]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/appletalk/aarp.c
[NET]: Kill skb->real_dev
[mirror_ubuntu-bionic-kernel.git] / net / appletalk / aarp.c
CommitLineData
1da177e4
LT
1/*
2 * AARP: An implementation of the AppleTalk AARP protocol for
3 * Ethernet 'ELAP'.
4 *
5 * Alan Cox <Alan.Cox@linux.org>
6 *
7 * This doesn't fit cleanly with the IP arp. Potentially we can use
8 * the generic neighbour discovery code to clean this up.
9 *
10 * FIXME:
11 * We ought to handle the retransmits with a single list and a
12 * separate fast timer for when it is needed.
13 * Use neighbour discovery code.
14 * Token Ring Support.
15 *
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version
19 * 2 of the License, or (at your option) any later version.
20 *
21 *
22 * References:
23 * Inside AppleTalk (2nd Ed).
24 * Fixes:
25 * Jaume Grau - flush caches on AARP_PROBE
26 * Rob Newberry - Added proxy AARP and AARP proc fs,
27 * moved probing from DDP module.
28 * Arnaldo C. Melo - don't mangle rx packets
29 *
30 */
31
32#include <linux/config.h>
33#include <linux/if_arp.h>
34#include <net/sock.h>
35#include <net/datalink.h>
36#include <net/psnap.h>
37#include <linux/atalk.h>
285b3afe 38#include <linux/delay.h>
1da177e4
LT
39#include <linux/init.h>
40#include <linux/proc_fs.h>
41#include <linux/seq_file.h>
42
43int sysctl_aarp_expiry_time = AARP_EXPIRY_TIME;
44int sysctl_aarp_tick_time = AARP_TICK_TIME;
45int sysctl_aarp_retransmit_limit = AARP_RETRANSMIT_LIMIT;
46int sysctl_aarp_resolve_time = AARP_RESOLVE_TIME;
47
48/* Lists of aarp entries */
49/**
50 * struct aarp_entry - AARP entry
51 * @last_sent - Last time we xmitted the aarp request
52 * @packet_queue - Queue of frames wait for resolution
53 * @status - Used for proxy AARP
54 * expires_at - Entry expiry time
55 * target_addr - DDP Address
56 * dev - Device to use
57 * hwaddr - Physical i/f address of target/router
58 * xmit_count - When this hits 10 we give up
59 * next - Next entry in chain
60 */
61struct aarp_entry {
62 /* These first two are only used for unresolved entries */
63 unsigned long last_sent;
64 struct sk_buff_head packet_queue;
65 int status;
66 unsigned long expires_at;
67 struct atalk_addr target_addr;
68 struct net_device *dev;
69 char hwaddr[6];
70 unsigned short xmit_count;
71 struct aarp_entry *next;
72};
73
74/* Hashed list of resolved, unresolved and proxy entries */
75static struct aarp_entry *resolved[AARP_HASH_SIZE];
76static struct aarp_entry *unresolved[AARP_HASH_SIZE];
77static struct aarp_entry *proxies[AARP_HASH_SIZE];
78static int unresolved_count;
79
80/* One lock protects it all. */
81static DEFINE_RWLOCK(aarp_lock);
82
83/* Used to walk the list and purge/kick entries. */
84static struct timer_list aarp_timer;
85
86/*
87 * Delete an aarp queue
88 *
89 * Must run under aarp_lock.
90 */
91static void __aarp_expire(struct aarp_entry *a)
92{
93 skb_queue_purge(&a->packet_queue);
94 kfree(a);
95}
96
97/*
98 * Send an aarp queue entry request
99 *
100 * Must run under aarp_lock.
