]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/core/dev.c
UBUNTU: [Config] CONFIG_PCIEPORTBUS=n for ppc64el
[mirror_ubuntu-zesty-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
40e4e713 142#include <linux/crash_dump.h>
1da177e4 143
342709ef
PE
144#include "net-sysfs.h"
145
d565b0a1
HX
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
5d38a079
HX
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
1da177e4 152static DEFINE_SPINLOCK(ptype_lock);
62532da9 153static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
62532da9 156static struct list_head offload_base __read_mostly;
1da177e4 157
ae78dbfa 158static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
ae78dbfa 162
1da177e4 163/*
7562f876 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
165 * semaphore.
166 *
c6d14c84 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
7562f876 170 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
1da177e4 182DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
183EXPORT_SYMBOL(dev_base_lock);
184
af12fa6e
ET
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
52bd2d62 188static unsigned int napi_gen_id = NR_CPUS;
6180d9de 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 190
18afa4b0 191static seqcount_t devnet_rename_seq;
c91f6df2 192
4e985ada
TG
193static inline void dev_base_seq_inc(struct net *net)
194{
195 while (++net->dev_base_seq == 0);
196}
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 199{
8387ff25 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 201
08e9897d 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
203}
204
881d966b 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 206{
7c28bd0b 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
208}
209
e36fa2f7 210static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
e36fa2f7 217static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
ce286d32 224/* Device list insertion */
53759be9 225static void list_netdevice(struct net_device *dev)
ce286d32 226{
c346dca1 227 struct net *net = dev_net(dev);
ce286d32
EB
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
c6d14c84 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
ce286d32 236 write_unlock_bh(&dev_base_lock);
4e985ada
TG
237
238 dev_base_seq_inc(net);
ce286d32
EB
239}
240
fb699dfd
ED
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
ce286d32
EB
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
c6d14c84 250 list_del_rcu(&dev->dev_list);
72c9528b 251 hlist_del_rcu(&dev->name_hlist);
fb699dfd 252 hlist_del_rcu(&dev->index_hlist);
ce286d32 253 write_unlock_bh(&dev_base_lock);
4e985ada
TG
254
255 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
256}
257
1da177e4
LT
258/*
259 * Our notifier list
260 */
261
f07d5b94 262static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
263
264/*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
bea3348e 268
9958da05 269DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 270EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 271
cf508b12 272#ifdef CONFIG_LOCKDEP
723e98b7 273/*
c773e847 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
275 * according to dev->type
276 */
277static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 293
36cbd3dc 294static const char *const netdev_lock_name[] =
723e98b7
JP
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
cf508b12
DM
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
723e98b7
JP
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
cf508b12
DM
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
723e98b7 344#else
cf508b12
DM
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
350{
351}
352#endif
1da177e4
LT
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
1da177e4
LT
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
c07b68e8
ED
376static inline struct list_head *ptype_head(const struct packet_type *pt)
377{
378 if (pt->type == htons(ETH_P_ALL))
7866a621 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 380 else
7866a621
SN
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
383}
384
1da177e4
LT
385/**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
4ec93edb 393 * This call does not sleep therefore it can not
1da177e4
LT
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398void dev_add_pack(struct packet_type *pt)
399{
c07b68e8 400 struct list_head *head = ptype_head(pt);
1da177e4 401
c07b68e8
ED
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
1da177e4 405}
d1b19dff 406EXPORT_SYMBOL(dev_add_pack);
1da177e4 407
1da177e4
LT
408/**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
4ec93edb 415 * returns.
1da177e4
LT
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421void __dev_remove_pack(struct packet_type *pt)
422{
c07b68e8 423 struct list_head *head = ptype_head(pt);
1da177e4
LT
424 struct packet_type *pt1;
425
c07b68e8 426 spin_lock(&ptype_lock);
1da177e4
LT
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
7b6cd1ce 435 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 436out:
c07b68e8 437 spin_unlock(&ptype_lock);
1da177e4 438}
d1b19dff
ED
439EXPORT_SYMBOL(__dev_remove_pack);
440
1da177e4
LT
441/**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453void dev_remove_pack(struct packet_type *pt)
454{
455 __dev_remove_pack(pt);
4ec93edb 456
1da177e4
LT
457 synchronize_net();
458}
d1b19dff 459EXPORT_SYMBOL(dev_remove_pack);
1da177e4 460
62532da9
VY
461
462/**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474void dev_add_offload(struct packet_offload *po)
475{
bdef7de4 476 struct packet_offload *elem;
62532da9
VY
477
478 spin_lock(&offload_lock);
bdef7de4
DM
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
484 spin_unlock(&offload_lock);
485}
486EXPORT_SYMBOL(dev_add_offload);
487
488/**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
1d143d9f 501static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
502{
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
c53aa505 506 spin_lock(&offload_lock);
62532da9
VY
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516out:
c53aa505 517 spin_unlock(&offload_lock);
62532da9 518}
62532da9
VY
519
520/**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532void dev_remove_offload(struct packet_offload *po)
533{
534 __dev_remove_offload(po);
535
536 synchronize_net();
537}
538EXPORT_SYMBOL(dev_remove_offload);
539
1da177e4
LT
540/******************************************************************************
541
542 Device Boot-time Settings Routines
543
544*******************************************************************************/
545
546/* Boot time configuration table */
547static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549/**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558static int netdev_boot_setup_add(char *name, struct ifmap *map)
559{
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 567 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574}
575
576/**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585int netdev_boot_setup_check(struct net_device *dev)
586{
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 592 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601}
d1b19dff 602EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
603
604
605/**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615unsigned long netdev_boot_base(const char *prefix, int unit)
616{
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
881d966b 627 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634}
635
636/*
637 * Saves at boot time configured settings for any netdevice.
638 */
639int __init netdev_boot_setup(char *str)
640{
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661}
662
663__setup("netdev=", netdev_boot_setup);
664
665/*******************************************************************************
666
667 Device Interface Subroutines
668
669*******************************************************************************/
670
a54acb3a
ND
671/**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679int dev_get_iflink(const struct net_device *dev)
680{
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
7a66bbc9 684 return dev->ifindex;
a54acb3a
ND
685}
686EXPORT_SYMBOL(dev_get_iflink);
687
fc4099f1
PS
688/**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698{
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711}
712EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
1da177e4
LT
714/**
715 * __dev_get_by_name - find a device by its name
c4ea43c5 716 * @net: the applicable net namespace
1da177e4
LT
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
881d966b 726struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 727{
0bd8d536
ED
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 730
b67bfe0d 731 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
0bd8d536 734
1da177e4
LT
735 return NULL;
736}
d1b19dff 737EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 738
72c9528b
ED
739/**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752{
72c9528b
ED
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
b67bfe0d 756 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761}
762EXPORT_SYMBOL(dev_get_by_name_rcu);
763
1da177e4
LT
764/**
765 * dev_get_by_name - find a device by its name
c4ea43c5 766 * @net: the applicable net namespace
1da177e4
LT
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
881d966b 776struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
777{
778 struct net_device *dev;
779
72c9528b
ED
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
782 if (dev)
783 dev_hold(dev);
72c9528b 784 rcu_read_unlock();
1da177e4
LT
785 return dev;
786}
d1b19dff 787EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
788
789/**
790 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 791 * @net: the applicable net namespace
1da177e4
LT
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
881d966b 801struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 802{
0bd8d536
ED
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 805
b67bfe0d 806 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
807 if (dev->ifindex == ifindex)
808 return dev;
0bd8d536 809
1da177e4
LT
810 return NULL;
811}
d1b19dff 812EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 813
fb699dfd
ED
814/**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826{
fb699dfd
ED
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
b67bfe0d 830 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835}
836EXPORT_SYMBOL(dev_get_by_index_rcu);
837
1da177e4
LT
838
839/**
840 * dev_get_by_index - find a device by its ifindex
c4ea43c5 841 * @net: the applicable net namespace
1da177e4
LT
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
881d966b 850struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
851{
852 struct net_device *dev;
853
fb699dfd
ED
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
856 if (dev)
857 dev_hold(dev);
fb699dfd 858 rcu_read_unlock();
1da177e4
LT
859 return dev;
860}
d1b19dff 861EXPORT_SYMBOL(dev_get_by_index);
1da177e4 862
5dbe7c17
NS
863/**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873int netdev_get_name(struct net *net, char *name, int ifindex)
874{
875 struct net_device *dev;
876 unsigned int seq;
877
878retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895}
896
1da177e4 897/**
941666c2 898 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 899 * @net: the applicable net namespace
1da177e4
LT
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
941666c2 906 * The returned device has not had its ref count increased
1da177e4
LT
907 * and the caller must therefore be careful about locking
908 *
1da177e4
LT
909 */
910
941666c2
ED
911struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
1da177e4
LT
913{
914 struct net_device *dev;
915
941666c2 916 for_each_netdev_rcu(net, dev)
1da177e4
LT
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
919 return dev;
920
921 return NULL;
1da177e4 922}
941666c2 923EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 924
881d966b 925struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
926{
927 struct net_device *dev;
928
4e9cac2b 929 ASSERT_RTNL();
881d966b 930 for_each_netdev(net, dev)
4e9cac2b 931 if (dev->type == type)
7562f876
PE
932 return dev;
933
934 return NULL;
4e9cac2b 935}
4e9cac2b
PM
936EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
881d966b 938struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 939{
99fe3c39 940 struct net_device *dev, *ret = NULL;
4e9cac2b 941
99fe3c39
ED
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
1da177e4 951}
1da177e4
LT
952EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954/**
6c555490 955 * __dev_get_by_flags - find any device with given flags
c4ea43c5 956 * @net: the applicable net namespace
1da177e4
LT
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 961 * is not found or a pointer to the device. Must be called inside
6c555490 962 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
963 */
964
6c555490
WC
965struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
1da177e4 967{
7562f876 968 struct net_device *dev, *ret;
1da177e4 969
6c555490
WC
970 ASSERT_RTNL();
971
7562f876 972 ret = NULL;
6c555490 973 for_each_netdev(net, dev) {
1da177e4 974 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 975 ret = dev;
1da177e4
LT
976 break;
977 }
978 }
7562f876 979 return ret;
1da177e4 980}
6c555490 981EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
982
983/**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
c7fa9d18
DM
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
1da177e4 990 */
95f050bf 991bool dev_valid_name(const char *name)
1da177e4 992{
c7fa9d18 993 if (*name == '\0')
95f050bf 994 return false;
b6fe17d6 995 if (strlen(name) >= IFNAMSIZ)
95f050bf 996 return false;
c7fa9d18 997 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 998 return false;
c7fa9d18
DM
999
1000 while (*name) {
a4176a93 1001 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1002 return false;
c7fa9d18
DM
1003 name++;
1004 }
95f050bf 1005 return true;
1da177e4 1006}
d1b19dff 1007EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1008
1009/**
b267b179
EB
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1da177e4 1012 * @name: name format string
b267b179 1013 * @buf: scratch buffer and result name string
1da177e4
LT
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1022 */
1023
b267b179 1024static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1025{
1026 int i = 0;
1da177e4
LT
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1029 unsigned long *inuse;
1da177e4
LT
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
cfcabdcc 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1044 if (!inuse)
1045 return -ENOMEM;
1046
881d966b 1047 for_each_netdev(net, d) {
1da177e4
LT
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1054 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
d9031024
OP
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1065 if (!__dev_get_by_name(net, buf))
1da177e4 1066 return i;
1da177e4
LT
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073}
1074
b267b179
EB
1075/**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089int dev_alloc_name(struct net_device *dev, const char *name)
1090{
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
c346dca1
YH
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
b267b179
EB
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101}
d1b19dff 1102EXPORT_SYMBOL(dev_alloc_name);
b267b179 1103
828de4f6
G
1104static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
d9031024 1107{
828de4f6
G
1108 char buf[IFNAMSIZ];
1109 int ret;
8ce6cebc 1110
828de4f6
G
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115}
1116
1117static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120{
1121 BUG_ON(!net);
8ce6cebc 1122
d9031024
OP
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1c5cae81 1126 if (strchr(name, '%'))
828de4f6 1127 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
8ce6cebc
DL
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1132
1133 return 0;
1134}
1da177e4
LT
1135
1136/**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
cf04a4c7 1144int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1145{
238fa362 1146 unsigned char old_assign_type;
fcc5a03a 1147 char oldname[IFNAMSIZ];
1da177e4 1148 int err = 0;
fcc5a03a 1149 int ret;
881d966b 1150 struct net *net;
1da177e4
LT
1151
1152 ASSERT_RTNL();
c346dca1 1153 BUG_ON(!dev_net(dev));
1da177e4 1154
c346dca1 1155 net = dev_net(dev);
1da177e4
LT
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
30e6c9fa 1159 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1162 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1163 return 0;
c91f6df2 1164 }
c8d90dca 1165
fcc5a03a
HX
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
828de4f6 1168 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1169 if (err < 0) {
30e6c9fa 1170 write_seqcount_end(&devnet_rename_seq);
d9031024 1171 return err;
c91f6df2 1172 }
1da177e4 1173
6fe82a39
VF
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
238fa362
TG
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
fcc5a03a 1180rollback:
a1b3f594
EB
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1184 dev->name_assign_type = old_assign_type;
30e6c9fa 1185 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1186 return ret;
dcc99773 1187 }
7f988eab 1188
30e6c9fa 1189 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1190
5bb025fa
VF
1191 netdev_adjacent_rename_links(dev, oldname);
1192
7f988eab 1193 write_lock_bh(&dev_base_lock);
372b2312 1194 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1201 write_unlock_bh(&dev_base_lock);
1202
056925ab 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
91e9c07b
ED
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
fcc5a03a 1209 err = ret;
30e6c9fa 1210 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1211 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1212 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1215 goto rollback;
91e9c07b 1216 } else {
7b6cd1ce 1217 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1218 dev->name, ret);
fcc5a03a
HX
1219 }
1220 }
1da177e4
LT
1221
1222 return err;
1223}
1224
0b815a1a
SH
1225/**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
f0db275a 1229 * @len: limit of bytes to copy from info
0b815a1a
SH
1230 *
1231 * Set ifalias for a device,
1232 */
1233int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234{
7364e445
AK
1235 char *new_ifalias;
1236
0b815a1a
SH
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
96ca4a2c 1242 if (!len) {
388dfc2d
SK
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
96ca4a2c
OH
1245 return 0;
1246 }
1247
7364e445
AK
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
0b815a1a 1250 return -ENOMEM;
7364e445 1251 dev->ifalias = new_ifalias;
0b815a1a
SH
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255}
1256
1257
d8a33ac4 1258/**
3041a069 1259 * netdev_features_change - device changes features
d8a33ac4
SH
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264void netdev_features_change(struct net_device *dev)
1265{
056925ab 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1267}
1268EXPORT_SYMBOL(netdev_features_change);
1269
1da177e4
LT
1270/**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278void netdev_state_change(struct net_device *dev)
1279{
1280 if (dev->flags & IFF_UP) {
54951194
LP
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
7f294054 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1287 }
1288}
d1b19dff 1289EXPORT_SYMBOL(netdev_state_change);
1da177e4 1290
ee89bab1
AW
1291/**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1302{
ee89bab1
AW
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
c1da4ac7 1306}
ee89bab1 1307EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1308
bd380811 1309static int __dev_open(struct net_device *dev)
1da177e4 1310{
d314774c 1311 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1312 int ret;
1da177e4 1313
e46b66bc
BH
1314 ASSERT_RTNL();
1315
1da177e4
LT
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
ca99ca14
NH
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
66b5552f 1323 netpoll_poll_disable(dev);
ca99ca14 1324
3b8bcfd5
JB
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1da177e4 1330 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1331
d314774c
SH
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
bada339b 1334
d314774c
SH
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1da177e4 1337
66b5552f 1338 netpoll_poll_enable(dev);
ca99ca14 1339
bada339b
JG
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1da177e4 1343 dev->flags |= IFF_UP;
4417da66 1344 dev_set_rx_mode(dev);
1da177e4 1345 dev_activate(dev);
7bf23575 1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1347 }
bada339b 1348
1da177e4
LT
1349 return ret;
1350}
1351
1352/**
bd380811
PM
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1da177e4 1355 *
bd380811
PM
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1da177e4 1363 */
bd380811
PM
1364int dev_open(struct net_device *dev)
1365{
1366 int ret;
1367
bd380811
PM
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
bd380811
PM
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
7f294054 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379}
1380EXPORT_SYMBOL(dev_open);
1381
44345724 1382static int __dev_close_many(struct list_head *head)
1da177e4 1383{
44345724 1384 struct net_device *dev;
e46b66bc 1385
bd380811 1386 ASSERT_RTNL();
9d5010db
DM
1387 might_sleep();
1388
5cde2829 1389 list_for_each_entry(dev, head, close_list) {
3f4df206 1390 /* Temporarily disable netpoll until the interface is down */
66b5552f 1391 netpoll_poll_disable(dev);
3f4df206 1392
44345724 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1394
44345724 1395 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1396
44345724
OP
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
4e857c58 1403 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1404 }
1da177e4 1405
44345724 1406 dev_deactivate_many(head);
d8b2a4d2 1407
5cde2829 1408 list_for_each_entry(dev, head, close_list) {
44345724 1409 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1410
44345724
OP
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
44345724 1421 dev->flags &= ~IFF_UP;
66b5552f 1422 netpoll_poll_enable(dev);
44345724
OP
1423 }
1424
1425 return 0;
1426}
1427
1428static int __dev_close(struct net_device *dev)
1429{
f87e6f47 1430 int retval;
44345724
OP
1431 LIST_HEAD(single);
1432
5cde2829 1433 list_add(&dev->close_list, &single);
f87e6f47
LT
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
ca99ca14 1436
f87e6f47 1437 return retval;
44345724
OP
1438}
1439
99c4a26a 1440int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1441{
1442 struct net_device *dev, *tmp;
1da177e4 1443
5cde2829
EB
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1446 if (!(dev->flags & IFF_UP))
5cde2829 1447 list_del_init(&dev->close_list);
44345724
OP
1448
1449 __dev_close_many(head);
1da177e4 1450
5cde2829 1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1454 if (unlink)
1455 list_del_init(&dev->close_list);
44345724 1456 }
bd380811
PM
1457
1458 return 0;
1459}
99c4a26a 1460EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1461
1462/**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471int dev_close(struct net_device *dev)
1472{
e14a5993
ED
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1da177e4 1475
5cde2829 1476 list_add(&dev->close_list, &single);
99c4a26a 1477 dev_close_many(&single, true);
e14a5993
ED
1478 list_del(&single);
1479 }
da6e378b 1480 return 0;
1da177e4 1481}
d1b19dff 1482EXPORT_SYMBOL(dev_close);
1da177e4
LT
1483
1484
0187bdfb
BH
1485/**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493void dev_disable_lro(struct net_device *dev)
1494{
fbe168ba
MK
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
529d0489 1497
bc5787c6
MM
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
27660515 1500
22d5969f
MM
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
0187bdfb
BH
1506}
1507EXPORT_SYMBOL(dev_disable_lro);
1508
351638e7
JP
1509static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511{
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516}
0187bdfb 1517
881d966b
EB
1518static int dev_boot_phase = 1;
1519
1da177e4
LT
1520/**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
4ec93edb 1530 * to the new notifier to allow device to have a race free
1da177e4
LT
1531 * view of the network device list.
1532 */
1533
1534int register_netdevice_notifier(struct notifier_block *nb)
1535{
1536 struct net_device *dev;
fcc5a03a 1537 struct net_device *last;
881d966b 1538 struct net *net;
1da177e4
LT
1539 int err;
1540
1541 rtnl_lock();
f07d5b94 1542 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1543 if (err)
1544 goto unlock;
881d966b
EB
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
351638e7 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1da177e4 1556
351638e7 1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1558 }
1da177e4 1559 }
fcc5a03a
HX
1560
1561unlock:
1da177e4
LT
1562 rtnl_unlock();
1563 return err;
fcc5a03a
HX
1564
1565rollback:
1566 last = dev;
881d966b
EB
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
8f891489 1570 goto outroll;
fcc5a03a 1571
881d966b 1572 if (dev->flags & IFF_UP) {
351638e7
JP
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1576 }
351638e7 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1578 }
fcc5a03a 1579 }
c67625a1 1580
8f891489 1581outroll:
c67625a1 1582 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1583 goto unlock;
1da177e4 1584}
d1b19dff 1585EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1586
1587/**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
7d3d43da
EB
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1da177e4
LT
1599 */
1600
1601int unregister_netdevice_notifier(struct notifier_block *nb)
1602{
7d3d43da
EB
1603 struct net_device *dev;
1604 struct net *net;
9f514950
HX
1605 int err;
1606
1607 rtnl_lock();
f07d5b94 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
351638e7
JP
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1618 }
351638e7 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1620 }
1621 }
1622unlock:
9f514950
HX
1623 rtnl_unlock();
1624 return err;
1da177e4 1625}
d1b19dff 1626EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1627
351638e7
JP
1628/**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1d143d9f 1638static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
351638e7
JP
1641{
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645}
351638e7 1646
1da177e4
LT
1647/**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
c4ea43c5 1650 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1651 *
1652 * Call all network notifier blocks. Parameters and return value
f07d5b94 1653 * are as for raw_notifier_call_chain().
1da177e4
LT
1654 */
1655
ad7379d4 1656int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1657{
351638e7
JP
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1661}
edf947f1 1662EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1663
1cf51900 1664#ifdef CONFIG_NET_INGRESS
4577139b
DB
1665static struct static_key ingress_needed __read_mostly;
1666
1667void net_inc_ingress_queue(void)
1668{
1669 static_key_slow_inc(&ingress_needed);
1670}
1671EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673void net_dec_ingress_queue(void)
1674{
1675 static_key_slow_dec(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678#endif
1679
1f211a1b
DB
1680#ifdef CONFIG_NET_EGRESS
1681static struct static_key egress_needed __read_mostly;
1682
1683void net_inc_egress_queue(void)
1684{
1685 static_key_slow_inc(&egress_needed);
1686}
1687EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689void net_dec_egress_queue(void)
1690{
1691 static_key_slow_dec(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694#endif
1695
c5905afb 1696static struct static_key netstamp_needed __read_mostly;
b90e5794 1697#ifdef HAVE_JUMP_LABEL
b90e5794 1698static atomic_t netstamp_needed_deferred;
5fa8bbda 1699static void netstamp_clear(struct work_struct *work)
1da177e4 1700{
b90e5794
ED
1701 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1702
5fa8bbda
ED
1703 while (deferred--)
1704 static_key_slow_dec(&netstamp_needed);
1705}
1706static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1707#endif
5fa8bbda
ED
1708
1709void net_enable_timestamp(void)
1710{
c5905afb 1711 static_key_slow_inc(&netstamp_needed);
1da177e4 1712}
d1b19dff 1713EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1714
1715void net_disable_timestamp(void)
1716{
b90e5794 1717#ifdef HAVE_JUMP_LABEL
5fa8bbda
ED
1718 /* net_disable_timestamp() can be called from non process context */
1719 atomic_inc(&netstamp_needed_deferred);
1720 schedule_work(&netstamp_work);
1721#else
c5905afb 1722 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1723#endif
1da177e4 1724}
d1b19dff 1725EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1726
3b098e2d 1727static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1728{
2456e855 1729 skb->tstamp = 0;
c5905afb 1730 if (static_key_false(&netstamp_needed))
a61bbcf2 1731 __net_timestamp(skb);
1da177e4
LT
1732}
1733
588f0330 1734#define net_timestamp_check(COND, SKB) \
c5905afb 1735 if (static_key_false(&netstamp_needed)) { \
2456e855 1736 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1737 __net_timestamp(SKB); \
1738 } \
3b098e2d 1739
f4b05d27 1740bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1741{
1742 unsigned int len;
1743
1744 if (!(dev->flags & IFF_UP))
1745 return false;
1746
1747 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1748 if (skb->len <= len)
1749 return true;
1750
1751 /* if TSO is enabled, we don't care about the length as the packet
1752 * could be forwarded without being segmented before
1753 */
1754 if (skb_is_gso(skb))
1755 return true;
1756
1757 return false;
1758}
1ee481fb 1759EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1760
a0265d28
HX
1761int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1762{
4e3264d2 1763 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1764
4e3264d2
MKL
1765 if (likely(!ret)) {
1766 skb->protocol = eth_type_trans(skb, dev);
1767 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1768 }
a0265d28 1769
4e3264d2 1770 return ret;
a0265d28
HX
1771}
1772EXPORT_SYMBOL_GPL(__dev_forward_skb);
1773
44540960
AB
1774/**
1775 * dev_forward_skb - loopback an skb to another netif
1776 *
1777 * @dev: destination network device
1778 * @skb: buffer to forward
1779 *
1780 * return values:
1781 * NET_RX_SUCCESS (no congestion)
6ec82562 1782 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1783 *
1784 * dev_forward_skb can be used for injecting an skb from the
1785 * start_xmit function of one device into the receive queue
1786 * of another device.
1787 *
1788 * The receiving device may be in another namespace, so
1789 * we have to clear all information in the skb that could
1790 * impact namespace isolation.
1791 */
1792int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1793{
a0265d28 1794 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1795}
1796EXPORT_SYMBOL_GPL(dev_forward_skb);
1797
71d9dec2
CG
1798static inline int deliver_skb(struct sk_buff *skb,
1799 struct packet_type *pt_prev,
1800 struct net_device *orig_dev)
1801{
1080e512
MT
1802 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1803 return -ENOMEM;
71d9dec2
CG
1804 atomic_inc(&skb->users);
1805 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1806}
1807
7866a621
SN
1808static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1809 struct packet_type **pt,
fbcb2170
JP
1810 struct net_device *orig_dev,
1811 __be16 type,
7866a621
SN
1812 struct list_head *ptype_list)
1813{
1814 struct packet_type *ptype, *pt_prev = *pt;
1815
1816 list_for_each_entry_rcu(ptype, ptype_list, list) {
1817 if (ptype->type != type)
1818 continue;
1819 if (pt_prev)
fbcb2170 1820 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1821 pt_prev = ptype;
1822 }
1823 *pt = pt_prev;
1824}
1825
c0de08d0
EL
1826static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1827{
a3d744e9 1828 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1829 return false;
1830
1831 if (ptype->id_match)
1832 return ptype->id_match(ptype, skb->sk);
1833 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1834 return true;
1835
1836 return false;
1837}
1838
1da177e4
LT
1839/*
1840 * Support routine. Sends outgoing frames to any network
1841 * taps currently in use.
1842 */
1843
74b20582 1844void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1845{
1846 struct packet_type *ptype;
71d9dec2
CG
1847 struct sk_buff *skb2 = NULL;
1848 struct packet_type *pt_prev = NULL;
7866a621 1849 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1850
1da177e4 1851 rcu_read_lock();
7866a621
SN
1852again:
1853 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1854 /* Never send packets back to the socket
1855 * they originated from - MvS (miquels@drinkel.ow.org)
1856 */
7866a621
SN
1857 if (skb_loop_sk(ptype, skb))
1858 continue;
71d9dec2 1859
7866a621
SN
1860 if (pt_prev) {
1861 deliver_skb(skb2, pt_prev, skb->dev);
1862 pt_prev = ptype;
1863 continue;
1864 }
1da177e4 1865
7866a621
SN
1866 /* need to clone skb, done only once */
1867 skb2 = skb_clone(skb, GFP_ATOMIC);
1868 if (!skb2)
1869 goto out_unlock;
70978182 1870
7866a621 1871 net_timestamp_set(skb2);
1da177e4 1872
7866a621
SN
1873 /* skb->nh should be correctly
1874 * set by sender, so that the second statement is
1875 * just protection against buggy protocols.
1876 */
1877 skb_reset_mac_header(skb2);
1878
1879 if (skb_network_header(skb2) < skb2->data ||
1880 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1881 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1882 ntohs(skb2->protocol),
1883 dev->name);
1884 skb_reset_network_header(skb2);
1da177e4 1885 }
7866a621
SN
1886
1887 skb2->transport_header = skb2->network_header;
1888 skb2->pkt_type = PACKET_OUTGOING;
1889 pt_prev = ptype;
1890 }
1891
1892 if (ptype_list == &ptype_all) {
1893 ptype_list = &dev->ptype_all;
1894 goto again;
1da177e4 1895 }
7866a621 1896out_unlock:
71d9dec2
CG
1897 if (pt_prev)
1898 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1899 rcu_read_unlock();
1900}
74b20582 1901EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1902
2c53040f
BH
1903/**
1904 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1905 * @dev: Network device
1906 * @txq: number of queues available
1907 *
1908 * If real_num_tx_queues is changed the tc mappings may no longer be
1909 * valid. To resolve this verify the tc mapping remains valid and if
1910 * not NULL the mapping. With no priorities mapping to this
1911 * offset/count pair it will no longer be used. In the worst case TC0
1912 * is invalid nothing can be done so disable priority mappings. If is
1913 * expected that drivers will fix this mapping if they can before
1914 * calling netif_set_real_num_tx_queues.
