]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm, oom: remove unnecessary exit_state check
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
22fba335
KM
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
1da177e4 65 /* This context's GFP mask */
6daa0e28 66 gfp_t gfp_mask;
1da177e4 67
ee814fe2 68 /* Allocation order */
5ad333eb 69 int order;
66e1707b 70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
ee814fe2
JW
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 unsigned int hibernation_mode:1;
95
96 /* One of the zones is ready for compaction */
97 unsigned int compaction_ready:1;
98
99 /* Incremented by the number of inactive pages that were scanned */
100 unsigned long nr_scanned;
101
102 /* Number of pages freed so far during a call to shrink_zones() */
103 unsigned long nr_reclaimed;
1da177e4
LT
104};
105
1da177e4
LT
106#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
107
108#ifdef ARCH_HAS_PREFETCH
109#define prefetch_prev_lru_page(_page, _base, _field) \
110 do { \
111 if ((_page)->lru.prev != _base) { \
112 struct page *prev; \
113 \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetch(&prev->_field); \
116 } \
117 } while (0)
118#else
119#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
120#endif
121
122#ifdef ARCH_HAS_PREFETCHW
123#define prefetchw_prev_lru_page(_page, _base, _field) \
124 do { \
125 if ((_page)->lru.prev != _base) { \
126 struct page *prev; \
127 \
128 prev = lru_to_page(&(_page->lru)); \
129 prefetchw(&prev->_field); \
130 } \
131 } while (0)
132#else
133#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
134#endif
135
136/*
137 * From 0 .. 100. Higher means more swappy.
138 */
139int vm_swappiness = 60;
d0480be4
WSH
140/*
141 * The total number of pages which are beyond the high watermark within all
142 * zones.
143 */
144unsigned long vm_total_pages;
1da177e4
LT
145
146static LIST_HEAD(shrinker_list);
147static DECLARE_RWSEM(shrinker_rwsem);
148
c255a458 149#ifdef CONFIG_MEMCG
89b5fae5
JW
150static bool global_reclaim(struct scan_control *sc)
151{
f16015fb 152 return !sc->target_mem_cgroup;
89b5fae5 153}
91a45470 154#else
89b5fae5
JW
155static bool global_reclaim(struct scan_control *sc)
156{
157 return true;
158}
91a45470
KH
159#endif
160
a1c3bfb2 161static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
162{
163 int nr;
164
165 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
166 zone_page_state(zone, NR_INACTIVE_FILE);
167
168 if (get_nr_swap_pages() > 0)
169 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
170 zone_page_state(zone, NR_INACTIVE_ANON);
171
172 return nr;
173}
174
175bool zone_reclaimable(struct zone *zone)
176{
0d5d823a
MG
177 return zone_page_state(zone, NR_PAGES_SCANNED) <
178 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
179}
180
4d7dcca2 181static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 182{
c3c787e8 183 if (!mem_cgroup_disabled())
4d7dcca2 184 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 185
074291fe 186 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
187}
188
1da177e4 189/*
1d3d4437 190 * Add a shrinker callback to be called from the vm.
1da177e4 191 */
1d3d4437 192int register_shrinker(struct shrinker *shrinker)
1da177e4 193{
1d3d4437
GC
194 size_t size = sizeof(*shrinker->nr_deferred);
195
196 /*
197 * If we only have one possible node in the system anyway, save
198 * ourselves the trouble and disable NUMA aware behavior. This way we
199 * will save memory and some small loop time later.
200 */
201 if (nr_node_ids == 1)
202 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
203
204 if (shrinker->flags & SHRINKER_NUMA_AWARE)
205 size *= nr_node_ids;
206
207 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
208 if (!shrinker->nr_deferred)
209 return -ENOMEM;
210
8e1f936b
RR
211 down_write(&shrinker_rwsem);
212 list_add_tail(&shrinker->list, &shrinker_list);
213 up_write(&shrinker_rwsem);
1d3d4437 214 return 0;
1da177e4 215}
8e1f936b 216EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
217
218/*
219 * Remove one
220 */
8e1f936b 221void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
222{
223 down_write(&shrinker_rwsem);
224 list_del(&shrinker->list);
225 up_write(&shrinker_rwsem);
ae393321 226 kfree(shrinker->nr_deferred);
1da177e4 227}
8e1f936b 228EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
229
230#define SHRINK_BATCH 128
1d3d4437
GC
231
232static unsigned long
233shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
234 unsigned long nr_pages_scanned, unsigned long lru_pages)
235{
236 unsigned long freed = 0;
237 unsigned long long delta;
238 long total_scan;
d5bc5fd3 239 long freeable;
1d3d4437
GC
240 long nr;
241 long new_nr;
242 int nid = shrinkctl->nid;
243 long batch_size = shrinker->batch ? shrinker->batch
244 : SHRINK_BATCH;
245
d5bc5fd3
VD
246 freeable = shrinker->count_objects(shrinker, shrinkctl);
247 if (freeable == 0)
1d3d4437
GC
248 return 0;
249
250 /*
251 * copy the current shrinker scan count into a local variable
252 * and zero it so that other concurrent shrinker invocations
253 * don't also do this scanning work.
254 */
255 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
256
257 total_scan = nr;
258 delta = (4 * nr_pages_scanned) / shrinker->seeks;
d5bc5fd3 259 delta *= freeable;
1d3d4437
GC
260 do_div(delta, lru_pages + 1);
261 total_scan += delta;
262 if (total_scan < 0) {
263 printk(KERN_ERR
264 "shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 265 shrinker->scan_objects, total_scan);
d5bc5fd3 266 total_scan = freeable;
1d3d4437
GC
267 }
268
269 /*
270 * We need to avoid excessive windup on filesystem shrinkers
271 * due to large numbers of GFP_NOFS allocations causing the
272 * shrinkers to return -1 all the time. This results in a large
273 * nr being built up so when a shrink that can do some work
274 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 275 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
276 * memory.
277 *
278 * Hence only allow the shrinker to scan the entire cache when
279 * a large delta change is calculated directly.
280 */
d5bc5fd3
VD
281 if (delta < freeable / 4)
282 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
283
284 /*
285 * Avoid risking looping forever due to too large nr value:
286 * never try to free more than twice the estimate number of
287 * freeable entries.
288 */
d5bc5fd3
VD
289 if (total_scan > freeable * 2)
290 total_scan = freeable * 2;
1d3d4437
GC
291
292 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
293 nr_pages_scanned, lru_pages,
d5bc5fd3 294 freeable, delta, total_scan);
1d3d4437 295
0b1fb40a
VD
296 /*
297 * Normally, we should not scan less than batch_size objects in one
298 * pass to avoid too frequent shrinker calls, but if the slab has less
299 * than batch_size objects in total and we are really tight on memory,
300 * we will try to reclaim all available objects, otherwise we can end
301 * up failing allocations although there are plenty of reclaimable
302 * objects spread over several slabs with usage less than the
303 * batch_size.
304 *
305 * We detect the "tight on memory" situations by looking at the total
306 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 307 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
308 * scanning at high prio and therefore should try to reclaim as much as
309 * possible.
310 */
311 while (total_scan >= batch_size ||
d5bc5fd3 312 total_scan >= freeable) {
a0b02131 313 unsigned long ret;
0b1fb40a 314 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 315
0b1fb40a 316 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
317 ret = shrinker->scan_objects(shrinker, shrinkctl);
318 if (ret == SHRINK_STOP)
319 break;
320 freed += ret;
1d3d4437 321
0b1fb40a
VD
322 count_vm_events(SLABS_SCANNED, nr_to_scan);
323 total_scan -= nr_to_scan;
1d3d4437
GC
324
325 cond_resched();
326 }
327
328 /*
329 * move the unused scan count back into the shrinker in a
330 * manner that handles concurrent updates. If we exhausted the
331 * scan, there is no need to do an update.
332 */
333 if (total_scan > 0)
334 new_nr = atomic_long_add_return(total_scan,
335 &shrinker->nr_deferred[nid]);
336 else
337 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
338
df9024a8 339 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 340 return freed;
1495f230
YH
341}
342
1da177e4
LT
343/*
344 * Call the shrink functions to age shrinkable caches
345 *
346 * Here we assume it costs one seek to replace a lru page and that it also
347 * takes a seek to recreate a cache object. With this in mind we age equal
348 * percentages of the lru and ageable caches. This should balance the seeks
349 * generated by these structures.
350 *
183ff22b 351 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
352 * slab to avoid swapping.
353 *
354 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
355 *
356 * `lru_pages' represents the number of on-LRU pages in all the zones which
357 * are eligible for the caller's allocation attempt. It is used for balancing
358 * slab reclaim versus page reclaim.
b15e0905 359 *
360 * Returns the number of slab objects which we shrunk.
1da177e4 361 */
24f7c6b9 362unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 363 unsigned long nr_pages_scanned,
a09ed5e0 364 unsigned long lru_pages)
1da177e4
LT
365{
366 struct shrinker *shrinker;
24f7c6b9 367 unsigned long freed = 0;
1da177e4 368
1495f230
YH
369 if (nr_pages_scanned == 0)
370 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 371
f06590bd 372 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
373 /*
374 * If we would return 0, our callers would understand that we
375 * have nothing else to shrink and give up trying. By returning
376 * 1 we keep it going and assume we'll be able to shrink next
377 * time.
378 */
379 freed = 1;
f06590bd
MK
380 goto out;
381 }
1da177e4
LT
382
383 list_for_each_entry(shrinker, &shrinker_list, list) {
ec97097b
VD
384 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
385 shrinkctl->nid = 0;
1d3d4437 386 freed += shrink_slab_node(shrinkctl, shrinker,
ec97097b
VD
387 nr_pages_scanned, lru_pages);
388 continue;
389 }
390
391 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
392 if (node_online(shrinkctl->nid))
393 freed += shrink_slab_node(shrinkctl, shrinker,
394 nr_pages_scanned, lru_pages);
1da177e4 395
1da177e4 396 }
1da177e4
LT
397 }
398 up_read(&shrinker_rwsem);
f06590bd
MK
399out:
400 cond_resched();
24f7c6b9 401 return freed;
1da177e4
LT
402}
403
1da177e4
LT
404static inline int is_page_cache_freeable(struct page *page)
405{
ceddc3a5
JW
406 /*
407 * A freeable page cache page is referenced only by the caller
408 * that isolated the page, the page cache radix tree and
409 * optional buffer heads at page->private.
410 */
edcf4748 411 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
412}
413
7d3579e8
KM
414static int may_write_to_queue(struct backing_dev_info *bdi,
415 struct scan_control *sc)
1da177e4 416{
930d9152 417 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
418 return 1;
419 if (!bdi_write_congested(bdi))
420 return 1;
421 if (bdi == current->backing_dev_info)
422 return 1;
423 return 0;
424}
425
426/*
427 * We detected a synchronous write error writing a page out. Probably
428 * -ENOSPC. We need to propagate that into the address_space for a subsequent
429 * fsync(), msync() or close().
430 *
431 * The tricky part is that after writepage we cannot touch the mapping: nothing
432 * prevents it from being freed up. But we have a ref on the page and once
433 * that page is locked, the mapping is pinned.
434 *
435 * We're allowed to run sleeping lock_page() here because we know the caller has
436 * __GFP_FS.
437 */
438static void handle_write_error(struct address_space *mapping,
439 struct page *page, int error)
440{
7eaceacc 441 lock_page(page);
3e9f45bd
GC
442 if (page_mapping(page) == mapping)
443 mapping_set_error(mapping, error);
1da177e4
LT
444 unlock_page(page);
445}
446
04e62a29
CL
447/* possible outcome of pageout() */
448typedef enum {
449 /* failed to write page out, page is locked */
450 PAGE_KEEP,
451 /* move page to the active list, page is locked */
452 PAGE_ACTIVATE,
453 /* page has been sent to the disk successfully, page is unlocked */
454 PAGE_SUCCESS,
455 /* page is clean and locked */
456 PAGE_CLEAN,
457} pageout_t;
458
1da177e4 459/*
1742f19f
AM
460 * pageout is called by shrink_page_list() for each dirty page.
461 * Calls ->writepage().
1da177e4 462 */
c661b078 463static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 464 struct scan_control *sc)
1da177e4
LT
465{
466 /*
467 * If the page is dirty, only perform writeback if that write
468 * will be non-blocking. To prevent this allocation from being
469 * stalled by pagecache activity. But note that there may be
470 * stalls if we need to run get_block(). We could test
471 * PagePrivate for that.
472 *
8174202b 473 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
474 * this page's queue, we can perform writeback even if that
475 * will block.
476 *
477 * If the page is swapcache, write it back even if that would
478 * block, for some throttling. This happens by accident, because
479 * swap_backing_dev_info is bust: it doesn't reflect the
480 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
481 */
482 if (!is_page_cache_freeable(page))
483 return PAGE_KEEP;
484 if (!mapping) {
485 /*
486 * Some data journaling orphaned pages can have
487 * page->mapping == NULL while being dirty with clean buffers.
488 */
266cf658 489 if (page_has_private(page)) {
1da177e4
LT
490 if (try_to_free_buffers(page)) {
491 ClearPageDirty(page);
b1de0d13 492 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
493 return PAGE_CLEAN;
494 }
495 }
496 return PAGE_KEEP;
497 }
498 if (mapping->a_ops->writepage == NULL)
499 return PAGE_ACTIVATE;
0e093d99 500 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
501 return PAGE_KEEP;
502
503 if (clear_page_dirty_for_io(page)) {
504 int res;
505 struct writeback_control wbc = {
506 .sync_mode = WB_SYNC_NONE,
507 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
508 .range_start = 0,
509 .range_end = LLONG_MAX,
1da177e4
LT
510 .for_reclaim = 1,
511 };
512
513 SetPageReclaim(page);
514 res = mapping->a_ops->writepage(page, &wbc);
515 if (res < 0)
516 handle_write_error(mapping, page, res);
994fc28c 517 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
518 ClearPageReclaim(page);
519 return PAGE_ACTIVATE;
520 }
c661b078 521
1da177e4
LT
522 if (!PageWriteback(page)) {
523 /* synchronous write or broken a_ops? */
524 ClearPageReclaim(page);
525 }
23b9da55 526 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 527 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
528 return PAGE_SUCCESS;
529 }
530
531 return PAGE_CLEAN;
532}
533
a649fd92 534/*
e286781d
NP
535 * Same as remove_mapping, but if the page is removed from the mapping, it
536 * gets returned with a refcount of 0.
a649fd92 537 */
a528910e
JW
538static int __remove_mapping(struct address_space *mapping, struct page *page,
539 bool reclaimed)
49d2e9cc 540{
28e4d965
NP
541 BUG_ON(!PageLocked(page));
542 BUG_ON(mapping != page_mapping(page));
49d2e9cc 543
19fd6231 544 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 545 /*
0fd0e6b0
NP
546 * The non racy check for a busy page.
547 *
548 * Must be careful with the order of the tests. When someone has
549 * a ref to the page, it may be possible that they dirty it then
550 * drop the reference. So if PageDirty is tested before page_count
551 * here, then the following race may occur:
552 *
553 * get_user_pages(&page);
554 * [user mapping goes away]
555 * write_to(page);
556 * !PageDirty(page) [good]
557 * SetPageDirty(page);
558 * put_page(page);
559 * !page_count(page) [good, discard it]
560 *
561 * [oops, our write_to data is lost]
562 *
563 * Reversing the order of the tests ensures such a situation cannot
564 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
565 * load is not satisfied before that of page->_count.
566 *
567 * Note that if SetPageDirty is always performed via set_page_dirty,
568 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 569 */
e286781d 570 if (!page_freeze_refs(page, 2))
49d2e9cc 571 goto cannot_free;
e286781d
NP
572 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
573 if (unlikely(PageDirty(page))) {
574 page_unfreeze_refs(page, 2);
49d2e9cc 575 goto cannot_free;
e286781d 576 }
49d2e9cc
CL
577
578 if (PageSwapCache(page)) {
579 swp_entry_t swap = { .val = page_private(page) };
580 __delete_from_swap_cache(page);
19fd6231 581 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 582 swapcache_free(swap, page);
e286781d 583 } else {
6072d13c 584 void (*freepage)(struct page *);
a528910e 585 void *shadow = NULL;
6072d13c
LT
586
587 freepage = mapping->a_ops->freepage;
a528910e
JW
588 /*
589 * Remember a shadow entry for reclaimed file cache in
590 * order to detect refaults, thus thrashing, later on.