101 */
102static void __aarp_send_query(struct aarp_entry *a)
103{
104 static unsigned char aarp_eth_multicast[ETH_ALEN] =
105 { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
106 struct net_device *dev = a->dev;
107 struct elapaarp *eah;
108 int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
109 struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
110 struct atalk_addr *sat = atalk_find_dev_addr(dev);
111
112 if (!skb)
113 return;
114
115 if (!sat) {
116 kfree_skb(skb);
117 return;
118 }
119
120 /* Set up the buffer */
121 skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
122 skb->nh.raw = skb->h.raw = skb_put(skb, sizeof(*eah));
123 skb->protocol = htons(ETH_P_ATALK);
124 skb->dev = dev;
125 eah = aarp_hdr(skb);
126
127 /* Set up the ARP */
128 eah->hw_type = htons(AARP_HW_TYPE_ETHERNET);
129 eah->pa_type = htons(ETH_P_ATALK);
130 eah->hw_len = ETH_ALEN;
131 eah->pa_len = AARP_PA_ALEN;
132 eah->function = htons(AARP_REQUEST);
133
134 memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
135
136 eah->pa_src_zero = 0;
137 eah->pa_src_net = sat->s_net;
138 eah->pa_src_node = sat->s_node;
139
140 memset(eah->hw_dst, '\0', ETH_ALEN);
141
142 eah->pa_dst_zero = 0;
143 eah->pa_dst_net = a->target_addr.s_net;
144 eah->pa_dst_node = a->target_addr.s_node;
145
146 /* Send it */
147 aarp_dl->request(aarp_dl, skb, aarp_eth_multicast);
148 /* Update the sending count */
149 a->xmit_count++;
150 a->last_sent = jiffies;
151}
152
153/* This runs under aarp_lock and in softint context, so only atomic memory
154 * allocations can be used. */
155static void aarp_send_reply(struct net_device *dev, struct atalk_addr *us,
156 struct atalk_addr *them, unsigned char *sha)
157{
158 struct elapaarp *eah;
159 int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
160 struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
161
162 if (!skb)
163 return;
164
165 /* Set up the buffer */
166 skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
167 skb->nh.raw = skb->h.raw = skb_put(skb, sizeof(*eah));
168 skb->protocol = htons(ETH_P_ATALK);
169 skb->dev = dev;
170 eah = aarp_hdr(skb);
171
172 /* Set up the ARP */
173 eah->hw_type = htons(AARP_HW_TYPE_ETHERNET);
174 eah->pa_type = htons(ETH_P_ATALK);
175 eah->hw_len = ETH_ALEN;
176 eah->pa_len = AARP_PA_ALEN;
177 eah->function = htons(AARP_REPLY);
178
179 memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
180
181 eah->pa_src_zero = 0;
182 eah->pa_src_net = us->s_net;
183 eah->pa_src_node = us->s_node;
184
185 if (!sha)
186 memset(eah->hw_dst, '\0', ETH_ALEN);
187 else
188 memcpy(eah->hw_dst, sha, ETH_ALEN);
189
190 eah->pa_dst_zero = 0;
191 eah->pa_dst_net = them->s_net;
192 eah->pa_dst_node = them->s_node;
193
194 /* Send it */
195 aarp_dl->request(aarp_dl, skb, sha);
196}
197
198/*
199 * Send probe frames. Called from aarp_probe_network and
200 * aarp_proxy_probe_network.
201 */
202
203static void aarp_send_probe(struct net_device *dev, struct atalk_addr *us)
204{
205 struct elapaarp *eah;
206 int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
207 struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
208 static unsigned char aarp_eth_multicast[ETH_ALEN] =
209 { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
210
211 if (!skb)
212 return;
213
214 /* Set up the buffer */
215 skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
216 skb->nh.raw = skb->h.raw = skb_put(skb, sizeof(*eah));
217 skb->protocol = htons(ETH_P_ATALK);
218 skb->dev = dev;
219 eah = aarp_hdr(skb);
220
221 /* Set up the ARP */
222 eah->hw_type = htons(AARP_HW_TYPE_ETHERNET);
223 eah->pa_type = htons(ETH_P_ATALK);
224 eah->hw_len = ETH_ALEN;
225 eah->pa_len = AARP_PA_ALEN;
226 eah->function = htons(AARP_PROBE);
227
228 memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
229
230 eah->pa_src_zero = 0;
231 eah->pa_src_net = us->s_net;
232 eah->pa_src_node = us->s_node;
233
234 memset(eah->hw_dst, '\0', ETH_ALEN);
235
236 eah->pa_dst_zero = 0;
237 eah->pa_dst_net = us->s_net;
238 eah->pa_dst_node = us->s_node;
239
240 /* Send it */
241 aarp_dl->request(aarp_dl, skb, aarp_eth_multicast);
242}
243
244/*
245 * Handle an aarp timer expire
246 *
247 * Must run under the aarp_lock.
