]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/zsmalloc.c
mm/swap.c: remove @cold parameter description for release_pages()
[mirror_ubuntu-jammy-kernel.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
48b4800a
MK
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
fd854463 23 * page->units: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
50d34394 36#include <linux/magic.h>
61989a80
NG
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
61989a80
NG
40#include <linux/string.h>
41#include <linux/slab.h>
42#include <asm/tlbflush.h>
43#include <asm/pgtable.h>
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
0cbb613f 46#include <linux/vmalloc.h>
759b26b2 47#include <linux/preempt.h>
0959c63f 48#include <linux/spinlock.h>
93144ca3 49#include <linux/shrinker.h>
0959c63f 50#include <linux/types.h>
0f050d99 51#include <linux/debugfs.h>
bcf1647d 52#include <linux/zsmalloc.h>
c795779d 53#include <linux/zpool.h>
48b4800a 54#include <linux/mount.h>
dd4123f3 55#include <linux/migrate.h>
48b4800a 56#include <linux/pagemap.h>
cdc346b3 57#include <linux/fs.h>
48b4800a
MK
58
59#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
60
61/*
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
66 */
67#define ZS_ALIGN 8
68
69/*
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72 */
73#define ZS_MAX_ZSPAGE_ORDER 2
74#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75
2e40e163
MK
76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
0959c63f
SJ
78/*
79 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 80 * as single (unsigned long) handle value.
0959c63f 81 *
bfd093f5 82 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
02390b87
KS
87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
88#ifdef MAX_PHYSMEM_BITS
89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90#else
0959c63f
SJ
91/*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
02390b87 95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
96#endif
97#endif
02390b87
KS
98
99#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
100
101/*
102 * Memory for allocating for handle keeps object position by
103 * encoding <page, obj_idx> and the encoded value has a room
104 * in least bit(ie, look at obj_to_location).
105 * We use the bit to synchronize between object access by
106 * user and migration.
107 */
108#define HANDLE_PIN_BIT 0
109
110/*
111 * Head in allocated object should have OBJ_ALLOCATED_TAG
112 * to identify the object was allocated or not.
113 * It's okay to add the status bit in the least bit because
114 * header keeps handle which is 4byte-aligned address so we
115 * have room for two bit at least.
116 */
117#define OBJ_ALLOCATED_TAG 1
118#define OBJ_TAG_BITS 1
119#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
120#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121
cf8e0fed
JM
122#define FULLNESS_BITS 2
123#define CLASS_BITS 8
124#define ISOLATED_BITS 3
125#define MAGIC_VAL_BITS 8
126
0959c63f
SJ
127#define MAX(a, b) ((a) >= (b) ? (a) : (b))
128/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129#define ZS_MIN_ALLOC_SIZE \
130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 131/* each chunk includes extra space to keep handle */
7b60a685 132#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
133
134/*
7eb52512 135 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
136 * trader-off here:
137 * - Large number of size classes is potentially wasteful as free page are
138 * spread across these classes
139 * - Small number of size classes causes large internal fragmentation
140 * - Probably its better to use specific size classes (empirically
141 * determined). NOTE: all those class sizes must be set as multiple of
142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143 *
144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145 * (reason above)
146 */
3783689a 147#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
148#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 150
0959c63f 151enum fullness_group {
0959c63f 152 ZS_EMPTY,
48b4800a
MK
153 ZS_ALMOST_EMPTY,
154 ZS_ALMOST_FULL,
155 ZS_FULL,
156 NR_ZS_FULLNESS,
0959c63f
SJ
157};
158
0f050d99 159enum zs_stat_type {
48b4800a
MK
160 CLASS_EMPTY,
161 CLASS_ALMOST_EMPTY,
162 CLASS_ALMOST_FULL,
163 CLASS_FULL,
0f050d99
GM
164 OBJ_ALLOCATED,
165 OBJ_USED,
48b4800a 166 NR_ZS_STAT_TYPE,
0f050d99
GM
167};
168
0f050d99
GM
169struct zs_size_stat {
170 unsigned long objs[NR_ZS_STAT_TYPE];
171};
172
57244594
SS
173#ifdef CONFIG_ZSMALLOC_STAT
174static struct dentry *zs_stat_root;
0f050d99
GM
175#endif
176
48b4800a
MK
177#ifdef CONFIG_COMPACTION
178static struct vfsmount *zsmalloc_mnt;
179#endif
180
0959c63f
SJ
181/*
182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183 * n <= N / f, where
184 * n = number of allocated objects
185 * N = total number of objects zspage can store
6dd9737e 186 * f = fullness_threshold_frac
0959c63f
SJ
187 *
188 * Similarly, we assign zspage to:
189 * ZS_ALMOST_FULL when n > N / f
190 * ZS_EMPTY when n == 0
191 * ZS_FULL when n == N
192 *
193 * (see: fix_fullness_group())
194 */
195static const int fullness_threshold_frac = 4;
010b495e 196static size_t huge_class_size;
0959c63f
SJ
197
198struct size_class {
57244594 199 spinlock_t lock;
48b4800a 200 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
201 /*
202 * Size of objects stored in this class. Must be multiple
203 * of ZS_ALIGN.
204 */
205 int size;
1fc6e27d 206 int objs_per_zspage;
7dfa4612
WY
207 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
208 int pages_per_zspage;
48b4800a
MK
209
210 unsigned int index;
211 struct zs_size_stat stats;
0959c63f
SJ
212};
213
48b4800a
MK
214/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
215static void SetPageHugeObject(struct page *page)
216{
217 SetPageOwnerPriv1(page);
218}
219
220static void ClearPageHugeObject(struct page *page)
221{
222 ClearPageOwnerPriv1(page);
223}
224
225static int PageHugeObject(struct page *page)
226{
227 return PageOwnerPriv1(page);
228}
229
0959c63f
SJ
230/*
231 * Placed within free objects to form a singly linked list.
3783689a 232 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
233 *
234 * This must be power of 2 and less than or equal to ZS_ALIGN
235 */
236struct link_free {
2e40e163
MK
237 union {
238 /*
bfd093f5 239 * Free object index;
2e40e163
MK
240 * It's valid for non-allocated object
241 */
bfd093f5 242 unsigned long next;
2e40e163
MK
243 /*
244 * Handle of allocated object.
245 */
246 unsigned long handle;
247 };
0959c63f
SJ
248};
249
250struct zs_pool {
6f3526d6 251 const char *name;
0f050d99 252
cf8e0fed 253 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 254 struct kmem_cache *handle_cachep;
3783689a 255 struct kmem_cache *zspage_cachep;
0959c63f 256
13de8933 257 atomic_long_t pages_allocated;
0f050d99 258
7d3f3938 259 struct zs_pool_stats stats;
ab9d306d
SS
260
261 /* Compact classes */
262 struct shrinker shrinker;
93144ca3 263
0f050d99
GM
264#ifdef CONFIG_ZSMALLOC_STAT
265 struct dentry *stat_dentry;
266#endif
48b4800a
MK
267#ifdef CONFIG_COMPACTION
268 struct inode *inode;
269 struct work_struct free_work;
270#endif
0959c63f 271};
61989a80 272
3783689a
MK
273struct zspage {
274 struct {
275 unsigned int fullness:FULLNESS_BITS;
85d492f2 276 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
277 unsigned int isolated:ISOLATED_BITS;
278 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
279 };
280 unsigned int inuse;
bfd093f5 281 unsigned int freeobj;
3783689a
MK
282 struct page *first_page;
283 struct list_head list; /* fullness list */
48b4800a
MK
284#ifdef CONFIG_COMPACTION
285 rwlock_t lock;
286#endif
3783689a 287};
61989a80 288
f553646a 289struct mapping_area {
1b945aee 290#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
291 struct vm_struct *vm; /* vm area for mapping object that span pages */
292#else
293 char *vm_buf; /* copy buffer for objects that span pages */
294#endif
295 char *vm_addr; /* address of kmap_atomic()'ed pages */
296 enum zs_mapmode vm_mm; /* mapping mode */
297};
298
48b4800a
MK
299#ifdef CONFIG_COMPACTION
300static int zs_register_migration(struct zs_pool *pool);
301static void zs_unregister_migration(struct zs_pool *pool);
302static void migrate_lock_init(struct zspage *zspage);
303static void migrate_read_lock(struct zspage *zspage);
304static void migrate_read_unlock(struct zspage *zspage);
305static void kick_deferred_free(struct zs_pool *pool);
306static void init_deferred_free(struct zs_pool *pool);
307static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308#else
309static int zsmalloc_mount(void) { return 0; }
310static void zsmalloc_unmount(void) {}
311static int zs_register_migration(struct zs_pool *pool) { return 0; }
312static void zs_unregister_migration(struct zs_pool *pool) {}
313static void migrate_lock_init(struct zspage *zspage) {}
314static void migrate_read_lock(struct zspage *zspage) {}
315static void migrate_read_unlock(struct zspage *zspage) {}
316static void kick_deferred_free(struct zs_pool *pool) {}
317static void init_deferred_free(struct zs_pool *pool) {}
318static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
319#endif
320
3783689a 321static int create_cache(struct zs_pool *pool)
2e40e163
MK
322{
323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324 0, 0, NULL);
3783689a
MK
325 if (!pool->handle_cachep)
326 return 1;
327
328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329 0, 0, NULL);
330 if (!pool->zspage_cachep) {
331 kmem_cache_destroy(pool->handle_cachep);
332 pool->handle_cachep = NULL;
333 return 1;
334 }
335
336 return 0;
2e40e163
MK
337}
338
3783689a 339static void destroy_cache(struct zs_pool *pool)
2e40e163 340{
cd10add0 341 kmem_cache_destroy(pool->handle_cachep);
3783689a 342 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
343}
344
3783689a 345static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
346{
347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
349}
350
3783689a 351static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
352{
353 kmem_cache_free(pool->handle_cachep, (void *)handle);
354}
355
3783689a
MK
356static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
357{
48b4800a
MK
358 return kmem_cache_alloc(pool->zspage_cachep,
359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 360}
3783689a
MK
361
362static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
363{
364 kmem_cache_free(pool->zspage_cachep, zspage);
365}
366
2e40e163
MK
367static void record_obj(unsigned long handle, unsigned long obj)
368{
c102f07c
JL
369 /*
370 * lsb of @obj represents handle lock while other bits
371 * represent object value the handle is pointing so
372 * updating shouldn't do store tearing.
