]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/zsmalloc.c
Merge tag 'arm-soc-fixes-v5.10-4b' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
48b4800a
MK
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
fd854463 23 * page->units: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
50d34394 36#include <linux/magic.h>
61989a80
NG
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
61989a80
NG
40#include <linux/string.h>
41#include <linux/slab.h>
ca5999fd 42#include <linux/pgtable.h>
65fddcfc 43#include <asm/tlbflush.h>
61989a80
NG
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
0cbb613f 46#include <linux/vmalloc.h>
759b26b2 47#include <linux/preempt.h>
0959c63f 48#include <linux/spinlock.h>
93144ca3 49#include <linux/shrinker.h>
0959c63f 50#include <linux/types.h>
0f050d99 51#include <linux/debugfs.h>
bcf1647d 52#include <linux/zsmalloc.h>
c795779d 53#include <linux/zpool.h>
48b4800a 54#include <linux/mount.h>
8e9231f8 55#include <linux/pseudo_fs.h>
dd4123f3 56#include <linux/migrate.h>
701d6785 57#include <linux/wait.h>
48b4800a 58#include <linux/pagemap.h>
cdc346b3 59#include <linux/fs.h>
48b4800a
MK
60
61#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
62
63/*
64 * This must be power of 2 and greater than of equal to sizeof(link_free).
65 * These two conditions ensure that any 'struct link_free' itself doesn't
66 * span more than 1 page which avoids complex case of mapping 2 pages simply
67 * to restore link_free pointer values.
68 */
69#define ZS_ALIGN 8
70
71/*
72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74 */
75#define ZS_MAX_ZSPAGE_ORDER 2
76#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
2e40e163
MK
78#define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
0959c63f
SJ
80/*
81 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 82 * a single (unsigned long) handle value.
0959c63f 83 *
bfd093f5 84 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
85 *
86 * This is made more complicated by various memory models and PAE.
87 */
88
02390b87
KS
89#ifndef MAX_POSSIBLE_PHYSMEM_BITS
90#ifdef MAX_PHYSMEM_BITS
91#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92#else
0959c63f
SJ
93/*
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 * be PAGE_SHIFT
96 */
02390b87 97#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
98#endif
99#endif
02390b87
KS
100
101#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
102
103/*
104 * Memory for allocating for handle keeps object position by
105 * encoding <page, obj_idx> and the encoded value has a room
106 * in least bit(ie, look at obj_to_location).
107 * We use the bit to synchronize between object access by
108 * user and migration.
109 */
110#define HANDLE_PIN_BIT 0
111
112/*
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
118 */
119#define OBJ_ALLOCATED_TAG 1
120#define OBJ_TAG_BITS 1
121#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
122#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
cf8e0fed
JM
124#define FULLNESS_BITS 2
125#define CLASS_BITS 8
126#define ISOLATED_BITS 3
127#define MAGIC_VAL_BITS 8
128
0959c63f
SJ
129#define MAX(a, b) ((a) >= (b) ? (a) : (b))
130/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131#define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 133/* each chunk includes extra space to keep handle */
7b60a685 134#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
135
136/*
7eb52512 137 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
138 * trader-off here:
139 * - Large number of size classes is potentially wasteful as free page are
140 * spread across these classes
141 * - Small number of size classes causes large internal fragmentation
142 * - Probably its better to use specific size classes (empirically
143 * determined). NOTE: all those class sizes must be set as multiple of
144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145 *
146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 * (reason above)
148 */
3783689a 149#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
150#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 152
0959c63f 153enum fullness_group {
0959c63f 154 ZS_EMPTY,
48b4800a
MK
155 ZS_ALMOST_EMPTY,
156 ZS_ALMOST_FULL,
157 ZS_FULL,
158 NR_ZS_FULLNESS,
0959c63f
SJ
159};
160
0f050d99 161enum zs_stat_type {
48b4800a
MK
162 CLASS_EMPTY,
163 CLASS_ALMOST_EMPTY,
164 CLASS_ALMOST_FULL,
165 CLASS_FULL,
0f050d99
GM
166 OBJ_ALLOCATED,
167 OBJ_USED,
48b4800a 168 NR_ZS_STAT_TYPE,
0f050d99
GM
169};
170
0f050d99
GM
171struct zs_size_stat {
172 unsigned long objs[NR_ZS_STAT_TYPE];
173};
174
57244594
SS
175#ifdef CONFIG_ZSMALLOC_STAT
176static struct dentry *zs_stat_root;
0f050d99
GM
177#endif
178
48b4800a
MK
179#ifdef CONFIG_COMPACTION
180static struct vfsmount *zsmalloc_mnt;
181#endif
182
0959c63f
SJ
183/*
184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185 * n <= N / f, where
186 * n = number of allocated objects
187 * N = total number of objects zspage can store
6dd9737e 188 * f = fullness_threshold_frac
0959c63f
SJ
189 *
190 * Similarly, we assign zspage to:
191 * ZS_ALMOST_FULL when n > N / f
192 * ZS_EMPTY when n == 0
193 * ZS_FULL when n == N
194 *
195 * (see: fix_fullness_group())
196 */
197static const int fullness_threshold_frac = 4;
010b495e 198static size_t huge_class_size;
0959c63f
SJ
199
200struct size_class {
57244594 201 spinlock_t lock;
48b4800a 202 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
203 /*
204 * Size of objects stored in this class. Must be multiple
205 * of ZS_ALIGN.
206 */
207 int size;
1fc6e27d 208 int objs_per_zspage;
7dfa4612
WY
209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 int pages_per_zspage;
48b4800a
MK
211
212 unsigned int index;
213 struct zs_size_stat stats;
0959c63f
SJ
214};
215
48b4800a
MK
216/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217static void SetPageHugeObject(struct page *page)
218{
219 SetPageOwnerPriv1(page);
220}
221
222static void ClearPageHugeObject(struct page *page)
223{
224 ClearPageOwnerPriv1(page);
225}
226
227static int PageHugeObject(struct page *page)
228{
229 return PageOwnerPriv1(page);
230}
231
0959c63f
SJ
232/*
233 * Placed within free objects to form a singly linked list.
3783689a 234 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
235 *
236 * This must be power of 2 and less than or equal to ZS_ALIGN
237 */
238struct link_free {
2e40e163
MK
239 union {
240 /*
bfd093f5 241 * Free object index;
2e40e163
MK
242 * It's valid for non-allocated object
243 */
bfd093f5 244 unsigned long next;
2e40e163
MK
245 /*
246 * Handle of allocated object.
247 */
248 unsigned long handle;
249 };
0959c63f
SJ
250};
251
252struct zs_pool {
6f3526d6 253 const char *name;
0f050d99 254
cf8e0fed 255 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 256 struct kmem_cache *handle_cachep;
3783689a 257 struct kmem_cache *zspage_cachep;
0959c63f 258
13de8933 259 atomic_long_t pages_allocated;
0f050d99 260
7d3f3938 261 struct zs_pool_stats stats;
ab9d306d
SS
262
263 /* Compact classes */
264 struct shrinker shrinker;
93144ca3 265
0f050d99
GM
266#ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry *stat_dentry;
268#endif
48b4800a
MK
269#ifdef CONFIG_COMPACTION
270 struct inode *inode;
271 struct work_struct free_work;
701d6785
HB
272 /* A wait queue for when migration races with async_free_zspage() */
273 struct wait_queue_head migration_wait;
274 atomic_long_t isolated_pages;
275 bool destroying;
48b4800a 276#endif
0959c63f 277};
61989a80 278
3783689a
MK
279struct zspage {
280 struct {
281 unsigned int fullness:FULLNESS_BITS;
85d492f2 282 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
283 unsigned int isolated:ISOLATED_BITS;
284 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
285 };
286 unsigned int inuse;
bfd093f5 287 unsigned int freeobj;
3783689a
MK
288 struct page *first_page;
289 struct list_head list; /* fullness list */
48b4800a
MK
290#ifdef CONFIG_COMPACTION
291 rwlock_t lock;
292#endif
3783689a 293};
61989a80 294
f553646a 295struct mapping_area {
f553646a 296 char *vm_buf; /* copy buffer for objects that span pages */
f553646a
SJ
297 char *vm_addr; /* address of kmap_atomic()'ed pages */
298 enum zs_mapmode vm_mm; /* mapping mode */
299};
300
48b4800a
MK
301#ifdef CONFIG_COMPACTION
302static int zs_register_migration(struct zs_pool *pool);
303static void zs_unregister_migration(struct zs_pool *pool);
304static void migrate_lock_init(struct zspage *zspage);
305static void migrate_read_lock(struct zspage *zspage);
306static void migrate_read_unlock(struct zspage *zspage);
307static void kick_deferred_free(struct zs_pool *pool);
308static void init_deferred_free(struct zs_pool *pool);
309static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310#else
311static int zsmalloc_mount(void) { return 0; }
312static void zsmalloc_unmount(void) {}
313static int zs_register_migration(struct zs_pool *pool) { return 0; }
314static void zs_unregister_migration(struct zs_pool *pool) {}
315static void migrate_lock_init(struct zspage *zspage) {}
316static void migrate_read_lock(struct zspage *zspage) {}
317static void migrate_read_unlock(struct zspage *zspage) {}
318static void kick_deferred_free(struct zs_pool *pool) {}
319static void init_deferred_free(struct zs_pool *pool) {}
320static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321#endif
322
3783689a 323static int create_cache(struct zs_pool *pool)
2e40e163
MK
324{
325 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326 0, 0, NULL);
3783689a
MK
327 if (!pool->handle_cachep)
328 return 1;
329
330 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331 0, 0, NULL);
332 if (!pool->zspage_cachep) {
333 kmem_cache_destroy(pool->handle_cachep);
334 pool->handle_cachep = NULL;
335 return 1;
336 }
337
338 return 0;
2e40e163
MK
339}
340
3783689a 341static void destroy_cache(struct zs_pool *pool)
2e40e163 342{
cd10add0 343 kmem_cache_destroy(pool->handle_cachep);
3783689a 344 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
345}
346
3783689a 347static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
348{
349 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 350 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
351}
352
3783689a 353static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
354{
355 kmem_cache_free(pool->handle_cachep, (void *)handle);
356}
357
3783689a
MK
358static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359{
48b4800a
MK
360 return kmem_cache_alloc(pool->zspage_cachep,
361 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 362}
3783689a
MK
363
364static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365{
366 kmem_cache_free(pool->zspage_cachep, zspage);
367}
368
2e40e163
MK
369static void record_obj(unsigned long handle, unsigned long obj)
370{
c102f07c
JL
371 /*
372 * lsb of @obj represents handle lock while other bits
373 * represent object value the handle is pointing so
374 * updating shouldn't do store tearing.
