]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/core/dev.c
Merge branch 'for-rc8-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel...
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
11d6011c 82#include <linux/rwsem.h>
1da177e4
LT
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
0187bdfb 92#include <linux/ethtool.h>
1da177e4 93#include <linux/skbuff.h>
a7862b45 94#include <linux/bpf.h>
b5cdae32 95#include <linux/bpf_trace.h>
457c4cbc 96#include <net/net_namespace.h>
1da177e4 97#include <net/sock.h>
02d62e86 98#include <net/busy_poll.h>
1da177e4 99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
b14a9fc4 101#include <net/dsa.h>
1da177e4 102#include <net/dst.h>
fc4099f1 103#include <net/dst_metadata.h>
1da177e4 104#include <net/pkt_sched.h>
87d83093 105#include <net/pkt_cls.h>
1da177e4 106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
caeda9b9 132#include <linux/inetdevice.h>
c445477d 133#include <linux/cpu_rmap.h>
c5905afb 134#include <linux/static_key.h>
af12fa6e 135#include <linux/hashtable.h>
60877a32 136#include <linux/vmalloc.h>
529d0489 137#include <linux/if_macvlan.h>
e7fd2885 138#include <linux/errqueue.h>
3b47d303 139#include <linux/hrtimer.h>
357b6cc5 140#include <linux/netfilter_ingress.h>
40e4e713 141#include <linux/crash_dump.h>
b72b5bf6 142#include <linux/sctp.h>
ae847f40 143#include <net/udp_tunnel.h>
6621dd29 144#include <linux/net_namespace.h>
aaa5d90b 145#include <linux/indirect_call_wrapper.h>
af3836df 146#include <net/devlink.h>
bd869245 147#include <linux/pm_runtime.h>
3744741a 148#include <linux/prandom.h>
1da177e4 149
342709ef
PE
150#include "net-sysfs.h"
151
d565b0a1
HX
152#define MAX_GRO_SKBS 8
153
5d38a079
HX
154/* This should be increased if a protocol with a bigger head is added. */
155#define GRO_MAX_HEAD (MAX_HEADER + 128)
156
1da177e4 157static DEFINE_SPINLOCK(ptype_lock);
62532da9 158static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
62532da9 161static struct list_head offload_base __read_mostly;
1da177e4 162
ae78dbfa 163static int netif_rx_internal(struct sk_buff *skb);
54951194 164static int call_netdevice_notifiers_info(unsigned long val,
54951194 165 struct netdev_notifier_info *info);
26372605
PM
166static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
90b602f8 169static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 170
1da177e4 171/*
7562f876 172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
173 * semaphore.
174 *
c6d14c84 175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
7562f876 178 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
1da177e4 190DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
191EXPORT_SYMBOL(dev_base_lock);
192
6c557001
FW
193static DEFINE_MUTEX(ifalias_mutex);
194
af12fa6e
ET
195/* protects napi_hash addition/deletion and napi_gen_id */
196static DEFINE_SPINLOCK(napi_hash_lock);
197
52bd2d62 198static unsigned int napi_gen_id = NR_CPUS;
6180d9de 199static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 200
11d6011c 201static DECLARE_RWSEM(devnet_rename_sem);
c91f6df2 202
4e985ada
TG
203static inline void dev_base_seq_inc(struct net *net)
204{
643aa9cb 205 while (++net->dev_base_seq == 0)
206 ;
4e985ada
TG
207}
208
881d966b 209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 210{
8387ff25 211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 212
08e9897d 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
214}
215
881d966b 216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 217{
7c28bd0b 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
219}
220
e36fa2f7 221static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
222{
223#ifdef CONFIG_RPS
e36fa2f7 224 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
225#endif
226}
227
e36fa2f7 228static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
229{
230#ifdef CONFIG_RPS
e36fa2f7 231 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
232#endif
233}
234
ff927412
JP
235static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 const char *name)
237{
238 struct netdev_name_node *name_node;
239
240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 if (!name_node)
242 return NULL;
243 INIT_HLIST_NODE(&name_node->hlist);
244 name_node->dev = dev;
245 name_node->name = name;
246 return name_node;
247}
248
249static struct netdev_name_node *
250netdev_name_node_head_alloc(struct net_device *dev)
251{
36fbf1e5
JP
252 struct netdev_name_node *name_node;
253
254 name_node = netdev_name_node_alloc(dev, dev->name);
255 if (!name_node)
256 return NULL;
257 INIT_LIST_HEAD(&name_node->list);
258 return name_node;
ff927412
JP
259}
260
261static void netdev_name_node_free(struct netdev_name_node *name_node)
262{
263 kfree(name_node);
264}
265
266static void netdev_name_node_add(struct net *net,
267 struct netdev_name_node *name_node)
268{
269 hlist_add_head_rcu(&name_node->hlist,
270 dev_name_hash(net, name_node->name));
271}
272
273static void netdev_name_node_del(struct netdev_name_node *name_node)
274{
275 hlist_del_rcu(&name_node->hlist);
276}
277
278static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 const char *name)
280{
281 struct hlist_head *head = dev_name_hash(net, name);
282 struct netdev_name_node *name_node;
283
284 hlist_for_each_entry(name_node, head, hlist)
285 if (!strcmp(name_node->name, name))
286 return name_node;
287 return NULL;
288}
289
290static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 const char *name)
292{
293 struct hlist_head *head = dev_name_hash(net, name);
294 struct netdev_name_node *name_node;
295
296 hlist_for_each_entry_rcu(name_node, head, hlist)
297 if (!strcmp(name_node->name, name))
298 return name_node;
299 return NULL;
300}
301
36fbf1e5
JP
302int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303{
304 struct netdev_name_node *name_node;
305 struct net *net = dev_net(dev);
306
307 name_node = netdev_name_node_lookup(net, name);
308 if (name_node)
309 return -EEXIST;
310 name_node = netdev_name_node_alloc(dev, name);
311 if (!name_node)
312 return -ENOMEM;
313 netdev_name_node_add(net, name_node);
314 /* The node that holds dev->name acts as a head of per-device list. */
315 list_add_tail(&name_node->list, &dev->name_node->list);
316
317 return 0;
318}
319EXPORT_SYMBOL(netdev_name_node_alt_create);
320
321static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322{
323 list_del(&name_node->list);
324 netdev_name_node_del(name_node);
325 kfree(name_node->name);
326 netdev_name_node_free(name_node);
327}
328
329int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330{
331 struct netdev_name_node *name_node;
332 struct net *net = dev_net(dev);
333
334 name_node = netdev_name_node_lookup(net, name);
335 if (!name_node)
336 return -ENOENT;
e08ad805
ED
337 /* lookup might have found our primary name or a name belonging
338 * to another device.
339 */
340 if (name_node == dev->name_node || name_node->dev != dev)
341 return -EINVAL;
342
36fbf1e5
JP
343 __netdev_name_node_alt_destroy(name_node);
344
345 return 0;
346}
347EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348
349static void netdev_name_node_alt_flush(struct net_device *dev)
350{
351 struct netdev_name_node *name_node, *tmp;
352
353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 __netdev_name_node_alt_destroy(name_node);
355}
356
ce286d32 357/* Device list insertion */
53759be9 358static void list_netdevice(struct net_device *dev)
ce286d32 359{
c346dca1 360 struct net *net = dev_net(dev);
ce286d32
EB
361
362 ASSERT_RTNL();
363
364 write_lock_bh(&dev_base_lock);
c6d14c84 365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 366 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
367 hlist_add_head_rcu(&dev->index_hlist,
368 dev_index_hash(net, dev->ifindex));
ce286d32 369 write_unlock_bh(&dev_base_lock);
4e985ada
TG
370
371 dev_base_seq_inc(net);
ce286d32
EB
372}
373
fb699dfd
ED
374/* Device list removal
375 * caller must respect a RCU grace period before freeing/reusing dev
376 */
ce286d32
EB
377static void unlist_netdevice(struct net_device *dev)
378{
379 ASSERT_RTNL();
380
381 /* Unlink dev from the device chain */
382 write_lock_bh(&dev_base_lock);
c6d14c84 383 list_del_rcu(&dev->dev_list);
ff927412 384 netdev_name_node_del(dev->name_node);
fb699dfd 385 hlist_del_rcu(&dev->index_hlist);
ce286d32 386 write_unlock_bh(&dev_base_lock);
4e985ada
TG
387
388 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
389}
390
1da177e4
LT
391/*
392 * Our notifier list
393 */
394
f07d5b94 395static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
396
397/*
398 * Device drivers call our routines to queue packets here. We empty the
399 * queue in the local softnet handler.
400 */
bea3348e 401
9958da05 402DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 403EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 404
1a33e10e
CW
405#ifdef CONFIG_LOCKDEP
406/*
407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408 * according to dev->type
409 */
410static const unsigned short netdev_lock_type[] = {
411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426
427static const char *const netdev_lock_name[] = {
428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443
444static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
845e0ebb 445static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
1a33e10e
CW
446
447static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448{
449 int i;
450
451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 if (netdev_lock_type[i] == dev_type)
453 return i;
454 /* the last key is used by default */
455 return ARRAY_SIZE(netdev_lock_type) - 1;
456}
457
458static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 unsigned short dev_type)
460{
461 int i;
462
463 i = netdev_lock_pos(dev_type);
464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 netdev_lock_name[i]);
466}
845e0ebb
CW
467
468static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469{
470 int i;
471
472 i = netdev_lock_pos(dev->type);
473 lockdep_set_class_and_name(&dev->addr_list_lock,
474 &netdev_addr_lock_key[i],
475 netdev_lock_name[i]);
476}
1a33e10e
CW
477#else
478static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 unsigned short dev_type)
480{
481}
845e0ebb
CW
482
483static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484{
485}
1a33e10e
CW
486#endif
487
1da177e4 488/*******************************************************************************
eb13da1a 489 *
490 * Protocol management and registration routines
491 *
492 *******************************************************************************/
1da177e4 493
1da177e4 494
1da177e4
LT
495/*
496 * Add a protocol ID to the list. Now that the input handler is
497 * smarter we can dispense with all the messy stuff that used to be
498 * here.
499 *
500 * BEWARE!!! Protocol handlers, mangling input packets,
501 * MUST BE last in hash buckets and checking protocol handlers
502 * MUST start from promiscuous ptype_all chain in net_bh.
503 * It is true now, do not change it.
504 * Explanation follows: if protocol handler, mangling packet, will
505 * be the first on list, it is not able to sense, that packet
506 * is cloned and should be copied-on-write, so that it will
507 * change it and subsequent readers will get broken packet.
508 * --ANK (980803)
509 */
510
c07b68e8
ED
511static inline struct list_head *ptype_head(const struct packet_type *pt)
512{
513 if (pt->type == htons(ETH_P_ALL))
7866a621 514 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 515 else
7866a621
SN
516 return pt->dev ? &pt->dev->ptype_specific :
517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
518}
519
1da177e4
LT
520/**
521 * dev_add_pack - add packet handler
522 * @pt: packet type declaration
523 *
524 * Add a protocol handler to the networking stack. The passed &packet_type
525 * is linked into kernel lists and may not be freed until it has been
526 * removed from the kernel lists.
