]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm: vmscan: do not writeback filesystem pages in kswapd except in high priority
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
ee64fc93 57/*
f3a310bc
MG
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
ee64fc93
MG
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
f3a310bc 65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
3e7d3449 66 * order-0 pages and then compact the zone
ee64fc93 67 */
f3a310bc
MG
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
7d3579e8 74
1da177e4 75struct scan_control {
1da177e4
LT
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
a79311c1
RR
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
22fba335
KM
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
7b51755c
KM
85 unsigned long hibernation_mode;
86
1da177e4 87 /* This context's GFP mask */
6daa0e28 88 gfp_t gfp_mask;
1da177e4
LT
89
90 int may_writepage;
91
a6dc60f8
JW
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
f1fd1067 94
2e2e4259
KM
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
5ad333eb 98 int order;
66e1707b 99
5f53e762 100 /*
415b54e3
NK
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
5f53e762 103 */
f3a310bc 104 reclaim_mode_t reclaim_mode;
5f53e762 105
66e1707b
BS
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
108
327c0e96
KH
109 /*
110 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 * are scanned.
112 */
113 nodemask_t *nodemask;
1da177e4
LT
114};
115
1da177e4
LT
116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118#ifdef ARCH_HAS_PREFETCH
119#define prefetch_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetch(&prev->_field); \
126 } \
127 } while (0)
128#else
129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132#ifdef ARCH_HAS_PREFETCHW
133#define prefetchw_prev_lru_page(_page, _base, _field) \
134 do { \
135 if ((_page)->lru.prev != _base) { \
136 struct page *prev; \
137 \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetchw(&prev->_field); \
140 } \
141 } while (0)
142#else
143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146/*
147 * From 0 .. 100. Higher means more swappy.
148 */
149int vm_swappiness = 60;
bd1e22b8 150long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
00f0b825 155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 156#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 157#else
e72e2bd6 158#define scanning_global_lru(sc) (1)
91a45470
KH
159#endif
160
6e901571
KM
161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 struct scan_control *sc)
163{
e72e2bd6 164 if (!scanning_global_lru(sc))
3e2f41f1
KM
165 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
6e901571
KM
167 return &zone->reclaim_stat;
168}
169
0b217676
VL
170static unsigned long zone_nr_lru_pages(struct zone *zone,
171 struct scan_control *sc, enum lru_list lru)
c9f299d9 172{
e72e2bd6 173 if (!scanning_global_lru(sc))
bb2a0de9
KH
174 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175 zone_to_nid(zone), zone_idx(zone), BIT(lru));
a3d8e054 176
c9f299d9
KM
177 return zone_page_state(zone, NR_LRU_BASE + lru);
178}
179
180
1da177e4
LT
181/*
182 * Add a shrinker callback to be called from the vm
183 */
8e1f936b 184void register_shrinker(struct shrinker *shrinker)
1da177e4 185{
8e1f936b
RR
186 shrinker->nr = 0;
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
1da177e4 190}
8e1f936b 191EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
192
193/*
194 * Remove one
195 */
8e1f936b 196void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
197{
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
1da177e4 201}
8e1f936b 202EXPORT_SYMBOL(unregister_shrinker);
1da177e4 203
1495f230
YH
204static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 struct shrink_control *sc,
206 unsigned long nr_to_scan)
207{
208 sc->nr_to_scan = nr_to_scan;
209 return (*shrinker->shrink)(shrinker, sc);
210}
211
1da177e4
LT
212#define SHRINK_BATCH 128
213/*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object. With this in mind we age equal
218 * percentages of the lru and ageable caches. This should balance the seeks
219 * generated by these structures.
220 *
183ff22b 221 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt. It is used for balancing
228 * slab reclaim versus page reclaim.
b15e0905 229 *
230 * Returns the number of slab objects which we shrunk.
1da177e4 231 */
a09ed5e0 232unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 233 unsigned long nr_pages_scanned,
a09ed5e0 234 unsigned long lru_pages)
1da177e4
LT
235{
236 struct shrinker *shrinker;
69e05944 237 unsigned long ret = 0;
1da177e4 238
1495f230
YH
239 if (nr_pages_scanned == 0)
240 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 241
f06590bd
MK
242 if (!down_read_trylock(&shrinker_rwsem)) {
243 /* Assume we'll be able to shrink next time */
244 ret = 1;
245 goto out;
246 }
1da177e4
LT
247
248 list_for_each_entry(shrinker, &shrinker_list, list) {
249 unsigned long long delta;
250 unsigned long total_scan;
7f8275d0 251 unsigned long max_pass;
09576073 252 int shrink_ret = 0;
acf92b48
DC
253 long nr;
254 long new_nr;
e9299f50
DC
255 long batch_size = shrinker->batch ? shrinker->batch
256 : SHRINK_BATCH;
1da177e4 257
acf92b48
DC
258 /*
259 * copy the current shrinker scan count into a local variable
260 * and zero it so that other concurrent shrinker invocations
261 * don't also do this scanning work.
262 */
263 do {
264 nr = shrinker->nr;
265 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267 total_scan = nr;
1495f230
YH
268 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 270 delta *= max_pass;
1da177e4 271 do_div(delta, lru_pages + 1);
acf92b48
DC
272 total_scan += delta;
273 if (total_scan < 0) {
88c3bd70
DR
274 printk(KERN_ERR "shrink_slab: %pF negative objects to "
275 "delete nr=%ld\n",
acf92b48
DC
276 shrinker->shrink, total_scan);
277 total_scan = max_pass;
ea164d73
AA
278 }
279
3567b59a
DC
280 /*
281 * We need to avoid excessive windup on filesystem shrinkers
282 * due to large numbers of GFP_NOFS allocations causing the
283 * shrinkers to return -1 all the time. This results in a large
284 * nr being built up so when a shrink that can do some work
285 * comes along it empties the entire cache due to nr >>>
286 * max_pass. This is bad for sustaining a working set in
287 * memory.
288 *
289 * Hence only allow the shrinker to scan the entire cache when
290 * a large delta change is calculated directly.
291 */
292 if (delta < max_pass / 4)
293 total_scan = min(total_scan, max_pass / 2);
294
ea164d73
AA
295 /*
296 * Avoid risking looping forever due to too large nr value:
297 * never try to free more than twice the estimate number of
298 * freeable entries.
299 */
acf92b48
DC
300 if (total_scan > max_pass * 2)
301 total_scan = max_pass * 2;
1da177e4 302
acf92b48 303 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
304 nr_pages_scanned, lru_pages,
305 max_pass, delta, total_scan);
306
e9299f50 307 while (total_scan >= batch_size) {
b15e0905 308 int nr_before;
1da177e4 309
1495f230
YH
310 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 312 batch_size);
1da177e4
LT
313 if (shrink_ret == -1)
314 break;
b15e0905 315 if (shrink_ret < nr_before)
316 ret += nr_before - shrink_ret;
e9299f50
DC
317 count_vm_events(SLABS_SCANNED, batch_size);
318 total_scan -= batch_size;
1da177e4
LT
319
320 cond_resched();
321 }
322
acf92b48
DC
323 /*
324 * move the unused scan count back into the shrinker in a
325 * manner that handles concurrent updates. If we exhausted the
326 * scan, there is no need to do an update.
327 */
328 do {
329 nr = shrinker->nr;
330 new_nr = total_scan + nr;
331 if (total_scan <= 0)
332 break;
333 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
336 }
337 up_read(&shrinker_rwsem);
f06590bd
MK
338out:
339 cond_resched();
b15e0905 340 return ret;
1da177e4
LT
341}
342
f3a310bc 343static void set_reclaim_mode(int priority, struct scan_control *sc,
7d3579e8
KM
344 bool sync)
345{
f3a310bc 346 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
7d3579e8
KM
347
348 /*
3e7d3449
MG
349 * Initially assume we are entering either lumpy reclaim or
350 * reclaim/compaction.Depending on the order, we will either set the
351 * sync mode or just reclaim order-0 pages later.
7d3579e8 352 */
3e7d3449 353 if (COMPACTION_BUILD)
f3a310bc 354 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
3e7d3449 355 else
f3a310bc 356 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
7d3579e8
KM
357
358 /*
3e7d3449
MG
359 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360 * restricting when its set to either costly allocations or when
361 * under memory pressure
7d3579e8
KM
362 */
363 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
f3a310bc 364 sc->reclaim_mode |= syncmode;
7d3579e8 365 else if (sc->order && priority < DEF_PRIORITY - 2)
f3a310bc 366 sc->reclaim_mode |= syncmode;
7d3579e8 367 else
f3a310bc 368 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
369}
370
f3a310bc 371static void reset_reclaim_mode(struct scan_control *sc)
7d3579e8 372{
f3a310bc 373 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
374}
375
1da177e4
LT
376static inline int is_page_cache_freeable(struct page *page)
377{
ceddc3a5
JW
378 /*
379 * A freeable page cache page is referenced only by the caller
380 * that isolated the page, the page cache radix tree and
381 * optional buffer heads at page->private.
382 */
edcf4748 383 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
384}
385
7d3579e8
KM
386static int may_write_to_queue(struct backing_dev_info *bdi,
387 struct scan_control *sc)
1da177e4 388{
930d9152 389 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
390 return 1;
391 if (!bdi_write_congested(bdi))
392 return 1;
393 if (bdi == current->backing_dev_info)
394 return 1;
7d3579e8
KM
395
396 /* lumpy reclaim for hugepage often need a lot of write */
397 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398 return 1;
1da177e4
LT
399 return 0;
400}
401
402/*
403 * We detected a synchronous write error writing a page out. Probably
404 * -ENOSPC. We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
406 *
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up. But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
410 *
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
413 */
414static void handle_write_error(struct address_space *mapping,
415 struct page *page, int error)
416{
7eaceacc 417 lock_page(page);
3e9f45bd
GC
418 if (page_mapping(page) == mapping)
419 mapping_set_error(mapping, error);
1da177e4
LT
420 unlock_page(page);
421}
422
04e62a29
CL
423/* possible outcome of pageout() */
424typedef enum {
425 /* failed to write page out, page is locked */
426 PAGE_KEEP,
427 /* move page to the active list, page is locked */
428 PAGE_ACTIVATE,
429 /* page has been sent to the disk successfully, page is unlocked */
430 PAGE_SUCCESS,
431 /* page is clean and locked */
432 PAGE_CLEAN,
433} pageout_t;
434
1da177e4 435/*
1742f19f
AM
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
1da177e4 438 */
c661b078 439static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 440 struct scan_control *sc)
1da177e4
LT
441{
442 /*
443 * If the page is dirty, only perform writeback if that write
444 * will be non-blocking. To prevent this allocation from being
445 * stalled by pagecache activity. But note that there may be
446 * stalls if we need to run get_block(). We could test
447 * PagePrivate for that.
448 *
6aceb53b 449 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
450 * this page's queue, we can perform writeback even if that
451 * will block.
452 *
453 * If the page is swapcache, write it back even if that would
454 * block, for some throttling. This happens by accident, because
455 * swap_backing_dev_info is bust: it doesn't reflect the
456 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
457 */
458 if (!is_page_cache_freeable(page))
459 return PAGE_KEEP;
460 if (!mapping) {
461 /*
462 * Some data journaling orphaned pages can have
463 * page->mapping == NULL while being dirty with clean buffers.
464 */
266cf658 465 if (page_has_private(page)) {
1da177e4
LT
466 if (try_to_free_buffers(page)) {
467 ClearPageDirty(page);
d40cee24 468 printk("%s: orphaned page\n", __func__);
1da177e4
LT
469 return PAGE_CLEAN;
470 }
471 }
472 return PAGE_KEEP;
473 }
474 if (mapping->a_ops->writepage == NULL)
475 return PAGE_ACTIVATE;
0e093d99 476 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
477 return PAGE_KEEP;
478
479 if (clear_page_dirty_for_io(page)) {
480 int res;
481 struct writeback_control wbc = {
482 .sync_mode = WB_SYNC_NONE,
483 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
484 .range_start = 0,
485 .range_end = LLONG_MAX,
1da177e4
LT
486 .for_reclaim = 1,
487 };
488
489 SetPageReclaim(page);
490 res = mapping->a_ops->writepage(page, &wbc);
491 if (res < 0)
492 handle_write_error(mapping, page, res);
994fc28c 493 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
494 ClearPageReclaim(page);
495 return PAGE_ACTIVATE;
496 }
c661b078 497
1da177e4
LT
498 if (!PageWriteback(page)) {
499 /* synchronous write or broken a_ops? */
500 ClearPageReclaim(page);
501 }
755f0225 502 trace_mm_vmscan_writepage(page,
f3a310bc 503 trace_reclaim_flags(page, sc->reclaim_mode));
e129b5c2 504 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
505 return PAGE_SUCCESS;
506 }
507
508 return PAGE_CLEAN;
509}
510
a649fd92 511/*
e286781d
NP
512 * Same as remove_mapping, but if the page is removed from the mapping, it
513 * gets returned with a refcount of 0.
a649fd92 514 */
e286781d 515static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 516{
28e4d965
NP
517 BUG_ON(!PageLocked(page));
518 BUG_ON(mapping != page_mapping(page));
49d2e9cc 519
19fd6231 520 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 521 /*
0fd0e6b0
NP
522 * The non racy check for a busy page.
523 *
524 * Must be careful with the order of the tests. When someone has
525 * a ref to the page, it may be possible that they dirty it then
526 * drop the reference. So if PageDirty is tested before page_count
527 * here, then the following race may occur:
528 *
529 * get_user_pages(&page);
530 * [user mapping goes away]
531 * write_to(page);
532 * !PageDirty(page) [good]
533 * SetPageDirty(page);
534 * put_page(page);
535 * !page_count(page) [good, discard it]
536 *
537 * [oops, our write_to data is lost]
538 *
539 * Reversing the order of the tests ensures such a situation cannot
540 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541 * load is not satisfied before that of page->_count.
