]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/zsmalloc.c
zsmalloc: use shrinker to trigger auto-compaction
[mirror_ubuntu-artful-kernel.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->first_page: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private (union with page->first_page): refers to the
30 * component page after the first page
7b60a685
MK
31 * If the page is first_page for huge object, it stores handle.
32 * Look at size_class->huge.
2db51dae
NG
33 * page->freelist: points to the first free object in zspage.
34 * Free objects are linked together using in-place
35 * metadata.
36 * page->objects: maximum number of objects we can store in this
37 * zspage (class->zspage_order * PAGE_SIZE / class->size)
38 * page->lru: links together first pages of various zspages.
39 * Basically forming list of zspages in a fullness group.
40 * page->mapping: class index and fullness group of the zspage
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
61989a80
NG
48#include <linux/module.h>
49#include <linux/kernel.h>
312fcae2 50#include <linux/sched.h>
61989a80
NG
51#include <linux/bitops.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
61989a80
NG
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <asm/tlbflush.h>
57#include <asm/pgtable.h>
58#include <linux/cpumask.h>
59#include <linux/cpu.h>
0cbb613f 60#include <linux/vmalloc.h>
c60369f0 61#include <linux/hardirq.h>
0959c63f
SJ
62#include <linux/spinlock.h>
63#include <linux/types.h>
0f050d99 64#include <linux/debugfs.h>
bcf1647d 65#include <linux/zsmalloc.h>
c795779d 66#include <linux/zpool.h>
0959c63f
SJ
67
68/*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
2e40e163
MK
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
0959c63f
SJ
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 87 * as single (unsigned long) handle value.
0959c63f
SJ
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96#ifndef MAX_PHYSMEM_BITS
97#ifdef CONFIG_HIGHMEM64G
98#define MAX_PHYSMEM_BITS 36
99#else /* !CONFIG_HIGHMEM64G */
100/*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104#define MAX_PHYSMEM_BITS BITS_PER_LONG
105#endif
106#endif
107#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
108
109/*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116#define HANDLE_PIN_BIT 0
117
118/*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125#define OBJ_ALLOCATED_TAG 1
126#define OBJ_TAG_BITS 1
127#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
128#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 134/* each chunk includes extra space to keep handle */
7b60a685 135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
136
137/*
7eb52512 138 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
d662b8eb 150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
151
152/*
153 * We do not maintain any list for completely empty or full pages
154 */
155enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162};
163
0f050d99
GM
164enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
248ca1b0
MK
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
0f050d99
GM
169 NR_ZS_STAT_TYPE,
170};
171
0f050d99
GM
172struct zs_size_stat {
173 unsigned long objs[NR_ZS_STAT_TYPE];
174};
175
57244594
SS
176#ifdef CONFIG_ZSMALLOC_STAT
177static struct dentry *zs_stat_root;
0f050d99
GM
178#endif
179
40f9fb8c
MG
180/*
181 * number of size_classes
182 */
183static int zs_size_classes;
184
0959c63f
SJ
185/*
186 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
187 * n <= N / f, where
188 * n = number of allocated objects
189 * N = total number of objects zspage can store
6dd9737e 190 * f = fullness_threshold_frac
0959c63f
SJ
191 *
192 * Similarly, we assign zspage to:
193 * ZS_ALMOST_FULL when n > N / f
194 * ZS_EMPTY when n == 0
195 * ZS_FULL when n == N
196 *
197 * (see: fix_fullness_group())
198 */
199static const int fullness_threshold_frac = 4;
200
201struct size_class {
57244594
SS
202 spinlock_t lock;
203 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
0959c63f
SJ
204 /*
205 * Size of objects stored in this class. Must be multiple
206 * of ZS_ALIGN.
207 */
208 int size;
209 unsigned int index;
210
211 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
212 int pages_per_zspage;
0f050d99 213 struct zs_size_stat stats;
0959c63f 214
57244594
SS
215 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
216 bool huge;
0959c63f
SJ
217};
218
219/*
220 * Placed within free objects to form a singly linked list.
221 * For every zspage, first_page->freelist gives head of this list.
222 *
223 * This must be power of 2 and less than or equal to ZS_ALIGN
224 */
225struct link_free {
2e40e163
MK
226 union {
227 /*
228 * Position of next free chunk (encodes <PFN, obj_idx>)
229 * It's valid for non-allocated object
230 */
231 void *next;
232 /*
233 * Handle of allocated object.
234 */
235 unsigned long handle;
236 };
0959c63f
SJ
237};
238
239struct zs_pool {
0f050d99
GM
240 char *name;
241
40f9fb8c 242 struct size_class **size_class;
2e40e163 243 struct kmem_cache *handle_cachep;
0959c63f
SJ
244
245 gfp_t flags; /* allocation flags used when growing pool */
13de8933 246 atomic_long_t pages_allocated;
0f050d99 247
7d3f3938 248 struct zs_pool_stats stats;
ab9d306d
SS
249
250 /* Compact classes */
251 struct shrinker shrinker;
252 /*
253 * To signify that register_shrinker() was successful
254 * and unregister_shrinker() will not Oops.
255 */
256 bool shrinker_enabled;
0f050d99
GM
257#ifdef CONFIG_ZSMALLOC_STAT
258 struct dentry *stat_dentry;
259#endif
0959c63f 260};
61989a80
NG
261
262/*
263 * A zspage's class index and fullness group
264 * are encoded in its (first)page->mapping
265 */
266#define CLASS_IDX_BITS 28
267#define FULLNESS_BITS 4
268#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
269#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
270
f553646a 271struct mapping_area {
1b945aee 272#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
273 struct vm_struct *vm; /* vm area for mapping object that span pages */
274#else
275 char *vm_buf; /* copy buffer for objects that span pages */
276#endif
277 char *vm_addr; /* address of kmap_atomic()'ed pages */
278 enum zs_mapmode vm_mm; /* mapping mode */
7b60a685 279 bool huge;
f553646a
SJ
280};
281
2e40e163
MK
282static int create_handle_cache(struct zs_pool *pool)
283{
284 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
285 0, 0, NULL);
286 return pool->handle_cachep ? 0 : 1;
287}
288
289static void destroy_handle_cache(struct zs_pool *pool)
290{
02f7b414
SS
291 if (pool->handle_cachep)
292 kmem_cache_destroy(pool->handle_cachep);
2e40e163
MK
293}
294
295static unsigned long alloc_handle(struct zs_pool *pool)
296{
297 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
298 pool->flags & ~__GFP_HIGHMEM);
299}
300
301static void free_handle(struct zs_pool *pool, unsigned long handle)
302{
303 kmem_cache_free(pool->handle_cachep, (void *)handle);
304}
305
306static void record_obj(unsigned long handle, unsigned long obj)
307{
308 *(unsigned long *)handle = obj;
309}
310
c795779d
DS
311/* zpool driver */
312
313#ifdef CONFIG_ZPOOL
314
479305fd
DS
315static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops,
316 struct zpool *zpool)
c795779d 317{
3eba0c6a 318 return zs_create_pool(name, gfp);
c795779d
DS
319}
320
321static void zs_zpool_destroy(void *pool)
322{
323 zs_destroy_pool(pool);
324}
325
326static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
327 unsigned long *handle)
328{
329 *handle = zs_malloc(pool, size);
330 return *handle ? 0 : -1;
331}
332static void zs_zpool_free(void *pool, unsigned long handle)
333{
334 zs_free(pool, handle);
335}
336
337static int zs_zpool_shrink(void *pool, unsigned int pages,
338 unsigned int *reclaimed)
339{
340 return -EINVAL;
341}
342
343static void *zs_zpool_map(void *pool, unsigned long handle,
344 enum zpool_mapmode mm)
345{
346 enum zs_mapmode zs_mm;
347
348 switch (mm) {
349 case ZPOOL_MM_RO:
