]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/zsmalloc.c
mm: reuse DEFINE_SHOW_ATTRIBUTE() macro
[mirror_ubuntu-focal-kernel.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
48b4800a
MK
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
fd854463 23 * page->units: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
50d34394 36#include <linux/magic.h>
61989a80
NG
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
61989a80
NG
40#include <linux/string.h>
41#include <linux/slab.h>
42#include <asm/tlbflush.h>
43#include <asm/pgtable.h>
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
0cbb613f 46#include <linux/vmalloc.h>
759b26b2 47#include <linux/preempt.h>
0959c63f 48#include <linux/spinlock.h>
93144ca3 49#include <linux/shrinker.h>
0959c63f 50#include <linux/types.h>
0f050d99 51#include <linux/debugfs.h>
bcf1647d 52#include <linux/zsmalloc.h>
c795779d 53#include <linux/zpool.h>
48b4800a 54#include <linux/mount.h>
dd4123f3 55#include <linux/migrate.h>
48b4800a 56#include <linux/pagemap.h>
cdc346b3 57#include <linux/fs.h>
48b4800a
MK
58
59#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
60
61/*
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
66 */
67#define ZS_ALIGN 8
68
69/*
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72 */
73#define ZS_MAX_ZSPAGE_ORDER 2
74#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75
2e40e163
MK
76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
0959c63f
SJ
78/*
79 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 80 * as single (unsigned long) handle value.
0959c63f 81 *
bfd093f5 82 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
02390b87
KS
87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
88#ifdef MAX_PHYSMEM_BITS
89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90#else
0959c63f
SJ
91/*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
02390b87 95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
96#endif
97#endif
02390b87
KS
98
99#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
100
101/*
102 * Memory for allocating for handle keeps object position by
103 * encoding <page, obj_idx> and the encoded value has a room
104 * in least bit(ie, look at obj_to_location).
105 * We use the bit to synchronize between object access by
106 * user and migration.
107 */
108#define HANDLE_PIN_BIT 0
109
110/*
111 * Head in allocated object should have OBJ_ALLOCATED_TAG
112 * to identify the object was allocated or not.
113 * It's okay to add the status bit in the least bit because
114 * header keeps handle which is 4byte-aligned address so we
115 * have room for two bit at least.
116 */
117#define OBJ_ALLOCATED_TAG 1
118#define OBJ_TAG_BITS 1
119#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
120#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121
cf8e0fed
JM
122#define FULLNESS_BITS 2
123#define CLASS_BITS 8
124#define ISOLATED_BITS 3
125#define MAGIC_VAL_BITS 8
126
0959c63f
SJ
127#define MAX(a, b) ((a) >= (b) ? (a) : (b))
128/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129#define ZS_MIN_ALLOC_SIZE \
130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 131/* each chunk includes extra space to keep handle */
7b60a685 132#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
133
134/*
7eb52512 135 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
136 * trader-off here:
137 * - Large number of size classes is potentially wasteful as free page are
138 * spread across these classes
139 * - Small number of size classes causes large internal fragmentation
140 * - Probably its better to use specific size classes (empirically
141 * determined). NOTE: all those class sizes must be set as multiple of
142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143 *
144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145 * (reason above)
146 */
3783689a 147#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
148#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 150
0959c63f 151enum fullness_group {
0959c63f 152 ZS_EMPTY,
48b4800a
MK
153 ZS_ALMOST_EMPTY,
154 ZS_ALMOST_FULL,
155 ZS_FULL,
156 NR_ZS_FULLNESS,
0959c63f
SJ
157};
158
0f050d99 159enum zs_stat_type {
48b4800a
MK
160 CLASS_EMPTY,
161 CLASS_ALMOST_EMPTY,
162 CLASS_ALMOST_FULL,
163 CLASS_FULL,
0f050d99
GM
164 OBJ_ALLOCATED,
165 OBJ_USED,
48b4800a 166 NR_ZS_STAT_TYPE,
0f050d99
GM
167};
168
0f050d99
GM
169struct zs_size_stat {
170 unsigned long objs[NR_ZS_STAT_TYPE];
171};
172
57244594
SS
173#ifdef CONFIG_ZSMALLOC_STAT
174static struct dentry *zs_stat_root;
0f050d99
GM
175#endif
176
48b4800a
MK
177#ifdef CONFIG_COMPACTION
178static struct vfsmount *zsmalloc_mnt;
179#endif
180
0959c63f
SJ
181/*
182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183 * n <= N / f, where
184 * n = number of allocated objects
185 * N = total number of objects zspage can store
6dd9737e 186 * f = fullness_threshold_frac
0959c63f
SJ
187 *
188 * Similarly, we assign zspage to:
189 * ZS_ALMOST_FULL when n > N / f
190 * ZS_EMPTY when n == 0
191 * ZS_FULL when n == N
192 *
193 * (see: fix_fullness_group())
194 */
195static const int fullness_threshold_frac = 4;
196
197struct size_class {
57244594 198 spinlock_t lock;
48b4800a 199 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
200 /*
201 * Size of objects stored in this class. Must be multiple
202 * of ZS_ALIGN.
203 */
204 int size;
1fc6e27d 205 int objs_per_zspage;
7dfa4612
WY
206 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
207 int pages_per_zspage;
48b4800a
MK
208
209 unsigned int index;
210 struct zs_size_stat stats;
0959c63f
SJ
211};
212
48b4800a
MK
213/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
214static void SetPageHugeObject(struct page *page)
215{
216 SetPageOwnerPriv1(page);
217}
218
219static void ClearPageHugeObject(struct page *page)
220{
221 ClearPageOwnerPriv1(page);
222}
223
224static int PageHugeObject(struct page *page)
225{
226 return PageOwnerPriv1(page);
227}
228
0959c63f
SJ
229/*
230 * Placed within free objects to form a singly linked list.
3783689a 231 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
232 *
233 * This must be power of 2 and less than or equal to ZS_ALIGN
234 */
235struct link_free {
2e40e163
MK
236 union {
237 /*
bfd093f5 238 * Free object index;
2e40e163
MK
239 * It's valid for non-allocated object
240 */
bfd093f5 241 unsigned long next;
2e40e163
MK
242 /*
243 * Handle of allocated object.
244 */
245 unsigned long handle;
246 };
0959c63f
SJ
247};
248
249struct zs_pool {
6f3526d6 250 const char *name;
0f050d99 251
cf8e0fed 252 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 253 struct kmem_cache *handle_cachep;
3783689a 254 struct kmem_cache *zspage_cachep;
0959c63f 255
13de8933 256 atomic_long_t pages_allocated;
0f050d99 257
7d3f3938 258 struct zs_pool_stats stats;
ab9d306d
SS
259
260 /* Compact classes */
261 struct shrinker shrinker;
93144ca3 262
0f050d99
GM
263#ifdef CONFIG_ZSMALLOC_STAT
264 struct dentry *stat_dentry;
265#endif
48b4800a
MK
266#ifdef CONFIG_COMPACTION
267 struct inode *inode;
268 struct work_struct free_work;
269#endif
0959c63f 270};
61989a80 271
3783689a
MK
272struct zspage {
273 struct {
274 unsigned int fullness:FULLNESS_BITS;
85d492f2 275 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
276 unsigned int isolated:ISOLATED_BITS;
277 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
278 };
279 unsigned int inuse;
bfd093f5 280 unsigned int freeobj;
3783689a
MK
281 struct page *first_page;
282 struct list_head list; /* fullness list */
48b4800a
MK
283#ifdef CONFIG_COMPACTION
284 rwlock_t lock;
285#endif
3783689a 286};
61989a80 287
f553646a 288struct mapping_area {
1b945aee 289#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
290 struct vm_struct *vm; /* vm area for mapping object that span pages */
291#else
292 char *vm_buf; /* copy buffer for objects that span pages */
293#endif
294 char *vm_addr; /* address of kmap_atomic()'ed pages */
295 enum zs_mapmode vm_mm; /* mapping mode */
296};
297
48b4800a
MK
298#ifdef CONFIG_COMPACTION
299static int zs_register_migration(struct zs_pool *pool);
300static void zs_unregister_migration(struct zs_pool *pool);
301static void migrate_lock_init(struct zspage *zspage);
302static void migrate_read_lock(struct zspage *zspage);
303static void migrate_read_unlock(struct zspage *zspage);
304static void kick_deferred_free(struct zs_pool *pool);
305static void init_deferred_free(struct zs_pool *pool);
306static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
307#else
308static int zsmalloc_mount(void) { return 0; }
309static void zsmalloc_unmount(void) {}
310static int zs_register_migration(struct zs_pool *pool) { return 0; }
311static void zs_unregister_migration(struct zs_pool *pool) {}
312static void migrate_lock_init(struct zspage *zspage) {}
313static void migrate_read_lock(struct zspage *zspage) {}
314static void migrate_read_unlock(struct zspage *zspage) {}
315static void kick_deferred_free(struct zs_pool *pool) {}
316static void init_deferred_free(struct zs_pool *pool) {}
317static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
318#endif
319
3783689a 320static int create_cache(struct zs_pool *pool)
2e40e163
MK
321{
322 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
323 0, 0, NULL);
3783689a
MK
324 if (!pool->handle_cachep)
325 return 1;
326
327 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
328 0, 0, NULL);
329 if (!pool->zspage_cachep) {
330 kmem_cache_destroy(pool->handle_cachep);
331 pool->handle_cachep = NULL;
332 return 1;
333 }
334
335 return 0;
2e40e163
MK
336}
337
3783689a 338static void destroy_cache(struct zs_pool *pool)
2e40e163 339{
cd10add0 340 kmem_cache_destroy(pool->handle_cachep);
3783689a 341 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
342}
343
3783689a 344static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
345{
346 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 347 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
348}
349
3783689a 350static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
351{
352 kmem_cache_free(pool->handle_cachep, (void *)handle);
353}
354
3783689a
MK
355static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
356{
48b4800a
MK
357 return kmem_cache_alloc(pool->zspage_cachep,
358 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 359}
3783689a
MK
360
361static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
362{
363 kmem_cache_free(pool->zspage_cachep, zspage);
364}
365
2e40e163
MK
366static void record_obj(unsigned long handle, unsigned long obj)
367{
c102f07c
JL
368 /*
369 * lsb of @obj represents handle lock while other bits
370 * represent object value the handle is pointing so
371 * updating shouldn't do store tearing.
