are not likely to be evicted by use-once streaming
1741 * IO, plus JVM can create lots of anon VM_EXEC pages,
1742 * so we ignore them here.
1743 */
41e20983 1744 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1745 list_add(&page->lru, &l_active);
1746 continue;
1747 }
1748 }
7e9cd484 1749
5205e56e 1750 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1751 list_add(&page->lru, &l_inactive);
1752 }
1753
b555749a 1754 /*
8cab4754 1755 * Move pages back to the lru list.
b555749a 1756 */
2a1dc509 1757 spin_lock_irq(&zone->lru_lock);
556adecb 1758 /*
8cab4754
WF
1759 * Count referenced pages from currently used mappings as rotated,
1760 * even though only some of them are actually re-activated. This
1761 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1762 * get_scan_count.
7e9cd484 1763 */
b7c46d15 1764 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1765
fa9add64
HD
1766 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1767 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1768 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1769 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1770
747db954 1771 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1772 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1773}
1774
74e3f3c3 1775#ifdef CONFIG_SWAP
14797e23 1776static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1777{
1778 unsigned long active, inactive;
1779
1780 active = zone_page_state(zone, NR_ACTIVE_ANON);
1781 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1782
1783 if (inactive * zone->inactive_ratio < active)
1784 return 1;
1785
1786 return 0;
1787}
1788
14797e23
KM
1789/**
1790 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1791 * @lruvec: LRU vector to check
14797e23
KM
1792 *
1793 * Returns true if the zone does not have enough inactive anon pages,
1794 * meaning some active anon pages need to be deactivated.
1795 */
c56d5c7d 1796static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1797{
74e3f3c3
MK
1798 /*
1799 * If we don't have swap space, anonymous page deactivation
1800 * is pointless.
1801 */
1802 if (!total_swap_pages)
1803 return 0;
1804
c3c787e8 1805 if (!mem_cgroup_disabled())
c56d5c7d 1806 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1807
c56d5c7d 1808 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1809}
74e3f3c3 1810#else
c56d5c7d 1811static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1812{
1813 return 0;
1814}
1815#endif
14797e23 1816
56e49d21
RR
1817/**
1818 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1819 * @lruvec: LRU vector to check
56e49d21
RR
1820 *
1821 * When the system is doing streaming IO, memory pressure here
1822 * ensures that active file pages get deactivated, until more
1823 * than half of the file pages are on the inactive list.
1824 *
1825 * Once we get to that situation, protect the system's working
1826 * set from being evicted by disabling active file page aging.
1827 *
1828 * This uses a different ratio than the anonymous pages, because
1829 * the page cache uses a use-once replacement algorithm.
1830 */
c56d5c7d 1831static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1832{
e3790144
JW
1833 unsigned long inactive;
1834 unsigned long active;
1835
1836 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1837 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1838
e3790144 1839 return active > inactive;
56e49d21
RR
1840}
1841
75b00af7 1842static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1843{
75b00af7 1844 if (is_file_lru(lru))
c56d5c7d 1845 return inactive_file_is_low(lruvec);
b39415b2 1846 else
c56d5c7d 1847 return inactive_anon_is_low(lruvec);
b39415b2
RR
1848}
1849
4f98a2fe 1850static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1851 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1852{
b39415b2 1853 if (is_active_lru(lru)) {
75b00af7 1854 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1855 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1856 return 0;
1857 }
1858
1a93be0e 1859 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1860}
1861
9a265114
JW
1862enum scan_balance {
1863 SCAN_EQUAL,
1864 SCAN_FRACT,
1865 SCAN_ANON,
1866 SCAN_FILE,
1867};
1868
4f98a2fe
RR
1869/*
1870 * Determine how aggressively the anon and file LRU lists should be
1871 * scanned. The relative value of each set of LRU lists is determined
1872 * by looking at the fraction of the pages scanned we did rotate back
1873 * onto the active list instead of evict.
1874 *
be7bd59d
WL
1875 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1876 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1877 */
02695175
JW
1878static void get_scan_count(struct lruvec *lruvec, int swappiness,
1879 struct scan_control *sc, unsigned long *nr)
4f98a2fe 1880{
9a265114
JW
1881 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1882 u64 fraction[2];
1883 u64 denominator = 0; /* gcc */
1884 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1885 unsigned long anon_prio, file_prio;
9a265114 1886 enum scan_balance scan_balance;
0bf1457f 1887 unsigned long anon, file;
9a265114 1888 bool force_scan = false;
4f98a2fe 1889 unsigned long ap, fp;
4111304d 1890 enum lru_list lru;
6f04f48d
SS
1891 bool some_scanned;
1892 int pass;
246e87a9 1893
f11c0ca5
JW
1894 /*
1895 * If the zone or memcg is small, nr[l] can be 0. This
1896 * results in no scanning on this priority and a potential
1897 * priority drop. Global direct reclaim can go to the next
1898 * zone and tends to have no problems. Global kswapd is for
1899 * zone balancing and it needs to scan a minimum amount. When
1900 * reclaiming for a memcg, a priority drop can cause high
1901 * latencies, so it's better to scan a minimum amount there as
1902 * well.
1903 */
6e543d57 1904 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1905 force_scan = true;
89b5fae5 1906 if (!global_reclaim(sc))
a4d3e9e7 1907 force_scan = true;
76a33fc3
SL
1908
1909 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1910 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1911 scan_balance = SCAN_FILE;
76a33fc3
SL
1912 goto out;
1913 }
4f98a2fe 1914
10316b31
JW
1915 /*
1916 * Global reclaim will swap to prevent OOM even with no
1917 * swappiness, but memcg users want to use this knob to
1918 * disable swapping for individual groups completely when
1919 * using the memory controller's swap limit feature would be
1920 * too expensive.
1921 */
02695175 1922 if (!global_reclaim(sc) && !swappiness) {
9a265114 1923 scan_balance = SCAN_FILE;
10316b31
JW
1924 goto out;
1925 }
1926
1927 /*
1928 * Do not apply any pressure balancing cleverness when the
1929 * system is close to OOM, scan both anon and file equally
1930 * (unless the swappiness setting disagrees with swapping).
1931 */
02695175 1932 if (!sc->priority && swappiness) {
9a265114 1933 scan_balance = SCAN_EQUAL;
10316b31
JW
1934 goto out;
1935 }
1936
62376251
JW
1937 /*
1938 * Prevent the reclaimer from falling into the cache trap: as
1939 * cache pages start out inactive, every cache fault will tip
1940 * the scan balance towards the file LRU. And as the file LRU
1941 * shrinks, so does the window for rotation from references.
1942 * This means we have a runaway feedback loop where a tiny
1943 * thrashing file LRU becomes infinitely more attractive than
1944 * anon pages. Try to detect this based on file LRU size.
1945 */
1946 if (global_reclaim(sc)) {
2ab051e1
JM
1947 unsigned long zonefile;
1948 unsigned long zonefree;
1949
1950 zonefree = zone_page_state(zone, NR_FREE_PAGES);
1951 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
1952 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 1953
2ab051e1 1954 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
1955 scan_balance = SCAN_ANON;
1956 goto out;
1957 }
1958 }
1959
7c5bd705
JW
1960 /*
1961 * There is enough inactive page cache, do not reclaim
1962 * anything from the anonymous working set right now.
1963 */
1964 if (!inactive_file_is_low(lruvec)) {
9a265114 1965 scan_balance = SCAN_FILE;
7c5bd705
JW
1966 goto out;
1967 }
1968
9a265114
JW
1969 scan_balance = SCAN_FRACT;
1970
58c37f6e
KM
1971 /*
1972 * With swappiness at 100, anonymous and file have the same priority.
1973 * This scanning priority is essentially the inverse of IO cost.
1974 */
02695175 1975 anon_prio = swappiness;
75b00af7 1976 file_prio = 200 - anon_prio;
58c37f6e 1977
4f98a2fe
RR
1978 /*
1979 * OK, so we have swap space and a fair amount of page cache
1980 * pages. We use the recently rotated / recently scanned
1981 * ratios to determine how valuable each cache is.
1982 *
1983 * Because workloads change over time (and to avoid overflow)
1984 * we keep these statistics as a floating average, which ends
1985 * up weighing recent references more than old ones.
1986 *
1987 * anon in [0], file in [1]
1988 */
2ab051e1
JM
1989
1990 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1991 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1992 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1993 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1994
90126375 1995 spin_lock_irq(&zone->lru_lock);
6e901571 1996 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1997 reclaim_stat->recent_scanned[0] /= 2;
1998 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1999 }
2000
6e901571 2001 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2002 reclaim_stat->recent_scanned[1] /= 2;
2003 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2004 }
2005
4f98a2fe 2006 /*
00d8089c
RR
2007 * The amount of pressure on anon vs file pages is inversely
2008 * proportional to the fraction of recently scanned pages on
2009 * each list that were recently referenced and in active use.
