]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/vmscan.c
mm: move MADV_FREE pages into LRU_INACTIVE_FILE list
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4 16#include <linux/mm.h>
5b3cc15a 17#include <linux/sched/mm.h>
1da177e4 18#include <linux/module.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/kernel_stat.h>
21#include <linux/swap.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/highmem.h>
70ddf637 25#include <linux/vmpressure.h>
e129b5c2 26#include <linux/vmstat.h>
1da177e4
LT
27#include <linux/file.h>
28#include <linux/writeback.h>
29#include <linux/blkdev.h>
30#include <linux/buffer_head.h> /* for try_to_release_page(),
31 buffer_heads_over_limit */
32#include <linux/mm_inline.h>
1da177e4
LT
33#include <linux/backing-dev.h>
34#include <linux/rmap.h>
35#include <linux/topology.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
3e7d3449 38#include <linux/compaction.h>
1da177e4
LT
39#include <linux/notifier.h>
40#include <linux/rwsem.h>
248a0301 41#include <linux/delay.h>
3218ae14 42#include <linux/kthread.h>
7dfb7103 43#include <linux/freezer.h>
66e1707b 44#include <linux/memcontrol.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
268bb0ce 48#include <linux/prefetch.h>
b1de0d13 49#include <linux/printk.h>
f9fe48be 50#include <linux/dax.h>
1da177e4
LT
51
52#include <asm/tlbflush.h>
53#include <asm/div64.h>
54
55#include <linux/swapops.h>
117aad1e 56#include <linux/balloon_compaction.h>
1da177e4 57
0f8053a5
NP
58#include "internal.h"
59
33906bc5
MG
60#define CREATE_TRACE_POINTS
61#include <trace/events/vmscan.h>
62
1da177e4 63struct scan_control {
22fba335
KM
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
1da177e4 67 /* This context's GFP mask */
6daa0e28 68 gfp_t gfp_mask;
1da177e4 69
ee814fe2 70 /* Allocation order */
5ad333eb 71 int order;
66e1707b 72
ee814fe2
JW
73 /*
74 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * are scanned.
76 */
77 nodemask_t *nodemask;
9e3b2f8c 78
f16015fb
JW
79 /*
80 * The memory cgroup that hit its limit and as a result is the
81 * primary target of this reclaim invocation.
82 */
83 struct mem_cgroup *target_mem_cgroup;
66e1707b 84
ee814fe2
JW
85 /* Scan (total_size >> priority) pages at once */
86 int priority;
87
b2e18757
MG
88 /* The highest zone to isolate pages for reclaim from */
89 enum zone_type reclaim_idx;
90
1276ad68 91 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
92 unsigned int may_writepage:1;
93
94 /* Can mapped pages be reclaimed? */
95 unsigned int may_unmap:1;
96
97 /* Can pages be swapped as part of reclaim? */
98 unsigned int may_swap:1;
99
241994ed
JW
100 /* Can cgroups be reclaimed below their normal consumption range? */
101 unsigned int may_thrash:1;
102
ee814fe2
JW
103 unsigned int hibernation_mode:1;
104
105 /* One of the zones is ready for compaction */
106 unsigned int compaction_ready:1;
107
108 /* Incremented by the number of inactive pages that were scanned */
109 unsigned long nr_scanned;
110
111 /* Number of pages freed so far during a call to shrink_zones() */
112 unsigned long nr_reclaimed;
1da177e4
LT
113};
114
1da177e4
LT
115#ifdef ARCH_HAS_PREFETCH
116#define prefetch_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetch(&prev->_field); \
123 } \
124 } while (0)
125#else
126#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
127#endif
128
129#ifdef ARCH_HAS_PREFETCHW
130#define prefetchw_prev_lru_page(_page, _base, _field) \
131 do { \
132 if ((_page)->lru.prev != _base) { \
133 struct page *prev; \
134 \
135 prev = lru_to_page(&(_page->lru)); \
136 prefetchw(&prev->_field); \
137 } \
138 } while (0)
139#else
140#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
141#endif
142
143/*
144 * From 0 .. 100. Higher means more swappy.
145 */
146int vm_swappiness = 60;
d0480be4
WSH
147/*
148 * The total number of pages which are beyond the high watermark within all
149 * zones.
150 */
151unsigned long vm_total_pages;
1da177e4
LT
152
153static LIST_HEAD(shrinker_list);
154static DECLARE_RWSEM(shrinker_rwsem);
155
c255a458 156#ifdef CONFIG_MEMCG
89b5fae5
JW
157static bool global_reclaim(struct scan_control *sc)
158{
f16015fb 159 return !sc->target_mem_cgroup;
89b5fae5 160}
97c9341f
TH
161
162/**
163 * sane_reclaim - is the usual dirty throttling mechanism operational?
164 * @sc: scan_control in question
165 *
166 * The normal page dirty throttling mechanism in balance_dirty_pages() is
167 * completely broken with the legacy memcg and direct stalling in
168 * shrink_page_list() is used for throttling instead, which lacks all the
169 * niceties such as fairness, adaptive pausing, bandwidth proportional
170 * allocation and configurability.
171 *
172 * This function tests whether the vmscan currently in progress can assume
173 * that the normal dirty throttling mechanism is operational.
174 */
175static bool sane_reclaim(struct scan_control *sc)
176{
177 struct mem_cgroup *memcg = sc->target_mem_cgroup;
178
179 if (!memcg)
180 return true;
181#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 182 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
183 return true;
184#endif
185 return false;
186}
91a45470 187#else
89b5fae5
JW
188static bool global_reclaim(struct scan_control *sc)
189{
190 return true;
191}
97c9341f
TH
192
193static bool sane_reclaim(struct scan_control *sc)
194{
195 return true;
196}
91a45470
KH
197#endif
198
5a1c84b4
MG
199/*
200 * This misses isolated pages which are not accounted for to save counters.
201 * As the data only determines if reclaim or compaction continues, it is
202 * not expected that isolated pages will be a dominating factor.
203 */
204unsigned long zone_reclaimable_pages(struct zone *zone)
205{
206 unsigned long nr;
207
208 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
209 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
210 if (get_nr_swap_pages() > 0)
211 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
212 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
213
214 return nr;
215}
216
599d0c95
MG
217unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
218{
219 unsigned long nr;
220
221 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
222 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
223 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
6e543d57
LD
224
225 if (get_nr_swap_pages() > 0)
599d0c95
MG
226 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
227 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
228 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
6e543d57
LD
229
230 return nr;
231}
232
fd538803
MH
233/**
234 * lruvec_lru_size - Returns the number of pages on the given LRU list.
235 * @lruvec: lru vector
236 * @lru: lru to use
237 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
238 */
239unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 240{
fd538803
MH
241 unsigned long lru_size;
242 int zid;
243
c3c787e8 244 if (!mem_cgroup_disabled())
fd538803
MH
245 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
246 else
247 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 248
fd538803
MH
249 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
250 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
251 unsigned long size;
c9f299d9 252
fd538803
MH
253 if (!managed_zone(zone))
254 continue;
255
256 if (!mem_cgroup_disabled())
257 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
258 else
259 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
260 NR_ZONE_LRU_BASE + lru);
261 lru_size -= min(size, lru_size);
262 }
263
264 return lru_size;
b4536f0c 265
b4536f0c
MH
266}
267
1da177e4 268/*
1d3d4437 269 * Add a shrinker callback to be called from the vm.
1da177e4 270 */
1d3d4437 271int register_shrinker(struct shrinker *shrinker)
1da177e4 272{
1d3d4437
GC
273 size_t size = sizeof(*shrinker->nr_deferred);
274
1d3d4437
GC
275 if (shrinker->flags & SHRINKER_NUMA_AWARE)
276 size *= nr_node_ids;
277
278 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
279 if (!shrinker->nr_deferred)
280 return -ENOMEM;
281
8e1f936b
RR
282 down_write(&shrinker_rwsem);
283 list_add_tail(&shrinker->list, &shrinker_list);
284 up_write(&shrinker_rwsem);
1d3d4437 285 return 0;
1da177e4 286}
8e1f936b 287EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
288
289/*
290 * Remove one
291 */
8e1f936b 292void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
293{
294 down_write(&shrinker_rwsem);
295 list_del(&shrinker->list);
296 up_write(&shrinker_rwsem);
ae393321 297 kfree(shrinker->nr_deferred);
1da177e4 298}
8e1f936b 299EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
300
301#define SHRINK_BATCH 128
1d3d4437 302
cb731d6c
VD
303static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
304 struct shrinker *shrinker,
305 unsigned long nr_scanned,
306 unsigned long nr_eligible)
1d3d4437
GC
307{
308 unsigned long freed = 0;
309 unsigned long long delta;
310 long total_scan;
d5bc5fd3 311 long freeable;
1d3d4437
GC
312 long nr;
313 long new_nr;
314 int nid = shrinkctl->nid;
315 long batch_size = shrinker->batch ? shrinker->batch
316 : SHRINK_BATCH;
5f33a080 317 long scanned = 0, next_deferred;
1d3d4437 318
d5bc5fd3
VD
319 freeable = shrinker->count_objects(shrinker, shrinkctl);
320 if (freeable == 0)
1d3d4437
GC
321 return 0;
322
323 /*
324 * copy the current shrinker scan count into a local variable
325 * and zero it so that other concurrent shrinker invocations
326 * don't also do this scanning work.
327 */
328 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
329
330 total_scan = nr;
6b4f7799 331 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 332 delta *= freeable;
6b4f7799 333 do_div(delta, nr_eligible + 1);
1d3d4437
GC
334 total_scan += delta;
335 if (total_scan < 0) {
8612c663 336 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 337 shrinker->scan_objects, total_scan);
d5bc5fd3 338 total_scan = freeable;
5f33a080
SL
339 next_deferred = nr;
340 } else
341 next_deferred = total_scan;
1d3d4437
GC
342
343 /*
344 * We need to avoid excessive windup on filesystem shrinkers
345 * due to large numbers of GFP_NOFS allocations causing the
346 * shrinkers to return -1 all the time. This results in a large
347 * nr being built up so when a shrink that can do some work
348 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 349 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
350 * memory.
351 *
352 * Hence only allow the shrinker to scan the entire cache when
353 * a large delta change is calculated directly.
354 */
d5bc5fd3
VD
355 if (delta < freeable / 4)
356 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
357
358 /*
359 * Avoid risking looping forever due to too large nr value:
360 * never try to free more than twice the estimate number of
361 * freeable entries.
362 */
d5bc5fd3
VD
363 if (total_scan > freeable * 2)
364 total_scan = freeable * 2;
1d3d4437
GC
365
366 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
367 nr_scanned, nr_eligible,
368 freeable, delta, total_scan);
1d3d4437 369
0b1fb40a
VD
370 /*
371 * Normally, we should not scan less than batch_size objects in one
372 * pass to avoid too frequent shrinker calls, but if the slab has less
373 * than batch_size objects in total and we are really tight on memory,
374 * we will try to reclaim all available objects, otherwise we can end
375 * up failing allocations although there are plenty of reclaimable
376 * objects spread over several slabs with usage less than the
377 * batch_size.
378 *
379 * We detect the "tight on memory" situations by looking at the total
380 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 381 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
382 * scanning at high prio and therefore should try to reclaim as much as
383 * possible.
384 */
385 while (total_scan >= batch_size ||
d5bc5fd3 386 total_scan >= freeable) {
a0b02131 387 unsigned long ret;
0b1fb40a 388 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 389
0b1fb40a 390 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
391 ret = shrinker->scan_objects(shrinker, shrinkctl);
392 if (ret == SHRINK_STOP)
393 break;
394 freed += ret;
1d3d4437 395
0b1fb40a
VD
396 count_vm_events(SLABS_SCANNED, nr_to_scan);
397 total_scan -= nr_to_scan;
5f33a080 398 scanned += nr_to_scan;
1d3d4437
GC
399
400 cond_resched();
401 }
402
5f33a080
SL
403 if (next_deferred >= scanned)
404 next_deferred -= scanned;
405 else
406 next_deferred = 0;
1d3d4437
GC
407 /*
408 * move the unused scan count back into the shrinker in a
409 * manner that handles concurrent updates. If we exhausted the
410 * scan, there is no need to do an update.
411 */
5f33a080
SL
412 if (next_deferred > 0)
413 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
414 &shrinker->nr_deferred[nid]);
415 else
416 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
417
df9024a8 418 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 419 return freed;
1495f230
YH
420}
421
6b4f7799 422/**
cb731d6c 423 * shrink_slab - shrink slab caches
6b4f7799
JW
424 * @gfp_mask: allocation context
425 * @nid: node whose slab caches to target
cb731d6c 426 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
427 * @nr_scanned: pressure numerator
428 * @nr_eligible: pressure denominator
1da177e4 429 *
6b4f7799 430 * Call the shrink functions to age shrinkable caches.
1da177e4 431 *
6b4f7799
JW
432 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
433 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 434 *
cb731d6c
VD
435 * @memcg specifies the memory cgroup to target. If it is not NULL,
436 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
437 * objects from the memory cgroup specified. Otherwise, only unaware
438 * shrinkers are called.
cb731d6c 439 *
6b4f7799
JW
440 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
441 * the available objects should be scanned. Page reclaim for example
442 * passes the number of pages scanned and the number of pages on the
443 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
444 * when it encountered mapped pages. The ratio is further biased by
445 * the ->seeks setting of the shrink function, which indicates the
446 * cost to recreate an object relative to that of an LRU page.
b15e0905 447 *
6b4f7799 448 * Returns the number of reclaimed slab objects.
1da177e4 449 */
cb731d6c
VD
450static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
451 struct mem_cgroup *memcg,
452 unsigned long nr_scanned,
453 unsigned long nr_eligible)
1da177e4
LT
454{
455 struct shrinker *shrinker;
24f7c6b9 456 unsigned long freed = 0;
1da177e4 457
0fc9f58a 458 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
459 return 0;
460
6b4f7799
JW
461 if (nr_scanned == 0)
462 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 463
f06590bd 464 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
465 /*
466 * If we would return 0, our callers would understand that we
467 * have nothing else to shrink and give up trying. By returning
468 * 1 we keep it going and assume we'll be able to shrink next
469 * time.
470 */
471 freed = 1;
f06590bd
MK
472 goto out;
473 }
1da177e4
LT
474
475 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
476 struct shrink_control sc = {
477 .gfp_mask = gfp_mask,
478 .nid = nid,
cb731d6c 479 .memcg = memcg,
6b4f7799 480 };
ec97097b 481
0fc9f58a
VD
482 /*
483 * If kernel memory accounting is disabled, we ignore
484 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
485 * passing NULL for memcg.
486 */
487 if (memcg_kmem_enabled() &&
488 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
489 continue;
490
6b4f7799
JW
491 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
492 sc.nid = 0;
1da177e4 493
cb731d6c 494 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 495 }
6b4f7799 496
1da177e4 497 up_read(&shrinker_rwsem);
f06590bd
MK
498out:
499 cond_resched();
24f7c6b9 500 return freed;
1da177e4
LT
501}
502
cb731d6c
VD
503void drop_slab_node(int nid)
504{
505 unsigned long freed;
506
507 do {
508 struct mem_cgroup *memcg = NULL;
509
510 freed = 0;
511 do {
512 freed += shrink_slab(GFP_KERNEL, nid, memcg,
513 1000, 1000);
514 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
515 } while (freed > 10);
516}
517
518void drop_slab(void)
519{
520 int nid;
521
522 for_each_online_node(nid)
523 drop_slab_node(nid);
524}
525
1da177e4
LT
526static inline int is_page_cache_freeable(struct page *page)
527{
ceddc3a5
JW
528 /*
529 * A freeable page cache page is referenced only by the caller
530 * that isolated the page, the page cache radix tree and
531 * optional buffer heads at page->private.
532 */
edcf4748 533 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
534}
535
703c2708 536static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 537{
930d9152 538 if (current->flags & PF_SWAPWRITE)
1da177e4 539 return 1;
703c2708 540 if (!inode_write_congested(inode))
1da177e4 541 return 1;
703c2708 542 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
543 return 1;
544 return 0;
545}
546
547/*
548 * We detected a synchronous write error writing a page out. Probably
549 * -ENOSPC. We need to propagate that into the address_space for a subsequent
550 * fsync(), msync() or close().