1915 */
bb134d22 1916static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1917{
1918 int i;
1919 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1920
1921 /* If TC0 is invalidated disable TC mapping */
1922 if (tc->offset + tc->count > txq) {
7b6cd1ce 1923 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1924 dev->num_tc = 0;
1925 return;
1926 }
1927
1928 /* Invalidated prio to tc mappings set to TC0 */
1929 for (i = 1; i < TC_BITMASK + 1; i++) {
1930 int q = netdev_get_prio_tc_map(dev, i);
1931
1932 tc = &dev->tc_to_txq[q];
1933 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1934 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1935 i, q);
4f57c087
JF
1936 netdev_set_prio_tc_map(dev, i, 0);
1937 }
1938 }
1939}
1940
8d059b0f
AD
1941int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1942{
1943 if (dev->num_tc) {
1944 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1945 int i;
1946
1947 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1948 if ((txq - tc->offset) < tc->count)
1949 return i;
1950 }
1951
1952 return -1;
1953 }
1954
1955 return 0;
1956}
1957
537c00de
AD
1958#ifdef CONFIG_XPS
1959static DEFINE_MUTEX(xps_map_mutex);
1960#define xmap_dereference(P) \
1961 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1962
6234f874
AD
1963static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1964 int tci, u16 index)
537c00de 1965{
10cdc3f3
AD
1966 struct xps_map *map = NULL;
1967 int pos;
537c00de 1968
10cdc3f3 1969 if (dev_maps)
6234f874
AD
1970 map = xmap_dereference(dev_maps->cpu_map[tci]);
1971 if (!map)
1972 return false;
537c00de 1973
6234f874
AD
1974 for (pos = map->len; pos--;) {
1975 if (map->queues[pos] != index)
1976 continue;
1977
1978 if (map->len > 1) {
1979 map->queues[pos] = map->queues[--map->len];
10cdc3f3 1980 break;
537c00de 1981 }
6234f874
AD
1982
1983 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1984 kfree_rcu(map, rcu);
1985 return false;
537c00de
AD
1986 }
1987
6234f874 1988 return true;
10cdc3f3
AD
1989}
1990
6234f874
AD
1991static bool remove_xps_queue_cpu(struct net_device *dev,
1992 struct xps_dev_maps *dev_maps,
1993 int cpu, u16 offset, u16 count)
1994{
184c449f
AD
1995 int num_tc = dev->num_tc ? : 1;
1996 bool active = false;
1997 int tci;
6234f874 1998
184c449f
AD
1999 for (tci = cpu * num_tc; num_tc--; tci++) {
2000 int i, j;
2001
2002 for (i = count, j = offset; i--; j++) {
2003 if (!remove_xps_queue(dev_maps, cpu, j))
2004 break;
2005 }
2006
2007 active |= i < 0;
6234f874
AD
2008 }
2009
184c449f 2010 return active;
6234f874
AD
2011}
2012
2013static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2014 u16 count)
10cdc3f3
AD
2015{
2016 struct xps_dev_maps *dev_maps;
024e9679 2017 int cpu, i;
10cdc3f3
AD
2018 bool active = false;
2019
2020 mutex_lock(&xps_map_mutex);
2021 dev_maps = xmap_dereference(dev->xps_maps);
2022
2023 if (!dev_maps)
2024 goto out_no_maps;
2025
6234f874
AD
2026 for_each_possible_cpu(cpu)
2027 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2028 offset, count);
10cdc3f3
AD
2029
2030 if (!active) {
537c00de
AD
2031 RCU_INIT_POINTER(dev->xps_maps, NULL);
2032 kfree_rcu(dev_maps, rcu);
2033 }
2034
6234f874 2035 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2036 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2037 NUMA_NO_NODE);
2038
537c00de
AD
2039out_no_maps:
2040 mutex_unlock(&xps_map_mutex);
2041}
2042
6234f874
AD
2043static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2044{
2045 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2046}
2047
01c5f864
AD
2048static struct xps_map *expand_xps_map(struct xps_map *map,
2049 int cpu, u16 index)
2050{
2051 struct xps_map *new_map;
2052 int alloc_len = XPS_MIN_MAP_ALLOC;
2053 int i, pos;
2054
2055 for (pos = 0; map && pos < map->len; pos++) {
2056 if (map->queues[pos] != index)
2057 continue;
2058 return map;
2059 }
2060
2061 /* Need to add queue to this CPU's existing map */
2062 if (map) {
2063 if (pos < map->alloc_len)
2064 return map;
2065
2066 alloc_len = map->alloc_len * 2;
2067 }
2068
2069 /* Need to allocate new map to store queue on this CPU's map */
2070 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2071 cpu_to_node(cpu));
2072 if (!new_map)
2073 return NULL;
2074
2075 for (i = 0; i < pos; i++)
2076 new_map->queues[i] = map->queues[i];
2077 new_map->alloc_len = alloc_len;
2078 new_map->len = pos;
2079
2080 return new_map;
2081}
2082
3573540c
MT
2083int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2084 u16 index)
537c00de 2085{
01c5f864 2086 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2087 int i, cpu, tci, numa_node_id = -2;
2088 int maps_sz, num_tc = 1, tc = 0;
537c00de 2089 struct xps_map *map, *new_map;
01c5f864 2090 bool active = false;
537c00de 2091
184c449f
AD
2092 if (dev->num_tc) {
2093 num_tc = dev->num_tc;
2094 tc = netdev_txq_to_tc(dev, index);
2095 if (tc < 0)
2096 return -EINVAL;
2097 }
2098
2099 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2100 if (maps_sz < L1_CACHE_BYTES)
2101 maps_sz = L1_CACHE_BYTES;
2102
537c00de
AD
2103 mutex_lock(&xps_map_mutex);
2104
2105 dev_maps = xmap_dereference(dev->xps_maps);
2106
01c5f864 2107 /* allocate memory for queue storage */
184c449f 2108 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2109 if (!new_dev_maps)
2110 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2111 if (!new_dev_maps) {
2112 mutex_unlock(&xps_map_mutex);
01c5f864 2113 return -ENOMEM;
2bb60cb9 2114 }
01c5f864 2115
184c449f
AD
2116 tci = cpu * num_tc + tc;
2117 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2118 NULL;
2119
2120 map = expand_xps_map(map, cpu, index);
2121 if (!map)
2122 goto error;
2123
184c449f 2124 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2125 }
2126
2127 if (!new_dev_maps)
2128 goto out_no_new_maps;
2129
537c00de 2130 for_each_possible_cpu(cpu) {
184c449f
AD
2131 /* copy maps belonging to foreign traffic classes */
2132 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2133 /* fill in the new device map from the old device map */
2134 map = xmap_dereference(dev_maps->cpu_map[tci]);
2135 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2136 }
2137
2138 /* We need to explicitly update tci as prevous loop
2139 * could break out early if dev_maps is NULL.
2140 */
2141 tci = cpu * num_tc + tc;
2142
01c5f864
AD
2143 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2144 /* add queue to CPU maps */
2145 int pos = 0;
2146
184c449f 2147 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2148 while ((pos < map->len) && (map->queues[pos] != index))
2149 pos++;
2150
2151 if (pos == map->len)
2152 map->queues[map->len++] = index;
537c00de 2153#ifdef CONFIG_NUMA
537c00de
AD
2154 if (numa_node_id == -2)
2155 numa_node_id = cpu_to_node(cpu);
2156 else if (numa_node_id != cpu_to_node(cpu))
2157 numa_node_id = -1;
537c00de 2158#endif
01c5f864
AD
2159 } else if (dev_maps) {
2160 /* fill in the new device map from the old device map */
184c449f
AD
2161 map = xmap_dereference(dev_maps->cpu_map[tci]);
2162 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2163 }
01c5f864 2164
184c449f
AD
2165 /* copy maps belonging to foreign traffic classes */
2166 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2167 /* fill in the new device map from the old device map */
2168 map = xmap_dereference(dev_maps->cpu_map[tci]);
2169 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2170 }
537c00de
AD
2171 }
2172
01c5f864
AD
2173 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2174
537c00de 2175 /* Cleanup old maps */
184c449f
AD
2176 if (!dev_maps)
2177 goto out_no_old_maps;
2178
2179 for_each_possible_cpu(cpu) {
2180 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2181 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2182 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2183 if (map && map != new_map)
2184 kfree_rcu(map, rcu);
2185 }
537c00de
AD
2186 }
2187
184c449f
AD
2188 kfree_rcu(dev_maps, rcu);
2189
2190out_no_old_maps:
01c5f864
AD
2191 dev_maps = new_dev_maps;
2192 active = true;
537c00de 2193
01c5f864
AD
2194out_no_new_maps:
2195 /* update Tx queue numa node */
537c00de
AD
2196 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2197 (numa_node_id >= 0) ? numa_node_id :
2198 NUMA_NO_NODE);
2199
01c5f864
AD
2200 if (!dev_maps)
2201 goto out_no_maps;
2202
2203 /* removes queue from unused CPUs */
2204 for_each_possible_cpu(cpu) {
184c449f
AD
2205 for (i = tc, tci = cpu * num_tc; i--; tci++)
2206 active |= remove_xps_queue(dev_maps, tci, index);
2207 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2208 active |= remove_xps_queue(dev_maps, tci, index);
2209 for (i = num_tc - tc, tci++; --i; tci++)
2210 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2211 }
2212
2213 /* free map if not active */
2214 if (!active) {
2215 RCU_INIT_POINTER(dev->xps_maps, NULL);
2216 kfree_rcu(dev_maps, rcu);
2217 }
2218
2219out_no_maps:
537c00de
AD
2220 mutex_unlock(&xps_map_mutex);
2221
2222 return 0;
2223error:
01c5f864
AD
2224 /* remove any maps that we added */
2225 for_each_possible_cpu(cpu) {
184c449f
AD
2226 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2227 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2228 map = dev_maps ?
2229 xmap_dereference(dev_maps->cpu_map[tci]) :
2230 NULL;
2231 if (new_map && new_map != map)
2232 kfree(new_map);
2233 }
01c5f864
AD
2234 }
2235
537c00de
AD
2236 mutex_unlock(&xps_map_mutex);
2237
537c00de
AD
2238 kfree(new_dev_maps);
2239 return -ENOMEM;
2240}
2241EXPORT_SYMBOL(netif_set_xps_queue);
2242
2243#endif
9cf1f6a8
AD
2244void netdev_reset_tc(struct net_device *dev)
2245{
6234f874
AD
2246#ifdef CONFIG_XPS
2247 netif_reset_xps_queues_gt(dev, 0);
2248#endif
9cf1f6a8
AD
2249 dev->num_tc = 0;
2250 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2251 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2252}
2253EXPORT_SYMBOL(netdev_reset_tc);
2254
2255int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2256{
2257 if (tc >= dev->num_tc)
2258 return -EINVAL;
2259
6234f874
AD
2260#ifdef CONFIG_XPS
2261 netif_reset_xps_queues(dev, offset, count);
2262#endif
9cf1f6a8
AD
2263 dev->tc_to_txq[tc].count = count;
2264 dev->tc_to_txq[tc].offset = offset;
2265 return 0;
2266}
2267EXPORT_SYMBOL(netdev_set_tc_queue);
2268
2269int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2270{
2271 if (num_tc > TC_MAX_QUEUE)
2272 return -EINVAL;
2273
6234f874
AD
2274#ifdef CONFIG_XPS
2275 netif_reset_xps_queues_gt(dev, 0);
2276#endif
9cf1f6a8
AD
2277 dev->num_tc = num_tc;
2278 return 0;
2279}
2280EXPORT_SYMBOL(netdev_set_num_tc);
2281
f0796d5c
JF
2282/*
2283 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2284 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2285 */
e6484930 2286int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2287{
1d24eb48
TH
2288 int rc;
2289
e6484930
TH
2290 if (txq < 1 || txq > dev->num_tx_queues)
2291 return -EINVAL;
f0796d5c 2292
5c56580b
BH
2293 if (dev->reg_state == NETREG_REGISTERED ||
2294 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2295 ASSERT_RTNL();
2296
1d24eb48
TH
2297 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2298 txq);
bf264145
TH
2299 if (rc)
2300 return rc;
2301
4f57c087
JF
2302 if (dev->num_tc)
2303 netif_setup_tc(dev, txq);
2304
024e9679 2305 if (txq < dev->real_num_tx_queues) {
e6484930 2306 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2307#ifdef CONFIG_XPS
2308 netif_reset_xps_queues_gt(dev, txq);
2309#endif
2310 }
f0796d5c 2311 }
e6484930
TH
2312
2313 dev->real_num_tx_queues = txq;
2314 return 0;
f0796d5c
JF
2315}
2316EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2317
a953be53 2318#ifdef CONFIG_SYSFS
62fe0b40
BH
2319/**
2320 * netif_set_real_num_rx_queues - set actual number of RX queues used
2321 * @dev: Network device
2322 * @rxq: Actual number of RX queues
2323 *
2324 * This must be called either with the rtnl_lock held or before
2325 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2326 * negative error code. If called before registration, it always
2327 * succeeds.
62fe0b40
BH
2328 */
2329int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2330{
2331 int rc;
2332
bd25fa7b
TH
2333 if (rxq < 1 || rxq > dev->num_rx_queues)
2334 return -EINVAL;
2335
62fe0b40
BH
2336 if (dev->reg_state == NETREG_REGISTERED) {
2337 ASSERT_RTNL();
2338
62fe0b40
BH
2339 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2340 rxq);
2341 if (rc)
2342 return rc;
62fe0b40
BH
2343 }
2344
2345 dev->real_num_rx_queues = rxq;
2346 return 0;
2347}
2348EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2349#endif
2350
2c53040f
BH
2351/**
2352 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2353 *
2354 * This routine should set an upper limit on the number of RSS queues
2355 * used by default by multiqueue devices.
2356 */
a55b138b 2357int netif_get_num_default_rss_queues(void)
16917b87 2358{
40e4e713
HS
2359 return is_kdump_kernel() ?
2360 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2361}
2362EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2363
3bcb846c 2364static void __netif_reschedule(struct Qdisc *q)
56079431 2365{
def82a1d
JP
2366 struct softnet_data *sd;
2367 unsigned long flags;
56079431 2368
def82a1d 2369 local_irq_save(flags);
903ceff7 2370 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2371 q->next_sched = NULL;
2372 *sd->output_queue_tailp = q;
2373 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2374 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2375 local_irq_restore(flags);
2376}
2377
2378void __netif_schedule(struct Qdisc *q)
2379{
2380 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2381 __netif_reschedule(q);
56079431
DV
2382}
2383EXPORT_SYMBOL(__netif_schedule);
2384
e6247027
ED
2385struct dev_kfree_skb_cb {
2386 enum skb_free_reason reason;
2387};
2388
2389static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2390{
e6247027
ED
2391 return (struct dev_kfree_skb_cb *)skb->cb;
2392}
2393
46e5da40
JF
2394void netif_schedule_queue(struct netdev_queue *txq)
2395{
2396 rcu_read_lock();
2397 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2398 struct Qdisc *q = rcu_dereference(txq->qdisc);
2399
2400 __netif_schedule(q);
2401 }
2402 rcu_read_unlock();
2403}
2404EXPORT_SYMBOL(netif_schedule_queue);
2405
2406/**
2407 * netif_wake_subqueue - allow sending packets on subqueue
2408 * @dev: network device
2409 * @queue_index: sub queue index
2410 *
2411 * Resume individual transmit queue of a device with multiple transmit queues.
2412 */
2413void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2414{
2415 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2416
2417 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2418 struct Qdisc *q;
2419
2420 rcu_read_lock();
2421 q = rcu_dereference(txq->qdisc);
2422 __netif_schedule(q);
2423 rcu_read_unlock();
2424 }
2425}
2426EXPORT_SYMBOL(netif_wake_subqueue);
2427
2428void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2429{
2430 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2431 struct Qdisc *q;
2432
2433 rcu_read_lock();
2434 q = rcu_dereference(dev_queue->qdisc);
2435 __netif_schedule(q);
2436 rcu_read_unlock();
2437 }
2438}
2439EXPORT_SYMBOL(netif_tx_wake_queue);
2440
e6247027 2441void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2442{
e6247027 2443 unsigned long flags;
56079431 2444
e6247027
ED
2445 if (likely(atomic_read(&skb->users) == 1)) {
2446 smp_rmb();
2447 atomic_set(&skb->users, 0);
2448 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2449 return;
bea3348e 2450 }
e6247027
ED
2451 get_kfree_skb_cb(skb)->reason = reason;
2452 local_irq_save(flags);
2453 skb->next = __this_cpu_read(softnet_data.completion_queue);
2454 __this_cpu_write(softnet_data.completion_queue, skb);
2455 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2456 local_irq_restore(flags);
56079431 2457}
e6247027 2458EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2459
e6247027 2460void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2461{
2462 if (in_irq() || irqs_disabled())
e6247027 2463 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2464 else
2465 dev_kfree_skb(skb);
2466}
e6247027 2467EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2468
2469
bea3348e
SH
2470/**
2471 * netif_device_detach - mark device as removed
2472 * @dev: network device
2473 *
2474 * Mark device as removed from system and therefore no longer available.
2475 */
56079431
DV
2476void netif_device_detach(struct net_device *dev)
2477{
2478 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2479 netif_running(dev)) {
d543103a 2480 netif_tx_stop_all_queues(dev);
56079431
DV
2481 }
2482}
2483EXPORT_SYMBOL(netif_device_detach);
2484
bea3348e
SH
2485/**
2486 * netif_device_attach - mark device as attached
2487 * @dev: network device
2488 *
2489 * Mark device as attached from system and restart if needed.
2490 */
56079431
DV
2491void netif_device_attach(struct net_device *dev)
2492{
2493 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2494 netif_running(dev)) {
d543103a 2495 netif_tx_wake_all_queues(dev);
4ec93edb 2496 __netdev_watchdog_up(dev);
56079431
DV
2497 }
2498}
2499EXPORT_SYMBOL(netif_device_attach);
2500
5605c762
JP
2501/*
2502 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2503 * to be used as a distribution range.
2504 */
2505u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2506 unsigned int num_tx_queues)
2507{
2508 u32 hash;
2509 u16 qoffset = 0;
2510 u16 qcount = num_tx_queues;
2511
2512 if (skb_rx_queue_recorded(skb)) {
2513 hash = skb_get_rx_queue(skb);
2514 while (unlikely(hash >= num_tx_queues))
2515 hash -= num_tx_queues;
2516 return hash;
2517 }
2518
2519 if (dev->num_tc) {
2520 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2521 qoffset = dev->tc_to_txq[tc].offset;
2522 qcount = dev->tc_to_txq[tc].count;
2523 }
2524
2525 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2526}
2527EXPORT_SYMBOL(__skb_tx_hash);
2528
36c92474
BH
2529static void skb_warn_bad_offload(const struct sk_buff *skb)
2530{
84d15ae5 2531 static const netdev_features_t null_features;
36c92474 2532 struct net_device *dev = skb->dev;
88ad4175 2533 const char *name = "";
36c92474 2534
c846ad9b
BG
2535 if (!net_ratelimit())
2536 return;
2537
88ad4175
BM
2538 if (dev) {
2539 if (dev->dev.parent)
2540 name = dev_driver_string(dev->dev.parent);
2541 else
2542 name = netdev_name(dev);
2543 }
36c92474
BH
2544 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2545 "gso_type=%d ip_summed=%d\n",
88ad4175 2546 name, dev ? &dev->features : &null_features,
65e9d2fa 2547 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2548 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2549 skb_shinfo(skb)->gso_type, skb->ip_summed);
2550}
2551
1da177e4
LT
2552/*
2553 * Invalidate hardware checksum when packet is to be mangled, and
2554 * complete checksum manually on outgoing path.
2555 */
84fa7933 2556int skb_checksum_help(struct sk_buff *skb)
1da177e4 2557{
d3bc23e7 2558 __wsum csum;
663ead3b 2559 int ret = 0, offset;
1da177e4 2560
84fa7933 2561 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2562 goto out_set_summed;
2563
2564 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2565 skb_warn_bad_offload(skb);
2566 return -EINVAL;
1da177e4
LT
2567 }
2568
cef401de
ED
2569 /* Before computing a checksum, we should make sure no frag could
2570 * be modified by an external entity : checksum could be wrong.
2571 */
2572 if (skb_has_shared_frag(skb)) {
2573 ret = __skb_linearize(skb);
2574 if (ret)
2575 goto out;
2576 }
2577
55508d60 2578 offset = skb_checksum_start_offset(skb);
a030847e
HX
2579 BUG_ON(offset >= skb_headlen(skb));
2580 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2581
2582 offset += skb->csum_offset;
2583 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2584
2585 if (skb_cloned(skb) &&
2586 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2587 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2588 if (ret)
2589 goto out;
2590 }
2591
4f2e4ad5 2592 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2593out_set_summed:
1da177e4 2594 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2595out:
1da177e4
LT
2596 return ret;
2597}
d1b19dff 2598EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2599
53d6471c 2600__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2601{
252e3346 2602 __be16 type = skb->protocol;
f6a78bfc 2603
19acc327
PS
2604 /* Tunnel gso handlers can set protocol to ethernet. */
2605 if (type == htons(ETH_P_TEB)) {
2606 struct ethhdr *eth;
2607
2608 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2609 return 0;
2610
2611 eth = (struct ethhdr *)skb_mac_header(skb);
2612 type = eth->h_proto;
2613 }
2614
d4bcef3f 2615 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2616}
2617
2618/**
2619 * skb_mac_gso_segment - mac layer segmentation handler.
2620 * @skb: buffer to segment
2621 * @features: features for the output path (see dev->features)
2622 */
2623struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2624 netdev_features_t features)
2625{
2626 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2627 struct packet_offload *ptype;
53d6471c
VY
2628 int vlan_depth = skb->mac_len;
2629 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2630
2631 if (unlikely(!type))
2632 return ERR_PTR(-EINVAL);
2633
53d6471c 2634 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2635
2636 rcu_read_lock();
22061d80 2637 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2638 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2639 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2640 break;
2641 }
2642 }
2643 rcu_read_unlock();
2644
98e399f8 2645 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2646
f6a78bfc
HX
2647 return segs;
2648}
05e8ef4a
PS
2649EXPORT_SYMBOL(skb_mac_gso_segment);
2650
2651
2652/* openvswitch calls this on rx path, so we need a different check.
2653 */
2654static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2655{
2656 if (tx_path)
2657 return skb->ip_summed != CHECKSUM_PARTIAL;
2658 else
2659 return skb->ip_summed == CHECKSUM_NONE;
2660}
2661
2662/**
2663 * __skb_gso_segment - Perform segmentation on skb.
2664 * @skb: buffer to segment
2665 * @features: features for the output path (see dev->features)
2666 * @tx_path: whether it is called in TX path
2667 *
2668 * This function segments the given skb and returns a list of segments.
2669 *
2670 * It may return NULL if the skb requires no segmentation. This is
2671 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2672 *
2673 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2674 */
2675struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2676 netdev_features_t features, bool tx_path)
2677{
2678 if (unlikely(skb_needs_check(skb, tx_path))) {
2679 int err;
2680
2681 skb_warn_bad_offload(skb);
2682
a40e0a66 2683 err = skb_cow_head(skb, 0);
2684 if (err < 0)
05e8ef4a
PS
2685 return ERR_PTR(err);
2686 }
2687
802ab55a
AD
2688 /* Only report GSO partial support if it will enable us to
2689 * support segmentation on this frame without needing additional
2690 * work.
2691 */
2692 if (features & NETIF_F_GSO_PARTIAL) {
2693 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2694 struct net_device *dev = skb->dev;
2695
2696 partial_features |= dev->features & dev->gso_partial_features;
2697 if (!skb_gso_ok(skb, features | partial_features))
2698 features &= ~NETIF_F_GSO_PARTIAL;
2699 }
2700
9207f9d4
KK
2701 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2702 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2703
68c33163 2704 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2705 SKB_GSO_CB(skb)->encap_level = 0;
2706
05e8ef4a
PS
2707 skb_reset_mac_header(skb);
2708 skb_reset_mac_len(skb);
2709
2710 return skb_mac_gso_segment(skb, features);
2711}
12b0004d 2712EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2713
fb286bb2
HX
2714/* Take action when hardware reception checksum errors are detected. */
2715#ifdef CONFIG_BUG
2716void netdev_rx_csum_fault(struct net_device *dev)
2717{
2718 if (net_ratelimit()) {
7b6cd1ce 2719 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2720 dump_stack();
2721 }
2722}
2723EXPORT_SYMBOL(netdev_rx_csum_fault);
2724#endif
2725
1da177e4
LT
2726/* Actually, we should eliminate this check as soon as we know, that:
2727 * 1. IOMMU is present and allows to map all the memory.
2728 * 2. No high memory really exists on this machine.
2729 */
2730
c1e756bf 2731static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2732{
3d3a8533 2733#ifdef CONFIG_HIGHMEM
1da177e4 2734 int i;
5acbbd42 2735 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2736 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2737 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2738 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2739 return 1;
ea2ab693 2740 }
5acbbd42 2741 }
1da177e4 2742
5acbbd42
FT
2743 if (PCI_DMA_BUS_IS_PHYS) {
2744 struct device *pdev = dev->dev.parent;
1da177e4 2745
9092c658
ED
2746 if (!pdev)
2747 return 0;
5acbbd42 2748 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2749 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2750 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2751 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2752 return 1;
2753 }
2754 }
3d3a8533 2755#endif
1da177e4
LT
2756 return 0;
2757}
1da177e4 2758
3b392ddb
SH
2759/* If MPLS offload request, verify we are testing hardware MPLS features
2760 * instead of standard features for the netdev.
2761 */
d0edc7bf 2762#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2763static netdev_features_t net_mpls_features(struct sk_buff *skb,
2764 netdev_features_t features,
2765 __be16 type)
2766{
25cd9ba0 2767 if (eth_p_mpls(type))
3b392ddb
SH
2768 features &= skb->dev->mpls_features;
2769
2770 return features;
2771}
2772#else
2773static netdev_features_t net_mpls_features(struct sk_buff *skb,
2774 netdev_features_t features,
2775 __be16 type)
2776{
2777 return features;
2778}
2779#endif
2780
c8f44aff 2781static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2782 netdev_features_t features)
f01a5236 2783{
53d6471c 2784 int tmp;
3b392ddb
SH
2785 __be16 type;
2786
2787 type = skb_network_protocol(skb, &tmp);
2788 features = net_mpls_features(skb, features, type);
53d6471c 2789
c0d680e5 2790 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2791 !can_checksum_protocol(features, type)) {
996e8021 2792 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2793 }
7be2c82c
ED
2794 if (illegal_highdma(skb->dev, skb))
2795 features &= ~NETIF_F_SG;
f01a5236
JG
2796
2797 return features;
2798}
2799
e38f3025
TM
2800netdev_features_t passthru_features_check(struct sk_buff *skb,
2801 struct net_device *dev,
2802 netdev_features_t features)
2803{
2804 return features;
2805}
2806EXPORT_SYMBOL(passthru_features_check);
2807
8cb65d00
TM
2808static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2809 struct net_device *dev,
2810 netdev_features_t features)
2811{
2812 return vlan_features_check(skb, features);
2813}
2814
cbc53e08
AD
2815static netdev_features_t gso_features_check(const struct sk_buff *skb,
2816 struct net_device *dev,
2817 netdev_features_t features)
2818{
2819 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2820
2821 if (gso_segs > dev->gso_max_segs)
2822 return features & ~NETIF_F_GSO_MASK;
2823
802ab55a
AD
2824 /* Support for GSO partial features requires software
2825 * intervention before we can actually process the packets
2826 * so we need to strip support for any partial features now
2827 * and we can pull them back in after we have partially
2828 * segmented the frame.
2829 */
2830 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2831 features &= ~dev->gso_partial_features;
2832
2833 /* Make sure to clear the IPv4 ID mangling feature if the
2834 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2835 */
2836 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2837 struct iphdr *iph = skb->encapsulation ?