350 zs_mm = ZS_MM_RO;
351 break;
352 case ZPOOL_MM_WO:
353 zs_mm = ZS_MM_WO;
354 break;
355 case ZPOOL_MM_RW: /* fallthru */
356 default:
357 zs_mm = ZS_MM_RW;
358 break;
359 }
360
361 return zs_map_object(pool, handle, zs_mm);
362}
363static void zs_zpool_unmap(void *pool, unsigned long handle)
364{
365 zs_unmap_object(pool, handle);
366}
367
368static u64 zs_zpool_total_size(void *pool)
369{
722cdc17 370 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
371}
372
373static struct zpool_driver zs_zpool_driver = {
374 .type = "zsmalloc",
375 .owner = THIS_MODULE,
376 .create = zs_zpool_create,
377 .destroy = zs_zpool_destroy,
378 .malloc = zs_zpool_malloc,
379 .free = zs_zpool_free,
380 .shrink = zs_zpool_shrink,
381 .map = zs_zpool_map,
382 .unmap = zs_zpool_unmap,
383 .total_size = zs_zpool_total_size,
384};
385
137f8cff 386MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
387#endif /* CONFIG_ZPOOL */
388
248ca1b0
MK
389static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
390{
391 return pages_per_zspage * PAGE_SIZE / size;
392}
393
61989a80
NG
394/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
395static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
396
397static int is_first_page(struct page *page)
398{
a27545bf 399 return PagePrivate(page);
61989a80
NG
400}
401
402static int is_last_page(struct page *page)
403{
a27545bf 404 return PagePrivate2(page);
61989a80
NG
405}
406
407static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
408 enum fullness_group *fullness)
409{
410 unsigned long m;
411 BUG_ON(!is_first_page(page));
412
413 m = (unsigned long)page->mapping;
414 *fullness = m & FULLNESS_MASK;
415 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
416}
417
418static void set_zspage_mapping(struct page *page, unsigned int class_idx,
419 enum fullness_group fullness)
420{
421 unsigned long m;
422 BUG_ON(!is_first_page(page));
423
424 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
425 (fullness & FULLNESS_MASK);
426 page->mapping = (struct address_space *)m;
427}
428
c3e3e88a
NC
429/*
430 * zsmalloc divides the pool into various size classes where each
431 * class maintains a list of zspages where each zspage is divided
432 * into equal sized chunks. Each allocation falls into one of these
433 * classes depending on its size. This function returns index of the
434 * size class which has chunk size big enough to hold the give size.
435 */
61989a80
NG
436static int get_size_class_index(int size)
437{
438 int idx = 0;
439
440 if (likely(size > ZS_MIN_ALLOC_SIZE))
441 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
442 ZS_SIZE_CLASS_DELTA);
443
7b60a685 444 return min(zs_size_classes - 1, idx);
61989a80
NG
445}
446
248ca1b0
MK
447static inline void zs_stat_inc(struct size_class *class,
448 enum zs_stat_type type, unsigned long cnt)
449{
450 class->stats.objs[type] += cnt;
451}
452
453static inline void zs_stat_dec(struct size_class *class,
454 enum zs_stat_type type, unsigned long cnt)
455{
456 class->stats.objs[type] -= cnt;
457}
458
459static inline unsigned long zs_stat_get(struct size_class *class,
460 enum zs_stat_type type)
461{
462 return class->stats.objs[type];
463}
464
57244594
SS
465#ifdef CONFIG_ZSMALLOC_STAT
466
248ca1b0
MK
467static int __init zs_stat_init(void)
468{
469 if (!debugfs_initialized())
470 return -ENODEV;
471
472 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
473 if (!zs_stat_root)
474 return -ENOMEM;
475
476 return 0;
477}
478
479static void __exit zs_stat_exit(void)
480{
481 debugfs_remove_recursive(zs_stat_root);
482}
483
484static int zs_stats_size_show(struct seq_file *s, void *v)
485{
486 int i;
487 struct zs_pool *pool = s->private;
488 struct size_class *class;
489 int objs_per_zspage;
490 unsigned long class_almost_full, class_almost_empty;
491 unsigned long obj_allocated, obj_used, pages_used;
492 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
493 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
494
495 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
496 "class", "size", "almost_full", "almost_empty",
497 "obj_allocated", "obj_used", "pages_used",
498 "pages_per_zspage");
499
500 for (i = 0; i < zs_size_classes; i++) {
501 class = pool->size_class[i];
502
503 if (class->index != i)
504 continue;
505
506 spin_lock(&class->lock);
507 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
508 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
509 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
510 obj_used = zs_stat_get(class, OBJ_USED);
511 spin_unlock(&class->lock);
512
513 objs_per_zspage = get_maxobj_per_zspage(class->size,
514 class->pages_per_zspage);
515 pages_used = obj_allocated / objs_per_zspage *
516 class->pages_per_zspage;
517
518 seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
519 i, class->size, class_almost_full, class_almost_empty,
520 obj_allocated, obj_used, pages_used,
521 class->pages_per_zspage);
522
523 total_class_almost_full += class_almost_full;
524 total_class_almost_empty += class_almost_empty;
525 total_objs += obj_allocated;
526 total_used_objs += obj_used;
527 total_pages += pages_used;
528 }
529
530 seq_puts(s, "\n");
531 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
532 "Total", "", total_class_almost_full,
533 total_class_almost_empty, total_objs,
534 total_used_objs, total_pages);
535
536 return 0;
537}
538
539static int zs_stats_size_open(struct inode *inode, struct file *file)
540{
541 return single_open(file, zs_stats_size_show, inode->i_private);
542}
543
544static const struct file_operations zs_stat_size_ops = {
545 .open = zs_stats_size_open,
546 .read = seq_read,
547 .llseek = seq_lseek,
548 .release = single_release,
549};
550
551static int zs_pool_stat_create(char *name, struct zs_pool *pool)
552{
553 struct dentry *entry;
554
555 if (!zs_stat_root)
556 return -ENODEV;
557
558 entry = debugfs_create_dir(name, zs_stat_root);
559 if (!entry) {
560 pr_warn("debugfs dir <%s> creation failed\n", name);
561 return -ENOMEM;
562 }
563 pool->stat_dentry = entry;
564
565 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
566 pool->stat_dentry, pool, &zs_stat_size_ops);
567 if (!entry) {
568 pr_warn("%s: debugfs file entry <%s> creation failed\n",
569 name, "classes");
570 return -ENOMEM;
571 }
572
573 return 0;
574}
575
576static void zs_pool_stat_destroy(struct zs_pool *pool)
577{
578 debugfs_remove_recursive(pool->stat_dentry);
579}
580
581#else /* CONFIG_ZSMALLOC_STAT */
248ca1b0
MK
582static int __init zs_stat_init(void)
583{
584 return 0;
585}
586
587static void __exit zs_stat_exit(void)
588{
589}
590
591static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
592{
593 return 0;
594}
595
596static inline void zs_pool_stat_destroy(struct zs_pool *pool)
597{
598}
248ca1b0
MK
599#endif
600
601
c3e3e88a
NC
602/*
603 * For each size class, zspages are divided into different groups
604 * depending on how "full" they are. This was done so that we could
605 * easily find empty or nearly empty zspages when we try to shrink
606 * the pool (not yet implemented). This function returns fullness
607 * status of the given page.
608 */
61989a80
NG
609static enum fullness_group get_fullness_group(struct page *page)
610{
611 int inuse, max_objects;
612 enum fullness_group fg;
613 BUG_ON(!is_first_page(page));
614
615 inuse = page->inuse;
616 max_objects = page->objects;
617
618 if (inuse == 0)
619 fg = ZS_EMPTY;
620 else if (inuse == max_objects)
621 fg = ZS_FULL;
d3d07c92 622 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
61989a80
NG
623 fg = ZS_ALMOST_EMPTY;
624 else
625 fg = ZS_ALMOST_FULL;
626
627 return fg;
628}
629
c3e3e88a
NC
630/*
631 * Each size class maintains various freelists and zspages are assigned
632 * to one of these freelists based on the number of live objects they
633 * have. This functions inserts the given zspage into the freelist
634 * identified by <class, fullness_group>.