551 *
552 * The tricky part is that after writepage we cannot touch the mapping: nothing
553 * prevents it from being freed up. But we have a ref on the page and once
554 * that page is locked, the mapping is pinned.
555 *
556 * We're allowed to run sleeping lock_page() here because we know the caller has
557 * __GFP_FS.
558 */
559static void handle_write_error(struct address_space *mapping,
560 struct page *page, int error)
561{
7eaceacc 562 lock_page(page);
3e9f45bd
GC
563 if (page_mapping(page) == mapping)
564 mapping_set_error(mapping, error);
1da177e4
LT
565 unlock_page(page);
566}
567
04e62a29
CL
568/* possible outcome of pageout() */
569typedef enum {
570 /* failed to write page out, page is locked */
571 PAGE_KEEP,
572 /* move page to the active list, page is locked */
573 PAGE_ACTIVATE,
574 /* page has been sent to the disk successfully, page is unlocked */
575 PAGE_SUCCESS,
576 /* page is clean and locked */
577 PAGE_CLEAN,
578} pageout_t;
579
1da177e4 580/*
1742f19f
AM
581 * pageout is called by shrink_page_list() for each dirty page.
582 * Calls ->writepage().
1da177e4 583 */
c661b078 584static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 585 struct scan_control *sc)
1da177e4
LT
586{
587 /*
588 * If the page is dirty, only perform writeback if that write
589 * will be non-blocking. To prevent this allocation from being
590 * stalled by pagecache activity. But note that there may be
591 * stalls if we need to run get_block(). We could test
592 * PagePrivate for that.
593 *
8174202b 594 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
595 * this page's queue, we can perform writeback even if that
596 * will block.
597 *
598 * If the page is swapcache, write it back even if that would
599 * block, for some throttling. This happens by accident, because
600 * swap_backing_dev_info is bust: it doesn't reflect the
601 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
602 */
603 if (!is_page_cache_freeable(page))
604 return PAGE_KEEP;
605 if (!mapping) {
606 /*
607 * Some data journaling orphaned pages can have
608 * page->mapping == NULL while being dirty with clean buffers.
609 */
266cf658 610 if (page_has_private(page)) {
1da177e4
LT
611 if (try_to_free_buffers(page)) {
612 ClearPageDirty(page);
b1de0d13 613 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
614 return PAGE_CLEAN;
615 }
616 }
617 return PAGE_KEEP;
618 }
619 if (mapping->a_ops->writepage == NULL)
620 return PAGE_ACTIVATE;
703c2708 621 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
622 return PAGE_KEEP;
623
624 if (clear_page_dirty_for_io(page)) {
625 int res;
626 struct writeback_control wbc = {
627 .sync_mode = WB_SYNC_NONE,
628 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
629 .range_start = 0,
630 .range_end = LLONG_MAX,
1da177e4
LT
631 .for_reclaim = 1,
632 };
633
634 SetPageReclaim(page);
635 res = mapping->a_ops->writepage(page, &wbc);
636 if (res < 0)
637 handle_write_error(mapping, page, res);
994fc28c 638 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
639 ClearPageReclaim(page);
640 return PAGE_ACTIVATE;
641 }
c661b078 642
1da177e4
LT
643 if (!PageWriteback(page)) {
644 /* synchronous write or broken a_ops? */
645 ClearPageReclaim(page);
646 }
3aa23851 647 trace_mm_vmscan_writepage(page);
c4a25635 648 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
649 return PAGE_SUCCESS;
650 }
651
652 return PAGE_CLEAN;
653}
654
a649fd92 655/*
e286781d
NP
656 * Same as remove_mapping, but if the page is removed from the mapping, it
657 * gets returned with a refcount of 0.
a649fd92 658 */
a528910e
JW
659static int __remove_mapping(struct address_space *mapping, struct page *page,
660 bool reclaimed)
49d2e9cc 661{
c4843a75 662 unsigned long flags;
c4843a75 663
28e4d965
NP
664 BUG_ON(!PageLocked(page));
665 BUG_ON(mapping != page_mapping(page));
49d2e9cc 666
c4843a75 667 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 668 /*
0fd0e6b0
NP
669 * The non racy check for a busy page.
670 *
671 * Must be careful with the order of the tests. When someone has
672 * a ref to the page, it may be possible that they dirty it then
673 * drop the reference. So if PageDirty is tested before page_count
674 * here, then the following race may occur:
675 *
676 * get_user_pages(&page);
677 * [user mapping goes away]
678 * write_to(page);
679 * !PageDirty(page) [good]
680 * SetPageDirty(page);
681 * put_page(page);
682 * !page_count(page) [good, discard it]
683 *
684 * [oops, our write_to data is lost]
685 *
686 * Reversing the order of the tests ensures such a situation cannot
687 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 688 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
689 *
690 * Note that if SetPageDirty is always performed via set_page_dirty,
691 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 692 */
fe896d18 693 if (!page_ref_freeze(page, 2))
49d2e9cc 694 goto cannot_free;
e286781d
NP
695 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
696 if (unlikely(PageDirty(page))) {
fe896d18 697 page_ref_unfreeze(page, 2);
49d2e9cc 698 goto cannot_free;
e286781d 699 }
49d2e9cc
CL
700
701 if (PageSwapCache(page)) {
702 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 703 mem_cgroup_swapout(page, swap);
49d2e9cc 704 __delete_from_swap_cache(page);
c4843a75 705 spin_unlock_irqrestore(&mapping->tree_lock, flags);
0a31bc97 706 swapcache_free(swap);
e286781d 707 } else {
6072d13c 708 void (*freepage)(struct page *);
a528910e 709 void *shadow = NULL;
6072d13c
LT
710
711 freepage = mapping->a_ops->freepage;
a528910e
JW
712 /*
713 * Remember a shadow entry for reclaimed file cache in
714 * order to detect refaults, thus thrashing, later on.
715 *
716 * But don't store shadows in an address space that is
717 * already exiting. This is not just an optizimation,
718 * inode reclaim needs to empty out the radix tree or
719 * the nodes are lost. Don't plant shadows behind its
720 * back.
f9fe48be
RZ
721 *
722 * We also don't store shadows for DAX mappings because the
723 * only page cache pages found in these are zero pages
724 * covering holes, and because we don't want to mix DAX
725 * exceptional entries and shadow exceptional entries in the
726 * same page_tree.
a528910e
JW
727 */
728 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 729 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 730 shadow = workingset_eviction(mapping, page);
62cccb8c 731 __delete_from_page_cache(page, shadow);
c4843a75 732 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
733
734 if (freepage != NULL)
735 freepage(page);
49d2e9cc
CL
736 }
737
49d2e9cc
CL
738 return 1;
739
740cannot_free:
c4843a75 741 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
742 return 0;
743}
744
e286781d
NP
745/*
746 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
747 * someone else has a ref on the page, abort and return 0. If it was
748 * successfully detached, return 1. Assumes the caller has a single ref on
749 * this page.
750 */
751int remove_mapping(struct address_space *mapping, struct page *page)
752{
a528910e 753 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
754 /*
755 * Unfreezing the refcount with 1 rather than 2 effectively
756 * drops the pagecache ref for us without requiring another
757 * atomic operation.
758 */
fe896d18 759 page_ref_unfreeze(page, 1);
e286781d
NP
760 return 1;
761 }
762 return 0;
763}
764
894bc310
LS
765/**
766 * putback_lru_page - put previously isolated page onto appropriate LRU list
767 * @page: page to be put back to appropriate lru list
768 *
769 * Add previously isolated @page to appropriate LRU list.
770 * Page may still be unevictable for other reasons.
771 *
772 * lru_lock must not be held, interrupts must be enabled.
773 */
894bc310
LS
774void putback_lru_page(struct page *page)
775{
0ec3b74c 776 bool is_unevictable;
bbfd28ee 777 int was_unevictable = PageUnevictable(page);
894bc310 778
309381fe 779 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
780
781redo:
782 ClearPageUnevictable(page);
783
39b5f29a 784 if (page_evictable(page)) {
894bc310
LS
785 /*
786 * For evictable pages, we can use the cache.
787 * In event of a race, worst case is we end up with an
788 * unevictable page on [in]active list.
789 * We know how to handle that.
790 */
0ec3b74c 791 is_unevictable = false;
c53954a0 792 lru_cache_add(page);
894bc310
LS
793 } else {
794 /*
795 * Put unevictable pages directly on zone's unevictable
796 * list.
797 */
0ec3b74c 798 is_unevictable = true;
894bc310 799 add_page_to_unevictable_list(page);
6a7b9548 800 /*
21ee9f39
MK
801 * When racing with an mlock or AS_UNEVICTABLE clearing
802 * (page is unlocked) make sure that if the other thread
803 * does not observe our setting of PG_lru and fails
24513264 804 * isolation/check_move_unevictable_pages,
21ee9f39 805 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
806 * the page back to the evictable list.
807 *
21ee9f39 808 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
809 */
810 smp_mb();
894bc310 811 }
894bc310
LS
812
813 /*
814 * page's status can change while we move it among lru. If an evictable
815 * page is on unevictable list, it never be freed. To avoid that,
816 * check after we added it to the list, again.
817 */
0ec3b74c 818 if (is_unevictable && page_evictable(page)) {
894bc310
LS
819 if (!isolate_lru_page(page)) {
820 put_page(page);
821 goto redo;
822 }
823 /* This means someone else dropped this page from LRU
824 * So, it will be freed or putback to LRU again. There is
825 * nothing to do here.
826 */
827 }
828
0ec3b74c 829 if (was_unevictable && !is_unevictable)
bbfd28ee 830 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 831 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
832 count_vm_event(UNEVICTABLE_PGCULLED);
833
894bc310
LS
834 put_page(page); /* drop ref from isolate */
835}
836
dfc8d636
JW
837enum page_references {
838 PAGEREF_RECLAIM,
839 PAGEREF_RECLAIM_CLEAN,
64574746 840 PAGEREF_KEEP,
dfc8d636
JW
841 PAGEREF_ACTIVATE,
842};
843
844static enum page_references page_check_references(struct page *page,
845 struct scan_control *sc)
846{
64574746 847 int referenced_ptes, referenced_page;
dfc8d636 848 unsigned long vm_flags;
dfc8d636 849
c3ac9a8a
JW
850 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
851 &vm_flags);
64574746 852 referenced_page = TestClearPageReferenced(page);
dfc8d636 853
dfc8d636
JW
854 /*
855 * Mlock lost the isolation race with us. Let try_to_unmap()
856 * move the page to the unevictable list.
857 */
858 if (vm_flags & VM_LOCKED)
859 return PAGEREF_RECLAIM;
860
64574746 861 if (referenced_ptes) {
e4898273 862 if (PageSwapBacked(page))
64574746
JW
863 return PAGEREF_ACTIVATE;
864 /*
865 * All mapped pages start out with page table
866 * references from the instantiating fault, so we need
867 * to look twice if a mapped file page is used more
868 * than once.
869 *
870 * Mark it and spare it for another trip around the
871 * inactive list. Another page table reference will
872 * lead to its activation.
873 *
874 * Note: the mark is set for activated pages as well
875 * so that recently deactivated but used pages are
876 * quickly recovered.
877 */
878 SetPageReferenced(page);
879
34dbc67a 880 if (referenced_page || referenced_ptes > 1)
64574746
JW
881 return PAGEREF_ACTIVATE;
882
c909e993
KK
883 /*
884 * Activate file-backed executable pages after first usage.
885 */
886 if (vm_flags & VM_EXEC)
887 return PAGEREF_ACTIVATE;
888
64574746
JW
889 return PAGEREF_KEEP;
890 }
dfc8d636
JW
891
892 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 893 if (referenced_page && !PageSwapBacked(page))
64574746
JW
894 return PAGEREF_RECLAIM_CLEAN;
895
896 return PAGEREF_RECLAIM;
dfc8d636
JW
897}
898
e2be15f6
MG
899/* Check if a page is dirty or under writeback */
900static void page_check_dirty_writeback(struct page *page,
901 bool *dirty, bool *writeback)
902{
b4597226
MG
903 struct address_space *mapping;
904
e2be15f6
MG
905 /*
906 * Anonymous pages are not handled by flushers and must be written
907 * from reclaim context. Do not stall reclaim based on them
908 */
909 if (!page_is_file_cache(page)) {
910 *dirty = false;
911 *writeback = false;
912 return;
913 }
914
915 /* By default assume that the page flags are accurate */
916 *dirty = PageDirty(page);
917 *writeback = PageWriteback(page);
b4597226
MG
918
919 /* Verify dirty/writeback state if the filesystem supports it */
920 if (!page_has_private(page))
921 return;
922
923 mapping = page_mapping(page);
924 if (mapping && mapping->a_ops->is_dirty_writeback)
925 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
926}
927
3c710c1a
MH
928struct reclaim_stat {
929 unsigned nr_dirty;
930 unsigned nr_unqueued_dirty;
931 unsigned nr_congested;
932 unsigned nr_writeback;
933 unsigned nr_immediate;
5bccd166
MH
934 unsigned nr_activate;
935 unsigned nr_ref_keep;
936 unsigned nr_unmap_fail;
3c710c1a
MH
937};
938
1da177e4 939/*
1742f19f 940 * shrink_page_list() returns the number of reclaimed pages
1da177e4 941 */
1742f19f 942static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 943 struct pglist_data *pgdat,
f84f6e2b 944 struct scan_control *sc,
02c6de8d 945 enum ttu_flags ttu_flags,
3c710c1a 946 struct reclaim_stat *stat,
02c6de8d 947 bool force_reclaim)
1da177e4
LT
948{
949 LIST_HEAD(ret_pages);
abe4c3b5 950 LIST_HEAD(free_pages);
1da177e4 951 int pgactivate = 0;
3c710c1a
MH
952 unsigned nr_unqueued_dirty = 0;
953 unsigned nr_dirty = 0;
954 unsigned nr_congested = 0;
955 unsigned nr_reclaimed = 0;
956 unsigned nr_writeback = 0;
957 unsigned nr_immediate = 0;
5bccd166
MH
958 unsigned nr_ref_keep = 0;
959 unsigned nr_unmap_fail = 0;
1da177e4
LT
960
961 cond_resched();
962
1da177e4
LT
963 while (!list_empty(page_list)) {
964 struct address_space *mapping;
965 struct page *page;
966 int may_enter_fs;
02c6de8d 967 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 968 bool dirty, writeback;
854e9ed0 969 int ret = SWAP_SUCCESS;
1da177e4
LT
970
971 cond_resched();
972
973 page = lru_to_page(page_list);
974 list_del(&page->lru);
975
529ae9aa 976 if (!trylock_page(page))
1da177e4
LT
977 goto keep;
978
309381fe 979 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
980
981 sc->nr_scanned++;
80e43426 982
39b5f29a 983 if (unlikely(!page_evictable(page)))
b291f000 984 goto cull_mlocked;
894bc310 985
a6dc60f8 986 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
987 goto keep_locked;
988
1da177e4
LT
989 /* Double the slab pressure for mapped and swapcache pages */
990 if (page_mapped(page) || PageSwapCache(page))
991 sc->nr_scanned++;
992
c661b078
AW
993 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
994 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
995
e2be15f6
MG
996 /*
997 * The number of dirty pages determines if a zone is marked
998 * reclaim_congested which affects wait_iff_congested. kswapd
999 * will stall and start writing pages if the tail of the LRU
1000 * is all dirty unqueued pages.
1001 */
1002 page_check_dirty_writeback(page, &dirty, &writeback);
1003 if (dirty || writeback)
1004 nr_dirty++;
1005
1006 if (dirty && !writeback)
1007 nr_unqueued_dirty++;
1008
d04e8acd
MG
1009 /*
1010 * Treat this page as congested if the underlying BDI is or if
1011 * pages are cycling through the LRU so quickly that the
1012 * pages marked for immediate reclaim are making it to the
1013 * end of the LRU a second time.
1014 */
e2be15f6 1015 mapping = page_mapping(page);
1da58ee2 1016 if (((dirty || writeback) && mapping &&
703c2708 1017 inode_write_congested(mapping->host)) ||
d04e8acd 1018 (writeback && PageReclaim(page)))
e2be15f6
MG
1019 nr_congested++;
1020
283aba9f
MG
1021 /*
1022 * If a page at the tail of the LRU is under writeback, there
1023 * are three cases to consider.
