]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/zsmalloc.c
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[mirror_ubuntu-hirsute-kernel.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
48b4800a
MK
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
fd854463 23 * page->units: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
50d34394 36#include <linux/magic.h>
61989a80
NG
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
61989a80
NG
40#include <linux/string.h>
41#include <linux/slab.h>
ca5999fd 42#include <linux/pgtable.h>
65fddcfc 43#include <asm/tlbflush.h>
61989a80
NG
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
0cbb613f 46#include <linux/vmalloc.h>
759b26b2 47#include <linux/preempt.h>
0959c63f 48#include <linux/spinlock.h>
93144ca3 49#include <linux/shrinker.h>
0959c63f 50#include <linux/types.h>
0f050d99 51#include <linux/debugfs.h>
bcf1647d 52#include <linux/zsmalloc.h>
c795779d 53#include <linux/zpool.h>
48b4800a 54#include <linux/mount.h>
8e9231f8 55#include <linux/pseudo_fs.h>
dd4123f3 56#include <linux/migrate.h>
701d6785 57#include <linux/wait.h>
48b4800a 58#include <linux/pagemap.h>
cdc346b3 59#include <linux/fs.h>
48b4800a
MK
60
61#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
62
63/*
64 * This must be power of 2 and greater than of equal to sizeof(link_free).
65 * These two conditions ensure that any 'struct link_free' itself doesn't
66 * span more than 1 page which avoids complex case of mapping 2 pages simply
67 * to restore link_free pointer values.
68 */
69#define ZS_ALIGN 8
70
71/*
72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74 */
75#define ZS_MAX_ZSPAGE_ORDER 2
76#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
2e40e163
MK
78#define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
0959c63f
SJ
80/*
81 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 82 * a single (unsigned long) handle value.
0959c63f 83 *
bfd093f5 84 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
85 *
86 * This is made more complicated by various memory models and PAE.
87 */
88
02390b87
KS
89#ifndef MAX_POSSIBLE_PHYSMEM_BITS
90#ifdef MAX_PHYSMEM_BITS
91#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92#else
0959c63f
SJ
93/*
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 * be PAGE_SHIFT
96 */
02390b87 97#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
98#endif
99#endif
02390b87
KS
100
101#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
102
103/*
104 * Memory for allocating for handle keeps object position by
105 * encoding <page, obj_idx> and the encoded value has a room
106 * in least bit(ie, look at obj_to_location).
107 * We use the bit to synchronize between object access by
108 * user and migration.
109 */
110#define HANDLE_PIN_BIT 0
111
112/*
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
118 */
119#define OBJ_ALLOCATED_TAG 1
120#define OBJ_TAG_BITS 1
121#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
122#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
cf8e0fed
JM
124#define FULLNESS_BITS 2
125#define CLASS_BITS 8
126#define ISOLATED_BITS 3
127#define MAGIC_VAL_BITS 8
128
0959c63f
SJ
129#define MAX(a, b) ((a) >= (b) ? (a) : (b))
130/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131#define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 133/* each chunk includes extra space to keep handle */
7b60a685 134#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
135
136/*
7eb52512 137 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
138 * trader-off here:
139 * - Large number of size classes is potentially wasteful as free page are
140 * spread across these classes
141 * - Small number of size classes causes large internal fragmentation
142 * - Probably its better to use specific size classes (empirically
143 * determined). NOTE: all those class sizes must be set as multiple of
144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145 *
146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 * (reason above)
148 */
3783689a 149#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
150#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 152
0959c63f 153enum fullness_group {
0959c63f 154 ZS_EMPTY,
48b4800a
MK
155 ZS_ALMOST_EMPTY,
156 ZS_ALMOST_FULL,
157 ZS_FULL,
158 NR_ZS_FULLNESS,
0959c63f
SJ
159};
160
0f050d99 161enum zs_stat_type {
48b4800a
MK
162 CLASS_EMPTY,
163 CLASS_ALMOST_EMPTY,
164 CLASS_ALMOST_FULL,
165 CLASS_FULL,
0f050d99
GM
166 OBJ_ALLOCATED,
167 OBJ_USED,
48b4800a 168 NR_ZS_STAT_TYPE,
0f050d99
GM
169};
170
0f050d99
GM
171struct zs_size_stat {
172 unsigned long objs[NR_ZS_STAT_TYPE];
173};
174
57244594
SS
175#ifdef CONFIG_ZSMALLOC_STAT
176static struct dentry *zs_stat_root;
0f050d99
GM
177#endif
178
48b4800a
MK
179#ifdef CONFIG_COMPACTION
180static struct vfsmount *zsmalloc_mnt;
181#endif
182
0959c63f
SJ
183/*
184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185 * n <= N / f, where
186 * n = number of allocated objects
187 * N = total number of objects zspage can store
6dd9737e 188 * f = fullness_threshold_frac
0959c63f
SJ
189 *
190 * Similarly, we assign zspage to:
191 * ZS_ALMOST_FULL when n > N / f
192 * ZS_EMPTY when n == 0
193 * ZS_FULL when n == N
194 *
195 * (see: fix_fullness_group())
196 */
197static const int fullness_threshold_frac = 4;
010b495e 198static size_t huge_class_size;
0959c63f
SJ
199
200struct size_class {
57244594 201 spinlock_t lock;
48b4800a 202 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
203 /*
204 * Size of objects stored in this class. Must be multiple
205 * of ZS_ALIGN.
206 */
207 int size;
1fc6e27d 208 int objs_per_zspage;
7dfa4612
WY
209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 int pages_per_zspage;
48b4800a
MK
211
212 unsigned int index;
213 struct zs_size_stat stats;
0959c63f
SJ
214};
215
48b4800a
MK
216/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217static void SetPageHugeObject(struct page *page)
218{
219 SetPageOwnerPriv1(page);
220}
221
222static void ClearPageHugeObject(struct page *page)
223{
224 ClearPageOwnerPriv1(page);
225}
226
227static int PageHugeObject(struct page *page)
228{
229 return PageOwnerPriv1(page);
230}
231
0959c63f
SJ
232/*
233 * Placed within free objects to form a singly linked list.
3783689a 234 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
235 *
236 * This must be power of 2 and less than or equal to ZS_ALIGN
237 */
238struct link_free {
2e40e163
MK
239 union {
240 /*
bfd093f5 241 * Free object index;
2e40e163
MK
242 * It's valid for non-allocated object
243 */
bfd093f5 244 unsigned long next;
2e40e163
MK
245 /*
246 * Handle of allocated object.
247 */
248 unsigned long handle;
249 };
0959c63f
SJ
250};
251
252struct zs_pool {
6f3526d6 253 const char *name;
0f050d99 254
cf8e0fed 255 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 256 struct kmem_cache *handle_cachep;
3783689a 257 struct kmem_cache *zspage_cachep;
0959c63f 258
13de8933 259 atomic_long_t pages_allocated;
0f050d99 260
7d3f3938 261 struct zs_pool_stats stats;
ab9d306d
SS
262
263 /* Compact classes */
264 struct shrinker shrinker;
93144ca3 265
0f050d99
GM
266#ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry *stat_dentry;
268#endif
48b4800a
MK
269#ifdef CONFIG_COMPACTION
270 struct inode *inode;
271 struct work_struct free_work;
701d6785
HB
272 /* A wait queue for when migration races with async_free_zspage() */
273 struct wait_queue_head migration_wait;
274 atomic_long_t isolated_pages;
275 bool destroying;
48b4800a 276#endif
0959c63f 277};
61989a80 278
3783689a
MK
279struct zspage {
280 struct {
281 unsigned int fullness:FULLNESS_BITS;
85d492f2 282 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
283 unsigned int isolated:ISOLATED_BITS;
284 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
285 };
286 unsigned int inuse;
bfd093f5 287 unsigned int freeobj;
3783689a
MK
288 struct page *first_page;
289 struct list_head list; /* fullness list */
48b4800a
MK
290#ifdef CONFIG_COMPACTION
291 rwlock_t lock;
292#endif
3783689a 293};
61989a80 294
f553646a 295struct mapping_area {
8b136018 296#ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING
f553646a
SJ
297 struct vm_struct *vm; /* vm area for mapping object that span pages */
298#else
299 char *vm_buf; /* copy buffer for objects that span pages */
300#endif
301 char *vm_addr; /* address of kmap_atomic()'ed pages */
302 enum zs_mapmode vm_mm; /* mapping mode */
303};
304
48b4800a
MK
305#ifdef CONFIG_COMPACTION
306static int zs_register_migration(struct zs_pool *pool);
307static void zs_unregister_migration(struct zs_pool *pool);
308static void migrate_lock_init(struct zspage *zspage);
309static void migrate_read_lock(struct zspage *zspage);
310static void migrate_read_unlock(struct zspage *zspage);
311static void kick_deferred_free(struct zs_pool *pool);
312static void init_deferred_free(struct zs_pool *pool);
313static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
314#else
315static int zsmalloc_mount(void) { return 0; }
316static void zsmalloc_unmount(void) {}
317static int zs_register_migration(struct zs_pool *pool) { return 0; }
318static void zs_unregister_migration(struct zs_pool *pool) {}
319static void migrate_lock_init(struct zspage *zspage) {}
320static void migrate_read_lock(struct zspage *zspage) {}
321static void migrate_read_unlock(struct zspage *zspage) {}
322static void kick_deferred_free(struct zs_pool *pool) {}
323static void init_deferred_free(struct zs_pool *pool) {}
324static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
325#endif
326
3783689a 327static int create_cache(struct zs_pool *pool)
2e40e163
MK
328{
329 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
330 0, 0, NULL);
3783689a
MK
331 if (!pool->handle_cachep)
332 return 1;
333
334 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
335 0, 0, NULL);
336 if (!pool->zspage_cachep) {
337 kmem_cache_destroy(pool->handle_cachep);
338 pool->handle_cachep = NULL;
339 return 1;
340 }
341
342 return 0;
2e40e163
MK
343}
344
3783689a 345static void destroy_cache(struct zs_pool *pool)
2e40e163 346{
cd10add0 347 kmem_cache_destroy(pool->handle_cachep);
3783689a 348 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
349}
350
3783689a 351static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
352{
353 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 354 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
355}
356
3783689a 357static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
358{
359 kmem_cache_free(pool->handle_cachep, (void *)handle);
360}
361
3783689a
MK
362static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
363{
48b4800a
MK
364 return kmem_cache_alloc(pool->zspage_cachep,
365 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 366}
3783689a
MK
367
368static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
369{
370 kmem_cache_free(pool->zspage_cachep, zspage);
371}
372
2e40e163
MK
373static void record_obj(unsigned long handle, unsigned long obj)
374{
c102f07c
JL
375 /*
376 * lsb of @obj represents handle lock while other bits
377 * represent object value the handle is pointing so
378 * updating shouldn't do store tearing.