591 *
592 * But don't store shadows in an address space that is
593 * already exiting. This is not just an optizimation,
594 * inode reclaim needs to empty out the radix tree or
595 * the nodes are lost. Don't plant shadows behind its
596 * back.
597 */
598 if (reclaimed && page_is_file_cache(page) &&
599 !mapping_exiting(mapping))
600 shadow = workingset_eviction(mapping, page);
601 __delete_from_page_cache(page, shadow);
19fd6231 602 spin_unlock_irq(&mapping->tree_lock);
e767e056 603 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
604
605 if (freepage != NULL)
606 freepage(page);
49d2e9cc
CL
607 }
608
49d2e9cc
CL
609 return 1;
610
611cannot_free:
19fd6231 612 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
613 return 0;
614}
615
e286781d
NP
616/*
617 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
618 * someone else has a ref on the page, abort and return 0. If it was
619 * successfully detached, return 1. Assumes the caller has a single ref on
620 * this page.
621 */
622int remove_mapping(struct address_space *mapping, struct page *page)
623{
a528910e 624 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
625 /*
626 * Unfreezing the refcount with 1 rather than 2 effectively
627 * drops the pagecache ref for us without requiring another
628 * atomic operation.
629 */
630 page_unfreeze_refs(page, 1);
631 return 1;
632 }
633 return 0;
634}
635
894bc310
LS
636/**
637 * putback_lru_page - put previously isolated page onto appropriate LRU list
638 * @page: page to be put back to appropriate lru list
639 *
640 * Add previously isolated @page to appropriate LRU list.
641 * Page may still be unevictable for other reasons.
642 *
643 * lru_lock must not be held, interrupts must be enabled.
644 */
894bc310
LS
645void putback_lru_page(struct page *page)
646{
0ec3b74c 647 bool is_unevictable;
bbfd28ee 648 int was_unevictable = PageUnevictable(page);
894bc310 649
309381fe 650 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
651
652redo:
653 ClearPageUnevictable(page);
654
39b5f29a 655 if (page_evictable(page)) {
894bc310
LS
656 /*
657 * For evictable pages, we can use the cache.
658 * In event of a race, worst case is we end up with an
659 * unevictable page on [in]active list.
660 * We know how to handle that.
661 */
0ec3b74c 662 is_unevictable = false;
c53954a0 663 lru_cache_add(page);
894bc310
LS
664 } else {
665 /*
666 * Put unevictable pages directly on zone's unevictable
667 * list.
668 */
0ec3b74c 669 is_unevictable = true;
894bc310 670 add_page_to_unevictable_list(page);
6a7b9548 671 /*
21ee9f39
MK
672 * When racing with an mlock or AS_UNEVICTABLE clearing
673 * (page is unlocked) make sure that if the other thread
674 * does not observe our setting of PG_lru and fails
24513264 675 * isolation/check_move_unevictable_pages,
21ee9f39 676 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
677 * the page back to the evictable list.
678 *
21ee9f39 679 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
680 */
681 smp_mb();
894bc310 682 }
894bc310
LS
683
684 /*
685 * page's status can change while we move it among lru. If an evictable
686 * page is on unevictable list, it never be freed. To avoid that,
687 * check after we added it to the list, again.
688 */
0ec3b74c 689 if (is_unevictable && page_evictable(page)) {
894bc310
LS
690 if (!isolate_lru_page(page)) {
691 put_page(page);
692 goto redo;
693 }
694 /* This means someone else dropped this page from LRU
695 * So, it will be freed or putback to LRU again. There is
696 * nothing to do here.
697 */
698 }
699
0ec3b74c 700 if (was_unevictable && !is_unevictable)
bbfd28ee 701 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 702 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
703 count_vm_event(UNEVICTABLE_PGCULLED);
704
894bc310
LS
705 put_page(page); /* drop ref from isolate */
706}
707
dfc8d636
JW
708enum page_references {
709 PAGEREF_RECLAIM,
710 PAGEREF_RECLAIM_CLEAN,
64574746 711 PAGEREF_KEEP,
dfc8d636
JW
712 PAGEREF_ACTIVATE,
713};
714
715static enum page_references page_check_references(struct page *page,
716 struct scan_control *sc)
717{
64574746 718 int referenced_ptes, referenced_page;
dfc8d636 719 unsigned long vm_flags;
dfc8d636 720
c3ac9a8a
JW
721 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
722 &vm_flags);
64574746 723 referenced_page = TestClearPageReferenced(page);
dfc8d636 724
dfc8d636
JW
725 /*
726 * Mlock lost the isolation race with us. Let try_to_unmap()
727 * move the page to the unevictable list.
728 */
729 if (vm_flags & VM_LOCKED)
730 return PAGEREF_RECLAIM;
731
64574746 732 if (referenced_ptes) {
e4898273 733 if (PageSwapBacked(page))
64574746
JW
734 return PAGEREF_ACTIVATE;
735 /*
736 * All mapped pages start out with page table
737 * references from the instantiating fault, so we need
738 * to look twice if a mapped file page is used more
739 * than once.
740 *
741 * Mark it and spare it for another trip around the
742 * inactive list. Another page table reference will
743 * lead to its activation.
744 *
745 * Note: the mark is set for activated pages as well
746 * so that recently deactivated but used pages are
747 * quickly recovered.
748 */
749 SetPageReferenced(page);
750
34dbc67a 751 if (referenced_page || referenced_ptes > 1)
64574746
JW
752 return PAGEREF_ACTIVATE;
753
c909e993
KK
754 /*
755 * Activate file-backed executable pages after first usage.
756 */
757 if (vm_flags & VM_EXEC)
758 return PAGEREF_ACTIVATE;
759
64574746
JW
760 return PAGEREF_KEEP;
761 }
dfc8d636
JW
762
763 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 764 if (referenced_page && !PageSwapBacked(page))
64574746
JW
765 return PAGEREF_RECLAIM_CLEAN;
766
767 return PAGEREF_RECLAIM;
dfc8d636
JW
768}
769
e2be15f6
MG
770/* Check if a page is dirty or under writeback */
771static void page_check_dirty_writeback(struct page *page,
772 bool *dirty, bool *writeback)
773{
b4597226
MG
774 struct address_space *mapping;
775
e2be15f6
MG
776 /*
777 * Anonymous pages are not handled by flushers and must be written
778 * from reclaim context. Do not stall reclaim based on them
779 */
780 if (!page_is_file_cache(page)) {
781 *dirty = false;
782 *writeback = false;
783 return;
784 }
785
786 /* By default assume that the page flags are accurate */
787 *dirty = PageDirty(page);
788 *writeback = PageWriteback(page);
b4597226
MG
789
790 /* Verify dirty/writeback state if the filesystem supports it */
791 if (!page_has_private(page))
792 return;
793
794 mapping = page_mapping(page);
795 if (mapping && mapping->a_ops->is_dirty_writeback)
796 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
797}
798
1da177e4 799/*
1742f19f 800 * shrink_page_list() returns the number of reclaimed pages
1da177e4 801 */
1742f19f 802static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 803 struct zone *zone,
f84f6e2b 804 struct scan_control *sc,
02c6de8d 805 enum ttu_flags ttu_flags,
8e950282 806 unsigned long *ret_nr_dirty,
d43006d5 807 unsigned long *ret_nr_unqueued_dirty,
8e950282 808 unsigned long *ret_nr_congested,
02c6de8d 809 unsigned long *ret_nr_writeback,
b1a6f21e 810 unsigned long *ret_nr_immediate,
02c6de8d 811 bool force_reclaim)
1da177e4
LT
812{
813 LIST_HEAD(ret_pages);
abe4c3b5 814 LIST_HEAD(free_pages);
1da177e4 815 int pgactivate = 0;
d43006d5 816 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
817 unsigned long nr_dirty = 0;
818 unsigned long nr_congested = 0;
05ff5137 819 unsigned long nr_reclaimed = 0;
92df3a72 820 unsigned long nr_writeback = 0;
b1a6f21e 821 unsigned long nr_immediate = 0;
1da177e4
LT
822
823 cond_resched();
824
69980e31 825 mem_cgroup_uncharge_start();
1da177e4
LT
826 while (!list_empty(page_list)) {
827 struct address_space *mapping;
828 struct page *page;
829 int may_enter_fs;
02c6de8d 830 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 831 bool dirty, writeback;
1da177e4
LT
832
833 cond_resched();
834
835 page = lru_to_page(page_list);
836 list_del(&page->lru);
837
529ae9aa 838 if (!trylock_page(page))
1da177e4
LT
839 goto keep;
840
309381fe
SL
841 VM_BUG_ON_PAGE(PageActive(page), page);
842 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
843
844 sc->nr_scanned++;
80e43426 845
39b5f29a 846 if (unlikely(!page_evictable(page)))
b291f000 847 goto cull_mlocked;
894bc310 848
a6dc60f8 849 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
850 goto keep_locked;
851
1da177e4
LT
852 /* Double the slab pressure for mapped and swapcache pages */
853 if (page_mapped(page) || PageSwapCache(page))
854 sc->nr_scanned++;
855
c661b078
AW
856 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
857 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
858
e2be15f6
MG
859 /*
860 * The number of dirty pages determines if a zone is marked
861 * reclaim_congested which affects wait_iff_congested. kswapd
862 * will stall and start writing pages if the tail of the LRU
863 * is all dirty unqueued pages.
864 */
865 page_check_dirty_writeback(page, &dirty, &writeback);
866 if (dirty || writeback)
867 nr_dirty++;
868
869 if (dirty && !writeback)
870 nr_unqueued_dirty++;
871
d04e8acd
MG
872 /*
873 * Treat this page as congested if the underlying BDI is or if
874 * pages are cycling through the LRU so quickly that the
875 * pages marked for immediate reclaim are making it to the
876 * end of the LRU a second time.
877 */
e2be15f6 878 mapping = page_mapping(page);
d04e8acd
MG
879 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
880 (writeback && PageReclaim(page)))
e2be15f6
MG
881 nr_congested++;
882
283aba9f
MG
883 /*
884 * If a page at the tail of the LRU is under writeback, there
885 * are three cases to consider.
886 *
887 * 1) If reclaim is encountering an excessive number of pages
888 * under writeback and this page is both under writeback and
889 * PageReclaim then it indicates that pages are being queued
890 * for IO but are being recycled through the LRU before the
891 * IO can complete. Waiting on the page itself risks an
892 * indefinite stall if it is impossible to writeback the
893 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
894 * note that the LRU is being scanned too quickly and the
895 * caller can stall after page list has been processed.
283aba9f
MG
896 *
897 * 2) Global reclaim encounters a page, memcg encounters a
898 * page that is not marked for immediate reclaim or
899 * the caller does not have __GFP_IO. In this case mark
900 * the page for immediate reclaim and continue scanning.
901 *
902 * __GFP_IO is checked because a loop driver thread might
903 * enter reclaim, and deadlock if it waits on a page for
904 * which it is needed to do the write (loop masks off
905 * __GFP_IO|__GFP_FS for this reason); but more thought
906 * would probably show more reasons.
907 *
908 * Don't require __GFP_FS, since we're not going into the
909 * FS, just waiting on its writeback completion. Worryingly,
910 * ext4 gfs2 and xfs allocate pages with
911 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
912 * may_enter_fs here is liable to OOM on them.
913 *
914 * 3) memcg encounters a page that is not already marked
915 * PageReclaim. memcg does not have any dirty pages
916 * throttling so we could easily OOM just because too many
917 * pages are in writeback and there is nothing else to
918 * reclaim. Wait for the writeback to complete.
919 */
c661b078 920 if (PageWriteback(page)) {
283aba9f
MG
921 /* Case 1 above */
922 if (current_is_kswapd() &&
923 PageReclaim(page) &&
924 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
925 nr_immediate++;
926 goto keep_locked;
283aba9f
MG
927
928 /* Case 2 above */
929 } else if (global_reclaim(sc) ||
c3b94f44
HD
930 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
931 /*
932 * This is slightly racy - end_page_writeback()
933 * might have just cleared PageReclaim, then
934 * setting PageReclaim here end up interpreted
935 * as PageReadahead - but that does not matter
936 * enough to care. What we do want is for this
937 * page to have PageReclaim set next time memcg
938 * reclaim reaches the tests above, so it will
939 * then wait_on_page_writeback() to avoid OOM;
940 * and it's also appropriate in global reclaim.
941 */
942 SetPageReclaim(page);
e62e384e 943 nr_writeback++;
283aba9f 944
c3b94f44 945 goto keep_locked;
283aba9f
MG
946
947 /* Case 3 above */
948 } else {
949 wait_on_page_writeback(page);
e62e384e 950 }
c661b078 951 }
1da177e4 952
02c6de8d
MK
953 if (!force_reclaim)
954 references = page_check_references(page, sc);
955
dfc8d636
JW
956 switch (references) {
957 case PAGEREF_ACTIVATE:
1da177e4 958 goto activate_locked;
64574746
JW
959 case PAGEREF_KEEP:
960 goto keep_locked;
dfc8d636
JW
961 case PAGEREF_RECLAIM:
962 case PAGEREF_RECLAIM_CLEAN:
963 ; /* try to reclaim the page below */
964 }
1da177e4 965
1da177e4
LT
966 /*
967 * Anonymous process memory has backing store?
968 * Try to allocate it some swap space here.
969 */
b291f000 970 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
971 if (!(sc->gfp_mask & __GFP_IO))
972 goto keep_locked;
5bc7b8ac 973 if (!add_to_swap(page, page_list))
1da177e4 974 goto activate_locked;
63eb6b93 975 may_enter_fs = 1;
1da177e4 976
e2be15f6
MG
977 /* Adding to swap updated mapping */
978 mapping = page_mapping(page);
979 }
1da177e4
LT
980
981 /*
982 * The page is mapped into the page tables of one or more
983 * processes. Try to unmap it here.
984 */
985 if (page_mapped(page) && mapping) {
02c6de8d 986 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
987 case SWAP_FAIL:
988 goto activate_locked;
989 case SWAP_AGAIN:
990 goto keep_locked;
b291f000
NP
991 case SWAP_MLOCK:
992 goto cull_mlocked;
1da177e4
LT
993 case SWAP_SUCCESS:
994 ; /* try to free the page below */
995 }
996 }
997
998 if (PageDirty(page)) {
ee72886d
MG
999 /*
1000 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1001 * avoid risk of stack overflow but only writeback
1002 * if many dirty pages have been encountered.
ee72886d 1003 */
f84f6e2b 1004 if (page_is_file_cache(page) &&
9e3b2f8c 1005 (!current_is_kswapd() ||
d43006d5 1006 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
1007 /*
1008 * Immediately reclaim when written back.
1009 * Similar in principal to deactivate_page()
1010 * except we already have the page isolated
1011 * and know it's dirty
1012 */
1013 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1014 SetPageReclaim(page);
1015
ee72886d
MG
1016 goto keep_locked;
1017 }
1018
dfc8d636 1019 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1020 goto keep_locked;
4dd4b920 1021 if (!may_enter_fs)
1da177e4 1022 goto keep_locked;
52a8363e 1023 if (!sc->may_writepage)
1da177e4
LT
1024 goto keep_locked;
1025
1026 /* Page is dirty, try to write it out here */
7d3579e8 1027 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1028 case PAGE_KEEP:
1029 goto keep_locked;
1030 case PAGE_ACTIVATE:
1031 goto activate_locked;
1032 case PAGE_SUCCESS:
7d3579e8 1033 if (PageWriteback(page))
41ac1999 1034 goto keep;
7d3579e8 1035 if (PageDirty(page))
1da177e4 1036 goto keep;
7d3579e8 1037
1da177e4
LT
1038 /*
1039 * A synchronous write - probably a ramdisk. Go
1040 * ahead and try to reclaim the page.