248 */
249
250static void __aarp_expire_timer(struct aarp_entry **n)
251{
252 struct aarp_entry *t;
253
254 while (*n)
255 /* Expired ? */
256 if (time_after(jiffies, (*n)->expires_at)) {
257 t = *n;
258 *n = (*n)->next;
259 __aarp_expire(t);
260 } else
261 n = &((*n)->next);
262}
263
264/*
265 * Kick all pending requests 5 times a second.
266 *
267 * Must run under the aarp_lock.
268 */
269static void __aarp_kick(struct aarp_entry **n)
270{
271 struct aarp_entry *t;
272
273 while (*n)
274 /* Expired: if this will be the 11th tx, we delete instead. */
275 if ((*n)->xmit_count >= sysctl_aarp_retransmit_limit) {
276 t = *n;
277 *n = (*n)->next;
278 __aarp_expire(t);
279 } else {
280 __aarp_send_query(*n);
281 n = &((*n)->next);
282 }
283}
284
285/*
286 * A device has gone down. Take all entries referring to the device
287 * and remove them.
288 *
289 * Must run under the aarp_lock.
290 */
291static void __aarp_expire_device(struct aarp_entry **n, struct net_device *dev)
292{
293 struct aarp_entry *t;
294
295 while (*n)
296 if ((*n)->dev == dev) {
297 t = *n;
298 *n = (*n)->next;
299 __aarp_expire(t);
300 } else
301 n = &((*n)->next);
302}
303
304/* Handle the timer event */
305static void aarp_expire_timeout(unsigned long unused)
306{
307 int ct;
308
309 write_lock_bh(&aarp_lock);
310
311 for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
312 __aarp_expire_timer(&resolved[ct]);
313 __aarp_kick(&unresolved[ct]);
314 __aarp_expire_timer(&unresolved[ct]);
315 __aarp_expire_timer(&proxies[ct]);
316 }
317
318 write_unlock_bh(&aarp_lock);
319 mod_timer(&aarp_timer, jiffies +
320 (unresolved_count ? sysctl_aarp_tick_time :
321 sysctl_aarp_expiry_time));
322}
323
324/* Network device notifier chain handler. */
325static int aarp_device_event(struct notifier_block *this, unsigned long event,
326 void *ptr)
327{
328 int ct;
329
330 if (event == NETDEV_DOWN) {
331 write_lock_bh(&aarp_lock);
332
333 for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
334 __aarp_expire_device(&resolved[ct], ptr);
335 __aarp_expire_device(&unresolved[ct], ptr);
336 __aarp_expire_device(&proxies[ct], ptr);
337 }
338
339 write_unlock_bh(&aarp_lock);
340 }
341 return NOTIFY_DONE;
342}
343
344/* Expire all entries in a hash chain */
345static void __aarp_expire_all(struct aarp_entry **n)
346{
347 struct aarp_entry *t;
348
349 while (*n) {
350 t = *n;
351 *n = (*n)->next;
352 __aarp_expire(t);
353 }
354}
355
356/* Cleanup all hash chains -- module unloading */
357static void aarp_purge(void)
358{
359 int ct;
360
361 write_lock_bh(&aarp_lock);
362 for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
363 __aarp_expire_all(&resolved[ct]);
364 __aarp_expire_all(&unresolved[ct]);
365 __aarp_expire_all(&proxies[ct]);
366 }
367 write_unlock_bh(&aarp_lock);
368}
369
370/*
371 * Create a new aarp entry. This must use GFP_ATOMIC because it
372 * runs while holding spinlocks.
373 */
374static struct aarp_entry *aarp_alloc(void)
375{
376 struct aarp_entry *a = kmalloc(sizeof(*a), GFP_ATOMIC);
377
378 if (a)
379 skb_queue_head_init(&a->packet_queue);
380 return a;
381}
382
383/*
384 * Find an entry. We might return an expired but not yet purged entry. We
385 * don't care as it will do no harm.
386 *
387 * This must run under the aarp_lock.