1024 *
1025 * 1) If reclaim is encountering an excessive number of pages
1026 * under writeback and this page is both under writeback and
1027 * PageReclaim then it indicates that pages are being queued
1028 * for IO but are being recycled through the LRU before the
1029 * IO can complete. Waiting on the page itself risks an
1030 * indefinite stall if it is impossible to writeback the
1031 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1032 * note that the LRU is being scanned too quickly and the
1033 * caller can stall after page list has been processed.
283aba9f 1034 *
97c9341f 1035 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1036 * not marked for immediate reclaim, or the caller does not
1037 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1038 * not to fs). In this case mark the page for immediate
97c9341f 1039 * reclaim and continue scanning.
283aba9f 1040 *
ecf5fc6e
MH
1041 * Require may_enter_fs because we would wait on fs, which
1042 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1043 * enter reclaim, and deadlock if it waits on a page for
1044 * which it is needed to do the write (loop masks off
1045 * __GFP_IO|__GFP_FS for this reason); but more thought
1046 * would probably show more reasons.
1047 *
7fadc820 1048 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1049 * PageReclaim. memcg does not have any dirty pages
1050 * throttling so we could easily OOM just because too many
1051 * pages are in writeback and there is nothing else to
1052 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1053 *
1054 * In cases 1) and 2) we activate the pages to get them out of
1055 * the way while we continue scanning for clean pages on the
1056 * inactive list and refilling from the active list. The
1057 * observation here is that waiting for disk writes is more
1058 * expensive than potentially causing reloads down the line.
1059 * Since they're marked for immediate reclaim, they won't put
1060 * memory pressure on the cache working set any longer than it
1061 * takes to write them to disk.
283aba9f 1062 */
c661b078 1063 if (PageWriteback(page)) {
283aba9f
MG
1064 /* Case 1 above */
1065 if (current_is_kswapd() &&
1066 PageReclaim(page) &&
599d0c95 1067 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e 1068 nr_immediate++;
c55e8d03 1069 goto activate_locked;
283aba9f
MG
1070
1071 /* Case 2 above */
97c9341f 1072 } else if (sane_reclaim(sc) ||
ecf5fc6e 1073 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1074 /*
1075 * This is slightly racy - end_page_writeback()
1076 * might have just cleared PageReclaim, then
1077 * setting PageReclaim here end up interpreted
1078 * as PageReadahead - but that does not matter
1079 * enough to care. What we do want is for this
1080 * page to have PageReclaim set next time memcg
1081 * reclaim reaches the tests above, so it will
1082 * then wait_on_page_writeback() to avoid OOM;
1083 * and it's also appropriate in global reclaim.
1084 */
1085 SetPageReclaim(page);
e62e384e 1086 nr_writeback++;
c55e8d03 1087 goto activate_locked;
283aba9f
MG
1088
1089 /* Case 3 above */
1090 } else {
7fadc820 1091 unlock_page(page);
283aba9f 1092 wait_on_page_writeback(page);
7fadc820
HD
1093 /* then go back and try same page again */
1094 list_add_tail(&page->lru, page_list);
1095 continue;
e62e384e 1096 }
c661b078 1097 }
1da177e4 1098
02c6de8d
MK
1099 if (!force_reclaim)
1100 references = page_check_references(page, sc);
1101
dfc8d636
JW
1102 switch (references) {
1103 case PAGEREF_ACTIVATE:
1da177e4 1104 goto activate_locked;
64574746 1105 case PAGEREF_KEEP:
5bccd166 1106 nr_ref_keep++;
64574746 1107 goto keep_locked;
dfc8d636
JW
1108 case PAGEREF_RECLAIM:
1109 case PAGEREF_RECLAIM_CLEAN:
1110 ; /* try to reclaim the page below */
1111 }
1da177e4 1112
1da177e4
LT
1113 /*
1114 * Anonymous process memory has backing store?
1115 * Try to allocate it some swap space here.
1116 */
b291f000 1117 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1118 if (!(sc->gfp_mask & __GFP_IO))
1119 goto keep_locked;
5bc7b8ac 1120 if (!add_to_swap(page, page_list))
1da177e4 1121 goto activate_locked;
63eb6b93 1122 may_enter_fs = 1;
1da177e4 1123
e2be15f6
MG
1124 /* Adding to swap updated mapping */
1125 mapping = page_mapping(page);
7751b2da
KS
1126 } else if (unlikely(PageTransHuge(page))) {
1127 /* Split file THP */
1128 if (split_huge_page_to_list(page, page_list))
1129 goto keep_locked;
e2be15f6 1130 }
1da177e4 1131
7751b2da
KS
1132 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1133
1da177e4
LT
1134 /*
1135 * The page is mapped into the page tables of one or more
1136 * processes. Try to unmap it here.
1137 */
1138 if (page_mapped(page) && mapping) {
a128ca71
SL
1139 switch (ret = try_to_unmap(page,
1140 ttu_flags | TTU_BATCH_FLUSH)) {
1da177e4 1141 case SWAP_FAIL:
5bccd166 1142 nr_unmap_fail++;
1da177e4
LT
1143 goto activate_locked;
1144 case SWAP_AGAIN:
1145 goto keep_locked;
b291f000
NP
1146 case SWAP_MLOCK:
1147 goto cull_mlocked;
854e9ed0
MK
1148 case SWAP_LZFREE:
1149 goto lazyfree;
1da177e4
LT
1150 case SWAP_SUCCESS:
1151 ; /* try to free the page below */
1152 }
1153 }
1154
1155 if (PageDirty(page)) {
ee72886d 1156 /*
4eda4823
JW
1157 * Only kswapd can writeback filesystem pages
1158 * to avoid risk of stack overflow. But avoid
1159 * injecting inefficient single-page IO into
1160 * flusher writeback as much as possible: only
1161 * write pages when we've encountered many
1162 * dirty pages, and when we've already scanned
1163 * the rest of the LRU for clean pages and see
1164 * the same dirty pages again (PageReclaim).
ee72886d 1165 */
f84f6e2b 1166 if (page_is_file_cache(page) &&
4eda4823
JW
1167 (!current_is_kswapd() || !PageReclaim(page) ||
1168 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1169 /*
1170 * Immediately reclaim when written back.
1171 * Similar in principal to deactivate_page()
1172 * except we already have the page isolated
1173 * and know it's dirty
1174 */
c4a25635 1175 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1176 SetPageReclaim(page);
1177
c55e8d03 1178 goto activate_locked;
ee72886d
MG
1179 }
1180
dfc8d636 1181 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1182 goto keep_locked;
4dd4b920 1183 if (!may_enter_fs)
1da177e4 1184 goto keep_locked;
52a8363e 1185 if (!sc->may_writepage)
1da177e4
LT
1186 goto keep_locked;
1187
d950c947
MG
1188 /*
1189 * Page is dirty. Flush the TLB if a writable entry
1190 * potentially exists to avoid CPU writes after IO
1191 * starts and then write it out here.
1192 */
1193 try_to_unmap_flush_dirty();
7d3579e8 1194 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1195 case PAGE_KEEP:
1196 goto keep_locked;
1197 case PAGE_ACTIVATE:
1198 goto activate_locked;
1199 case PAGE_SUCCESS:
7d3579e8 1200 if (PageWriteback(page))
41ac1999 1201 goto keep;
7d3579e8 1202 if (PageDirty(page))
1da177e4 1203 goto keep;
7d3579e8 1204
1da177e4
LT
1205 /*
1206 * A synchronous write - probably a ramdisk. Go
1207 * ahead and try to reclaim the page.
1208 */
529ae9aa 1209 if (!trylock_page(page))
1da177e4
LT
1210 goto keep;
1211 if (PageDirty(page) || PageWriteback(page))
1212 goto keep_locked;
1213 mapping = page_mapping(page);
1214 case PAGE_CLEAN:
1215 ; /* try to free the page below */
1216 }
1217 }
1218
1219 /*
1220 * If the page has buffers, try to free the buffer mappings
1221 * associated with this page. If we succeed we try to free
1222 * the page as well.
1223 *
1224 * We do this even if the page is PageDirty().
1225 * try_to_release_page() does not perform I/O, but it is
1226 * possible for a page to have PageDirty set, but it is actually
1227 * clean (all its buffers are clean). This happens if the
1228 * buffers were written out directly, with submit_bh(). ext3
894bc310 1229 * will do this, as well as the blockdev mapping.
1da177e4
LT
1230 * try_to_release_page() will discover that cleanness and will
1231 * drop the buffers and mark the page clean - it can be freed.
1232 *
1233 * Rarely, pages can have buffers and no ->mapping. These are
1234 * the pages which were not successfully invalidated in
1235 * truncate_complete_page(). We try to drop those buffers here
1236 * and if that worked, and the page is no longer mapped into
1237 * process address space (page_count == 1) it can be freed.
1238 * Otherwise, leave the page on the LRU so it is swappable.
1239 */
266cf658 1240 if (page_has_private(page)) {
1da177e4
LT
1241 if (!try_to_release_page(page, sc->gfp_mask))
1242 goto activate_locked;
e286781d
NP
1243 if (!mapping && page_count(page) == 1) {
1244 unlock_page(page);
1245 if (put_page_testzero(page))
1246 goto free_it;
1247 else {
1248 /*
1249 * rare race with speculative reference.
1250 * the speculative reference will free
1251 * this page shortly, so we may
1252 * increment nr_reclaimed here (and
1253 * leave it off the LRU).
1254 */
1255 nr_reclaimed++;
1256 continue;
1257 }
1258 }
1da177e4
LT
1259 }
1260
854e9ed0 1261lazyfree:
a528910e 1262 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1263 goto keep_locked;
1da177e4 1264
a978d6f5
NP
1265 /*
1266 * At this point, we have no other references and there is
1267 * no way to pick any more up (removed from LRU, removed
1268 * from pagecache). Can use non-atomic bitops now (and
1269 * we obviously don't have to worry about waking up a process
1270 * waiting on the page lock, because there are no references.
1271 */
48c935ad 1272 __ClearPageLocked(page);
e286781d 1273free_it:
854e9ed0
MK
1274 if (ret == SWAP_LZFREE)
1275 count_vm_event(PGLAZYFREED);
1276
05ff5137 1277 nr_reclaimed++;
abe4c3b5
MG
1278
1279 /*
1280 * Is there need to periodically free_page_list? It would
1281 * appear not as the counts should be low
1282 */
1283 list_add(&page->lru, &free_pages);
1da177e4
LT
1284 continue;
1285
b291f000 1286cull_mlocked:
63d6c5ad
HD
1287 if (PageSwapCache(page))
1288 try_to_free_swap(page);
b291f000 1289 unlock_page(page);
c54839a7 1290 list_add(&page->lru, &ret_pages);
b291f000
NP
1291 continue;
1292
1da177e4 1293activate_locked:
68a22394 1294 /* Not a candidate for swapping, so reclaim swap space. */
5ccc5aba 1295 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
a2c43eed 1296 try_to_free_swap(page);
309381fe 1297 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1298 SetPageActive(page);
1299 pgactivate++;
1300keep_locked:
1301 unlock_page(page);
1302keep:
1303 list_add(&page->lru, &ret_pages);
309381fe 1304 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1305 }
abe4c3b5 1306
747db954 1307 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1308 try_to_unmap_flush();
b745bc85 1309 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1310
1da177e4 1311 list_splice(&ret_pages, page_list);
f8891e5e 1312 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1313
3c710c1a
MH
1314 if (stat) {
1315 stat->nr_dirty = nr_dirty;
1316 stat->nr_congested = nr_congested;
1317 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1318 stat->nr_writeback = nr_writeback;
1319 stat->nr_immediate = nr_immediate;
5bccd166
MH
1320 stat->nr_activate = pgactivate;
1321 stat->nr_ref_keep = nr_ref_keep;
1322 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1323 }
05ff5137 1324 return nr_reclaimed;
1da177e4
LT
1325}
1326
02c6de8d
MK
1327unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1328 struct list_head *page_list)
1329{
1330 struct scan_control sc = {
1331 .gfp_mask = GFP_KERNEL,
1332 .priority = DEF_PRIORITY,
1333 .may_unmap = 1,
1334 };
3c710c1a 1335 unsigned long ret;
02c6de8d
MK
1336 struct page *page, *next;
1337 LIST_HEAD(clean_pages);
1338
1339 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1340 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1341 !__PageMovable(page)) {
02c6de8d
MK
1342 ClearPageActive(page);
1343 list_move(&page->lru, &clean_pages);
1344 }
1345 }
1346
599d0c95 1347 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
a128ca71 1348 TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1349 list_splice(&clean_pages, page_list);
599d0c95 1350 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1351 return ret;
1352}
1353
5ad333eb
AW
1354/*
1355 * Attempt to remove the specified page from its LRU. Only take this page
1356 * if it is of the appropriate PageActive status. Pages which are being
1357 * freed elsewhere are also ignored.
1358 *
1359 * page: page to consider
1360 * mode: one of the LRU isolation modes defined above
1361 *
1362 * returns 0 on success, -ve errno on failure.
1363 */
f3fd4a61 1364int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1365{
1366 int ret = -EINVAL;
1367
1368 /* Only take pages on the LRU. */
1369 if (!PageLRU(page))
1370 return ret;
1371
e46a2879
MK
1372 /* Compaction should not handle unevictable pages but CMA can do so */
1373 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1374 return ret;
1375
5ad333eb 1376 ret = -EBUSY;
08e552c6 1377
c8244935
MG
1378 /*
1379 * To minimise LRU disruption, the caller can indicate that it only
1380 * wants to isolate pages it will be able to operate on without
1381 * blocking - clean pages for the most part.
1382 *
c8244935
MG
1383 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1384 * that it is possible to migrate without blocking
1385 */
1276ad68 1386 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1387 /* All the caller can do on PageWriteback is block */
1388 if (PageWriteback(page))
1389 return ret;
1390
1391 if (PageDirty(page)) {
1392 struct address_space *mapping;
1393
c8244935
MG
1394 /*
1395 * Only pages without mappings or that have a
1396 * ->migratepage callback are possible to migrate
1397 * without blocking
1398 */
1399 mapping = page_mapping(page);
1400 if (mapping && !mapping->a_ops->migratepage)
1401 return ret;
1402 }
1403 }
39deaf85 1404
f80c0673
MK
1405 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1406 return ret;
1407
5ad333eb
AW
1408 if (likely(get_page_unless_zero(page))) {
1409 /*
1410 * Be careful not to clear PageLRU until after we're
1411 * sure the page is not being freed elsewhere -- the
1412 * page release code relies on it.
1413 */
1414 ClearPageLRU(page);
1415 ret = 0;
1416 }
1417
1418 return ret;
1419}
1420
7ee36a14
MG
1421
1422/*
1423 * Update LRU sizes after isolating pages. The LRU size updates must
1424 * be complete before mem_cgroup_update_lru_size due to a santity check.
1425 */
1426static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1427 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1428{
7ee36a14
MG
1429 int zid;
1430
7ee36a14
MG
1431 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1432 if (!nr_zone_taken[zid])
1433 continue;
1434
1435 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1436#ifdef CONFIG_MEMCG
b4536f0c 1437 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1438#endif
b4536f0c
MH
1439 }
1440
7ee36a14
MG
1441}
1442
1da177e4 1443/*
a52633d8 1444 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1445 * shrink the lists perform better by taking out a batch of pages
1446 * and working on them outside the LRU lock.
1447 *
1448 * For pagecache intensive workloads, this function is the hottest
1449 * spot in the kernel (apart from copy_*_user functions).
1450 *
1451 * Appropriate locks must be held before calling this function.
1452 *
1453 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1454 * @lruvec: The LRU vector to pull pages from.
1da177e4 1455 * @dst: The temp list to put pages on to.
f626012d 1456 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1457 * @sc: The scan_control struct for this reclaim session
5ad333eb 1458 * @mode: One of the LRU isolation modes
3cb99451 1459 * @lru: LRU list id for isolating
1da177e4
LT
1460 *
1461 * returns how many pages were moved onto *@dst.