2838 inner_ip_hdr(skb) : ip_hdr(skb);
2839
2840 if (!(iph->frag_off & htons(IP_DF)))
2841 features &= ~NETIF_F_TSO_MANGLEID;
2842 }
2843
2844 return features;
2845}
2846
c1e756bf 2847netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2848{
5f35227e 2849 struct net_device *dev = skb->dev;
fcbeb976 2850 netdev_features_t features = dev->features;
58e998c6 2851
cbc53e08
AD
2852 if (skb_is_gso(skb))
2853 features = gso_features_check(skb, dev, features);
30b678d8 2854
5f35227e
JG
2855 /* If encapsulation offload request, verify we are testing
2856 * hardware encapsulation features instead of standard
2857 * features for the netdev
2858 */
2859 if (skb->encapsulation)
2860 features &= dev->hw_enc_features;
2861
f5a7fb88
TM
2862 if (skb_vlan_tagged(skb))
2863 features = netdev_intersect_features(features,
2864 dev->vlan_features |
2865 NETIF_F_HW_VLAN_CTAG_TX |
2866 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2867
5f35227e
JG
2868 if (dev->netdev_ops->ndo_features_check)
2869 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2870 features);
8cb65d00
TM
2871 else
2872 features &= dflt_features_check(skb, dev, features);
5f35227e 2873
c1e756bf 2874 return harmonize_features(skb, features);
58e998c6 2875}
c1e756bf 2876EXPORT_SYMBOL(netif_skb_features);
58e998c6 2877
2ea25513 2878static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2879 struct netdev_queue *txq, bool more)
f6a78bfc 2880{
2ea25513
DM
2881 unsigned int len;
2882 int rc;
00829823 2883
7866a621 2884 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2885 dev_queue_xmit_nit(skb, dev);
fc741216 2886
2ea25513
DM
2887 len = skb->len;
2888 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2889 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2890 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2891
2ea25513
DM
2892 return rc;
2893}
7b9c6090 2894
8dcda22a
DM
2895struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2896 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2897{
2898 struct sk_buff *skb = first;
2899 int rc = NETDEV_TX_OK;
7b9c6090 2900
7f2e870f
DM
2901 while (skb) {
2902 struct sk_buff *next = skb->next;
fc70fb64 2903
7f2e870f 2904 skb->next = NULL;
95f6b3dd 2905 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2906 if (unlikely(!dev_xmit_complete(rc))) {
2907 skb->next = next;
2908 goto out;
2909 }
6afff0ca 2910
7f2e870f
DM
2911 skb = next;
2912 if (netif_xmit_stopped(txq) && skb) {
2913 rc = NETDEV_TX_BUSY;
2914 break;
9ccb8975 2915 }
7f2e870f 2916 }
9ccb8975 2917
7f2e870f
DM
2918out:
2919 *ret = rc;
2920 return skb;
2921}
b40863c6 2922
1ff0dc94
ED
2923static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2924 netdev_features_t features)
f6a78bfc 2925{
df8a39de 2926 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2927 !vlan_hw_offload_capable(features, skb->vlan_proto))
2928 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2929 return skb;
2930}
f6a78bfc 2931
55a93b3e 2932static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2933{
2934 netdev_features_t features;
f6a78bfc 2935
eae3f88e
DM
2936 features = netif_skb_features(skb);
2937 skb = validate_xmit_vlan(skb, features);
2938 if (unlikely(!skb))
2939 goto out_null;
7b9c6090 2940
8b86a61d 2941 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2942 struct sk_buff *segs;
2943
2944 segs = skb_gso_segment(skb, features);
cecda693 2945 if (IS_ERR(segs)) {
af6dabc9 2946 goto out_kfree_skb;
cecda693
JW
2947 } else if (segs) {
2948 consume_skb(skb);
2949 skb = segs;
f6a78bfc 2950 }
eae3f88e
DM
2951 } else {
2952 if (skb_needs_linearize(skb, features) &&
2953 __skb_linearize(skb))
2954 goto out_kfree_skb;
4ec93edb 2955
eae3f88e
DM
2956 /* If packet is not checksummed and device does not
2957 * support checksumming for this protocol, complete
2958 * checksumming here.
2959 */
2960 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2961 if (skb->encapsulation)
2962 skb_set_inner_transport_header(skb,
2963 skb_checksum_start_offset(skb));
2964 else
2965 skb_set_transport_header(skb,
2966 skb_checksum_start_offset(skb));
a188222b 2967 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2968 skb_checksum_help(skb))
2969 goto out_kfree_skb;
7b9c6090 2970 }
0c772159 2971 }
7b9c6090 2972
eae3f88e 2973 return skb;
fc70fb64 2974
f6a78bfc
HX
2975out_kfree_skb:
2976 kfree_skb(skb);
eae3f88e 2977out_null:
d21fd63e 2978 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
2979 return NULL;
2980}
6afff0ca 2981
55a93b3e
ED
2982struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2983{
2984 struct sk_buff *next, *head = NULL, *tail;
2985
bec3cfdc 2986 for (; skb != NULL; skb = next) {
55a93b3e
ED
2987 next = skb->next;
2988 skb->next = NULL;
bec3cfdc
ED
2989
2990 /* in case skb wont be segmented, point to itself */
2991 skb->prev = skb;
2992
55a93b3e 2993 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2994 if (!skb)
2995 continue;
55a93b3e 2996
bec3cfdc
ED
2997 if (!head)
2998 head = skb;
2999 else
3000 tail->next = skb;
3001 /* If skb was segmented, skb->prev points to
3002 * the last segment. If not, it still contains skb.
3003 */
3004 tail = skb->prev;
55a93b3e
ED
3005 }
3006 return head;
f6a78bfc 3007}
104ba78c 3008EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3009
1def9238
ED
3010static void qdisc_pkt_len_init(struct sk_buff *skb)
3011{
3012 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3013
3014 qdisc_skb_cb(skb)->pkt_len = skb->len;
3015
3016 /* To get more precise estimation of bytes sent on wire,
3017 * we add to pkt_len the headers size of all segments
3018 */
3019 if (shinfo->gso_size) {
757b8b1d 3020 unsigned int hdr_len;
15e5a030 3021 u16 gso_segs = shinfo->gso_segs;
1def9238 3022
757b8b1d
ED
3023 /* mac layer + network layer */
3024 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3025
3026 /* + transport layer */
1def9238
ED
3027 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3028 hdr_len += tcp_hdrlen(skb);
3029 else
3030 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3031
3032 if (shinfo->gso_type & SKB_GSO_DODGY)
3033 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3034 shinfo->gso_size);
3035
3036 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3037 }
3038}
3039
bbd8a0d3
KK
3040static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3041 struct net_device *dev,
3042 struct netdev_queue *txq)
3043{
3044 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3045 struct sk_buff *to_free = NULL;
a2da570d 3046 bool contended;
bbd8a0d3
KK
3047 int rc;
3048
a2da570d 3049 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3050 /*
3051 * Heuristic to force contended enqueues to serialize on a
3052 * separate lock before trying to get qdisc main lock.
f9eb8aea 3053 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3054 * often and dequeue packets faster.
79640a4c 3055 */
a2da570d 3056 contended = qdisc_is_running(q);
79640a4c
ED
3057 if (unlikely(contended))
3058 spin_lock(&q->busylock);
3059
bbd8a0d3
KK
3060 spin_lock(root_lock);
3061 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3062 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3063 rc = NET_XMIT_DROP;
3064 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3065 qdisc_run_begin(q)) {
bbd8a0d3
KK
3066 /*
3067 * This is a work-conserving queue; there are no old skbs
3068 * waiting to be sent out; and the qdisc is not running -
3069 * xmit the skb directly.
3070 */
bfe0d029 3071
bfe0d029
ED
3072 qdisc_bstats_update(q, skb);
3073
55a93b3e 3074 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3075 if (unlikely(contended)) {
3076 spin_unlock(&q->busylock);
3077 contended = false;
3078 }
bbd8a0d3 3079 __qdisc_run(q);
79640a4c 3080 } else
bc135b23 3081 qdisc_run_end(q);
bbd8a0d3
KK
3082
3083 rc = NET_XMIT_SUCCESS;
3084 } else {
520ac30f 3085 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3086 if (qdisc_run_begin(q)) {
3087 if (unlikely(contended)) {
3088 spin_unlock(&q->busylock);
3089 contended = false;
3090 }
3091 __qdisc_run(q);
3092 }
bbd8a0d3
KK
3093 }
3094 spin_unlock(root_lock);
520ac30f
ED
3095 if (unlikely(to_free))
3096 kfree_skb_list(to_free);
79640a4c
ED
3097 if (unlikely(contended))
3098 spin_unlock(&q->busylock);
bbd8a0d3
KK
3099 return rc;
3100}
3101
86f8515f 3102#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3103static void skb_update_prio(struct sk_buff *skb)
3104{
6977a79d 3105 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3106
91c68ce2 3107 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3108 unsigned int prioidx =
3109 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3110
3111 if (prioidx < map->priomap_len)
3112 skb->priority = map->priomap[prioidx];
3113 }
5bc1421e
NH
3114}
3115#else
3116#define skb_update_prio(skb)
3117#endif
3118
f60e5990 3119DEFINE_PER_CPU(int, xmit_recursion);
3120EXPORT_SYMBOL(xmit_recursion);
3121
95603e22
MM
3122/**
3123 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3124 * @net: network namespace this loopback is happening in
3125 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3126 * @skb: buffer to transmit
3127 */
0c4b51f0 3128int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3129{
3130 skb_reset_mac_header(skb);
3131 __skb_pull(skb, skb_network_offset(skb));
3132 skb->pkt_type = PACKET_LOOPBACK;
3133 skb->ip_summed = CHECKSUM_UNNECESSARY;
3134 WARN_ON(!skb_dst(skb));
3135 skb_dst_force(skb);
3136 netif_rx_ni(skb);
3137 return 0;
3138}
3139EXPORT_SYMBOL(dev_loopback_xmit);
3140
1f211a1b
DB
3141#ifdef CONFIG_NET_EGRESS
3142static struct sk_buff *
3143sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3144{
3145 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3146 struct tcf_result cl_res;
3147
3148 if (!cl)
3149 return skb;
3150
3151 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3152 * earlier by the caller.
3153 */
3154 qdisc_bstats_cpu_update(cl->q, skb);
3155
3156 switch (tc_classify(skb, cl, &cl_res, false)) {
3157 case TC_ACT_OK:
3158 case TC_ACT_RECLASSIFY:
3159 skb->tc_index = TC_H_MIN(cl_res.classid);
3160 break;
3161 case TC_ACT_SHOT:
3162 qdisc_qstats_cpu_drop(cl->q);
3163 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3164 kfree_skb(skb);
3165 return NULL;
1f211a1b
DB
3166 case TC_ACT_STOLEN:
3167 case TC_ACT_QUEUED:
3168 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3169 consume_skb(skb);
1f211a1b
DB
3170 return NULL;
3171 case TC_ACT_REDIRECT:
3172 /* No need to push/pop skb's mac_header here on egress! */
3173 skb_do_redirect(skb);
3174 *ret = NET_XMIT_SUCCESS;
3175 return NULL;
3176 default:
3177 break;
3178 }
3179
3180 return skb;
3181}
3182#endif /* CONFIG_NET_EGRESS */
3183
638b2a69
JP
3184static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3185{
3186#ifdef CONFIG_XPS
3187 struct xps_dev_maps *dev_maps;
3188 struct xps_map *map;
3189 int queue_index = -1;
3190
3191 rcu_read_lock();
3192 dev_maps = rcu_dereference(dev->xps_maps);
3193 if (dev_maps) {
184c449f
AD
3194 unsigned int tci = skb->sender_cpu - 1;
3195
3196 if (dev->num_tc) {
3197 tci *= dev->num_tc;
3198 tci += netdev_get_prio_tc_map(dev, skb->priority);
3199 }
3200
3201 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3202 if (map) {
3203 if (map->len == 1)
3204 queue_index = map->queues[0];
3205 else
3206 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3207 map->len)];
3208 if (unlikely(queue_index >= dev->real_num_tx_queues))
3209 queue_index = -1;
3210 }
3211 }
3212 rcu_read_unlock();
3213
3214 return queue_index;
3215#else
3216 return -1;
3217#endif
3218}
3219
3220static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3221{
3222 struct sock *sk = skb->sk;
3223 int queue_index = sk_tx_queue_get(sk);
3224
3225 if (queue_index < 0 || skb->ooo_okay ||
3226 queue_index >= dev->real_num_tx_queues) {
3227 int new_index = get_xps_queue(dev, skb);
3228 if (new_index < 0)
3229 new_index = skb_tx_hash(dev, skb);
3230
3231 if (queue_index != new_index && sk &&
004a5d01 3232 sk_fullsock(sk) &&
638b2a69
JP
3233 rcu_access_pointer(sk->sk_dst_cache))
3234 sk_tx_queue_set(sk, new_index);
3235
3236 queue_index = new_index;
3237 }
3238
3239 return queue_index;
3240}
3241
3242struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3243 struct sk_buff *skb,
3244 void *accel_priv)
3245{
3246 int queue_index = 0;
3247
3248#ifdef CONFIG_XPS
52bd2d62
ED
3249 u32 sender_cpu = skb->sender_cpu - 1;
3250
3251 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3252 skb->sender_cpu = raw_smp_processor_id() + 1;
3253#endif
3254
3255 if (dev->real_num_tx_queues != 1) {
3256 const struct net_device_ops *ops = dev->netdev_ops;
3257 if (ops->ndo_select_queue)
3258 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3259 __netdev_pick_tx);
3260 else
3261 queue_index = __netdev_pick_tx(dev, skb);
3262
3263 if (!accel_priv)
3264 queue_index = netdev_cap_txqueue(dev, queue_index);
3265 }
3266
3267 skb_set_queue_mapping(skb, queue_index);
3268 return netdev_get_tx_queue(dev, queue_index);
3269}
3270
d29f749e 3271/**
9d08dd3d 3272 * __dev_queue_xmit - transmit a buffer
d29f749e 3273 * @skb: buffer to transmit
9d08dd3d 3274 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3275 *
3276 * Queue a buffer for transmission to a network device. The caller must
3277 * have set the device and priority and built the buffer before calling
3278 * this function. The function can be called from an interrupt.
3279 *
3280 * A negative errno code is returned on a failure. A success does not
3281 * guarantee the frame will be transmitted as it may be dropped due
3282 * to congestion or traffic shaping.
3283 *
3284 * -----------------------------------------------------------------------------------
3285 * I notice this method can also return errors from the queue disciplines,
3286 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3287 * be positive.
3288 *
3289 * Regardless of the return value, the skb is consumed, so it is currently
3290 * difficult to retry a send to this method. (You can bump the ref count
3291 * before sending to hold a reference for retry if you are careful.)
3292 *
3293 * When calling this method, interrupts MUST be enabled. This is because
3294 * the BH enable code must have IRQs enabled so that it will not deadlock.
3295 * --BLG
3296 */
0a59f3a9 3297static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3298{
3299 struct net_device *dev = skb->dev;
dc2b4847 3300 struct netdev_queue *txq;
1da177e4
LT
3301 struct Qdisc *q;
3302 int rc = -ENOMEM;
3303
6d1ccff6
ED
3304 skb_reset_mac_header(skb);
3305
e7fd2885
WB
3306 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3307 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3308
4ec93edb
YH
3309 /* Disable soft irqs for various locks below. Also
3310 * stops preemption for RCU.
1da177e4 3311 */
4ec93edb 3312 rcu_read_lock_bh();
1da177e4 3313
5bc1421e
NH
3314 skb_update_prio(skb);
3315
1f211a1b
DB
3316 qdisc_pkt_len_init(skb);
3317#ifdef CONFIG_NET_CLS_ACT
3318 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3319# ifdef CONFIG_NET_EGRESS
3320 if (static_key_false(&egress_needed)) {
3321 skb = sch_handle_egress(skb, &rc, dev);
3322 if (!skb)
3323 goto out;
3324 }
3325# endif
3326#endif
02875878
ED
3327 /* If device/qdisc don't need skb->dst, release it right now while
3328 * its hot in this cpu cache.
3329 */
3330 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3331 skb_dst_drop(skb);
3332 else
3333 skb_dst_force(skb);
3334
f663dd9a 3335 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3336 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3337
cf66ba58 3338 trace_net_dev_queue(skb);
1da177e4 3339 if (q->enqueue) {
bbd8a0d3 3340 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3341 goto out;
1da177e4
LT
3342 }
3343
3344 /* The device has no queue. Common case for software devices:
3345 loopback, all the sorts of tunnels...
3346
932ff279
HX
3347 Really, it is unlikely that netif_tx_lock protection is necessary
3348 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3349 counters.)
3350 However, it is possible, that they rely on protection
3351 made by us here.
3352
3353 Check this and shot the lock. It is not prone from deadlocks.
3354 Either shot noqueue qdisc, it is even simpler 8)
3355 */
3356 if (dev->flags & IFF_UP) {
3357 int cpu = smp_processor_id(); /* ok because BHs are off */
3358
c773e847 3359 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3360 if (unlikely(__this_cpu_read(xmit_recursion) >
3361 XMIT_RECURSION_LIMIT))
745e20f1
ED
3362 goto recursion_alert;
3363
1f59533f
JDB
3364 skb = validate_xmit_skb(skb, dev);
3365 if (!skb)
d21fd63e 3366 goto out;
1f59533f 3367
c773e847 3368 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3369
73466498 3370 if (!netif_xmit_stopped(txq)) {
745e20f1 3371 __this_cpu_inc(xmit_recursion);
ce93718f 3372 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3373 __this_cpu_dec(xmit_recursion);
572a9d7b 3374 if (dev_xmit_complete(rc)) {
c773e847 3375 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3376 goto out;
3377 }
3378 }
c773e847 3379 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3380 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3381 dev->name);
1da177e4
LT
3382 } else {
3383 /* Recursion is detected! It is possible,
745e20f1
ED
3384 * unfortunately
3385 */
3386recursion_alert:
e87cc472
JP
3387 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3388 dev->name);
1da177e4
LT
3389 }
3390 }
3391
3392 rc = -ENETDOWN;
d4828d85 3393 rcu_read_unlock_bh();
1da177e4 3394
015f0688 3395 atomic_long_inc(&dev->tx_dropped);
1f59533f 3396 kfree_skb_list(skb);
1da177e4
LT
3397 return rc;
3398out:
d4828d85 3399 rcu_read_unlock_bh();
1da177e4
LT
3400 return rc;
3401}
f663dd9a 3402
2b4aa3ce 3403int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3404{
3405 return __dev_queue_xmit(skb, NULL);
3406}
2b4aa3ce 3407EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3408
f663dd9a
JW
3409int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3410{
3411 return __dev_queue_xmit(skb, accel_priv);
3412}
3413EXPORT_SYMBOL(dev_queue_xmit_accel);
3414
1da177e4
LT
3415
3416/*=======================================================================
3417 Receiver routines
3418 =======================================================================*/
3419
6b2bedc3 3420int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3421EXPORT_SYMBOL(netdev_max_backlog);
3422
3b098e2d 3423int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3424int netdev_budget __read_mostly = 300;
3425int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3426
eecfd7c4
ED
3427/* Called with irq disabled */
3428static inline void ____napi_schedule(struct softnet_data *sd,
3429 struct napi_struct *napi)
3430{
3431 list_add_tail(&napi->poll_list, &sd->poll_list);
3432 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3433}
3434
bfb564e7
KK
3435#ifdef CONFIG_RPS
3436
3437/* One global table that all flow-based protocols share. */
6e3f7faf 3438struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3439EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3440u32 rps_cpu_mask __read_mostly;
3441EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3442
c5905afb 3443struct static_key rps_needed __read_mostly;
3df97ba8 3444EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3445struct static_key rfs_needed __read_mostly;
3446EXPORT_SYMBOL(rfs_needed);
adc9300e 3447
c445477d
BH
3448static struct rps_dev_flow *
3449set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3450 struct rps_dev_flow *rflow, u16 next_cpu)
3451{
a31196b0 3452 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3453#ifdef CONFIG_RFS_ACCEL
3454 struct netdev_rx_queue *rxqueue;
3455 struct rps_dev_flow_table *flow_table;
3456 struct rps_dev_flow *old_rflow;
3457 u32 flow_id;
3458 u16 rxq_index;
3459 int rc;
3460
3461 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3462 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3463 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3464 goto out;
3465 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3466 if (rxq_index == skb_get_rx_queue(skb))
3467 goto out;
3468
3469 rxqueue = dev->_rx + rxq_index;
3470 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3471 if (!flow_table)
3472 goto out;
61b905da 3473 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3474 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3475 rxq_index, flow_id);
3476 if (rc < 0)
3477 goto out;
3478 old_rflow = rflow;
3479 rflow = &flow_table->flows[flow_id];
c445477d
BH
3480 rflow->filter = rc;
3481 if (old_rflow->filter == rflow->filter)
3482 old_rflow->filter = RPS_NO_FILTER;
3483 out:
3484#endif
3485 rflow->last_qtail =
09994d1b 3486 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3487 }
3488
09994d1b 3489 rflow->cpu = next_cpu;
c445477d
BH
3490 return rflow;
3491}
3492
bfb564e7
KK
3493/*
3494 * get_rps_cpu is called from netif_receive_skb and returns the target
3495 * CPU from the RPS map of the receiving queue for a given skb.
3496 * rcu_read_lock must be held on entry.
3497 */
3498static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3499 struct rps_dev_flow **rflowp)
3500{
567e4b79
ED
3501 const struct rps_sock_flow_table *sock_flow_table;
3502 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3503 struct rps_dev_flow_table *flow_table;
567e4b79 3504 struct rps_map *map;
bfb564e7 3505 int cpu = -1;
567e4b79 3506 u32 tcpu;
61b905da 3507 u32 hash;
bfb564e7
KK
3508
3509 if (skb_rx_queue_recorded(skb)) {
3510 u16 index = skb_get_rx_queue(skb);
567e4b79 3511
62fe0b40
BH
3512 if (unlikely(index >= dev->real_num_rx_queues)) {
3513 WARN_ONCE(dev->real_num_rx_queues > 1,
3514 "%s received packet on queue %u, but number "
3515 "of RX queues is %u\n",
3516 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3517 goto done;
3518 }
567e4b79
ED
3519 rxqueue += index;
3520 }
bfb564e7 3521
567e4b79
ED
3522 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3523
3524 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3525 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3526 if (!flow_table && !map)
bfb564e7
KK
3527 goto done;
3528
2d47b459 3529 skb_reset_network_header(skb);
61b905da
TH
3530 hash = skb_get_hash(skb);
3531 if (!hash)
bfb564e7
KK
3532 goto done;
3533
fec5e652
TH
3534 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3535 if (flow_table && sock_flow_table) {
fec5e652 3536 struct rps_dev_flow *rflow;
567e4b79
ED
3537 u32 next_cpu;
3538 u32 ident;
3539
3540 /* First check into global flow table if there is a match */
3541 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3542 if ((ident ^ hash) & ~rps_cpu_mask)
3543 goto try_rps;
fec5e652 3544
567e4b79
ED
3545 next_cpu = ident & rps_cpu_mask;
3546
3547 /* OK, now we know there is a match,
3548 * we can look at the local (per receive queue) flow table
3549 */
61b905da 3550 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3551 tcpu = rflow->cpu;
3552
fec5e652
TH
3553 /*
3554 * If the desired CPU (where last recvmsg was done) is
3555 * different from current CPU (one in the rx-queue flow
3556 * table entry), switch if one of the following holds:
a31196b0 3557 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3558 * - Current CPU is offline.
3559 * - The current CPU's queue tail has advanced beyond the
3560 * last packet that was enqueued using this table entry.
3561 * This guarantees that all previous packets for the flow
3562 * have been dequeued, thus preserving in order delivery.
3563 */
3564 if (unlikely(tcpu != next_cpu) &&
a31196b0 3565 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3566 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3567 rflow->last_qtail)) >= 0)) {
3568 tcpu = next_cpu;
c445477d 3569 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3570 }
c445477d 3571
a31196b0 3572 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3573 *rflowp = rflow;
3574 cpu = tcpu;
3575 goto done;
3576 }
3577 }
3578
567e4b79
ED
3579try_rps:
3580
0a9627f2 3581 if (map) {
8fc54f68 3582 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3583 if (cpu_online(tcpu)) {
3584 cpu = tcpu;
3585 goto done;
3586 }
3587 }
3588
3589done:
0a9627f2
TH
3590 return cpu;
3591}
3592
c445477d
BH
3593#ifdef CONFIG_RFS_ACCEL
3594
3595/**
3596 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3597 * @dev: Device on which the filter was set
3598 * @rxq_index: RX queue index
3599 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3600 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3601 *
3602 * Drivers that implement ndo_rx_flow_steer() should periodically call
3603 * this function for each installed filter and remove the filters for
3604 * which it returns %true.
3605 */
3606bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3607 u32 flow_id, u16 filter_id)
3608{
3609 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3610 struct rps_dev_flow_table *flow_table;
3611 struct rps_dev_flow *rflow;
3612 bool expire = true;
a31196b0 3613 unsigned int cpu;
c445477d
BH
3614
3615 rcu_read_lock();
3616 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3617 if (flow_table && flow_id <= flow_table->mask) {
3618 rflow = &flow_table->flows[flow_id];
3619 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3620 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3621 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3622 rflow->last_qtail) <
3623 (int)(10 * flow_table->mask)))
3624 expire = false;
3625 }
3626 rcu_read_unlock();
3627 return expire;
3628}
3629EXPORT_SYMBOL(rps_may_expire_flow);
3630
3631#endif /* CONFIG_RFS_ACCEL */
3632
0a9627f2 3633/* Called from hardirq (IPI) context */
e36fa2f7 3634static void rps_trigger_softirq(void *data)
0a9627f2 3635{
e36fa2f7
ED
3636 struct softnet_data *sd = data;
3637
eecfd7c4 3638 ____napi_schedule(sd, &sd->backlog);
dee42870 3639 sd->received_rps++;
0a9627f2 3640}
e36fa2f7 3641
fec5e652 3642#endif /* CONFIG_RPS */
0a9627f2 3643
e36fa2f7
ED
3644/*
3645 * Check if this softnet_data structure is another cpu one
3646 * If yes, queue it to our IPI list and return 1
3647 * If no, return 0
3648 */
3649static int rps_ipi_queued(struct softnet_data *sd)
3650{
3651#ifdef CONFIG_RPS
903ceff7 3652 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3653
3654 if (sd != mysd) {
3655 sd->rps_ipi_next = mysd->rps_ipi_list;
3656 mysd->rps_ipi_list = sd;
3657
3658 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3659 return 1;
3660 }
3661#endif /* CONFIG_RPS */
3662 return 0;
3663}
3664
99bbc707
WB
3665#ifdef CONFIG_NET_FLOW_LIMIT
3666int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3667#endif
3668
3669static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3670{
3671#ifdef CONFIG_NET_FLOW_LIMIT
3672 struct sd_flow_limit *fl;
3673 struct softnet_data *sd;
3674 unsigned int old_flow, new_flow;
3675
3676 if (qlen < (netdev_max_backlog >> 1))
3677 return false;
3678
903ceff7 3679 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3680
3681 rcu_read_lock();
3682 fl = rcu_dereference(sd->flow_limit);
3683 if (fl) {
3958afa1 3684 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3685 old_flow = fl->history[fl->history_head];
3686 fl->history[fl->history_head] = new_flow;
3687
3688 fl->history_head++;
3689 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3690
3691 if (likely(fl->buckets[old_flow]))
3692 fl->buckets[old_flow]--;
3693
3694 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3695 fl->count++;
3696 rcu_read_unlock();
3697 return true;
3698 }
3699 }
3700 rcu_read_unlock();
3701#endif
3702 return false;
3703}
3704
0a9627f2
TH
3705/*
3706 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3707 * queue (may be a remote CPU queue).
3708 */
fec5e652
TH
3709static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3710 unsigned int *qtail)
0a9627f2 3711{
e36fa2f7 3712 struct softnet_data *sd;
0a9627f2 3713 unsigned long flags;
99bbc707 3714 unsigned int qlen;
0a9627f2 3715
e36fa2f7 3716 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3717
3718 local_irq_save(flags);
0a9627f2 3719
e36fa2f7 3720 rps_lock(sd);
e9e4dd32
JA
3721 if (!netif_running(skb->dev))
3722 goto drop;
99bbc707
WB
3723 qlen = skb_queue_len(&sd->input_pkt_queue);
3724 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3725 if (qlen) {
0a9627f2 3726enqueue:
e36fa2f7 3727 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3728 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3729 rps_unlock(sd);
152102c7 3730 local_irq_restore(flags);
0a9627f2
TH
3731 return NET_RX_SUCCESS;
3732 }
3733
ebda37c2
ED
3734 /* Schedule NAPI for backlog device
3735 * We can use non atomic operation since we own the queue lock
3736 */
3737 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3738 if (!rps_ipi_queued(sd))
eecfd7c4 3739 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3740 }
3741 goto enqueue;
3742 }
3743
e9e4dd32 3744drop:
dee42870 3745 sd->dropped++;
e36fa2f7 3746 rps_unlock(sd);
0a9627f2 3747
0a9627f2
TH
3748 local_irq_restore(flags);
3749
caf586e5 3750 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3751 kfree_skb(skb);
3752 return NET_RX_DROP;
3753}
1da177e4 3754
ae78dbfa 3755static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3756{
b0e28f1e 3757 int ret;
1da177e4 3758
588f0330 3759 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3760
cf66ba58 3761 trace_netif_rx(skb);
df334545 3762#ifdef CONFIG_RPS
c5905afb 3763 if (static_key_false(&rps_needed)) {
fec5e652 3764 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3765 int cpu;
3766
cece1945 3767 preempt_disable();
b0e28f1e 3768 rcu_read_lock();
fec5e652
TH
3769
3770 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3771 if (cpu < 0)
3772 cpu = smp_processor_id();
fec5e652
TH
3773
3774 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3775
b0e28f1e 3776 rcu_read_unlock();
cece1945 3777 preempt_enable();
adc9300e
ED
3778 } else
3779#endif
fec5e652
TH
3780 {
3781 unsigned int qtail;
3782 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3783 put_cpu();
3784 }
b0e28f1e 3785 return ret;
1da177e4 3786}
ae78dbfa
BH
3787
3788/**
3789 * netif_rx - post buffer to the network code
3790 * @skb: buffer to post
3791 *
3792 * This function receives a packet from a device driver and queues it for
3793 * the upper (protocol) levels to process. It always succeeds. The buffer
3794 * may be dropped during processing for congestion control or by the
3795 * protocol layers.