542 *
543 * Note that if SetPageDirty is always performed via set_page_dirty,
544 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 545 */
e286781d 546 if (!page_freeze_refs(page, 2))
49d2e9cc 547 goto cannot_free;
e286781d
NP
548 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549 if (unlikely(PageDirty(page))) {
550 page_unfreeze_refs(page, 2);
49d2e9cc 551 goto cannot_free;
e286781d 552 }
49d2e9cc
CL
553
554 if (PageSwapCache(page)) {
555 swp_entry_t swap = { .val = page_private(page) };
556 __delete_from_swap_cache(page);
19fd6231 557 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 558 swapcache_free(swap, page);
e286781d 559 } else {
6072d13c
LT
560 void (*freepage)(struct page *);
561
562 freepage = mapping->a_ops->freepage;
563
e64a782f 564 __delete_from_page_cache(page);
19fd6231 565 spin_unlock_irq(&mapping->tree_lock);
e767e056 566 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
567
568 if (freepage != NULL)
569 freepage(page);
49d2e9cc
CL
570 }
571
49d2e9cc
CL
572 return 1;
573
574cannot_free:
19fd6231 575 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
576 return 0;
577}
578
e286781d
NP
579/*
580 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
581 * someone else has a ref on the page, abort and return 0. If it was
582 * successfully detached, return 1. Assumes the caller has a single ref on
583 * this page.
584 */
585int remove_mapping(struct address_space *mapping, struct page *page)
586{
587 if (__remove_mapping(mapping, page)) {
588 /*
589 * Unfreezing the refcount with 1 rather than 2 effectively
590 * drops the pagecache ref for us without requiring another
591 * atomic operation.
592 */
593 page_unfreeze_refs(page, 1);
594 return 1;
595 }
596 return 0;
597}
598
894bc310
LS
599/**
600 * putback_lru_page - put previously isolated page onto appropriate LRU list
601 * @page: page to be put back to appropriate lru list
602 *
603 * Add previously isolated @page to appropriate LRU list.
604 * Page may still be unevictable for other reasons.
605 *
606 * lru_lock must not be held, interrupts must be enabled.
607 */
894bc310
LS
608void putback_lru_page(struct page *page)
609{
610 int lru;
611 int active = !!TestClearPageActive(page);
bbfd28ee 612 int was_unevictable = PageUnevictable(page);
894bc310
LS
613
614 VM_BUG_ON(PageLRU(page));
615
616redo:
617 ClearPageUnevictable(page);
618
619 if (page_evictable(page, NULL)) {
620 /*
621 * For evictable pages, we can use the cache.
622 * In event of a race, worst case is we end up with an
623 * unevictable page on [in]active list.
624 * We know how to handle that.
625 */
401a8e1c 626 lru = active + page_lru_base_type(page);
894bc310
LS
627 lru_cache_add_lru(page, lru);
628 } else {
629 /*
630 * Put unevictable pages directly on zone's unevictable
631 * list.
632 */
633 lru = LRU_UNEVICTABLE;
634 add_page_to_unevictable_list(page);
6a7b9548
JW
635 /*
636 * When racing with an mlock clearing (page is
637 * unlocked), make sure that if the other thread does
638 * not observe our setting of PG_lru and fails
639 * isolation, we see PG_mlocked cleared below and move
640 * the page back to the evictable list.
641 *
642 * The other side is TestClearPageMlocked().
643 */
644 smp_mb();
894bc310 645 }
894bc310
LS
646
647 /*
648 * page's status can change while we move it among lru. If an evictable
649 * page is on unevictable list, it never be freed. To avoid that,
650 * check after we added it to the list, again.
651 */
652 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
653 if (!isolate_lru_page(page)) {
654 put_page(page);
655 goto redo;
656 }
657 /* This means someone else dropped this page from LRU
658 * So, it will be freed or putback to LRU again. There is
659 * nothing to do here.
660 */
661 }
662
bbfd28ee
LS
663 if (was_unevictable && lru != LRU_UNEVICTABLE)
664 count_vm_event(UNEVICTABLE_PGRESCUED);
665 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
666 count_vm_event(UNEVICTABLE_PGCULLED);
667
894bc310
LS
668 put_page(page); /* drop ref from isolate */
669}
670
dfc8d636
JW
671enum page_references {
672 PAGEREF_RECLAIM,
673 PAGEREF_RECLAIM_CLEAN,
64574746 674 PAGEREF_KEEP,
dfc8d636
JW
675 PAGEREF_ACTIVATE,
676};
677
678static enum page_references page_check_references(struct page *page,
679 struct scan_control *sc)
680{
64574746 681 int referenced_ptes, referenced_page;
dfc8d636 682 unsigned long vm_flags;
dfc8d636 683
64574746
JW
684 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
685 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
686
687 /* Lumpy reclaim - ignore references */
f3a310bc 688 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
dfc8d636
JW
689 return PAGEREF_RECLAIM;
690
691 /*
692 * Mlock lost the isolation race with us. Let try_to_unmap()
693 * move the page to the unevictable list.
694 */
695 if (vm_flags & VM_LOCKED)
696 return PAGEREF_RECLAIM;
697
64574746
JW
698 if (referenced_ptes) {
699 if (PageAnon(page))
700 return PAGEREF_ACTIVATE;
701 /*
702 * All mapped pages start out with page table
703 * references from the instantiating fault, so we need
704 * to look twice if a mapped file page is used more
705 * than once.
706 *
707 * Mark it and spare it for another trip around the
708 * inactive list. Another page table reference will
709 * lead to its activation.
710 *
711 * Note: the mark is set for activated pages as well
712 * so that recently deactivated but used pages are
713 * quickly recovered.
714 */
715 SetPageReferenced(page);
716
717 if (referenced_page)
718 return PAGEREF_ACTIVATE;
719
720 return PAGEREF_KEEP;
721 }
dfc8d636
JW
722
723 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 724 if (referenced_page && !PageSwapBacked(page))
64574746
JW
725 return PAGEREF_RECLAIM_CLEAN;
726
727 return PAGEREF_RECLAIM;
dfc8d636
JW
728}
729
abe4c3b5
MG
730static noinline_for_stack void free_page_list(struct list_head *free_pages)
731{
732 struct pagevec freed_pvec;
733 struct page *page, *tmp;
734
735 pagevec_init(&freed_pvec, 1);
736
737 list_for_each_entry_safe(page, tmp, free_pages, lru) {
738 list_del(&page->lru);
739 if (!pagevec_add(&freed_pvec, page)) {
740 __pagevec_free(&freed_pvec);
741 pagevec_reinit(&freed_pvec);
742 }
743 }
744
745 pagevec_free(&freed_pvec);
746}
747
1da177e4 748/*
1742f19f 749 * shrink_page_list() returns the number of reclaimed pages
1da177e4 750 */
1742f19f 751static unsigned long shrink_page_list(struct list_head *page_list,
0e093d99 752 struct zone *zone,
f84f6e2b
MG
753 struct scan_control *sc,
754 int priority)
1da177e4
LT
755{
756 LIST_HEAD(ret_pages);
abe4c3b5 757 LIST_HEAD(free_pages);
1da177e4 758 int pgactivate = 0;
0e093d99
MG
759 unsigned long nr_dirty = 0;
760 unsigned long nr_congested = 0;
05ff5137 761 unsigned long nr_reclaimed = 0;
1da177e4
LT
762
763 cond_resched();
764
1da177e4 765 while (!list_empty(page_list)) {
dfc8d636 766 enum page_references references;
1da177e4
LT
767 struct address_space *mapping;
768 struct page *page;
769 int may_enter_fs;
1da177e4
LT
770
771 cond_resched();
772
773 page = lru_to_page(page_list);
774 list_del(&page->lru);
775
529ae9aa 776 if (!trylock_page(page))
1da177e4
LT
777 goto keep;
778
725d704e 779 VM_BUG_ON(PageActive(page));
0e093d99 780 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
781
782 sc->nr_scanned++;
80e43426 783
b291f000
NP
784 if (unlikely(!page_evictable(page, NULL)))
785 goto cull_mlocked;
894bc310 786
a6dc60f8 787 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
788 goto keep_locked;
789
1da177e4
LT
790 /* Double the slab pressure for mapped and swapcache pages */
791 if (page_mapped(page) || PageSwapCache(page))
792 sc->nr_scanned++;
793
c661b078
AW
794 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
795 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
796
797 if (PageWriteback(page)) {
798 /*
a18bba06
MG
799 * Synchronous reclaim cannot queue pages for
800 * writeback due to the possibility of stack overflow
801 * but if it encounters a page under writeback, wait
802 * for the IO to complete.
c661b078 803 */
f3a310bc 804 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
7d3579e8 805 may_enter_fs)
c661b078 806 wait_on_page_writeback(page);
7d3579e8
KM
807 else {
808 unlock_page(page);
809 goto keep_lumpy;
810 }
c661b078 811 }
1da177e4 812
dfc8d636
JW
813 references = page_check_references(page, sc);
814 switch (references) {
815 case PAGEREF_ACTIVATE:
1da177e4 816 goto activate_locked;
64574746
JW
817 case PAGEREF_KEEP:
818 goto keep_locked;
dfc8d636
JW
819 case PAGEREF_RECLAIM:
820 case PAGEREF_RECLAIM_CLEAN:
821 ; /* try to reclaim the page below */
822 }
1da177e4 823
1da177e4
LT
824 /*
825 * Anonymous process memory has backing store?
826 * Try to allocate it some swap space here.
827 */
b291f000 828 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
829 if (!(sc->gfp_mask & __GFP_IO))
830 goto keep_locked;
ac47b003 831 if (!add_to_swap(page))
1da177e4 832 goto activate_locked;
63eb6b93 833 may_enter_fs = 1;
b291f000 834 }
1da177e4
LT
835
836 mapping = page_mapping(page);
1da177e4
LT
837
838 /*
839 * The page is mapped into the page tables of one or more
840 * processes. Try to unmap it here.
841 */
842 if (page_mapped(page) && mapping) {
14fa31b8 843 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
844 case SWAP_FAIL:
845 goto activate_locked;
846 case SWAP_AGAIN:
847 goto keep_locked;
b291f000
NP
848 case SWAP_MLOCK:
849 goto cull_mlocked;
1da177e4
LT
850 case SWAP_SUCCESS:
851 ; /* try to free the page below */
852 }
853 }
854
855 if (PageDirty(page)) {
0e093d99
MG
856 nr_dirty++;
857
ee72886d
MG
858 /*
859 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
860 * avoid risk of stack overflow but do not writeback
861 * unless under significant pressure.
ee72886d 862 */
f84f6e2b
MG
863 if (page_is_file_cache(page) &&
864 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
ee72886d
MG
865 inc_zone_page_state(page, NR_VMSCAN_WRITE_SKIP);
866 goto keep_locked;
867 }
868
dfc8d636 869 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 870 goto keep_locked;
4dd4b920 871 if (!may_enter_fs)
1da177e4 872 goto keep_locked;
52a8363e 873 if (!sc->may_writepage)
1da177e4
LT
874 goto keep_locked;
875
876 /* Page is dirty, try to write it out here */
7d3579e8 877 switch (pageout(page, mapping, sc)) {
1da177e4 878 case PAGE_KEEP:
0e093d99 879 nr_congested++;
1da177e4
LT
880 goto keep_locked;
881 case PAGE_ACTIVATE:
882 goto activate_locked;
883 case PAGE_SUCCESS:
7d3579e8
KM
884 if (PageWriteback(page))
885 goto keep_lumpy;
886 if (PageDirty(page))
1da177e4 887 goto keep;
7d3579e8 888
1da177e4
LT
889 /*
890 * A synchronous write - probably a ramdisk. Go
891 * ahead and try to reclaim the page.
892 */
529ae9aa 893 if (!trylock_page(page))
1da177e4
LT
894 goto keep;
895 if (PageDirty(page) || PageWriteback(page))
896 goto keep_locked;
897 mapping = page_mapping(page);
898 case PAGE_CLEAN:
899 ; /* try to free the page below */
900 }
901 }
902
903 /*
904 * If the page has buffers, try to free the buffer mappings
905 * associated with this page. If we succeed we try to free
906 * the page as well.
907 *
908 * We do this even if the page is PageDirty().
909 * try_to_release_page() does not perform I/O, but it is
910 * possible for a page to have PageDirty set, but it is actually
911 * clean (all its buffers are clean). This happens if the
912 * buffers were written out directly, with submit_bh(). ext3
894bc310 913 * will do this, as well as the blockdev mapping.
1da177e4
LT
914 * try_to_release_page() will discover that cleanness and will
915 * drop the buffers and mark the page clean - it can be freed.
916 *
917 * Rarely, pages can have buffers and no ->mapping. These are
918 * the pages which were not successfully invalidated in
919 * truncate_complete_page(). We try to drop those buffers here
920 * and if that worked, and the page is no longer mapped into
921 * process address space (page_count == 1) it can be freed.
922 * Otherwise, leave the page on the LRU so it is swappable.
923 */
266cf658 924 if (page_has_private(page)) {
1da177e4
LT
925 if (!try_to_release_page(page, sc->gfp_mask))
926 goto activate_locked;
e286781d
NP
927 if (!mapping && page_count(page) == 1) {
928 unlock_page(page);
929 if (put_page_testzero(page))
930 goto free_it;
931 else {
932 /*
933 * rare race with speculative reference.
934 * the speculative reference will free
935 * this page shortly, so we may
936 * increment nr_reclaimed here (and
937 * leave it off the LRU).
938 */
939 nr_reclaimed++;
940 continue;
941 }
942 }
1da177e4
LT
943 }
944
e286781d 945 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 946 goto keep_locked;
1da177e4 947
a978d6f5
NP
948 /*
949 * At this point, we have no other references and there is
950 * no way to pick any more up (removed from LRU, removed
951 * from pagecache). Can use non-atomic bitops now (and
952 * we obviously don't have to worry about waking up a process
953 * waiting on the page lock, because there are no references.