373 */
374 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
375}
376
c795779d
DS
377/* zpool driver */
378
379#ifdef CONFIG_ZPOOL
380
6f3526d6 381static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 382 const struct zpool_ops *zpool_ops,
479305fd 383 struct zpool *zpool)
c795779d 384{
d0d8da2d
SS
385 /*
386 * Ignore global gfp flags: zs_malloc() may be invoked from
387 * different contexts and its caller must provide a valid
388 * gfp mask.
389 */
390 return zs_create_pool(name);
c795779d
DS
391}
392
393static void zs_zpool_destroy(void *pool)
394{
395 zs_destroy_pool(pool);
396}
397
398static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 unsigned long *handle)
400{
d0d8da2d 401 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
402 return *handle ? 0 : -1;
403}
404static void zs_zpool_free(void *pool, unsigned long handle)
405{
406 zs_free(pool, handle);
407}
408
c795779d
DS
409static void *zs_zpool_map(void *pool, unsigned long handle,
410 enum zpool_mapmode mm)
411{
412 enum zs_mapmode zs_mm;
413
414 switch (mm) {
415 case ZPOOL_MM_RO:
416 zs_mm = ZS_MM_RO;
417 break;
418 case ZPOOL_MM_WO:
419 zs_mm = ZS_MM_WO;
420 break;
421 case ZPOOL_MM_RW: /* fallthru */
422 default:
423 zs_mm = ZS_MM_RW;
424 break;
425 }
426
427 return zs_map_object(pool, handle, zs_mm);
428}
429static void zs_zpool_unmap(void *pool, unsigned long handle)
430{
431 zs_unmap_object(pool, handle);
432}
433
434static u64 zs_zpool_total_size(void *pool)
435{
722cdc17 436 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
437}
438
439static struct zpool_driver zs_zpool_driver = {
440 .type = "zsmalloc",
441 .owner = THIS_MODULE,
442 .create = zs_zpool_create,
443 .destroy = zs_zpool_destroy,
444 .malloc = zs_zpool_malloc,
445 .free = zs_zpool_free,
c795779d
DS
446 .map = zs_zpool_map,
447 .unmap = zs_zpool_unmap,
448 .total_size = zs_zpool_total_size,
449};
450
137f8cff 451MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
452#endif /* CONFIG_ZPOOL */
453
61989a80
NG
454/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
455static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
456
48b4800a
MK
457static bool is_zspage_isolated(struct zspage *zspage)
458{
459 return zspage->isolated;
460}
461
3457f414 462static __maybe_unused int is_first_page(struct page *page)
61989a80 463{
a27545bf 464 return PagePrivate(page);
61989a80
NG
465}
466
48b4800a 467/* Protected by class->lock */
3783689a 468static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 469{
3783689a 470 return zspage->inuse;
4f42047b
MK
471}
472
3783689a 473static inline void set_zspage_inuse(struct zspage *zspage, int val)
4f42047b 474{
3783689a 475 zspage->inuse = val;
4f42047b
MK
476}
477
3783689a 478static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 479{
3783689a 480 zspage->inuse += val;
4f42047b
MK
481}
482
48b4800a 483static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 484{
48b4800a 485 struct page *first_page = zspage->first_page;
3783689a 486
48b4800a
MK
487 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
488 return first_page;
4f42047b
MK
489}
490
48b4800a 491static inline int get_first_obj_offset(struct page *page)
4f42047b 492{
48b4800a
MK
493 return page->units;
494}
3783689a 495
48b4800a
MK
496static inline void set_first_obj_offset(struct page *page, int offset)
497{
498 page->units = offset;
4f42047b
MK
499}
500
bfd093f5 501static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 502{
bfd093f5 503 return zspage->freeobj;
4f42047b
MK
504}
505
bfd093f5 506static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 507{
bfd093f5 508 zspage->freeobj = obj;
4f42047b
MK
509}
510
3783689a 511static void get_zspage_mapping(struct zspage *zspage,
a4209467 512 unsigned int *class_idx,
61989a80
NG
513 enum fullness_group *fullness)
514{
48b4800a
MK
515 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
516
3783689a
MK
517 *fullness = zspage->fullness;
518 *class_idx = zspage->class;
61989a80
NG
519}
520
3783689a 521static void set_zspage_mapping(struct zspage *zspage,
a4209467 522 unsigned int class_idx,
61989a80
NG
523 enum fullness_group fullness)
524{
3783689a
MK
525 zspage->class = class_idx;
526 zspage->fullness = fullness;
61989a80
NG
527}
528
c3e3e88a
NC
529/*
530 * zsmalloc divides the pool into various size classes where each
531 * class maintains a list of zspages where each zspage is divided
532 * into equal sized chunks. Each allocation falls into one of these
533 * classes depending on its size. This function returns index of the
534 * size class which has chunk size big enough to hold the give size.
535 */
61989a80
NG
536static int get_size_class_index(int size)
537{
538 int idx = 0;
539
540 if (likely(size > ZS_MIN_ALLOC_SIZE))
541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 ZS_SIZE_CLASS_DELTA);
543
cf8e0fed 544 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
545}
546
3eb95fea 547/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 548static inline void zs_stat_inc(struct size_class *class,
3eb95fea 549 int type, unsigned long cnt)
248ca1b0 550{
48b4800a 551 class->stats.objs[type] += cnt;
248ca1b0
MK
552}
553
3eb95fea 554/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 555static inline void zs_stat_dec(struct size_class *class,
3eb95fea 556 int type, unsigned long cnt)
248ca1b0 557{
48b4800a 558 class->stats.objs[type] -= cnt;
248ca1b0
MK
559}
560
3eb95fea 561/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 562static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 563 int type)
248ca1b0 564{
48b4800a 565 return class->stats.objs[type];
248ca1b0
MK
566}
567
57244594
SS
568#ifdef CONFIG_ZSMALLOC_STAT
569
4abaac9b 570static void __init zs_stat_init(void)
248ca1b0 571{
4abaac9b
DS
572 if (!debugfs_initialized()) {
573 pr_warn("debugfs not available, stat dir not created\n");
574 return;
575 }
248ca1b0
MK
576
577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578 if (!zs_stat_root)
4abaac9b 579 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
248ca1b0
MK
580}
581
582static void __exit zs_stat_exit(void)
583{
584 debugfs_remove_recursive(zs_stat_root);
585}
586
1120ed54
SS
587static unsigned long zs_can_compact(struct size_class *class);
588
248ca1b0
MK
589static int zs_stats_size_show(struct seq_file *s, void *v)
590{
591 int i;
592 struct zs_pool *pool = s->private;
593 struct size_class *class;
594 int objs_per_zspage;
595 unsigned long class_almost_full, class_almost_empty;
1120ed54 596 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
597 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
598 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 599 unsigned long total_freeable = 0;
248ca1b0 600
1120ed54 601 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
602 "class", "size", "almost_full", "almost_empty",
603 "obj_allocated", "obj_used", "pages_used",
1120ed54 604 "pages_per_zspage", "freeable");
248ca1b0 605
cf8e0fed 606 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
607 class = pool->size_class[i];
608
609 if (class->index != i)
610 continue;
611
612 spin_lock(&class->lock);
613 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
614 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
615 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
616 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 617 freeable = zs_can_compact(class);
248ca1b0
MK
618 spin_unlock(&class->lock);
619
b4fd07a0 620 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
621 pages_used = obj_allocated / objs_per_zspage *
622 class->pages_per_zspage;
623
1120ed54
SS
624 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
625 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
626 i, class->size, class_almost_full, class_almost_empty,
627 obj_allocated, obj_used, pages_used,
1120ed54 628 class->pages_per_zspage, freeable);
248ca1b0
MK
629
630 total_class_almost_full += class_almost_full;
631 total_class_almost_empty += class_almost_empty;
632 total_objs += obj_allocated;
633 total_used_objs += obj_used;
634 total_pages += pages_used;
1120ed54 635 total_freeable += freeable;
248ca1b0
MK
636 }
637
638 seq_puts(s, "\n");
1120ed54 639 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
640 "Total", "", total_class_almost_full,
641 total_class_almost_empty, total_objs,
1120ed54 642 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
643
644 return 0;
645}
5ad35093 646DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 647
d34f6157 648static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0
MK
649{
650 struct dentry *entry;
651
4abaac9b
DS
652 if (!zs_stat_root) {
653 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 654 return;
4abaac9b 655 }
248ca1b0
MK
656
657 entry = debugfs_create_dir(name, zs_stat_root);
658 if (!entry) {
659 pr_warn("debugfs dir <%s> creation failed\n", name);
d34f6157 660 return;
248ca1b0
MK
661 }
662 pool->stat_dentry = entry;
663
664 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
5ad35093 665 pool->stat_dentry, pool, &zs_stats_size_fops);
248ca1b0
MK
666 if (!entry) {
667 pr_warn("%s: debugfs file entry <%s> creation failed\n",
668 name, "classes");
4abaac9b
DS
669 debugfs_remove_recursive(pool->stat_dentry);
670 pool->stat_dentry = NULL;
248ca1b0 671 }
248ca1b0
MK
672}
673
674static void zs_pool_stat_destroy(struct zs_pool *pool)
675{
676 debugfs_remove_recursive(pool->stat_dentry);
677}
678
679#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 680static void __init zs_stat_init(void)
248ca1b0 681{
248ca1b0
MK
682}
683
684static void __exit zs_stat_exit(void)
685{
686}
687
d34f6157 688static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 689{
248ca1b0
MK
690}
691
692static inline void zs_pool_stat_destroy(struct zs_pool *pool)
693{
694}
248ca1b0
MK
695#endif
696
48b4800a 697
c3e3e88a
NC
698/*
699 * For each size class, zspages are divided into different groups
700 * depending on how "full" they are. This was done so that we could
701 * easily find empty or nearly empty zspages when we try to shrink
702 * the pool (not yet implemented). This function returns fullness
703 * status of the given page.