372 */
373 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
374}
375
c795779d
DS
376/* zpool driver */
377
378#ifdef CONFIG_ZPOOL
379
6f3526d6 380static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 381 const struct zpool_ops *zpool_ops,
479305fd 382 struct zpool *zpool)
c795779d 383{
d0d8da2d
SS
384 /*
385 * Ignore global gfp flags: zs_malloc() may be invoked from
386 * different contexts and its caller must provide a valid
387 * gfp mask.
388 */
389 return zs_create_pool(name);
c795779d
DS
390}
391
392static void zs_zpool_destroy(void *pool)
393{
394 zs_destroy_pool(pool);
395}
396
397static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
398 unsigned long *handle)
399{
d0d8da2d 400 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
401 return *handle ? 0 : -1;
402}
403static void zs_zpool_free(void *pool, unsigned long handle)
404{
405 zs_free(pool, handle);
406}
407
c795779d
DS
408static void *zs_zpool_map(void *pool, unsigned long handle,
409 enum zpool_mapmode mm)
410{
411 enum zs_mapmode zs_mm;
412
413 switch (mm) {
414 case ZPOOL_MM_RO:
415 zs_mm = ZS_MM_RO;
416 break;
417 case ZPOOL_MM_WO:
418 zs_mm = ZS_MM_WO;
419 break;
420 case ZPOOL_MM_RW: /* fallthru */
421 default:
422 zs_mm = ZS_MM_RW;
423 break;
424 }
425
426 return zs_map_object(pool, handle, zs_mm);
427}
428static void zs_zpool_unmap(void *pool, unsigned long handle)
429{
430 zs_unmap_object(pool, handle);
431}
432
433static u64 zs_zpool_total_size(void *pool)
434{
722cdc17 435 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
436}
437
438static struct zpool_driver zs_zpool_driver = {
439 .type = "zsmalloc",
440 .owner = THIS_MODULE,
441 .create = zs_zpool_create,
442 .destroy = zs_zpool_destroy,
443 .malloc = zs_zpool_malloc,
444 .free = zs_zpool_free,
c795779d
DS
445 .map = zs_zpool_map,
446 .unmap = zs_zpool_unmap,
447 .total_size = zs_zpool_total_size,
448};
449
137f8cff 450MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
451#endif /* CONFIG_ZPOOL */
452
61989a80
NG
453/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
454static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
455
48b4800a
MK
456static bool is_zspage_isolated(struct zspage *zspage)
457{
458 return zspage->isolated;
459}
460
3457f414 461static __maybe_unused int is_first_page(struct page *page)
61989a80 462{
a27545bf 463 return PagePrivate(page);
61989a80
NG
464}
465
48b4800a 466/* Protected by class->lock */
3783689a 467static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 468{
3783689a 469 return zspage->inuse;
4f42047b
MK
470}
471
3783689a 472static inline void set_zspage_inuse(struct zspage *zspage, int val)
4f42047b 473{
3783689a 474 zspage->inuse = val;
4f42047b
MK
475}
476
3783689a 477static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 478{
3783689a 479 zspage->inuse += val;
4f42047b
MK
480}
481
48b4800a 482static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 483{
48b4800a 484 struct page *first_page = zspage->first_page;
3783689a 485
48b4800a
MK
486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487 return first_page;
4f42047b
MK
488}
489
48b4800a 490static inline int get_first_obj_offset(struct page *page)
4f42047b 491{
48b4800a
MK
492 return page->units;
493}
3783689a 494
48b4800a
MK
495static inline void set_first_obj_offset(struct page *page, int offset)
496{
497 page->units = offset;
4f42047b
MK
498}
499
bfd093f5 500static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 501{
bfd093f5 502 return zspage->freeobj;
4f42047b
MK
503}
504
bfd093f5 505static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 506{
bfd093f5 507 zspage->freeobj = obj;
4f42047b
MK
508}
509
3783689a 510static void get_zspage_mapping(struct zspage *zspage,
a4209467 511 unsigned int *class_idx,
61989a80
NG
512 enum fullness_group *fullness)
513{
48b4800a
MK
514 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
3783689a
MK
516 *fullness = zspage->fullness;
517 *class_idx = zspage->class;
61989a80
NG
518}
519
3783689a 520static void set_zspage_mapping(struct zspage *zspage,
a4209467 521 unsigned int class_idx,
61989a80
NG
522 enum fullness_group fullness)
523{
3783689a
MK
524 zspage->class = class_idx;
525 zspage->fullness = fullness;
61989a80
NG
526}
527
c3e3e88a
NC
528/*
529 * zsmalloc divides the pool into various size classes where each
530 * class maintains a list of zspages where each zspage is divided
531 * into equal sized chunks. Each allocation falls into one of these
532 * classes depending on its size. This function returns index of the
533 * size class which has chunk size big enough to hold the give size.
534 */
61989a80
NG
535static int get_size_class_index(int size)
536{
537 int idx = 0;
538
539 if (likely(size > ZS_MIN_ALLOC_SIZE))
540 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541 ZS_SIZE_CLASS_DELTA);
542
cf8e0fed 543 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
544}
545
3eb95fea 546/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 547static inline void zs_stat_inc(struct size_class *class,
3eb95fea 548 int type, unsigned long cnt)
248ca1b0 549{
48b4800a 550 class->stats.objs[type] += cnt;
248ca1b0
MK
551}
552
3eb95fea 553/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 554static inline void zs_stat_dec(struct size_class *class,
3eb95fea 555 int type, unsigned long cnt)
248ca1b0 556{
48b4800a 557 class->stats.objs[type] -= cnt;
248ca1b0
MK
558}
559
3eb95fea 560/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 561static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 562 int type)
248ca1b0 563{
48b4800a 564 return class->stats.objs[type];
248ca1b0
MK
565}
566
57244594
SS
567#ifdef CONFIG_ZSMALLOC_STAT
568
4abaac9b 569static void __init zs_stat_init(void)
248ca1b0 570{
4abaac9b
DS
571 if (!debugfs_initialized()) {
572 pr_warn("debugfs not available, stat dir not created\n");
573 return;
574 }
248ca1b0
MK
575
576 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
577 if (!zs_stat_root)
4abaac9b 578 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
248ca1b0
MK
579}
580
581static void __exit zs_stat_exit(void)
582{
583 debugfs_remove_recursive(zs_stat_root);
584}
585
1120ed54
SS
586static unsigned long zs_can_compact(struct size_class *class);
587
248ca1b0
MK
588static int zs_stats_size_show(struct seq_file *s, void *v)
589{
590 int i;
591 struct zs_pool *pool = s->private;
592 struct size_class *class;
593 int objs_per_zspage;
594 unsigned long class_almost_full, class_almost_empty;
1120ed54 595 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
596 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
597 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 598 unsigned long total_freeable = 0;
248ca1b0 599
1120ed54 600 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
601 "class", "size", "almost_full", "almost_empty",
602 "obj_allocated", "obj_used", "pages_used",
1120ed54 603 "pages_per_zspage", "freeable");
248ca1b0 604
cf8e0fed 605 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
606 class = pool->size_class[i];
607
608 if (class->index != i)
609 continue;
610
611 spin_lock(&class->lock);
612 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
613 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
614 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
615 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 616 freeable = zs_can_compact(class);
248ca1b0
MK
617 spin_unlock(&class->lock);
618
b4fd07a0 619 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
620 pages_used = obj_allocated / objs_per_zspage *
621 class->pages_per_zspage;
622
1120ed54
SS
623 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
624 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
625 i, class->size, class_almost_full, class_almost_empty,
626 obj_allocated, obj_used, pages_used,
1120ed54 627 class->pages_per_zspage, freeable);
248ca1b0
MK
628
629 total_class_almost_full += class_almost_full;
630 total_class_almost_empty += class_almost_empty;
631 total_objs += obj_allocated;
632 total_used_objs += obj_used;
633 total_pages += pages_used;
1120ed54 634 total_freeable += freeable;
248ca1b0
MK
635 }
636
637 seq_puts(s, "\n");
1120ed54 638 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
639 "Total", "", total_class_almost_full,
640 total_class_almost_empty, total_objs,
1120ed54 641 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
642
643 return 0;
644}
5ad35093 645DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 646
d34f6157 647static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0
MK
648{
649 struct dentry *entry;
650
4abaac9b
DS
651 if (!zs_stat_root) {
652 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 653 return;
4abaac9b 654 }
248ca1b0
MK
655
656 entry = debugfs_create_dir(name, zs_stat_root);
657 if (!entry) {
658 pr_warn("debugfs dir <%s> creation failed\n", name);
d34f6157 659 return;
248ca1b0
MK
660 }
661 pool->stat_dentry = entry;
662
663 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
5ad35093 664 pool->stat_dentry, pool, &zs_stats_size_fops);
248ca1b0
MK
665 if (!entry) {
666 pr_warn("%s: debugfs file entry <%s> creation failed\n",
667 name, "classes");
4abaac9b
DS
668 debugfs_remove_recursive(pool->stat_dentry);
669 pool->stat_dentry = NULL;
248ca1b0 670 }
248ca1b0
MK
671}
672
673static void zs_pool_stat_destroy(struct zs_pool *pool)
674{
675 debugfs_remove_recursive(pool->stat_dentry);
676}
677
678#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 679static void __init zs_stat_init(void)
248ca1b0 680{
248ca1b0
MK
681}
682
683static void __exit zs_stat_exit(void)
684{
685}
686
d34f6157 687static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 688{
248ca1b0
MK
689}
690
691static inline void zs_pool_stat_destroy(struct zs_pool *pool)
692{
693}
248ca1b0
MK
694#endif
695
48b4800a 696
c3e3e88a
NC
697/*
698 * For each size class, zspages are divided into different groups
699 * depending on how "full" they are. This was done so that we could
700 * easily find empty or nearly empty zspages when we try to shrink
701 * the pool (not yet implemented). This function returns fullness
702 * status of the given page.