379 */
380 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
381}
382
c795779d
DS
383/* zpool driver */
384
385#ifdef CONFIG_ZPOOL
386
6f3526d6 387static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 388 const struct zpool_ops *zpool_ops,
479305fd 389 struct zpool *zpool)
c795779d 390{
d0d8da2d
SS
391 /*
392 * Ignore global gfp flags: zs_malloc() may be invoked from
393 * different contexts and its caller must provide a valid
394 * gfp mask.
395 */
396 return zs_create_pool(name);
c795779d
DS
397}
398
399static void zs_zpool_destroy(void *pool)
400{
401 zs_destroy_pool(pool);
402}
403
404static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
405 unsigned long *handle)
406{
d0d8da2d 407 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
408 return *handle ? 0 : -1;
409}
410static void zs_zpool_free(void *pool, unsigned long handle)
411{
412 zs_free(pool, handle);
413}
414
c795779d
DS
415static void *zs_zpool_map(void *pool, unsigned long handle,
416 enum zpool_mapmode mm)
417{
418 enum zs_mapmode zs_mm;
419
420 switch (mm) {
421 case ZPOOL_MM_RO:
422 zs_mm = ZS_MM_RO;
423 break;
424 case ZPOOL_MM_WO:
425 zs_mm = ZS_MM_WO;
426 break;
e4a9bc58 427 case ZPOOL_MM_RW:
c795779d
DS
428 default:
429 zs_mm = ZS_MM_RW;
430 break;
431 }
432
433 return zs_map_object(pool, handle, zs_mm);
434}
435static void zs_zpool_unmap(void *pool, unsigned long handle)
436{
437 zs_unmap_object(pool, handle);
438}
439
440static u64 zs_zpool_total_size(void *pool)
441{
722cdc17 442 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
443}
444
445static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
446 .type = "zsmalloc",
447 .owner = THIS_MODULE,
448 .create = zs_zpool_create,
449 .destroy = zs_zpool_destroy,
450 .malloc_support_movable = true,
451 .malloc = zs_zpool_malloc,
452 .free = zs_zpool_free,
453 .map = zs_zpool_map,
454 .unmap = zs_zpool_unmap,
455 .total_size = zs_zpool_total_size,
c795779d
DS
456};
457
137f8cff 458MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
459#endif /* CONFIG_ZPOOL */
460
61989a80
NG
461/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
462static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
463
48b4800a
MK
464static bool is_zspage_isolated(struct zspage *zspage)
465{
466 return zspage->isolated;
467}
468
3457f414 469static __maybe_unused int is_first_page(struct page *page)
61989a80 470{
a27545bf 471 return PagePrivate(page);
61989a80
NG
472}
473
48b4800a 474/* Protected by class->lock */
3783689a 475static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 476{
3783689a 477 return zspage->inuse;
4f42047b
MK
478}
479
4f42047b 480
3783689a 481static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 482{
3783689a 483 zspage->inuse += val;
4f42047b
MK
484}
485
48b4800a 486static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 487{
48b4800a 488 struct page *first_page = zspage->first_page;
3783689a 489
48b4800a
MK
490 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
491 return first_page;
4f42047b
MK
492}
493
48b4800a 494static inline int get_first_obj_offset(struct page *page)
4f42047b 495{
48b4800a
MK
496 return page->units;
497}
3783689a 498
48b4800a
MK
499static inline void set_first_obj_offset(struct page *page, int offset)
500{
501 page->units = offset;
4f42047b
MK
502}
503
bfd093f5 504static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 505{
bfd093f5 506 return zspage->freeobj;
4f42047b
MK
507}
508
bfd093f5 509static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 510{
bfd093f5 511 zspage->freeobj = obj;
4f42047b
MK
512}
513
3783689a 514static void get_zspage_mapping(struct zspage *zspage,
a4209467 515 unsigned int *class_idx,
61989a80
NG
516 enum fullness_group *fullness)
517{
48b4800a
MK
518 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
519
3783689a
MK
520 *fullness = zspage->fullness;
521 *class_idx = zspage->class;
61989a80
NG
522}
523
3783689a 524static void set_zspage_mapping(struct zspage *zspage,
a4209467 525 unsigned int class_idx,
61989a80
NG
526 enum fullness_group fullness)
527{
3783689a
MK
528 zspage->class = class_idx;
529 zspage->fullness = fullness;
61989a80
NG
530}
531
c3e3e88a
NC
532/*
533 * zsmalloc divides the pool into various size classes where each
534 * class maintains a list of zspages where each zspage is divided
535 * into equal sized chunks. Each allocation falls into one of these
536 * classes depending on its size. This function returns index of the
537 * size class which has chunk size big enough to hold the give size.
538 */
61989a80
NG
539static int get_size_class_index(int size)
540{
541 int idx = 0;
542
543 if (likely(size > ZS_MIN_ALLOC_SIZE))
544 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
545 ZS_SIZE_CLASS_DELTA);
546
cf8e0fed 547 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
548}
549
3eb95fea 550/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 551static inline void zs_stat_inc(struct size_class *class,
3eb95fea 552 int type, unsigned long cnt)
248ca1b0 553{
48b4800a 554 class->stats.objs[type] += cnt;
248ca1b0
MK
555}
556
3eb95fea 557/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 558static inline void zs_stat_dec(struct size_class *class,
3eb95fea 559 int type, unsigned long cnt)
248ca1b0 560{
48b4800a 561 class->stats.objs[type] -= cnt;
248ca1b0
MK
562}
563
3eb95fea 564/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 565static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 566 int type)
248ca1b0 567{
48b4800a 568 return class->stats.objs[type];
248ca1b0
MK
569}
570
57244594
SS
571#ifdef CONFIG_ZSMALLOC_STAT
572
4abaac9b 573static void __init zs_stat_init(void)
248ca1b0 574{
4abaac9b
DS
575 if (!debugfs_initialized()) {
576 pr_warn("debugfs not available, stat dir not created\n");
577 return;
578 }
248ca1b0
MK
579
580 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
581}
582
583static void __exit zs_stat_exit(void)
584{
585 debugfs_remove_recursive(zs_stat_root);
586}
587
1120ed54
SS
588static unsigned long zs_can_compact(struct size_class *class);
589
248ca1b0
MK
590static int zs_stats_size_show(struct seq_file *s, void *v)
591{
592 int i;
593 struct zs_pool *pool = s->private;
594 struct size_class *class;
595 int objs_per_zspage;
596 unsigned long class_almost_full, class_almost_empty;
1120ed54 597 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
598 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
599 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 600 unsigned long total_freeable = 0;
248ca1b0 601
1120ed54 602 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
603 "class", "size", "almost_full", "almost_empty",
604 "obj_allocated", "obj_used", "pages_used",
1120ed54 605 "pages_per_zspage", "freeable");
248ca1b0 606
cf8e0fed 607 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
608 class = pool->size_class[i];
609
610 if (class->index != i)
611 continue;
612
613 spin_lock(&class->lock);
614 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
615 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
616 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
617 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 618 freeable = zs_can_compact(class);
248ca1b0
MK
619 spin_unlock(&class->lock);
620
b4fd07a0 621 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
622 pages_used = obj_allocated / objs_per_zspage *
623 class->pages_per_zspage;
624
1120ed54
SS
625 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
626 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
627 i, class->size, class_almost_full, class_almost_empty,
628 obj_allocated, obj_used, pages_used,
1120ed54 629 class->pages_per_zspage, freeable);
248ca1b0
MK
630
631 total_class_almost_full += class_almost_full;
632 total_class_almost_empty += class_almost_empty;
633 total_objs += obj_allocated;
634 total_used_objs += obj_used;
635 total_pages += pages_used;
1120ed54 636 total_freeable += freeable;
248ca1b0
MK
637 }
638
639 seq_puts(s, "\n");
1120ed54 640 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
641 "Total", "", total_class_almost_full,
642 total_class_almost_empty, total_objs,
1120ed54 643 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
644
645 return 0;
646}
5ad35093 647DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 648
d34f6157 649static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 650{
4abaac9b
DS
651 if (!zs_stat_root) {
652 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 653 return;
4abaac9b 654 }
248ca1b0 655
4268509a
GKH
656 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
657
658 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
659 &zs_stats_size_fops);
248ca1b0
MK
660}
661
662static void zs_pool_stat_destroy(struct zs_pool *pool)
663{
664 debugfs_remove_recursive(pool->stat_dentry);
665}
666
667#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 668static void __init zs_stat_init(void)
248ca1b0 669{
248ca1b0
MK
670}
671
672static void __exit zs_stat_exit(void)
673{
674}
675
d34f6157 676static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 677{
248ca1b0
MK
678}
679
680static inline void zs_pool_stat_destroy(struct zs_pool *pool)
681{
682}
248ca1b0
MK
683#endif
684
48b4800a 685
c3e3e88a
NC
686/*
687 * For each size class, zspages are divided into different groups
688 * depending on how "full" they are. This was done so that we could
689 * easily find empty or nearly empty zspages when we try to shrink
690 * the pool (not yet implemented). This function returns fullness
691 * status of the given page.
692 */
1fc6e27d 693static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 694 struct zspage *zspage)
61989a80 695{
1fc6e27d 696 int inuse, objs_per_zspage;
61989a80 697 enum fullness_group fg;
830e4bc5 698
3783689a 699 inuse = get_zspage_inuse(zspage);
1fc6e27d 700 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
701
702 if (inuse == 0)
703 fg = ZS_EMPTY;
1fc6e27d 704 else if (inuse == objs_per_zspage)
61989a80 705 fg = ZS_FULL;
1fc6e27d 706 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
707 fg = ZS_ALMOST_EMPTY;
708 else
709 fg = ZS_ALMOST_FULL;
710
711 return fg;
712}
713
c3e3e88a
NC
714/*
715 * Each size class maintains various freelists and zspages are assigned
716 * to one of these freelists based on the number of live objects they
717 * have. This functions inserts the given zspage into the freelist
718 * identified by <class, fullness_group>.
719 */
251cbb95 720static void insert_zspage(struct size_class *class,
3783689a
MK
721 struct zspage *zspage,
722 enum fullness_group fullness)
61989a80 723{
3783689a 724 struct zspage *head;
61989a80 725
48b4800a 726 zs_stat_inc(class, fullness, 1);
3783689a
MK
727 head = list_first_entry_or_null(&class->fullness_list[fullness],
728 struct zspage, list);
58f17117 729 /*
3783689a
MK
730 * We want to see more ZS_FULL pages and less almost empty/full.