635 */
61989a80
NG
636static void insert_zspage(struct page *page, struct size_class *class,
637 enum fullness_group fullness)
638{
639 struct page **head;
640
641 BUG_ON(!is_first_page(page));
642
643 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
644 return;
645
646 head = &class->fullness_list[fullness];
647 if (*head)
648 list_add_tail(&page->lru, &(*head)->lru);
649
650 *head = page;
248ca1b0
MK
651 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
652 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
653}
654
c3e3e88a
NC
655/*
656 * This function removes the given zspage from the freelist identified
657 * by <class, fullness_group>.
658 */
61989a80
NG
659static void remove_zspage(struct page *page, struct size_class *class,
660 enum fullness_group fullness)
661{
662 struct page **head;
663
664 BUG_ON(!is_first_page(page));
665
666 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
667 return;
668
669 head = &class->fullness_list[fullness];
670 BUG_ON(!*head);
671 if (list_empty(&(*head)->lru))
672 *head = NULL;
673 else if (*head == page)
674 *head = (struct page *)list_entry((*head)->lru.next,
675 struct page, lru);
676
677 list_del_init(&page->lru);
248ca1b0
MK
678 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
679 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
680}
681
c3e3e88a
NC
682/*
683 * Each size class maintains zspages in different fullness groups depending
684 * on the number of live objects they contain. When allocating or freeing
685 * objects, the fullness status of the page can change, say, from ALMOST_FULL
686 * to ALMOST_EMPTY when freeing an object. This function checks if such
687 * a status change has occurred for the given page and accordingly moves the
688 * page from the freelist of the old fullness group to that of the new
689 * fullness group.
690 */
c7806261 691static enum fullness_group fix_fullness_group(struct size_class *class,
61989a80
NG
692 struct page *page)
693{
694 int class_idx;
61989a80
NG
695 enum fullness_group currfg, newfg;
696
697 BUG_ON(!is_first_page(page));
698
699 get_zspage_mapping(page, &class_idx, &currfg);
700 newfg = get_fullness_group(page);
701 if (newfg == currfg)
702 goto out;
703
61989a80
NG
704 remove_zspage(page, class, currfg);
705 insert_zspage(page, class, newfg);
706 set_zspage_mapping(page, class_idx, newfg);
707
708out:
709 return newfg;
710}
711
712/*
713 * We have to decide on how many pages to link together
714 * to form a zspage for each size class. This is important
715 * to reduce wastage due to unusable space left at end of
716 * each zspage which is given as:
888fa374
YX
717 * wastage = Zp % class_size
718 * usage = Zp - wastage
61989a80
NG
719 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
720 *
721 * For example, for size class of 3/8 * PAGE_SIZE, we should
722 * link together 3 PAGE_SIZE sized pages to form a zspage
723 * since then we can perfectly fit in 8 such objects.
724 */
2e3b6154 725static int get_pages_per_zspage(int class_size)
61989a80
NG
726{
727 int i, max_usedpc = 0;
728 /* zspage order which gives maximum used size per KB */
729 int max_usedpc_order = 1;
730
84d4faab 731 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
732 int zspage_size;
733 int waste, usedpc;
734
735 zspage_size = i * PAGE_SIZE;
736 waste = zspage_size % class_size;
737 usedpc = (zspage_size - waste) * 100 / zspage_size;
738
739 if (usedpc > max_usedpc) {
740 max_usedpc = usedpc;
741 max_usedpc_order = i;
742 }
743 }
744
745 return max_usedpc_order;
746}
747
748/*
749 * A single 'zspage' is composed of many system pages which are
750 * linked together using fields in struct page. This function finds
751 * the first/head page, given any component page of a zspage.
752 */
753static struct page *get_first_page(struct page *page)
754{
755 if (is_first_page(page))
756 return page;
757 else
758 return page->first_page;
759}
760
761static struct page *get_next_page(struct page *page)
762{
763 struct page *next;
764
765 if (is_last_page(page))
766 next = NULL;
767 else if (is_first_page(page))
e842b976 768 next = (struct page *)page_private(page);
61989a80
NG
769 else
770 next = list_entry(page->lru.next, struct page, lru);
771
772 return next;
773}
774
67296874
OH
775/*
776 * Encode <page, obj_idx> as a single handle value.
312fcae2 777 * We use the least bit of handle for tagging.
67296874 778 */
312fcae2 779static void *location_to_obj(struct page *page, unsigned long obj_idx)
61989a80 780{
312fcae2 781 unsigned long obj;
61989a80
NG
782
783 if (!page) {
784 BUG_ON(obj_idx);
785 return NULL;
786 }
787
312fcae2
MK
788 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
789 obj |= ((obj_idx) & OBJ_INDEX_MASK);
790 obj <<= OBJ_TAG_BITS;
61989a80 791
312fcae2 792 return (void *)obj;
61989a80
NG
793}
794
67296874
OH
795/*
796 * Decode <page, obj_idx> pair from the given object handle. We adjust the
797 * decoded obj_idx back to its original value since it was adjusted in
312fcae2 798 * location_to_obj().
67296874 799 */
312fcae2 800static void obj_to_location(unsigned long obj, struct page **page,
61989a80
NG
801 unsigned long *obj_idx)
802{
312fcae2
MK
803 obj >>= OBJ_TAG_BITS;
804 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
805 *obj_idx = (obj & OBJ_INDEX_MASK);
61989a80
NG
806}
807
2e40e163
MK
808static unsigned long handle_to_obj(unsigned long handle)
809{
810 return *(unsigned long *)handle;
811}
812
7b60a685
MK
813static unsigned long obj_to_head(struct size_class *class, struct page *page,
814 void *obj)
312fcae2 815{
7b60a685
MK
816 if (class->huge) {
817 VM_BUG_ON(!is_first_page(page));
818 return *(unsigned long *)page_private(page);
819 } else
820 return *(unsigned long *)obj;
312fcae2
MK
821}
822
61989a80
NG
823static unsigned long obj_idx_to_offset(struct page *page,
824 unsigned long obj_idx, int class_size)
825{
826 unsigned long off = 0;
827
828 if (!is_first_page(page))
829 off = page->index;
830
831 return off + obj_idx * class_size;
832}
833
312fcae2
MK
834static inline int trypin_tag(unsigned long handle)
835{
836 unsigned long *ptr = (unsigned long *)handle;
837
838 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
839}
840
841static void pin_tag(unsigned long handle)
842{
843 while (!trypin_tag(handle));
844}
845
846static void unpin_tag(unsigned long handle)
847{
848 unsigned long *ptr = (unsigned long *)handle;
849
850 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
851}
852
f4477e90
NG
853static void reset_page(struct page *page)
854{
855 clear_bit(PG_private, &page->flags);
856 clear_bit(PG_private_2, &page->flags);
857 set_page_private(page, 0);
858 page->mapping = NULL;
859 page->freelist = NULL;
22b751c3 860 page_mapcount_reset(page);
f4477e90
NG
861}
862
61989a80
NG
863static void free_zspage(struct page *first_page)
864{
f4477e90 865 struct page *nextp, *tmp, *head_extra;
61989a80
NG
866
867 BUG_ON(!is_first_page(first_page));
868 BUG_ON(first_page->inuse);
869
f4477e90 870 head_extra = (struct page *)page_private(first_page);
61989a80 871
f4477e90 872 reset_page(first_page);
61989a80
NG
873 __free_page(first_page);
874
875 /* zspage with only 1 system page */
f4477e90 876 if (!head_extra)
61989a80
NG
877 return;
878
f4477e90 879 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 880 list_del(&nextp->lru);
f4477e90 881 reset_page(nextp);
61989a80
NG
882 __free_page(nextp);
883 }
f4477e90
NG
884 reset_page(head_extra);
885 __free_page(head_extra);
61989a80
NG
886}
887
888/* Initialize a newly allocated zspage */
889static void init_zspage(struct page *first_page, struct size_class *class)
890{
891 unsigned long off = 0;
892 struct page *page = first_page;
893
894 BUG_ON(!is_first_page(first_page));
895 while (page) {
896 struct page *next_page;
897 struct link_free *link;
5538c562 898 unsigned int i = 1;
af4ee5e9 899 void *vaddr;
61989a80
NG
900
901 /*
902 * page->index stores offset of first object starting
903 * in the page. For the first page, this is always 0,
904 * so we use first_page->index (aka ->freelist) to store
905 * head of corresponding zspage's freelist.