704 */
1fc6e27d 705static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 706 struct zspage *zspage)
61989a80 707{
1fc6e27d 708 int inuse, objs_per_zspage;
61989a80 709 enum fullness_group fg;
830e4bc5 710
3783689a 711 inuse = get_zspage_inuse(zspage);
1fc6e27d 712 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
713
714 if (inuse == 0)
715 fg = ZS_EMPTY;
1fc6e27d 716 else if (inuse == objs_per_zspage)
61989a80 717 fg = ZS_FULL;
1fc6e27d 718 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
719 fg = ZS_ALMOST_EMPTY;
720 else
721 fg = ZS_ALMOST_FULL;
722
723 return fg;
724}
725
c3e3e88a
NC
726/*
727 * Each size class maintains various freelists and zspages are assigned
728 * to one of these freelists based on the number of live objects they
729 * have. This functions inserts the given zspage into the freelist
730 * identified by <class, fullness_group>.
731 */
251cbb95 732static void insert_zspage(struct size_class *class,
3783689a
MK
733 struct zspage *zspage,
734 enum fullness_group fullness)
61989a80 735{
3783689a 736 struct zspage *head;
61989a80 737
48b4800a 738 zs_stat_inc(class, fullness, 1);
3783689a
MK
739 head = list_first_entry_or_null(&class->fullness_list[fullness],
740 struct zspage, list);
58f17117 741 /*
3783689a
MK
742 * We want to see more ZS_FULL pages and less almost empty/full.
743 * Put pages with higher ->inuse first.
58f17117 744 */
3783689a
MK
745 if (head) {
746 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
747 list_add(&zspage->list, &head->list);
748 return;
749 }
750 }
751 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
752}
753
c3e3e88a
NC
754/*
755 * This function removes the given zspage from the freelist identified
756 * by <class, fullness_group>.
757 */
251cbb95 758static void remove_zspage(struct size_class *class,
3783689a
MK
759 struct zspage *zspage,
760 enum fullness_group fullness)
61989a80 761{
3783689a 762 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
48b4800a 763 VM_BUG_ON(is_zspage_isolated(zspage));
61989a80 764
3783689a 765 list_del_init(&zspage->list);
48b4800a 766 zs_stat_dec(class, fullness, 1);
61989a80
NG
767}
768
c3e3e88a
NC
769/*
770 * Each size class maintains zspages in different fullness groups depending
771 * on the number of live objects they contain. When allocating or freeing
772 * objects, the fullness status of the page can change, say, from ALMOST_FULL
773 * to ALMOST_EMPTY when freeing an object. This function checks if such
774 * a status change has occurred for the given page and accordingly moves the
775 * page from the freelist of the old fullness group to that of the new
776 * fullness group.
777 */
c7806261 778static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 779 struct zspage *zspage)
61989a80
NG
780{
781 int class_idx;
61989a80
NG
782 enum fullness_group currfg, newfg;
783
3783689a
MK
784 get_zspage_mapping(zspage, &class_idx, &currfg);
785 newfg = get_fullness_group(class, zspage);
61989a80
NG
786 if (newfg == currfg)
787 goto out;
788
48b4800a
MK
789 if (!is_zspage_isolated(zspage)) {
790 remove_zspage(class, zspage, currfg);
791 insert_zspage(class, zspage, newfg);
792 }
793
3783689a 794 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
795
796out:
797 return newfg;
798}
799
800/*
801 * We have to decide on how many pages to link together
802 * to form a zspage for each size class. This is important
803 * to reduce wastage due to unusable space left at end of
804 * each zspage which is given as:
888fa374
YX
805 * wastage = Zp % class_size
806 * usage = Zp - wastage
61989a80
NG
807 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
808 *
809 * For example, for size class of 3/8 * PAGE_SIZE, we should
810 * link together 3 PAGE_SIZE sized pages to form a zspage
811 * since then we can perfectly fit in 8 such objects.
812 */
2e3b6154 813static int get_pages_per_zspage(int class_size)
61989a80
NG
814{
815 int i, max_usedpc = 0;
816 /* zspage order which gives maximum used size per KB */
817 int max_usedpc_order = 1;
818
84d4faab 819 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
820 int zspage_size;
821 int waste, usedpc;
822
823 zspage_size = i * PAGE_SIZE;
824 waste = zspage_size % class_size;
825 usedpc = (zspage_size - waste) * 100 / zspage_size;
826
827 if (usedpc > max_usedpc) {
828 max_usedpc = usedpc;
829 max_usedpc_order = i;
830 }
831 }
832
833 return max_usedpc_order;
834}
835
3783689a 836static struct zspage *get_zspage(struct page *page)
61989a80 837{
48b4800a
MK
838 struct zspage *zspage = (struct zspage *)page->private;
839
840 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
841 return zspage;
61989a80
NG
842}
843
844static struct page *get_next_page(struct page *page)
845{
48b4800a
MK
846 if (unlikely(PageHugeObject(page)))
847 return NULL;
848
849 return page->freelist;
61989a80
NG
850}
851
bfd093f5
MK
852/**
853 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
854 * @page: page object resides in zspage
855 * @obj_idx: object index
67296874 856 */
bfd093f5
MK
857static void obj_to_location(unsigned long obj, struct page **page,
858 unsigned int *obj_idx)
61989a80 859{
bfd093f5
MK
860 obj >>= OBJ_TAG_BITS;
861 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
862 *obj_idx = (obj & OBJ_INDEX_MASK);
863}
61989a80 864
bfd093f5
MK
865/**
866 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
867 * @page: page object resides in zspage
868 * @obj_idx: object index
869 */
870static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
871{
872 unsigned long obj;
61989a80 873
312fcae2 874 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 875 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 876 obj <<= OBJ_TAG_BITS;
61989a80 877
bfd093f5 878 return obj;
61989a80
NG
879}
880
2e40e163
MK
881static unsigned long handle_to_obj(unsigned long handle)
882{
883 return *(unsigned long *)handle;
884}
885
48b4800a 886static unsigned long obj_to_head(struct page *page, void *obj)
312fcae2 887{
48b4800a 888 if (unlikely(PageHugeObject(page))) {
830e4bc5 889 VM_BUG_ON_PAGE(!is_first_page(page), page);
3783689a 890 return page->index;
7b60a685
MK
891 } else
892 return *(unsigned long *)obj;
312fcae2
MK
893}
894
48b4800a
MK
895static inline int testpin_tag(unsigned long handle)
896{
897 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
898}
899
312fcae2
MK
900static inline int trypin_tag(unsigned long handle)
901{
1b8320b6 902 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
903}
904
905static void pin_tag(unsigned long handle)
906{
1b8320b6 907 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
908}
909
910static void unpin_tag(unsigned long handle)
911{
1b8320b6 912 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
913}
914
f4477e90
NG
915static void reset_page(struct page *page)
916{
48b4800a 917 __ClearPageMovable(page);
18fd06bf 918 ClearPagePrivate(page);
f4477e90 919 set_page_private(page, 0);
48b4800a
MK
920 page_mapcount_reset(page);
921 ClearPageHugeObject(page);
922 page->freelist = NULL;
923}
924
925/*
926 * To prevent zspage destroy during migration, zspage freeing should
927 * hold locks of all pages in the zspage.
928 */
929void lock_zspage(struct zspage *zspage)
930{
931 struct page *page = get_first_page(zspage);
932
933 do {
934 lock_page(page);
935 } while ((page = get_next_page(page)) != NULL);
936}
937
938int trylock_zspage(struct zspage *zspage)
939{
940 struct page *cursor, *fail;
941
942 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
943 get_next_page(cursor)) {
944 if (!trylock_page(cursor)) {
945 fail = cursor;
946 goto unlock;
947 }
948 }
949
950 return 1;
951unlock:
952 for (cursor = get_first_page(zspage); cursor != fail; cursor =
953 get_next_page(cursor))
954 unlock_page(cursor);
955
956 return 0;
f4477e90
NG
957}
958
48b4800a
MK
959static void __free_zspage(struct zs_pool *pool, struct size_class *class,
960 struct zspage *zspage)
61989a80 961{
3783689a 962 struct page *page, *next;
48b4800a
MK
963 enum fullness_group fg;
964 unsigned int class_idx;
965
966 get_zspage_mapping(zspage, &class_idx, &fg);
967
968 assert_spin_locked(&class->lock);
61989a80 969
3783689a 970 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 971 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 972
48b4800a 973 next = page = get_first_page(zspage);
3783689a 974 do {
48b4800a
MK
975 VM_BUG_ON_PAGE(!PageLocked(page), page);
976 next = get_next_page(page);
3783689a 977 reset_page(page);
48b4800a 978 unlock_page(page);
91537fee 979 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
980 put_page(page);
981 page = next;
982 } while (page != NULL);
61989a80 983
3783689a 984 cache_free_zspage(pool, zspage);
48b4800a 985
b4fd07a0 986 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
987 atomic_long_sub(class->pages_per_zspage,
988 &pool->pages_allocated);
989}
990
991static void free_zspage(struct zs_pool *pool, struct size_class *class,
992 struct zspage *zspage)
993{
994 VM_BUG_ON(get_zspage_inuse(zspage));
995 VM_BUG_ON(list_empty(&zspage->list));
996
997 if (!trylock_zspage(zspage)) {
998 kick_deferred_free(pool);
999 return;
1000 }
1001
1002 remove_zspage(class, zspage, ZS_EMPTY);
1003 __free_zspage(pool, class, zspage);
61989a80
NG
1004}
1005
1006/* Initialize a newly allocated zspage */
3783689a 1007static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 1008{
bfd093f5 1009 unsigned int freeobj = 1;
61989a80 1010 unsigned long off = 0;
48b4800a 1011 struct page *page = get_first_page(zspage);
830e4bc5 1012
61989a80
NG
1013 while (page) {
1014 struct page *next_page;
1015 struct link_free *link;
af4ee5e9 1016 void *vaddr;
61989a80 1017
3783689a 1018 set_first_obj_offset(page, off);
61989a80 1019
af4ee5e9
MK
1020 vaddr = kmap_atomic(page);
1021 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1022
1023 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1024 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1025 link += class->size / sizeof(*link);
61989a80
NG
1026 }
1027
1028 /*
1029 * We now come to the last (full or partial) object on this
1030 * page, which must point to the first object on the next
1031 * page (if present)
1032 */
1033 next_page = get_next_page(page);
bfd093f5 1034 if (next_page) {
3b1d9ca6 1035 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1036 } else {
1037 /*
3b1d9ca6 1038 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1039 * whether it's allocated object or not.
