]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/zsmalloc.c
zsmalloc: record handle in page->private for huge object
[mirror_ubuntu-zesty-kernel.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
c3e3e88a
NC
15 * This allocator is designed for use with zram. Thus, the allocator is
16 * supposed to work well under low memory conditions. In particular, it
17 * never attempts higher order page allocation which is very likely to
18 * fail under memory pressure. On the other hand, if we just use single
19 * (0-order) pages, it would suffer from very high fragmentation --
20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21 * This was one of the major issues with its predecessor (xvmalloc).
2db51dae
NG
22 *
23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24 * and links them together using various 'struct page' fields. These linked
25 * pages act as a single higher-order page i.e. an object can span 0-order
26 * page boundaries. The code refers to these linked pages as a single entity
27 * called zspage.
28 *
c3e3e88a
NC
29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30 * since this satisfies the requirements of all its current users (in the
31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
32 * uncompressed form). For allocation requests larger than this size, failure
33 * is returned (see zs_malloc).
34 *
35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
37 * location of the allocated object. The reason for this indirection is that
38 * zsmalloc does not keep zspages permanently mapped since that would cause
39 * issues on 32-bit systems where the VA region for kernel space mappings
40 * is very small. So, before using the allocating memory, the object has to
41 * be mapped using zs_map_object() to get a usable pointer and subsequently
42 * unmapped using zs_unmap_object().
43 *
2db51dae
NG
44 * Following is how we use various fields and flags of underlying
45 * struct page(s) to form a zspage.
46 *
47 * Usage of struct page fields:
48 * page->first_page: points to the first component (0-order) page
49 * page->index (union with page->freelist): offset of the first object
50 * starting in this page. For the first page, this is
51 * always 0, so we use this field (aka freelist) to point
52 * to the first free object in zspage.
53 * page->lru: links together all component pages (except the first page)
54 * of a zspage
55 *
56 * For _first_ page only:
57 *
58 * page->private (union with page->first_page): refers to the
59 * component page after the first page
7b60a685
MK
60 * If the page is first_page for huge object, it stores handle.
61 * Look at size_class->huge.
2db51dae
NG
62 * page->freelist: points to the first free object in zspage.
63 * Free objects are linked together using in-place
64 * metadata.
65 * page->objects: maximum number of objects we can store in this
66 * zspage (class->zspage_order * PAGE_SIZE / class->size)
67 * page->lru: links together first pages of various zspages.
68 * Basically forming list of zspages in a fullness group.
69 * page->mapping: class index and fullness group of the zspage
70 *
71 * Usage of struct page flags:
72 * PG_private: identifies the first component page
73 * PG_private2: identifies the last component page
74 *
75 */
76
61989a80
NG
77#ifdef CONFIG_ZSMALLOC_DEBUG
78#define DEBUG
79#endif
80
81#include <linux/module.h>
82#include <linux/kernel.h>
312fcae2 83#include <linux/sched.h>
61989a80
NG
84#include <linux/bitops.h>
85#include <linux/errno.h>
86#include <linux/highmem.h>
61989a80
NG
87#include <linux/string.h>
88#include <linux/slab.h>
89#include <asm/tlbflush.h>
90#include <asm/pgtable.h>
91#include <linux/cpumask.h>
92#include <linux/cpu.h>
0cbb613f 93#include <linux/vmalloc.h>
c60369f0 94#include <linux/hardirq.h>
0959c63f
SJ
95#include <linux/spinlock.h>
96#include <linux/types.h>
0f050d99 97#include <linux/debugfs.h>
bcf1647d 98#include <linux/zsmalloc.h>
c795779d 99#include <linux/zpool.h>
0959c63f
SJ
100
101/*
102 * This must be power of 2 and greater than of equal to sizeof(link_free).
103 * These two conditions ensure that any 'struct link_free' itself doesn't
104 * span more than 1 page which avoids complex case of mapping 2 pages simply
105 * to restore link_free pointer values.
106 */
107#define ZS_ALIGN 8
108
109/*
110 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
111 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
112 */
113#define ZS_MAX_ZSPAGE_ORDER 2
114#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
115
2e40e163
MK
116#define ZS_HANDLE_SIZE (sizeof(unsigned long))
117
0959c63f
SJ
118/*
119 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 120 * as single (unsigned long) handle value.
0959c63f
SJ
121 *
122 * Note that object index <obj_idx> is relative to system
123 * page <PFN> it is stored in, so for each sub-page belonging
124 * to a zspage, obj_idx starts with 0.
125 *
126 * This is made more complicated by various memory models and PAE.
127 */
128
129#ifndef MAX_PHYSMEM_BITS
130#ifdef CONFIG_HIGHMEM64G
131#define MAX_PHYSMEM_BITS 36
132#else /* !CONFIG_HIGHMEM64G */
133/*
134 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
135 * be PAGE_SHIFT
136 */
137#define MAX_PHYSMEM_BITS BITS_PER_LONG
138#endif
139#endif
140#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
141
142/*
143 * Memory for allocating for handle keeps object position by
144 * encoding <page, obj_idx> and the encoded value has a room
145 * in least bit(ie, look at obj_to_location).
146 * We use the bit to synchronize between object access by
147 * user and migration.
148 */
149#define HANDLE_PIN_BIT 0
150
151/*
152 * Head in allocated object should have OBJ_ALLOCATED_TAG
153 * to identify the object was allocated or not.
154 * It's okay to add the status bit in the least bit because
155 * header keeps handle which is 4byte-aligned address so we
156 * have room for two bit at least.
157 */
158#define OBJ_ALLOCATED_TAG 1
159#define OBJ_TAG_BITS 1
160#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
161#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
162
163#define MAX(a, b) ((a) >= (b) ? (a) : (b))
164/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
165#define ZS_MIN_ALLOC_SIZE \
166 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 167/* each chunk includes extra space to keep handle */
7b60a685 168#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
169
170/*
7eb52512 171 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
172 * trader-off here:
173 * - Large number of size classes is potentially wasteful as free page are
174 * spread across these classes
175 * - Small number of size classes causes large internal fragmentation
176 * - Probably its better to use specific size classes (empirically
177 * determined). NOTE: all those class sizes must be set as multiple of
178 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
179 *
180 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
181 * (reason above)
182 */
d662b8eb 183#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
184
185/*
186 * We do not maintain any list for completely empty or full pages
187 */
188enum fullness_group {
189 ZS_ALMOST_FULL,
190 ZS_ALMOST_EMPTY,
191 _ZS_NR_FULLNESS_GROUPS,
192
193 ZS_EMPTY,
194 ZS_FULL
195};
196
0f050d99
GM
197enum zs_stat_type {
198 OBJ_ALLOCATED,
199 OBJ_USED,
200 NR_ZS_STAT_TYPE,
201};
202
203#ifdef CONFIG_ZSMALLOC_STAT
204
205static struct dentry *zs_stat_root;
206
207struct zs_size_stat {
208 unsigned long objs[NR_ZS_STAT_TYPE];
209};
210
211#endif
212
40f9fb8c
MG
213/*
214 * number of size_classes
215 */
216static int zs_size_classes;
217
0959c63f
SJ
218/*
219 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
220 * n <= N / f, where
221 * n = number of allocated objects
222 * N = total number of objects zspage can store
6dd9737e 223 * f = fullness_threshold_frac
0959c63f
SJ
224 *
225 * Similarly, we assign zspage to:
226 * ZS_ALMOST_FULL when n > N / f
227 * ZS_EMPTY when n == 0
228 * ZS_FULL when n == N
229 *
230 * (see: fix_fullness_group())
231 */
232static const int fullness_threshold_frac = 4;
233
234struct size_class {
235 /*
236 * Size of objects stored in this class. Must be multiple
237 * of ZS_ALIGN.
