]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/zsmalloc.c
zsmalloc: use accessor
[mirror_ubuntu-zesty-kernel.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
32e7ba1e 19 * page->private: points to the first component (0-order) page
2db51dae
NG
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
32e7ba1e 29 * page->private: refers to the component page after the first page
7b60a685
MK
30 * If the page is first_page for huge object, it stores handle.
31 * Look at size_class->huge.
2db51dae
NG
32 * page->freelist: points to the first free object in zspage.
33 * Free objects are linked together using in-place
34 * metadata.
2db51dae
NG
35 * page->lru: links together first pages of various zspages.
36 * Basically forming list of zspages in a fullness group.
37 * page->mapping: class index and fullness group of the zspage
8f958c98 38 * page->inuse: the number of objects that are used in this zspage
2db51dae
NG
39 *
40 * Usage of struct page flags:
41 * PG_private: identifies the first component page
42 * PG_private2: identifies the last component page
43 *
44 */
45
4abaac9b
DS
46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
61989a80
NG
48#include <linux/module.h>
49#include <linux/kernel.h>
312fcae2 50#include <linux/sched.h>
61989a80
NG
51#include <linux/bitops.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
61989a80
NG
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <asm/tlbflush.h>
57#include <asm/pgtable.h>
58#include <linux/cpumask.h>
59#include <linux/cpu.h>
0cbb613f 60#include <linux/vmalloc.h>
759b26b2 61#include <linux/preempt.h>
0959c63f
SJ
62#include <linux/spinlock.h>
63#include <linux/types.h>
0f050d99 64#include <linux/debugfs.h>
bcf1647d 65#include <linux/zsmalloc.h>
c795779d 66#include <linux/zpool.h>
0959c63f
SJ
67
68/*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
2e40e163
MK
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
0959c63f
SJ
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 87 * as single (unsigned long) handle value.
0959c63f
SJ
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96#ifndef MAX_PHYSMEM_BITS
97#ifdef CONFIG_HIGHMEM64G
98#define MAX_PHYSMEM_BITS 36
99#else /* !CONFIG_HIGHMEM64G */
100/*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104#define MAX_PHYSMEM_BITS BITS_PER_LONG
105#endif
106#endif
107#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
108
109/*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116#define HANDLE_PIN_BIT 0
117
118/*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125#define OBJ_ALLOCATED_TAG 1
126#define OBJ_TAG_BITS 1
127#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
128#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 134/* each chunk includes extra space to keep handle */
7b60a685 135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
136
137/*
7eb52512 138 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
d662b8eb 150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
151
152/*
153 * We do not maintain any list for completely empty or full pages
154 */
155enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162};
163
0f050d99
GM
164enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
248ca1b0
MK
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
0f050d99
GM
169};
170
6fe5186f
SS
171#ifdef CONFIG_ZSMALLOC_STAT
172#define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
173#else
174#define NR_ZS_STAT_TYPE (OBJ_USED + 1)
175#endif
176
0f050d99
GM
177struct zs_size_stat {
178 unsigned long objs[NR_ZS_STAT_TYPE];
179};
180
57244594
SS
181#ifdef CONFIG_ZSMALLOC_STAT
182static struct dentry *zs_stat_root;
0f050d99
GM
183#endif
184
40f9fb8c
MG
185/*
186 * number of size_classes
187 */
188static int zs_size_classes;
189
0959c63f
SJ
190/*
191 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
192 * n <= N / f, where
193 * n = number of allocated objects
194 * N = total number of objects zspage can store
6dd9737e 195 * f = fullness_threshold_frac
0959c63f
SJ
196 *
197 * Similarly, we assign zspage to:
198 * ZS_ALMOST_FULL when n > N / f
199 * ZS_EMPTY when n == 0
200 * ZS_FULL when n == N
201 *
202 * (see: fix_fullness_group())
203 */
204static const int fullness_threshold_frac = 4;
205
206struct size_class {
57244594
SS
207 spinlock_t lock;
208 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
0959c63f
SJ
209 /*
210 * Size of objects stored in this class. Must be multiple
211 * of ZS_ALIGN.
212 */
213 int size;
1fc6e27d 214 int objs_per_zspage;
0959c63f
SJ
215 unsigned int index;
216
0f050d99 217 struct zs_size_stat stats;
0959c63f 218
7dfa4612
WY
219 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
220 int pages_per_zspage;
57244594
SS
221 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
222 bool huge;
0959c63f
SJ
223};
224
225/*
226 * Placed within free objects to form a singly linked list.
227 * For every zspage, first_page->freelist gives head of this list.
228 *
229 * This must be power of 2 and less than or equal to ZS_ALIGN
230 */
231struct link_free {
2e40e163
MK
232 union {
233 /*
234 * Position of next free chunk (encodes <PFN, obj_idx>)
235 * It's valid for non-allocated object
236 */
237 void *next;
238 /*
239 * Handle of allocated object.
240 */
241 unsigned long handle;
242 };
0959c63f
SJ
243};
244
245struct zs_pool {
6f3526d6 246 const char *name;
0f050d99 247
40f9fb8c 248 struct size_class **size_class;
2e40e163 249 struct kmem_cache *handle_cachep;
0959c63f 250
13de8933 251 atomic_long_t pages_allocated;
0f050d99 252
7d3f3938 253 struct zs_pool_stats stats;
ab9d306d
SS
254
255 /* Compact classes */
256 struct shrinker shrinker;
257 /*
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
260 */
261 bool shrinker_enabled;
0f050d99
GM
262#ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264#endif
0959c63f 265};
61989a80
NG
266
267/*
268 * A zspage's class index and fullness group
269 * are encoded in its (first)page->mapping
270 */
61989a80 271#define FULLNESS_BITS 4
4f42047b
MK
272#define CLASS_BITS 28
273
274#define FULLNESS_SHIFT 0
275#define CLASS_SHIFT (FULLNESS_SHIFT + FULLNESS_BITS)
276
277#define FULLNESS_MASK ((1UL << FULLNESS_BITS) - 1)
278#define CLASS_MASK ((1UL << CLASS_BITS) - 1)
61989a80 279
f553646a 280struct mapping_area {
1b945aee 281#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
282 struct vm_struct *vm; /* vm area for mapping object that span pages */
283#else
284 char *vm_buf; /* copy buffer for objects that span pages */
285#endif
286 char *vm_addr; /* address of kmap_atomic()'ed pages */
287 enum zs_mapmode vm_mm; /* mapping mode */
288};
289
2e40e163
MK
290static int create_handle_cache(struct zs_pool *pool)
291{
292 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
293 0, 0, NULL);
294 return pool->handle_cachep ? 0 : 1;
295}
296
297static void destroy_handle_cache(struct zs_pool *pool)
298{
cd10add0 299 kmem_cache_destroy(pool->handle_cachep);
2e40e163
MK
300}
301
d0d8da2d 302static unsigned long alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
303{
304 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
d0d8da2d 305 gfp & ~__GFP_HIGHMEM);
2e40e163
MK
306}
307
308static void free_handle(struct zs_pool *pool, unsigned long handle)
309{
310 kmem_cache_free(pool->handle_cachep, (void *)handle);
311}
312
313static void record_obj(unsigned long handle, unsigned long obj)
314{
c102f07c
JL
315 /*
316 * lsb of @obj represents handle lock while other bits
317 * represent object value the handle is pointing so
318 * updating shouldn't do store tearing.
319 */
320 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
321}
322
c795779d
DS
323/* zpool driver */
324
325#ifdef CONFIG_ZPOOL
326
6f3526d6 327static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 328 const struct zpool_ops *zpool_ops,
479305fd 329 struct zpool *zpool)
c795779d 330{
d0d8da2d
SS
331 /*
332 * Ignore global gfp flags: zs_malloc() may be invoked from
333 * different contexts and its caller must provide a valid
334 * gfp mask.