1041 */
529ae9aa 1042 if (!trylock_page(page))
1da177e4
LT
1043 goto keep;
1044 if (PageDirty(page) || PageWriteback(page))
1045 goto keep_locked;
1046 mapping = page_mapping(page);
1047 case PAGE_CLEAN:
1048 ; /* try to free the page below */
1049 }
1050 }
1051
1052 /*
1053 * If the page has buffers, try to free the buffer mappings
1054 * associated with this page. If we succeed we try to free
1055 * the page as well.
1056 *
1057 * We do this even if the page is PageDirty().
1058 * try_to_release_page() does not perform I/O, but it is
1059 * possible for a page to have PageDirty set, but it is actually
1060 * clean (all its buffers are clean). This happens if the
1061 * buffers were written out directly, with submit_bh(). ext3
894bc310 1062 * will do this, as well as the blockdev mapping.
1da177e4
LT
1063 * try_to_release_page() will discover that cleanness and will
1064 * drop the buffers and mark the page clean - it can be freed.
1065 *
1066 * Rarely, pages can have buffers and no ->mapping. These are
1067 * the pages which were not successfully invalidated in
1068 * truncate_complete_page(). We try to drop those buffers here
1069 * and if that worked, and the page is no longer mapped into
1070 * process address space (page_count == 1) it can be freed.
1071 * Otherwise, leave the page on the LRU so it is swappable.
1072 */
266cf658 1073 if (page_has_private(page)) {
1da177e4
LT
1074 if (!try_to_release_page(page, sc->gfp_mask))
1075 goto activate_locked;
e286781d
NP
1076 if (!mapping && page_count(page) == 1) {
1077 unlock_page(page);
1078 if (put_page_testzero(page))
1079 goto free_it;
1080 else {
1081 /*
1082 * rare race with speculative reference.
1083 * the speculative reference will free
1084 * this page shortly, so we may
1085 * increment nr_reclaimed here (and
1086 * leave it off the LRU).
1087 */
1088 nr_reclaimed++;
1089 continue;
1090 }
1091 }
1da177e4
LT
1092 }
1093
a528910e 1094 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1095 goto keep_locked;
1da177e4 1096
a978d6f5
NP
1097 /*
1098 * At this point, we have no other references and there is
1099 * no way to pick any more up (removed from LRU, removed
1100 * from pagecache). Can use non-atomic bitops now (and
1101 * we obviously don't have to worry about waking up a process
1102 * waiting on the page lock, because there are no references.
1103 */
1104 __clear_page_locked(page);
e286781d 1105free_it:
05ff5137 1106 nr_reclaimed++;
abe4c3b5
MG
1107
1108 /*
1109 * Is there need to periodically free_page_list? It would
1110 * appear not as the counts should be low
1111 */
1112 list_add(&page->lru, &free_pages);
1da177e4
LT
1113 continue;
1114
b291f000 1115cull_mlocked:
63d6c5ad
HD
1116 if (PageSwapCache(page))
1117 try_to_free_swap(page);
b291f000
NP
1118 unlock_page(page);
1119 putback_lru_page(page);
1120 continue;
1121
1da177e4 1122activate_locked:
68a22394
RR
1123 /* Not a candidate for swapping, so reclaim swap space. */
1124 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1125 try_to_free_swap(page);
309381fe 1126 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1127 SetPageActive(page);
1128 pgactivate++;
1129keep_locked:
1130 unlock_page(page);
1131keep:
1132 list_add(&page->lru, &ret_pages);
309381fe 1133 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1134 }
abe4c3b5 1135
b745bc85 1136 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1137
1da177e4 1138 list_splice(&ret_pages, page_list);
f8891e5e 1139 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1140 mem_cgroup_uncharge_end();
8e950282
MG
1141 *ret_nr_dirty += nr_dirty;
1142 *ret_nr_congested += nr_congested;
d43006d5 1143 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1144 *ret_nr_writeback += nr_writeback;
b1a6f21e 1145 *ret_nr_immediate += nr_immediate;
05ff5137 1146 return nr_reclaimed;
1da177e4
LT
1147}
1148
02c6de8d
MK
1149unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1150 struct list_head *page_list)
1151{
1152 struct scan_control sc = {
1153 .gfp_mask = GFP_KERNEL,
1154 .priority = DEF_PRIORITY,
1155 .may_unmap = 1,
1156 };
8e950282 1157 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1158 struct page *page, *next;
1159 LIST_HEAD(clean_pages);
1160
1161 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1162 if (page_is_file_cache(page) && !PageDirty(page) &&
1163 !isolated_balloon_page(page)) {
02c6de8d
MK
1164 ClearPageActive(page);
1165 list_move(&page->lru, &clean_pages);
1166 }
1167 }
1168
1169 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1170 TTU_UNMAP|TTU_IGNORE_ACCESS,
1171 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1172 list_splice(&clean_pages, page_list);
83da7510 1173 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1174 return ret;
1175}
1176
5ad333eb
AW
1177/*
1178 * Attempt to remove the specified page from its LRU. Only take this page
1179 * if it is of the appropriate PageActive status. Pages which are being
1180 * freed elsewhere are also ignored.
1181 *
1182 * page: page to consider
1183 * mode: one of the LRU isolation modes defined above
1184 *
1185 * returns 0 on success, -ve errno on failure.
1186 */
f3fd4a61 1187int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1188{
1189 int ret = -EINVAL;
1190
1191 /* Only take pages on the LRU. */
1192 if (!PageLRU(page))
1193 return ret;
1194
e46a2879
MK
1195 /* Compaction should not handle unevictable pages but CMA can do so */
1196 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1197 return ret;
1198
5ad333eb 1199 ret = -EBUSY;
08e552c6 1200
c8244935
MG
1201 /*
1202 * To minimise LRU disruption, the caller can indicate that it only
1203 * wants to isolate pages it will be able to operate on without
1204 * blocking - clean pages for the most part.
1205 *
1206 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1207 * is used by reclaim when it is cannot write to backing storage
1208 *
1209 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1210 * that it is possible to migrate without blocking
1211 */
1212 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1213 /* All the caller can do on PageWriteback is block */
1214 if (PageWriteback(page))
1215 return ret;
1216
1217 if (PageDirty(page)) {
1218 struct address_space *mapping;
1219
1220 /* ISOLATE_CLEAN means only clean pages */
1221 if (mode & ISOLATE_CLEAN)
1222 return ret;
1223
1224 /*
1225 * Only pages without mappings or that have a
1226 * ->migratepage callback are possible to migrate
1227 * without blocking
1228 */
1229 mapping = page_mapping(page);
1230 if (mapping && !mapping->a_ops->migratepage)
1231 return ret;
1232 }
1233 }
39deaf85 1234
f80c0673
MK
1235 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1236 return ret;
1237
5ad333eb
AW
1238 if (likely(get_page_unless_zero(page))) {
1239 /*
1240 * Be careful not to clear PageLRU until after we're
1241 * sure the page is not being freed elsewhere -- the
1242 * page release code relies on it.
1243 */
1244 ClearPageLRU(page);
1245 ret = 0;
1246 }
1247
1248 return ret;
1249}
1250
1da177e4
LT
1251/*
1252 * zone->lru_lock is heavily contended. Some of the functions that
1253 * shrink the lists perform better by taking out a batch of pages
1254 * and working on them outside the LRU lock.
1255 *
1256 * For pagecache intensive workloads, this function is the hottest
1257 * spot in the kernel (apart from copy_*_user functions).
1258 *
1259 * Appropriate locks must be held before calling this function.
1260 *
1261 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1262 * @lruvec: The LRU vector to pull pages from.
1da177e4 1263 * @dst: The temp list to put pages on to.
f626012d 1264 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1265 * @sc: The scan_control struct for this reclaim session
5ad333eb 1266 * @mode: One of the LRU isolation modes
3cb99451 1267 * @lru: LRU list id for isolating
1da177e4
LT
1268 *
1269 * returns how many pages were moved onto *@dst.
1270 */
69e05944 1271static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1272 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1273 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1274 isolate_mode_t mode, enum lru_list lru)
1da177e4 1275{
75b00af7 1276 struct list_head *src = &lruvec->lists[lru];
69e05944 1277 unsigned long nr_taken = 0;
c9b02d97 1278 unsigned long scan;
1da177e4 1279
c9b02d97 1280 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1281 struct page *page;
fa9add64 1282 int nr_pages;
5ad333eb 1283
1da177e4
LT
1284 page = lru_to_page(src);
1285 prefetchw_prev_lru_page(page, src, flags);
1286
309381fe 1287 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1288
f3fd4a61 1289 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1290 case 0:
fa9add64
HD
1291 nr_pages = hpage_nr_pages(page);
1292 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1293 list_move(&page->lru, dst);
fa9add64 1294 nr_taken += nr_pages;
5ad333eb
AW
1295 break;
1296
1297 case -EBUSY:
1298 /* else it is being freed elsewhere */
1299 list_move(&page->lru, src);
1300 continue;
46453a6e 1301
5ad333eb
AW
1302 default:
1303 BUG();
1304 }
1da177e4
LT
1305 }
1306
f626012d 1307 *nr_scanned = scan;
75b00af7
HD
1308 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1309 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1310 return nr_taken;
1311}
1312
62695a84
NP
1313/**
1314 * isolate_lru_page - tries to isolate a page from its LRU list
1315 * @page: page to isolate from its LRU list
1316 *
1317 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1318 * vmstat statistic corresponding to whatever LRU list the page was on.
1319 *
1320 * Returns 0 if the page was removed from an LRU list.
1321 * Returns -EBUSY if the page was not on an LRU list.
1322 *
1323 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1324 * the active list, it will have PageActive set. If it was found on
1325 * the unevictable list, it will have the PageUnevictable bit set. That flag
1326 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1327 *
1328 * The vmstat statistic corresponding to the list on which the page was
1329 * found will be decremented.
1330 *
1331 * Restrictions:
1332 * (1) Must be called with an elevated refcount on the page. This is a
1333 * fundamentnal difference from isolate_lru_pages (which is called
1334 * without a stable reference).
1335 * (2) the lru_lock must not be held.
1336 * (3) interrupts must be enabled.
1337 */
1338int isolate_lru_page(struct page *page)
1339{
1340 int ret = -EBUSY;
1341
309381fe 1342 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1343
62695a84
NP
1344 if (PageLRU(page)) {
1345 struct zone *zone = page_zone(page);
fa9add64 1346 struct lruvec *lruvec;
62695a84
NP
1347
1348 spin_lock_irq(&zone->lru_lock);
fa9add64 1349 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1350 if (PageLRU(page)) {
894bc310 1351 int lru = page_lru(page);
0c917313 1352 get_page(page);
62695a84 1353 ClearPageLRU(page);
fa9add64
HD
1354 del_page_from_lru_list(page, lruvec, lru);
1355 ret = 0;
62695a84
NP
1356 }
1357 spin_unlock_irq(&zone->lru_lock);
1358 }
1359 return ret;
1360}
1361
35cd7815 1362/*
d37dd5dc
FW
1363 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1364 * then get resheduled. When there are massive number of tasks doing page
1365 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1366 * the LRU list will go small and be scanned faster than necessary, leading to
1367 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1368 */
1369static int too_many_isolated(struct zone *zone, int file,
1370 struct scan_control *sc)
1371{
1372 unsigned long inactive, isolated;
1373
1374 if (current_is_kswapd())
1375 return 0;
1376
89b5fae5 1377 if (!global_reclaim(sc))
35cd7815
RR
1378 return 0;
1379
1380 if (file) {
1381 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1382 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1383 } else {
1384 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1385 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1386 }
1387
3cf23841
FW
1388 /*
1389 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1390 * won't get blocked by normal direct-reclaimers, forming a circular
1391 * deadlock.
1392 */
1393 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1394 inactive >>= 3;
1395
35cd7815
RR
1396 return isolated > inactive;
1397}
1398
66635629 1399static noinline_for_stack void
75b00af7 1400putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1401{
27ac81d8
KK
1402 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1403 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1404 LIST_HEAD(pages_to_free);
66635629 1405
66635629
MG
1406 /*
1407 * Put back any unfreeable pages.
1408 */
66635629 1409 while (!list_empty(page_list)) {
3f79768f 1410 struct page *page = lru_to_page(page_list);
66635629 1411 int lru;
3f79768f 1412
309381fe 1413 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1414 list_del(&page->lru);
39b5f29a 1415 if (unlikely(!page_evictable(page))) {
66635629
MG
1416 spin_unlock_irq(&zone->lru_lock);
1417 putback_lru_page(page);
1418 spin_lock_irq(&zone->lru_lock);
1419 continue;
1420 }
fa9add64
HD
1421
1422 lruvec = mem_cgroup_page_lruvec(page, zone);
1423
7a608572 1424 SetPageLRU(page);
66635629 1425 lru = page_lru(page);
fa9add64
HD
1426 add_page_to_lru_list(page, lruvec, lru);
1427
66635629
MG
1428 if (is_active_lru(lru)) {
1429 int file = is_file_lru(lru);
9992af10
RR
1430 int numpages = hpage_nr_pages(page);
1431 reclaim_stat->recent_rotated[file] += numpages;
66635629 1432 }
2bcf8879
HD
1433 if (put_page_testzero(page)) {
1434 __ClearPageLRU(page);
1435 __ClearPageActive(page);
fa9add64 1436 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1437
1438 if (unlikely(PageCompound(page))) {
1439 spin_unlock_irq(&zone->lru_lock);
1440 (*get_compound_page_dtor(page))(page);
1441 spin_lock_irq(&zone->lru_lock);
1442 } else
1443 list_add(&page->lru, &pages_to_free);
66635629
MG
1444 }
1445 }
66635629 1446
3f79768f
HD
1447 /*
1448 * To save our caller's stack, now use input list for pages to free.
1449 */
1450 list_splice(&pages_to_free, page_list);
66635629
MG
1451}
1452
399ba0b9
N
1453/*
1454 * If a kernel thread (such as nfsd for loop-back mounts) services
1455 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1456 * In that case we should only throttle if the backing device it is
1457 * writing to is congested. In other cases it is safe to throttle.
1458 */
1459static int current_may_throttle(void)
1460{
1461 return !(current->flags & PF_LESS_THROTTLE) ||
1462 current->backing_dev_info == NULL ||
1463 bdi_write_congested(current->backing_dev_info);
1464}
1465
1da177e4 1466/*
1742f19f
AM
1467 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1468 * of reclaimed pages
1da177e4 1469 */
66635629 1470static noinline_for_stack unsigned long
1a93be0e 1471shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1472 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1473{
1474 LIST_HEAD(page_list);
e247dbce 1475 unsigned long nr_scanned;
05ff5137 1476 unsigned long nr_reclaimed = 0;
e247dbce 1477 unsigned long nr_taken;
8e950282
MG
1478 unsigned long nr_dirty = 0;
1479 unsigned long nr_congested = 0;
e2be15f6 1480 unsigned long nr_unqueued_dirty = 0;
92df3a72 1481 unsigned long nr_writeback = 0;
b1a6f21e 1482 unsigned long nr_immediate = 0;
f3fd4a61 1483 isolate_mode_t isolate_mode = 0;
3cb99451 1484 int file = is_file_lru(lru);
1a93be0e
KK
1485 struct zone *zone = lruvec_zone(lruvec);
1486 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1487
35cd7815 1488 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1489 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1490
1491 /* We are about to die and free our memory. Return now. */
1492 if (fatal_signal_pending(current))
1493 return SWAP_CLUSTER_MAX;
1494 }
1495
1da177e4 1496 lru_add_drain();
f80c0673
MK
1497
1498 if (!sc->may_unmap)
61317289 1499 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1500 if (!sc->may_writepage)
61317289 1501 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1502
1da177e4 1503 spin_lock_irq(&zone->lru_lock);
b35ea17b 1504
5dc35979
KK
1505 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1506 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1507
1508 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1509 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1510
89b5fae5 1511 if (global_reclaim(sc)) {
0d5d823a 1512 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1513 if (current_is_kswapd())
75b00af7 1514 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1515 else
75b00af7 1516 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1517 }
d563c050 1518 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1519
d563c050 1520 if (nr_taken == 0)
66635629 1521 return 0;
5ad333eb 1522
02c6de8d 1523 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1524 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1525 &nr_writeback, &nr_immediate,
1526 false);
c661b078 1527
3f79768f
HD
1528 spin_lock_irq(&zone->lru_lock);
1529
95d918fc 1530 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1531
904249aa
YH
1532 if (global_reclaim(sc)) {
1533 if (current_is_kswapd())
1534 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1535 nr_reclaimed);
1536 else
1537 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1538 nr_reclaimed);
1539 }
a74609fa 1540
27ac81d8 1541 putback_inactive_pages(lruvec, &page_list);
3f79768f 1542
95d918fc 1543 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1544
1545 spin_unlock_irq(&zone->lru_lock);
1546
b745bc85 1547 free_hot_cold_page_list(&page_list, true);
e11da5b4 1548
92df3a72
MG
1549 /*
1550 * If reclaim is isolating dirty pages under writeback, it implies
1551 * that the long-lived page allocation rate is exceeding the page
1552 * laundering rate. Either the global limits are not being effective
1553 * at throttling processes due to the page distribution throughout
1554 * zones or there is heavy usage of a slow backing device. The
1555 * only option is to throttle from reclaim context which is not ideal
1556 * as there is no guarantee the dirtying process is throttled in the
1557 * same way balance_dirty_pages() manages.