238 */
239 int size;
240 unsigned int index;
241
242 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
243 int pages_per_zspage;
7b60a685
MK
244 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
245 bool huge;
0959c63f 246
0f050d99
GM
247#ifdef CONFIG_ZSMALLOC_STAT
248 struct zs_size_stat stats;
249#endif
250
0959c63f
SJ
251 spinlock_t lock;
252
0959c63f
SJ
253 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
254};
255
256/*
257 * Placed within free objects to form a singly linked list.
258 * For every zspage, first_page->freelist gives head of this list.
259 *
260 * This must be power of 2 and less than or equal to ZS_ALIGN
261 */
262struct link_free {
2e40e163
MK
263 union {
264 /*
265 * Position of next free chunk (encodes <PFN, obj_idx>)
266 * It's valid for non-allocated object
267 */
268 void *next;
269 /*
270 * Handle of allocated object.
271 */
272 unsigned long handle;
273 };
0959c63f
SJ
274};
275
276struct zs_pool {
0f050d99
GM
277 char *name;
278
40f9fb8c 279 struct size_class **size_class;
2e40e163 280 struct kmem_cache *handle_cachep;
0959c63f
SJ
281
282 gfp_t flags; /* allocation flags used when growing pool */
13de8933 283 atomic_long_t pages_allocated;
0f050d99
GM
284
285#ifdef CONFIG_ZSMALLOC_STAT
286 struct dentry *stat_dentry;
287#endif
0959c63f 288};
61989a80
NG
289
290/*
291 * A zspage's class index and fullness group
292 * are encoded in its (first)page->mapping
293 */
294#define CLASS_IDX_BITS 28
295#define FULLNESS_BITS 4
296#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
297#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
298
f553646a 299struct mapping_area {
1b945aee 300#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
301 struct vm_struct *vm; /* vm area for mapping object that span pages */
302#else
303 char *vm_buf; /* copy buffer for objects that span pages */
304#endif
305 char *vm_addr; /* address of kmap_atomic()'ed pages */
306 enum zs_mapmode vm_mm; /* mapping mode */
7b60a685 307 bool huge;
f553646a
SJ
308};
309
2e40e163
MK
310static int create_handle_cache(struct zs_pool *pool)
311{
312 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
313 0, 0, NULL);
314 return pool->handle_cachep ? 0 : 1;
315}
316
317static void destroy_handle_cache(struct zs_pool *pool)
318{
319 kmem_cache_destroy(pool->handle_cachep);
320}
321
322static unsigned long alloc_handle(struct zs_pool *pool)
323{
324 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
325 pool->flags & ~__GFP_HIGHMEM);
326}
327
328static void free_handle(struct zs_pool *pool, unsigned long handle)
329{
330 kmem_cache_free(pool->handle_cachep, (void *)handle);
331}
332
333static void record_obj(unsigned long handle, unsigned long obj)
334{
335 *(unsigned long *)handle = obj;
336}
337
c795779d
DS
338/* zpool driver */
339
340#ifdef CONFIG_ZPOOL
341
3eba0c6a 342static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
c795779d 343{
3eba0c6a 344 return zs_create_pool(name, gfp);
c795779d
DS
345}
346
347static void zs_zpool_destroy(void *pool)
348{
349 zs_destroy_pool(pool);
350}
351
352static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
353 unsigned long *handle)
354{
355 *handle = zs_malloc(pool, size);
356 return *handle ? 0 : -1;
357}
358static void zs_zpool_free(void *pool, unsigned long handle)
359{
360 zs_free(pool, handle);
361}
362
363static int zs_zpool_shrink(void *pool, unsigned int pages,
364 unsigned int *reclaimed)
365{
366 return -EINVAL;
367}
368
369static void *zs_zpool_map(void *pool, unsigned long handle,
370 enum zpool_mapmode mm)
371{
372 enum zs_mapmode zs_mm;
373
374 switch (mm) {
375 case ZPOOL_MM_RO:
376 zs_mm = ZS_MM_RO;
377 break;
378 case ZPOOL_MM_WO:
379 zs_mm = ZS_MM_WO;
380 break;
381 case ZPOOL_MM_RW: /* fallthru */
382 default:
383 zs_mm = ZS_MM_RW;
384 break;
385 }
386
387 return zs_map_object(pool, handle, zs_mm);
388}
389static void zs_zpool_unmap(void *pool, unsigned long handle)
390{
391 zs_unmap_object(pool, handle);
392}
393
394static u64 zs_zpool_total_size(void *pool)
395{
722cdc17 396 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
397}
398
399static struct zpool_driver zs_zpool_driver = {
400 .type = "zsmalloc",
401 .owner = THIS_MODULE,
402 .create = zs_zpool_create,
403 .destroy = zs_zpool_destroy,
404 .malloc = zs_zpool_malloc,
405 .free = zs_zpool_free,
406 .shrink = zs_zpool_shrink,
407 .map = zs_zpool_map,
408 .unmap = zs_zpool_unmap,
409 .total_size = zs_zpool_total_size,
410};
411
137f8cff 412MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
413#endif /* CONFIG_ZPOOL */
414
61989a80
NG
415/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
416static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
417
418static int is_first_page(struct page *page)
419{
a27545bf 420 return PagePrivate(page);
61989a80
NG
421}
422
423static int is_last_page(struct page *page)
424{
a27545bf 425 return PagePrivate2(page);
61989a80
NG
426}
427
428static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
429 enum fullness_group *fullness)
430{
431 unsigned long m;
432 BUG_ON(!is_first_page(page));
433
434 m = (unsigned long)page->mapping;
435 *fullness = m & FULLNESS_MASK;
436 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
437}
438
439static void set_zspage_mapping(struct page *page, unsigned int class_idx,
440 enum fullness_group fullness)
441{
442 unsigned long m;
443 BUG_ON(!is_first_page(page));
444
445 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
446 (fullness & FULLNESS_MASK);
447 page->mapping = (struct address_space *)m;
448}
449
c3e3e88a
NC
450/*
451 * zsmalloc divides the pool into various size classes where each
452 * class maintains a list of zspages where each zspage is divided
453 * into equal sized chunks. Each allocation falls into one of these
454 * classes depending on its size. This function returns index of the
455 * size class which has chunk size big enough to hold the give size.
456 */
61989a80
NG
457static int get_size_class_index(int size)
458{
459 int idx = 0;
460
461 if (likely(size > ZS_MIN_ALLOC_SIZE))
462 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
463 ZS_SIZE_CLASS_DELTA);
464
7b60a685 465 return min(zs_size_classes - 1, idx);
61989a80
NG
466}
467
c3e3e88a
NC
468/*
469 * For each size class, zspages are divided into different groups
470 * depending on how "full" they are. This was done so that we could
471 * easily find empty or nearly empty zspages when we try to shrink
472 * the pool (not yet implemented). This function returns fullness
473 * status of the given page.
474 */
61989a80
NG
475static enum fullness_group get_fullness_group(struct page *page)
476{
477 int inuse, max_objects;
478 enum fullness_group fg;
479 BUG_ON(!is_first_page(page));
480
481 inuse = page->inuse;
482 max_objects = page->objects;
483
484 if (inuse == 0)
485 fg = ZS_EMPTY;
486 else if (inuse == max_objects)
487 fg = ZS_FULL;
d3d07c92 488 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
61989a80
NG
489 fg = ZS_ALMOST_EMPTY;
490 else
491 fg = ZS_ALMOST_FULL;
492
493 return fg;
494}
495
c3e3e88a
NC
496/*
497 * Each size class maintains various freelists and zspages are assigned
498 * to one of these freelists based on the number of live objects they
499 * have. This functions inserts the given zspage into the freelist
500 * identified by <class, fullness_group>.
501 */
61989a80
NG
502static void insert_zspage(struct page *page, struct size_class *class,
503 enum fullness_group fullness)
504{
505 struct page **head;
506
507 BUG_ON(!is_first_page(page));
508
509 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
510 return;
511
512 head = &class->fullness_list[fullness];
513 if (*head)
514 list_add_tail(&page->lru, &(*head)->lru);
515
516 *head = page;
517}
518
c3e3e88a
NC
519/*
520 * This function removes the given zspage from the freelist identified
521 * by <class, fullness_group>.