731 * Put pages with higher ->inuse first.
58f17117 732 */
3783689a
MK
733 if (head) {
734 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
735 list_add(&zspage->list, &head->list);
736 return;
737 }
738 }
739 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
740}
741
c3e3e88a
NC
742/*
743 * This function removes the given zspage from the freelist identified
744 * by <class, fullness_group>.
745 */
251cbb95 746static void remove_zspage(struct size_class *class,
3783689a
MK
747 struct zspage *zspage,
748 enum fullness_group fullness)
61989a80 749{
3783689a 750 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
48b4800a 751 VM_BUG_ON(is_zspage_isolated(zspage));
61989a80 752
3783689a 753 list_del_init(&zspage->list);
48b4800a 754 zs_stat_dec(class, fullness, 1);
61989a80
NG
755}
756
c3e3e88a
NC
757/*
758 * Each size class maintains zspages in different fullness groups depending
759 * on the number of live objects they contain. When allocating or freeing
760 * objects, the fullness status of the page can change, say, from ALMOST_FULL
761 * to ALMOST_EMPTY when freeing an object. This function checks if such
762 * a status change has occurred for the given page and accordingly moves the
763 * page from the freelist of the old fullness group to that of the new
764 * fullness group.
765 */
c7806261 766static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 767 struct zspage *zspage)
61989a80
NG
768{
769 int class_idx;
61989a80
NG
770 enum fullness_group currfg, newfg;
771
3783689a
MK
772 get_zspage_mapping(zspage, &class_idx, &currfg);
773 newfg = get_fullness_group(class, zspage);
61989a80
NG
774 if (newfg == currfg)
775 goto out;
776
48b4800a
MK
777 if (!is_zspage_isolated(zspage)) {
778 remove_zspage(class, zspage, currfg);
779 insert_zspage(class, zspage, newfg);
780 }
781
3783689a 782 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
783
784out:
785 return newfg;
786}
787
788/*
789 * We have to decide on how many pages to link together
790 * to form a zspage for each size class. This is important
791 * to reduce wastage due to unusable space left at end of
792 * each zspage which is given as:
888fa374
YX
793 * wastage = Zp % class_size
794 * usage = Zp - wastage
61989a80
NG
795 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
796 *
797 * For example, for size class of 3/8 * PAGE_SIZE, we should
798 * link together 3 PAGE_SIZE sized pages to form a zspage
799 * since then we can perfectly fit in 8 such objects.
800 */
2e3b6154 801static int get_pages_per_zspage(int class_size)
61989a80
NG
802{
803 int i, max_usedpc = 0;
804 /* zspage order which gives maximum used size per KB */
805 int max_usedpc_order = 1;
806
84d4faab 807 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
808 int zspage_size;
809 int waste, usedpc;
810
811 zspage_size = i * PAGE_SIZE;
812 waste = zspage_size % class_size;
813 usedpc = (zspage_size - waste) * 100 / zspage_size;
814
815 if (usedpc > max_usedpc) {
816 max_usedpc = usedpc;
817 max_usedpc_order = i;
818 }
819 }
820
821 return max_usedpc_order;
822}
823
3783689a 824static struct zspage *get_zspage(struct page *page)
61989a80 825{
48b4800a
MK
826 struct zspage *zspage = (struct zspage *)page->private;
827
828 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
829 return zspage;
61989a80
NG
830}
831
832static struct page *get_next_page(struct page *page)
833{
48b4800a
MK
834 if (unlikely(PageHugeObject(page)))
835 return NULL;
836
837 return page->freelist;
61989a80
NG
838}
839
bfd093f5
MK
840/**
841 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 842 * @obj: the encoded object value
bfd093f5
MK
843 * @page: page object resides in zspage
844 * @obj_idx: object index
67296874 845 */
bfd093f5
MK
846static void obj_to_location(unsigned long obj, struct page **page,
847 unsigned int *obj_idx)
61989a80 848{
bfd093f5
MK
849 obj >>= OBJ_TAG_BITS;
850 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
851 *obj_idx = (obj & OBJ_INDEX_MASK);
852}
61989a80 853
bfd093f5
MK
854/**
855 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
856 * @page: page object resides in zspage
857 * @obj_idx: object index
858 */
859static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
860{
861 unsigned long obj;
61989a80 862
312fcae2 863 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 864 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 865 obj <<= OBJ_TAG_BITS;
61989a80 866
bfd093f5 867 return obj;
61989a80
NG
868}
869
2e40e163
MK
870static unsigned long handle_to_obj(unsigned long handle)
871{
872 return *(unsigned long *)handle;
873}
874
48b4800a 875static unsigned long obj_to_head(struct page *page, void *obj)
312fcae2 876{
48b4800a 877 if (unlikely(PageHugeObject(page))) {
830e4bc5 878 VM_BUG_ON_PAGE(!is_first_page(page), page);
3783689a 879 return page->index;
7b60a685
MK
880 } else
881 return *(unsigned long *)obj;
312fcae2
MK
882}
883
48b4800a
MK
884static inline int testpin_tag(unsigned long handle)
885{
886 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
887}
888
312fcae2
MK
889static inline int trypin_tag(unsigned long handle)
890{
1b8320b6 891 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
892}
893
70c7ec95 894static void pin_tag(unsigned long handle) __acquires(bitlock)
312fcae2 895{
1b8320b6 896 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
897}
898
bc22b18b 899static void unpin_tag(unsigned long handle) __releases(bitlock)
312fcae2 900{
1b8320b6 901 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
902}
903
f4477e90
NG
904static void reset_page(struct page *page)
905{
48b4800a 906 __ClearPageMovable(page);
18fd06bf 907 ClearPagePrivate(page);
f4477e90 908 set_page_private(page, 0);
48b4800a
MK
909 page_mapcount_reset(page);
910 ClearPageHugeObject(page);
911 page->freelist = NULL;
912}
913
4d0a5402 914static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
915{
916 struct page *cursor, *fail;
917
918 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
919 get_next_page(cursor)) {
920 if (!trylock_page(cursor)) {
921 fail = cursor;
922 goto unlock;
923 }
924 }
925
926 return 1;
927unlock:
928 for (cursor = get_first_page(zspage); cursor != fail; cursor =
929 get_next_page(cursor))
930 unlock_page(cursor);
931
932 return 0;
f4477e90
NG
933}
934
48b4800a
MK
935static void __free_zspage(struct zs_pool *pool, struct size_class *class,
936 struct zspage *zspage)
61989a80 937{
3783689a 938 struct page *page, *next;
48b4800a
MK
939 enum fullness_group fg;
940 unsigned int class_idx;
941
942 get_zspage_mapping(zspage, &class_idx, &fg);
943
944 assert_spin_locked(&class->lock);
61989a80 945
3783689a 946 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 947 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 948
48b4800a 949 next = page = get_first_page(zspage);
3783689a 950 do {
48b4800a
MK
951 VM_BUG_ON_PAGE(!PageLocked(page), page);
952 next = get_next_page(page);
3783689a 953 reset_page(page);
48b4800a 954 unlock_page(page);
91537fee 955 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
956 put_page(page);
957 page = next;
958 } while (page != NULL);
61989a80 959
3783689a 960 cache_free_zspage(pool, zspage);
48b4800a 961
b4fd07a0 962 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
963 atomic_long_sub(class->pages_per_zspage,
964 &pool->pages_allocated);
965}
966
967static void free_zspage(struct zs_pool *pool, struct size_class *class,
968 struct zspage *zspage)
969{
970 VM_BUG_ON(get_zspage_inuse(zspage));
971 VM_BUG_ON(list_empty(&zspage->list));
972
973 if (!trylock_zspage(zspage)) {
974 kick_deferred_free(pool);
975 return;
976 }
977
978 remove_zspage(class, zspage, ZS_EMPTY);
979 __free_zspage(pool, class, zspage);
61989a80
NG
980}
981
982/* Initialize a newly allocated zspage */
3783689a 983static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 984{
bfd093f5 985 unsigned int freeobj = 1;
61989a80 986 unsigned long off = 0;
48b4800a 987 struct page *page = get_first_page(zspage);
830e4bc5 988
61989a80
NG
989 while (page) {
990 struct page *next_page;
991 struct link_free *link;
af4ee5e9 992 void *vaddr;
61989a80 993
3783689a 994 set_first_obj_offset(page, off);
61989a80 995
af4ee5e9
MK
996 vaddr = kmap_atomic(page);
997 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
998
999 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1000 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1001 link += class->size / sizeof(*link);
61989a80
NG
1002 }
1003
1004 /*
1005 * We now come to the last (full or partial) object on this
1006 * page, which must point to the first object on the next
1007 * page (if present)
1008 */
1009 next_page = get_next_page(page);
bfd093f5 1010 if (next_page) {
3b1d9ca6 1011 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1012 } else {
1013 /*
3b1d9ca6 1014 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1015 * whether it's allocated object or not.
1016 */
01a6ad9a 1017 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1018 }
af4ee5e9 1019 kunmap_atomic(vaddr);
61989a80 1020 page = next_page;
5538c562 1021 off %= PAGE_SIZE;
61989a80 1022 }
bdb0af7c 1023
bfd093f5 1024 set_freeobj(zspage, 0);
61989a80
NG
1025}
1026
48b4800a
MK
1027static void create_page_chain(struct size_class *class, struct zspage *zspage,
1028 struct page *pages[])
61989a80 1029{
bdb0af7c
MK
1030 int i;
1031 struct page *page;
1032 struct page *prev_page = NULL;
48b4800a 1033 int nr_pages = class->pages_per_zspage;
61989a80
NG
1034
1035 /*
1036 * Allocate individual pages and link them together as:
48b4800a 1037 * 1. all pages are linked together using page->freelist
3783689a 1038 * 2. each sub-page point to zspage using page->private
61989a80 1039 *
3783689a 1040 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1041 * has this flag set).