4f98a2fe 2010 */
fe35004f 2011 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2012 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2013
fe35004f 2014 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2015 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2016 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2017
76a33fc3
SL
2018 fraction[0] = ap;
2019 fraction[1] = fp;
2020 denominator = ap + fp + 1;
2021out:
6f04f48d
SS
2022 some_scanned = false;
2023 /* Only use force_scan on second pass. */
2024 for (pass = 0; !some_scanned && pass < 2; pass++) {
2025 for_each_evictable_lru(lru) {
2026 int file = is_file_lru(lru);
2027 unsigned long size;
2028 unsigned long scan;
6e08a369 2029
6f04f48d
SS
2030 size = get_lru_size(lruvec, lru);
2031 scan = size >> sc->priority;
9a265114 2032
6f04f48d
SS
2033 if (!scan && pass && force_scan)
2034 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2035
6f04f48d
SS
2036 switch (scan_balance) {
2037 case SCAN_EQUAL:
2038 /* Scan lists relative to size */
2039 break;
2040 case SCAN_FRACT:
2041 /*
2042 * Scan types proportional to swappiness and
2043 * their relative recent reclaim efficiency.
2044 */
2045 scan = div64_u64(scan * fraction[file],
2046 denominator);
2047 break;
2048 case SCAN_FILE:
2049 case SCAN_ANON:
2050 /* Scan one type exclusively */
2051 if ((scan_balance == SCAN_FILE) != file)
2052 scan = 0;
2053 break;
2054 default:
2055 /* Look ma, no brain */
2056 BUG();
2057 }
2058 nr[lru] = scan;
9a265114 2059 /*
6f04f48d
SS
2060 * Skip the second pass and don't force_scan,
2061 * if we found something to scan.
9a265114 2062 */
6f04f48d 2063 some_scanned |= !!scan;
9a265114 2064 }
76a33fc3 2065 }
6e08a369 2066}
4f98a2fe 2067
9b4f98cd
JW
2068/*
2069 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2070 */
02695175
JW
2071static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2072 struct scan_control *sc)
9b4f98cd
JW
2073{
2074 unsigned long nr[NR_LRU_LISTS];
e82e0561 2075 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2076 unsigned long nr_to_scan;
2077 enum lru_list lru;
2078 unsigned long nr_reclaimed = 0;
2079 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2080 struct blk_plug plug;
1a501907 2081 bool scan_adjusted;
9b4f98cd 2082
02695175 2083 get_scan_count(lruvec, swappiness, sc, nr);
9b4f98cd 2084
e82e0561
MG
2085 /* Record the original scan target for proportional adjustments later */
2086 memcpy(targets, nr, sizeof(nr));
2087
1a501907
MG
2088 /*
2089 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2090 * event that can occur when there is little memory pressure e.g.
2091 * multiple streaming readers/writers. Hence, we do not abort scanning
2092 * when the requested number of pages are reclaimed when scanning at
2093 * DEF_PRIORITY on the assumption that the fact we are direct
2094 * reclaiming implies that kswapd is not keeping up and it is best to
2095 * do a batch of work at once. For memcg reclaim one check is made to
2096 * abort proportional reclaim if either the file or anon lru has already
2097 * dropped to zero at the first pass.
2098 */
2099 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2100 sc->priority == DEF_PRIORITY);
2101
9b4f98cd
JW
2102 blk_start_plug(&plug);
2103 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2104 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2105 unsigned long nr_anon, nr_file, percentage;
2106 unsigned long nr_scanned;
2107
9b4f98cd
JW
2108 for_each_evictable_lru(lru) {
2109 if (nr[lru]) {
2110 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2111 nr[lru] -= nr_to_scan;
2112
2113 nr_reclaimed += shrink_list(lru, nr_to_scan,
2114 lruvec, sc);
2115 }
2116 }
e82e0561
MG
2117
2118 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2119 continue;
2120
e82e0561
MG
2121 /*
2122 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2123 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2124 * proportionally what was requested by get_scan_count(). We
2125 * stop reclaiming one LRU and reduce the amount scanning
2126 * proportional to the original scan target.
2127 */
2128 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2129 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2130
1a501907
MG
2131 /*
2132 * It's just vindictive to attack the larger once the smaller
2133 * has gone to zero. And given the way we stop scanning the
2134 * smaller below, this makes sure that we only make one nudge
2135 * towards proportionality once we've got nr_to_reclaim.
2136 */
2137 if (!nr_file || !nr_anon)
2138 break;
2139
e82e0561
MG
2140 if (nr_file > nr_anon) {
2141 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2142 targets[LRU_ACTIVE_ANON] + 1;
2143 lru = LRU_BASE;
2144 percentage = nr_anon * 100 / scan_target;
2145 } else {
2146 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2147 targets[LRU_ACTIVE_FILE] + 1;
2148 lru = LRU_FILE;
2149 percentage = nr_file * 100 / scan_target;
2150 }
2151
2152 /* Stop scanning the smaller of the LRU */
2153 nr[lru] = 0;
2154 nr[lru + LRU_ACTIVE] = 0;
2155
2156 /*
2157 * Recalculate the other LRU scan count based on its original
2158 * scan target and the percentage scanning already complete
2159 */
2160 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2161 nr_scanned = targets[lru] - nr[lru];
2162 nr[lru] = targets[lru] * (100 - percentage) / 100;
2163 nr[lru] -= min(nr[lru], nr_scanned);
2164
2165 lru += LRU_ACTIVE;
2166 nr_scanned = targets[lru] - nr[lru];
2167 nr[lru] = targets[lru] * (100 - percentage) / 100;
2168 nr[lru] -= min(nr[lru], nr_scanned);
2169
2170 scan_adjusted = true;
9b4f98cd
JW
2171 }
2172 blk_finish_plug(&plug);
2173 sc->nr_reclaimed += nr_reclaimed;
2174
2175 /*
2176 * Even if we did not try to evict anon pages at all, we want to
2177 * rebalance the anon lru active/inactive ratio.
2178 */
2179 if (inactive_anon_is_low(lruvec))
2180 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2181 sc, LRU_ACTIVE_ANON);
2182
2183 throttle_vm_writeout(sc->gfp_mask);
2184}
2185
23b9da55 2186/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2187static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2188{
d84da3f9 2189 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2190 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2191 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2192 return true;
2193
2194 return false;
2195}
2196
3e7d3449 2197/*
23b9da55
MG
2198 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2199 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2200 * true if more pages should be reclaimed such that when the page allocator
2201 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2202 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2203 */
9b4f98cd 2204static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2205 unsigned long nr_reclaimed,
2206 unsigned long nr_scanned,
2207 struct scan_control *sc)
2208{
2209 unsigned long pages_for_compaction;
2210 unsigned long inactive_lru_pages;
2211
2212 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2213 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2214 return false;
2215
2876592f
MG
2216 /* Consider stopping depending on scan and reclaim activity */
2217 if (sc->gfp_mask & __GFP_REPEAT) {
2218 /*
2219 * For __GFP_REPEAT allocations, stop reclaiming if the
2220 * full LRU list has been scanned and we are still failing
2221 * to reclaim pages. This full LRU scan is potentially
2222 * expensive but a __GFP_REPEAT caller really wants to succeed
2223 */
2224 if (!nr_reclaimed && !nr_scanned)
2225 return false;
2226 } else {
2227 /*
2228 * For non-__GFP_REPEAT allocations which can presumably
2229 * fail without consequence, stop if we failed to reclaim
2230 * any pages from the last SWAP_CLUSTER_MAX number of
2231 * pages that were scanned. This will return to the
2232 * caller faster at the risk reclaim/compaction and
2233 * the resulting allocation attempt fails
2234 */
2235 if (!nr_reclaimed)
2236 return false;
2237 }
3e7d3449
MG
2238
2239 /*
2240 * If we have not reclaimed enough pages for compaction and the
2241 * inactive lists are large enough, continue reclaiming
2242 */
2243 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2244 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2245 if (get_nr_swap_pages() > 0)
9b4f98cd 2246 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2247 if (sc->nr_reclaimed < pages_for_compaction &&
2248 inactive_lru_pages > pages_for_compaction)
2249 return true;
2250
2251 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2252 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2253 case COMPACT_PARTIAL:
2254 case COMPACT_CONTINUE:
2255 return false;
2256 default:
2257 return true;
2258 }
2259}
2260
2344d7e4 2261static bool shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2262{
f0fdc5e8 2263 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2264 bool reclaimable = false;
1da177e4 2265
9b4f98cd
JW
2266 do {
2267 struct mem_cgroup *root = sc->target_mem_cgroup;
2268 struct mem_cgroup_reclaim_cookie reclaim = {
2269 .zone = zone,
2270 .priority = sc->priority,
2271 };
694fbc0f 2272 struct mem_cgroup *memcg;
3e7d3449 2273
9b4f98cd
JW
2274 nr_reclaimed = sc->nr_reclaimed;
2275 nr_scanned = sc->nr_scanned;
1da177e4 2276
694fbc0f
AM
2277 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2278 do {
9b4f98cd 2279 struct lruvec *lruvec;
02695175 2280 int swappiness;
5660048c 2281
9b4f98cd 2282 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2283 swappiness = mem_cgroup_swappiness(memcg);
f9be23d6 2284
02695175 2285 shrink_lruvec(lruvec, swappiness, sc);
f16015fb 2286
9b4f98cd 2287 /*
a394cb8e
MH
2288 * Direct reclaim and kswapd have to scan all memory
2289 * cgroups to fulfill the overall scan target for the
9b4f98cd 2290 * zone.
a394cb8e
MH
2291 *
2292 * Limit reclaim, on the other hand, only cares about
2293 * nr_to_reclaim pages to be reclaimed and it will
2294 * retry with decreasing priority if one round over the
2295 * whole hierarchy is not sufficient.
