]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/zsmalloc.c
UBUNTU: link-to-tracker: update tracking bug
[mirror_ubuntu-bionic-kernel.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
48b4800a
MK
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
fd854463 23 * page->units: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
50d34394 36#include <linux/magic.h>
61989a80
NG
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
61989a80
NG
40#include <linux/string.h>
41#include <linux/slab.h>
42#include <asm/tlbflush.h>
43#include <asm/pgtable.h>
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
0cbb613f 46#include <linux/vmalloc.h>
759b26b2 47#include <linux/preempt.h>
0959c63f
SJ
48#include <linux/spinlock.h>
49#include <linux/types.h>
0f050d99 50#include <linux/debugfs.h>
bcf1647d 51#include <linux/zsmalloc.h>
c795779d 52#include <linux/zpool.h>
48b4800a 53#include <linux/mount.h>
dd4123f3 54#include <linux/migrate.h>
48b4800a 55#include <linux/pagemap.h>
cdc346b3 56#include <linux/fs.h>
48b4800a
MK
57
58#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
59
60/*
61 * This must be power of 2 and greater than of equal to sizeof(link_free).
62 * These two conditions ensure that any 'struct link_free' itself doesn't
63 * span more than 1 page which avoids complex case of mapping 2 pages simply
64 * to restore link_free pointer values.
65 */
66#define ZS_ALIGN 8
67
68/*
69 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
70 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
71 */
72#define ZS_MAX_ZSPAGE_ORDER 2
73#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
74
2e40e163
MK
75#define ZS_HANDLE_SIZE (sizeof(unsigned long))
76
0959c63f
SJ
77/*
78 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 79 * as single (unsigned long) handle value.
0959c63f 80 *
bfd093f5 81 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
82 *
83 * This is made more complicated by various memory models and PAE.
84 */
85
86#ifndef MAX_PHYSMEM_BITS
87#ifdef CONFIG_HIGHMEM64G
88#define MAX_PHYSMEM_BITS 36
89#else /* !CONFIG_HIGHMEM64G */
90/*
91 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
92 * be PAGE_SHIFT
93 */
94#define MAX_PHYSMEM_BITS BITS_PER_LONG
95#endif
96#endif
97#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
98
99/*
100 * Memory for allocating for handle keeps object position by
101 * encoding <page, obj_idx> and the encoded value has a room
102 * in least bit(ie, look at obj_to_location).
103 * We use the bit to synchronize between object access by
104 * user and migration.
105 */
106#define HANDLE_PIN_BIT 0
107
108/*
109 * Head in allocated object should have OBJ_ALLOCATED_TAG
110 * to identify the object was allocated or not.
111 * It's okay to add the status bit in the least bit because
112 * header keeps handle which is 4byte-aligned address so we
113 * have room for two bit at least.
114 */
115#define OBJ_ALLOCATED_TAG 1
116#define OBJ_TAG_BITS 1
117#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
118#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119
cf8e0fed
JM
120#define FULLNESS_BITS 2
121#define CLASS_BITS 8
122#define ISOLATED_BITS 3
123#define MAGIC_VAL_BITS 8
124
0959c63f
SJ
125#define MAX(a, b) ((a) >= (b) ? (a) : (b))
126/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127#define ZS_MIN_ALLOC_SIZE \
128 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 129/* each chunk includes extra space to keep handle */
7b60a685 130#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
131
132/*
7eb52512 133 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
134 * trader-off here:
135 * - Large number of size classes is potentially wasteful as free page are
136 * spread across these classes
137 * - Small number of size classes causes large internal fragmentation
138 * - Probably its better to use specific size classes (empirically
139 * determined). NOTE: all those class sizes must be set as multiple of
140 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
141 *
142 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
143 * (reason above)
144 */
3783689a 145#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
146#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 148
0959c63f 149enum fullness_group {
0959c63f 150 ZS_EMPTY,
48b4800a
MK
151 ZS_ALMOST_EMPTY,
152 ZS_ALMOST_FULL,
153 ZS_FULL,
154 NR_ZS_FULLNESS,
0959c63f
SJ
155};
156
0f050d99 157enum zs_stat_type {
48b4800a
MK
158 CLASS_EMPTY,
159 CLASS_ALMOST_EMPTY,
160 CLASS_ALMOST_FULL,
161 CLASS_FULL,
0f050d99
GM
162 OBJ_ALLOCATED,
163 OBJ_USED,
48b4800a 164 NR_ZS_STAT_TYPE,
0f050d99
GM
165};
166
0f050d99
GM
167struct zs_size_stat {
168 unsigned long objs[NR_ZS_STAT_TYPE];
169};
170
57244594
SS
171#ifdef CONFIG_ZSMALLOC_STAT
172static struct dentry *zs_stat_root;
0f050d99
GM
173#endif
174
48b4800a
MK
175#ifdef CONFIG_COMPACTION
176static struct vfsmount *zsmalloc_mnt;
177#endif
178
0959c63f
SJ
179/*
180 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
181 * n <= N / f, where
182 * n = number of allocated objects
183 * N = total number of objects zspage can store
6dd9737e 184 * f = fullness_threshold_frac
0959c63f
SJ
185 *
186 * Similarly, we assign zspage to:
187 * ZS_ALMOST_FULL when n > N / f
188 * ZS_EMPTY when n == 0
189 * ZS_FULL when n == N
190 *
191 * (see: fix_fullness_group())
192 */
193static const int fullness_threshold_frac = 4;
194
195struct size_class {
57244594 196 spinlock_t lock;
48b4800a 197 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
198 /*
199 * Size of objects stored in this class. Must be multiple
200 * of ZS_ALIGN.
201 */
202 int size;
1fc6e27d 203 int objs_per_zspage;
7dfa4612
WY
204 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
205 int pages_per_zspage;
48b4800a
MK
206
207 unsigned int index;
208 struct zs_size_stat stats;
0959c63f
SJ
209};
210
48b4800a
MK
211/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
212static void SetPageHugeObject(struct page *page)
213{
214 SetPageOwnerPriv1(page);
215}
216
217static void ClearPageHugeObject(struct page *page)
218{
219 ClearPageOwnerPriv1(page);
220}
221
222static int PageHugeObject(struct page *page)
223{
224 return PageOwnerPriv1(page);
225}
226
0959c63f
SJ
227/*
228 * Placed within free objects to form a singly linked list.
3783689a 229 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
230 *
231 * This must be power of 2 and less than or equal to ZS_ALIGN
232 */
233struct link_free {
2e40e163
MK
234 union {
235 /*
bfd093f5 236 * Free object index;
2e40e163
MK
237 * It's valid for non-allocated object
238 */
bfd093f5 239 unsigned long next;
2e40e163
MK
240 /*
241 * Handle of allocated object.
242 */
243 unsigned long handle;
244 };
0959c63f
SJ
245};
246
247struct zs_pool {
6f3526d6 248 const char *name;
0f050d99 249
cf8e0fed 250 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 251 struct kmem_cache *handle_cachep;
3783689a 252 struct kmem_cache *zspage_cachep;
0959c63f 253
13de8933 254 atomic_long_t pages_allocated;
0f050d99 255
7d3f3938 256 struct zs_pool_stats stats;
ab9d306d
SS
257
258 /* Compact classes */
259 struct shrinker shrinker;
260 /*
261 * To signify that register_shrinker() was successful
262 * and unregister_shrinker() will not Oops.
263 */
264 bool shrinker_enabled;
0f050d99
GM
265#ifdef CONFIG_ZSMALLOC_STAT
266 struct dentry *stat_dentry;
267#endif
48b4800a
MK
268#ifdef CONFIG_COMPACTION
269 struct inode *inode;
270 struct work_struct free_work;
271#endif
0959c63f 272};
61989a80 273
3783689a
MK
274struct zspage {
275 struct {
276 unsigned int fullness:FULLNESS_BITS;
85d492f2 277 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
278 unsigned int isolated:ISOLATED_BITS;
279 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
280 };
281 unsigned int inuse;
bfd093f5 282 unsigned int freeobj;
3783689a
MK
283 struct page *first_page;
284 struct list_head list; /* fullness list */
48b4800a
MK
285#ifdef CONFIG_COMPACTION
286 rwlock_t lock;
287#endif
3783689a 288};
61989a80 289
f553646a 290struct mapping_area {
1b945aee 291#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
292 struct vm_struct *vm; /* vm area for mapping object that span pages */
293#else
294 char *vm_buf; /* copy buffer for objects that span pages */
295#endif
296 char *vm_addr; /* address of kmap_atomic()'ed pages */
297 enum zs_mapmode vm_mm; /* mapping mode */
298};
299
48b4800a
MK
300#ifdef CONFIG_COMPACTION
301static int zs_register_migration(struct zs_pool *pool);
302static void zs_unregister_migration(struct zs_pool *pool);
303static void migrate_lock_init(struct zspage *zspage);
304static void migrate_read_lock(struct zspage *zspage);
305static void migrate_read_unlock(struct zspage *zspage);
306static void kick_deferred_free(struct zs_pool *pool);
307static void init_deferred_free(struct zs_pool *pool);
308static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
309#else
310static int zsmalloc_mount(void) { return 0; }
311static void zsmalloc_unmount(void) {}
312static int zs_register_migration(struct zs_pool *pool) { return 0; }
313static void zs_unregister_migration(struct zs_pool *pool) {}
314static void migrate_lock_init(struct zspage *zspage) {}
315static void migrate_read_lock(struct zspage *zspage) {}
316static void migrate_read_unlock(struct zspage *zspage) {}
317static void kick_deferred_free(struct zs_pool *pool) {}
318static void init_deferred_free(struct zs_pool *pool) {}
319static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
320#endif
321
3783689a 322static int create_cache(struct zs_pool *pool)
2e40e163
MK
323{
324 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
325 0, 0, NULL);
3783689a
MK
326 if (!pool->handle_cachep)
327 return 1;
328
329 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
330 0, 0, NULL);
331 if (!pool->zspage_cachep) {
332 kmem_cache_destroy(pool->handle_cachep);
333 pool->handle_cachep = NULL;
334 return 1;
335 }
336
337 return 0;
2e40e163
MK
338}
339
3783689a 340static void destroy_cache(struct zs_pool *pool)
2e40e163 341{
cd10add0 342 kmem_cache_destroy(pool->handle_cachep);
3783689a 343 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
344}
345
3783689a 346static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
347{
348 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 349 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
350}
351
3783689a 352static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
353{
354 kmem_cache_free(pool->handle_cachep, (void *)handle);
355}
356
3783689a
MK
357static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
358{
48b4800a
MK
359 return kmem_cache_alloc(pool->zspage_cachep,
360 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 361}
3783689a
MK
362
363static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
364{
365 kmem_cache_free(pool->zspage_cachep, zspage);
366}
367
2e40e163
MK
368static void record_obj(unsigned long handle, unsigned long obj)
369{
c102f07c
JL
370 /*
371 * lsb of @obj represents handle lock while other bits
372 * represent object value the handle is pointing so
373 * updating shouldn't do store tearing.