703 */
1fc6e27d 704static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 705 struct zspage *zspage)
61989a80 706{
1fc6e27d 707 int inuse, objs_per_zspage;
61989a80 708 enum fullness_group fg;
830e4bc5 709
3783689a 710 inuse = get_zspage_inuse(zspage);
1fc6e27d 711 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
712
713 if (inuse == 0)
714 fg = ZS_EMPTY;
1fc6e27d 715 else if (inuse == objs_per_zspage)
61989a80 716 fg = ZS_FULL;
1fc6e27d 717 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
718 fg = ZS_ALMOST_EMPTY;
719 else
720 fg = ZS_ALMOST_FULL;
721
722 return fg;
723}
724
c3e3e88a
NC
725/*
726 * Each size class maintains various freelists and zspages are assigned
727 * to one of these freelists based on the number of live objects they
728 * have. This functions inserts the given zspage into the freelist
729 * identified by <class, fullness_group>.
730 */
251cbb95 731static void insert_zspage(struct size_class *class,
3783689a
MK
732 struct zspage *zspage,
733 enum fullness_group fullness)
61989a80 734{
3783689a 735 struct zspage *head;
61989a80 736
48b4800a 737 zs_stat_inc(class, fullness, 1);
3783689a
MK
738 head = list_first_entry_or_null(&class->fullness_list[fullness],
739 struct zspage, list);
58f17117 740 /*
3783689a
MK
741 * We want to see more ZS_FULL pages and less almost empty/full.
742 * Put pages with higher ->inuse first.
58f17117 743 */
3783689a
MK
744 if (head) {
745 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
746 list_add(&zspage->list, &head->list);
747 return;
748 }
749 }
750 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
751}
752
c3e3e88a
NC
753/*
754 * This function removes the given zspage from the freelist identified
755 * by <class, fullness_group>.
756 */
251cbb95 757static void remove_zspage(struct size_class *class,
3783689a
MK
758 struct zspage *zspage,
759 enum fullness_group fullness)
61989a80 760{
3783689a 761 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
48b4800a 762 VM_BUG_ON(is_zspage_isolated(zspage));
61989a80 763
3783689a 764 list_del_init(&zspage->list);
48b4800a 765 zs_stat_dec(class, fullness, 1);
61989a80
NG
766}
767
c3e3e88a
NC
768/*
769 * Each size class maintains zspages in different fullness groups depending
770 * on the number of live objects they contain. When allocating or freeing
771 * objects, the fullness status of the page can change, say, from ALMOST_FULL
772 * to ALMOST_EMPTY when freeing an object. This function checks if such
773 * a status change has occurred for the given page and accordingly moves the
774 * page from the freelist of the old fullness group to that of the new
775 * fullness group.
776 */
c7806261 777static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 778 struct zspage *zspage)
61989a80
NG
779{
780 int class_idx;
61989a80
NG
781 enum fullness_group currfg, newfg;
782
3783689a
MK
783 get_zspage_mapping(zspage, &class_idx, &currfg);
784 newfg = get_fullness_group(class, zspage);
61989a80
NG
785 if (newfg == currfg)
786 goto out;
787
48b4800a
MK
788 if (!is_zspage_isolated(zspage)) {
789 remove_zspage(class, zspage, currfg);
790 insert_zspage(class, zspage, newfg);
791 }
792
3783689a 793 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
794
795out:
796 return newfg;
797}
798
799/*
800 * We have to decide on how many pages to link together
801 * to form a zspage for each size class. This is important
802 * to reduce wastage due to unusable space left at end of
803 * each zspage which is given as:
888fa374
YX
804 * wastage = Zp % class_size
805 * usage = Zp - wastage
61989a80
NG
806 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
807 *
808 * For example, for size class of 3/8 * PAGE_SIZE, we should
809 * link together 3 PAGE_SIZE sized pages to form a zspage
810 * since then we can perfectly fit in 8 such objects.
811 */
2e3b6154 812static int get_pages_per_zspage(int class_size)
61989a80
NG
813{
814 int i, max_usedpc = 0;
815 /* zspage order which gives maximum used size per KB */
816 int max_usedpc_order = 1;
817
84d4faab 818 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
819 int zspage_size;
820 int waste, usedpc;
821
822 zspage_size = i * PAGE_SIZE;
823 waste = zspage_size % class_size;
824 usedpc = (zspage_size - waste) * 100 / zspage_size;
825
826 if (usedpc > max_usedpc) {
827 max_usedpc = usedpc;
828 max_usedpc_order = i;
829 }
830 }
831
832 return max_usedpc_order;
833}
834
3783689a 835static struct zspage *get_zspage(struct page *page)
61989a80 836{
48b4800a
MK
837 struct zspage *zspage = (struct zspage *)page->private;
838
839 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
840 return zspage;
61989a80
NG
841}
842
843static struct page *get_next_page(struct page *page)
844{
48b4800a
MK
845 if (unlikely(PageHugeObject(page)))
846 return NULL;
847
848 return page->freelist;
61989a80
NG
849}
850
bfd093f5
MK
851/**
852 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
853 * @page: page object resides in zspage
854 * @obj_idx: object index
67296874 855 */
bfd093f5
MK
856static void obj_to_location(unsigned long obj, struct page **page,
857 unsigned int *obj_idx)
61989a80 858{
bfd093f5
MK
859 obj >>= OBJ_TAG_BITS;
860 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
861 *obj_idx = (obj & OBJ_INDEX_MASK);
862}
61989a80 863
bfd093f5
MK
864/**
865 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
866 * @page: page object resides in zspage
867 * @obj_idx: object index
868 */
869static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
870{
871 unsigned long obj;
61989a80 872
312fcae2 873 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 874 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 875 obj <<= OBJ_TAG_BITS;
61989a80 876
bfd093f5 877 return obj;
61989a80
NG
878}
879
2e40e163
MK
880static unsigned long handle_to_obj(unsigned long handle)
881{
882 return *(unsigned long *)handle;
883}
884
48b4800a 885static unsigned long obj_to_head(struct page *page, void *obj)
312fcae2 886{
48b4800a 887 if (unlikely(PageHugeObject(page))) {
830e4bc5 888 VM_BUG_ON_PAGE(!is_first_page(page), page);
3783689a 889 return page->index;
7b60a685
MK
890 } else
891 return *(unsigned long *)obj;
312fcae2
MK
892}
893
48b4800a
MK
894static inline int testpin_tag(unsigned long handle)
895{
896 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
897}
898
312fcae2
MK
899static inline int trypin_tag(unsigned long handle)
900{
1b8320b6 901 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
902}
903
904static void pin_tag(unsigned long handle)
905{
1b8320b6 906 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
907}
908
909static void unpin_tag(unsigned long handle)
910{
1b8320b6 911 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
912}
913
f4477e90
NG
914static void reset_page(struct page *page)
915{
48b4800a 916 __ClearPageMovable(page);
18fd06bf 917 ClearPagePrivate(page);
f4477e90 918 set_page_private(page, 0);
48b4800a
MK
919 page_mapcount_reset(page);
920 ClearPageHugeObject(page);
921 page->freelist = NULL;
922}
923
924/*
925 * To prevent zspage destroy during migration, zspage freeing should
926 * hold locks of all pages in the zspage.
927 */
928void lock_zspage(struct zspage *zspage)
929{
930 struct page *page = get_first_page(zspage);
931
932 do {
933 lock_page(page);
934 } while ((page = get_next_page(page)) != NULL);
935}
936
937int trylock_zspage(struct zspage *zspage)
938{
939 struct page *cursor, *fail;
940
941 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
942 get_next_page(cursor)) {
943 if (!trylock_page(cursor)) {
944 fail = cursor;
945 goto unlock;
946 }
947 }
948
949 return 1;
950unlock:
951 for (cursor = get_first_page(zspage); cursor != fail; cursor =
952 get_next_page(cursor))
953 unlock_page(cursor);
954
955 return 0;
f4477e90
NG
956}
957
48b4800a
MK
958static void __free_zspage(struct zs_pool *pool, struct size_class *class,
959 struct zspage *zspage)
61989a80 960{
3783689a 961 struct page *page, *next;
48b4800a
MK
962 enum fullness_group fg;
963 unsigned int class_idx;
964
965 get_zspage_mapping(zspage, &class_idx, &fg);
966
967 assert_spin_locked(&class->lock);
61989a80 968
3783689a 969 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 970 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 971
48b4800a 972 next = page = get_first_page(zspage);
3783689a 973 do {
48b4800a
MK
974 VM_BUG_ON_PAGE(!PageLocked(page), page);
975 next = get_next_page(page);
3783689a 976 reset_page(page);
48b4800a 977 unlock_page(page);
91537fee 978 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
979 put_page(page);
980 page = next;
981 } while (page != NULL);
61989a80 982
3783689a 983 cache_free_zspage(pool, zspage);
48b4800a 984
b4fd07a0 985 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
986 atomic_long_sub(class->pages_per_zspage,
987 &pool->pages_allocated);
988}
989
990static void free_zspage(struct zs_pool *pool, struct size_class *class,
991 struct zspage *zspage)
992{
993 VM_BUG_ON(get_zspage_inuse(zspage));
994 VM_BUG_ON(list_empty(&zspage->list));
995
996 if (!trylock_zspage(zspage)) {
997 kick_deferred_free(pool);
998 return;
999 }
1000
1001 remove_zspage(class, zspage, ZS_EMPTY);
1002 __free_zspage(pool, class, zspage);
61989a80
NG
1003}
1004
1005/* Initialize a newly allocated zspage */
3783689a 1006static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 1007{
bfd093f5 1008 unsigned int freeobj = 1;
61989a80 1009 unsigned long off = 0;
48b4800a 1010 struct page *page = get_first_page(zspage);
830e4bc5 1011
61989a80
NG
1012 while (page) {
1013 struct page *next_page;
1014 struct link_free *link;
af4ee5e9 1015 void *vaddr;
61989a80 1016
3783689a 1017 set_first_obj_offset(page, off);
61989a80 1018
af4ee5e9
MK
1019 vaddr = kmap_atomic(page);
1020 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1021
1022 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1023 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1024 link += class->size / sizeof(*link);
61989a80
NG
1025 }
1026
1027 /*
1028 * We now come to the last (full or partial) object on this
1029 * page, which must point to the first object on the next
1030 * page (if present)
1031 */
1032 next_page = get_next_page(page);
bfd093f5 1033 if (next_page) {
3b1d9ca6 1034 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1035 } else {
1036 /*
3b1d9ca6 1037 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1038 * whether it's allocated object or not.