954 */
955 __clear_page_locked(page);
e286781d 956free_it:
05ff5137 957 nr_reclaimed++;
abe4c3b5
MG
958
959 /*
960 * Is there need to periodically free_page_list? It would
961 * appear not as the counts should be low
962 */
963 list_add(&page->lru, &free_pages);
1da177e4
LT
964 continue;
965
b291f000 966cull_mlocked:
63d6c5ad
HD
967 if (PageSwapCache(page))
968 try_to_free_swap(page);
b291f000
NP
969 unlock_page(page);
970 putback_lru_page(page);
f3a310bc 971 reset_reclaim_mode(sc);
b291f000
NP
972 continue;
973
1da177e4 974activate_locked:
68a22394
RR
975 /* Not a candidate for swapping, so reclaim swap space. */
976 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 977 try_to_free_swap(page);
894bc310 978 VM_BUG_ON(PageActive(page));
1da177e4
LT
979 SetPageActive(page);
980 pgactivate++;
981keep_locked:
982 unlock_page(page);
983keep:
f3a310bc 984 reset_reclaim_mode(sc);
7d3579e8 985keep_lumpy:
1da177e4 986 list_add(&page->lru, &ret_pages);
b291f000 987 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 988 }
abe4c3b5 989
0e093d99
MG
990 /*
991 * Tag a zone as congested if all the dirty pages encountered were
992 * backed by a congested BDI. In this case, reclaimers should just
993 * back off and wait for congestion to clear because further reclaim
994 * will encounter the same problem
995 */
d6c438b6 996 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
0e093d99
MG
997 zone_set_flag(zone, ZONE_CONGESTED);
998
abe4c3b5
MG
999 free_page_list(&free_pages);
1000
1da177e4 1001 list_splice(&ret_pages, page_list);
f8891e5e 1002 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 1003 return nr_reclaimed;
1da177e4
LT
1004}
1005
5ad333eb
AW
1006/*
1007 * Attempt to remove the specified page from its LRU. Only take this page
1008 * if it is of the appropriate PageActive status. Pages which are being
1009 * freed elsewhere are also ignored.
1010 *
1011 * page: page to consider
1012 * mode: one of the LRU isolation modes defined above
1013 *
1014 * returns 0 on success, -ve errno on failure.
1015 */
4356f21d 1016int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
5ad333eb 1017{
4356f21d 1018 bool all_lru_mode;
5ad333eb
AW
1019 int ret = -EINVAL;
1020
1021 /* Only take pages on the LRU. */
1022 if (!PageLRU(page))
1023 return ret;
1024
4356f21d
MK
1025 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1026 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1027
5ad333eb
AW
1028 /*
1029 * When checking the active state, we need to be sure we are
1030 * dealing with comparible boolean values. Take the logical not
1031 * of each.
1032 */
4356f21d 1033 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
5ad333eb
AW
1034 return ret;
1035
4356f21d 1036 if (!all_lru_mode && !!page_is_file_cache(page) != file)
4f98a2fe
RR
1037 return ret;
1038
894bc310
LS
1039 /*
1040 * When this function is being called for lumpy reclaim, we
1041 * initially look into all LRU pages, active, inactive and
1042 * unevictable; only give shrink_page_list evictable pages.
1043 */
1044 if (PageUnevictable(page))
1045 return ret;
1046
5ad333eb 1047 ret = -EBUSY;
08e552c6 1048
39deaf85
MK
1049 if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1050 return ret;
1051
f80c0673
MK
1052 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053 return ret;
1054
5ad333eb
AW
1055 if (likely(get_page_unless_zero(page))) {
1056 /*
1057 * Be careful not to clear PageLRU until after we're
1058 * sure the page is not being freed elsewhere -- the
1059 * page release code relies on it.
1060 */
1061 ClearPageLRU(page);
1062 ret = 0;
1063 }
1064
1065 return ret;
1066}
1067
1da177e4
LT
1068/*
1069 * zone->lru_lock is heavily contended. Some of the functions that
1070 * shrink the lists perform better by taking out a batch of pages
1071 * and working on them outside the LRU lock.
1072 *
1073 * For pagecache intensive workloads, this function is the hottest
1074 * spot in the kernel (apart from copy_*_user functions).
1075 *
1076 * Appropriate locks must be held before calling this function.
1077 *
1078 * @nr_to_scan: The number of pages to look through on the list.
1079 * @src: The LRU list to pull pages off.
1080 * @dst: The temp list to put pages on to.
1081 * @scanned: The number of pages that were scanned.
5ad333eb
AW
1082 * @order: The caller's attempted allocation order
1083 * @mode: One of the LRU isolation modes
4f98a2fe 1084 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
1085 *
1086 * returns how many pages were moved onto *@dst.
1087 */
69e05944
AM
1088static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1089 struct list_head *src, struct list_head *dst,
4356f21d
MK
1090 unsigned long *scanned, int order, isolate_mode_t mode,
1091 int file)
1da177e4 1092{
69e05944 1093 unsigned long nr_taken = 0;
a8a94d15
MG
1094 unsigned long nr_lumpy_taken = 0;
1095 unsigned long nr_lumpy_dirty = 0;
1096 unsigned long nr_lumpy_failed = 0;
c9b02d97 1097 unsigned long scan;
1da177e4 1098
c9b02d97 1099 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
1100 struct page *page;
1101 unsigned long pfn;
1102 unsigned long end_pfn;
1103 unsigned long page_pfn;
1104 int zone_id;
1105
1da177e4
LT
1106 page = lru_to_page(src);
1107 prefetchw_prev_lru_page(page, src, flags);
1108
725d704e 1109 VM_BUG_ON(!PageLRU(page));
8d438f96 1110
4f98a2fe 1111 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
1112 case 0:
1113 list_move(&page->lru, dst);
2ffebca6 1114 mem_cgroup_del_lru(page);
2c888cfb 1115 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1116 break;
1117
1118 case -EBUSY:
1119 /* else it is being freed elsewhere */
1120 list_move(&page->lru, src);
2ffebca6 1121 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 1122 continue;
46453a6e 1123
5ad333eb
AW
1124 default:
1125 BUG();
1126 }
1127
1128 if (!order)
1129 continue;
1130
1131 /*
1132 * Attempt to take all pages in the order aligned region
1133 * surrounding the tag page. Only take those pages of
1134 * the same active state as that tag page. We may safely
1135 * round the target page pfn down to the requested order
25985edc 1136 * as the mem_map is guaranteed valid out to MAX_ORDER,
5ad333eb
AW
1137 * where that page is in a different zone we will detect
1138 * it from its zone id and abort this block scan.
1139 */
1140 zone_id = page_zone_id(page);
1141 page_pfn = page_to_pfn(page);
1142 pfn = page_pfn & ~((1 << order) - 1);
1143 end_pfn = pfn + (1 << order);
1144 for (; pfn < end_pfn; pfn++) {
1145 struct page *cursor_page;
1146
1147 /* The target page is in the block, ignore it. */
1148 if (unlikely(pfn == page_pfn))
1149 continue;
1150
1151 /* Avoid holes within the zone. */
1152 if (unlikely(!pfn_valid_within(pfn)))
1153 break;
1154
1155 cursor_page = pfn_to_page(pfn);
4f98a2fe 1156
5ad333eb
AW
1157 /* Check that we have not crossed a zone boundary. */
1158 if (unlikely(page_zone_id(cursor_page) != zone_id))
08fc468f 1159 break;
de2e7567
MK
1160
1161 /*
1162 * If we don't have enough swap space, reclaiming of
1163 * anon page which don't already have a swap slot is
1164 * pointless.
1165 */
1166 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
08fc468f
KM
1167 !PageSwapCache(cursor_page))
1168 break;
de2e7567 1169
ee993b13 1170 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 1171 list_move(&cursor_page->lru, dst);
cb4cbcf6 1172 mem_cgroup_del_lru(cursor_page);
2c888cfb 1173 nr_taken += hpage_nr_pages(page);
a8a94d15
MG
1174 nr_lumpy_taken++;
1175 if (PageDirty(cursor_page))
1176 nr_lumpy_dirty++;
5ad333eb 1177 scan++;
a8a94d15 1178 } else {
d179e84b
AA
1179 /*
1180 * Check if the page is freed already.
1181 *
1182 * We can't use page_count() as that
1183 * requires compound_head and we don't
1184 * have a pin on the page here. If a
1185 * page is tail, we may or may not
1186 * have isolated the head, so assume
1187 * it's not free, it'd be tricky to
1188 * track the head status without a
1189 * page pin.
1190 */
1191 if (!PageTail(cursor_page) &&
1192 !atomic_read(&cursor_page->_count))
08fc468f
KM
1193 continue;
1194 break;
5ad333eb
AW
1195 }
1196 }
08fc468f
KM
1197
1198 /* If we break out of the loop above, lumpy reclaim failed */
1199 if (pfn < end_pfn)
1200 nr_lumpy_failed++;
1da177e4
LT
1201 }
1202
1203 *scanned = scan;
a8a94d15
MG
1204
1205 trace_mm_vmscan_lru_isolate(order,
1206 nr_to_scan, scan,
1207 nr_taken,
1208 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1209 mode);
1da177e4
LT
1210 return nr_taken;
1211}
1212
66e1707b
BS
1213static unsigned long isolate_pages_global(unsigned long nr,
1214 struct list_head *dst,
1215 unsigned long *scanned, int order,
4356f21d
MK
1216 isolate_mode_t mode,
1217 struct zone *z, int active, int file)
66e1707b 1218{
4f98a2fe 1219 int lru = LRU_BASE;
66e1707b 1220 if (active)
4f98a2fe
RR
1221 lru += LRU_ACTIVE;
1222 if (file)
1223 lru += LRU_FILE;
1224 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 1225 mode, file);
66e1707b
BS
1226}
1227
5ad333eb
AW
1228/*
1229 * clear_active_flags() is a helper for shrink_active_list(), clearing
1230 * any active bits from the pages in the list.
1231 */
4f98a2fe
RR
1232static unsigned long clear_active_flags(struct list_head *page_list,
1233 unsigned int *count)
5ad333eb
AW
1234{
1235 int nr_active = 0;
4f98a2fe 1236 int lru;
5ad333eb
AW
1237 struct page *page;
1238
4f98a2fe 1239 list_for_each_entry(page, page_list, lru) {
2c888cfb 1240 int numpages = hpage_nr_pages(page);
401a8e1c 1241 lru = page_lru_base_type(page);
5ad333eb 1242 if (PageActive(page)) {
4f98a2fe 1243 lru += LRU_ACTIVE;
5ad333eb 1244 ClearPageActive(page);
2c888cfb 1245 nr_active += numpages;
5ad333eb 1246 }
1489fa14 1247 if (count)
2c888cfb 1248 count[lru] += numpages;
4f98a2fe 1249 }
5ad333eb
AW
1250
1251 return nr_active;
1252}
1253
62695a84
NP
1254/**
1255 * isolate_lru_page - tries to isolate a page from its LRU list
1256 * @page: page to isolate from its LRU list
1257 *
1258 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1259 * vmstat statistic corresponding to whatever LRU list the page was on.
1260 *
1261 * Returns 0 if the page was removed from an LRU list.
1262 * Returns -EBUSY if the page was not on an LRU list.
1263 *
1264 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1265 * the active list, it will have PageActive set. If it was found on
1266 * the unevictable list, it will have the PageUnevictable bit set. That flag
1267 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1268 *
1269 * The vmstat statistic corresponding to the list on which the page was
1270 * found will be decremented.
1271 *
1272 * Restrictions:
1273 * (1) Must be called with an elevated refcount on the page. This is a
1274 * fundamentnal difference from isolate_lru_pages (which is called
1275 * without a stable reference).
1276 * (2) the lru_lock must not be held.
1277 * (3) interrupts must be enabled.
1278 */
1279int isolate_lru_page(struct page *page)
1280{
1281 int ret = -EBUSY;
1282
0c917313
KK
1283 VM_BUG_ON(!page_count(page));
1284
62695a84
NP
1285 if (PageLRU(page)) {
1286 struct zone *zone = page_zone(page);
1287
1288 spin_lock_irq(&zone->lru_lock);
0c917313 1289 if (PageLRU(page)) {
894bc310 1290 int lru = page_lru(page);
62695a84 1291 ret = 0;
0c917313 1292 get_page(page);
62695a84 1293 ClearPageLRU(page);
4f98a2fe 1294
4f98a2fe 1295 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1296 }
1297 spin_unlock_irq(&zone->lru_lock);
1298 }
1299 return ret;
1300}
1301
35cd7815
RR
1302/*
1303 * Are there way too many processes in the direct reclaim path already?
1304 */
1305static int too_many_isolated(struct zone *zone, int file,
1306 struct scan_control *sc)
1307{
1308 unsigned long inactive, isolated;
1309
1310 if (current_is_kswapd())
1311 return 0;
1312
1313 if (!scanning_global_lru(sc))
1314 return 0;
1315
1316 if (file) {
1317 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1318 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1319 } else {
1320 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1321 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1322 }
1323
1324 return isolated > inactive;
1325}
1326
66635629
MG
1327/*
1328 * TODO: Try merging with migrations version of putback_lru_pages
1329 */
1330static noinline_for_stack void
1489fa14 1331putback_lru_pages(struct zone *zone, struct scan_control *sc,
66635629
MG
1332 unsigned long nr_anon, unsigned long nr_file,
1333 struct list_head *page_list)
1334{
1335 struct page *page;
1336 struct pagevec pvec;
1489fa14 1337 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
66635629
MG
1338
1339 pagevec_init(&pvec, 1);
1340
1341 /*
1342 * Put back any unfreeable pages.
1343 */
1344 spin_lock(&zone->lru_lock);
1345 while (!list_empty(page_list)) {
1346 int lru;
1347 page = lru_to_page(page_list);
1348 VM_BUG_ON(PageLRU(page));
1349 list_del(&page->lru);
1350 if (unlikely(!page_evictable(page, NULL))) {
1351 spin_unlock_irq(&zone->lru_lock);
1352 putback_lru_page(page);
1353 spin_lock_irq(&zone->lru_lock);
1354 continue;
1355 }
7a608572 1356 SetPageLRU(page);
66635629 1357 lru = page_lru(page);
7a608572 1358 add_page_to_lru_list(zone, page, lru);
66635629
MG
1359 if (is_active_lru(lru)) {
1360 int file = is_file_lru(lru);
9992af10
RR
1361 int numpages = hpage_nr_pages(page);
1362 reclaim_stat->recent_rotated[file] += numpages;
66635629
MG
1363 }
1364 if (!pagevec_add(&pvec, page)) {
1365 spin_unlock_irq(&zone->lru_lock);
1366 __pagevec_release(&pvec);
1367 spin_lock_irq(&zone->lru_lock);
1368 }
1369 }
1370 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1371 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1372
1373 spin_unlock_irq(&zone->lru_lock);
1374 pagevec_release(&pvec);
1375}
1376
1489fa14
MG
1377static noinline_for_stack void update_isolated_counts(struct zone *zone,
1378 struct scan_control *sc,
1379 unsigned long *nr_anon,
1380 unsigned long *nr_file,
1381 struct list_head *isolated_list)
1382{
1383 unsigned long nr_active;
1384 unsigned int count[NR_LRU_LISTS] = { 0, };
1385 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1386
1387 nr_active = clear_active_flags(isolated_list, count);
1388 __count_vm_events(PGDEACTIVATE, nr_active);
1389
1390 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1391 -count[LRU_ACTIVE_FILE]);
1392 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1393 -count[LRU_INACTIVE_FILE]);
1394 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1395 -count[LRU_ACTIVE_ANON]);
1396 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1397 -count[LRU_INACTIVE_ANON]);
1398
1399 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1400 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1401 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1402 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1403
1404 reclaim_stat->recent_scanned[0] += *nr_anon;
1405 reclaim_stat->recent_scanned[1] += *nr_file;
1406}
1407
e31f3698 1408/*
a18bba06 1409 * Returns true if a direct reclaim should wait on pages under writeback.
e31f3698
WF
1410 *
1411 * If we are direct reclaiming for contiguous pages and we do not reclaim
1412 * everything in the list, try again and wait for writeback IO to complete.