906 */
907 if (page != first_page)
908 page->index = off;
909
af4ee5e9
MK
910 vaddr = kmap_atomic(page);
911 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
912
913 while ((off += class->size) < PAGE_SIZE) {
312fcae2 914 link->next = location_to_obj(page, i++);
5538c562 915 link += class->size / sizeof(*link);
61989a80
NG
916 }
917
918 /*
919 * We now come to the last (full or partial) object on this
920 * page, which must point to the first object on the next
921 * page (if present)
922 */
923 next_page = get_next_page(page);
312fcae2 924 link->next = location_to_obj(next_page, 0);
af4ee5e9 925 kunmap_atomic(vaddr);
61989a80 926 page = next_page;
5538c562 927 off %= PAGE_SIZE;
61989a80
NG
928 }
929}
930
931/*
932 * Allocate a zspage for the given size class
933 */
934static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
935{
936 int i, error;
b4b700c5 937 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
938
939 /*
940 * Allocate individual pages and link them together as:
941 * 1. first page->private = first sub-page
942 * 2. all sub-pages are linked together using page->lru
943 * 3. each sub-page is linked to the first page using page->first_page
944 *
945 * For each size class, First/Head pages are linked together using
946 * page->lru. Also, we set PG_private to identify the first page
947 * (i.e. no other sub-page has this flag set) and PG_private_2 to
948 * identify the last page.
949 */
950 error = -ENOMEM;
2e3b6154 951 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 952 struct page *page;
61989a80
NG
953
954 page = alloc_page(flags);
955 if (!page)
956 goto cleanup;
957
958 INIT_LIST_HEAD(&page->lru);
959 if (i == 0) { /* first page */
a27545bf 960 SetPagePrivate(page);
61989a80
NG
961 set_page_private(page, 0);
962 first_page = page;
963 first_page->inuse = 0;
964 }
965 if (i == 1)
e842b976 966 set_page_private(first_page, (unsigned long)page);
61989a80
NG
967 if (i >= 1)
968 page->first_page = first_page;
969 if (i >= 2)
970 list_add(&page->lru, &prev_page->lru);
2e3b6154 971 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 972 SetPagePrivate2(page);
61989a80
NG
973 prev_page = page;
974 }
975
976 init_zspage(first_page, class);
977
312fcae2 978 first_page->freelist = location_to_obj(first_page, 0);
61989a80 979 /* Maximum number of objects we can store in this zspage */
2e3b6154 980 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
61989a80
NG
981
982 error = 0; /* Success */
983
984cleanup:
985 if (unlikely(error) && first_page) {
986 free_zspage(first_page);
987 first_page = NULL;
988 }
989
990 return first_page;
991}
992
993static struct page *find_get_zspage(struct size_class *class)
994{
995 int i;
996 struct page *page;
997
998 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
999 page = class->fullness_list[i];
1000 if (page)
1001 break;
1002 }
1003
1004 return page;
1005}
1006
1b945aee 1007#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1008static inline int __zs_cpu_up(struct mapping_area *area)
1009{
1010 /*
1011 * Make sure we don't leak memory if a cpu UP notification
1012 * and zs_init() race and both call zs_cpu_up() on the same cpu
1013 */
1014 if (area->vm)
1015 return 0;
1016 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1017 if (!area->vm)
1018 return -ENOMEM;
1019 return 0;
1020}
1021
1022static inline void __zs_cpu_down(struct mapping_area *area)
1023{
1024 if (area->vm)
1025 free_vm_area(area->vm);
1026 area->vm = NULL;
1027}
1028
1029static inline void *__zs_map_object(struct mapping_area *area,
1030 struct page *pages[2], int off, int size)
1031{
f6f8ed47 1032 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1033 area->vm_addr = area->vm->addr;
1034 return area->vm_addr + off;
1035}
1036
1037static inline void __zs_unmap_object(struct mapping_area *area,
1038 struct page *pages[2], int off, int size)
1039{
1040 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1041
d95abbbb 1042 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1043}
1044
1b945aee 1045#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1046
1047static inline int __zs_cpu_up(struct mapping_area *area)
1048{
1049 /*
1050 * Make sure we don't leak memory if a cpu UP notification
1051 * and zs_init() race and both call zs_cpu_up() on the same cpu
1052 */
1053 if (area->vm_buf)
1054 return 0;
40f9fb8c 1055 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1056 if (!area->vm_buf)
1057 return -ENOMEM;
1058 return 0;
1059}
1060
1061static inline void __zs_cpu_down(struct mapping_area *area)
1062{
40f9fb8c 1063 kfree(area->vm_buf);
f553646a
SJ
1064 area->vm_buf = NULL;
1065}
1066
1067static void *__zs_map_object(struct mapping_area *area,
1068 struct page *pages[2], int off, int size)
5f601902 1069{
5f601902
SJ
1070 int sizes[2];
1071 void *addr;
f553646a 1072 char *buf = area->vm_buf;
5f601902 1073
f553646a
SJ
1074 /* disable page faults to match kmap_atomic() return conditions */
1075 pagefault_disable();
1076
1077 /* no read fastpath */
1078 if (area->vm_mm == ZS_MM_WO)
1079 goto out;
5f601902
SJ
1080
1081 sizes[0] = PAGE_SIZE - off;
1082 sizes[1] = size - sizes[0];
1083
5f601902
SJ
1084 /* copy object to per-cpu buffer */
1085 addr = kmap_atomic(pages[0]);
1086 memcpy(buf, addr + off, sizes[0]);
1087 kunmap_atomic(addr);
1088 addr = kmap_atomic(pages[1]);
1089 memcpy(buf + sizes[0], addr, sizes[1]);
1090 kunmap_atomic(addr);
f553646a
SJ
1091out:
1092 return area->vm_buf;
5f601902
SJ
1093}
1094
f553646a
SJ
1095static void __zs_unmap_object(struct mapping_area *area,
1096 struct page *pages[2], int off, int size)
5f601902 1097{
5f601902
SJ
1098 int sizes[2];
1099 void *addr;
2e40e163 1100 char *buf;
5f601902 1101
f553646a
SJ
1102 /* no write fastpath */
1103 if (area->vm_mm == ZS_MM_RO)
1104 goto out;
5f601902 1105
7b60a685
MK
1106 buf = area->vm_buf;
1107 if (!area->huge) {
1108 buf = buf + ZS_HANDLE_SIZE;
1109 size -= ZS_HANDLE_SIZE;
1110 off += ZS_HANDLE_SIZE;
1111 }
2e40e163 1112
5f601902
SJ
1113 sizes[0] = PAGE_SIZE - off;
1114 sizes[1] = size - sizes[0];
1115
1116 /* copy per-cpu buffer to object */
1117 addr = kmap_atomic(pages[0]);
1118 memcpy(addr + off, buf, sizes[0]);
1119 kunmap_atomic(addr);
1120 addr = kmap_atomic(pages[1]);
1121 memcpy(addr, buf + sizes[0], sizes[1]);
1122 kunmap_atomic(addr);
f553646a
SJ
1123
1124out:
1125 /* enable page faults to match kunmap_atomic() return conditions */
1126 pagefault_enable();
5f601902 1127}
61989a80 1128
1b945aee 1129#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1130
61989a80
NG
1131static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1132 void *pcpu)
1133{
f553646a 1134 int ret, cpu = (long)pcpu;
61989a80
NG
1135 struct mapping_area *area;
1136
1137 switch (action) {
1138 case CPU_UP_PREPARE:
1139 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
1140 ret = __zs_cpu_up(area);
1141 if (ret)
1142 return notifier_from_errno(ret);