1039 */
01a6ad9a 1040 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1041 }
af4ee5e9 1042 kunmap_atomic(vaddr);
61989a80 1043 page = next_page;
5538c562 1044 off %= PAGE_SIZE;
61989a80 1045 }
bdb0af7c 1046
bfd093f5 1047 set_freeobj(zspage, 0);
61989a80
NG
1048}
1049
48b4800a
MK
1050static void create_page_chain(struct size_class *class, struct zspage *zspage,
1051 struct page *pages[])
61989a80 1052{
bdb0af7c
MK
1053 int i;
1054 struct page *page;
1055 struct page *prev_page = NULL;
48b4800a 1056 int nr_pages = class->pages_per_zspage;
61989a80
NG
1057
1058 /*
1059 * Allocate individual pages and link them together as:
48b4800a 1060 * 1. all pages are linked together using page->freelist
3783689a 1061 * 2. each sub-page point to zspage using page->private
61989a80 1062 *
3783689a 1063 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1064 * has this flag set).
61989a80 1065 */
bdb0af7c
MK
1066 for (i = 0; i < nr_pages; i++) {
1067 page = pages[i];
3783689a 1068 set_page_private(page, (unsigned long)zspage);
48b4800a 1069 page->freelist = NULL;
bdb0af7c 1070 if (i == 0) {
3783689a 1071 zspage->first_page = page;
a27545bf 1072 SetPagePrivate(page);
48b4800a
MK
1073 if (unlikely(class->objs_per_zspage == 1 &&
1074 class->pages_per_zspage == 1))
1075 SetPageHugeObject(page);
3783689a 1076 } else {
48b4800a 1077 prev_page->freelist = page;
61989a80 1078 }
61989a80
NG
1079 prev_page = page;
1080 }
bdb0af7c 1081}
61989a80 1082
bdb0af7c
MK
1083/*
1084 * Allocate a zspage for the given size class
1085 */
3783689a
MK
1086static struct zspage *alloc_zspage(struct zs_pool *pool,
1087 struct size_class *class,
1088 gfp_t gfp)
bdb0af7c
MK
1089{
1090 int i;
bdb0af7c 1091 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1092 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1093
1094 if (!zspage)
1095 return NULL;
1096
1097 memset(zspage, 0, sizeof(struct zspage));
48b4800a
MK
1098 zspage->magic = ZSPAGE_MAGIC;
1099 migrate_lock_init(zspage);
61989a80 1100
bdb0af7c
MK
1101 for (i = 0; i < class->pages_per_zspage; i++) {
1102 struct page *page;
61989a80 1103
3783689a 1104 page = alloc_page(gfp);
bdb0af7c 1105 if (!page) {
91537fee
MK
1106 while (--i >= 0) {
1107 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1108 __free_page(pages[i]);
91537fee 1109 }
3783689a 1110 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1111 return NULL;
1112 }
91537fee
MK
1113
1114 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1115 pages[i] = page;
61989a80
NG
1116 }
1117
48b4800a 1118 create_page_chain(class, zspage, pages);
3783689a 1119 init_zspage(class, zspage);
bdb0af7c 1120
3783689a 1121 return zspage;
61989a80
NG
1122}
1123
3783689a 1124static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1125{
1126 int i;
3783689a 1127 struct zspage *zspage;
61989a80 1128
48b4800a 1129 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1130 zspage = list_first_entry_or_null(&class->fullness_list[i],
1131 struct zspage, list);
1132 if (zspage)
61989a80
NG
1133 break;
1134 }
1135
3783689a 1136 return zspage;
61989a80
NG
1137}
1138
1b945aee 1139#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1140static inline int __zs_cpu_up(struct mapping_area *area)
1141{
1142 /*
1143 * Make sure we don't leak memory if a cpu UP notification
1144 * and zs_init() race and both call zs_cpu_up() on the same cpu
1145 */
1146 if (area->vm)
1147 return 0;
1148 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1149 if (!area->vm)
1150 return -ENOMEM;
1151 return 0;
1152}
1153
1154static inline void __zs_cpu_down(struct mapping_area *area)
1155{
1156 if (area->vm)
1157 free_vm_area(area->vm);
1158 area->vm = NULL;
1159}
1160
1161static inline void *__zs_map_object(struct mapping_area *area,
1162 struct page *pages[2], int off, int size)
1163{
f6f8ed47 1164 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1165 area->vm_addr = area->vm->addr;
1166 return area->vm_addr + off;
1167}
1168
1169static inline void __zs_unmap_object(struct mapping_area *area,
1170 struct page *pages[2], int off, int size)
1171{
1172 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1173
d95abbbb 1174 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1175}
1176
1b945aee 1177#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1178
1179static inline int __zs_cpu_up(struct mapping_area *area)
1180{
1181 /*
1182 * Make sure we don't leak memory if a cpu UP notification
1183 * and zs_init() race and both call zs_cpu_up() on the same cpu
1184 */
1185 if (area->vm_buf)
1186 return 0;
40f9fb8c 1187 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1188 if (!area->vm_buf)
1189 return -ENOMEM;
1190 return 0;
1191}
1192
1193static inline void __zs_cpu_down(struct mapping_area *area)
1194{
40f9fb8c 1195 kfree(area->vm_buf);
f553646a
SJ
1196 area->vm_buf = NULL;
1197}
1198
1199static void *__zs_map_object(struct mapping_area *area,
1200 struct page *pages[2], int off, int size)
5f601902 1201{
5f601902
SJ
1202 int sizes[2];
1203 void *addr;
f553646a 1204 char *buf = area->vm_buf;
5f601902 1205
f553646a
SJ
1206 /* disable page faults to match kmap_atomic() return conditions */
1207 pagefault_disable();
1208
1209 /* no read fastpath */
1210 if (area->vm_mm == ZS_MM_WO)
1211 goto out;
5f601902
SJ
1212
1213 sizes[0] = PAGE_SIZE - off;
1214 sizes[1] = size - sizes[0];
1215
5f601902
SJ
1216 /* copy object to per-cpu buffer */
1217 addr = kmap_atomic(pages[0]);
1218 memcpy(buf, addr + off, sizes[0]);
1219 kunmap_atomic(addr);
1220 addr = kmap_atomic(pages[1]);
1221 memcpy(buf + sizes[0], addr, sizes[1]);
1222 kunmap_atomic(addr);
f553646a
SJ
1223out:
1224 return area->vm_buf;
5f601902
SJ
1225}
1226
f553646a
SJ
1227static void __zs_unmap_object(struct mapping_area *area,
1228 struct page *pages[2], int off, int size)
5f601902 1229{
5f601902
SJ
1230 int sizes[2];
1231 void *addr;
2e40e163 1232 char *buf;
5f601902 1233
f553646a
SJ
1234 /* no write fastpath */
1235 if (area->vm_mm == ZS_MM_RO)
1236 goto out;
5f601902 1237
7b60a685 1238 buf = area->vm_buf;
a82cbf07
YX
1239 buf = buf + ZS_HANDLE_SIZE;
1240 size -= ZS_HANDLE_SIZE;
1241 off += ZS_HANDLE_SIZE;
2e40e163 1242
5f601902
SJ
1243 sizes[0] = PAGE_SIZE - off;
1244 sizes[1] = size - sizes[0];
1245
1246 /* copy per-cpu buffer to object */
1247 addr = kmap_atomic(pages[0]);
1248 memcpy(addr + off, buf, sizes[0]);
1249 kunmap_atomic(addr);
1250 addr = kmap_atomic(pages[1]);
1251 memcpy(addr, buf + sizes[0], sizes[1]);
1252 kunmap_atomic(addr);
f553646a
SJ
1253
1254out:
1255 /* enable page faults to match kunmap_atomic() return conditions */
1256 pagefault_enable();
5f601902 1257}
61989a80 1258
1b945aee 1259#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1260
215c89d0 1261static int zs_cpu_prepare(unsigned int cpu)
61989a80 1262{
61989a80
NG
1263 struct mapping_area *area;
1264
215c89d0
SAS
1265 area = &per_cpu(zs_map_area, cpu);
1266 return __zs_cpu_up(area);
61989a80
NG
1267}
1268
215c89d0 1269static int zs_cpu_dead(unsigned int cpu)
61989a80 1270{
215c89d0 1271 struct mapping_area *area;
40f9fb8c 1272
215c89d0
SAS
1273 area = &per_cpu(zs_map_area, cpu);
1274 __zs_cpu_down(area);
1275 return 0;
b1b00a5b
SS
1276}
1277
64d90465
GM
1278static bool can_merge(struct size_class *prev, int pages_per_zspage,
1279 int objs_per_zspage)
9eec4cd5 1280{
64d90465
GM
1281 if (prev->pages_per_zspage == pages_per_zspage &&
1282 prev->objs_per_zspage == objs_per_zspage)
1283 return true;
9eec4cd5 1284
64d90465 1285 return false;
9eec4cd5
JK
1286}
1287
3783689a 1288static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1289{
3783689a 1290 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1291}
1292
66cdef66
GM
1293unsigned long zs_get_total_pages(struct zs_pool *pool)
1294{
1295 return atomic_long_read(&pool->pages_allocated);
1296}
1297EXPORT_SYMBOL_GPL(zs_get_total_pages);
1298
4bbc0bc0 1299/**
66cdef66
GM
1300 * zs_map_object - get address of allocated object from handle.