1462 */
69e05944 1463static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1464 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1465 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1466 isolate_mode_t mode, enum lru_list lru)
1da177e4 1467{
75b00af7 1468 struct list_head *src = &lruvec->lists[lru];
69e05944 1469 unsigned long nr_taken = 0;
599d0c95 1470 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1471 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1472 unsigned long skipped = 0;
599d0c95 1473 unsigned long scan, nr_pages;
b2e18757 1474 LIST_HEAD(pages_skipped);
1da177e4 1475
0b802f10 1476 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
3db65812 1477 !list_empty(src); scan++) {
5ad333eb 1478 struct page *page;
5ad333eb 1479
1da177e4
LT
1480 page = lru_to_page(src);
1481 prefetchw_prev_lru_page(page, src, flags);
1482
309381fe 1483 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1484
b2e18757
MG
1485 if (page_zonenum(page) > sc->reclaim_idx) {
1486 list_move(&page->lru, &pages_skipped);
7cc30fcf 1487 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1488 continue;
1489 }
1490
f3fd4a61 1491 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1492 case 0:
599d0c95
MG
1493 nr_pages = hpage_nr_pages(page);
1494 nr_taken += nr_pages;
1495 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1496 list_move(&page->lru, dst);
5ad333eb
AW
1497 break;
1498
1499 case -EBUSY:
1500 /* else it is being freed elsewhere */
1501 list_move(&page->lru, src);
1502 continue;
46453a6e 1503
5ad333eb
AW
1504 default:
1505 BUG();
1506 }
1da177e4
LT
1507 }
1508
b2e18757
MG
1509 /*
1510 * Splice any skipped pages to the start of the LRU list. Note that
1511 * this disrupts the LRU order when reclaiming for lower zones but
1512 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1513 * scanning would soon rescan the same pages to skip and put the
1514 * system at risk of premature OOM.
1515 */
7cc30fcf
MG
1516 if (!list_empty(&pages_skipped)) {
1517 int zid;
1518
3db65812 1519 list_splice(&pages_skipped, src);
7cc30fcf
MG
1520 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1521 if (!nr_skipped[zid])
1522 continue;
1523
1524 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1525 skipped += nr_skipped[zid];
7cc30fcf
MG
1526 }
1527 }
3db65812 1528 *nr_scanned = scan;
1265e3a6 1529 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
32b3f297 1530 scan, skipped, nr_taken, mode, lru);
b4536f0c 1531 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1532 return nr_taken;
1533}
1534
62695a84
NP
1535/**
1536 * isolate_lru_page - tries to isolate a page from its LRU list
1537 * @page: page to isolate from its LRU list
1538 *
1539 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1540 * vmstat statistic corresponding to whatever LRU list the page was on.
1541 *
1542 * Returns 0 if the page was removed from an LRU list.
1543 * Returns -EBUSY if the page was not on an LRU list.
1544 *
1545 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1546 * the active list, it will have PageActive set. If it was found on
1547 * the unevictable list, it will have the PageUnevictable bit set. That flag
1548 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1549 *
1550 * The vmstat statistic corresponding to the list on which the page was
1551 * found will be decremented.
1552 *
1553 * Restrictions:
1554 * (1) Must be called with an elevated refcount on the page. This is a
1555 * fundamentnal difference from isolate_lru_pages (which is called
1556 * without a stable reference).
1557 * (2) the lru_lock must not be held.
1558 * (3) interrupts must be enabled.
1559 */
1560int isolate_lru_page(struct page *page)
1561{
1562 int ret = -EBUSY;
1563
309381fe 1564 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1565 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1566
62695a84
NP
1567 if (PageLRU(page)) {
1568 struct zone *zone = page_zone(page);
fa9add64 1569 struct lruvec *lruvec;
62695a84 1570
a52633d8 1571 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1572 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1573 if (PageLRU(page)) {
894bc310 1574 int lru = page_lru(page);
0c917313 1575 get_page(page);
62695a84 1576 ClearPageLRU(page);
fa9add64
HD
1577 del_page_from_lru_list(page, lruvec, lru);
1578 ret = 0;
62695a84 1579 }
a52633d8 1580 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1581 }
1582 return ret;
1583}
1584
35cd7815 1585/*
d37dd5dc
FW
1586 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1587 * then get resheduled. When there are massive number of tasks doing page
1588 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1589 * the LRU list will go small and be scanned faster than necessary, leading to
1590 * unnecessary swapping, thrashing and OOM.
35cd7815 1591 */
599d0c95 1592static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1593 struct scan_control *sc)
1594{
1595 unsigned long inactive, isolated;
1596
1597 if (current_is_kswapd())
1598 return 0;
1599
97c9341f 1600 if (!sane_reclaim(sc))
35cd7815
RR
1601 return 0;
1602
1603 if (file) {
599d0c95
MG
1604 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1605 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1606 } else {
599d0c95
MG
1607 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1608 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1609 }
1610
3cf23841
FW
1611 /*
1612 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1613 * won't get blocked by normal direct-reclaimers, forming a circular
1614 * deadlock.
1615 */
d0164adc 1616 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1617 inactive >>= 3;
1618
35cd7815
RR
1619 return isolated > inactive;
1620}
1621
66635629 1622static noinline_for_stack void
75b00af7 1623putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1624{
27ac81d8 1625 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1626 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1627 LIST_HEAD(pages_to_free);
66635629 1628
66635629
MG
1629 /*
1630 * Put back any unfreeable pages.
1631 */
66635629 1632 while (!list_empty(page_list)) {
3f79768f 1633 struct page *page = lru_to_page(page_list);
66635629 1634 int lru;
3f79768f 1635
309381fe 1636 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1637 list_del(&page->lru);
39b5f29a 1638 if (unlikely(!page_evictable(page))) {
599d0c95 1639 spin_unlock_irq(&pgdat->lru_lock);
66635629 1640 putback_lru_page(page);
599d0c95 1641 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1642 continue;
1643 }
fa9add64 1644
599d0c95 1645 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1646
7a608572 1647 SetPageLRU(page);
66635629 1648 lru = page_lru(page);
fa9add64
HD
1649 add_page_to_lru_list(page, lruvec, lru);
1650
66635629
MG
1651 if (is_active_lru(lru)) {
1652 int file = is_file_lru(lru);
9992af10
RR
1653 int numpages = hpage_nr_pages(page);
1654 reclaim_stat->recent_rotated[file] += numpages;
66635629 1655 }
2bcf8879
HD
1656 if (put_page_testzero(page)) {
1657 __ClearPageLRU(page);
1658 __ClearPageActive(page);
fa9add64 1659 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1660
1661 if (unlikely(PageCompound(page))) {
599d0c95 1662 spin_unlock_irq(&pgdat->lru_lock);
747db954 1663 mem_cgroup_uncharge(page);
2bcf8879 1664 (*get_compound_page_dtor(page))(page);
599d0c95 1665 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1666 } else
1667 list_add(&page->lru, &pages_to_free);
66635629
MG
1668 }
1669 }
66635629 1670
3f79768f
HD
1671 /*
1672 * To save our caller's stack, now use input list for pages to free.
1673 */
1674 list_splice(&pages_to_free, page_list);
66635629
MG
1675}
1676
399ba0b9
N
1677/*
1678 * If a kernel thread (such as nfsd for loop-back mounts) services
1679 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1680 * In that case we should only throttle if the backing device it is
1681 * writing to is congested. In other cases it is safe to throttle.
1682 */
1683static int current_may_throttle(void)
1684{
1685 return !(current->flags & PF_LESS_THROTTLE) ||
1686 current->backing_dev_info == NULL ||
1687 bdi_write_congested(current->backing_dev_info);
1688}
1689
1da177e4 1690/*
b2e18757 1691 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1692 * of reclaimed pages
1da177e4 1693 */
66635629 1694static noinline_for_stack unsigned long
1a93be0e 1695shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1696 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1697{
1698 LIST_HEAD(page_list);
e247dbce 1699 unsigned long nr_scanned;
05ff5137 1700 unsigned long nr_reclaimed = 0;
e247dbce 1701 unsigned long nr_taken;
3c710c1a 1702 struct reclaim_stat stat = {};
f3fd4a61 1703 isolate_mode_t isolate_mode = 0;
3cb99451 1704 int file = is_file_lru(lru);
599d0c95 1705 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1706 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1707
599d0c95 1708 while (unlikely(too_many_isolated(pgdat, file, sc))) {
58355c78 1709 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1710
1711 /* We are about to die and free our memory. Return now. */
1712 if (fatal_signal_pending(current))
1713 return SWAP_CLUSTER_MAX;
1714 }
1715
1da177e4 1716 lru_add_drain();
f80c0673
MK
1717
1718 if (!sc->may_unmap)
61317289 1719 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1720
599d0c95 1721 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1722
5dc35979
KK
1723 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1724 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1725
599d0c95 1726 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1727 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1728
89b5fae5 1729 if (global_reclaim(sc)) {
e247dbce 1730 if (current_is_kswapd())
599d0c95 1731 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
e247dbce 1732 else
599d0c95 1733 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
e247dbce 1734 }
599d0c95 1735 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1736
d563c050 1737 if (nr_taken == 0)
66635629 1738 return 0;
5ad333eb 1739
a128ca71 1740 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1741 &stat, false);
c661b078 1742
599d0c95 1743 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1744
904249aa
YH
1745 if (global_reclaim(sc)) {
1746 if (current_is_kswapd())
599d0c95 1747 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
904249aa 1748 else
599d0c95 1749 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
904249aa 1750 }
a74609fa 1751
27ac81d8 1752 putback_inactive_pages(lruvec, &page_list);
3f79768f 1753
599d0c95 1754 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1755
599d0c95 1756 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1757
747db954 1758 mem_cgroup_uncharge_list(&page_list);
b745bc85 1759 free_hot_cold_page_list(&page_list, true);
e11da5b4 1760
92df3a72
MG
1761 /*
1762 * If reclaim is isolating dirty pages under writeback, it implies
1763 * that the long-lived page allocation rate is exceeding the page
1764 * laundering rate. Either the global limits are not being effective
1765 * at throttling processes due to the page distribution throughout
1766 * zones or there is heavy usage of a slow backing device. The
1767 * only option is to throttle from reclaim context which is not ideal
1768 * as there is no guarantee the dirtying process is throttled in the
1769 * same way balance_dirty_pages() manages.
1770 *
8e950282
MG
1771 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1772 * of pages under pages flagged for immediate reclaim and stall if any
1773 * are encountered in the nr_immediate check below.
92df3a72 1774 */
3c710c1a 1775 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
599d0c95 1776 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1777
d43006d5 1778 /*
97c9341f
TH
1779 * Legacy memcg will stall in page writeback so avoid forcibly
1780 * stalling here.
d43006d5 1781 */
97c9341f 1782 if (sane_reclaim(sc)) {
8e950282
MG
1783 /*
1784 * Tag a zone as congested if all the dirty pages scanned were
1785 * backed by a congested BDI and wait_iff_congested will stall.
1786 */
3c710c1a 1787 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
599d0c95 1788 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1789
b1a6f21e
MG
1790 /*
1791 * If dirty pages are scanned that are not queued for IO, it
726d061f
JW
1792 * implies that flushers are not doing their job. This can
1793 * happen when memory pressure pushes dirty pages to the end of
1794 * the LRU before the dirty limits are breached and the dirty
1795 * data has expired. It can also happen when the proportion of
1796 * dirty pages grows not through writes but through memory
1797 * pressure reclaiming all the clean cache. And in some cases,
1798 * the flushers simply cannot keep up with the allocation
1799 * rate. Nudge the flusher threads in case they are asleep, but
1800 * also allow kswapd to start writing pages during reclaim.
b1a6f21e 1801 */
726d061f
JW
1802 if (stat.nr_unqueued_dirty == nr_taken) {
1803 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
599d0c95 1804 set_bit(PGDAT_DIRTY, &pgdat->flags);
726d061f 1805 }
b1a6f21e
MG
1806
1807 /*
b738d764
LT
1808 * If kswapd scans pages marked marked for immediate
1809 * reclaim and under writeback (nr_immediate), it implies
1810 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1811 * they are written so also forcibly stall.
1812 */
3c710c1a 1813 if (stat.nr_immediate && current_may_throttle())
b1a6f21e 1814 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1815 }
d43006d5 1816
8e950282
MG
1817 /*
1818 * Stall direct reclaim for IO completions if underlying BDIs or zone
1819 * is congested. Allow kswapd to continue until it starts encountering
1820 * unqueued dirty pages or cycling through the LRU too quickly.
1821 */
399ba0b9
N
1822 if (!sc->hibernation_mode && !current_is_kswapd() &&
1823 current_may_throttle())
599d0c95 1824 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1825
599d0c95
MG
1826 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1827 nr_scanned, nr_reclaimed,
5bccd166
MH
1828 stat.nr_dirty, stat.nr_writeback,
1829 stat.nr_congested, stat.nr_immediate,
1830 stat.nr_activate, stat.nr_ref_keep,
1831 stat.nr_unmap_fail,
ba5e9579 1832 sc->priority, file);
05ff5137 1833 return nr_reclaimed;
1da177e4
LT
1834}
1835
1836/*
1837 * This moves pages from the active list to the inactive list.
1838 *
1839 * We move them the other way if the page is referenced by one or more
1840 * processes, from rmap.
1841 *
1842 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1843 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1844 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1845 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1846 * this, so instead we remove the pages from the LRU while processing them.
1847 * It is safe to rely on PG_active against the non-LRU pages in here because
1848 * nobody will play with that bit on a non-LRU page.
1849 *
0139aa7b 1850 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1851 * But we had to alter page->flags anyway.
9d998b4f
MH
1852 *
1853 * Returns the number of pages moved to the given lru.
1da177e4 1854 */
1cfb419b 1855
9d998b4f 1856static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1857 struct list_head *list,
2bcf8879 1858 struct list_head *pages_to_free,
3eb4140f
WF
1859 enum lru_list lru)
1860{
599d0c95 1861 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1862 struct page *page;
fa9add64 1863 int nr_pages;
9d998b4f 1864 int nr_moved = 0;
3eb4140f 1865
3eb4140f
WF
1866 while (!list_empty(list)) {
1867 page = lru_to_page(list);
599d0c95 1868 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1869
309381fe 1870 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1871 SetPageLRU(page);
1872
fa9add64 1873 nr_pages = hpage_nr_pages(page);
599d0c95 1874 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1875 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 1876
2bcf8879
HD
1877 if (put_page_testzero(page)) {
1878 __ClearPageLRU(page);
1879 __ClearPageActive(page);
fa9add64 1880 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1881
1882 if (unlikely(PageCompound(page))) {
599d0c95 1883 spin_unlock_irq(&pgdat->lru_lock);
747db954 1884 mem_cgroup_uncharge(page);
2bcf8879 1885 (*get_compound_page_dtor(page))(page);
599d0c95 1886 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1887 } else
1888 list_add(&page->lru, pages_to_free);
9d998b4f
MH
1889 } else {
1890 nr_moved += nr_pages;
3eb4140f
WF
1891 }
1892 }
9d5e6a9f 1893
3eb4140f 1894 if (!is_active_lru(lru))
f0958906 1895 __count_vm_events(PGDEACTIVATE, nr_moved);
9d998b4f
MH
1896
1897 return nr_moved;
3eb4140f 1898}
1cfb419b 1899
f626012d 1900static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1901 struct lruvec *lruvec,
f16015fb 1902 struct scan_control *sc,
9e3b2f8c 1903 enum lru_list lru)
1da177e4 1904{
44c241f1 1905 unsigned long nr_taken;
f626012d 1906 unsigned long nr_scanned;
6fe6b7e3 1907 unsigned long vm_flags;
1da177e4 1908 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1909 LIST_HEAD(l_active);
b69408e8 1910 LIST_HEAD(l_inactive);
1da177e4 1911 struct page *page;
1a93be0e 1912 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
1913 unsigned nr_deactivate, nr_activate;
1914 unsigned nr_rotated = 0;
f3fd4a61 1915 isolate_mode_t isolate_mode = 0;
3cb99451 1916 int file = is_file_lru(lru);
599d0c95 1917 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1918
1919 lru_add_drain();
f80c0673
MK
1920
1921 if (!sc->may_unmap)
61317289 1922 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1923
599d0c95 1924 spin_lock_irq(&pgdat->lru_lock);
925b7673 1925
5dc35979
KK
1926 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1927 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1928
599d0c95 1929 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1930 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1931
599d0c95 1932 __count_vm_events(PGREFILL, nr_scanned);
9d5e6a9f 1933
599d0c95 1934 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 1935
1da177e4
LT
1936 while (!list_empty(&l_hold)) {
1937 cond_resched();
1938 page = lru_to_page(&l_hold);
1939 list_del(&page->lru);
7e9cd484 1940
39b5f29a 1941 if (unlikely(!page_evictable(page))) {
894bc310
LS
1942 putback_lru_page(page);
1943 continue;
1944 }
1945
cc715d99
MG
1946 if (unlikely(buffer_heads_over_limit)) {
1947 if (page_has_private(page) && trylock_page(page)) {
1948 if (page_has_private(page))
1949 try_to_release_page(page, 0);
1950 unlock_page(page);
1951 }
1952 }
1953
c3ac9a8a
JW
1954 if (page_referenced(page, 0, sc->target_mem_cgroup,
1955 &vm_flags)) {
9992af10 1956 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1957 /*
1958 * Identify referenced, file-backed active pages and
1959 * give them one more trip around the active list. So
1960 * that executable code get better chances to stay in
1961 * memory under moderate memory pressure. Anon pages
1962 * are not likely to be evicted by use-once streaming
1963 * IO, plus JVM can create lots of anon VM_EXEC pages,
1964 * so we ignore them here.