9b4f98cd 2296 */
a394cb8e
MH
2297 if (!global_reclaim(sc) &&
2298 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2299 mem_cgroup_iter_break(root, memcg);
2300 break;
2301 }
694fbc0f
AM
2302 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2303 } while (memcg);
70ddf637
AV
2304
2305 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2306 sc->nr_scanned - nr_scanned,
2307 sc->nr_reclaimed - nr_reclaimed);
2308
2344d7e4
JW
2309 if (sc->nr_reclaimed - nr_reclaimed)
2310 reclaimable = true;
2311
9b4f98cd
JW
2312 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2313 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2314
2315 return reclaimable;
f16015fb
JW
2316}
2317
53853e2d
VB
2318/*
2319 * Returns true if compaction should go ahead for a high-order request, or
2320 * the high-order allocation would succeed without compaction.
2321 */
0b06496a 2322static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2323{
2324 unsigned long balance_gap, watermark;
2325 bool watermark_ok;
2326
fe4b1b24
MG
2327 /*
2328 * Compaction takes time to run and there are potentially other
2329 * callers using the pages just freed. Continue reclaiming until
2330 * there is a buffer of free pages available to give compaction
2331 * a reasonable chance of completing and allocating the page
2332 */
4be89a34
JZ
2333 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2334 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2335 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
fe4b1b24
MG
2336 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2337
2338 /*
2339 * If compaction is deferred, reclaim up to a point where
2340 * compaction will have a chance of success when re-enabled
2341 */
0b06496a 2342 if (compaction_deferred(zone, order))
fe4b1b24
MG
2343 return watermark_ok;
2344
53853e2d
VB
2345 /*
2346 * If compaction is not ready to start and allocation is not likely
2347 * to succeed without it, then keep reclaiming.
2348 */
ebff3980 2349 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
fe4b1b24
MG
2350 return false;
2351
2352 return watermark_ok;
2353}
2354
1da177e4
LT
2355/*
2356 * This is the direct reclaim path, for page-allocating processes. We only
2357 * try to reclaim pages from zones which will satisfy the caller's allocation
2358 * request.
2359 *
41858966
MG
2360 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2361 * Because:
1da177e4
LT
2362 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2363 * allocation or
41858966
MG
2364 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2365 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2366 * zone defense algorithm.
1da177e4 2367 *
1da177e4
LT
2368 * If a zone is deemed to be full of pinned pages then just give it a light
2369 * scan then give up on it.
2344d7e4
JW
2370 *
2371 * Returns true if a zone was reclaimable.
1da177e4 2372 */
2344d7e4 2373static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2374{
dd1a239f 2375 struct zoneref *z;
54a6eb5c 2376 struct zone *zone;
0608f43d
AM
2377 unsigned long nr_soft_reclaimed;
2378 unsigned long nr_soft_scanned;
65ec02cb 2379 unsigned long lru_pages = 0;
65ec02cb 2380 struct reclaim_state *reclaim_state = current->reclaim_state;
619d0d76 2381 gfp_t orig_mask;
3115cd91
VD
2382 struct shrink_control shrink = {
2383 .gfp_mask = sc->gfp_mask,
2384 };
9bbc04ee 2385 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2386 bool reclaimable = false;
1cfb419b 2387
cc715d99
MG
2388 /*
2389 * If the number of buffer_heads in the machine exceeds the maximum
2390 * allowed level, force direct reclaim to scan the highmem zone as
2391 * highmem pages could be pinning lowmem pages storing buffer_heads
2392 */
619d0d76 2393 orig_mask = sc->gfp_mask;
cc715d99
MG
2394 if (buffer_heads_over_limit)
2395 sc->gfp_mask |= __GFP_HIGHMEM;
2396
3115cd91 2397 nodes_clear(shrink.nodes_to_scan);
65ec02cb 2398
d4debc66
MG
2399 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2400 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2401 if (!populated_zone(zone))
1da177e4 2402 continue;
1cfb419b
KH
2403 /*
2404 * Take care memory controller reclaiming has small influence
2405 * to global LRU.
2406 */
89b5fae5 2407 if (global_reclaim(sc)) {
344736f2
VD
2408 if (!cpuset_zone_allowed(zone,
2409 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2410 continue;
65ec02cb
VD
2411
2412 lru_pages += zone_reclaimable_pages(zone);
3115cd91 2413 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
65ec02cb 2414
6e543d57
LD
2415 if (sc->priority != DEF_PRIORITY &&
2416 !zone_reclaimable(zone))
1cfb419b 2417 continue; /* Let kswapd poll it */
0b06496a
JW
2418
2419 /*
2420 * If we already have plenty of memory free for
2421 * compaction in this zone, don't free any more.
2422 * Even though compaction is invoked for any
2423 * non-zero order, only frequent costly order
2424 * reclamation is disruptive enough to become a
2425 * noticeable problem, like transparent huge
2426 * page allocations.
2427 */
2428 if (IS_ENABLED(CONFIG_COMPACTION) &&
2429 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2430 zonelist_zone_idx(z) <= requested_highidx &&
2431 compaction_ready(zone, sc->order)) {
2432 sc->compaction_ready = true;
2433 continue;
e0887c19 2434 }
0b06496a 2435
0608f43d
AM
2436 /*
2437 * This steals pages from memory cgroups over softlimit
2438 * and returns the number of reclaimed pages and
2439 * scanned pages. This works for global memory pressure
2440 * and balancing, not for a memcg's limit.
2441 */
2442 nr_soft_scanned = 0;
2443 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2444 sc->order, sc->gfp_mask,
2445 &nr_soft_scanned);
2446 sc->nr_reclaimed += nr_soft_reclaimed;
2447 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2448 if (nr_soft_reclaimed)
2449 reclaimable = true;
ac34a1a3 2450 /* need some check for avoid more shrink_zone() */
1cfb419b 2451 }
408d8544 2452
2344d7e4
JW
2453 if (shrink_zone(zone, sc))
2454 reclaimable = true;
2455
2456 if (global_reclaim(sc) &&
2457 !reclaimable && zone_reclaimable(zone))
2458 reclaimable = true;
1da177e4 2459 }
e0c23279 2460
65ec02cb
VD
2461 /*
2462 * Don't shrink slabs when reclaiming memory from over limit cgroups
2463 * but do shrink slab at least once when aborting reclaim for
2464 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2465 * pages.
2466 */
2467 if (global_reclaim(sc)) {
3115cd91 2468 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
65ec02cb
VD
2469 if (reclaim_state) {
2470 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2471 reclaim_state->reclaimed_slab = 0;
2472 }
2473 }
2474
619d0d76
WY
2475 /*
2476 * Restore to original mask to avoid the impact on the caller if we
2477 * promoted it to __GFP_HIGHMEM.
2478 */
2479 sc->gfp_mask = orig_mask;
d1908362 2480
2344d7e4 2481 return reclaimable;
1da177e4 2482}
4f98a2fe 2483
1da177e4
LT
2484/*
2485 * This is the main entry point to direct page reclaim.
2486 *
2487 * If a full scan of the inactive list fails to free enough memory then we
2488 * are "out of memory" and something needs to be killed.
2489 *
2490 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2491 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2492 * caller can't do much about. We kick the writeback threads and take explicit
2493 * naps in the hope that some of these pages can be written. But if the
2494 * allocating task holds filesystem locks which prevent writeout this might not
2495 * work, and the allocation attempt will fail.
a41f24ea
NA
2496 *
2497 * returns: 0, if no pages reclaimed
2498 * else, the number of pages reclaimed
1da177e4 2499 */
dac1d27b 2500static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2501 struct scan_control *sc)
1da177e4 2502{
69e05944 2503 unsigned long total_scanned = 0;
22fba335 2504 unsigned long writeback_threshold;
2344d7e4 2505 bool zones_reclaimable;
1da177e4 2506
873b4771
KK
2507 delayacct_freepages_start();
2508
89b5fae5 2509 if (global_reclaim(sc))
1cfb419b 2510 count_vm_event(ALLOCSTALL);
1da177e4 2511
9e3b2f8c 2512 do {
70ddf637
AV
2513 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2514 sc->priority);
66e1707b 2515 sc->nr_scanned = 0;
2344d7e4 2516 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2517
66e1707b 2518 total_scanned += sc->nr_scanned;
bb21c7ce 2519 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2520 break;
2521
2522 if (sc->compaction_ready)
2523 break;
1da177e4 2524
0e50ce3b
MK
2525 /*
2526 * If we're getting trouble reclaiming, start doing
2527 * writepage even in laptop mode.