1301 * @pool: pool from which the object was allocated
1302 * @handle: handle returned from zs_malloc
4bbc0bc0 1303 *
66cdef66
GM
1304 * Before using an object allocated from zs_malloc, it must be mapped using
1305 * this function. When done with the object, it must be unmapped using
1306 * zs_unmap_object.
4bbc0bc0 1307 *
66cdef66
GM
1308 * Only one object can be mapped per cpu at a time. There is no protection
1309 * against nested mappings.
1310 *
1311 * This function returns with preemption and page faults disabled.
4bbc0bc0 1312 */
66cdef66
GM
1313void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1314 enum zs_mapmode mm)
61989a80 1315{
3783689a 1316 struct zspage *zspage;
66cdef66 1317 struct page *page;
bfd093f5
MK
1318 unsigned long obj, off;
1319 unsigned int obj_idx;
61989a80 1320
66cdef66
GM
1321 unsigned int class_idx;
1322 enum fullness_group fg;
1323 struct size_class *class;
1324 struct mapping_area *area;
1325 struct page *pages[2];
2e40e163 1326 void *ret;
61989a80 1327
9eec4cd5 1328 /*
66cdef66
GM
1329 * Because we use per-cpu mapping areas shared among the
1330 * pools/users, we can't allow mapping in interrupt context
1331 * because it can corrupt another users mappings.
9eec4cd5 1332 */
1aedcafb 1333 BUG_ON(in_interrupt());
61989a80 1334
312fcae2
MK
1335 /* From now on, migration cannot move the object */
1336 pin_tag(handle);
1337
2e40e163
MK
1338 obj = handle_to_obj(handle);
1339 obj_to_location(obj, &page, &obj_idx);
3783689a 1340 zspage = get_zspage(page);
48b4800a
MK
1341
1342 /* migration cannot move any subpage in this zspage */
1343 migrate_read_lock(zspage);
1344
3783689a 1345 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1346 class = pool->size_class[class_idx];
bfd093f5 1347 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1348
66cdef66
GM
1349 area = &get_cpu_var(zs_map_area);
1350 area->vm_mm = mm;
1351 if (off + class->size <= PAGE_SIZE) {
1352 /* this object is contained entirely within a page */
1353 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1354 ret = area->vm_addr + off;
1355 goto out;
61989a80
NG
1356 }
1357
66cdef66
GM
1358 /* this object spans two pages */
1359 pages[0] = page;
1360 pages[1] = get_next_page(page);
1361 BUG_ON(!pages[1]);
9eec4cd5 1362
2e40e163
MK
1363 ret = __zs_map_object(area, pages, off, class->size);
1364out:
48b4800a 1365 if (likely(!PageHugeObject(page)))
7b60a685
MK
1366 ret += ZS_HANDLE_SIZE;
1367
1368 return ret;
61989a80 1369}
66cdef66 1370EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1371
66cdef66 1372void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1373{
3783689a 1374 struct zspage *zspage;
66cdef66 1375 struct page *page;
bfd093f5
MK
1376 unsigned long obj, off;
1377 unsigned int obj_idx;
61989a80 1378
66cdef66
GM
1379 unsigned int class_idx;
1380 enum fullness_group fg;
1381 struct size_class *class;
1382 struct mapping_area *area;
9eec4cd5 1383
2e40e163
MK
1384 obj = handle_to_obj(handle);
1385 obj_to_location(obj, &page, &obj_idx);
3783689a
MK
1386 zspage = get_zspage(page);
1387 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1388 class = pool->size_class[class_idx];
bfd093f5 1389 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1390
66cdef66
GM
1391 area = this_cpu_ptr(&zs_map_area);
1392 if (off + class->size <= PAGE_SIZE)
1393 kunmap_atomic(area->vm_addr);
1394 else {
1395 struct page *pages[2];
40f9fb8c 1396
66cdef66
GM
1397 pages[0] = page;
1398 pages[1] = get_next_page(page);
1399 BUG_ON(!pages[1]);
1400
1401 __zs_unmap_object(area, pages, off, class->size);
1402 }
1403 put_cpu_var(zs_map_area);
48b4800a
MK
1404
1405 migrate_read_unlock(zspage);
312fcae2 1406 unpin_tag(handle);
61989a80 1407}
66cdef66 1408EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1409
251cbb95 1410static unsigned long obj_malloc(struct size_class *class,
3783689a 1411 struct zspage *zspage, unsigned long handle)
c7806261 1412{
bfd093f5 1413 int i, nr_page, offset;
c7806261
MK
1414 unsigned long obj;
1415 struct link_free *link;
1416
1417 struct page *m_page;
bfd093f5 1418 unsigned long m_offset;
c7806261
MK
1419 void *vaddr;
1420
312fcae2 1421 handle |= OBJ_ALLOCATED_TAG;
3783689a 1422 obj = get_freeobj(zspage);
bfd093f5
MK
1423
1424 offset = obj * class->size;
1425 nr_page = offset >> PAGE_SHIFT;
1426 m_offset = offset & ~PAGE_MASK;
1427 m_page = get_first_page(zspage);
1428
1429 for (i = 0; i < nr_page; i++)
1430 m_page = get_next_page(m_page);
c7806261
MK
1431
1432 vaddr = kmap_atomic(m_page);
1433 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1434 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
48b4800a 1435 if (likely(!PageHugeObject(m_page)))
7b60a685
MK
1436 /* record handle in the header of allocated chunk */
1437 link->handle = handle;
1438 else
3783689a
MK
1439 /* record handle to page->index */
1440 zspage->first_page->index = handle;
1441
c7806261 1442 kunmap_atomic(vaddr);
3783689a 1443 mod_zspage_inuse(zspage, 1);
c7806261
MK
1444 zs_stat_inc(class, OBJ_USED, 1);
1445
bfd093f5
MK
1446 obj = location_to_obj(m_page, obj);
1447
c7806261
MK
1448 return obj;
1449}
1450
1451
61989a80
NG
1452/**
1453 * zs_malloc - Allocate block of given size from pool.
1454 * @pool: pool to allocate from
1455 * @size: size of block to allocate
fd854463 1456 * @gfp: gfp flags when allocating object
61989a80 1457 *
00a61d86 1458 * On success, handle to the allocated object is returned,
c2344348 1459 * otherwise 0.
61989a80
NG
1460 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1461 */
d0d8da2d 1462unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1463{
2e40e163 1464 unsigned long handle, obj;
61989a80 1465 struct size_class *class;
48b4800a 1466 enum fullness_group newfg;
3783689a 1467 struct zspage *zspage;
61989a80 1468
7b60a685 1469 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1470 return 0;
1471
3783689a 1472 handle = cache_alloc_handle(pool, gfp);
2e40e163 1473 if (!handle)
c2344348 1474 return 0;
61989a80 1475
2e40e163
MK
1476 /* extra space in chunk to keep the handle */
1477 size += ZS_HANDLE_SIZE;
9eec4cd5 1478 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1479
1480 spin_lock(&class->lock);
3783689a 1481 zspage = find_get_zspage(class);
48b4800a
MK
1482 if (likely(zspage)) {
1483 obj = obj_malloc(class, zspage, handle);
1484 /* Now move the zspage to another fullness group, if required */
1485 fix_fullness_group(class, zspage);
1486 record_obj(handle, obj);
61989a80 1487 spin_unlock(&class->lock);
61989a80 1488
48b4800a
MK
1489 return handle;
1490 }
0f050d99 1491
48b4800a
MK
1492 spin_unlock(&class->lock);
1493
1494 zspage = alloc_zspage(pool, class, gfp);
1495 if (!zspage) {
1496 cache_free_handle(pool, handle);
1497 return 0;
61989a80
NG
1498 }
1499
48b4800a 1500 spin_lock(&class->lock);
3783689a 1501 obj = obj_malloc(class, zspage, handle);
48b4800a
MK
1502 newfg = get_fullness_group(class, zspage);
1503 insert_zspage(class, zspage, newfg);
1504 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1505 record_obj(handle, obj);
48b4800a
MK
1506 atomic_long_add(class->pages_per_zspage,
1507 &pool->pages_allocated);
b4fd07a0 1508 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1509
1510 /* We completely set up zspage so mark them as movable */
1511 SetZsPageMovable(pool, zspage);
61989a80
NG
1512 spin_unlock(&class->lock);
1513
2e40e163 1514 return handle;
61989a80
NG
1515}
1516EXPORT_SYMBOL_GPL(zs_malloc);
1517
1ee47165 1518static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1519{
1520 struct link_free *link;
3783689a
MK
1521 struct zspage *zspage;
1522 struct page *f_page;
bfd093f5
MK
1523 unsigned long f_offset;
1524 unsigned int f_objidx;
af4ee5e9 1525 void *vaddr;
61989a80 1526
312fcae2 1527 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1528 obj_to_location(obj, &f_page, &f_objidx);
bfd093f5 1529 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
3783689a 1530 zspage = get_zspage(f_page);
61989a80 1531
c7806261 1532 vaddr = kmap_atomic(f_page);
61989a80
NG
1533
1534 /* Insert this object in containing zspage's freelist */
af4ee5e9 1535 link = (struct link_free *)(vaddr + f_offset);
3b1d9ca6 1536 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
af4ee5e9 1537 kunmap_atomic(vaddr);
bfd093f5 1538 set_freeobj(zspage, f_objidx);
3783689a 1539 mod_zspage_inuse(zspage, -1);
0f050d99 1540 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1541}
1542
1543void zs_free(struct zs_pool *pool, unsigned long handle)
1544{
3783689a
MK
1545 struct zspage *zspage;
1546 struct page *f_page;
bfd093f5
MK
1547 unsigned long obj;
1548 unsigned int f_objidx;
c7806261
MK
1549 int class_idx;
1550 struct size_class *class;
1551 enum fullness_group fullness;
48b4800a 1552 bool isolated;
c7806261
MK
1553
1554 if (unlikely(!handle))
1555 return;
1556
312fcae2 1557 pin_tag(handle);
c7806261 1558 obj = handle_to_obj(handle);
c7806261 1559 obj_to_location(obj, &f_page, &f_objidx);
3783689a 1560 zspage = get_zspage(f_page);
c7806261 1561
48b4800a
MK
1562 migrate_read_lock(zspage);
1563
3783689a 1564 get_zspage_mapping(zspage, &class_idx, &fullness);
c7806261
MK
1565 class = pool->size_class[class_idx];
1566
1567 spin_lock(&class->lock);
1ee47165 1568 obj_free(class, obj);