522 */
61989a80
NG
523static void remove_zspage(struct page *page, struct size_class *class,
524 enum fullness_group fullness)
525{
526 struct page **head;
527
528 BUG_ON(!is_first_page(page));
529
530 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
531 return;
532
533 head = &class->fullness_list[fullness];
534 BUG_ON(!*head);
535 if (list_empty(&(*head)->lru))
536 *head = NULL;
537 else if (*head == page)
538 *head = (struct page *)list_entry((*head)->lru.next,
539 struct page, lru);
540
541 list_del_init(&page->lru);
542}
543
c3e3e88a
NC
544/*
545 * Each size class maintains zspages in different fullness groups depending
546 * on the number of live objects they contain. When allocating or freeing
547 * objects, the fullness status of the page can change, say, from ALMOST_FULL
548 * to ALMOST_EMPTY when freeing an object. This function checks if such
549 * a status change has occurred for the given page and accordingly moves the
550 * page from the freelist of the old fullness group to that of the new
551 * fullness group.
552 */
c7806261 553static enum fullness_group fix_fullness_group(struct size_class *class,
61989a80
NG
554 struct page *page)
555{
556 int class_idx;
61989a80
NG
557 enum fullness_group currfg, newfg;
558
559 BUG_ON(!is_first_page(page));
560
561 get_zspage_mapping(page, &class_idx, &currfg);
562 newfg = get_fullness_group(page);
563 if (newfg == currfg)
564 goto out;
565
61989a80
NG
566 remove_zspage(page, class, currfg);
567 insert_zspage(page, class, newfg);
568 set_zspage_mapping(page, class_idx, newfg);
569
570out:
571 return newfg;
572}
573
574/*
575 * We have to decide on how many pages to link together
576 * to form a zspage for each size class. This is important
577 * to reduce wastage due to unusable space left at end of
578 * each zspage which is given as:
579 * wastage = Zp - Zp % size_class
580 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
581 *
582 * For example, for size class of 3/8 * PAGE_SIZE, we should
583 * link together 3 PAGE_SIZE sized pages to form a zspage
584 * since then we can perfectly fit in 8 such objects.
585 */
2e3b6154 586static int get_pages_per_zspage(int class_size)
61989a80
NG
587{
588 int i, max_usedpc = 0;
589 /* zspage order which gives maximum used size per KB */
590 int max_usedpc_order = 1;
591
84d4faab 592 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
593 int zspage_size;
594 int waste, usedpc;
595
596 zspage_size = i * PAGE_SIZE;
597 waste = zspage_size % class_size;
598 usedpc = (zspage_size - waste) * 100 / zspage_size;
599
600 if (usedpc > max_usedpc) {
601 max_usedpc = usedpc;
602 max_usedpc_order = i;
603 }
604 }
605
606 return max_usedpc_order;
607}
608
609/*
610 * A single 'zspage' is composed of many system pages which are
611 * linked together using fields in struct page. This function finds
612 * the first/head page, given any component page of a zspage.
613 */
614static struct page *get_first_page(struct page *page)
615{
616 if (is_first_page(page))
617 return page;
618 else
619 return page->first_page;
620}
621
622static struct page *get_next_page(struct page *page)
623{
624 struct page *next;
625
626 if (is_last_page(page))
627 next = NULL;
628 else if (is_first_page(page))
e842b976 629 next = (struct page *)page_private(page);
61989a80
NG
630 else
631 next = list_entry(page->lru.next, struct page, lru);
632
633 return next;
634}
635
67296874
OH
636/*
637 * Encode <page, obj_idx> as a single handle value.
312fcae2 638 * We use the least bit of handle for tagging.
67296874 639 */
312fcae2 640static void *location_to_obj(struct page *page, unsigned long obj_idx)
61989a80 641{
312fcae2 642 unsigned long obj;
61989a80
NG
643
644 if (!page) {
645 BUG_ON(obj_idx);
646 return NULL;
647 }
648
312fcae2
MK
649 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
650 obj |= ((obj_idx) & OBJ_INDEX_MASK);
651 obj <<= OBJ_TAG_BITS;
61989a80 652
312fcae2 653 return (void *)obj;
61989a80
NG
654}
655
67296874
OH
656/*
657 * Decode <page, obj_idx> pair from the given object handle. We adjust the
658 * decoded obj_idx back to its original value since it was adjusted in
312fcae2 659 * location_to_obj().
67296874 660 */
312fcae2 661static void obj_to_location(unsigned long obj, struct page **page,
61989a80
NG
662 unsigned long *obj_idx)
663{
312fcae2
MK
664 obj >>= OBJ_TAG_BITS;
665 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
666 *obj_idx = (obj & OBJ_INDEX_MASK);
61989a80
NG
667}
668
2e40e163
MK
669static unsigned long handle_to_obj(unsigned long handle)
670{
671 return *(unsigned long *)handle;
672}
673
7b60a685
MK
674static unsigned long obj_to_head(struct size_class *class, struct page *page,
675 void *obj)
312fcae2 676{
7b60a685
MK
677 if (class->huge) {
678 VM_BUG_ON(!is_first_page(page));
679 return *(unsigned long *)page_private(page);
680 } else
681 return *(unsigned long *)obj;
312fcae2
MK
682}
683
61989a80
NG
684static unsigned long obj_idx_to_offset(struct page *page,
685 unsigned long obj_idx, int class_size)
686{
687 unsigned long off = 0;
688
689 if (!is_first_page(page))
690 off = page->index;
691
692 return off + obj_idx * class_size;
693}
694
312fcae2
MK
695static inline int trypin_tag(unsigned long handle)
696{
697 unsigned long *ptr = (unsigned long *)handle;
698
699 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
700}
701
702static void pin_tag(unsigned long handle)
703{
704 while (!trypin_tag(handle));
705}
706
707static void unpin_tag(unsigned long handle)
708{
709 unsigned long *ptr = (unsigned long *)handle;
710
711 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
712}
713
f4477e90
NG
714static void reset_page(struct page *page)
715{
716 clear_bit(PG_private, &page->flags);
717 clear_bit(PG_private_2, &page->flags);
718 set_page_private(page, 0);
719 page->mapping = NULL;
720 page->freelist = NULL;
22b751c3 721 page_mapcount_reset(page);
f4477e90
NG
722}
723
61989a80
NG
724static void free_zspage(struct page *first_page)
725{
f4477e90 726 struct page *nextp, *tmp, *head_extra;
61989a80
NG
727
728 BUG_ON(!is_first_page(first_page));
729 BUG_ON(first_page->inuse);
730
f4477e90 731 head_extra = (struct page *)page_private(first_page);
61989a80 732
f4477e90 733 reset_page(first_page);
61989a80
NG
734 __free_page(first_page);
735
736 /* zspage with only 1 system page */
f4477e90 737 if (!head_extra)
61989a80
NG
738 return;
739
f4477e90 740 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 741 list_del(&nextp->lru);
f4477e90 742 reset_page(nextp);
61989a80
NG
743 __free_page(nextp);
744 }
f4477e90
NG
745 reset_page(head_extra);
746 __free_page(head_extra);
61989a80
NG
747}
748
749/* Initialize a newly allocated zspage */
750static void init_zspage(struct page *first_page, struct size_class *class)
751{
752 unsigned long off = 0;
753 struct page *page = first_page;
754
755 BUG_ON(!is_first_page(first_page));
756 while (page) {
757 struct page *next_page;
758 struct link_free *link;
5538c562 759 unsigned int i = 1;
af4ee5e9 760 void *vaddr;
61989a80
NG
761
762 /*
763 * page->index stores offset of first object starting
764 * in the page. For the first page, this is always 0,
765 * so we use first_page->index (aka ->freelist) to store
766 * head of corresponding zspage's freelist.