61989a80 1042 */
bdb0af7c
MK
1043 for (i = 0; i < nr_pages; i++) {
1044 page = pages[i];
3783689a 1045 set_page_private(page, (unsigned long)zspage);
48b4800a 1046 page->freelist = NULL;
bdb0af7c 1047 if (i == 0) {
3783689a 1048 zspage->first_page = page;
a27545bf 1049 SetPagePrivate(page);
48b4800a
MK
1050 if (unlikely(class->objs_per_zspage == 1 &&
1051 class->pages_per_zspage == 1))
1052 SetPageHugeObject(page);
3783689a 1053 } else {
48b4800a 1054 prev_page->freelist = page;
61989a80 1055 }
61989a80
NG
1056 prev_page = page;
1057 }
bdb0af7c 1058}
61989a80 1059
bdb0af7c
MK
1060/*
1061 * Allocate a zspage for the given size class
1062 */
3783689a
MK
1063static struct zspage *alloc_zspage(struct zs_pool *pool,
1064 struct size_class *class,
1065 gfp_t gfp)
bdb0af7c
MK
1066{
1067 int i;
bdb0af7c 1068 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1069 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1070
1071 if (!zspage)
1072 return NULL;
1073
1074 memset(zspage, 0, sizeof(struct zspage));
48b4800a
MK
1075 zspage->magic = ZSPAGE_MAGIC;
1076 migrate_lock_init(zspage);
61989a80 1077
bdb0af7c
MK
1078 for (i = 0; i < class->pages_per_zspage; i++) {
1079 struct page *page;
61989a80 1080
3783689a 1081 page = alloc_page(gfp);
bdb0af7c 1082 if (!page) {
91537fee
MK
1083 while (--i >= 0) {
1084 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1085 __free_page(pages[i]);
91537fee 1086 }
3783689a 1087 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1088 return NULL;
1089 }
91537fee
MK
1090
1091 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1092 pages[i] = page;
61989a80
NG
1093 }
1094
48b4800a 1095 create_page_chain(class, zspage, pages);
3783689a 1096 init_zspage(class, zspage);
bdb0af7c 1097
3783689a 1098 return zspage;
61989a80
NG
1099}
1100
3783689a 1101static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1102{
1103 int i;
3783689a 1104 struct zspage *zspage;
61989a80 1105
48b4800a 1106 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1107 zspage = list_first_entry_or_null(&class->fullness_list[i],
1108 struct zspage, list);
1109 if (zspage)
61989a80
NG
1110 break;
1111 }
1112
3783689a 1113 return zspage;
61989a80
NG
1114}
1115
8b136018 1116#ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING
f553646a
SJ
1117static inline int __zs_cpu_up(struct mapping_area *area)
1118{
1119 /*
1120 * Make sure we don't leak memory if a cpu UP notification
1121 * and zs_init() race and both call zs_cpu_up() on the same cpu
1122 */
1123 if (area->vm)
1124 return 0;
d1b6d2e1 1125 area->vm = get_vm_area(PAGE_SIZE * 2, 0);
f553646a
SJ
1126 if (!area->vm)
1127 return -ENOMEM;
d1b6d2e1
CH
1128
1129 /*
1130 * Populate ptes in advance to avoid pte allocation with GFP_KERNEL
1131 * in non-preemtible context of zs_map_object.
1132 */
1133 return apply_to_page_range(&init_mm, (unsigned long)area->vm->addr,
1134 PAGE_SIZE * 2, NULL, NULL);
f553646a
SJ
1135}
1136
1137static inline void __zs_cpu_down(struct mapping_area *area)
1138{
1139 if (area->vm)
1140 free_vm_area(area->vm);
1141 area->vm = NULL;
1142}
1143
1144static inline void *__zs_map_object(struct mapping_area *area,
1145 struct page *pages[2], int off, int size)
1146{
ed1f324c
CH
1147 unsigned long addr = (unsigned long)area->vm->addr;
1148
1149 BUG_ON(map_kernel_range(addr, PAGE_SIZE * 2, PAGE_KERNEL, pages) < 0);
f553646a
SJ
1150 area->vm_addr = area->vm->addr;
1151 return area->vm_addr + off;
1152}
1153
1154static inline void __zs_unmap_object(struct mapping_area *area,
1155 struct page *pages[2], int off, int size)
1156{
1157 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1158
d95abbbb 1159 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1160}
1161
8b136018 1162#else /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */
f553646a
SJ
1163
1164static inline int __zs_cpu_up(struct mapping_area *area)
1165{
1166 /*
1167 * Make sure we don't leak memory if a cpu UP notification
1168 * and zs_init() race and both call zs_cpu_up() on the same cpu
1169 */
1170 if (area->vm_buf)
1171 return 0;
40f9fb8c 1172 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1173 if (!area->vm_buf)
1174 return -ENOMEM;
1175 return 0;
1176}
1177
1178static inline void __zs_cpu_down(struct mapping_area *area)
1179{
40f9fb8c 1180 kfree(area->vm_buf);
f553646a
SJ
1181 area->vm_buf = NULL;
1182}
1183
1184static void *__zs_map_object(struct mapping_area *area,
1185 struct page *pages[2], int off, int size)
5f601902 1186{
5f601902
SJ
1187 int sizes[2];
1188 void *addr;
f553646a 1189 char *buf = area->vm_buf;
5f601902 1190
f553646a
SJ
1191 /* disable page faults to match kmap_atomic() return conditions */
1192 pagefault_disable();
1193
1194 /* no read fastpath */
1195 if (area->vm_mm == ZS_MM_WO)
1196 goto out;
5f601902
SJ
1197
1198 sizes[0] = PAGE_SIZE - off;
1199 sizes[1] = size - sizes[0];
1200
5f601902
SJ
1201 /* copy object to per-cpu buffer */
1202 addr = kmap_atomic(pages[0]);
1203 memcpy(buf, addr + off, sizes[0]);
1204 kunmap_atomic(addr);
1205 addr = kmap_atomic(pages[1]);
1206 memcpy(buf + sizes[0], addr, sizes[1]);
1207 kunmap_atomic(addr);
f553646a
SJ
1208out:
1209 return area->vm_buf;
5f601902
SJ
1210}
1211
f553646a
SJ
1212static void __zs_unmap_object(struct mapping_area *area,
1213 struct page *pages[2], int off, int size)
5f601902 1214{
5f601902
SJ
1215 int sizes[2];
1216 void *addr;
2e40e163 1217 char *buf;
5f601902 1218
f553646a
SJ
1219 /* no write fastpath */
1220 if (area->vm_mm == ZS_MM_RO)
1221 goto out;
5f601902 1222
7b60a685 1223 buf = area->vm_buf;
a82cbf07
YX
1224 buf = buf + ZS_HANDLE_SIZE;
1225 size -= ZS_HANDLE_SIZE;
1226 off += ZS_HANDLE_SIZE;
2e40e163 1227
5f601902
SJ
1228 sizes[0] = PAGE_SIZE - off;
1229 sizes[1] = size - sizes[0];
1230
1231 /* copy per-cpu buffer to object */
1232 addr = kmap_atomic(pages[0]);
1233 memcpy(addr + off, buf, sizes[0]);
1234 kunmap_atomic(addr);
1235 addr = kmap_atomic(pages[1]);
1236 memcpy(addr, buf + sizes[0], sizes[1]);
1237 kunmap_atomic(addr);
f553646a
SJ
1238
1239out:
1240 /* enable page faults to match kunmap_atomic() return conditions */
1241 pagefault_enable();
5f601902 1242}
61989a80 1243
8b136018 1244#endif /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */
f553646a 1245
215c89d0 1246static int zs_cpu_prepare(unsigned int cpu)
61989a80 1247{
61989a80
NG
1248 struct mapping_area *area;
1249
215c89d0
SAS
1250 area = &per_cpu(zs_map_area, cpu);
1251 return __zs_cpu_up(area);
61989a80
NG
1252}
1253
215c89d0 1254static int zs_cpu_dead(unsigned int cpu)
61989a80 1255{
215c89d0 1256 struct mapping_area *area;
40f9fb8c 1257
215c89d0
SAS
1258 area = &per_cpu(zs_map_area, cpu);
1259 __zs_cpu_down(area);
1260 return 0;
b1b00a5b
SS
1261}
1262
64d90465
GM
1263static bool can_merge(struct size_class *prev, int pages_per_zspage,
1264 int objs_per_zspage)
9eec4cd5 1265{
64d90465
GM
1266 if (prev->pages_per_zspage == pages_per_zspage &&
1267 prev->objs_per_zspage == objs_per_zspage)
1268 return true;
9eec4cd5 1269
64d90465 1270 return false;
9eec4cd5
JK
1271}
1272
3783689a 1273static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1274{
3783689a 1275 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1276}
1277
66cdef66
GM
1278unsigned long zs_get_total_pages(struct zs_pool *pool)
1279{
1280 return atomic_long_read(&pool->pages_allocated);
1281}
1282EXPORT_SYMBOL_GPL(zs_get_total_pages);
1283
4bbc0bc0 1284/**
66cdef66
GM
1285 * zs_map_object - get address of allocated object from handle.
1286 * @pool: pool from which the object was allocated
1287 * @handle: handle returned from zs_malloc
e8b098fc 1288 * @mm: maping mode to use
4bbc0bc0 1289 *
66cdef66
GM
1290 * Before using an object allocated from zs_malloc, it must be mapped using
1291 * this function. When done with the object, it must be unmapped using
1292 * zs_unmap_object.
4bbc0bc0 1293 *
66cdef66
GM
1294 * Only one object can be mapped per cpu at a time. There is no protection
1295 * against nested mappings.
1296 *
1297 * This function returns with preemption and page faults disabled.
4bbc0bc0 1298 */
66cdef66
GM
1299void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1300 enum zs_mapmode mm)
61989a80 1301{
3783689a 1302 struct zspage *zspage;
66cdef66 1303 struct page *page;
bfd093f5
MK
1304 unsigned long obj, off;
1305 unsigned int obj_idx;
61989a80 1306
66cdef66
GM
1307 unsigned int class_idx;
1308 enum fullness_group fg;
1309 struct size_class *class;
1310 struct mapping_area *area;
1311 struct page *pages[2];
2e40e163 1312 void *ret;
61989a80 1313
9eec4cd5 1314 /*
66cdef66
GM
1315 * Because we use per-cpu mapping areas shared among the
1316 * pools/users, we can't allow mapping in interrupt context
1317 * because it can corrupt another users mappings.