1965 */
41e20983 1966 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1967 list_add(&page->lru, &l_active);
1968 continue;
1969 }
1970 }
7e9cd484 1971
5205e56e 1972 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1973 list_add(&page->lru, &l_inactive);
1974 }
1975
b555749a 1976 /*
8cab4754 1977 * Move pages back to the lru list.
b555749a 1978 */
599d0c95 1979 spin_lock_irq(&pgdat->lru_lock);
556adecb 1980 /*
8cab4754
WF
1981 * Count referenced pages from currently used mappings as rotated,
1982 * even though only some of them are actually re-activated. This
1983 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1984 * get_scan_count.
7e9cd484 1985 */
b7c46d15 1986 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1987
9d998b4f
MH
1988 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1989 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
1990 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1991 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 1992
747db954 1993 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1994 free_hot_cold_page_list(&l_hold, true);
9d998b4f
MH
1995 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
1996 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
1997}
1998
59dc76b0
RR
1999/*
2000 * The inactive anon list should be small enough that the VM never has
2001 * to do too much work.
14797e23 2002 *
59dc76b0
RR
2003 * The inactive file list should be small enough to leave most memory
2004 * to the established workingset on the scan-resistant active list,
2005 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2006 *
59dc76b0
RR
2007 * Both inactive lists should also be large enough that each inactive
2008 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2009 *
59dc76b0
RR
2010 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2011 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2012 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2013 *
59dc76b0
RR
2014 * total target max
2015 * memory ratio inactive
2016 * -------------------------------------
2017 * 10MB 1 5MB
2018 * 100MB 1 50MB
2019 * 1GB 3 250MB
2020 * 10GB 10 0.9GB
2021 * 100GB 31 3GB
2022 * 1TB 101 10GB
2023 * 10TB 320 32GB
56e49d21 2024 */
f8d1a311 2025static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
dcec0b60 2026 struct scan_control *sc, bool trace)
56e49d21 2027{
59dc76b0 2028 unsigned long inactive_ratio;
fd538803
MH
2029 unsigned long inactive, active;
2030 enum lru_list inactive_lru = file * LRU_FILE;
2031 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
59dc76b0 2032 unsigned long gb;
e3790144 2033
59dc76b0
RR
2034 /*
2035 * If we don't have swap space, anonymous page deactivation
2036 * is pointless.
2037 */
2038 if (!file && !total_swap_pages)
2039 return false;
56e49d21 2040
fd538803
MH
2041 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2042 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2043
59dc76b0
RR
2044 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2045 if (gb)
2046 inactive_ratio = int_sqrt(10 * gb);
b39415b2 2047 else
59dc76b0
RR
2048 inactive_ratio = 1;
2049
dcec0b60 2050 if (trace)
fd538803 2051 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
dcec0b60 2052 sc->reclaim_idx,
fd538803
MH
2053 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2054 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2055 inactive_ratio, file);
2056
59dc76b0 2057 return inactive * inactive_ratio < active;
b39415b2
RR
2058}
2059
4f98a2fe 2060static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 2061 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2062{
b39415b2 2063 if (is_active_lru(lru)) {
dcec0b60 2064 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2065 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2066 return 0;
2067 }
2068
1a93be0e 2069 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2070}
2071
9a265114
JW
2072enum scan_balance {
2073 SCAN_EQUAL,
2074 SCAN_FRACT,
2075 SCAN_ANON,
2076 SCAN_FILE,
2077};
2078
4f98a2fe
RR
2079/*
2080 * Determine how aggressively the anon and file LRU lists should be
2081 * scanned. The relative value of each set of LRU lists is determined
2082 * by looking at the fraction of the pages scanned we did rotate back
2083 * onto the active list instead of evict.
2084 *
be7bd59d
WL
2085 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2086 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2087 */
33377678 2088static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2089 struct scan_control *sc, unsigned long *nr,
2090 unsigned long *lru_pages)
4f98a2fe 2091{
33377678 2092 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2093 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2094 u64 fraction[2];
2095 u64 denominator = 0; /* gcc */
599d0c95 2096 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2097 unsigned long anon_prio, file_prio;
9a265114 2098 enum scan_balance scan_balance;
0bf1457f 2099 unsigned long anon, file;
4f98a2fe 2100 unsigned long ap, fp;
4111304d 2101 enum lru_list lru;
76a33fc3
SL
2102
2103 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2104 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2105 scan_balance = SCAN_FILE;
76a33fc3
SL
2106 goto out;
2107 }
4f98a2fe 2108
10316b31
JW
2109 /*
2110 * Global reclaim will swap to prevent OOM even with no
2111 * swappiness, but memcg users want to use this knob to
2112 * disable swapping for individual groups completely when
2113 * using the memory controller's swap limit feature would be
2114 * too expensive.
2115 */
02695175 2116 if (!global_reclaim(sc) && !swappiness) {
9a265114 2117 scan_balance = SCAN_FILE;
10316b31
JW
2118 goto out;
2119 }
2120
2121 /*
2122 * Do not apply any pressure balancing cleverness when the
2123 * system is close to OOM, scan both anon and file equally
2124 * (unless the swappiness setting disagrees with swapping).
2125 */
02695175 2126 if (!sc->priority && swappiness) {
9a265114 2127 scan_balance = SCAN_EQUAL;
10316b31
JW
2128 goto out;
2129 }
2130
62376251
JW
2131 /*
2132 * Prevent the reclaimer from falling into the cache trap: as
2133 * cache pages start out inactive, every cache fault will tip
2134 * the scan balance towards the file LRU. And as the file LRU
2135 * shrinks, so does the window for rotation from references.
2136 * This means we have a runaway feedback loop where a tiny
2137 * thrashing file LRU becomes infinitely more attractive than
2138 * anon pages. Try to detect this based on file LRU size.
2139 */
2140 if (global_reclaim(sc)) {
599d0c95
MG
2141 unsigned long pgdatfile;
2142 unsigned long pgdatfree;
2143 int z;
2144 unsigned long total_high_wmark = 0;
2ab051e1 2145
599d0c95
MG
2146 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2147 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2148 node_page_state(pgdat, NR_INACTIVE_FILE);
2149
2150 for (z = 0; z < MAX_NR_ZONES; z++) {
2151 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2152 if (!managed_zone(zone))
599d0c95
MG
2153 continue;
2154
2155 total_high_wmark += high_wmark_pages(zone);
2156 }
62376251 2157
599d0c95 2158 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
62376251
JW
2159 scan_balance = SCAN_ANON;
2160 goto out;
2161 }
2162 }
2163
7c5bd705 2164 /*
316bda0e
VD
2165 * If there is enough inactive page cache, i.e. if the size of the
2166 * inactive list is greater than that of the active list *and* the
2167 * inactive list actually has some pages to scan on this priority, we
2168 * do not reclaim anything from the anonymous working set right now.
2169 * Without the second condition we could end up never scanning an
2170 * lruvec even if it has plenty of old anonymous pages unless the
2171 * system is under heavy pressure.
7c5bd705 2172 */
dcec0b60 2173 if (!inactive_list_is_low(lruvec, true, sc, false) &&
71ab6cfe 2174 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2175 scan_balance = SCAN_FILE;
7c5bd705
JW
2176 goto out;
2177 }
2178
9a265114
JW
2179 scan_balance = SCAN_FRACT;
2180
58c37f6e
KM
2181 /*
2182 * With swappiness at 100, anonymous and file have the same priority.
2183 * This scanning priority is essentially the inverse of IO cost.
2184 */
02695175 2185 anon_prio = swappiness;
75b00af7 2186 file_prio = 200 - anon_prio;
58c37f6e 2187
4f98a2fe
RR
2188 /*
2189 * OK, so we have swap space and a fair amount of page cache
2190 * pages. We use the recently rotated / recently scanned
2191 * ratios to determine how valuable each cache is.
2192 *
2193 * Because workloads change over time (and to avoid overflow)
2194 * we keep these statistics as a floating average, which ends
2195 * up weighing recent references more than old ones.
2196 *
2197 * anon in [0], file in [1]
2198 */
2ab051e1 2199
fd538803
MH
2200 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2201 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2202 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2203 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2204
599d0c95 2205 spin_lock_irq(&pgdat->lru_lock);
6e901571 2206 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2207 reclaim_stat->recent_scanned[0] /= 2;
2208 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2209 }
2210
6e901571 2211 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2212 reclaim_stat->recent_scanned[1] /= 2;
2213 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2214 }
2215
4f98a2fe 2216 /*
00d8089c
RR
2217 * The amount of pressure on anon vs file pages is inversely
2218 * proportional to the fraction of recently scanned pages on
2219 * each list that were recently referenced and in active use.
4f98a2fe 2220 */
fe35004f 2221 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2222 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2223
fe35004f 2224 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2225 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2226 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2227
76a33fc3
SL
2228 fraction[0] = ap;
2229 fraction[1] = fp;
2230 denominator = ap + fp + 1;
2231out:
688035f7
JW
2232 *lru_pages = 0;
2233 for_each_evictable_lru(lru) {
2234 int file = is_file_lru(lru);
2235 unsigned long size;
2236 unsigned long scan;
6b4f7799 2237
688035f7
JW
2238 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2239 scan = size >> sc->priority;
2240 /*
2241 * If the cgroup's already been deleted, make sure to
2242 * scrape out the remaining cache.
2243 */
2244 if (!scan && !mem_cgroup_online(memcg))
2245 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2246
688035f7
JW
2247 switch (scan_balance) {
2248 case SCAN_EQUAL:
2249 /* Scan lists relative to size */
2250 break;
2251 case SCAN_FRACT:
9a265114 2252 /*
688035f7
JW
2253 * Scan types proportional to swappiness and
2254 * their relative recent reclaim efficiency.
9a265114 2255 */
688035f7
JW
2256 scan = div64_u64(scan * fraction[file],
2257 denominator);
2258 break;
2259 case SCAN_FILE:
2260 case SCAN_ANON:
2261 /* Scan one type exclusively */
2262 if ((scan_balance == SCAN_FILE) != file) {
2263 size = 0;
2264 scan = 0;
2265 }
2266 break;
2267 default:
2268 /* Look ma, no brain */
2269 BUG();
9a265114 2270 }
688035f7
JW
2271
2272 *lru_pages += size;
2273 nr[lru] = scan;
76a33fc3 2274 }
6e08a369 2275}
4f98a2fe 2276
9b4f98cd 2277/*
a9dd0a83 2278 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2279 */
a9dd0a83 2280static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2281 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2282{
ef8f2327 2283 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2284 unsigned long nr[NR_LRU_LISTS];
e82e0561 2285 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2286 unsigned long nr_to_scan;
2287 enum lru_list lru;
2288 unsigned long nr_reclaimed = 0;
2289 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2290 struct blk_plug plug;
1a501907 2291 bool scan_adjusted;
9b4f98cd 2292
33377678 2293 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2294
e82e0561
MG
2295 /* Record the original scan target for proportional adjustments later */
2296 memcpy(targets, nr, sizeof(nr));
2297
1a501907
MG
2298 /*
2299 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2300 * event that can occur when there is little memory pressure e.g.
2301 * multiple streaming readers/writers. Hence, we do not abort scanning
2302 * when the requested number of pages are reclaimed when scanning at
2303 * DEF_PRIORITY on the assumption that the fact we are direct
2304 * reclaiming implies that kswapd is not keeping up and it is best to
2305 * do a batch of work at once. For memcg reclaim one check is made to
2306 * abort proportional reclaim if either the file or anon lru has already
2307 * dropped to zero at the first pass.
2308 */
2309 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2310 sc->priority == DEF_PRIORITY);
2311
9b4f98cd
JW
2312 blk_start_plug(&plug);
2313 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2314 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2315 unsigned long nr_anon, nr_file, percentage;
2316 unsigned long nr_scanned;
2317
9b4f98cd
JW
2318 for_each_evictable_lru(lru) {
2319 if (nr[lru]) {
2320 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2321 nr[lru] -= nr_to_scan;
2322
2323 nr_reclaimed += shrink_list(lru, nr_to_scan,
2324 lruvec, sc);
2325 }
2326 }
e82e0561 2327
bd041733
MH
2328 cond_resched();
2329
e82e0561
MG
2330 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2331 continue;
2332
e82e0561
MG
2333 /*
2334 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2335 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2336 * proportionally what was requested by get_scan_count(). We
2337 * stop reclaiming one LRU and reduce the amount scanning
2338 * proportional to the original scan target.
2339 */
2340 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2341 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2342
1a501907
MG
2343 /*
2344 * It's just vindictive to attack the larger once the smaller
2345 * has gone to zero. And given the way we stop scanning the
2346 * smaller below, this makes sure that we only make one nudge
2347 * towards proportionality once we've got nr_to_reclaim.
2348 */
2349 if (!nr_file || !nr_anon)
2350 break;
2351
e82e0561
MG
2352 if (nr_file > nr_anon) {
2353 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2354 targets[LRU_ACTIVE_ANON] + 1;
2355 lru = LRU_BASE;
2356 percentage = nr_anon * 100 / scan_target;
2357 } else {
2358 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2359 targets[LRU_ACTIVE_FILE] + 1;
2360 lru = LRU_FILE;
2361 percentage = nr_file * 100 / scan_target;
2362 }
2363
2364 /* Stop scanning the smaller of the LRU */
2365 nr[lru] = 0;
2366 nr[lru + LRU_ACTIVE] = 0;
2367
2368 /*
2369 * Recalculate the other LRU scan count based on its original
2370 * scan target and the percentage scanning already complete
2371 */
2372 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2373 nr_scanned = targets[lru] - nr[lru];
2374 nr[lru] = targets[lru] * (100 - percentage) / 100;
2375 nr[lru] -= min(nr[lru], nr_scanned);
2376
2377 lru += LRU_ACTIVE;
2378 nr_scanned = targets[lru] - nr[lru];
2379 nr[lru] = targets[lru] * (100 - percentage) / 100;
2380 nr[lru] -= min(nr[lru], nr_scanned);
2381
2382 scan_adjusted = true;
9b4f98cd
JW
2383 }
2384 blk_finish_plug(&plug);
2385 sc->nr_reclaimed += nr_reclaimed;
2386
2387 /*
2388 * Even if we did not try to evict anon pages at all, we want to
2389 * rebalance the anon lru active/inactive ratio.