527 *
4ec93edb 528 * This call does not sleep therefore it can not
1da177e4
LT
529 * guarantee all CPU's that are in middle of receiving packets
530 * will see the new packet type (until the next received packet).
531 */
532
533void dev_add_pack(struct packet_type *pt)
534{
c07b68e8 535 struct list_head *head = ptype_head(pt);
1da177e4 536
c07b68e8
ED
537 spin_lock(&ptype_lock);
538 list_add_rcu(&pt->list, head);
539 spin_unlock(&ptype_lock);
1da177e4 540}
d1b19dff 541EXPORT_SYMBOL(dev_add_pack);
1da177e4 542
1da177e4
LT
543/**
544 * __dev_remove_pack - remove packet handler
545 * @pt: packet type declaration
546 *
547 * Remove a protocol handler that was previously added to the kernel
548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
549 * from the kernel lists and can be freed or reused once this function
4ec93edb 550 * returns.
1da177e4
LT
551 *
552 * The packet type might still be in use by receivers
553 * and must not be freed until after all the CPU's have gone
554 * through a quiescent state.
555 */
556void __dev_remove_pack(struct packet_type *pt)
557{
c07b68e8 558 struct list_head *head = ptype_head(pt);
1da177e4
LT
559 struct packet_type *pt1;
560
c07b68e8 561 spin_lock(&ptype_lock);
1da177e4
LT
562
563 list_for_each_entry(pt1, head, list) {
564 if (pt == pt1) {
565 list_del_rcu(&pt->list);
566 goto out;
567 }
568 }
569
7b6cd1ce 570 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 571out:
c07b68e8 572 spin_unlock(&ptype_lock);
1da177e4 573}
d1b19dff
ED
574EXPORT_SYMBOL(__dev_remove_pack);
575
1da177e4
LT
576/**
577 * dev_remove_pack - remove packet handler
578 * @pt: packet type declaration
579 *
580 * Remove a protocol handler that was previously added to the kernel
581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
582 * from the kernel lists and can be freed or reused once this function
583 * returns.
584 *
585 * This call sleeps to guarantee that no CPU is looking at the packet
586 * type after return.
587 */
588void dev_remove_pack(struct packet_type *pt)
589{
590 __dev_remove_pack(pt);
4ec93edb 591
1da177e4
LT
592 synchronize_net();
593}
d1b19dff 594EXPORT_SYMBOL(dev_remove_pack);
1da177e4 595
62532da9
VY
596
597/**
598 * dev_add_offload - register offload handlers
599 * @po: protocol offload declaration
600 *
601 * Add protocol offload handlers to the networking stack. The passed
602 * &proto_offload is linked into kernel lists and may not be freed until
603 * it has been removed from the kernel lists.
604 *
605 * This call does not sleep therefore it can not
606 * guarantee all CPU's that are in middle of receiving packets
607 * will see the new offload handlers (until the next received packet).
608 */
609void dev_add_offload(struct packet_offload *po)
610{
bdef7de4 611 struct packet_offload *elem;
62532da9
VY
612
613 spin_lock(&offload_lock);
bdef7de4
DM
614 list_for_each_entry(elem, &offload_base, list) {
615 if (po->priority < elem->priority)
616 break;
617 }
618 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
619 spin_unlock(&offload_lock);
620}
621EXPORT_SYMBOL(dev_add_offload);
622
623/**
624 * __dev_remove_offload - remove offload handler
625 * @po: packet offload declaration
626 *
627 * Remove a protocol offload handler that was previously added to the
628 * kernel offload handlers by dev_add_offload(). The passed &offload_type
629 * is removed from the kernel lists and can be freed or reused once this
630 * function returns.
631 *
632 * The packet type might still be in use by receivers
633 * and must not be freed until after all the CPU's have gone
634 * through a quiescent state.
635 */
1d143d9f 636static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
637{
638 struct list_head *head = &offload_base;
639 struct packet_offload *po1;
640
c53aa505 641 spin_lock(&offload_lock);
62532da9
VY
642
643 list_for_each_entry(po1, head, list) {
644 if (po == po1) {
645 list_del_rcu(&po->list);
646 goto out;
647 }
648 }
649
650 pr_warn("dev_remove_offload: %p not found\n", po);
651out:
c53aa505 652 spin_unlock(&offload_lock);
62532da9 653}
62532da9
VY
654
655/**
656 * dev_remove_offload - remove packet offload handler
657 * @po: packet offload declaration
658 *
659 * Remove a packet offload handler that was previously added to the kernel
660 * offload handlers by dev_add_offload(). The passed &offload_type is
661 * removed from the kernel lists and can be freed or reused once this
662 * function returns.
663 *
664 * This call sleeps to guarantee that no CPU is looking at the packet
665 * type after return.
666 */
667void dev_remove_offload(struct packet_offload *po)
668{
669 __dev_remove_offload(po);
670
671 synchronize_net();
672}
673EXPORT_SYMBOL(dev_remove_offload);
674
1da177e4 675/******************************************************************************
eb13da1a 676 *
677 * Device Boot-time Settings Routines
678 *
679 ******************************************************************************/
1da177e4
LT
680
681/* Boot time configuration table */
682static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683
684/**
685 * netdev_boot_setup_add - add new setup entry
686 * @name: name of the device
687 * @map: configured settings for the device
688 *
689 * Adds new setup entry to the dev_boot_setup list. The function
690 * returns 0 on error and 1 on success. This is a generic routine to
691 * all netdevices.
692 */
693static int netdev_boot_setup_add(char *name, struct ifmap *map)
694{
695 struct netdev_boot_setup *s;
696 int i;
697
698 s = dev_boot_setup;
699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 702 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
703 memcpy(&s[i].map, map, sizeof(s[i].map));
704 break;
705 }
706 }
707
708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709}
710
711/**
722c9a0c 712 * netdev_boot_setup_check - check boot time settings
713 * @dev: the netdevice
1da177e4 714 *
722c9a0c 715 * Check boot time settings for the device.
716 * The found settings are set for the device to be used
717 * later in the device probing.
718 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
719 */
720int netdev_boot_setup_check(struct net_device *dev)
721{
722 struct netdev_boot_setup *s = dev_boot_setup;
723 int i;
724
725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 727 !strcmp(dev->name, s[i].name)) {
722c9a0c 728 dev->irq = s[i].map.irq;
729 dev->base_addr = s[i].map.base_addr;
730 dev->mem_start = s[i].map.mem_start;
731 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
732 return 1;
733 }
734 }
735 return 0;
736}
d1b19dff 737EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
738
739
740/**
722c9a0c 741 * netdev_boot_base - get address from boot time settings
742 * @prefix: prefix for network device
743 * @unit: id for network device
744 *
745 * Check boot time settings for the base address of device.
746 * The found settings are set for the device to be used
747 * later in the device probing.
748 * Returns 0 if no settings found.
1da177e4
LT
749 */
750unsigned long netdev_boot_base(const char *prefix, int unit)
751{
752 const struct netdev_boot_setup *s = dev_boot_setup;
753 char name[IFNAMSIZ];
754 int i;
755
756 sprintf(name, "%s%d", prefix, unit);
757
758 /*
759 * If device already registered then return base of 1
760 * to indicate not to probe for this interface
761 */
881d966b 762 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
763 return 1;
764
765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 if (!strcmp(name, s[i].name))
767 return s[i].map.base_addr;
768 return 0;
769}
770
771/*
772 * Saves at boot time configured settings for any netdevice.
773 */
774int __init netdev_boot_setup(char *str)
775{
776 int ints[5];
777 struct ifmap map;
778
779 str = get_options(str, ARRAY_SIZE(ints), ints);
780 if (!str || !*str)
781 return 0;
782
783 /* Save settings */
784 memset(&map, 0, sizeof(map));
785 if (ints[0] > 0)
786 map.irq = ints[1];
787 if (ints[0] > 1)
788 map.base_addr = ints[2];
789 if (ints[0] > 2)
790 map.mem_start = ints[3];
791 if (ints[0] > 3)
792 map.mem_end = ints[4];
793
794 /* Add new entry to the list */
795 return netdev_boot_setup_add(str, &map);
796}
797
798__setup("netdev=", netdev_boot_setup);
799
800/*******************************************************************************
eb13da1a 801 *
802 * Device Interface Subroutines
803 *
804 *******************************************************************************/
1da177e4 805
a54acb3a
ND
806/**
807 * dev_get_iflink - get 'iflink' value of a interface
808 * @dev: targeted interface
809 *
810 * Indicates the ifindex the interface is linked to.
811 * Physical interfaces have the same 'ifindex' and 'iflink' values.
812 */
813
814int dev_get_iflink(const struct net_device *dev)
815{
816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 return dev->netdev_ops->ndo_get_iflink(dev);
818
7a66bbc9 819 return dev->ifindex;
a54acb3a
ND
820}
821EXPORT_SYMBOL(dev_get_iflink);
822
fc4099f1
PS
823/**
824 * dev_fill_metadata_dst - Retrieve tunnel egress information.
825 * @dev: targeted interface
826 * @skb: The packet.
827 *
828 * For better visibility of tunnel traffic OVS needs to retrieve
829 * egress tunnel information for a packet. Following API allows
830 * user to get this info.
831 */
832int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833{
834 struct ip_tunnel_info *info;
835
836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
837 return -EINVAL;
838
839 info = skb_tunnel_info_unclone(skb);
840 if (!info)
841 return -ENOMEM;
842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 return -EINVAL;
844
845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846}
847EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848
1da177e4
LT
849/**
850 * __dev_get_by_name - find a device by its name
c4ea43c5 851 * @net: the applicable net namespace
1da177e4
LT
852 * @name: name to find
853 *
854 * Find an interface by name. Must be called under RTNL semaphore
855 * or @dev_base_lock. If the name is found a pointer to the device
856 * is returned. If the name is not found then %NULL is returned. The
857 * reference counters are not incremented so the caller must be
858 * careful with locks.
859 */
860
881d966b 861struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 862{
ff927412 863 struct netdev_name_node *node_name;
1da177e4 864
ff927412
JP
865 node_name = netdev_name_node_lookup(net, name);
866 return node_name ? node_name->dev : NULL;
1da177e4 867}
d1b19dff 868EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 869
72c9528b 870/**
722c9a0c 871 * dev_get_by_name_rcu - find a device by its name
872 * @net: the applicable net namespace
873 * @name: name to find
874 *
875 * Find an interface by name.
876 * If the name is found a pointer to the device is returned.
877 * If the name is not found then %NULL is returned.