375 */
376 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
377}
378
c795779d
DS
379/* zpool driver */
380
381#ifdef CONFIG_ZPOOL
382
6f3526d6 383static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 384 const struct zpool_ops *zpool_ops,
479305fd 385 struct zpool *zpool)
c795779d 386{
d0d8da2d
SS
387 /*
388 * Ignore global gfp flags: zs_malloc() may be invoked from
389 * different contexts and its caller must provide a valid
390 * gfp mask.
391 */
392 return zs_create_pool(name);
c795779d
DS
393}
394
395static void zs_zpool_destroy(void *pool)
396{
397 zs_destroy_pool(pool);
398}
399
400static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401 unsigned long *handle)
402{
d0d8da2d 403 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
404 return *handle ? 0 : -1;
405}
406static void zs_zpool_free(void *pool, unsigned long handle)
407{
408 zs_free(pool, handle);
409}
410
c795779d
DS
411static void *zs_zpool_map(void *pool, unsigned long handle,
412 enum zpool_mapmode mm)
413{
414 enum zs_mapmode zs_mm;
415
416 switch (mm) {
417 case ZPOOL_MM_RO:
418 zs_mm = ZS_MM_RO;
419 break;
420 case ZPOOL_MM_WO:
421 zs_mm = ZS_MM_WO;
422 break;
e4a9bc58 423 case ZPOOL_MM_RW:
c795779d
DS
424 default:
425 zs_mm = ZS_MM_RW;
426 break;
427 }
428
429 return zs_map_object(pool, handle, zs_mm);
430}
431static void zs_zpool_unmap(void *pool, unsigned long handle)
432{
433 zs_unmap_object(pool, handle);
434}
435
436static u64 zs_zpool_total_size(void *pool)
437{
722cdc17 438 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
439}
440
441static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
442 .type = "zsmalloc",
443 .owner = THIS_MODULE,
444 .create = zs_zpool_create,
445 .destroy = zs_zpool_destroy,
446 .malloc_support_movable = true,
447 .malloc = zs_zpool_malloc,
448 .free = zs_zpool_free,
449 .map = zs_zpool_map,
450 .unmap = zs_zpool_unmap,
451 .total_size = zs_zpool_total_size,
c795779d
DS
452};
453
137f8cff 454MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
455#endif /* CONFIG_ZPOOL */
456
61989a80
NG
457/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
458static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
459
48b4800a
MK
460static bool is_zspage_isolated(struct zspage *zspage)
461{
462 return zspage->isolated;
463}
464
3457f414 465static __maybe_unused int is_first_page(struct page *page)
61989a80 466{
a27545bf 467 return PagePrivate(page);
61989a80
NG
468}
469
48b4800a 470/* Protected by class->lock */
3783689a 471static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 472{
3783689a 473 return zspage->inuse;
4f42047b
MK
474}
475
4f42047b 476
3783689a 477static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 478{
3783689a 479 zspage->inuse += val;
4f42047b
MK
480}
481
48b4800a 482static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 483{
48b4800a 484 struct page *first_page = zspage->first_page;
3783689a 485
48b4800a
MK
486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487 return first_page;
4f42047b
MK
488}
489
48b4800a 490static inline int get_first_obj_offset(struct page *page)
4f42047b 491{
48b4800a
MK
492 return page->units;
493}
3783689a 494
48b4800a
MK
495static inline void set_first_obj_offset(struct page *page, int offset)
496{
497 page->units = offset;
4f42047b
MK
498}
499
bfd093f5 500static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 501{
bfd093f5 502 return zspage->freeobj;
4f42047b
MK
503}
504
bfd093f5 505static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 506{
bfd093f5 507 zspage->freeobj = obj;
4f42047b
MK
508}
509
3783689a 510static void get_zspage_mapping(struct zspage *zspage,
a4209467 511 unsigned int *class_idx,
61989a80
NG
512 enum fullness_group *fullness)
513{
48b4800a
MK
514 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
3783689a
MK
516 *fullness = zspage->fullness;
517 *class_idx = zspage->class;
61989a80
NG
518}
519
3783689a 520static void set_zspage_mapping(struct zspage *zspage,
a4209467 521 unsigned int class_idx,
61989a80
NG
522 enum fullness_group fullness)
523{
3783689a
MK
524 zspage->class = class_idx;
525 zspage->fullness = fullness;
61989a80
NG
526}
527
c3e3e88a
NC
528/*
529 * zsmalloc divides the pool into various size classes where each
530 * class maintains a list of zspages where each zspage is divided
531 * into equal sized chunks. Each allocation falls into one of these
532 * classes depending on its size. This function returns index of the
533 * size class which has chunk size big enough to hold the give size.
534 */
61989a80
NG
535static int get_size_class_index(int size)
536{
537 int idx = 0;
538
539 if (likely(size > ZS_MIN_ALLOC_SIZE))
540 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541 ZS_SIZE_CLASS_DELTA);
542
cf8e0fed 543 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
544}
545
3eb95fea 546/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 547static inline void zs_stat_inc(struct size_class *class,
3eb95fea 548 int type, unsigned long cnt)
248ca1b0 549{
48b4800a 550 class->stats.objs[type] += cnt;
248ca1b0
MK
551}
552
3eb95fea 553/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 554static inline void zs_stat_dec(struct size_class *class,
3eb95fea 555 int type, unsigned long cnt)
248ca1b0 556{
48b4800a 557 class->stats.objs[type] -= cnt;
248ca1b0
MK
558}
559
3eb95fea 560/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 561static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 562 int type)
248ca1b0 563{
48b4800a 564 return class->stats.objs[type];
248ca1b0
MK
565}
566
57244594
SS
567#ifdef CONFIG_ZSMALLOC_STAT
568
4abaac9b 569static void __init zs_stat_init(void)
248ca1b0 570{
4abaac9b
DS
571 if (!debugfs_initialized()) {
572 pr_warn("debugfs not available, stat dir not created\n");
573 return;
574 }
248ca1b0
MK
575
576 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
577}
578
579static void __exit zs_stat_exit(void)
580{
581 debugfs_remove_recursive(zs_stat_root);
582}
583
1120ed54
SS
584static unsigned long zs_can_compact(struct size_class *class);
585
248ca1b0
MK
586static int zs_stats_size_show(struct seq_file *s, void *v)
587{
588 int i;
589 struct zs_pool *pool = s->private;
590 struct size_class *class;
591 int objs_per_zspage;
592 unsigned long class_almost_full, class_almost_empty;
1120ed54 593 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
594 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
595 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 596 unsigned long total_freeable = 0;
248ca1b0 597
1120ed54 598 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
599 "class", "size", "almost_full", "almost_empty",
600 "obj_allocated", "obj_used", "pages_used",
1120ed54 601 "pages_per_zspage", "freeable");
248ca1b0 602
cf8e0fed 603 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
604 class = pool->size_class[i];
605
606 if (class->index != i)
607 continue;
608
609 spin_lock(&class->lock);
610 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
611 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
612 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
613 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 614 freeable = zs_can_compact(class);
248ca1b0
MK
615 spin_unlock(&class->lock);
616
b4fd07a0 617 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
618 pages_used = obj_allocated / objs_per_zspage *
619 class->pages_per_zspage;
620
1120ed54
SS
621 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
622 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
623 i, class->size, class_almost_full, class_almost_empty,
624 obj_allocated, obj_used, pages_used,
1120ed54 625 class->pages_per_zspage, freeable);
248ca1b0
MK
626
627 total_class_almost_full += class_almost_full;
628 total_class_almost_empty += class_almost_empty;
629 total_objs += obj_allocated;
630 total_used_objs += obj_used;
631 total_pages += pages_used;
1120ed54 632 total_freeable += freeable;
248ca1b0
MK
633 }
634
635 seq_puts(s, "\n");
1120ed54 636 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
637 "Total", "", total_class_almost_full,
638 total_class_almost_empty, total_objs,
1120ed54 639 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
640
641 return 0;
642}
5ad35093 643DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 644
d34f6157 645static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 646{
4abaac9b
DS
647 if (!zs_stat_root) {
648 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 649 return;
4abaac9b 650 }
248ca1b0 651
4268509a
GKH
652 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
653
654 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
655 &zs_stats_size_fops);
248ca1b0
MK
656}
657
658static void zs_pool_stat_destroy(struct zs_pool *pool)
659{
660 debugfs_remove_recursive(pool->stat_dentry);
661}
662
663#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 664static void __init zs_stat_init(void)
248ca1b0 665{
248ca1b0
MK
666}
667
668static void __exit zs_stat_exit(void)
669{
670}
671
d34f6157 672static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 673{
248ca1b0
MK
674}
675
676static inline void zs_pool_stat_destroy(struct zs_pool *pool)
677{
678}
248ca1b0
MK
679#endif
680
48b4800a 681
c3e3e88a
NC
682/*
683 * For each size class, zspages are divided into different groups
684 * depending on how "full" they are. This was done so that we could
685 * easily find empty or nearly empty zspages when we try to shrink
686 * the pool (not yet implemented). This function returns fullness
687 * status of the given page.
688 */
1fc6e27d 689static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 690 struct zspage *zspage)
61989a80 691{
1fc6e27d 692 int inuse, objs_per_zspage;
61989a80 693 enum fullness_group fg;
830e4bc5 694
3783689a 695 inuse = get_zspage_inuse(zspage);
1fc6e27d 696 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
697
698 if (inuse == 0)
699 fg = ZS_EMPTY;
1fc6e27d 700 else if (inuse == objs_per_zspage)
61989a80 701 fg = ZS_FULL;
1fc6e27d 702 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
703 fg = ZS_ALMOST_EMPTY;
704 else
705 fg = ZS_ALMOST_FULL;
706
707 return fg;
708}
709
c3e3e88a
NC
710/*
711 * Each size class maintains various freelists and zspages are assigned
712 * to one of these freelists based on the number of live objects they
713 * have. This functions inserts the given zspage into the freelist
714 * identified by <class, fullness_group>.