1558 *
8e950282
MG
1559 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1560 * of pages under pages flagged for immediate reclaim and stall if any
1561 * are encountered in the nr_immediate check below.
92df3a72 1562 */
918fc718 1563 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1564 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1565
d43006d5 1566 /*
b1a6f21e
MG
1567 * memcg will stall in page writeback so only consider forcibly
1568 * stalling for global reclaim
d43006d5 1569 */
b1a6f21e 1570 if (global_reclaim(sc)) {
8e950282
MG
1571 /*
1572 * Tag a zone as congested if all the dirty pages scanned were
1573 * backed by a congested BDI and wait_iff_congested will stall.
1574 */
1575 if (nr_dirty && nr_dirty == nr_congested)
1576 zone_set_flag(zone, ZONE_CONGESTED);
1577
b1a6f21e
MG
1578 /*
1579 * If dirty pages are scanned that are not queued for IO, it
1580 * implies that flushers are not keeping up. In this case, flag
1581 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
b738d764 1582 * pages from reclaim context.
b1a6f21e
MG
1583 */
1584 if (nr_unqueued_dirty == nr_taken)
1585 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1586
1587 /*
b738d764
LT
1588 * If kswapd scans pages marked marked for immediate
1589 * reclaim and under writeback (nr_immediate), it implies
1590 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1591 * they are written so also forcibly stall.
1592 */
b738d764 1593 if (nr_immediate && current_may_throttle())
b1a6f21e 1594 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1595 }
d43006d5 1596
8e950282
MG
1597 /*
1598 * Stall direct reclaim for IO completions if underlying BDIs or zone
1599 * is congested. Allow kswapd to continue until it starts encountering
1600 * unqueued dirty pages or cycling through the LRU too quickly.
1601 */
399ba0b9
N
1602 if (!sc->hibernation_mode && !current_is_kswapd() &&
1603 current_may_throttle())
8e950282
MG
1604 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1605
e11da5b4
MG
1606 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1607 zone_idx(zone),
1608 nr_scanned, nr_reclaimed,
9e3b2f8c 1609 sc->priority,
23b9da55 1610 trace_shrink_flags(file));
05ff5137 1611 return nr_reclaimed;
1da177e4
LT
1612}
1613
1614/*
1615 * This moves pages from the active list to the inactive list.
1616 *
1617 * We move them the other way if the page is referenced by one or more
1618 * processes, from rmap.
1619 *
1620 * If the pages are mostly unmapped, the processing is fast and it is
1621 * appropriate to hold zone->lru_lock across the whole operation. But if
1622 * the pages are mapped, the processing is slow (page_referenced()) so we
1623 * should drop zone->lru_lock around each page. It's impossible to balance
1624 * this, so instead we remove the pages from the LRU while processing them.
1625 * It is safe to rely on PG_active against the non-LRU pages in here because
1626 * nobody will play with that bit on a non-LRU page.
1627 *
1628 * The downside is that we have to touch page->_count against each page.
1629 * But we had to alter page->flags anyway.
1630 */
1cfb419b 1631
fa9add64 1632static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1633 struct list_head *list,
2bcf8879 1634 struct list_head *pages_to_free,
3eb4140f
WF
1635 enum lru_list lru)
1636{
fa9add64 1637 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1638 unsigned long pgmoved = 0;
3eb4140f 1639 struct page *page;
fa9add64 1640 int nr_pages;
3eb4140f 1641
3eb4140f
WF
1642 while (!list_empty(list)) {
1643 page = lru_to_page(list);
fa9add64 1644 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1645
309381fe 1646 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1647 SetPageLRU(page);
1648
fa9add64
HD
1649 nr_pages = hpage_nr_pages(page);
1650 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1651 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1652 pgmoved += nr_pages;
3eb4140f 1653
2bcf8879
HD
1654 if (put_page_testzero(page)) {
1655 __ClearPageLRU(page);
1656 __ClearPageActive(page);
fa9add64 1657 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1658
1659 if (unlikely(PageCompound(page))) {
1660 spin_unlock_irq(&zone->lru_lock);
1661 (*get_compound_page_dtor(page))(page);
1662 spin_lock_irq(&zone->lru_lock);
1663 } else
1664 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1665 }
1666 }
1667 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1668 if (!is_active_lru(lru))
1669 __count_vm_events(PGDEACTIVATE, pgmoved);
1670}
1cfb419b 1671
f626012d 1672static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1673 struct lruvec *lruvec,
f16015fb 1674 struct scan_control *sc,
9e3b2f8c 1675 enum lru_list lru)
1da177e4 1676{
44c241f1 1677 unsigned long nr_taken;
f626012d 1678 unsigned long nr_scanned;
6fe6b7e3 1679 unsigned long vm_flags;
1da177e4 1680 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1681 LIST_HEAD(l_active);
b69408e8 1682 LIST_HEAD(l_inactive);
1da177e4 1683 struct page *page;
1a93be0e 1684 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1685 unsigned long nr_rotated = 0;
f3fd4a61 1686 isolate_mode_t isolate_mode = 0;
3cb99451 1687 int file = is_file_lru(lru);
1a93be0e 1688 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1689
1690 lru_add_drain();
f80c0673
MK
1691
1692 if (!sc->may_unmap)
61317289 1693 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1694 if (!sc->may_writepage)
61317289 1695 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1696
1da177e4 1697 spin_lock_irq(&zone->lru_lock);
925b7673 1698
5dc35979
KK
1699 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1700 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1701 if (global_reclaim(sc))
0d5d823a 1702 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
89b5fae5 1703
b7c46d15 1704 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1705
f626012d 1706 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1707 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1708 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1709 spin_unlock_irq(&zone->lru_lock);
1710
1da177e4
LT
1711 while (!list_empty(&l_hold)) {
1712 cond_resched();
1713 page = lru_to_page(&l_hold);
1714 list_del(&page->lru);
7e9cd484 1715
39b5f29a 1716 if (unlikely(!page_evictable(page))) {
894bc310
LS
1717 putback_lru_page(page);
1718 continue;
1719 }
1720
cc715d99
MG
1721 if (unlikely(buffer_heads_over_limit)) {
1722 if (page_has_private(page) && trylock_page(page)) {
1723 if (page_has_private(page))
1724 try_to_release_page(page, 0);
1725 unlock_page(page);
1726 }
1727 }
1728
c3ac9a8a
JW
1729 if (page_referenced(page, 0, sc->target_mem_cgroup,
1730 &vm_flags)) {
9992af10 1731 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1732 /*
1733 * Identify referenced, file-backed active pages and
1734 * give them one more trip around the active list. So
1735 * that executable code get better chances to stay in
1736 * memory under moderate memory pressure. Anon pages
1737 * are not likely to be evicted by use-once streaming
1738 * IO, plus JVM can create lots of anon VM_EXEC pages,
1739 * so we ignore them here.
1740 */
41e20983 1741 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1742 list_add(&page->lru, &l_active);
1743 continue;
1744 }
1745 }
7e9cd484 1746
5205e56e 1747 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1748 list_add(&page->lru, &l_inactive);
1749 }
1750
b555749a 1751 /*
8cab4754 1752 * Move pages back to the lru list.
b555749a 1753 */
2a1dc509 1754 spin_lock_irq(&zone->lru_lock);
556adecb 1755 /*
8cab4754
WF
1756 * Count referenced pages from currently used mappings as rotated,
1757 * even though only some of them are actually re-activated. This
1758 * helps balance scan pressure between file and anonymous pages in
1759 * get_scan_ratio.
7e9cd484 1760 */
b7c46d15 1761 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1762
fa9add64
HD
1763 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1764 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1765 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1766 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1767
b745bc85 1768 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1769}
1770
74e3f3c3 1771#ifdef CONFIG_SWAP
14797e23 1772static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1773{
1774 unsigned long active, inactive;
1775
1776 active = zone_page_state(zone, NR_ACTIVE_ANON);
1777 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1778
1779 if (inactive * zone->inactive_ratio < active)
1780 return 1;
1781
1782 return 0;
1783}
1784
14797e23
KM
1785/**
1786 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1787 * @lruvec: LRU vector to check
14797e23
KM
1788 *
1789 * Returns true if the zone does not have enough inactive anon pages,
1790 * meaning some active anon pages need to be deactivated.
1791 */
c56d5c7d 1792static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1793{
74e3f3c3
MK
1794 /*
1795 * If we don't have swap space, anonymous page deactivation
1796 * is pointless.
1797 */
1798 if (!total_swap_pages)
1799 return 0;
1800
c3c787e8 1801 if (!mem_cgroup_disabled())
c56d5c7d 1802 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1803
c56d5c7d 1804 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1805}
74e3f3c3 1806#else
c56d5c7d 1807static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1808{
1809 return 0;
1810}
1811#endif
14797e23 1812
56e49d21
RR
1813/**
1814 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1815 * @lruvec: LRU vector to check
56e49d21
RR
1816 *
1817 * When the system is doing streaming IO, memory pressure here
1818 * ensures that active file pages get deactivated, until more
1819 * than half of the file pages are on the inactive list.
1820 *
1821 * Once we get to that situation, protect the system's working
1822 * set from being evicted by disabling active file page aging.
1823 *
1824 * This uses a different ratio than the anonymous pages, because
1825 * the page cache uses a use-once replacement algorithm.
1826 */
c56d5c7d 1827static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1828{
e3790144
JW
1829 unsigned long inactive;
1830 unsigned long active;
1831
1832 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1833 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1834
e3790144 1835 return active > inactive;
56e49d21
RR
1836}
1837
75b00af7 1838static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1839{
75b00af7 1840 if (is_file_lru(lru))
c56d5c7d 1841 return inactive_file_is_low(lruvec);
b39415b2 1842 else
c56d5c7d 1843 return inactive_anon_is_low(lruvec);
b39415b2
RR
1844}
1845
4f98a2fe 1846static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1847 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1848{
b39415b2 1849 if (is_active_lru(lru)) {
75b00af7 1850 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1851 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1852 return 0;
1853 }
1854
1a93be0e 1855 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1856}
1857
9a265114
JW
1858enum scan_balance {
1859 SCAN_EQUAL,
1860 SCAN_FRACT,
1861 SCAN_ANON,
1862 SCAN_FILE,
1863};
1864
4f98a2fe
RR
1865/*
1866 * Determine how aggressively the anon and file LRU lists should be
1867 * scanned. The relative value of each set of LRU lists is determined
1868 * by looking at the fraction of the pages scanned we did rotate back
1869 * onto the active list instead of evict.
1870 *
be7bd59d
WL
1871 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1872 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1873 */
02695175
JW
1874static void get_scan_count(struct lruvec *lruvec, int swappiness,
1875 struct scan_control *sc, unsigned long *nr)
4f98a2fe 1876{
9a265114
JW
1877 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1878 u64 fraction[2];
1879 u64 denominator = 0; /* gcc */
1880 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1881 unsigned long anon_prio, file_prio;
9a265114 1882 enum scan_balance scan_balance;
0bf1457f 1883 unsigned long anon, file;
9a265114 1884 bool force_scan = false;
4f98a2fe 1885 unsigned long ap, fp;
4111304d 1886 enum lru_list lru;
6f04f48d
SS
1887 bool some_scanned;
1888 int pass;
246e87a9 1889
f11c0ca5
JW
1890 /*
1891 * If the zone or memcg is small, nr[l] can be 0. This
1892 * results in no scanning on this priority and a potential
1893 * priority drop. Global direct reclaim can go to the next
1894 * zone and tends to have no problems. Global kswapd is for
1895 * zone balancing and it needs to scan a minimum amount. When
1896 * reclaiming for a memcg, a priority drop can cause high
1897 * latencies, so it's better to scan a minimum amount there as
1898 * well.
1899 */
6e543d57 1900 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1901 force_scan = true;
89b5fae5 1902 if (!global_reclaim(sc))
a4d3e9e7 1903 force_scan = true;
76a33fc3
SL
1904
1905 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1906 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1907 scan_balance = SCAN_FILE;
76a33fc3
SL
1908 goto out;
1909 }
4f98a2fe 1910
10316b31
JW
1911 /*
1912 * Global reclaim will swap to prevent OOM even with no
1913 * swappiness, but memcg users want to use this knob to
1914 * disable swapping for individual groups completely when
1915 * using the memory controller's swap limit feature would be
1916 * too expensive.
1917 */
02695175 1918 if (!global_reclaim(sc) && !swappiness) {
9a265114 1919 scan_balance = SCAN_FILE;
10316b31
JW
1920 goto out;
1921 }
1922
1923 /*
1924 * Do not apply any pressure balancing cleverness when the
1925 * system is close to OOM, scan both anon and file equally
1926 * (unless the swappiness setting disagrees with swapping).
1927 */
02695175 1928 if (!sc->priority && swappiness) {
9a265114 1929 scan_balance = SCAN_EQUAL;
10316b31
JW
1930 goto out;
1931 }
1932
4d7dcca2
HD
1933 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1934 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1935 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1936 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1937
62376251
JW
1938 /*
1939 * Prevent the reclaimer from falling into the cache trap: as
1940 * cache pages start out inactive, every cache fault will tip
1941 * the scan balance towards the file LRU. And as the file LRU
1942 * shrinks, so does the window for rotation from references.
1943 * This means we have a runaway feedback loop where a tiny
1944 * thrashing file LRU becomes infinitely more attractive than
1945 * anon pages. Try to detect this based on file LRU size.
1946 */
1947 if (global_reclaim(sc)) {
1948 unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
1949
1950 if (unlikely(file + free <= high_wmark_pages(zone))) {
1951 scan_balance = SCAN_ANON;
1952 goto out;
1953 }
1954 }
1955
7c5bd705
JW
1956 /*
1957 * There is enough inactive page cache, do not reclaim
1958 * anything from the anonymous working set right now.
1959 */
1960 if (!inactive_file_is_low(lruvec)) {
9a265114 1961 scan_balance = SCAN_FILE;
7c5bd705
JW
1962 goto out;
1963 }
1964
9a265114
JW
1965 scan_balance = SCAN_FRACT;
1966
58c37f6e
KM
1967 /*
1968 * With swappiness at 100, anonymous and file have the same priority.
1969 * This scanning priority is essentially the inverse of IO cost.