767 */
768 if (page != first_page)
769 page->index = off;
770
af4ee5e9
MK
771 vaddr = kmap_atomic(page);
772 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
773
774 while ((off += class->size) < PAGE_SIZE) {
312fcae2 775 link->next = location_to_obj(page, i++);
5538c562 776 link += class->size / sizeof(*link);
61989a80
NG
777 }
778
779 /*
780 * We now come to the last (full or partial) object on this
781 * page, which must point to the first object on the next
782 * page (if present)
783 */
784 next_page = get_next_page(page);
312fcae2 785 link->next = location_to_obj(next_page, 0);
af4ee5e9 786 kunmap_atomic(vaddr);
61989a80 787 page = next_page;
5538c562 788 off %= PAGE_SIZE;
61989a80
NG
789 }
790}
791
792/*
793 * Allocate a zspage for the given size class
794 */
795static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
796{
797 int i, error;
b4b700c5 798 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
799
800 /*
801 * Allocate individual pages and link them together as:
802 * 1. first page->private = first sub-page
803 * 2. all sub-pages are linked together using page->lru
804 * 3. each sub-page is linked to the first page using page->first_page
805 *
806 * For each size class, First/Head pages are linked together using
807 * page->lru. Also, we set PG_private to identify the first page
808 * (i.e. no other sub-page has this flag set) and PG_private_2 to
809 * identify the last page.
810 */
811 error = -ENOMEM;
2e3b6154 812 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 813 struct page *page;
61989a80
NG
814
815 page = alloc_page(flags);
816 if (!page)
817 goto cleanup;
818
819 INIT_LIST_HEAD(&page->lru);
820 if (i == 0) { /* first page */
a27545bf 821 SetPagePrivate(page);
61989a80
NG
822 set_page_private(page, 0);
823 first_page = page;
824 first_page->inuse = 0;
825 }
826 if (i == 1)
e842b976 827 set_page_private(first_page, (unsigned long)page);
61989a80
NG
828 if (i >= 1)
829 page->first_page = first_page;
830 if (i >= 2)
831 list_add(&page->lru, &prev_page->lru);
2e3b6154 832 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 833 SetPagePrivate2(page);
61989a80
NG
834 prev_page = page;
835 }
836
837 init_zspage(first_page, class);
838
312fcae2 839 first_page->freelist = location_to_obj(first_page, 0);
61989a80 840 /* Maximum number of objects we can store in this zspage */
2e3b6154 841 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
61989a80
NG
842
843 error = 0; /* Success */
844
845cleanup:
846 if (unlikely(error) && first_page) {
847 free_zspage(first_page);
848 first_page = NULL;
849 }
850
851 return first_page;
852}
853
854static struct page *find_get_zspage(struct size_class *class)
855{
856 int i;
857 struct page *page;
858
859 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
860 page = class->fullness_list[i];
861 if (page)
862 break;
863 }
864
865 return page;
866}
867
1b945aee 868#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
869static inline int __zs_cpu_up(struct mapping_area *area)
870{
871 /*
872 * Make sure we don't leak memory if a cpu UP notification
873 * and zs_init() race and both call zs_cpu_up() on the same cpu
874 */
875 if (area->vm)
876 return 0;
877 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
878 if (!area->vm)
879 return -ENOMEM;
880 return 0;
881}
882
883static inline void __zs_cpu_down(struct mapping_area *area)
884{
885 if (area->vm)
886 free_vm_area(area->vm);
887 area->vm = NULL;
888}
889
890static inline void *__zs_map_object(struct mapping_area *area,
891 struct page *pages[2], int off, int size)
892{
f6f8ed47 893 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
894 area->vm_addr = area->vm->addr;
895 return area->vm_addr + off;
896}
897
898static inline void __zs_unmap_object(struct mapping_area *area,
899 struct page *pages[2], int off, int size)
900{
901 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 902
d95abbbb 903 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
904}
905
1b945aee 906#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
907
908static inline int __zs_cpu_up(struct mapping_area *area)
909{
910 /*
911 * Make sure we don't leak memory if a cpu UP notification
912 * and zs_init() race and both call zs_cpu_up() on the same cpu
913 */
914 if (area->vm_buf)
915 return 0;
40f9fb8c 916 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
917 if (!area->vm_buf)
918 return -ENOMEM;
919 return 0;
920}
921
922static inline void __zs_cpu_down(struct mapping_area *area)
923{
40f9fb8c 924 kfree(area->vm_buf);
f553646a
SJ
925 area->vm_buf = NULL;
926}
927
928static void *__zs_map_object(struct mapping_area *area,
929 struct page *pages[2], int off, int size)
5f601902 930{
5f601902
SJ
931 int sizes[2];
932 void *addr;
f553646a 933 char *buf = area->vm_buf;
5f601902 934
f553646a
SJ
935 /* disable page faults to match kmap_atomic() return conditions */
936 pagefault_disable();
937
938 /* no read fastpath */
939 if (area->vm_mm == ZS_MM_WO)
940 goto out;
5f601902
SJ
941
942 sizes[0] = PAGE_SIZE - off;
943 sizes[1] = size - sizes[0];
944
5f601902
SJ
945 /* copy object to per-cpu buffer */
946 addr = kmap_atomic(pages[0]);
947 memcpy(buf, addr + off, sizes[0]);
948 kunmap_atomic(addr);
949 addr = kmap_atomic(pages[1]);
950 memcpy(buf + sizes[0], addr, sizes[1]);
951 kunmap_atomic(addr);
f553646a
SJ
952out:
953 return area->vm_buf;
5f601902
SJ
954}
955
f553646a
SJ
956static void __zs_unmap_object(struct mapping_area *area,
957 struct page *pages[2], int off, int size)
5f601902 958{
5f601902
SJ
959 int sizes[2];
960 void *addr;
2e40e163 961 char *buf;
5f601902 962
f553646a
SJ
963 /* no write fastpath */
964 if (area->vm_mm == ZS_MM_RO)
965 goto out;
5f601902 966
7b60a685
MK
967 buf = area->vm_buf;
968 if (!area->huge) {
969 buf = buf + ZS_HANDLE_SIZE;
970 size -= ZS_HANDLE_SIZE;
971 off += ZS_HANDLE_SIZE;
972 }
2e40e163 973
5f601902
SJ
974 sizes[0] = PAGE_SIZE - off;
975 sizes[1] = size - sizes[0];
976
977 /* copy per-cpu buffer to object */
978 addr = kmap_atomic(pages[0]);
979 memcpy(addr + off, buf, sizes[0]);
980 kunmap_atomic(addr);
981 addr = kmap_atomic(pages[1]);
982 memcpy(addr, buf + sizes[0], sizes[1]);
983 kunmap_atomic(addr);
f553646a
SJ
984
985out:
986 /* enable page faults to match kunmap_atomic() return conditions */
987 pagefault_enable();
5f601902 988}
61989a80 989
1b945aee 990#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 991
61989a80
NG
992static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
993 void *pcpu)
994{
f553646a 995 int ret, cpu = (long)pcpu;
61989a80
NG
996 struct mapping_area *area;
997
998 switch (action) {
999 case CPU_UP_PREPARE:
1000 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
1001 ret = __zs_cpu_up(area);
1002 if (ret)
1003 return notifier_from_errno(ret);
61989a80
NG
1004 break;
1005 case CPU_DEAD:
1006 case CPU_UP_CANCELED:
1007 area = &per_cpu(zs_map_area, cpu);