715 */
251cbb95 716static void insert_zspage(struct size_class *class,
3783689a
MK
717 struct zspage *zspage,
718 enum fullness_group fullness)
61989a80 719{
3783689a 720 struct zspage *head;
61989a80 721
48b4800a 722 zs_stat_inc(class, fullness, 1);
3783689a
MK
723 head = list_first_entry_or_null(&class->fullness_list[fullness],
724 struct zspage, list);
58f17117 725 /*
3783689a
MK
726 * We want to see more ZS_FULL pages and less almost empty/full.
727 * Put pages with higher ->inuse first.
58f17117 728 */
3783689a
MK
729 if (head) {
730 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
731 list_add(&zspage->list, &head->list);
732 return;
733 }
734 }
735 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
736}
737
c3e3e88a
NC
738/*
739 * This function removes the given zspage from the freelist identified
740 * by <class, fullness_group>.
741 */
251cbb95 742static void remove_zspage(struct size_class *class,
3783689a
MK
743 struct zspage *zspage,
744 enum fullness_group fullness)
61989a80 745{
3783689a 746 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
48b4800a 747 VM_BUG_ON(is_zspage_isolated(zspage));
61989a80 748
3783689a 749 list_del_init(&zspage->list);
48b4800a 750 zs_stat_dec(class, fullness, 1);
61989a80
NG
751}
752
c3e3e88a
NC
753/*
754 * Each size class maintains zspages in different fullness groups depending
755 * on the number of live objects they contain. When allocating or freeing
756 * objects, the fullness status of the page can change, say, from ALMOST_FULL
757 * to ALMOST_EMPTY when freeing an object. This function checks if such
758 * a status change has occurred for the given page and accordingly moves the
759 * page from the freelist of the old fullness group to that of the new
760 * fullness group.
761 */
c7806261 762static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 763 struct zspage *zspage)
61989a80
NG
764{
765 int class_idx;
61989a80
NG
766 enum fullness_group currfg, newfg;
767
3783689a
MK
768 get_zspage_mapping(zspage, &class_idx, &currfg);
769 newfg = get_fullness_group(class, zspage);
61989a80
NG
770 if (newfg == currfg)
771 goto out;
772
48b4800a
MK
773 if (!is_zspage_isolated(zspage)) {
774 remove_zspage(class, zspage, currfg);
775 insert_zspage(class, zspage, newfg);
776 }
777
3783689a 778 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
779
780out:
781 return newfg;
782}
783
784/*
785 * We have to decide on how many pages to link together
786 * to form a zspage for each size class. This is important
787 * to reduce wastage due to unusable space left at end of
788 * each zspage which is given as:
888fa374
YX
789 * wastage = Zp % class_size
790 * usage = Zp - wastage
61989a80
NG
791 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
792 *
793 * For example, for size class of 3/8 * PAGE_SIZE, we should
794 * link together 3 PAGE_SIZE sized pages to form a zspage
795 * since then we can perfectly fit in 8 such objects.
796 */
2e3b6154 797static int get_pages_per_zspage(int class_size)
61989a80
NG
798{
799 int i, max_usedpc = 0;
800 /* zspage order which gives maximum used size per KB */
801 int max_usedpc_order = 1;
802
84d4faab 803 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
804 int zspage_size;
805 int waste, usedpc;
806
807 zspage_size = i * PAGE_SIZE;
808 waste = zspage_size % class_size;
809 usedpc = (zspage_size - waste) * 100 / zspage_size;
810
811 if (usedpc > max_usedpc) {
812 max_usedpc = usedpc;
813 max_usedpc_order = i;
814 }
815 }
816
817 return max_usedpc_order;
818}
819
3783689a 820static struct zspage *get_zspage(struct page *page)
61989a80 821{
48b4800a
MK
822 struct zspage *zspage = (struct zspage *)page->private;
823
824 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
825 return zspage;
61989a80
NG
826}
827
828static struct page *get_next_page(struct page *page)
829{
48b4800a
MK
830 if (unlikely(PageHugeObject(page)))
831 return NULL;
832
833 return page->freelist;
61989a80
NG
834}
835
bfd093f5
MK
836/**
837 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 838 * @obj: the encoded object value
bfd093f5
MK
839 * @page: page object resides in zspage
840 * @obj_idx: object index
67296874 841 */
bfd093f5
MK
842static void obj_to_location(unsigned long obj, struct page **page,
843 unsigned int *obj_idx)
61989a80 844{
bfd093f5
MK
845 obj >>= OBJ_TAG_BITS;
846 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
847 *obj_idx = (obj & OBJ_INDEX_MASK);
848}
61989a80 849
bfd093f5
MK
850/**
851 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
852 * @page: page object resides in zspage
853 * @obj_idx: object index
854 */
855static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
856{
857 unsigned long obj;
61989a80 858
312fcae2 859 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 860 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 861 obj <<= OBJ_TAG_BITS;
61989a80 862
bfd093f5 863 return obj;
61989a80
NG
864}
865
2e40e163
MK
866static unsigned long handle_to_obj(unsigned long handle)
867{
868 return *(unsigned long *)handle;
869}
870
48b4800a 871static unsigned long obj_to_head(struct page *page, void *obj)
312fcae2 872{
48b4800a 873 if (unlikely(PageHugeObject(page))) {
830e4bc5 874 VM_BUG_ON_PAGE(!is_first_page(page), page);
3783689a 875 return page->index;
7b60a685
MK
876 } else
877 return *(unsigned long *)obj;
312fcae2
MK
878}
879
48b4800a
MK
880static inline int testpin_tag(unsigned long handle)
881{
882 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
883}
884
312fcae2
MK
885static inline int trypin_tag(unsigned long handle)
886{
1b8320b6 887 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
888}
889
70c7ec95 890static void pin_tag(unsigned long handle) __acquires(bitlock)
312fcae2 891{
1b8320b6 892 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
893}
894
bc22b18b 895static void unpin_tag(unsigned long handle) __releases(bitlock)
312fcae2 896{
1b8320b6 897 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
898}
899
f4477e90
NG
900static void reset_page(struct page *page)
901{
48b4800a 902 __ClearPageMovable(page);
18fd06bf 903 ClearPagePrivate(page);
f4477e90 904 set_page_private(page, 0);
48b4800a
MK
905 page_mapcount_reset(page);
906 ClearPageHugeObject(page);
907 page->freelist = NULL;
908}
909
4d0a5402 910static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
911{
912 struct page *cursor, *fail;
913
914 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
915 get_next_page(cursor)) {
916 if (!trylock_page(cursor)) {
917 fail = cursor;
918 goto unlock;
919 }
920 }
921
922 return 1;
923unlock:
924 for (cursor = get_first_page(zspage); cursor != fail; cursor =
925 get_next_page(cursor))
926 unlock_page(cursor);
927
928 return 0;
f4477e90
NG
929}
930
48b4800a
MK
931static void __free_zspage(struct zs_pool *pool, struct size_class *class,
932 struct zspage *zspage)
61989a80 933{
3783689a 934 struct page *page, *next;
48b4800a
MK
935 enum fullness_group fg;
936 unsigned int class_idx;
937
938 get_zspage_mapping(zspage, &class_idx, &fg);
939
940 assert_spin_locked(&class->lock);
61989a80 941
3783689a 942 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 943 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 944
48b4800a 945 next = page = get_first_page(zspage);
3783689a 946 do {
48b4800a
MK
947 VM_BUG_ON_PAGE(!PageLocked(page), page);
948 next = get_next_page(page);
3783689a 949 reset_page(page);
48b4800a 950 unlock_page(page);
91537fee 951 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
952 put_page(page);
953 page = next;
954 } while (page != NULL);
61989a80 955
3783689a 956 cache_free_zspage(pool, zspage);
48b4800a 957
b4fd07a0 958 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
959 atomic_long_sub(class->pages_per_zspage,
960 &pool->pages_allocated);
961}
962
963static void free_zspage(struct zs_pool *pool, struct size_class *class,
964 struct zspage *zspage)
965{
966 VM_BUG_ON(get_zspage_inuse(zspage));
967 VM_BUG_ON(list_empty(&zspage->list));
968
969 if (!trylock_zspage(zspage)) {
970 kick_deferred_free(pool);
971 return;
972 }
973
974 remove_zspage(class, zspage, ZS_EMPTY);
975 __free_zspage(pool, class, zspage);
61989a80
NG
976}
977
978/* Initialize a newly allocated zspage */
3783689a 979static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 980{
bfd093f5 981 unsigned int freeobj = 1;
61989a80 982 unsigned long off = 0;
48b4800a 983 struct page *page = get_first_page(zspage);
830e4bc5 984
61989a80
NG
985 while (page) {
986 struct page *next_page;
987 struct link_free *link;
af4ee5e9 988 void *vaddr;
61989a80 989
3783689a 990 set_first_obj_offset(page, off);
61989a80 991
af4ee5e9
MK
992 vaddr = kmap_atomic(page);
993 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
994
995 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 996 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 997 link += class->size / sizeof(*link);
61989a80
NG
998 }
999
1000 /*
1001 * We now come to the last (full or partial) object on this
1002 * page, which must point to the first object on the next
1003 * page (if present)
1004 */
1005 next_page = get_next_page(page);
bfd093f5 1006 if (next_page) {
3b1d9ca6 1007 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1008 } else {
1009 /*
3b1d9ca6 1010 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1011 * whether it's allocated object or not.
1012 */
01a6ad9a 1013 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1014 }
af4ee5e9 1015 kunmap_atomic(vaddr);
61989a80 1016 page = next_page;
5538c562 1017 off %= PAGE_SIZE;
61989a80 1018 }
bdb0af7c 1019
bfd093f5 1020 set_freeobj(zspage, 0);
61989a80
NG
1021}
1022
48b4800a
MK
1023static void create_page_chain(struct size_class *class, struct zspage *zspage,
1024 struct page *pages[])
61989a80 1025{
bdb0af7c
MK
1026 int i;
1027 struct page *page;
1028 struct page *prev_page = NULL;
48b4800a 1029 int nr_pages = class->pages_per_zspage;
61989a80
NG
1030
1031 /*
1032 * Allocate individual pages and link them together as:
48b4800a 1033 * 1. all pages are linked together using page->freelist
3783689a 1034 * 2. each sub-page point to zspage using page->private
61989a80 1035 *
3783689a 1036 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1037 * has this flag set).