9eec4cd5 1318 */
1aedcafb 1319 BUG_ON(in_interrupt());
61989a80 1320
312fcae2
MK
1321 /* From now on, migration cannot move the object */
1322 pin_tag(handle);
1323
2e40e163
MK
1324 obj = handle_to_obj(handle);
1325 obj_to_location(obj, &page, &obj_idx);
3783689a 1326 zspage = get_zspage(page);
48b4800a
MK
1327
1328 /* migration cannot move any subpage in this zspage */
1329 migrate_read_lock(zspage);
1330
3783689a 1331 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1332 class = pool->size_class[class_idx];
bfd093f5 1333 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1334
66cdef66
GM
1335 area = &get_cpu_var(zs_map_area);
1336 area->vm_mm = mm;
1337 if (off + class->size <= PAGE_SIZE) {
1338 /* this object is contained entirely within a page */
1339 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1340 ret = area->vm_addr + off;
1341 goto out;
61989a80
NG
1342 }
1343
66cdef66
GM
1344 /* this object spans two pages */
1345 pages[0] = page;
1346 pages[1] = get_next_page(page);
1347 BUG_ON(!pages[1]);
9eec4cd5 1348
2e40e163
MK
1349 ret = __zs_map_object(area, pages, off, class->size);
1350out:
48b4800a 1351 if (likely(!PageHugeObject(page)))
7b60a685
MK
1352 ret += ZS_HANDLE_SIZE;
1353
1354 return ret;
61989a80 1355}
66cdef66 1356EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1357
66cdef66 1358void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1359{
3783689a 1360 struct zspage *zspage;
66cdef66 1361 struct page *page;
bfd093f5
MK
1362 unsigned long obj, off;
1363 unsigned int obj_idx;
61989a80 1364
66cdef66
GM
1365 unsigned int class_idx;
1366 enum fullness_group fg;
1367 struct size_class *class;
1368 struct mapping_area *area;
9eec4cd5 1369
2e40e163
MK
1370 obj = handle_to_obj(handle);
1371 obj_to_location(obj, &page, &obj_idx);
3783689a
MK
1372 zspage = get_zspage(page);
1373 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1374 class = pool->size_class[class_idx];
bfd093f5 1375 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1376
66cdef66
GM
1377 area = this_cpu_ptr(&zs_map_area);
1378 if (off + class->size <= PAGE_SIZE)
1379 kunmap_atomic(area->vm_addr);
1380 else {
1381 struct page *pages[2];
40f9fb8c 1382
66cdef66
GM
1383 pages[0] = page;
1384 pages[1] = get_next_page(page);
1385 BUG_ON(!pages[1]);
1386
1387 __zs_unmap_object(area, pages, off, class->size);
1388 }
1389 put_cpu_var(zs_map_area);
48b4800a
MK
1390
1391 migrate_read_unlock(zspage);
312fcae2 1392 unpin_tag(handle);
61989a80 1393}
66cdef66 1394EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1395
010b495e
SS
1396/**
1397 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1398 * zsmalloc &size_class.
1399 * @pool: zsmalloc pool to use
1400 *
1401 * The function returns the size of the first huge class - any object of equal
1402 * or bigger size will be stored in zspage consisting of a single physical
1403 * page.
1404 *
1405 * Context: Any context.
1406 *
1407 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1408 */
1409size_t zs_huge_class_size(struct zs_pool *pool)
1410{
1411 return huge_class_size;
1412}
1413EXPORT_SYMBOL_GPL(zs_huge_class_size);
1414
251cbb95 1415static unsigned long obj_malloc(struct size_class *class,
3783689a 1416 struct zspage *zspage, unsigned long handle)
c7806261 1417{
bfd093f5 1418 int i, nr_page, offset;
c7806261
MK
1419 unsigned long obj;
1420 struct link_free *link;
1421
1422 struct page *m_page;
bfd093f5 1423 unsigned long m_offset;
c7806261
MK
1424 void *vaddr;
1425
312fcae2 1426 handle |= OBJ_ALLOCATED_TAG;
3783689a 1427 obj = get_freeobj(zspage);
bfd093f5
MK
1428
1429 offset = obj * class->size;
1430 nr_page = offset >> PAGE_SHIFT;
1431 m_offset = offset & ~PAGE_MASK;
1432 m_page = get_first_page(zspage);
1433
1434 for (i = 0; i < nr_page; i++)
1435 m_page = get_next_page(m_page);
c7806261
MK
1436
1437 vaddr = kmap_atomic(m_page);
1438 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1439 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
48b4800a 1440 if (likely(!PageHugeObject(m_page)))
7b60a685
MK
1441 /* record handle in the header of allocated chunk */
1442 link->handle = handle;
1443 else
3783689a
MK
1444 /* record handle to page->index */
1445 zspage->first_page->index = handle;
1446
c7806261 1447 kunmap_atomic(vaddr);
3783689a 1448 mod_zspage_inuse(zspage, 1);
c7806261
MK
1449 zs_stat_inc(class, OBJ_USED, 1);
1450
bfd093f5
MK
1451 obj = location_to_obj(m_page, obj);
1452
c7806261
MK
1453 return obj;
1454}
1455
1456
61989a80
NG
1457/**
1458 * zs_malloc - Allocate block of given size from pool.
1459 * @pool: pool to allocate from
1460 * @size: size of block to allocate
fd854463 1461 * @gfp: gfp flags when allocating object
61989a80 1462 *
00a61d86 1463 * On success, handle to the allocated object is returned,
c2344348 1464 * otherwise 0.
61989a80
NG
1465 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1466 */
d0d8da2d 1467unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1468{
2e40e163 1469 unsigned long handle, obj;
61989a80 1470 struct size_class *class;
48b4800a 1471 enum fullness_group newfg;
3783689a 1472 struct zspage *zspage;
61989a80 1473
7b60a685 1474 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1475 return 0;
1476
3783689a 1477 handle = cache_alloc_handle(pool, gfp);
2e40e163 1478 if (!handle)
c2344348 1479 return 0;
61989a80 1480
2e40e163
MK
1481 /* extra space in chunk to keep the handle */
1482 size += ZS_HANDLE_SIZE;
9eec4cd5 1483 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1484
1485 spin_lock(&class->lock);
3783689a 1486 zspage = find_get_zspage(class);
48b4800a
MK
1487 if (likely(zspage)) {
1488 obj = obj_malloc(class, zspage, handle);
1489 /* Now move the zspage to another fullness group, if required */
1490 fix_fullness_group(class, zspage);
1491 record_obj(handle, obj);
61989a80 1492 spin_unlock(&class->lock);
61989a80 1493
48b4800a
MK
1494 return handle;
1495 }
0f050d99 1496
48b4800a
MK
1497 spin_unlock(&class->lock);
1498
1499 zspage = alloc_zspage(pool, class, gfp);
1500 if (!zspage) {
1501 cache_free_handle(pool, handle);
1502 return 0;
61989a80
NG
1503 }
1504
48b4800a 1505 spin_lock(&class->lock);
3783689a 1506 obj = obj_malloc(class, zspage, handle);
48b4800a
MK
1507 newfg = get_fullness_group(class, zspage);
1508 insert_zspage(class, zspage, newfg);
1509 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1510 record_obj(handle, obj);
48b4800a
MK
1511 atomic_long_add(class->pages_per_zspage,
1512 &pool->pages_allocated);
b4fd07a0 1513 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1514
1515 /* We completely set up zspage so mark them as movable */
1516 SetZsPageMovable(pool, zspage);
61989a80
NG
1517 spin_unlock(&class->lock);
1518
2e40e163 1519 return handle;
61989a80
NG
1520}
1521EXPORT_SYMBOL_GPL(zs_malloc);
1522
1ee47165 1523static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1524{
1525 struct link_free *link;
3783689a
MK
1526 struct zspage *zspage;
1527 struct page *f_page;
bfd093f5
MK
1528 unsigned long f_offset;
1529 unsigned int f_objidx;
af4ee5e9 1530 void *vaddr;
61989a80 1531
312fcae2 1532 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1533 obj_to_location(obj, &f_page, &f_objidx);
bfd093f5 1534 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
3783689a 1535 zspage = get_zspage(f_page);
61989a80 1536
c7806261 1537 vaddr = kmap_atomic(f_page);
61989a80
NG
1538
1539 /* Insert this object in containing zspage's freelist */
af4ee5e9 1540 link = (struct link_free *)(vaddr + f_offset);
3b1d9ca6 1541 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
af4ee5e9 1542 kunmap_atomic(vaddr);
bfd093f5 1543 set_freeobj(zspage, f_objidx);
3783689a 1544 mod_zspage_inuse(zspage, -1);
0f050d99 1545 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1546}
1547
1548void zs_free(struct zs_pool *pool, unsigned long handle)
1549{
3783689a
MK
1550 struct zspage *zspage;
1551 struct page *f_page;
bfd093f5
MK
1552 unsigned long obj;
1553 unsigned int f_objidx;
c7806261
MK
1554 int class_idx;
1555 struct size_class *class;
1556 enum fullness_group fullness;
48b4800a 1557 bool isolated;
c7806261
MK
1558
1559 if (unlikely(!handle))
1560 return;
1561
312fcae2 1562 pin_tag(handle);
c7806261 1563 obj = handle_to_obj(handle);
c7806261 1564 obj_to_location(obj, &f_page, &f_objidx);
3783689a 1565 zspage = get_zspage(f_page);
c7806261 1566
48b4800a
MK
1567 migrate_read_lock(zspage);
1568
3783689a 1569 get_zspage_mapping(zspage, &class_idx, &fullness);
c7806261
MK
1570 class = pool->size_class[class_idx];
1571
1572 spin_lock(&class->lock);
1ee47165 1573 obj_free(class, obj);
3783689a 1574 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1575 if (fullness != ZS_EMPTY) {
1576 migrate_read_unlock(zspage);
1577 goto out;
312fcae2 1578 }
48b4800a
MK
1579
1580 isolated = is_zspage_isolated(zspage);
1581 migrate_read_unlock(zspage);
1582 /* If zspage is isolated, zs_page_putback will free the zspage */
1583 if (likely(!isolated))
1584 free_zspage(pool, class, zspage);
1585out:
1586
61989a80 1587 spin_unlock(&class->lock);
312fcae2 1588 unpin_tag(handle);
3783689a 1589 cache_free_handle(pool, handle);
312fcae2
MK
1590}
1591EXPORT_SYMBOL_GPL(zs_free);
1592
251cbb95
MK
1593static void zs_object_copy(struct size_class *class, unsigned long dst,
1594 unsigned long src)
312fcae2
MK
1595{
1596 struct page *s_page, *d_page;
bfd093f5 1597 unsigned int s_objidx, d_objidx;
312fcae2
MK
1598 unsigned long s_off, d_off;
1599 void *s_addr, *d_addr;
1600 int s_size, d_size, size;
1601 int written = 0;
1602
1603 s_size = d_size = class->size;
1604
1605 obj_to_location(src, &s_page, &s_objidx);
1606 obj_to_location(dst, &d_page, &d_objidx);
1607
bfd093f5
MK
1608 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1609 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1610
1611 if (s_off + class->size > PAGE_SIZE)
1612 s_size = PAGE_SIZE - s_off;
1613
1614 if (d_off + class->size > PAGE_SIZE)
1615 d_size = PAGE_SIZE - d_off;
1616
1617 s_addr = kmap_atomic(s_page);
1618 d_addr = kmap_atomic(d_page);
1619
1620 while (1) {
1621 size = min(s_size, d_size);
1622 memcpy(d_addr + d_off, s_addr + s_off, size);
1623 written += size;
1624
1625 if (written == class->size)
1626 break;
1627
495819ea
SS
1628 s_off += size;
1629 s_size -= size;
1630 d_off += size;
1631 d_size -= size;
1632
1633 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1634 kunmap_atomic(d_addr);
1635 kunmap_atomic(s_addr);
1636 s_page = get_next_page(s_page);
312fcae2
MK
1637 s_addr = kmap_atomic(s_page);
1638 d_addr = kmap_atomic(d_page);
1639 s_size = class->size - written;
1640 s_off = 0;
312fcae2
MK
1641 }
1642
495819ea 1643 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1644 kunmap_atomic(d_addr);
1645 d_page = get_next_page(d_page);
312fcae2
MK
1646 d_addr = kmap_atomic(d_page);
1647 d_size = class->size - written;
1648 d_off = 0;
312fcae2
MK
1649 }
1650 }
1651
1652 kunmap_atomic(d_addr);
1653 kunmap_atomic(s_addr);
1654}
1655
1656/*
1657 * Find alloced object in zspage from index object and
1658 * return handle.