374 */
375 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
376}
377
c795779d
DS
378/* zpool driver */
379
380#ifdef CONFIG_ZPOOL
381
6f3526d6 382static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 383 const struct zpool_ops *zpool_ops,
479305fd 384 struct zpool *zpool)
c795779d 385{
d0d8da2d
SS
386 /*
387 * Ignore global gfp flags: zs_malloc() may be invoked from
388 * different contexts and its caller must provide a valid
389 * gfp mask.
390 */
391 return zs_create_pool(name);
c795779d
DS
392}
393
394static void zs_zpool_destroy(void *pool)
395{
396 zs_destroy_pool(pool);
397}
398
399static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
400 unsigned long *handle)
401{
d0d8da2d 402 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
403 return *handle ? 0 : -1;
404}
405static void zs_zpool_free(void *pool, unsigned long handle)
406{
407 zs_free(pool, handle);
408}
409
410static int zs_zpool_shrink(void *pool, unsigned int pages,
411 unsigned int *reclaimed)
412{
413 return -EINVAL;
414}
415
416static void *zs_zpool_map(void *pool, unsigned long handle,
417 enum zpool_mapmode mm)
418{
419 enum zs_mapmode zs_mm;
420
421 switch (mm) {
422 case ZPOOL_MM_RO:
423 zs_mm = ZS_MM_RO;
424 break;
425 case ZPOOL_MM_WO:
426 zs_mm = ZS_MM_WO;
427 break;
428 case ZPOOL_MM_RW: /* fallthru */
429 default:
430 zs_mm = ZS_MM_RW;
431 break;
432 }
433
434 return zs_map_object(pool, handle, zs_mm);
435}
436static void zs_zpool_unmap(void *pool, unsigned long handle)
437{
438 zs_unmap_object(pool, handle);
439}
440
441static u64 zs_zpool_total_size(void *pool)
442{
722cdc17 443 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
444}
445
446static struct zpool_driver zs_zpool_driver = {
447 .type = "zsmalloc",
448 .owner = THIS_MODULE,
449 .create = zs_zpool_create,
450 .destroy = zs_zpool_destroy,
451 .malloc = zs_zpool_malloc,
452 .free = zs_zpool_free,
453 .shrink = zs_zpool_shrink,
454 .map = zs_zpool_map,
455 .unmap = zs_zpool_unmap,
456 .total_size = zs_zpool_total_size,
457};
458
137f8cff 459MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
460#endif /* CONFIG_ZPOOL */
461
61989a80
NG
462/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
463static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
464
48b4800a
MK
465static bool is_zspage_isolated(struct zspage *zspage)
466{
467 return zspage->isolated;
468}
469
3457f414 470static __maybe_unused int is_first_page(struct page *page)
61989a80 471{
a27545bf 472 return PagePrivate(page);
61989a80
NG
473}
474
48b4800a 475/* Protected by class->lock */
3783689a 476static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 477{
3783689a 478 return zspage->inuse;
4f42047b
MK
479}
480
3783689a 481static inline void set_zspage_inuse(struct zspage *zspage, int val)
4f42047b 482{
3783689a 483 zspage->inuse = val;
4f42047b
MK
484}
485
3783689a 486static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 487{
3783689a 488 zspage->inuse += val;
4f42047b
MK
489}
490
48b4800a 491static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 492{
48b4800a 493 struct page *first_page = zspage->first_page;
3783689a 494
48b4800a
MK
495 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
496 return first_page;
4f42047b
MK
497}
498
48b4800a 499static inline int get_first_obj_offset(struct page *page)
4f42047b 500{
48b4800a
MK
501 return page->units;
502}
3783689a 503
48b4800a
MK
504static inline void set_first_obj_offset(struct page *page, int offset)
505{
506 page->units = offset;
4f42047b
MK
507}
508
bfd093f5 509static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 510{
bfd093f5 511 return zspage->freeobj;
4f42047b
MK
512}
513
bfd093f5 514static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 515{
bfd093f5 516 zspage->freeobj = obj;
4f42047b
MK
517}
518
3783689a 519static void get_zspage_mapping(struct zspage *zspage,
a4209467 520 unsigned int *class_idx,
61989a80
NG
521 enum fullness_group *fullness)
522{
48b4800a
MK
523 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
524
3783689a
MK
525 *fullness = zspage->fullness;
526 *class_idx = zspage->class;
61989a80
NG
527}
528
3783689a 529static void set_zspage_mapping(struct zspage *zspage,
a4209467 530 unsigned int class_idx,
61989a80
NG
531 enum fullness_group fullness)
532{
3783689a
MK
533 zspage->class = class_idx;
534 zspage->fullness = fullness;
61989a80
NG
535}
536
c3e3e88a
NC
537/*
538 * zsmalloc divides the pool into various size classes where each
539 * class maintains a list of zspages where each zspage is divided
540 * into equal sized chunks. Each allocation falls into one of these
541 * classes depending on its size. This function returns index of the
542 * size class which has chunk size big enough to hold the give size.
543 */
61989a80
NG
544static int get_size_class_index(int size)
545{
546 int idx = 0;
547
548 if (likely(size > ZS_MIN_ALLOC_SIZE))
549 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
550 ZS_SIZE_CLASS_DELTA);
551
cf8e0fed 552 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
553}
554
3eb95fea 555/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 556static inline void zs_stat_inc(struct size_class *class,
3eb95fea 557 int type, unsigned long cnt)
248ca1b0 558{
48b4800a 559 class->stats.objs[type] += cnt;
248ca1b0
MK
560}
561
3eb95fea 562/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 563static inline void zs_stat_dec(struct size_class *class,
3eb95fea 564 int type, unsigned long cnt)
248ca1b0 565{
48b4800a 566 class->stats.objs[type] -= cnt;
248ca1b0
MK
567}
568
3eb95fea 569/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 570static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 571 int type)
248ca1b0 572{
48b4800a 573 return class->stats.objs[type];
248ca1b0
MK
574}
575
57244594
SS
576#ifdef CONFIG_ZSMALLOC_STAT
577
4abaac9b 578static void __init zs_stat_init(void)
248ca1b0 579{
4abaac9b
DS
580 if (!debugfs_initialized()) {
581 pr_warn("debugfs not available, stat dir not created\n");
582 return;
583 }
248ca1b0
MK
584
585 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
586 if (!zs_stat_root)
4abaac9b 587 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
248ca1b0
MK
588}
589
590static void __exit zs_stat_exit(void)
591{
592 debugfs_remove_recursive(zs_stat_root);
593}
594
1120ed54
SS
595static unsigned long zs_can_compact(struct size_class *class);
596
248ca1b0
MK
597static int zs_stats_size_show(struct seq_file *s, void *v)
598{
599 int i;
600 struct zs_pool *pool = s->private;
601 struct size_class *class;
602 int objs_per_zspage;
603 unsigned long class_almost_full, class_almost_empty;
1120ed54 604 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
605 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
606 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 607 unsigned long total_freeable = 0;
248ca1b0 608
1120ed54 609 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
610 "class", "size", "almost_full", "almost_empty",
611 "obj_allocated", "obj_used", "pages_used",
1120ed54 612 "pages_per_zspage", "freeable");
248ca1b0 613
cf8e0fed 614 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
615 class = pool->size_class[i];
616
617 if (class->index != i)
618 continue;
619
620 spin_lock(&class->lock);
621 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
622 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
623 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
624 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 625 freeable = zs_can_compact(class);
248ca1b0
MK
626 spin_unlock(&class->lock);
627
b4fd07a0 628 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
629 pages_used = obj_allocated / objs_per_zspage *
630 class->pages_per_zspage;
631
1120ed54
SS
632 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
633 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
634 i, class->size, class_almost_full, class_almost_empty,
635 obj_allocated, obj_used, pages_used,
1120ed54 636 class->pages_per_zspage, freeable);
248ca1b0
MK
637
638 total_class_almost_full += class_almost_full;
639 total_class_almost_empty += class_almost_empty;
640 total_objs += obj_allocated;
641 total_used_objs += obj_used;
642 total_pages += pages_used;
1120ed54 643 total_freeable += freeable;
248ca1b0
MK
644 }
645
646 seq_puts(s, "\n");
1120ed54 647 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
648 "Total", "", total_class_almost_full,
649 total_class_almost_empty, total_objs,
1120ed54 650 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
651
652 return 0;
653}
654
655static int zs_stats_size_open(struct inode *inode, struct file *file)
656{
657 return single_open(file, zs_stats_size_show, inode->i_private);
658}
659
660static const struct file_operations zs_stat_size_ops = {
661 .open = zs_stats_size_open,
662 .read = seq_read,
663 .llseek = seq_lseek,
664 .release = single_release,
665};
666
d34f6157 667static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0
MK
668{
669 struct dentry *entry;
670
4abaac9b
DS
671 if (!zs_stat_root) {
672 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 673 return;
4abaac9b 674 }
248ca1b0
MK
675
676 entry = debugfs_create_dir(name, zs_stat_root);
677 if (!entry) {
678 pr_warn("debugfs dir <%s> creation failed\n", name);
d34f6157 679 return;
248ca1b0
MK
680 }
681 pool->stat_dentry = entry;
682
683 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
684 pool->stat_dentry, pool, &zs_stat_size_ops);
685 if (!entry) {
686 pr_warn("%s: debugfs file entry <%s> creation failed\n",
687 name, "classes");
4abaac9b
DS
688 debugfs_remove_recursive(pool->stat_dentry);
689 pool->stat_dentry = NULL;
248ca1b0 690 }
248ca1b0
MK
691}
692
693static void zs_pool_stat_destroy(struct zs_pool *pool)
694{
695 debugfs_remove_recursive(pool->stat_dentry);
696}
697
698#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 699static void __init zs_stat_init(void)
248ca1b0 700{
248ca1b0
MK
701}
702
703static void __exit zs_stat_exit(void)
704{
705}
706
d34f6157 707static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 708{
248ca1b0
MK
709}
710
711static inline void zs_pool_stat_destroy(struct zs_pool *pool)
712{
713}
248ca1b0
MK
714#endif
715
48b4800a 716
c3e3e88a
NC
717/*
718 * For each size class, zspages are divided into different groups
719 * depending on how "full" they are. This was done so that we could
720 * easily find empty or nearly empty zspages when we try to shrink
721 * the pool (not yet implemented). This function returns fullness
722 * status of the given page.