f553646a 1008 __zs_cpu_down(area);
61989a80
NG
1009 break;
1010 }
1011
1012 return NOTIFY_OK;
1013}
1014
1015static struct notifier_block zs_cpu_nb = {
1016 .notifier_call = zs_cpu_notifier
1017};
1018
b1b00a5b 1019static int zs_register_cpu_notifier(void)
61989a80 1020{
b1b00a5b 1021 int cpu, uninitialized_var(ret);
61989a80 1022
f0e71fcd
SB
1023 cpu_notifier_register_begin();
1024
1025 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
1026 for_each_online_cpu(cpu) {
1027 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
b1b00a5b
SS
1028 if (notifier_to_errno(ret))
1029 break;
61989a80 1030 }
f0e71fcd
SB
1031
1032 cpu_notifier_register_done();
b1b00a5b
SS
1033 return notifier_to_errno(ret);
1034}
f0e71fcd 1035
66cdef66 1036static void zs_unregister_cpu_notifier(void)
40f9fb8c 1037{
66cdef66 1038 int cpu;
40f9fb8c 1039
66cdef66 1040 cpu_notifier_register_begin();
40f9fb8c 1041
66cdef66
GM
1042 for_each_online_cpu(cpu)
1043 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1044 __unregister_cpu_notifier(&zs_cpu_nb);
40f9fb8c 1045
66cdef66 1046 cpu_notifier_register_done();
b1b00a5b
SS
1047}
1048
66cdef66 1049static void init_zs_size_classes(void)
b1b00a5b 1050{
66cdef66 1051 int nr;
c795779d 1052
66cdef66
GM
1053 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1054 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1055 nr += 1;
40f9fb8c 1056
66cdef66 1057 zs_size_classes = nr;
61989a80
NG
1058}
1059
9eec4cd5
JK
1060static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
1061{
1062 return pages_per_zspage * PAGE_SIZE / size;
1063}
1064
1065static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1066{
1067 if (prev->pages_per_zspage != pages_per_zspage)
1068 return false;
1069
1070 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1071 != get_maxobj_per_zspage(size, pages_per_zspage))
1072 return false;
1073
1074 return true;
1075}
1076
312fcae2
MK
1077static bool zspage_full(struct page *page)
1078{
1079 BUG_ON(!is_first_page(page));
1080
1081 return page->inuse == page->objects;
1082}
1083
0f050d99
GM
1084#ifdef CONFIG_ZSMALLOC_STAT
1085
1086static inline void zs_stat_inc(struct size_class *class,
1087 enum zs_stat_type type, unsigned long cnt)
1088{
1089 class->stats.objs[type] += cnt;
1090}
1091
1092static inline void zs_stat_dec(struct size_class *class,
1093 enum zs_stat_type type, unsigned long cnt)
1094{
1095 class->stats.objs[type] -= cnt;
1096}
1097
1098static inline unsigned long zs_stat_get(struct size_class *class,
1099 enum zs_stat_type type)
1100{
1101 return class->stats.objs[type];
1102}
1103
1104static int __init zs_stat_init(void)
1105{
1106 if (!debugfs_initialized())
1107 return -ENODEV;
1108
1109 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
1110 if (!zs_stat_root)
1111 return -ENOMEM;
1112
1113 return 0;
1114}
1115
1116static void __exit zs_stat_exit(void)
1117{
1118 debugfs_remove_recursive(zs_stat_root);
1119}
1120
1121static int zs_stats_size_show(struct seq_file *s, void *v)
1122{
1123 int i;
1124 struct zs_pool *pool = s->private;
1125 struct size_class *class;
1126 int objs_per_zspage;
1127 unsigned long obj_allocated, obj_used, pages_used;
1128 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1129
1130 seq_printf(s, " %5s %5s %13s %10s %10s\n", "class", "size",
1131 "obj_allocated", "obj_used", "pages_used");
1132
1133 for (i = 0; i < zs_size_classes; i++) {
1134 class = pool->size_class[i];
1135
1136 if (class->index != i)
1137 continue;
1138
1139 spin_lock(&class->lock);
1140 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1141 obj_used = zs_stat_get(class, OBJ_USED);
1142 spin_unlock(&class->lock);
1143
1144 objs_per_zspage = get_maxobj_per_zspage(class->size,
1145 class->pages_per_zspage);
1146 pages_used = obj_allocated / objs_per_zspage *
1147 class->pages_per_zspage;
1148
1149 seq_printf(s, " %5u %5u %10lu %10lu %10lu\n", i,
1150 class->size, obj_allocated, obj_used, pages_used);
1151
1152 total_objs += obj_allocated;
1153 total_used_objs += obj_used;
1154 total_pages += pages_used;
1155 }
1156
1157 seq_puts(s, "\n");
1158 seq_printf(s, " %5s %5s %10lu %10lu %10lu\n", "Total", "",
1159 total_objs, total_used_objs, total_pages);
1160
1161 return 0;
1162}
1163
1164static int zs_stats_size_open(struct inode *inode, struct file *file)
1165{
1166 return single_open(file, zs_stats_size_show, inode->i_private);
1167}
1168
1169static const struct file_operations zs_stat_size_ops = {
1170 .open = zs_stats_size_open,
1171 .read = seq_read,
1172 .llseek = seq_lseek,
1173 .release = single_release,
1174};
1175
1176static int zs_pool_stat_create(char *name, struct zs_pool *pool)
1177{
1178 struct dentry *entry;
1179
1180 if (!zs_stat_root)
1181 return -ENODEV;
1182
1183 entry = debugfs_create_dir(name, zs_stat_root);
1184 if (!entry) {
1185 pr_warn("debugfs dir <%s> creation failed\n", name);
1186 return -ENOMEM;
1187 }
1188 pool->stat_dentry = entry;
1189
1190 entry = debugfs_create_file("obj_in_classes", S_IFREG | S_IRUGO,
1191 pool->stat_dentry, pool, &zs_stat_size_ops);
1192 if (!entry) {
1193 pr_warn("%s: debugfs file entry <%s> creation failed\n",
1194 name, "obj_in_classes");
1195 return -ENOMEM;
1196 }
1197
1198 return 0;
1199}
1200
1201static void zs_pool_stat_destroy(struct zs_pool *pool)
1202{
1203 debugfs_remove_recursive(pool->stat_dentry);
1204}
1205
1206#else /* CONFIG_ZSMALLOC_STAT */
1207
1208static inline void zs_stat_inc(struct size_class *class,
1209 enum zs_stat_type type, unsigned long cnt)
1210{
1211}
1212
1213static inline void zs_stat_dec(struct size_class *class,
1214 enum zs_stat_type type, unsigned long cnt)
1215{
1216}
1217
1218static inline unsigned long zs_stat_get(struct size_class *class,
1219 enum zs_stat_type type)
1220{
1221 return 0;
1222}
1223
1224static int __init zs_stat_init(void)
1225{
1226 return 0;
1227}
1228
1229static void __exit zs_stat_exit(void)
1230{
1231}
1232
1233static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
1234{
1235 return 0;
1236}
1237
1238static inline void zs_pool_stat_destroy(struct zs_pool *pool)
1239{
1240}
1241
1242#endif
1243
66cdef66
GM
1244unsigned long zs_get_total_pages(struct zs_pool *pool)
1245{
1246 return atomic_long_read(&pool->pages_allocated);
1247}
1248EXPORT_SYMBOL_GPL(zs_get_total_pages);
1249
4bbc0bc0 1250/**
66cdef66
GM
1251 * zs_map_object - get address of allocated object from handle.
1252 * @pool: pool from which the object was allocated
1253 * @handle: handle returned from zs_malloc
4bbc0bc0 1254 *
66cdef66
GM
1255 * Before using an object allocated from zs_malloc, it must be mapped using
1256 * this function. When done with the object, it must be unmapped using
1257 * zs_unmap_object.
4bbc0bc0 1258 *
66cdef66
GM
1259 * Only one object can be mapped per cpu at a time. There is no protection
1260 * against nested mappings.
1261 *
1262 * This function returns with preemption and page faults disabled.