1413 * This will stall high-order allocations noticeably. Only do that when really
1414 * need to free the pages under high memory pressure.
1415 */
1416static inline bool should_reclaim_stall(unsigned long nr_taken,
1417 unsigned long nr_freed,
1418 int priority,
1419 struct scan_control *sc)
1420{
1421 int lumpy_stall_priority;
1422
1423 /* kswapd should not stall on sync IO */
1424 if (current_is_kswapd())
1425 return false;
1426
1427 /* Only stall on lumpy reclaim */
f3a310bc 1428 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
e31f3698
WF
1429 return false;
1430
81d66c70 1431 /* If we have reclaimed everything on the isolated list, no stall */
e31f3698
WF
1432 if (nr_freed == nr_taken)
1433 return false;
1434
1435 /*
1436 * For high-order allocations, there are two stall thresholds.
1437 * High-cost allocations stall immediately where as lower
1438 * order allocations such as stacks require the scanning
1439 * priority to be much higher before stalling.
1440 */
1441 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1442 lumpy_stall_priority = DEF_PRIORITY;
1443 else
1444 lumpy_stall_priority = DEF_PRIORITY / 3;
1445
1446 return priority <= lumpy_stall_priority;
1447}
1448
1da177e4 1449/*
1742f19f
AM
1450 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1451 * of reclaimed pages
1da177e4 1452 */
66635629
MG
1453static noinline_for_stack unsigned long
1454shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1455 struct scan_control *sc, int priority, int file)
1da177e4
LT
1456{
1457 LIST_HEAD(page_list);
e247dbce 1458 unsigned long nr_scanned;
05ff5137 1459 unsigned long nr_reclaimed = 0;
e247dbce 1460 unsigned long nr_taken;
e247dbce
KM
1461 unsigned long nr_anon;
1462 unsigned long nr_file;
4356f21d 1463 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
78dc583d 1464
35cd7815 1465 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1466 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1467
1468 /* We are about to die and free our memory. Return now. */
1469 if (fatal_signal_pending(current))
1470 return SWAP_CLUSTER_MAX;
1471 }
1472
f3a310bc 1473 set_reclaim_mode(priority, sc, false);
4356f21d
MK
1474 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1475 reclaim_mode |= ISOLATE_ACTIVE;
1476
1da177e4 1477 lru_add_drain();
f80c0673
MK
1478
1479 if (!sc->may_unmap)
1480 reclaim_mode |= ISOLATE_UNMAPPED;
1481 if (!sc->may_writepage)
1482 reclaim_mode |= ISOLATE_CLEAN;
1483
1da177e4 1484 spin_lock_irq(&zone->lru_lock);
b35ea17b 1485
e247dbce 1486 if (scanning_global_lru(sc)) {
4356f21d
MK
1487 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1488 &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
e247dbce
KM
1489 zone->pages_scanned += nr_scanned;
1490 if (current_is_kswapd())
1491 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1492 nr_scanned);
1493 else
1494 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1495 nr_scanned);
1496 } else {
4356f21d
MK
1497 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1498 &nr_scanned, sc->order, reclaim_mode, zone,
1499 sc->mem_cgroup, 0, file);
e247dbce
KM
1500 /*
1501 * mem_cgroup_isolate_pages() keeps track of
1502 * scanned pages on its own.
1503 */
1504 }
b35ea17b 1505
66635629
MG
1506 if (nr_taken == 0) {
1507 spin_unlock_irq(&zone->lru_lock);
1508 return 0;
1509 }
5ad333eb 1510
1489fa14 1511 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1da177e4 1512
e247dbce 1513 spin_unlock_irq(&zone->lru_lock);
c661b078 1514
f84f6e2b 1515 nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority);
c661b078 1516
e31f3698
WF
1517 /* Check if we should syncronously wait for writeback */
1518 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
f3a310bc 1519 set_reclaim_mode(priority, sc, true);
f84f6e2b 1520 nr_reclaimed += shrink_page_list(&page_list, zone, sc, priority);
e247dbce 1521 }
b35ea17b 1522
e247dbce
KM
1523 local_irq_disable();
1524 if (current_is_kswapd())
1525 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1526 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
a74609fa 1527
1489fa14 1528 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
e11da5b4
MG
1529
1530 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1531 zone_idx(zone),
1532 nr_scanned, nr_reclaimed,
1533 priority,
f3a310bc 1534 trace_shrink_flags(file, sc->reclaim_mode));
05ff5137 1535 return nr_reclaimed;
1da177e4
LT
1536}
1537
1538/*
1539 * This moves pages from the active list to the inactive list.
1540 *
1541 * We move them the other way if the page is referenced by one or more
1542 * processes, from rmap.
1543 *
1544 * If the pages are mostly unmapped, the processing is fast and it is
1545 * appropriate to hold zone->lru_lock across the whole operation. But if
1546 * the pages are mapped, the processing is slow (page_referenced()) so we
1547 * should drop zone->lru_lock around each page. It's impossible to balance
1548 * this, so instead we remove the pages from the LRU while processing them.
1549 * It is safe to rely on PG_active against the non-LRU pages in here because
1550 * nobody will play with that bit on a non-LRU page.
1551 *
1552 * The downside is that we have to touch page->_count against each page.
1553 * But we had to alter page->flags anyway.
1554 */
1cfb419b 1555
3eb4140f
WF
1556static void move_active_pages_to_lru(struct zone *zone,
1557 struct list_head *list,
1558 enum lru_list lru)
1559{
1560 unsigned long pgmoved = 0;
1561 struct pagevec pvec;
1562 struct page *page;
1563
1564 pagevec_init(&pvec, 1);
1565
1566 while (!list_empty(list)) {
1567 page = lru_to_page(list);
3eb4140f
WF
1568
1569 VM_BUG_ON(PageLRU(page));
1570 SetPageLRU(page);
1571
3eb4140f
WF
1572 list_move(&page->lru, &zone->lru[lru].list);
1573 mem_cgroup_add_lru_list(page, lru);
2c888cfb 1574 pgmoved += hpage_nr_pages(page);
3eb4140f
WF
1575
1576 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1577 spin_unlock_irq(&zone->lru_lock);
1578 if (buffer_heads_over_limit)
1579 pagevec_strip(&pvec);
1580 __pagevec_release(&pvec);
1581 spin_lock_irq(&zone->lru_lock);
1582 }
1583 }
1584 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1585 if (!is_active_lru(lru))
1586 __count_vm_events(PGDEACTIVATE, pgmoved);
1587}
1cfb419b 1588
1742f19f 1589static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1590 struct scan_control *sc, int priority, int file)
1da177e4 1591{
44c241f1 1592 unsigned long nr_taken;
69e05944 1593 unsigned long pgscanned;
6fe6b7e3 1594 unsigned long vm_flags;
1da177e4 1595 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1596 LIST_HEAD(l_active);
b69408e8 1597 LIST_HEAD(l_inactive);
1da177e4 1598 struct page *page;
6e901571 1599 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1600 unsigned long nr_rotated = 0;
f80c0673 1601 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1da177e4
LT
1602
1603 lru_add_drain();
f80c0673
MK
1604
1605 if (!sc->may_unmap)
1606 reclaim_mode |= ISOLATE_UNMAPPED;
1607 if (!sc->may_writepage)
1608 reclaim_mode |= ISOLATE_CLEAN;
1609
1da177e4 1610 spin_lock_irq(&zone->lru_lock);
e72e2bd6 1611 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1612 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1613 &pgscanned, sc->order,
f80c0673 1614 reclaim_mode, zone,
8b25c6d2 1615 1, file);
1cfb419b 1616 zone->pages_scanned += pgscanned;
8b25c6d2
JW
1617 } else {
1618 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1619 &pgscanned, sc->order,
f80c0673 1620 reclaim_mode, zone,
8b25c6d2
JW
1621 sc->mem_cgroup, 1, file);
1622 /*
1623 * mem_cgroup_isolate_pages() keeps track of
1624 * scanned pages on its own.
1625 */
4f98a2fe 1626 }
8b25c6d2 1627
b7c46d15 1628 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1629
3eb4140f 1630 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1631 if (file)
44c241f1 1632 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1633 else
44c241f1 1634 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1635 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1636 spin_unlock_irq(&zone->lru_lock);
1637
1da177e4
LT
1638 while (!list_empty(&l_hold)) {
1639 cond_resched();
1640 page = lru_to_page(&l_hold);
1641 list_del(&page->lru);
7e9cd484 1642
894bc310
LS
1643 if (unlikely(!page_evictable(page, NULL))) {
1644 putback_lru_page(page);
1645 continue;
1646 }
1647
64574746 1648 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
9992af10 1649 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1650 /*
1651 * Identify referenced, file-backed active pages and
1652 * give them one more trip around the active list. So
1653 * that executable code get better chances to stay in
1654 * memory under moderate memory pressure. Anon pages
1655 * are not likely to be evicted by use-once streaming
1656 * IO, plus JVM can create lots of anon VM_EXEC pages,
1657 * so we ignore them here.
1658 */
41e20983 1659 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1660 list_add(&page->lru, &l_active);
1661 continue;
1662 }
1663 }
7e9cd484 1664
5205e56e 1665 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1666 list_add(&page->lru, &l_inactive);
1667 }
1668
b555749a 1669 /*
8cab4754 1670 * Move pages back to the lru list.
b555749a 1671 */
2a1dc509 1672 spin_lock_irq(&zone->lru_lock);
556adecb 1673 /*
8cab4754
WF
1674 * Count referenced pages from currently used mappings as rotated,
1675 * even though only some of them are actually re-activated. This
1676 * helps balance scan pressure between file and anonymous pages in
1677 * get_scan_ratio.
7e9cd484 1678 */
b7c46d15 1679 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1680
3eb4140f
WF
1681 move_active_pages_to_lru(zone, &l_active,
1682 LRU_ACTIVE + file * LRU_FILE);
1683 move_active_pages_to_lru(zone, &l_inactive,
1684 LRU_BASE + file * LRU_FILE);
a731286d 1685 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1686 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1687}
1688
74e3f3c3 1689#ifdef CONFIG_SWAP
14797e23 1690static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1691{
1692 unsigned long active, inactive;
1693
1694 active = zone_page_state(zone, NR_ACTIVE_ANON);
1695 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1696
1697 if (inactive * zone->inactive_ratio < active)
1698 return 1;
1699
1700 return 0;
1701}
1702
14797e23
KM
1703/**
1704 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1705 * @zone: zone to check
1706 * @sc: scan control of this context
1707 *
1708 * Returns true if the zone does not have enough inactive anon pages,
1709 * meaning some active anon pages need to be deactivated.
1710 */
1711static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1712{
1713 int low;
1714
74e3f3c3
MK
1715 /*
1716 * If we don't have swap space, anonymous page deactivation
1717 * is pointless.
1718 */
1719 if (!total_swap_pages)
1720 return 0;
1721
e72e2bd6 1722 if (scanning_global_lru(sc))
14797e23
KM
1723 low = inactive_anon_is_low_global(zone);
1724 else
c772be93 1725 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1726 return low;
1727}
74e3f3c3
MK
1728#else
1729static inline int inactive_anon_is_low(struct zone *zone,
1730 struct scan_control *sc)
1731{
1732 return 0;
1733}
1734#endif
14797e23 1735
56e49d21
RR
1736static int inactive_file_is_low_global(struct zone *zone)
1737{
1738 unsigned long active, inactive;
1739
1740 active = zone_page_state(zone, NR_ACTIVE_FILE);
1741 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1742
1743 return (active > inactive);
1744}
1745
1746/**
1747 * inactive_file_is_low - check if file pages need to be deactivated
1748 * @zone: zone to check
1749 * @sc: scan control of this context
1750 *
1751 * When the system is doing streaming IO, memory pressure here
1752 * ensures that active file pages get deactivated, until more
1753 * than half of the file pages are on the inactive list.
1754 *
1755 * Once we get to that situation, protect the system's working
1756 * set from being evicted by disabling active file page aging.
1757 *
1758 * This uses a different ratio than the anonymous pages, because
1759 * the page cache uses a use-once replacement algorithm.
1760 */
1761static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1762{
1763 int low;
1764
1765 if (scanning_global_lru(sc))
1766 low = inactive_file_is_low_global(zone);
1767 else
1768 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1769 return low;
1770}
1771
b39415b2
RR
1772static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1773 int file)
1774{
1775 if (file)
1776 return inactive_file_is_low(zone, sc);
1777 else
1778 return inactive_anon_is_low(zone, sc);
1779}
1780
4f98a2fe 1781static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1782 struct zone *zone, struct scan_control *sc, int priority)
1783{
4f98a2fe
RR
1784 int file = is_file_lru(lru);
1785
b39415b2
RR
1786 if (is_active_lru(lru)) {
1787 if (inactive_list_is_low(zone, sc, file))
1788 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1789 return 0;
1790 }
1791
33c120ed 1792 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1793}
1794
1f4c025b
KH
1795static int vmscan_swappiness(struct scan_control *sc)
1796{
1797 if (scanning_global_lru(sc))
1798 return vm_swappiness;
1799 return mem_cgroup_swappiness(sc->mem_cgroup);
1800}
1801
4f98a2fe
RR
1802/*
1803 * Determine how aggressively the anon and file LRU lists should be
1804 * scanned. The relative value of each set of LRU lists is determined
1805 * by looking at the fraction of the pages scanned we did rotate back
1806 * onto the active list instead of evict.