723 */
1fc6e27d 724static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 725 struct zspage *zspage)
61989a80 726{
1fc6e27d 727 int inuse, objs_per_zspage;
61989a80 728 enum fullness_group fg;
830e4bc5 729
3783689a 730 inuse = get_zspage_inuse(zspage);
1fc6e27d 731 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
732
733 if (inuse == 0)
734 fg = ZS_EMPTY;
1fc6e27d 735 else if (inuse == objs_per_zspage)
61989a80 736 fg = ZS_FULL;
1fc6e27d 737 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
738 fg = ZS_ALMOST_EMPTY;
739 else
740 fg = ZS_ALMOST_FULL;
741
742 return fg;
743}
744
c3e3e88a
NC
745/*
746 * Each size class maintains various freelists and zspages are assigned
747 * to one of these freelists based on the number of live objects they
748 * have. This functions inserts the given zspage into the freelist
749 * identified by <class, fullness_group>.
750 */
251cbb95 751static void insert_zspage(struct size_class *class,
3783689a
MK
752 struct zspage *zspage,
753 enum fullness_group fullness)
61989a80 754{
3783689a 755 struct zspage *head;
61989a80 756
48b4800a 757 zs_stat_inc(class, fullness, 1);
3783689a
MK
758 head = list_first_entry_or_null(&class->fullness_list[fullness],
759 struct zspage, list);
58f17117 760 /*
3783689a
MK
761 * We want to see more ZS_FULL pages and less almost empty/full.
762 * Put pages with higher ->inuse first.
58f17117 763 */
3783689a
MK
764 if (head) {
765 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
766 list_add(&zspage->list, &head->list);
767 return;
768 }
769 }
770 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
771}
772
c3e3e88a
NC
773/*
774 * This function removes the given zspage from the freelist identified
775 * by <class, fullness_group>.
776 */
251cbb95 777static void remove_zspage(struct size_class *class,
3783689a
MK
778 struct zspage *zspage,
779 enum fullness_group fullness)
61989a80 780{
3783689a 781 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
48b4800a 782 VM_BUG_ON(is_zspage_isolated(zspage));
61989a80 783
3783689a 784 list_del_init(&zspage->list);
48b4800a 785 zs_stat_dec(class, fullness, 1);
61989a80
NG
786}
787
c3e3e88a
NC
788/*
789 * Each size class maintains zspages in different fullness groups depending
790 * on the number of live objects they contain. When allocating or freeing
791 * objects, the fullness status of the page can change, say, from ALMOST_FULL
792 * to ALMOST_EMPTY when freeing an object. This function checks if such
793 * a status change has occurred for the given page and accordingly moves the
794 * page from the freelist of the old fullness group to that of the new
795 * fullness group.
796 */
c7806261 797static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 798 struct zspage *zspage)
61989a80
NG
799{
800 int class_idx;
61989a80
NG
801 enum fullness_group currfg, newfg;
802
3783689a
MK
803 get_zspage_mapping(zspage, &class_idx, &currfg);
804 newfg = get_fullness_group(class, zspage);
61989a80
NG
805 if (newfg == currfg)
806 goto out;
807
48b4800a
MK
808 if (!is_zspage_isolated(zspage)) {
809 remove_zspage(class, zspage, currfg);
810 insert_zspage(class, zspage, newfg);
811 }
812
3783689a 813 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
814
815out:
816 return newfg;
817}
818
819/*
820 * We have to decide on how many pages to link together
821 * to form a zspage for each size class. This is important
822 * to reduce wastage due to unusable space left at end of
823 * each zspage which is given as:
888fa374
YX
824 * wastage = Zp % class_size
825 * usage = Zp - wastage
61989a80
NG
826 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
827 *
828 * For example, for size class of 3/8 * PAGE_SIZE, we should
829 * link together 3 PAGE_SIZE sized pages to form a zspage
830 * since then we can perfectly fit in 8 such objects.
831 */
2e3b6154 832static int get_pages_per_zspage(int class_size)
61989a80
NG
833{
834 int i, max_usedpc = 0;
835 /* zspage order which gives maximum used size per KB */
836 int max_usedpc_order = 1;
837
84d4faab 838 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
839 int zspage_size;
840 int waste, usedpc;
841
842 zspage_size = i * PAGE_SIZE;
843 waste = zspage_size % class_size;
844 usedpc = (zspage_size - waste) * 100 / zspage_size;
845
846 if (usedpc > max_usedpc) {
847 max_usedpc = usedpc;
848 max_usedpc_order = i;
849 }
850 }
851
852 return max_usedpc_order;
853}
854
3783689a 855static struct zspage *get_zspage(struct page *page)
61989a80 856{
48b4800a
MK
857 struct zspage *zspage = (struct zspage *)page->private;
858
859 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
860 return zspage;
61989a80
NG
861}
862
863static struct page *get_next_page(struct page *page)
864{
48b4800a
MK
865 if (unlikely(PageHugeObject(page)))
866 return NULL;
867
868 return page->freelist;
61989a80
NG
869}
870
bfd093f5
MK
871/**
872 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
873 * @page: page object resides in zspage
874 * @obj_idx: object index
67296874 875 */
bfd093f5
MK
876static void obj_to_location(unsigned long obj, struct page **page,
877 unsigned int *obj_idx)
61989a80 878{
bfd093f5
MK
879 obj >>= OBJ_TAG_BITS;
880 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
881 *obj_idx = (obj & OBJ_INDEX_MASK);
882}
61989a80 883
bfd093f5
MK
884/**
885 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
886 * @page: page object resides in zspage
887 * @obj_idx: object index
888 */
889static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
890{
891 unsigned long obj;
61989a80 892
312fcae2 893 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 894 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 895 obj <<= OBJ_TAG_BITS;
61989a80 896
bfd093f5 897 return obj;
61989a80
NG
898}
899
2e40e163
MK
900static unsigned long handle_to_obj(unsigned long handle)
901{
902 return *(unsigned long *)handle;
903}
904
48b4800a 905static unsigned long obj_to_head(struct page *page, void *obj)
312fcae2 906{
48b4800a 907 if (unlikely(PageHugeObject(page))) {
830e4bc5 908 VM_BUG_ON_PAGE(!is_first_page(page), page);
3783689a 909 return page->index;
7b60a685
MK
910 } else
911 return *(unsigned long *)obj;
312fcae2
MK
912}
913
48b4800a
MK
914static inline int testpin_tag(unsigned long handle)
915{
916 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
917}
918
312fcae2
MK
919static inline int trypin_tag(unsigned long handle)
920{
1b8320b6 921 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
922}
923
924static void pin_tag(unsigned long handle)
925{
1b8320b6 926 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
927}
928
929static void unpin_tag(unsigned long handle)
930{
1b8320b6 931 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
932}
933
f4477e90
NG
934static void reset_page(struct page *page)
935{
48b4800a 936 __ClearPageMovable(page);
18fd06bf 937 ClearPagePrivate(page);
f4477e90 938 set_page_private(page, 0);
48b4800a
MK
939 page_mapcount_reset(page);
940 ClearPageHugeObject(page);
941 page->freelist = NULL;
942}
943
944/*
945 * To prevent zspage destroy during migration, zspage freeing should
946 * hold locks of all pages in the zspage.
947 */
948void lock_zspage(struct zspage *zspage)
949{
950 struct page *page = get_first_page(zspage);
951
952 do {
953 lock_page(page);
954 } while ((page = get_next_page(page)) != NULL);
955}
956
957int trylock_zspage(struct zspage *zspage)
958{
959 struct page *cursor, *fail;
960
961 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
962 get_next_page(cursor)) {
963 if (!trylock_page(cursor)) {
964 fail = cursor;
965 goto unlock;
966 }
967 }
968
969 return 1;
970unlock:
971 for (cursor = get_first_page(zspage); cursor != fail; cursor =
972 get_next_page(cursor))
973 unlock_page(cursor);
974
975 return 0;
f4477e90
NG
976}
977
48b4800a
MK
978static void __free_zspage(struct zs_pool *pool, struct size_class *class,
979 struct zspage *zspage)
61989a80 980{
3783689a 981 struct page *page, *next;
48b4800a
MK
982 enum fullness_group fg;
983 unsigned int class_idx;
984
985 get_zspage_mapping(zspage, &class_idx, &fg);
986
987 assert_spin_locked(&class->lock);
61989a80 988
3783689a 989 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 990 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 991
48b4800a 992 next = page = get_first_page(zspage);
3783689a 993 do {
48b4800a
MK
994 VM_BUG_ON_PAGE(!PageLocked(page), page);
995 next = get_next_page(page);
3783689a 996 reset_page(page);
48b4800a 997 unlock_page(page);
91537fee 998 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
999 put_page(page);
1000 page = next;
1001 } while (page != NULL);
61989a80 1002
3783689a 1003 cache_free_zspage(pool, zspage);
48b4800a 1004
b4fd07a0 1005 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1006 atomic_long_sub(class->pages_per_zspage,
1007 &pool->pages_allocated);
1008}
1009
1010static void free_zspage(struct zs_pool *pool, struct size_class *class,
1011 struct zspage *zspage)
1012{
1013 VM_BUG_ON(get_zspage_inuse(zspage));
1014 VM_BUG_ON(list_empty(&zspage->list));
1015
1016 if (!trylock_zspage(zspage)) {
1017 kick_deferred_free(pool);
1018 return;
1019 }
1020
1021 remove_zspage(class, zspage, ZS_EMPTY);
1022 __free_zspage(pool, class, zspage);
61989a80
NG
1023}
1024
1025/* Initialize a newly allocated zspage */
3783689a 1026static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 1027{
bfd093f5 1028 unsigned int freeobj = 1;
61989a80 1029 unsigned long off = 0;
48b4800a 1030 struct page *page = get_first_page(zspage);
830e4bc5 1031
61989a80
NG
1032 while (page) {
1033 struct page *next_page;
1034 struct link_free *link;
af4ee5e9 1035 void *vaddr;
61989a80 1036
3783689a 1037 set_first_obj_offset(page, off);
61989a80 1038
af4ee5e9
MK
1039 vaddr = kmap_atomic(page);
1040 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1041
1042 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1043 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1044 link += class->size / sizeof(*link);
61989a80
NG
1045 }
1046
1047 /*
1048 * We now come to the last (full or partial) object on this
1049 * page, which must point to the first object on the next
1050 * page (if present)
1051 */
1052 next_page = get_next_page(page);
bfd093f5 1053 if (next_page) {
3b1d9ca6 1054 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1055 } else {
1056 /*
3b1d9ca6 1057 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1058 * whether it's allocated object or not.