61989a80 1038 */
bdb0af7c
MK
1039 for (i = 0; i < nr_pages; i++) {
1040 page = pages[i];
3783689a 1041 set_page_private(page, (unsigned long)zspage);
48b4800a 1042 page->freelist = NULL;
bdb0af7c 1043 if (i == 0) {
3783689a 1044 zspage->first_page = page;
a27545bf 1045 SetPagePrivate(page);
48b4800a
MK
1046 if (unlikely(class->objs_per_zspage == 1 &&
1047 class->pages_per_zspage == 1))
1048 SetPageHugeObject(page);
3783689a 1049 } else {
48b4800a 1050 prev_page->freelist = page;
61989a80 1051 }
61989a80
NG
1052 prev_page = page;
1053 }
bdb0af7c 1054}
61989a80 1055
bdb0af7c
MK
1056/*
1057 * Allocate a zspage for the given size class
1058 */
3783689a
MK
1059static struct zspage *alloc_zspage(struct zs_pool *pool,
1060 struct size_class *class,
1061 gfp_t gfp)
bdb0af7c
MK
1062{
1063 int i;
bdb0af7c 1064 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1065 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1066
1067 if (!zspage)
1068 return NULL;
1069
1070 memset(zspage, 0, sizeof(struct zspage));
48b4800a
MK
1071 zspage->magic = ZSPAGE_MAGIC;
1072 migrate_lock_init(zspage);
61989a80 1073
bdb0af7c
MK
1074 for (i = 0; i < class->pages_per_zspage; i++) {
1075 struct page *page;
61989a80 1076
3783689a 1077 page = alloc_page(gfp);
bdb0af7c 1078 if (!page) {
91537fee
MK
1079 while (--i >= 0) {
1080 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1081 __free_page(pages[i]);
91537fee 1082 }
3783689a 1083 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1084 return NULL;
1085 }
91537fee
MK
1086
1087 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1088 pages[i] = page;
61989a80
NG
1089 }
1090
48b4800a 1091 create_page_chain(class, zspage, pages);
3783689a 1092 init_zspage(class, zspage);
bdb0af7c 1093
3783689a 1094 return zspage;
61989a80
NG
1095}
1096
3783689a 1097static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1098{
1099 int i;
3783689a 1100 struct zspage *zspage;
61989a80 1101
48b4800a 1102 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1103 zspage = list_first_entry_or_null(&class->fullness_list[i],
1104 struct zspage, list);
1105 if (zspage)
61989a80
NG
1106 break;
1107 }
1108
3783689a 1109 return zspage;
61989a80
NG
1110}
1111
f553646a
SJ
1112static inline int __zs_cpu_up(struct mapping_area *area)
1113{
1114 /*
1115 * Make sure we don't leak memory if a cpu UP notification
1116 * and zs_init() race and both call zs_cpu_up() on the same cpu
1117 */
1118 if (area->vm_buf)
1119 return 0;
40f9fb8c 1120 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1121 if (!area->vm_buf)
1122 return -ENOMEM;
1123 return 0;
1124}
1125
1126static inline void __zs_cpu_down(struct mapping_area *area)
1127{
40f9fb8c 1128 kfree(area->vm_buf);
f553646a
SJ
1129 area->vm_buf = NULL;
1130}
1131
1132static void *__zs_map_object(struct mapping_area *area,
1133 struct page *pages[2], int off, int size)
5f601902 1134{
5f601902
SJ
1135 int sizes[2];
1136 void *addr;
f553646a 1137 char *buf = area->vm_buf;
5f601902 1138
f553646a
SJ
1139 /* disable page faults to match kmap_atomic() return conditions */
1140 pagefault_disable();
1141
1142 /* no read fastpath */
1143 if (area->vm_mm == ZS_MM_WO)
1144 goto out;
5f601902
SJ
1145
1146 sizes[0] = PAGE_SIZE - off;
1147 sizes[1] = size - sizes[0];
1148
5f601902
SJ
1149 /* copy object to per-cpu buffer */
1150 addr = kmap_atomic(pages[0]);
1151 memcpy(buf, addr + off, sizes[0]);
1152 kunmap_atomic(addr);
1153 addr = kmap_atomic(pages[1]);
1154 memcpy(buf + sizes[0], addr, sizes[1]);
1155 kunmap_atomic(addr);
f553646a
SJ
1156out:
1157 return area->vm_buf;
5f601902
SJ
1158}
1159
f553646a
SJ
1160static void __zs_unmap_object(struct mapping_area *area,
1161 struct page *pages[2], int off, int size)
5f601902 1162{
5f601902
SJ
1163 int sizes[2];
1164 void *addr;
2e40e163 1165 char *buf;
5f601902 1166
f553646a
SJ
1167 /* no write fastpath */
1168 if (area->vm_mm == ZS_MM_RO)
1169 goto out;
5f601902 1170
7b60a685 1171 buf = area->vm_buf;
a82cbf07
YX
1172 buf = buf + ZS_HANDLE_SIZE;
1173 size -= ZS_HANDLE_SIZE;
1174 off += ZS_HANDLE_SIZE;
2e40e163 1175
5f601902
SJ
1176 sizes[0] = PAGE_SIZE - off;
1177 sizes[1] = size - sizes[0];
1178
1179 /* copy per-cpu buffer to object */
1180 addr = kmap_atomic(pages[0]);
1181 memcpy(addr + off, buf, sizes[0]);
1182 kunmap_atomic(addr);
1183 addr = kmap_atomic(pages[1]);
1184 memcpy(addr, buf + sizes[0], sizes[1]);
1185 kunmap_atomic(addr);
f553646a
SJ
1186
1187out:
1188 /* enable page faults to match kunmap_atomic() return conditions */
1189 pagefault_enable();
5f601902 1190}
61989a80 1191
215c89d0 1192static int zs_cpu_prepare(unsigned int cpu)
61989a80 1193{
61989a80
NG
1194 struct mapping_area *area;
1195
215c89d0
SAS
1196 area = &per_cpu(zs_map_area, cpu);
1197 return __zs_cpu_up(area);
61989a80
NG
1198}
1199
215c89d0 1200static int zs_cpu_dead(unsigned int cpu)
61989a80 1201{
215c89d0 1202 struct mapping_area *area;
40f9fb8c 1203
215c89d0
SAS
1204 area = &per_cpu(zs_map_area, cpu);
1205 __zs_cpu_down(area);
1206 return 0;
b1b00a5b
SS
1207}
1208
64d90465
GM
1209static bool can_merge(struct size_class *prev, int pages_per_zspage,
1210 int objs_per_zspage)
9eec4cd5 1211{
64d90465
GM
1212 if (prev->pages_per_zspage == pages_per_zspage &&
1213 prev->objs_per_zspage == objs_per_zspage)
1214 return true;
9eec4cd5 1215
64d90465 1216 return false;
9eec4cd5
JK
1217}
1218
3783689a 1219static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1220{
3783689a 1221 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1222}
1223
66cdef66
GM
1224unsigned long zs_get_total_pages(struct zs_pool *pool)
1225{
1226 return atomic_long_read(&pool->pages_allocated);
1227}
1228EXPORT_SYMBOL_GPL(zs_get_total_pages);
1229
4bbc0bc0 1230/**
66cdef66
GM
1231 * zs_map_object - get address of allocated object from handle.
1232 * @pool: pool from which the object was allocated
1233 * @handle: handle returned from zs_malloc
e8b098fc 1234 * @mm: maping mode to use
4bbc0bc0 1235 *
66cdef66
GM
1236 * Before using an object allocated from zs_malloc, it must be mapped using
1237 * this function. When done with the object, it must be unmapped using
1238 * zs_unmap_object.
4bbc0bc0 1239 *
66cdef66
GM
1240 * Only one object can be mapped per cpu at a time. There is no protection
1241 * against nested mappings.
1242 *
1243 * This function returns with preemption and page faults disabled.
4bbc0bc0 1244 */
66cdef66
GM
1245void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1246 enum zs_mapmode mm)
61989a80 1247{
3783689a 1248 struct zspage *zspage;
66cdef66 1249 struct page *page;
bfd093f5
MK
1250 unsigned long obj, off;
1251 unsigned int obj_idx;
61989a80 1252
66cdef66
GM
1253 unsigned int class_idx;
1254 enum fullness_group fg;
1255 struct size_class *class;
1256 struct mapping_area *area;
1257 struct page *pages[2];
2e40e163 1258 void *ret;
61989a80 1259
9eec4cd5 1260 /*
66cdef66
GM
1261 * Because we use per-cpu mapping areas shared among the
1262 * pools/users, we can't allow mapping in interrupt context
1263 * because it can corrupt another users mappings.
9eec4cd5 1264 */
1aedcafb 1265 BUG_ON(in_interrupt());
61989a80 1266
312fcae2
MK
1267 /* From now on, migration cannot move the object */
1268 pin_tag(handle);
1269
2e40e163
MK
1270 obj = handle_to_obj(handle);
1271 obj_to_location(obj, &page, &obj_idx);
3783689a 1272 zspage = get_zspage(page);
48b4800a
MK
1273
1274 /* migration cannot move any subpage in this zspage */
1275 migrate_read_lock(zspage);
1276
3783689a 1277 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1278 class = pool->size_class[class_idx];
bfd093f5 1279 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1280
66cdef66
GM
1281 area = &get_cpu_var(zs_map_area);
1282 area->vm_mm = mm;
1283 if (off + class->size <= PAGE_SIZE) {
1284 /* this object is contained entirely within a page */
1285 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1286 ret = area->vm_addr + off;
1287 goto out;
61989a80
NG
1288 }
1289
66cdef66
GM
1290 /* this object spans two pages */
1291 pages[0] = page;
1292 pages[1] = get_next_page(page);
1293 BUG_ON(!pages[1]);
9eec4cd5 1294
2e40e163
MK
1295 ret = __zs_map_object(area, pages, off, class->size);
1296out:
48b4800a 1297 if (likely(!PageHugeObject(page)))
7b60a685
MK
1298 ret += ZS_HANDLE_SIZE;
1299
1300 return ret;
61989a80 1301}
66cdef66 1302EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1303
66cdef66 1304void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1305{
3783689a 1306 struct zspage *zspage;
66cdef66 1307 struct page *page;
bfd093f5
MK
1308 unsigned long obj, off;
1309 unsigned int obj_idx;
61989a80 1310
66cdef66
GM
1311 unsigned int class_idx;
1312 enum fullness_group fg;
1313 struct size_class *class;
1314 struct mapping_area *area;
9eec4cd5 1315
2e40e163
MK
1316 obj = handle_to_obj(handle);
1317 obj_to_location(obj, &page, &obj_idx);
3783689a
MK
1318 zspage = get_zspage(page);
1319 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1320 class = pool->size_class[class_idx];
bfd093f5 1321 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1322
66cdef66
GM
1323 area = this_cpu_ptr(&zs_map_area);
1324 if (off + class->size <= PAGE_SIZE)
1325 kunmap_atomic(area->vm_addr);
1326 else {
1327 struct page *pages[2];
40f9fb8c 1328
66cdef66
GM
1329 pages[0] = page;
1330 pages[1] = get_next_page(page);
1331 BUG_ON(!pages[1]);
1332
1333 __zs_unmap_object(area, pages, off, class->size);
1334 }
1335 put_cpu_var(zs_map_area);
48b4800a
MK
1336
1337 migrate_read_unlock(zspage);
312fcae2 1338 unpin_tag(handle);
61989a80 1339}
66cdef66 1340EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1341
010b495e
SS
1342/**
1343 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1344 * zsmalloc &size_class.