878 * The reference counters are not incremented so the caller must be
879 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
880 */
881
882struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883{
ff927412 884 struct netdev_name_node *node_name;
72c9528b 885
ff927412
JP
886 node_name = netdev_name_node_lookup_rcu(net, name);
887 return node_name ? node_name->dev : NULL;
72c9528b
ED
888}
889EXPORT_SYMBOL(dev_get_by_name_rcu);
890
1da177e4
LT
891/**
892 * dev_get_by_name - find a device by its name
c4ea43c5 893 * @net: the applicable net namespace
1da177e4
LT
894 * @name: name to find
895 *
896 * Find an interface by name. This can be called from any
897 * context and does its own locking. The returned handle has
898 * the usage count incremented and the caller must use dev_put() to
899 * release it when it is no longer needed. %NULL is returned if no
900 * matching device is found.
901 */
902
881d966b 903struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
904{
905 struct net_device *dev;
906
72c9528b
ED
907 rcu_read_lock();
908 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
909 if (dev)
910 dev_hold(dev);
72c9528b 911 rcu_read_unlock();
1da177e4
LT
912 return dev;
913}
d1b19dff 914EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
915
916/**
917 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 918 * @net: the applicable net namespace
1da177e4
LT
919 * @ifindex: index of device
920 *
921 * Search for an interface by index. Returns %NULL if the device
922 * is not found or a pointer to the device. The device has not
923 * had its reference counter increased so the caller must be careful
924 * about locking. The caller must hold either the RTNL semaphore
925 * or @dev_base_lock.
926 */
927
881d966b 928struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 929{
0bd8d536
ED
930 struct net_device *dev;
931 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 932
b67bfe0d 933 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
934 if (dev->ifindex == ifindex)
935 return dev;
0bd8d536 936
1da177e4
LT
937 return NULL;
938}
d1b19dff 939EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 940
fb699dfd
ED
941/**
942 * dev_get_by_index_rcu - find a device by its ifindex
943 * @net: the applicable net namespace
944 * @ifindex: index of device
945 *
946 * Search for an interface by index. Returns %NULL if the device
947 * is not found or a pointer to the device. The device has not
948 * had its reference counter increased so the caller must be careful
949 * about locking. The caller must hold RCU lock.
950 */
951
952struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953{
fb699dfd
ED
954 struct net_device *dev;
955 struct hlist_head *head = dev_index_hash(net, ifindex);
956
b67bfe0d 957 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
958 if (dev->ifindex == ifindex)
959 return dev;
960
961 return NULL;
962}
963EXPORT_SYMBOL(dev_get_by_index_rcu);
964
1da177e4
LT
965
966/**
967 * dev_get_by_index - find a device by its ifindex
c4ea43c5 968 * @net: the applicable net namespace
1da177e4
LT
969 * @ifindex: index of device
970 *
971 * Search for an interface by index. Returns NULL if the device
972 * is not found or a pointer to the device. The device returned has
973 * had a reference added and the pointer is safe until the user calls
974 * dev_put to indicate they have finished with it.
975 */
976
881d966b 977struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
978{
979 struct net_device *dev;
980
fb699dfd
ED
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
983 if (dev)
984 dev_hold(dev);
fb699dfd 985 rcu_read_unlock();
1da177e4
LT
986 return dev;
987}
d1b19dff 988EXPORT_SYMBOL(dev_get_by_index);
1da177e4 989
90b602f8
ML
990/**
991 * dev_get_by_napi_id - find a device by napi_id
992 * @napi_id: ID of the NAPI struct
993 *
994 * Search for an interface by NAPI ID. Returns %NULL if the device
995 * is not found or a pointer to the device. The device has not had
996 * its reference counter increased so the caller must be careful
997 * about locking. The caller must hold RCU lock.
998 */
999
1000struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001{
1002 struct napi_struct *napi;
1003
1004 WARN_ON_ONCE(!rcu_read_lock_held());
1005
1006 if (napi_id < MIN_NAPI_ID)
1007 return NULL;
1008
1009 napi = napi_by_id(napi_id);
1010
1011 return napi ? napi->dev : NULL;
1012}
1013EXPORT_SYMBOL(dev_get_by_napi_id);
1014
5dbe7c17
NS
1015/**
1016 * netdev_get_name - get a netdevice name, knowing its ifindex.
1017 * @net: network namespace
1018 * @name: a pointer to the buffer where the name will be stored.
1019 * @ifindex: the ifindex of the interface to get the name from.
5dbe7c17
NS
1020 */
1021int netdev_get_name(struct net *net, char *name, int ifindex)
1022{
1023 struct net_device *dev;
11d6011c 1024 int ret;
5dbe7c17 1025
11d6011c 1026 down_read(&devnet_rename_sem);
5dbe7c17 1027 rcu_read_lock();
11d6011c 1028
5dbe7c17
NS
1029 dev = dev_get_by_index_rcu(net, ifindex);
1030 if (!dev) {
11d6011c
AD
1031 ret = -ENODEV;
1032 goto out;
5dbe7c17
NS
1033 }
1034
1035 strcpy(name, dev->name);
5dbe7c17 1036
11d6011c
AD
1037 ret = 0;
1038out:
1039 rcu_read_unlock();
1040 up_read(&devnet_rename_sem);
1041 return ret;
5dbe7c17
NS
1042}
1043
1da177e4 1044/**
941666c2 1045 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 1046 * @net: the applicable net namespace
1da177e4
LT
1047 * @type: media type of device
1048 * @ha: hardware address
1049 *
1050 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
1051 * is not found or a pointer to the device.
1052 * The caller must hold RCU or RTNL.
941666c2 1053 * The returned device has not had its ref count increased
1da177e4
LT
1054 * and the caller must therefore be careful about locking
1055 *
1da177e4
LT
1056 */
1057
941666c2
ED
1058struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 const char *ha)
1da177e4
LT
1060{
1061 struct net_device *dev;
1062
941666c2 1063 for_each_netdev_rcu(net, dev)
1da177e4
LT
1064 if (dev->type == type &&
1065 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
1066 return dev;
1067
1068 return NULL;
1da177e4 1069}
941666c2 1070EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 1071
881d966b 1072struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 1073{
99fe3c39 1074 struct net_device *dev, *ret = NULL;
4e9cac2b 1075
99fe3c39
ED
1076 rcu_read_lock();
1077 for_each_netdev_rcu(net, dev)
1078 if (dev->type == type) {
1079 dev_hold(dev);
1080 ret = dev;
1081 break;
1082 }
1083 rcu_read_unlock();
1084 return ret;
1da177e4 1085}
1da177e4
LT
1086EXPORT_SYMBOL(dev_getfirstbyhwtype);
1087
1088/**
6c555490 1089 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1090 * @net: the applicable net namespace
1da177e4
LT
1091 * @if_flags: IFF_* values
1092 * @mask: bitmask of bits in if_flags to check
1093 *
1094 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1095 * is not found or a pointer to the device. Must be called inside
6c555490 1096 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1097 */
1098
6c555490
WC
1099struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1100 unsigned short mask)
1da177e4 1101{
7562f876 1102 struct net_device *dev, *ret;
1da177e4 1103
6c555490
WC
1104 ASSERT_RTNL();
1105
7562f876 1106 ret = NULL;
6c555490 1107 for_each_netdev(net, dev) {
1da177e4 1108 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1109 ret = dev;
1da177e4
LT
1110 break;
1111 }
1112 }
7562f876 1113 return ret;
1da177e4 1114}
6c555490 1115EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1116
1117/**
1118 * dev_valid_name - check if name is okay for network device
1119 * @name: name string
1120 *
1121 * Network device names need to be valid file names to
4250b75b 1122 * allow sysfs to work. We also disallow any kind of
c7fa9d18 1123 * whitespace.
1da177e4 1124 */
95f050bf 1125bool dev_valid_name(const char *name)
1da177e4 1126{
c7fa9d18 1127 if (*name == '\0')
95f050bf 1128 return false;
a9d48205 1129 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1130 return false;
c7fa9d18 1131 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1132 return false;
c7fa9d18
DM
1133
1134 while (*name) {
a4176a93 1135 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1136 return false;
c7fa9d18
DM
1137 name++;
1138 }
95f050bf 1139 return true;
1da177e4 1140}
d1b19dff 1141EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1142
1143/**
b267b179
EB
1144 * __dev_alloc_name - allocate a name for a device
1145 * @net: network namespace to allocate the device name in
1da177e4 1146 * @name: name format string
b267b179 1147 * @buf: scratch buffer and result name string
1da177e4
LT
1148 *
1149 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1150 * id. It scans list of devices to build up a free map, then chooses
1151 * the first empty slot. The caller must hold the dev_base or rtnl lock
1152 * while allocating the name and adding the device in order to avoid
1153 * duplicates.
1154 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1155 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1156 */
1157
b267b179 1158static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1159{
1160 int i = 0;
1da177e4
LT
1161 const char *p;
1162 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1163 unsigned long *inuse;
1da177e4
LT
1164 struct net_device *d;
1165
93809105
RV
1166 if (!dev_valid_name(name))
1167 return -EINVAL;
1168
51f299dd 1169 p = strchr(name, '%');
1da177e4
LT
1170 if (p) {
1171 /*
1172 * Verify the string as this thing may have come from
1173 * the user. There must be either one "%d" and no other "%"
1174 * characters.
1175 */
1176 if (p[1] != 'd' || strchr(p + 2, '%'))
1177 return -EINVAL;
1178
1179 /* Use one page as a bit array of possible slots */
cfcabdcc 1180 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1181 if (!inuse)
1182 return -ENOMEM;
1183
881d966b 1184 for_each_netdev(net, d) {
1da177e4
LT
1185 if (!sscanf(d->name, name, &i))
1186 continue;
1187 if (i < 0 || i >= max_netdevices)
1188 continue;
1189
1190 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1191 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1192 if (!strncmp(buf, d->name, IFNAMSIZ))
1193 set_bit(i, inuse);
1194 }
1195
1196 i = find_first_zero_bit(inuse, max_netdevices);
1197 free_page((unsigned long) inuse);
1198 }
1199
6224abda 1200 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1201 if (!__dev_get_by_name(net, buf))
1da177e4 1202 return i;
1da177e4
LT
1203
1204 /* It is possible to run out of possible slots
1205 * when the name is long and there isn't enough space left
1206 * for the digits, or if all bits are used.
1207 */
029b6d14 1208 return -ENFILE;
1da177e4
LT
1209}
1210
2c88b855
RV
1211static int dev_alloc_name_ns(struct net *net,
1212 struct net_device *dev,
1213 const char *name)
1214{
1215 char buf[IFNAMSIZ];
1216 int ret;
1217
c46d7642 1218 BUG_ON(!net);
2c88b855
RV
1219 ret = __dev_alloc_name(net, name, buf);
1220 if (ret >= 0)
1221 strlcpy(dev->name, buf, IFNAMSIZ);
1222 return ret;
1da177e4
LT
1223}
1224
b267b179
EB
1225/**
1226 * dev_alloc_name - allocate a name for a device
1227 * @dev: device
1228 * @name: name format string
1229 *
1230 * Passed a format string - eg "lt%d" it will try and find a suitable
1231 * id. It scans list of devices to build up a free map, then chooses
1232 * the first empty slot. The caller must hold the dev_base or rtnl lock
1233 * while allocating the name and adding the device in order to avoid
1234 * duplicates.