2528 */
2529 if (sc->priority < DEF_PRIORITY - 2)
2530 sc->may_writepage = 1;
2531
1da177e4
LT
2532 /*
2533 * Try to write back as many pages as we just scanned. This
2534 * tends to cause slow streaming writers to write data to the
2535 * disk smoothly, at the dirtying rate, which is nice. But
2536 * that's undesirable in laptop mode, where we *want* lumpy
2537 * writeout. So in laptop mode, write out the whole world.
2538 */
22fba335
KM
2539 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2540 if (total_scanned > writeback_threshold) {
0e175a18
CW
2541 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2542 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2543 sc->may_writepage = 1;
1da177e4 2544 }
0b06496a 2545 } while (--sc->priority >= 0);
bb21c7ce 2546
873b4771
KK
2547 delayacct_freepages_end();
2548
bb21c7ce
KM
2549 if (sc->nr_reclaimed)
2550 return sc->nr_reclaimed;
2551
0cee34fd 2552 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2553 if (sc->compaction_ready)
7335084d
MG
2554 return 1;
2555
2344d7e4
JW
2556 /* Any of the zones still reclaimable? Don't OOM. */
2557 if (zones_reclaimable)
bb21c7ce
KM
2558 return 1;
2559
2560 return 0;
1da177e4
LT
2561}
2562
5515061d
MG
2563static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2564{
2565 struct zone *zone;
2566 unsigned long pfmemalloc_reserve = 0;
2567 unsigned long free_pages = 0;
2568 int i;
2569 bool wmark_ok;
2570
2571 for (i = 0; i <= ZONE_NORMAL; i++) {
2572 zone = &pgdat->node_zones[i];
675becce
MG
2573 if (!populated_zone(zone))
2574 continue;
2575
5515061d
MG
2576 pfmemalloc_reserve += min_wmark_pages(zone);
2577 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2578 }
2579
675becce
MG
2580 /* If there are no reserves (unexpected config) then do not throttle */
2581 if (!pfmemalloc_reserve)
2582 return true;
2583
5515061d
MG
2584 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2585
2586 /* kswapd must be awake if processes are being throttled */
2587 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2588 pgdat->classzone_idx = min(pgdat->classzone_idx,
2589 (enum zone_type)ZONE_NORMAL);
2590 wake_up_interruptible(&pgdat->kswapd_wait);
2591 }
2592
2593 return wmark_ok;
2594}
2595
2596/*
2597 * Throttle direct reclaimers if backing storage is backed by the network
2598 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2599 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2600 * when the low watermark is reached.
2601 *
2602 * Returns true if a fatal signal was delivered during throttling. If this
2603 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2604 */
50694c28 2605static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2606 nodemask_t *nodemask)
2607{
675becce 2608 struct zoneref *z;
5515061d 2609 struct zone *zone;
675becce 2610 pg_data_t *pgdat = NULL;
5515061d
MG
2611
2612 /*
2613 * Kernel threads should not be throttled as they may be indirectly
2614 * responsible for cleaning pages necessary for reclaim to make forward
2615 * progress. kjournald for example may enter direct reclaim while
2616 * committing a transaction where throttling it could forcing other
2617 * processes to block on log_wait_commit().
2618 */
2619 if (current->flags & PF_KTHREAD)
50694c28
MG
2620 goto out;
2621
2622 /*
2623 * If a fatal signal is pending, this process should not throttle.
2624 * It should return quickly so it can exit and free its memory
2625 */
2626 if (fatal_signal_pending(current))
2627 goto out;
5515061d 2628
675becce
MG
2629 /*
2630 * Check if the pfmemalloc reserves are ok by finding the first node
2631 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2632 * GFP_KERNEL will be required for allocating network buffers when
2633 * swapping over the network so ZONE_HIGHMEM is unusable.
2634 *
2635 * Throttling is based on the first usable node and throttled processes
2636 * wait on a queue until kswapd makes progress and wakes them. There
2637 * is an affinity then between processes waking up and where reclaim
2638 * progress has been made assuming the process wakes on the same node.
2639 * More importantly, processes running on remote nodes will not compete
2640 * for remote pfmemalloc reserves and processes on different nodes
2641 * should make reasonable progress.
2642 */
2643 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2644 gfp_mask, nodemask) {
2645 if (zone_idx(zone) > ZONE_NORMAL)
2646 continue;
2647
2648 /* Throttle based on the first usable node */
2649 pgdat = zone->zone_pgdat;
2650 if (pfmemalloc_watermark_ok(pgdat))
2651 goto out;
2652 break;
2653 }
2654
2655 /* If no zone was usable by the allocation flags then do not throttle */
2656 if (!pgdat)
50694c28 2657 goto out;
5515061d 2658
68243e76
MG
2659 /* Account for the throttling */
2660 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2661
5515061d
MG
2662 /*
2663 * If the caller cannot enter the filesystem, it's possible that it
2664 * is due to the caller holding an FS lock or performing a journal
2665 * transaction in the case of a filesystem like ext[3|4]. In this case,
2666 * it is not safe to block on pfmemalloc_wait as kswapd could be
2667 * blocked waiting on the same lock. Instead, throttle for up to a
2668 * second before continuing.
2669 */
2670 if (!(gfp_mask & __GFP_FS)) {
2671 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2672 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2673
2674 goto check_pending;
5515061d
MG
2675 }
2676
2677 /* Throttle until kswapd wakes the process */
2678 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2679 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2680
2681check_pending:
2682 if (fatal_signal_pending(current))
2683 return true;
2684
2685out:
2686 return false;
5515061d
MG
2687}
2688
dac1d27b 2689unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2690 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2691{
33906bc5 2692 unsigned long nr_reclaimed;
66e1707b 2693 struct scan_control sc = {
ee814fe2 2694 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2695 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2696 .order = order,
2697 .nodemask = nodemask,
2698 .priority = DEF_PRIORITY,
66e1707b 2699 .may_writepage = !laptop_mode,
a6dc60f8 2700 .may_unmap = 1,
2e2e4259 2701 .may_swap = 1,
66e1707b
BS
2702 };
2703
5515061d 2704 /*
50694c28
MG
2705 * Do not enter reclaim if fatal signal was delivered while throttled.
2706 * 1 is returned so that the page allocator does not OOM kill at this
2707 * point.
5515061d 2708 */
50694c28 2709 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2710 return 1;
2711
33906bc5
MG
2712 trace_mm_vmscan_direct_reclaim_begin(order,
2713 sc.may_writepage,
2714 gfp_mask);
2715
3115cd91 2716 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2717
2718 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2719
2720 return nr_reclaimed;
66e1707b
BS
2721}
2722
c255a458 2723#ifdef CONFIG_MEMCG
66e1707b 2724
72835c86 2725unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2726 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2727 struct zone *zone,
2728 unsigned long *nr_scanned)
4e416953
BS
2729{
2730 struct scan_control sc = {
b8f5c566 2731 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2732 .target_mem_cgroup = memcg,
4e416953
BS
2733 .may_writepage = !laptop_mode,
2734 .may_unmap = 1,
2735 .may_swap = !noswap,
4e416953 2736 };
f9be23d6 2737 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2738 int swappiness = mem_cgroup_swappiness(memcg);
0ae5e89c 2739
4e416953
BS
2740 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2741 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2742
9e3b2f8c 2743 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2744 sc.may_writepage,
2745 sc.gfp_mask);
2746
4e416953
BS
2747 /*
2748 * NOTE: Although we can get the priority field, using it
2749 * here is not a good idea, since it limits the pages we can scan.
2750 * if we don't reclaim here, the shrink_zone from balance_pgdat
2751 * will pick up pages from other mem cgroup's as well. We hack
2752 * the priority and make it zero.
2753 */
02695175 2754 shrink_lruvec(lruvec, swappiness, &sc);
bdce6d9e
KM
2755
2756 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2757
0ae5e89c 2758 *nr_scanned = sc.nr_scanned;
4e416953
BS
2759 return sc.nr_reclaimed;
2760}
2761
72835c86 2762unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2763 unsigned long nr_pages,
a7885eb8 2764 gfp_t gfp_mask,
b70a2a21 2765 bool may_swap)
66e1707b 2766{
4e416953 2767 struct zonelist *zonelist;
bdce6d9e 2768 unsigned long nr_reclaimed;
889976db 2769 int nid;
66e1707b 2770 struct scan_control sc = {
b70a2a21 2771 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2772 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2773 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2774 .target_mem_cgroup = memcg,
2775 .priority = DEF_PRIORITY,
2776 .may_writepage = !laptop_mode,
2777 .may_unmap = 1,
b70a2a21 2778 .may_swap = may_swap,
a09ed5e0 2779 };
66e1707b 2780
889976db
YH
2781 /*
2782 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2783 * take care of from where we get pages. So the node where we start the
2784 * scan does not need to be the current node.