1807 *
76a33fc3 1808 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1809 */
76a33fc3
SL
1810static void get_scan_count(struct zone *zone, struct scan_control *sc,
1811 unsigned long *nr, int priority)
4f98a2fe
RR
1812{
1813 unsigned long anon, file, free;
1814 unsigned long anon_prio, file_prio;
1815 unsigned long ap, fp;
6e901571 1816 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
76a33fc3
SL
1817 u64 fraction[2], denominator;
1818 enum lru_list l;
1819 int noswap = 0;
a4d3e9e7 1820 bool force_scan = false;
246e87a9 1821
f11c0ca5
JW
1822 /*
1823 * If the zone or memcg is small, nr[l] can be 0. This
1824 * results in no scanning on this priority and a potential
1825 * priority drop. Global direct reclaim can go to the next
1826 * zone and tends to have no problems. Global kswapd is for
1827 * zone balancing and it needs to scan a minimum amount. When
1828 * reclaiming for a memcg, a priority drop can cause high
1829 * latencies, so it's better to scan a minimum amount there as
1830 * well.
1831 */
a4d3e9e7
JW
1832 if (scanning_global_lru(sc) && current_is_kswapd())
1833 force_scan = true;
a4d3e9e7
JW
1834 if (!scanning_global_lru(sc))
1835 force_scan = true;
76a33fc3
SL
1836
1837 /* If we have no swap space, do not bother scanning anon pages. */
1838 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1839 noswap = 1;
1840 fraction[0] = 0;
1841 fraction[1] = 1;
1842 denominator = 1;
1843 goto out;
1844 }
4f98a2fe 1845
a4d3e9e7
JW
1846 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1847 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1848 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1849 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1850
e72e2bd6 1851 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1852 free = zone_page_state(zone, NR_FREE_PAGES);
1853 /* If we have very few page cache pages,
1854 force-scan anon pages. */
41858966 1855 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1856 fraction[0] = 1;
1857 fraction[1] = 0;
1858 denominator = 1;
1859 goto out;
eeee9a8c 1860 }
4f98a2fe
RR
1861 }
1862
58c37f6e
KM
1863 /*
1864 * With swappiness at 100, anonymous and file have the same priority.
1865 * This scanning priority is essentially the inverse of IO cost.
1866 */
1f4c025b
KH
1867 anon_prio = vmscan_swappiness(sc);
1868 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1869
4f98a2fe
RR
1870 /*
1871 * OK, so we have swap space and a fair amount of page cache
1872 * pages. We use the recently rotated / recently scanned
1873 * ratios to determine how valuable each cache is.
1874 *
1875 * Because workloads change over time (and to avoid overflow)
1876 * we keep these statistics as a floating average, which ends
1877 * up weighing recent references more than old ones.
1878 *
1879 * anon in [0], file in [1]
1880 */
58c37f6e 1881 spin_lock_irq(&zone->lru_lock);
6e901571 1882 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1883 reclaim_stat->recent_scanned[0] /= 2;
1884 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1885 }
1886
6e901571 1887 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1888 reclaim_stat->recent_scanned[1] /= 2;
1889 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1890 }
1891
4f98a2fe 1892 /*
00d8089c
RR
1893 * The amount of pressure on anon vs file pages is inversely
1894 * proportional to the fraction of recently scanned pages on
1895 * each list that were recently referenced and in active use.
4f98a2fe 1896 */
6e901571
KM
1897 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1898 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1899
6e901571
KM
1900 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1901 fp /= reclaim_stat->recent_rotated[1] + 1;
58c37f6e 1902 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1903
76a33fc3
SL
1904 fraction[0] = ap;
1905 fraction[1] = fp;
1906 denominator = ap + fp + 1;
1907out:
1908 for_each_evictable_lru(l) {
1909 int file = is_file_lru(l);
1910 unsigned long scan;
6e08a369 1911
76a33fc3
SL
1912 scan = zone_nr_lru_pages(zone, sc, l);
1913 if (priority || noswap) {
1914 scan >>= priority;
f11c0ca5
JW
1915 if (!scan && force_scan)
1916 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1917 scan = div64_u64(scan * fraction[file], denominator);
1918 }
246e87a9 1919 nr[l] = scan;
76a33fc3 1920 }
6e08a369 1921}
4f98a2fe 1922
3e7d3449
MG
1923/*
1924 * Reclaim/compaction depends on a number of pages being freed. To avoid
1925 * disruption to the system, a small number of order-0 pages continue to be
1926 * rotated and reclaimed in the normal fashion. However, by the time we get
1927 * back to the allocator and call try_to_compact_zone(), we ensure that
1928 * there are enough free pages for it to be likely successful
1929 */
1930static inline bool should_continue_reclaim(struct zone *zone,
1931 unsigned long nr_reclaimed,
1932 unsigned long nr_scanned,
1933 struct scan_control *sc)
1934{
1935 unsigned long pages_for_compaction;
1936 unsigned long inactive_lru_pages;
1937
1938 /* If not in reclaim/compaction mode, stop */
f3a310bc 1939 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
3e7d3449
MG
1940 return false;
1941
2876592f
MG
1942 /* Consider stopping depending on scan and reclaim activity */
1943 if (sc->gfp_mask & __GFP_REPEAT) {
1944 /*
1945 * For __GFP_REPEAT allocations, stop reclaiming if the
1946 * full LRU list has been scanned and we are still failing
1947 * to reclaim pages. This full LRU scan is potentially
1948 * expensive but a __GFP_REPEAT caller really wants to succeed
1949 */
1950 if (!nr_reclaimed && !nr_scanned)
1951 return false;
1952 } else {
1953 /*
1954 * For non-__GFP_REPEAT allocations which can presumably
1955 * fail without consequence, stop if we failed to reclaim
1956 * any pages from the last SWAP_CLUSTER_MAX number of
1957 * pages that were scanned. This will return to the
1958 * caller faster at the risk reclaim/compaction and
1959 * the resulting allocation attempt fails
1960 */
1961 if (!nr_reclaimed)
1962 return false;
1963 }
3e7d3449
MG
1964
1965 /*
1966 * If we have not reclaimed enough pages for compaction and the
1967 * inactive lists are large enough, continue reclaiming
1968 */
1969 pages_for_compaction = (2UL << sc->order);
1970 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1971 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1972 if (sc->nr_reclaimed < pages_for_compaction &&
1973 inactive_lru_pages > pages_for_compaction)
1974 return true;
1975
1976 /* If compaction would go ahead or the allocation would succeed, stop */
1977 switch (compaction_suitable(zone, sc->order)) {
1978 case COMPACT_PARTIAL:
1979 case COMPACT_CONTINUE:
1980 return false;
1981 default:
1982 return true;
1983 }
1984}
1985
1da177e4
LT
1986/*
1987 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1988 */
a79311c1 1989static void shrink_zone(int priority, struct zone *zone,
05ff5137 1990 struct scan_control *sc)
1da177e4 1991{
b69408e8 1992 unsigned long nr[NR_LRU_LISTS];
8695949a 1993 unsigned long nr_to_scan;
b69408e8 1994 enum lru_list l;
f0fdc5e8 1995 unsigned long nr_reclaimed, nr_scanned;
22fba335 1996 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1997 struct blk_plug plug;
e0f79b8f 1998
3e7d3449
MG
1999restart:
2000 nr_reclaimed = 0;
f0fdc5e8 2001 nr_scanned = sc->nr_scanned;
76a33fc3 2002 get_scan_count(zone, sc, nr, priority);
1da177e4 2003
3da367c3 2004 blk_start_plug(&plug);
556adecb
RR
2005 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2006 nr[LRU_INACTIVE_FILE]) {
894bc310 2007 for_each_evictable_lru(l) {
b69408e8 2008 if (nr[l]) {
ece74b2e
KM
2009 nr_to_scan = min_t(unsigned long,
2010 nr[l], SWAP_CLUSTER_MAX);
b69408e8 2011 nr[l] -= nr_to_scan;
1da177e4 2012
01dbe5c9
KM
2013 nr_reclaimed += shrink_list(l, nr_to_scan,
2014 zone, sc, priority);
b69408e8 2015 }
1da177e4 2016 }
a79311c1
RR
2017 /*
2018 * On large memory systems, scan >> priority can become
2019 * really large. This is fine for the starting priority;
2020 * we want to put equal scanning pressure on each zone.
2021 * However, if the VM has a harder time of freeing pages,
2022 * with multiple processes reclaiming pages, the total
2023 * freeing target can get unreasonably large.
2024 */
338fde90 2025 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 2026 break;
1da177e4 2027 }
3da367c3 2028 blk_finish_plug(&plug);
3e7d3449 2029 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 2030
556adecb
RR
2031 /*
2032 * Even if we did not try to evict anon pages at all, we want to
2033 * rebalance the anon lru active/inactive ratio.
2034 */
74e3f3c3 2035 if (inactive_anon_is_low(zone, sc))
556adecb
RR
2036 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2037
3e7d3449
MG
2038 /* reclaim/compaction might need reclaim to continue */
2039 if (should_continue_reclaim(zone, nr_reclaimed,
2040 sc->nr_scanned - nr_scanned, sc))
2041 goto restart;
2042
232ea4d6 2043 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
2044}
2045
2046/*
2047 * This is the direct reclaim path, for page-allocating processes. We only
2048 * try to reclaim pages from zones which will satisfy the caller's allocation
2049 * request.
2050 *
41858966
MG
2051 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2052 * Because:
1da177e4
LT
2053 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2054 * allocation or
41858966
MG
2055 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2056 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2057 * zone defense algorithm.
1da177e4 2058 *
1da177e4
LT
2059 * If a zone is deemed to be full of pinned pages then just give it a light
2060 * scan then give up on it.
2061 */
ac34a1a3 2062static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 2063 struct scan_control *sc)
1da177e4 2064{
dd1a239f 2065 struct zoneref *z;
54a6eb5c 2066 struct zone *zone;
d149e3b2
YH
2067 unsigned long nr_soft_reclaimed;
2068 unsigned long nr_soft_scanned;
1cfb419b 2069
d4debc66
MG
2070 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2071 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2072 if (!populated_zone(zone))
1da177e4 2073 continue;
1cfb419b
KH
2074 /*
2075 * Take care memory controller reclaiming has small influence
2076 * to global LRU.
2077 */
e72e2bd6 2078 if (scanning_global_lru(sc)) {
1cfb419b
KH
2079 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2080 continue;
93e4a89a 2081 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2082 continue; /* Let kswapd poll it */
ac34a1a3
KH
2083 /*
2084 * This steals pages from memory cgroups over softlimit
2085 * and returns the number of reclaimed pages and
2086 * scanned pages. This works for global memory pressure
2087 * and balancing, not for a memcg's limit.
2088 */
2089 nr_soft_scanned = 0;
2090 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2091 sc->order, sc->gfp_mask,
2092 &nr_soft_scanned);
2093 sc->nr_reclaimed += nr_soft_reclaimed;
2094 sc->nr_scanned += nr_soft_scanned;
2095 /* need some check for avoid more shrink_zone() */
1cfb419b 2096 }
408d8544 2097
a79311c1 2098 shrink_zone(priority, zone, sc);
1da177e4 2099 }
d1908362
MK
2100}
2101
2102static bool zone_reclaimable(struct zone *zone)
2103{
2104 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2105}
2106
929bea7c 2107/* All zones in zonelist are unreclaimable? */
d1908362
MK
2108static bool all_unreclaimable(struct zonelist *zonelist,
2109 struct scan_control *sc)
2110{
2111 struct zoneref *z;
2112 struct zone *zone;
d1908362
MK
2113
2114 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2115 gfp_zone(sc->gfp_mask), sc->nodemask) {
2116 if (!populated_zone(zone))
2117 continue;
2118 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2119 continue;
929bea7c
KM
2120 if (!zone->all_unreclaimable)
2121 return false;
d1908362
MK
2122 }
2123
929bea7c 2124 return true;
1da177e4 2125}
4f98a2fe 2126
1da177e4
LT
2127/*
2128 * This is the main entry point to direct page reclaim.
2129 *
2130 * If a full scan of the inactive list fails to free enough memory then we
2131 * are "out of memory" and something needs to be killed.
2132 *
2133 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2134 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2135 * caller can't do much about. We kick the writeback threads and take explicit
2136 * naps in the hope that some of these pages can be written. But if the
2137 * allocating task holds filesystem locks which prevent writeout this might not
2138 * work, and the allocation attempt will fail.
a41f24ea
NA
2139 *
2140 * returns: 0, if no pages reclaimed
2141 * else, the number of pages reclaimed
1da177e4 2142 */
dac1d27b 2143static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2144 struct scan_control *sc,
2145 struct shrink_control *shrink)
1da177e4
LT
2146{
2147 int priority;
69e05944 2148 unsigned long total_scanned = 0;
1da177e4 2149 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2150 struct zoneref *z;
54a6eb5c 2151 struct zone *zone;
22fba335 2152 unsigned long writeback_threshold;
1da177e4 2153
c0ff7453 2154 get_mems_allowed();
873b4771
KK
2155 delayacct_freepages_start();
2156
e72e2bd6 2157 if (scanning_global_lru(sc))
1cfb419b 2158 count_vm_event(ALLOCSTALL);
1da177e4
LT
2159
2160 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2161 sc->nr_scanned = 0;
f7b7fd8f 2162 if (!priority)
a433658c 2163 disable_swap_token(sc->mem_cgroup);
ac34a1a3 2164 shrink_zones(priority, zonelist, sc);
66e1707b
BS
2165 /*
2166 * Don't shrink slabs when reclaiming memory from
2167 * over limit cgroups
2168 */
e72e2bd6 2169 if (scanning_global_lru(sc)) {
c6a8a8c5 2170 unsigned long lru_pages = 0;
d4debc66
MG
2171 for_each_zone_zonelist(zone, z, zonelist,
2172 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2173 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2174 continue;
2175
2176 lru_pages += zone_reclaimable_pages(zone);
2177 }
2178
1495f230 2179 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2180 if (reclaim_state) {
a79311c1 2181 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2182 reclaim_state->reclaimed_slab = 0;
2183 }
1da177e4 2184 }
66e1707b 2185 total_scanned += sc->nr_scanned;
bb21c7ce 2186 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2187 goto out;
1da177e4
LT
2188
2189 /*
2190 * Try to write back as many pages as we just scanned. This
2191 * tends to cause slow streaming writers to write data to the
2192 * disk smoothly, at the dirtying rate, which is nice. But
2193 * that's undesirable in laptop mode, where we *want* lumpy
2194 * writeout. So in laptop mode, write out the whole world.