3783689a 1569 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1570 if (fullness != ZS_EMPTY) {
1571 migrate_read_unlock(zspage);
1572 goto out;
312fcae2 1573 }
48b4800a
MK
1574
1575 isolated = is_zspage_isolated(zspage);
1576 migrate_read_unlock(zspage);
1577 /* If zspage is isolated, zs_page_putback will free the zspage */
1578 if (likely(!isolated))
1579 free_zspage(pool, class, zspage);
1580out:
1581
61989a80 1582 spin_unlock(&class->lock);
312fcae2 1583 unpin_tag(handle);
3783689a 1584 cache_free_handle(pool, handle);
312fcae2
MK
1585}
1586EXPORT_SYMBOL_GPL(zs_free);
1587
251cbb95
MK
1588static void zs_object_copy(struct size_class *class, unsigned long dst,
1589 unsigned long src)
312fcae2
MK
1590{
1591 struct page *s_page, *d_page;
bfd093f5 1592 unsigned int s_objidx, d_objidx;
312fcae2
MK
1593 unsigned long s_off, d_off;
1594 void *s_addr, *d_addr;
1595 int s_size, d_size, size;
1596 int written = 0;
1597
1598 s_size = d_size = class->size;
1599
1600 obj_to_location(src, &s_page, &s_objidx);
1601 obj_to_location(dst, &d_page, &d_objidx);
1602
bfd093f5
MK
1603 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1604 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1605
1606 if (s_off + class->size > PAGE_SIZE)
1607 s_size = PAGE_SIZE - s_off;
1608
1609 if (d_off + class->size > PAGE_SIZE)
1610 d_size = PAGE_SIZE - d_off;
1611
1612 s_addr = kmap_atomic(s_page);
1613 d_addr = kmap_atomic(d_page);
1614
1615 while (1) {
1616 size = min(s_size, d_size);
1617 memcpy(d_addr + d_off, s_addr + s_off, size);
1618 written += size;
1619
1620 if (written == class->size)
1621 break;
1622
495819ea
SS
1623 s_off += size;
1624 s_size -= size;
1625 d_off += size;
1626 d_size -= size;
1627
1628 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1629 kunmap_atomic(d_addr);
1630 kunmap_atomic(s_addr);
1631 s_page = get_next_page(s_page);
312fcae2
MK
1632 s_addr = kmap_atomic(s_page);
1633 d_addr = kmap_atomic(d_page);
1634 s_size = class->size - written;
1635 s_off = 0;
312fcae2
MK
1636 }
1637
495819ea 1638 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1639 kunmap_atomic(d_addr);
1640 d_page = get_next_page(d_page);
312fcae2
MK
1641 d_addr = kmap_atomic(d_page);
1642 d_size = class->size - written;
1643 d_off = 0;
312fcae2
MK
1644 }
1645 }
1646
1647 kunmap_atomic(d_addr);
1648 kunmap_atomic(s_addr);
1649}
1650
1651/*
1652 * Find alloced object in zspage from index object and
1653 * return handle.
1654 */
251cbb95 1655static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1656 struct page *page, int *obj_idx)
312fcae2
MK
1657{
1658 unsigned long head;
1659 int offset = 0;
cf675acb 1660 int index = *obj_idx;
312fcae2
MK
1661 unsigned long handle = 0;
1662 void *addr = kmap_atomic(page);
1663
3783689a 1664 offset = get_first_obj_offset(page);
312fcae2
MK
1665 offset += class->size * index;
1666
1667 while (offset < PAGE_SIZE) {
48b4800a 1668 head = obj_to_head(page, addr + offset);
312fcae2
MK
1669 if (head & OBJ_ALLOCATED_TAG) {
1670 handle = head & ~OBJ_ALLOCATED_TAG;
1671 if (trypin_tag(handle))
1672 break;
1673 handle = 0;
1674 }
1675
1676 offset += class->size;
1677 index++;
1678 }
1679
1680 kunmap_atomic(addr);
cf675acb
GM
1681
1682 *obj_idx = index;
1683
312fcae2
MK
1684 return handle;
1685}
1686
1687struct zs_compact_control {
3783689a 1688 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1689 struct page *s_page;
1690 /* Destination page for migration which should be a first page
1691 * of zspage. */
1692 struct page *d_page;
1693 /* Starting object index within @s_page which used for live object
1694 * in the subpage. */
41b88e14 1695 int obj_idx;
312fcae2
MK
1696};
1697
1698static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1699 struct zs_compact_control *cc)
1700{
1701 unsigned long used_obj, free_obj;
1702 unsigned long handle;
1703 struct page *s_page = cc->s_page;
1704 struct page *d_page = cc->d_page;
41b88e14 1705 int obj_idx = cc->obj_idx;
312fcae2
MK
1706 int ret = 0;
1707
1708 while (1) {
cf675acb 1709 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1710 if (!handle) {
1711 s_page = get_next_page(s_page);
1712 if (!s_page)
1713 break;
41b88e14 1714 obj_idx = 0;
312fcae2
MK
1715 continue;
1716 }
1717
1718 /* Stop if there is no more space */
3783689a 1719 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1720 unpin_tag(handle);
1721 ret = -ENOMEM;
1722 break;
1723 }
1724
1725 used_obj = handle_to_obj(handle);
3783689a 1726 free_obj = obj_malloc(class, get_zspage(d_page), handle);
251cbb95 1727 zs_object_copy(class, free_obj, used_obj);
41b88e14 1728 obj_idx++;
c102f07c
JL
1729 /*
1730 * record_obj updates handle's value to free_obj and it will
1731 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1732 * breaks synchronization using pin_tag(e,g, zs_free) so
1733 * let's keep the lock bit.
1734 */
1735 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1736 record_obj(handle, free_obj);
1737 unpin_tag(handle);
1ee47165 1738 obj_free(class, used_obj);
312fcae2
MK
1739 }
1740
1741 /* Remember last position in this iteration */
1742 cc->s_page = s_page;
41b88e14 1743 cc->obj_idx = obj_idx;
312fcae2
MK
1744
1745 return ret;
1746}
1747
3783689a 1748static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1749{
1750 int i;
3783689a
MK
1751 struct zspage *zspage;
1752 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1753
3783689a
MK
1754 if (!source) {
1755 fg[0] = ZS_ALMOST_FULL;
1756 fg[1] = ZS_ALMOST_EMPTY;
1757 }
1758
1759 for (i = 0; i < 2; i++) {
1760 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1761 struct zspage, list);
1762 if (zspage) {
48b4800a 1763 VM_BUG_ON(is_zspage_isolated(zspage));
3783689a
MK
1764 remove_zspage(class, zspage, fg[i]);
1765 return zspage;
312fcae2
MK
1766 }
1767 }
1768
3783689a 1769 return zspage;
312fcae2
MK
1770}
1771
860c707d 1772/*
3783689a 1773 * putback_zspage - add @zspage into right class's fullness list
860c707d 1774 * @class: destination class
3783689a 1775 * @zspage: target page
860c707d 1776 *
3783689a 1777 * Return @zspage's fullness_group
860c707d 1778 */
4aa409ca 1779static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1780 struct zspage *zspage)
312fcae2 1781{
312fcae2
MK
1782 enum fullness_group fullness;
1783
48b4800a
MK
1784 VM_BUG_ON(is_zspage_isolated(zspage));
1785
3783689a
MK
1786 fullness = get_fullness_group(class, zspage);
1787 insert_zspage(class, zspage, fullness);
1788 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1789
860c707d 1790 return fullness;
61989a80 1791}
312fcae2 1792
48b4800a
MK
1793#ifdef CONFIG_COMPACTION
1794static struct dentry *zs_mount(struct file_system_type *fs_type,
1795 int flags, const char *dev_name, void *data)
1796{
1797 static const struct dentry_operations ops = {
1798 .d_dname = simple_dname,
1799 };
1800
1801 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1802}
1803
1804static struct file_system_type zsmalloc_fs = {
1805 .name = "zsmalloc",
1806 .mount = zs_mount,
1807 .kill_sb = kill_anon_super,
1808};
1809
1810static int zsmalloc_mount(void)
1811{
1812 int ret = 0;
1813
1814 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1815 if (IS_ERR(zsmalloc_mnt))
1816 ret = PTR_ERR(zsmalloc_mnt);
1817
1818 return ret;
1819}
1820
1821static void zsmalloc_unmount(void)
1822{
1823 kern_unmount(zsmalloc_mnt);
1824}
1825
1826static void migrate_lock_init(struct zspage *zspage)
1827{
1828 rwlock_init(&zspage->lock);
1829}
1830
1831static void migrate_read_lock(struct zspage *zspage)
1832{
1833 read_lock(&zspage->lock);
1834}
1835
1836static void migrate_read_unlock(struct zspage *zspage)
1837{
1838 read_unlock(&zspage->lock);
1839}
1840
1841static void migrate_write_lock(struct zspage *zspage)
1842{
1843 write_lock(&zspage->lock);
1844}
1845
1846static void migrate_write_unlock(struct zspage *zspage)
1847{
1848 write_unlock(&zspage->lock);
1849}
1850
1851/* Number of isolated subpage for *page migration* in this zspage */
1852static void inc_zspage_isolation(struct zspage *zspage)
1853{
1854 zspage->isolated++;
1855}
1856
1857static void dec_zspage_isolation(struct zspage *zspage)
1858{
1859 zspage->isolated--;
1860}
1861
1862static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1863 struct page *newpage, struct page *oldpage)
1864{
1865 struct page *page;
1866 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1867 int idx = 0;
1868
1869 page = get_first_page(zspage);
1870 do {
1871 if (page == oldpage)
1872 pages[idx] = newpage;
1873 else
1874 pages[idx] = page;
1875 idx++;
1876 } while ((page = get_next_page(page)) != NULL);
1877
1878 create_page_chain(class, zspage, pages);
1879 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1880 if (unlikely(PageHugeObject(oldpage)))
1881 newpage->index = oldpage->index;
1882 __SetPageMovable(newpage, page_mapping(oldpage));
1883}
1884
1885bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1886{
1887 struct zs_pool *pool;
1888 struct size_class *class;
1889 int class_idx;
1890 enum fullness_group fullness;
1891 struct zspage *zspage;
1892 struct address_space *mapping;
1893
1894 /*
1895 * Page is locked so zspage couldn't be destroyed. For detail, look at
1896 * lock_zspage in free_zspage.