3796 *
3797 * return values:
3798 * NET_RX_SUCCESS (no congestion)
3799 * NET_RX_DROP (packet was dropped)
3800 *
3801 */
3802
3803int netif_rx(struct sk_buff *skb)
3804{
3805 trace_netif_rx_entry(skb);
3806
3807 return netif_rx_internal(skb);
3808}
d1b19dff 3809EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3810
3811int netif_rx_ni(struct sk_buff *skb)
3812{
3813 int err;
3814
ae78dbfa
BH
3815 trace_netif_rx_ni_entry(skb);
3816
1da177e4 3817 preempt_disable();
ae78dbfa 3818 err = netif_rx_internal(skb);
1da177e4
LT
3819 if (local_softirq_pending())
3820 do_softirq();
3821 preempt_enable();
3822
3823 return err;
3824}
1da177e4
LT
3825EXPORT_SYMBOL(netif_rx_ni);
3826
0766f788 3827static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3828{
903ceff7 3829 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3830
3831 if (sd->completion_queue) {
3832 struct sk_buff *clist;
3833
3834 local_irq_disable();
3835 clist = sd->completion_queue;
3836 sd->completion_queue = NULL;
3837 local_irq_enable();
3838
3839 while (clist) {
3840 struct sk_buff *skb = clist;
3841 clist = clist->next;
3842
547b792c 3843 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3844 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3845 trace_consume_skb(skb);
3846 else
3847 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3848
3849 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3850 __kfree_skb(skb);
3851 else
3852 __kfree_skb_defer(skb);
1da177e4 3853 }
15fad714
JDB
3854
3855 __kfree_skb_flush();
1da177e4
LT
3856 }
3857
3858 if (sd->output_queue) {
37437bb2 3859 struct Qdisc *head;
1da177e4
LT
3860
3861 local_irq_disable();
3862 head = sd->output_queue;
3863 sd->output_queue = NULL;
a9cbd588 3864 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3865 local_irq_enable();
3866
3867 while (head) {
37437bb2
DM
3868 struct Qdisc *q = head;
3869 spinlock_t *root_lock;
3870
1da177e4
LT
3871 head = head->next_sched;
3872
5fb66229 3873 root_lock = qdisc_lock(q);
3bcb846c
ED
3874 spin_lock(root_lock);
3875 /* We need to make sure head->next_sched is read
3876 * before clearing __QDISC_STATE_SCHED
3877 */
3878 smp_mb__before_atomic();
3879 clear_bit(__QDISC_STATE_SCHED, &q->state);
3880 qdisc_run(q);
3881 spin_unlock(root_lock);
1da177e4
LT
3882 }
3883 }
3884}
3885
181402a5 3886#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3887/* This hook is defined here for ATM LANE */
3888int (*br_fdb_test_addr_hook)(struct net_device *dev,
3889 unsigned char *addr) __read_mostly;
4fb019a0 3890EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3891#endif
1da177e4 3892
1f211a1b
DB
3893static inline struct sk_buff *
3894sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3895 struct net_device *orig_dev)
f697c3e8 3896{
e7582bab 3897#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3898 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3899 struct tcf_result cl_res;
24824a09 3900
c9e99fd0
DB
3901 /* If there's at least one ingress present somewhere (so
3902 * we get here via enabled static key), remaining devices
3903 * that are not configured with an ingress qdisc will bail
d2788d34 3904 * out here.
c9e99fd0 3905 */
d2788d34 3906 if (!cl)
4577139b 3907 return skb;
f697c3e8
HX
3908 if (*pt_prev) {
3909 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3910 *pt_prev = NULL;
1da177e4
LT
3911 }
3912
3365495c 3913 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3914 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3915 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3916
3b3ae880 3917 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3918 case TC_ACT_OK:
3919 case TC_ACT_RECLASSIFY:
3920 skb->tc_index = TC_H_MIN(cl_res.classid);
3921 break;
3922 case TC_ACT_SHOT:
24ea591d 3923 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3924 kfree_skb(skb);
3925 return NULL;
d2788d34
DB
3926 case TC_ACT_STOLEN:
3927 case TC_ACT_QUEUED:
8a3a4c6e 3928 consume_skb(skb);
d2788d34 3929 return NULL;
27b29f63
AS
3930 case TC_ACT_REDIRECT:
3931 /* skb_mac_header check was done by cls/act_bpf, so
3932 * we can safely push the L2 header back before
3933 * redirecting to another netdev
3934 */
3935 __skb_push(skb, skb->mac_len);
3936 skb_do_redirect(skb);
3937 return NULL;
d2788d34
DB
3938 default:
3939 break;
f697c3e8 3940 }
e7582bab 3941#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3942 return skb;
3943}
1da177e4 3944
24b27fc4
MB
3945/**
3946 * netdev_is_rx_handler_busy - check if receive handler is registered
3947 * @dev: device to check
3948 *
3949 * Check if a receive handler is already registered for a given device.
3950 * Return true if there one.
3951 *
3952 * The caller must hold the rtnl_mutex.
3953 */
3954bool netdev_is_rx_handler_busy(struct net_device *dev)
3955{
3956 ASSERT_RTNL();
3957 return dev && rtnl_dereference(dev->rx_handler);
3958}
3959EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3960
ab95bfe0
JP
3961/**
3962 * netdev_rx_handler_register - register receive handler
3963 * @dev: device to register a handler for
3964 * @rx_handler: receive handler to register
93e2c32b 3965 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3966 *
e227867f 3967 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3968 * called from __netif_receive_skb. A negative errno code is returned
3969 * on a failure.
3970 *
3971 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3972 *
3973 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3974 */
3975int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3976 rx_handler_func_t *rx_handler,
3977 void *rx_handler_data)
ab95bfe0
JP
3978{
3979 ASSERT_RTNL();
3980
3981 if (dev->rx_handler)
3982 return -EBUSY;
3983
00cfec37 3984 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3985 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3986 rcu_assign_pointer(dev->rx_handler, rx_handler);
3987
3988 return 0;
3989}
3990EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3991
3992/**
3993 * netdev_rx_handler_unregister - unregister receive handler
3994 * @dev: device to unregister a handler from
3995 *
166ec369 3996 * Unregister a receive handler from a device.
ab95bfe0
JP
3997 *
3998 * The caller must hold the rtnl_mutex.
3999 */
4000void netdev_rx_handler_unregister(struct net_device *dev)
4001{
4002
4003 ASSERT_RTNL();
a9b3cd7f 4004 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4005 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4006 * section has a guarantee to see a non NULL rx_handler_data
4007 * as well.
4008 */
4009 synchronize_net();
a9b3cd7f 4010 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4011}
4012EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4013
b4b9e355
MG
4014/*
4015 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4016 * the special handling of PFMEMALLOC skbs.
4017 */
4018static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4019{
4020 switch (skb->protocol) {
2b8837ae
JP
4021 case htons(ETH_P_ARP):
4022 case htons(ETH_P_IP):
4023 case htons(ETH_P_IPV6):
4024 case htons(ETH_P_8021Q):
4025 case htons(ETH_P_8021AD):
b4b9e355
MG
4026 return true;
4027 default:
4028 return false;
4029 }
4030}
4031
e687ad60
PN
4032static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4033 int *ret, struct net_device *orig_dev)
4034{
e7582bab 4035#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4036 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4037 int ingress_retval;
4038
e687ad60
PN
4039 if (*pt_prev) {
4040 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4041 *pt_prev = NULL;
4042 }
4043
2c1e2703
AC
4044 rcu_read_lock();
4045 ingress_retval = nf_hook_ingress(skb);
4046 rcu_read_unlock();
4047 return ingress_retval;
e687ad60 4048 }
e7582bab 4049#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4050 return 0;
4051}
e687ad60 4052
9754e293 4053static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4054{
4055 struct packet_type *ptype, *pt_prev;
ab95bfe0 4056 rx_handler_func_t *rx_handler;
f2ccd8fa 4057 struct net_device *orig_dev;
8a4eb573 4058 bool deliver_exact = false;
1da177e4 4059 int ret = NET_RX_DROP;
252e3346 4060 __be16 type;
1da177e4 4061
588f0330 4062 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4063
cf66ba58 4064 trace_netif_receive_skb(skb);
9b22ea56 4065
cc9bd5ce 4066 orig_dev = skb->dev;
8f903c70 4067
c1d2bbe1 4068 skb_reset_network_header(skb);
fda55eca
ED
4069 if (!skb_transport_header_was_set(skb))
4070 skb_reset_transport_header(skb);
0b5c9db1 4071 skb_reset_mac_len(skb);
1da177e4
LT
4072
4073 pt_prev = NULL;
4074
63d8ea7f 4075another_round:
b6858177 4076 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4077
4078 __this_cpu_inc(softnet_data.processed);
4079
8ad227ff
PM
4080 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4081 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4082 skb = skb_vlan_untag(skb);
bcc6d479 4083 if (unlikely(!skb))
2c17d27c 4084 goto out;
bcc6d479
JP
4085 }
4086
1da177e4
LT
4087#ifdef CONFIG_NET_CLS_ACT
4088 if (skb->tc_verd & TC_NCLS) {
4089 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4090 goto ncls;
4091 }
4092#endif
4093
9754e293 4094 if (pfmemalloc)
b4b9e355
MG
4095 goto skip_taps;
4096
1da177e4 4097 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4098 if (pt_prev)
4099 ret = deliver_skb(skb, pt_prev, orig_dev);
4100 pt_prev = ptype;
4101 }
4102
4103 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4104 if (pt_prev)
4105 ret = deliver_skb(skb, pt_prev, orig_dev);
4106 pt_prev = ptype;
1da177e4
LT
4107 }
4108
b4b9e355 4109skip_taps:
1cf51900 4110#ifdef CONFIG_NET_INGRESS
4577139b 4111 if (static_key_false(&ingress_needed)) {
1f211a1b 4112 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4113 if (!skb)
2c17d27c 4114 goto out;
e687ad60
PN
4115
4116 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4117 goto out;
4577139b 4118 }
1cf51900
PN
4119#endif
4120#ifdef CONFIG_NET_CLS_ACT
4577139b 4121 skb->tc_verd = 0;
1da177e4
LT
4122ncls:
4123#endif
9754e293 4124 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4125 goto drop;
4126
df8a39de 4127 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4128 if (pt_prev) {
4129 ret = deliver_skb(skb, pt_prev, orig_dev);
4130 pt_prev = NULL;
4131 }
48cc32d3 4132 if (vlan_do_receive(&skb))
2425717b
JF
4133 goto another_round;
4134 else if (unlikely(!skb))
2c17d27c 4135 goto out;
2425717b
JF
4136 }
4137
48cc32d3 4138 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4139 if (rx_handler) {
4140 if (pt_prev) {
4141 ret = deliver_skb(skb, pt_prev, orig_dev);
4142 pt_prev = NULL;
4143 }
8a4eb573
JP
4144 switch (rx_handler(&skb)) {
4145 case RX_HANDLER_CONSUMED:
3bc1b1ad 4146 ret = NET_RX_SUCCESS;
2c17d27c 4147 goto out;
8a4eb573 4148 case RX_HANDLER_ANOTHER:
63d8ea7f 4149 goto another_round;
8a4eb573
JP
4150 case RX_HANDLER_EXACT:
4151 deliver_exact = true;
4152 case RX_HANDLER_PASS:
4153 break;
4154 default:
4155 BUG();
4156 }
ab95bfe0 4157 }
1da177e4 4158
df8a39de
JP
4159 if (unlikely(skb_vlan_tag_present(skb))) {
4160 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4161 skb->pkt_type = PACKET_OTHERHOST;
4162 /* Note: we might in the future use prio bits
4163 * and set skb->priority like in vlan_do_receive()
4164 * For the time being, just ignore Priority Code Point
4165 */
4166 skb->vlan_tci = 0;
4167 }
48cc32d3 4168
7866a621
SN
4169 type = skb->protocol;
4170
63d8ea7f 4171 /* deliver only exact match when indicated */
7866a621
SN
4172 if (likely(!deliver_exact)) {
4173 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4174 &ptype_base[ntohs(type) &
4175 PTYPE_HASH_MASK]);
4176 }
1f3c8804 4177
7866a621
SN
4178 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4179 &orig_dev->ptype_specific);
4180
4181 if (unlikely(skb->dev != orig_dev)) {
4182 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4183 &skb->dev->ptype_specific);
1da177e4
LT
4184 }
4185
4186 if (pt_prev) {
1080e512 4187 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4188 goto drop;
1080e512
MT
4189 else
4190 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4191 } else {
b4b9e355 4192drop:
6e7333d3
JW
4193 if (!deliver_exact)
4194 atomic_long_inc(&skb->dev->rx_dropped);
4195 else
4196 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4197 kfree_skb(skb);
4198 /* Jamal, now you will not able to escape explaining
4199 * me how you were going to use this. :-)
4200 */
4201 ret = NET_RX_DROP;
4202 }
4203
2c17d27c 4204out:
9754e293
DM
4205 return ret;
4206}
4207
4208static int __netif_receive_skb(struct sk_buff *skb)
4209{
4210 int ret;
4211
4212 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4213 unsigned long pflags = current->flags;
4214
4215 /*
4216 * PFMEMALLOC skbs are special, they should
4217 * - be delivered to SOCK_MEMALLOC sockets only
4218 * - stay away from userspace
4219 * - have bounded memory usage
4220 *
4221 * Use PF_MEMALLOC as this saves us from propagating the allocation
4222 * context down to all allocation sites.
4223 */
4224 current->flags |= PF_MEMALLOC;
4225 ret = __netif_receive_skb_core(skb, true);
4226 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4227 } else
4228 ret = __netif_receive_skb_core(skb, false);
4229
1da177e4
LT
4230 return ret;
4231}
0a9627f2 4232
ae78dbfa 4233static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4234{
2c17d27c
JA
4235 int ret;
4236
588f0330 4237 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4238
c1f19b51
RC
4239 if (skb_defer_rx_timestamp(skb))
4240 return NET_RX_SUCCESS;
4241
2c17d27c
JA
4242 rcu_read_lock();
4243
df334545 4244#ifdef CONFIG_RPS
c5905afb 4245 if (static_key_false(&rps_needed)) {
3b098e2d 4246 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4247 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4248
3b098e2d
ED
4249 if (cpu >= 0) {
4250 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4251 rcu_read_unlock();
adc9300e 4252 return ret;
3b098e2d 4253 }
fec5e652 4254 }
1e94d72f 4255#endif
2c17d27c
JA
4256 ret = __netif_receive_skb(skb);
4257 rcu_read_unlock();
4258 return ret;
0a9627f2 4259}
ae78dbfa
BH
4260
4261/**
4262 * netif_receive_skb - process receive buffer from network
4263 * @skb: buffer to process
4264 *
4265 * netif_receive_skb() is the main receive data processing function.
4266 * It always succeeds. The buffer may be dropped during processing
4267 * for congestion control or by the protocol layers.
4268 *
4269 * This function may only be called from softirq context and interrupts
4270 * should be enabled.
4271 *
4272 * Return values (usually ignored):
4273 * NET_RX_SUCCESS: no congestion
4274 * NET_RX_DROP: packet was dropped
4275 */
04eb4489 4276int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4277{
4278 trace_netif_receive_skb_entry(skb);
4279
4280 return netif_receive_skb_internal(skb);
4281}
04eb4489 4282EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4283
41852497 4284DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4285
4286/* Network device is going away, flush any packets still pending */
4287static void flush_backlog(struct work_struct *work)
6e583ce5 4288{
6e583ce5 4289 struct sk_buff *skb, *tmp;
145dd5f9
PA
4290 struct softnet_data *sd;
4291
4292 local_bh_disable();
4293 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4294
145dd5f9 4295 local_irq_disable();
e36fa2f7 4296 rps_lock(sd);
6e7676c1 4297 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4298 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4299 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4300 kfree_skb(skb);
76cc8b13 4301 input_queue_head_incr(sd);
6e583ce5 4302 }
6e7676c1 4303 }
e36fa2f7 4304 rps_unlock(sd);
145dd5f9 4305 local_irq_enable();
6e7676c1
CG
4306
4307 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4308 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4309 __skb_unlink(skb, &sd->process_queue);
4310 kfree_skb(skb);
76cc8b13 4311 input_queue_head_incr(sd);
6e7676c1
CG
4312 }
4313 }
145dd5f9
PA
4314 local_bh_enable();
4315}
4316
41852497 4317static void flush_all_backlogs(void)
145dd5f9
PA
4318{
4319 unsigned int cpu;
4320
4321 get_online_cpus();
4322
41852497
ED
4323 for_each_online_cpu(cpu)
4324 queue_work_on(cpu, system_highpri_wq,
4325 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4326
4327 for_each_online_cpu(cpu)
41852497 4328 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4329
4330 put_online_cpus();
6e583ce5
SH
4331}
4332
d565b0a1
HX
4333static int napi_gro_complete(struct sk_buff *skb)
4334{
22061d80 4335 struct packet_offload *ptype;
d565b0a1 4336 __be16 type = skb->protocol;
22061d80 4337 struct list_head *head = &offload_base;
d565b0a1
HX
4338 int err = -ENOENT;
4339
c3c7c254
ED
4340 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4341
fc59f9a3
HX
4342 if (NAPI_GRO_CB(skb)->count == 1) {
4343 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4344 goto out;
fc59f9a3 4345 }
d565b0a1
HX
4346
4347 rcu_read_lock();
4348 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4349 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4350 continue;
4351
299603e8 4352 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4353 break;
4354 }
4355 rcu_read_unlock();
4356
4357 if (err) {
4358 WARN_ON(&ptype->list == head);
4359 kfree_skb(skb);
4360 return NET_RX_SUCCESS;
4361 }
4362
4363out:
ae78dbfa 4364 return netif_receive_skb_internal(skb);
d565b0a1
HX
4365}
4366
2e71a6f8
ED
4367/* napi->gro_list contains packets ordered by age.
4368 * youngest packets at the head of it.
4369 * Complete skbs in reverse order to reduce latencies.
4370 */
4371void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4372{
2e71a6f8 4373 struct sk_buff *skb, *prev = NULL;
d565b0a1 4374
2e71a6f8
ED
4375 /* scan list and build reverse chain */
4376 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4377 skb->prev = prev;
4378 prev = skb;
4379 }
4380
4381 for (skb = prev; skb; skb = prev) {
d565b0a1 4382 skb->next = NULL;
2e71a6f8
ED
4383
4384 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4385 return;
4386
4387 prev = skb->prev;
d565b0a1 4388 napi_gro_complete(skb);
2e71a6f8 4389 napi->gro_count--;
d565b0a1
HX
4390 }
4391
4392 napi->gro_list = NULL;
4393}
86cac58b 4394EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4395
89c5fa33
ED
4396static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4397{
4398 struct sk_buff *p;
4399 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4400 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4401
4402 for (p = napi->gro_list; p; p = p->next) {
4403 unsigned long diffs;
4404
0b4cec8c
TH
4405 NAPI_GRO_CB(p)->flush = 0;
4406
4407 if (hash != skb_get_hash_raw(p)) {
4408 NAPI_GRO_CB(p)->same_flow = 0;
4409 continue;
4410 }
4411
89c5fa33
ED
4412 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4413 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4414 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4415 if (maclen == ETH_HLEN)
4416 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4417 skb_mac_header(skb));
89c5fa33
ED
4418 else if (!diffs)
4419 diffs = memcmp(skb_mac_header(p),
a50e233c 4420 skb_mac_header(skb),
89c5fa33
ED
4421 maclen);
4422 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4423 }
4424}
4425
299603e8
JC
4426static void skb_gro_reset_offset(struct sk_buff *skb)
4427{
4428 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4429 const skb_frag_t *frag0 = &pinfo->frags[0];
4430
4431 NAPI_GRO_CB(skb)->data_offset = 0;
4432 NAPI_GRO_CB(skb)->frag0 = NULL;
4433 NAPI_GRO_CB(skb)->frag0_len = 0;
4434
4435 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4436 pinfo->nr_frags &&
4437 !PageHighMem(skb_frag_page(frag0))) {
4438 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4439 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4440 skb_frag_size(frag0),
4441 skb->end - skb->tail);
89c5fa33
ED
4442 }
4443}
4444
a50e233c
ED
4445static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4446{
4447 struct skb_shared_info *pinfo = skb_shinfo(skb);
4448
4449 BUG_ON(skb->end - skb->tail < grow);
4450
4451 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4452
4453 skb->data_len -= grow;
4454 skb->tail += grow;
4455
4456 pinfo->frags[0].page_offset += grow;
4457 skb_frag_size_sub(&pinfo->frags[0], grow);
4458
4459 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4460 skb_frag_unref(skb, 0);
4461 memmove(pinfo->frags, pinfo->frags + 1,
4462 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4463 }
4464}
4465
bb728820 4466static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4467{
4468 struct sk_buff **pp = NULL;
22061d80 4469 struct packet_offload *ptype;
d565b0a1 4470 __be16 type = skb->protocol;
22061d80 4471 struct list_head *head = &offload_base;
0da2afd5 4472 int same_flow;
5b252f0c 4473 enum gro_result ret;
a50e233c 4474 int grow;
d565b0a1 4475
9c62a68d 4476 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4477 goto normal;
4478
d61d072e 4479 if (skb->csum_bad)
f17f5c91
HX
4480 goto normal;
4481
89c5fa33
ED
4482 gro_list_prepare(napi, skb);
4483
d565b0a1
HX
4484 rcu_read_lock();
4485 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4486 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4487 continue;
4488
86911732 4489 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4490 skb_reset_mac_len(skb);
d565b0a1 4491 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4492 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4493 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4494 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4495 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4496 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4497 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4498 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4499
662880f4
TH
4500 /* Setup for GRO checksum validation */
4501 switch (skb->ip_summed) {
4502 case CHECKSUM_COMPLETE:
4503 NAPI_GRO_CB(skb)->csum = skb->csum;
4504 NAPI_GRO_CB(skb)->csum_valid = 1;
4505 NAPI_GRO_CB(skb)->csum_cnt = 0;
4506 break;
4507 case CHECKSUM_UNNECESSARY:
4508 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4509 NAPI_GRO_CB(skb)->csum_valid = 0;
4510 break;
4511 default:
4512 NAPI_GRO_CB(skb)->csum_cnt = 0;
4513 NAPI_GRO_CB(skb)->csum_valid = 0;
4514 }
d565b0a1 4515
f191a1d1 4516 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4517 break;
4518 }
4519 rcu_read_unlock();
4520
4521 if (&ptype->list == head)
4522 goto normal;
4523
0da2afd5 4524 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4525 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4526
d565b0a1
HX
4527 if (pp) {
4528 struct sk_buff *nskb = *pp;
4529
4530 *pp = nskb->next;
4531 nskb->next = NULL;
4532 napi_gro_complete(nskb);
4ae5544f 4533 napi->gro_count--;
d565b0a1
HX
4534 }
4535
0da2afd5 4536 if (same_flow)
d565b0a1
HX
4537 goto ok;
4538
600adc18 4539 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4540 goto normal;
d565b0a1 4541
600adc18
ED
4542 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4543 struct sk_buff *nskb = napi->gro_list;
4544
4545 /* locate the end of the list to select the 'oldest' flow */
4546 while (nskb->next) {
4547 pp = &nskb->next;
4548 nskb = *pp;
4549 }
4550 *pp = NULL;
4551 nskb->next = NULL;
4552 napi_gro_complete(nskb);
4553 } else {
4554 napi->gro_count++;
4555 }
d565b0a1 4556 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4557 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4558 NAPI_GRO_CB(skb)->last = skb;
86911732 4559 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4560 skb->next = napi->gro_list;
4561 napi->gro_list = skb;
5d0d9be8 4562 ret = GRO_HELD;
d565b0a1 4563
ad0f9904 4564pull:
a50e233c
ED
4565 grow = skb_gro_offset(skb) - skb_headlen(skb);
4566 if (grow > 0)
4567 gro_pull_from_frag0(skb, grow);
d565b0a1 4568ok:
5d0d9be8 4569 return ret;
d565b0a1
HX
4570
4571normal:
ad0f9904
HX
4572 ret = GRO_NORMAL;
4573 goto pull;
5d38a079 4574}
96e93eab 4575
bf5a755f
JC
4576struct packet_offload *gro_find_receive_by_type(__be16 type)
4577{
4578 struct list_head *offload_head = &offload_base;
4579 struct packet_offload *ptype;
4580
4581 list_for_each_entry_rcu(ptype, offload_head, list) {
4582 if (ptype->type != type || !ptype->callbacks.gro_receive)
4583 continue;
4584 return ptype;
4585 }
4586 return NULL;
4587}
e27a2f83 4588EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4589
4590struct packet_offload *gro_find_complete_by_type(__be16 type)
4591{
4592 struct list_head *offload_head = &offload_base;
4593 struct packet_offload *ptype;
4594
4595 list_for_each_entry_rcu(ptype, offload_head, list) {
4596 if (ptype->type != type || !ptype->callbacks.gro_complete)
4597 continue;
4598 return ptype;
4599 }
4600 return NULL;
4601}
e27a2f83 4602EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4603
bb728820 4604static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4605{
5d0d9be8
HX
4606 switch (ret) {
4607 case GRO_NORMAL:
ae78dbfa 4608 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4609 ret = GRO_DROP;
4610 break;
5d38a079 4611
5d0d9be8 4612 case GRO_DROP:
5d38a079
HX
4613 kfree_skb(skb);
4614 break;
5b252f0c 4615
daa86548 4616 case GRO_MERGED_FREE:
ce87fc6c
JG
4617 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4618 skb_dst_drop(skb);
d7e8883c 4619 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4620 } else {
d7e8883c 4621 __kfree_skb(skb);
ce87fc6c 4622 }
daa86548
ED
4623 break;
4624
5b252f0c
BH
4625 case GRO_HELD:
4626 case GRO_MERGED:
4627 break;
5d38a079
HX
4628 }
4629
c7c4b3b6 4630 return ret;
5d0d9be8 4631}
5d0d9be8 4632
c7c4b3b6 4633gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4634{
93f93a44 4635 skb_mark_napi_id(skb, napi);
ae78dbfa 4636 trace_napi_gro_receive_entry(skb);
86911732 4637
a50e233c
ED
4638 skb_gro_reset_offset(skb);
4639
89c5fa33 4640 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4641}
4642EXPORT_SYMBOL(napi_gro_receive);
4643
d0c2b0d2 4644static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4645{
93a35f59
ED
4646 if (unlikely(skb->pfmemalloc)) {
4647 consume_skb(skb);
4648 return;
4649 }
96e93eab 4650 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4651 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4652 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4653 skb->vlan_tci = 0;
66c46d74 4654 skb->dev = napi->dev;
6d152e23 4655 skb->skb_iif = 0;
c3caf119
JC
4656 skb->encapsulation = 0;
4657 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4658 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4659
4660 napi->skb = skb;
4661}
96e93eab 4662
76620aaf 4663struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4664{
5d38a079 4665 struct sk_buff *skb = napi->skb;
5d38a079
HX
4666
4667 if (!skb) {
fd11a83d 4668 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4669 if (skb) {
4670 napi->skb = skb;
4671 skb_mark_napi_id(skb, napi);
4672 }
80595d59 4673 }
96e93eab
HX
4674 return skb;
4675}
76620aaf 4676EXPORT_SYMBOL(napi_get_frags);
96e93eab 4677
a50e233c
ED
4678static gro_result_t napi_frags_finish(struct napi_struct *napi,
4679 struct sk_buff *skb,
4680 gro_result_t ret)
96e93eab 4681{
5d0d9be8
HX
4682 switch (ret) {
4683 case GRO_NORMAL:
a50e233c
ED
4684 case GRO_HELD:
4685 __skb_push(skb, ETH_HLEN);
4686 skb->protocol = eth_type_trans(skb, skb->dev);
4687 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4688 ret = GRO_DROP;
86911732 4689 break;
5d38a079 4690
5d0d9be8 4691 case GRO_DROP:
5d0d9be8
HX
4692 case GRO_MERGED_FREE:
4693 napi_reuse_skb(napi, skb);
4694 break;
5b252f0c
BH
4695
4696 case GRO_MERGED:
4697 break;
5d0d9be8 4698 }
5d38a079 4699
c7c4b3b6 4700 return ret;
5d38a079 4701}
5d0d9be8 4702
a50e233c
ED
4703/* Upper GRO stack assumes network header starts at gro_offset=0
4704 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4705 * We copy ethernet header into skb->data to have a common layout.
4706 */
4adb9c4a 4707static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4708{
4709 struct sk_buff *skb = napi->skb;
a50e233c
ED
4710 const struct ethhdr *eth;
4711 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4712
4713 napi->skb = NULL;
4714
a50e233c
ED
4715 skb_reset_mac_header(skb);
4716 skb_gro_reset_offset(skb);
4717
4718 eth = skb_gro_header_fast(skb, 0);
4719 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4720 eth = skb_gro_header_slow(skb, hlen, 0);
4721 if (unlikely(!eth)) {
4da46ceb
AC
4722 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4723 __func__, napi->dev->name);
a50e233c
ED
4724 napi_reuse_skb(napi, skb);
4725 return NULL;
4726 }
4727 } else {
4728 gro_pull_from_frag0(skb, hlen);
4729 NAPI_GRO_CB(skb)->frag0 += hlen;
4730 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4731 }
a50e233c
ED
4732 __skb_pull(skb, hlen);
4733
4734 /*
4735 * This works because the only protocols we care about don't require
4736 * special handling.