1970 */
02695175 1971 anon_prio = swappiness;
75b00af7 1972 file_prio = 200 - anon_prio;
58c37f6e 1973
4f98a2fe
RR
1974 /*
1975 * OK, so we have swap space and a fair amount of page cache
1976 * pages. We use the recently rotated / recently scanned
1977 * ratios to determine how valuable each cache is.
1978 *
1979 * Because workloads change over time (and to avoid overflow)
1980 * we keep these statistics as a floating average, which ends
1981 * up weighing recent references more than old ones.
1982 *
1983 * anon in [0], file in [1]
1984 */
90126375 1985 spin_lock_irq(&zone->lru_lock);
6e901571 1986 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1987 reclaim_stat->recent_scanned[0] /= 2;
1988 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1989 }
1990
6e901571 1991 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1992 reclaim_stat->recent_scanned[1] /= 2;
1993 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1994 }
1995
4f98a2fe 1996 /*
00d8089c
RR
1997 * The amount of pressure on anon vs file pages is inversely
1998 * proportional to the fraction of recently scanned pages on
1999 * each list that were recently referenced and in active use.
4f98a2fe 2000 */
fe35004f 2001 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2002 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2003
fe35004f 2004 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2005 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2006 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2007
76a33fc3
SL
2008 fraction[0] = ap;
2009 fraction[1] = fp;
2010 denominator = ap + fp + 1;
2011out:
6f04f48d
SS
2012 some_scanned = false;
2013 /* Only use force_scan on second pass. */
2014 for (pass = 0; !some_scanned && pass < 2; pass++) {
2015 for_each_evictable_lru(lru) {
2016 int file = is_file_lru(lru);
2017 unsigned long size;
2018 unsigned long scan;
6e08a369 2019
6f04f48d
SS
2020 size = get_lru_size(lruvec, lru);
2021 scan = size >> sc->priority;
9a265114 2022
6f04f48d
SS
2023 if (!scan && pass && force_scan)
2024 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2025
6f04f48d
SS
2026 switch (scan_balance) {
2027 case SCAN_EQUAL:
2028 /* Scan lists relative to size */
2029 break;
2030 case SCAN_FRACT:
2031 /*
2032 * Scan types proportional to swappiness and
2033 * their relative recent reclaim efficiency.
2034 */
2035 scan = div64_u64(scan * fraction[file],
2036 denominator);
2037 break;
2038 case SCAN_FILE:
2039 case SCAN_ANON:
2040 /* Scan one type exclusively */
2041 if ((scan_balance == SCAN_FILE) != file)
2042 scan = 0;
2043 break;
2044 default:
2045 /* Look ma, no brain */
2046 BUG();
2047 }
2048 nr[lru] = scan;
9a265114 2049 /*
6f04f48d
SS
2050 * Skip the second pass and don't force_scan,
2051 * if we found something to scan.
9a265114 2052 */
6f04f48d 2053 some_scanned |= !!scan;
9a265114 2054 }
76a33fc3 2055 }
6e08a369 2056}
4f98a2fe 2057
9b4f98cd
JW
2058/*
2059 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2060 */
02695175
JW
2061static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2062 struct scan_control *sc)
9b4f98cd
JW
2063{
2064 unsigned long nr[NR_LRU_LISTS];
e82e0561 2065 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2066 unsigned long nr_to_scan;
2067 enum lru_list lru;
2068 unsigned long nr_reclaimed = 0;
2069 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2070 struct blk_plug plug;
1a501907 2071 bool scan_adjusted;
9b4f98cd 2072
02695175 2073 get_scan_count(lruvec, swappiness, sc, nr);
9b4f98cd 2074
e82e0561
MG
2075 /* Record the original scan target for proportional adjustments later */
2076 memcpy(targets, nr, sizeof(nr));
2077
1a501907
MG
2078 /*
2079 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2080 * event that can occur when there is little memory pressure e.g.
2081 * multiple streaming readers/writers. Hence, we do not abort scanning
2082 * when the requested number of pages are reclaimed when scanning at
2083 * DEF_PRIORITY on the assumption that the fact we are direct
2084 * reclaiming implies that kswapd is not keeping up and it is best to
2085 * do a batch of work at once. For memcg reclaim one check is made to
2086 * abort proportional reclaim if either the file or anon lru has already
2087 * dropped to zero at the first pass.
2088 */
2089 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2090 sc->priority == DEF_PRIORITY);
2091
9b4f98cd
JW
2092 blk_start_plug(&plug);
2093 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2094 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2095 unsigned long nr_anon, nr_file, percentage;
2096 unsigned long nr_scanned;
2097
9b4f98cd
JW
2098 for_each_evictable_lru(lru) {
2099 if (nr[lru]) {
2100 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2101 nr[lru] -= nr_to_scan;
2102
2103 nr_reclaimed += shrink_list(lru, nr_to_scan,
2104 lruvec, sc);
2105 }
2106 }
e82e0561
MG
2107
2108 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2109 continue;
2110
e82e0561
MG
2111 /*
2112 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2113 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2114 * proportionally what was requested by get_scan_count(). We
2115 * stop reclaiming one LRU and reduce the amount scanning
2116 * proportional to the original scan target.
2117 */
2118 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2119 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2120
1a501907
MG
2121 /*
2122 * It's just vindictive to attack the larger once the smaller
2123 * has gone to zero. And given the way we stop scanning the
2124 * smaller below, this makes sure that we only make one nudge
2125 * towards proportionality once we've got nr_to_reclaim.
2126 */
2127 if (!nr_file || !nr_anon)
2128 break;
2129
e82e0561
MG
2130 if (nr_file > nr_anon) {
2131 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2132 targets[LRU_ACTIVE_ANON] + 1;
2133 lru = LRU_BASE;
2134 percentage = nr_anon * 100 / scan_target;
2135 } else {
2136 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2137 targets[LRU_ACTIVE_FILE] + 1;
2138 lru = LRU_FILE;
2139 percentage = nr_file * 100 / scan_target;
2140 }
2141
2142 /* Stop scanning the smaller of the LRU */
2143 nr[lru] = 0;
2144 nr[lru + LRU_ACTIVE] = 0;
2145
2146 /*
2147 * Recalculate the other LRU scan count based on its original
2148 * scan target and the percentage scanning already complete
2149 */
2150 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2151 nr_scanned = targets[lru] - nr[lru];
2152 nr[lru] = targets[lru] * (100 - percentage) / 100;
2153 nr[lru] -= min(nr[lru], nr_scanned);
2154
2155 lru += LRU_ACTIVE;
2156 nr_scanned = targets[lru] - nr[lru];
2157 nr[lru] = targets[lru] * (100 - percentage) / 100;
2158 nr[lru] -= min(nr[lru], nr_scanned);
2159
2160 scan_adjusted = true;
9b4f98cd
JW
2161 }
2162 blk_finish_plug(&plug);
2163 sc->nr_reclaimed += nr_reclaimed;
2164
2165 /*
2166 * Even if we did not try to evict anon pages at all, we want to
2167 * rebalance the anon lru active/inactive ratio.
2168 */
2169 if (inactive_anon_is_low(lruvec))
2170 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2171 sc, LRU_ACTIVE_ANON);
2172
2173 throttle_vm_writeout(sc->gfp_mask);
2174}
2175
23b9da55 2176/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2177static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2178{
d84da3f9 2179 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2180 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2181 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2182 return true;
2183
2184 return false;
2185}
2186
3e7d3449 2187/*
23b9da55
MG
2188 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2189 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2190 * true if more pages should be reclaimed such that when the page allocator
2191 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2192 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2193 */
9b4f98cd 2194static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2195 unsigned long nr_reclaimed,
2196 unsigned long nr_scanned,
2197 struct scan_control *sc)
2198{
2199 unsigned long pages_for_compaction;
2200 unsigned long inactive_lru_pages;
2201
2202 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2203 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2204 return false;
2205
2876592f
MG
2206 /* Consider stopping depending on scan and reclaim activity */
2207 if (sc->gfp_mask & __GFP_REPEAT) {
2208 /*
2209 * For __GFP_REPEAT allocations, stop reclaiming if the
2210 * full LRU list has been scanned and we are still failing
2211 * to reclaim pages. This full LRU scan is potentially
2212 * expensive but a __GFP_REPEAT caller really wants to succeed
2213 */
2214 if (!nr_reclaimed && !nr_scanned)
2215 return false;
2216 } else {
2217 /*
2218 * For non-__GFP_REPEAT allocations which can presumably
2219 * fail without consequence, stop if we failed to reclaim
2220 * any pages from the last SWAP_CLUSTER_MAX number of
2221 * pages that were scanned. This will return to the
2222 * caller faster at the risk reclaim/compaction and
2223 * the resulting allocation attempt fails
2224 */
2225 if (!nr_reclaimed)
2226 return false;
2227 }
3e7d3449
MG
2228
2229 /*
2230 * If we have not reclaimed enough pages for compaction and the
2231 * inactive lists are large enough, continue reclaiming
2232 */
2233 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2234 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2235 if (get_nr_swap_pages() > 0)
9b4f98cd 2236 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2237 if (sc->nr_reclaimed < pages_for_compaction &&
2238 inactive_lru_pages > pages_for_compaction)
2239 return true;
2240
2241 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2242 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2243 case COMPACT_PARTIAL:
2244 case COMPACT_CONTINUE:
2245 return false;
2246 default:
2247 return true;
2248 }
2249}
2250
2344d7e4 2251static bool shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2252{
f0fdc5e8 2253 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2254 bool reclaimable = false;
1da177e4 2255
9b4f98cd
JW
2256 do {
2257 struct mem_cgroup *root = sc->target_mem_cgroup;
2258 struct mem_cgroup_reclaim_cookie reclaim = {
2259 .zone = zone,
2260 .priority = sc->priority,
2261 };
694fbc0f 2262 struct mem_cgroup *memcg;
3e7d3449 2263
9b4f98cd
JW
2264 nr_reclaimed = sc->nr_reclaimed;
2265 nr_scanned = sc->nr_scanned;
1da177e4 2266
694fbc0f
AM
2267 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2268 do {
9b4f98cd 2269 struct lruvec *lruvec;
02695175 2270 int swappiness;
5660048c 2271
9b4f98cd 2272 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2273 swappiness = mem_cgroup_swappiness(memcg);
f9be23d6 2274
02695175 2275 shrink_lruvec(lruvec, swappiness, sc);
f16015fb 2276
9b4f98cd 2277 /*
a394cb8e
MH
2278 * Direct reclaim and kswapd have to scan all memory
2279 * cgroups to fulfill the overall scan target for the
9b4f98cd 2280 * zone.
a394cb8e
MH
2281 *
2282 * Limit reclaim, on the other hand, only cares about
2283 * nr_to_reclaim pages to be reclaimed and it will
2284 * retry with decreasing priority if one round over the
2285 * whole hierarchy is not sufficient.
9b4f98cd 2286 */
a394cb8e
MH
2287 if (!global_reclaim(sc) &&
2288 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2289 mem_cgroup_iter_break(root, memcg);
2290 break;
2291 }
694fbc0f
AM
2292 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2293 } while (memcg);
70ddf637
AV
2294
2295 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2296 sc->nr_scanned - nr_scanned,
2297 sc->nr_reclaimed - nr_reclaimed);
2298
2344d7e4
JW
2299 if (sc->nr_reclaimed - nr_reclaimed)
2300 reclaimable = true;
2301
9b4f98cd
JW
2302 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2303 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2304
2305 return reclaimable;
f16015fb
JW
2306}
2307
fe4b1b24 2308/* Returns true if compaction should go ahead for a high-order request */
0b06496a 2309static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2310{
2311 unsigned long balance_gap, watermark;
2312 bool watermark_ok;
2313
fe4b1b24
MG
2314 /*
2315 * Compaction takes time to run and there are potentially other
2316 * callers using the pages just freed. Continue reclaiming until
2317 * there is a buffer of free pages available to give compaction
2318 * a reasonable chance of completing and allocating the page
2319 */
4be89a34
JZ
2320 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2321 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2322 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
fe4b1b24
MG
2323 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2324
2325 /*
2326 * If compaction is deferred, reclaim up to a point where
2327 * compaction will have a chance of success when re-enabled
2328 */
0b06496a 2329 if (compaction_deferred(zone, order))
fe4b1b24
MG
2330 return watermark_ok;
2331
2332 /* If compaction is not ready to start, keep reclaiming */
0b06496a 2333 if (!compaction_suitable(zone, order))
fe4b1b24
MG
2334 return false;
2335
2336 return watermark_ok;
2337}
2338
1da177e4
LT
2339/*
2340 * This is the direct reclaim path, for page-allocating processes. We only
2341 * try to reclaim pages from zones which will satisfy the caller's allocation
2342 * request.
2343 *
41858966
MG
2344 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2345 * Because:
1da177e4
LT
2346 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2347 * allocation or
41858966
MG
2348 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2349 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2350 * zone defense algorithm.
1da177e4 2351 *
1da177e4
LT
2352 * If a zone is deemed to be full of pinned pages then just give it a light
2353 * scan then give up on it.
2344d7e4
JW
2354 *
2355 * Returns true if a zone was reclaimable.
1da177e4 2356 */
2344d7e4 2357static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2358{
dd1a239f 2359 struct zoneref *z;
54a6eb5c 2360 struct zone *zone;
0608f43d
AM
2361 unsigned long nr_soft_reclaimed;
2362 unsigned long nr_soft_scanned;
65ec02cb 2363 unsigned long lru_pages = 0;
65ec02cb 2364 struct reclaim_state *reclaim_state = current->reclaim_state;
619d0d76 2365 gfp_t orig_mask;
3115cd91
VD
2366 struct shrink_control shrink = {
2367 .gfp_mask = sc->gfp_mask,
2368 };
9bbc04ee 2369 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2370 bool reclaimable = false;
1cfb419b 2371
cc715d99
MG
2372 /*
2373 * If the number of buffer_heads in the machine exceeds the maximum
2374 * allowed level, force direct reclaim to scan the highmem zone as
2375 * highmem pages could be pinning lowmem pages storing buffer_heads
2376 */
619d0d76 2377 orig_mask = sc->gfp_mask;
cc715d99
MG
2378 if (buffer_heads_over_limit)
2379 sc->gfp_mask |= __GFP_HIGHMEM;
2380
3115cd91 2381 nodes_clear(shrink.nodes_to_scan);
65ec02cb 2382
d4debc66
MG
2383 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2384 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2385 if (!populated_zone(zone))
1da177e4 2386 continue;
1cfb419b
KH
2387 /*
2388 * Take care memory controller reclaiming has small influence
2389 * to global LRU.
2390 */
89b5fae5 2391 if (global_reclaim(sc)) {
1cfb419b
KH
2392 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2393 continue;
65ec02cb
VD
2394
2395 lru_pages += zone_reclaimable_pages(zone);
3115cd91 2396 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
65ec02cb 2397
6e543d57
LD
2398 if (sc->priority != DEF_PRIORITY &&
2399 !zone_reclaimable(zone))
1cfb419b 2400 continue; /* Let kswapd poll it */
0b06496a
JW
2401
2402 /*
2403 * If we already have plenty of memory free for
2404 * compaction in this zone, don't free any more.
2405 * Even though compaction is invoked for any
2406 * non-zero order, only frequent costly order
2407 * reclamation is disruptive enough to become a
2408 * noticeable problem, like transparent huge
2409 * page allocations.
2410 */
2411 if (IS_ENABLED(CONFIG_COMPACTION) &&
2412 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2413 zonelist_zone_idx(z) <= requested_highidx &&
2414 compaction_ready(zone, sc->order)) {
2415 sc->compaction_ready = true;
2416 continue;
e0887c19 2417 }
0b06496a 2418
0608f43d
AM
2419 /*
2420 * This steals pages from memory cgroups over softlimit
2421 * and returns the number of reclaimed pages and
2422 * scanned pages. This works for global memory pressure
2423 * and balancing, not for a memcg's limit.