1345 * @pool: zsmalloc pool to use
1346 *
1347 * The function returns the size of the first huge class - any object of equal
1348 * or bigger size will be stored in zspage consisting of a single physical
1349 * page.
1350 *
1351 * Context: Any context.
1352 *
1353 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1354 */
1355size_t zs_huge_class_size(struct zs_pool *pool)
1356{
1357 return huge_class_size;
1358}
1359EXPORT_SYMBOL_GPL(zs_huge_class_size);
1360
251cbb95 1361static unsigned long obj_malloc(struct size_class *class,
3783689a 1362 struct zspage *zspage, unsigned long handle)
c7806261 1363{
bfd093f5 1364 int i, nr_page, offset;
c7806261
MK
1365 unsigned long obj;
1366 struct link_free *link;
1367
1368 struct page *m_page;
bfd093f5 1369 unsigned long m_offset;
c7806261
MK
1370 void *vaddr;
1371
312fcae2 1372 handle |= OBJ_ALLOCATED_TAG;
3783689a 1373 obj = get_freeobj(zspage);
bfd093f5
MK
1374
1375 offset = obj * class->size;
1376 nr_page = offset >> PAGE_SHIFT;
1377 m_offset = offset & ~PAGE_MASK;
1378 m_page = get_first_page(zspage);
1379
1380 for (i = 0; i < nr_page; i++)
1381 m_page = get_next_page(m_page);
c7806261
MK
1382
1383 vaddr = kmap_atomic(m_page);
1384 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1385 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
48b4800a 1386 if (likely(!PageHugeObject(m_page)))
7b60a685
MK
1387 /* record handle in the header of allocated chunk */
1388 link->handle = handle;
1389 else
3783689a
MK
1390 /* record handle to page->index */
1391 zspage->first_page->index = handle;
1392
c7806261 1393 kunmap_atomic(vaddr);
3783689a 1394 mod_zspage_inuse(zspage, 1);
c7806261
MK
1395 zs_stat_inc(class, OBJ_USED, 1);
1396
bfd093f5
MK
1397 obj = location_to_obj(m_page, obj);
1398
c7806261
MK
1399 return obj;
1400}
1401
1402
61989a80
NG
1403/**
1404 * zs_malloc - Allocate block of given size from pool.
1405 * @pool: pool to allocate from
1406 * @size: size of block to allocate
fd854463 1407 * @gfp: gfp flags when allocating object
61989a80 1408 *
00a61d86 1409 * On success, handle to the allocated object is returned,
c2344348 1410 * otherwise 0.
61989a80
NG
1411 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1412 */
d0d8da2d 1413unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1414{
2e40e163 1415 unsigned long handle, obj;
61989a80 1416 struct size_class *class;
48b4800a 1417 enum fullness_group newfg;
3783689a 1418 struct zspage *zspage;
61989a80 1419
7b60a685 1420 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1421 return 0;
1422
3783689a 1423 handle = cache_alloc_handle(pool, gfp);
2e40e163 1424 if (!handle)
c2344348 1425 return 0;
61989a80 1426
2e40e163
MK
1427 /* extra space in chunk to keep the handle */
1428 size += ZS_HANDLE_SIZE;
9eec4cd5 1429 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1430
1431 spin_lock(&class->lock);
3783689a 1432 zspage = find_get_zspage(class);
48b4800a
MK
1433 if (likely(zspage)) {
1434 obj = obj_malloc(class, zspage, handle);
1435 /* Now move the zspage to another fullness group, if required */
1436 fix_fullness_group(class, zspage);
1437 record_obj(handle, obj);
61989a80 1438 spin_unlock(&class->lock);
61989a80 1439
48b4800a
MK
1440 return handle;
1441 }
0f050d99 1442
48b4800a
MK
1443 spin_unlock(&class->lock);
1444
1445 zspage = alloc_zspage(pool, class, gfp);
1446 if (!zspage) {
1447 cache_free_handle(pool, handle);
1448 return 0;
61989a80
NG
1449 }
1450
48b4800a 1451 spin_lock(&class->lock);
3783689a 1452 obj = obj_malloc(class, zspage, handle);
48b4800a
MK
1453 newfg = get_fullness_group(class, zspage);
1454 insert_zspage(class, zspage, newfg);
1455 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1456 record_obj(handle, obj);
48b4800a
MK
1457 atomic_long_add(class->pages_per_zspage,
1458 &pool->pages_allocated);
b4fd07a0 1459 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1460
1461 /* We completely set up zspage so mark them as movable */
1462 SetZsPageMovable(pool, zspage);
61989a80
NG
1463 spin_unlock(&class->lock);
1464
2e40e163 1465 return handle;
61989a80
NG
1466}
1467EXPORT_SYMBOL_GPL(zs_malloc);
1468
1ee47165 1469static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1470{
1471 struct link_free *link;
3783689a
MK
1472 struct zspage *zspage;
1473 struct page *f_page;
bfd093f5
MK
1474 unsigned long f_offset;
1475 unsigned int f_objidx;
af4ee5e9 1476 void *vaddr;
61989a80 1477
312fcae2 1478 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1479 obj_to_location(obj, &f_page, &f_objidx);
bfd093f5 1480 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
3783689a 1481 zspage = get_zspage(f_page);
61989a80 1482
c7806261 1483 vaddr = kmap_atomic(f_page);
61989a80
NG
1484
1485 /* Insert this object in containing zspage's freelist */
af4ee5e9 1486 link = (struct link_free *)(vaddr + f_offset);
3b1d9ca6 1487 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
af4ee5e9 1488 kunmap_atomic(vaddr);
bfd093f5 1489 set_freeobj(zspage, f_objidx);
3783689a 1490 mod_zspage_inuse(zspage, -1);
0f050d99 1491 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1492}
1493
1494void zs_free(struct zs_pool *pool, unsigned long handle)
1495{
3783689a
MK
1496 struct zspage *zspage;
1497 struct page *f_page;
bfd093f5
MK
1498 unsigned long obj;
1499 unsigned int f_objidx;
c7806261
MK
1500 int class_idx;
1501 struct size_class *class;
1502 enum fullness_group fullness;
48b4800a 1503 bool isolated;
c7806261
MK
1504
1505 if (unlikely(!handle))
1506 return;
1507
312fcae2 1508 pin_tag(handle);
c7806261 1509 obj = handle_to_obj(handle);
c7806261 1510 obj_to_location(obj, &f_page, &f_objidx);
3783689a 1511 zspage = get_zspage(f_page);
c7806261 1512
48b4800a
MK
1513 migrate_read_lock(zspage);
1514
3783689a 1515 get_zspage_mapping(zspage, &class_idx, &fullness);
c7806261
MK
1516 class = pool->size_class[class_idx];
1517
1518 spin_lock(&class->lock);
1ee47165 1519 obj_free(class, obj);
3783689a 1520 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1521 if (fullness != ZS_EMPTY) {
1522 migrate_read_unlock(zspage);
1523 goto out;
312fcae2 1524 }
48b4800a
MK
1525
1526 isolated = is_zspage_isolated(zspage);
1527 migrate_read_unlock(zspage);
1528 /* If zspage is isolated, zs_page_putback will free the zspage */
1529 if (likely(!isolated))
1530 free_zspage(pool, class, zspage);
1531out:
1532
61989a80 1533 spin_unlock(&class->lock);
312fcae2 1534 unpin_tag(handle);
3783689a 1535 cache_free_handle(pool, handle);
312fcae2
MK
1536}
1537EXPORT_SYMBOL_GPL(zs_free);
1538
251cbb95
MK
1539static void zs_object_copy(struct size_class *class, unsigned long dst,
1540 unsigned long src)
312fcae2
MK
1541{
1542 struct page *s_page, *d_page;
bfd093f5 1543 unsigned int s_objidx, d_objidx;
312fcae2
MK
1544 unsigned long s_off, d_off;
1545 void *s_addr, *d_addr;
1546 int s_size, d_size, size;
1547 int written = 0;
1548
1549 s_size = d_size = class->size;
1550
1551 obj_to_location(src, &s_page, &s_objidx);
1552 obj_to_location(dst, &d_page, &d_objidx);
1553
bfd093f5
MK
1554 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1555 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1556
1557 if (s_off + class->size > PAGE_SIZE)
1558 s_size = PAGE_SIZE - s_off;
1559
1560 if (d_off + class->size > PAGE_SIZE)
1561 d_size = PAGE_SIZE - d_off;
1562
1563 s_addr = kmap_atomic(s_page);
1564 d_addr = kmap_atomic(d_page);
1565
1566 while (1) {
1567 size = min(s_size, d_size);
1568 memcpy(d_addr + d_off, s_addr + s_off, size);
1569 written += size;
1570
1571 if (written == class->size)
1572 break;
1573
495819ea
SS
1574 s_off += size;
1575 s_size -= size;
1576 d_off += size;
1577 d_size -= size;
1578
1579 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1580 kunmap_atomic(d_addr);
1581 kunmap_atomic(s_addr);
1582 s_page = get_next_page(s_page);
312fcae2
MK
1583 s_addr = kmap_atomic(s_page);
1584 d_addr = kmap_atomic(d_page);
1585 s_size = class->size - written;
1586 s_off = 0;
312fcae2
MK
1587 }
1588
495819ea 1589 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1590 kunmap_atomic(d_addr);
1591 d_page = get_next_page(d_page);
312fcae2
MK
1592 d_addr = kmap_atomic(d_page);
1593 d_size = class->size - written;
1594 d_off = 0;
312fcae2
MK
1595 }
1596 }
1597
1598 kunmap_atomic(d_addr);
1599 kunmap_atomic(s_addr);
1600}
1601
1602/*
1603 * Find alloced object in zspage from index object and
1604 * return handle.