1040 */
01a6ad9a 1041 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1042 }
af4ee5e9 1043 kunmap_atomic(vaddr);
61989a80 1044 page = next_page;
5538c562 1045 off %= PAGE_SIZE;
61989a80 1046 }
bdb0af7c 1047
bfd093f5 1048 set_freeobj(zspage, 0);
61989a80
NG
1049}
1050
48b4800a
MK
1051static void create_page_chain(struct size_class *class, struct zspage *zspage,
1052 struct page *pages[])
61989a80 1053{
bdb0af7c
MK
1054 int i;
1055 struct page *page;
1056 struct page *prev_page = NULL;
48b4800a 1057 int nr_pages = class->pages_per_zspage;
61989a80
NG
1058
1059 /*
1060 * Allocate individual pages and link them together as:
48b4800a 1061 * 1. all pages are linked together using page->freelist
3783689a 1062 * 2. each sub-page point to zspage using page->private
61989a80 1063 *
3783689a 1064 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1065 * has this flag set).
61989a80 1066 */
bdb0af7c
MK
1067 for (i = 0; i < nr_pages; i++) {
1068 page = pages[i];
3783689a 1069 set_page_private(page, (unsigned long)zspage);
48b4800a 1070 page->freelist = NULL;
bdb0af7c 1071 if (i == 0) {
3783689a 1072 zspage->first_page = page;
a27545bf 1073 SetPagePrivate(page);
48b4800a
MK
1074 if (unlikely(class->objs_per_zspage == 1 &&
1075 class->pages_per_zspage == 1))
1076 SetPageHugeObject(page);
3783689a 1077 } else {
48b4800a 1078 prev_page->freelist = page;
61989a80 1079 }
61989a80
NG
1080 prev_page = page;
1081 }
bdb0af7c 1082}
61989a80 1083
bdb0af7c
MK
1084/*
1085 * Allocate a zspage for the given size class
1086 */
3783689a
MK
1087static struct zspage *alloc_zspage(struct zs_pool *pool,
1088 struct size_class *class,
1089 gfp_t gfp)
bdb0af7c
MK
1090{
1091 int i;
bdb0af7c 1092 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1093 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1094
1095 if (!zspage)
1096 return NULL;
1097
1098 memset(zspage, 0, sizeof(struct zspage));
48b4800a
MK
1099 zspage->magic = ZSPAGE_MAGIC;
1100 migrate_lock_init(zspage);
61989a80 1101
bdb0af7c
MK
1102 for (i = 0; i < class->pages_per_zspage; i++) {
1103 struct page *page;
61989a80 1104
3783689a 1105 page = alloc_page(gfp);
bdb0af7c 1106 if (!page) {
91537fee
MK
1107 while (--i >= 0) {
1108 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1109 __free_page(pages[i]);
91537fee 1110 }
3783689a 1111 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1112 return NULL;
1113 }
91537fee
MK
1114
1115 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1116 pages[i] = page;
61989a80
NG
1117 }
1118
48b4800a 1119 create_page_chain(class, zspage, pages);
3783689a 1120 init_zspage(class, zspage);
bdb0af7c 1121
3783689a 1122 return zspage;
61989a80
NG
1123}
1124
3783689a 1125static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1126{
1127 int i;
3783689a 1128 struct zspage *zspage;
61989a80 1129
48b4800a 1130 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1131 zspage = list_first_entry_or_null(&class->fullness_list[i],
1132 struct zspage, list);
1133 if (zspage)
61989a80
NG
1134 break;
1135 }
1136
3783689a 1137 return zspage;
61989a80
NG
1138}
1139
1b945aee 1140#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1141static inline int __zs_cpu_up(struct mapping_area *area)
1142{
1143 /*
1144 * Make sure we don't leak memory if a cpu UP notification
1145 * and zs_init() race and both call zs_cpu_up() on the same cpu
1146 */
1147 if (area->vm)
1148 return 0;
1149 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1150 if (!area->vm)
1151 return -ENOMEM;
1152 return 0;
1153}
1154
1155static inline void __zs_cpu_down(struct mapping_area *area)
1156{
1157 if (area->vm)
1158 free_vm_area(area->vm);
1159 area->vm = NULL;
1160}
1161
1162static inline void *__zs_map_object(struct mapping_area *area,
1163 struct page *pages[2], int off, int size)
1164{
f6f8ed47 1165 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1166 area->vm_addr = area->vm->addr;
1167 return area->vm_addr + off;
1168}
1169
1170static inline void __zs_unmap_object(struct mapping_area *area,
1171 struct page *pages[2], int off, int size)
1172{
1173 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1174
d95abbbb 1175 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1176}
1177
1b945aee 1178#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1179
1180static inline int __zs_cpu_up(struct mapping_area *area)
1181{
1182 /*
1183 * Make sure we don't leak memory if a cpu UP notification
1184 * and zs_init() race and both call zs_cpu_up() on the same cpu
1185 */
1186 if (area->vm_buf)
1187 return 0;
40f9fb8c 1188 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1189 if (!area->vm_buf)
1190 return -ENOMEM;
1191 return 0;
1192}
1193
1194static inline void __zs_cpu_down(struct mapping_area *area)
1195{
40f9fb8c 1196 kfree(area->vm_buf);
f553646a
SJ
1197 area->vm_buf = NULL;
1198}
1199
1200static void *__zs_map_object(struct mapping_area *area,
1201 struct page *pages[2], int off, int size)
5f601902 1202{
5f601902
SJ
1203 int sizes[2];
1204 void *addr;
f553646a 1205 char *buf = area->vm_buf;
5f601902 1206
f553646a
SJ
1207 /* disable page faults to match kmap_atomic() return conditions */
1208 pagefault_disable();
1209
1210 /* no read fastpath */
1211 if (area->vm_mm == ZS_MM_WO)
1212 goto out;
5f601902
SJ
1213
1214 sizes[0] = PAGE_SIZE - off;
1215 sizes[1] = size - sizes[0];
1216
5f601902
SJ
1217 /* copy object to per-cpu buffer */
1218 addr = kmap_atomic(pages[0]);
1219 memcpy(buf, addr + off, sizes[0]);
1220 kunmap_atomic(addr);
1221 addr = kmap_atomic(pages[1]);
1222 memcpy(buf + sizes[0], addr, sizes[1]);
1223 kunmap_atomic(addr);
f553646a
SJ
1224out:
1225 return area->vm_buf;
5f601902
SJ
1226}
1227
f553646a
SJ
1228static void __zs_unmap_object(struct mapping_area *area,
1229 struct page *pages[2], int off, int size)
5f601902 1230{
5f601902
SJ
1231 int sizes[2];
1232 void *addr;
2e40e163 1233 char *buf;
5f601902 1234
f553646a
SJ
1235 /* no write fastpath */
1236 if (area->vm_mm == ZS_MM_RO)
1237 goto out;
5f601902 1238
7b60a685 1239 buf = area->vm_buf;
a82cbf07
YX
1240 buf = buf + ZS_HANDLE_SIZE;
1241 size -= ZS_HANDLE_SIZE;
1242 off += ZS_HANDLE_SIZE;
2e40e163 1243
5f601902
SJ
1244 sizes[0] = PAGE_SIZE - off;
1245 sizes[1] = size - sizes[0];
1246
1247 /* copy per-cpu buffer to object */
1248 addr = kmap_atomic(pages[0]);
1249 memcpy(addr + off, buf, sizes[0]);
1250 kunmap_atomic(addr);
1251 addr = kmap_atomic(pages[1]);
1252 memcpy(addr, buf + sizes[0], sizes[1]);
1253 kunmap_atomic(addr);
f553646a
SJ
1254
1255out:
1256 /* enable page faults to match kunmap_atomic() return conditions */
1257 pagefault_enable();
5f601902 1258}
61989a80 1259
1b945aee 1260#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1261
215c89d0 1262static int zs_cpu_prepare(unsigned int cpu)
61989a80 1263{
61989a80
NG
1264 struct mapping_area *area;
1265
215c89d0
SAS
1266 area = &per_cpu(zs_map_area, cpu);
1267 return __zs_cpu_up(area);
61989a80
NG
1268}
1269
215c89d0 1270static int zs_cpu_dead(unsigned int cpu)
61989a80 1271{
215c89d0 1272 struct mapping_area *area;
40f9fb8c 1273
215c89d0
SAS
1274 area = &per_cpu(zs_map_area, cpu);
1275 __zs_cpu_down(area);
1276 return 0;
b1b00a5b
SS
1277}
1278
64d90465
GM
1279static bool can_merge(struct size_class *prev, int pages_per_zspage,
1280 int objs_per_zspage)
9eec4cd5 1281{
64d90465
GM
1282 if (prev->pages_per_zspage == pages_per_zspage &&
1283 prev->objs_per_zspage == objs_per_zspage)
1284 return true;
9eec4cd5 1285
64d90465 1286 return false;
9eec4cd5
JK
1287}
1288
3783689a 1289static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1290{
3783689a 1291 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1292}
1293
66cdef66
GM
1294unsigned long zs_get_total_pages(struct zs_pool *pool)
1295{
1296 return atomic_long_read(&pool->pages_allocated);
1297}
1298EXPORT_SYMBOL_GPL(zs_get_total_pages);
1299
4bbc0bc0 1300/**
66cdef66
GM
1301 * zs_map_object - get address of allocated object from handle.
1302 * @pool: pool from which the object was allocated
1303 * @handle: handle returned from zs_malloc
4bbc0bc0 1304 *
66cdef66
GM
1305 * Before using an object allocated from zs_malloc, it must be mapped using
1306 * this function. When done with the object, it must be unmapped using
1307 * zs_unmap_object.
4bbc0bc0 1308 *
66cdef66
GM
1309 * Only one object can be mapped per cpu at a time. There is no protection
1310 * against nested mappings.
1311 *
1312 * This function returns with preemption and page faults disabled.