1235 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1236 * Returns the number of the unit assigned or a negative errno code.
1237 */
1238
1239int dev_alloc_name(struct net_device *dev, const char *name)
1240{
c46d7642 1241 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1242}
d1b19dff 1243EXPORT_SYMBOL(dev_alloc_name);
b267b179 1244
bacb7e18
ED
1245static int dev_get_valid_name(struct net *net, struct net_device *dev,
1246 const char *name)
828de4f6 1247{
55a5ec9b
DM
1248 BUG_ON(!net);
1249
1250 if (!dev_valid_name(name))
1251 return -EINVAL;
1252
1253 if (strchr(name, '%'))
1254 return dev_alloc_name_ns(net, dev, name);
1255 else if (__dev_get_by_name(net, name))
1256 return -EEXIST;
1257 else if (dev->name != name)
1258 strlcpy(dev->name, name, IFNAMSIZ);
1259
1260 return 0;
d9031024 1261}
1da177e4
LT
1262
1263/**
1264 * dev_change_name - change name of a device
1265 * @dev: device
1266 * @newname: name (or format string) must be at least IFNAMSIZ
1267 *
1268 * Change name of a device, can pass format strings "eth%d".
1269 * for wildcarding.
1270 */
cf04a4c7 1271int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1272{
238fa362 1273 unsigned char old_assign_type;
fcc5a03a 1274 char oldname[IFNAMSIZ];
1da177e4 1275 int err = 0;
fcc5a03a 1276 int ret;
881d966b 1277 struct net *net;
1da177e4
LT
1278
1279 ASSERT_RTNL();
c346dca1 1280 BUG_ON(!dev_net(dev));
1da177e4 1281
c346dca1 1282 net = dev_net(dev);
8065a779
SWL
1283
1284 /* Some auto-enslaved devices e.g. failover slaves are
1285 * special, as userspace might rename the device after
1286 * the interface had been brought up and running since
1287 * the point kernel initiated auto-enslavement. Allow
1288 * live name change even when these slave devices are
1289 * up and running.
1290 *
1291 * Typically, users of these auto-enslaving devices
1292 * don't actually care about slave name change, as
1293 * they are supposed to operate on master interface
1294 * directly.
1295 */
1296 if (dev->flags & IFF_UP &&
1297 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1298 return -EBUSY;
1299
11d6011c 1300 down_write(&devnet_rename_sem);
c91f6df2
BH
1301
1302 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
11d6011c 1303 up_write(&devnet_rename_sem);
c8d90dca 1304 return 0;
c91f6df2 1305 }
c8d90dca 1306
fcc5a03a
HX
1307 memcpy(oldname, dev->name, IFNAMSIZ);
1308
828de4f6 1309 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1310 if (err < 0) {
11d6011c 1311 up_write(&devnet_rename_sem);
d9031024 1312 return err;
c91f6df2 1313 }
1da177e4 1314
6fe82a39
VF
1315 if (oldname[0] && !strchr(oldname, '%'))
1316 netdev_info(dev, "renamed from %s\n", oldname);
1317
238fa362
TG
1318 old_assign_type = dev->name_assign_type;
1319 dev->name_assign_type = NET_NAME_RENAMED;
1320
fcc5a03a 1321rollback:
a1b3f594
EB
1322 ret = device_rename(&dev->dev, dev->name);
1323 if (ret) {
1324 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1325 dev->name_assign_type = old_assign_type;
11d6011c 1326 up_write(&devnet_rename_sem);
a1b3f594 1327 return ret;
dcc99773 1328 }
7f988eab 1329
11d6011c 1330 up_write(&devnet_rename_sem);
c91f6df2 1331
5bb025fa
VF
1332 netdev_adjacent_rename_links(dev, oldname);
1333
7f988eab 1334 write_lock_bh(&dev_base_lock);
ff927412 1335 netdev_name_node_del(dev->name_node);
72c9528b
ED
1336 write_unlock_bh(&dev_base_lock);
1337
1338 synchronize_rcu();
1339
1340 write_lock_bh(&dev_base_lock);
ff927412 1341 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1342 write_unlock_bh(&dev_base_lock);
1343
056925ab 1344 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1345 ret = notifier_to_errno(ret);
1346
1347 if (ret) {
91e9c07b
ED
1348 /* err >= 0 after dev_alloc_name() or stores the first errno */
1349 if (err >= 0) {
fcc5a03a 1350 err = ret;
11d6011c 1351 down_write(&devnet_rename_sem);
fcc5a03a 1352 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1353 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1354 dev->name_assign_type = old_assign_type;
1355 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1356 goto rollback;
91e9c07b 1357 } else {
7b6cd1ce 1358 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1359 dev->name, ret);
fcc5a03a
HX
1360 }
1361 }
1da177e4
LT
1362
1363 return err;
1364}
1365
0b815a1a
SH
1366/**
1367 * dev_set_alias - change ifalias of a device
1368 * @dev: device
1369 * @alias: name up to IFALIASZ
f0db275a 1370 * @len: limit of bytes to copy from info
0b815a1a
SH
1371 *
1372 * Set ifalias for a device,
1373 */
1374int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1375{
6c557001 1376 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1377
1378 if (len >= IFALIASZ)
1379 return -EINVAL;
1380
6c557001
FW
1381 if (len) {
1382 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1383 if (!new_alias)
1384 return -ENOMEM;
1385
1386 memcpy(new_alias->ifalias, alias, len);
1387 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1388 }
1389
6c557001 1390 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1391 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1392 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1393 mutex_unlock(&ifalias_mutex);
1394
1395 if (new_alias)
1396 kfree_rcu(new_alias, rcuhead);
0b815a1a 1397
0b815a1a
SH
1398 return len;
1399}
0fe554a4 1400EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1401
6c557001
FW
1402/**
1403 * dev_get_alias - get ifalias of a device
1404 * @dev: device
20e88320 1405 * @name: buffer to store name of ifalias
6c557001
FW
1406 * @len: size of buffer
1407 *
1408 * get ifalias for a device. Caller must make sure dev cannot go
1409 * away, e.g. rcu read lock or own a reference count to device.
1410 */
1411int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1412{
1413 const struct dev_ifalias *alias;
1414 int ret = 0;
1415
1416 rcu_read_lock();
1417 alias = rcu_dereference(dev->ifalias);
1418 if (alias)
1419 ret = snprintf(name, len, "%s", alias->ifalias);
1420 rcu_read_unlock();
1421
1422 return ret;
1423}
0b815a1a 1424
d8a33ac4 1425/**
3041a069 1426 * netdev_features_change - device changes features
d8a33ac4
SH
1427 * @dev: device to cause notification
1428 *
1429 * Called to indicate a device has changed features.
1430 */
1431void netdev_features_change(struct net_device *dev)
1432{
056925ab 1433 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1434}
1435EXPORT_SYMBOL(netdev_features_change);
1436
1da177e4
LT
1437/**
1438 * netdev_state_change - device changes state
1439 * @dev: device to cause notification
1440 *
1441 * Called to indicate a device has changed state. This function calls
1442 * the notifier chains for netdev_chain and sends a NEWLINK message
1443 * to the routing socket.
1444 */
1445void netdev_state_change(struct net_device *dev)
1446{
1447 if (dev->flags & IFF_UP) {
51d0c047
DA
1448 struct netdev_notifier_change_info change_info = {
1449 .info.dev = dev,
1450 };
54951194 1451
51d0c047 1452 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1453 &change_info.info);
7f294054 1454 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1455 }
1456}
d1b19dff 1457EXPORT_SYMBOL(netdev_state_change);
1da177e4 1458
7061eb8c
LP
1459/**
1460 * __netdev_notify_peers - notify network peers about existence of @dev,
1461 * to be called when rtnl lock is already held.
1462 * @dev: network device
1463 *
1464 * Generate traffic such that interested network peers are aware of
1465 * @dev, such as by generating a gratuitous ARP. This may be used when
1466 * a device wants to inform the rest of the network about some sort of
1467 * reconfiguration such as a failover event or virtual machine
1468 * migration.
1469 */
1470void __netdev_notify_peers(struct net_device *dev)
1471{
1472 ASSERT_RTNL();
1473 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1474 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1475}
1476EXPORT_SYMBOL(__netdev_notify_peers);
1477
ee89bab1 1478/**
722c9a0c 1479 * netdev_notify_peers - notify network peers about existence of @dev
1480 * @dev: network device
ee89bab1
AW
1481 *
1482 * Generate traffic such that interested network peers are aware of
1483 * @dev, such as by generating a gratuitous ARP. This may be used when
1484 * a device wants to inform the rest of the network about some sort of
1485 * reconfiguration such as a failover event or virtual machine
1486 * migration.
1487 */
1488void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1489{
ee89bab1 1490 rtnl_lock();
7061eb8c 1491 __netdev_notify_peers(dev);
ee89bab1 1492 rtnl_unlock();
c1da4ac7 1493}
ee89bab1 1494EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1495
40c900aa 1496static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1497{
d314774c 1498 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1499 int ret;
1da177e4 1500
e46b66bc
BH
1501 ASSERT_RTNL();
1502
bd869245
HK
1503 if (!netif_device_present(dev)) {
1504 /* may be detached because parent is runtime-suspended */
1505 if (dev->dev.parent)
1506 pm_runtime_resume(dev->dev.parent);
1507 if (!netif_device_present(dev))
1508 return -ENODEV;
1509 }
1da177e4 1510
ca99ca14
NH
1511 /* Block netpoll from trying to do any rx path servicing.
1512 * If we don't do this there is a chance ndo_poll_controller
1513 * or ndo_poll may be running while we open the device
1514 */
66b5552f 1515 netpoll_poll_disable(dev);
ca99ca14 1516
40c900aa 1517 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1518 ret = notifier_to_errno(ret);
1519 if (ret)
1520 return ret;
1521
1da177e4 1522 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1523
d314774c
SH
1524 if (ops->ndo_validate_addr)
1525 ret = ops->ndo_validate_addr(dev);
bada339b 1526
d314774c
SH
1527 if (!ret && ops->ndo_open)
1528 ret = ops->ndo_open(dev);
1da177e4 1529
66b5552f 1530 netpoll_poll_enable(dev);
ca99ca14 1531
bada339b
JG
1532 if (ret)
1533 clear_bit(__LINK_STATE_START, &dev->state);
1534 else {
1da177e4 1535 dev->flags |= IFF_UP;
4417da66 1536 dev_set_rx_mode(dev);
1da177e4 1537 dev_activate(dev);
7bf23575 1538 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1539 }
bada339b 1540
1da177e4
LT
1541 return ret;
1542}
1543
1544/**
bd380811 1545 * dev_open - prepare an interface for use.
00f54e68
PM
1546 * @dev: device to open
1547 * @extack: netlink extended ack
1da177e4 1548 *
bd380811
PM
1549 * Takes a device from down to up state. The device's private open
1550 * function is invoked and then the multicast lists are loaded. Finally
1551 * the device is moved into the up state and a %NETDEV_UP message is
1552 * sent to the netdev notifier chain.