61989a80
NG
1143 break;
1144 case CPU_DEAD:
1145 case CPU_UP_CANCELED:
1146 area = &per_cpu(zs_map_area, cpu);
f553646a 1147 __zs_cpu_down(area);
61989a80
NG
1148 break;
1149 }
1150
1151 return NOTIFY_OK;
1152}
1153
1154static struct notifier_block zs_cpu_nb = {
1155 .notifier_call = zs_cpu_notifier
1156};
1157
b1b00a5b 1158static int zs_register_cpu_notifier(void)
61989a80 1159{
b1b00a5b 1160 int cpu, uninitialized_var(ret);
61989a80 1161
f0e71fcd
SB
1162 cpu_notifier_register_begin();
1163
1164 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
1165 for_each_online_cpu(cpu) {
1166 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
b1b00a5b
SS
1167 if (notifier_to_errno(ret))
1168 break;
61989a80 1169 }
f0e71fcd
SB
1170
1171 cpu_notifier_register_done();
b1b00a5b
SS
1172 return notifier_to_errno(ret);
1173}
f0e71fcd 1174
66cdef66 1175static void zs_unregister_cpu_notifier(void)
40f9fb8c 1176{
66cdef66 1177 int cpu;
40f9fb8c 1178
66cdef66 1179 cpu_notifier_register_begin();
40f9fb8c 1180
66cdef66
GM
1181 for_each_online_cpu(cpu)
1182 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1183 __unregister_cpu_notifier(&zs_cpu_nb);
40f9fb8c 1184
66cdef66 1185 cpu_notifier_register_done();
b1b00a5b
SS
1186}
1187
66cdef66 1188static void init_zs_size_classes(void)
b1b00a5b 1189{
66cdef66 1190 int nr;
c795779d 1191
66cdef66
GM
1192 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1193 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1194 nr += 1;
40f9fb8c 1195
66cdef66 1196 zs_size_classes = nr;
61989a80
NG
1197}
1198
9eec4cd5
JK
1199static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1200{
1201 if (prev->pages_per_zspage != pages_per_zspage)
1202 return false;
1203
1204 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1205 != get_maxobj_per_zspage(size, pages_per_zspage))
1206 return false;
1207
1208 return true;
1209}
1210
312fcae2
MK
1211static bool zspage_full(struct page *page)
1212{
1213 BUG_ON(!is_first_page(page));
1214
1215 return page->inuse == page->objects;
1216}
1217
66cdef66
GM
1218unsigned long zs_get_total_pages(struct zs_pool *pool)
1219{
1220 return atomic_long_read(&pool->pages_allocated);
1221}
1222EXPORT_SYMBOL_GPL(zs_get_total_pages);
1223
4bbc0bc0 1224/**
66cdef66
GM
1225 * zs_map_object - get address of allocated object from handle.
1226 * @pool: pool from which the object was allocated
1227 * @handle: handle returned from zs_malloc
4bbc0bc0 1228 *
66cdef66
GM
1229 * Before using an object allocated from zs_malloc, it must be mapped using
1230 * this function. When done with the object, it must be unmapped using
1231 * zs_unmap_object.
4bbc0bc0 1232 *
66cdef66
GM
1233 * Only one object can be mapped per cpu at a time. There is no protection
1234 * against nested mappings.
1235 *
1236 * This function returns with preemption and page faults disabled.
4bbc0bc0 1237 */
66cdef66
GM
1238void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1239 enum zs_mapmode mm)
61989a80 1240{
66cdef66 1241 struct page *page;
2e40e163 1242 unsigned long obj, obj_idx, off;
61989a80 1243
66cdef66
GM
1244 unsigned int class_idx;
1245 enum fullness_group fg;
1246 struct size_class *class;
1247 struct mapping_area *area;
1248 struct page *pages[2];
2e40e163 1249 void *ret;
61989a80 1250
66cdef66 1251 BUG_ON(!handle);
40f9fb8c 1252
9eec4cd5 1253 /*
66cdef66
GM
1254 * Because we use per-cpu mapping areas shared among the
1255 * pools/users, we can't allow mapping in interrupt context
1256 * because it can corrupt another users mappings.
9eec4cd5 1257 */
66cdef66 1258 BUG_ON(in_interrupt());
61989a80 1259
312fcae2
MK
1260 /* From now on, migration cannot move the object */
1261 pin_tag(handle);
1262
2e40e163
MK
1263 obj = handle_to_obj(handle);
1264 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1265 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1266 class = pool->size_class[class_idx];
1267 off = obj_idx_to_offset(page, obj_idx, class->size);
df8b5bb9 1268
66cdef66
GM
1269 area = &get_cpu_var(zs_map_area);
1270 area->vm_mm = mm;
1271 if (off + class->size <= PAGE_SIZE) {
1272 /* this object is contained entirely within a page */
1273 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1274 ret = area->vm_addr + off;
1275 goto out;
61989a80
NG
1276 }
1277
66cdef66
GM
1278 /* this object spans two pages */
1279 pages[0] = page;
1280 pages[1] = get_next_page(page);
1281 BUG_ON(!pages[1]);
9eec4cd5 1282
2e40e163
MK
1283 ret = __zs_map_object(area, pages, off, class->size);
1284out:
7b60a685
MK
1285 if (!class->huge)
1286 ret += ZS_HANDLE_SIZE;
1287
1288 return ret;
61989a80 1289}
66cdef66 1290EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1291
66cdef66 1292void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1293{
66cdef66 1294 struct page *page;
2e40e163 1295 unsigned long obj, obj_idx, off;
61989a80 1296
66cdef66
GM
1297 unsigned int class_idx;
1298 enum fullness_group fg;
1299 struct size_class *class;
1300 struct mapping_area *area;
9eec4cd5 1301
66cdef66 1302 BUG_ON(!handle);
9eec4cd5 1303
2e40e163
MK
1304 obj = handle_to_obj(handle);
1305 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1306 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1307 class = pool->size_class[class_idx];
1308 off = obj_idx_to_offset(page, obj_idx, class->size);
61989a80 1309
66cdef66
GM
1310 area = this_cpu_ptr(&zs_map_area);
1311 if (off + class->size <= PAGE_SIZE)
1312 kunmap_atomic(area->vm_addr);
1313 else {
1314 struct page *pages[2];
40f9fb8c 1315
66cdef66
GM
1316 pages[0] = page;
1317 pages[1] = get_next_page(page);
1318 BUG_ON(!pages[1]);
1319
1320 __zs_unmap_object(area, pages, off, class->size);
1321 }
1322 put_cpu_var(zs_map_area);
312fcae2 1323 unpin_tag(handle);
61989a80 1324}
66cdef66 1325EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1326
c7806261
MK
1327static unsigned long obj_malloc(struct page *first_page,
1328 struct size_class *class, unsigned long handle)
1329{
1330 unsigned long obj;
1331 struct link_free *link;
1332
1333 struct page *m_page;
1334 unsigned long m_objidx, m_offset;
1335 void *vaddr;
1336
312fcae2 1337 handle |= OBJ_ALLOCATED_TAG;
c7806261
MK
1338 obj = (unsigned long)first_page->freelist;
1339 obj_to_location(obj, &m_page, &m_objidx);
1340 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1341
1342 vaddr = kmap_atomic(m_page);
1343 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1344 first_page->freelist = link->next;
7b60a685
MK
1345 if (!class->huge)
1346 /* record handle in the header of allocated chunk */
1347 link->handle = handle;
1348 else
1349 /* record handle in first_page->private */
1350 set_page_private(first_page, handle);
c7806261
MK
1351 kunmap_atomic(vaddr);
1352 first_page->inuse++;
1353 zs_stat_inc(class, OBJ_USED, 1);
1354
1355 return obj;
1356}
1357
1358
61989a80
NG
1359/**
1360 * zs_malloc - Allocate block of given size from pool.