1605 */
251cbb95 1606static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1607 struct page *page, int *obj_idx)
312fcae2
MK
1608{
1609 unsigned long head;
1610 int offset = 0;
cf675acb 1611 int index = *obj_idx;
312fcae2
MK
1612 unsigned long handle = 0;
1613 void *addr = kmap_atomic(page);
1614
3783689a 1615 offset = get_first_obj_offset(page);
312fcae2
MK
1616 offset += class->size * index;
1617
1618 while (offset < PAGE_SIZE) {
48b4800a 1619 head = obj_to_head(page, addr + offset);
312fcae2
MK
1620 if (head & OBJ_ALLOCATED_TAG) {
1621 handle = head & ~OBJ_ALLOCATED_TAG;
1622 if (trypin_tag(handle))
1623 break;
1624 handle = 0;
1625 }
1626
1627 offset += class->size;
1628 index++;
1629 }
1630
1631 kunmap_atomic(addr);
cf675acb
GM
1632
1633 *obj_idx = index;
1634
312fcae2
MK
1635 return handle;
1636}
1637
1638struct zs_compact_control {
3783689a 1639 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1640 struct page *s_page;
1641 /* Destination page for migration which should be a first page
1642 * of zspage. */
1643 struct page *d_page;
1644 /* Starting object index within @s_page which used for live object
1645 * in the subpage. */
41b88e14 1646 int obj_idx;
312fcae2
MK
1647};
1648
1649static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1650 struct zs_compact_control *cc)
1651{
1652 unsigned long used_obj, free_obj;
1653 unsigned long handle;
1654 struct page *s_page = cc->s_page;
1655 struct page *d_page = cc->d_page;
41b88e14 1656 int obj_idx = cc->obj_idx;
312fcae2
MK
1657 int ret = 0;
1658
1659 while (1) {
cf675acb 1660 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1661 if (!handle) {
1662 s_page = get_next_page(s_page);
1663 if (!s_page)
1664 break;
41b88e14 1665 obj_idx = 0;
312fcae2
MK
1666 continue;
1667 }
1668
1669 /* Stop if there is no more space */
3783689a 1670 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1671 unpin_tag(handle);
1672 ret = -ENOMEM;
1673 break;
1674 }
1675
1676 used_obj = handle_to_obj(handle);
3783689a 1677 free_obj = obj_malloc(class, get_zspage(d_page), handle);
251cbb95 1678 zs_object_copy(class, free_obj, used_obj);
41b88e14 1679 obj_idx++;
c102f07c
JL
1680 /*
1681 * record_obj updates handle's value to free_obj and it will
1682 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1683 * breaks synchronization using pin_tag(e,g, zs_free) so
1684 * let's keep the lock bit.
1685 */
1686 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1687 record_obj(handle, free_obj);
1688 unpin_tag(handle);
1ee47165 1689 obj_free(class, used_obj);
312fcae2
MK
1690 }
1691
1692 /* Remember last position in this iteration */
1693 cc->s_page = s_page;
41b88e14 1694 cc->obj_idx = obj_idx;
312fcae2
MK
1695
1696 return ret;
1697}
1698
3783689a 1699static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1700{
1701 int i;
3783689a
MK
1702 struct zspage *zspage;
1703 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1704
3783689a
MK
1705 if (!source) {
1706 fg[0] = ZS_ALMOST_FULL;
1707 fg[1] = ZS_ALMOST_EMPTY;
1708 }
1709
1710 for (i = 0; i < 2; i++) {
1711 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1712 struct zspage, list);
1713 if (zspage) {
48b4800a 1714 VM_BUG_ON(is_zspage_isolated(zspage));
3783689a
MK
1715 remove_zspage(class, zspage, fg[i]);
1716 return zspage;
312fcae2
MK
1717 }
1718 }
1719
3783689a 1720 return zspage;
312fcae2
MK
1721}
1722
860c707d 1723/*
3783689a 1724 * putback_zspage - add @zspage into right class's fullness list
860c707d 1725 * @class: destination class
3783689a 1726 * @zspage: target page
860c707d 1727 *
3783689a 1728 * Return @zspage's fullness_group
860c707d 1729 */
4aa409ca 1730static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1731 struct zspage *zspage)
312fcae2 1732{
312fcae2
MK
1733 enum fullness_group fullness;
1734
48b4800a
MK
1735 VM_BUG_ON(is_zspage_isolated(zspage));
1736
3783689a
MK
1737 fullness = get_fullness_group(class, zspage);
1738 insert_zspage(class, zspage, fullness);
1739 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1740
860c707d 1741 return fullness;
61989a80 1742}
312fcae2 1743
48b4800a 1744#ifdef CONFIG_COMPACTION
4d0a5402
CIK
1745/*
1746 * To prevent zspage destroy during migration, zspage freeing should
1747 * hold locks of all pages in the zspage.
1748 */
1749static void lock_zspage(struct zspage *zspage)
1750{
1751 struct page *page = get_first_page(zspage);
1752
1753 do {
1754 lock_page(page);
1755 } while ((page = get_next_page(page)) != NULL);
1756}
1757
8e9231f8 1758static int zs_init_fs_context(struct fs_context *fc)
48b4800a 1759{
8e9231f8 1760 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
48b4800a
MK
1761}
1762
1763static struct file_system_type zsmalloc_fs = {
1764 .name = "zsmalloc",
8e9231f8 1765 .init_fs_context = zs_init_fs_context,
48b4800a
MK
1766 .kill_sb = kill_anon_super,
1767};
1768
1769static int zsmalloc_mount(void)
1770{
1771 int ret = 0;
1772
1773 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1774 if (IS_ERR(zsmalloc_mnt))
1775 ret = PTR_ERR(zsmalloc_mnt);
1776
1777 return ret;
1778}
1779
1780static void zsmalloc_unmount(void)
1781{
1782 kern_unmount(zsmalloc_mnt);
1783}
1784
1785static void migrate_lock_init(struct zspage *zspage)
1786{
1787 rwlock_init(&zspage->lock);
1788}
1789
cfc451cf 1790static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1791{
1792 read_lock(&zspage->lock);
1793}
1794
8a374ccc 1795static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1796{
1797 read_unlock(&zspage->lock);
1798}
1799
1800static void migrate_write_lock(struct zspage *zspage)
1801{
1802 write_lock(&zspage->lock);
1803}
1804
1805static void migrate_write_unlock(struct zspage *zspage)
1806{
1807 write_unlock(&zspage->lock);
1808}
1809
1810/* Number of isolated subpage for *page migration* in this zspage */
1811static void inc_zspage_isolation(struct zspage *zspage)
1812{
1813 zspage->isolated++;
1814}
1815
1816static void dec_zspage_isolation(struct zspage *zspage)
1817{
1818 zspage->isolated--;
1819}
1820
1a87aa03
HB
1821static void putback_zspage_deferred(struct zs_pool *pool,
1822 struct size_class *class,
1823 struct zspage *zspage)
1824{
1825 enum fullness_group fg;
1826
1827 fg = putback_zspage(class, zspage);
1828 if (fg == ZS_EMPTY)
1829 schedule_work(&pool->free_work);
1830
1831}
1832
701d6785
HB
1833static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1834{
1835 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1836 atomic_long_dec(&pool->isolated_pages);
1837 /*
1838 * There's no possibility of racing, since wait_for_isolated_drain()
1839 * checks the isolated count under &class->lock after enqueuing
1840 * on migration_wait.
1841 */
1842 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1843 wake_up_all(&pool->migration_wait);
1844}
1845
48b4800a
MK
1846static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1847 struct page *newpage, struct page *oldpage)
1848{
1849 struct page *page;
1850 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1851 int idx = 0;
1852
1853 page = get_first_page(zspage);
1854 do {
1855 if (page == oldpage)
1856 pages[idx] = newpage;
1857 else
1858 pages[idx] = page;
1859 idx++;
1860 } while ((page = get_next_page(page)) != NULL);
1861
1862 create_page_chain(class, zspage, pages);
1863 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1864 if (unlikely(PageHugeObject(oldpage)))
1865 newpage->index = oldpage->index;
1866 __SetPageMovable(newpage, page_mapping(oldpage));
1867}
1868
4d0a5402 1869static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a
MK
1870{
1871 struct zs_pool *pool;
1872 struct size_class *class;
1873 int class_idx;
1874 enum fullness_group fullness;
1875 struct zspage *zspage;
1876 struct address_space *mapping;
1877
1878 /*
1879 * Page is locked so zspage couldn't be destroyed. For detail, look at
1880 * lock_zspage in free_zspage.
1881 */
1882 VM_BUG_ON_PAGE(!PageMovable(page), page);
1883 VM_BUG_ON_PAGE(PageIsolated(page), page);
1884
1885 zspage = get_zspage(page);
1886
1887 /*
1888 * Without class lock, fullness could be stale while class_idx is okay
1889 * because class_idx is constant unless page is freed so we should get
1890 * fullness again under class lock.
1891 */
1892 get_zspage_mapping(zspage, &class_idx, &fullness);
1893 mapping = page_mapping(page);
1894 pool = mapping->private_data;
1895 class = pool->size_class[class_idx];
1896
1897 spin_lock(&class->lock);
1898 if (get_zspage_inuse(zspage) == 0) {
1899 spin_unlock(&class->lock);
1900 return false;
1901 }
1902
1903 /* zspage is isolated for object migration */
1904 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1905 spin_unlock(&class->lock);
1906 return false;
1907 }
1908
1909 /*
1910 * If this is first time isolation for the zspage, isolate zspage from
1911 * size_class to prevent further object allocation from the zspage.