1659 */
251cbb95 1660static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1661 struct page *page, int *obj_idx)
312fcae2
MK
1662{
1663 unsigned long head;
1664 int offset = 0;
cf675acb 1665 int index = *obj_idx;
312fcae2
MK
1666 unsigned long handle = 0;
1667 void *addr = kmap_atomic(page);
1668
3783689a 1669 offset = get_first_obj_offset(page);
312fcae2
MK
1670 offset += class->size * index;
1671
1672 while (offset < PAGE_SIZE) {
48b4800a 1673 head = obj_to_head(page, addr + offset);
312fcae2
MK
1674 if (head & OBJ_ALLOCATED_TAG) {
1675 handle = head & ~OBJ_ALLOCATED_TAG;
1676 if (trypin_tag(handle))
1677 break;
1678 handle = 0;
1679 }
1680
1681 offset += class->size;
1682 index++;
1683 }
1684
1685 kunmap_atomic(addr);
cf675acb
GM
1686
1687 *obj_idx = index;
1688
312fcae2
MK
1689 return handle;
1690}
1691
1692struct zs_compact_control {
3783689a 1693 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1694 struct page *s_page;
1695 /* Destination page for migration which should be a first page
1696 * of zspage. */
1697 struct page *d_page;
1698 /* Starting object index within @s_page which used for live object
1699 * in the subpage. */
41b88e14 1700 int obj_idx;
312fcae2
MK
1701};
1702
1703static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1704 struct zs_compact_control *cc)
1705{
1706 unsigned long used_obj, free_obj;
1707 unsigned long handle;
1708 struct page *s_page = cc->s_page;
1709 struct page *d_page = cc->d_page;
41b88e14 1710 int obj_idx = cc->obj_idx;
312fcae2
MK
1711 int ret = 0;
1712
1713 while (1) {
cf675acb 1714 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1715 if (!handle) {
1716 s_page = get_next_page(s_page);
1717 if (!s_page)
1718 break;
41b88e14 1719 obj_idx = 0;
312fcae2
MK
1720 continue;
1721 }
1722
1723 /* Stop if there is no more space */
3783689a 1724 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1725 unpin_tag(handle);
1726 ret = -ENOMEM;
1727 break;
1728 }
1729
1730 used_obj = handle_to_obj(handle);
3783689a 1731 free_obj = obj_malloc(class, get_zspage(d_page), handle);
251cbb95 1732 zs_object_copy(class, free_obj, used_obj);
41b88e14 1733 obj_idx++;
c102f07c
JL
1734 /*
1735 * record_obj updates handle's value to free_obj and it will
1736 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1737 * breaks synchronization using pin_tag(e,g, zs_free) so
1738 * let's keep the lock bit.
1739 */
1740 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1741 record_obj(handle, free_obj);
1742 unpin_tag(handle);
1ee47165 1743 obj_free(class, used_obj);
312fcae2
MK
1744 }
1745
1746 /* Remember last position in this iteration */
1747 cc->s_page = s_page;
41b88e14 1748 cc->obj_idx = obj_idx;
312fcae2
MK
1749
1750 return ret;
1751}
1752
3783689a 1753static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1754{
1755 int i;
3783689a
MK
1756 struct zspage *zspage;
1757 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1758
3783689a
MK
1759 if (!source) {
1760 fg[0] = ZS_ALMOST_FULL;
1761 fg[1] = ZS_ALMOST_EMPTY;
1762 }
1763
1764 for (i = 0; i < 2; i++) {
1765 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1766 struct zspage, list);
1767 if (zspage) {
48b4800a 1768 VM_BUG_ON(is_zspage_isolated(zspage));
3783689a
MK
1769 remove_zspage(class, zspage, fg[i]);
1770 return zspage;
312fcae2
MK
1771 }
1772 }
1773
3783689a 1774 return zspage;
312fcae2
MK
1775}
1776
860c707d 1777/*
3783689a 1778 * putback_zspage - add @zspage into right class's fullness list
860c707d 1779 * @class: destination class
3783689a 1780 * @zspage: target page
860c707d 1781 *
3783689a 1782 * Return @zspage's fullness_group
860c707d 1783 */
4aa409ca 1784static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1785 struct zspage *zspage)
312fcae2 1786{
312fcae2
MK
1787 enum fullness_group fullness;
1788
48b4800a
MK
1789 VM_BUG_ON(is_zspage_isolated(zspage));
1790
3783689a
MK
1791 fullness = get_fullness_group(class, zspage);
1792 insert_zspage(class, zspage, fullness);
1793 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1794
860c707d 1795 return fullness;
61989a80 1796}
312fcae2 1797
48b4800a 1798#ifdef CONFIG_COMPACTION
4d0a5402
CIK
1799/*
1800 * To prevent zspage destroy during migration, zspage freeing should
1801 * hold locks of all pages in the zspage.
1802 */
1803static void lock_zspage(struct zspage *zspage)
1804{
1805 struct page *page = get_first_page(zspage);
1806
1807 do {
1808 lock_page(page);
1809 } while ((page = get_next_page(page)) != NULL);
1810}
1811
8e9231f8 1812static int zs_init_fs_context(struct fs_context *fc)
48b4800a 1813{
8e9231f8 1814 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
48b4800a
MK
1815}
1816
1817static struct file_system_type zsmalloc_fs = {
1818 .name = "zsmalloc",
8e9231f8 1819 .init_fs_context = zs_init_fs_context,
48b4800a
MK
1820 .kill_sb = kill_anon_super,
1821};
1822
1823static int zsmalloc_mount(void)
1824{
1825 int ret = 0;
1826
1827 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1828 if (IS_ERR(zsmalloc_mnt))
1829 ret = PTR_ERR(zsmalloc_mnt);
1830
1831 return ret;
1832}
1833
1834static void zsmalloc_unmount(void)
1835{
1836 kern_unmount(zsmalloc_mnt);
1837}
1838
1839static void migrate_lock_init(struct zspage *zspage)
1840{
1841 rwlock_init(&zspage->lock);
1842}
1843
cfc451cf 1844static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1845{
1846 read_lock(&zspage->lock);
1847}
1848
8a374ccc 1849static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1850{
1851 read_unlock(&zspage->lock);
1852}
1853
1854static void migrate_write_lock(struct zspage *zspage)
1855{
1856 write_lock(&zspage->lock);
1857}
1858
1859static void migrate_write_unlock(struct zspage *zspage)
1860{
1861 write_unlock(&zspage->lock);
1862}
1863
1864/* Number of isolated subpage for *page migration* in this zspage */
1865static void inc_zspage_isolation(struct zspage *zspage)
1866{
1867 zspage->isolated++;
1868}
1869
1870static void dec_zspage_isolation(struct zspage *zspage)
1871{
1872 zspage->isolated--;
1873}
1874
1a87aa03
HB
1875static void putback_zspage_deferred(struct zs_pool *pool,
1876 struct size_class *class,
1877 struct zspage *zspage)
1878{
1879 enum fullness_group fg;
1880
1881 fg = putback_zspage(class, zspage);
1882 if (fg == ZS_EMPTY)
1883 schedule_work(&pool->free_work);
1884
1885}
1886
701d6785
HB
1887static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1888{
1889 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1890 atomic_long_dec(&pool->isolated_pages);
1891 /*
1892 * There's no possibility of racing, since wait_for_isolated_drain()
1893 * checks the isolated count under &class->lock after enqueuing
1894 * on migration_wait.
1895 */
1896 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1897 wake_up_all(&pool->migration_wait);
1898}
1899
48b4800a
MK
1900static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1901 struct page *newpage, struct page *oldpage)
1902{
1903 struct page *page;
1904 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1905 int idx = 0;
1906
1907 page = get_first_page(zspage);
1908 do {
1909 if (page == oldpage)
1910 pages[idx] = newpage;
1911 else
1912 pages[idx] = page;
1913 idx++;
1914 } while ((page = get_next_page(page)) != NULL);
1915
1916 create_page_chain(class, zspage, pages);
1917 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1918 if (unlikely(PageHugeObject(oldpage)))
1919 newpage->index = oldpage->index;
1920 __SetPageMovable(newpage, page_mapping(oldpage));
1921}
1922
4d0a5402 1923static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a
MK
1924{
1925 struct zs_pool *pool;
1926 struct size_class *class;
1927 int class_idx;
1928 enum fullness_group fullness;
1929 struct zspage *zspage;
1930 struct address_space *mapping;
1931
1932 /*
1933 * Page is locked so zspage couldn't be destroyed. For detail, look at
1934 * lock_zspage in free_zspage.
1935 */
1936 VM_BUG_ON_PAGE(!PageMovable(page), page);
1937 VM_BUG_ON_PAGE(PageIsolated(page), page);
1938
1939 zspage = get_zspage(page);
1940
1941 /*
1942 * Without class lock, fullness could be stale while class_idx is okay
1943 * because class_idx is constant unless page is freed so we should get
1944 * fullness again under class lock.
1945 */
1946 get_zspage_mapping(zspage, &class_idx, &fullness);
1947 mapping = page_mapping(page);
1948 pool = mapping->private_data;
1949 class = pool->size_class[class_idx];
1950
1951 spin_lock(&class->lock);
1952 if (get_zspage_inuse(zspage) == 0) {
1953 spin_unlock(&class->lock);
1954 return false;
1955 }
1956
1957 /* zspage is isolated for object migration */
1958 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1959 spin_unlock(&class->lock);
1960 return false;
1961 }
1962
1963 /*
1964 * If this is first time isolation for the zspage, isolate zspage from
1965 * size_class to prevent further object allocation from the zspage.