4bbc0bc0 1263 */
66cdef66
GM
1264void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1265 enum zs_mapmode mm)
61989a80 1266{
66cdef66 1267 struct page *page;
2e40e163 1268 unsigned long obj, obj_idx, off;
61989a80 1269
66cdef66
GM
1270 unsigned int class_idx;
1271 enum fullness_group fg;
1272 struct size_class *class;
1273 struct mapping_area *area;
1274 struct page *pages[2];
2e40e163 1275 void *ret;
61989a80 1276
66cdef66 1277 BUG_ON(!handle);
40f9fb8c 1278
9eec4cd5 1279 /*
66cdef66
GM
1280 * Because we use per-cpu mapping areas shared among the
1281 * pools/users, we can't allow mapping in interrupt context
1282 * because it can corrupt another users mappings.
9eec4cd5 1283 */
66cdef66 1284 BUG_ON(in_interrupt());
61989a80 1285
312fcae2
MK
1286 /* From now on, migration cannot move the object */
1287 pin_tag(handle);
1288
2e40e163
MK
1289 obj = handle_to_obj(handle);
1290 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1291 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1292 class = pool->size_class[class_idx];
1293 off = obj_idx_to_offset(page, obj_idx, class->size);
df8b5bb9 1294
66cdef66
GM
1295 area = &get_cpu_var(zs_map_area);
1296 area->vm_mm = mm;
1297 if (off + class->size <= PAGE_SIZE) {
1298 /* this object is contained entirely within a page */
1299 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1300 ret = area->vm_addr + off;
1301 goto out;
61989a80
NG
1302 }
1303
66cdef66
GM
1304 /* this object spans two pages */
1305 pages[0] = page;
1306 pages[1] = get_next_page(page);
1307 BUG_ON(!pages[1]);
9eec4cd5 1308
2e40e163
MK
1309 ret = __zs_map_object(area, pages, off, class->size);
1310out:
7b60a685
MK
1311 if (!class->huge)
1312 ret += ZS_HANDLE_SIZE;
1313
1314 return ret;
61989a80 1315}
66cdef66 1316EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1317
66cdef66 1318void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1319{
66cdef66 1320 struct page *page;
2e40e163 1321 unsigned long obj, obj_idx, off;
61989a80 1322
66cdef66
GM
1323 unsigned int class_idx;
1324 enum fullness_group fg;
1325 struct size_class *class;
1326 struct mapping_area *area;
9eec4cd5 1327
66cdef66 1328 BUG_ON(!handle);
9eec4cd5 1329
2e40e163
MK
1330 obj = handle_to_obj(handle);
1331 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1332 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1333 class = pool->size_class[class_idx];
1334 off = obj_idx_to_offset(page, obj_idx, class->size);
61989a80 1335
66cdef66
GM
1336 area = this_cpu_ptr(&zs_map_area);
1337 if (off + class->size <= PAGE_SIZE)
1338 kunmap_atomic(area->vm_addr);
1339 else {
1340 struct page *pages[2];
40f9fb8c 1341
66cdef66
GM
1342 pages[0] = page;
1343 pages[1] = get_next_page(page);
1344 BUG_ON(!pages[1]);
1345
1346 __zs_unmap_object(area, pages, off, class->size);
1347 }
1348 put_cpu_var(zs_map_area);
312fcae2 1349 unpin_tag(handle);
61989a80 1350}
66cdef66 1351EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1352
c7806261
MK
1353static unsigned long obj_malloc(struct page *first_page,
1354 struct size_class *class, unsigned long handle)
1355{
1356 unsigned long obj;
1357 struct link_free *link;
1358
1359 struct page *m_page;
1360 unsigned long m_objidx, m_offset;
1361 void *vaddr;
1362
312fcae2 1363 handle |= OBJ_ALLOCATED_TAG;
c7806261
MK
1364 obj = (unsigned long)first_page->freelist;
1365 obj_to_location(obj, &m_page, &m_objidx);
1366 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1367
1368 vaddr = kmap_atomic(m_page);
1369 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1370 first_page->freelist = link->next;
7b60a685
MK
1371 if (!class->huge)
1372 /* record handle in the header of allocated chunk */
1373 link->handle = handle;
1374 else
1375 /* record handle in first_page->private */
1376 set_page_private(first_page, handle);
c7806261
MK
1377 kunmap_atomic(vaddr);
1378 first_page->inuse++;
1379 zs_stat_inc(class, OBJ_USED, 1);
1380
1381 return obj;
1382}
1383
1384
61989a80
NG
1385/**
1386 * zs_malloc - Allocate block of given size from pool.
1387 * @pool: pool to allocate from
1388 * @size: size of block to allocate
61989a80 1389 *
00a61d86 1390 * On success, handle to the allocated object is returned,
c2344348 1391 * otherwise 0.
61989a80
NG
1392 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1393 */
c2344348 1394unsigned long zs_malloc(struct zs_pool *pool, size_t size)
61989a80 1395{
2e40e163 1396 unsigned long handle, obj;
61989a80 1397 struct size_class *class;
c7806261 1398 struct page *first_page;
61989a80 1399
7b60a685 1400 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1401 return 0;
1402
1403 handle = alloc_handle(pool);
1404 if (!handle)
c2344348 1405 return 0;
61989a80 1406
2e40e163
MK
1407 /* extra space in chunk to keep the handle */
1408 size += ZS_HANDLE_SIZE;
9eec4cd5 1409 class = pool->size_class[get_size_class_index(size)];
7b60a685
MK
1410 /* In huge class size, we store the handle into first_page->private */
1411 if (class->huge) {
1412 size -= ZS_HANDLE_SIZE;
1413 class = pool->size_class[get_size_class_index(size)];
1414 }
61989a80
NG
1415
1416 spin_lock(&class->lock);
1417 first_page = find_get_zspage(class);
1418
1419 if (!first_page) {
1420 spin_unlock(&class->lock);
1421 first_page = alloc_zspage(class, pool->flags);
2e40e163
MK
1422 if (unlikely(!first_page)) {
1423 free_handle(pool, handle);
c2344348 1424 return 0;
2e40e163 1425 }
61989a80
NG
1426
1427 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
13de8933
MK
1428 atomic_long_add(class->pages_per_zspage,
1429 &pool->pages_allocated);
0f050d99 1430
61989a80 1431 spin_lock(&class->lock);
0f050d99
GM
1432 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1433 class->size, class->pages_per_zspage));
61989a80
NG
1434 }
1435
c7806261 1436 obj = obj_malloc(first_page, class, handle);
61989a80 1437 /* Now move the zspage to another fullness group, if required */
c7806261 1438 fix_fullness_group(class, first_page);
2e40e163 1439 record_obj(handle, obj);
61989a80
NG
1440 spin_unlock(&class->lock);
1441
2e40e163 1442 return handle;
61989a80
NG
1443}
1444EXPORT_SYMBOL_GPL(zs_malloc);
1445
c7806261
MK
1446static void obj_free(struct zs_pool *pool, struct size_class *class,
1447 unsigned long obj)
61989a80
NG
1448{
1449 struct link_free *link;
1450 struct page *first_page, *f_page;
c7806261 1451 unsigned long f_objidx, f_offset;
af4ee5e9 1452 void *vaddr;
61989a80 1453 int class_idx;
61989a80
NG
1454 enum fullness_group fullness;
1455
c7806261 1456 BUG_ON(!obj);
61989a80 1457
312fcae2 1458 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1459 obj_to_location(obj, &f_page, &f_objidx);
61989a80
NG
1460 first_page = get_first_page(f_page);
1461
1462 get_zspage_mapping(first_page, &class_idx, &fullness);
61989a80
NG
1463 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1464
c7806261 1465 vaddr = kmap_atomic(f_page);
61989a80
NG
1466
1467 /* Insert this object in containing zspage's freelist */
af4ee5e9 1468 link = (struct link_free *)(vaddr + f_offset);
61989a80 1469 link->next = first_page->freelist;
7b60a685
MK
1470 if (class->huge)
1471 set_page_private(first_page, 0);
af4ee5e9 1472 kunmap_atomic(vaddr);
c2344348 1473 first_page->freelist = (void *)obj;
61989a80 1474 first_page->inuse--;
0f050d99 1475 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1476}