388 */
389static struct aarp_entry *__aarp_find_entry(struct aarp_entry *list,
390 struct net_device *dev,
391 struct atalk_addr *sat)
392{
393 while (list) {
394 if (list->target_addr.s_net == sat->s_net &&
395 list->target_addr.s_node == sat->s_node &&
396 list->dev == dev)
397 break;
398 list = list->next;
399 }
400
401 return list;
402}
403
404/* Called from the DDP code, and thus must be exported. */
405void aarp_proxy_remove(struct net_device *dev, struct atalk_addr *sa)
406{
407 int hash = sa->s_node % (AARP_HASH_SIZE - 1);
408 struct aarp_entry *a;
409
410 write_lock_bh(&aarp_lock);
411
412 a = __aarp_find_entry(proxies[hash], dev, sa);
413 if (a)
414 a->expires_at = jiffies - 1;
415
416 write_unlock_bh(&aarp_lock);
417}
418
419/* This must run under aarp_lock. */
420static struct atalk_addr *__aarp_proxy_find(struct net_device *dev,
421 struct atalk_addr *sa)
422{
423 int hash = sa->s_node % (AARP_HASH_SIZE - 1);
424 struct aarp_entry *a = __aarp_find_entry(proxies[hash], dev, sa);
425
426 return a ? sa : NULL;
427}
428
429/*
430 * Probe a Phase 1 device or a device that requires its Net:Node to
431 * be set via an ioctl.
432 */
433static void aarp_send_probe_phase1(struct atalk_iface *iface)
434{
435 struct ifreq atreq;
436 struct sockaddr_at *sa = (struct sockaddr_at *)&atreq.ifr_addr;
437
438 sa->sat_addr.s_node = iface->address.s_node;
439 sa->sat_addr.s_net = ntohs(iface->address.s_net);
440
441 /* We pass the Net:Node to the drivers/cards by a Device ioctl. */
442 if (!(iface->dev->do_ioctl(iface->dev, &atreq, SIOCSIFADDR))) {
443 (void)iface->dev->do_ioctl(iface->dev, &atreq, SIOCGIFADDR);
444 if (iface->address.s_net != htons(sa->sat_addr.s_net) ||
445 iface->address.s_node != sa->sat_addr.s_node)
446 iface->status |= ATIF_PROBE_FAIL;
447
448 iface->address.s_net = htons(sa->sat_addr.s_net);
449 iface->address.s_node = sa->sat_addr.s_node;
450 }
451}
452
453
454void aarp_probe_network(struct atalk_iface *atif)
455{
456 if (atif->dev->type == ARPHRD_LOCALTLK ||
457 atif->dev->type == ARPHRD_PPP)
458 aarp_send_probe_phase1(atif);
459 else {
460 unsigned int count;
461
462 for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
463 aarp_send_probe(atif->dev, &atif->address);
464
465 /* Defer 1/10th */
285b3afe 466 msleep(100);
1da177e4
LT
467
468 if (atif->status & ATIF_PROBE_FAIL)
469 break;
470 }
471 }
472}
473
474int aarp_proxy_probe_network(struct atalk_iface *atif, struct atalk_addr *sa)
475{
476 int hash, retval = -EPROTONOSUPPORT;
477 struct aarp_entry *entry;
478 unsigned int count;
479
480 /*
481 * we don't currently support LocalTalk or PPP for proxy AARP;
482 * if someone wants to try and add it, have fun
483 */
484 if (atif->dev->type == ARPHRD_LOCALTLK ||
485 atif->dev->type == ARPHRD_PPP)
486 goto out;
487
488 /*
489 * create a new AARP entry with the flags set to be published --
490 * we need this one to hang around even if it's in use
491 */
492 entry = aarp_alloc();
493 retval = -ENOMEM;
494 if (!entry)
495 goto out;
496
497 entry->expires_at = -1;
498 entry->status = ATIF_PROBE;
499 entry->target_addr.s_node = sa->s_node;
500 entry->target_addr.s_net = sa->s_net;
501 entry->dev = atif->dev;
502
503 write_lock_bh(&aarp_lock);
504
505 hash = sa->s_node % (AARP_HASH_SIZE - 1);
506 entry->next = proxies[hash];
507 proxies[hash] = entry;
508
509 for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
510 aarp_send_probe(atif->dev, sa);
511
512 /* Defer 1/10th */
1da177e4 513 write_unlock_bh(&aarp_lock);
285b3afe 514 msleep(100);
1da177e4
LT
515 write_lock_bh(&aarp_lock);
516
517 if (entry->status & ATIF_PROBE_FAIL)
518 break;
519 }
520
521 if (entry->status & ATIF_PROBE_FAIL) {
522 entry->expires_at = jiffies - 1; /* free the entry */
523 retval = -EADDRINUSE; /* return network full */
524 } else { /* clear the probing flag */
525 entry->status &= ~ATIF_PROBE;
526 retval = 1;
527 }
528
529 write_unlock_bh(&aarp_lock);
530out:
531 return retval;
532}
533
534/* Send a DDP frame */
535int aarp_send_ddp(struct net_device *dev, struct sk_buff *skb,
536 struct atalk_addr *sa, void *hwaddr)
537{
538 static char ddp_eth_multicast[ETH_ALEN] =
539 { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
540 int hash;
541 struct aarp_entry *a;
542
543 skb->nh.raw = skb->data;
544
545 /* Check for LocalTalk first */
546 if (dev->type == ARPHRD_LOCALTLK) {
547 struct atalk_addr *at = atalk_find_dev_addr(dev);
548 struct ddpehdr *ddp = (struct ddpehdr *)skb->data;
549 int ft = 2;
550
551 /*
552 * Compressible ?