1553 *
1554 * Calling this function on an active interface is a nop. On a failure
1555 * a negative errno code is returned.
1da177e4 1556 */
00f54e68 1557int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1558{
1559 int ret;
1560
bd380811
PM
1561 if (dev->flags & IFF_UP)
1562 return 0;
1563
40c900aa 1564 ret = __dev_open(dev, extack);
bd380811
PM
1565 if (ret < 0)
1566 return ret;
1567
7f294054 1568 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1569 call_netdevice_notifiers(NETDEV_UP, dev);
1570
1571 return ret;
1572}
1573EXPORT_SYMBOL(dev_open);
1574
7051b88a 1575static void __dev_close_many(struct list_head *head)
1da177e4 1576{
44345724 1577 struct net_device *dev;
e46b66bc 1578
bd380811 1579 ASSERT_RTNL();
9d5010db
DM
1580 might_sleep();
1581
5cde2829 1582 list_for_each_entry(dev, head, close_list) {
3f4df206 1583 /* Temporarily disable netpoll until the interface is down */
66b5552f 1584 netpoll_poll_disable(dev);
3f4df206 1585
44345724 1586 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1587
44345724 1588 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1589
44345724
OP
1590 /* Synchronize to scheduled poll. We cannot touch poll list, it
1591 * can be even on different cpu. So just clear netif_running().
1592 *
1593 * dev->stop() will invoke napi_disable() on all of it's
1594 * napi_struct instances on this device.
1595 */
4e857c58 1596 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1597 }
1da177e4 1598
44345724 1599 dev_deactivate_many(head);
d8b2a4d2 1600
5cde2829 1601 list_for_each_entry(dev, head, close_list) {
44345724 1602 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1603
44345724
OP
1604 /*
1605 * Call the device specific close. This cannot fail.
1606 * Only if device is UP
1607 *
1608 * We allow it to be called even after a DETACH hot-plug
1609 * event.
1610 */
1611 if (ops->ndo_stop)
1612 ops->ndo_stop(dev);
1613
44345724 1614 dev->flags &= ~IFF_UP;
66b5552f 1615 netpoll_poll_enable(dev);
44345724 1616 }
44345724
OP
1617}
1618
7051b88a 1619static void __dev_close(struct net_device *dev)
44345724
OP
1620{
1621 LIST_HEAD(single);
1622
5cde2829 1623 list_add(&dev->close_list, &single);
7051b88a 1624 __dev_close_many(&single);
f87e6f47 1625 list_del(&single);
44345724
OP
1626}
1627
7051b88a 1628void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1629{
1630 struct net_device *dev, *tmp;
1da177e4 1631
5cde2829
EB
1632 /* Remove the devices that don't need to be closed */
1633 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1634 if (!(dev->flags & IFF_UP))
5cde2829 1635 list_del_init(&dev->close_list);
44345724
OP
1636
1637 __dev_close_many(head);
1da177e4 1638
5cde2829 1639 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1640 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1641 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1642 if (unlink)
1643 list_del_init(&dev->close_list);
44345724 1644 }
bd380811 1645}
99c4a26a 1646EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1647
1648/**
1649 * dev_close - shutdown an interface.
1650 * @dev: device to shutdown
1651 *
1652 * This function moves an active device into down state. A
1653 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1654 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1655 * chain.
1656 */
7051b88a 1657void dev_close(struct net_device *dev)
bd380811 1658{
e14a5993
ED
1659 if (dev->flags & IFF_UP) {
1660 LIST_HEAD(single);
1da177e4 1661
5cde2829 1662 list_add(&dev->close_list, &single);
99c4a26a 1663 dev_close_many(&single, true);
e14a5993
ED
1664 list_del(&single);
1665 }
1da177e4 1666}
d1b19dff 1667EXPORT_SYMBOL(dev_close);
1da177e4
LT
1668
1669
0187bdfb
BH
1670/**
1671 * dev_disable_lro - disable Large Receive Offload on a device
1672 * @dev: device
1673 *
1674 * Disable Large Receive Offload (LRO) on a net device. Must be
1675 * called under RTNL. This is needed if received packets may be
1676 * forwarded to another interface.
1677 */
1678void dev_disable_lro(struct net_device *dev)
1679{
fbe168ba
MK
1680 struct net_device *lower_dev;
1681 struct list_head *iter;
529d0489 1682
bc5787c6
MM
1683 dev->wanted_features &= ~NETIF_F_LRO;
1684 netdev_update_features(dev);
27660515 1685
22d5969f
MM
1686 if (unlikely(dev->features & NETIF_F_LRO))
1687 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1688
1689 netdev_for_each_lower_dev(dev, lower_dev, iter)
1690 dev_disable_lro(lower_dev);
0187bdfb
BH
1691}
1692EXPORT_SYMBOL(dev_disable_lro);
1693
56f5aa77
MC
1694/**
1695 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1696 * @dev: device
1697 *
1698 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1699 * called under RTNL. This is needed if Generic XDP is installed on
1700 * the device.
1701 */
1702static void dev_disable_gro_hw(struct net_device *dev)
1703{
1704 dev->wanted_features &= ~NETIF_F_GRO_HW;
1705 netdev_update_features(dev);
1706
1707 if (unlikely(dev->features & NETIF_F_GRO_HW))
1708 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1709}
1710
ede2762d
KT
1711const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1712{
1713#define N(val) \
1714 case NETDEV_##val: \
1715 return "NETDEV_" __stringify(val);
1716 switch (cmd) {
1717 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1718 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1719 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1720 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1721 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1722 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1723 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1724 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1725 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1726 N(PRE_CHANGEADDR)
3f5ecd8a 1727 }
ede2762d
KT
1728#undef N
1729 return "UNKNOWN_NETDEV_EVENT";
1730}
1731EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1732
351638e7
JP
1733static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1734 struct net_device *dev)
1735{
51d0c047
DA
1736 struct netdev_notifier_info info = {
1737 .dev = dev,
1738 };
351638e7 1739
351638e7
JP
1740 return nb->notifier_call(nb, val, &info);
1741}
0187bdfb 1742
afa0df59
JP
1743static int call_netdevice_register_notifiers(struct notifier_block *nb,
1744 struct net_device *dev)
1745{
1746 int err;
1747
1748 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1749 err = notifier_to_errno(err);
1750 if (err)
1751 return err;
1752
1753 if (!(dev->flags & IFF_UP))
1754 return 0;
1755
1756 call_netdevice_notifier(nb, NETDEV_UP, dev);
1757 return 0;
1758}
1759
1760static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1761 struct net_device *dev)
1762{
1763 if (dev->flags & IFF_UP) {
1764 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1765 dev);
1766 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1767 }
1768 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1769}
1770
1771static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1772 struct net *net)
1773{
1774 struct net_device *dev;
1775 int err;
1776
1777 for_each_netdev(net, dev) {
1778 err = call_netdevice_register_notifiers(nb, dev);
1779 if (err)
1780 goto rollback;
1781 }
1782 return 0;
1783
1784rollback:
1785 for_each_netdev_continue_reverse(net, dev)
1786 call_netdevice_unregister_notifiers(nb, dev);
1787 return err;
1788}
1789
1790static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1791 struct net *net)
1792{
1793 struct net_device *dev;
1794
1795 for_each_netdev(net, dev)
1796 call_netdevice_unregister_notifiers(nb, dev);
1797}
1798
881d966b
EB
1799static int dev_boot_phase = 1;
1800
1da177e4 1801/**
722c9a0c 1802 * register_netdevice_notifier - register a network notifier block
1803 * @nb: notifier
1da177e4 1804 *
722c9a0c 1805 * Register a notifier to be called when network device events occur.
1806 * The notifier passed is linked into the kernel structures and must
1807 * not be reused until it has been unregistered. A negative errno code
1808 * is returned on a failure.
1da177e4 1809 *
722c9a0c 1810 * When registered all registration and up events are replayed
1811 * to the new notifier to allow device to have a race free
1812 * view of the network device list.
1da177e4
LT
1813 */
1814
1815int register_netdevice_notifier(struct notifier_block *nb)
1816{
881d966b 1817 struct net *net;
1da177e4
LT
1818 int err;
1819
328fbe74
KT
1820 /* Close race with setup_net() and cleanup_net() */
1821 down_write(&pernet_ops_rwsem);
1da177e4 1822 rtnl_lock();
f07d5b94 1823 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1824 if (err)
1825 goto unlock;
881d966b
EB
1826 if (dev_boot_phase)
1827 goto unlock;
1828 for_each_net(net) {
afa0df59
JP
1829 err = call_netdevice_register_net_notifiers(nb, net);
1830 if (err)
1831 goto rollback;
1da177e4 1832 }
fcc5a03a
HX
1833
1834unlock:
1da177e4 1835 rtnl_unlock();
328fbe74 1836 up_write(&pernet_ops_rwsem);
1da177e4 1837 return err;
fcc5a03a
HX
1838
1839rollback:
afa0df59
JP
1840 for_each_net_continue_reverse(net)
1841 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1842
1843 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1844 goto unlock;
1da177e4 1845}
d1b19dff 1846EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1847
1848/**
722c9a0c 1849 * unregister_netdevice_notifier - unregister a network notifier block
1850 * @nb: notifier
1da177e4 1851 *
722c9a0c 1852 * Unregister a notifier previously registered by
1853 * register_netdevice_notifier(). The notifier is unlinked into the
1854 * kernel structures and may then be reused. A negative errno code
1855 * is returned on a failure.
7d3d43da 1856 *
722c9a0c 1857 * After unregistering unregister and down device events are synthesized
1858 * for all devices on the device list to the removed notifier to remove
1859 * the need for special case cleanup code.
1da177e4
LT
1860 */
1861
1862int unregister_netdevice_notifier(struct notifier_block *nb)
1863{
7d3d43da 1864 struct net *net;
9f514950
HX
1865 int err;
1866
328fbe74
KT
1867 /* Close race with setup_net() and cleanup_net() */
1868 down_write(&pernet_ops_rwsem);
9f514950 1869 rtnl_lock();
f07d5b94 1870 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1871 if (err)
1872 goto unlock;
1873
48b3a137
JP
1874 for_each_net(net)
1875 call_netdevice_unregister_net_notifiers(nb, net);
1876
7d3d43da 1877unlock:
9f514950 1878 rtnl_unlock();
328fbe74 1879 up_write(&pernet_ops_rwsem);
9f514950 1880 return err;
1da177e4 1881}
d1b19dff 1882EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1883
1f637703
JP
1884static int __register_netdevice_notifier_net(struct net *net,
1885 struct notifier_block *nb,
1886 bool ignore_call_fail)
1887{
1888 int err;
1889
1890 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1891 if (err)
1892 return err;
1893 if (dev_boot_phase)
1894 return 0;
1895
1896 err = call_netdevice_register_net_notifiers(nb, net);
1897 if (err && !ignore_call_fail)
1898 goto chain_unregister;
1899
1900 return 0;
1901
1902chain_unregister:
1903 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1904 return err;
1905}
1906
1907static int __unregister_netdevice_notifier_net(struct net *net,
1908 struct notifier_block *nb)
1909{
1910 int err;
1911
1912 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1913 if (err)
1914 return err;
1915
1916 call_netdevice_unregister_net_notifiers(nb, net);
1917 return 0;
1918}
1919
a30c7b42
JP
1920/**
1921 * register_netdevice_notifier_net - register a per-netns network notifier block
1922 * @net: network namespace
1923 * @nb: notifier
1924 *
1925 * Register a notifier to be called when network device events occur.