1059 */
3b1d9ca6 1060 link->next = -1 << OBJ_TAG_BITS;
bfd093f5 1061 }
af4ee5e9 1062 kunmap_atomic(vaddr);
61989a80 1063 page = next_page;
5538c562 1064 off %= PAGE_SIZE;
61989a80 1065 }
bdb0af7c 1066
bfd093f5 1067 set_freeobj(zspage, 0);
61989a80
NG
1068}
1069
48b4800a
MK
1070static void create_page_chain(struct size_class *class, struct zspage *zspage,
1071 struct page *pages[])
61989a80 1072{
bdb0af7c
MK
1073 int i;
1074 struct page *page;
1075 struct page *prev_page = NULL;
48b4800a 1076 int nr_pages = class->pages_per_zspage;
61989a80
NG
1077
1078 /*
1079 * Allocate individual pages and link them together as:
48b4800a 1080 * 1. all pages are linked together using page->freelist
3783689a 1081 * 2. each sub-page point to zspage using page->private
61989a80 1082 *
3783689a 1083 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1084 * has this flag set).
61989a80 1085 */
bdb0af7c
MK
1086 for (i = 0; i < nr_pages; i++) {
1087 page = pages[i];
3783689a 1088 set_page_private(page, (unsigned long)zspage);
48b4800a 1089 page->freelist = NULL;
bdb0af7c 1090 if (i == 0) {
3783689a 1091 zspage->first_page = page;
a27545bf 1092 SetPagePrivate(page);
48b4800a
MK
1093 if (unlikely(class->objs_per_zspage == 1 &&
1094 class->pages_per_zspage == 1))
1095 SetPageHugeObject(page);
3783689a 1096 } else {
48b4800a 1097 prev_page->freelist = page;
61989a80 1098 }
61989a80
NG
1099 prev_page = page;
1100 }
bdb0af7c 1101}
61989a80 1102
bdb0af7c
MK
1103/*
1104 * Allocate a zspage for the given size class
1105 */
3783689a
MK
1106static struct zspage *alloc_zspage(struct zs_pool *pool,
1107 struct size_class *class,
1108 gfp_t gfp)
bdb0af7c
MK
1109{
1110 int i;
bdb0af7c 1111 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1112 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1113
1114 if (!zspage)
1115 return NULL;
1116
1117 memset(zspage, 0, sizeof(struct zspage));
48b4800a
MK
1118 zspage->magic = ZSPAGE_MAGIC;
1119 migrate_lock_init(zspage);
61989a80 1120
bdb0af7c
MK
1121 for (i = 0; i < class->pages_per_zspage; i++) {
1122 struct page *page;
61989a80 1123
3783689a 1124 page = alloc_page(gfp);
bdb0af7c 1125 if (!page) {
91537fee
MK
1126 while (--i >= 0) {
1127 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1128 __free_page(pages[i]);
91537fee 1129 }
3783689a 1130 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1131 return NULL;
1132 }
91537fee
MK
1133
1134 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1135 pages[i] = page;
61989a80
NG
1136 }
1137
48b4800a 1138 create_page_chain(class, zspage, pages);
3783689a 1139 init_zspage(class, zspage);
bdb0af7c 1140
3783689a 1141 return zspage;
61989a80
NG
1142}
1143
3783689a 1144static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1145{
1146 int i;
3783689a 1147 struct zspage *zspage;
61989a80 1148
48b4800a 1149 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1150 zspage = list_first_entry_or_null(&class->fullness_list[i],
1151 struct zspage, list);
1152 if (zspage)
61989a80
NG
1153 break;
1154 }
1155
3783689a 1156 return zspage;
61989a80
NG
1157}
1158
1b945aee 1159#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1160static inline int __zs_cpu_up(struct mapping_area *area)
1161{
1162 /*
1163 * Make sure we don't leak memory if a cpu UP notification
1164 * and zs_init() race and both call zs_cpu_up() on the same cpu
1165 */
1166 if (area->vm)
1167 return 0;
1168 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1169 if (!area->vm)
1170 return -ENOMEM;
1171 return 0;
1172}
1173
1174static inline void __zs_cpu_down(struct mapping_area *area)
1175{
1176 if (area->vm)
1177 free_vm_area(area->vm);
1178 area->vm = NULL;
1179}
1180
1181static inline void *__zs_map_object(struct mapping_area *area,
1182 struct page *pages[2], int off, int size)
1183{
f6f8ed47 1184 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1185 area->vm_addr = area->vm->addr;
1186 return area->vm_addr + off;
1187}
1188
1189static inline void __zs_unmap_object(struct mapping_area *area,
1190 struct page *pages[2], int off, int size)
1191{
1192 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1193
d95abbbb 1194 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1195}
1196
1b945aee 1197#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1198
1199static inline int __zs_cpu_up(struct mapping_area *area)
1200{
1201 /*
1202 * Make sure we don't leak memory if a cpu UP notification
1203 * and zs_init() race and both call zs_cpu_up() on the same cpu
1204 */
1205 if (area->vm_buf)
1206 return 0;
40f9fb8c 1207 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1208 if (!area->vm_buf)
1209 return -ENOMEM;
1210 return 0;
1211}
1212
1213static inline void __zs_cpu_down(struct mapping_area *area)
1214{
40f9fb8c 1215 kfree(area->vm_buf);
f553646a
SJ
1216 area->vm_buf = NULL;
1217}
1218
1219static void *__zs_map_object(struct mapping_area *area,
1220 struct page *pages[2], int off, int size)
5f601902 1221{
5f601902
SJ
1222 int sizes[2];
1223 void *addr;
f553646a 1224 char *buf = area->vm_buf;
5f601902 1225
f553646a
SJ
1226 /* disable page faults to match kmap_atomic() return conditions */
1227 pagefault_disable();
1228
1229 /* no read fastpath */
1230 if (area->vm_mm == ZS_MM_WO)
1231 goto out;
5f601902
SJ
1232
1233 sizes[0] = PAGE_SIZE - off;
1234 sizes[1] = size - sizes[0];
1235
5f601902
SJ
1236 /* copy object to per-cpu buffer */
1237 addr = kmap_atomic(pages[0]);
1238 memcpy(buf, addr + off, sizes[0]);
1239 kunmap_atomic(addr);
1240 addr = kmap_atomic(pages[1]);
1241 memcpy(buf + sizes[0], addr, sizes[1]);
1242 kunmap_atomic(addr);
f553646a
SJ
1243out:
1244 return area->vm_buf;
5f601902
SJ
1245}
1246
f553646a
SJ
1247static void __zs_unmap_object(struct mapping_area *area,
1248 struct page *pages[2], int off, int size)
5f601902 1249{
5f601902
SJ
1250 int sizes[2];
1251 void *addr;
2e40e163 1252 char *buf;
5f601902 1253
f553646a
SJ
1254 /* no write fastpath */
1255 if (area->vm_mm == ZS_MM_RO)
1256 goto out;
5f601902 1257
7b60a685 1258 buf = area->vm_buf;
a82cbf07
YX
1259 buf = buf + ZS_HANDLE_SIZE;
1260 size -= ZS_HANDLE_SIZE;
1261 off += ZS_HANDLE_SIZE;
2e40e163 1262
5f601902
SJ
1263 sizes[0] = PAGE_SIZE - off;
1264 sizes[1] = size - sizes[0];
1265
1266 /* copy per-cpu buffer to object */
1267 addr = kmap_atomic(pages[0]);
1268 memcpy(addr + off, buf, sizes[0]);
1269 kunmap_atomic(addr);
1270 addr = kmap_atomic(pages[1]);
1271 memcpy(addr, buf + sizes[0], sizes[1]);
1272 kunmap_atomic(addr);
f553646a
SJ
1273
1274out:
1275 /* enable page faults to match kunmap_atomic() return conditions */
1276 pagefault_enable();
5f601902 1277}
61989a80 1278
1b945aee 1279#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1280
215c89d0 1281static int zs_cpu_prepare(unsigned int cpu)
61989a80 1282{
61989a80
NG
1283 struct mapping_area *area;
1284
215c89d0
SAS
1285 area = &per_cpu(zs_map_area, cpu);
1286 return __zs_cpu_up(area);
61989a80
NG
1287}
1288
215c89d0 1289static int zs_cpu_dead(unsigned int cpu)
61989a80 1290{
215c89d0 1291 struct mapping_area *area;
40f9fb8c 1292
215c89d0
SAS
1293 area = &per_cpu(zs_map_area, cpu);
1294 __zs_cpu_down(area);
1295 return 0;
b1b00a5b
SS
1296}
1297
64d90465
GM
1298static bool can_merge(struct size_class *prev, int pages_per_zspage,
1299 int objs_per_zspage)
9eec4cd5 1300{
64d90465
GM
1301 if (prev->pages_per_zspage == pages_per_zspage &&
1302 prev->objs_per_zspage == objs_per_zspage)
1303 return true;
9eec4cd5 1304
64d90465 1305 return false;
9eec4cd5
JK
1306}
1307
3783689a 1308static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1309{
3783689a 1310 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1311}
1312
66cdef66
GM
1313unsigned long zs_get_total_pages(struct zs_pool *pool)
1314{
1315 return atomic_long_read(&pool->pages_allocated);
1316}
1317EXPORT_SYMBOL_GPL(zs_get_total_pages);
1318
4bbc0bc0 1319/**
66cdef66
GM
1320 * zs_map_object - get address of allocated object from handle.