553 *
554 * IFF: src_net == dest_net == device_net
555 * (zero matches anything)
556 */
557
558 if ((!ddp->deh_snet || at->s_net == ddp->deh_snet) &&
559 (!ddp->deh_dnet || at->s_net == ddp->deh_dnet)) {
560 skb_pull(skb, sizeof(*ddp) - 4);
561
562 /*
563 * The upper two remaining bytes are the port
564 * numbers we just happen to need. Now put the
565 * length in the lower two.
566 */
f6e276ee 567 *((__be16 *)skb->data) = htons(skb->len);
1da177e4
LT
568 ft = 1;
569 }
570 /*
571 * Nice and easy. No AARP type protocols occur here so we can
572 * just shovel it out with a 3 byte LLAP header
573 */
574
575 skb_push(skb, 3);
576 skb->data[0] = sa->s_node;
577 skb->data[1] = at->s_node;
578 skb->data[2] = ft;
579 skb->dev = dev;
580 goto sendit;
581 }
582
583 /* On a PPP link we neither compress nor aarp. */
584 if (dev->type == ARPHRD_PPP) {
585 skb->protocol = htons(ETH_P_PPPTALK);
586 skb->dev = dev;
587 goto sendit;
588 }
589
590 /* Non ELAP we cannot do. */
591 if (dev->type != ARPHRD_ETHER)
592 return -1;
593
594 skb->dev = dev;
595 skb->protocol = htons(ETH_P_ATALK);
596 hash = sa->s_node % (AARP_HASH_SIZE - 1);
597
598 /* Do we have a resolved entry? */
599 if (sa->s_node == ATADDR_BCAST) {
600 /* Send it */
601 ddp_dl->request(ddp_dl, skb, ddp_eth_multicast);
602 goto sent;
603 }
604
605 write_lock_bh(&aarp_lock);
606 a = __aarp_find_entry(resolved[hash], dev, sa);
607
608 if (a) { /* Return 1 and fill in the address */
609 a->expires_at = jiffies + (sysctl_aarp_expiry_time * 10);
610 ddp_dl->request(ddp_dl, skb, a->hwaddr);
611 write_unlock_bh(&aarp_lock);
612 goto sent;
613 }
614
615 /* Do we have an unresolved entry: This is the less common path */
616 a = __aarp_find_entry(unresolved[hash], dev, sa);
617 if (a) { /* Queue onto the unresolved queue */
618 skb_queue_tail(&a->packet_queue, skb);
619 goto out_unlock;
620 }
621
622 /* Allocate a new entry */
623 a = aarp_alloc();
624 if (!a) {
625 /* Whoops slipped... good job it's an unreliable protocol 8) */
626 write_unlock_bh(&aarp_lock);
627 return -1;
628 }
629
630 /* Set up the queue */
631 skb_queue_tail(&a->packet_queue, skb);
632 a->expires_at = jiffies + sysctl_aarp_resolve_time;
633 a->dev = dev;
634 a->next = unresolved[hash];
635 a->target_addr = *sa;
636 a->xmit_count = 0;
637 unresolved[hash] = a;
638 unresolved_count++;
639
640 /* Send an initial request for the address */
641 __aarp_send_query(a);
642
643 /*
644 * Switch to fast timer if needed (That is if this is the first
645 * unresolved entry to get added)
646 */
647
648 if (unresolved_count == 1)
649 mod_timer(&aarp_timer, jiffies + sysctl_aarp_tick_time);
650
651 /* Now finally, it is safe to drop the lock. */
652out_unlock:
653 write_unlock_bh(&aarp_lock);
654
655 /* Tell the ddp layer we have taken over for this frame. */
656 return 0;
657
658sendit:
659 if (skb->sk)
660 skb->priority = skb->sk->sk_priority;
661 dev_queue_xmit(skb);
662sent:
663 return 1;
664}
665
666/*
667 * An entry in the aarp unresolved queue has become resolved. Send
668 * all the frames queued under it.