2195 */
22fba335
KM
2196 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2197 if (total_scanned > writeback_threshold) {
03ba3782 2198 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 2199 sc->may_writepage = 1;
1da177e4
LT
2200 }
2201
2202 /* Take a nap, wait for some writeback to complete */
7b51755c 2203 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2204 priority < DEF_PRIORITY - 2) {
2205 struct zone *preferred_zone;
2206
2207 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2208 &cpuset_current_mems_allowed,
2209 &preferred_zone);
0e093d99
MG
2210 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2211 }
1da177e4 2212 }
bb21c7ce 2213
1da177e4 2214out:
873b4771 2215 delayacct_freepages_end();
c0ff7453 2216 put_mems_allowed();
873b4771 2217
bb21c7ce
KM
2218 if (sc->nr_reclaimed)
2219 return sc->nr_reclaimed;
2220
929bea7c
KM
2221 /*
2222 * As hibernation is going on, kswapd is freezed so that it can't mark
2223 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2224 * check.
2225 */
2226 if (oom_killer_disabled)
2227 return 0;
2228
bb21c7ce 2229 /* top priority shrink_zones still had more to do? don't OOM, then */
d1908362 2230 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2231 return 1;
2232
2233 return 0;
1da177e4
LT
2234}
2235
dac1d27b 2236unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2237 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2238{
33906bc5 2239 unsigned long nr_reclaimed;
66e1707b
BS
2240 struct scan_control sc = {
2241 .gfp_mask = gfp_mask,
2242 .may_writepage = !laptop_mode,
22fba335 2243 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2244 .may_unmap = 1,
2e2e4259 2245 .may_swap = 1,
66e1707b
BS
2246 .order = order,
2247 .mem_cgroup = NULL,
327c0e96 2248 .nodemask = nodemask,
66e1707b 2249 };
a09ed5e0
YH
2250 struct shrink_control shrink = {
2251 .gfp_mask = sc.gfp_mask,
2252 };
66e1707b 2253
33906bc5
MG
2254 trace_mm_vmscan_direct_reclaim_begin(order,
2255 sc.may_writepage,
2256 gfp_mask);
2257
a09ed5e0 2258 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2259
2260 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2261
2262 return nr_reclaimed;
66e1707b
BS
2263}
2264
00f0b825 2265#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2266
4e416953
BS
2267unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2268 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2269 struct zone *zone,
2270 unsigned long *nr_scanned)
4e416953
BS
2271{
2272 struct scan_control sc = {
0ae5e89c 2273 .nr_scanned = 0,
b8f5c566 2274 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2275 .may_writepage = !laptop_mode,
2276 .may_unmap = 1,
2277 .may_swap = !noswap,
4e416953
BS
2278 .order = 0,
2279 .mem_cgroup = mem,
4e416953 2280 };
0ae5e89c 2281
4e416953
BS
2282 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2283 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2284
2285 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2286 sc.may_writepage,
2287 sc.gfp_mask);
2288
4e416953
BS
2289 /*
2290 * NOTE: Although we can get the priority field, using it
2291 * here is not a good idea, since it limits the pages we can scan.
2292 * if we don't reclaim here, the shrink_zone from balance_pgdat
2293 * will pick up pages from other mem cgroup's as well. We hack
2294 * the priority and make it zero.
2295 */
2296 shrink_zone(0, zone, &sc);
bdce6d9e
KM
2297
2298 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2299
0ae5e89c 2300 *nr_scanned = sc.nr_scanned;
4e416953
BS
2301 return sc.nr_reclaimed;
2302}
2303
e1a1cd59 2304unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8 2305 gfp_t gfp_mask,
185efc0f 2306 bool noswap)
66e1707b 2307{
4e416953 2308 struct zonelist *zonelist;
bdce6d9e 2309 unsigned long nr_reclaimed;
889976db 2310 int nid;
66e1707b 2311 struct scan_control sc = {
66e1707b 2312 .may_writepage = !laptop_mode,
a6dc60f8 2313 .may_unmap = 1,
2e2e4259 2314 .may_swap = !noswap,
22fba335 2315 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b
BS
2316 .order = 0,
2317 .mem_cgroup = mem_cont,
327c0e96 2318 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2319 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2320 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2321 };
2322 struct shrink_control shrink = {
2323 .gfp_mask = sc.gfp_mask,
66e1707b 2324 };
66e1707b 2325
889976db
YH
2326 /*
2327 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2328 * take care of from where we get pages. So the node where we start the
2329 * scan does not need to be the current node.
2330 */
2331 nid = mem_cgroup_select_victim_node(mem_cont);
2332
2333 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2334
2335 trace_mm_vmscan_memcg_reclaim_begin(0,
2336 sc.may_writepage,
2337 sc.gfp_mask);
2338
a09ed5e0 2339 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2340
2341 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2342
2343 return nr_reclaimed;
66e1707b
BS
2344}
2345#endif
2346
1741c877
MG
2347/*
2348 * pgdat_balanced is used when checking if a node is balanced for high-order
2349 * allocations. Only zones that meet watermarks and are in a zone allowed
2350 * by the callers classzone_idx are added to balanced_pages. The total of
2351 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2352 * for the node to be considered balanced. Forcing all zones to be balanced
2353 * for high orders can cause excessive reclaim when there are imbalanced zones.
2354 * The choice of 25% is due to
2355 * o a 16M DMA zone that is balanced will not balance a zone on any
2356 * reasonable sized machine
2357 * o On all other machines, the top zone must be at least a reasonable
25985edc 2358 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2359 * would need to be at least 256M for it to be balance a whole node.
2360 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2361 * to balance a node on its own. These seemed like reasonable ratios.
2362 */
2363static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2364 int classzone_idx)
2365{
2366 unsigned long present_pages = 0;
2367 int i;
2368
2369 for (i = 0; i <= classzone_idx; i++)
2370 present_pages += pgdat->node_zones[i].present_pages;
2371
4746efde
SL
2372 /* A special case here: if zone has no page, we think it's balanced */
2373 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2374}
2375
f50de2d3 2376/* is kswapd sleeping prematurely? */
dc83edd9
MG
2377static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2378 int classzone_idx)
f50de2d3 2379{
bb3ab596 2380 int i;
1741c877
MG
2381 unsigned long balanced = 0;
2382 bool all_zones_ok = true;
f50de2d3
MG
2383
2384 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2385 if (remaining)
dc83edd9 2386 return true;
f50de2d3 2387
0abdee2b 2388 /* Check the watermark levels */
08951e54 2389 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2390 struct zone *zone = pgdat->node_zones + i;
2391
2392 if (!populated_zone(zone))
2393 continue;
2394
355b09c4
MG
2395 /*
2396 * balance_pgdat() skips over all_unreclaimable after
2397 * DEF_PRIORITY. Effectively, it considers them balanced so
2398 * they must be considered balanced here as well if kswapd
2399 * is to sleep
2400 */
2401 if (zone->all_unreclaimable) {
2402 balanced += zone->present_pages;
de3fab39 2403 continue;
355b09c4 2404 }
de3fab39 2405
88f5acf8 2406 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2407 i, 0))
1741c877
MG
2408 all_zones_ok = false;
2409 else
2410 balanced += zone->present_pages;
bb3ab596 2411 }
f50de2d3 2412
1741c877
MG
2413 /*
2414 * For high-order requests, the balanced zones must contain at least
2415 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2416 * must be balanced
2417 */
2418 if (order)
afc7e326 2419 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2420 else
2421 return !all_zones_ok;
f50de2d3
MG
2422}
2423
1da177e4
LT
2424/*
2425 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2426 * they are all at high_wmark_pages(zone).
1da177e4 2427 *
0abdee2b 2428 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2429 *
2430 * There is special handling here for zones which are full of pinned pages.
2431 * This can happen if the pages are all mlocked, or if they are all used by
2432 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2433 * What we do is to detect the case where all pages in the zone have been
2434 * scanned twice and there has been zero successful reclaim. Mark the zone as
2435 * dead and from now on, only perform a short scan. Basically we're polling
2436 * the zone for when the problem goes away.
2437 *
2438 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2439 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2440 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2441 * lower zones regardless of the number of free pages in the lower zones. This
2442 * interoperates with the page allocator fallback scheme to ensure that aging
2443 * of pages is balanced across the zones.
1da177e4 2444 */
99504748 2445static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2446 int *classzone_idx)
1da177e4 2447{
1da177e4 2448 int all_zones_ok;
1741c877 2449 unsigned long balanced;
1da177e4
LT
2450 int priority;
2451 int i;
99504748 2452 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2453 unsigned long total_scanned;
1da177e4 2454 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2455 unsigned long nr_soft_reclaimed;
2456 unsigned long nr_soft_scanned;
179e9639
AM
2457 struct scan_control sc = {
2458 .gfp_mask = GFP_KERNEL,
a6dc60f8 2459 .may_unmap = 1,
2e2e4259 2460 .may_swap = 1,
22fba335
KM
2461 /*
2462 * kswapd doesn't want to be bailed out while reclaim. because
2463 * we want to put equal scanning pressure on each zone.
2464 */
2465 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2466 .order = order,
66e1707b 2467 .mem_cgroup = NULL,
179e9639 2468 };
a09ed5e0
YH
2469 struct shrink_control shrink = {
2470 .gfp_mask = sc.gfp_mask,
2471 };
1da177e4
LT
2472loop_again:
2473 total_scanned = 0;
a79311c1 2474 sc.nr_reclaimed = 0;
c0bbbc73 2475 sc.may_writepage = !laptop_mode;
f8891e5e 2476 count_vm_event(PAGEOUTRUN);
1da177e4 2477
1da177e4 2478 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2479 unsigned long lru_pages = 0;
bb3ab596 2480 int has_under_min_watermark_zone = 0;
1da177e4 2481
f7b7fd8f
RR
2482 /* The swap token gets in the way of swapout... */
2483 if (!priority)
a433658c 2484 disable_swap_token(NULL);
f7b7fd8f 2485
1da177e4 2486 all_zones_ok = 1;
1741c877 2487 balanced = 0;
1da177e4 2488
d6277db4
RW
2489 /*
2490 * Scan in the highmem->dma direction for the highest
2491 * zone which needs scanning
2492 */
2493 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2494 struct zone *zone = pgdat->node_zones + i;
1da177e4 2495
d6277db4
RW
2496 if (!populated_zone(zone))
2497 continue;
1da177e4 2498
93e4a89a 2499 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2500 continue;
1da177e4 2501
556adecb
RR
2502 /*
2503 * Do some background aging of the anon list, to give
2504 * pages a chance to be referenced before reclaiming.
2505 */
14797e23 2506 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2507 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2508 &sc, priority, 0);
2509
88f5acf8 2510 if (!zone_watermark_ok_safe(zone, order,
41858966 2511 high_wmark_pages(zone), 0, 0)) {
d6277db4 2512 end_zone = i;
e1dbeda6 2513 break;
439423f6
SL
2514 } else {
2515 /* If balanced, clear the congested flag */
2516 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2517 }
1da177e4 2518 }
e1dbeda6
AM
2519 if (i < 0)
2520 goto out;
2521
1da177e4
LT
2522 for (i = 0; i <= end_zone; i++) {
2523 struct zone *zone = pgdat->node_zones + i;
2524
adea02a1 2525 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2526 }
2527
2528 /*
2529 * Now scan the zone in the dma->highmem direction, stopping
2530 * at the last zone which needs scanning.
2531 *
2532 * We do this because the page allocator works in the opposite
2533 * direction. This prevents the page allocator from allocating
2534 * pages behind kswapd's direction of progress, which would
2535 * cause too much scanning of the lower zones.
2536 */
2537 for (i = 0; i <= end_zone; i++) {
2538 struct zone *zone = pgdat->node_zones + i;
b15e0905 2539 int nr_slab;
8afdcece 2540 unsigned long balance_gap;
1da177e4 2541
f3fe6512 2542 if (!populated_zone(zone))
1da177e4
LT
2543 continue;
2544
93e4a89a 2545 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2546 continue;
2547
1da177e4 2548 sc.nr_scanned = 0;
4e416953 2549
0ae5e89c 2550 nr_soft_scanned = 0;
4e416953
BS
2551 /*
2552 * Call soft limit reclaim before calling shrink_zone.
4e416953 2553 */
0ae5e89c
YH
2554 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2555 order, sc.gfp_mask,
2556 &nr_soft_scanned);
2557 sc.nr_reclaimed += nr_soft_reclaimed;
2558 total_scanned += nr_soft_scanned;
00918b6a 2559
32a4330d 2560 /*
8afdcece
MG
2561 * We put equal pressure on every zone, unless
2562 * one zone has way too many pages free
2563 * already. The "too many pages" is defined
2564 * as the high wmark plus a "gap" where the
2565 * gap is either the low watermark or 1%
2566 * of the zone, whichever is smaller.
32a4330d 2567 */
8afdcece
MG
2568 balance_gap = min(low_wmark_pages(zone),
2569 (zone->present_pages +
2570 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2571 KSWAPD_ZONE_BALANCE_GAP_RATIO);
88f5acf8 2572 if (!zone_watermark_ok_safe(zone, order,
8afdcece 2573 high_wmark_pages(zone) + balance_gap,
d7868dae 2574 end_zone, 0)) {
a79311c1 2575 shrink_zone(priority, zone, &sc);
5a03b051 2576
d7868dae
MG
2577 reclaim_state->reclaimed_slab = 0;
2578 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2579 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2580 total_scanned += sc.nr_scanned;
2581
2582 if (nr_slab == 0 && !zone_reclaimable(zone))
2583 zone->all_unreclaimable = 1;
2584 }
2585
1da177e4
LT
2586 /*
2587 * If we've done a decent amount of scanning and
2588 * the reclaim ratio is low, start doing writepage
2589 * even in laptop mode
2590 */
2591 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2592 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2593 sc.may_writepage = 1;
bb3ab596 2594
215ddd66
MG
2595 if (zone->all_unreclaimable) {
2596 if (end_zone && end_zone == i)
2597 end_zone--;
d7868dae 2598 continue;
215ddd66 2599 }
d7868dae 2600
88f5acf8 2601 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2602 high_wmark_pages(zone), end_zone, 0)) {
2603 all_zones_ok = 0;
2604 /*
2605 * We are still under min water mark. This
2606 * means that we have a GFP_ATOMIC allocation
2607 * failure risk. Hurry up!