1321 * @pool: pool from which the object was allocated
1322 * @handle: handle returned from zs_malloc
4bbc0bc0 1323 *
66cdef66
GM
1324 * Before using an object allocated from zs_malloc, it must be mapped using
1325 * this function. When done with the object, it must be unmapped using
1326 * zs_unmap_object.
4bbc0bc0 1327 *
66cdef66
GM
1328 * Only one object can be mapped per cpu at a time. There is no protection
1329 * against nested mappings.
1330 *
1331 * This function returns with preemption and page faults disabled.
4bbc0bc0 1332 */
66cdef66
GM
1333void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1334 enum zs_mapmode mm)
61989a80 1335{
3783689a 1336 struct zspage *zspage;
66cdef66 1337 struct page *page;
bfd093f5
MK
1338 unsigned long obj, off;
1339 unsigned int obj_idx;
61989a80 1340
66cdef66
GM
1341 unsigned int class_idx;
1342 enum fullness_group fg;
1343 struct size_class *class;
1344 struct mapping_area *area;
1345 struct page *pages[2];
2e40e163 1346 void *ret;
61989a80 1347
9eec4cd5 1348 /*
66cdef66
GM
1349 * Because we use per-cpu mapping areas shared among the
1350 * pools/users, we can't allow mapping in interrupt context
1351 * because it can corrupt another users mappings.
9eec4cd5 1352 */
1aedcafb 1353 BUG_ON(in_interrupt());
61989a80 1354
312fcae2
MK
1355 /* From now on, migration cannot move the object */
1356 pin_tag(handle);
1357
2e40e163
MK
1358 obj = handle_to_obj(handle);
1359 obj_to_location(obj, &page, &obj_idx);
3783689a 1360 zspage = get_zspage(page);
48b4800a
MK
1361
1362 /* migration cannot move any subpage in this zspage */
1363 migrate_read_lock(zspage);
1364
3783689a 1365 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1366 class = pool->size_class[class_idx];
bfd093f5 1367 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1368
66cdef66
GM
1369 area = &get_cpu_var(zs_map_area);
1370 area->vm_mm = mm;
1371 if (off + class->size <= PAGE_SIZE) {
1372 /* this object is contained entirely within a page */
1373 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1374 ret = area->vm_addr + off;
1375 goto out;
61989a80
NG
1376 }
1377
66cdef66
GM
1378 /* this object spans two pages */
1379 pages[0] = page;
1380 pages[1] = get_next_page(page);
1381 BUG_ON(!pages[1]);
9eec4cd5 1382
2e40e163
MK
1383 ret = __zs_map_object(area, pages, off, class->size);
1384out:
48b4800a 1385 if (likely(!PageHugeObject(page)))
7b60a685
MK
1386 ret += ZS_HANDLE_SIZE;
1387
1388 return ret;
61989a80 1389}
66cdef66 1390EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1391
66cdef66 1392void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1393{
3783689a 1394 struct zspage *zspage;
66cdef66 1395 struct page *page;
bfd093f5
MK
1396 unsigned long obj, off;
1397 unsigned int obj_idx;
61989a80 1398
66cdef66
GM
1399 unsigned int class_idx;
1400 enum fullness_group fg;
1401 struct size_class *class;
1402 struct mapping_area *area;
9eec4cd5 1403
2e40e163
MK
1404 obj = handle_to_obj(handle);
1405 obj_to_location(obj, &page, &obj_idx);
3783689a
MK
1406 zspage = get_zspage(page);
1407 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1408 class = pool->size_class[class_idx];
bfd093f5 1409 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1410
66cdef66
GM
1411 area = this_cpu_ptr(&zs_map_area);
1412 if (off + class->size <= PAGE_SIZE)
1413 kunmap_atomic(area->vm_addr);
1414 else {
1415 struct page *pages[2];
40f9fb8c 1416
66cdef66
GM
1417 pages[0] = page;
1418 pages[1] = get_next_page(page);
1419 BUG_ON(!pages[1]);
1420
1421 __zs_unmap_object(area, pages, off, class->size);
1422 }
1423 put_cpu_var(zs_map_area);
48b4800a
MK
1424
1425 migrate_read_unlock(zspage);
312fcae2 1426 unpin_tag(handle);
61989a80 1427}
66cdef66 1428EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1429
251cbb95 1430static unsigned long obj_malloc(struct size_class *class,
3783689a 1431 struct zspage *zspage, unsigned long handle)
c7806261 1432{
bfd093f5 1433 int i, nr_page, offset;
c7806261
MK
1434 unsigned long obj;
1435 struct link_free *link;
1436
1437 struct page *m_page;
bfd093f5 1438 unsigned long m_offset;
c7806261
MK
1439 void *vaddr;
1440
312fcae2 1441 handle |= OBJ_ALLOCATED_TAG;
3783689a 1442 obj = get_freeobj(zspage);
bfd093f5
MK
1443
1444 offset = obj * class->size;
1445 nr_page = offset >> PAGE_SHIFT;
1446 m_offset = offset & ~PAGE_MASK;
1447 m_page = get_first_page(zspage);
1448
1449 for (i = 0; i < nr_page; i++)
1450 m_page = get_next_page(m_page);
c7806261
MK
1451
1452 vaddr = kmap_atomic(m_page);
1453 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1454 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
48b4800a 1455 if (likely(!PageHugeObject(m_page)))
7b60a685
MK
1456 /* record handle in the header of allocated chunk */
1457 link->handle = handle;
1458 else
3783689a
MK
1459 /* record handle to page->index */
1460 zspage->first_page->index = handle;
1461
c7806261 1462 kunmap_atomic(vaddr);
3783689a 1463 mod_zspage_inuse(zspage, 1);
c7806261
MK
1464 zs_stat_inc(class, OBJ_USED, 1);
1465
bfd093f5
MK
1466 obj = location_to_obj(m_page, obj);
1467
c7806261
MK
1468 return obj;
1469}
1470
1471
61989a80
NG
1472/**
1473 * zs_malloc - Allocate block of given size from pool.
1474 * @pool: pool to allocate from
1475 * @size: size of block to allocate
fd854463 1476 * @gfp: gfp flags when allocating object
61989a80 1477 *
00a61d86 1478 * On success, handle to the allocated object is returned,
c2344348 1479 * otherwise 0.
61989a80
NG
1480 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1481 */
d0d8da2d 1482unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1483{
2e40e163 1484 unsigned long handle, obj;
61989a80 1485 struct size_class *class;
48b4800a 1486 enum fullness_group newfg;
3783689a 1487 struct zspage *zspage;
61989a80 1488
7b60a685 1489 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1490 return 0;
1491
3783689a 1492 handle = cache_alloc_handle(pool, gfp);
2e40e163 1493 if (!handle)
c2344348 1494 return 0;
61989a80 1495
2e40e163
MK
1496 /* extra space in chunk to keep the handle */
1497 size += ZS_HANDLE_SIZE;
9eec4cd5 1498 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1499
1500 spin_lock(&class->lock);
3783689a 1501 zspage = find_get_zspage(class);
48b4800a
MK
1502 if (likely(zspage)) {
1503 obj = obj_malloc(class, zspage, handle);
1504 /* Now move the zspage to another fullness group, if required */
1505 fix_fullness_group(class, zspage);
1506 record_obj(handle, obj);
61989a80 1507 spin_unlock(&class->lock);
61989a80 1508
48b4800a
MK
1509 return handle;
1510 }
0f050d99 1511
48b4800a
MK
1512 spin_unlock(&class->lock);
1513
1514 zspage = alloc_zspage(pool, class, gfp);
1515 if (!zspage) {
1516 cache_free_handle(pool, handle);
1517 return 0;
61989a80
NG
1518 }
1519
48b4800a 1520 spin_lock(&class->lock);
3783689a 1521 obj = obj_malloc(class, zspage, handle);
48b4800a
MK
1522 newfg = get_fullness_group(class, zspage);
1523 insert_zspage(class, zspage, newfg);
1524 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1525 record_obj(handle, obj);
48b4800a
MK
1526 atomic_long_add(class->pages_per_zspage,
1527 &pool->pages_allocated);
b4fd07a0 1528 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1529
1530 /* We completely set up zspage so mark them as movable */
1531 SetZsPageMovable(pool, zspage);
61989a80
NG
1532 spin_unlock(&class->lock);
1533
2e40e163 1534 return handle;
61989a80
NG
1535}
1536EXPORT_SYMBOL_GPL(zs_malloc);
1537
1ee47165 1538static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1539{
1540 struct link_free *link;
3783689a
MK
1541 struct zspage *zspage;
1542 struct page *f_page;
bfd093f5
MK
1543 unsigned long f_offset;
1544 unsigned int f_objidx;
af4ee5e9 1545 void *vaddr;
61989a80 1546
312fcae2 1547 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1548 obj_to_location(obj, &f_page, &f_objidx);
bfd093f5 1549 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
3783689a 1550 zspage = get_zspage(f_page);
61989a80 1551
c7806261 1552 vaddr = kmap_atomic(f_page);
61989a80
NG
1553
1554 /* Insert this object in containing zspage's freelist */
af4ee5e9 1555 link = (struct link_free *)(vaddr + f_offset);
3b1d9ca6 1556 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
af4ee5e9 1557 kunmap_atomic(vaddr);
bfd093f5 1558 set_freeobj(zspage, f_objidx);
3783689a 1559 mod_zspage_inuse(zspage, -1);
0f050d99 1560 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1561}
1562
1563void zs_free(struct zs_pool *pool, unsigned long handle)
1564{
3783689a
MK
1565 struct zspage *zspage;
1566 struct page *f_page;
bfd093f5
MK
1567 unsigned long obj;
1568 unsigned int f_objidx;
c7806261
MK
1569 int class_idx;
1570 struct size_class *class;
1571 enum fullness_group fullness;
48b4800a 1572 bool isolated;
c7806261
MK
1573
1574 if (unlikely(!handle))
1575 return;
1576
312fcae2 1577 pin_tag(handle);
c7806261 1578 obj = handle_to_obj(handle);
c7806261 1579 obj_to_location(obj, &f_page, &f_objidx);
3783689a 1580 zspage = get_zspage(f_page);
c7806261 1581
48b4800a
MK
1582 migrate_read_lock(zspage);
1583
3783689a 1584 get_zspage_mapping(zspage, &class_idx, &fullness);
c7806261
MK
1585 class = pool->size_class[class_idx];
1586
1587 spin_lock(&class->lock);
1ee47165 1588 obj_free(class, obj);