669 *
670 * Must run under aarp_lock.
671 */
672static void __aarp_resolved(struct aarp_entry **list, struct aarp_entry *a,
673 int hash)
674{
675 struct sk_buff *skb;
676
677 while (*list)
678 if (*list == a) {
679 unresolved_count--;
680 *list = a->next;
681
682 /* Move into the resolved list */
683 a->next = resolved[hash];
684 resolved[hash] = a;
685
686 /* Kick frames off */
687 while ((skb = skb_dequeue(&a->packet_queue)) != NULL) {
688 a->expires_at = jiffies +
689 sysctl_aarp_expiry_time * 10;
690 ddp_dl->request(ddp_dl, skb, a->hwaddr);
691 }
692 } else
693 list = &((*list)->next);
694}
695
696/*
697 * This is called by the SNAP driver whenever we see an AARP SNAP
698 * frame. We currently only support Ethernet.
699 */
700static int aarp_rcv(struct sk_buff *skb, struct net_device *dev,
f2ccd8fa 701 struct packet_type *pt, struct net_device *orig_dev)
1da177e4
LT
702{
703 struct elapaarp *ea = aarp_hdr(skb);
704 int hash, ret = 0;
705 __u16 function;
706 struct aarp_entry *a;
707 struct atalk_addr sa, *ma, da;
708 struct atalk_iface *ifa;
709
710 /* We only do Ethernet SNAP AARP. */
711 if (dev->type != ARPHRD_ETHER)
712 goto out0;
713
714 /* Frame size ok? */
715 if (!skb_pull(skb, sizeof(*ea)))
716 goto out0;
717
718 function = ntohs(ea->function);
719
720 /* Sanity check fields. */
721 if (function < AARP_REQUEST || function > AARP_PROBE ||
722 ea->hw_len != ETH_ALEN || ea->pa_len != AARP_PA_ALEN ||
723 ea->pa_src_zero || ea->pa_dst_zero)
724 goto out0;
725
726 /* Looks good. */
727 hash = ea->pa_src_node % (AARP_HASH_SIZE - 1);
728
729 /* Build an address. */
730 sa.s_node = ea->pa_src_node;
731 sa.s_net = ea->pa_src_net;
732
733 /* Process the packet. Check for replies of me. */
734 ifa = atalk_find_dev(dev);
735 if (!ifa)
736 goto out1;
737
738 if (ifa->status & ATIF_PROBE &&
739 ifa->address.s_node == ea->pa_dst_node &&
740 ifa->address.s_net == ea->pa_dst_net) {
741 ifa->status |= ATIF_PROBE_FAIL; /* Fail the probe (in use) */
742 goto out1;
743 }
744
745 /* Check for replies of proxy AARP entries */
746 da.s_node = ea->pa_dst_node;
747 da.s_net = ea->pa_dst_net;
748
749 write_lock_bh(&aarp_lock);
750 a = __aarp_find_entry(proxies[hash], dev, &da);
751
752 if (a && a->status & ATIF_PROBE) {
753 a->status |= ATIF_PROBE_FAIL;
754 /*
755 * we do not respond to probe or request packets for
756 * this address while we are probing this address
757 */
758 goto unlock;
759 }
760
761 switch (function) {
762 case AARP_REPLY:
763 if (!unresolved_count) /* Speed up */
764 break;
765
766 /* Find the entry. */
767 a = __aarp_find_entry(unresolved[hash], dev, &sa);
768 if (!a || dev != a->dev)
769 break;
770
771 /* We can fill one in - this is good. */
772 memcpy(a->hwaddr, ea->hw_src, ETH_ALEN);
773 __aarp_resolved(&unresolved[hash], a, hash);
774 if (!unresolved_count)
775 mod_timer(&aarp_timer,
776 jiffies + sysctl_aarp_expiry_time);
777 break;
778
779 case AARP_REQUEST:
780 case AARP_PROBE:
781
782 /*
783 * If it is my address set ma to my address and reply.
784 * We can treat probe and request the same. Probe
785 * simply means we shouldn't cache the querying host,
786 * as in a probe they are proposing an address not
787 * using one.