4737 * We'll fix it up properly in napi_frags_finish()
4738 */
4739 skb->protocol = eth->h_proto;
76620aaf 4740
76620aaf
HX
4741 return skb;
4742}
76620aaf 4743
c7c4b3b6 4744gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4745{
76620aaf 4746 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4747
4748 if (!skb)
c7c4b3b6 4749 return GRO_DROP;
5d0d9be8 4750
ae78dbfa
BH
4751 trace_napi_gro_frags_entry(skb);
4752
89c5fa33 4753 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4754}
5d38a079
HX
4755EXPORT_SYMBOL(napi_gro_frags);
4756
573e8fca
TH
4757/* Compute the checksum from gro_offset and return the folded value
4758 * after adding in any pseudo checksum.
4759 */
4760__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4761{
4762 __wsum wsum;
4763 __sum16 sum;
4764
4765 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4766
4767 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4768 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4769 if (likely(!sum)) {
4770 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4771 !skb->csum_complete_sw)
4772 netdev_rx_csum_fault(skb->dev);
4773 }
4774
4775 NAPI_GRO_CB(skb)->csum = wsum;
4776 NAPI_GRO_CB(skb)->csum_valid = 1;
4777
4778 return sum;
4779}
4780EXPORT_SYMBOL(__skb_gro_checksum_complete);
4781
e326bed2 4782/*
855abcf0 4783 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4784 * Note: called with local irq disabled, but exits with local irq enabled.
4785 */
4786static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4787{
4788#ifdef CONFIG_RPS
4789 struct softnet_data *remsd = sd->rps_ipi_list;
4790
4791 if (remsd) {
4792 sd->rps_ipi_list = NULL;
4793
4794 local_irq_enable();
4795
4796 /* Send pending IPI's to kick RPS processing on remote cpus. */
4797 while (remsd) {
4798 struct softnet_data *next = remsd->rps_ipi_next;
4799
4800 if (cpu_online(remsd->cpu))
c46fff2a 4801 smp_call_function_single_async(remsd->cpu,
fce8ad15 4802 &remsd->csd);
e326bed2
ED
4803 remsd = next;
4804 }
4805 } else
4806#endif
4807 local_irq_enable();
4808}
4809
d75b1ade
ED
4810static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4811{
4812#ifdef CONFIG_RPS
4813 return sd->rps_ipi_list != NULL;
4814#else
4815 return false;
4816#endif
4817}
4818
bea3348e 4819static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4820{
eecfd7c4 4821 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4822 bool again = true;
4823 int work = 0;
1da177e4 4824
e326bed2
ED
4825 /* Check if we have pending ipi, its better to send them now,
4826 * not waiting net_rx_action() end.
4827 */
d75b1ade 4828 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4829 local_irq_disable();
4830 net_rps_action_and_irq_enable(sd);
4831 }
d75b1ade 4832
bea3348e 4833 napi->weight = weight_p;
145dd5f9 4834 while (again) {
1da177e4 4835 struct sk_buff *skb;
6e7676c1
CG
4836
4837 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4838 rcu_read_lock();
6e7676c1 4839 __netif_receive_skb(skb);
2c17d27c 4840 rcu_read_unlock();
76cc8b13 4841 input_queue_head_incr(sd);
145dd5f9 4842 if (++work >= quota)
76cc8b13 4843 return work;
145dd5f9 4844
6e7676c1 4845 }
1da177e4 4846
145dd5f9 4847 local_irq_disable();
e36fa2f7 4848 rps_lock(sd);
11ef7a89 4849 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4850 /*
4851 * Inline a custom version of __napi_complete().
4852 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4853 * and NAPI_STATE_SCHED is the only possible flag set
4854 * on backlog.
4855 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4856 * and we dont need an smp_mb() memory barrier.
4857 */
eecfd7c4 4858 napi->state = 0;
145dd5f9
PA
4859 again = false;
4860 } else {
4861 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4862 &sd->process_queue);
bea3348e 4863 }
e36fa2f7 4864 rps_unlock(sd);
145dd5f9 4865 local_irq_enable();
6e7676c1 4866 }
1da177e4 4867
bea3348e
SH
4868 return work;
4869}
1da177e4 4870
bea3348e
SH
4871/**
4872 * __napi_schedule - schedule for receive
c4ea43c5 4873 * @n: entry to schedule
bea3348e 4874 *
bc9ad166
ED
4875 * The entry's receive function will be scheduled to run.
4876 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4877 */
b5606c2d 4878void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4879{
4880 unsigned long flags;
1da177e4 4881
bea3348e 4882 local_irq_save(flags);
903ceff7 4883 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4884 local_irq_restore(flags);
1da177e4 4885}
bea3348e
SH
4886EXPORT_SYMBOL(__napi_schedule);
4887
bc9ad166
ED
4888/**
4889 * __napi_schedule_irqoff - schedule for receive
4890 * @n: entry to schedule
4891 *
4892 * Variant of __napi_schedule() assuming hard irqs are masked
4893 */
4894void __napi_schedule_irqoff(struct napi_struct *n)
4895{
4896 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4897}
4898EXPORT_SYMBOL(__napi_schedule_irqoff);
4899
364b6055 4900bool __napi_complete(struct napi_struct *n)
d565b0a1
HX
4901{
4902 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4903
217f6974
ED
4904 /* Some drivers call us directly, instead of calling
4905 * napi_complete_done().
4906 */
4907 if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
364b6055 4908 return false;
217f6974 4909
d75b1ade 4910 list_del_init(&n->poll_list);
4e857c58 4911 smp_mb__before_atomic();
d565b0a1 4912 clear_bit(NAPI_STATE_SCHED, &n->state);
364b6055 4913 return true;
d565b0a1
HX
4914}
4915EXPORT_SYMBOL(__napi_complete);
4916
364b6055 4917bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4918{
4919 unsigned long flags;
4920
4921 /*
217f6974
ED
4922 * 1) Don't let napi dequeue from the cpu poll list
4923 * just in case its running on a different cpu.
4924 * 2) If we are busy polling, do nothing here, we have
4925 * the guarantee we will be called later.
d565b0a1 4926 */
217f6974
ED
4927 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4928 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 4929 return false;
d565b0a1 4930
3b47d303
ED
4931 if (n->gro_list) {
4932 unsigned long timeout = 0;
d75b1ade 4933
3b47d303
ED
4934 if (work_done)
4935 timeout = n->dev->gro_flush_timeout;
4936
4937 if (timeout)
4938 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4939 HRTIMER_MODE_REL_PINNED);
4940 else
4941 napi_gro_flush(n, false);
4942 }
d75b1ade
ED
4943 if (likely(list_empty(&n->poll_list))) {
4944 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4945 } else {
4946 /* If n->poll_list is not empty, we need to mask irqs */
4947 local_irq_save(flags);
4948 __napi_complete(n);
4949 local_irq_restore(flags);
4950 }
364b6055 4951 return true;
d565b0a1 4952}
3b47d303 4953EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4954
af12fa6e 4955/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4956static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4957{
4958 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4959 struct napi_struct *napi;
4960
4961 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4962 if (napi->napi_id == napi_id)
4963 return napi;
4964
4965 return NULL;
4966}
02d62e86
ED
4967
4968#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 4969
ce6aea93 4970#define BUSY_POLL_BUDGET 8
217f6974
ED
4971
4972static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4973{
4974 int rc;
4975
4976 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4977
4978 local_bh_disable();
4979
4980 /* All we really want here is to re-enable device interrupts.
4981 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4982 */
4983 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4984 netpoll_poll_unlock(have_poll_lock);
4985 if (rc == BUSY_POLL_BUDGET)
4986 __napi_schedule(napi);
4987 local_bh_enable();
4988 if (local_softirq_pending())
4989 do_softirq();
4990}
4991
02d62e86
ED
4992bool sk_busy_loop(struct sock *sk, int nonblock)
4993{
4994 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
217f6974 4995 int (*napi_poll)(struct napi_struct *napi, int budget);
ce6aea93 4996 int (*busy_poll)(struct napi_struct *dev);
217f6974 4997 void *have_poll_lock = NULL;
02d62e86 4998 struct napi_struct *napi;
217f6974
ED
4999 int rc;
5000
5001restart:
5002 rc = false;
5003 napi_poll = NULL;
02d62e86 5004
2a028ecb 5005 rcu_read_lock();
02d62e86
ED
5006
5007 napi = napi_by_id(sk->sk_napi_id);
5008 if (!napi)
5009 goto out;
5010
ce6aea93
ED
5011 /* Note: ndo_busy_poll method is optional in linux-4.5 */
5012 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86 5013
217f6974
ED
5014 preempt_disable();
5015 for (;;) {
ce6aea93 5016 rc = 0;
2a028ecb 5017 local_bh_disable();
ce6aea93
ED
5018 if (busy_poll) {
5019 rc = busy_poll(napi);
217f6974 5020 goto count;
ce6aea93 5021 }
217f6974
ED
5022 if (!napi_poll) {
5023 unsigned long val = READ_ONCE(napi->state);
5024
5025 /* If multiple threads are competing for this napi,
5026 * we avoid dirtying napi->state as much as we can.
5027 */
5028 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5029 NAPIF_STATE_IN_BUSY_POLL))
5030 goto count;
5031 if (cmpxchg(&napi->state, val,
5032 val | NAPIF_STATE_IN_BUSY_POLL |
5033 NAPIF_STATE_SCHED) != val)
5034 goto count;
5035 have_poll_lock = netpoll_poll_lock(napi);
5036 napi_poll = napi->poll;
5037 }
5038 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5039 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5040count:
2a028ecb 5041 if (rc > 0)
02a1d6e7
ED
5042 __NET_ADD_STATS(sock_net(sk),
5043 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 5044 local_bh_enable();
02d62e86
ED
5045
5046 if (rc == LL_FLUSH_FAILED)
5047 break; /* permanent failure */
5048
217f6974
ED
5049 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5050 busy_loop_timeout(end_time))
5051 break;
02d62e86 5052
217f6974
ED
5053 if (unlikely(need_resched())) {
5054 if (napi_poll)
5055 busy_poll_stop(napi, have_poll_lock);
5056 preempt_enable();
5057 rcu_read_unlock();
5058 cond_resched();
5059 rc = !skb_queue_empty(&sk->sk_receive_queue);
5060 if (rc || busy_loop_timeout(end_time))
5061 return rc;
5062 goto restart;
5063 }
6cdf89b1 5064 cpu_relax();
217f6974
ED
5065 }
5066 if (napi_poll)
5067 busy_poll_stop(napi, have_poll_lock);
5068 preempt_enable();
02d62e86
ED
5069 rc = !skb_queue_empty(&sk->sk_receive_queue);
5070out:
2a028ecb 5071 rcu_read_unlock();
02d62e86
ED
5072 return rc;
5073}
5074EXPORT_SYMBOL(sk_busy_loop);
5075
5076#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5077
149d6ad8 5078static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5079{
d64b5e85
ED
5080 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5081 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5082 return;
af12fa6e 5083
52bd2d62 5084 spin_lock(&napi_hash_lock);
af12fa6e 5085
52bd2d62
ED
5086 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5087 do {
5088 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5089 napi_gen_id = NR_CPUS + 1;
5090 } while (napi_by_id(napi_gen_id));
5091 napi->napi_id = napi_gen_id;
af12fa6e 5092
52bd2d62
ED
5093 hlist_add_head_rcu(&napi->napi_hash_node,
5094 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5095
52bd2d62 5096 spin_unlock(&napi_hash_lock);
af12fa6e 5097}
af12fa6e
ET
5098
5099/* Warning : caller is responsible to make sure rcu grace period
5100 * is respected before freeing memory containing @napi
5101 */
34cbe27e 5102bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5103{
34cbe27e
ED
5104 bool rcu_sync_needed = false;
5105
af12fa6e
ET
5106 spin_lock(&napi_hash_lock);
5107
34cbe27e
ED
5108 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5109 rcu_sync_needed = true;
af12fa6e 5110 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5111 }
af12fa6e 5112 spin_unlock(&napi_hash_lock);
34cbe27e 5113 return rcu_sync_needed;
af12fa6e
ET
5114}
5115EXPORT_SYMBOL_GPL(napi_hash_del);
5116
3b47d303
ED
5117static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5118{
5119 struct napi_struct *napi;
5120
5121 napi = container_of(timer, struct napi_struct, timer);
5122 if (napi->gro_list)
5123 napi_schedule(napi);
5124
5125 return HRTIMER_NORESTART;
5126}
5127
d565b0a1
HX
5128void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5129 int (*poll)(struct napi_struct *, int), int weight)
5130{
5131 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5132 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5133 napi->timer.function = napi_watchdog;
4ae5544f 5134 napi->gro_count = 0;
d565b0a1 5135 napi->gro_list = NULL;
5d38a079 5136 napi->skb = NULL;
d565b0a1 5137 napi->poll = poll;
82dc3c63
ED
5138 if (weight > NAPI_POLL_WEIGHT)
5139 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5140 weight, dev->name);
d565b0a1
HX
5141 napi->weight = weight;
5142 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5143 napi->dev = dev;
5d38a079 5144#ifdef CONFIG_NETPOLL
d565b0a1
HX
5145 napi->poll_owner = -1;
5146#endif
5147 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5148 napi_hash_add(napi);
d565b0a1
HX
5149}
5150EXPORT_SYMBOL(netif_napi_add);
5151
3b47d303
ED
5152void napi_disable(struct napi_struct *n)
5153{
5154 might_sleep();
5155 set_bit(NAPI_STATE_DISABLE, &n->state);
5156
5157 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5158 msleep(1);
2d8bff12
NH
5159 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5160 msleep(1);
3b47d303
ED
5161
5162 hrtimer_cancel(&n->timer);
5163
5164 clear_bit(NAPI_STATE_DISABLE, &n->state);
5165}
5166EXPORT_SYMBOL(napi_disable);
5167
93d05d4a 5168/* Must be called in process context */
d565b0a1
HX
5169void netif_napi_del(struct napi_struct *napi)
5170{
93d05d4a
ED
5171 might_sleep();
5172 if (napi_hash_del(napi))
5173 synchronize_net();
d7b06636 5174 list_del_init(&napi->dev_list);
76620aaf 5175 napi_free_frags(napi);
d565b0a1 5176
289dccbe 5177 kfree_skb_list(napi->gro_list);
d565b0a1 5178 napi->gro_list = NULL;
4ae5544f 5179 napi->gro_count = 0;
d565b0a1
HX
5180}
5181EXPORT_SYMBOL(netif_napi_del);
5182
726ce70e
HX
5183static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5184{
5185 void *have;
5186 int work, weight;
5187
5188 list_del_init(&n->poll_list);
5189
5190 have = netpoll_poll_lock(n);
5191
5192 weight = n->weight;
5193
5194 /* This NAPI_STATE_SCHED test is for avoiding a race
5195 * with netpoll's poll_napi(). Only the entity which
5196 * obtains the lock and sees NAPI_STATE_SCHED set will
5197 * actually make the ->poll() call. Therefore we avoid
5198 * accidentally calling ->poll() when NAPI is not scheduled.
5199 */
5200 work = 0;
5201 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5202 work = n->poll(n, weight);
1db19db7 5203 trace_napi_poll(n, work, weight);
726ce70e
HX
5204 }
5205
5206 WARN_ON_ONCE(work > weight);
5207
5208 if (likely(work < weight))
5209 goto out_unlock;
5210
5211 /* Drivers must not modify the NAPI state if they
5212 * consume the entire weight. In such cases this code
5213 * still "owns" the NAPI instance and therefore can
5214 * move the instance around on the list at-will.
5215 */
5216 if (unlikely(napi_disable_pending(n))) {
5217 napi_complete(n);
5218 goto out_unlock;
5219 }
5220
5221 if (n->gro_list) {
5222 /* flush too old packets
5223 * If HZ < 1000, flush all packets.
5224 */
5225 napi_gro_flush(n, HZ >= 1000);
5226 }
5227
001ce546
HX
5228 /* Some drivers may have called napi_schedule
5229 * prior to exhausting their budget.
5230 */
5231 if (unlikely(!list_empty(&n->poll_list))) {
5232 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5233 n->dev ? n->dev->name : "backlog");
5234 goto out_unlock;
5235 }
5236
726ce70e
HX
5237 list_add_tail(&n->poll_list, repoll);
5238
5239out_unlock:
5240 netpoll_poll_unlock(have);
5241
5242 return work;
5243}
5244
0766f788 5245static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5246{
903ceff7 5247 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5248 unsigned long time_limit = jiffies + 2;
51b0bded 5249 int budget = netdev_budget;
d75b1ade
ED
5250 LIST_HEAD(list);
5251 LIST_HEAD(repoll);
53fb95d3 5252
1da177e4 5253 local_irq_disable();
d75b1ade
ED
5254 list_splice_init(&sd->poll_list, &list);
5255 local_irq_enable();
1da177e4 5256
ceb8d5bf 5257 for (;;) {
bea3348e 5258 struct napi_struct *n;
1da177e4 5259
ceb8d5bf
HX
5260 if (list_empty(&list)) {
5261 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5262 goto out;
ceb8d5bf
HX
5263 break;
5264 }
5265
6bd373eb
HX
5266 n = list_first_entry(&list, struct napi_struct, poll_list);
5267 budget -= napi_poll(n, &repoll);
5268
d75b1ade 5269 /* If softirq window is exhausted then punt.
24f8b238
SH
5270 * Allow this to run for 2 jiffies since which will allow
5271 * an average latency of 1.5/HZ.
bea3348e 5272 */
ceb8d5bf
HX
5273 if (unlikely(budget <= 0 ||
5274 time_after_eq(jiffies, time_limit))) {
5275 sd->time_squeeze++;
5276 break;
5277 }
1da177e4 5278 }
d75b1ade 5279
d75b1ade
ED
5280 local_irq_disable();
5281
5282 list_splice_tail_init(&sd->poll_list, &list);
5283 list_splice_tail(&repoll, &list);
5284 list_splice(&list, &sd->poll_list);
5285 if (!list_empty(&sd->poll_list))
5286 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5287
e326bed2 5288 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5289out:
5290 __kfree_skb_flush();
1da177e4
LT
5291}
5292
aa9d8560 5293struct netdev_adjacent {
9ff162a8 5294 struct net_device *dev;
5d261913
VF
5295
5296 /* upper master flag, there can only be one master device per list */
9ff162a8 5297 bool master;
5d261913 5298
5d261913
VF
5299 /* counter for the number of times this device was added to us */
5300 u16 ref_nr;
5301
402dae96
VF
5302 /* private field for the users */
5303 void *private;
5304
9ff162a8
JP
5305 struct list_head list;
5306 struct rcu_head rcu;
9ff162a8
JP
5307};
5308
6ea29da1 5309static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5310 struct list_head *adj_list)
9ff162a8 5311{
5d261913 5312 struct netdev_adjacent *adj;
5d261913 5313
2f268f12 5314 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5315 if (adj->dev == adj_dev)
5316 return adj;
9ff162a8
JP
5317 }
5318 return NULL;
5319}
5320
f1170fd4
DA
5321static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5322{
5323 struct net_device *dev = data;
5324
5325 return upper_dev == dev;
5326}
5327
9ff162a8
JP
5328/**
5329 * netdev_has_upper_dev - Check if device is linked to an upper device
5330 * @dev: device
5331 * @upper_dev: upper device to check
5332 *
5333 * Find out if a device is linked to specified upper device and return true
5334 * in case it is. Note that this checks only immediate upper device,
5335 * not through a complete stack of devices. The caller must hold the RTNL lock.
5336 */
5337bool netdev_has_upper_dev(struct net_device *dev,
5338 struct net_device *upper_dev)
5339{
5340 ASSERT_RTNL();
5341
f1170fd4
DA
5342 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5343 upper_dev);
9ff162a8
JP
5344}
5345EXPORT_SYMBOL(netdev_has_upper_dev);
5346
1a3f060c
DA
5347/**
5348 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5349 * @dev: device
5350 * @upper_dev: upper device to check
5351 *
5352 * Find out if a device is linked to specified upper device and return true
5353 * in case it is. Note that this checks the entire upper device chain.
5354 * The caller must hold rcu lock.
5355 */
5356
1a3f060c
DA
5357bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5358 struct net_device *upper_dev)
5359{
5360 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5361 upper_dev);
5362}
5363EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5364
9ff162a8
JP
5365/**
5366 * netdev_has_any_upper_dev - Check if device is linked to some device
5367 * @dev: device
5368 *
5369 * Find out if a device is linked to an upper device and return true in case
5370 * it is. The caller must hold the RTNL lock.
5371 */
1d143d9f 5372static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5373{
5374 ASSERT_RTNL();
5375
f1170fd4 5376 return !list_empty(&dev->adj_list.upper);
9ff162a8 5377}
9ff162a8
JP
5378
5379/**
5380 * netdev_master_upper_dev_get - Get master upper device
5381 * @dev: device
5382 *
5383 * Find a master upper device and return pointer to it or NULL in case
5384 * it's not there. The caller must hold the RTNL lock.
5385 */
5386struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5387{
aa9d8560 5388 struct netdev_adjacent *upper;
9ff162a8
JP
5389
5390 ASSERT_RTNL();
5391
2f268f12 5392 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5393 return NULL;
5394
2f268f12 5395 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5396 struct netdev_adjacent, list);
9ff162a8
JP
5397 if (likely(upper->master))
5398 return upper->dev;
5399 return NULL;
5400}
5401EXPORT_SYMBOL(netdev_master_upper_dev_get);
5402
0f524a80
DA
5403/**
5404 * netdev_has_any_lower_dev - Check if device is linked to some device
5405 * @dev: device
5406 *
5407 * Find out if a device is linked to a lower device and return true in case
5408 * it is. The caller must hold the RTNL lock.
5409 */
5410static bool netdev_has_any_lower_dev(struct net_device *dev)
5411{
5412 ASSERT_RTNL();
5413
5414 return !list_empty(&dev->adj_list.lower);
5415}
5416
b6ccba4c
VF
5417void *netdev_adjacent_get_private(struct list_head *adj_list)
5418{
5419 struct netdev_adjacent *adj;
5420
5421 adj = list_entry(adj_list, struct netdev_adjacent, list);
5422
5423 return adj->private;
5424}
5425EXPORT_SYMBOL(netdev_adjacent_get_private);
5426
44a40855
VY
5427/**
5428 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5429 * @dev: device
5430 * @iter: list_head ** of the current position
5431 *
5432 * Gets the next device from the dev's upper list, starting from iter
5433 * position. The caller must hold RCU read lock.
5434 */
5435struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5436 struct list_head **iter)
5437{
5438 struct netdev_adjacent *upper;
5439
5440 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5441
5442 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5443
5444 if (&upper->list == &dev->adj_list.upper)
5445 return NULL;
5446
5447 *iter = &upper->list;
5448
5449 return upper->dev;
5450}
5451EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5452
1a3f060c
DA
5453static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5454 struct list_head **iter)
5455{
5456 struct netdev_adjacent *upper;
5457
5458 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5459
5460 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5461
5462 if (&upper->list == &dev->adj_list.upper)
5463 return NULL;
5464
5465 *iter = &upper->list;
5466
5467 return upper->dev;
5468}
5469
5470int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5471 int (*fn)(struct net_device *dev,
5472 void *data),
5473 void *data)
5474{
5475 struct net_device *udev;
5476 struct list_head *iter;
5477 int ret;
5478
5479 for (iter = &dev->adj_list.upper,
5480 udev = netdev_next_upper_dev_rcu(dev, &iter);
5481 udev;
5482 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5483 /* first is the upper device itself */
5484 ret = fn(udev, data);
5485 if (ret)
5486 return ret;
5487
5488 /* then look at all of its upper devices */
5489 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5490 if (ret)
5491 return ret;
5492 }
5493
5494 return 0;
5495}
5496EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5497
31088a11
VF
5498/**
5499 * netdev_lower_get_next_private - Get the next ->private from the
5500 * lower neighbour list
5501 * @dev: device
5502 * @iter: list_head ** of the current position
5503 *
5504 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5505 * list, starting from iter position. The caller must hold either hold the
5506 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5507 * list will remain unchanged.
31088a11
VF
5508 */
5509void *netdev_lower_get_next_private(struct net_device *dev,
5510 struct list_head **iter)
5511{
5512 struct netdev_adjacent *lower;
5513
5514 lower = list_entry(*iter, struct netdev_adjacent, list);
5515
5516 if (&lower->list == &dev->adj_list.lower)
5517 return NULL;
5518
6859e7df 5519 *iter = lower->list.next;
31088a11
VF
5520
5521 return lower->private;
5522}
5523EXPORT_SYMBOL(netdev_lower_get_next_private);
5524
5525/**
5526 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5527 * lower neighbour list, RCU
5528 * variant
5529 * @dev: device
5530 * @iter: list_head ** of the current position
5531 *
5532 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5533 * list, starting from iter position. The caller must hold RCU read lock.
5534 */
5535void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5536 struct list_head **iter)
5537{
5538 struct netdev_adjacent *lower;
5539
5540 WARN_ON_ONCE(!rcu_read_lock_held());
5541
5542 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5543
5544 if (&lower->list == &dev->adj_list.lower)
5545 return NULL;
5546
6859e7df 5547 *iter = &lower->list;
31088a11
VF
5548
5549 return lower->private;
5550}
5551EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5552
4085ebe8
VY
5553/**
5554 * netdev_lower_get_next - Get the next device from the lower neighbour
5555 * list
5556 * @dev: device
5557 * @iter: list_head ** of the current position
5558 *
5559 * Gets the next netdev_adjacent from the dev's lower neighbour
5560 * list, starting from iter position. The caller must hold RTNL lock or
5561 * its own locking that guarantees that the neighbour lower
b469139e 5562 * list will remain unchanged.
4085ebe8
VY
5563 */
5564void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5565{
5566 struct netdev_adjacent *lower;
5567
cfdd28be 5568 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5569
5570 if (&lower->list == &dev->adj_list.lower)
5571 return NULL;
5572
cfdd28be 5573 *iter = lower->list.next;
4085ebe8
VY
5574
5575 return lower->dev;
5576}
5577EXPORT_SYMBOL(netdev_lower_get_next);
5578
1a3f060c
DA
5579static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5580 struct list_head **iter)
5581{
5582 struct netdev_adjacent *lower;
5583
46b5ab1a 5584 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5585
5586 if (&lower->list == &dev->adj_list.lower)
5587 return NULL;
5588
46b5ab1a 5589 *iter = &lower->list;
1a3f060c
DA
5590
5591 return lower->dev;
5592}
5593
5594int netdev_walk_all_lower_dev(struct net_device *dev,
5595 int (*fn)(struct net_device *dev,
5596 void *data),
5597 void *data)
5598{
5599 struct net_device *ldev;
5600 struct list_head *iter;
5601 int ret;
5602
5603 for (iter = &dev->adj_list.lower,
5604 ldev = netdev_next_lower_dev(dev, &iter);
5605 ldev;
5606 ldev = netdev_next_lower_dev(dev, &iter)) {
5607 /* first is the lower device itself */
5608 ret = fn(ldev, data);
5609 if (ret)
5610 return ret;
5611
5612 /* then look at all of its lower devices */
5613 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5614 if (ret)
5615 return ret;
5616 }
5617
5618 return 0;
5619}
5620EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5621
1a3f060c
DA
5622static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5623 struct list_head **iter)
5624{
5625 struct netdev_adjacent *lower;
5626
5627 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5628 if (&lower->list == &dev->adj_list.lower)
5629 return NULL;
5630
5631 *iter = &lower->list;
5632
5633 return lower->dev;
5634}
5635
5636int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5637 int (*fn)(struct net_device *dev,
5638 void *data),
5639 void *data)
5640{
5641 struct net_device *ldev;
5642 struct list_head *iter;
5643 int ret;
5644
5645 for (iter = &dev->adj_list.lower,
5646 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5647 ldev;
5648 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5649 /* first is the lower device itself */
5650 ret = fn(ldev, data);
5651 if (ret)
5652 return ret;
5653
5654 /* then look at all of its lower devices */
5655 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5656 if (ret)
5657 return ret;
5658 }
5659
5660 return 0;
5661}
5662EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5663
e001bfad 5664/**
5665 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5666 * lower neighbour list, RCU
5667 * variant
5668 * @dev: device
5669 *
5670 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5671 * list. The caller must hold RCU read lock.
5672 */
5673void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5674{
5675 struct netdev_adjacent *lower;
5676
5677 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5678 struct netdev_adjacent, list);
5679 if (lower)
5680 return lower->private;
5681 return NULL;
5682}
5683EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5684
9ff162a8
JP
5685/**
5686 * netdev_master_upper_dev_get_rcu - Get master upper device
5687 * @dev: device
5688 *
5689 * Find a master upper device and return pointer to it or NULL in case
5690 * it's not there. The caller must hold the RCU read lock.