2785 */
72835c86 2786 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2787
2788 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2789
2790 trace_mm_vmscan_memcg_reclaim_begin(0,
2791 sc.may_writepage,
2792 sc.gfp_mask);
2793
3115cd91 2794 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2795
2796 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2797
2798 return nr_reclaimed;
66e1707b
BS
2799}
2800#endif
2801
9e3b2f8c 2802static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2803{
b95a2f2d 2804 struct mem_cgroup *memcg;
f16015fb 2805
b95a2f2d
JW
2806 if (!total_swap_pages)
2807 return;
2808
2809 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2810 do {
c56d5c7d 2811 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2812
c56d5c7d 2813 if (inactive_anon_is_low(lruvec))
1a93be0e 2814 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2815 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2816
2817 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2818 } while (memcg);
f16015fb
JW
2819}
2820
60cefed4
JW
2821static bool zone_balanced(struct zone *zone, int order,
2822 unsigned long balance_gap, int classzone_idx)
2823{
2824 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2825 balance_gap, classzone_idx, 0))
2826 return false;
2827
ebff3980
VB
2828 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2829 order, 0, classzone_idx) == COMPACT_SKIPPED)
60cefed4
JW
2830 return false;
2831
2832 return true;
2833}
2834
1741c877 2835/*
4ae0a48b
ZC
2836 * pgdat_balanced() is used when checking if a node is balanced.
2837 *
2838 * For order-0, all zones must be balanced!
2839 *
2840 * For high-order allocations only zones that meet watermarks and are in a
2841 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2842 * total of balanced pages must be at least 25% of the zones allowed by
2843 * classzone_idx for the node to be considered balanced. Forcing all zones to
2844 * be balanced for high orders can cause excessive reclaim when there are
2845 * imbalanced zones.
1741c877
MG
2846 * The choice of 25% is due to
2847 * o a 16M DMA zone that is balanced will not balance a zone on any
2848 * reasonable sized machine
2849 * o On all other machines, the top zone must be at least a reasonable
25985edc 2850 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2851 * would need to be at least 256M for it to be balance a whole node.
2852 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2853 * to balance a node on its own. These seemed like reasonable ratios.
2854 */
4ae0a48b 2855static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2856{
b40da049 2857 unsigned long managed_pages = 0;
4ae0a48b 2858 unsigned long balanced_pages = 0;
1741c877
MG
2859 int i;
2860
4ae0a48b
ZC
2861 /* Check the watermark levels */
2862 for (i = 0; i <= classzone_idx; i++) {
2863 struct zone *zone = pgdat->node_zones + i;
1741c877 2864
4ae0a48b
ZC
2865 if (!populated_zone(zone))
2866 continue;
2867
b40da049 2868 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2869
2870 /*
2871 * A special case here:
2872 *
2873 * balance_pgdat() skips over all_unreclaimable after
2874 * DEF_PRIORITY. Effectively, it considers them balanced so
2875 * they must be considered balanced here as well!
2876 */
6e543d57 2877 if (!zone_reclaimable(zone)) {
b40da049 2878 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2879 continue;
2880 }
2881
2882 if (zone_balanced(zone, order, 0, i))
b40da049 2883 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2884 else if (!order)
2885 return false;
2886 }
2887
2888 if (order)
b40da049 2889 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2890 else
2891 return true;
1741c877
MG
2892}
2893
5515061d
MG
2894/*
2895 * Prepare kswapd for sleeping. This verifies that there are no processes
2896 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2897 *
2898 * Returns true if kswapd is ready to sleep
2899 */
2900static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2901 int classzone_idx)
f50de2d3 2902{
f50de2d3
MG
2903 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2904 if (remaining)
5515061d
MG
2905 return false;
2906
2907 /*
2908 * There is a potential race between when kswapd checks its watermarks
2909 * and a process gets throttled. There is also a potential race if
2910 * processes get throttled, kswapd wakes, a large process exits therby
2911 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2912 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2913 * so wake them now if necessary. If necessary, processes will wake
2914 * kswapd and get throttled again
2915 */
2916 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2917 wake_up(&pgdat->pfmemalloc_wait);
2918 return false;
2919 }
f50de2d3 2920
4ae0a48b 2921 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2922}
2923
75485363
MG
2924/*
2925 * kswapd shrinks the zone by the number of pages required to reach
2926 * the high watermark.
b8e83b94
MG
2927 *
2928 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2929 * reclaim or if the lack of progress was due to pages under writeback.
2930 * This is used to determine if the scanning priority needs to be raised.
75485363 2931 */
b8e83b94 2932static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2933 int classzone_idx,
75485363 2934 struct scan_control *sc,
2ab44f43
MG
2935 unsigned long lru_pages,
2936 unsigned long *nr_attempted)
75485363 2937{
7c954f6d
MG
2938 int testorder = sc->order;
2939 unsigned long balance_gap;
75485363
MG
2940 struct reclaim_state *reclaim_state = current->reclaim_state;
2941 struct shrink_control shrink = {
2942 .gfp_mask = sc->gfp_mask,
2943 };
7c954f6d 2944 bool lowmem_pressure;
75485363
MG
2945
2946 /* Reclaim above the high watermark. */
2947 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2948
2949 /*
2950 * Kswapd reclaims only single pages with compaction enabled. Trying
2951 * too hard to reclaim until contiguous free pages have become
2952 * available can hurt performance by evicting too much useful data
2953 * from memory. Do not reclaim more than needed for compaction.
2954 */
2955 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
ebff3980
VB
2956 compaction_suitable(zone, sc->order, 0, classzone_idx)
2957 != COMPACT_SKIPPED)
7c954f6d
MG
2958 testorder = 0;
2959
2960 /*
2961 * We put equal pressure on every zone, unless one zone has way too
2962 * many pages free already. The "too many pages" is defined as the
2963 * high wmark plus a "gap" where the gap is either the low
2964 * watermark or 1% of the zone, whichever is smaller.
2965 */
4be89a34
JZ
2966 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2967 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
2968
2969 /*
2970 * If there is no low memory pressure or the zone is balanced then no
2971 * reclaim is necessary
2972 */
2973 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2974 if (!lowmem_pressure && zone_balanced(zone, testorder,
2975 balance_gap, classzone_idx))
2976 return true;
2977
75485363 2978 shrink_zone(zone, sc);
0ce3d744
DC
2979 nodes_clear(shrink.nodes_to_scan);
2980 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2981
2982 reclaim_state->reclaimed_slab = 0;
6e543d57 2983 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2984 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2985
2ab44f43
MG
2986 /* Account for the number of pages attempted to reclaim */
2987 *nr_attempted += sc->nr_to_reclaim;
2988
57054651 2989 clear_bit(ZONE_WRITEBACK, &zone->flags);
283aba9f 2990
7c954f6d
MG
2991 /*
2992 * If a zone reaches its high watermark, consider it to be no longer
2993 * congested. It's possible there are dirty pages backed by congested
2994 * BDIs but as pressure is relieved, speculatively avoid congestion
2995 * waits.
2996 */
6e543d57 2997 if (zone_reclaimable(zone) &&
7c954f6d 2998 zone_balanced(zone, testorder, 0, classzone_idx)) {
57054651
JW
2999 clear_bit(ZONE_CONGESTED, &zone->flags);
3000 clear_bit(ZONE_DIRTY, &zone->flags);
7c954f6d
MG
3001 }
3002
b8e83b94 3003 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3004}
3005
1da177e4
LT
3006/*
3007 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3008 * they are all at high_wmark_pages(zone).
1da177e4 3009 *
0abdee2b 3010 * Returns the final order kswapd was reclaiming at
1da177e4
LT
3011 *
3012 * There is special handling here for zones which are full of pinned pages.
3013 * This can happen if the pages are all mlocked, or if they are all used by
3014 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3015 * What we do is to detect the case where all pages in the zone have been
3016 * scanned twice and there has been zero successful reclaim. Mark the zone as
3017 * dead and from now on, only perform a short scan. Basically we're polling
3018 * the zone for when the problem goes away.
3019 *
3020 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3021 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3022 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3023 * lower zones regardless of the number of free pages in the lower zones. This
3024 * interoperates with the page allocator fallback scheme to ensure that aging
3025 * of pages is balanced across the zones.