1477
1478void zs_free(struct zs_pool *pool, unsigned long handle)
1479{
1480 struct page *first_page, *f_page;
1481 unsigned long obj, f_objidx;
1482 int class_idx;
1483 struct size_class *class;
1484 enum fullness_group fullness;
1485
1486 if (unlikely(!handle))
1487 return;
1488
312fcae2 1489 pin_tag(handle);
c7806261 1490 obj = handle_to_obj(handle);
c7806261
MK
1491 obj_to_location(obj, &f_page, &f_objidx);
1492 first_page = get_first_page(f_page);
1493
1494 get_zspage_mapping(first_page, &class_idx, &fullness);
1495 class = pool->size_class[class_idx];
1496
1497 spin_lock(&class->lock);
1498 obj_free(pool, class, obj);
1499 fullness = fix_fullness_group(class, first_page);
312fcae2 1500 if (fullness == ZS_EMPTY) {
0f050d99
GM
1501 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1502 class->size, class->pages_per_zspage));
312fcae2
MK
1503 atomic_long_sub(class->pages_per_zspage,
1504 &pool->pages_allocated);
1505 free_zspage(first_page);
1506 }
61989a80 1507 spin_unlock(&class->lock);
312fcae2 1508 unpin_tag(handle);
61989a80 1509
312fcae2
MK
1510 free_handle(pool, handle);
1511}
1512EXPORT_SYMBOL_GPL(zs_free);
1513
1514static void zs_object_copy(unsigned long src, unsigned long dst,
1515 struct size_class *class)
1516{
1517 struct page *s_page, *d_page;
1518 unsigned long s_objidx, d_objidx;
1519 unsigned long s_off, d_off;
1520 void *s_addr, *d_addr;
1521 int s_size, d_size, size;
1522 int written = 0;
1523
1524 s_size = d_size = class->size;
1525
1526 obj_to_location(src, &s_page, &s_objidx);
1527 obj_to_location(dst, &d_page, &d_objidx);
1528
1529 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1530 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1531
1532 if (s_off + class->size > PAGE_SIZE)
1533 s_size = PAGE_SIZE - s_off;
1534
1535 if (d_off + class->size > PAGE_SIZE)
1536 d_size = PAGE_SIZE - d_off;
1537
1538 s_addr = kmap_atomic(s_page);
1539 d_addr = kmap_atomic(d_page);
1540
1541 while (1) {
1542 size = min(s_size, d_size);
1543 memcpy(d_addr + d_off, s_addr + s_off, size);
1544 written += size;
1545
1546 if (written == class->size)
1547 break;
1548
1549 if (s_off + size >= PAGE_SIZE) {
1550 kunmap_atomic(d_addr);
1551 kunmap_atomic(s_addr);
1552 s_page = get_next_page(s_page);
1553 BUG_ON(!s_page);
1554 s_addr = kmap_atomic(s_page);
1555 d_addr = kmap_atomic(d_page);
1556 s_size = class->size - written;
1557 s_off = 0;
1558 } else {
1559 s_off += size;
1560 s_size -= size;
1561 }
1562
1563 if (d_off + size >= PAGE_SIZE) {
1564 kunmap_atomic(d_addr);
1565 d_page = get_next_page(d_page);
1566 BUG_ON(!d_page);
1567 d_addr = kmap_atomic(d_page);
1568 d_size = class->size - written;
1569 d_off = 0;
1570 } else {
1571 d_off += size;
1572 d_size -= size;
1573 }
1574 }
1575
1576 kunmap_atomic(d_addr);
1577 kunmap_atomic(s_addr);
1578}
1579
1580/*
1581 * Find alloced object in zspage from index object and
1582 * return handle.
1583 */
1584static unsigned long find_alloced_obj(struct page *page, int index,
1585 struct size_class *class)
1586{
1587 unsigned long head;
1588 int offset = 0;
1589 unsigned long handle = 0;
1590 void *addr = kmap_atomic(page);
1591
1592 if (!is_first_page(page))
1593 offset = page->index;
1594 offset += class->size * index;
1595
1596 while (offset < PAGE_SIZE) {
7b60a685 1597 head = obj_to_head(class, page, addr + offset);
312fcae2
MK
1598 if (head & OBJ_ALLOCATED_TAG) {
1599 handle = head & ~OBJ_ALLOCATED_TAG;
1600 if (trypin_tag(handle))
1601 break;
1602 handle = 0;
1603 }
1604
1605 offset += class->size;
1606 index++;
1607 }
1608
1609 kunmap_atomic(addr);
1610 return handle;
1611}
1612
1613struct zs_compact_control {
1614 /* Source page for migration which could be a subpage of zspage. */
1615 struct page *s_page;
1616 /* Destination page for migration which should be a first page
1617 * of zspage. */
1618 struct page *d_page;
1619 /* Starting object index within @s_page which used for live object
1620 * in the subpage. */
1621 int index;
1622 /* how many of objects are migrated */
1623 int nr_migrated;
1624};
1625
1626static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1627 struct zs_compact_control *cc)
1628{
1629 unsigned long used_obj, free_obj;
1630 unsigned long handle;
1631 struct page *s_page = cc->s_page;
1632 struct page *d_page = cc->d_page;
1633 unsigned long index = cc->index;
1634 int nr_migrated = 0;
1635 int ret = 0;
1636
1637 while (1) {
1638 handle = find_alloced_obj(s_page, index, class);
1639 if (!handle) {
1640 s_page = get_next_page(s_page);
1641 if (!s_page)
1642 break;
1643 index = 0;
1644 continue;
1645 }
1646
1647 /* Stop if there is no more space */
1648 if (zspage_full(d_page)) {
1649 unpin_tag(handle);
1650 ret = -ENOMEM;
1651 break;
1652 }
1653
1654 used_obj = handle_to_obj(handle);
1655 free_obj = obj_malloc(d_page, class, handle);
1656 zs_object_copy(used_obj, free_obj, class);
1657 index++;
1658 record_obj(handle, free_obj);
1659 unpin_tag(handle);
1660 obj_free(pool, class, used_obj);
1661 nr_migrated++;
1662 }
1663
1664 /* Remember last position in this iteration */
1665 cc->s_page = s_page;
1666 cc->index = index;
1667 cc->nr_migrated = nr_migrated;
1668
1669 return ret;
1670}
1671
1672static struct page *alloc_target_page(struct size_class *class)
1673{
1674 int i;
1675 struct page *page;
1676
1677 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1678 page = class->fullness_list[i];
1679 if (page) {
1680 remove_zspage(page, class, i);
1681 break;
1682 }
1683 }
1684
1685 return page;
1686}
1687
1688static void putback_zspage(struct zs_pool *pool, struct size_class *class,
1689 struct page *first_page)
1690{
1691 int class_idx;
1692 enum fullness_group fullness;
1693
1694 BUG_ON(!is_first_page(first_page));
1695
1696 get_zspage_mapping(first_page, &class_idx, &fullness);
1697 insert_zspage(first_page, class, fullness);
1698 fullness = fix_fullness_group(class, first_page);
13de8933 1699 if (fullness == ZS_EMPTY) {
312fcae2
MK
1700 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1701 class->size, class->pages_per_zspage));
13de8933
MK
1702 atomic_long_sub(class->pages_per_zspage,
1703 &pool->pages_allocated);
312fcae2 1704
61989a80 1705 free_zspage(first_page);
13de8933 1706 }
61989a80 1707}
312fcae2
MK
1708
1709static struct page *isolate_source_page(struct size_class *class)
1710{
1711 struct page *page;
1712
1713 page = class->fullness_list[ZS_ALMOST_EMPTY];
1714 if (page)
1715 remove_zspage(page, class, ZS_ALMOST_EMPTY);
1716
1717 return page;
1718}
1719
1720static unsigned long __zs_compact(struct zs_pool *pool,
1721 struct size_class *class)
1722{
1723 int nr_to_migrate;
1724 struct zs_compact_control cc;
1725 struct page *src_page;
1726 struct page *dst_page = NULL;
1727 unsigned long nr_total_migrated = 0;
1728
1729 cond_resched();
1730
1731 spin_lock(&class->lock);
1732 while ((src_page = isolate_source_page(class))) {
1733
1734 BUG_ON(!is_first_page(src_page));
1735
1736 /* The goal is to migrate all live objects in source page */
1737 nr_to_migrate = src_page->inuse;
1738 cc.index = 0;
1739 cc.s_page = src_page;
1740
1741 while ((dst_page = alloc_target_page(class))) {
1742 cc.d_page = dst_page;
1743 /*
1744 * If there is no more space in dst_page, try to
1745 * allocate another zspage.