5691 */
5692struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5693{
aa9d8560 5694 struct netdev_adjacent *upper;
9ff162a8 5695
2f268f12 5696 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5697 struct netdev_adjacent, list);
9ff162a8
JP
5698 if (upper && likely(upper->master))
5699 return upper->dev;
5700 return NULL;
5701}
5702EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5703
0a59f3a9 5704static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5705 struct net_device *adj_dev,
5706 struct list_head *dev_list)
5707{
5708 char linkname[IFNAMSIZ+7];
5709 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5710 "upper_%s" : "lower_%s", adj_dev->name);
5711 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5712 linkname);
5713}
0a59f3a9 5714static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5715 char *name,
5716 struct list_head *dev_list)
5717{
5718 char linkname[IFNAMSIZ+7];
5719 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5720 "upper_%s" : "lower_%s", name);
5721 sysfs_remove_link(&(dev->dev.kobj), linkname);
5722}
5723
7ce64c79
AF
5724static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5725 struct net_device *adj_dev,
5726 struct list_head *dev_list)
5727{
5728 return (dev_list == &dev->adj_list.upper ||
5729 dev_list == &dev->adj_list.lower) &&
5730 net_eq(dev_net(dev), dev_net(adj_dev));
5731}
3ee32707 5732
5d261913
VF
5733static int __netdev_adjacent_dev_insert(struct net_device *dev,
5734 struct net_device *adj_dev,
7863c054 5735 struct list_head *dev_list,
402dae96 5736 void *private, bool master)
5d261913
VF
5737{
5738 struct netdev_adjacent *adj;
842d67a7 5739 int ret;
5d261913 5740
6ea29da1 5741 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5742
5743 if (adj) {
790510d9 5744 adj->ref_nr += 1;
67b62f98
DA
5745 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5746 dev->name, adj_dev->name, adj->ref_nr);
5747
5d261913
VF
5748 return 0;
5749 }
5750
5751 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5752 if (!adj)
5753 return -ENOMEM;
5754
5755 adj->dev = adj_dev;
5756 adj->master = master;
790510d9 5757 adj->ref_nr = 1;
402dae96 5758 adj->private = private;
5d261913 5759 dev_hold(adj_dev);
2f268f12 5760
67b62f98
DA
5761 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5762 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 5763
7ce64c79 5764 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5765 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5766 if (ret)
5767 goto free_adj;
5768 }
5769
7863c054 5770 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5771 if (master) {
5772 ret = sysfs_create_link(&(dev->dev.kobj),
5773 &(adj_dev->dev.kobj), "master");
5774 if (ret)
5831d66e 5775 goto remove_symlinks;
842d67a7 5776
7863c054 5777 list_add_rcu(&adj->list, dev_list);
842d67a7 5778 } else {
7863c054 5779 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5780 }
5d261913
VF
5781
5782 return 0;
842d67a7 5783
5831d66e 5784remove_symlinks:
7ce64c79 5785 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5786 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5787free_adj:
5788 kfree(adj);
974daef7 5789 dev_put(adj_dev);
842d67a7
VF
5790
5791 return ret;
5d261913
VF
5792}
5793
1d143d9f 5794static void __netdev_adjacent_dev_remove(struct net_device *dev,
5795 struct net_device *adj_dev,
93409033 5796 u16 ref_nr,
1d143d9f 5797 struct list_head *dev_list)
5d261913
VF
5798{
5799 struct netdev_adjacent *adj;
5800
67b62f98
DA
5801 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5802 dev->name, adj_dev->name, ref_nr);
5803
6ea29da1 5804 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5805
2f268f12 5806 if (!adj) {
67b62f98 5807 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 5808 dev->name, adj_dev->name);
67b62f98
DA
5809 WARN_ON(1);
5810 return;
2f268f12 5811 }
5d261913 5812
93409033 5813 if (adj->ref_nr > ref_nr) {
67b62f98
DA
5814 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5815 dev->name, adj_dev->name, ref_nr,
5816 adj->ref_nr - ref_nr);
93409033 5817 adj->ref_nr -= ref_nr;
5d261913
VF
5818 return;
5819 }
5820
842d67a7
VF
5821 if (adj->master)
5822 sysfs_remove_link(&(dev->dev.kobj), "master");
5823
7ce64c79 5824 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5825 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5826
5d261913 5827 list_del_rcu(&adj->list);
67b62f98 5828 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 5829 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5830 dev_put(adj_dev);
5831 kfree_rcu(adj, rcu);
5832}
5833
1d143d9f 5834static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5835 struct net_device *upper_dev,
5836 struct list_head *up_list,
5837 struct list_head *down_list,
5838 void *private, bool master)
5d261913
VF
5839{
5840 int ret;
5841
790510d9 5842 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 5843 private, master);
5d261913
VF
5844 if (ret)
5845 return ret;
5846
790510d9 5847 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 5848 private, false);
5d261913 5849 if (ret) {
790510d9 5850 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
5851 return ret;
5852 }
5853
5854 return 0;
5855}
5856
1d143d9f 5857static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5858 struct net_device *upper_dev,
93409033 5859 u16 ref_nr,
1d143d9f 5860 struct list_head *up_list,
5861 struct list_head *down_list)
5d261913 5862{
93409033
AC
5863 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5864 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5865}
5866
1d143d9f 5867static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5868 struct net_device *upper_dev,
5869 void *private, bool master)
2f268f12 5870{
f1170fd4
DA
5871 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5872 &dev->adj_list.upper,
5873 &upper_dev->adj_list.lower,
5874 private, master);
5d261913
VF
5875}
5876
1d143d9f 5877static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5878 struct net_device *upper_dev)
2f268f12 5879{
93409033 5880 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5881 &dev->adj_list.upper,
5882 &upper_dev->adj_list.lower);
5883}
5d261913 5884
9ff162a8 5885static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5886 struct net_device *upper_dev, bool master,
29bf24af 5887 void *upper_priv, void *upper_info)
9ff162a8 5888{
0e4ead9d 5889 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5890 int ret = 0;
9ff162a8
JP
5891
5892 ASSERT_RTNL();
5893
5894 if (dev == upper_dev)
5895 return -EBUSY;
5896
5897 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 5898 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
5899 return -EBUSY;
5900
f1170fd4 5901 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
5902 return -EEXIST;
5903
5904 if (master && netdev_master_upper_dev_get(dev))
5905 return -EBUSY;
5906
0e4ead9d
JP
5907 changeupper_info.upper_dev = upper_dev;
5908 changeupper_info.master = master;
5909 changeupper_info.linking = true;
29bf24af 5910 changeupper_info.upper_info = upper_info;
0e4ead9d 5911
573c7ba0
JP
5912 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5913 &changeupper_info.info);
5914 ret = notifier_to_errno(ret);
5915 if (ret)
5916 return ret;
5917
6dffb044 5918 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5919 master);
5d261913
VF
5920 if (ret)
5921 return ret;
9ff162a8 5922
b03804e7
IS
5923 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5924 &changeupper_info.info);
5925 ret = notifier_to_errno(ret);
5926 if (ret)
f1170fd4 5927 goto rollback;
b03804e7 5928
9ff162a8 5929 return 0;
5d261913 5930
f1170fd4 5931rollback:
2f268f12 5932 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5933
5934 return ret;
9ff162a8
JP
5935}
5936
5937/**
5938 * netdev_upper_dev_link - Add a link to the upper device
5939 * @dev: device
5940 * @upper_dev: new upper device
5941 *
5942 * Adds a link to device which is upper to this one. The caller must hold
5943 * the RTNL lock. On a failure a negative errno code is returned.
5944 * On success the reference counts are adjusted and the function
5945 * returns zero.
5946 */
5947int netdev_upper_dev_link(struct net_device *dev,
5948 struct net_device *upper_dev)
5949{
29bf24af 5950 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5951}
5952EXPORT_SYMBOL(netdev_upper_dev_link);
5953
5954/**
5955 * netdev_master_upper_dev_link - Add a master link to the upper device
5956 * @dev: device
5957 * @upper_dev: new upper device
6dffb044 5958 * @upper_priv: upper device private
29bf24af 5959 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5960 *
5961 * Adds a link to device which is upper to this one. In this case, only
5962 * one master upper device can be linked, although other non-master devices
5963 * might be linked as well. The caller must hold the RTNL lock.
5964 * On a failure a negative errno code is returned. On success the reference
5965 * counts are adjusted and the function returns zero.
5966 */
5967int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5968 struct net_device *upper_dev,
29bf24af 5969 void *upper_priv, void *upper_info)
9ff162a8 5970{
29bf24af
JP
5971 return __netdev_upper_dev_link(dev, upper_dev, true,
5972 upper_priv, upper_info);
9ff162a8
JP
5973}
5974EXPORT_SYMBOL(netdev_master_upper_dev_link);
5975
5976/**
5977 * netdev_upper_dev_unlink - Removes a link to upper device
5978 * @dev: device
5979 * @upper_dev: new upper device
5980 *
5981 * Removes a link to device which is upper to this one. The caller must hold
5982 * the RTNL lock.
5983 */
5984void netdev_upper_dev_unlink(struct net_device *dev,
5985 struct net_device *upper_dev)
5986{
0e4ead9d 5987 struct netdev_notifier_changeupper_info changeupper_info;
9ff162a8
JP
5988 ASSERT_RTNL();
5989
0e4ead9d
JP
5990 changeupper_info.upper_dev = upper_dev;
5991 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5992 changeupper_info.linking = false;
5993
573c7ba0
JP
5994 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5995 &changeupper_info.info);
5996
2f268f12 5997 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 5998
0e4ead9d
JP
5999 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6000 &changeupper_info.info);
9ff162a8
JP
6001}
6002EXPORT_SYMBOL(netdev_upper_dev_unlink);
6003
61bd3857
MS
6004/**
6005 * netdev_bonding_info_change - Dispatch event about slave change
6006 * @dev: device
4a26e453 6007 * @bonding_info: info to dispatch
61bd3857
MS
6008 *
6009 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6010 * The caller must hold the RTNL lock.
6011 */
6012void netdev_bonding_info_change(struct net_device *dev,
6013 struct netdev_bonding_info *bonding_info)
6014{
6015 struct netdev_notifier_bonding_info info;
6016
6017 memcpy(&info.bonding_info, bonding_info,
6018 sizeof(struct netdev_bonding_info));
6019 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6020 &info.info);
6021}
6022EXPORT_SYMBOL(netdev_bonding_info_change);
6023
2ce1ee17 6024static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6025{
6026 struct netdev_adjacent *iter;
6027
6028 struct net *net = dev_net(dev);
6029
6030 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6031 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6032 continue;
6033 netdev_adjacent_sysfs_add(iter->dev, dev,
6034 &iter->dev->adj_list.lower);
6035 netdev_adjacent_sysfs_add(dev, iter->dev,
6036 &dev->adj_list.upper);
6037 }
6038
6039 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6040 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6041 continue;
6042 netdev_adjacent_sysfs_add(iter->dev, dev,
6043 &iter->dev->adj_list.upper);
6044 netdev_adjacent_sysfs_add(dev, iter->dev,
6045 &dev->adj_list.lower);
6046 }
6047}
6048
2ce1ee17 6049static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6050{
6051 struct netdev_adjacent *iter;
6052
6053 struct net *net = dev_net(dev);
6054
6055 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6056 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6057 continue;
6058 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6059 &iter->dev->adj_list.lower);
6060 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6061 &dev->adj_list.upper);
6062 }
6063
6064 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6065 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6066 continue;
6067 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6068 &iter->dev->adj_list.upper);
6069 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6070 &dev->adj_list.lower);
6071 }
6072}
6073
5bb025fa 6074void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6075{
5bb025fa 6076 struct netdev_adjacent *iter;
402dae96 6077
4c75431a
AF
6078 struct net *net = dev_net(dev);
6079
5bb025fa 6080 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6081 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6082 continue;
5bb025fa
VF
6083 netdev_adjacent_sysfs_del(iter->dev, oldname,
6084 &iter->dev->adj_list.lower);
6085 netdev_adjacent_sysfs_add(iter->dev, dev,
6086 &iter->dev->adj_list.lower);
6087 }
402dae96 6088
5bb025fa 6089 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6090 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6091 continue;
5bb025fa
VF
6092 netdev_adjacent_sysfs_del(iter->dev, oldname,
6093 &iter->dev->adj_list.upper);
6094 netdev_adjacent_sysfs_add(iter->dev, dev,
6095 &iter->dev->adj_list.upper);
6096 }
402dae96 6097}
402dae96
VF
6098
6099void *netdev_lower_dev_get_private(struct net_device *dev,
6100 struct net_device *lower_dev)
6101{
6102 struct netdev_adjacent *lower;
6103
6104 if (!lower_dev)
6105 return NULL;
6ea29da1 6106 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6107 if (!lower)
6108 return NULL;
6109
6110 return lower->private;
6111}
6112EXPORT_SYMBOL(netdev_lower_dev_get_private);
6113
4085ebe8 6114
952fcfd0 6115int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6116{
6117 struct net_device *lower = NULL;
6118 struct list_head *iter;
6119 int max_nest = -1;
6120 int nest;
6121
6122 ASSERT_RTNL();
6123
6124 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6125 nest = dev_get_nest_level(lower);
4085ebe8
VY
6126 if (max_nest < nest)
6127 max_nest = nest;
6128 }
6129
952fcfd0 6130 return max_nest + 1;
4085ebe8
VY
6131}
6132EXPORT_SYMBOL(dev_get_nest_level);
6133
04d48266
JP
6134/**
6135 * netdev_lower_change - Dispatch event about lower device state change
6136 * @lower_dev: device
6137 * @lower_state_info: state to dispatch
6138 *
6139 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6140 * The caller must hold the RTNL lock.
6141 */
6142void netdev_lower_state_changed(struct net_device *lower_dev,
6143 void *lower_state_info)
6144{
6145 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6146
6147 ASSERT_RTNL();
6148 changelowerstate_info.lower_state_info = lower_state_info;
6149 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6150 &changelowerstate_info.info);
6151}
6152EXPORT_SYMBOL(netdev_lower_state_changed);
6153
18bfb924
JP
6154int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6155 struct neighbour *n)
6156{
6157 struct net_device *lower_dev, *stop_dev;
6158 struct list_head *iter;
6159 int err;
6160
6161 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6162 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6163 continue;
6164 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6165 if (err) {
6166 stop_dev = lower_dev;
6167 goto rollback;
6168 }
6169 }
6170 return 0;
6171
6172rollback:
6173 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6174 if (lower_dev == stop_dev)
6175 break;
6176 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6177 continue;
6178 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6179 }
6180 return err;
6181}
6182EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6183
6184void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6185 struct neighbour *n)
6186{
6187 struct net_device *lower_dev;
6188 struct list_head *iter;
6189
6190 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6191 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6192 continue;
6193 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6194 }
6195}
6196EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6197
b6c40d68
PM
6198static void dev_change_rx_flags(struct net_device *dev, int flags)
6199{
d314774c
SH
6200 const struct net_device_ops *ops = dev->netdev_ops;
6201
d2615bf4 6202 if (ops->ndo_change_rx_flags)
d314774c 6203 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6204}
6205
991fb3f7 6206static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6207{
b536db93 6208 unsigned int old_flags = dev->flags;
d04a48b0
EB
6209 kuid_t uid;
6210 kgid_t gid;
1da177e4 6211
24023451
PM
6212 ASSERT_RTNL();
6213
dad9b335
WC
6214 dev->flags |= IFF_PROMISC;
6215 dev->promiscuity += inc;
6216 if (dev->promiscuity == 0) {
6217 /*
6218 * Avoid overflow.
6219 * If inc causes overflow, untouch promisc and return error.
6220 */
6221 if (inc < 0)
6222 dev->flags &= ~IFF_PROMISC;
6223 else {
6224 dev->promiscuity -= inc;
7b6cd1ce
JP
6225 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6226 dev->name);
dad9b335
WC
6227 return -EOVERFLOW;
6228 }
6229 }
52609c0b 6230 if (dev->flags != old_flags) {
7b6cd1ce
JP
6231 pr_info("device %s %s promiscuous mode\n",
6232 dev->name,
6233 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6234 if (audit_enabled) {
6235 current_uid_gid(&uid, &gid);
7759db82
KHK
6236 audit_log(current->audit_context, GFP_ATOMIC,
6237 AUDIT_ANOM_PROMISCUOUS,
6238 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6239 dev->name, (dev->flags & IFF_PROMISC),
6240 (old_flags & IFF_PROMISC),
e1760bd5 6241 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6242 from_kuid(&init_user_ns, uid),
6243 from_kgid(&init_user_ns, gid),
7759db82 6244 audit_get_sessionid(current));
8192b0c4 6245 }
24023451 6246
b6c40d68 6247 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6248 }
991fb3f7
ND
6249 if (notify)
6250 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6251 return 0;
1da177e4
LT
6252}
6253
4417da66
PM
6254/**
6255 * dev_set_promiscuity - update promiscuity count on a device
6256 * @dev: device
6257 * @inc: modifier
6258 *
6259 * Add or remove promiscuity from a device. While the count in the device
6260 * remains above zero the interface remains promiscuous. Once it hits zero
6261 * the device reverts back to normal filtering operation. A negative inc
6262 * value is used to drop promiscuity on the device.
dad9b335 6263 * Return 0 if successful or a negative errno code on error.
4417da66 6264 */
dad9b335 6265int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6266{
b536db93 6267 unsigned int old_flags = dev->flags;
dad9b335 6268 int err;
4417da66 6269
991fb3f7 6270 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6271 if (err < 0)
dad9b335 6272 return err;
4417da66
PM
6273 if (dev->flags != old_flags)
6274 dev_set_rx_mode(dev);
dad9b335 6275 return err;
4417da66 6276}
d1b19dff 6277EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6278
991fb3f7 6279static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6280{
991fb3f7 6281 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6282
24023451
PM
6283 ASSERT_RTNL();
6284
1da177e4 6285 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6286 dev->allmulti += inc;
6287 if (dev->allmulti == 0) {
6288 /*
6289 * Avoid overflow.
6290 * If inc causes overflow, untouch allmulti and return error.
6291 */
6292 if (inc < 0)
6293 dev->flags &= ~IFF_ALLMULTI;
6294 else {
6295 dev->allmulti -= inc;
7b6cd1ce
JP
6296 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6297 dev->name);
dad9b335
WC
6298 return -EOVERFLOW;
6299 }
6300 }
24023451 6301 if (dev->flags ^ old_flags) {
b6c40d68 6302 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6303 dev_set_rx_mode(dev);
991fb3f7
ND
6304 if (notify)
6305 __dev_notify_flags(dev, old_flags,
6306 dev->gflags ^ old_gflags);
24023451 6307 }
dad9b335 6308 return 0;
4417da66 6309}
991fb3f7
ND
6310
6311/**
6312 * dev_set_allmulti - update allmulti count on a device
6313 * @dev: device
6314 * @inc: modifier
6315 *
6316 * Add or remove reception of all multicast frames to a device. While the
6317 * count in the device remains above zero the interface remains listening
6318 * to all interfaces. Once it hits zero the device reverts back to normal
6319 * filtering operation. A negative @inc value is used to drop the counter
6320 * when releasing a resource needing all multicasts.
6321 * Return 0 if successful or a negative errno code on error.
6322 */
6323
6324int dev_set_allmulti(struct net_device *dev, int inc)
6325{
6326 return __dev_set_allmulti(dev, inc, true);
6327}
d1b19dff 6328EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6329
6330/*
6331 * Upload unicast and multicast address lists to device and
6332 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6333 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6334 * are present.
6335 */
6336void __dev_set_rx_mode(struct net_device *dev)
6337{
d314774c
SH
6338 const struct net_device_ops *ops = dev->netdev_ops;
6339
4417da66
PM
6340 /* dev_open will call this function so the list will stay sane. */
6341 if (!(dev->flags&IFF_UP))
6342 return;
6343
6344 if (!netif_device_present(dev))
40b77c94 6345 return;
4417da66 6346
01789349 6347 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6348 /* Unicast addresses changes may only happen under the rtnl,
6349 * therefore calling __dev_set_promiscuity here is safe.
6350 */
32e7bfc4 6351 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6352 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6353 dev->uc_promisc = true;
32e7bfc4 6354 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6355 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6356 dev->uc_promisc = false;
4417da66 6357 }
4417da66 6358 }
01789349
JP
6359
6360 if (ops->ndo_set_rx_mode)
6361 ops->ndo_set_rx_mode(dev);
4417da66
PM
6362}
6363
6364void dev_set_rx_mode(struct net_device *dev)
6365{
b9e40857 6366 netif_addr_lock_bh(dev);
4417da66 6367 __dev_set_rx_mode(dev);
b9e40857 6368 netif_addr_unlock_bh(dev);
1da177e4
LT
6369}
6370
f0db275a
SH
6371/**
6372 * dev_get_flags - get flags reported to userspace
6373 * @dev: device
6374 *
6375 * Get the combination of flag bits exported through APIs to userspace.
6376 */
95c96174 6377unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6378{
95c96174 6379 unsigned int flags;
1da177e4
LT
6380
6381 flags = (dev->flags & ~(IFF_PROMISC |
6382 IFF_ALLMULTI |
b00055aa
SR
6383 IFF_RUNNING |
6384 IFF_LOWER_UP |
6385 IFF_DORMANT)) |
1da177e4
LT
6386 (dev->gflags & (IFF_PROMISC |
6387 IFF_ALLMULTI));
6388
b00055aa
SR
6389 if (netif_running(dev)) {
6390 if (netif_oper_up(dev))
6391 flags |= IFF_RUNNING;
6392 if (netif_carrier_ok(dev))
6393 flags |= IFF_LOWER_UP;
6394 if (netif_dormant(dev))
6395 flags |= IFF_DORMANT;
6396 }
1da177e4
LT
6397
6398 return flags;
6399}
d1b19dff 6400EXPORT_SYMBOL(dev_get_flags);
1da177e4 6401
bd380811 6402int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6403{
b536db93 6404 unsigned int old_flags = dev->flags;
bd380811 6405 int ret;
1da177e4 6406
24023451
PM
6407 ASSERT_RTNL();
6408
1da177e4
LT
6409 /*
6410 * Set the flags on our device.
6411 */
6412
6413 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6414 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6415 IFF_AUTOMEDIA)) |
6416 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6417 IFF_ALLMULTI));
6418
6419 /*
6420 * Load in the correct multicast list now the flags have changed.
6421 */
6422
b6c40d68
PM
6423 if ((old_flags ^ flags) & IFF_MULTICAST)
6424 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6425
4417da66 6426 dev_set_rx_mode(dev);
1da177e4
LT
6427
6428 /*
6429 * Have we downed the interface. We handle IFF_UP ourselves
6430 * according to user attempts to set it, rather than blindly
6431 * setting it.
6432 */
6433
6434 ret = 0;
d215d10f 6435 if ((old_flags ^ flags) & IFF_UP)
bd380811 6436 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6437
1da177e4 6438 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6439 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6440 unsigned int old_flags = dev->flags;
d1b19dff 6441
1da177e4 6442 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6443
6444 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6445 if (dev->flags != old_flags)
6446 dev_set_rx_mode(dev);
1da177e4
LT
6447 }
6448
6449 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6450 is important. Some (broken) drivers set IFF_PROMISC, when
6451 IFF_ALLMULTI is requested not asking us and not reporting.
6452 */
6453 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6454 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6455
1da177e4 6456 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6457 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6458 }
6459
bd380811
PM
6460 return ret;
6461}
6462
a528c219
ND
6463void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6464 unsigned int gchanges)
bd380811
PM
6465{
6466 unsigned int changes = dev->flags ^ old_flags;
6467
a528c219 6468 if (gchanges)
7f294054 6469 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6470
bd380811
PM
6471 if (changes & IFF_UP) {
6472 if (dev->flags & IFF_UP)
6473 call_netdevice_notifiers(NETDEV_UP, dev);
6474 else
6475 call_netdevice_notifiers(NETDEV_DOWN, dev);
6476 }
6477
6478 if (dev->flags & IFF_UP &&
be9efd36
JP
6479 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6480 struct netdev_notifier_change_info change_info;
6481
6482 change_info.flags_changed = changes;
6483 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6484 &change_info.info);
6485 }
bd380811
PM
6486}
6487
6488/**
6489 * dev_change_flags - change device settings
6490 * @dev: device
6491 * @flags: device state flags
6492 *
6493 * Change settings on device based state flags. The flags are
6494 * in the userspace exported format.
6495 */
b536db93 6496int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6497{
b536db93 6498 int ret;
991fb3f7 6499 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6500
6501 ret = __dev_change_flags(dev, flags);
6502 if (ret < 0)
6503 return ret;
6504
991fb3f7 6505 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6506 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6507 return ret;
6508}
d1b19dff 6509EXPORT_SYMBOL(dev_change_flags);
1da177e4 6510
2315dc91
VF
6511static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6512{
6513 const struct net_device_ops *ops = dev->netdev_ops;
6514
6515 if (ops->ndo_change_mtu)
6516 return ops->ndo_change_mtu(dev, new_mtu);
6517
6518 dev->mtu = new_mtu;
6519 return 0;
6520}
6521
f0db275a
SH
6522/**
6523 * dev_set_mtu - Change maximum transfer unit
6524 * @dev: device
6525 * @new_mtu: new transfer unit
6526 *
6527 * Change the maximum transfer size of the network device.
6528 */
1da177e4
LT
6529int dev_set_mtu(struct net_device *dev, int new_mtu)
6530{
2315dc91 6531 int err, orig_mtu;
1da177e4
LT
6532
6533 if (new_mtu == dev->mtu)
6534 return 0;
6535
61e84623
JW
6536 /* MTU must be positive, and in range */
6537 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6538 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6539 dev->name, new_mtu, dev->min_mtu);
1da177e4 6540 return -EINVAL;
61e84623
JW
6541 }
6542
6543 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6544 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6545 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6546 return -EINVAL;
6547 }
1da177e4
LT
6548
6549 if (!netif_device_present(dev))
6550 return -ENODEV;
6551
1d486bfb
VF
6552 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6553 err = notifier_to_errno(err);
6554 if (err)
6555 return err;
d314774c 6556
2315dc91
VF
6557 orig_mtu = dev->mtu;
6558 err = __dev_set_mtu(dev, new_mtu);
d314774c 6559
2315dc91
VF
6560 if (!err) {
6561 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6562 err = notifier_to_errno(err);
6563 if (err) {
6564 /* setting mtu back and notifying everyone again,
6565 * so that they have a chance to revert changes.
6566 */
6567 __dev_set_mtu(dev, orig_mtu);
6568 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6569 }
6570 }
1da177e4
LT
6571 return err;
6572}
d1b19dff 6573EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6574
cbda10fa
VD
6575/**
6576 * dev_set_group - Change group this device belongs to
6577 * @dev: device
6578 * @new_group: group this device should belong to
6579 */
6580void dev_set_group(struct net_device *dev, int new_group)
6581{
6582 dev->group = new_group;
6583}
6584EXPORT_SYMBOL(dev_set_group);
6585
f0db275a
SH
6586/**
6587 * dev_set_mac_address - Change Media Access Control Address
6588 * @dev: device
6589 * @sa: new address
6590 *
6591 * Change the hardware (MAC) address of the device
6592 */
1da177e4
LT
6593int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6594{
d314774c 6595 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6596 int err;
6597
d314774c 6598 if (!ops->ndo_set_mac_address)
1da177e4
LT
6599 return -EOPNOTSUPP;
6600 if (sa->sa_family != dev->type)
6601 return -EINVAL;
6602 if (!netif_device_present(dev))
6603 return -ENODEV;
d314774c 6604 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6605 if (err)
6606 return err;
fbdeca2d 6607 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6608 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6609 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6610 return 0;
1da177e4 6611}
d1b19dff 6612EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6613
4bf84c35
JP
6614/**
6615 * dev_change_carrier - Change device carrier
6616 * @dev: device
691b3b7e 6617 * @new_carrier: new value
4bf84c35
JP
6618 *
6619 * Change device carrier
6620 */
6621int dev_change_carrier(struct net_device *dev, bool new_carrier)
6622{
6623 const struct net_device_ops *ops = dev->netdev_ops;
6624
6625 if (!ops->ndo_change_carrier)
6626 return -EOPNOTSUPP;
6627 if (!netif_device_present(dev))
6628 return -ENODEV;
6629 return ops->ndo_change_carrier(dev, new_carrier);
6630}
6631EXPORT_SYMBOL(dev_change_carrier);
6632
66b52b0d
JP
6633/**
6634 * dev_get_phys_port_id - Get device physical port ID
6635 * @dev: device
6636 * @ppid: port ID
6637 *
6638 * Get device physical port ID
6639 */
6640int dev_get_phys_port_id(struct net_device *dev,
02637fce 6641 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6642{
6643 const struct net_device_ops *ops = dev->netdev_ops;
6644
6645 if (!ops->ndo_get_phys_port_id)
6646 return -EOPNOTSUPP;
6647 return ops->ndo_get_phys_port_id(dev, ppid);
6648}
6649EXPORT_SYMBOL(dev_get_phys_port_id);
6650
db24a904
DA
6651/**
6652 * dev_get_phys_port_name - Get device physical port name
6653 * @dev: device
6654 * @name: port name
ed49e650 6655 * @len: limit of bytes to copy to name
db24a904
DA
6656 *
6657 * Get device physical port name
6658 */
6659int dev_get_phys_port_name(struct net_device *dev,
6660 char *name, size_t len)
6661{
6662 const struct net_device_ops *ops = dev->netdev_ops;
6663
6664 if (!ops->ndo_get_phys_port_name)
6665 return -EOPNOTSUPP;
6666 return ops->ndo_get_phys_port_name(dev, name, len);
6667}
6668EXPORT_SYMBOL(dev_get_phys_port_name);
6669
d746d707
AK
6670/**
6671 * dev_change_proto_down - update protocol port state information
6672 * @dev: device
6673 * @proto_down: new value
6674 *
6675 * This info can be used by switch drivers to set the phys state of the
6676 * port.