2424 */
2425 nr_soft_scanned = 0;
2426 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2427 sc->order, sc->gfp_mask,
2428 &nr_soft_scanned);
2429 sc->nr_reclaimed += nr_soft_reclaimed;
2430 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2431 if (nr_soft_reclaimed)
2432 reclaimable = true;
ac34a1a3 2433 /* need some check for avoid more shrink_zone() */
1cfb419b 2434 }
408d8544 2435
2344d7e4
JW
2436 if (shrink_zone(zone, sc))
2437 reclaimable = true;
2438
2439 if (global_reclaim(sc) &&
2440 !reclaimable && zone_reclaimable(zone))
2441 reclaimable = true;
1da177e4 2442 }
e0c23279 2443
65ec02cb
VD
2444 /*
2445 * Don't shrink slabs when reclaiming memory from over limit cgroups
2446 * but do shrink slab at least once when aborting reclaim for
2447 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2448 * pages.
2449 */
2450 if (global_reclaim(sc)) {
3115cd91 2451 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
65ec02cb
VD
2452 if (reclaim_state) {
2453 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2454 reclaim_state->reclaimed_slab = 0;
2455 }
2456 }
2457
619d0d76
WY
2458 /*
2459 * Restore to original mask to avoid the impact on the caller if we
2460 * promoted it to __GFP_HIGHMEM.
2461 */
2462 sc->gfp_mask = orig_mask;
d1908362 2463
2344d7e4 2464 return reclaimable;
1da177e4 2465}
4f98a2fe 2466
1da177e4
LT
2467/*
2468 * This is the main entry point to direct page reclaim.
2469 *
2470 * If a full scan of the inactive list fails to free enough memory then we
2471 * are "out of memory" and something needs to be killed.
2472 *
2473 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2474 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2475 * caller can't do much about. We kick the writeback threads and take explicit
2476 * naps in the hope that some of these pages can be written. But if the
2477 * allocating task holds filesystem locks which prevent writeout this might not
2478 * work, and the allocation attempt will fail.
a41f24ea
NA
2479 *
2480 * returns: 0, if no pages reclaimed
2481 * else, the number of pages reclaimed
1da177e4 2482 */
dac1d27b 2483static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2484 struct scan_control *sc)
1da177e4 2485{
69e05944 2486 unsigned long total_scanned = 0;
22fba335 2487 unsigned long writeback_threshold;
2344d7e4 2488 bool zones_reclaimable;
1da177e4 2489
873b4771
KK
2490 delayacct_freepages_start();
2491
89b5fae5 2492 if (global_reclaim(sc))
1cfb419b 2493 count_vm_event(ALLOCSTALL);
1da177e4 2494
9e3b2f8c 2495 do {
70ddf637
AV
2496 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2497 sc->priority);
66e1707b 2498 sc->nr_scanned = 0;
2344d7e4 2499 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2500
66e1707b 2501 total_scanned += sc->nr_scanned;
bb21c7ce 2502 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2503 break;
2504
2505 if (sc->compaction_ready)
2506 break;
1da177e4 2507
0e50ce3b
MK
2508 /*
2509 * If we're getting trouble reclaiming, start doing
2510 * writepage even in laptop mode.
2511 */
2512 if (sc->priority < DEF_PRIORITY - 2)
2513 sc->may_writepage = 1;
2514
1da177e4
LT
2515 /*
2516 * Try to write back as many pages as we just scanned. This
2517 * tends to cause slow streaming writers to write data to the
2518 * disk smoothly, at the dirtying rate, which is nice. But
2519 * that's undesirable in laptop mode, where we *want* lumpy
2520 * writeout. So in laptop mode, write out the whole world.
2521 */
22fba335
KM
2522 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2523 if (total_scanned > writeback_threshold) {
0e175a18
CW
2524 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2525 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2526 sc->may_writepage = 1;
1da177e4 2527 }
0b06496a 2528 } while (--sc->priority >= 0);
bb21c7ce 2529
873b4771
KK
2530 delayacct_freepages_end();
2531
bb21c7ce
KM
2532 if (sc->nr_reclaimed)
2533 return sc->nr_reclaimed;
2534
0cee34fd 2535 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2536 if (sc->compaction_ready)
7335084d
MG
2537 return 1;
2538
2344d7e4
JW
2539 /* Any of the zones still reclaimable? Don't OOM. */
2540 if (zones_reclaimable)
bb21c7ce
KM
2541 return 1;
2542
2543 return 0;
1da177e4
LT
2544}
2545
5515061d
MG
2546static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2547{
2548 struct zone *zone;
2549 unsigned long pfmemalloc_reserve = 0;
2550 unsigned long free_pages = 0;
2551 int i;
2552 bool wmark_ok;
2553
2554 for (i = 0; i <= ZONE_NORMAL; i++) {
2555 zone = &pgdat->node_zones[i];
675becce
MG
2556 if (!populated_zone(zone))
2557 continue;
2558
5515061d
MG
2559 pfmemalloc_reserve += min_wmark_pages(zone);
2560 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2561 }
2562
675becce
MG
2563 /* If there are no reserves (unexpected config) then do not throttle */
2564 if (!pfmemalloc_reserve)
2565 return true;
2566
5515061d
MG
2567 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2568
2569 /* kswapd must be awake if processes are being throttled */
2570 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2571 pgdat->classzone_idx = min(pgdat->classzone_idx,
2572 (enum zone_type)ZONE_NORMAL);
2573 wake_up_interruptible(&pgdat->kswapd_wait);
2574 }
2575
2576 return wmark_ok;
2577}
2578
2579/*
2580 * Throttle direct reclaimers if backing storage is backed by the network
2581 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2582 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2583 * when the low watermark is reached.
2584 *
2585 * Returns true if a fatal signal was delivered during throttling. If this
2586 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2587 */
50694c28 2588static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2589 nodemask_t *nodemask)
2590{
675becce 2591 struct zoneref *z;
5515061d 2592 struct zone *zone;
675becce 2593 pg_data_t *pgdat = NULL;
5515061d
MG
2594
2595 /*
2596 * Kernel threads should not be throttled as they may be indirectly
2597 * responsible for cleaning pages necessary for reclaim to make forward
2598 * progress. kjournald for example may enter direct reclaim while
2599 * committing a transaction where throttling it could forcing other
2600 * processes to block on log_wait_commit().
2601 */
2602 if (current->flags & PF_KTHREAD)
50694c28
MG
2603 goto out;
2604
2605 /*
2606 * If a fatal signal is pending, this process should not throttle.
2607 * It should return quickly so it can exit and free its memory
2608 */
2609 if (fatal_signal_pending(current))
2610 goto out;
5515061d 2611
675becce
MG
2612 /*
2613 * Check if the pfmemalloc reserves are ok by finding the first node
2614 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2615 * GFP_KERNEL will be required for allocating network buffers when
2616 * swapping over the network so ZONE_HIGHMEM is unusable.
2617 *
2618 * Throttling is based on the first usable node and throttled processes
2619 * wait on a queue until kswapd makes progress and wakes them. There
2620 * is an affinity then between processes waking up and where reclaim
2621 * progress has been made assuming the process wakes on the same node.
2622 * More importantly, processes running on remote nodes will not compete
2623 * for remote pfmemalloc reserves and processes on different nodes
2624 * should make reasonable progress.
2625 */
2626 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2627 gfp_mask, nodemask) {
2628 if (zone_idx(zone) > ZONE_NORMAL)
2629 continue;
2630
2631 /* Throttle based on the first usable node */
2632 pgdat = zone->zone_pgdat;
2633 if (pfmemalloc_watermark_ok(pgdat))
2634 goto out;
2635 break;
2636 }
2637
2638 /* If no zone was usable by the allocation flags then do not throttle */
2639 if (!pgdat)
50694c28 2640 goto out;
5515061d 2641
68243e76
MG
2642 /* Account for the throttling */
2643 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2644
5515061d
MG
2645 /*
2646 * If the caller cannot enter the filesystem, it's possible that it
2647 * is due to the caller holding an FS lock or performing a journal
2648 * transaction in the case of a filesystem like ext[3|4]. In this case,
2649 * it is not safe to block on pfmemalloc_wait as kswapd could be
2650 * blocked waiting on the same lock. Instead, throttle for up to a
2651 * second before continuing.
2652 */
2653 if (!(gfp_mask & __GFP_FS)) {
2654 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2655 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2656
2657 goto check_pending;
5515061d
MG
2658 }
2659
2660 /* Throttle until kswapd wakes the process */
2661 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2662 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2663
2664check_pending:
2665 if (fatal_signal_pending(current))
2666 return true;
2667
2668out:
2669 return false;
5515061d
MG
2670}
2671
dac1d27b 2672unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2673 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2674{
33906bc5 2675 unsigned long nr_reclaimed;
66e1707b 2676 struct scan_control sc = {
ee814fe2 2677 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2678 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2679 .order = order,
2680 .nodemask = nodemask,
2681 .priority = DEF_PRIORITY,
66e1707b 2682 .may_writepage = !laptop_mode,
a6dc60f8 2683 .may_unmap = 1,
2e2e4259 2684 .may_swap = 1,
66e1707b
BS
2685 };
2686
5515061d 2687 /*
50694c28
MG
2688 * Do not enter reclaim if fatal signal was delivered while throttled.
2689 * 1 is returned so that the page allocator does not OOM kill at this
2690 * point.
5515061d 2691 */
50694c28 2692 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2693 return 1;
2694
33906bc5
MG
2695 trace_mm_vmscan_direct_reclaim_begin(order,
2696 sc.may_writepage,
2697 gfp_mask);
2698
3115cd91 2699 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2700
2701 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2702
2703 return nr_reclaimed;
66e1707b
BS
2704}
2705
c255a458 2706#ifdef CONFIG_MEMCG
66e1707b 2707
72835c86 2708unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2709 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2710 struct zone *zone,
2711 unsigned long *nr_scanned)
4e416953
BS
2712{
2713 struct scan_control sc = {
b8f5c566 2714 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2715 .target_mem_cgroup = memcg,
4e416953
BS
2716 .may_writepage = !laptop_mode,
2717 .may_unmap = 1,
2718 .may_swap = !noswap,
4e416953 2719 };
f9be23d6 2720 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2721 int swappiness = mem_cgroup_swappiness(memcg);
0ae5e89c 2722
4e416953
BS
2723 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2724 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2725
9e3b2f8c 2726 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2727 sc.may_writepage,
2728 sc.gfp_mask);
2729
4e416953
BS
2730 /*
2731 * NOTE: Although we can get the priority field, using it
2732 * here is not a good idea, since it limits the pages we can scan.
2733 * if we don't reclaim here, the shrink_zone from balance_pgdat
2734 * will pick up pages from other mem cgroup's as well. We hack
2735 * the priority and make it zero.
2736 */
02695175 2737 shrink_lruvec(lruvec, swappiness, &sc);
bdce6d9e
KM
2738
2739 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2740
0ae5e89c 2741 *nr_scanned = sc.nr_scanned;
4e416953
BS
2742 return sc.nr_reclaimed;
2743}
2744
72835c86 2745unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2746 gfp_t gfp_mask,
185efc0f 2747 bool noswap)
66e1707b 2748{
4e416953 2749 struct zonelist *zonelist;
bdce6d9e 2750 unsigned long nr_reclaimed;
889976db 2751 int nid;
66e1707b 2752 struct scan_control sc = {
22fba335 2753 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a09ed5e0
YH
2754 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2755 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2756 .target_mem_cgroup = memcg,
2757 .priority = DEF_PRIORITY,
2758 .may_writepage = !laptop_mode,
2759 .may_unmap = 1,
2760 .may_swap = !noswap,
a09ed5e0 2761 };
66e1707b 2762
889976db
YH
2763 /*
2764 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2765 * take care of from where we get pages. So the node where we start the
2766 * scan does not need to be the current node.
2767 */
72835c86 2768 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2769
2770 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2771
2772 trace_mm_vmscan_memcg_reclaim_begin(0,
2773 sc.may_writepage,
2774 sc.gfp_mask);
2775
3115cd91 2776 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2777
2778 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2779
2780 return nr_reclaimed;
66e1707b
BS
2781}
2782#endif
2783
9e3b2f8c 2784static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2785{
b95a2f2d 2786 struct mem_cgroup *memcg;
f16015fb 2787
b95a2f2d
JW
2788 if (!total_swap_pages)
2789 return;
2790
2791 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2792 do {
c56d5c7d 2793 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2794
c56d5c7d 2795 if (inactive_anon_is_low(lruvec))
1a93be0e 2796 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2797 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2798
2799 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2800 } while (memcg);
f16015fb
JW
2801}
2802
60cefed4
JW
2803static bool zone_balanced(struct zone *zone, int order,
2804 unsigned long balance_gap, int classzone_idx)
2805{
2806 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2807 balance_gap, classzone_idx, 0))
2808 return false;
2809
d84da3f9
KS
2810 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2811 !compaction_suitable(zone, order))
60cefed4
JW
2812 return false;
2813
2814 return true;
2815}
2816
1741c877 2817/*
4ae0a48b
ZC
2818 * pgdat_balanced() is used when checking if a node is balanced.
2819 *
2820 * For order-0, all zones must be balanced!
2821 *
2822 * For high-order allocations only zones that meet watermarks and are in a
2823 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2824 * total of balanced pages must be at least 25% of the zones allowed by
2825 * classzone_idx for the node to be considered balanced. Forcing all zones to
2826 * be balanced for high orders can cause excessive reclaim when there are
2827 * imbalanced zones.
1741c877
MG
2828 * The choice of 25% is due to
2829 * o a 16M DMA zone that is balanced will not balance a zone on any
2830 * reasonable sized machine
2831 * o On all other machines, the top zone must be at least a reasonable
25985edc 2832 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2833 * would need to be at least 256M for it to be balance a whole node.
2834 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2835 * to balance a node on its own. These seemed like reasonable ratios.
2836 */
4ae0a48b 2837static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2838{
b40da049 2839 unsigned long managed_pages = 0;
4ae0a48b 2840 unsigned long balanced_pages = 0;
1741c877
MG
2841 int i;
2842
4ae0a48b
ZC
2843 /* Check the watermark levels */
2844 for (i = 0; i <= classzone_idx; i++) {
2845 struct zone *zone = pgdat->node_zones + i;
1741c877 2846
4ae0a48b
ZC
2847 if (!populated_zone(zone))
2848 continue;
2849
b40da049 2850 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2851
2852 /*
2853 * A special case here:
2854 *
2855 * balance_pgdat() skips over all_unreclaimable after
2856 * DEF_PRIORITY. Effectively, it considers them balanced so
2857 * they must be considered balanced here as well!
2858 */
6e543d57 2859 if (!zone_reclaimable(zone)) {
b40da049 2860 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2861 continue;
2862 }
2863
2864 if (zone_balanced(zone, order, 0, i))
b40da049 2865 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2866 else if (!order)
2867 return false;
2868 }
2869
2870 if (order)
b40da049 2871 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2872 else
2873 return true;
1741c877
MG
2874}
2875
5515061d
MG
2876/*
2877 * Prepare kswapd for sleeping. This verifies that there are no processes
2878 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2879 *
2880 * Returns true if kswapd is ready to sleep
2881 */
2882static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2883 int classzone_idx)
f50de2d3 2884{
f50de2d3
MG
2885 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2886 if (remaining)
5515061d
MG
2887 return false;
2888
2889 /*
2890 * There is a potential race between when kswapd checks its watermarks
2891 * and a process gets throttled. There is also a potential race if
2892 * processes get throttled, kswapd wakes, a large process exits therby
2893 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2894 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2895 * so wake them now if necessary. If necessary, processes will wake
2896 * kswapd and get throttled again
2897 */
2898 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2899 wake_up(&pgdat->pfmemalloc_wait);
2900 return false;
2901 }
f50de2d3 2902
4ae0a48b 2903 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2904}
2905
75485363
MG
2906/*
2907 * kswapd shrinks the zone by the number of pages required to reach
2908 * the high watermark.
b8e83b94
MG
2909 *
2910 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2911 * reclaim or if the lack of progress was due to pages under writeback.
2912 * This is used to determine if the scanning priority needs to be raised.