1746 */
1747 if (!migrate_zspage(pool, class, &cc))
1748 break;
1749
1750 putback_zspage(pool, class, dst_page);
1751 nr_total_migrated += cc.nr_migrated;
1752 nr_to_migrate -= cc.nr_migrated;
1753 }
1754
1755 /* Stop if we couldn't find slot */
1756 if (dst_page == NULL)
1757 break;
1758
1759 putback_zspage(pool, class, dst_page);
1760 putback_zspage(pool, class, src_page);
1761 spin_unlock(&class->lock);
1762 nr_total_migrated += cc.nr_migrated;
1763 cond_resched();
1764 spin_lock(&class->lock);
1765 }
1766
1767 if (src_page)
1768 putback_zspage(pool, class, src_page);
1769
1770 spin_unlock(&class->lock);
1771
1772 return nr_total_migrated;
1773}
1774
1775unsigned long zs_compact(struct zs_pool *pool)
1776{
1777 int i;
1778 unsigned long nr_migrated = 0;
1779 struct size_class *class;
1780
1781 for (i = zs_size_classes - 1; i >= 0; i--) {
1782 class = pool->size_class[i];
1783 if (!class)
1784 continue;
1785 if (class->index != i)
1786 continue;
1787 nr_migrated += __zs_compact(pool, class);
1788 }
1789
1790 synchronize_rcu();
1791
1792 return nr_migrated;
1793}
1794EXPORT_SYMBOL_GPL(zs_compact);
61989a80 1795
00a61d86 1796/**
66cdef66
GM
1797 * zs_create_pool - Creates an allocation pool to work from.
1798 * @flags: allocation flags used to allocate pool metadata
166cfda7 1799 *
66cdef66
GM
1800 * This function must be called before anything when using
1801 * the zsmalloc allocator.
166cfda7 1802 *
66cdef66
GM
1803 * On success, a pointer to the newly created pool is returned,
1804 * otherwise NULL.
396b7fd6 1805 */
3eba0c6a 1806struct zs_pool *zs_create_pool(char *name, gfp_t flags)
61989a80 1807{
66cdef66
GM
1808 int i;
1809 struct zs_pool *pool;
1810 struct size_class *prev_class = NULL;
61989a80 1811
66cdef66
GM
1812 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1813 if (!pool)
1814 return NULL;
61989a80 1815
66cdef66
GM
1816 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1817 GFP_KERNEL);
1818 if (!pool->size_class) {
1819 kfree(pool);
1820 return NULL;
1821 }
61989a80 1822
2e40e163
MK
1823 pool->name = kstrdup(name, GFP_KERNEL);
1824 if (!pool->name)
1825 goto err;
1826
1827 if (create_handle_cache(pool))
1828 goto err;
1829
c60369f0 1830 /*
66cdef66
GM
1831 * Iterate reversly, because, size of size_class that we want to use
1832 * for merging should be larger or equal to current size.
c60369f0 1833 */
66cdef66
GM
1834 for (i = zs_size_classes - 1; i >= 0; i--) {
1835 int size;
1836 int pages_per_zspage;
1837 struct size_class *class;
c60369f0 1838
66cdef66
GM
1839 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1840 if (size > ZS_MAX_ALLOC_SIZE)
1841 size = ZS_MAX_ALLOC_SIZE;
1842 pages_per_zspage = get_pages_per_zspage(size);
61989a80 1843
66cdef66
GM
1844 /*
1845 * size_class is used for normal zsmalloc operation such
1846 * as alloc/free for that size. Although it is natural that we
1847 * have one size_class for each size, there is a chance that we
1848 * can get more memory utilization if we use one size_class for
1849 * many different sizes whose size_class have same
1850 * characteristics. So, we makes size_class point to
1851 * previous size_class if possible.
1852 */
1853 if (prev_class) {
1854 if (can_merge(prev_class, size, pages_per_zspage)) {
1855 pool->size_class[i] = prev_class;
1856 continue;
1857 }
1858 }
1859
1860 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1861 if (!class)
1862 goto err;
1863
1864 class->size = size;
1865 class->index = i;
1866 class->pages_per_zspage = pages_per_zspage;
7b60a685
MK
1867 if (pages_per_zspage == 1 &&
1868 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1869 class->huge = true;
66cdef66
GM
1870 spin_lock_init(&class->lock);
1871 pool->size_class[i] = class;
1872
1873 prev_class = class;
61989a80
NG
1874 }
1875
66cdef66 1876 pool->flags = flags;
b7418510 1877
0f050d99
GM
1878 if (zs_pool_stat_create(name, pool))
1879 goto err;
1880
66cdef66
GM
1881 return pool;
1882
1883err:
1884 zs_destroy_pool(pool);
1885 return NULL;
61989a80 1886}
66cdef66 1887EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 1888
66cdef66 1889void zs_destroy_pool(struct zs_pool *pool)
61989a80 1890{
66cdef66 1891 int i;
61989a80 1892
0f050d99
GM
1893 zs_pool_stat_destroy(pool);
1894
66cdef66
GM
1895 for (i = 0; i < zs_size_classes; i++) {
1896 int fg;
1897 struct size_class *class = pool->size_class[i];
61989a80 1898
66cdef66
GM
1899 if (!class)
1900 continue;
61989a80 1901
66cdef66
GM
1902 if (class->index != i)
1903 continue;
61989a80 1904
66cdef66
GM
1905 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1906 if (class->fullness_list[fg]) {
1907 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1908 class->size, fg);
1909 }
1910 }
1911 kfree(class);
1912 }
f553646a 1913
2e40e163 1914 destroy_handle_cache(pool);
66cdef66 1915 kfree(pool->size_class);
0f050d99 1916 kfree(pool->name);
66cdef66
GM
1917 kfree(pool);
1918}
1919EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 1920
66cdef66
GM
1921static int __init zs_init(void)
1922{
1923 int ret = zs_register_cpu_notifier();
1924
0f050d99
GM
1925 if (ret)
1926 goto notifier_fail;
66cdef66
GM
1927
1928 init_zs_size_classes();
1929
1930#ifdef CONFIG_ZPOOL
1931 zpool_register_driver(&zs_zpool_driver);
1932#endif
0f050d99
GM
1933
1934 ret = zs_stat_init();
1935 if (ret) {
1936 pr_err("zs stat initialization failed\n");
1937 goto stat_fail;
1938 }
66cdef66 1939 return 0;
0f050d99
GM
1940
1941stat_fail:
1942#ifdef CONFIG_ZPOOL
1943 zpool_unregister_driver(&zs_zpool_driver);
1944#endif
1945notifier_fail:
1946 zs_unregister_cpu_notifier();
1947
1948 return ret;
61989a80 1949}
61989a80 1950
66cdef66 1951static void __exit zs_exit(void)
61989a80 1952{
66cdef66
GM
1953#ifdef CONFIG_ZPOOL
1954 zpool_unregister_driver(&zs_zpool_driver);
1955#endif
1956 zs_unregister_cpu_notifier();
0f050d99
GM
1957
1958 zs_stat_exit();
61989a80 1959}
069f101f
BH
1960
1961module_init(zs_init);
1962module_exit(zs_exit);
1963
1964MODULE_LICENSE("Dual BSD/GPL");
1965MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");