335 */
336 return zs_create_pool(name);
c795779d
DS
337}
338
339static void zs_zpool_destroy(void *pool)
340{
341 zs_destroy_pool(pool);
342}
343
344static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
345 unsigned long *handle)
346{
d0d8da2d 347 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
348 return *handle ? 0 : -1;
349}
350static void zs_zpool_free(void *pool, unsigned long handle)
351{
352 zs_free(pool, handle);
353}
354
355static int zs_zpool_shrink(void *pool, unsigned int pages,
356 unsigned int *reclaimed)
357{
358 return -EINVAL;
359}
360
361static void *zs_zpool_map(void *pool, unsigned long handle,
362 enum zpool_mapmode mm)
363{
364 enum zs_mapmode zs_mm;
365
366 switch (mm) {
367 case ZPOOL_MM_RO:
368 zs_mm = ZS_MM_RO;
369 break;
370 case ZPOOL_MM_WO:
371 zs_mm = ZS_MM_WO;
372 break;
373 case ZPOOL_MM_RW: /* fallthru */
374 default:
375 zs_mm = ZS_MM_RW;
376 break;
377 }
378
379 return zs_map_object(pool, handle, zs_mm);
380}
381static void zs_zpool_unmap(void *pool, unsigned long handle)
382{
383 zs_unmap_object(pool, handle);
384}
385
386static u64 zs_zpool_total_size(void *pool)
387{
722cdc17 388 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
389}
390
391static struct zpool_driver zs_zpool_driver = {
392 .type = "zsmalloc",
393 .owner = THIS_MODULE,
394 .create = zs_zpool_create,
395 .destroy = zs_zpool_destroy,
396 .malloc = zs_zpool_malloc,
397 .free = zs_zpool_free,
398 .shrink = zs_zpool_shrink,
399 .map = zs_zpool_map,
400 .unmap = zs_zpool_unmap,
401 .total_size = zs_zpool_total_size,
402};
403
137f8cff 404MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
405#endif /* CONFIG_ZPOOL */
406
248ca1b0
MK
407static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
408{
409 return pages_per_zspage * PAGE_SIZE / size;
410}
411
61989a80
NG
412/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
413static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
414
415static int is_first_page(struct page *page)
416{
a27545bf 417 return PagePrivate(page);
61989a80
NG
418}
419
420static int is_last_page(struct page *page)
421{
a27545bf 422 return PagePrivate2(page);
61989a80
NG
423}
424
4f42047b
MK
425static inline int get_zspage_inuse(struct page *first_page)
426{
427 return first_page->inuse;
428}
429
430static inline void set_zspage_inuse(struct page *first_page, int val)
431{
432 first_page->inuse = val;
433}
434
435static inline void mod_zspage_inuse(struct page *first_page, int val)
436{
437 first_page->inuse += val;
438}
439
440static inline int get_first_obj_offset(struct page *page)
441{
442 return page->index;
443}
444
445static inline void set_first_obj_offset(struct page *page, int offset)
446{
447 page->index = offset;
448}
449
450static inline unsigned long get_freeobj(struct page *first_page)
451{
452 return (unsigned long)first_page->freelist;
453}
454
455static inline void set_freeobj(struct page *first_page, unsigned long obj)
456{
457 first_page->freelist = (void *)obj;
458}
459
a4209467
MK
460static void get_zspage_mapping(struct page *first_page,
461 unsigned int *class_idx,
61989a80
NG
462 enum fullness_group *fullness)
463{
464 unsigned long m;
830e4bc5 465 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80 466
a4209467 467 m = (unsigned long)first_page->mapping;
4f42047b
MK
468 *fullness = (m >> FULLNESS_SHIFT) & FULLNESS_MASK;
469 *class_idx = (m >> CLASS_SHIFT) & CLASS_MASK;
61989a80
NG
470}
471
a4209467
MK
472static void set_zspage_mapping(struct page *first_page,
473 unsigned int class_idx,
61989a80
NG
474 enum fullness_group fullness)
475{
476 unsigned long m;
830e4bc5 477 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80 478
4f42047b 479 m = (class_idx << CLASS_SHIFT) | (fullness << FULLNESS_SHIFT);
a4209467 480 first_page->mapping = (struct address_space *)m;
61989a80
NG
481}
482
c3e3e88a
NC
483/*
484 * zsmalloc divides the pool into various size classes where each
485 * class maintains a list of zspages where each zspage is divided
486 * into equal sized chunks. Each allocation falls into one of these
487 * classes depending on its size. This function returns index of the
488 * size class which has chunk size big enough to hold the give size.
489 */
61989a80
NG
490static int get_size_class_index(int size)
491{
492 int idx = 0;
493
494 if (likely(size > ZS_MIN_ALLOC_SIZE))
495 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
496 ZS_SIZE_CLASS_DELTA);
497
7b60a685 498 return min(zs_size_classes - 1, idx);
61989a80
NG
499}
500
248ca1b0
MK
501static inline void zs_stat_inc(struct size_class *class,
502 enum zs_stat_type type, unsigned long cnt)
503{
6fe5186f
SS
504 if (type < NR_ZS_STAT_TYPE)
505 class->stats.objs[type] += cnt;
248ca1b0
MK
506}
507
508static inline void zs_stat_dec(struct size_class *class,
509 enum zs_stat_type type, unsigned long cnt)
510{
6fe5186f
SS
511 if (type < NR_ZS_STAT_TYPE)
512 class->stats.objs[type] -= cnt;
248ca1b0
MK
513}
514
515static inline unsigned long zs_stat_get(struct size_class *class,
516 enum zs_stat_type type)
517{
6fe5186f
SS
518 if (type < NR_ZS_STAT_TYPE)
519 return class->stats.objs[type];
520 return 0;
248ca1b0
MK
521}
522
57244594
SS
523#ifdef CONFIG_ZSMALLOC_STAT
524
4abaac9b 525static void __init zs_stat_init(void)
248ca1b0 526{
4abaac9b
DS
527 if (!debugfs_initialized()) {
528 pr_warn("debugfs not available, stat dir not created\n");
529 return;
530 }
248ca1b0
MK
531
532 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
533 if (!zs_stat_root)
4abaac9b 534 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
248ca1b0
MK
535}
536
537static void __exit zs_stat_exit(void)
538{
539 debugfs_remove_recursive(zs_stat_root);
540}
541
1120ed54
SS
542static unsigned long zs_can_compact(struct size_class *class);
543
248ca1b0
MK
544static int zs_stats_size_show(struct seq_file *s, void *v)
545{
546 int i;
547 struct zs_pool *pool = s->private;
548 struct size_class *class;
549 int objs_per_zspage;
550 unsigned long class_almost_full, class_almost_empty;
1120ed54 551 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
552 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
553 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 554 unsigned long total_freeable = 0;
248ca1b0 555
1120ed54 556 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
557 "class", "size", "almost_full", "almost_empty",
558 "obj_allocated", "obj_used", "pages_used",
1120ed54 559 "pages_per_zspage", "freeable");
248ca1b0
MK
560
561 for (i = 0; i < zs_size_classes; i++) {
562 class = pool->size_class[i];
563
564 if (class->index != i)
565 continue;
566
567 spin_lock(&class->lock);
568 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
569 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
570 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
571 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 572 freeable = zs_can_compact(class);
248ca1b0
MK
573 spin_unlock(&class->lock);
574
575 objs_per_zspage = get_maxobj_per_zspage(class->size,
576 class->pages_per_zspage);
577 pages_used = obj_allocated / objs_per_zspage *
578 class->pages_per_zspage;
579
1120ed54
SS
580 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
581 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
582 i, class->size, class_almost_full, class_almost_empty,
583 obj_allocated, obj_used, pages_used,
1120ed54 584 class->pages_per_zspage, freeable);
248ca1b0
MK
585
586 total_class_almost_full += class_almost_full;
587 total_class_almost_empty += class_almost_empty;
588 total_objs += obj_allocated;
589 total_used_objs += obj_used;
590 total_pages += pages_used;
1120ed54 591 total_freeable += freeable;
248ca1b0
MK
592 }
593
594 seq_puts(s, "\n");
1120ed54 595 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
596 "Total", "", total_class_almost_full,
597 total_class_almost_empty, total_objs,
1120ed54 598 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
599
600 return 0;
601}
602
603static int zs_stats_size_open(struct inode *inode, struct file *file)
604{
605 return single_open(file, zs_stats_size_show, inode->i_private);
606}
607
608static const struct file_operations zs_stat_size_ops = {
609 .open = zs_stats_size_open,
610 .read = seq_read,
611 .llseek = seq_lseek,
612 .release = single_release,
613};
614
d34f6157 615static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0
MK
616{
617 struct dentry *entry;
618
4abaac9b
DS
619 if (!zs_stat_root) {
620 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 621 return;
4abaac9b 622 }
248ca1b0
MK
623
624 entry = debugfs_create_dir(name, zs_stat_root);
625 if (!entry) {
626 pr_warn("debugfs dir <%s> creation failed\n", name);
d34f6157 627 return;
248ca1b0
MK
628 }
629 pool->stat_dentry = entry;
630
631 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
632 pool->stat_dentry, pool, &zs_stat_size_ops);
633 if (!entry) {
634 pr_warn("%s: debugfs file entry <%s> creation failed\n",
635 name, "classes");
4abaac9b
DS
636 debugfs_remove_recursive(pool->stat_dentry);
637 pool->stat_dentry = NULL;
248ca1b0 638 }
248ca1b0
MK
639}
640
641static void zs_pool_stat_destroy(struct zs_pool *pool)
642{
643 debugfs_remove_recursive(pool->stat_dentry);
644}
645
646#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 647static void __init zs_stat_init(void)
248ca1b0 648{
248ca1b0
MK
649}
650
651static void __exit zs_stat_exit(void)
652{
653}
654
d34f6157 655static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 656{
248ca1b0
MK
657}
658
659static inline void zs_pool_stat_destroy(struct zs_pool *pool)
660{
661}
248ca1b0
MK
662#endif
663
c3e3e88a
NC
664/*
665 * For each size class, zspages are divided into different groups
666 * depending on how "full" they are. This was done so that we could
667 * easily find empty or nearly empty zspages when we try to shrink
668 * the pool (not yet implemented). This function returns fullness
669 * status of the given page.