75485363 2913 */
b8e83b94 2914static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2915 int classzone_idx,
75485363 2916 struct scan_control *sc,
2ab44f43
MG
2917 unsigned long lru_pages,
2918 unsigned long *nr_attempted)
75485363 2919{
7c954f6d
MG
2920 int testorder = sc->order;
2921 unsigned long balance_gap;
75485363
MG
2922 struct reclaim_state *reclaim_state = current->reclaim_state;
2923 struct shrink_control shrink = {
2924 .gfp_mask = sc->gfp_mask,
2925 };
7c954f6d 2926 bool lowmem_pressure;
75485363
MG
2927
2928 /* Reclaim above the high watermark. */
2929 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2930
2931 /*
2932 * Kswapd reclaims only single pages with compaction enabled. Trying
2933 * too hard to reclaim until contiguous free pages have become
2934 * available can hurt performance by evicting too much useful data
2935 * from memory. Do not reclaim more than needed for compaction.
2936 */
2937 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2938 compaction_suitable(zone, sc->order) !=
2939 COMPACT_SKIPPED)
2940 testorder = 0;
2941
2942 /*
2943 * We put equal pressure on every zone, unless one zone has way too
2944 * many pages free already. The "too many pages" is defined as the
2945 * high wmark plus a "gap" where the gap is either the low
2946 * watermark or 1% of the zone, whichever is smaller.
2947 */
4be89a34
JZ
2948 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2949 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
2950
2951 /*
2952 * If there is no low memory pressure or the zone is balanced then no
2953 * reclaim is necessary
2954 */
2955 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2956 if (!lowmem_pressure && zone_balanced(zone, testorder,
2957 balance_gap, classzone_idx))
2958 return true;
2959
75485363 2960 shrink_zone(zone, sc);
0ce3d744
DC
2961 nodes_clear(shrink.nodes_to_scan);
2962 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2963
2964 reclaim_state->reclaimed_slab = 0;
6e543d57 2965 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2966 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2967
2ab44f43
MG
2968 /* Account for the number of pages attempted to reclaim */
2969 *nr_attempted += sc->nr_to_reclaim;
2970
283aba9f
MG
2971 zone_clear_flag(zone, ZONE_WRITEBACK);
2972
7c954f6d
MG
2973 /*
2974 * If a zone reaches its high watermark, consider it to be no longer
2975 * congested. It's possible there are dirty pages backed by congested
2976 * BDIs but as pressure is relieved, speculatively avoid congestion
2977 * waits.
2978 */
6e543d57 2979 if (zone_reclaimable(zone) &&
7c954f6d
MG
2980 zone_balanced(zone, testorder, 0, classzone_idx)) {
2981 zone_clear_flag(zone, ZONE_CONGESTED);
2982 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2983 }
2984
b8e83b94 2985 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2986}
2987
1da177e4
LT
2988/*
2989 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2990 * they are all at high_wmark_pages(zone).
1da177e4 2991 *
0abdee2b 2992 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2993 *
2994 * There is special handling here for zones which are full of pinned pages.
2995 * This can happen if the pages are all mlocked, or if they are all used by
2996 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2997 * What we do is to detect the case where all pages in the zone have been
2998 * scanned twice and there has been zero successful reclaim. Mark the zone as
2999 * dead and from now on, only perform a short scan. Basically we're polling
3000 * the zone for when the problem goes away.
3001 *
3002 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3003 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3004 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3005 * lower zones regardless of the number of free pages in the lower zones. This
3006 * interoperates with the page allocator fallback scheme to ensure that aging
3007 * of pages is balanced across the zones.
1da177e4 3008 */
99504748 3009static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3010 int *classzone_idx)
1da177e4 3011{
1da177e4 3012 int i;
99504748 3013 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3014 unsigned long nr_soft_reclaimed;
3015 unsigned long nr_soft_scanned;
179e9639
AM
3016 struct scan_control sc = {
3017 .gfp_mask = GFP_KERNEL,
ee814fe2 3018 .order = order,
b8e83b94 3019 .priority = DEF_PRIORITY,
ee814fe2 3020 .may_writepage = !laptop_mode,
a6dc60f8 3021 .may_unmap = 1,
2e2e4259 3022 .may_swap = 1,
179e9639 3023 };
f8891e5e 3024 count_vm_event(PAGEOUTRUN);
1da177e4 3025
9e3b2f8c 3026 do {
1da177e4 3027 unsigned long lru_pages = 0;
2ab44f43 3028 unsigned long nr_attempted = 0;
b8e83b94 3029 bool raise_priority = true;
2ab44f43 3030 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3031
3032 sc.nr_reclaimed = 0;
1da177e4 3033
d6277db4
RW
3034 /*
3035 * Scan in the highmem->dma direction for the highest
3036 * zone which needs scanning
3037 */
3038 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3039 struct zone *zone = pgdat->node_zones + i;
1da177e4 3040
d6277db4
RW
3041 if (!populated_zone(zone))
3042 continue;
1da177e4 3043
6e543d57
LD
3044 if (sc.priority != DEF_PRIORITY &&
3045 !zone_reclaimable(zone))
d6277db4 3046 continue;
1da177e4 3047
556adecb
RR
3048 /*
3049 * Do some background aging of the anon list, to give
3050 * pages a chance to be referenced before reclaiming.
3051 */
9e3b2f8c 3052 age_active_anon(zone, &sc);
556adecb 3053
cc715d99
MG
3054 /*
3055 * If the number of buffer_heads in the machine
3056 * exceeds the maximum allowed level and this node
3057 * has a highmem zone, force kswapd to reclaim from
3058 * it to relieve lowmem pressure.
3059 */
3060 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3061 end_zone = i;
3062 break;
3063 }
3064
60cefed4 3065 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3066 end_zone = i;
e1dbeda6 3067 break;
439423f6 3068 } else {
d43006d5
MG
3069 /*
3070 * If balanced, clear the dirty and congested
3071 * flags
3072 */
439423f6 3073 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 3074 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 3075 }
1da177e4 3076 }
dafcb73e 3077
b8e83b94 3078 if (i < 0)
e1dbeda6
AM
3079 goto out;
3080
1da177e4
LT
3081 for (i = 0; i <= end_zone; i++) {
3082 struct zone *zone = pgdat->node_zones + i;
3083
2ab44f43
MG
3084 if (!populated_zone(zone))
3085 continue;
3086
adea02a1 3087 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
3088
3089 /*
3090 * If any zone is currently balanced then kswapd will
3091 * not call compaction as it is expected that the
3092 * necessary pages are already available.
3093 */
3094 if (pgdat_needs_compaction &&
3095 zone_watermark_ok(zone, order,
3096 low_wmark_pages(zone),
3097 *classzone_idx, 0))
3098 pgdat_needs_compaction = false;
1da177e4
LT
3099 }
3100
b7ea3c41
MG
3101 /*
3102 * If we're getting trouble reclaiming, start doing writepage
3103 * even in laptop mode.
3104 */
3105 if (sc.priority < DEF_PRIORITY - 2)
3106 sc.may_writepage = 1;
3107
1da177e4
LT
3108 /*
3109 * Now scan the zone in the dma->highmem direction, stopping
3110 * at the last zone which needs scanning.
3111 *
3112 * We do this because the page allocator works in the opposite
3113 * direction. This prevents the page allocator from allocating
3114 * pages behind kswapd's direction of progress, which would
3115 * cause too much scanning of the lower zones.
3116 */
3117 for (i = 0; i <= end_zone; i++) {
3118 struct zone *zone = pgdat->node_zones + i;
3119
f3fe6512 3120 if (!populated_zone(zone))
1da177e4
LT
3121 continue;
3122
6e543d57
LD
3123 if (sc.priority != DEF_PRIORITY &&
3124 !zone_reclaimable(zone))
1da177e4
LT
3125 continue;
3126
1da177e4 3127 sc.nr_scanned = 0;
4e416953 3128
0608f43d
AM
3129 nr_soft_scanned = 0;
3130 /*
3131 * Call soft limit reclaim before calling shrink_zone.
3132 */
3133 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3134 order, sc.gfp_mask,
3135 &nr_soft_scanned);
3136 sc.nr_reclaimed += nr_soft_reclaimed;
3137
32a4330d 3138 /*
7c954f6d
MG
3139 * There should be no need to raise the scanning
3140 * priority if enough pages are already being scanned
3141 * that that high watermark would be met at 100%
3142 * efficiency.
fe2c2a10 3143 */
7c954f6d
MG
3144 if (kswapd_shrink_zone(zone, end_zone, &sc,
3145 lru_pages, &nr_attempted))
3146 raise_priority = false;
1da177e4 3147 }
5515061d
MG
3148
3149 /*
3150 * If the low watermark is met there is no need for processes
3151 * to be throttled on pfmemalloc_wait as they should not be
3152 * able to safely make forward progress. Wake them
3153 */
3154 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3155 pfmemalloc_watermark_ok(pgdat))
3156 wake_up(&pgdat->pfmemalloc_wait);
3157
1da177e4 3158 /*
b8e83b94
MG
3159 * Fragmentation may mean that the system cannot be rebalanced
3160 * for high-order allocations in all zones. If twice the
3161 * allocation size has been reclaimed and the zones are still
3162 * not balanced then recheck the watermarks at order-0 to
3163 * prevent kswapd reclaiming excessively. Assume that a
3164 * process requested a high-order can direct reclaim/compact.
1da177e4 3165 */
b8e83b94
MG
3166 if (order && sc.nr_reclaimed >= 2UL << order)
3167 order = sc.order = 0;
8357376d 3168
b8e83b94
MG
3169 /* Check if kswapd should be suspending */
3170 if (try_to_freeze() || kthread_should_stop())
3171 break;
8357376d 3172
2ab44f43
MG
3173 /*
3174 * Compact if necessary and kswapd is reclaiming at least the
3175 * high watermark number of pages as requsted
3176 */
3177 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3178 compact_pgdat(pgdat, order);
3179
73ce02e9 3180 /*
b8e83b94
MG
3181 * Raise priority if scanning rate is too low or there was no
3182 * progress in reclaiming pages
73ce02e9 3183 */
b8e83b94
MG
3184 if (raise_priority || !sc.nr_reclaimed)
3185 sc.priority--;
9aa41348 3186 } while (sc.priority >= 1 &&
b8e83b94 3187 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3188
b8e83b94 3189out:
0abdee2b 3190 /*
5515061d 3191 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3192 * makes a decision on the order we were last reclaiming at. However,
3193 * if another caller entered the allocator slow path while kswapd
3194 * was awake, order will remain at the higher level
3195 */
dc83edd9 3196 *classzone_idx = end_zone;
0abdee2b 3197 return order;
1da177e4
LT
3198}
3199
dc83edd9 3200static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3201{
3202 long remaining = 0;
3203 DEFINE_WAIT(wait);
3204
3205 if (freezing(current) || kthread_should_stop())
3206 return;
3207
3208 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3209
3210 /* Try to sleep for a short interval */
5515061d 3211 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3212 remaining = schedule_timeout(HZ/10);
3213 finish_wait(&pgdat->kswapd_wait, &wait);
3214 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3215 }
3216
3217 /*
3218 * After a short sleep, check if it was a premature sleep. If not, then
3219 * go fully to sleep until explicitly woken up.
3220 */
5515061d 3221 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3222 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3223
3224 /*
3225 * vmstat counters are not perfectly accurate and the estimated
3226 * value for counters such as NR_FREE_PAGES can deviate from the
3227 * true value by nr_online_cpus * threshold. To avoid the zone
3228 * watermarks being breached while under pressure, we reduce the
3229 * per-cpu vmstat threshold while kswapd is awake and restore
3230 * them before going back to sleep.
3231 */
3232 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3233
62997027
MG
3234 /*
3235 * Compaction records what page blocks it recently failed to
3236 * isolate pages from and skips them in the future scanning.
3237 * When kswapd is going to sleep, it is reasonable to assume
3238 * that pages and compaction may succeed so reset the cache.
3239 */
3240 reset_isolation_suitable(pgdat);
3241
1c7e7f6c
AK
3242 if (!kthread_should_stop())
3243 schedule();
3244
f0bc0a60
KM
3245 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3246 } else {
3247 if (remaining)
3248 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3249 else
3250 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3251 }
3252 finish_wait(&pgdat->kswapd_wait, &wait);
3253}
3254
1da177e4
LT
3255/*
3256 * The background pageout daemon, started as a kernel thread
4f98a2fe 3257 * from the init process.
1da177e4
LT
3258 *
3259 * This basically trickles out pages so that we have _some_
3260 * free memory available even if there is no other activity
3261 * that frees anything up. This is needed for things like routing
3262 * etc, where we otherwise might have all activity going on in
3263 * asynchronous contexts that cannot page things out.
3264 *
3265 * If there are applications that are active memory-allocators
3266 * (most normal use), this basically shouldn't matter.
3267 */
3268static int kswapd(void *p)
3269{
215ddd66 3270 unsigned long order, new_order;
d2ebd0f6 3271 unsigned balanced_order;
215ddd66 3272 int classzone_idx, new_classzone_idx;
d2ebd0f6 3273 int balanced_classzone_idx;
1da177e4
LT
3274 pg_data_t *pgdat = (pg_data_t*)p;
3275 struct task_struct *tsk = current;
f0bc0a60 3276
1da177e4
LT
3277 struct reclaim_state reclaim_state = {
3278 .reclaimed_slab = 0,
3279 };
a70f7302 3280 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3281
cf40bd16
NP
3282 lockdep_set_current_reclaim_state(GFP_KERNEL);
3283
174596a0 3284 if (!cpumask_empty(cpumask))
c5f59f08 3285 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3286 current->reclaim_state = &reclaim_state;
3287
3288 /*
3289 * Tell the memory management that we're a "memory allocator",
3290 * and that if we need more memory we should get access to it
3291 * regardless (see "__alloc_pages()"). "kswapd" should
3292 * never get caught in the normal page freeing logic.
3293 *
3294 * (Kswapd normally doesn't need memory anyway, but sometimes
3295 * you need a small amount of memory in order to be able to
3296 * page out something else, and this flag essentially protects
3297 * us from recursively trying to free more memory as we're
3298 * trying to free the first piece of memory in the first place).
3299 */
930d9152 3300 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3301 set_freezable();
1da177e4 3302
215ddd66 3303 order = new_order = 0;
d2ebd0f6 3304 balanced_order = 0;
215ddd66 3305 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3306 balanced_classzone_idx = classzone_idx;
1da177e4 3307 for ( ; ; ) {
6f6313d4 3308 bool ret;
3e1d1d28 3309
215ddd66
MG
3310 /*
3311 * If the last balance_pgdat was unsuccessful it's unlikely a
3312 * new request of a similar or harder type will succeed soon
3313 * so consider going to sleep on the basis we reclaimed at
3314 */
d2ebd0f6
AS
3315 if (balanced_classzone_idx >= new_classzone_idx &&
3316 balanced_order == new_order) {
215ddd66
MG
3317 new_order = pgdat->kswapd_max_order;
3318 new_classzone_idx = pgdat->classzone_idx;
3319 pgdat->kswapd_max_order = 0;
3320 pgdat->classzone_idx = pgdat->nr_zones - 1;
3321 }
3322
99504748 3323 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3324 /*
3325 * Don't sleep if someone wants a larger 'order'
99504748 3326 * allocation or has tigher zone constraints
1da177e4
LT
3327 */
3328 order = new_order;
99504748 3329 classzone_idx = new_classzone_idx;
1da177e4 3330 } else {
d2ebd0f6
AS
3331 kswapd_try_to_sleep(pgdat, balanced_order,
3332 balanced_classzone_idx);
1da177e4 3333 order = pgdat->kswapd_max_order;
99504748 3334 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3335 new_order = order;
3336 new_classzone_idx = classzone_idx;
4d40502e 3337 pgdat->kswapd_max_order = 0;
215ddd66 3338 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3339 }
1da177e4 3340
8fe23e05
DR
3341 ret = try_to_freeze();
3342 if (kthread_should_stop())
3343 break;
3344
3345 /*
3346 * We can speed up thawing tasks if we don't call balance_pgdat
3347 * after returning from the refrigerator
3348 */
33906bc5
MG
3349 if (!ret) {
3350 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3351 balanced_classzone_idx = classzone_idx;
3352 balanced_order = balance_pgdat(pgdat, order,
3353 &balanced_classzone_idx);
33906bc5 3354 }
1da177e4 3355 }
b0a8cc58 3356
71abdc15 3357 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3358 current->reclaim_state = NULL;
71abdc15
JW
3359 lockdep_clear_current_reclaim_state();
3360
1da177e4
LT
3361 return 0;
3362}
3363
3364/*
3365 * A zone is low on free memory, so wake its kswapd task to service it.