1912 */
1913 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1914 get_zspage_mapping(zspage, &class_idx, &fullness);
701d6785 1915 atomic_long_inc(&pool->isolated_pages);
48b4800a
MK
1916 remove_zspage(class, zspage, fullness);
1917 }
1918
1919 inc_zspage_isolation(zspage);
1920 spin_unlock(&class->lock);
1921
1922 return true;
1923}
1924
4d0a5402 1925static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
48b4800a
MK
1926 struct page *page, enum migrate_mode mode)
1927{
1928 struct zs_pool *pool;
1929 struct size_class *class;
1930 int class_idx;
1931 enum fullness_group fullness;
1932 struct zspage *zspage;
1933 struct page *dummy;
1934 void *s_addr, *d_addr, *addr;
1935 int offset, pos;
1936 unsigned long handle, head;
1937 unsigned long old_obj, new_obj;
1938 unsigned int obj_idx;
1939 int ret = -EAGAIN;
1940
2916ecc0
JG
1941 /*
1942 * We cannot support the _NO_COPY case here, because copy needs to
1943 * happen under the zs lock, which does not work with
1944 * MIGRATE_SYNC_NO_COPY workflow.
1945 */
1946 if (mode == MIGRATE_SYNC_NO_COPY)
1947 return -EINVAL;
1948
48b4800a
MK
1949 VM_BUG_ON_PAGE(!PageMovable(page), page);
1950 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1951
1952 zspage = get_zspage(page);
1953
1954 /* Concurrent compactor cannot migrate any subpage in zspage */
1955 migrate_write_lock(zspage);
1956 get_zspage_mapping(zspage, &class_idx, &fullness);
1957 pool = mapping->private_data;
1958 class = pool->size_class[class_idx];
1959 offset = get_first_obj_offset(page);
1960
1961 spin_lock(&class->lock);
1962 if (!get_zspage_inuse(zspage)) {
77ff4657
HZ
1963 /*
1964 * Set "offset" to end of the page so that every loops
1965 * skips unnecessary object scanning.
1966 */
1967 offset = PAGE_SIZE;
48b4800a
MK
1968 }
1969
1970 pos = offset;
1971 s_addr = kmap_atomic(page);
1972 while (pos < PAGE_SIZE) {
1973 head = obj_to_head(page, s_addr + pos);
1974 if (head & OBJ_ALLOCATED_TAG) {
1975 handle = head & ~OBJ_ALLOCATED_TAG;
1976 if (!trypin_tag(handle))
1977 goto unpin_objects;
1978 }
1979 pos += class->size;
1980 }
1981
1982 /*
1983 * Here, any user cannot access all objects in the zspage so let's move.
1984 */
1985 d_addr = kmap_atomic(newpage);
1986 memcpy(d_addr, s_addr, PAGE_SIZE);
1987 kunmap_atomic(d_addr);
1988
1989 for (addr = s_addr + offset; addr < s_addr + pos;
1990 addr += class->size) {
1991 head = obj_to_head(page, addr);
1992 if (head & OBJ_ALLOCATED_TAG) {
1993 handle = head & ~OBJ_ALLOCATED_TAG;
1994 if (!testpin_tag(handle))
1995 BUG();
1996
1997 old_obj = handle_to_obj(handle);
1998 obj_to_location(old_obj, &dummy, &obj_idx);
1999 new_obj = (unsigned long)location_to_obj(newpage,
2000 obj_idx);
2001 new_obj |= BIT(HANDLE_PIN_BIT);
2002 record_obj(handle, new_obj);
2003 }
2004 }
2005
2006 replace_sub_page(class, zspage, newpage, page);
2007 get_page(newpage);
2008
2009 dec_zspage_isolation(zspage);
2010
2011 /*
2012 * Page migration is done so let's putback isolated zspage to
2013 * the list if @page is final isolated subpage in the zspage.
2014 */
701d6785
HB
2015 if (!is_zspage_isolated(zspage)) {
2016 /*
2017 * We cannot race with zs_destroy_pool() here because we wait
2018 * for isolation to hit zero before we start destroying.
2019 * Also, we ensure that everyone can see pool->destroying before
2020 * we start waiting.
2021 */
1a87aa03 2022 putback_zspage_deferred(pool, class, zspage);
701d6785
HB
2023 zs_pool_dec_isolated(pool);
2024 }
48b4800a 2025
ac8f05da
CM
2026 if (page_zone(newpage) != page_zone(page)) {
2027 dec_zone_page_state(page, NR_ZSPAGES);
2028 inc_zone_page_state(newpage, NR_ZSPAGES);
2029 }
2030
48b4800a
MK
2031 reset_page(page);
2032 put_page(page);
2033 page = newpage;
2034
dd4123f3 2035 ret = MIGRATEPAGE_SUCCESS;
48b4800a
MK
2036unpin_objects:
2037 for (addr = s_addr + offset; addr < s_addr + pos;
2038 addr += class->size) {
2039 head = obj_to_head(page, addr);
2040 if (head & OBJ_ALLOCATED_TAG) {
2041 handle = head & ~OBJ_ALLOCATED_TAG;
2042 if (!testpin_tag(handle))
2043 BUG();
2044 unpin_tag(handle);
2045 }
2046 }
2047 kunmap_atomic(s_addr);
48b4800a
MK
2048 spin_unlock(&class->lock);
2049 migrate_write_unlock(zspage);
2050
2051 return ret;
2052}
2053
4d0a5402 2054static void zs_page_putback(struct page *page)
48b4800a
MK
2055{
2056 struct zs_pool *pool;
2057 struct size_class *class;
2058 int class_idx;
2059 enum fullness_group fg;
2060 struct address_space *mapping;
2061 struct zspage *zspage;
2062
2063 VM_BUG_ON_PAGE(!PageMovable(page), page);
2064 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2065
2066 zspage = get_zspage(page);
2067 get_zspage_mapping(zspage, &class_idx, &fg);
2068 mapping = page_mapping(page);
2069 pool = mapping->private_data;
2070 class = pool->size_class[class_idx];
2071
2072 spin_lock(&class->lock);
2073 dec_zspage_isolation(zspage);
2074 if (!is_zspage_isolated(zspage)) {
48b4800a
MK
2075 /*
2076 * Due to page_lock, we cannot free zspage immediately
2077 * so let's defer.
2078 */
1a87aa03 2079 putback_zspage_deferred(pool, class, zspage);
701d6785 2080 zs_pool_dec_isolated(pool);
48b4800a
MK
2081 }
2082 spin_unlock(&class->lock);
2083}
2084
4d0a5402 2085static const struct address_space_operations zsmalloc_aops = {
48b4800a
MK
2086 .isolate_page = zs_page_isolate,
2087 .migratepage = zs_page_migrate,
2088 .putback_page = zs_page_putback,
2089};
2090
2091static int zs_register_migration(struct zs_pool *pool)
2092{
2093 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2094 if (IS_ERR(pool->inode)) {
2095 pool->inode = NULL;
2096 return 1;
2097 }
2098
2099 pool->inode->i_mapping->private_data = pool;
2100 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2101 return 0;
2102}
2103
701d6785
HB
2104static bool pool_isolated_are_drained(struct zs_pool *pool)
2105{
2106 return atomic_long_read(&pool->isolated_pages) == 0;
2107}
2108
2109/* Function for resolving migration */
2110static void wait_for_isolated_drain(struct zs_pool *pool)
2111{
2112
2113 /*
2114 * We're in the process of destroying the pool, so there are no
2115 * active allocations. zs_page_isolate() fails for completely free
2116 * zspages, so we need only wait for the zs_pool's isolated
2117 * count to hit zero.
2118 */
2119 wait_event(pool->migration_wait,
2120 pool_isolated_are_drained(pool));
2121}
2122
48b4800a
MK
2123static void zs_unregister_migration(struct zs_pool *pool)
2124{
701d6785
HB
2125 pool->destroying = true;
2126 /*
2127 * We need a memory barrier here to ensure global visibility of
2128 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2129 * case we don't care, or it will be > 0 and pool->destroying will
2130 * ensure that we wake up once isolation hits 0.
2131 */
2132 smp_mb();
2133 wait_for_isolated_drain(pool); /* This can block */
48b4800a 2134 flush_work(&pool->free_work);
c3491eca 2135 iput(pool->inode);
48b4800a
MK
2136}
2137
2138/*
2139 * Caller should hold page_lock of all pages in the zspage
2140 * In here, we cannot use zspage meta data.
2141 */
2142static void async_free_zspage(struct work_struct *work)
2143{
2144 int i;
2145 struct size_class *class;
2146 unsigned int class_idx;
2147 enum fullness_group fullness;
2148 struct zspage *zspage, *tmp;
2149 LIST_HEAD(free_pages);
2150 struct zs_pool *pool = container_of(work, struct zs_pool,
2151 free_work);
2152
cf8e0fed 2153 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2154 class = pool->size_class[i];
2155 if (class->index != i)
2156 continue;
2157
2158 spin_lock(&class->lock);
2159 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2160 spin_unlock(&class->lock);
2161 }
2162
2163
2164 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2165 list_del(&zspage->list);
2166 lock_zspage(zspage);
2167
2168 get_zspage_mapping(zspage, &class_idx, &fullness);
2169 VM_BUG_ON(fullness != ZS_EMPTY);
2170 class = pool->size_class[class_idx];
2171 spin_lock(&class->lock);
2172 __free_zspage(pool, pool->size_class[class_idx], zspage);
2173 spin_unlock(&class->lock);
2174 }
2175};
2176
2177static void kick_deferred_free(struct zs_pool *pool)
2178{
2179 schedule_work(&pool->free_work);
2180}
2181
2182static void init_deferred_free(struct zs_pool *pool)
2183{
2184 INIT_WORK(&pool->free_work, async_free_zspage);
2185}
2186
2187static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2188{
2189 struct page *page = get_first_page(zspage);
2190
2191 do {
2192 WARN_ON(!trylock_page(page));
2193 __SetPageMovable(page, pool->inode->i_mapping);
2194 unlock_page(page);
2195 } while ((page = get_next_page(page)) != NULL);
2196}
2197#endif
2198
04f05909
SS
2199/*
2200 *
2201 * Based on the number of unused allocated objects calculate
2202 * and return the number of pages that we can free.