1897 */
1898 VM_BUG_ON_PAGE(!PageMovable(page), page);
1899 VM_BUG_ON_PAGE(PageIsolated(page), page);
1900
1901 zspage = get_zspage(page);
1902
1903 /*
1904 * Without class lock, fullness could be stale while class_idx is okay
1905 * because class_idx is constant unless page is freed so we should get
1906 * fullness again under class lock.
1907 */
1908 get_zspage_mapping(zspage, &class_idx, &fullness);
1909 mapping = page_mapping(page);
1910 pool = mapping->private_data;
1911 class = pool->size_class[class_idx];
1912
1913 spin_lock(&class->lock);
1914 if (get_zspage_inuse(zspage) == 0) {
1915 spin_unlock(&class->lock);
1916 return false;
1917 }
1918
1919 /* zspage is isolated for object migration */
1920 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1921 spin_unlock(&class->lock);
1922 return false;
1923 }
1924
1925 /*
1926 * If this is first time isolation for the zspage, isolate zspage from
1927 * size_class to prevent further object allocation from the zspage.
1928 */
1929 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1930 get_zspage_mapping(zspage, &class_idx, &fullness);
1931 remove_zspage(class, zspage, fullness);
1932 }
1933
1934 inc_zspage_isolation(zspage);
1935 spin_unlock(&class->lock);
1936
1937 return true;
1938}
1939
1940int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1941 struct page *page, enum migrate_mode mode)
1942{
1943 struct zs_pool *pool;
1944 struct size_class *class;
1945 int class_idx;
1946 enum fullness_group fullness;
1947 struct zspage *zspage;
1948 struct page *dummy;
1949 void *s_addr, *d_addr, *addr;
1950 int offset, pos;
1951 unsigned long handle, head;
1952 unsigned long old_obj, new_obj;
1953 unsigned int obj_idx;
1954 int ret = -EAGAIN;
1955
2916ecc0
JG
1956 /*
1957 * We cannot support the _NO_COPY case here, because copy needs to
1958 * happen under the zs lock, which does not work with
1959 * MIGRATE_SYNC_NO_COPY workflow.
1960 */
1961 if (mode == MIGRATE_SYNC_NO_COPY)
1962 return -EINVAL;
1963
48b4800a
MK
1964 VM_BUG_ON_PAGE(!PageMovable(page), page);
1965 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1966
1967 zspage = get_zspage(page);
1968
1969 /* Concurrent compactor cannot migrate any subpage in zspage */
1970 migrate_write_lock(zspage);
1971 get_zspage_mapping(zspage, &class_idx, &fullness);
1972 pool = mapping->private_data;
1973 class = pool->size_class[class_idx];
1974 offset = get_first_obj_offset(page);
1975
1976 spin_lock(&class->lock);
1977 if (!get_zspage_inuse(zspage)) {
77ff4657
HZ
1978 /*
1979 * Set "offset" to end of the page so that every loops
1980 * skips unnecessary object scanning.
1981 */
1982 offset = PAGE_SIZE;
48b4800a
MK
1983 }
1984
1985 pos = offset;
1986 s_addr = kmap_atomic(page);
1987 while (pos < PAGE_SIZE) {
1988 head = obj_to_head(page, s_addr + pos);
1989 if (head & OBJ_ALLOCATED_TAG) {
1990 handle = head & ~OBJ_ALLOCATED_TAG;
1991 if (!trypin_tag(handle))
1992 goto unpin_objects;
1993 }
1994 pos += class->size;
1995 }
1996
1997 /*
1998 * Here, any user cannot access all objects in the zspage so let's move.
1999 */
2000 d_addr = kmap_atomic(newpage);
2001 memcpy(d_addr, s_addr, PAGE_SIZE);
2002 kunmap_atomic(d_addr);
2003
2004 for (addr = s_addr + offset; addr < s_addr + pos;
2005 addr += class->size) {
2006 head = obj_to_head(page, addr);
2007 if (head & OBJ_ALLOCATED_TAG) {
2008 handle = head & ~OBJ_ALLOCATED_TAG;
2009 if (!testpin_tag(handle))
2010 BUG();
2011
2012 old_obj = handle_to_obj(handle);
2013 obj_to_location(old_obj, &dummy, &obj_idx);
2014 new_obj = (unsigned long)location_to_obj(newpage,
2015 obj_idx);
2016 new_obj |= BIT(HANDLE_PIN_BIT);
2017 record_obj(handle, new_obj);
2018 }
2019 }
2020
2021 replace_sub_page(class, zspage, newpage, page);
2022 get_page(newpage);
2023
2024 dec_zspage_isolation(zspage);
2025
2026 /*
2027 * Page migration is done so let's putback isolated zspage to
2028 * the list if @page is final isolated subpage in the zspage.
2029 */
2030 if (!is_zspage_isolated(zspage))
2031 putback_zspage(class, zspage);
2032
2033 reset_page(page);
2034 put_page(page);
2035 page = newpage;
2036
dd4123f3 2037 ret = MIGRATEPAGE_SUCCESS;
48b4800a
MK
2038unpin_objects:
2039 for (addr = s_addr + offset; addr < s_addr + pos;
2040 addr += class->size) {
2041 head = obj_to_head(page, addr);
2042 if (head & OBJ_ALLOCATED_TAG) {
2043 handle = head & ~OBJ_ALLOCATED_TAG;
2044 if (!testpin_tag(handle))
2045 BUG();
2046 unpin_tag(handle);
2047 }
2048 }
2049 kunmap_atomic(s_addr);
48b4800a
MK
2050 spin_unlock(&class->lock);
2051 migrate_write_unlock(zspage);
2052
2053 return ret;
2054}
2055
2056void zs_page_putback(struct page *page)
2057{
2058 struct zs_pool *pool;
2059 struct size_class *class;
2060 int class_idx;
2061 enum fullness_group fg;
2062 struct address_space *mapping;
2063 struct zspage *zspage;
2064
2065 VM_BUG_ON_PAGE(!PageMovable(page), page);
2066 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2067
2068 zspage = get_zspage(page);
2069 get_zspage_mapping(zspage, &class_idx, &fg);
2070 mapping = page_mapping(page);
2071 pool = mapping->private_data;
2072 class = pool->size_class[class_idx];
2073
2074 spin_lock(&class->lock);
2075 dec_zspage_isolation(zspage);
2076 if (!is_zspage_isolated(zspage)) {
2077 fg = putback_zspage(class, zspage);
2078 /*
2079 * Due to page_lock, we cannot free zspage immediately
2080 * so let's defer.
2081 */
2082 if (fg == ZS_EMPTY)
2083 schedule_work(&pool->free_work);
2084 }
2085 spin_unlock(&class->lock);
2086}
2087
2088const struct address_space_operations zsmalloc_aops = {
2089 .isolate_page = zs_page_isolate,
2090 .migratepage = zs_page_migrate,
2091 .putback_page = zs_page_putback,
2092};
2093
2094static int zs_register_migration(struct zs_pool *pool)
2095{
2096 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2097 if (IS_ERR(pool->inode)) {
2098 pool->inode = NULL;
2099 return 1;
2100 }
2101
2102 pool->inode->i_mapping->private_data = pool;
2103 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2104 return 0;
2105}
2106
2107static void zs_unregister_migration(struct zs_pool *pool)
2108{
2109 flush_work(&pool->free_work);
c3491eca 2110 iput(pool->inode);
48b4800a
MK
2111}
2112
2113/*
2114 * Caller should hold page_lock of all pages in the zspage
2115 * In here, we cannot use zspage meta data.
2116 */
2117static void async_free_zspage(struct work_struct *work)
2118{
2119 int i;
2120 struct size_class *class;
2121 unsigned int class_idx;
2122 enum fullness_group fullness;
2123 struct zspage *zspage, *tmp;
2124 LIST_HEAD(free_pages);
2125 struct zs_pool *pool = container_of(work, struct zs_pool,
2126 free_work);
2127
cf8e0fed 2128 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2129 class = pool->size_class[i];
2130 if (class->index != i)
2131 continue;
2132
2133 spin_lock(&class->lock);
2134 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2135 spin_unlock(&class->lock);
2136 }
2137
2138
2139 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2140 list_del(&zspage->list);
2141 lock_zspage(zspage);
2142
2143 get_zspage_mapping(zspage, &class_idx, &fullness);
2144 VM_BUG_ON(fullness != ZS_EMPTY);
2145 class = pool->size_class[class_idx];
2146 spin_lock(&class->lock);
2147 __free_zspage(pool, pool->size_class[class_idx], zspage);
2148 spin_unlock(&class->lock);
2149 }
2150};
2151
2152static void kick_deferred_free(struct zs_pool *pool)
2153{
2154 schedule_work(&pool->free_work);
2155}
2156
2157static void init_deferred_free(struct zs_pool *pool)
2158{
2159 INIT_WORK(&pool->free_work, async_free_zspage);
2160}
2161
2162static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2163{
2164 struct page *page = get_first_page(zspage);
2165
2166 do {
2167 WARN_ON(!trylock_page(page));
2168 __SetPageMovable(page, pool->inode->i_mapping);
2169 unlock_page(page);
2170 } while ((page = get_next_page(page)) != NULL);
2171}
2172#endif
2173
04f05909
SS
2174/*
2175 *
2176 * Based on the number of unused allocated objects calculate
2177 * and return the number of pages that we can free.