1966 */
1967 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1968 get_zspage_mapping(zspage, &class_idx, &fullness);
701d6785 1969 atomic_long_inc(&pool->isolated_pages);
48b4800a
MK
1970 remove_zspage(class, zspage, fullness);
1971 }
1972
1973 inc_zspage_isolation(zspage);
1974 spin_unlock(&class->lock);
1975
1976 return true;
1977}
1978
4d0a5402 1979static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
48b4800a
MK
1980 struct page *page, enum migrate_mode mode)
1981{
1982 struct zs_pool *pool;
1983 struct size_class *class;
1984 int class_idx;
1985 enum fullness_group fullness;
1986 struct zspage *zspage;
1987 struct page *dummy;
1988 void *s_addr, *d_addr, *addr;
1989 int offset, pos;
1990 unsigned long handle, head;
1991 unsigned long old_obj, new_obj;
1992 unsigned int obj_idx;
1993 int ret = -EAGAIN;
1994
2916ecc0
JG
1995 /*
1996 * We cannot support the _NO_COPY case here, because copy needs to
1997 * happen under the zs lock, which does not work with
1998 * MIGRATE_SYNC_NO_COPY workflow.
1999 */
2000 if (mode == MIGRATE_SYNC_NO_COPY)
2001 return -EINVAL;
2002
48b4800a
MK
2003 VM_BUG_ON_PAGE(!PageMovable(page), page);
2004 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2005
2006 zspage = get_zspage(page);
2007
2008 /* Concurrent compactor cannot migrate any subpage in zspage */
2009 migrate_write_lock(zspage);
2010 get_zspage_mapping(zspage, &class_idx, &fullness);
2011 pool = mapping->private_data;
2012 class = pool->size_class[class_idx];
2013 offset = get_first_obj_offset(page);
2014
2015 spin_lock(&class->lock);
2016 if (!get_zspage_inuse(zspage)) {
77ff4657
HZ
2017 /*
2018 * Set "offset" to end of the page so that every loops
2019 * skips unnecessary object scanning.
2020 */
2021 offset = PAGE_SIZE;
48b4800a
MK
2022 }
2023
2024 pos = offset;
2025 s_addr = kmap_atomic(page);
2026 while (pos < PAGE_SIZE) {
2027 head = obj_to_head(page, s_addr + pos);
2028 if (head & OBJ_ALLOCATED_TAG) {
2029 handle = head & ~OBJ_ALLOCATED_TAG;
2030 if (!trypin_tag(handle))
2031 goto unpin_objects;
2032 }
2033 pos += class->size;
2034 }
2035
2036 /*
2037 * Here, any user cannot access all objects in the zspage so let's move.
2038 */
2039 d_addr = kmap_atomic(newpage);
2040 memcpy(d_addr, s_addr, PAGE_SIZE);
2041 kunmap_atomic(d_addr);
2042
2043 for (addr = s_addr + offset; addr < s_addr + pos;
2044 addr += class->size) {
2045 head = obj_to_head(page, addr);
2046 if (head & OBJ_ALLOCATED_TAG) {
2047 handle = head & ~OBJ_ALLOCATED_TAG;
2048 if (!testpin_tag(handle))
2049 BUG();
2050
2051 old_obj = handle_to_obj(handle);
2052 obj_to_location(old_obj, &dummy, &obj_idx);
2053 new_obj = (unsigned long)location_to_obj(newpage,
2054 obj_idx);
2055 new_obj |= BIT(HANDLE_PIN_BIT);
2056 record_obj(handle, new_obj);
2057 }
2058 }
2059
2060 replace_sub_page(class, zspage, newpage, page);
2061 get_page(newpage);
2062
2063 dec_zspage_isolation(zspage);
2064
2065 /*
2066 * Page migration is done so let's putback isolated zspage to
2067 * the list if @page is final isolated subpage in the zspage.
2068 */
701d6785
HB
2069 if (!is_zspage_isolated(zspage)) {
2070 /*
2071 * We cannot race with zs_destroy_pool() here because we wait
2072 * for isolation to hit zero before we start destroying.
2073 * Also, we ensure that everyone can see pool->destroying before
2074 * we start waiting.
2075 */
1a87aa03 2076 putback_zspage_deferred(pool, class, zspage);
701d6785
HB
2077 zs_pool_dec_isolated(pool);
2078 }
48b4800a 2079
ac8f05da
CM
2080 if (page_zone(newpage) != page_zone(page)) {
2081 dec_zone_page_state(page, NR_ZSPAGES);
2082 inc_zone_page_state(newpage, NR_ZSPAGES);
2083 }
2084
48b4800a
MK
2085 reset_page(page);
2086 put_page(page);
2087 page = newpage;
2088
dd4123f3 2089 ret = MIGRATEPAGE_SUCCESS;
48b4800a
MK
2090unpin_objects:
2091 for (addr = s_addr + offset; addr < s_addr + pos;
2092 addr += class->size) {
2093 head = obj_to_head(page, addr);
2094 if (head & OBJ_ALLOCATED_TAG) {
2095 handle = head & ~OBJ_ALLOCATED_TAG;
2096 if (!testpin_tag(handle))
2097 BUG();
2098 unpin_tag(handle);
2099 }
2100 }
2101 kunmap_atomic(s_addr);
48b4800a
MK
2102 spin_unlock(&class->lock);
2103 migrate_write_unlock(zspage);
2104
2105 return ret;
2106}
2107
4d0a5402 2108static void zs_page_putback(struct page *page)
48b4800a
MK
2109{
2110 struct zs_pool *pool;
2111 struct size_class *class;
2112 int class_idx;
2113 enum fullness_group fg;
2114 struct address_space *mapping;
2115 struct zspage *zspage;
2116
2117 VM_BUG_ON_PAGE(!PageMovable(page), page);
2118 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2119
2120 zspage = get_zspage(page);
2121 get_zspage_mapping(zspage, &class_idx, &fg);
2122 mapping = page_mapping(page);
2123 pool = mapping->private_data;
2124 class = pool->size_class[class_idx];
2125
2126 spin_lock(&class->lock);
2127 dec_zspage_isolation(zspage);
2128 if (!is_zspage_isolated(zspage)) {
48b4800a
MK
2129 /*
2130 * Due to page_lock, we cannot free zspage immediately
2131 * so let's defer.
2132 */
1a87aa03 2133 putback_zspage_deferred(pool, class, zspage);
701d6785 2134 zs_pool_dec_isolated(pool);
48b4800a
MK
2135 }
2136 spin_unlock(&class->lock);
2137}
2138
4d0a5402 2139static const struct address_space_operations zsmalloc_aops = {
48b4800a
MK
2140 .isolate_page = zs_page_isolate,
2141 .migratepage = zs_page_migrate,
2142 .putback_page = zs_page_putback,
2143};
2144
2145static int zs_register_migration(struct zs_pool *pool)
2146{
2147 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2148 if (IS_ERR(pool->inode)) {
2149 pool->inode = NULL;
2150 return 1;
2151 }
2152
2153 pool->inode->i_mapping->private_data = pool;
2154 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2155 return 0;
2156}
2157
701d6785
HB
2158static bool pool_isolated_are_drained(struct zs_pool *pool)
2159{
2160 return atomic_long_read(&pool->isolated_pages) == 0;
2161}
2162
2163/* Function for resolving migration */
2164static void wait_for_isolated_drain(struct zs_pool *pool)
2165{
2166
2167 /*
2168 * We're in the process of destroying the pool, so there are no
2169 * active allocations. zs_page_isolate() fails for completely free
2170 * zspages, so we need only wait for the zs_pool's isolated
2171 * count to hit zero.
2172 */
2173 wait_event(pool->migration_wait,
2174 pool_isolated_are_drained(pool));
2175}
2176
48b4800a
MK
2177static void zs_unregister_migration(struct zs_pool *pool)
2178{
701d6785
HB
2179 pool->destroying = true;
2180 /*
2181 * We need a memory barrier here to ensure global visibility of
2182 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2183 * case we don't care, or it will be > 0 and pool->destroying will
2184 * ensure that we wake up once isolation hits 0.
2185 */
2186 smp_mb();
2187 wait_for_isolated_drain(pool); /* This can block */
48b4800a 2188 flush_work(&pool->free_work);
c3491eca 2189 iput(pool->inode);
48b4800a
MK
2190}
2191
2192/*
2193 * Caller should hold page_lock of all pages in the zspage
2194 * In here, we cannot use zspage meta data.
2195 */
2196static void async_free_zspage(struct work_struct *work)
2197{
2198 int i;
2199 struct size_class *class;
2200 unsigned int class_idx;
2201 enum fullness_group fullness;
2202 struct zspage *zspage, *tmp;
2203 LIST_HEAD(free_pages);
2204 struct zs_pool *pool = container_of(work, struct zs_pool,
2205 free_work);
2206
cf8e0fed 2207 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2208 class = pool->size_class[i];
2209 if (class->index != i)
2210 continue;
2211
2212 spin_lock(&class->lock);
2213 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2214 spin_unlock(&class->lock);
2215 }
2216
2217
2218 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2219 list_del(&zspage->list);
2220 lock_zspage(zspage);
2221
2222 get_zspage_mapping(zspage, &class_idx, &fullness);
2223 VM_BUG_ON(fullness != ZS_EMPTY);
2224 class = pool->size_class[class_idx];
2225 spin_lock(&class->lock);
2226 __free_zspage(pool, pool->size_class[class_idx], zspage);
2227 spin_unlock(&class->lock);
2228 }
2229};
2230
2231static void kick_deferred_free(struct zs_pool *pool)
2232{
2233 schedule_work(&pool->free_work);
2234}
2235
2236static void init_deferred_free(struct zs_pool *pool)
2237{
2238 INIT_WORK(&pool->free_work, async_free_zspage);
2239}
2240
2241static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2242{
2243 struct page *page = get_first_page(zspage);
2244
2245 do {
2246 WARN_ON(!trylock_page(page));
2247 __SetPageMovable(page, pool->inode->i_mapping);
2248 unlock_page(page);
2249 } while ((page = get_next_page(page)) != NULL);
2250}
2251#endif
2252
04f05909
SS
2253/*
2254 *
2255 * Based on the number of unused allocated objects calculate
2256 * and return the number of pages that we can free.