788 *
789 * Support for proxy-AARP added. We check if the
790 * address is one of our proxies before we toss the
791 * packet out.
792 */
793
794 sa.s_node = ea->pa_dst_node;
795 sa.s_net = ea->pa_dst_net;
796
797 /* See if we have a matching proxy. */
798 ma = __aarp_proxy_find(dev, &sa);
799 if (!ma)
800 ma = &ifa->address;
801 else { /* We need to make a copy of the entry. */
802 da.s_node = sa.s_node;
803 da.s_net = da.s_net;
804 ma = &da;
805 }
806
807 if (function == AARP_PROBE) {
808 /*
809 * A probe implies someone trying to get an
810 * address. So as a precaution flush any
811 * entries we have for this address.
812 */
813 struct aarp_entry *a;
814
815 a = __aarp_find_entry(resolved[sa.s_node %
816 (AARP_HASH_SIZE - 1)],
817 skb->dev, &sa);
818
819 /*
820 * Make it expire next tick - that avoids us
821 * getting into a probe/flush/learn/probe/
822 * flush/learn cycle during probing of a slow
823 * to respond host addr.
824 */
825 if (a) {
826 a->expires_at = jiffies - 1;
827 mod_timer(&aarp_timer, jiffies +
828 sysctl_aarp_tick_time);
829 }
830 }
831
832 if (sa.s_node != ma->s_node)
833 break;
834
835 if (sa.s_net && ma->s_net && sa.s_net != ma->s_net)
836 break;
837
838 sa.s_node = ea->pa_src_node;
839 sa.s_net = ea->pa_src_net;
840
841 /* aarp_my_address has found the address to use for us.
842 */
843 aarp_send_reply(dev, ma, &sa, ea->hw_src);
844 break;
845 }
846
847unlock:
848 write_unlock_bh(&aarp_lock);
849out1:
850 ret = 1;
851out0:
852 kfree_skb(skb);
853 return ret;
854}
855
856static struct notifier_block aarp_notifier = {
857 .notifier_call = aarp_device_event,
858};
859
860static unsigned char aarp_snap_id[] = { 0x00, 0x00, 0x00, 0x80, 0xF3 };
861
862void __init aarp_proto_init(void)
863{
864 aarp_dl = register_snap_client(aarp_snap_id, aarp_rcv);
865 if (!aarp_dl)
866 printk(KERN_CRIT "Unable to register AARP with SNAP.\n");
867 init_timer(&aarp_timer);
868 aarp_timer.function = aarp_expire_timeout;
869 aarp_timer.data = 0;
870 aarp_timer.expires = jiffies + sysctl_aarp_expiry_time;
871 add_timer(&aarp_timer);
872 register_netdevice_notifier(&aarp_notifier);
873}
874
875/* Remove the AARP entries associated with a device. */
876void aarp_device_down(struct net_device *dev)
877{
878 int ct;
879
880 write_lock_bh(&aarp_lock);
881
882 for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
883 __aarp_expire_device(&resolved[ct], dev);
884 __aarp_expire_device(&unresolved[ct], dev);
885 __aarp_expire_device(&proxies[ct], dev);
886 }
887
888 write_unlock_bh(&aarp_lock);
889}
890
891#ifdef CONFIG_PROC_FS
892struct aarp_iter_state {
893 int bucket;
894 struct aarp_entry **table;
895};
896
897/*
898 * Get the aarp entry that is in the chain described
899 * by the iterator.
900 * If pos is set then skip till that index.