2390 */
dcec0b60 2391 if (inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2392 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2393 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2394}
2395
23b9da55 2396/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2397static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2398{
d84da3f9 2399 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2400 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2401 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2402 return true;
2403
2404 return false;
2405}
2406
3e7d3449 2407/*
23b9da55
MG
2408 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2409 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2410 * true if more pages should be reclaimed such that when the page allocator
2411 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2412 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2413 */
a9dd0a83 2414static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2415 unsigned long nr_reclaimed,
2416 unsigned long nr_scanned,
2417 struct scan_control *sc)
2418{
2419 unsigned long pages_for_compaction;
2420 unsigned long inactive_lru_pages;
a9dd0a83 2421 int z;
3e7d3449
MG
2422
2423 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2424 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2425 return false;
2426
2876592f
MG
2427 /* Consider stopping depending on scan and reclaim activity */
2428 if (sc->gfp_mask & __GFP_REPEAT) {
2429 /*
2430 * For __GFP_REPEAT allocations, stop reclaiming if the
2431 * full LRU list has been scanned and we are still failing
2432 * to reclaim pages. This full LRU scan is potentially
2433 * expensive but a __GFP_REPEAT caller really wants to succeed
2434 */
2435 if (!nr_reclaimed && !nr_scanned)
2436 return false;
2437 } else {
2438 /*
2439 * For non-__GFP_REPEAT allocations which can presumably
2440 * fail without consequence, stop if we failed to reclaim
2441 * any pages from the last SWAP_CLUSTER_MAX number of
2442 * pages that were scanned. This will return to the
2443 * caller faster at the risk reclaim/compaction and
2444 * the resulting allocation attempt fails
2445 */
2446 if (!nr_reclaimed)
2447 return false;
2448 }
3e7d3449
MG
2449
2450 /*
2451 * If we have not reclaimed enough pages for compaction and the
2452 * inactive lists are large enough, continue reclaiming
2453 */
9861a62c 2454 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2455 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2456 if (get_nr_swap_pages() > 0)
a9dd0a83 2457 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2458 if (sc->nr_reclaimed < pages_for_compaction &&
2459 inactive_lru_pages > pages_for_compaction)
2460 return true;
2461
2462 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2463 for (z = 0; z <= sc->reclaim_idx; z++) {
2464 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2465 if (!managed_zone(zone))
a9dd0a83
MG
2466 continue;
2467
2468 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2469 case COMPACT_SUCCESS:
a9dd0a83
MG
2470 case COMPACT_CONTINUE:
2471 return false;
2472 default:
2473 /* check next zone */
2474 ;
2475 }
3e7d3449 2476 }
a9dd0a83 2477 return true;
3e7d3449
MG
2478}
2479
970a39a3 2480static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2481{
cb731d6c 2482 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2483 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2484 bool reclaimable = false;
1da177e4 2485
9b4f98cd
JW
2486 do {
2487 struct mem_cgroup *root = sc->target_mem_cgroup;
2488 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2489 .pgdat = pgdat,
9b4f98cd
JW
2490 .priority = sc->priority,
2491 };
a9dd0a83 2492 unsigned long node_lru_pages = 0;
694fbc0f 2493 struct mem_cgroup *memcg;
3e7d3449 2494
9b4f98cd
JW
2495 nr_reclaimed = sc->nr_reclaimed;
2496 nr_scanned = sc->nr_scanned;
1da177e4 2497
694fbc0f
AM
2498 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2499 do {
6b4f7799 2500 unsigned long lru_pages;
8e8ae645 2501 unsigned long reclaimed;
cb731d6c 2502 unsigned long scanned;
5660048c 2503
241994ed
JW
2504 if (mem_cgroup_low(root, memcg)) {
2505 if (!sc->may_thrash)
2506 continue;
2507 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2508 }
2509
8e8ae645 2510 reclaimed = sc->nr_reclaimed;
cb731d6c 2511 scanned = sc->nr_scanned;
f9be23d6 2512
a9dd0a83
MG
2513 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2514 node_lru_pages += lru_pages;
f16015fb 2515
b5afba29 2516 if (memcg)
a9dd0a83 2517 shrink_slab(sc->gfp_mask, pgdat->node_id,
cb731d6c
VD
2518 memcg, sc->nr_scanned - scanned,
2519 lru_pages);
2520
8e8ae645
JW
2521 /* Record the group's reclaim efficiency */
2522 vmpressure(sc->gfp_mask, memcg, false,
2523 sc->nr_scanned - scanned,
2524 sc->nr_reclaimed - reclaimed);
2525
9b4f98cd 2526 /*
a394cb8e
MH
2527 * Direct reclaim and kswapd have to scan all memory
2528 * cgroups to fulfill the overall scan target for the
a9dd0a83 2529 * node.
a394cb8e
MH
2530 *
2531 * Limit reclaim, on the other hand, only cares about
2532 * nr_to_reclaim pages to be reclaimed and it will
2533 * retry with decreasing priority if one round over the
2534 * whole hierarchy is not sufficient.
9b4f98cd 2535 */
a394cb8e
MH
2536 if (!global_reclaim(sc) &&
2537 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2538 mem_cgroup_iter_break(root, memcg);
2539 break;
2540 }
241994ed 2541 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2542
6b4f7799
JW
2543 /*
2544 * Shrink the slab caches in the same proportion that
2545 * the eligible LRU pages were scanned.
2546 */
b2e18757 2547 if (global_reclaim(sc))
a9dd0a83 2548 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
cb731d6c 2549 sc->nr_scanned - nr_scanned,
a9dd0a83 2550 node_lru_pages);
cb731d6c
VD
2551
2552 if (reclaim_state) {
2553 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2554 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2555 }
2556
8e8ae645
JW
2557 /* Record the subtree's reclaim efficiency */
2558 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2559 sc->nr_scanned - nr_scanned,
2560 sc->nr_reclaimed - nr_reclaimed);
2561
2344d7e4
JW
2562 if (sc->nr_reclaimed - nr_reclaimed)
2563 reclaimable = true;
2564
a9dd0a83 2565 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2566 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2567
c73322d0
JW
2568 /*
2569 * Kswapd gives up on balancing particular nodes after too
2570 * many failures to reclaim anything from them and goes to
2571 * sleep. On reclaim progress, reset the failure counter. A
2572 * successful direct reclaim run will revive a dormant kswapd.
2573 */
2574 if (reclaimable)
2575 pgdat->kswapd_failures = 0;
2576
2344d7e4 2577 return reclaimable;
f16015fb
JW
2578}
2579
53853e2d 2580/*
fdd4c614
VB
2581 * Returns true if compaction should go ahead for a costly-order request, or
2582 * the allocation would already succeed without compaction. Return false if we
2583 * should reclaim first.
53853e2d 2584 */
4f588331 2585static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2586{
31483b6a 2587 unsigned long watermark;
fdd4c614 2588 enum compact_result suitable;
fe4b1b24 2589
fdd4c614
VB
2590 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2591 if (suitable == COMPACT_SUCCESS)
2592 /* Allocation should succeed already. Don't reclaim. */
2593 return true;
2594 if (suitable == COMPACT_SKIPPED)
2595 /* Compaction cannot yet proceed. Do reclaim. */
2596 return false;
fe4b1b24 2597
53853e2d 2598 /*
fdd4c614
VB
2599 * Compaction is already possible, but it takes time to run and there
2600 * are potentially other callers using the pages just freed. So proceed
2601 * with reclaim to make a buffer of free pages available to give
2602 * compaction a reasonable chance of completing and allocating the page.
2603 * Note that we won't actually reclaim the whole buffer in one attempt
2604 * as the target watermark in should_continue_reclaim() is lower. But if
2605 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2606 */
fdd4c614 2607 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2608
fdd4c614 2609 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2610}
2611
1da177e4
LT
2612/*
2613 * This is the direct reclaim path, for page-allocating processes. We only
2614 * try to reclaim pages from zones which will satisfy the caller's allocation
2615 * request.
2616 *
1da177e4
LT
2617 * If a zone is deemed to be full of pinned pages then just give it a light
2618 * scan then give up on it.
2619 */
0a0337e0 2620static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2621{
dd1a239f 2622 struct zoneref *z;
54a6eb5c 2623 struct zone *zone;
0608f43d
AM
2624 unsigned long nr_soft_reclaimed;
2625 unsigned long nr_soft_scanned;
619d0d76 2626 gfp_t orig_mask;
79dafcdc 2627 pg_data_t *last_pgdat = NULL;
1cfb419b 2628
cc715d99
MG
2629 /*
2630 * If the number of buffer_heads in the machine exceeds the maximum
2631 * allowed level, force direct reclaim to scan the highmem zone as
2632 * highmem pages could be pinning lowmem pages storing buffer_heads
2633 */
619d0d76 2634 orig_mask = sc->gfp_mask;
b2e18757 2635 if (buffer_heads_over_limit) {
cc715d99 2636 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2637 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2638 }
cc715d99 2639
d4debc66 2640 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2641 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2642 /*
2643 * Take care memory controller reclaiming has small influence
2644 * to global LRU.
2645 */
89b5fae5 2646 if (global_reclaim(sc)) {
344736f2
VD
2647 if (!cpuset_zone_allowed(zone,
2648 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2649 continue;
65ec02cb 2650
0b06496a
JW
2651 /*
2652 * If we already have plenty of memory free for
2653 * compaction in this zone, don't free any more.
2654 * Even though compaction is invoked for any
2655 * non-zero order, only frequent costly order
2656 * reclamation is disruptive enough to become a
2657 * noticeable problem, like transparent huge
2658 * page allocations.
2659 */
2660 if (IS_ENABLED(CONFIG_COMPACTION) &&
2661 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2662 compaction_ready(zone, sc)) {
0b06496a
JW
2663 sc->compaction_ready = true;
2664 continue;
e0887c19 2665 }
0b06496a 2666
79dafcdc
MG
2667 /*
2668 * Shrink each node in the zonelist once. If the
2669 * zonelist is ordered by zone (not the default) then a
2670 * node may be shrunk multiple times but in that case
2671 * the user prefers lower zones being preserved.
2672 */
2673 if (zone->zone_pgdat == last_pgdat)
2674 continue;
2675
0608f43d
AM
2676 /*
2677 * This steals pages from memory cgroups over softlimit
2678 * and returns the number of reclaimed pages and
2679 * scanned pages. This works for global memory pressure
2680 * and balancing, not for a memcg's limit.
2681 */
2682 nr_soft_scanned = 0;
ef8f2327 2683 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2684 sc->order, sc->gfp_mask,
2685 &nr_soft_scanned);
2686 sc->nr_reclaimed += nr_soft_reclaimed;
2687 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2688 /* need some check for avoid more shrink_zone() */
1cfb419b 2689 }
408d8544 2690
79dafcdc
MG
2691 /* See comment about same check for global reclaim above */
2692 if (zone->zone_pgdat == last_pgdat)
2693 continue;
2694 last_pgdat = zone->zone_pgdat;
970a39a3 2695 shrink_node(zone->zone_pgdat, sc);
1da177e4 2696 }
e0c23279 2697
619d0d76
WY
2698 /*
2699 * Restore to original mask to avoid the impact on the caller if we
2700 * promoted it to __GFP_HIGHMEM.
2701 */
2702 sc->gfp_mask = orig_mask;
1da177e4 2703}
4f98a2fe 2704
1da177e4
LT
2705/*
2706 * This is the main entry point to direct page reclaim.
2707 *
2708 * If a full scan of the inactive list fails to free enough memory then we
2709 * are "out of memory" and something needs to be killed.
2710 *
2711 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2712 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2713 * caller can't do much about. We kick the writeback threads and take explicit
2714 * naps in the hope that some of these pages can be written. But if the
2715 * allocating task holds filesystem locks which prevent writeout this might not
2716 * work, and the allocation attempt will fail.
a41f24ea
NA
2717 *
2718 * returns: 0, if no pages reclaimed
2719 * else, the number of pages reclaimed
1da177e4 2720 */
dac1d27b 2721static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2722 struct scan_control *sc)
1da177e4 2723{
241994ed 2724 int initial_priority = sc->priority;
241994ed 2725retry:
873b4771
KK
2726 delayacct_freepages_start();
2727
89b5fae5 2728 if (global_reclaim(sc))
7cc30fcf 2729 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2730
9e3b2f8c 2731 do {
70ddf637
AV
2732 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2733 sc->priority);
66e1707b 2734 sc->nr_scanned = 0;
0a0337e0 2735 shrink_zones(zonelist, sc);
c6a8a8c5 2736
bb21c7ce 2737 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2738 break;
2739
2740 if (sc->compaction_ready)
2741 break;
1da177e4 2742
0e50ce3b
MK
2743 /*
2744 * If we're getting trouble reclaiming, start doing
2745 * writepage even in laptop mode.
2746 */
2747 if (sc->priority < DEF_PRIORITY - 2)
2748 sc->may_writepage = 1;
0b06496a 2749 } while (--sc->priority >= 0);
bb21c7ce 2750
873b4771
KK
2751 delayacct_freepages_end();
2752
bb21c7ce
KM
2753 if (sc->nr_reclaimed)
2754 return sc->nr_reclaimed;
2755
0cee34fd 2756 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2757 if (sc->compaction_ready)
7335084d
MG
2758 return 1;
2759
241994ed
JW
2760 /* Untapped cgroup reserves? Don't OOM, retry. */
2761 if (!sc->may_thrash) {
2762 sc->priority = initial_priority;
2763 sc->may_thrash = 1;
2764 goto retry;
2765 }
2766
bb21c7ce 2767 return 0;
1da177e4
LT
2768}
2769
c73322d0 2770static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
2771{
2772 struct zone *zone;
2773 unsigned long pfmemalloc_reserve = 0;
2774 unsigned long free_pages = 0;
2775 int i;
2776 bool wmark_ok;
2777
c73322d0
JW
2778 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2779 return true;
2780
5515061d
MG
2781 for (i = 0; i <= ZONE_NORMAL; i++) {
2782 zone = &pgdat->node_zones[i];
d450abd8
JW
2783 if (!managed_zone(zone))
2784 continue;
2785
2786 if (!zone_reclaimable_pages(zone))
675becce
MG
2787 continue;
2788
5515061d
MG
2789 pfmemalloc_reserve += min_wmark_pages(zone);
2790 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2791 }
2792
675becce
MG
2793 /* If there are no reserves (unexpected config) then do not throttle */
2794 if (!pfmemalloc_reserve)
2795 return true;
2796
5515061d
MG
2797 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2798
2799 /* kswapd must be awake if processes are being throttled */
2800 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2801 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2802 (enum zone_type)ZONE_NORMAL);
2803 wake_up_interruptible(&pgdat->kswapd_wait);
2804 }
2805
2806 return wmark_ok;
2807}
2808
2809/*
2810 * Throttle direct reclaimers if backing storage is backed by the network
2811 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2812 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2813 * when the low watermark is reached.
2814 *
2815 * Returns true if a fatal signal was delivered during throttling. If this
2816 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2817 */
50694c28 2818static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2819 nodemask_t *nodemask)
2820{
675becce 2821 struct zoneref *z;
5515061d 2822 struct zone *zone;
675becce 2823 pg_data_t *pgdat = NULL;
5515061d
MG
2824
2825 /*
2826 * Kernel threads should not be throttled as they may be indirectly
2827 * responsible for cleaning pages necessary for reclaim to make forward
2828 * progress. kjournald for example may enter direct reclaim while
2829 * committing a transaction where throttling it could forcing other
2830 * processes to block on log_wait_commit().
2831 */
2832 if (current->flags & PF_KTHREAD)
50694c28
MG
2833 goto out;
2834
2835 /*
2836 * If a fatal signal is pending, this process should not throttle.
2837 * It should return quickly so it can exit and free its memory
2838 */
2839 if (fatal_signal_pending(current))
2840 goto out;
5515061d 2841
675becce
MG
2842 /*
2843 * Check if the pfmemalloc reserves are ok by finding the first node
2844 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2845 * GFP_KERNEL will be required for allocating network buffers when
2846 * swapping over the network so ZONE_HIGHMEM is unusable.
2847 *
2848 * Throttling is based on the first usable node and throttled processes
2849 * wait on a queue until kswapd makes progress and wakes them. There
2850 * is an affinity then between processes waking up and where reclaim
2851 * progress has been made assuming the process wakes on the same node.
2852 * More importantly, processes running on remote nodes will not compete
2853 * for remote pfmemalloc reserves and processes on different nodes
2854 * should make reasonable progress.
2855 */
2856 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2857 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2858 if (zone_idx(zone) > ZONE_NORMAL)
2859 continue;
2860
2861 /* Throttle based on the first usable node */
2862 pgdat = zone->zone_pgdat;
c73322d0 2863 if (allow_direct_reclaim(pgdat))
675becce
MG
2864 goto out;
2865 break;
2866 }
2867
2868 /* If no zone was usable by the allocation flags then do not throttle */
2869 if (!pgdat)
50694c28 2870 goto out;
5515061d 2871
68243e76
MG
2872 /* Account for the throttling */
2873 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2874
5515061d
MG
2875 /*
2876 * If the caller cannot enter the filesystem, it's possible that it
2877 * is due to the caller holding an FS lock or performing a journal
2878 * transaction in the case of a filesystem like ext[3|4]. In this case,
2879 * it is not safe to block on pfmemalloc_wait as kswapd could be
2880 * blocked waiting on the same lock. Instead, throttle for up to a
2881 * second before continuing.