1361 * @pool: pool to allocate from
1362 * @size: size of block to allocate
61989a80 1363 *
00a61d86 1364 * On success, handle to the allocated object is returned,
c2344348 1365 * otherwise 0.
61989a80
NG
1366 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1367 */
c2344348 1368unsigned long zs_malloc(struct zs_pool *pool, size_t size)
61989a80 1369{
2e40e163 1370 unsigned long handle, obj;
61989a80 1371 struct size_class *class;
c7806261 1372 struct page *first_page;
61989a80 1373
7b60a685 1374 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1375 return 0;
1376
1377 handle = alloc_handle(pool);
1378 if (!handle)
c2344348 1379 return 0;
61989a80 1380
2e40e163
MK
1381 /* extra space in chunk to keep the handle */
1382 size += ZS_HANDLE_SIZE;
9eec4cd5 1383 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1384
1385 spin_lock(&class->lock);
1386 first_page = find_get_zspage(class);
1387
1388 if (!first_page) {
1389 spin_unlock(&class->lock);
1390 first_page = alloc_zspage(class, pool->flags);
2e40e163
MK
1391 if (unlikely(!first_page)) {
1392 free_handle(pool, handle);
c2344348 1393 return 0;
2e40e163 1394 }
61989a80
NG
1395
1396 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
13de8933
MK
1397 atomic_long_add(class->pages_per_zspage,
1398 &pool->pages_allocated);
0f050d99 1399
61989a80 1400 spin_lock(&class->lock);
0f050d99
GM
1401 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1402 class->size, class->pages_per_zspage));
61989a80
NG
1403 }
1404
c7806261 1405 obj = obj_malloc(first_page, class, handle);
61989a80 1406 /* Now move the zspage to another fullness group, if required */
c7806261 1407 fix_fullness_group(class, first_page);
2e40e163 1408 record_obj(handle, obj);
61989a80
NG
1409 spin_unlock(&class->lock);
1410
2e40e163 1411 return handle;
61989a80
NG
1412}
1413EXPORT_SYMBOL_GPL(zs_malloc);
1414
c7806261
MK
1415static void obj_free(struct zs_pool *pool, struct size_class *class,
1416 unsigned long obj)
61989a80
NG
1417{
1418 struct link_free *link;
1419 struct page *first_page, *f_page;
c7806261 1420 unsigned long f_objidx, f_offset;
af4ee5e9 1421 void *vaddr;
61989a80 1422 int class_idx;
61989a80
NG
1423 enum fullness_group fullness;
1424
c7806261 1425 BUG_ON(!obj);
61989a80 1426
312fcae2 1427 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1428 obj_to_location(obj, &f_page, &f_objidx);
61989a80
NG
1429 first_page = get_first_page(f_page);
1430
1431 get_zspage_mapping(first_page, &class_idx, &fullness);
61989a80
NG
1432 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1433
c7806261 1434 vaddr = kmap_atomic(f_page);
61989a80
NG
1435
1436 /* Insert this object in containing zspage's freelist */
af4ee5e9 1437 link = (struct link_free *)(vaddr + f_offset);
61989a80 1438 link->next = first_page->freelist;
7b60a685
MK
1439 if (class->huge)
1440 set_page_private(first_page, 0);
af4ee5e9 1441 kunmap_atomic(vaddr);
c2344348 1442 first_page->freelist = (void *)obj;
61989a80 1443 first_page->inuse--;
0f050d99 1444 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1445}
1446
1447void zs_free(struct zs_pool *pool, unsigned long handle)
1448{
1449 struct page *first_page, *f_page;
1450 unsigned long obj, f_objidx;
1451 int class_idx;
1452 struct size_class *class;
1453 enum fullness_group fullness;
1454
1455 if (unlikely(!handle))
1456 return;
1457
312fcae2 1458 pin_tag(handle);
c7806261 1459 obj = handle_to_obj(handle);
c7806261
MK
1460 obj_to_location(obj, &f_page, &f_objidx);
1461 first_page = get_first_page(f_page);
1462
1463 get_zspage_mapping(first_page, &class_idx, &fullness);
1464 class = pool->size_class[class_idx];
1465
1466 spin_lock(&class->lock);
1467 obj_free(pool, class, obj);
1468 fullness = fix_fullness_group(class, first_page);
312fcae2 1469 if (fullness == ZS_EMPTY) {
0f050d99
GM
1470 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1471 class->size, class->pages_per_zspage));
312fcae2
MK
1472 atomic_long_sub(class->pages_per_zspage,
1473 &pool->pages_allocated);
1474 free_zspage(first_page);
1475 }
61989a80 1476 spin_unlock(&class->lock);
312fcae2 1477 unpin_tag(handle);
61989a80 1478
312fcae2
MK
1479 free_handle(pool, handle);
1480}
1481EXPORT_SYMBOL_GPL(zs_free);
1482
0dc63d48 1483static void zs_object_copy(unsigned long dst, unsigned long src,
312fcae2
MK
1484 struct size_class *class)
1485{
1486 struct page *s_page, *d_page;
1487 unsigned long s_objidx, d_objidx;
1488 unsigned long s_off, d_off;
1489 void *s_addr, *d_addr;
1490 int s_size, d_size, size;
1491 int written = 0;
1492
1493 s_size = d_size = class->size;
1494
1495 obj_to_location(src, &s_page, &s_objidx);
1496 obj_to_location(dst, &d_page, &d_objidx);
1497
1498 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1499 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1500
1501 if (s_off + class->size > PAGE_SIZE)
1502 s_size = PAGE_SIZE - s_off;
1503
1504 if (d_off + class->size > PAGE_SIZE)
1505 d_size = PAGE_SIZE - d_off;
1506
1507 s_addr = kmap_atomic(s_page);
1508 d_addr = kmap_atomic(d_page);
1509
1510 while (1) {
1511 size = min(s_size, d_size);
1512 memcpy(d_addr + d_off, s_addr + s_off, size);
1513 written += size;
1514
1515 if (written == class->size)
1516 break;
1517
495819ea
SS
1518 s_off += size;
1519 s_size -= size;
1520 d_off += size;
1521 d_size -= size;
1522
1523 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1524 kunmap_atomic(d_addr);
1525 kunmap_atomic(s_addr);
1526 s_page = get_next_page(s_page);
1527 BUG_ON(!s_page);
1528 s_addr = kmap_atomic(s_page);
1529 d_addr = kmap_atomic(d_page);
1530 s_size = class->size - written;
1531 s_off = 0;
312fcae2
MK
1532 }
1533
495819ea 1534 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1535 kunmap_atomic(d_addr);
1536 d_page = get_next_page(d_page);
1537 BUG_ON(!d_page);
1538 d_addr = kmap_atomic(d_page);
1539 d_size = class->size - written;
1540 d_off = 0;
312fcae2
MK
1541 }
1542 }
1543
1544 kunmap_atomic(d_addr);
1545 kunmap_atomic(s_addr);
1546}
1547
1548/*
1549 * Find alloced object in zspage from index object and
1550 * return handle.