901 * pos = 1 is the first entry
902 */
903static struct aarp_entry *iter_next(struct aarp_iter_state *iter, loff_t *pos)
904{
905 int ct = iter->bucket;
906 struct aarp_entry **table = iter->table;
907 loff_t off = 0;
908 struct aarp_entry *entry;
909
910 rescan:
911 while(ct < AARP_HASH_SIZE) {
912 for (entry = table[ct]; entry; entry = entry->next) {
913 if (!pos || ++off == *pos) {
914 iter->table = table;
915 iter->bucket = ct;
916 return entry;
917 }
918 }
919 ++ct;
920 }
921
922 if (table == resolved) {
923 ct = 0;
924 table = unresolved;
925 goto rescan;
926 }
927 if (table == unresolved) {
928 ct = 0;
929 table = proxies;
930 goto rescan;
931 }
932 return NULL;
933}
934
935static void *aarp_seq_start(struct seq_file *seq, loff_t *pos)
936{
937 struct aarp_iter_state *iter = seq->private;
938
939 read_lock_bh(&aarp_lock);
940 iter->table = resolved;
941 iter->bucket = 0;
942
943 return *pos ? iter_next(iter, pos) : SEQ_START_TOKEN;
944}
945
946static void *aarp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
947{
948 struct aarp_entry *entry = v;
949 struct aarp_iter_state *iter = seq->private;
950
951 ++*pos;
952
953 /* first line after header */
954 if (v == SEQ_START_TOKEN)
955 entry = iter_next(iter, NULL);
956
957 /* next entry in current bucket */
958 else if (entry->next)
959 entry = entry->next;
960
961 /* next bucket or table */
962 else {
963 ++iter->bucket;
964 entry = iter_next(iter, NULL);
965 }
966 return entry;
967}
968
969static void aarp_seq_stop(struct seq_file *seq, void *v)
970{
971 read_unlock_bh(&aarp_lock);
972}
973
974static const char *dt2str(unsigned long ticks)
975{
976 static char buf[32];
977
978 sprintf(buf, "%ld.%02ld", ticks / HZ, ((ticks % HZ) * 100 ) / HZ);
979
980 return buf;
981}
982
983static int aarp_seq_show(struct seq_file *seq, void *v)
984{
985 struct aarp_iter_state *iter = seq->private;
986 struct aarp_entry *entry = v;
987 unsigned long now = jiffies;
988
989 if (v == SEQ_START_TOKEN)
990 seq_puts(seq,
991 "Address Interface Hardware Address"
992 " Expires LastSend Retry Status\n");
993 else {
994 seq_printf(seq, "%04X:%02X %-12s",
995 ntohs(entry->target_addr.s_net),
996 (unsigned int) entry->target_addr.s_node,
997 entry->dev ? entry->dev->name : "????");
998 seq_printf(seq, "%02X:%02X:%02X:%02X:%02X:%02X",
999 entry->hwaddr[0] & 0xFF,
1000 entry->hwaddr[1] & 0xFF,
1001 entry->hwaddr[2] & 0xFF,
1002 entry->hwaddr[3] & 0xFF,
1003 entry->hwaddr[4] & 0xFF,
1004 entry->hwaddr[5] & 0xFF);
1005 seq_printf(seq, " %8s",
1006 dt2str((long)entry->expires_at - (long)now));
1007 if (iter->table == unresolved)
1008 seq_printf(seq, " %8s %6hu",
1009 dt2str(now - entry->last_sent),
1010 entry->xmit_count);
1011 else
1012 seq_puts(seq, " ");
1013 seq_printf(seq, " %s\n",
1014 (iter->table == resolved) ? "resolved"
1015 : (iter->table == unresolved) ? "unresolved"
1016 : (iter->table == proxies) ? "proxies"
1017 : "unknown");
1018 }
1019 return 0;
1020}
1021
1022static struct seq_operations aarp_seq_ops = {
1023 .start = aarp_seq_start,
1024 .next = aarp_seq_next,
1025 .stop = aarp_seq_stop,
1026 .show = aarp_seq_show,
1027};
1028
1029static int aarp_seq_open(struct inode *inode, struct file *file)
1030{
1031 struct seq_file *seq;
1032 int rc = -ENOMEM;
1033 struct aarp_iter_state *s = kmalloc(sizeof(*s), GFP_KERNEL);
1034
1035 if (!s)
1036 goto out;
1037
1038 rc = seq_open(file, &aarp_seq_ops);
1039 if (rc)
1040 goto out_kfree;
1041
1042 seq = file->private_data;
1043 seq->private = s;
1044 memset(s, 0, sizeof(*s));
1045out:
1046 return rc;
1047out_kfree:
1048 kfree(s);
1049 goto out;
1050}
1051
1052struct file_operations atalk_seq_arp_fops = {
1053 .owner = THIS_MODULE,
1054 .open = aarp_seq_open,
1055 .read = seq_read,
1056 .llseek = seq_lseek,
1057 .release = seq_release_private,
1058};
1059#endif
1060
1061/* General module cleanup. Called from cleanup_module() in ddp.c. */
1062void aarp_cleanup_module(void)
1063{
1064 del_timer_sync(&aarp_timer);
1065 unregister_netdevice_notifier(&aarp_notifier);
1066 unregister_snap_client(aarp_dl);
1067 aarp_purge();
1068}