04f05909
SS
2178 */
2179static unsigned long zs_can_compact(struct size_class *class)
2180{
2181 unsigned long obj_wasted;
44f43e99
SS
2182 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2183 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2184
44f43e99
SS
2185 if (obj_allocated <= obj_used)
2186 return 0;
04f05909 2187
44f43e99 2188 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2189 obj_wasted /= class->objs_per_zspage;
04f05909 2190
6cbf16b3 2191 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2192}
2193
7d3f3938 2194static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 2195{
312fcae2 2196 struct zs_compact_control cc;
3783689a
MK
2197 struct zspage *src_zspage;
2198 struct zspage *dst_zspage = NULL;
312fcae2 2199
312fcae2 2200 spin_lock(&class->lock);
3783689a 2201 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2202
04f05909
SS
2203 if (!zs_can_compact(class))
2204 break;
2205
41b88e14 2206 cc.obj_idx = 0;
48b4800a 2207 cc.s_page = get_first_page(src_zspage);
312fcae2 2208
3783689a 2209 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2210 cc.d_page = get_first_page(dst_zspage);
312fcae2 2211 /*
0dc63d48
SS
2212 * If there is no more space in dst_page, resched
2213 * and see if anyone had allocated another zspage.
312fcae2
MK
2214 */
2215 if (!migrate_zspage(pool, class, &cc))
2216 break;
2217
4aa409ca 2218 putback_zspage(class, dst_zspage);
312fcae2
MK
2219 }
2220
2221 /* Stop if we couldn't find slot */
3783689a 2222 if (dst_zspage == NULL)
312fcae2
MK
2223 break;
2224
4aa409ca
MK
2225 putback_zspage(class, dst_zspage);
2226 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2227 free_zspage(pool, class, src_zspage);
6cbf16b3 2228 pool->stats.pages_compacted += class->pages_per_zspage;
4aa409ca 2229 }
312fcae2 2230 spin_unlock(&class->lock);
312fcae2
MK
2231 cond_resched();
2232 spin_lock(&class->lock);
2233 }
2234
3783689a 2235 if (src_zspage)
4aa409ca 2236 putback_zspage(class, src_zspage);
312fcae2 2237
7d3f3938 2238 spin_unlock(&class->lock);
312fcae2
MK
2239}
2240
2241unsigned long zs_compact(struct zs_pool *pool)
2242{
2243 int i;
312fcae2
MK
2244 struct size_class *class;
2245
cf8e0fed 2246 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2247 class = pool->size_class[i];
2248 if (!class)
2249 continue;
2250 if (class->index != i)
2251 continue;
7d3f3938 2252 __zs_compact(pool, class);
312fcae2
MK
2253 }
2254
860c707d 2255 return pool->stats.pages_compacted;
312fcae2
MK
2256}
2257EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2258
7d3f3938
SS
2259void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2260{
2261 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2262}
2263EXPORT_SYMBOL_GPL(zs_pool_stats);
2264
ab9d306d
SS
2265static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2266 struct shrink_control *sc)
2267{
2268 unsigned long pages_freed;
2269 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2270 shrinker);
2271
2272 pages_freed = pool->stats.pages_compacted;
2273 /*
2274 * Compact classes and calculate compaction delta.
2275 * Can run concurrently with a manually triggered
2276 * (by user) compaction.
2277 */
2278 pages_freed = zs_compact(pool) - pages_freed;
2279
2280 return pages_freed ? pages_freed : SHRINK_STOP;
2281}
2282
2283static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2284 struct shrink_control *sc)
2285{
2286 int i;
2287 struct size_class *class;
2288 unsigned long pages_to_free = 0;
2289 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2290 shrinker);
2291
cf8e0fed 2292 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2293 class = pool->size_class[i];
2294 if (!class)
2295 continue;
2296 if (class->index != i)
2297 continue;
2298
ab9d306d 2299 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2300 }
2301
2302 return pages_to_free;
2303}
2304
2305static void zs_unregister_shrinker(struct zs_pool *pool)
2306{
93144ca3 2307 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2308}
2309
2310static int zs_register_shrinker(struct zs_pool *pool)
2311{
2312 pool->shrinker.scan_objects = zs_shrinker_scan;
2313 pool->shrinker.count_objects = zs_shrinker_count;
2314 pool->shrinker.batch = 0;
2315 pool->shrinker.seeks = DEFAULT_SEEKS;
2316
2317 return register_shrinker(&pool->shrinker);
2318}
2319
00a61d86 2320/**
66cdef66 2321 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2322 * @name: pool name to be created
166cfda7 2323 *
66cdef66
GM
2324 * This function must be called before anything when using
2325 * the zsmalloc allocator.
166cfda7 2326 *
66cdef66
GM
2327 * On success, a pointer to the newly created pool is returned,
2328 * otherwise NULL.
396b7fd6 2329 */
d0d8da2d 2330struct zs_pool *zs_create_pool(const char *name)
61989a80 2331{
66cdef66
GM
2332 int i;
2333 struct zs_pool *pool;
2334 struct size_class *prev_class = NULL;
61989a80 2335
66cdef66
GM
2336 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2337 if (!pool)
2338 return NULL;
61989a80 2339
48b4800a 2340 init_deferred_free(pool);
61989a80 2341
2e40e163
MK
2342 pool->name = kstrdup(name, GFP_KERNEL);
2343 if (!pool->name)
2344 goto err;
2345
3783689a 2346 if (create_cache(pool))
2e40e163
MK
2347 goto err;
2348
c60369f0 2349 /*
399d8eeb 2350 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2351 * for merging should be larger or equal to current size.
c60369f0 2352 */
cf8e0fed 2353 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2354 int size;
2355 int pages_per_zspage;
64d90465 2356 int objs_per_zspage;
66cdef66 2357 struct size_class *class;
3783689a 2358 int fullness = 0;
c60369f0 2359
66cdef66
GM
2360 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2361 if (size > ZS_MAX_ALLOC_SIZE)
2362 size = ZS_MAX_ALLOC_SIZE;
2363 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2364 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2365
66cdef66
GM
2366 /*
2367 * size_class is used for normal zsmalloc operation such
2368 * as alloc/free for that size. Although it is natural that we
2369 * have one size_class for each size, there is a chance that we
2370 * can get more memory utilization if we use one size_class for
2371 * many different sizes whose size_class have same
2372 * characteristics. So, we makes size_class point to
2373 * previous size_class if possible.
2374 */
2375 if (prev_class) {
64d90465 2376 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2377 pool->size_class[i] = prev_class;
2378 continue;
2379 }
2380 }
2381
2382 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2383 if (!class)
2384 goto err;
2385
2386 class->size = size;
2387 class->index = i;
2388 class->pages_per_zspage = pages_per_zspage;
64d90465 2389 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2390 spin_lock_init(&class->lock);
2391 pool->size_class[i] = class;
48b4800a
MK
2392 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2393 fullness++)
3783689a 2394 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2395
2396 prev_class = class;
61989a80
NG
2397 }
2398
d34f6157
DS
2399 /* debug only, don't abort if it fails */
2400 zs_pool_stat_create(pool, name);
0f050d99 2401
48b4800a
MK
2402 if (zs_register_migration(pool))
2403 goto err;
2404
ab9d306d 2405 /*
93144ca3
AK
2406 * Not critical since shrinker is only used to trigger internal
2407 * defragmentation of the pool which is pretty optional thing. If
2408 * registration fails we still can use the pool normally and user can
2409 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2410 */
93144ca3
AK
2411 zs_register_shrinker(pool);
2412
66cdef66
GM
2413 return pool;
2414
2415err:
2416 zs_destroy_pool(pool);
2417 return NULL;
61989a80 2418}
66cdef66 2419EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2420
66cdef66 2421void zs_destroy_pool(struct zs_pool *pool)
61989a80 2422{
66cdef66 2423 int i;
61989a80 2424
ab9d306d 2425 zs_unregister_shrinker(pool);
48b4800a 2426 zs_unregister_migration(pool);
0f050d99
GM
2427 zs_pool_stat_destroy(pool);
2428
cf8e0fed 2429 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2430 int fg;
2431 struct size_class *class = pool->size_class[i];
61989a80 2432
66cdef66
GM
2433 if (!class)
2434 continue;
61989a80 2435
66cdef66
GM
2436 if (class->index != i)
2437 continue;
61989a80 2438
48b4800a 2439 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2440 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2441 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2442 class->size, fg);
2443 }
2444 }
2445 kfree(class);
2446 }
f553646a 2447
3783689a 2448 destroy_cache(pool);
0f050d99 2449 kfree(pool->name);
66cdef66
GM
2450 kfree(pool);
2451}
2452EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2453
66cdef66
GM
2454static int __init zs_init(void)
2455{
48b4800a
MK
2456 int ret;
2457
2458 ret = zsmalloc_mount();
2459 if (ret)
2460 goto out;
2461
215c89d0
SAS
2462 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2463 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2464 if (ret)
215c89d0 2465 goto hp_setup_fail;
66cdef66 2466
66cdef66
GM
2467#ifdef CONFIG_ZPOOL
2468 zpool_register_driver(&zs_zpool_driver);
2469#endif
0f050d99 2470
4abaac9b
DS
2471 zs_stat_init();
2472
66cdef66 2473 return 0;
0f050d99 2474
215c89d0 2475hp_setup_fail:
48b4800a
MK
2476 zsmalloc_unmount();
2477out:
0f050d99 2478 return ret;
61989a80 2479}
61989a80 2480
66cdef66 2481static void __exit zs_exit(void)
61989a80 2482{
66cdef66
GM
2483#ifdef CONFIG_ZPOOL
2484 zpool_unregister_driver(&zs_zpool_driver);
2485#endif
48b4800a 2486 zsmalloc_unmount();
215c89d0 2487 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2488
2489 zs_stat_exit();
61989a80 2490}
069f101f
BH
2491
2492module_init(zs_init);
2493module_exit(zs_exit);
2494
2495MODULE_LICENSE("Dual BSD/GPL");
2496MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");