4bbc0bc0 1313 */
66cdef66
GM
1314void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1315 enum zs_mapmode mm)
61989a80 1316{
3783689a 1317 struct zspage *zspage;
66cdef66 1318 struct page *page;
bfd093f5
MK
1319 unsigned long obj, off;
1320 unsigned int obj_idx;
61989a80 1321
66cdef66
GM
1322 unsigned int class_idx;
1323 enum fullness_group fg;
1324 struct size_class *class;
1325 struct mapping_area *area;
1326 struct page *pages[2];
2e40e163 1327 void *ret;
61989a80 1328
9eec4cd5 1329 /*
66cdef66
GM
1330 * Because we use per-cpu mapping areas shared among the
1331 * pools/users, we can't allow mapping in interrupt context
1332 * because it can corrupt another users mappings.
9eec4cd5 1333 */
1aedcafb 1334 BUG_ON(in_interrupt());
61989a80 1335
312fcae2
MK
1336 /* From now on, migration cannot move the object */
1337 pin_tag(handle);
1338
2e40e163
MK
1339 obj = handle_to_obj(handle);
1340 obj_to_location(obj, &page, &obj_idx);
3783689a 1341 zspage = get_zspage(page);
48b4800a
MK
1342
1343 /* migration cannot move any subpage in this zspage */
1344 migrate_read_lock(zspage);
1345
3783689a 1346 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1347 class = pool->size_class[class_idx];
bfd093f5 1348 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1349
66cdef66
GM
1350 area = &get_cpu_var(zs_map_area);
1351 area->vm_mm = mm;
1352 if (off + class->size <= PAGE_SIZE) {
1353 /* this object is contained entirely within a page */
1354 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1355 ret = area->vm_addr + off;
1356 goto out;
61989a80
NG
1357 }
1358
66cdef66
GM
1359 /* this object spans two pages */
1360 pages[0] = page;
1361 pages[1] = get_next_page(page);
1362 BUG_ON(!pages[1]);
9eec4cd5 1363
2e40e163
MK
1364 ret = __zs_map_object(area, pages, off, class->size);
1365out:
48b4800a 1366 if (likely(!PageHugeObject(page)))
7b60a685
MK
1367 ret += ZS_HANDLE_SIZE;
1368
1369 return ret;
61989a80 1370}
66cdef66 1371EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1372
66cdef66 1373void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1374{
3783689a 1375 struct zspage *zspage;
66cdef66 1376 struct page *page;
bfd093f5
MK
1377 unsigned long obj, off;
1378 unsigned int obj_idx;
61989a80 1379
66cdef66
GM
1380 unsigned int class_idx;
1381 enum fullness_group fg;
1382 struct size_class *class;
1383 struct mapping_area *area;
9eec4cd5 1384
2e40e163
MK
1385 obj = handle_to_obj(handle);
1386 obj_to_location(obj, &page, &obj_idx);
3783689a
MK
1387 zspage = get_zspage(page);
1388 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1389 class = pool->size_class[class_idx];
bfd093f5 1390 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1391
66cdef66
GM
1392 area = this_cpu_ptr(&zs_map_area);
1393 if (off + class->size <= PAGE_SIZE)
1394 kunmap_atomic(area->vm_addr);
1395 else {
1396 struct page *pages[2];
40f9fb8c 1397
66cdef66
GM
1398 pages[0] = page;
1399 pages[1] = get_next_page(page);
1400 BUG_ON(!pages[1]);
1401
1402 __zs_unmap_object(area, pages, off, class->size);
1403 }
1404 put_cpu_var(zs_map_area);
48b4800a
MK
1405
1406 migrate_read_unlock(zspage);
312fcae2 1407 unpin_tag(handle);
61989a80 1408}
66cdef66 1409EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1410
010b495e
SS
1411/**
1412 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1413 * zsmalloc &size_class.
1414 * @pool: zsmalloc pool to use
1415 *
1416 * The function returns the size of the first huge class - any object of equal
1417 * or bigger size will be stored in zspage consisting of a single physical
1418 * page.
1419 *
1420 * Context: Any context.
1421 *
1422 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1423 */
1424size_t zs_huge_class_size(struct zs_pool *pool)
1425{
1426 return huge_class_size;
1427}
1428EXPORT_SYMBOL_GPL(zs_huge_class_size);
1429
251cbb95 1430static unsigned long obj_malloc(struct size_class *class,
3783689a 1431 struct zspage *zspage, unsigned long handle)
c7806261 1432{
bfd093f5 1433 int i, nr_page, offset;
c7806261
MK
1434 unsigned long obj;
1435 struct link_free *link;
1436
1437 struct page *m_page;
bfd093f5 1438 unsigned long m_offset;
c7806261
MK
1439 void *vaddr;
1440
312fcae2 1441 handle |= OBJ_ALLOCATED_TAG;
3783689a 1442 obj = get_freeobj(zspage);
bfd093f5
MK
1443
1444 offset = obj * class->size;
1445 nr_page = offset >> PAGE_SHIFT;
1446 m_offset = offset & ~PAGE_MASK;
1447 m_page = get_first_page(zspage);
1448
1449 for (i = 0; i < nr_page; i++)
1450 m_page = get_next_page(m_page);
c7806261
MK
1451
1452 vaddr = kmap_atomic(m_page);
1453 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1454 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
48b4800a 1455 if (likely(!PageHugeObject(m_page)))
7b60a685
MK
1456 /* record handle in the header of allocated chunk */
1457 link->handle = handle;
1458 else
3783689a
MK
1459 /* record handle to page->index */
1460 zspage->first_page->index = handle;
1461
c7806261 1462 kunmap_atomic(vaddr);
3783689a 1463 mod_zspage_inuse(zspage, 1);
c7806261
MK
1464 zs_stat_inc(class, OBJ_USED, 1);
1465
bfd093f5
MK
1466 obj = location_to_obj(m_page, obj);
1467
c7806261
MK
1468 return obj;
1469}
1470
1471
61989a80
NG
1472/**
1473 * zs_malloc - Allocate block of given size from pool.
1474 * @pool: pool to allocate from
1475 * @size: size of block to allocate
fd854463 1476 * @gfp: gfp flags when allocating object
61989a80 1477 *
00a61d86 1478 * On success, handle to the allocated object is returned,
c2344348 1479 * otherwise 0.
61989a80
NG
1480 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1481 */
d0d8da2d 1482unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1483{
2e40e163 1484 unsigned long handle, obj;
61989a80 1485 struct size_class *class;
48b4800a 1486 enum fullness_group newfg;
3783689a 1487 struct zspage *zspage;
61989a80 1488
7b60a685 1489 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1490 return 0;
1491
3783689a 1492 handle = cache_alloc_handle(pool, gfp);
2e40e163 1493 if (!handle)
c2344348 1494 return 0;
61989a80 1495
2e40e163
MK
1496 /* extra space in chunk to keep the handle */
1497 size += ZS_HANDLE_SIZE;
9eec4cd5 1498 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1499
1500 spin_lock(&class->lock);
3783689a 1501 zspage = find_get_zspage(class);
48b4800a
MK
1502 if (likely(zspage)) {
1503 obj = obj_malloc(class, zspage, handle);
1504 /* Now move the zspage to another fullness group, if required */
1505 fix_fullness_group(class, zspage);
1506 record_obj(handle, obj);
61989a80 1507 spin_unlock(&class->lock);
61989a80 1508
48b4800a
MK
1509 return handle;
1510 }
0f050d99 1511
48b4800a
MK
1512 spin_unlock(&class->lock);
1513
1514 zspage = alloc_zspage(pool, class, gfp);
1515 if (!zspage) {
1516 cache_free_handle(pool, handle);
1517 return 0;
61989a80
NG
1518 }
1519
48b4800a 1520 spin_lock(&class->lock);
3783689a 1521 obj = obj_malloc(class, zspage, handle);
48b4800a
MK
1522 newfg = get_fullness_group(class, zspage);
1523 insert_zspage(class, zspage, newfg);
1524 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1525 record_obj(handle, obj);
48b4800a
MK
1526 atomic_long_add(class->pages_per_zspage,
1527 &pool->pages_allocated);
b4fd07a0 1528 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1529
1530 /* We completely set up zspage so mark them as movable */
1531 SetZsPageMovable(pool, zspage);
61989a80
NG
1532 spin_unlock(&class->lock);
1533
2e40e163 1534 return handle;
61989a80
NG
1535}
1536EXPORT_SYMBOL_GPL(zs_malloc);
1537
1ee47165 1538static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1539{
1540 struct link_free *link;
3783689a
MK
1541 struct zspage *zspage;
1542 struct page *f_page;
bfd093f5
MK
1543 unsigned long f_offset;
1544 unsigned int f_objidx;
af4ee5e9 1545 void *vaddr;
61989a80 1546
312fcae2 1547 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1548 obj_to_location(obj, &f_page, &f_objidx);
bfd093f5 1549 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
3783689a 1550 zspage = get_zspage(f_page);
61989a80 1551
c7806261 1552 vaddr = kmap_atomic(f_page);
61989a80
NG
1553
1554 /* Insert this object in containing zspage's freelist */
af4ee5e9 1555 link = (struct link_free *)(vaddr + f_offset);
3b1d9ca6 1556 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
af4ee5e9 1557 kunmap_atomic(vaddr);
bfd093f5 1558 set_freeobj(zspage, f_objidx);
3783689a 1559 mod_zspage_inuse(zspage, -1);
0f050d99 1560 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1561}
1562
1563void zs_free(struct zs_pool *pool, unsigned long handle)
1564{
3783689a
MK
1565 struct zspage *zspage;
1566 struct page *f_page;
bfd093f5
MK
1567 unsigned long obj;
1568 unsigned int f_objidx;
c7806261
MK
1569 int class_idx;
1570 struct size_class *class;
1571 enum fullness_group fullness;
48b4800a 1572 bool isolated;
c7806261
MK
1573
1574 if (unlikely(!handle))
1575 return;
1576
312fcae2 1577 pin_tag(handle);
c7806261 1578 obj = handle_to_obj(handle);
c7806261 1579 obj_to_location(obj, &f_page, &f_objidx);
3783689a 1580 zspage = get_zspage(f_page);
c7806261 1581
48b4800a
MK
1582 migrate_read_lock(zspage);
1583
3783689a 1584 get_zspage_mapping(zspage, &class_idx, &fullness);
c7806261
MK
1585 class = pool->size_class[class_idx];
1586
1587 spin_lock(&class->lock);