2608 */
88f5acf8 2609 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2610 min_wmark_pages(zone), end_zone, 0))
2611 has_under_min_watermark_zone = 1;
0e093d99
MG
2612 } else {
2613 /*
2614 * If a zone reaches its high watermark,
2615 * consider it to be no longer congested. It's
2616 * possible there are dirty pages backed by
2617 * congested BDIs but as pressure is relieved,
2618 * spectulatively avoid congestion waits
2619 */
2620 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2621 if (i <= *classzone_idx)
1741c877 2622 balanced += zone->present_pages;
45973d74 2623 }
bb3ab596 2624
1da177e4 2625 }
dc83edd9 2626 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2627 break; /* kswapd: all done */
2628 /*
2629 * OK, kswapd is getting into trouble. Take a nap, then take
2630 * another pass across the zones.
2631 */
bb3ab596
KM
2632 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2633 if (has_under_min_watermark_zone)
2634 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2635 else
2636 congestion_wait(BLK_RW_ASYNC, HZ/10);
2637 }
1da177e4
LT
2638
2639 /*
2640 * We do this so kswapd doesn't build up large priorities for
2641 * example when it is freeing in parallel with allocators. It
2642 * matches the direct reclaim path behaviour in terms of impact
2643 * on zone->*_priority.
2644 */
a79311c1 2645 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2646 break;
2647 }
2648out:
99504748
MG
2649
2650 /*
2651 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2652 * high-order: Balanced zones must make up at least 25% of the node
2653 * for the node to be balanced
99504748 2654 */
dc83edd9 2655 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2656 cond_resched();
8357376d
RW
2657
2658 try_to_freeze();
2659
73ce02e9
KM
2660 /*
2661 * Fragmentation may mean that the system cannot be
2662 * rebalanced for high-order allocations in all zones.
2663 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2664 * it means the zones have been fully scanned and are still
2665 * not balanced. For high-order allocations, there is
2666 * little point trying all over again as kswapd may
2667 * infinite loop.
2668 *
2669 * Instead, recheck all watermarks at order-0 as they
2670 * are the most important. If watermarks are ok, kswapd will go
2671 * back to sleep. High-order users can still perform direct
2672 * reclaim if they wish.
2673 */
2674 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2675 order = sc.order = 0;
2676
1da177e4
LT
2677 goto loop_again;
2678 }
2679
99504748
MG
2680 /*
2681 * If kswapd was reclaiming at a higher order, it has the option of
2682 * sleeping without all zones being balanced. Before it does, it must
2683 * ensure that the watermarks for order-0 on *all* zones are met and
2684 * that the congestion flags are cleared. The congestion flag must
2685 * be cleared as kswapd is the only mechanism that clears the flag
2686 * and it is potentially going to sleep here.
2687 */
2688 if (order) {
2689 for (i = 0; i <= end_zone; i++) {
2690 struct zone *zone = pgdat->node_zones + i;
2691
2692 if (!populated_zone(zone))
2693 continue;
2694
2695 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2696 continue;
2697
2698 /* Confirm the zone is balanced for order-0 */
2699 if (!zone_watermark_ok(zone, 0,
2700 high_wmark_pages(zone), 0, 0)) {
2701 order = sc.order = 0;
2702 goto loop_again;
2703 }
2704
2705 /* If balanced, clear the congested flag */
2706 zone_clear_flag(zone, ZONE_CONGESTED);
2707 }
2708 }
2709
0abdee2b
MG
2710 /*
2711 * Return the order we were reclaiming at so sleeping_prematurely()
2712 * makes a decision on the order we were last reclaiming at. However,
2713 * if another caller entered the allocator slow path while kswapd
2714 * was awake, order will remain at the higher level
2715 */
dc83edd9 2716 *classzone_idx = end_zone;
0abdee2b 2717 return order;
1da177e4
LT
2718}
2719
dc83edd9 2720static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2721{
2722 long remaining = 0;
2723 DEFINE_WAIT(wait);
2724
2725 if (freezing(current) || kthread_should_stop())
2726 return;
2727
2728 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2729
2730 /* Try to sleep for a short interval */
dc83edd9 2731 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2732 remaining = schedule_timeout(HZ/10);
2733 finish_wait(&pgdat->kswapd_wait, &wait);
2734 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2735 }
2736
2737 /*
2738 * After a short sleep, check if it was a premature sleep. If not, then
2739 * go fully to sleep until explicitly woken up.
2740 */
dc83edd9 2741 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2742 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2743
2744 /*
2745 * vmstat counters are not perfectly accurate and the estimated
2746 * value for counters such as NR_FREE_PAGES can deviate from the
2747 * true value by nr_online_cpus * threshold. To avoid the zone
2748 * watermarks being breached while under pressure, we reduce the
2749 * per-cpu vmstat threshold while kswapd is awake and restore
2750 * them before going back to sleep.
2751 */
2752 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2753 schedule();
2754 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2755 } else {
2756 if (remaining)
2757 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2758 else
2759 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2760 }
2761 finish_wait(&pgdat->kswapd_wait, &wait);
2762}
2763
1da177e4
LT
2764/*
2765 * The background pageout daemon, started as a kernel thread
4f98a2fe 2766 * from the init process.
1da177e4
LT
2767 *
2768 * This basically trickles out pages so that we have _some_
2769 * free memory available even if there is no other activity
2770 * that frees anything up. This is needed for things like routing
2771 * etc, where we otherwise might have all activity going on in
2772 * asynchronous contexts that cannot page things out.
2773 *
2774 * If there are applications that are active memory-allocators
2775 * (most normal use), this basically shouldn't matter.
2776 */
2777static int kswapd(void *p)
2778{
215ddd66
MG
2779 unsigned long order, new_order;
2780 int classzone_idx, new_classzone_idx;
1da177e4
LT
2781 pg_data_t *pgdat = (pg_data_t*)p;
2782 struct task_struct *tsk = current;
f0bc0a60 2783
1da177e4
LT
2784 struct reclaim_state reclaim_state = {
2785 .reclaimed_slab = 0,
2786 };
a70f7302 2787 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2788
cf40bd16
NP
2789 lockdep_set_current_reclaim_state(GFP_KERNEL);
2790
174596a0 2791 if (!cpumask_empty(cpumask))
c5f59f08 2792 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2793 current->reclaim_state = &reclaim_state;
2794
2795 /*
2796 * Tell the memory management that we're a "memory allocator",
2797 * and that if we need more memory we should get access to it
2798 * regardless (see "__alloc_pages()"). "kswapd" should
2799 * never get caught in the normal page freeing logic.
2800 *
2801 * (Kswapd normally doesn't need memory anyway, but sometimes
2802 * you need a small amount of memory in order to be able to
2803 * page out something else, and this flag essentially protects
2804 * us from recursively trying to free more memory as we're
2805 * trying to free the first piece of memory in the first place).
2806 */
930d9152 2807 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2808 set_freezable();
1da177e4 2809
215ddd66
MG
2810 order = new_order = 0;
2811 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
1da177e4 2812 for ( ; ; ) {
8fe23e05 2813 int ret;
3e1d1d28 2814
215ddd66
MG
2815 /*
2816 * If the last balance_pgdat was unsuccessful it's unlikely a
2817 * new request of a similar or harder type will succeed soon
2818 * so consider going to sleep on the basis we reclaimed at
2819 */
2820 if (classzone_idx >= new_classzone_idx && order == new_order) {
2821 new_order = pgdat->kswapd_max_order;
2822 new_classzone_idx = pgdat->classzone_idx;
2823 pgdat->kswapd_max_order = 0;
2824 pgdat->classzone_idx = pgdat->nr_zones - 1;
2825 }
2826
99504748 2827 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2828 /*
2829 * Don't sleep if someone wants a larger 'order'
99504748 2830 * allocation or has tigher zone constraints
1da177e4
LT
2831 */
2832 order = new_order;
99504748 2833 classzone_idx = new_classzone_idx;
1da177e4 2834 } else {
dc83edd9 2835 kswapd_try_to_sleep(pgdat, order, classzone_idx);
1da177e4 2836 order = pgdat->kswapd_max_order;
99504748 2837 classzone_idx = pgdat->classzone_idx;
4d40502e 2838 pgdat->kswapd_max_order = 0;
215ddd66 2839 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2840 }
1da177e4 2841
8fe23e05
DR
2842 ret = try_to_freeze();
2843 if (kthread_should_stop())
2844 break;
2845
2846 /*
2847 * We can speed up thawing tasks if we don't call balance_pgdat
2848 * after returning from the refrigerator
2849 */
33906bc5
MG
2850 if (!ret) {
2851 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
dc83edd9 2852 order = balance_pgdat(pgdat, order, &classzone_idx);
33906bc5 2853 }
1da177e4
LT
2854 }
2855 return 0;
2856}
2857
2858/*
2859 * A zone is low on free memory, so wake its kswapd task to service it.
2860 */
99504748 2861void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2862{
2863 pg_data_t *pgdat;
2864
f3fe6512 2865 if (!populated_zone(zone))
1da177e4
LT
2866 return;
2867
88f5acf8 2868 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2869 return;
88f5acf8 2870 pgdat = zone->zone_pgdat;
99504748 2871 if (pgdat->kswapd_max_order < order) {
1da177e4 2872 pgdat->kswapd_max_order = order;
99504748
MG
2873 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2874 }
8d0986e2 2875 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2876 return;
88f5acf8
MG
2877 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2878 return;
2879
2880 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2881 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2882}
2883
adea02a1
WF
2884/*
2885 * The reclaimable count would be mostly accurate.
2886 * The less reclaimable pages may be
2887 * - mlocked pages, which will be moved to unevictable list when encountered
2888 * - mapped pages, which may require several travels to be reclaimed
2889 * - dirty pages, which is not "instantly" reclaimable
2890 */
2891unsigned long global_reclaimable_pages(void)
4f98a2fe 2892{
adea02a1
WF
2893 int nr;
2894
2895 nr = global_page_state(NR_ACTIVE_FILE) +
2896 global_page_state(NR_INACTIVE_FILE);
2897
2898 if (nr_swap_pages > 0)
2899 nr += global_page_state(NR_ACTIVE_ANON) +
2900 global_page_state(NR_INACTIVE_ANON);
2901
2902 return nr;
2903}
2904
2905unsigned long zone_reclaimable_pages(struct zone *zone)
2906{
2907 int nr;
2908
2909 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2910 zone_page_state(zone, NR_INACTIVE_FILE);
2911
2912 if (nr_swap_pages > 0)
2913 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2914 zone_page_state(zone, NR_INACTIVE_ANON);
2915
2916 return nr;
4f98a2fe
RR
2917}
2918
c6f37f12 2919#ifdef CONFIG_HIBERNATION
1da177e4 2920/*
7b51755c 2921 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2922 * freed pages.
2923 *
2924 * Rather than trying to age LRUs the aim is to preserve the overall
2925 * LRU order by reclaiming preferentially
2926 * inactive > active > active referenced > active mapped
1da177e4 2927 */
7b51755c 2928unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2929{
d6277db4 2930 struct reclaim_state reclaim_state;
d6277db4 2931 struct scan_control sc = {
7b51755c
KM
2932 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2933 .may_swap = 1,
2934 .may_unmap = 1,
d6277db4 2935 .may_writepage = 1,
7b51755c
KM
2936 .nr_to_reclaim = nr_to_reclaim,
2937 .hibernation_mode = 1,
7b51755c 2938 .order = 0,
1da177e4 2939 };
a09ed5e0
YH
2940 struct shrink_control shrink = {
2941 .gfp_mask = sc.gfp_mask,
2942 };
2943 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2944 struct task_struct *p = current;
2945 unsigned long nr_reclaimed;
1da177e4 2946
7b51755c
KM
2947 p->flags |= PF_MEMALLOC;
2948 lockdep_set_current_reclaim_state(sc.gfp_mask);
2949 reclaim_state.reclaimed_slab = 0;
2950 p->reclaim_state = &reclaim_state;
d6277db4 2951
a09ed5e0 2952 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2953
7b51755c
KM
2954 p->reclaim_state = NULL;
2955 lockdep_clear_current_reclaim_state();
2956 p->flags &= ~PF_MEMALLOC;
d6277db4 2957
7b51755c 2958 return nr_reclaimed;
1da177e4 2959}
c6f37f12 2960#endif /* CONFIG_HIBERNATION */
1da177e4 2961
1da177e4
LT
2962/* It's optimal to keep kswapds on the same CPUs as their memory, but
2963 not required for correctness. So if the last cpu in a node goes
2964 away, we get changed to run anywhere: as the first one comes back,
2965 restore their cpu bindings. */
9c7b216d 2966static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2967 unsigned long action, void *hcpu)
1da177e4 2968{
58c0a4a7 2969 int nid;
1da177e4 2970
8bb78442 2971 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2972 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2973 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2974 const struct cpumask *mask;
2975
2976 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2977
3e597945 2978 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2979 /* One of our CPUs online: restore mask */
c5f59f08 2980 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2981 }
2982 }
2983 return NOTIFY_OK;
2984}
1da177e4 2985
3218ae14
YG
2986/*
2987 * This kswapd start function will be called by init and node-hot-add.
2988 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2989 */
2990int kswapd_run(int nid)
2991{
2992 pg_data_t *pgdat = NODE_DATA(nid);
2993 int ret = 0;
2994
2995 if (pgdat->kswapd)
2996 return 0;
2997
2998 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2999 if (IS_ERR(pgdat->kswapd)) {
3000 /* failure at boot is fatal */
3001 BUG_ON(system_state == SYSTEM_BOOTING);
3002 printk("Failed to start kswapd on node %d\n",nid);
3003 ret = -1;
3004 }
3005 return ret;
3006}
3007
8fe23e05
DR
3008/*
3009 * Called by memory hotplug when all memory in a node is offlined.