1da177e4 3026 */
99504748 3027static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3028 int *classzone_idx)
1da177e4 3029{
1da177e4 3030 int i;
99504748 3031 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3032 unsigned long nr_soft_reclaimed;
3033 unsigned long nr_soft_scanned;
179e9639
AM
3034 struct scan_control sc = {
3035 .gfp_mask = GFP_KERNEL,
ee814fe2 3036 .order = order,
b8e83b94 3037 .priority = DEF_PRIORITY,
ee814fe2 3038 .may_writepage = !laptop_mode,
a6dc60f8 3039 .may_unmap = 1,
2e2e4259 3040 .may_swap = 1,
179e9639 3041 };
f8891e5e 3042 count_vm_event(PAGEOUTRUN);
1da177e4 3043
9e3b2f8c 3044 do {
1da177e4 3045 unsigned long lru_pages = 0;
2ab44f43 3046 unsigned long nr_attempted = 0;
b8e83b94 3047 bool raise_priority = true;
2ab44f43 3048 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3049
3050 sc.nr_reclaimed = 0;
1da177e4 3051
d6277db4
RW
3052 /*
3053 * Scan in the highmem->dma direction for the highest
3054 * zone which needs scanning
3055 */
3056 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3057 struct zone *zone = pgdat->node_zones + i;
1da177e4 3058
d6277db4
RW
3059 if (!populated_zone(zone))
3060 continue;
1da177e4 3061
6e543d57
LD
3062 if (sc.priority != DEF_PRIORITY &&
3063 !zone_reclaimable(zone))
d6277db4 3064 continue;
1da177e4 3065
556adecb
RR
3066 /*
3067 * Do some background aging of the anon list, to give
3068 * pages a chance to be referenced before reclaiming.
3069 */
9e3b2f8c 3070 age_active_anon(zone, &sc);
556adecb 3071
cc715d99
MG
3072 /*
3073 * If the number of buffer_heads in the machine
3074 * exceeds the maximum allowed level and this node
3075 * has a highmem zone, force kswapd to reclaim from
3076 * it to relieve lowmem pressure.
3077 */
3078 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3079 end_zone = i;
3080 break;
3081 }
3082
60cefed4 3083 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3084 end_zone = i;
e1dbeda6 3085 break;
439423f6 3086 } else {
d43006d5
MG
3087 /*
3088 * If balanced, clear the dirty and congested
3089 * flags
3090 */
57054651
JW
3091 clear_bit(ZONE_CONGESTED, &zone->flags);
3092 clear_bit(ZONE_DIRTY, &zone->flags);
1da177e4 3093 }
1da177e4 3094 }
dafcb73e 3095
b8e83b94 3096 if (i < 0)
e1dbeda6
AM
3097 goto out;
3098
1da177e4
LT
3099 for (i = 0; i <= end_zone; i++) {
3100 struct zone *zone = pgdat->node_zones + i;
3101
2ab44f43
MG
3102 if (!populated_zone(zone))
3103 continue;
3104
adea02a1 3105 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
3106
3107 /*
3108 * If any zone is currently balanced then kswapd will
3109 * not call compaction as it is expected that the
3110 * necessary pages are already available.
3111 */
3112 if (pgdat_needs_compaction &&
3113 zone_watermark_ok(zone, order,
3114 low_wmark_pages(zone),
3115 *classzone_idx, 0))
3116 pgdat_needs_compaction = false;
1da177e4
LT
3117 }
3118
b7ea3c41
MG
3119 /*
3120 * If we're getting trouble reclaiming, start doing writepage
3121 * even in laptop mode.
3122 */
3123 if (sc.priority < DEF_PRIORITY - 2)
3124 sc.may_writepage = 1;
3125
1da177e4
LT
3126 /*
3127 * Now scan the zone in the dma->highmem direction, stopping
3128 * at the last zone which needs scanning.
3129 *
3130 * We do this because the page allocator works in the opposite
3131 * direction. This prevents the page allocator from allocating
3132 * pages behind kswapd's direction of progress, which would
3133 * cause too much scanning of the lower zones.
3134 */
3135 for (i = 0; i <= end_zone; i++) {
3136 struct zone *zone = pgdat->node_zones + i;
3137
f3fe6512 3138 if (!populated_zone(zone))
1da177e4
LT
3139 continue;
3140
6e543d57
LD
3141 if (sc.priority != DEF_PRIORITY &&
3142 !zone_reclaimable(zone))
1da177e4
LT
3143 continue;
3144
1da177e4 3145 sc.nr_scanned = 0;
4e416953 3146
0608f43d
AM
3147 nr_soft_scanned = 0;
3148 /*
3149 * Call soft limit reclaim before calling shrink_zone.
3150 */
3151 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3152 order, sc.gfp_mask,
3153 &nr_soft_scanned);
3154 sc.nr_reclaimed += nr_soft_reclaimed;
3155
32a4330d 3156 /*
7c954f6d
MG
3157 * There should be no need to raise the scanning
3158 * priority if enough pages are already being scanned
3159 * that that high watermark would be met at 100%
3160 * efficiency.
fe2c2a10 3161 */
7c954f6d
MG
3162 if (kswapd_shrink_zone(zone, end_zone, &sc,
3163 lru_pages, &nr_attempted))
3164 raise_priority = false;
1da177e4 3165 }
5515061d
MG
3166
3167 /*
3168 * If the low watermark is met there is no need for processes
3169 * to be throttled on pfmemalloc_wait as they should not be
3170 * able to safely make forward progress. Wake them
3171 */
3172 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3173 pfmemalloc_watermark_ok(pgdat))
3174 wake_up(&pgdat->pfmemalloc_wait);
3175
1da177e4 3176 /*
b8e83b94
MG
3177 * Fragmentation may mean that the system cannot be rebalanced
3178 * for high-order allocations in all zones. If twice the
3179 * allocation size has been reclaimed and the zones are still
3180 * not balanced then recheck the watermarks at order-0 to
3181 * prevent kswapd reclaiming excessively. Assume that a
3182 * process requested a high-order can direct reclaim/compact.
1da177e4 3183 */
b8e83b94
MG
3184 if (order && sc.nr_reclaimed >= 2UL << order)
3185 order = sc.order = 0;
8357376d 3186
b8e83b94
MG
3187 /* Check if kswapd should be suspending */
3188 if (try_to_freeze() || kthread_should_stop())
3189 break;
8357376d 3190
2ab44f43
MG
3191 /*
3192 * Compact if necessary and kswapd is reclaiming at least the
3193 * high watermark number of pages as requsted
3194 */
3195 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3196 compact_pgdat(pgdat, order);
3197
73ce02e9 3198 /*
b8e83b94
MG
3199 * Raise priority if scanning rate is too low or there was no
3200 * progress in reclaiming pages
73ce02e9 3201 */
b8e83b94
MG
3202 if (raise_priority || !sc.nr_reclaimed)
3203 sc.priority--;
9aa41348 3204 } while (sc.priority >= 1 &&
b8e83b94 3205 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3206
b8e83b94 3207out:
0abdee2b 3208 /*
5515061d 3209 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3210 * makes a decision on the order we were last reclaiming at. However,
3211 * if another caller entered the allocator slow path while kswapd
3212 * was awake, order will remain at the higher level
3213 */
dc83edd9 3214 *classzone_idx = end_zone;
0abdee2b 3215 return order;
1da177e4
LT
3216}
3217
dc83edd9 3218static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3219{
3220 long remaining = 0;
3221 DEFINE_WAIT(wait);
3222
3223 if (freezing(current) || kthread_should_stop())
3224 return;
3225
3226 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3227
3228 /* Try to sleep for a short interval */
5515061d 3229 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3230 remaining = schedule_timeout(HZ/10);
3231 finish_wait(&pgdat->kswapd_wait, &wait);
3232 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3233 }
3234
3235 /*
3236 * After a short sleep, check if it was a premature sleep. If not, then
3237 * go fully to sleep until explicitly woken up.
3238 */
5515061d 3239 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3240 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3241
3242 /*
3243 * vmstat counters are not perfectly accurate and the estimated
3244 * value for counters such as NR_FREE_PAGES can deviate from the
3245 * true value by nr_online_cpus * threshold. To avoid the zone
3246 * watermarks being breached while under pressure, we reduce the
3247 * per-cpu vmstat threshold while kswapd is awake and restore
3248 * them before going back to sleep.
3249 */
3250 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3251
62997027
MG
3252 /*
3253 * Compaction records what page blocks it recently failed to
3254 * isolate pages from and skips them in the future scanning.
3255 * When kswapd is going to sleep, it is reasonable to assume
3256 * that pages and compaction may succeed so reset the cache.
3257 */
3258 reset_isolation_suitable(pgdat);
3259
1c7e7f6c
AK
3260 if (!kthread_should_stop())
3261 schedule();
3262
f0bc0a60
KM
3263 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3264 } else {
3265 if (remaining)
3266 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3267 else
3268 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3269 }
3270 finish_wait(&pgdat->kswapd_wait, &wait);
3271}
3272
1da177e4
LT
3273/*
3274 * The background pageout daemon, started as a kernel thread
4f98a2fe 3275 * from the init process.