1926 * The notifier passed is linked into the kernel structures and must
1927 * not be reused until it has been unregistered. A negative errno code
1928 * is returned on a failure.
1929 *
1930 * When registered all registration and up events are replayed
1931 * to the new notifier to allow device to have a race free
1932 * view of the network device list.
1933 */
1934
1935int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1936{
1937 int err;
1938
1939 rtnl_lock();
1f637703 1940 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1941 rtnl_unlock();
1942 return err;
a30c7b42
JP
1943}
1944EXPORT_SYMBOL(register_netdevice_notifier_net);
1945
1946/**
1947 * unregister_netdevice_notifier_net - unregister a per-netns
1948 * network notifier block
1949 * @net: network namespace
1950 * @nb: notifier
1951 *
1952 * Unregister a notifier previously registered by
1953 * register_netdevice_notifier(). The notifier is unlinked into the
1954 * kernel structures and may then be reused. A negative errno code
1955 * is returned on a failure.
1956 *
1957 * After unregistering unregister and down device events are synthesized
1958 * for all devices on the device list to the removed notifier to remove
1959 * the need for special case cleanup code.
1960 */
1961
1962int unregister_netdevice_notifier_net(struct net *net,
1963 struct notifier_block *nb)
1964{
1965 int err;
1966
1967 rtnl_lock();
1f637703 1968 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1969 rtnl_unlock();
1970 return err;
1971}
1972EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1973
93642e14
JP
1974int register_netdevice_notifier_dev_net(struct net_device *dev,
1975 struct notifier_block *nb,
1976 struct netdev_net_notifier *nn)
1977{
1978 int err;
a30c7b42 1979
93642e14
JP
1980 rtnl_lock();
1981 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1982 if (!err) {
1983 nn->nb = nb;
1984 list_add(&nn->list, &dev->net_notifier_list);
1985 }
a30c7b42
JP
1986 rtnl_unlock();
1987 return err;
1988}
93642e14
JP
1989EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1990
1991int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1992 struct notifier_block *nb,
1993 struct netdev_net_notifier *nn)
1994{
1995 int err;
1996
1997 rtnl_lock();
1998 list_del(&nn->list);
1999 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2000 rtnl_unlock();
2001 return err;
2002}
2003EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2004
2005static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2006 struct net *net)
2007{
2008 struct netdev_net_notifier *nn;
2009
2010 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2011 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2012 __register_netdevice_notifier_net(net, nn->nb, true);
2013 }
2014}
a30c7b42 2015
351638e7
JP
2016/**
2017 * call_netdevice_notifiers_info - call all network notifier blocks
2018 * @val: value passed unmodified to notifier function
351638e7
JP
2019 * @info: notifier information data
2020 *
2021 * Call all network notifier blocks. Parameters and return value
2022 * are as for raw_notifier_call_chain().
2023 */
2024
1d143d9f 2025static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 2026 struct netdev_notifier_info *info)
351638e7 2027{
a30c7b42
JP
2028 struct net *net = dev_net(info->dev);
2029 int ret;
2030
351638e7 2031 ASSERT_RTNL();
a30c7b42
JP
2032
2033 /* Run per-netns notifier block chain first, then run the global one.
2034 * Hopefully, one day, the global one is going to be removed after
2035 * all notifier block registrators get converted to be per-netns.
2036 */
2037 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2038 if (ret & NOTIFY_STOP_MASK)
2039 return ret;
351638e7
JP
2040 return raw_notifier_call_chain(&netdev_chain, val, info);
2041}
351638e7 2042
26372605
PM
2043static int call_netdevice_notifiers_extack(unsigned long val,
2044 struct net_device *dev,
2045 struct netlink_ext_ack *extack)
2046{
2047 struct netdev_notifier_info info = {
2048 .dev = dev,
2049 .extack = extack,
2050 };
2051
2052 return call_netdevice_notifiers_info(val, &info);
2053}
2054
1da177e4
LT
2055/**
2056 * call_netdevice_notifiers - call all network notifier blocks
2057 * @val: value passed unmodified to notifier function
c4ea43c5 2058 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
2059 *
2060 * Call all network notifier blocks. Parameters and return value
f07d5b94 2061 * are as for raw_notifier_call_chain().
1da177e4
LT
2062 */
2063
ad7379d4 2064int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 2065{
26372605 2066 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 2067}
edf947f1 2068EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 2069
af7d6cce
SD
2070/**
2071 * call_netdevice_notifiers_mtu - call all network notifier blocks
2072 * @val: value passed unmodified to notifier function
2073 * @dev: net_device pointer passed unmodified to notifier function
2074 * @arg: additional u32 argument passed to the notifier function
2075 *
2076 * Call all network notifier blocks. Parameters and return value
2077 * are as for raw_notifier_call_chain().
2078 */
2079static int call_netdevice_notifiers_mtu(unsigned long val,
2080 struct net_device *dev, u32 arg)
2081{
2082 struct netdev_notifier_info_ext info = {
2083 .info.dev = dev,
2084 .ext.mtu = arg,
2085 };
2086
2087 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2088
2089 return call_netdevice_notifiers_info(val, &info.info);
2090}
2091
1cf51900 2092#ifdef CONFIG_NET_INGRESS
aabf6772 2093static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2094
2095void net_inc_ingress_queue(void)
2096{
aabf6772 2097 static_branch_inc(&ingress_needed_key);
4577139b
DB
2098}
2099EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2100
2101void net_dec_ingress_queue(void)
2102{
aabf6772 2103 static_branch_dec(&ingress_needed_key);
4577139b
DB
2104}
2105EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2106#endif
2107
1f211a1b 2108#ifdef CONFIG_NET_EGRESS
aabf6772 2109static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2110
2111void net_inc_egress_queue(void)
2112{
aabf6772 2113 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2114}
2115EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2116
2117void net_dec_egress_queue(void)
2118{
aabf6772 2119 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2120}
2121EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2122#endif
2123
39e83922 2124static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2125#ifdef CONFIG_JUMP_LABEL
b90e5794 2126static atomic_t netstamp_needed_deferred;
13baa00a 2127static atomic_t netstamp_wanted;
5fa8bbda 2128static void netstamp_clear(struct work_struct *work)
1da177e4 2129{
b90e5794 2130 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2131 int wanted;
b90e5794 2132
13baa00a
ED
2133 wanted = atomic_add_return(deferred, &netstamp_wanted);
2134 if (wanted > 0)
39e83922 2135 static_branch_enable(&netstamp_needed_key);
13baa00a 2136 else
39e83922 2137 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2138}
2139static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2140#endif
5fa8bbda
ED
2141
2142void net_enable_timestamp(void)
2143{
e9666d10 2144#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2145 int wanted;
2146
2147 while (1) {
2148 wanted = atomic_read(&netstamp_wanted);
2149 if (wanted <= 0)
2150 break;
2151 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2152 return;
2153 }
2154 atomic_inc(&netstamp_needed_deferred);
2155 schedule_work(&netstamp_work);
2156#else
39e83922 2157 static_branch_inc(&netstamp_needed_key);
13baa00a 2158#endif
1da177e4 2159}
d1b19dff 2160EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2161
2162void net_disable_timestamp(void)
2163{
e9666d10 2164#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2165 int wanted;
2166
2167 while (1) {
2168 wanted = atomic_read(&netstamp_wanted);
2169 if (wanted <= 1)
2170 break;
2171 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2172 return;
2173 }
2174 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2175 schedule_work(&netstamp_work);
2176#else
39e83922 2177 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2178#endif
1da177e4 2179}
d1b19dff 2180EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2181
3b098e2d 2182static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2183{
2456e855 2184 skb->tstamp = 0;
39e83922 2185 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2186 __net_timestamp(skb);
1da177e4
LT
2187}
2188
39e83922
DB
2189#define net_timestamp_check(COND, SKB) \
2190 if (static_branch_unlikely(&netstamp_needed_key)) { \
2191 if ((COND) && !(SKB)->tstamp) \
2192 __net_timestamp(SKB); \
2193 } \
3b098e2d 2194
f4b05d27 2195bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
2196{
2197 unsigned int len;
2198
2199 if (!(dev->flags & IFF_UP))
2200 return false;
2201
2202 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2203 if (skb->len <= len)
2204 return true;
2205
2206 /* if TSO is enabled, we don't care about the length as the packet
2207 * could be forwarded without being segmented before
2208 */
2209 if (skb_is_gso(skb))
2210 return true;
2211
2212 return false;
2213}
1ee481fb 2214EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2215
a0265d28
HX
2216int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2217{
4e3264d2 2218 int ret = ____dev_forward_skb(dev, skb);
a0265d28 2219
4e3264d2
MKL
2220 if (likely(!ret)) {
2221 skb->protocol = eth_type_trans(skb, dev);
2222 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2223 }
a0265d28 2224
4e3264d2 2225 return ret;
a0265d28
HX
2226}
2227EXPORT_SYMBOL_GPL(__dev_forward_skb);
2228
44540960
AB
2229/**
2230 * dev_forward_skb - loopback an skb to another netif
2231 *
2232 * @dev: destination network device
2233 * @skb: buffer to forward
2234 *
2235 * return values:
2236 * NET_RX_SUCCESS (no congestion)
6ec82562 2237 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2238 *
2239 * dev_forward_skb can be used for injecting an skb from the
2240 * start_xmit function of one device into the receive queue
2241 * of another device.
2242 *
2243 * The receiving device may be in another namespace, so
2244 * we have to clear all information in the skb that could
2245 * impact namespace isolation.
2246 */
2247int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2248{
a0265d28 2249 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2250}
2251EXPORT_SYMBOL_GPL(dev_forward_skb);
2252
71d9dec2
CG
2253static inline int deliver_skb(struct sk_buff *skb,
2254 struct packet_type *pt_prev,
2255 struct net_device *orig_dev)
2256{
1f8b977a 2257 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2258 return -ENOMEM;
63354797 2259 refcount_inc(&skb->users);
71d9dec2
CG
2260 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2261}
2262
7866a621
SN
2263static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2264 struct packet_type **pt,
fbcb2170
JP
2265 struct net_device *orig_dev,
2266 __be16 type,
7866a621
SN
2267 struct list_head *ptype_list)
2268{
2269 struct packet_type *ptype, *pt_prev = *pt;
2270
2271 list_for_each_entry_rcu(ptype, ptype_list, list) {
2272 if (ptype->type != type)
2273 continue;
2274 if (pt_prev)
fbcb2170 2275 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2276 pt_prev = ptype;
2277 }
2278 *pt = pt_prev;
2279}
2280
c0de08d0
EL
2281static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2282{
a3d744e9 2283 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2284 return false;
2285
2286 if (ptype->id_match)
2287 return ptype->id_match(ptype, skb->sk);
2288 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2289 return true;
2290
2291 return false;
2292}
2293
9f9a742d
MR
2294/**
2295 * dev_nit_active - return true if any network interface taps are in use
2296 *
2297 * @dev: network device to check for the presence of taps
2298 */
2299bool dev_nit_active(struct net_device *dev)
2300{
2301 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2302}
2303EXPORT_SYMBOL_GPL(dev_nit_active);
2304
1da177e4
LT
2305/*
2306 * Support routine. Sends outgoing frames to any network
2307 * taps currently in use.