1551 */
1552static unsigned long find_alloced_obj(struct page *page, int index,
1553 struct size_class *class)
1554{
1555 unsigned long head;
1556 int offset = 0;
1557 unsigned long handle = 0;
1558 void *addr = kmap_atomic(page);
1559
1560 if (!is_first_page(page))
1561 offset = page->index;
1562 offset += class->size * index;
1563
1564 while (offset < PAGE_SIZE) {
7b60a685 1565 head = obj_to_head(class, page, addr + offset);
312fcae2
MK
1566 if (head & OBJ_ALLOCATED_TAG) {
1567 handle = head & ~OBJ_ALLOCATED_TAG;
1568 if (trypin_tag(handle))
1569 break;
1570 handle = 0;
1571 }
1572
1573 offset += class->size;
1574 index++;
1575 }
1576
1577 kunmap_atomic(addr);
1578 return handle;
1579}
1580
1581struct zs_compact_control {
1582 /* Source page for migration which could be a subpage of zspage. */
1583 struct page *s_page;
1584 /* Destination page for migration which should be a first page
1585 * of zspage. */
1586 struct page *d_page;
1587 /* Starting object index within @s_page which used for live object
1588 * in the subpage. */
1589 int index;
312fcae2
MK
1590};
1591
1592static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1593 struct zs_compact_control *cc)
1594{
1595 unsigned long used_obj, free_obj;
1596 unsigned long handle;
1597 struct page *s_page = cc->s_page;
1598 struct page *d_page = cc->d_page;
1599 unsigned long index = cc->index;
312fcae2
MK
1600 int ret = 0;
1601
1602 while (1) {
1603 handle = find_alloced_obj(s_page, index, class);
1604 if (!handle) {
1605 s_page = get_next_page(s_page);
1606 if (!s_page)
1607 break;
1608 index = 0;
1609 continue;
1610 }
1611
1612 /* Stop if there is no more space */
1613 if (zspage_full(d_page)) {
1614 unpin_tag(handle);
1615 ret = -ENOMEM;
1616 break;
1617 }
1618
1619 used_obj = handle_to_obj(handle);
1620 free_obj = obj_malloc(d_page, class, handle);
0dc63d48 1621 zs_object_copy(free_obj, used_obj, class);
312fcae2
MK
1622 index++;
1623 record_obj(handle, free_obj);
1624 unpin_tag(handle);
1625 obj_free(pool, class, used_obj);
312fcae2
MK
1626 }
1627
1628 /* Remember last position in this iteration */
1629 cc->s_page = s_page;
1630 cc->index = index;
312fcae2
MK
1631
1632 return ret;
1633}
1634
0dc63d48 1635static struct page *isolate_target_page(struct size_class *class)
312fcae2
MK
1636{
1637 int i;
1638 struct page *page;
1639
1640 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1641 page = class->fullness_list[i];
1642 if (page) {
1643 remove_zspage(page, class, i);
1644 break;
1645 }
1646 }
1647
1648 return page;
1649}
1650
860c707d
SS
1651/*
1652 * putback_zspage - add @first_page into right class's fullness list
1653 * @pool: target pool
1654 * @class: destination class
1655 * @first_page: target page
1656 *
1657 * Return @fist_page's fullness_group
1658 */
1659static enum fullness_group putback_zspage(struct zs_pool *pool,
1660 struct size_class *class,
1661 struct page *first_page)
312fcae2 1662{
312fcae2
MK
1663 enum fullness_group fullness;
1664
1665 BUG_ON(!is_first_page(first_page));
1666
839373e6 1667 fullness = get_fullness_group(first_page);
312fcae2 1668 insert_zspage(first_page, class, fullness);
839373e6
MK
1669 set_zspage_mapping(first_page, class->index, fullness);
1670
13de8933 1671 if (fullness == ZS_EMPTY) {
312fcae2
MK
1672 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1673 class->size, class->pages_per_zspage));
13de8933
MK
1674 atomic_long_sub(class->pages_per_zspage,
1675 &pool->pages_allocated);
312fcae2 1676
61989a80 1677 free_zspage(first_page);
13de8933 1678 }
860c707d
SS
1679
1680 return fullness;
61989a80 1681}
312fcae2
MK
1682
1683static struct page *isolate_source_page(struct size_class *class)
1684{
1685 struct page *page;
1686
1687 page = class->fullness_list[ZS_ALMOST_EMPTY];
1688 if (page)
1689 remove_zspage(page, class, ZS_ALMOST_EMPTY);
1690
1691 return page;
1692}
1693
04f05909
SS
1694/*
1695 *
1696 * Based on the number of unused allocated objects calculate
1697 * and return the number of pages that we can free.
1698 *
1699 * Should be called under class->lock.
1700 */
1701static unsigned long zs_can_compact(struct size_class *class)
1702{
1703 unsigned long obj_wasted;
1704
1705 if (!zs_stat_get(class, CLASS_ALMOST_EMPTY))
1706 return 0;
1707
1708 obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
1709 zs_stat_get(class, OBJ_USED);
1710
1711 obj_wasted /= get_maxobj_per_zspage(class->size,
1712 class->pages_per_zspage);
1713
1714 return obj_wasted * get_pages_per_zspage(class->size);
1715}
1716
7d3f3938 1717static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 1718{
312fcae2
MK
1719 struct zs_compact_control cc;
1720 struct page *src_page;
1721 struct page *dst_page = NULL;
312fcae2 1722
312fcae2
MK
1723 spin_lock(&class->lock);
1724 while ((src_page = isolate_source_page(class))) {
1725
1726 BUG_ON(!is_first_page(src_page));
1727
04f05909
SS
1728 if (!zs_can_compact(class))
1729 break;
1730
312fcae2
MK
1731 cc.index = 0;
1732 cc.s_page = src_page;
1733
0dc63d48 1734 while ((dst_page = isolate_target_page(class))) {
312fcae2
MK
1735 cc.d_page = dst_page;
1736 /*
0dc63d48
SS
1737 * If there is no more space in dst_page, resched
1738 * and see if anyone had allocated another zspage.
312fcae2
MK
1739 */
1740 if (!migrate_zspage(pool, class, &cc))
1741 break;
1742
1743 putback_zspage(pool, class, dst_page);
312fcae2
MK
1744 }
1745
1746 /* Stop if we couldn't find slot */
1747 if (dst_page == NULL)
1748 break;
1749
1750 putback_zspage(pool, class, dst_page);
860c707d
SS
1751 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1752 pool->stats.pages_compacted +=
1753 get_pages_per_zspage(class->size);
312fcae2 1754 spin_unlock(&class->lock);
312fcae2
MK
1755 cond_resched();
1756 spin_lock(&class->lock);
1757 }
1758
1759 if (src_page)
1760 putback_zspage(pool, class, src_page);
1761
7d3f3938 1762 spin_unlock(&class->lock);
312fcae2
MK
1763}
1764
1765unsigned long zs_compact(struct zs_pool *pool)
1766{
1767 int i;
312fcae2
MK
1768 struct size_class *class;
1769
1770 for (i = zs_size_classes - 1; i >= 0; i--) {
1771 class = pool->size_class[i];
1772 if (!class)
1773 continue;
1774 if (class->index != i)
1775 continue;
7d3f3938 1776 __zs_compact(pool, class);
312fcae2
MK
1777 }
1778
860c707d 1779 return pool->stats.pages_compacted;
312fcae2
MK
1780}
1781EXPORT_SYMBOL_GPL(zs_compact);
61989a80 1782
7d3f3938
SS
1783void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1784{
1785 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1786}
1787EXPORT_SYMBOL_GPL(zs_pool_stats);
1788
ab9d306d
SS
1789static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1790 struct shrink_control *sc)
1791{
1792 unsigned long pages_freed;
1793 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1794 shrinker);
1795
1796 pages_freed = pool->stats.pages_compacted;
1797 /*
1798 * Compact classes and calculate compaction delta.