3783689a 1589 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1590 if (fullness != ZS_EMPTY) {
1591 migrate_read_unlock(zspage);
1592 goto out;
312fcae2 1593 }
48b4800a
MK
1594
1595 isolated = is_zspage_isolated(zspage);
1596 migrate_read_unlock(zspage);
1597 /* If zspage is isolated, zs_page_putback will free the zspage */
1598 if (likely(!isolated))
1599 free_zspage(pool, class, zspage);
1600out:
1601
61989a80 1602 spin_unlock(&class->lock);
312fcae2 1603 unpin_tag(handle);
3783689a 1604 cache_free_handle(pool, handle);
312fcae2
MK
1605}
1606EXPORT_SYMBOL_GPL(zs_free);
1607
251cbb95
MK
1608static void zs_object_copy(struct size_class *class, unsigned long dst,
1609 unsigned long src)
312fcae2
MK
1610{
1611 struct page *s_page, *d_page;
bfd093f5 1612 unsigned int s_objidx, d_objidx;
312fcae2
MK
1613 unsigned long s_off, d_off;
1614 void *s_addr, *d_addr;
1615 int s_size, d_size, size;
1616 int written = 0;
1617
1618 s_size = d_size = class->size;
1619
1620 obj_to_location(src, &s_page, &s_objidx);
1621 obj_to_location(dst, &d_page, &d_objidx);
1622
bfd093f5
MK
1623 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1624 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1625
1626 if (s_off + class->size > PAGE_SIZE)
1627 s_size = PAGE_SIZE - s_off;
1628
1629 if (d_off + class->size > PAGE_SIZE)
1630 d_size = PAGE_SIZE - d_off;
1631
1632 s_addr = kmap_atomic(s_page);
1633 d_addr = kmap_atomic(d_page);
1634
1635 while (1) {
1636 size = min(s_size, d_size);
1637 memcpy(d_addr + d_off, s_addr + s_off, size);
1638 written += size;
1639
1640 if (written == class->size)
1641 break;
1642
495819ea
SS
1643 s_off += size;
1644 s_size -= size;
1645 d_off += size;
1646 d_size -= size;
1647
1648 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1649 kunmap_atomic(d_addr);
1650 kunmap_atomic(s_addr);
1651 s_page = get_next_page(s_page);
312fcae2
MK
1652 s_addr = kmap_atomic(s_page);
1653 d_addr = kmap_atomic(d_page);
1654 s_size = class->size - written;
1655 s_off = 0;
312fcae2
MK
1656 }
1657
495819ea 1658 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1659 kunmap_atomic(d_addr);
1660 d_page = get_next_page(d_page);
312fcae2
MK
1661 d_addr = kmap_atomic(d_page);
1662 d_size = class->size - written;
1663 d_off = 0;
312fcae2
MK
1664 }
1665 }
1666
1667 kunmap_atomic(d_addr);
1668 kunmap_atomic(s_addr);
1669}
1670
1671/*
1672 * Find alloced object in zspage from index object and
1673 * return handle.
1674 */
251cbb95 1675static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1676 struct page *page, int *obj_idx)
312fcae2
MK
1677{
1678 unsigned long head;
1679 int offset = 0;
cf675acb 1680 int index = *obj_idx;
312fcae2
MK
1681 unsigned long handle = 0;
1682 void *addr = kmap_atomic(page);
1683
3783689a 1684 offset = get_first_obj_offset(page);
312fcae2
MK
1685 offset += class->size * index;
1686
1687 while (offset < PAGE_SIZE) {
48b4800a 1688 head = obj_to_head(page, addr + offset);
312fcae2
MK
1689 if (head & OBJ_ALLOCATED_TAG) {
1690 handle = head & ~OBJ_ALLOCATED_TAG;
1691 if (trypin_tag(handle))
1692 break;
1693 handle = 0;
1694 }
1695
1696 offset += class->size;
1697 index++;
1698 }
1699
1700 kunmap_atomic(addr);
cf675acb
GM
1701
1702 *obj_idx = index;
1703
312fcae2
MK
1704 return handle;
1705}
1706
1707struct zs_compact_control {
3783689a 1708 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1709 struct page *s_page;
1710 /* Destination page for migration which should be a first page
1711 * of zspage. */
1712 struct page *d_page;
1713 /* Starting object index within @s_page which used for live object
1714 * in the subpage. */
41b88e14 1715 int obj_idx;
312fcae2
MK
1716};
1717
1718static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1719 struct zs_compact_control *cc)
1720{
1721 unsigned long used_obj, free_obj;
1722 unsigned long handle;
1723 struct page *s_page = cc->s_page;
1724 struct page *d_page = cc->d_page;
41b88e14 1725 int obj_idx = cc->obj_idx;
312fcae2
MK
1726 int ret = 0;
1727
1728 while (1) {
cf675acb 1729 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1730 if (!handle) {
1731 s_page = get_next_page(s_page);
1732 if (!s_page)
1733 break;
41b88e14 1734 obj_idx = 0;
312fcae2
MK
1735 continue;
1736 }
1737
1738 /* Stop if there is no more space */
3783689a 1739 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1740 unpin_tag(handle);
1741 ret = -ENOMEM;
1742 break;
1743 }
1744
1745 used_obj = handle_to_obj(handle);
3783689a 1746 free_obj = obj_malloc(class, get_zspage(d_page), handle);
251cbb95 1747 zs_object_copy(class, free_obj, used_obj);
41b88e14 1748 obj_idx++;
c102f07c
JL
1749 /*
1750 * record_obj updates handle's value to free_obj and it will
1751 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1752 * breaks synchronization using pin_tag(e,g, zs_free) so
1753 * let's keep the lock bit.
1754 */
1755 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1756 record_obj(handle, free_obj);
1757 unpin_tag(handle);
1ee47165 1758 obj_free(class, used_obj);
312fcae2
MK
1759 }
1760
1761 /* Remember last position in this iteration */
1762 cc->s_page = s_page;
41b88e14 1763 cc->obj_idx = obj_idx;
312fcae2
MK
1764
1765 return ret;
1766}
1767
3783689a 1768static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1769{
1770 int i;
3783689a
MK
1771 struct zspage *zspage;
1772 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1773
3783689a
MK
1774 if (!source) {
1775 fg[0] = ZS_ALMOST_FULL;
1776 fg[1] = ZS_ALMOST_EMPTY;
1777 }
1778
1779 for (i = 0; i < 2; i++) {
1780 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1781 struct zspage, list);
1782 if (zspage) {
48b4800a 1783 VM_BUG_ON(is_zspage_isolated(zspage));
3783689a
MK
1784 remove_zspage(class, zspage, fg[i]);
1785 return zspage;
312fcae2
MK
1786 }
1787 }
1788
3783689a 1789 return zspage;
312fcae2
MK
1790}
1791
860c707d 1792/*
3783689a 1793 * putback_zspage - add @zspage into right class's fullness list
860c707d 1794 * @class: destination class
3783689a 1795 * @zspage: target page
860c707d 1796 *
3783689a 1797 * Return @zspage's fullness_group
860c707d 1798 */
4aa409ca 1799static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1800 struct zspage *zspage)
312fcae2 1801{
312fcae2
MK
1802 enum fullness_group fullness;
1803
48b4800a
MK
1804 VM_BUG_ON(is_zspage_isolated(zspage));
1805
3783689a
MK
1806 fullness = get_fullness_group(class, zspage);
1807 insert_zspage(class, zspage, fullness);
1808 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1809
860c707d 1810 return fullness;
61989a80 1811}
312fcae2 1812
48b4800a
MK
1813#ifdef CONFIG_COMPACTION
1814static struct dentry *zs_mount(struct file_system_type *fs_type,
1815 int flags, const char *dev_name, void *data)
1816{
1817 static const struct dentry_operations ops = {
1818 .d_dname = simple_dname,
1819 };
1820
1821 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1822}
1823
1824static struct file_system_type zsmalloc_fs = {
1825 .name = "zsmalloc",
1826 .mount = zs_mount,
1827 .kill_sb = kill_anon_super,
1828};
1829
1830static int zsmalloc_mount(void)
1831{
1832 int ret = 0;
1833
1834 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1835 if (IS_ERR(zsmalloc_mnt))
1836 ret = PTR_ERR(zsmalloc_mnt);
1837
1838 return ret;
1839}
1840
1841static void zsmalloc_unmount(void)
1842{
1843 kern_unmount(zsmalloc_mnt);
1844}
1845
1846static void migrate_lock_init(struct zspage *zspage)
1847{
1848 rwlock_init(&zspage->lock);
1849}
1850
1851static void migrate_read_lock(struct zspage *zspage)
1852{
1853 read_lock(&zspage->lock);
1854}
1855
1856static void migrate_read_unlock(struct zspage *zspage)
1857{
1858 read_unlock(&zspage->lock);
1859}
1860
1861static void migrate_write_lock(struct zspage *zspage)
1862{
1863 write_lock(&zspage->lock);
1864}
1865
1866static void migrate_write_unlock(struct zspage *zspage)
1867{
1868 write_unlock(&zspage->lock);
1869}
1870
1871/* Number of isolated subpage for *page migration* in this zspage */
1872static void inc_zspage_isolation(struct zspage *zspage)
1873{
1874 zspage->isolated++;
1875}
1876
1877static void dec_zspage_isolation(struct zspage *zspage)
1878{
1879 zspage->isolated--;
1880}
1881
1882static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1883 struct page *newpage, struct page *oldpage)
1884{
1885 struct page *page;
1886 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1887 int idx = 0;
1888
1889 page = get_first_page(zspage);
1890 do {
1891 if (page == oldpage)
1892 pages[idx] = newpage;
1893 else
1894 pages[idx] = page;
1895 idx++;
1896 } while ((page = get_next_page(page)) != NULL);
1897
1898 create_page_chain(class, zspage, pages);
1899 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1900 if (unlikely(PageHugeObject(oldpage)))
1901 newpage->index = oldpage->index;
1902 __SetPageMovable(newpage, page_mapping(oldpage));
1903}
1904
1905bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1906{
1907 struct zs_pool *pool;
1908 struct size_class *class;
1909 int class_idx;
1910 enum fullness_group fullness;
1911 struct zspage *zspage;
1912 struct address_space *mapping;
1913
1914 /*
1915 * Page is locked so zspage couldn't be destroyed. For detail, look at
1916 * lock_zspage in free_zspage.