2308 */
2309
74b20582 2310void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2311{
2312 struct packet_type *ptype;
71d9dec2
CG
2313 struct sk_buff *skb2 = NULL;
2314 struct packet_type *pt_prev = NULL;
7866a621 2315 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2316
1da177e4 2317 rcu_read_lock();
7866a621
SN
2318again:
2319 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2320 if (ptype->ignore_outgoing)
2321 continue;
2322
1da177e4
LT
2323 /* Never send packets back to the socket
2324 * they originated from - MvS (miquels@drinkel.ow.org)
2325 */
7866a621
SN
2326 if (skb_loop_sk(ptype, skb))
2327 continue;
71d9dec2 2328
7866a621
SN
2329 if (pt_prev) {
2330 deliver_skb(skb2, pt_prev, skb->dev);
2331 pt_prev = ptype;
2332 continue;
2333 }
1da177e4 2334
7866a621
SN
2335 /* need to clone skb, done only once */
2336 skb2 = skb_clone(skb, GFP_ATOMIC);
2337 if (!skb2)
2338 goto out_unlock;
70978182 2339
7866a621 2340 net_timestamp_set(skb2);
1da177e4 2341
7866a621
SN
2342 /* skb->nh should be correctly
2343 * set by sender, so that the second statement is
2344 * just protection against buggy protocols.
2345 */
2346 skb_reset_mac_header(skb2);
2347
2348 if (skb_network_header(skb2) < skb2->data ||
2349 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2350 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2351 ntohs(skb2->protocol),
2352 dev->name);
2353 skb_reset_network_header(skb2);
1da177e4 2354 }
7866a621
SN
2355
2356 skb2->transport_header = skb2->network_header;
2357 skb2->pkt_type = PACKET_OUTGOING;
2358 pt_prev = ptype;
2359 }
2360
2361 if (ptype_list == &ptype_all) {
2362 ptype_list = &dev->ptype_all;
2363 goto again;
1da177e4 2364 }
7866a621 2365out_unlock:
581fe0ea
WB
2366 if (pt_prev) {
2367 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2368 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2369 else
2370 kfree_skb(skb2);
2371 }
1da177e4
LT
2372 rcu_read_unlock();
2373}
74b20582 2374EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2375
2c53040f
BH
2376/**
2377 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2378 * @dev: Network device
2379 * @txq: number of queues available
2380 *
2381 * If real_num_tx_queues is changed the tc mappings may no longer be
2382 * valid. To resolve this verify the tc mapping remains valid and if
2383 * not NULL the mapping. With no priorities mapping to this
2384 * offset/count pair it will no longer be used. In the worst case TC0
2385 * is invalid nothing can be done so disable priority mappings. If is
2386 * expected that drivers will fix this mapping if they can before
2387 * calling netif_set_real_num_tx_queues.
2388 */
bb134d22 2389static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2390{
2391 int i;
2392 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2393
2394 /* If TC0 is invalidated disable TC mapping */
2395 if (tc->offset + tc->count > txq) {
7b6cd1ce 2396 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2397 dev->num_tc = 0;
2398 return;
2399 }
2400
2401 /* Invalidated prio to tc mappings set to TC0 */
2402 for (i = 1; i < TC_BITMASK + 1; i++) {
2403 int q = netdev_get_prio_tc_map(dev, i);
2404
2405 tc = &dev->tc_to_txq[q];
2406 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2407 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2408 i, q);
4f57c087
JF
2409 netdev_set_prio_tc_map(dev, i, 0);
2410 }
2411 }
2412}
2413
8d059b0f
AD
2414int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2415{
2416 if (dev->num_tc) {
2417 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2418 int i;
2419
ffcfe25b 2420 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2421 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2422 if ((txq - tc->offset) < tc->count)
2423 return i;
2424 }
2425
ffcfe25b 2426 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2427 return -1;
2428 }
2429
2430 return 0;
2431}
8a5f2166 2432EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2433
537c00de 2434#ifdef CONFIG_XPS
04157469
AN
2435struct static_key xps_needed __read_mostly;
2436EXPORT_SYMBOL(xps_needed);
2437struct static_key xps_rxqs_needed __read_mostly;
2438EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2439static DEFINE_MUTEX(xps_map_mutex);
2440#define xmap_dereference(P) \
2441 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2442
6234f874
AD
2443static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2444 int tci, u16 index)
537c00de 2445{
10cdc3f3
AD
2446 struct xps_map *map = NULL;
2447 int pos;
537c00de 2448
10cdc3f3 2449 if (dev_maps)
80d19669 2450 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2451 if (!map)
2452 return false;
537c00de 2453
6234f874
AD
2454 for (pos = map->len; pos--;) {
2455 if (map->queues[pos] != index)
2456 continue;
2457
2458 if (map->len > 1) {
2459 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2460 break;
537c00de 2461 }
6234f874 2462
80d19669 2463 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2464 kfree_rcu(map, rcu);
2465 return false;
537c00de
AD
2466 }
2467
6234f874 2468 return true;
10cdc3f3
AD
2469}
2470
6234f874
AD
2471static bool remove_xps_queue_cpu(struct net_device *dev,
2472 struct xps_dev_maps *dev_maps,
2473 int cpu, u16 offset, u16 count)
2474{
184c449f
AD
2475 int num_tc = dev->num_tc ? : 1;
2476 bool active = false;
2477 int tci;
6234f874 2478
184c449f
AD
2479 for (tci = cpu * num_tc; num_tc--; tci++) {
2480 int i, j;
2481
2482 for (i = count, j = offset; i--; j++) {
6358d49a 2483 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2484 break;
2485 }
2486
2487 active |= i < 0;
6234f874
AD
2488 }
2489
184c449f 2490 return active;
6234f874
AD
2491}
2492
867d0ad4
SD
2493static void reset_xps_maps(struct net_device *dev,
2494 struct xps_dev_maps *dev_maps,
2495 bool is_rxqs_map)
2496{
2497 if (is_rxqs_map) {
2498 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2499 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2500 } else {
2501 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2502 }
2503 static_key_slow_dec_cpuslocked(&xps_needed);
2504 kfree_rcu(dev_maps, rcu);
2505}
2506
80d19669
AN
2507static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2508 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2509 u16 offset, u16 count, bool is_rxqs_map)
2510{
2511 bool active = false;
2512 int i, j;
2513
2514 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2515 j < nr_ids;)
2516 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2517 count);
867d0ad4
SD
2518 if (!active)
2519 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2520
f28c020f
SD
2521 if (!is_rxqs_map) {
2522 for (i = offset + (count - 1); count--; i--) {
2523 netdev_queue_numa_node_write(
2524 netdev_get_tx_queue(dev, i),
2525 NUMA_NO_NODE);
80d19669 2526 }
80d19669
AN
2527 }
2528}
2529
6234f874
AD
2530static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2531 u16 count)
10cdc3f3 2532{
80d19669 2533 const unsigned long *possible_mask = NULL;
10cdc3f3 2534 struct xps_dev_maps *dev_maps;
80d19669 2535 unsigned int nr_ids;
10cdc3f3 2536
04157469
AN
2537 if (!static_key_false(&xps_needed))
2538 return;
10cdc3f3 2539
4d99f660 2540 cpus_read_lock();
04157469 2541 mutex_lock(&xps_map_mutex);
10cdc3f3 2542
04157469
AN
2543 if (static_key_false(&xps_rxqs_needed)) {
2544 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2545 if (dev_maps) {
2546 nr_ids = dev->num_rx_queues;
2547 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2548 offset, count, true);
2549 }
537c00de
AD
2550 }
2551
80d19669
AN
2552 dev_maps = xmap_dereference(dev->xps_cpus_map);
2553 if (!dev_maps)
2554 goto out_no_maps;
2555
2556 if (num_possible_cpus() > 1)
2557 possible_mask = cpumask_bits(cpu_possible_mask);
2558 nr_ids = nr_cpu_ids;
2559 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2560 false);
024e9679 2561
537c00de
AD
2562out_no_maps:
2563 mutex_unlock(&xps_map_mutex);
4d99f660 2564 cpus_read_unlock();
537c00de
AD
2565}
2566
6234f874
AD
2567static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2568{
2569 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2570}
2571
80d19669
AN
2572static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2573 u16 index, bool is_rxqs_map)
01c5f864
AD
2574{
2575 struct xps_map *new_map;
2576 int alloc_len = XPS_MIN_MAP_ALLOC;
2577 int i, pos;
2578
2579 for (pos = 0; map && pos < map->len; pos++) {
2580 if (map->queues[pos] != index)
2581 continue;
2582 return map;
2583 }
2584
80d19669 2585 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2586 if (map) {
2587 if (pos < map->alloc_len)
2588 return map;
2589
2590 alloc_len = map->alloc_len * 2;
2591 }
2592
80d19669
AN
2593 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2594 * map
2595 */
2596 if (is_rxqs_map)
2597 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2598 else
2599 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2600 cpu_to_node(attr_index));
01c5f864
AD
2601 if (!new_map)
2602 return NULL;
2603
2604 for (i = 0; i < pos; i++)
2605 new_map->queues[i] = map->queues[i];
2606 new_map->alloc_len = alloc_len;
2607 new_map->len = pos;
2608
2609 return new_map;
2610}
2611
4d99f660 2612/* Must be called under cpus_read_lock */
80d19669
AN
2613int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2614 u16 index, bool is_rxqs_map)
537c00de 2615{
80d19669 2616 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2617 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2618 int i, j, tci, numa_node_id = -2;
184c449f 2619 int maps_sz, num_tc = 1, tc = 0;
537c00de 2620 struct xps_map *map, *new_map;
01c5f864 2621 bool active = false;
80d19669 2622 unsigned int nr_ids;
537c00de 2623
184c449f 2624 if (dev->num_tc) {
ffcfe25b 2625 /* Do not allow XPS on subordinate device directly */
184c449f 2626 num_tc = dev->num_tc;
ffcfe25b
AD
2627 if (num_tc < 0)
2628 return -EINVAL;
2629
2630 /* If queue belongs to subordinate dev use its map */
2631 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2632
184c449f
AD
2633 tc = netdev_txq_to_tc(dev, index);
2634 if (tc < 0)
2635 return -EINVAL;
2636 }
2637
537c00de 2638 mutex_lock(&xps_map_mutex);
80d19669
AN
2639 if (is_rxqs_map) {
2640 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2641 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2642 nr_ids = dev->num_rx_queues;
2643 } else {
2644 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2645 if (num_possible_cpus() > 1) {
2646 online_mask = cpumask_bits(cpu_online_mask);
2647 possible_mask = cpumask_bits(cpu_possible_mask);
2648 }
2649 dev_maps = xmap_dereference(dev->xps_cpus_map);
2650 nr_ids = nr_cpu_ids;
2651 }
537c00de 2652
80d19669
AN
2653 if (maps_sz < L1_CACHE_BYTES)
2654 maps_sz = L1_CACHE_BYTES;
537c00de 2655
01c5f864 2656 /* allocate memory for queue storage */
80d19669
AN
2657 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2658 j < nr_ids;) {
01c5f864
AD
2659 if (!new_dev_maps)
2660 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2661 if (!new_dev_maps) {
2662 mutex_unlock(&xps_map_mutex);
01c5f864 2663 return -ENOMEM;
2bb60cb9 2664 }
01c5f864 2665
80d19669
AN
2666 tci = j * num_tc + tc;
2667 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2668 NULL;
2669
80d19669 2670 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2671 if (!map)
2672 goto error;
2673
80d19669 2674 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2675 }
2676
2677 if (!new_dev_maps)
2678 goto out_no_new_maps;
2679
867d0ad4
SD
2680 if (!dev_maps) {
2681 /* Increment static keys at most once per type */
2682 static_key_slow_inc_cpuslocked(&xps_needed);
2683 if (is_rxqs_map)
2684 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2685 }
04157469 2686
80d19669
AN
2687 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2688 j < nr_ids;) {
184c449f 2689 /* copy maps belonging to foreign traffic classes */
80d19669 2690 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2691 /* fill in the new device map from the old device map */
80d19669
AN
2692 map = xmap_dereference(dev_maps->attr_map[tci]);
2693 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2694 }
2695
2696 /* We need to explicitly update tci as prevous loop
2697 * could break out early if dev_maps is NULL.