2882 */
2883 if (!(gfp_mask & __GFP_FS)) {
2884 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 2885 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
2886
2887 goto check_pending;
5515061d
MG
2888 }
2889
2890 /* Throttle until kswapd wakes the process */
2891 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 2892 allow_direct_reclaim(pgdat));
50694c28
MG
2893
2894check_pending:
2895 if (fatal_signal_pending(current))
2896 return true;
2897
2898out:
2899 return false;
5515061d
MG
2900}
2901
dac1d27b 2902unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2903 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2904{
33906bc5 2905 unsigned long nr_reclaimed;
66e1707b 2906 struct scan_control sc = {
ee814fe2 2907 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2908 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
b2e18757 2909 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
2910 .order = order,
2911 .nodemask = nodemask,
2912 .priority = DEF_PRIORITY,
66e1707b 2913 .may_writepage = !laptop_mode,
a6dc60f8 2914 .may_unmap = 1,
2e2e4259 2915 .may_swap = 1,
66e1707b
BS
2916 };
2917
5515061d 2918 /*
50694c28
MG
2919 * Do not enter reclaim if fatal signal was delivered while throttled.
2920 * 1 is returned so that the page allocator does not OOM kill at this
2921 * point.
5515061d 2922 */
50694c28 2923 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2924 return 1;
2925
33906bc5
MG
2926 trace_mm_vmscan_direct_reclaim_begin(order,
2927 sc.may_writepage,
e5146b12
MG
2928 gfp_mask,
2929 sc.reclaim_idx);
33906bc5 2930
3115cd91 2931 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2932
2933 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2934
2935 return nr_reclaimed;
66e1707b
BS
2936}
2937
c255a458 2938#ifdef CONFIG_MEMCG
66e1707b 2939
a9dd0a83 2940unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 2941 gfp_t gfp_mask, bool noswap,
ef8f2327 2942 pg_data_t *pgdat,
0ae5e89c 2943 unsigned long *nr_scanned)
4e416953
BS
2944{
2945 struct scan_control sc = {
b8f5c566 2946 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2947 .target_mem_cgroup = memcg,
4e416953
BS
2948 .may_writepage = !laptop_mode,
2949 .may_unmap = 1,
b2e18757 2950 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 2951 .may_swap = !noswap,
4e416953 2952 };
6b4f7799 2953 unsigned long lru_pages;
0ae5e89c 2954
4e416953
BS
2955 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2956 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2957
9e3b2f8c 2958 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 2959 sc.may_writepage,
e5146b12
MG
2960 sc.gfp_mask,
2961 sc.reclaim_idx);
bdce6d9e 2962
4e416953
BS
2963 /*
2964 * NOTE: Although we can get the priority field, using it
2965 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 2966 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
2967 * will pick up pages from other mem cgroup's as well. We hack
2968 * the priority and make it zero.
2969 */
ef8f2327 2970 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
2971
2972 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2973
0ae5e89c 2974 *nr_scanned = sc.nr_scanned;
4e416953
BS
2975 return sc.nr_reclaimed;
2976}
2977
72835c86 2978unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2979 unsigned long nr_pages,
a7885eb8 2980 gfp_t gfp_mask,
b70a2a21 2981 bool may_swap)
66e1707b 2982{
4e416953 2983 struct zonelist *zonelist;
bdce6d9e 2984 unsigned long nr_reclaimed;
889976db 2985 int nid;
66e1707b 2986 struct scan_control sc = {
b70a2a21 2987 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2988 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2989 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 2990 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
2991 .target_mem_cgroup = memcg,
2992 .priority = DEF_PRIORITY,
2993 .may_writepage = !laptop_mode,
2994 .may_unmap = 1,
b70a2a21 2995 .may_swap = may_swap,
a09ed5e0 2996 };
66e1707b 2997
889976db
YH
2998 /*
2999 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3000 * take care of from where we get pages. So the node where we start the
3001 * scan does not need to be the current node.
3002 */
72835c86 3003 nid = mem_cgroup_select_victim_node(memcg);
889976db 3004
c9634cf0 3005 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3006
3007 trace_mm_vmscan_memcg_reclaim_begin(0,
3008 sc.may_writepage,
e5146b12
MG
3009 sc.gfp_mask,
3010 sc.reclaim_idx);
bdce6d9e 3011
89a28483 3012 current->flags |= PF_MEMALLOC;
3115cd91 3013 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
89a28483 3014 current->flags &= ~PF_MEMALLOC;
bdce6d9e
KM
3015
3016 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3017
3018 return nr_reclaimed;
66e1707b
BS
3019}
3020#endif
3021
1d82de61 3022static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3023 struct scan_control *sc)
f16015fb 3024{
b95a2f2d 3025 struct mem_cgroup *memcg;
f16015fb 3026
b95a2f2d
JW
3027 if (!total_swap_pages)
3028 return;
3029
3030 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3031 do {
ef8f2327 3032 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3033
dcec0b60 3034 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3035 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3036 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3037
3038 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3039 } while (memcg);
f16015fb
JW
3040}
3041
31483b6a 3042static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
60cefed4 3043{
31483b6a 3044 unsigned long mark = high_wmark_pages(zone);
60cefed4 3045
6256c6b4
MG
3046 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3047 return false;
3048
3049 /*
3050 * If any eligible zone is balanced then the node is not considered
3051 * to be congested or dirty
3052 */
3053 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3054 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
c2f83143 3055 clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
6256c6b4
MG
3056
3057 return true;
60cefed4
JW
3058}
3059
5515061d
MG
3060/*
3061 * Prepare kswapd for sleeping. This verifies that there are no processes
3062 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3063 *
3064 * Returns true if kswapd is ready to sleep
3065 */
d9f21d42 3066static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3067{
1d82de61
MG
3068 int i;
3069
5515061d 3070 /*
9e5e3661 3071 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3072 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3073 * race between when kswapd checks the watermarks and a process gets
3074 * throttled. There is also a potential race if processes get
3075 * throttled, kswapd wakes, a large process exits thereby balancing the
3076 * zones, which causes kswapd to exit balance_pgdat() before reaching
3077 * the wake up checks. If kswapd is going to sleep, no process should
3078 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3079 * the wake up is premature, processes will wake kswapd and get
3080 * throttled again. The difference from wake ups in balance_pgdat() is
3081 * that here we are under prepare_to_wait().
5515061d 3082 */
9e5e3661
VB
3083 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3084 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3085
c73322d0
JW
3086 /* Hopeless node, leave it to direct reclaim */
3087 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3088 return true;
3089
1d82de61
MG
3090 for (i = 0; i <= classzone_idx; i++) {
3091 struct zone *zone = pgdat->node_zones + i;
3092
6aa303de 3093 if (!managed_zone(zone))
1d82de61
MG
3094 continue;
3095
38087d9b
MG
3096 if (!zone_balanced(zone, order, classzone_idx))
3097 return false;
1d82de61
MG
3098 }
3099
38087d9b 3100 return true;
f50de2d3
MG
3101}
3102
75485363 3103/*
1d82de61
MG
3104 * kswapd shrinks a node of pages that are at or below the highest usable
3105 * zone that is currently unbalanced.
b8e83b94
MG
3106 *
3107 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3108 * reclaim or if the lack of progress was due to pages under writeback.
3109 * This is used to determine if the scanning priority needs to be raised.
75485363 3110 */
1d82de61 3111static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3112 struct scan_control *sc)
75485363 3113{
1d82de61
MG
3114 struct zone *zone;
3115 int z;
75485363 3116
1d82de61
MG
3117 /* Reclaim a number of pages proportional to the number of zones */
3118 sc->nr_to_reclaim = 0;
970a39a3 3119 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3120 zone = pgdat->node_zones + z;
6aa303de 3121 if (!managed_zone(zone))
1d82de61 3122 continue;
7c954f6d 3123
1d82de61
MG
3124 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3125 }
7c954f6d
MG
3126
3127 /*
1d82de61
MG
3128 * Historically care was taken to put equal pressure on all zones but
3129 * now pressure is applied based on node LRU order.
7c954f6d 3130 */
970a39a3 3131 shrink_node(pgdat, sc);
283aba9f 3132
7c954f6d 3133 /*
1d82de61
MG
3134 * Fragmentation may mean that the system cannot be rebalanced for
3135 * high-order allocations. If twice the allocation size has been
3136 * reclaimed then recheck watermarks only at order-0 to prevent
3137 * excessive reclaim. Assume that a process requested a high-order
3138 * can direct reclaim/compact.
7c954f6d 3139 */
9861a62c 3140 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3141 sc->order = 0;
7c954f6d 3142
b8e83b94 3143 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3144}
3145
1da177e4 3146/*
1d82de61
MG
3147 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3148 * that are eligible for use by the caller until at least one zone is
3149 * balanced.
1da177e4 3150 *
1d82de61 3151 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3152 *
3153 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3154 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3155 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3156 * or lower is eligible for reclaim until at least one usable zone is
3157 * balanced.
1da177e4 3158 */
accf6242 3159static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3160{
1da177e4 3161 int i;
0608f43d
AM
3162 unsigned long nr_soft_reclaimed;
3163 unsigned long nr_soft_scanned;
1d82de61 3164 struct zone *zone;
179e9639
AM
3165 struct scan_control sc = {
3166 .gfp_mask = GFP_KERNEL,
ee814fe2 3167 .order = order,
b8e83b94 3168 .priority = DEF_PRIORITY,
ee814fe2 3169 .may_writepage = !laptop_mode,
a6dc60f8 3170 .may_unmap = 1,
2e2e4259 3171 .may_swap = 1,
179e9639 3172 };
f8891e5e 3173 count_vm_event(PAGEOUTRUN);
1da177e4 3174
9e3b2f8c 3175 do {
c73322d0 3176 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94
MG
3177 bool raise_priority = true;
3178
84c7a777 3179 sc.reclaim_idx = classzone_idx;
1da177e4 3180
86c79f6b 3181 /*
84c7a777
MG
3182 * If the number of buffer_heads exceeds the maximum allowed
3183 * then consider reclaiming from all zones. This has a dual
3184 * purpose -- on 64-bit systems it is expected that
3185 * buffer_heads are stripped during active rotation. On 32-bit
3186 * systems, highmem pages can pin lowmem memory and shrinking
3187 * buffers can relieve lowmem pressure. Reclaim may still not
3188 * go ahead if all eligible zones for the original allocation
3189 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3190 */
3191 if (buffer_heads_over_limit) {
3192 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3193 zone = pgdat->node_zones + i;
6aa303de 3194 if (!managed_zone(zone))
86c79f6b 3195 continue;
cc715d99 3196
970a39a3 3197 sc.reclaim_idx = i;
e1dbeda6 3198 break;
1da177e4 3199 }
1da177e4 3200 }
dafcb73e 3201
86c79f6b
MG
3202 /*
3203 * Only reclaim if there are no eligible zones. Check from
3204 * high to low zone as allocations prefer higher zones.
3205 * Scanning from low to high zone would allow congestion to be
3206 * cleared during a very small window when a small low
3207 * zone was balanced even under extreme pressure when the
84c7a777
MG
3208 * overall node may be congested. Note that sc.reclaim_idx
3209 * is not used as buffer_heads_over_limit may have adjusted
3210 * it.
86c79f6b 3211 */
84c7a777 3212 for (i = classzone_idx; i >= 0; i--) {
86c79f6b 3213 zone = pgdat->node_zones + i;
6aa303de 3214 if (!managed_zone(zone))
86c79f6b
MG
3215 continue;
3216
84c7a777 3217 if (zone_balanced(zone, sc.order, classzone_idx))
86c79f6b
MG
3218 goto out;
3219 }
e1dbeda6 3220
1d82de61
MG
3221 /*
3222 * Do some background aging of the anon list, to give
3223 * pages a chance to be referenced before reclaiming. All
3224 * pages are rotated regardless of classzone as this is
3225 * about consistent aging.
3226 */
ef8f2327 3227 age_active_anon(pgdat, &sc);
1d82de61 3228
b7ea3c41
MG
3229 /*
3230 * If we're getting trouble reclaiming, start doing writepage
3231 * even in laptop mode.
3232 */
047d72c3 3233 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3234 sc.may_writepage = 1;
3235
1d82de61
MG
3236 /* Call soft limit reclaim before calling shrink_node. */
3237 sc.nr_scanned = 0;
3238 nr_soft_scanned = 0;
ef8f2327 3239 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3240 sc.gfp_mask, &nr_soft_scanned);
3241 sc.nr_reclaimed += nr_soft_reclaimed;
3242
1da177e4 3243 /*
1d82de61
MG
3244 * There should be no need to raise the scanning priority if
3245 * enough pages are already being scanned that that high
3246 * watermark would be met at 100% efficiency.
1da177e4 3247 */
970a39a3 3248 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3249 raise_priority = false;
5515061d
MG
3250
3251 /*
3252 * If the low watermark is met there is no need for processes
3253 * to be throttled on pfmemalloc_wait as they should not be
3254 * able to safely make forward progress. Wake them
3255 */
3256 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3257 allow_direct_reclaim(pgdat))
cfc51155 3258 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3259
b8e83b94
MG
3260 /* Check if kswapd should be suspending */
3261 if (try_to_freeze() || kthread_should_stop())
3262 break;
8357376d 3263
73ce02e9 3264 /*
b8e83b94
MG
3265 * Raise priority if scanning rate is too low or there was no
3266 * progress in reclaiming pages
73ce02e9 3267 */
c73322d0
JW
3268 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3269 if (raise_priority || !nr_reclaimed)
b8e83b94 3270 sc.priority--;
1d82de61 3271 } while (sc.priority >= 1);
1da177e4 3272
c73322d0
JW
3273 if (!sc.nr_reclaimed)
3274 pgdat->kswapd_failures++;
3275
b8e83b94 3276out:
0abdee2b 3277 /*
1d82de61
MG
3278 * Return the order kswapd stopped reclaiming at as
3279 * prepare_kswapd_sleep() takes it into account. If another caller
3280 * entered the allocator slow path while kswapd was awake, order will
3281 * remain at the higher level.
0abdee2b 3282 */
1d82de61 3283 return sc.order;
1da177e4
LT
3284}
3285
38087d9b
MG
3286static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3287 unsigned int classzone_idx)
f0bc0a60
KM
3288{
3289 long remaining = 0;
3290 DEFINE_WAIT(wait);
3291
3292 if (freezing(current) || kthread_should_stop())
3293 return;
3294
3295 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3296
3297 /* Try to sleep for a short interval */
d9f21d42 3298 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3299 /*
3300 * Compaction records what page blocks it recently failed to
3301 * isolate pages from and skips them in the future scanning.
3302 * When kswapd is going to sleep, it is reasonable to assume
3303 * that pages and compaction may succeed so reset the cache.
3304 */
3305 reset_isolation_suitable(pgdat);
3306
3307 /*
3308 * We have freed the memory, now we should compact it to make
3309 * allocation of the requested order possible.
3310 */
38087d9b 3311 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3312
f0bc0a60 3313 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3314
3315 /*
3316 * If woken prematurely then reset kswapd_classzone_idx and
3317 * order. The values will either be from a wakeup request or
3318 * the previous request that slept prematurely.
3319 */
3320 if (remaining) {
3321 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3322 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3323 }
3324
f0bc0a60
KM
3325 finish_wait(&pgdat->kswapd_wait, &wait);
3326 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3327 }
3328
3329 /*
3330 * After a short sleep, check if it was a premature sleep. If not, then
3331 * go fully to sleep until explicitly woken up.
3332 */
d9f21d42
MG
3333 if (!remaining &&
3334 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3335 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3336
3337 /*
3338 * vmstat counters are not perfectly accurate and the estimated
3339 * value for counters such as NR_FREE_PAGES can deviate from the
3340 * true value by nr_online_cpus * threshold. To avoid the zone
3341 * watermarks being breached while under pressure, we reduce the
3342 * per-cpu vmstat threshold while kswapd is awake and restore
3343 * them before going back to sleep.
3344 */
3345 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3346
3347 if (!kthread_should_stop())
3348 schedule();
3349
f0bc0a60
KM
3350 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3351 } else {
3352 if (remaining)
3353 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3354 else
3355 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3356 }
3357 finish_wait(&pgdat->kswapd_wait, &wait);
3358}
3359
1da177e4
LT
3360/*
3361 * The background pageout daemon, started as a kernel thread
4f98a2fe 3362 * from the init process.