670 */
1fc6e27d
MK
671static enum fullness_group get_fullness_group(struct size_class *class,
672 struct page *first_page)
61989a80 673{
1fc6e27d 674 int inuse, objs_per_zspage;
61989a80 675 enum fullness_group fg;
830e4bc5
MK
676
677 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80 678
4f42047b 679 inuse = get_zspage_inuse(first_page);
1fc6e27d 680 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
681
682 if (inuse == 0)
683 fg = ZS_EMPTY;
1fc6e27d 684 else if (inuse == objs_per_zspage)
61989a80 685 fg = ZS_FULL;
1fc6e27d 686 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
687 fg = ZS_ALMOST_EMPTY;
688 else
689 fg = ZS_ALMOST_FULL;
690
691 return fg;
692}
693
c3e3e88a
NC
694/*
695 * Each size class maintains various freelists and zspages are assigned
696 * to one of these freelists based on the number of live objects they
697 * have. This functions inserts the given zspage into the freelist
698 * identified by <class, fullness_group>.
699 */
251cbb95
MK
700static void insert_zspage(struct size_class *class,
701 enum fullness_group fullness,
702 struct page *first_page)
61989a80
NG
703{
704 struct page **head;
705
830e4bc5 706 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80
NG
707
708 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
709 return;
710
248ca1b0
MK
711 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
712 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
58f17117
SS
713
714 head = &class->fullness_list[fullness];
715 if (!*head) {
a4209467 716 *head = first_page;
58f17117
SS
717 return;
718 }
719
720 /*
721 * We want to see more ZS_FULL pages and less almost
722 * empty/full. Put pages with higher ->inuse first.
723 */
a4209467 724 list_add_tail(&first_page->lru, &(*head)->lru);
4f42047b 725 if (get_zspage_inuse(first_page) >= get_zspage_inuse(*head))
a4209467 726 *head = first_page;
61989a80
NG
727}
728
c3e3e88a
NC
729/*
730 * This function removes the given zspage from the freelist identified
731 * by <class, fullness_group>.
732 */
251cbb95
MK
733static void remove_zspage(struct size_class *class,
734 enum fullness_group fullness,
735 struct page *first_page)
61989a80
NG
736{
737 struct page **head;
738
830e4bc5 739 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80
NG
740
741 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
742 return;
743
744 head = &class->fullness_list[fullness];
830e4bc5 745 VM_BUG_ON_PAGE(!*head, first_page);
61989a80
NG
746 if (list_empty(&(*head)->lru))
747 *head = NULL;
a4209467 748 else if (*head == first_page)
61989a80
NG
749 *head = (struct page *)list_entry((*head)->lru.next,
750 struct page, lru);
751
a4209467 752 list_del_init(&first_page->lru);
248ca1b0
MK
753 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
754 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
755}
756
c3e3e88a
NC
757/*
758 * Each size class maintains zspages in different fullness groups depending
759 * on the number of live objects they contain. When allocating or freeing
760 * objects, the fullness status of the page can change, say, from ALMOST_FULL
761 * to ALMOST_EMPTY when freeing an object. This function checks if such
762 * a status change has occurred for the given page and accordingly moves the
763 * page from the freelist of the old fullness group to that of the new
764 * fullness group.
765 */
c7806261 766static enum fullness_group fix_fullness_group(struct size_class *class,
a4209467 767 struct page *first_page)
61989a80
NG
768{
769 int class_idx;
61989a80
NG
770 enum fullness_group currfg, newfg;
771
a4209467 772 get_zspage_mapping(first_page, &class_idx, &currfg);
1fc6e27d 773 newfg = get_fullness_group(class, first_page);
61989a80
NG
774 if (newfg == currfg)
775 goto out;
776
251cbb95
MK
777 remove_zspage(class, currfg, first_page);
778 insert_zspage(class, newfg, first_page);
a4209467 779 set_zspage_mapping(first_page, class_idx, newfg);
61989a80
NG
780
781out:
782 return newfg;
783}
784
785/*
786 * We have to decide on how many pages to link together
787 * to form a zspage for each size class. This is important
788 * to reduce wastage due to unusable space left at end of
789 * each zspage which is given as:
888fa374
YX
790 * wastage = Zp % class_size
791 * usage = Zp - wastage
61989a80
NG
792 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
793 *
794 * For example, for size class of 3/8 * PAGE_SIZE, we should
795 * link together 3 PAGE_SIZE sized pages to form a zspage
796 * since then we can perfectly fit in 8 such objects.
797 */
2e3b6154 798static int get_pages_per_zspage(int class_size)
61989a80
NG
799{
800 int i, max_usedpc = 0;
801 /* zspage order which gives maximum used size per KB */
802 int max_usedpc_order = 1;
803
84d4faab 804 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
805 int zspage_size;
806 int waste, usedpc;
807
808 zspage_size = i * PAGE_SIZE;
809 waste = zspage_size % class_size;
810 usedpc = (zspage_size - waste) * 100 / zspage_size;
811
812 if (usedpc > max_usedpc) {
813 max_usedpc = usedpc;
814 max_usedpc_order = i;
815 }
816 }
817
818 return max_usedpc_order;
819}
820
821/*
822 * A single 'zspage' is composed of many system pages which are
823 * linked together using fields in struct page. This function finds
824 * the first/head page, given any component page of a zspage.
825 */
826static struct page *get_first_page(struct page *page)
827{
828 if (is_first_page(page))
829 return page;
830 else
32e7ba1e 831 return (struct page *)page_private(page);
61989a80
NG
832}
833
834static struct page *get_next_page(struct page *page)
835{
836 struct page *next;
837
838 if (is_last_page(page))
839 next = NULL;
840 else if (is_first_page(page))
e842b976 841 next = (struct page *)page_private(page);
61989a80
NG
842 else
843 next = list_entry(page->lru.next, struct page, lru);
844
845 return next;
846}
847
67296874
OH
848/*
849 * Encode <page, obj_idx> as a single handle value.
312fcae2 850 * We use the least bit of handle for tagging.
67296874 851 */
312fcae2 852static void *location_to_obj(struct page *page, unsigned long obj_idx)
61989a80 853{
312fcae2 854 unsigned long obj;
61989a80
NG
855
856 if (!page) {
830e4bc5 857 VM_BUG_ON(obj_idx);
61989a80
NG
858 return NULL;
859 }
860
312fcae2
MK
861 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
862 obj |= ((obj_idx) & OBJ_INDEX_MASK);
863 obj <<= OBJ_TAG_BITS;
61989a80 864
312fcae2 865 return (void *)obj;
61989a80
NG
866}
867
67296874
OH
868/*
869 * Decode <page, obj_idx> pair from the given object handle. We adjust the
870 * decoded obj_idx back to its original value since it was adjusted in
312fcae2 871 * location_to_obj().