3366 */
99504748 3367void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3368{
3369 pg_data_t *pgdat;
3370
f3fe6512 3371 if (!populated_zone(zone))
1da177e4
LT
3372 return;
3373
88f5acf8 3374 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3375 return;
88f5acf8 3376 pgdat = zone->zone_pgdat;
99504748 3377 if (pgdat->kswapd_max_order < order) {
1da177e4 3378 pgdat->kswapd_max_order = order;
99504748
MG
3379 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3380 }
8d0986e2 3381 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3382 return;
892f795d 3383 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3384 return;
3385
3386 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3387 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3388}
3389
c6f37f12 3390#ifdef CONFIG_HIBERNATION
1da177e4 3391/*
7b51755c 3392 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3393 * freed pages.
3394 *
3395 * Rather than trying to age LRUs the aim is to preserve the overall
3396 * LRU order by reclaiming preferentially
3397 * inactive > active > active referenced > active mapped
1da177e4 3398 */
7b51755c 3399unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3400{
d6277db4 3401 struct reclaim_state reclaim_state;
d6277db4 3402 struct scan_control sc = {
ee814fe2 3403 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3404 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3405 .priority = DEF_PRIORITY,
d6277db4 3406 .may_writepage = 1,
ee814fe2
JW
3407 .may_unmap = 1,
3408 .may_swap = 1,
7b51755c 3409 .hibernation_mode = 1,
1da177e4 3410 };
a09ed5e0 3411 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3412 struct task_struct *p = current;
3413 unsigned long nr_reclaimed;
1da177e4 3414
7b51755c
KM
3415 p->flags |= PF_MEMALLOC;
3416 lockdep_set_current_reclaim_state(sc.gfp_mask);
3417 reclaim_state.reclaimed_slab = 0;
3418 p->reclaim_state = &reclaim_state;
d6277db4 3419
3115cd91 3420 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3421
7b51755c
KM
3422 p->reclaim_state = NULL;
3423 lockdep_clear_current_reclaim_state();
3424 p->flags &= ~PF_MEMALLOC;
d6277db4 3425
7b51755c 3426 return nr_reclaimed;
1da177e4 3427}
c6f37f12 3428#endif /* CONFIG_HIBERNATION */
1da177e4 3429
1da177e4
LT
3430/* It's optimal to keep kswapds on the same CPUs as their memory, but
3431 not required for correctness. So if the last cpu in a node goes
3432 away, we get changed to run anywhere: as the first one comes back,
3433 restore their cpu bindings. */
fcb35a9b
GKH
3434static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3435 void *hcpu)
1da177e4 3436{
58c0a4a7 3437 int nid;
1da177e4 3438
8bb78442 3439 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3440 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3441 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3442 const struct cpumask *mask;
3443
3444 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3445
3e597945 3446 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3447 /* One of our CPUs online: restore mask */
c5f59f08 3448 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3449 }
3450 }
3451 return NOTIFY_OK;
3452}
1da177e4 3453
3218ae14
YG
3454/*
3455 * This kswapd start function will be called by init and node-hot-add.
3456 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3457 */
3458int kswapd_run(int nid)
3459{
3460 pg_data_t *pgdat = NODE_DATA(nid);
3461 int ret = 0;
3462
3463 if (pgdat->kswapd)
3464 return 0;
3465
3466 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3467 if (IS_ERR(pgdat->kswapd)) {
3468 /* failure at boot is fatal */
3469 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3470 pr_err("Failed to start kswapd on node %d\n", nid);
3471 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3472 pgdat->kswapd = NULL;
3218ae14
YG
3473 }
3474 return ret;
3475}
3476
8fe23e05 3477/*
d8adde17 3478 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3479 * hold mem_hotplug_begin/end().
8fe23e05
DR
3480 */
3481void kswapd_stop(int nid)
3482{
3483 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3484
d8adde17 3485 if (kswapd) {
8fe23e05 3486 kthread_stop(kswapd);
d8adde17
JL
3487 NODE_DATA(nid)->kswapd = NULL;
3488 }
8fe23e05
DR
3489}
3490
1da177e4
LT
3491static int __init kswapd_init(void)
3492{
3218ae14 3493 int nid;
69e05944 3494
1da177e4 3495 swap_setup();
48fb2e24 3496 for_each_node_state(nid, N_MEMORY)
3218ae14 3497 kswapd_run(nid);
1da177e4
LT
3498 hotcpu_notifier(cpu_callback, 0);
3499 return 0;
3500}
3501
3502module_init(kswapd_init)
9eeff239
CL
3503
3504#ifdef CONFIG_NUMA
3505/*
3506 * Zone reclaim mode
3507 *
3508 * If non-zero call zone_reclaim when the number of free pages falls below
3509 * the watermarks.
9eeff239
CL
3510 */
3511int zone_reclaim_mode __read_mostly;
3512
1b2ffb78 3513#define RECLAIM_OFF 0
7d03431c 3514#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3515#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3516#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3517
a92f7126
CL
3518/*
3519 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3520 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3521 * a zone.
3522 */
3523#define ZONE_RECLAIM_PRIORITY 4
3524
9614634f
CL
3525/*
3526 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3527 * occur.
3528 */
3529int sysctl_min_unmapped_ratio = 1;
3530
0ff38490
CL
3531/*
3532 * If the number of slab pages in a zone grows beyond this percentage then
3533 * slab reclaim needs to occur.
3534 */
3535int sysctl_min_slab_ratio = 5;
3536
90afa5de
MG
3537static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3538{
3539 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3540 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3541 zone_page_state(zone, NR_ACTIVE_FILE);
3542
3543 /*
3544 * It's possible for there to be more file mapped pages than
3545 * accounted for by the pages on the file LRU lists because
3546 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3547 */
3548 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3549}
3550
3551/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3552static long zone_pagecache_reclaimable(struct zone *zone)
3553{
3554 long nr_pagecache_reclaimable;
3555 long delta = 0;
3556
3557 /*
3558 * If RECLAIM_SWAP is set, then all file pages are considered
3559 * potentially reclaimable. Otherwise, we have to worry about
3560 * pages like swapcache and zone_unmapped_file_pages() provides
3561 * a better estimate
3562 */
3563 if (zone_reclaim_mode & RECLAIM_SWAP)
3564 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3565 else
3566 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3567
3568 /* If we can't clean pages, remove dirty pages from consideration */
3569 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3570 delta += zone_page_state(zone, NR_FILE_DIRTY);
3571
3572 /* Watch for any possible underflows due to delta */
3573 if (unlikely(delta > nr_pagecache_reclaimable))
3574 delta = nr_pagecache_reclaimable;
3575
3576 return nr_pagecache_reclaimable - delta;
3577}
3578
9eeff239
CL
3579/*
3580 * Try to free up some pages from this zone through reclaim.
3581 */
179e9639 3582static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3583{
7fb2d46d 3584 /* Minimum pages needed in order to stay on node */
69e05944 3585 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3586 struct task_struct *p = current;
3587 struct reclaim_state reclaim_state;
179e9639 3588 struct scan_control sc = {
62b726c1 3589 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3590 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3591 .order = order,
9e3b2f8c 3592 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2
JW
3593 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3594 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3595 .may_swap = 1,
179e9639 3596 };
a09ed5e0
YH
3597 struct shrink_control shrink = {
3598 .gfp_mask = sc.gfp_mask,
3599 };
15748048 3600 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3601
9eeff239 3602 cond_resched();
d4f7796e
CL
3603 /*
3604 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3605 * and we also need to be able to write out pages for RECLAIM_WRITE
3606 * and RECLAIM_SWAP.
3607 */
3608 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3609 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3610 reclaim_state.reclaimed_slab = 0;
3611 p->reclaim_state = &reclaim_state;
c84db23c 3612
90afa5de 3613 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3614 /*
3615 * Free memory by calling shrink zone with increasing
3616 * priorities until we have enough memory freed.
3617 */
0ff38490 3618 do {
9e3b2f8c
KK
3619 shrink_zone(zone, &sc);
3620 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3621 }
c84db23c 3622
15748048
KM
3623 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3624 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3625 /*
7fb2d46d 3626 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3627 * many pages were freed in this zone. So we take the current
3628 * number of slab pages and shake the slab until it is reduced
3629 * by the same nr_pages that we used for reclaiming unmapped
3630 * pages.
2a16e3f4 3631 */
0ce3d744
DC
3632 nodes_clear(shrink.nodes_to_scan);
3633 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3634 for (;;) {
3635 unsigned long lru_pages = zone_reclaimable_pages(zone);
3636
3637 /* No reclaimable slab or very low memory pressure */
1495f230 3638 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3639 break;
3640
3641 /* Freed enough memory */
3642 nr_slab_pages1 = zone_page_state(zone,
3643 NR_SLAB_RECLAIMABLE);
3644 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3645 break;
3646 }
83e33a47
CL
3647
3648 /*
3649 * Update nr_reclaimed by the number of slab pages we
3650 * reclaimed from this zone.
3651 */
15748048
KM
3652 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3653 if (nr_slab_pages1 < nr_slab_pages0)
3654 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3655 }
3656
9eeff239 3657 p->reclaim_state = NULL;
d4f7796e 3658 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3659 lockdep_clear_current_reclaim_state();
a79311c1 3660 return sc.nr_reclaimed >= nr_pages;
9eeff239 3661}
179e9639
AM
3662
3663int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3664{
179e9639 3665 int node_id;
d773ed6b 3666 int ret;
179e9639
AM
3667
3668 /*
0ff38490
CL
3669 * Zone reclaim reclaims unmapped file backed pages and
3670 * slab pages if we are over the defined limits.
34aa1330 3671 *
9614634f
CL
3672 * A small portion of unmapped file backed pages is needed for
3673 * file I/O otherwise pages read by file I/O will be immediately
3674 * thrown out if the zone is overallocated. So we do not reclaim
3675 * if less than a specified percentage of the zone is used by
3676 * unmapped file backed pages.
179e9639 3677 */
90afa5de
MG
3678 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3679 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3680 return ZONE_RECLAIM_FULL;
179e9639 3681
6e543d57 3682 if (!zone_reclaimable(zone))
fa5e084e 3683 return ZONE_RECLAIM_FULL;
d773ed6b 3684
179e9639 3685 /*
d773ed6b 3686 * Do not scan if the allocation should not be delayed.
179e9639 3687 */
d773ed6b 3688 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3689 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3690
3691 /*
3692 * Only run zone reclaim on the local zone or on zones that do not
3693 * have associated processors. This will favor the local processor
3694 * over remote processors and spread off node memory allocations
3695 * as wide as possible.
3696 */
89fa3024 3697 node_id = zone_to_nid(zone);
37c0708d 3698 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3699 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3700
3701 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3702 return ZONE_RECLAIM_NOSCAN;
3703
d773ed6b
DR
3704 ret = __zone_reclaim(zone, gfp_mask, order);
3705 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3706
24cf7251
MG
3707 if (!ret)
3708 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3709
d773ed6b 3710 return ret;
179e9639 3711}
9eeff239 3712#endif
894bc310 3713
894bc310
LS
3714/*
3715 * page_evictable - test whether a page is evictable
3716 * @page: the page to test
894bc310
LS
3717 *
3718 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3719 * lists vs unevictable list.
894bc310
LS
3720 *
3721 * Reasons page might not be evictable:
ba9ddf49 3722 * (1) page's mapping marked unevictable
b291f000 3723 * (2) page is part of an mlocked VMA
ba9ddf49 3724 *
894bc310 3725 */
39b5f29a 3726int page_evictable(struct page *page)
894bc310 3727{
39b5f29a 3728 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3729}
89e004ea 3730
85046579 3731#ifdef CONFIG_SHMEM
89e004ea 3732/**
24513264
HD
3733 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3734 * @pages: array of pages to check
3735 * @nr_pages: number of pages to check
89e004ea 3736 *
24513264 3737 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3738 *
3739 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3740 */
24513264 3741void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3742{
925b7673 3743 struct lruvec *lruvec;
24513264
HD
3744 struct zone *zone = NULL;
3745 int pgscanned = 0;
3746 int pgrescued = 0;
3747 int i;
89e004ea 3748
24513264
HD
3749 for (i = 0; i < nr_pages; i++) {
3750 struct page *page = pages[i];
3751 struct zone *pagezone;
89e004ea 3752
24513264
HD
3753 pgscanned++;
3754 pagezone = page_zone(page);
3755 if (pagezone != zone) {
3756 if (zone)
3757 spin_unlock_irq(&zone->lru_lock);
3758 zone = pagezone;
3759 spin_lock_irq(&zone->lru_lock);
3760 }
fa9add64 3761 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3762
24513264
HD
3763 if (!PageLRU(page) || !PageUnevictable(page))
3764 continue;
89e004ea 3765
39b5f29a 3766 if (page_evictable(page)) {
24513264
HD
3767 enum lru_list lru = page_lru_base_type(page);
3768
309381fe 3769 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3770 ClearPageUnevictable(page);
fa9add64
HD
3771 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3772 add_page_to_lru_list(page, lruvec, lru);
24513264 3773 pgrescued++;
89e004ea 3774 }
24513264 3775 }
89e004ea 3776
24513264
HD
3777 if (zone) {
3778 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3779 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3780 spin_unlock_irq(&zone->lru_lock);
89e004ea 3781 }
89e004ea 3782}
85046579 3783#endif /* CONFIG_SHMEM */
af936a16 3784
264e56d8 3785static void warn_scan_unevictable_pages(void)
af936a16 3786{
264e56d8 3787 printk_once(KERN_WARNING
25bd91bd 3788 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3789 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3790 "one, please send an email to linux-mm@kvack.org.\n",
3791 current->comm);
af936a16
LS
3792}
3793
3794/*
3795 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3796 * all nodes' unevictable lists for evictable pages
3797 */
3798unsigned long scan_unevictable_pages;
3799
3800int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3801 void __user *buffer,
af936a16
LS
3802 size_t *length, loff_t *ppos)
3803{
264e56d8 3804 warn_scan_unevictable_pages();
8d65af78 3805 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3806 scan_unevictable_pages = 0;
3807 return 0;
3808}
3809
e4455abb 3810#ifdef CONFIG_NUMA
af936a16
LS
3811/*
3812 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3813 * a specified node's per zone unevictable lists for evictable pages.
3814 */
3815
10fbcf4c
KS
3816static ssize_t read_scan_unevictable_node(struct device *dev,
3817 struct device_attribute *attr,
af936a16
LS
3818 char *buf)
3819{
264e56d8 3820 warn_scan_unevictable_pages();
af936a16
LS
3821 return sprintf(buf, "0\n"); /* always zero; should fit... */
3822}
3823
10fbcf4c
KS
3824static ssize_t write_scan_unevictable_node(struct device *dev,
3825 struct device_attribute *attr,
af936a16
LS
3826 const char *buf, size_t count)
3827{
264e56d8 3828 warn_scan_unevictable_pages();
af936a16
LS
3829 return 1;
3830}
3831
3832
10fbcf4c 3833static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3834 read_scan_unevictable_node,
3835 write_scan_unevictable_node);
3836
3837int scan_unevictable_register_node(struct node *node)
3838{
10fbcf4c 3839 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3840}
3841
3842void scan_unevictable_unregister_node(struct node *node)
3843{
10fbcf4c 3844 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3845}
e4455abb 3846#endif