1799 * Can run concurrently with a manually triggered
1800 * (by user) compaction.
1801 */
1802 pages_freed = zs_compact(pool) - pages_freed;
1803
1804 return pages_freed ? pages_freed : SHRINK_STOP;
1805}
1806
1807static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1808 struct shrink_control *sc)
1809{
1810 int i;
1811 struct size_class *class;
1812 unsigned long pages_to_free = 0;
1813 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1814 shrinker);
1815
1816 if (!pool->shrinker_enabled)
1817 return 0;
1818
1819 for (i = zs_size_classes - 1; i >= 0; i--) {
1820 class = pool->size_class[i];
1821 if (!class)
1822 continue;
1823 if (class->index != i)
1824 continue;
1825
1826 spin_lock(&class->lock);
1827 pages_to_free += zs_can_compact(class);
1828 spin_unlock(&class->lock);
1829 }
1830
1831 return pages_to_free;
1832}
1833
1834static void zs_unregister_shrinker(struct zs_pool *pool)
1835{
1836 if (pool->shrinker_enabled) {
1837 unregister_shrinker(&pool->shrinker);
1838 pool->shrinker_enabled = false;
1839 }
1840}
1841
1842static int zs_register_shrinker(struct zs_pool *pool)
1843{
1844 pool->shrinker.scan_objects = zs_shrinker_scan;
1845 pool->shrinker.count_objects = zs_shrinker_count;
1846 pool->shrinker.batch = 0;
1847 pool->shrinker.seeks = DEFAULT_SEEKS;
1848
1849 return register_shrinker(&pool->shrinker);
1850}
1851
00a61d86 1852/**
66cdef66
GM
1853 * zs_create_pool - Creates an allocation pool to work from.
1854 * @flags: allocation flags used to allocate pool metadata
166cfda7 1855 *
66cdef66
GM
1856 * This function must be called before anything when using
1857 * the zsmalloc allocator.
166cfda7 1858 *
66cdef66
GM
1859 * On success, a pointer to the newly created pool is returned,
1860 * otherwise NULL.
396b7fd6 1861 */
3eba0c6a 1862struct zs_pool *zs_create_pool(char *name, gfp_t flags)
61989a80 1863{
66cdef66
GM
1864 int i;
1865 struct zs_pool *pool;
1866 struct size_class *prev_class = NULL;
61989a80 1867
66cdef66
GM
1868 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1869 if (!pool)
1870 return NULL;
61989a80 1871
66cdef66
GM
1872 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1873 GFP_KERNEL);
1874 if (!pool->size_class) {
1875 kfree(pool);
1876 return NULL;
1877 }
61989a80 1878
2e40e163
MK
1879 pool->name = kstrdup(name, GFP_KERNEL);
1880 if (!pool->name)
1881 goto err;
1882
1883 if (create_handle_cache(pool))
1884 goto err;
1885
c60369f0 1886 /*
66cdef66
GM
1887 * Iterate reversly, because, size of size_class that we want to use
1888 * for merging should be larger or equal to current size.
c60369f0 1889 */
66cdef66
GM
1890 for (i = zs_size_classes - 1; i >= 0; i--) {
1891 int size;
1892 int pages_per_zspage;
1893 struct size_class *class;
c60369f0 1894
66cdef66
GM
1895 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1896 if (size > ZS_MAX_ALLOC_SIZE)
1897 size = ZS_MAX_ALLOC_SIZE;
1898 pages_per_zspage = get_pages_per_zspage(size);
61989a80 1899
66cdef66
GM
1900 /*
1901 * size_class is used for normal zsmalloc operation such
1902 * as alloc/free for that size. Although it is natural that we
1903 * have one size_class for each size, there is a chance that we
1904 * can get more memory utilization if we use one size_class for
1905 * many different sizes whose size_class have same
1906 * characteristics. So, we makes size_class point to
1907 * previous size_class if possible.
1908 */
1909 if (prev_class) {
1910 if (can_merge(prev_class, size, pages_per_zspage)) {
1911 pool->size_class[i] = prev_class;
1912 continue;
1913 }
1914 }
1915
1916 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1917 if (!class)
1918 goto err;
1919
1920 class->size = size;
1921 class->index = i;
1922 class->pages_per_zspage = pages_per_zspage;
7b60a685
MK
1923 if (pages_per_zspage == 1 &&
1924 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1925 class->huge = true;
66cdef66
GM
1926 spin_lock_init(&class->lock);
1927 pool->size_class[i] = class;
1928
1929 prev_class = class;
61989a80
NG
1930 }
1931
66cdef66 1932 pool->flags = flags;
b7418510 1933
0f050d99
GM
1934 if (zs_pool_stat_create(name, pool))
1935 goto err;
1936
ab9d306d
SS
1937 /*
1938 * Not critical, we still can use the pool
1939 * and user can trigger compaction manually.
1940 */
1941 if (zs_register_shrinker(pool) == 0)
1942 pool->shrinker_enabled = true;
66cdef66
GM
1943 return pool;
1944
1945err:
1946 zs_destroy_pool(pool);
1947 return NULL;
61989a80 1948}
66cdef66 1949EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 1950
66cdef66 1951void zs_destroy_pool(struct zs_pool *pool)
61989a80 1952{
66cdef66 1953 int i;
61989a80 1954
ab9d306d 1955 zs_unregister_shrinker(pool);
0f050d99
GM
1956 zs_pool_stat_destroy(pool);
1957
66cdef66
GM
1958 for (i = 0; i < zs_size_classes; i++) {
1959 int fg;
1960 struct size_class *class = pool->size_class[i];
61989a80 1961
66cdef66
GM
1962 if (!class)
1963 continue;
61989a80 1964
66cdef66
GM
1965 if (class->index != i)
1966 continue;
61989a80 1967
66cdef66
GM
1968 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1969 if (class->fullness_list[fg]) {
1970 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1971 class->size, fg);
1972 }
1973 }
1974 kfree(class);
1975 }
f553646a 1976
2e40e163 1977 destroy_handle_cache(pool);
66cdef66 1978 kfree(pool->size_class);
0f050d99 1979 kfree(pool->name);
66cdef66
GM
1980 kfree(pool);
1981}
1982EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 1983
66cdef66
GM
1984static int __init zs_init(void)
1985{
1986 int ret = zs_register_cpu_notifier();
1987
0f050d99
GM
1988 if (ret)
1989 goto notifier_fail;
66cdef66
GM
1990
1991 init_zs_size_classes();
1992
1993#ifdef CONFIG_ZPOOL
1994 zpool_register_driver(&zs_zpool_driver);
1995#endif
0f050d99
GM
1996
1997 ret = zs_stat_init();
1998 if (ret) {
1999 pr_err("zs stat initialization failed\n");
2000 goto stat_fail;
2001 }
66cdef66 2002 return 0;
0f050d99
GM
2003
2004stat_fail:
2005#ifdef CONFIG_ZPOOL
2006 zpool_unregister_driver(&zs_zpool_driver);
2007#endif
2008notifier_fail:
2009 zs_unregister_cpu_notifier();
2010
2011 return ret;
61989a80 2012}
61989a80 2013
66cdef66 2014static void __exit zs_exit(void)
61989a80 2015{
66cdef66
GM
2016#ifdef CONFIG_ZPOOL
2017 zpool_unregister_driver(&zs_zpool_driver);
2018#endif
2019 zs_unregister_cpu_notifier();
0f050d99
GM
2020
2021 zs_stat_exit();
61989a80 2022}
069f101f
BH
2023
2024module_init(zs_init);
2025module_exit(zs_exit);
2026
2027MODULE_LICENSE("Dual BSD/GPL");
2028MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");