1ee47165 1588 obj_free(class, obj);
3783689a 1589 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1590 if (fullness != ZS_EMPTY) {
1591 migrate_read_unlock(zspage);
1592 goto out;
312fcae2 1593 }
48b4800a
MK
1594
1595 isolated = is_zspage_isolated(zspage);
1596 migrate_read_unlock(zspage);
1597 /* If zspage is isolated, zs_page_putback will free the zspage */
1598 if (likely(!isolated))
1599 free_zspage(pool, class, zspage);
1600out:
1601
61989a80 1602 spin_unlock(&class->lock);
312fcae2 1603 unpin_tag(handle);
3783689a 1604 cache_free_handle(pool, handle);
312fcae2
MK
1605}
1606EXPORT_SYMBOL_GPL(zs_free);
1607
251cbb95
MK
1608static void zs_object_copy(struct size_class *class, unsigned long dst,
1609 unsigned long src)
312fcae2
MK
1610{
1611 struct page *s_page, *d_page;
bfd093f5 1612 unsigned int s_objidx, d_objidx;
312fcae2
MK
1613 unsigned long s_off, d_off;
1614 void *s_addr, *d_addr;
1615 int s_size, d_size, size;
1616 int written = 0;
1617
1618 s_size = d_size = class->size;
1619
1620 obj_to_location(src, &s_page, &s_objidx);
1621 obj_to_location(dst, &d_page, &d_objidx);
1622
bfd093f5
MK
1623 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1624 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1625
1626 if (s_off + class->size > PAGE_SIZE)
1627 s_size = PAGE_SIZE - s_off;
1628
1629 if (d_off + class->size > PAGE_SIZE)
1630 d_size = PAGE_SIZE - d_off;
1631
1632 s_addr = kmap_atomic(s_page);
1633 d_addr = kmap_atomic(d_page);
1634
1635 while (1) {
1636 size = min(s_size, d_size);
1637 memcpy(d_addr + d_off, s_addr + s_off, size);
1638 written += size;
1639
1640 if (written == class->size)
1641 break;
1642
495819ea
SS
1643 s_off += size;
1644 s_size -= size;
1645 d_off += size;
1646 d_size -= size;
1647
1648 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1649 kunmap_atomic(d_addr);
1650 kunmap_atomic(s_addr);
1651 s_page = get_next_page(s_page);
312fcae2
MK
1652 s_addr = kmap_atomic(s_page);
1653 d_addr = kmap_atomic(d_page);
1654 s_size = class->size - written;
1655 s_off = 0;
312fcae2
MK
1656 }
1657
495819ea 1658 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1659 kunmap_atomic(d_addr);
1660 d_page = get_next_page(d_page);
312fcae2
MK
1661 d_addr = kmap_atomic(d_page);
1662 d_size = class->size - written;
1663 d_off = 0;
312fcae2
MK
1664 }
1665 }
1666
1667 kunmap_atomic(d_addr);
1668 kunmap_atomic(s_addr);
1669}
1670
1671/*
1672 * Find alloced object in zspage from index object and
1673 * return handle.
1674 */
251cbb95 1675static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1676 struct page *page, int *obj_idx)
312fcae2
MK
1677{
1678 unsigned long head;
1679 int offset = 0;
cf675acb 1680 int index = *obj_idx;
312fcae2
MK
1681 unsigned long handle = 0;
1682 void *addr = kmap_atomic(page);
1683
3783689a 1684 offset = get_first_obj_offset(page);
312fcae2
MK
1685 offset += class->size * index;
1686
1687 while (offset < PAGE_SIZE) {
48b4800a 1688 head = obj_to_head(page, addr + offset);
312fcae2
MK
1689 if (head & OBJ_ALLOCATED_TAG) {
1690 handle = head & ~OBJ_ALLOCATED_TAG;
1691 if (trypin_tag(handle))
1692 break;
1693 handle = 0;
1694 }
1695
1696 offset += class->size;
1697 index++;
1698 }
1699
1700 kunmap_atomic(addr);
cf675acb
GM
1701
1702 *obj_idx = index;
1703
312fcae2
MK
1704 return handle;
1705}
1706
1707struct zs_compact_control {
3783689a 1708 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1709 struct page *s_page;
1710 /* Destination page for migration which should be a first page
1711 * of zspage. */
1712 struct page *d_page;
1713 /* Starting object index within @s_page which used for live object
1714 * in the subpage. */
41b88e14 1715 int obj_idx;
312fcae2
MK
1716};
1717
1718static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1719 struct zs_compact_control *cc)
1720{
1721 unsigned long used_obj, free_obj;
1722 unsigned long handle;
1723 struct page *s_page = cc->s_page;
1724 struct page *d_page = cc->d_page;
41b88e14 1725 int obj_idx = cc->obj_idx;
312fcae2
MK
1726 int ret = 0;
1727
1728 while (1) {
cf675acb 1729 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1730 if (!handle) {
1731 s_page = get_next_page(s_page);
1732 if (!s_page)
1733 break;
41b88e14 1734 obj_idx = 0;
312fcae2
MK
1735 continue;
1736 }
1737
1738 /* Stop if there is no more space */
3783689a 1739 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1740 unpin_tag(handle);
1741 ret = -ENOMEM;
1742 break;
1743 }
1744
1745 used_obj = handle_to_obj(handle);
3783689a 1746 free_obj = obj_malloc(class, get_zspage(d_page), handle);
251cbb95 1747 zs_object_copy(class, free_obj, used_obj);
41b88e14 1748 obj_idx++;
c102f07c
JL
1749 /*
1750 * record_obj updates handle's value to free_obj and it will
1751 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1752 * breaks synchronization using pin_tag(e,g, zs_free) so
1753 * let's keep the lock bit.
1754 */
1755 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1756 record_obj(handle, free_obj);
1757 unpin_tag(handle);
1ee47165 1758 obj_free(class, used_obj);
312fcae2
MK
1759 }
1760
1761 /* Remember last position in this iteration */
1762 cc->s_page = s_page;
41b88e14 1763 cc->obj_idx = obj_idx;
312fcae2
MK
1764
1765 return ret;
1766}
1767
3783689a 1768static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1769{
1770 int i;
3783689a
MK
1771 struct zspage *zspage;
1772 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1773
3783689a
MK
1774 if (!source) {
1775 fg[0] = ZS_ALMOST_FULL;
1776 fg[1] = ZS_ALMOST_EMPTY;
1777 }
1778
1779 for (i = 0; i < 2; i++) {
1780 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1781 struct zspage, list);
1782 if (zspage) {
48b4800a 1783 VM_BUG_ON(is_zspage_isolated(zspage));
3783689a
MK
1784 remove_zspage(class, zspage, fg[i]);
1785 return zspage;
312fcae2
MK
1786 }
1787 }
1788
3783689a 1789 return zspage;
312fcae2
MK
1790}
1791
860c707d 1792/*
3783689a 1793 * putback_zspage - add @zspage into right class's fullness list
860c707d 1794 * @class: destination class
3783689a 1795 * @zspage: target page
860c707d 1796 *
3783689a 1797 * Return @zspage's fullness_group
860c707d 1798 */
4aa409ca 1799static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1800 struct zspage *zspage)
312fcae2 1801{
312fcae2
MK
1802 enum fullness_group fullness;
1803
48b4800a
MK
1804 VM_BUG_ON(is_zspage_isolated(zspage));
1805
3783689a
MK
1806 fullness = get_fullness_group(class, zspage);
1807 insert_zspage(class, zspage, fullness);
1808 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1809
860c707d 1810 return fullness;
61989a80 1811}
312fcae2 1812
48b4800a
MK
1813#ifdef CONFIG_COMPACTION
1814static struct dentry *zs_mount(struct file_system_type *fs_type,
1815 int flags, const char *dev_name, void *data)
1816{
1817 static const struct dentry_operations ops = {
1818 .d_dname = simple_dname,
1819 };
1820
1821 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1822}
1823
1824static struct file_system_type zsmalloc_fs = {
1825 .name = "zsmalloc",
1826 .mount = zs_mount,
1827 .kill_sb = kill_anon_super,
1828};
1829
1830static int zsmalloc_mount(void)
1831{
1832 int ret = 0;
1833
1834 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1835 if (IS_ERR(zsmalloc_mnt))
1836 ret = PTR_ERR(zsmalloc_mnt);
1837
1838 return ret;
1839}
1840
1841static void zsmalloc_unmount(void)
1842{
1843 kern_unmount(zsmalloc_mnt);
1844}
1845
1846static void migrate_lock_init(struct zspage *zspage)
1847{
1848 rwlock_init(&zspage->lock);
1849}
1850
1851static void migrate_read_lock(struct zspage *zspage)
1852{
1853 read_lock(&zspage->lock);
1854}
1855
1856static void migrate_read_unlock(struct zspage *zspage)
1857{
1858 read_unlock(&zspage->lock);
1859}
1860
1861static void migrate_write_lock(struct zspage *zspage)
1862{
1863 write_lock(&zspage->lock);
1864}
1865
1866static void migrate_write_unlock(struct zspage *zspage)
1867{
1868 write_unlock(&zspage->lock);
1869}
1870
1871/* Number of isolated subpage for *page migration* in this zspage */
1872static void inc_zspage_isolation(struct zspage *zspage)
1873{
1874 zspage->isolated++;
1875}
1876
1877static void dec_zspage_isolation(struct zspage *zspage)
1878{
1879 zspage->isolated--;
1880}
1881
1882static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1883 struct page *newpage, struct page *oldpage)
1884{
1885 struct page *page;
1886 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1887 int idx = 0;
1888
1889 page = get_first_page(zspage);
1890 do {
1891 if (page == oldpage)
1892 pages[idx] = newpage;
1893 else
1894 pages[idx] = page;
1895 idx++;
1896 } while ((page = get_next_page(page)) != NULL);
1897
1898 create_page_chain(class, zspage, pages);
1899 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1900 if (unlikely(PageHugeObject(oldpage)))
1901 newpage->index = oldpage->index;
1902 __SetPageMovable(newpage, page_mapping(oldpage));
1903}
1904
1905bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1906{
1907 struct zs_pool *pool;
1908 struct size_class *class;
1909 int class_idx;
1910 enum fullness_group fullness;
1911 struct zspage *zspage;
1912 struct address_space *mapping;
1913
1914 /*
1915 * Page is locked so zspage couldn't be destroyed. For detail, look at
1916 * lock_zspage in free_zspage.