67296874 872 */
312fcae2 873static void obj_to_location(unsigned long obj, struct page **page,
61989a80
NG
874 unsigned long *obj_idx)
875{
312fcae2
MK
876 obj >>= OBJ_TAG_BITS;
877 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
878 *obj_idx = (obj & OBJ_INDEX_MASK);
61989a80
NG
879}
880
2e40e163
MK
881static unsigned long handle_to_obj(unsigned long handle)
882{
883 return *(unsigned long *)handle;
884}
885
7b60a685
MK
886static unsigned long obj_to_head(struct size_class *class, struct page *page,
887 void *obj)
312fcae2 888{
7b60a685 889 if (class->huge) {
830e4bc5 890 VM_BUG_ON_PAGE(!is_first_page(page), page);
12a7bfad 891 return page_private(page);
7b60a685
MK
892 } else
893 return *(unsigned long *)obj;
312fcae2
MK
894}
895
61989a80
NG
896static unsigned long obj_idx_to_offset(struct page *page,
897 unsigned long obj_idx, int class_size)
898{
899 unsigned long off = 0;
900
901 if (!is_first_page(page))
4f42047b 902 off = get_first_obj_offset(page);
61989a80
NG
903
904 return off + obj_idx * class_size;
905}
906
312fcae2
MK
907static inline int trypin_tag(unsigned long handle)
908{
1b8320b6 909 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
910}
911
912static void pin_tag(unsigned long handle)
913{
1b8320b6 914 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
915}
916
917static void unpin_tag(unsigned long handle)
918{
1b8320b6 919 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
920}
921
f4477e90
NG
922static void reset_page(struct page *page)
923{
924 clear_bit(PG_private, &page->flags);
925 clear_bit(PG_private_2, &page->flags);
926 set_page_private(page, 0);
927 page->mapping = NULL;
928 page->freelist = NULL;
22b751c3 929 page_mapcount_reset(page);
f4477e90
NG
930}
931
61989a80
NG
932static void free_zspage(struct page *first_page)
933{
f4477e90 934 struct page *nextp, *tmp, *head_extra;
61989a80 935
830e4bc5 936 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
4f42047b 937 VM_BUG_ON_PAGE(get_zspage_inuse(first_page), first_page);
61989a80 938
f4477e90 939 head_extra = (struct page *)page_private(first_page);
61989a80 940
f4477e90 941 reset_page(first_page);
61989a80
NG
942 __free_page(first_page);
943
944 /* zspage with only 1 system page */
f4477e90 945 if (!head_extra)
61989a80
NG
946 return;
947
f4477e90 948 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 949 list_del(&nextp->lru);
f4477e90 950 reset_page(nextp);
61989a80
NG
951 __free_page(nextp);
952 }
f4477e90
NG
953 reset_page(head_extra);
954 __free_page(head_extra);
61989a80
NG
955}
956
957/* Initialize a newly allocated zspage */
251cbb95 958static void init_zspage(struct size_class *class, struct page *first_page)
61989a80
NG
959{
960 unsigned long off = 0;
961 struct page *page = first_page;
962
830e4bc5
MK
963 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
964
61989a80
NG
965 while (page) {
966 struct page *next_page;
967 struct link_free *link;
5538c562 968 unsigned int i = 1;
af4ee5e9 969 void *vaddr;
61989a80
NG
970
971 /*
972 * page->index stores offset of first object starting
973 * in the page. For the first page, this is always 0,
974 * so we use first_page->index (aka ->freelist) to store
975 * head of corresponding zspage's freelist.
976 */
977 if (page != first_page)
4f42047b 978 set_first_obj_offset(page, off);
61989a80 979
af4ee5e9
MK
980 vaddr = kmap_atomic(page);
981 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
982
983 while ((off += class->size) < PAGE_SIZE) {
312fcae2 984 link->next = location_to_obj(page, i++);
5538c562 985 link += class->size / sizeof(*link);
61989a80
NG
986 }
987
988 /*
989 * We now come to the last (full or partial) object on this
990 * page, which must point to the first object on the next
991 * page (if present)
992 */
993 next_page = get_next_page(page);
312fcae2 994 link->next = location_to_obj(next_page, 0);
af4ee5e9 995 kunmap_atomic(vaddr);
61989a80 996 page = next_page;
5538c562 997 off %= PAGE_SIZE;
61989a80
NG
998 }
999}
1000
1001/*
1002 * Allocate a zspage for the given size class
1003 */
1004static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
1005{
1006 int i, error;
b4b700c5 1007 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
1008
1009 /*
1010 * Allocate individual pages and link them together as:
1011 * 1. first page->private = first sub-page
1012 * 2. all sub-pages are linked together using page->lru
32e7ba1e 1013 * 3. each sub-page is linked to the first page using page->private
61989a80
NG
1014 *
1015 * For each size class, First/Head pages are linked together using
1016 * page->lru. Also, we set PG_private to identify the first page
1017 * (i.e. no other sub-page has this flag set) and PG_private_2 to
1018 * identify the last page.
1019 */
1020 error = -ENOMEM;
2e3b6154 1021 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 1022 struct page *page;
61989a80
NG
1023
1024 page = alloc_page(flags);
1025 if (!page)
1026 goto cleanup;
1027
1028 INIT_LIST_HEAD(&page->lru);
1029 if (i == 0) { /* first page */
a27545bf 1030 SetPagePrivate(page);
61989a80
NG
1031 set_page_private(page, 0);
1032 first_page = page;
4f42047b 1033 set_zspage_inuse(first_page, 0);
61989a80
NG
1034 }
1035 if (i == 1)
e842b976 1036 set_page_private(first_page, (unsigned long)page);
61989a80 1037 if (i >= 1)
32e7ba1e 1038 set_page_private(page, (unsigned long)first_page);
61989a80
NG
1039 if (i >= 2)
1040 list_add(&page->lru, &prev_page->lru);
2e3b6154 1041 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 1042 SetPagePrivate2(page);
61989a80
NG
1043 prev_page = page;
1044 }
1045
251cbb95 1046 init_zspage(class, first_page);
61989a80 1047
4f42047b 1048 set_freeobj(first_page, (unsigned long)location_to_obj(first_page, 0));
61989a80
NG
1049 error = 0; /* Success */
1050
1051cleanup:
1052 if (unlikely(error) && first_page) {
1053 free_zspage(first_page);
1054 first_page = NULL;
1055 }
1056
1057 return first_page;
1058}
1059
1060static struct page *find_get_zspage(struct size_class *class)
1061{
1062 int i;
1063 struct page *page;
1064
1065 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1066 page = class->fullness_list[i];
1067 if (page)
1068 break;
1069 }
1070
1071 return page;
1072}
1073
1b945aee 1074#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1075static inline int __zs_cpu_up(struct mapping_area *area)
1076{
1077 /*
1078 * Make sure we don't leak memory if a cpu UP notification
1079 * and zs_init() race and both call zs_cpu_up() on the same cpu
1080 */
1081 if (area->vm)
1082 return 0;
1083 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1084 if (!area->vm)
1085 return -ENOMEM;
1086 return 0;
1087}
1088
1089static inline void __zs_cpu_down(struct mapping_area *area)
1090{
1091 if (area->vm)
1092 free_vm_area(area->vm);
1093 area->vm = NULL;
1094}
1095
1096static inline void *__zs_map_object(struct mapping_area *area,
1097 struct page *pages[2], int off, int size)