04f05909
SS
2203 */
2204static unsigned long zs_can_compact(struct size_class *class)
2205{
2206 unsigned long obj_wasted;
44f43e99
SS
2207 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2208 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2209
44f43e99
SS
2210 if (obj_allocated <= obj_used)
2211 return 0;
04f05909 2212
44f43e99 2213 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2214 obj_wasted /= class->objs_per_zspage;
04f05909 2215
6cbf16b3 2216 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2217}
2218
7d3f3938 2219static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 2220{
312fcae2 2221 struct zs_compact_control cc;
3783689a
MK
2222 struct zspage *src_zspage;
2223 struct zspage *dst_zspage = NULL;
312fcae2 2224
312fcae2 2225 spin_lock(&class->lock);
3783689a 2226 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2227
04f05909
SS
2228 if (!zs_can_compact(class))
2229 break;
2230
41b88e14 2231 cc.obj_idx = 0;
48b4800a 2232 cc.s_page = get_first_page(src_zspage);
312fcae2 2233
3783689a 2234 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2235 cc.d_page = get_first_page(dst_zspage);
312fcae2 2236 /*
0dc63d48
SS
2237 * If there is no more space in dst_page, resched
2238 * and see if anyone had allocated another zspage.
312fcae2
MK
2239 */
2240 if (!migrate_zspage(pool, class, &cc))
2241 break;
2242
4aa409ca 2243 putback_zspage(class, dst_zspage);
312fcae2
MK
2244 }
2245
2246 /* Stop if we couldn't find slot */
3783689a 2247 if (dst_zspage == NULL)
312fcae2
MK
2248 break;
2249
4aa409ca
MK
2250 putback_zspage(class, dst_zspage);
2251 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2252 free_zspage(pool, class, src_zspage);
6cbf16b3 2253 pool->stats.pages_compacted += class->pages_per_zspage;
4aa409ca 2254 }
312fcae2 2255 spin_unlock(&class->lock);
312fcae2
MK
2256 cond_resched();
2257 spin_lock(&class->lock);
2258 }
2259
3783689a 2260 if (src_zspage)
4aa409ca 2261 putback_zspage(class, src_zspage);
312fcae2 2262
7d3f3938 2263 spin_unlock(&class->lock);
312fcae2
MK
2264}
2265
2266unsigned long zs_compact(struct zs_pool *pool)
2267{
2268 int i;
312fcae2
MK
2269 struct size_class *class;
2270
cf8e0fed 2271 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2272 class = pool->size_class[i];
2273 if (!class)
2274 continue;
2275 if (class->index != i)
2276 continue;
7d3f3938 2277 __zs_compact(pool, class);
312fcae2
MK
2278 }
2279
860c707d 2280 return pool->stats.pages_compacted;
312fcae2
MK
2281}
2282EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2283
7d3f3938
SS
2284void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2285{
2286 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2287}
2288EXPORT_SYMBOL_GPL(zs_pool_stats);
2289
ab9d306d
SS
2290static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2291 struct shrink_control *sc)
2292{
2293 unsigned long pages_freed;
2294 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2295 shrinker);
2296
2297 pages_freed = pool->stats.pages_compacted;
2298 /*
2299 * Compact classes and calculate compaction delta.
2300 * Can run concurrently with a manually triggered
2301 * (by user) compaction.
2302 */
2303 pages_freed = zs_compact(pool) - pages_freed;
2304
2305 return pages_freed ? pages_freed : SHRINK_STOP;
2306}
2307
2308static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2309 struct shrink_control *sc)
2310{
2311 int i;
2312 struct size_class *class;
2313 unsigned long pages_to_free = 0;
2314 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2315 shrinker);
2316
cf8e0fed 2317 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2318 class = pool->size_class[i];
2319 if (!class)
2320 continue;
2321 if (class->index != i)
2322 continue;
2323
ab9d306d 2324 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2325 }
2326
2327 return pages_to_free;
2328}
2329
2330static void zs_unregister_shrinker(struct zs_pool *pool)
2331{
93144ca3 2332 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2333}
2334
2335static int zs_register_shrinker(struct zs_pool *pool)
2336{
2337 pool->shrinker.scan_objects = zs_shrinker_scan;
2338 pool->shrinker.count_objects = zs_shrinker_count;
2339 pool->shrinker.batch = 0;
2340 pool->shrinker.seeks = DEFAULT_SEEKS;
2341
2342 return register_shrinker(&pool->shrinker);
2343}
2344
00a61d86 2345/**
66cdef66 2346 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2347 * @name: pool name to be created
166cfda7 2348 *
66cdef66
GM
2349 * This function must be called before anything when using
2350 * the zsmalloc allocator.
166cfda7 2351 *
66cdef66
GM
2352 * On success, a pointer to the newly created pool is returned,
2353 * otherwise NULL.
396b7fd6 2354 */
d0d8da2d 2355struct zs_pool *zs_create_pool(const char *name)
61989a80 2356{
66cdef66
GM
2357 int i;
2358 struct zs_pool *pool;
2359 struct size_class *prev_class = NULL;
61989a80 2360
66cdef66
GM
2361 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2362 if (!pool)
2363 return NULL;
61989a80 2364
48b4800a 2365 init_deferred_free(pool);
61989a80 2366
2e40e163
MK
2367 pool->name = kstrdup(name, GFP_KERNEL);
2368 if (!pool->name)
2369 goto err;
2370
441e254c 2371#ifdef CONFIG_COMPACTION
701d6785 2372 init_waitqueue_head(&pool->migration_wait);
441e254c 2373#endif
701d6785 2374
3783689a 2375 if (create_cache(pool))
2e40e163
MK
2376 goto err;
2377
c60369f0 2378 /*
399d8eeb 2379 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2380 * for merging should be larger or equal to current size.
c60369f0 2381 */
cf8e0fed 2382 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2383 int size;
2384 int pages_per_zspage;
64d90465 2385 int objs_per_zspage;
66cdef66 2386 struct size_class *class;
3783689a 2387 int fullness = 0;
c60369f0 2388
66cdef66
GM
2389 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2390 if (size > ZS_MAX_ALLOC_SIZE)
2391 size = ZS_MAX_ALLOC_SIZE;
2392 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2393 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2394
010b495e
SS
2395 /*
2396 * We iterate from biggest down to smallest classes,
2397 * so huge_class_size holds the size of the first huge
2398 * class. Any object bigger than or equal to that will
2399 * endup in the huge class.
2400 */
2401 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2402 !huge_class_size) {
2403 huge_class_size = size;
2404 /*
2405 * The object uses ZS_HANDLE_SIZE bytes to store the
2406 * handle. We need to subtract it, because zs_malloc()
2407 * unconditionally adds handle size before it performs
2408 * size class search - so object may be smaller than
2409 * huge class size, yet it still can end up in the huge
2410 * class because it grows by ZS_HANDLE_SIZE extra bytes
2411 * right before class lookup.
2412 */
2413 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2414 }
2415
66cdef66
GM
2416 /*
2417 * size_class is used for normal zsmalloc operation such
2418 * as alloc/free for that size. Although it is natural that we
2419 * have one size_class for each size, there is a chance that we
2420 * can get more memory utilization if we use one size_class for
2421 * many different sizes whose size_class have same
2422 * characteristics. So, we makes size_class point to
2423 * previous size_class if possible.
2424 */
2425 if (prev_class) {
64d90465 2426 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2427 pool->size_class[i] = prev_class;
2428 continue;
2429 }
2430 }
2431
2432 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2433 if (!class)
2434 goto err;
2435
2436 class->size = size;
2437 class->index = i;
2438 class->pages_per_zspage = pages_per_zspage;
64d90465 2439 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2440 spin_lock_init(&class->lock);
2441 pool->size_class[i] = class;
48b4800a
MK
2442 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2443 fullness++)
3783689a 2444 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2445
2446 prev_class = class;
61989a80
NG
2447 }
2448
d34f6157
DS
2449 /* debug only, don't abort if it fails */
2450 zs_pool_stat_create(pool, name);
0f050d99 2451
48b4800a
MK
2452 if (zs_register_migration(pool))
2453 goto err;
2454
ab9d306d 2455 /*
93144ca3
AK
2456 * Not critical since shrinker is only used to trigger internal
2457 * defragmentation of the pool which is pretty optional thing. If
2458 * registration fails we still can use the pool normally and user can
2459 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2460 */
93144ca3
AK
2461 zs_register_shrinker(pool);
2462
66cdef66
GM
2463 return pool;
2464
2465err:
2466 zs_destroy_pool(pool);
2467 return NULL;
61989a80 2468}
66cdef66 2469EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2470
66cdef66 2471void zs_destroy_pool(struct zs_pool *pool)
61989a80 2472{
66cdef66 2473 int i;
61989a80 2474
ab9d306d 2475 zs_unregister_shrinker(pool);
48b4800a 2476 zs_unregister_migration(pool);
0f050d99
GM
2477 zs_pool_stat_destroy(pool);
2478
cf8e0fed 2479 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2480 int fg;
2481 struct size_class *class = pool->size_class[i];
61989a80 2482
66cdef66
GM
2483 if (!class)
2484 continue;
61989a80 2485
66cdef66
GM
2486 if (class->index != i)
2487 continue;
61989a80 2488
48b4800a 2489 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2490 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2491 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2492 class->size, fg);
2493 }
2494 }
2495 kfree(class);
2496 }
f553646a 2497
3783689a 2498 destroy_cache(pool);
0f050d99 2499 kfree(pool->name);
66cdef66
GM
2500 kfree(pool);
2501}
2502EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2503
66cdef66
GM
2504static int __init zs_init(void)
2505{
48b4800a
MK
2506 int ret;
2507
2508 ret = zsmalloc_mount();
2509 if (ret)
2510 goto out;
2511
215c89d0
SAS
2512 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2513 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2514 if (ret)
215c89d0 2515 goto hp_setup_fail;
66cdef66 2516
66cdef66
GM
2517#ifdef CONFIG_ZPOOL
2518 zpool_register_driver(&zs_zpool_driver);
2519#endif
0f050d99 2520
4abaac9b
DS
2521 zs_stat_init();
2522
66cdef66 2523 return 0;
0f050d99 2524
215c89d0 2525hp_setup_fail:
48b4800a
MK
2526 zsmalloc_unmount();
2527out:
0f050d99 2528 return ret;
61989a80 2529}
61989a80 2530
66cdef66 2531static void __exit zs_exit(void)
61989a80 2532{
66cdef66
GM
2533#ifdef CONFIG_ZPOOL
2534 zpool_unregister_driver(&zs_zpool_driver);
2535#endif
48b4800a 2536 zsmalloc_unmount();
215c89d0 2537 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2538
2539 zs_stat_exit();
61989a80 2540}
069f101f
BH
2541
2542module_init(zs_init);
2543module_exit(zs_exit);
2544
2545MODULE_LICENSE("Dual BSD/GPL");
2546MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");