3010 */
3011void kswapd_stop(int nid)
3012{
3013 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3014
3015 if (kswapd)
3016 kthread_stop(kswapd);
3017}
3018
1da177e4
LT
3019static int __init kswapd_init(void)
3020{
3218ae14 3021 int nid;
69e05944 3022
1da177e4 3023 swap_setup();
9422ffba 3024 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3025 kswapd_run(nid);
1da177e4
LT
3026 hotcpu_notifier(cpu_callback, 0);
3027 return 0;
3028}
3029
3030module_init(kswapd_init)
9eeff239
CL
3031
3032#ifdef CONFIG_NUMA
3033/*
3034 * Zone reclaim mode
3035 *
3036 * If non-zero call zone_reclaim when the number of free pages falls below
3037 * the watermarks.
9eeff239
CL
3038 */
3039int zone_reclaim_mode __read_mostly;
3040
1b2ffb78 3041#define RECLAIM_OFF 0
7d03431c 3042#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3043#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3044#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3045
a92f7126
CL
3046/*
3047 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3048 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3049 * a zone.
3050 */
3051#define ZONE_RECLAIM_PRIORITY 4
3052
9614634f
CL
3053/*
3054 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3055 * occur.
3056 */
3057int sysctl_min_unmapped_ratio = 1;
3058
0ff38490
CL
3059/*
3060 * If the number of slab pages in a zone grows beyond this percentage then
3061 * slab reclaim needs to occur.
3062 */
3063int sysctl_min_slab_ratio = 5;
3064
90afa5de
MG
3065static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3066{
3067 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3068 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3069 zone_page_state(zone, NR_ACTIVE_FILE);
3070
3071 /*
3072 * It's possible for there to be more file mapped pages than
3073 * accounted for by the pages on the file LRU lists because
3074 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3075 */
3076 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3077}
3078
3079/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3080static long zone_pagecache_reclaimable(struct zone *zone)
3081{
3082 long nr_pagecache_reclaimable;
3083 long delta = 0;
3084
3085 /*
3086 * If RECLAIM_SWAP is set, then all file pages are considered
3087 * potentially reclaimable. Otherwise, we have to worry about
3088 * pages like swapcache and zone_unmapped_file_pages() provides
3089 * a better estimate
3090 */
3091 if (zone_reclaim_mode & RECLAIM_SWAP)
3092 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3093 else
3094 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3095
3096 /* If we can't clean pages, remove dirty pages from consideration */
3097 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3098 delta += zone_page_state(zone, NR_FILE_DIRTY);
3099
3100 /* Watch for any possible underflows due to delta */
3101 if (unlikely(delta > nr_pagecache_reclaimable))
3102 delta = nr_pagecache_reclaimable;
3103
3104 return nr_pagecache_reclaimable - delta;
3105}
3106
9eeff239
CL
3107/*
3108 * Try to free up some pages from this zone through reclaim.
3109 */
179e9639 3110static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3111{
7fb2d46d 3112 /* Minimum pages needed in order to stay on node */
69e05944 3113 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3114 struct task_struct *p = current;
3115 struct reclaim_state reclaim_state;
8695949a 3116 int priority;
179e9639
AM
3117 struct scan_control sc = {
3118 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3119 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3120 .may_swap = 1,
22fba335
KM
3121 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3122 SWAP_CLUSTER_MAX),
179e9639 3123 .gfp_mask = gfp_mask,
bd2f6199 3124 .order = order,
179e9639 3125 };
a09ed5e0
YH
3126 struct shrink_control shrink = {
3127 .gfp_mask = sc.gfp_mask,
3128 };
15748048 3129 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3130
9eeff239 3131 cond_resched();
d4f7796e
CL
3132 /*
3133 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3134 * and we also need to be able to write out pages for RECLAIM_WRITE
3135 * and RECLAIM_SWAP.
3136 */
3137 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3138 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3139 reclaim_state.reclaimed_slab = 0;
3140 p->reclaim_state = &reclaim_state;
c84db23c 3141
90afa5de 3142 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3143 /*
3144 * Free memory by calling shrink zone with increasing
3145 * priorities until we have enough memory freed.
3146 */
3147 priority = ZONE_RECLAIM_PRIORITY;
3148 do {
a79311c1 3149 shrink_zone(priority, zone, &sc);
0ff38490 3150 priority--;
a79311c1 3151 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3152 }
c84db23c 3153
15748048
KM
3154 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3155 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3156 /*
7fb2d46d 3157 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3158 * many pages were freed in this zone. So we take the current
3159 * number of slab pages and shake the slab until it is reduced
3160 * by the same nr_pages that we used for reclaiming unmapped
3161 * pages.
2a16e3f4 3162 *
0ff38490
CL
3163 * Note that shrink_slab will free memory on all zones and may
3164 * take a long time.
2a16e3f4 3165 */
4dc4b3d9
KM
3166 for (;;) {
3167 unsigned long lru_pages = zone_reclaimable_pages(zone);
3168
3169 /* No reclaimable slab or very low memory pressure */
1495f230 3170 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3171 break;
3172
3173 /* Freed enough memory */
3174 nr_slab_pages1 = zone_page_state(zone,
3175 NR_SLAB_RECLAIMABLE);
3176 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3177 break;
3178 }
83e33a47
CL
3179
3180 /*
3181 * Update nr_reclaimed by the number of slab pages we
3182 * reclaimed from this zone.
3183 */
15748048
KM
3184 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3185 if (nr_slab_pages1 < nr_slab_pages0)
3186 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3187 }
3188
9eeff239 3189 p->reclaim_state = NULL;
d4f7796e 3190 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3191 lockdep_clear_current_reclaim_state();
a79311c1 3192 return sc.nr_reclaimed >= nr_pages;
9eeff239 3193}
179e9639
AM
3194
3195int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3196{
179e9639 3197 int node_id;
d773ed6b 3198 int ret;
179e9639
AM
3199
3200 /*
0ff38490
CL
3201 * Zone reclaim reclaims unmapped file backed pages and
3202 * slab pages if we are over the defined limits.
34aa1330 3203 *
9614634f
CL
3204 * A small portion of unmapped file backed pages is needed for
3205 * file I/O otherwise pages read by file I/O will be immediately
3206 * thrown out if the zone is overallocated. So we do not reclaim
3207 * if less than a specified percentage of the zone is used by
3208 * unmapped file backed pages.
179e9639 3209 */
90afa5de
MG
3210 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3211 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3212 return ZONE_RECLAIM_FULL;
179e9639 3213
93e4a89a 3214 if (zone->all_unreclaimable)
fa5e084e 3215 return ZONE_RECLAIM_FULL;
d773ed6b 3216
179e9639 3217 /*
d773ed6b 3218 * Do not scan if the allocation should not be delayed.
179e9639 3219 */
d773ed6b 3220 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3221 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3222
3223 /*
3224 * Only run zone reclaim on the local zone or on zones that do not
3225 * have associated processors. This will favor the local processor
3226 * over remote processors and spread off node memory allocations
3227 * as wide as possible.
3228 */
89fa3024 3229 node_id = zone_to_nid(zone);
37c0708d 3230 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3231 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3232
3233 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3234 return ZONE_RECLAIM_NOSCAN;
3235
d773ed6b
DR
3236 ret = __zone_reclaim(zone, gfp_mask, order);
3237 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3238
24cf7251
MG
3239 if (!ret)
3240 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3241
d773ed6b 3242 return ret;
179e9639 3243}
9eeff239 3244#endif
894bc310 3245
894bc310
LS
3246/*
3247 * page_evictable - test whether a page is evictable
3248 * @page: the page to test
3249 * @vma: the VMA in which the page is or will be mapped, may be NULL
3250 *
3251 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3252 * lists vs unevictable list. The vma argument is !NULL when called from the
3253 * fault path to determine how to instantate a new page.
894bc310
LS
3254 *
3255 * Reasons page might not be evictable:
ba9ddf49 3256 * (1) page's mapping marked unevictable
b291f000 3257 * (2) page is part of an mlocked VMA
ba9ddf49 3258 *
894bc310
LS
3259 */
3260int page_evictable(struct page *page, struct vm_area_struct *vma)
3261{
3262
ba9ddf49
LS
3263 if (mapping_unevictable(page_mapping(page)))
3264 return 0;
3265
b291f000
NP
3266 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3267 return 0;
894bc310
LS
3268
3269 return 1;
3270}
89e004ea
LS
3271
3272/**
3273 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3274 * @page: page to check evictability and move to appropriate lru list
3275 * @zone: zone page is in
3276 *
3277 * Checks a page for evictability and moves the page to the appropriate
3278 * zone lru list.
3279 *
3280 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3281 * have PageUnevictable set.
3282 */
3283static void check_move_unevictable_page(struct page *page, struct zone *zone)
3284{
3285 VM_BUG_ON(PageActive(page));
3286
3287retry:
3288 ClearPageUnevictable(page);
3289 if (page_evictable(page, NULL)) {
401a8e1c 3290 enum lru_list l = page_lru_base_type(page);
af936a16 3291
89e004ea
LS
3292 __dec_zone_state(zone, NR_UNEVICTABLE);
3293 list_move(&page->lru, &zone->lru[l].list);
08e552c6 3294 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
3295 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3296 __count_vm_event(UNEVICTABLE_PGRESCUED);
3297 } else {
3298 /*
3299 * rotate unevictable list
3300 */
3301 SetPageUnevictable(page);
3302 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 3303 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
3304 if (page_evictable(page, NULL))
3305 goto retry;
3306 }
3307}
3308
3309/**
3310 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3311 * @mapping: struct address_space to scan for evictable pages
3312 *
3313 * Scan all pages in mapping. Check unevictable pages for
3314 * evictability and move them to the appropriate zone lru list.
3315 */
3316void scan_mapping_unevictable_pages(struct address_space *mapping)
3317{
3318 pgoff_t next = 0;
3319 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3320 PAGE_CACHE_SHIFT;
3321 struct zone *zone;
3322 struct pagevec pvec;
3323
3324 if (mapping->nrpages == 0)
3325 return;
3326
3327 pagevec_init(&pvec, 0);
3328 while (next < end &&
3329 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3330 int i;
3331 int pg_scanned = 0;
3332
3333 zone = NULL;
3334
3335 for (i = 0; i < pagevec_count(&pvec); i++) {
3336 struct page *page = pvec.pages[i];
3337 pgoff_t page_index = page->index;
3338 struct zone *pagezone = page_zone(page);
3339
3340 pg_scanned++;
3341 if (page_index > next)
3342 next = page_index;
3343 next++;
3344
3345 if (pagezone != zone) {
3346 if (zone)
3347 spin_unlock_irq(&zone->lru_lock);
3348 zone = pagezone;
3349 spin_lock_irq(&zone->lru_lock);
3350 }
3351
3352 if (PageLRU(page) && PageUnevictable(page))
3353 check_move_unevictable_page(page, zone);
3354 }
3355 if (zone)
3356 spin_unlock_irq(&zone->lru_lock);
3357 pagevec_release(&pvec);
3358
3359 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3360 }
3361
3362}
af936a16
LS
3363
3364/**
3365 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3366 * @zone - zone of which to scan the unevictable list
3367 *
3368 * Scan @zone's unevictable LRU lists to check for pages that have become
3369 * evictable. Move those that have to @zone's inactive list where they
3370 * become candidates for reclaim, unless shrink_inactive_zone() decides
3371 * to reactivate them. Pages that are still unevictable are rotated
3372 * back onto @zone's unevictable list.
3373 */
3374#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 3375static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
3376{
3377 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3378 unsigned long scan;
3379 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3380
3381 while (nr_to_scan > 0) {
3382 unsigned long batch_size = min(nr_to_scan,
3383 SCAN_UNEVICTABLE_BATCH_SIZE);
3384
3385 spin_lock_irq(&zone->lru_lock);
3386 for (scan = 0; scan < batch_size; scan++) {
3387 struct page *page = lru_to_page(l_unevictable);
3388
3389 if (!trylock_page(page))
3390 continue;
3391
3392 prefetchw_prev_lru_page(page, l_unevictable, flags);
3393
3394 if (likely(PageLRU(page) && PageUnevictable(page)))
3395 check_move_unevictable_page(page, zone);
3396
3397 unlock_page(page);
3398 }
3399 spin_unlock_irq(&zone->lru_lock);
3400
3401 nr_to_scan -= batch_size;
3402 }
3403}
3404
3405
3406/**
3407 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3408 *
3409 * A really big hammer: scan all zones' unevictable LRU lists to check for
3410 * pages that have become evictable. Move those back to the zones'
3411 * inactive list where they become candidates for reclaim.
3412 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3413 * and we add swap to the system. As such, it runs in the context of a task
3414 * that has possibly/probably made some previously unevictable pages
3415 * evictable.
3416 */
ff30153b 3417static void scan_all_zones_unevictable_pages(void)
af936a16
LS
3418{
3419 struct zone *zone;
3420
3421 for_each_zone(zone) {
3422 scan_zone_unevictable_pages(zone);
3423 }
3424}
3425
3426/*
3427 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3428 * all nodes' unevictable lists for evictable pages
3429 */
3430unsigned long scan_unevictable_pages;
3431
3432int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3433 void __user *buffer,
af936a16
LS
3434 size_t *length, loff_t *ppos)
3435{
8d65af78 3436 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3437
3438 if (write && *(unsigned long *)table->data)
3439 scan_all_zones_unevictable_pages();
3440
3441 scan_unevictable_pages = 0;
3442 return 0;
3443}
3444
e4455abb 3445#ifdef CONFIG_NUMA
af936a16
LS
3446/*
3447 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3448 * a specified node's per zone unevictable lists for evictable pages.
3449 */
3450
3451static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3452 struct sysdev_attribute *attr,
3453 char *buf)
3454{
3455 return sprintf(buf, "0\n"); /* always zero; should fit... */
3456}
3457
3458static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3459 struct sysdev_attribute *attr,
3460 const char *buf, size_t count)
3461{
3462 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3463 struct zone *zone;
3464 unsigned long res;
3465 unsigned long req = strict_strtoul(buf, 10, &res);
3466
3467 if (!req)
3468 return 1; /* zero is no-op */
3469
3470 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3471 if (!populated_zone(zone))
3472 continue;
3473 scan_zone_unevictable_pages(zone);
3474 }
3475 return 1;
3476}
3477
3478
3479static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3480 read_scan_unevictable_node,
3481 write_scan_unevictable_node);
3482
3483int scan_unevictable_register_node(struct node *node)
3484{
3485 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3486}
3487
3488void scan_unevictable_unregister_node(struct node *node)
3489{
3490 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3491}
e4455abb 3492#endif