1917 */
1918 VM_BUG_ON_PAGE(!PageMovable(page), page);
1919 VM_BUG_ON_PAGE(PageIsolated(page), page);
1920
1921 zspage = get_zspage(page);
1922
1923 /*
1924 * Without class lock, fullness could be stale while class_idx is okay
1925 * because class_idx is constant unless page is freed so we should get
1926 * fullness again under class lock.
1927 */
1928 get_zspage_mapping(zspage, &class_idx, &fullness);
1929 mapping = page_mapping(page);
1930 pool = mapping->private_data;
1931 class = pool->size_class[class_idx];
1932
1933 spin_lock(&class->lock);
1934 if (get_zspage_inuse(zspage) == 0) {
1935 spin_unlock(&class->lock);
1936 return false;
1937 }
1938
1939 /* zspage is isolated for object migration */
1940 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1941 spin_unlock(&class->lock);
1942 return false;
1943 }
1944
1945 /*
1946 * If this is first time isolation for the zspage, isolate zspage from
1947 * size_class to prevent further object allocation from the zspage.
1948 */
1949 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1950 get_zspage_mapping(zspage, &class_idx, &fullness);
1951 remove_zspage(class, zspage, fullness);
1952 }
1953
1954 inc_zspage_isolation(zspage);
1955 spin_unlock(&class->lock);
1956
1957 return true;
1958}
1959
1960int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1961 struct page *page, enum migrate_mode mode)
1962{
1963 struct zs_pool *pool;
1964 struct size_class *class;
1965 int class_idx;
1966 enum fullness_group fullness;
1967 struct zspage *zspage;
1968 struct page *dummy;
1969 void *s_addr, *d_addr, *addr;
1970 int offset, pos;
1971 unsigned long handle, head;
1972 unsigned long old_obj, new_obj;
1973 unsigned int obj_idx;
1974 int ret = -EAGAIN;
1975
2916ecc0
JG
1976 /*
1977 * We cannot support the _NO_COPY case here, because copy needs to
1978 * happen under the zs lock, which does not work with
1979 * MIGRATE_SYNC_NO_COPY workflow.
1980 */
1981 if (mode == MIGRATE_SYNC_NO_COPY)
1982 return -EINVAL;
1983
48b4800a
MK
1984 VM_BUG_ON_PAGE(!PageMovable(page), page);
1985 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1986
1987 zspage = get_zspage(page);
1988
1989 /* Concurrent compactor cannot migrate any subpage in zspage */
1990 migrate_write_lock(zspage);
1991 get_zspage_mapping(zspage, &class_idx, &fullness);
1992 pool = mapping->private_data;
1993 class = pool->size_class[class_idx];
1994 offset = get_first_obj_offset(page);
1995
1996 spin_lock(&class->lock);
1997 if (!get_zspage_inuse(zspage)) {
77ff4657
HZ
1998 /*
1999 * Set "offset" to end of the page so that every loops
2000 * skips unnecessary object scanning.
2001 */
2002 offset = PAGE_SIZE;
48b4800a
MK
2003 }
2004
2005 pos = offset;
2006 s_addr = kmap_atomic(page);
2007 while (pos < PAGE_SIZE) {
2008 head = obj_to_head(page, s_addr + pos);
2009 if (head & OBJ_ALLOCATED_TAG) {
2010 handle = head & ~OBJ_ALLOCATED_TAG;
2011 if (!trypin_tag(handle))
2012 goto unpin_objects;
2013 }
2014 pos += class->size;
2015 }
2016
2017 /*
2018 * Here, any user cannot access all objects in the zspage so let's move.
2019 */
2020 d_addr = kmap_atomic(newpage);
2021 memcpy(d_addr, s_addr, PAGE_SIZE);
2022 kunmap_atomic(d_addr);
2023
2024 for (addr = s_addr + offset; addr < s_addr + pos;
2025 addr += class->size) {
2026 head = obj_to_head(page, addr);
2027 if (head & OBJ_ALLOCATED_TAG) {
2028 handle = head & ~OBJ_ALLOCATED_TAG;
2029 if (!testpin_tag(handle))
2030 BUG();
2031
2032 old_obj = handle_to_obj(handle);
2033 obj_to_location(old_obj, &dummy, &obj_idx);
2034 new_obj = (unsigned long)location_to_obj(newpage,
2035 obj_idx);
2036 new_obj |= BIT(HANDLE_PIN_BIT);
2037 record_obj(handle, new_obj);
2038 }
2039 }
2040
2041 replace_sub_page(class, zspage, newpage, page);
2042 get_page(newpage);
2043
2044 dec_zspage_isolation(zspage);
2045
2046 /*
2047 * Page migration is done so let's putback isolated zspage to
2048 * the list if @page is final isolated subpage in the zspage.
2049 */
2050 if (!is_zspage_isolated(zspage))
2051 putback_zspage(class, zspage);
2052
2053 reset_page(page);
2054 put_page(page);
2055 page = newpage;
2056
dd4123f3 2057 ret = MIGRATEPAGE_SUCCESS;
48b4800a
MK
2058unpin_objects:
2059 for (addr = s_addr + offset; addr < s_addr + pos;
2060 addr += class->size) {
2061 head = obj_to_head(page, addr);
2062 if (head & OBJ_ALLOCATED_TAG) {
2063 handle = head & ~OBJ_ALLOCATED_TAG;
2064 if (!testpin_tag(handle))
2065 BUG();
2066 unpin_tag(handle);
2067 }
2068 }
2069 kunmap_atomic(s_addr);
48b4800a
MK
2070 spin_unlock(&class->lock);
2071 migrate_write_unlock(zspage);
2072
2073 return ret;
2074}
2075
2076void zs_page_putback(struct page *page)
2077{
2078 struct zs_pool *pool;
2079 struct size_class *class;
2080 int class_idx;
2081 enum fullness_group fg;
2082 struct address_space *mapping;
2083 struct zspage *zspage;
2084
2085 VM_BUG_ON_PAGE(!PageMovable(page), page);
2086 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2087
2088 zspage = get_zspage(page);
2089 get_zspage_mapping(zspage, &class_idx, &fg);
2090 mapping = page_mapping(page);
2091 pool = mapping->private_data;
2092 class = pool->size_class[class_idx];
2093
2094 spin_lock(&class->lock);
2095 dec_zspage_isolation(zspage);
2096 if (!is_zspage_isolated(zspage)) {
2097 fg = putback_zspage(class, zspage);
2098 /*
2099 * Due to page_lock, we cannot free zspage immediately
2100 * so let's defer.
2101 */
2102 if (fg == ZS_EMPTY)
2103 schedule_work(&pool->free_work);
2104 }
2105 spin_unlock(&class->lock);
2106}
2107
2108const struct address_space_operations zsmalloc_aops = {
2109 .isolate_page = zs_page_isolate,
2110 .migratepage = zs_page_migrate,
2111 .putback_page = zs_page_putback,
2112};
2113
2114static int zs_register_migration(struct zs_pool *pool)
2115{
2116 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2117 if (IS_ERR(pool->inode)) {
2118 pool->inode = NULL;
2119 return 1;
2120 }
2121
2122 pool->inode->i_mapping->private_data = pool;
2123 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2124 return 0;
2125}
2126
2127static void zs_unregister_migration(struct zs_pool *pool)
2128{
2129 flush_work(&pool->free_work);
c3491eca 2130 iput(pool->inode);
48b4800a
MK
2131}
2132
2133/*
2134 * Caller should hold page_lock of all pages in the zspage
2135 * In here, we cannot use zspage meta data.
2136 */
2137static void async_free_zspage(struct work_struct *work)
2138{
2139 int i;
2140 struct size_class *class;
2141 unsigned int class_idx;
2142 enum fullness_group fullness;
2143 struct zspage *zspage, *tmp;
2144 LIST_HEAD(free_pages);
2145 struct zs_pool *pool = container_of(work, struct zs_pool,
2146 free_work);
2147
cf8e0fed 2148 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2149 class = pool->size_class[i];
2150 if (class->index != i)
2151 continue;
2152
2153 spin_lock(&class->lock);
2154 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2155 spin_unlock(&class->lock);
2156 }
2157
2158
2159 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2160 list_del(&zspage->list);
2161 lock_zspage(zspage);
2162
2163 get_zspage_mapping(zspage, &class_idx, &fullness);
2164 VM_BUG_ON(fullness != ZS_EMPTY);
2165 class = pool->size_class[class_idx];
2166 spin_lock(&class->lock);
2167 __free_zspage(pool, pool->size_class[class_idx], zspage);
2168 spin_unlock(&class->lock);
2169 }
2170};
2171
2172static void kick_deferred_free(struct zs_pool *pool)
2173{
2174 schedule_work(&pool->free_work);
2175}
2176
2177static void init_deferred_free(struct zs_pool *pool)
2178{
2179 INIT_WORK(&pool->free_work, async_free_zspage);
2180}
2181
2182static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2183{
2184 struct page *page = get_first_page(zspage);
2185
2186 do {
2187 WARN_ON(!trylock_page(page));
2188 __SetPageMovable(page, pool->inode->i_mapping);
2189 unlock_page(page);
2190 } while ((page = get_next_page(page)) != NULL);
2191}
2192#endif
2193
04f05909
SS
2194/*
2195 *
2196 * Based on the number of unused allocated objects calculate
2197 * and return the number of pages that we can free.