1da177e4
LT
3363 *
3364 * This basically trickles out pages so that we have _some_
3365 * free memory available even if there is no other activity
3366 * that frees anything up. This is needed for things like routing
3367 * etc, where we otherwise might have all activity going on in
3368 * asynchronous contexts that cannot page things out.
3369 *
3370 * If there are applications that are active memory-allocators
3371 * (most normal use), this basically shouldn't matter.
3372 */
3373static int kswapd(void *p)
3374{
38087d9b 3375 unsigned int alloc_order, reclaim_order, classzone_idx;
1da177e4
LT
3376 pg_data_t *pgdat = (pg_data_t*)p;
3377 struct task_struct *tsk = current;
f0bc0a60 3378
1da177e4
LT
3379 struct reclaim_state reclaim_state = {
3380 .reclaimed_slab = 0,
3381 };
a70f7302 3382 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3383
cf40bd16
NP
3384 lockdep_set_current_reclaim_state(GFP_KERNEL);
3385
174596a0 3386 if (!cpumask_empty(cpumask))
c5f59f08 3387 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3388 current->reclaim_state = &reclaim_state;
3389
3390 /*
3391 * Tell the memory management that we're a "memory allocator",
3392 * and that if we need more memory we should get access to it
3393 * regardless (see "__alloc_pages()"). "kswapd" should
3394 * never get caught in the normal page freeing logic.
3395 *
3396 * (Kswapd normally doesn't need memory anyway, but sometimes
3397 * you need a small amount of memory in order to be able to
3398 * page out something else, and this flag essentially protects
3399 * us from recursively trying to free more memory as we're
3400 * trying to free the first piece of memory in the first place).
3401 */
930d9152 3402 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3403 set_freezable();
1da177e4 3404
38087d9b
MG
3405 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3406 pgdat->kswapd_classzone_idx = classzone_idx = 0;
1da177e4 3407 for ( ; ; ) {
6f6313d4 3408 bool ret;
3e1d1d28 3409
38087d9b
MG
3410kswapd_try_sleep:
3411 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3412 classzone_idx);
215ddd66 3413
38087d9b
MG
3414 /* Read the new order and classzone_idx */
3415 alloc_order = reclaim_order = pgdat->kswapd_order;
3416 classzone_idx = pgdat->kswapd_classzone_idx;
3417 pgdat->kswapd_order = 0;
3418 pgdat->kswapd_classzone_idx = 0;
1da177e4 3419
8fe23e05
DR
3420 ret = try_to_freeze();
3421 if (kthread_should_stop())
3422 break;
3423
3424 /*
3425 * We can speed up thawing tasks if we don't call balance_pgdat
3426 * after returning from the refrigerator
3427 */
38087d9b
MG
3428 if (ret)
3429 continue;
3430
3431 /*
3432 * Reclaim begins at the requested order but if a high-order
3433 * reclaim fails then kswapd falls back to reclaiming for
3434 * order-0. If that happens, kswapd will consider sleeping
3435 * for the order it finished reclaiming at (reclaim_order)
3436 * but kcompactd is woken to compact for the original
3437 * request (alloc_order).
3438 */
e5146b12
MG
3439 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3440 alloc_order);
38087d9b
MG
3441 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3442 if (reclaim_order < alloc_order)
3443 goto kswapd_try_sleep;
1d82de61 3444
38087d9b
MG
3445 alloc_order = reclaim_order = pgdat->kswapd_order;
3446 classzone_idx = pgdat->kswapd_classzone_idx;
1da177e4 3447 }
b0a8cc58 3448
71abdc15 3449 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3450 current->reclaim_state = NULL;
71abdc15
JW
3451 lockdep_clear_current_reclaim_state();
3452
1da177e4
LT
3453 return 0;
3454}
3455
3456/*
3457 * A zone is low on free memory, so wake its kswapd task to service it.
3458 */
99504748 3459void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3460{
3461 pg_data_t *pgdat;
e1a55637 3462 int z;
1da177e4 3463
6aa303de 3464 if (!managed_zone(zone))
1da177e4
LT
3465 return;
3466
344736f2 3467 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3468 return;
88f5acf8 3469 pgdat = zone->zone_pgdat;
38087d9b
MG
3470 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3471 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3472 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3473 return;
e1a55637 3474
c73322d0
JW
3475 /* Hopeless node, leave it to direct reclaim */
3476 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3477 return;
3478
e1a55637
MG
3479 /* Only wake kswapd if all zones are unbalanced */
3480 for (z = 0; z <= classzone_idx; z++) {
3481 zone = pgdat->node_zones + z;
6aa303de 3482 if (!managed_zone(zone))
e1a55637
MG
3483 continue;
3484
3485 if (zone_balanced(zone, order, classzone_idx))
3486 return;
3487 }
88f5acf8
MG
3488
3489 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3490 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3491}
3492
c6f37f12 3493#ifdef CONFIG_HIBERNATION
1da177e4 3494/*
7b51755c 3495 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3496 * freed pages.
3497 *
3498 * Rather than trying to age LRUs the aim is to preserve the overall
3499 * LRU order by reclaiming preferentially
3500 * inactive > active > active referenced > active mapped
1da177e4 3501 */
7b51755c 3502unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3503{
d6277db4 3504 struct reclaim_state reclaim_state;
d6277db4 3505 struct scan_control sc = {
ee814fe2 3506 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3507 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3508 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3509 .priority = DEF_PRIORITY,
d6277db4 3510 .may_writepage = 1,
ee814fe2
JW
3511 .may_unmap = 1,
3512 .may_swap = 1,
7b51755c 3513 .hibernation_mode = 1,
1da177e4 3514 };
a09ed5e0 3515 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3516 struct task_struct *p = current;
3517 unsigned long nr_reclaimed;
1da177e4 3518
7b51755c
KM
3519 p->flags |= PF_MEMALLOC;
3520 lockdep_set_current_reclaim_state(sc.gfp_mask);
3521 reclaim_state.reclaimed_slab = 0;
3522 p->reclaim_state = &reclaim_state;
d6277db4 3523
3115cd91 3524 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3525
7b51755c
KM
3526 p->reclaim_state = NULL;
3527 lockdep_clear_current_reclaim_state();
3528 p->flags &= ~PF_MEMALLOC;
d6277db4 3529
7b51755c 3530 return nr_reclaimed;
1da177e4 3531}
c6f37f12 3532#endif /* CONFIG_HIBERNATION */
1da177e4 3533
1da177e4
LT
3534/* It's optimal to keep kswapds on the same CPUs as their memory, but
3535 not required for correctness. So if the last cpu in a node goes
3536 away, we get changed to run anywhere: as the first one comes back,
3537 restore their cpu bindings. */
517bbed9 3538static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3539{
58c0a4a7 3540 int nid;
1da177e4 3541
517bbed9
SAS
3542 for_each_node_state(nid, N_MEMORY) {
3543 pg_data_t *pgdat = NODE_DATA(nid);
3544 const struct cpumask *mask;
a70f7302 3545
517bbed9 3546 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3547
517bbed9
SAS
3548 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3549 /* One of our CPUs online: restore mask */
3550 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3551 }
517bbed9 3552 return 0;
1da177e4 3553}
1da177e4 3554
3218ae14
YG
3555/*
3556 * This kswapd start function will be called by init and node-hot-add.
3557 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3558 */
3559int kswapd_run(int nid)
3560{
3561 pg_data_t *pgdat = NODE_DATA(nid);
3562 int ret = 0;
3563
3564 if (pgdat->kswapd)
3565 return 0;
3566
3567 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3568 if (IS_ERR(pgdat->kswapd)) {
3569 /* failure at boot is fatal */
3570 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3571 pr_err("Failed to start kswapd on node %d\n", nid);
3572 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3573 pgdat->kswapd = NULL;
3218ae14
YG
3574 }
3575 return ret;
3576}
3577
8fe23e05 3578/*
d8adde17 3579 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3580 * hold mem_hotplug_begin/end().
8fe23e05
DR
3581 */
3582void kswapd_stop(int nid)
3583{
3584 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3585
d8adde17 3586 if (kswapd) {
8fe23e05 3587 kthread_stop(kswapd);
d8adde17
JL
3588 NODE_DATA(nid)->kswapd = NULL;
3589 }
8fe23e05
DR
3590}
3591
1da177e4
LT
3592static int __init kswapd_init(void)
3593{
517bbed9 3594 int nid, ret;
69e05944 3595
1da177e4 3596 swap_setup();
48fb2e24 3597 for_each_node_state(nid, N_MEMORY)
3218ae14 3598 kswapd_run(nid);
517bbed9
SAS
3599 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3600 "mm/vmscan:online", kswapd_cpu_online,
3601 NULL);
3602 WARN_ON(ret < 0);
1da177e4
LT
3603 return 0;
3604}
3605
3606module_init(kswapd_init)
9eeff239
CL
3607
3608#ifdef CONFIG_NUMA
3609/*
a5f5f91d 3610 * Node reclaim mode
9eeff239 3611 *
a5f5f91d 3612 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3613 * the watermarks.
9eeff239 3614 */
a5f5f91d 3615int node_reclaim_mode __read_mostly;
9eeff239 3616
1b2ffb78 3617#define RECLAIM_OFF 0
7d03431c 3618#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3619#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3620#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3621
a92f7126 3622/*
a5f5f91d 3623 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3624 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3625 * a zone.
3626 */
a5f5f91d 3627#define NODE_RECLAIM_PRIORITY 4
a92f7126 3628
9614634f 3629/*
a5f5f91d 3630 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3631 * occur.
3632 */
3633int sysctl_min_unmapped_ratio = 1;
3634
0ff38490
CL
3635/*
3636 * If the number of slab pages in a zone grows beyond this percentage then
3637 * slab reclaim needs to occur.
3638 */
3639int sysctl_min_slab_ratio = 5;
3640
11fb9989 3641static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3642{
11fb9989
MG
3643 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3644 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3645 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3646
3647 /*
3648 * It's possible for there to be more file mapped pages than
3649 * accounted for by the pages on the file LRU lists because
3650 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3651 */
3652 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3653}
3654
3655/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3656static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3657{
d031a157
AM
3658 unsigned long nr_pagecache_reclaimable;
3659 unsigned long delta = 0;
90afa5de
MG
3660
3661 /*
95bbc0c7 3662 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3663 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3664 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3665 * a better estimate
3666 */
a5f5f91d
MG
3667 if (node_reclaim_mode & RECLAIM_UNMAP)
3668 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3669 else
a5f5f91d 3670 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3671
3672 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3673 if (!(node_reclaim_mode & RECLAIM_WRITE))
3674 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3675
3676 /* Watch for any possible underflows due to delta */
3677 if (unlikely(delta > nr_pagecache_reclaimable))
3678 delta = nr_pagecache_reclaimable;
3679
3680 return nr_pagecache_reclaimable - delta;
3681}
3682
9eeff239 3683/*
a5f5f91d 3684 * Try to free up some pages from this node through reclaim.
9eeff239 3685 */
a5f5f91d 3686static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3687{
7fb2d46d 3688 /* Minimum pages needed in order to stay on node */
69e05944 3689 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3690 struct task_struct *p = current;
3691 struct reclaim_state reclaim_state;
a5f5f91d 3692 int classzone_idx = gfp_zone(gfp_mask);
179e9639 3693 struct scan_control sc = {
62b726c1 3694 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3695 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3696 .order = order,
a5f5f91d
MG
3697 .priority = NODE_RECLAIM_PRIORITY,
3698 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3699 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3700 .may_swap = 1,
a5f5f91d 3701 .reclaim_idx = classzone_idx,
179e9639 3702 };
9eeff239 3703
9eeff239 3704 cond_resched();
d4f7796e 3705 /*
95bbc0c7 3706 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3707 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3708 * and RECLAIM_UNMAP.
d4f7796e
CL
3709 */
3710 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3711 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3712 reclaim_state.reclaimed_slab = 0;
3713 p->reclaim_state = &reclaim_state;
c84db23c 3714
a5f5f91d 3715 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3716 /*
3717 * Free memory by calling shrink zone with increasing
3718 * priorities until we have enough memory freed.
3719 */
0ff38490 3720 do {
970a39a3 3721 shrink_node(pgdat, &sc);
9e3b2f8c 3722 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3723 }
c84db23c 3724
9eeff239 3725 p->reclaim_state = NULL;
d4f7796e 3726 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3727 lockdep_clear_current_reclaim_state();
a79311c1 3728 return sc.nr_reclaimed >= nr_pages;
9eeff239 3729}
179e9639 3730
a5f5f91d 3731int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3732{
d773ed6b 3733 int ret;
179e9639
AM
3734
3735 /*
a5f5f91d 3736 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3737 * slab pages if we are over the defined limits.
34aa1330 3738 *
9614634f
CL
3739 * A small portion of unmapped file backed pages is needed for
3740 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3741 * thrown out if the node is overallocated. So we do not reclaim
3742 * if less than a specified percentage of the node is used by
9614634f 3743 * unmapped file backed pages.
179e9639 3744 */
a5f5f91d
MG
3745 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3746 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3747 return NODE_RECLAIM_FULL;
179e9639
AM
3748
3749 /*
d773ed6b 3750 * Do not scan if the allocation should not be delayed.
179e9639 3751 */
d0164adc 3752 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3753 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3754
3755 /*
a5f5f91d 3756 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3757 * have associated processors. This will favor the local processor
3758 * over remote processors and spread off node memory allocations
3759 * as wide as possible.
3760 */
a5f5f91d
MG
3761 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3762 return NODE_RECLAIM_NOSCAN;
d773ed6b 3763
a5f5f91d
MG
3764 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3765 return NODE_RECLAIM_NOSCAN;
fa5e084e 3766
a5f5f91d
MG
3767 ret = __node_reclaim(pgdat, gfp_mask, order);
3768 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3769
24cf7251
MG
3770 if (!ret)
3771 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3772
d773ed6b 3773 return ret;
179e9639 3774}
9eeff239 3775#endif
894bc310 3776
894bc310
LS
3777/*
3778 * page_evictable - test whether a page is evictable
3779 * @page: the page to test
894bc310
LS
3780 *
3781 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3782 * lists vs unevictable list.
894bc310
LS
3783 *
3784 * Reasons page might not be evictable:
ba9ddf49 3785 * (1) page's mapping marked unevictable
b291f000 3786 * (2) page is part of an mlocked VMA
ba9ddf49 3787 *
894bc310 3788 */
39b5f29a 3789int page_evictable(struct page *page)
894bc310 3790{
39b5f29a 3791 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3792}
89e004ea 3793
85046579 3794#ifdef CONFIG_SHMEM
89e004ea 3795/**
24513264
HD
3796 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3797 * @pages: array of pages to check
3798 * @nr_pages: number of pages to check
89e004ea 3799 *
24513264 3800 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3801 *
3802 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3803 */
24513264 3804void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3805{
925b7673 3806 struct lruvec *lruvec;
785b99fe 3807 struct pglist_data *pgdat = NULL;
24513264
HD
3808 int pgscanned = 0;
3809 int pgrescued = 0;
3810 int i;
89e004ea 3811
24513264
HD
3812 for (i = 0; i < nr_pages; i++) {
3813 struct page *page = pages[i];
785b99fe 3814 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 3815
24513264 3816 pgscanned++;
785b99fe
MG
3817 if (pagepgdat != pgdat) {
3818 if (pgdat)
3819 spin_unlock_irq(&pgdat->lru_lock);
3820 pgdat = pagepgdat;
3821 spin_lock_irq(&pgdat->lru_lock);
24513264 3822 }
785b99fe 3823 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 3824
24513264
HD
3825 if (!PageLRU(page) || !PageUnevictable(page))
3826 continue;
89e004ea 3827
39b5f29a 3828 if (page_evictable(page)) {
24513264
HD
3829 enum lru_list lru = page_lru_base_type(page);
3830
309381fe 3831 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3832 ClearPageUnevictable(page);
fa9add64
HD
3833 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3834 add_page_to_lru_list(page, lruvec, lru);
24513264 3835 pgrescued++;
89e004ea 3836 }
24513264 3837 }
89e004ea 3838
785b99fe 3839 if (pgdat) {
24513264
HD
3840 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3841 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 3842 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 3843 }
89e004ea 3844}
85046579 3845#endif /* CONFIG_SHMEM */