1da177e4
LT
3276 *
3277 * This basically trickles out pages so that we have _some_
3278 * free memory available even if there is no other activity
3279 * that frees anything up. This is needed for things like routing
3280 * etc, where we otherwise might have all activity going on in
3281 * asynchronous contexts that cannot page things out.
3282 *
3283 * If there are applications that are active memory-allocators
3284 * (most normal use), this basically shouldn't matter.
3285 */
3286static int kswapd(void *p)
3287{
215ddd66 3288 unsigned long order, new_order;
d2ebd0f6 3289 unsigned balanced_order;
215ddd66 3290 int classzone_idx, new_classzone_idx;
d2ebd0f6 3291 int balanced_classzone_idx;
1da177e4
LT
3292 pg_data_t *pgdat = (pg_data_t*)p;
3293 struct task_struct *tsk = current;
f0bc0a60 3294
1da177e4
LT
3295 struct reclaim_state reclaim_state = {
3296 .reclaimed_slab = 0,
3297 };
a70f7302 3298 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3299
cf40bd16
NP
3300 lockdep_set_current_reclaim_state(GFP_KERNEL);
3301
174596a0 3302 if (!cpumask_empty(cpumask))
c5f59f08 3303 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3304 current->reclaim_state = &reclaim_state;
3305
3306 /*
3307 * Tell the memory management that we're a "memory allocator",
3308 * and that if we need more memory we should get access to it
3309 * regardless (see "__alloc_pages()"). "kswapd" should
3310 * never get caught in the normal page freeing logic.
3311 *
3312 * (Kswapd normally doesn't need memory anyway, but sometimes
3313 * you need a small amount of memory in order to be able to
3314 * page out something else, and this flag essentially protects
3315 * us from recursively trying to free more memory as we're
3316 * trying to free the first piece of memory in the first place).
3317 */
930d9152 3318 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3319 set_freezable();
1da177e4 3320
215ddd66 3321 order = new_order = 0;
d2ebd0f6 3322 balanced_order = 0;
215ddd66 3323 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3324 balanced_classzone_idx = classzone_idx;
1da177e4 3325 for ( ; ; ) {
6f6313d4 3326 bool ret;
3e1d1d28 3327
215ddd66
MG
3328 /*
3329 * If the last balance_pgdat was unsuccessful it's unlikely a
3330 * new request of a similar or harder type will succeed soon
3331 * so consider going to sleep on the basis we reclaimed at
3332 */
d2ebd0f6
AS
3333 if (balanced_classzone_idx >= new_classzone_idx &&
3334 balanced_order == new_order) {
215ddd66
MG
3335 new_order = pgdat->kswapd_max_order;
3336 new_classzone_idx = pgdat->classzone_idx;
3337 pgdat->kswapd_max_order = 0;
3338 pgdat->classzone_idx = pgdat->nr_zones - 1;
3339 }
3340
99504748 3341 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3342 /*
3343 * Don't sleep if someone wants a larger 'order'
99504748 3344 * allocation or has tigher zone constraints
1da177e4
LT
3345 */
3346 order = new_order;
99504748 3347 classzone_idx = new_classzone_idx;
1da177e4 3348 } else {
d2ebd0f6
AS
3349 kswapd_try_to_sleep(pgdat, balanced_order,
3350 balanced_classzone_idx);
1da177e4 3351 order = pgdat->kswapd_max_order;
99504748 3352 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3353 new_order = order;
3354 new_classzone_idx = classzone_idx;
4d40502e 3355 pgdat->kswapd_max_order = 0;
215ddd66 3356 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3357 }
1da177e4 3358
8fe23e05
DR
3359 ret = try_to_freeze();
3360 if (kthread_should_stop())
3361 break;
3362
3363 /*
3364 * We can speed up thawing tasks if we don't call balance_pgdat
3365 * after returning from the refrigerator
3366 */
33906bc5
MG
3367 if (!ret) {
3368 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3369 balanced_classzone_idx = classzone_idx;
3370 balanced_order = balance_pgdat(pgdat, order,
3371 &balanced_classzone_idx);
33906bc5 3372 }
1da177e4 3373 }
b0a8cc58 3374
71abdc15 3375 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3376 current->reclaim_state = NULL;
71abdc15
JW
3377 lockdep_clear_current_reclaim_state();
3378
1da177e4
LT
3379 return 0;
3380}
3381
3382/*
3383 * A zone is low on free memory, so wake its kswapd task to service it.
3384 */
99504748 3385void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3386{
3387 pg_data_t *pgdat;
3388
f3fe6512 3389 if (!populated_zone(zone))
1da177e4
LT
3390 return;
3391
344736f2 3392 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3393 return;
88f5acf8 3394 pgdat = zone->zone_pgdat;
99504748 3395 if (pgdat->kswapd_max_order < order) {
1da177e4 3396 pgdat->kswapd_max_order = order;
99504748
MG
3397 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3398 }
8d0986e2 3399 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3400 return;
892f795d 3401 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3402 return;
3403
3404 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3405 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3406}
3407
c6f37f12 3408#ifdef CONFIG_HIBERNATION
1da177e4 3409/*
7b51755c 3410 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3411 * freed pages.
3412 *
3413 * Rather than trying to age LRUs the aim is to preserve the overall
3414 * LRU order by reclaiming preferentially
3415 * inactive > active > active referenced > active mapped
1da177e4 3416 */
7b51755c 3417unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3418{
d6277db4 3419 struct reclaim_state reclaim_state;
d6277db4 3420 struct scan_control sc = {
ee814fe2 3421 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3422 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3423 .priority = DEF_PRIORITY,
d6277db4 3424 .may_writepage = 1,
ee814fe2
JW
3425 .may_unmap = 1,
3426 .may_swap = 1,
7b51755c 3427 .hibernation_mode = 1,
1da177e4 3428 };
a09ed5e0 3429 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3430 struct task_struct *p = current;
3431 unsigned long nr_reclaimed;
1da177e4 3432
7b51755c
KM
3433 p->flags |= PF_MEMALLOC;
3434 lockdep_set_current_reclaim_state(sc.gfp_mask);
3435 reclaim_state.reclaimed_slab = 0;
3436 p->reclaim_state = &reclaim_state;
d6277db4 3437
3115cd91 3438 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3439
7b51755c
KM
3440 p->reclaim_state = NULL;
3441 lockdep_clear_current_reclaim_state();
3442 p->flags &= ~PF_MEMALLOC;
d6277db4 3443
7b51755c 3444 return nr_reclaimed;
1da177e4 3445}
c6f37f12 3446#endif /* CONFIG_HIBERNATION */
1da177e4 3447
1da177e4
LT
3448/* It's optimal to keep kswapds on the same CPUs as their memory, but
3449 not required for correctness. So if the last cpu in a node goes
3450 away, we get changed to run anywhere: as the first one comes back,
3451 restore their cpu bindings. */
fcb35a9b
GKH
3452static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3453 void *hcpu)
1da177e4 3454{
58c0a4a7 3455 int nid;
1da177e4 3456
8bb78442 3457 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3458 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3459 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3460 const struct cpumask *mask;
3461
3462 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3463
3e597945 3464 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3465 /* One of our CPUs online: restore mask */
c5f59f08 3466 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3467 }
3468 }
3469 return NOTIFY_OK;
3470}
1da177e4 3471
3218ae14
YG
3472/*
3473 * This kswapd start function will be called by init and node-hot-add.
3474 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3475 */
3476int kswapd_run(int nid)
3477{
3478 pg_data_t *pgdat = NODE_DATA(nid);
3479 int ret = 0;
3480
3481 if (pgdat->kswapd)
3482 return 0;
3483
3484 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3485 if (IS_ERR(pgdat->kswapd)) {
3486 /* failure at boot is fatal */
3487 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3488 pr_err("Failed to start kswapd on node %d\n", nid);
3489 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3490 pgdat->kswapd = NULL;
3218ae14
YG
3491 }
3492 return ret;
3493}
3494
8fe23e05 3495/*
d8adde17 3496 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3497 * hold mem_hotplug_begin/end().
8fe23e05
DR
3498 */
3499void kswapd_stop(int nid)
3500{
3501 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3502
d8adde17 3503 if (kswapd) {
8fe23e05 3504 kthread_stop(kswapd);
d8adde17
JL
3505 NODE_DATA(nid)->kswapd = NULL;
3506 }
8fe23e05
DR
3507}
3508
1da177e4
LT
3509static int __init kswapd_init(void)
3510{
3218ae14 3511 int nid;
69e05944 3512
1da177e4 3513 swap_setup();
48fb2e24 3514 for_each_node_state(nid, N_MEMORY)
3218ae14 3515 kswapd_run(nid);
1da177e4
LT
3516 hotcpu_notifier(cpu_callback, 0);
3517 return 0;
3518}
3519
3520module_init(kswapd_init)
9eeff239
CL
3521
3522#ifdef CONFIG_NUMA
3523/*
3524 * Zone reclaim mode
3525 *
3526 * If non-zero call zone_reclaim when the number of free pages falls below
3527 * the watermarks.