1098{
f6f8ed47 1099 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1100 area->vm_addr = area->vm->addr;
1101 return area->vm_addr + off;
1102}
1103
1104static inline void __zs_unmap_object(struct mapping_area *area,
1105 struct page *pages[2], int off, int size)
1106{
1107 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1108
d95abbbb 1109 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1110}
1111
1b945aee 1112#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1113
1114static inline int __zs_cpu_up(struct mapping_area *area)
1115{
1116 /*
1117 * Make sure we don't leak memory if a cpu UP notification
1118 * and zs_init() race and both call zs_cpu_up() on the same cpu
1119 */
1120 if (area->vm_buf)
1121 return 0;
40f9fb8c 1122 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1123 if (!area->vm_buf)
1124 return -ENOMEM;
1125 return 0;
1126}
1127
1128static inline void __zs_cpu_down(struct mapping_area *area)
1129{
40f9fb8c 1130 kfree(area->vm_buf);
f553646a
SJ
1131 area->vm_buf = NULL;
1132}
1133
1134static void *__zs_map_object(struct mapping_area *area,
1135 struct page *pages[2], int off, int size)
5f601902 1136{
5f601902
SJ
1137 int sizes[2];
1138 void *addr;
f553646a 1139 char *buf = area->vm_buf;
5f601902 1140
f553646a
SJ
1141 /* disable page faults to match kmap_atomic() return conditions */
1142 pagefault_disable();
1143
1144 /* no read fastpath */
1145 if (area->vm_mm == ZS_MM_WO)
1146 goto out;
5f601902
SJ
1147
1148 sizes[0] = PAGE_SIZE - off;
1149 sizes[1] = size - sizes[0];
1150
5f601902
SJ
1151 /* copy object to per-cpu buffer */
1152 addr = kmap_atomic(pages[0]);
1153 memcpy(buf, addr + off, sizes[0]);
1154 kunmap_atomic(addr);
1155 addr = kmap_atomic(pages[1]);
1156 memcpy(buf + sizes[0], addr, sizes[1]);
1157 kunmap_atomic(addr);
f553646a
SJ
1158out:
1159 return area->vm_buf;
5f601902
SJ
1160}
1161
f553646a
SJ
1162static void __zs_unmap_object(struct mapping_area *area,
1163 struct page *pages[2], int off, int size)
5f601902 1164{
5f601902
SJ
1165 int sizes[2];
1166 void *addr;
2e40e163 1167 char *buf;
5f601902 1168
f553646a
SJ
1169 /* no write fastpath */
1170 if (area->vm_mm == ZS_MM_RO)
1171 goto out;
5f601902 1172
7b60a685 1173 buf = area->vm_buf;
a82cbf07
YX
1174 buf = buf + ZS_HANDLE_SIZE;
1175 size -= ZS_HANDLE_SIZE;
1176 off += ZS_HANDLE_SIZE;
2e40e163 1177
5f601902
SJ
1178 sizes[0] = PAGE_SIZE - off;
1179 sizes[1] = size - sizes[0];
1180
1181 /* copy per-cpu buffer to object */
1182 addr = kmap_atomic(pages[0]);
1183 memcpy(addr + off, buf, sizes[0]);
1184 kunmap_atomic(addr);
1185 addr = kmap_atomic(pages[1]);
1186 memcpy(addr, buf + sizes[0], sizes[1]);
1187 kunmap_atomic(addr);
f553646a
SJ
1188
1189out:
1190 /* enable page faults to match kunmap_atomic() return conditions */
1191 pagefault_enable();
5f601902 1192}
61989a80 1193
1b945aee 1194#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1195
61989a80
NG
1196static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1197 void *pcpu)
1198{
f553646a 1199 int ret, cpu = (long)pcpu;
61989a80
NG
1200 struct mapping_area *area;
1201
1202 switch (action) {
1203 case CPU_UP_PREPARE:
1204 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
1205 ret = __zs_cpu_up(area);
1206 if (ret)
1207 return notifier_from_errno(ret);
61989a80
NG
1208 break;
1209 case CPU_DEAD:
1210 case CPU_UP_CANCELED:
1211 area = &per_cpu(zs_map_area, cpu);
f553646a 1212 __zs_cpu_down(area);
61989a80
NG
1213 break;
1214 }
1215
1216 return NOTIFY_OK;
1217}
1218
1219static struct notifier_block zs_cpu_nb = {
1220 .notifier_call = zs_cpu_notifier
1221};
1222
b1b00a5b 1223static int zs_register_cpu_notifier(void)
61989a80 1224{
b1b00a5b 1225 int cpu, uninitialized_var(ret);
61989a80 1226
f0e71fcd
SB
1227 cpu_notifier_register_begin();
1228
1229 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
1230 for_each_online_cpu(cpu) {
1231 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
b1b00a5b
SS
1232 if (notifier_to_errno(ret))
1233 break;
61989a80 1234 }
f0e71fcd
SB
1235
1236 cpu_notifier_register_done();
b1b00a5b
SS
1237 return notifier_to_errno(ret);
1238}
f0e71fcd 1239
66cdef66 1240static void zs_unregister_cpu_notifier(void)
40f9fb8c 1241{
66cdef66 1242 int cpu;
40f9fb8c 1243
66cdef66 1244 cpu_notifier_register_begin();
40f9fb8c 1245
66cdef66
GM
1246 for_each_online_cpu(cpu)
1247 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1248 __unregister_cpu_notifier(&zs_cpu_nb);
40f9fb8c 1249
66cdef66 1250 cpu_notifier_register_done();
b1b00a5b
SS
1251}
1252
66cdef66 1253static void init_zs_size_classes(void)
b1b00a5b 1254{
66cdef66 1255 int nr;
c795779d 1256
66cdef66
GM
1257 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1258 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1259 nr += 1;
40f9fb8c 1260
66cdef66 1261 zs_size_classes = nr;
61989a80
NG
1262}
1263
9eec4cd5
JK
1264static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1265{
1266 if (prev->pages_per_zspage != pages_per_zspage)
1267 return false;
1268
1269 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1270 != get_maxobj_per_zspage(size, pages_per_zspage))
1271 return false;
1272
1273 return true;
1274}
1275
1fc6e27d 1276static bool zspage_full(struct size_class *class, struct page *first_page)
312fcae2 1277{
830e4bc5 1278 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
312fcae2 1279
4f42047b 1280 return get_zspage_inuse(first_page) == class->objs_per_zspage;
312fcae2
MK
1281}
1282
66cdef66
GM
1283unsigned long zs_get_total_pages(struct zs_pool *pool)
1284{
1285 return atomic_long_read(&pool->pages_allocated);
1286}
1287EXPORT_SYMBOL_GPL(zs_get_total_pages);
1288
4bbc0bc0 1289/**
66cdef66
GM
1290 * zs_map_object - get address of allocated object from handle.
1291 * @pool: pool from which the object was allocated
1292 * @handle: handle returned from zs_malloc
4bbc0bc0 1293 *
66cdef66
GM
1294 * Before using an object allocated from zs_malloc, it must be mapped using
1295 * this function. When done with the object, it must be unmapped using
1296 * zs_unmap_object.
4bbc0bc0 1297 *
66cdef66
GM
1298 * Only one object can be mapped per cpu at a time. There is no protection
1299 * against nested mappings.
1300 *
1301 * This function returns with preemption and page faults disabled.
4bbc0bc0 1302 */
66cdef66
GM
1303void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1304 enum zs_mapmode mm)
61989a80 1305{
66cdef66 1306 struct page *page;
2e40e163 1307 unsigned long obj, obj_idx, off;
61989a80 1308
66cdef66
GM
1309 unsigned int class_idx;
1310 enum fullness_group fg;
1311 struct size_class *class;
1312 struct mapping_area *area;
1313 struct page *pages[2];
2e40e163 1314 void *ret;
61989a80 1315
9eec4cd5 1316 /*
66cdef66
GM
1317 * Because we use per-cpu mapping areas shared among the
1318 * pools/users, we can't allow mapping in interrupt context
1319 * because it can corrupt another users mappings.