04f05909
SS
2198 */
2199static unsigned long zs_can_compact(struct size_class *class)
2200{
2201 unsigned long obj_wasted;
44f43e99
SS
2202 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2203 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2204
44f43e99
SS
2205 if (obj_allocated <= obj_used)
2206 return 0;
04f05909 2207
44f43e99 2208 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2209 obj_wasted /= class->objs_per_zspage;
04f05909 2210
6cbf16b3 2211 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2212}
2213
7d3f3938 2214static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 2215{
312fcae2 2216 struct zs_compact_control cc;
3783689a
MK
2217 struct zspage *src_zspage;
2218 struct zspage *dst_zspage = NULL;
312fcae2 2219
312fcae2 2220 spin_lock(&class->lock);
3783689a 2221 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2222
04f05909
SS
2223 if (!zs_can_compact(class))
2224 break;
2225
41b88e14 2226 cc.obj_idx = 0;
48b4800a 2227 cc.s_page = get_first_page(src_zspage);
312fcae2 2228
3783689a 2229 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2230 cc.d_page = get_first_page(dst_zspage);
312fcae2 2231 /*
0dc63d48
SS
2232 * If there is no more space in dst_page, resched
2233 * and see if anyone had allocated another zspage.
312fcae2
MK
2234 */
2235 if (!migrate_zspage(pool, class, &cc))
2236 break;
2237
4aa409ca 2238 putback_zspage(class, dst_zspage);
312fcae2
MK
2239 }
2240
2241 /* Stop if we couldn't find slot */
3783689a 2242 if (dst_zspage == NULL)
312fcae2
MK
2243 break;
2244
4aa409ca
MK
2245 putback_zspage(class, dst_zspage);
2246 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2247 free_zspage(pool, class, src_zspage);
6cbf16b3 2248 pool->stats.pages_compacted += class->pages_per_zspage;
4aa409ca 2249 }
312fcae2 2250 spin_unlock(&class->lock);
312fcae2
MK
2251 cond_resched();
2252 spin_lock(&class->lock);
2253 }
2254
3783689a 2255 if (src_zspage)
4aa409ca 2256 putback_zspage(class, src_zspage);
312fcae2 2257
7d3f3938 2258 spin_unlock(&class->lock);
312fcae2
MK
2259}
2260
2261unsigned long zs_compact(struct zs_pool *pool)
2262{
2263 int i;
312fcae2
MK
2264 struct size_class *class;
2265
cf8e0fed 2266 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2267 class = pool->size_class[i];
2268 if (!class)
2269 continue;
2270 if (class->index != i)
2271 continue;
7d3f3938 2272 __zs_compact(pool, class);
312fcae2
MK
2273 }
2274
860c707d 2275 return pool->stats.pages_compacted;
312fcae2
MK
2276}
2277EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2278
7d3f3938
SS
2279void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2280{
2281 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2282}
2283EXPORT_SYMBOL_GPL(zs_pool_stats);
2284
ab9d306d
SS
2285static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2286 struct shrink_control *sc)
2287{
2288 unsigned long pages_freed;
2289 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2290 shrinker);
2291
2292 pages_freed = pool->stats.pages_compacted;
2293 /*
2294 * Compact classes and calculate compaction delta.
2295 * Can run concurrently with a manually triggered
2296 * (by user) compaction.
2297 */
2298 pages_freed = zs_compact(pool) - pages_freed;
2299
2300 return pages_freed ? pages_freed : SHRINK_STOP;
2301}
2302
2303static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2304 struct shrink_control *sc)
2305{
2306 int i;
2307 struct size_class *class;
2308 unsigned long pages_to_free = 0;
2309 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2310 shrinker);
2311
cf8e0fed 2312 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2313 class = pool->size_class[i];
2314 if (!class)
2315 continue;
2316 if (class->index != i)
2317 continue;
2318
ab9d306d 2319 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2320 }
2321
2322 return pages_to_free;
2323}
2324
2325static void zs_unregister_shrinker(struct zs_pool *pool)
2326{
93144ca3 2327 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2328}
2329
2330static int zs_register_shrinker(struct zs_pool *pool)
2331{
2332 pool->shrinker.scan_objects = zs_shrinker_scan;
2333 pool->shrinker.count_objects = zs_shrinker_count;
2334 pool->shrinker.batch = 0;
2335 pool->shrinker.seeks = DEFAULT_SEEKS;
2336
2337 return register_shrinker(&pool->shrinker);
2338}
2339
00a61d86 2340/**
66cdef66 2341 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2342 * @name: pool name to be created
166cfda7 2343 *
66cdef66
GM
2344 * This function must be called before anything when using
2345 * the zsmalloc allocator.
166cfda7 2346 *
66cdef66
GM
2347 * On success, a pointer to the newly created pool is returned,
2348 * otherwise NULL.
396b7fd6 2349 */
d0d8da2d 2350struct zs_pool *zs_create_pool(const char *name)
61989a80 2351{
66cdef66
GM
2352 int i;
2353 struct zs_pool *pool;
2354 struct size_class *prev_class = NULL;
61989a80 2355
66cdef66
GM
2356 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2357 if (!pool)
2358 return NULL;
61989a80 2359
48b4800a 2360 init_deferred_free(pool);
61989a80 2361
2e40e163
MK
2362 pool->name = kstrdup(name, GFP_KERNEL);
2363 if (!pool->name)
2364 goto err;
2365
3783689a 2366 if (create_cache(pool))
2e40e163
MK
2367 goto err;
2368
c60369f0 2369 /*
399d8eeb 2370 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2371 * for merging should be larger or equal to current size.
c60369f0 2372 */
cf8e0fed 2373 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2374 int size;
2375 int pages_per_zspage;
64d90465 2376 int objs_per_zspage;
66cdef66 2377 struct size_class *class;
3783689a 2378 int fullness = 0;
c60369f0 2379
66cdef66
GM
2380 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2381 if (size > ZS_MAX_ALLOC_SIZE)
2382 size = ZS_MAX_ALLOC_SIZE;
2383 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2384 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2385
010b495e
SS
2386 /*
2387 * We iterate from biggest down to smallest classes,
2388 * so huge_class_size holds the size of the first huge
2389 * class. Any object bigger than or equal to that will
2390 * endup in the huge class.
2391 */
2392 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2393 !huge_class_size) {
2394 huge_class_size = size;
2395 /*
2396 * The object uses ZS_HANDLE_SIZE bytes to store the
2397 * handle. We need to subtract it, because zs_malloc()
2398 * unconditionally adds handle size before it performs
2399 * size class search - so object may be smaller than
2400 * huge class size, yet it still can end up in the huge
2401 * class because it grows by ZS_HANDLE_SIZE extra bytes
2402 * right before class lookup.
2403 */
2404 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2405 }
2406
66cdef66
GM
2407 /*
2408 * size_class is used for normal zsmalloc operation such
2409 * as alloc/free for that size. Although it is natural that we
2410 * have one size_class for each size, there is a chance that we
2411 * can get more memory utilization if we use one size_class for
2412 * many different sizes whose size_class have same
2413 * characteristics. So, we makes size_class point to
2414 * previous size_class if possible.
2415 */
2416 if (prev_class) {
64d90465 2417 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2418 pool->size_class[i] = prev_class;
2419 continue;
2420 }
2421 }
2422
2423 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2424 if (!class)
2425 goto err;
2426
2427 class->size = size;
2428 class->index = i;
2429 class->pages_per_zspage = pages_per_zspage;
64d90465 2430 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2431 spin_lock_init(&class->lock);
2432 pool->size_class[i] = class;
48b4800a
MK
2433 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2434 fullness++)
3783689a 2435 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2436
2437 prev_class = class;
61989a80
NG
2438 }
2439
d34f6157
DS
2440 /* debug only, don't abort if it fails */
2441 zs_pool_stat_create(pool, name);
0f050d99 2442
48b4800a
MK
2443 if (zs_register_migration(pool))
2444 goto err;
2445
ab9d306d 2446 /*
93144ca3
AK
2447 * Not critical since shrinker is only used to trigger internal
2448 * defragmentation of the pool which is pretty optional thing. If
2449 * registration fails we still can use the pool normally and user can
2450 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2451 */
93144ca3
AK
2452 zs_register_shrinker(pool);
2453
66cdef66
GM
2454 return pool;
2455
2456err:
2457 zs_destroy_pool(pool);
2458 return NULL;
61989a80 2459}
66cdef66 2460EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2461
66cdef66 2462void zs_destroy_pool(struct zs_pool *pool)
61989a80 2463{
66cdef66 2464 int i;
61989a80 2465
ab9d306d 2466 zs_unregister_shrinker(pool);
48b4800a 2467 zs_unregister_migration(pool);
0f050d99
GM
2468 zs_pool_stat_destroy(pool);
2469
cf8e0fed 2470 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2471 int fg;
2472 struct size_class *class = pool->size_class[i];
61989a80 2473
66cdef66
GM
2474 if (!class)
2475 continue;
61989a80 2476
66cdef66
GM
2477 if (class->index != i)
2478 continue;
61989a80 2479
48b4800a 2480 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2481 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2482 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2483 class->size, fg);
2484 }
2485 }
2486 kfree(class);
2487 }
f553646a 2488
3783689a 2489 destroy_cache(pool);
0f050d99 2490 kfree(pool->name);
66cdef66
GM
2491 kfree(pool);
2492}
2493EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2494
66cdef66
GM
2495static int __init zs_init(void)
2496{
48b4800a
MK
2497 int ret;
2498
2499 ret = zsmalloc_mount();
2500 if (ret)
2501 goto out;
2502
215c89d0
SAS
2503 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2504 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2505 if (ret)
215c89d0 2506 goto hp_setup_fail;
66cdef66 2507
66cdef66
GM
2508#ifdef CONFIG_ZPOOL
2509 zpool_register_driver(&zs_zpool_driver);
2510#endif
0f050d99 2511
4abaac9b
DS
2512 zs_stat_init();
2513
66cdef66 2514 return 0;
0f050d99 2515
215c89d0 2516hp_setup_fail:
48b4800a
MK
2517 zsmalloc_unmount();
2518out:
0f050d99 2519 return ret;
61989a80 2520}
61989a80 2521
66cdef66 2522static void __exit zs_exit(void)
61989a80 2523{
66cdef66
GM
2524#ifdef CONFIG_ZPOOL
2525 zpool_unregister_driver(&zs_zpool_driver);
2526#endif
48b4800a 2527 zsmalloc_unmount();
215c89d0 2528 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2529
2530 zs_stat_exit();
61989a80 2531}
069f101f
BH
2532
2533module_init(zs_init);
2534module_exit(zs_exit);
2535
2536MODULE_LICENSE("Dual BSD/GPL");
2537MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");