9eeff239
CL
3528 */
3529int zone_reclaim_mode __read_mostly;
3530
1b2ffb78 3531#define RECLAIM_OFF 0
7d03431c 3532#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3533#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3534#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3535
a92f7126
CL
3536/*
3537 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3538 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3539 * a zone.
3540 */
3541#define ZONE_RECLAIM_PRIORITY 4
3542
9614634f
CL
3543/*
3544 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3545 * occur.
3546 */
3547int sysctl_min_unmapped_ratio = 1;
3548
0ff38490
CL
3549/*
3550 * If the number of slab pages in a zone grows beyond this percentage then
3551 * slab reclaim needs to occur.
3552 */
3553int sysctl_min_slab_ratio = 5;
3554
90afa5de
MG
3555static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3556{
3557 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3558 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3559 zone_page_state(zone, NR_ACTIVE_FILE);
3560
3561 /*
3562 * It's possible for there to be more file mapped pages than
3563 * accounted for by the pages on the file LRU lists because
3564 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3565 */
3566 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3567}
3568
3569/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3570static long zone_pagecache_reclaimable(struct zone *zone)
3571{
3572 long nr_pagecache_reclaimable;
3573 long delta = 0;
3574
3575 /*
3576 * If RECLAIM_SWAP is set, then all file pages are considered
3577 * potentially reclaimable. Otherwise, we have to worry about
3578 * pages like swapcache and zone_unmapped_file_pages() provides
3579 * a better estimate
3580 */
3581 if (zone_reclaim_mode & RECLAIM_SWAP)
3582 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3583 else
3584 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3585
3586 /* If we can't clean pages, remove dirty pages from consideration */
3587 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3588 delta += zone_page_state(zone, NR_FILE_DIRTY);
3589
3590 /* Watch for any possible underflows due to delta */
3591 if (unlikely(delta > nr_pagecache_reclaimable))
3592 delta = nr_pagecache_reclaimable;
3593
3594 return nr_pagecache_reclaimable - delta;
3595}
3596
9eeff239
CL
3597/*
3598 * Try to free up some pages from this zone through reclaim.
3599 */
179e9639 3600static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3601{
7fb2d46d 3602 /* Minimum pages needed in order to stay on node */
69e05944 3603 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3604 struct task_struct *p = current;
3605 struct reclaim_state reclaim_state;
179e9639 3606 struct scan_control sc = {
62b726c1 3607 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3608 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3609 .order = order,
9e3b2f8c 3610 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2
JW
3611 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3612 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3613 .may_swap = 1,
179e9639 3614 };
a09ed5e0
YH
3615 struct shrink_control shrink = {
3616 .gfp_mask = sc.gfp_mask,
3617 };
15748048 3618 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3619
9eeff239 3620 cond_resched();
d4f7796e
CL
3621 /*
3622 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3623 * and we also need to be able to write out pages for RECLAIM_WRITE
3624 * and RECLAIM_SWAP.
3625 */
3626 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3627 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3628 reclaim_state.reclaimed_slab = 0;
3629 p->reclaim_state = &reclaim_state;
c84db23c 3630
90afa5de 3631 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3632 /*
3633 * Free memory by calling shrink zone with increasing
3634 * priorities until we have enough memory freed.
3635 */
0ff38490 3636 do {
9e3b2f8c
KK
3637 shrink_zone(zone, &sc);
3638 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3639 }
c84db23c 3640
15748048
KM
3641 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3642 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3643 /*
7fb2d46d 3644 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3645 * many pages were freed in this zone. So we take the current
3646 * number of slab pages and shake the slab until it is reduced
3647 * by the same nr_pages that we used for reclaiming unmapped
3648 * pages.
2a16e3f4 3649 */
0ce3d744
DC
3650 nodes_clear(shrink.nodes_to_scan);
3651 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3652 for (;;) {
3653 unsigned long lru_pages = zone_reclaimable_pages(zone);
3654
3655 /* No reclaimable slab or very low memory pressure */
1495f230 3656 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3657 break;
3658
3659 /* Freed enough memory */
3660 nr_slab_pages1 = zone_page_state(zone,
3661 NR_SLAB_RECLAIMABLE);
3662 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3663 break;
3664 }
83e33a47
CL
3665
3666 /*
3667 * Update nr_reclaimed by the number of slab pages we
3668 * reclaimed from this zone.
3669 */
15748048
KM
3670 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3671 if (nr_slab_pages1 < nr_slab_pages0)
3672 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3673 }
3674
9eeff239 3675 p->reclaim_state = NULL;
d4f7796e 3676 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3677 lockdep_clear_current_reclaim_state();
a79311c1 3678 return sc.nr_reclaimed >= nr_pages;
9eeff239 3679}
179e9639
AM
3680
3681int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3682{
179e9639 3683 int node_id;
d773ed6b 3684 int ret;
179e9639
AM
3685
3686 /*
0ff38490
CL
3687 * Zone reclaim reclaims unmapped file backed pages and
3688 * slab pages if we are over the defined limits.
34aa1330 3689 *
9614634f
CL
3690 * A small portion of unmapped file backed pages is needed for
3691 * file I/O otherwise pages read by file I/O will be immediately
3692 * thrown out if the zone is overallocated. So we do not reclaim
3693 * if less than a specified percentage of the zone is used by
3694 * unmapped file backed pages.
179e9639 3695 */
90afa5de
MG
3696 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3697 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3698 return ZONE_RECLAIM_FULL;
179e9639 3699
6e543d57 3700 if (!zone_reclaimable(zone))
fa5e084e 3701 return ZONE_RECLAIM_FULL;
d773ed6b 3702
179e9639 3703 /*
d773ed6b 3704 * Do not scan if the allocation should not be delayed.
179e9639 3705 */
d773ed6b 3706 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3707 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3708
3709 /*
3710 * Only run zone reclaim on the local zone or on zones that do not
3711 * have associated processors. This will favor the local processor
3712 * over remote processors and spread off node memory allocations
3713 * as wide as possible.
3714 */
89fa3024 3715 node_id = zone_to_nid(zone);
37c0708d 3716 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3717 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3718
57054651 3719 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3720 return ZONE_RECLAIM_NOSCAN;
3721
d773ed6b 3722 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3723 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3724
24cf7251
MG
3725 if (!ret)
3726 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3727
d773ed6b 3728 return ret;
179e9639 3729}
9eeff239 3730#endif
894bc310 3731
894bc310
LS
3732/*
3733 * page_evictable - test whether a page is evictable
3734 * @page: the page to test
894bc310
LS
3735 *
3736 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3737 * lists vs unevictable list.
894bc310
LS
3738 *
3739 * Reasons page might not be evictable:
ba9ddf49 3740 * (1) page's mapping marked unevictable
b291f000 3741 * (2) page is part of an mlocked VMA
ba9ddf49 3742 *
894bc310 3743 */
39b5f29a 3744int page_evictable(struct page *page)
894bc310 3745{
39b5f29a 3746 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3747}
89e004ea 3748
85046579 3749#ifdef CONFIG_SHMEM
89e004ea 3750/**
24513264
HD
3751 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3752 * @pages: array of pages to check
3753 * @nr_pages: number of pages to check
89e004ea 3754 *
24513264 3755 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3756 *
3757 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3758 */
24513264 3759void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3760{
925b7673 3761 struct lruvec *lruvec;
24513264
HD
3762 struct zone *zone = NULL;
3763 int pgscanned = 0;
3764 int pgrescued = 0;
3765 int i;
89e004ea 3766
24513264
HD
3767 for (i = 0; i < nr_pages; i++) {
3768 struct page *page = pages[i];
3769 struct zone *pagezone;
89e004ea 3770
24513264
HD
3771 pgscanned++;
3772 pagezone = page_zone(page);
3773 if (pagezone != zone) {
3774 if (zone)
3775 spin_unlock_irq(&zone->lru_lock);
3776 zone = pagezone;
3777 spin_lock_irq(&zone->lru_lock);
3778 }
fa9add64 3779 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3780
24513264
HD
3781 if (!PageLRU(page) || !PageUnevictable(page))
3782 continue;
89e004ea 3783
39b5f29a 3784 if (page_evictable(page)) {
24513264
HD
3785 enum lru_list lru = page_lru_base_type(page);
3786
309381fe 3787 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3788 ClearPageUnevictable(page);
fa9add64
HD
3789 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3790 add_page_to_lru_list(page, lruvec, lru);
24513264 3791 pgrescued++;
89e004ea 3792 }
24513264 3793 }
89e004ea 3794
24513264
HD
3795 if (zone) {
3796 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3797 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3798 spin_unlock_irq(&zone->lru_lock);
89e004ea 3799 }
89e004ea 3800}
85046579 3801#endif /* CONFIG_SHMEM */