04f05909
SS
2257 */
2258static unsigned long zs_can_compact(struct size_class *class)
2259{
2260 unsigned long obj_wasted;
44f43e99
SS
2261 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2262 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2263
44f43e99
SS
2264 if (obj_allocated <= obj_used)
2265 return 0;
04f05909 2266
44f43e99 2267 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2268 obj_wasted /= class->objs_per_zspage;
04f05909 2269
6cbf16b3 2270 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2271}
2272
7d3f3938 2273static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 2274{
312fcae2 2275 struct zs_compact_control cc;
3783689a
MK
2276 struct zspage *src_zspage;
2277 struct zspage *dst_zspage = NULL;
312fcae2 2278
312fcae2 2279 spin_lock(&class->lock);
3783689a 2280 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2281
04f05909
SS
2282 if (!zs_can_compact(class))
2283 break;
2284
41b88e14 2285 cc.obj_idx = 0;
48b4800a 2286 cc.s_page = get_first_page(src_zspage);
312fcae2 2287
3783689a 2288 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2289 cc.d_page = get_first_page(dst_zspage);
312fcae2 2290 /*
0dc63d48
SS
2291 * If there is no more space in dst_page, resched
2292 * and see if anyone had allocated another zspage.
312fcae2
MK
2293 */
2294 if (!migrate_zspage(pool, class, &cc))
2295 break;
2296
4aa409ca 2297 putback_zspage(class, dst_zspage);
312fcae2
MK
2298 }
2299
2300 /* Stop if we couldn't find slot */
3783689a 2301 if (dst_zspage == NULL)
312fcae2
MK
2302 break;
2303
4aa409ca
MK
2304 putback_zspage(class, dst_zspage);
2305 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2306 free_zspage(pool, class, src_zspage);
6cbf16b3 2307 pool->stats.pages_compacted += class->pages_per_zspage;
4aa409ca 2308 }
312fcae2 2309 spin_unlock(&class->lock);
312fcae2
MK
2310 cond_resched();
2311 spin_lock(&class->lock);
2312 }
2313
3783689a 2314 if (src_zspage)
4aa409ca 2315 putback_zspage(class, src_zspage);
312fcae2 2316
7d3f3938 2317 spin_unlock(&class->lock);
312fcae2
MK
2318}
2319
2320unsigned long zs_compact(struct zs_pool *pool)
2321{
2322 int i;
312fcae2
MK
2323 struct size_class *class;
2324
cf8e0fed 2325 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2326 class = pool->size_class[i];
2327 if (!class)
2328 continue;
2329 if (class->index != i)
2330 continue;
7d3f3938 2331 __zs_compact(pool, class);
312fcae2
MK
2332 }
2333
860c707d 2334 return pool->stats.pages_compacted;
312fcae2
MK
2335}
2336EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2337
7d3f3938
SS
2338void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2339{
2340 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2341}
2342EXPORT_SYMBOL_GPL(zs_pool_stats);
2343
ab9d306d
SS
2344static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2345 struct shrink_control *sc)
2346{
2347 unsigned long pages_freed;
2348 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2349 shrinker);
2350
2351 pages_freed = pool->stats.pages_compacted;
2352 /*
2353 * Compact classes and calculate compaction delta.
2354 * Can run concurrently with a manually triggered
2355 * (by user) compaction.
2356 */
2357 pages_freed = zs_compact(pool) - pages_freed;
2358
2359 return pages_freed ? pages_freed : SHRINK_STOP;
2360}
2361
2362static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2363 struct shrink_control *sc)
2364{
2365 int i;
2366 struct size_class *class;
2367 unsigned long pages_to_free = 0;
2368 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2369 shrinker);
2370
cf8e0fed 2371 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2372 class = pool->size_class[i];
2373 if (!class)
2374 continue;
2375 if (class->index != i)
2376 continue;
2377
ab9d306d 2378 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2379 }
2380
2381 return pages_to_free;
2382}
2383
2384static void zs_unregister_shrinker(struct zs_pool *pool)
2385{
93144ca3 2386 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2387}
2388
2389static int zs_register_shrinker(struct zs_pool *pool)
2390{
2391 pool->shrinker.scan_objects = zs_shrinker_scan;
2392 pool->shrinker.count_objects = zs_shrinker_count;
2393 pool->shrinker.batch = 0;
2394 pool->shrinker.seeks = DEFAULT_SEEKS;
2395
2396 return register_shrinker(&pool->shrinker);
2397}
2398
00a61d86 2399/**
66cdef66 2400 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2401 * @name: pool name to be created
166cfda7 2402 *
66cdef66
GM
2403 * This function must be called before anything when using
2404 * the zsmalloc allocator.
166cfda7 2405 *
66cdef66
GM
2406 * On success, a pointer to the newly created pool is returned,
2407 * otherwise NULL.
396b7fd6 2408 */
d0d8da2d 2409struct zs_pool *zs_create_pool(const char *name)
61989a80 2410{
66cdef66
GM
2411 int i;
2412 struct zs_pool *pool;
2413 struct size_class *prev_class = NULL;
61989a80 2414
66cdef66
GM
2415 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2416 if (!pool)
2417 return NULL;
61989a80 2418
48b4800a 2419 init_deferred_free(pool);
61989a80 2420
2e40e163
MK
2421 pool->name = kstrdup(name, GFP_KERNEL);
2422 if (!pool->name)
2423 goto err;
2424
441e254c 2425#ifdef CONFIG_COMPACTION
701d6785 2426 init_waitqueue_head(&pool->migration_wait);
441e254c 2427#endif
701d6785 2428
3783689a 2429 if (create_cache(pool))
2e40e163
MK
2430 goto err;
2431
c60369f0 2432 /*
399d8eeb 2433 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2434 * for merging should be larger or equal to current size.
c60369f0 2435 */
cf8e0fed 2436 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2437 int size;
2438 int pages_per_zspage;
64d90465 2439 int objs_per_zspage;
66cdef66 2440 struct size_class *class;
3783689a 2441 int fullness = 0;
c60369f0 2442
66cdef66
GM
2443 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2444 if (size > ZS_MAX_ALLOC_SIZE)
2445 size = ZS_MAX_ALLOC_SIZE;
2446 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2447 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2448
010b495e
SS
2449 /*
2450 * We iterate from biggest down to smallest classes,
2451 * so huge_class_size holds the size of the first huge
2452 * class. Any object bigger than or equal to that will
2453 * endup in the huge class.
2454 */
2455 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2456 !huge_class_size) {
2457 huge_class_size = size;
2458 /*
2459 * The object uses ZS_HANDLE_SIZE bytes to store the
2460 * handle. We need to subtract it, because zs_malloc()
2461 * unconditionally adds handle size before it performs
2462 * size class search - so object may be smaller than
2463 * huge class size, yet it still can end up in the huge
2464 * class because it grows by ZS_HANDLE_SIZE extra bytes
2465 * right before class lookup.
2466 */
2467 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2468 }
2469
66cdef66
GM
2470 /*
2471 * size_class is used for normal zsmalloc operation such
2472 * as alloc/free for that size. Although it is natural that we
2473 * have one size_class for each size, there is a chance that we
2474 * can get more memory utilization if we use one size_class for
2475 * many different sizes whose size_class have same
2476 * characteristics. So, we makes size_class point to
2477 * previous size_class if possible.
2478 */
2479 if (prev_class) {
64d90465 2480 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2481 pool->size_class[i] = prev_class;
2482 continue;
2483 }
2484 }
2485
2486 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2487 if (!class)
2488 goto err;
2489
2490 class->size = size;
2491 class->index = i;
2492 class->pages_per_zspage = pages_per_zspage;
64d90465 2493 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2494 spin_lock_init(&class->lock);
2495 pool->size_class[i] = class;
48b4800a
MK
2496 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2497 fullness++)
3783689a 2498 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2499
2500 prev_class = class;
61989a80
NG
2501 }
2502
d34f6157
DS
2503 /* debug only, don't abort if it fails */
2504 zs_pool_stat_create(pool, name);
0f050d99 2505
48b4800a
MK
2506 if (zs_register_migration(pool))
2507 goto err;
2508
ab9d306d 2509 /*
93144ca3
AK
2510 * Not critical since shrinker is only used to trigger internal
2511 * defragmentation of the pool which is pretty optional thing. If
2512 * registration fails we still can use the pool normally and user can
2513 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2514 */
93144ca3
AK
2515 zs_register_shrinker(pool);
2516
66cdef66
GM
2517 return pool;
2518
2519err:
2520 zs_destroy_pool(pool);
2521 return NULL;
61989a80 2522}
66cdef66 2523EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2524
66cdef66 2525void zs_destroy_pool(struct zs_pool *pool)
61989a80 2526{
66cdef66 2527 int i;
61989a80 2528
ab9d306d 2529 zs_unregister_shrinker(pool);
48b4800a 2530 zs_unregister_migration(pool);
0f050d99
GM
2531 zs_pool_stat_destroy(pool);
2532
cf8e0fed 2533 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2534 int fg;
2535 struct size_class *class = pool->size_class[i];
61989a80 2536
66cdef66
GM
2537 if (!class)
2538 continue;
61989a80 2539
66cdef66
GM
2540 if (class->index != i)
2541 continue;
61989a80 2542
48b4800a 2543 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2544 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2545 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2546 class->size, fg);
2547 }
2548 }
2549 kfree(class);
2550 }
f553646a 2551
3783689a 2552 destroy_cache(pool);
0f050d99 2553 kfree(pool->name);
66cdef66
GM
2554 kfree(pool);
2555}
2556EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2557
66cdef66
GM
2558static int __init zs_init(void)
2559{
48b4800a
MK
2560 int ret;
2561
2562 ret = zsmalloc_mount();
2563 if (ret)
2564 goto out;
2565
215c89d0
SAS
2566 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2567 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2568 if (ret)
215c89d0 2569 goto hp_setup_fail;
66cdef66 2570
66cdef66
GM
2571#ifdef CONFIG_ZPOOL
2572 zpool_register_driver(&zs_zpool_driver);
2573#endif
0f050d99 2574
4abaac9b
DS
2575 zs_stat_init();
2576
66cdef66 2577 return 0;
0f050d99 2578
215c89d0 2579hp_setup_fail:
48b4800a
MK
2580 zsmalloc_unmount();
2581out:
0f050d99 2582 return ret;
61989a80 2583}
61989a80 2584
66cdef66 2585static void __exit zs_exit(void)
61989a80 2586{
66cdef66
GM
2587#ifdef CONFIG_ZPOOL
2588 zpool_unregister_driver(&zs_zpool_driver);
2589#endif
48b4800a 2590 zsmalloc_unmount();
215c89d0 2591 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2592
2593 zs_stat_exit();
61989a80 2594}
069f101f
BH
2595
2596module_init(zs_init);
2597module_exit(zs_exit);
2598
2599MODULE_LICENSE("Dual BSD/GPL");
2600MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");