1917 */
1918 VM_BUG_ON_PAGE(!PageMovable(page), page);
1919 VM_BUG_ON_PAGE(PageIsolated(page), page);
1920
1921 zspage = get_zspage(page);
1922
1923 /*
1924 * Without class lock, fullness could be stale while class_idx is okay
1925 * because class_idx is constant unless page is freed so we should get
1926 * fullness again under class lock.
1927 */
1928 get_zspage_mapping(zspage, &class_idx, &fullness);
1929 mapping = page_mapping(page);
1930 pool = mapping->private_data;
1931 class = pool->size_class[class_idx];
1932
1933 spin_lock(&class->lock);
1934 if (get_zspage_inuse(zspage) == 0) {
1935 spin_unlock(&class->lock);
1936 return false;
1937 }
1938
1939 /* zspage is isolated for object migration */
1940 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1941 spin_unlock(&class->lock);
1942 return false;
1943 }
1944
1945 /*
1946 * If this is first time isolation for the zspage, isolate zspage from
1947 * size_class to prevent further object allocation from the zspage.
1948 */
1949 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1950 get_zspage_mapping(zspage, &class_idx, &fullness);
1951 remove_zspage(class, zspage, fullness);
1952 }
1953
1954 inc_zspage_isolation(zspage);
1955 spin_unlock(&class->lock);
1956
1957 return true;
1958}
1959
1960int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1961 struct page *page, enum migrate_mode mode)
1962{
1963 struct zs_pool *pool;
1964 struct size_class *class;
1965 int class_idx;
1966 enum fullness_group fullness;
1967 struct zspage *zspage;
1968 struct page *dummy;
1969 void *s_addr, *d_addr, *addr;
1970 int offset, pos;
1971 unsigned long handle, head;
1972 unsigned long old_obj, new_obj;
1973 unsigned int obj_idx;
1974 int ret = -EAGAIN;
1975
2916ecc0
JG
1976 /*
1977 * We cannot support the _NO_COPY case here, because copy needs to
1978 * happen under the zs lock, which does not work with
1979 * MIGRATE_SYNC_NO_COPY workflow.
1980 */
1981 if (mode == MIGRATE_SYNC_NO_COPY)
1982 return -EINVAL;
1983
48b4800a
MK
1984 VM_BUG_ON_PAGE(!PageMovable(page), page);
1985 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1986
1987 zspage = get_zspage(page);
1988
1989 /* Concurrent compactor cannot migrate any subpage in zspage */
1990 migrate_write_lock(zspage);
1991 get_zspage_mapping(zspage, &class_idx, &fullness);
1992 pool = mapping->private_data;
1993 class = pool->size_class[class_idx];
1994 offset = get_first_obj_offset(page);
1995
1996 spin_lock(&class->lock);
1997 if (!get_zspage_inuse(zspage)) {
77ff4657
HZ
1998 /*
1999 * Set "offset" to end of the page so that every loops
2000 * skips unnecessary object scanning.
2001 */
2002 offset = PAGE_SIZE;
48b4800a
MK
2003 }
2004
2005 pos = offset;
2006 s_addr = kmap_atomic(page);
2007 while (pos < PAGE_SIZE) {
2008 head = obj_to_head(page, s_addr + pos);
2009 if (head & OBJ_ALLOCATED_TAG) {
2010 handle = head & ~OBJ_ALLOCATED_TAG;
2011 if (!trypin_tag(handle))
2012 goto unpin_objects;
2013 }
2014 pos += class->size;
2015 }
2016
2017 /*
2018 * Here, any user cannot access all objects in the zspage so let's move.
2019 */
2020 d_addr = kmap_atomic(newpage);
2021 memcpy(d_addr, s_addr, PAGE_SIZE);
2022 kunmap_atomic(d_addr);
2023
2024 for (addr = s_addr + offset; addr < s_addr + pos;
2025 addr += class->size) {
2026 head = obj_to_head(page, addr);
2027 if (head & OBJ_ALLOCATED_TAG) {
2028 handle = head & ~OBJ_ALLOCATED_TAG;
2029 if (!testpin_tag(handle))
2030 BUG();
2031
2032 old_obj = handle_to_obj(handle);
2033 obj_to_location(old_obj, &dummy, &obj_idx);
2034 new_obj = (unsigned long)location_to_obj(newpage,
2035 obj_idx);
2036 new_obj |= BIT(HANDLE_PIN_BIT);
2037 record_obj(handle, new_obj);
2038 }
2039 }
2040
2041 replace_sub_page(class, zspage, newpage, page);
2042 get_page(newpage);
2043
2044 dec_zspage_isolation(zspage);
2045
2046 /*
2047 * Page migration is done so let's putback isolated zspage to
2048 * the list if @page is final isolated subpage in the zspage.
2049 */
2050 if (!is_zspage_isolated(zspage))
2051 putback_zspage(class, zspage);
2052
2053 reset_page(page);
2054 put_page(page);
2055 page = newpage;
2056
dd4123f3 2057 ret = MIGRATEPAGE_SUCCESS;
48b4800a
MK
2058unpin_objects:
2059 for (addr = s_addr + offset; addr < s_addr + pos;
2060 addr += class->size) {
2061 head = obj_to_head(page, addr);
2062 if (head & OBJ_ALLOCATED_TAG) {
2063 handle = head & ~OBJ_ALLOCATED_TAG;
2064 if (!testpin_tag(handle))
2065 BUG();
2066 unpin_tag(handle);
2067 }
2068 }
2069 kunmap_atomic(s_addr);
48b4800a
MK
2070 spin_unlock(&class->lock);
2071 migrate_write_unlock(zspage);
2072
2073 return ret;
2074}
2075
2076void zs_page_putback(struct page *page)
2077{
2078 struct zs_pool *pool;
2079 struct size_class *class;
2080 int class_idx;
2081 enum fullness_group fg;
2082 struct address_space *mapping;
2083 struct zspage *zspage;
2084
2085 VM_BUG_ON_PAGE(!PageMovable(page), page);
2086 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2087
2088 zspage = get_zspage(page);
2089 get_zspage_mapping(zspage, &class_idx, &fg);
2090 mapping = page_mapping(page);
2091 pool = mapping->private_data;
2092 class = pool->size_class[class_idx];
2093
2094 spin_lock(&class->lock);
2095 dec_zspage_isolation(zspage);
2096 if (!is_zspage_isolated(zspage)) {
2097 fg = putback_zspage(class, zspage);
2098 /*
2099 * Due to page_lock, we cannot free zspage immediately
2100 * so let's defer.
2101 */
2102 if (fg == ZS_EMPTY)
2103 schedule_work(&pool->free_work);
2104 }
2105 spin_unlock(&class->lock);
2106}
2107
2108const struct address_space_operations zsmalloc_aops = {
2109 .isolate_page = zs_page_isolate,
2110 .migratepage = zs_page_migrate,
2111 .putback_page = zs_page_putback,
2112};
2113
2114static int zs_register_migration(struct zs_pool *pool)
2115{
2116 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2117 if (IS_ERR(pool->inode)) {
2118 pool->inode = NULL;
2119 return 1;
2120 }
2121
2122 pool->inode->i_mapping->private_data = pool;
2123 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2124 return 0;
2125}
2126
2127static void zs_unregister_migration(struct zs_pool *pool)
2128{
2129 flush_work(&pool->free_work);
c3491eca 2130 iput(pool->inode);
48b4800a
MK
2131}
2132
2133/*
2134 * Caller should hold page_lock of all pages in the zspage
2135 * In here, we cannot use zspage meta data.
2136 */
2137static void async_free_zspage(struct work_struct *work)
2138{
2139 int i;
2140 struct size_class *class;
2141 unsigned int class_idx;
2142 enum fullness_group fullness;
2143 struct zspage *zspage, *tmp;
2144 LIST_HEAD(free_pages);
2145 struct zs_pool *pool = container_of(work, struct zs_pool,
2146 free_work);
2147
cf8e0fed 2148 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2149 class = pool->size_class[i];
2150 if (class->index != i)
2151 continue;
2152
2153 spin_lock(&class->lock);
2154 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2155 spin_unlock(&class->lock);
2156 }
2157
2158
2159 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2160 list_del(&zspage->list);
2161 lock_zspage(zspage);
2162
2163 get_zspage_mapping(zspage, &class_idx, &fullness);
2164 VM_BUG_ON(fullness != ZS_EMPTY);
2165 class = pool->size_class[class_idx];
2166 spin_lock(&class->lock);
2167 __free_zspage(pool, pool->size_class[class_idx], zspage);
2168 spin_unlock(&class->lock);
2169 }
2170};
2171
2172static void kick_deferred_free(struct zs_pool *pool)
2173{
2174 schedule_work(&pool->free_work);
2175}
2176
2177static void init_deferred_free(struct zs_pool *pool)
2178{
2179 INIT_WORK(&pool->free_work, async_free_zspage);
2180}
2181
2182static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2183{
2184 struct page *page = get_first_page(zspage);
2185
2186 do {
2187 WARN_ON(!trylock_page(page));
2188 __SetPageMovable(page, pool->inode->i_mapping);
2189 unlock_page(page);
2190 } while ((page = get_next_page(page)) != NULL);
2191}
2192#endif
2193
04f05909
SS
2194/*
2195 *
2196 * Based on the number of unused allocated objects calculate
2197 * and return the number of pages that we can free.