6677 */
6678int dev_change_proto_down(struct net_device *dev, bool proto_down)
6679{
6680 const struct net_device_ops *ops = dev->netdev_ops;
6681
6682 if (!ops->ndo_change_proto_down)
6683 return -EOPNOTSUPP;
6684 if (!netif_device_present(dev))
6685 return -ENODEV;
6686 return ops->ndo_change_proto_down(dev, proto_down);
6687}
6688EXPORT_SYMBOL(dev_change_proto_down);
6689
a7862b45
BB
6690/**
6691 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6692 * @dev: device
6693 * @fd: new program fd or negative value to clear
85de8576 6694 * @flags: xdp-related flags
a7862b45
BB
6695 *
6696 * Set or clear a bpf program for a device
6697 */
85de8576 6698int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
a7862b45
BB
6699{
6700 const struct net_device_ops *ops = dev->netdev_ops;
6701 struct bpf_prog *prog = NULL;
85de8576 6702 struct netdev_xdp xdp;
a7862b45
BB
6703 int err;
6704
85de8576
DB
6705 ASSERT_RTNL();
6706
a7862b45
BB
6707 if (!ops->ndo_xdp)
6708 return -EOPNOTSUPP;
6709 if (fd >= 0) {
85de8576
DB
6710 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6711 memset(&xdp, 0, sizeof(xdp));
6712 xdp.command = XDP_QUERY_PROG;
6713
6714 err = ops->ndo_xdp(dev, &xdp);
6715 if (err < 0)
6716 return err;
6717 if (xdp.prog_attached)
6718 return -EBUSY;
6719 }
6720
a7862b45
BB
6721 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6722 if (IS_ERR(prog))
6723 return PTR_ERR(prog);
6724 }
6725
85de8576 6726 memset(&xdp, 0, sizeof(xdp));
a7862b45
BB
6727 xdp.command = XDP_SETUP_PROG;
6728 xdp.prog = prog;
85de8576 6729
a7862b45
BB
6730 err = ops->ndo_xdp(dev, &xdp);
6731 if (err < 0 && prog)
6732 bpf_prog_put(prog);
6733
6734 return err;
6735}
6736EXPORT_SYMBOL(dev_change_xdp_fd);
6737
1da177e4
LT
6738/**
6739 * dev_new_index - allocate an ifindex
c4ea43c5 6740 * @net: the applicable net namespace
1da177e4
LT
6741 *
6742 * Returns a suitable unique value for a new device interface
6743 * number. The caller must hold the rtnl semaphore or the
6744 * dev_base_lock to be sure it remains unique.
6745 */
881d966b 6746static int dev_new_index(struct net *net)
1da177e4 6747{
aa79e66e 6748 int ifindex = net->ifindex;
1da177e4
LT
6749 for (;;) {
6750 if (++ifindex <= 0)
6751 ifindex = 1;
881d966b 6752 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6753 return net->ifindex = ifindex;
1da177e4
LT
6754 }
6755}
6756
1da177e4 6757/* Delayed registration/unregisteration */
3b5b34fd 6758static LIST_HEAD(net_todo_list);
200b916f 6759DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6760
6f05f629 6761static void net_set_todo(struct net_device *dev)
1da177e4 6762{
1da177e4 6763 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6764 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6765}
6766
9b5e383c 6767static void rollback_registered_many(struct list_head *head)
93ee31f1 6768{
e93737b0 6769 struct net_device *dev, *tmp;
5cde2829 6770 LIST_HEAD(close_head);
9b5e383c 6771
93ee31f1
DL
6772 BUG_ON(dev_boot_phase);
6773 ASSERT_RTNL();
6774
e93737b0 6775 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6776 /* Some devices call without registering
e93737b0
KK
6777 * for initialization unwind. Remove those
6778 * devices and proceed with the remaining.
9b5e383c
ED
6779 */
6780 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6781 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6782 dev->name, dev);
93ee31f1 6783
9b5e383c 6784 WARN_ON(1);
e93737b0
KK
6785 list_del(&dev->unreg_list);
6786 continue;
9b5e383c 6787 }
449f4544 6788 dev->dismantle = true;
9b5e383c 6789 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6790 }
93ee31f1 6791
44345724 6792 /* If device is running, close it first. */
5cde2829
EB
6793 list_for_each_entry(dev, head, unreg_list)
6794 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6795 dev_close_many(&close_head, true);
93ee31f1 6796
44345724 6797 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6798 /* And unlink it from device chain. */
6799 unlist_netdevice(dev);
93ee31f1 6800
9b5e383c
ED
6801 dev->reg_state = NETREG_UNREGISTERING;
6802 }
41852497 6803 flush_all_backlogs();
93ee31f1
DL
6804
6805 synchronize_net();
6806
9b5e383c 6807 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6808 struct sk_buff *skb = NULL;
6809
9b5e383c
ED
6810 /* Shutdown queueing discipline. */
6811 dev_shutdown(dev);
93ee31f1
DL
6812
6813
9b5e383c
ED
6814 /* Notify protocols, that we are about to destroy
6815 this device. They should clean all the things.
6816 */
6817 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6818
395eea6c
MB
6819 if (!dev->rtnl_link_ops ||
6820 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6821 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6822 GFP_KERNEL);
6823
9b5e383c
ED
6824 /*
6825 * Flush the unicast and multicast chains
6826 */
a748ee24 6827 dev_uc_flush(dev);
22bedad3 6828 dev_mc_flush(dev);
93ee31f1 6829
9b5e383c
ED
6830 if (dev->netdev_ops->ndo_uninit)
6831 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6832
395eea6c
MB
6833 if (skb)
6834 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6835
9ff162a8
JP
6836 /* Notifier chain MUST detach us all upper devices. */
6837 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 6838 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 6839
9b5e383c
ED
6840 /* Remove entries from kobject tree */
6841 netdev_unregister_kobject(dev);
024e9679
AD
6842#ifdef CONFIG_XPS
6843 /* Remove XPS queueing entries */
6844 netif_reset_xps_queues_gt(dev, 0);
6845#endif
9b5e383c 6846 }
93ee31f1 6847
850a545b 6848 synchronize_net();
395264d5 6849
a5ee1551 6850 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6851 dev_put(dev);
6852}
6853
6854static void rollback_registered(struct net_device *dev)
6855{
6856 LIST_HEAD(single);
6857
6858 list_add(&dev->unreg_list, &single);
6859 rollback_registered_many(&single);
ceaaec98 6860 list_del(&single);
93ee31f1
DL
6861}
6862
fd867d51
JW
6863static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6864 struct net_device *upper, netdev_features_t features)
6865{
6866 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6867 netdev_features_t feature;
5ba3f7d6 6868 int feature_bit;
fd867d51 6869
5ba3f7d6
JW
6870 for_each_netdev_feature(&upper_disables, feature_bit) {
6871 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6872 if (!(upper->wanted_features & feature)
6873 && (features & feature)) {
6874 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6875 &feature, upper->name);
6876 features &= ~feature;
6877 }
6878 }
6879
6880 return features;
6881}
6882
6883static void netdev_sync_lower_features(struct net_device *upper,
6884 struct net_device *lower, netdev_features_t features)
6885{
6886 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6887 netdev_features_t feature;
5ba3f7d6 6888 int feature_bit;
fd867d51 6889
5ba3f7d6
JW
6890 for_each_netdev_feature(&upper_disables, feature_bit) {
6891 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6892 if (!(features & feature) && (lower->features & feature)) {
6893 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6894 &feature, lower->name);
6895 lower->wanted_features &= ~feature;
6896 netdev_update_features(lower);
6897
6898 if (unlikely(lower->features & feature))
6899 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6900 &feature, lower->name);
6901 }
6902 }
6903}
6904
c8f44aff
MM
6905static netdev_features_t netdev_fix_features(struct net_device *dev,
6906 netdev_features_t features)
b63365a2 6907{
57422dc5
MM
6908 /* Fix illegal checksum combinations */
6909 if ((features & NETIF_F_HW_CSUM) &&
6910 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6911 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6912 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6913 }
6914
b63365a2 6915 /* TSO requires that SG is present as well. */
ea2d3688 6916 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6917 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6918 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6919 }
6920
ec5f0615
PS
6921 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6922 !(features & NETIF_F_IP_CSUM)) {
6923 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6924 features &= ~NETIF_F_TSO;
6925 features &= ~NETIF_F_TSO_ECN;
6926 }
6927
6928 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6929 !(features & NETIF_F_IPV6_CSUM)) {
6930 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6931 features &= ~NETIF_F_TSO6;
6932 }
6933
b1dc497b
AD
6934 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6935 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6936 features &= ~NETIF_F_TSO_MANGLEID;
6937
31d8b9e0
BH
6938 /* TSO ECN requires that TSO is present as well. */
6939 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6940 features &= ~NETIF_F_TSO_ECN;
6941
212b573f
MM
6942 /* Software GSO depends on SG. */
6943 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6944 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6945 features &= ~NETIF_F_GSO;
6946 }
6947
acd1130e 6948 /* UFO needs SG and checksumming */
b63365a2 6949 if (features & NETIF_F_UFO) {
79032644 6950 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6951 if (!(features & NETIF_F_HW_CSUM) &&
6952 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6953 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6954 netdev_dbg(dev,
acd1130e 6955 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6956 features &= ~NETIF_F_UFO;
6957 }
6958
6959 if (!(features & NETIF_F_SG)) {
6f404e44 6960 netdev_dbg(dev,
acd1130e 6961 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6962 features &= ~NETIF_F_UFO;
6963 }
6964 }
6965
802ab55a
AD
6966 /* GSO partial features require GSO partial be set */
6967 if ((features & dev->gso_partial_features) &&
6968 !(features & NETIF_F_GSO_PARTIAL)) {
6969 netdev_dbg(dev,
6970 "Dropping partially supported GSO features since no GSO partial.\n");
6971 features &= ~dev->gso_partial_features;
6972 }
6973
d0290214
JP
6974#ifdef CONFIG_NET_RX_BUSY_POLL
6975 if (dev->netdev_ops->ndo_busy_poll)
6976 features |= NETIF_F_BUSY_POLL;
6977 else
6978#endif
6979 features &= ~NETIF_F_BUSY_POLL;
6980
b63365a2
HX
6981 return features;
6982}
b63365a2 6983
6cb6a27c 6984int __netdev_update_features(struct net_device *dev)
5455c699 6985{
fd867d51 6986 struct net_device *upper, *lower;
c8f44aff 6987 netdev_features_t features;
fd867d51 6988 struct list_head *iter;
e7868a85 6989 int err = -1;
5455c699 6990
87267485
MM
6991 ASSERT_RTNL();
6992
5455c699
MM
6993 features = netdev_get_wanted_features(dev);
6994
6995 if (dev->netdev_ops->ndo_fix_features)
6996 features = dev->netdev_ops->ndo_fix_features(dev, features);
6997
6998 /* driver might be less strict about feature dependencies */
6999 features = netdev_fix_features(dev, features);
7000
fd867d51
JW
7001 /* some features can't be enabled if they're off an an upper device */
7002 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7003 features = netdev_sync_upper_features(dev, upper, features);
7004
5455c699 7005 if (dev->features == features)
e7868a85 7006 goto sync_lower;
5455c699 7007
c8f44aff
MM
7008 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7009 &dev->features, &features);
5455c699
MM
7010
7011 if (dev->netdev_ops->ndo_set_features)
7012 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7013 else
7014 err = 0;
5455c699 7015
6cb6a27c 7016 if (unlikely(err < 0)) {
5455c699 7017 netdev_err(dev,
c8f44aff
MM
7018 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7019 err, &features, &dev->features);
17b85d29
NA
7020 /* return non-0 since some features might have changed and
7021 * it's better to fire a spurious notification than miss it
7022 */
7023 return -1;
6cb6a27c
MM
7024 }
7025
e7868a85 7026sync_lower:
fd867d51
JW
7027 /* some features must be disabled on lower devices when disabled
7028 * on an upper device (think: bonding master or bridge)
7029 */
7030 netdev_for_each_lower_dev(dev, lower, iter)
7031 netdev_sync_lower_features(dev, lower, features);
7032
6cb6a27c
MM
7033 if (!err)
7034 dev->features = features;
7035
e7868a85 7036 return err < 0 ? 0 : 1;
6cb6a27c
MM
7037}
7038
afe12cc8
MM
7039/**
7040 * netdev_update_features - recalculate device features
7041 * @dev: the device to check
7042 *
7043 * Recalculate dev->features set and send notifications if it
7044 * has changed. Should be called after driver or hardware dependent
7045 * conditions might have changed that influence the features.
7046 */
6cb6a27c
MM
7047void netdev_update_features(struct net_device *dev)
7048{
7049 if (__netdev_update_features(dev))
7050 netdev_features_change(dev);
5455c699
MM
7051}
7052EXPORT_SYMBOL(netdev_update_features);
7053
afe12cc8
MM
7054/**
7055 * netdev_change_features - recalculate device features
7056 * @dev: the device to check
7057 *
7058 * Recalculate dev->features set and send notifications even
7059 * if they have not changed. Should be called instead of
7060 * netdev_update_features() if also dev->vlan_features might
7061 * have changed to allow the changes to be propagated to stacked
7062 * VLAN devices.
7063 */
7064void netdev_change_features(struct net_device *dev)
7065{
7066 __netdev_update_features(dev);
7067 netdev_features_change(dev);
7068}
7069EXPORT_SYMBOL(netdev_change_features);
7070
fc4a7489
PM
7071/**
7072 * netif_stacked_transfer_operstate - transfer operstate
7073 * @rootdev: the root or lower level device to transfer state from
7074 * @dev: the device to transfer operstate to
7075 *
7076 * Transfer operational state from root to device. This is normally
7077 * called when a stacking relationship exists between the root
7078 * device and the device(a leaf device).
7079 */
7080void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7081 struct net_device *dev)
7082{
7083 if (rootdev->operstate == IF_OPER_DORMANT)
7084 netif_dormant_on(dev);
7085 else
7086 netif_dormant_off(dev);
7087
7088 if (netif_carrier_ok(rootdev)) {
7089 if (!netif_carrier_ok(dev))
7090 netif_carrier_on(dev);
7091 } else {
7092 if (netif_carrier_ok(dev))
7093 netif_carrier_off(dev);
7094 }
7095}
7096EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7097
a953be53 7098#ifdef CONFIG_SYSFS
1b4bf461
ED
7099static int netif_alloc_rx_queues(struct net_device *dev)
7100{
1b4bf461 7101 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7102 struct netdev_rx_queue *rx;
10595902 7103 size_t sz = count * sizeof(*rx);
1b4bf461 7104
bd25fa7b 7105 BUG_ON(count < 1);
1b4bf461 7106
10595902
PG
7107 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7108 if (!rx) {
7109 rx = vzalloc(sz);
7110 if (!rx)
7111 return -ENOMEM;
7112 }
bd25fa7b
TH
7113 dev->_rx = rx;
7114
bd25fa7b 7115 for (i = 0; i < count; i++)
fe822240 7116 rx[i].dev = dev;
1b4bf461
ED
7117 return 0;
7118}
bf264145 7119#endif
1b4bf461 7120
aa942104
CG
7121static void netdev_init_one_queue(struct net_device *dev,
7122 struct netdev_queue *queue, void *_unused)
7123{
7124 /* Initialize queue lock */
7125 spin_lock_init(&queue->_xmit_lock);
7126 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7127 queue->xmit_lock_owner = -1;
b236da69 7128 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7129 queue->dev = dev;
114cf580
TH
7130#ifdef CONFIG_BQL
7131 dql_init(&queue->dql, HZ);
7132#endif
aa942104
CG
7133}
7134
60877a32
ED
7135static void netif_free_tx_queues(struct net_device *dev)
7136{
4cb28970 7137 kvfree(dev->_tx);
60877a32
ED
7138}
7139
e6484930
TH
7140static int netif_alloc_netdev_queues(struct net_device *dev)
7141{
7142 unsigned int count = dev->num_tx_queues;
7143 struct netdev_queue *tx;
60877a32 7144 size_t sz = count * sizeof(*tx);
e6484930 7145
d339727c
ED
7146 if (count < 1 || count > 0xffff)
7147 return -EINVAL;
62b5942a 7148
60877a32
ED
7149 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7150 if (!tx) {
7151 tx = vzalloc(sz);
7152 if (!tx)
7153 return -ENOMEM;
7154 }
e6484930 7155 dev->_tx = tx;
1d24eb48 7156
e6484930
TH
7157 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7158 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7159
7160 return 0;
e6484930
TH
7161}
7162
a2029240
DV
7163void netif_tx_stop_all_queues(struct net_device *dev)
7164{
7165 unsigned int i;
7166
7167 for (i = 0; i < dev->num_tx_queues; i++) {
7168 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7169 netif_tx_stop_queue(txq);
7170 }
7171}
7172EXPORT_SYMBOL(netif_tx_stop_all_queues);
7173
1da177e4
LT
7174/**
7175 * register_netdevice - register a network device
7176 * @dev: device to register
7177 *
7178 * Take a completed network device structure and add it to the kernel
7179 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7180 * chain. 0 is returned on success. A negative errno code is returned
7181 * on a failure to set up the device, or if the name is a duplicate.
7182 *
7183 * Callers must hold the rtnl semaphore. You may want
7184 * register_netdev() instead of this.
7185 *
7186 * BUGS:
7187 * The locking appears insufficient to guarantee two parallel registers
7188 * will not get the same name.
7189 */
7190
7191int register_netdevice(struct net_device *dev)
7192{
1da177e4 7193 int ret;
d314774c 7194 struct net *net = dev_net(dev);
1da177e4
LT
7195
7196 BUG_ON(dev_boot_phase);
7197 ASSERT_RTNL();
7198
b17a7c17
SH
7199 might_sleep();
7200
1da177e4
LT
7201 /* When net_device's are persistent, this will be fatal. */
7202 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7203 BUG_ON(!net);
1da177e4 7204
f1f28aa3 7205 spin_lock_init(&dev->addr_list_lock);
cf508b12 7206 netdev_set_addr_lockdep_class(dev);
1da177e4 7207
828de4f6 7208 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7209 if (ret < 0)
7210 goto out;
7211
1da177e4 7212 /* Init, if this function is available */
d314774c
SH
7213 if (dev->netdev_ops->ndo_init) {
7214 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7215 if (ret) {
7216 if (ret > 0)
7217 ret = -EIO;
90833aa4 7218 goto out;
1da177e4
LT
7219 }
7220 }
4ec93edb 7221
f646968f
PM
7222 if (((dev->hw_features | dev->features) &
7223 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7224 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7225 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7226 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7227 ret = -EINVAL;
7228 goto err_uninit;
7229 }
7230
9c7dafbf
PE
7231 ret = -EBUSY;
7232 if (!dev->ifindex)
7233 dev->ifindex = dev_new_index(net);
7234 else if (__dev_get_by_index(net, dev->ifindex))
7235 goto err_uninit;
7236
5455c699
MM
7237 /* Transfer changeable features to wanted_features and enable
7238 * software offloads (GSO and GRO).
7239 */
7240 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7241 dev->features |= NETIF_F_SOFT_FEATURES;
7242 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7243
cbc53e08 7244 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7245 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7246
7f348a60
AD
7247 /* If IPv4 TCP segmentation offload is supported we should also
7248 * allow the device to enable segmenting the frame with the option
7249 * of ignoring a static IP ID value. This doesn't enable the
7250 * feature itself but allows the user to enable it later.
7251 */
cbc53e08
AD
7252 if (dev->hw_features & NETIF_F_TSO)
7253 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7254 if (dev->vlan_features & NETIF_F_TSO)
7255 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7256 if (dev->mpls_features & NETIF_F_TSO)
7257 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7258 if (dev->hw_enc_features & NETIF_F_TSO)
7259 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7260
1180e7d6 7261 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7262 */
1180e7d6 7263 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7264
ee579677
PS
7265 /* Make NETIF_F_SG inheritable to tunnel devices.
7266 */
802ab55a 7267 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7268
0d89d203
SH
7269 /* Make NETIF_F_SG inheritable to MPLS.
7270 */
7271 dev->mpls_features |= NETIF_F_SG;
7272
7ffbe3fd
JB
7273 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7274 ret = notifier_to_errno(ret);
7275 if (ret)
7276 goto err_uninit;
7277
8b41d188 7278 ret = netdev_register_kobject(dev);
b17a7c17 7279 if (ret)
7ce1b0ed 7280 goto err_uninit;
b17a7c17
SH
7281 dev->reg_state = NETREG_REGISTERED;
7282
6cb6a27c 7283 __netdev_update_features(dev);
8e9b59b2 7284
1da177e4
LT
7285 /*
7286 * Default initial state at registry is that the
7287 * device is present.
7288 */
7289
7290 set_bit(__LINK_STATE_PRESENT, &dev->state);
7291
8f4cccbb
BH
7292 linkwatch_init_dev(dev);
7293
1da177e4 7294 dev_init_scheduler(dev);
1da177e4 7295 dev_hold(dev);
ce286d32 7296 list_netdevice(dev);
7bf23575 7297 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7298
948b337e
JP
7299 /* If the device has permanent device address, driver should
7300 * set dev_addr and also addr_assign_type should be set to
7301 * NET_ADDR_PERM (default value).
7302 */
7303 if (dev->addr_assign_type == NET_ADDR_PERM)
7304 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7305
1da177e4 7306 /* Notify protocols, that a new device appeared. */
056925ab 7307 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7308 ret = notifier_to_errno(ret);
93ee31f1
DL
7309 if (ret) {
7310 rollback_registered(dev);
7311 dev->reg_state = NETREG_UNREGISTERED;
7312 }
d90a909e
EB
7313 /*
7314 * Prevent userspace races by waiting until the network
7315 * device is fully setup before sending notifications.
7316 */
a2835763
PM
7317 if (!dev->rtnl_link_ops ||
7318 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7319 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7320
7321out:
7322 return ret;
7ce1b0ed
HX
7323
7324err_uninit:
d314774c
SH
7325 if (dev->netdev_ops->ndo_uninit)
7326 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7327 goto out;
1da177e4 7328}
d1b19dff 7329EXPORT_SYMBOL(register_netdevice);
1da177e4 7330
937f1ba5
BH
7331/**
7332 * init_dummy_netdev - init a dummy network device for NAPI
7333 * @dev: device to init
7334 *
7335 * This takes a network device structure and initialize the minimum
7336 * amount of fields so it can be used to schedule NAPI polls without
7337 * registering a full blown interface. This is to be used by drivers
7338 * that need to tie several hardware interfaces to a single NAPI
7339 * poll scheduler due to HW limitations.
7340 */
7341int init_dummy_netdev(struct net_device *dev)
7342{
7343 /* Clear everything. Note we don't initialize spinlocks
7344 * are they aren't supposed to be taken by any of the
7345 * NAPI code and this dummy netdev is supposed to be
7346 * only ever used for NAPI polls
7347 */
7348 memset(dev, 0, sizeof(struct net_device));
7349
7350 /* make sure we BUG if trying to hit standard
7351 * register/unregister code path
7352 */
7353 dev->reg_state = NETREG_DUMMY;
7354
937f1ba5
BH
7355 /* NAPI wants this */
7356 INIT_LIST_HEAD(&dev->napi_list);
7357
7358 /* a dummy interface is started by default */
7359 set_bit(__LINK_STATE_PRESENT, &dev->state);
7360 set_bit(__LINK_STATE_START, &dev->state);
7361
29b4433d
ED
7362 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7363 * because users of this 'device' dont need to change
7364 * its refcount.
7365 */
7366
937f1ba5
BH
7367 return 0;
7368}
7369EXPORT_SYMBOL_GPL(init_dummy_netdev);
7370
7371
1da177e4
LT
7372/**
7373 * register_netdev - register a network device
7374 * @dev: device to register
7375 *
7376 * Take a completed network device structure and add it to the kernel
7377 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7378 * chain. 0 is returned on success. A negative errno code is returned
7379 * on a failure to set up the device, or if the name is a duplicate.
7380 *
38b4da38 7381 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7382 * and expands the device name if you passed a format string to
7383 * alloc_netdev.
7384 */
7385int register_netdev(struct net_device *dev)
7386{
7387 int err;
7388
7389 rtnl_lock();
1da177e4 7390 err = register_netdevice(dev);
1da177e4
LT
7391 rtnl_unlock();
7392 return err;
7393}
7394EXPORT_SYMBOL(register_netdev);
7395
29b4433d
ED
7396int netdev_refcnt_read(const struct net_device *dev)
7397{
7398 int i, refcnt = 0;
7399
7400 for_each_possible_cpu(i)
7401 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7402 return refcnt;
7403}
7404EXPORT_SYMBOL(netdev_refcnt_read);
7405
2c53040f 7406/**
1da177e4 7407 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7408 * @dev: target net_device
1da177e4
LT
7409 *
7410 * This is called when unregistering network devices.
7411 *
7412 * Any protocol or device that holds a reference should register
7413 * for netdevice notification, and cleanup and put back the
7414 * reference if they receive an UNREGISTER event.
7415 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7416 * call dev_put.
1da177e4
LT
7417 */
7418static void netdev_wait_allrefs(struct net_device *dev)
7419{
7420 unsigned long rebroadcast_time, warning_time;
29b4433d 7421 int refcnt;
1da177e4 7422
e014debe
ED
7423 linkwatch_forget_dev(dev);
7424
1da177e4 7425 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7426 refcnt = netdev_refcnt_read(dev);
7427
7428 while (refcnt != 0) {
1da177e4 7429 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7430 rtnl_lock();
1da177e4
LT
7431
7432 /* Rebroadcast unregister notification */
056925ab 7433 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7434
748e2d93 7435 __rtnl_unlock();
0115e8e3 7436 rcu_barrier();
748e2d93
ED
7437 rtnl_lock();
7438
0115e8e3 7439 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7440 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7441 &dev->state)) {
7442 /* We must not have linkwatch events
7443 * pending on unregister. If this
7444 * happens, we simply run the queue
7445 * unscheduled, resulting in a noop
7446 * for this device.
7447 */
7448 linkwatch_run_queue();
7449 }
7450
6756ae4b 7451 __rtnl_unlock();
1da177e4
LT
7452
7453 rebroadcast_time = jiffies;
7454 }
7455
7456 msleep(250);
7457
29b4433d
ED
7458 refcnt = netdev_refcnt_read(dev);
7459
1da177e4 7460 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7461 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7462 dev->name, refcnt);
1da177e4
LT
7463 warning_time = jiffies;
7464 }
7465 }
7466}
7467
7468/* The sequence is:
7469 *
7470 * rtnl_lock();
7471 * ...
7472 * register_netdevice(x1);
7473 * register_netdevice(x2);
7474 * ...
7475 * unregister_netdevice(y1);
7476 * unregister_netdevice(y2);
7477 * ...
7478 * rtnl_unlock();
7479 * free_netdev(y1);
7480 * free_netdev(y2);
7481 *
58ec3b4d 7482 * We are invoked by rtnl_unlock().
1da177e4 7483 * This allows us to deal with problems:
b17a7c17 7484 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7485 * without deadlocking with linkwatch via keventd.
7486 * 2) Since we run with the RTNL semaphore not held, we can sleep
7487 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7488 *
7489 * We must not return until all unregister events added during
7490 * the interval the lock was held have been completed.
1da177e4 7491 */
1da177e4
LT
7492void netdev_run_todo(void)
7493{
626ab0e6 7494 struct list_head list;
1da177e4 7495
1da177e4 7496 /* Snapshot list, allow later requests */
626ab0e6 7497 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7498
7499 __rtnl_unlock();
626ab0e6 7500
0115e8e3
ED
7501
7502 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7503 if (!list_empty(&list))
7504 rcu_barrier();
7505
1da177e4
LT
7506 while (!list_empty(&list)) {
7507 struct net_device *dev
e5e26d75 7508 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7509 list_del(&dev->todo_list);
7510
748e2d93 7511 rtnl_lock();
0115e8e3 7512 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7513 __rtnl_unlock();
0115e8e3 7514
b17a7c17 7515 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7516 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7517 dev->name, dev->reg_state);
7518 dump_stack();
7519 continue;
7520 }
1da177e4 7521
b17a7c17 7522 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7523
b17a7c17 7524 netdev_wait_allrefs(dev);
1da177e4 7525
b17a7c17 7526 /* paranoia */
29b4433d 7527 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7528 BUG_ON(!list_empty(&dev->ptype_all));
7529 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7530 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7531 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7532 WARN_ON(dev->dn_ptr);
1da177e4 7533
b17a7c17
SH
7534 if (dev->destructor)
7535 dev->destructor(dev);
9093bbb2 7536
50624c93
EB
7537 /* Report a network device has been unregistered */
7538 rtnl_lock();
7539 dev_net(dev)->dev_unreg_count--;
7540 __rtnl_unlock();
7541 wake_up(&netdev_unregistering_wq);
7542
9093bbb2
SH
7543 /* Free network device */
7544 kobject_put(&dev->dev.kobj);
1da177e4 7545 }
1da177e4
LT
7546}
7547
9256645a
JW
7548/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7549 * all the same fields in the same order as net_device_stats, with only
7550 * the type differing, but rtnl_link_stats64 may have additional fields
7551 * at the end for newer counters.