9eec4cd5 1320 */
830e4bc5 1321 WARN_ON_ONCE(in_interrupt());
61989a80 1322
312fcae2
MK
1323 /* From now on, migration cannot move the object */
1324 pin_tag(handle);
1325
2e40e163
MK
1326 obj = handle_to_obj(handle);
1327 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1328 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1329 class = pool->size_class[class_idx];
1330 off = obj_idx_to_offset(page, obj_idx, class->size);
df8b5bb9 1331
66cdef66
GM
1332 area = &get_cpu_var(zs_map_area);
1333 area->vm_mm = mm;
1334 if (off + class->size <= PAGE_SIZE) {
1335 /* this object is contained entirely within a page */
1336 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1337 ret = area->vm_addr + off;
1338 goto out;
61989a80
NG
1339 }
1340
66cdef66
GM
1341 /* this object spans two pages */
1342 pages[0] = page;
1343 pages[1] = get_next_page(page);
1344 BUG_ON(!pages[1]);
9eec4cd5 1345
2e40e163
MK
1346 ret = __zs_map_object(area, pages, off, class->size);
1347out:
7b60a685
MK
1348 if (!class->huge)
1349 ret += ZS_HANDLE_SIZE;
1350
1351 return ret;
61989a80 1352}
66cdef66 1353EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1354
66cdef66 1355void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1356{
66cdef66 1357 struct page *page;
2e40e163 1358 unsigned long obj, obj_idx, off;
61989a80 1359
66cdef66
GM
1360 unsigned int class_idx;
1361 enum fullness_group fg;
1362 struct size_class *class;
1363 struct mapping_area *area;
9eec4cd5 1364
2e40e163
MK
1365 obj = handle_to_obj(handle);
1366 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1367 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1368 class = pool->size_class[class_idx];
1369 off = obj_idx_to_offset(page, obj_idx, class->size);
61989a80 1370
66cdef66
GM
1371 area = this_cpu_ptr(&zs_map_area);
1372 if (off + class->size <= PAGE_SIZE)
1373 kunmap_atomic(area->vm_addr);
1374 else {
1375 struct page *pages[2];
40f9fb8c 1376
66cdef66
GM
1377 pages[0] = page;
1378 pages[1] = get_next_page(page);
1379 BUG_ON(!pages[1]);
1380
1381 __zs_unmap_object(area, pages, off, class->size);
1382 }
1383 put_cpu_var(zs_map_area);
312fcae2 1384 unpin_tag(handle);
61989a80 1385}
66cdef66 1386EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1387
251cbb95
MK
1388static unsigned long obj_malloc(struct size_class *class,
1389 struct page *first_page, unsigned long handle)
c7806261
MK
1390{
1391 unsigned long obj;
1392 struct link_free *link;
1393
1394 struct page *m_page;
1395 unsigned long m_objidx, m_offset;
1396 void *vaddr;
1397
312fcae2 1398 handle |= OBJ_ALLOCATED_TAG;
4f42047b 1399 obj = get_freeobj(first_page);
c7806261
MK
1400 obj_to_location(obj, &m_page, &m_objidx);
1401 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1402
1403 vaddr = kmap_atomic(m_page);
1404 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
4f42047b 1405 set_freeobj(first_page, (unsigned long)link->next);
7b60a685
MK
1406 if (!class->huge)
1407 /* record handle in the header of allocated chunk */
1408 link->handle = handle;
1409 else
1410 /* record handle in first_page->private */
1411 set_page_private(first_page, handle);
c7806261 1412 kunmap_atomic(vaddr);
4f42047b 1413 mod_zspage_inuse(first_page, 1);
c7806261
MK
1414 zs_stat_inc(class, OBJ_USED, 1);
1415
1416 return obj;
1417}
1418
1419
61989a80
NG
1420/**
1421 * zs_malloc - Allocate block of given size from pool.
1422 * @pool: pool to allocate from
1423 * @size: size of block to allocate
61989a80 1424 *
00a61d86 1425 * On success, handle to the allocated object is returned,
c2344348 1426 * otherwise 0.
61989a80
NG
1427 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1428 */
d0d8da2d 1429unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1430{
2e40e163 1431 unsigned long handle, obj;
61989a80 1432 struct size_class *class;
c7806261 1433 struct page *first_page;
61989a80 1434
7b60a685 1435 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1436 return 0;
1437
d0d8da2d 1438 handle = alloc_handle(pool, gfp);
2e40e163 1439 if (!handle)
c2344348 1440 return 0;
61989a80 1441
2e40e163
MK
1442 /* extra space in chunk to keep the handle */
1443 size += ZS_HANDLE_SIZE;
9eec4cd5 1444 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1445
1446 spin_lock(&class->lock);
1447 first_page = find_get_zspage(class);
1448
1449 if (!first_page) {
1450 spin_unlock(&class->lock);
d0d8da2d 1451 first_page = alloc_zspage(class, gfp);
2e40e163
MK
1452 if (unlikely(!first_page)) {
1453 free_handle(pool, handle);
c2344348 1454 return 0;
2e40e163 1455 }
61989a80
NG
1456
1457 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
13de8933
MK
1458 atomic_long_add(class->pages_per_zspage,
1459 &pool->pages_allocated);
0f050d99 1460
61989a80 1461 spin_lock(&class->lock);
0f050d99
GM
1462 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1463 class->size, class->pages_per_zspage));
61989a80
NG
1464 }
1465
251cbb95 1466 obj = obj_malloc(class, first_page, handle);
61989a80 1467 /* Now move the zspage to another fullness group, if required */
c7806261 1468 fix_fullness_group(class, first_page);
2e40e163 1469 record_obj(handle, obj);
61989a80
NG
1470 spin_unlock(&class->lock);
1471
2e40e163 1472 return handle;
61989a80
NG
1473}
1474EXPORT_SYMBOL_GPL(zs_malloc);
1475
1ee47165 1476static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1477{
1478 struct link_free *link;
1479 struct page *first_page, *f_page;
c7806261 1480 unsigned long f_objidx, f_offset;
af4ee5e9 1481 void *vaddr;
61989a80 1482
312fcae2 1483 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1484 obj_to_location(obj, &f_page, &f_objidx);
61989a80
NG
1485 first_page = get_first_page(f_page);
1486
61989a80
NG
1487 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1488
c7806261 1489 vaddr = kmap_atomic(f_page);
61989a80
NG
1490
1491 /* Insert this object in containing zspage's freelist */
af4ee5e9 1492 link = (struct link_free *)(vaddr + f_offset);
4f42047b 1493 link->next = (void *)get_freeobj(first_page);
7b60a685
MK
1494 if (class->huge)
1495 set_page_private(first_page, 0);
af4ee5e9 1496 kunmap_atomic(vaddr);
4f42047b
MK
1497 set_freeobj(first_page, obj);
1498 mod_zspage_inuse(first_page, -1);
0f050d99 1499 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1500}
1501
1502void zs_free(struct zs_pool *pool, unsigned long handle)
1503{
1504 struct page *first_page, *f_page;
1505 unsigned long obj, f_objidx;
1506 int class_idx;
1507 struct size_class *class;
1508 enum fullness_group fullness;
1509
1510 if (unlikely(!handle))
1511 return;
1512
312fcae2 1513 pin_tag(handle);
c7806261 1514 obj = handle_to_obj(handle);
c7806261
MK
1515 obj_to_location(obj, &f_page, &f_objidx);
1516 first_page = get_first_page(f_page);
1517
1518 get_zspage_mapping(first_page, &class_idx, &fullness);
1519 class = pool->size_class[class_idx];
1520
1521 spin_lock(&class->lock);
1ee47165 1522 obj_free(class, obj);
c7806261 1523 fullness = fix_fullness_group(class, first_page);
312fcae2 1524 if (fullness == ZS_EMPTY) {
0f050d99
GM
1525 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1526 class->size, class->pages_per_zspage));
312fcae2
MK
1527 atomic_long_sub(class->pages_per_zspage,
1528 &pool->pages_allocated);
1529 free_zspage(first_page);
1530 }
61989a80 1531 spin_unlock(&class->lock);
312fcae2 1532 unpin_tag(handle);
61989a80 1533
312fcae2
MK
1534 free_handle(pool, handle);
1535}
1536EXPORT_SYMBOL_GPL(zs_free);
1537
251cbb95
MK
1538static void zs_object_copy(struct size_class *class, unsigned long dst,
1539 unsigned long src)
312fcae2
MK
1540{
1541 struct page *s_page, *d_page;
1542 unsigned long s_objidx, d_objidx;
1543 unsigned long s_off, d_off;
1544 void *s_addr, *d_addr;
1545 int s_size, d_size, size;
1546 int written = 0;
1547
1548 s_size = d_size = class->size;
1549
1550 obj_to_location(src, &s_page, &s_objidx);
1551 obj_to_location(dst, &d_page, &d_objidx);
1552
1553 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1554 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1555
1556 if (s_off + class->size > PAGE_SIZE)
1557 s_size = PAGE_SIZE - s_off;
1558
1559 if (d_off + class->size > PAGE_SIZE)
1560 d_size = PAGE_SIZE - d_off;
1561
1562 s_addr = kmap_atomic(s_page);
1563 d_addr = kmap_atomic(d_page);
1564
1565 while (1) {
1566 size = min(s_size, d_size);
1567 memcpy(d_addr + d_off, s_addr + s_off, size);
1568 written += size;
1569
1570 if (written == class->size)
1571 break;
1572
495819ea
SS
1573 s_off += size;
1574 s_size -= size;
1575 d_off += size;
1576 d_size -= size;
1577
1578 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1579 kunmap_atomic(d_addr);
1580 kunmap_atomic(s_addr);
1581 s_page = get_next_page(s_page);
312fcae2
MK
1582 s_addr = kmap_atomic(s_page);
1583 d_addr = kmap_atomic(d_page);
1584 s_size = class->size - written;
1585 s_off = 0;
312fcae2
MK
1586 }
1587
495819ea 1588 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1589 kunmap_atomic(d_addr);
1590 d_page = get_next_page(d_page);
312fcae2
MK
1591 d_addr = kmap_atomic(d_page);
1592 d_size = class->size - written;
1593 d_off = 0;
312fcae2
MK
1594 }
1595 }
1596
1597 kunmap_atomic(d_addr);
1598 kunmap_atomic(s_addr);
1599}
1600
1601/*
1602 * Find alloced object in zspage from index object and
1603 * return handle.