04f05909
SS
2198 */
2199static unsigned long zs_can_compact(struct size_class *class)
2200{
2201 unsigned long obj_wasted;
44f43e99
SS
2202 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2203 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2204
44f43e99
SS
2205 if (obj_allocated <= obj_used)
2206 return 0;
04f05909 2207
44f43e99 2208 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2209 obj_wasted /= class->objs_per_zspage;
04f05909 2210
6cbf16b3 2211 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2212}
2213
7d3f3938 2214static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 2215{
312fcae2 2216 struct zs_compact_control cc;
3783689a
MK
2217 struct zspage *src_zspage;
2218 struct zspage *dst_zspage = NULL;
312fcae2 2219
312fcae2 2220 spin_lock(&class->lock);
3783689a 2221 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2222
04f05909
SS
2223 if (!zs_can_compact(class))
2224 break;
2225
41b88e14 2226 cc.obj_idx = 0;
48b4800a 2227 cc.s_page = get_first_page(src_zspage);
312fcae2 2228
3783689a 2229 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2230 cc.d_page = get_first_page(dst_zspage);
312fcae2 2231 /*
0dc63d48
SS
2232 * If there is no more space in dst_page, resched
2233 * and see if anyone had allocated another zspage.
312fcae2
MK
2234 */
2235 if (!migrate_zspage(pool, class, &cc))
2236 break;
2237
4aa409ca 2238 putback_zspage(class, dst_zspage);
312fcae2
MK
2239 }
2240
2241 /* Stop if we couldn't find slot */
3783689a 2242 if (dst_zspage == NULL)
312fcae2
MK
2243 break;
2244
4aa409ca
MK
2245 putback_zspage(class, dst_zspage);
2246 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2247 free_zspage(pool, class, src_zspage);
6cbf16b3 2248 pool->stats.pages_compacted += class->pages_per_zspage;
4aa409ca 2249 }
312fcae2 2250 spin_unlock(&class->lock);
312fcae2
MK
2251 cond_resched();
2252 spin_lock(&class->lock);
2253 }
2254
3783689a 2255 if (src_zspage)
4aa409ca 2256 putback_zspage(class, src_zspage);
312fcae2 2257
7d3f3938 2258 spin_unlock(&class->lock);
312fcae2
MK
2259}
2260
2261unsigned long zs_compact(struct zs_pool *pool)
2262{
2263 int i;
312fcae2
MK
2264 struct size_class *class;
2265
cf8e0fed 2266 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2267 class = pool->size_class[i];
2268 if (!class)
2269 continue;
2270 if (class->index != i)
2271 continue;
7d3f3938 2272 __zs_compact(pool, class);
312fcae2
MK
2273 }
2274
860c707d 2275 return pool->stats.pages_compacted;
312fcae2
MK
2276}
2277EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2278
7d3f3938
SS
2279void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2280{
2281 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2282}
2283EXPORT_SYMBOL_GPL(zs_pool_stats);
2284
ab9d306d
SS
2285static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2286 struct shrink_control *sc)
2287{
2288 unsigned long pages_freed;
2289 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2290 shrinker);
2291
2292 pages_freed = pool->stats.pages_compacted;
2293 /*
2294 * Compact classes and calculate compaction delta.
2295 * Can run concurrently with a manually triggered
2296 * (by user) compaction.
2297 */
2298 pages_freed = zs_compact(pool) - pages_freed;
2299
2300 return pages_freed ? pages_freed : SHRINK_STOP;
2301}
2302
2303static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2304 struct shrink_control *sc)
2305{
2306 int i;
2307 struct size_class *class;
2308 unsigned long pages_to_free = 0;
2309 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2310 shrinker);
2311
cf8e0fed 2312 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2313 class = pool->size_class[i];
2314 if (!class)
2315 continue;
2316 if (class->index != i)
2317 continue;
2318
ab9d306d 2319 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2320 }
2321
2322 return pages_to_free;
2323}
2324
2325static void zs_unregister_shrinker(struct zs_pool *pool)
2326{
2327 if (pool->shrinker_enabled) {
2328 unregister_shrinker(&pool->shrinker);
2329 pool->shrinker_enabled = false;
2330 }
2331}
2332
2333static int zs_register_shrinker(struct zs_pool *pool)
2334{
2335 pool->shrinker.scan_objects = zs_shrinker_scan;
2336 pool->shrinker.count_objects = zs_shrinker_count;
2337 pool->shrinker.batch = 0;
2338 pool->shrinker.seeks = DEFAULT_SEEKS;
2339
2340 return register_shrinker(&pool->shrinker);
2341}
2342
00a61d86 2343/**
66cdef66 2344 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2345 * @name: pool name to be created
166cfda7 2346 *
66cdef66
GM
2347 * This function must be called before anything when using
2348 * the zsmalloc allocator.
166cfda7 2349 *
66cdef66
GM
2350 * On success, a pointer to the newly created pool is returned,
2351 * otherwise NULL.
396b7fd6 2352 */
d0d8da2d 2353struct zs_pool *zs_create_pool(const char *name)
61989a80 2354{
66cdef66
GM
2355 int i;
2356 struct zs_pool *pool;
2357 struct size_class *prev_class = NULL;
61989a80 2358
66cdef66
GM
2359 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2360 if (!pool)
2361 return NULL;
61989a80 2362
48b4800a 2363 init_deferred_free(pool);
61989a80 2364
2e40e163
MK
2365 pool->name = kstrdup(name, GFP_KERNEL);
2366 if (!pool->name)
2367 goto err;
2368
3783689a 2369 if (create_cache(pool))
2e40e163
MK
2370 goto err;
2371
c60369f0 2372 /*
399d8eeb 2373 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2374 * for merging should be larger or equal to current size.
c60369f0 2375 */
cf8e0fed 2376 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2377 int size;
2378 int pages_per_zspage;
64d90465 2379 int objs_per_zspage;
66cdef66 2380 struct size_class *class;
3783689a 2381 int fullness = 0;
c60369f0 2382
66cdef66
GM
2383 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2384 if (size > ZS_MAX_ALLOC_SIZE)
2385 size = ZS_MAX_ALLOC_SIZE;
2386 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2387 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2388
66cdef66
GM
2389 /*
2390 * size_class is used for normal zsmalloc operation such
2391 * as alloc/free for that size. Although it is natural that we
2392 * have one size_class for each size, there is a chance that we
2393 * can get more memory utilization if we use one size_class for
2394 * many different sizes whose size_class have same
2395 * characteristics. So, we makes size_class point to
2396 * previous size_class if possible.
2397 */
2398 if (prev_class) {
64d90465 2399 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2400 pool->size_class[i] = prev_class;
2401 continue;
2402 }
2403 }
2404
2405 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2406 if (!class)
2407 goto err;
2408
2409 class->size = size;
2410 class->index = i;
2411 class->pages_per_zspage = pages_per_zspage;
64d90465 2412 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2413 spin_lock_init(&class->lock);
2414 pool->size_class[i] = class;
48b4800a
MK
2415 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2416 fullness++)
3783689a 2417 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2418
2419 prev_class = class;
61989a80
NG
2420 }
2421
d34f6157
DS
2422 /* debug only, don't abort if it fails */
2423 zs_pool_stat_create(pool, name);
0f050d99 2424
48b4800a
MK
2425 if (zs_register_migration(pool))
2426 goto err;
2427
ab9d306d
SS
2428 /*
2429 * Not critical, we still can use the pool
2430 * and user can trigger compaction manually.
2431 */
2432 if (zs_register_shrinker(pool) == 0)
2433 pool->shrinker_enabled = true;
66cdef66
GM
2434 return pool;
2435
2436err:
2437 zs_destroy_pool(pool);
2438 return NULL;
61989a80 2439}
66cdef66 2440EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2441
66cdef66 2442void zs_destroy_pool(struct zs_pool *pool)
61989a80 2443{
66cdef66 2444 int i;
61989a80 2445
ab9d306d 2446 zs_unregister_shrinker(pool);
48b4800a 2447 zs_unregister_migration(pool);
0f050d99
GM
2448 zs_pool_stat_destroy(pool);
2449
cf8e0fed 2450 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2451 int fg;
2452 struct size_class *class = pool->size_class[i];
61989a80 2453
66cdef66
GM
2454 if (!class)
2455 continue;
61989a80 2456
66cdef66
GM
2457 if (class->index != i)
2458 continue;
61989a80 2459
48b4800a 2460 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2461 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2462 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2463 class->size, fg);
2464 }
2465 }
2466 kfree(class);
2467 }
f553646a 2468
3783689a 2469 destroy_cache(pool);
0f050d99 2470 kfree(pool->name);
66cdef66
GM
2471 kfree(pool);
2472}
2473EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2474
66cdef66
GM
2475static int __init zs_init(void)
2476{
48b4800a
MK
2477 int ret;
2478
2479 ret = zsmalloc_mount();
2480 if (ret)
2481 goto out;
2482
215c89d0
SAS
2483 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2484 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2485 if (ret)
215c89d0 2486 goto hp_setup_fail;
66cdef66 2487
66cdef66
GM
2488#ifdef CONFIG_ZPOOL
2489 zpool_register_driver(&zs_zpool_driver);
2490#endif
0f050d99 2491
4abaac9b
DS
2492 zs_stat_init();
2493
66cdef66 2494 return 0;
0f050d99 2495
215c89d0 2496hp_setup_fail:
48b4800a
MK
2497 zsmalloc_unmount();
2498out:
0f050d99 2499 return ret;
61989a80 2500}
61989a80 2501
66cdef66 2502static void __exit zs_exit(void)
61989a80 2503{
66cdef66
GM
2504#ifdef CONFIG_ZPOOL
2505 zpool_unregister_driver(&zs_zpool_driver);
2506#endif
48b4800a 2507 zsmalloc_unmount();
215c89d0 2508 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2509
2510 zs_stat_exit();
61989a80 2511}
069f101f
BH
2512
2513module_init(zs_init);
2514module_exit(zs_exit);
2515
2516MODULE_LICENSE("Dual BSD/GPL");
2517MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");