3cfde79c 7552 */
77a1abf5
ED
7553void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7554 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7555{
7556#if BITS_PER_LONG == 64
9256645a 7557 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7558 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7559 /* zero out counters that only exist in rtnl_link_stats64 */
7560 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7561 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7562#else
9256645a 7563 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7564 const unsigned long *src = (const unsigned long *)netdev_stats;
7565 u64 *dst = (u64 *)stats64;
7566
9256645a 7567 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7568 for (i = 0; i < n; i++)
7569 dst[i] = src[i];
9256645a
JW
7570 /* zero out counters that only exist in rtnl_link_stats64 */
7571 memset((char *)stats64 + n * sizeof(u64), 0,
7572 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7573#endif
7574}
77a1abf5 7575EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7576
eeda3fd6
SH
7577/**
7578 * dev_get_stats - get network device statistics
7579 * @dev: device to get statistics from
28172739 7580 * @storage: place to store stats
eeda3fd6 7581 *
d7753516
BH
7582 * Get network statistics from device. Return @storage.
7583 * The device driver may provide its own method by setting
7584 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7585 * otherwise the internal statistics structure is used.
eeda3fd6 7586 */
d7753516
BH
7587struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7588 struct rtnl_link_stats64 *storage)
7004bf25 7589{
eeda3fd6
SH
7590 const struct net_device_ops *ops = dev->netdev_ops;
7591
28172739
ED
7592 if (ops->ndo_get_stats64) {
7593 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7594 ops->ndo_get_stats64(dev, storage);
7595 } else if (ops->ndo_get_stats) {
3cfde79c 7596 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7597 } else {
7598 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7599 }
caf586e5 7600 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7601 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7602 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7603 return storage;
c45d286e 7604}
eeda3fd6 7605EXPORT_SYMBOL(dev_get_stats);
c45d286e 7606
24824a09 7607struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7608{
24824a09 7609 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7610
24824a09
ED
7611#ifdef CONFIG_NET_CLS_ACT
7612 if (queue)
7613 return queue;
7614 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7615 if (!queue)
7616 return NULL;
7617 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7618 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7619 queue->qdisc_sleeping = &noop_qdisc;
7620 rcu_assign_pointer(dev->ingress_queue, queue);
7621#endif
7622 return queue;
bb949fbd
DM
7623}
7624
2c60db03
ED
7625static const struct ethtool_ops default_ethtool_ops;
7626
d07d7507
SG
7627void netdev_set_default_ethtool_ops(struct net_device *dev,
7628 const struct ethtool_ops *ops)
7629{
7630 if (dev->ethtool_ops == &default_ethtool_ops)
7631 dev->ethtool_ops = ops;
7632}
7633EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7634
74d332c1
ED
7635void netdev_freemem(struct net_device *dev)
7636{
7637 char *addr = (char *)dev - dev->padded;
7638
4cb28970 7639 kvfree(addr);
74d332c1
ED
7640}
7641
1da177e4 7642/**
36909ea4 7643 * alloc_netdev_mqs - allocate network device
c835a677
TG
7644 * @sizeof_priv: size of private data to allocate space for
7645 * @name: device name format string
7646 * @name_assign_type: origin of device name
7647 * @setup: callback to initialize device
7648 * @txqs: the number of TX subqueues to allocate
7649 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7650 *
7651 * Allocates a struct net_device with private data area for driver use
90e51adf 7652 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7653 * for each queue on the device.
1da177e4 7654 */
36909ea4 7655struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7656 unsigned char name_assign_type,
36909ea4
TH
7657 void (*setup)(struct net_device *),
7658 unsigned int txqs, unsigned int rxqs)
1da177e4 7659{
1da177e4 7660 struct net_device *dev;
7943986c 7661 size_t alloc_size;
1ce8e7b5 7662 struct net_device *p;
1da177e4 7663
b6fe17d6
SH
7664 BUG_ON(strlen(name) >= sizeof(dev->name));
7665
36909ea4 7666 if (txqs < 1) {
7b6cd1ce 7667 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7668 return NULL;
7669 }
7670
a953be53 7671#ifdef CONFIG_SYSFS
36909ea4 7672 if (rxqs < 1) {
7b6cd1ce 7673 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7674 return NULL;
7675 }
7676#endif
7677
fd2ea0a7 7678 alloc_size = sizeof(struct net_device);
d1643d24
AD
7679 if (sizeof_priv) {
7680 /* ensure 32-byte alignment of private area */
1ce8e7b5 7681 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7682 alloc_size += sizeof_priv;
7683 }
7684 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7685 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7686
74d332c1
ED
7687 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7688 if (!p)
7689 p = vzalloc(alloc_size);
62b5942a 7690 if (!p)
1da177e4 7691 return NULL;
1da177e4 7692
1ce8e7b5 7693 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7694 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7695
29b4433d
ED
7696 dev->pcpu_refcnt = alloc_percpu(int);
7697 if (!dev->pcpu_refcnt)
74d332c1 7698 goto free_dev;
ab9c73cc 7699
ab9c73cc 7700 if (dev_addr_init(dev))
29b4433d 7701 goto free_pcpu;
ab9c73cc 7702
22bedad3 7703 dev_mc_init(dev);
a748ee24 7704 dev_uc_init(dev);
ccffad25 7705
c346dca1 7706 dev_net_set(dev, &init_net);
1da177e4 7707
8d3bdbd5 7708 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7709 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7710
8d3bdbd5
DM
7711 INIT_LIST_HEAD(&dev->napi_list);
7712 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7713 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7714 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7715 INIT_LIST_HEAD(&dev->adj_list.upper);
7716 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
7717 INIT_LIST_HEAD(&dev->ptype_all);
7718 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7719#ifdef CONFIG_NET_SCHED
7720 hash_init(dev->qdisc_hash);
7721#endif
02875878 7722 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7723 setup(dev);
7724
a813104d 7725 if (!dev->tx_queue_len) {
f84bb1ea 7726 dev->priv_flags |= IFF_NO_QUEUE;
11597084 7727 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 7728 }
906470c1 7729
36909ea4
TH
7730 dev->num_tx_queues = txqs;
7731 dev->real_num_tx_queues = txqs;
ed9af2e8 7732 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7733 goto free_all;
e8a0464c 7734
a953be53 7735#ifdef CONFIG_SYSFS
36909ea4
TH
7736 dev->num_rx_queues = rxqs;
7737 dev->real_num_rx_queues = rxqs;
fe822240 7738 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7739 goto free_all;
df334545 7740#endif
0a9627f2 7741
1da177e4 7742 strcpy(dev->name, name);
c835a677 7743 dev->name_assign_type = name_assign_type;
cbda10fa 7744 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7745 if (!dev->ethtool_ops)
7746 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7747
7748 nf_hook_ingress_init(dev);
7749
1da177e4 7750 return dev;
ab9c73cc 7751
8d3bdbd5
DM
7752free_all:
7753 free_netdev(dev);
7754 return NULL;
7755
29b4433d
ED
7756free_pcpu:
7757 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7758free_dev:
7759 netdev_freemem(dev);
ab9c73cc 7760 return NULL;
1da177e4 7761}
36909ea4 7762EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7763
7764/**
7765 * free_netdev - free network device
7766 * @dev: device
7767 *
4ec93edb
YH
7768 * This function does the last stage of destroying an allocated device
7769 * interface. The reference to the device object is released.
1da177e4 7770 * If this is the last reference then it will be freed.
93d05d4a 7771 * Must be called in process context.
1da177e4
LT
7772 */
7773void free_netdev(struct net_device *dev)
7774{
d565b0a1
HX
7775 struct napi_struct *p, *n;
7776
93d05d4a 7777 might_sleep();
60877a32 7778 netif_free_tx_queues(dev);
a953be53 7779#ifdef CONFIG_SYSFS
10595902 7780 kvfree(dev->_rx);
fe822240 7781#endif
e8a0464c 7782
33d480ce 7783 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7784
f001fde5
JP
7785 /* Flush device addresses */
7786 dev_addr_flush(dev);
7787
d565b0a1
HX
7788 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7789 netif_napi_del(p);
7790
29b4433d
ED
7791 free_percpu(dev->pcpu_refcnt);
7792 dev->pcpu_refcnt = NULL;
7793
3041a069 7794 /* Compatibility with error handling in drivers */
1da177e4 7795 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7796 netdev_freemem(dev);
1da177e4
LT
7797 return;
7798 }
7799
7800 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7801 dev->reg_state = NETREG_RELEASED;
7802
43cb76d9
GKH
7803 /* will free via device release */
7804 put_device(&dev->dev);
1da177e4 7805}
d1b19dff 7806EXPORT_SYMBOL(free_netdev);
4ec93edb 7807
f0db275a
SH
7808/**
7809 * synchronize_net - Synchronize with packet receive processing
7810 *
7811 * Wait for packets currently being received to be done.
7812 * Does not block later packets from starting.
7813 */
4ec93edb 7814void synchronize_net(void)
1da177e4
LT
7815{
7816 might_sleep();
be3fc413
ED
7817 if (rtnl_is_locked())
7818 synchronize_rcu_expedited();
7819 else
7820 synchronize_rcu();
1da177e4 7821}
d1b19dff 7822EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7823
7824/**
44a0873d 7825 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7826 * @dev: device
44a0873d 7827 * @head: list
6ebfbc06 7828 *
1da177e4 7829 * This function shuts down a device interface and removes it
d59b54b1 7830 * from the kernel tables.
44a0873d 7831 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7832 *
7833 * Callers must hold the rtnl semaphore. You may want
7834 * unregister_netdev() instead of this.
7835 */
7836
44a0873d 7837void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7838{
a6620712
HX
7839 ASSERT_RTNL();
7840
44a0873d 7841 if (head) {
9fdce099 7842 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7843 } else {
7844 rollback_registered(dev);
7845 /* Finish processing unregister after unlock */
7846 net_set_todo(dev);
7847 }
1da177e4 7848}
44a0873d 7849EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7850
9b5e383c
ED
7851/**
7852 * unregister_netdevice_many - unregister many devices
7853 * @head: list of devices
87757a91
ED
7854 *
7855 * Note: As most callers use a stack allocated list_head,
7856 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7857 */
7858void unregister_netdevice_many(struct list_head *head)
7859{
7860 struct net_device *dev;
7861
7862 if (!list_empty(head)) {
7863 rollback_registered_many(head);
7864 list_for_each_entry(dev, head, unreg_list)
7865 net_set_todo(dev);
87757a91 7866 list_del(head);
9b5e383c
ED
7867 }
7868}
63c8099d 7869EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7870
1da177e4
LT
7871/**
7872 * unregister_netdev - remove device from the kernel
7873 * @dev: device
7874 *
7875 * This function shuts down a device interface and removes it
d59b54b1 7876 * from the kernel tables.
1da177e4
LT
7877 *
7878 * This is just a wrapper for unregister_netdevice that takes
7879 * the rtnl semaphore. In general you want to use this and not
7880 * unregister_netdevice.
7881 */
7882void unregister_netdev(struct net_device *dev)
7883{
7884 rtnl_lock();
7885 unregister_netdevice(dev);
7886 rtnl_unlock();
7887}
1da177e4
LT
7888EXPORT_SYMBOL(unregister_netdev);
7889
ce286d32
EB
7890/**
7891 * dev_change_net_namespace - move device to different nethost namespace
7892 * @dev: device
7893 * @net: network namespace
7894 * @pat: If not NULL name pattern to try if the current device name
7895 * is already taken in the destination network namespace.
7896 *
7897 * This function shuts down a device interface and moves it
7898 * to a new network namespace. On success 0 is returned, on
7899 * a failure a netagive errno code is returned.
7900 *
7901 * Callers must hold the rtnl semaphore.
7902 */
7903
7904int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7905{
ce286d32
EB
7906 int err;
7907
7908 ASSERT_RTNL();
7909
7910 /* Don't allow namespace local devices to be moved. */
7911 err = -EINVAL;
7912 if (dev->features & NETIF_F_NETNS_LOCAL)
7913 goto out;
7914
7915 /* Ensure the device has been registrered */
ce286d32
EB
7916 if (dev->reg_state != NETREG_REGISTERED)
7917 goto out;
7918
7919 /* Get out if there is nothing todo */
7920 err = 0;
878628fb 7921 if (net_eq(dev_net(dev), net))
ce286d32
EB
7922 goto out;
7923
7924 /* Pick the destination device name, and ensure
7925 * we can use it in the destination network namespace.
7926 */
7927 err = -EEXIST;
d9031024 7928 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7929 /* We get here if we can't use the current device name */
7930 if (!pat)
7931 goto out;
828de4f6 7932 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7933 goto out;
7934 }
7935
7936 /*
7937 * And now a mini version of register_netdevice unregister_netdevice.
7938 */
7939
7940 /* If device is running close it first. */
9b772652 7941 dev_close(dev);
ce286d32
EB
7942
7943 /* And unlink it from device chain */
7944 err = -ENODEV;
7945 unlist_netdevice(dev);
7946
7947 synchronize_net();
7948
7949 /* Shutdown queueing discipline. */
7950 dev_shutdown(dev);
7951
7952 /* Notify protocols, that we are about to destroy
7953 this device. They should clean all the things.
3b27e105
DL
7954
7955 Note that dev->reg_state stays at NETREG_REGISTERED.
7956 This is wanted because this way 8021q and macvlan know
7957 the device is just moving and can keep their slaves up.
ce286d32
EB
7958 */
7959 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7960 rcu_barrier();
7961 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7962 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7963
7964 /*
7965 * Flush the unicast and multicast chains
7966 */
a748ee24 7967 dev_uc_flush(dev);
22bedad3 7968 dev_mc_flush(dev);
ce286d32 7969
4e66ae2e
SH
7970 /* Send a netdev-removed uevent to the old namespace */
7971 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7972 netdev_adjacent_del_links(dev);
4e66ae2e 7973
ce286d32 7974 /* Actually switch the network namespace */
c346dca1 7975 dev_net_set(dev, net);
ce286d32 7976
ce286d32 7977 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7978 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7979 dev->ifindex = dev_new_index(net);
ce286d32 7980
4e66ae2e
SH
7981 /* Send a netdev-add uevent to the new namespace */
7982 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7983 netdev_adjacent_add_links(dev);
4e66ae2e 7984
8b41d188 7985 /* Fixup kobjects */
a1b3f594 7986 err = device_rename(&dev->dev, dev->name);
8b41d188 7987 WARN_ON(err);
ce286d32
EB
7988
7989 /* Add the device back in the hashes */
7990 list_netdevice(dev);
7991
7992 /* Notify protocols, that a new device appeared. */
7993 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7994
d90a909e
EB
7995 /*
7996 * Prevent userspace races by waiting until the network
7997 * device is fully setup before sending notifications.
7998 */
7f294054 7999 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8000
ce286d32
EB
8001 synchronize_net();
8002 err = 0;
8003out:
8004 return err;
8005}
463d0183 8006EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8007
f0bf90de 8008static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8009{
8010 struct sk_buff **list_skb;
1da177e4 8011 struct sk_buff *skb;
f0bf90de 8012 unsigned int cpu;
1da177e4
LT
8013 struct softnet_data *sd, *oldsd;
8014
1da177e4
LT
8015 local_irq_disable();
8016 cpu = smp_processor_id();
8017 sd = &per_cpu(softnet_data, cpu);
8018 oldsd = &per_cpu(softnet_data, oldcpu);
8019
8020 /* Find end of our completion_queue. */
8021 list_skb = &sd->completion_queue;
8022 while (*list_skb)
8023 list_skb = &(*list_skb)->next;
8024 /* Append completion queue from offline CPU. */
8025 *list_skb = oldsd->completion_queue;
8026 oldsd->completion_queue = NULL;
8027
1da177e4 8028 /* Append output queue from offline CPU. */
a9cbd588
CG
8029 if (oldsd->output_queue) {
8030 *sd->output_queue_tailp = oldsd->output_queue;
8031 sd->output_queue_tailp = oldsd->output_queue_tailp;
8032 oldsd->output_queue = NULL;
8033 oldsd->output_queue_tailp = &oldsd->output_queue;
8034 }
ac64da0b
ED
8035 /* Append NAPI poll list from offline CPU, with one exception :
8036 * process_backlog() must be called by cpu owning percpu backlog.
8037 * We properly handle process_queue & input_pkt_queue later.
8038 */
8039 while (!list_empty(&oldsd->poll_list)) {
8040 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8041 struct napi_struct,
8042 poll_list);
8043
8044 list_del_init(&napi->poll_list);
8045 if (napi->poll == process_backlog)
8046 napi->state = 0;
8047 else
8048 ____napi_schedule(sd, napi);
264524d5 8049 }
1da177e4
LT
8050
8051 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8052 local_irq_enable();
8053
8054 /* Process offline CPU's input_pkt_queue */
76cc8b13 8055 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8056 netif_rx_ni(skb);
76cc8b13 8057 input_queue_head_incr(oldsd);
fec5e652 8058 }
ac64da0b 8059 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8060 netif_rx_ni(skb);
76cc8b13
TH
8061 input_queue_head_incr(oldsd);
8062 }
1da177e4 8063
f0bf90de 8064 return 0;
1da177e4 8065}
1da177e4 8066
7f353bf2 8067/**
b63365a2
HX
8068 * netdev_increment_features - increment feature set by one
8069 * @all: current feature set
8070 * @one: new feature set
8071 * @mask: mask feature set
7f353bf2
HX
8072 *
8073 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8074 * @one to the master device with current feature set @all. Will not
8075 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8076 */
c8f44aff
MM
8077netdev_features_t netdev_increment_features(netdev_features_t all,
8078 netdev_features_t one, netdev_features_t mask)
b63365a2 8079{
c8cd0989 8080 if (mask & NETIF_F_HW_CSUM)
a188222b 8081 mask |= NETIF_F_CSUM_MASK;
1742f183 8082 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8083
a188222b 8084 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8085 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8086
1742f183 8087 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8088 if (all & NETIF_F_HW_CSUM)
8089 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8090
8091 return all;
8092}
b63365a2 8093EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8094
430f03cd 8095static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8096{
8097 int i;
8098 struct hlist_head *hash;
8099
8100 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8101 if (hash != NULL)
8102 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8103 INIT_HLIST_HEAD(&hash[i]);
8104
8105 return hash;
8106}
8107
881d966b 8108/* Initialize per network namespace state */
4665079c 8109static int __net_init netdev_init(struct net *net)
881d966b 8110{
734b6541
RM
8111 if (net != &init_net)
8112 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8113
30d97d35
PE
8114 net->dev_name_head = netdev_create_hash();
8115 if (net->dev_name_head == NULL)
8116 goto err_name;
881d966b 8117
30d97d35
PE
8118 net->dev_index_head = netdev_create_hash();
8119 if (net->dev_index_head == NULL)
8120 goto err_idx;
881d966b
EB
8121
8122 return 0;
30d97d35
PE
8123
8124err_idx:
8125 kfree(net->dev_name_head);
8126err_name:
8127 return -ENOMEM;
881d966b
EB
8128}
8129
f0db275a
SH
8130/**
8131 * netdev_drivername - network driver for the device
8132 * @dev: network device
f0db275a
SH
8133 *
8134 * Determine network driver for device.
8135 */
3019de12 8136const char *netdev_drivername(const struct net_device *dev)
6579e57b 8137{
cf04a4c7
SH
8138 const struct device_driver *driver;
8139 const struct device *parent;
3019de12 8140 const char *empty = "";
6579e57b
AV
8141
8142 parent = dev->dev.parent;
6579e57b 8143 if (!parent)
3019de12 8144 return empty;
6579e57b
AV
8145
8146 driver = parent->driver;
8147 if (driver && driver->name)
3019de12
DM
8148 return driver->name;
8149 return empty;
6579e57b
AV
8150}
8151
6ea754eb
JP
8152static void __netdev_printk(const char *level, const struct net_device *dev,
8153 struct va_format *vaf)
256df2f3 8154{
b004ff49 8155 if (dev && dev->dev.parent) {
6ea754eb
JP
8156 dev_printk_emit(level[1] - '0',
8157 dev->dev.parent,
8158 "%s %s %s%s: %pV",
8159 dev_driver_string(dev->dev.parent),
8160 dev_name(dev->dev.parent),
8161 netdev_name(dev), netdev_reg_state(dev),
8162 vaf);
b004ff49 8163 } else if (dev) {
6ea754eb
JP
8164 printk("%s%s%s: %pV",
8165 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8166 } else {
6ea754eb 8167 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8168 }
256df2f3
JP
8169}
8170
6ea754eb
JP
8171void netdev_printk(const char *level, const struct net_device *dev,
8172 const char *format, ...)
256df2f3
JP
8173{
8174 struct va_format vaf;
8175 va_list args;
256df2f3
JP
8176
8177 va_start(args, format);
8178
8179 vaf.fmt = format;
8180 vaf.va = &args;
8181
6ea754eb 8182 __netdev_printk(level, dev, &vaf);
b004ff49 8183
256df2f3 8184 va_end(args);
256df2f3
JP
8185}
8186EXPORT_SYMBOL(netdev_printk);
8187
8188#define define_netdev_printk_level(func, level) \
6ea754eb 8189void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8190{ \
256df2f3
JP
8191 struct va_format vaf; \
8192 va_list args; \
8193 \
8194 va_start(args, fmt); \
8195 \
8196 vaf.fmt = fmt; \
8197 vaf.va = &args; \
8198 \
6ea754eb 8199 __netdev_printk(level, dev, &vaf); \
b004ff49 8200 \
256df2f3 8201 va_end(args); \
256df2f3
JP
8202} \
8203EXPORT_SYMBOL(func);
8204
8205define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8206define_netdev_printk_level(netdev_alert, KERN_ALERT);
8207define_netdev_printk_level(netdev_crit, KERN_CRIT);
8208define_netdev_printk_level(netdev_err, KERN_ERR);
8209define_netdev_printk_level(netdev_warn, KERN_WARNING);
8210define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8211define_netdev_printk_level(netdev_info, KERN_INFO);
8212
4665079c 8213static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8214{
8215 kfree(net->dev_name_head);
8216 kfree(net->dev_index_head);
8217}
8218
022cbae6 8219static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8220 .init = netdev_init,
8221 .exit = netdev_exit,
8222};
8223
4665079c 8224static void __net_exit default_device_exit(struct net *net)
ce286d32 8225{
e008b5fc 8226 struct net_device *dev, *aux;
ce286d32 8227 /*
e008b5fc 8228 * Push all migratable network devices back to the
ce286d32
EB
8229 * initial network namespace
8230 */
8231 rtnl_lock();
e008b5fc 8232 for_each_netdev_safe(net, dev, aux) {
ce286d32 8233 int err;
aca51397 8234 char fb_name[IFNAMSIZ];
ce286d32
EB
8235
8236 /* Ignore unmoveable devices (i.e. loopback) */
8237 if (dev->features & NETIF_F_NETNS_LOCAL)
8238 continue;
8239
e008b5fc
EB
8240 /* Leave virtual devices for the generic cleanup */
8241 if (dev->rtnl_link_ops)
8242 continue;
d0c082ce 8243
25985edc 8244 /* Push remaining network devices to init_net */
aca51397
PE
8245 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8246 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8247 if (err) {
7b6cd1ce
JP
8248 pr_emerg("%s: failed to move %s to init_net: %d\n",
8249 __func__, dev->name, err);
aca51397 8250 BUG();
ce286d32
EB
8251 }
8252 }
8253 rtnl_unlock();
8254}
8255
50624c93
EB
8256static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8257{
8258 /* Return with the rtnl_lock held when there are no network
8259 * devices unregistering in any network namespace in net_list.
8260 */
8261 struct net *net;
8262 bool unregistering;
ff960a73 8263 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8264
ff960a73 8265 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8266 for (;;) {
50624c93
EB
8267 unregistering = false;
8268 rtnl_lock();
8269 list_for_each_entry(net, net_list, exit_list) {
8270 if (net->dev_unreg_count > 0) {
8271 unregistering = true;
8272 break;
8273 }
8274 }
8275 if (!unregistering)
8276 break;
8277 __rtnl_unlock();
ff960a73
PZ
8278
8279 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8280 }
ff960a73 8281 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8282}
8283
04dc7f6b
EB
8284static void __net_exit default_device_exit_batch(struct list_head *net_list)
8285{
8286 /* At exit all network devices most be removed from a network
b595076a 8287 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8288 * Do this across as many network namespaces as possible to
8289 * improve batching efficiency.
8290 */
8291 struct net_device *dev;
8292 struct net *net;
8293 LIST_HEAD(dev_kill_list);
8294
50624c93
EB
8295 /* To prevent network device cleanup code from dereferencing
8296 * loopback devices or network devices that have been freed
8297 * wait here for all pending unregistrations to complete,
8298 * before unregistring the loopback device and allowing the
8299 * network namespace be freed.
8300 *
8301 * The netdev todo list containing all network devices
8302 * unregistrations that happen in default_device_exit_batch
8303 * will run in the rtnl_unlock() at the end of
8304 * default_device_exit_batch.
8305 */
8306 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8307 list_for_each_entry(net, net_list, exit_list) {
8308 for_each_netdev_reverse(net, dev) {
b0ab2fab 8309 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8310 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8311 else
8312 unregister_netdevice_queue(dev, &dev_kill_list);
8313 }
8314 }
8315 unregister_netdevice_many(&dev_kill_list);
8316 rtnl_unlock();
8317}
8318
022cbae6 8319static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8320 .exit = default_device_exit,
04dc7f6b 8321 .exit_batch = default_device_exit_batch,
ce286d32
EB
8322};
8323
1da177e4
LT
8324/*
8325 * Initialize the DEV module. At boot time this walks the device list and
8326 * unhooks any devices that fail to initialise (normally hardware not
8327 * present) and leaves us with a valid list of present and active devices.
8328 *
8329 */
8330
8331/*
8332 * This is called single threaded during boot, so no need
8333 * to take the rtnl semaphore.
8334 */
8335static int __init net_dev_init(void)
8336{
8337 int i, rc = -ENOMEM;
8338
8339 BUG_ON(!dev_boot_phase);
8340
1da177e4
LT
8341 if (dev_proc_init())
8342 goto out;
8343
8b41d188 8344 if (netdev_kobject_init())
1da177e4
LT
8345 goto out;
8346
8347 INIT_LIST_HEAD(&ptype_all);
82d8a867 8348 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8349 INIT_LIST_HEAD(&ptype_base[i]);
8350
62532da9
VY
8351 INIT_LIST_HEAD(&offload_base);
8352
881d966b
EB
8353 if (register_pernet_subsys(&netdev_net_ops))
8354 goto out;
1da177e4
LT
8355
8356 /*
8357 * Initialise the packet receive queues.
8358 */
8359
6f912042 8360 for_each_possible_cpu(i) {
41852497 8361 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8362 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8363
41852497
ED
8364 INIT_WORK(flush, flush_backlog);
8365
e36fa2f7 8366 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8367 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8368 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8369 sd->output_queue_tailp = &sd->output_queue;
df334545 8370#ifdef CONFIG_RPS
e36fa2f7
ED
8371 sd->csd.func = rps_trigger_softirq;
8372 sd->csd.info = sd;
e36fa2f7 8373 sd->cpu = i;
1e94d72f 8374#endif
0a9627f2 8375
e36fa2f7
ED
8376 sd->backlog.poll = process_backlog;
8377 sd->backlog.weight = weight_p;
1da177e4
LT
8378 }
8379
1da177e4
LT
8380 dev_boot_phase = 0;
8381
505d4f73
EB
8382 /* The loopback device is special if any other network devices
8383 * is present in a network namespace the loopback device must
8384 * be present. Since we now dynamically allocate and free the
8385 * loopback device ensure this invariant is maintained by
8386 * keeping the loopback device as the first device on the
8387 * list of network devices. Ensuring the loopback devices
8388 * is the first device that appears and the last network device
8389 * that disappears.
8390 */
8391 if (register_pernet_device(&loopback_net_ops))
8392 goto out;
8393
8394 if (register_pernet_device(&default_device_ops))
8395 goto out;
8396
962cf36c
CM
8397 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8398 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8399
f0bf90de
SAS
8400 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8401 NULL, dev_cpu_dead);
8402 WARN_ON(rc < 0);
f38a9eb1 8403 dst_subsys_init();
1da177e4
LT
8404 rc = 0;
8405out:
8406 return rc;
8407}
8408
8409subsys_initcall(net_dev_init);