1604 */
251cbb95
MK
1605static unsigned long find_alloced_obj(struct size_class *class,
1606 struct page *page, int index)
312fcae2
MK
1607{
1608 unsigned long head;
1609 int offset = 0;
1610 unsigned long handle = 0;
1611 void *addr = kmap_atomic(page);
1612
1613 if (!is_first_page(page))
4f42047b 1614 offset = get_first_obj_offset(page);
312fcae2
MK
1615 offset += class->size * index;
1616
1617 while (offset < PAGE_SIZE) {
7b60a685 1618 head = obj_to_head(class, page, addr + offset);
312fcae2
MK
1619 if (head & OBJ_ALLOCATED_TAG) {
1620 handle = head & ~OBJ_ALLOCATED_TAG;
1621 if (trypin_tag(handle))
1622 break;
1623 handle = 0;
1624 }
1625
1626 offset += class->size;
1627 index++;
1628 }
1629
1630 kunmap_atomic(addr);
1631 return handle;
1632}
1633
1634struct zs_compact_control {
1635 /* Source page for migration which could be a subpage of zspage. */
1636 struct page *s_page;
1637 /* Destination page for migration which should be a first page
1638 * of zspage. */
1639 struct page *d_page;
1640 /* Starting object index within @s_page which used for live object
1641 * in the subpage. */
1642 int index;
312fcae2
MK
1643};
1644
1645static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1646 struct zs_compact_control *cc)
1647{
1648 unsigned long used_obj, free_obj;
1649 unsigned long handle;
1650 struct page *s_page = cc->s_page;
1651 struct page *d_page = cc->d_page;
1652 unsigned long index = cc->index;
312fcae2
MK
1653 int ret = 0;
1654
1655 while (1) {
251cbb95 1656 handle = find_alloced_obj(class, s_page, index);
312fcae2
MK
1657 if (!handle) {
1658 s_page = get_next_page(s_page);
1659 if (!s_page)
1660 break;
1661 index = 0;
1662 continue;
1663 }
1664
1665 /* Stop if there is no more space */
1fc6e27d 1666 if (zspage_full(class, d_page)) {
312fcae2
MK
1667 unpin_tag(handle);
1668 ret = -ENOMEM;
1669 break;
1670 }
1671
1672 used_obj = handle_to_obj(handle);
251cbb95
MK
1673 free_obj = obj_malloc(class, d_page, handle);
1674 zs_object_copy(class, free_obj, used_obj);
312fcae2 1675 index++;
c102f07c
JL
1676 /*
1677 * record_obj updates handle's value to free_obj and it will
1678 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1679 * breaks synchronization using pin_tag(e,g, zs_free) so
1680 * let's keep the lock bit.
1681 */
1682 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1683 record_obj(handle, free_obj);
1684 unpin_tag(handle);
1ee47165 1685 obj_free(class, used_obj);
312fcae2
MK
1686 }
1687
1688 /* Remember last position in this iteration */
1689 cc->s_page = s_page;
1690 cc->index = index;
312fcae2
MK
1691
1692 return ret;
1693}
1694
0dc63d48 1695static struct page *isolate_target_page(struct size_class *class)
312fcae2
MK
1696{
1697 int i;
1698 struct page *page;
1699
1700 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1701 page = class->fullness_list[i];
1702 if (page) {
251cbb95 1703 remove_zspage(class, i, page);
312fcae2
MK
1704 break;
1705 }
1706 }
1707
1708 return page;
1709}
1710
860c707d
SS
1711/*
1712 * putback_zspage - add @first_page into right class's fullness list
1713 * @pool: target pool
1714 * @class: destination class
1715 * @first_page: target page
1716 *
1717 * Return @fist_page's fullness_group
1718 */
1719static enum fullness_group putback_zspage(struct zs_pool *pool,
1720 struct size_class *class,
1721 struct page *first_page)
312fcae2 1722{
312fcae2
MK
1723 enum fullness_group fullness;
1724
1fc6e27d 1725 fullness = get_fullness_group(class, first_page);
251cbb95 1726 insert_zspage(class, fullness, first_page);
839373e6
MK
1727 set_zspage_mapping(first_page, class->index, fullness);
1728
13de8933 1729 if (fullness == ZS_EMPTY) {
312fcae2
MK
1730 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1731 class->size, class->pages_per_zspage));
13de8933
MK
1732 atomic_long_sub(class->pages_per_zspage,
1733 &pool->pages_allocated);
312fcae2 1734
61989a80 1735 free_zspage(first_page);
13de8933 1736 }
860c707d
SS
1737
1738 return fullness;
61989a80 1739}
312fcae2
MK
1740
1741static struct page *isolate_source_page(struct size_class *class)
1742{
ad9d5e17
MK
1743 int i;
1744 struct page *page = NULL;
1745
1746 for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1747 page = class->fullness_list[i];
1748 if (!page)
1749 continue;
312fcae2 1750
251cbb95 1751 remove_zspage(class, i, page);
ad9d5e17
MK
1752 break;
1753 }
312fcae2
MK
1754
1755 return page;
1756}
1757
04f05909
SS
1758/*
1759 *
1760 * Based on the number of unused allocated objects calculate
1761 * and return the number of pages that we can free.
04f05909
SS
1762 */
1763static unsigned long zs_can_compact(struct size_class *class)
1764{
1765 unsigned long obj_wasted;
44f43e99
SS
1766 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1767 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 1768
44f43e99
SS
1769 if (obj_allocated <= obj_used)
1770 return 0;
04f05909 1771
44f43e99 1772 obj_wasted = obj_allocated - obj_used;
04f05909
SS
1773 obj_wasted /= get_maxobj_per_zspage(class->size,
1774 class->pages_per_zspage);
1775
6cbf16b3 1776 return obj_wasted * class->pages_per_zspage;
04f05909
SS
1777}
1778
7d3f3938 1779static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 1780{
312fcae2
MK
1781 struct zs_compact_control cc;
1782 struct page *src_page;
1783 struct page *dst_page = NULL;
312fcae2 1784
312fcae2
MK
1785 spin_lock(&class->lock);
1786 while ((src_page = isolate_source_page(class))) {
1787
04f05909
SS
1788 if (!zs_can_compact(class))
1789 break;
1790
312fcae2
MK
1791 cc.index = 0;
1792 cc.s_page = src_page;
1793
0dc63d48 1794 while ((dst_page = isolate_target_page(class))) {
312fcae2
MK
1795 cc.d_page = dst_page;
1796 /*
0dc63d48
SS
1797 * If there is no more space in dst_page, resched
1798 * and see if anyone had allocated another zspage.
312fcae2
MK
1799 */
1800 if (!migrate_zspage(pool, class, &cc))
1801 break;
1802
1803 putback_zspage(pool, class, dst_page);
312fcae2
MK
1804 }
1805
1806 /* Stop if we couldn't find slot */
1807 if (dst_page == NULL)
1808 break;
1809
1810 putback_zspage(pool, class, dst_page);
860c707d 1811 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
6cbf16b3 1812 pool->stats.pages_compacted += class->pages_per_zspage;
312fcae2 1813 spin_unlock(&class->lock);
312fcae2
MK
1814 cond_resched();
1815 spin_lock(&class->lock);
1816 }
1817
1818 if (src_page)
1819 putback_zspage(pool, class, src_page);
1820
7d3f3938 1821 spin_unlock(&class->lock);
312fcae2
MK
1822}
1823
1824unsigned long zs_compact(struct zs_pool *pool)
1825{
1826 int i;
312fcae2
MK
1827 struct size_class *class;
1828
1829 for (i = zs_size_classes - 1; i >= 0; i--) {
1830 class = pool->size_class[i];
1831 if (!class)
1832 continue;
1833 if (class->index != i)
1834 continue;
7d3f3938 1835 __zs_compact(pool, class);
312fcae2
MK
1836 }
1837
860c707d 1838 return pool->stats.pages_compacted;
312fcae2
MK
1839}
1840EXPORT_SYMBOL_GPL(zs_compact);
61989a80 1841
7d3f3938
SS
1842void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1843{
1844 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1845}
1846EXPORT_SYMBOL_GPL(zs_pool_stats);
1847
ab9d306d
SS
1848static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1849 struct shrink_control *sc)
1850{
1851 unsigned long pages_freed;
1852 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1853 shrinker);
1854
1855 pages_freed = pool->stats.pages_compacted;
1856 /*
1857 * Compact classes and calculate compaction delta.
1858 * Can run concurrently with a manually triggered
1859 * (by user) compaction.
1860 */
1861 pages_freed = zs_compact(pool) - pages_freed;
1862
1863 return pages_freed ? pages_freed : SHRINK_STOP;
1864}
1865
1866static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1867 struct shrink_control *sc)
1868{
1869 int i;
1870 struct size_class *class;
1871 unsigned long pages_to_free = 0;
1872 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1873 shrinker);
1874
ab9d306d
SS
1875 for (i = zs_size_classes - 1; i >= 0; i--) {
1876 class = pool->size_class[i];
1877 if (!class)
1878 continue;
1879 if (class->index != i)
1880 continue;
1881
ab9d306d 1882 pages_to_free += zs_can_compact(class);
ab9d306d
SS
1883 }
1884
1885 return pages_to_free;
1886}
1887
1888static void zs_unregister_shrinker(struct zs_pool *pool)
1889{
1890 if (pool->shrinker_enabled) {
1891 unregister_shrinker(&pool->shrinker);
1892 pool->shrinker_enabled = false;
1893 }
1894}
1895
1896static int zs_register_shrinker(struct zs_pool *pool)
1897{
1898 pool->shrinker.scan_objects = zs_shrinker_scan;
1899 pool->shrinker.count_objects = zs_shrinker_count;
1900 pool->shrinker.batch = 0;
1901 pool->shrinker.seeks = DEFAULT_SEEKS;
1902
1903 return register_shrinker(&pool->shrinker);
1904}
1905
00a61d86 1906/**
66cdef66
GM
1907 * zs_create_pool - Creates an allocation pool to work from.
1908 * @flags: allocation flags used to allocate pool metadata
166cfda7 1909 *
66cdef66
GM
1910 * This function must be called before anything when using
1911 * the zsmalloc allocator.
166cfda7 1912 *
66cdef66
GM
1913 * On success, a pointer to the newly created pool is returned,
1914 * otherwise NULL.
396b7fd6 1915 */
d0d8da2d 1916struct zs_pool *zs_create_pool(const char *name)
61989a80 1917{
66cdef66
GM
1918 int i;
1919 struct zs_pool *pool;
1920 struct size_class *prev_class = NULL;
61989a80 1921
66cdef66
GM
1922 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1923 if (!pool)
1924 return NULL;
61989a80 1925
66cdef66
GM
1926 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1927 GFP_KERNEL);
1928 if (!pool->size_class) {
1929 kfree(pool);
1930 return NULL;
1931 }
61989a80 1932
2e40e163
MK
1933 pool->name = kstrdup(name, GFP_KERNEL);
1934 if (!pool->name)
1935 goto err;
1936
1937 if (create_handle_cache(pool))
1938 goto err;
1939
c60369f0 1940 /*
66cdef66
GM
1941 * Iterate reversly, because, size of size_class that we want to use
1942 * for merging should be larger or equal to current size.
c60369f0 1943 */
66cdef66
GM
1944 for (i = zs_size_classes - 1; i >= 0; i--) {
1945 int size;
1946 int pages_per_zspage;
1947 struct size_class *class;
c60369f0 1948
66cdef66
GM
1949 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1950 if (size > ZS_MAX_ALLOC_SIZE)
1951 size = ZS_MAX_ALLOC_SIZE;
1952 pages_per_zspage = get_pages_per_zspage(size);
61989a80 1953
66cdef66
GM
1954 /*
1955 * size_class is used for normal zsmalloc operation such
1956 * as alloc/free for that size. Although it is natural that we
1957 * have one size_class for each size, there is a chance that we
1958 * can get more memory utilization if we use one size_class for
1959 * many different sizes whose size_class have same
1960 * characteristics. So, we makes size_class point to
1961 * previous size_class if possible.
1962 */
1963 if (prev_class) {
1964 if (can_merge(prev_class, size, pages_per_zspage)) {
1965 pool->size_class[i] = prev_class;
1966 continue;
1967 }
1968 }
1969
1970 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1971 if (!class)
1972 goto err;
1973
1974 class->size = size;
1975 class->index = i;
1976 class->pages_per_zspage = pages_per_zspage;
1fc6e27d
MK
1977 class->objs_per_zspage = class->pages_per_zspage *
1978 PAGE_SIZE / class->size;
1979 if (pages_per_zspage == 1 && class->objs_per_zspage == 1)
7b60a685 1980 class->huge = true;
66cdef66
GM
1981 spin_lock_init(&class->lock);
1982 pool->size_class[i] = class;
1983
1984 prev_class = class;
61989a80
NG
1985 }
1986
d34f6157
DS
1987 /* debug only, don't abort if it fails */
1988 zs_pool_stat_create(pool, name);
0f050d99 1989
ab9d306d
SS
1990 /*
1991 * Not critical, we still can use the pool
1992 * and user can trigger compaction manually.
1993 */
1994 if (zs_register_shrinker(pool) == 0)
1995 pool->shrinker_enabled = true;
66cdef66
GM
1996 return pool;
1997
1998err:
1999 zs_destroy_pool(pool);
2000 return NULL;
61989a80 2001}
66cdef66 2002EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2003
66cdef66 2004void zs_destroy_pool(struct zs_pool *pool)
61989a80 2005{
66cdef66 2006 int i;
61989a80 2007
ab9d306d 2008 zs_unregister_shrinker(pool);
0f050d99
GM
2009 zs_pool_stat_destroy(pool);
2010
66cdef66
GM
2011 for (i = 0; i < zs_size_classes; i++) {
2012 int fg;
2013 struct size_class *class = pool->size_class[i];
61989a80 2014
66cdef66
GM
2015 if (!class)
2016 continue;
61989a80 2017
66cdef66
GM
2018 if (class->index != i)
2019 continue;
61989a80 2020
66cdef66
GM
2021 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
2022 if (class->fullness_list[fg]) {
2023 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2024 class->size, fg);
2025 }
2026 }
2027 kfree(class);
2028 }
f553646a 2029
2e40e163 2030 destroy_handle_cache(pool);
66cdef66 2031 kfree(pool->size_class);
0f050d99 2032 kfree(pool->name);
66cdef66
GM
2033 kfree(pool);
2034}
2035EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2036
66cdef66
GM
2037static int __init zs_init(void)
2038{
2039 int ret = zs_register_cpu_notifier();
2040
0f050d99
GM
2041 if (ret)
2042 goto notifier_fail;
66cdef66
GM
2043
2044 init_zs_size_classes();
2045
2046#ifdef CONFIG_ZPOOL
2047 zpool_register_driver(&zs_zpool_driver);
2048#endif
0f050d99 2049
4abaac9b
DS
2050 zs_stat_init();
2051
66cdef66 2052 return 0;
0f050d99 2053
0f050d99
GM
2054notifier_fail:
2055 zs_unregister_cpu_notifier();
2056
2057 return ret;
61989a80 2058}
61989a80 2059
66cdef66 2060static void __exit zs_exit(void)
61989a80 2061{
66cdef66
GM
2062#ifdef CONFIG_ZPOOL
2063 zpool_unregister_driver(&zs_zpool_driver);
2064#endif
2065 zs_unregister_cpu_notifier();
0f050d99
GM
2066
2067 zs_stat_exit();
61989a80 2068}
069f101f
BH
2069
2070module_init(zs_init);
2071module_exit(zs_exit);
2072
2073MODULE_LICENSE("Dual BSD/GPL");
2074MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");