2698 */
80d19669 2699 tci = j * num_tc + tc;
184c449f 2700
80d19669
AN
2701 if (netif_attr_test_mask(j, mask, nr_ids) &&
2702 netif_attr_test_online(j, online_mask, nr_ids)) {
2703 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2704 int pos = 0;
2705
80d19669 2706 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2707 while ((pos < map->len) && (map->queues[pos] != index))
2708 pos++;
2709
2710 if (pos == map->len)
2711 map->queues[map->len++] = index;
537c00de 2712#ifdef CONFIG_NUMA
80d19669
AN
2713 if (!is_rxqs_map) {
2714 if (numa_node_id == -2)
2715 numa_node_id = cpu_to_node(j);
2716 else if (numa_node_id != cpu_to_node(j))
2717 numa_node_id = -1;
2718 }
537c00de 2719#endif
01c5f864
AD
2720 } else if (dev_maps) {
2721 /* fill in the new device map from the old device map */
80d19669
AN
2722 map = xmap_dereference(dev_maps->attr_map[tci]);
2723 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2724 }
01c5f864 2725
184c449f
AD
2726 /* copy maps belonging to foreign traffic classes */
2727 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2728 /* fill in the new device map from the old device map */
80d19669
AN
2729 map = xmap_dereference(dev_maps->attr_map[tci]);
2730 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2731 }
537c00de
AD
2732 }
2733
80d19669
AN
2734 if (is_rxqs_map)
2735 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2736 else
2737 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2738
537c00de 2739 /* Cleanup old maps */
184c449f
AD
2740 if (!dev_maps)
2741 goto out_no_old_maps;
2742
80d19669
AN
2743 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2744 j < nr_ids;) {
2745 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2746 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2747 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2748 if (map && map != new_map)
2749 kfree_rcu(map, rcu);
2750 }
537c00de
AD
2751 }
2752
184c449f
AD
2753 kfree_rcu(dev_maps, rcu);
2754
2755out_no_old_maps:
01c5f864
AD
2756 dev_maps = new_dev_maps;
2757 active = true;
537c00de 2758
01c5f864 2759out_no_new_maps:
80d19669
AN
2760 if (!is_rxqs_map) {
2761 /* update Tx queue numa node */
2762 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2763 (numa_node_id >= 0) ?
2764 numa_node_id : NUMA_NO_NODE);
2765 }
537c00de 2766
01c5f864
AD
2767 if (!dev_maps)
2768 goto out_no_maps;
2769
80d19669
AN
2770 /* removes tx-queue from unused CPUs/rx-queues */
2771 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2772 j < nr_ids;) {
2773 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2774 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2775 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2776 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2777 active |= remove_xps_queue(dev_maps, tci, index);
2778 for (i = num_tc - tc, tci++; --i; tci++)
2779 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2780 }
2781
2782 /* free map if not active */
867d0ad4
SD
2783 if (!active)
2784 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2785
2786out_no_maps:
537c00de
AD
2787 mutex_unlock(&xps_map_mutex);
2788
2789 return 0;
2790error:
01c5f864 2791 /* remove any maps that we added */
80d19669
AN
2792 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2793 j < nr_ids;) {
2794 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2795 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2796 map = dev_maps ?
80d19669 2797 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2798 NULL;
2799 if (new_map && new_map != map)
2800 kfree(new_map);
2801 }
01c5f864
AD
2802 }
2803
537c00de
AD
2804 mutex_unlock(&xps_map_mutex);
2805
537c00de
AD
2806 kfree(new_dev_maps);
2807 return -ENOMEM;
2808}
4d99f660 2809EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2810
2811int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2812 u16 index)
2813{
4d99f660
AV
2814 int ret;
2815
2816 cpus_read_lock();
2817 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2818 cpus_read_unlock();
2819
2820 return ret;
80d19669 2821}
537c00de
AD
2822EXPORT_SYMBOL(netif_set_xps_queue);
2823
2824#endif
ffcfe25b
AD
2825static void netdev_unbind_all_sb_channels(struct net_device *dev)
2826{
2827 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2828
2829 /* Unbind any subordinate channels */
2830 while (txq-- != &dev->_tx[0]) {
2831 if (txq->sb_dev)
2832 netdev_unbind_sb_channel(dev, txq->sb_dev);
2833 }
2834}
2835
9cf1f6a8
AD
2836void netdev_reset_tc(struct net_device *dev)
2837{
6234f874
AD
2838#ifdef CONFIG_XPS
2839 netif_reset_xps_queues_gt(dev, 0);
2840#endif
ffcfe25b
AD
2841 netdev_unbind_all_sb_channels(dev);
2842
2843 /* Reset TC configuration of device */
9cf1f6a8
AD
2844 dev->num_tc = 0;
2845 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2846 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2847}
2848EXPORT_SYMBOL(netdev_reset_tc);
2849
2850int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2851{
2852 if (tc >= dev->num_tc)
2853 return -EINVAL;
2854
6234f874
AD
2855#ifdef CONFIG_XPS
2856 netif_reset_xps_queues(dev, offset, count);
2857#endif
9cf1f6a8
AD
2858 dev->tc_to_txq[tc].count = count;
2859 dev->tc_to_txq[tc].offset = offset;
2860 return 0;
2861}
2862EXPORT_SYMBOL(netdev_set_tc_queue);
2863
2864int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2865{
2866 if (num_tc > TC_MAX_QUEUE)
2867 return -EINVAL;
2868
6234f874
AD
2869#ifdef CONFIG_XPS
2870 netif_reset_xps_queues_gt(dev, 0);
2871#endif
ffcfe25b
AD
2872 netdev_unbind_all_sb_channels(dev);
2873
9cf1f6a8
AD
2874 dev->num_tc = num_tc;
2875 return 0;
2876}
2877EXPORT_SYMBOL(netdev_set_num_tc);
2878
ffcfe25b
AD
2879void netdev_unbind_sb_channel(struct net_device *dev,
2880 struct net_device *sb_dev)
2881{
2882 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2883
2884#ifdef CONFIG_XPS
2885 netif_reset_xps_queues_gt(sb_dev, 0);
2886#endif
2887 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2888 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2889
2890 while (txq-- != &dev->_tx[0]) {
2891 if (txq->sb_dev == sb_dev)
2892 txq->sb_dev = NULL;
2893 }
2894}
2895EXPORT_SYMBOL(netdev_unbind_sb_channel);
2896
2897int netdev_bind_sb_channel_queue(struct net_device *dev,
2898 struct net_device *sb_dev,
2899 u8 tc, u16 count, u16 offset)
2900{
2901 /* Make certain the sb_dev and dev are already configured */
2902 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2903 return -EINVAL;
2904
2905 /* We cannot hand out queues we don't have */
2906 if ((offset + count) > dev->real_num_tx_queues)
2907 return -EINVAL;
2908
2909 /* Record the mapping */
2910 sb_dev->tc_to_txq[tc].count = count;
2911 sb_dev->tc_to_txq[tc].offset = offset;
2912
2913 /* Provide a way for Tx queue to find the tc_to_txq map or
2914 * XPS map for itself.
2915 */
2916 while (count--)
2917 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2918
2919 return 0;
2920}
2921EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2922
2923int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2924{
2925 /* Do not use a multiqueue device to represent a subordinate channel */
2926 if (netif_is_multiqueue(dev))
2927 return -ENODEV;
2928
2929 /* We allow channels 1 - 32767 to be used for subordinate channels.
2930 * Channel 0 is meant to be "native" mode and used only to represent
2931 * the main root device. We allow writing 0 to reset the device back
2932 * to normal mode after being used as a subordinate channel.
2933 */
2934 if (channel > S16_MAX)
2935 return -EINVAL;
2936
2937 dev->num_tc = -channel;
2938
2939 return 0;
2940}
2941EXPORT_SYMBOL(netdev_set_sb_channel);
2942
f0796d5c
JF
2943/*
2944 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2945 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2946 */
e6484930 2947int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2948{
ac5b7019 2949 bool disabling;
1d24eb48
TH
2950 int rc;
2951
ac5b7019
JK
2952 disabling = txq < dev->real_num_tx_queues;
2953
e6484930
TH
2954 if (txq < 1 || txq > dev->num_tx_queues)
2955 return -EINVAL;
f0796d5c 2956
5c56580b
BH
2957 if (dev->reg_state == NETREG_REGISTERED ||
2958 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2959 ASSERT_RTNL();
2960
1d24eb48
TH
2961 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2962 txq);
bf264145
TH
2963 if (rc)
2964 return rc;
2965
4f57c087
JF
2966 if (dev->num_tc)
2967 netif_setup_tc(dev, txq);
2968
ac5b7019
JK
2969 dev->real_num_tx_queues = txq;
2970
2971 if (disabling) {
2972 synchronize_net();
e6484930 2973 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2974#ifdef CONFIG_XPS
2975 netif_reset_xps_queues_gt(dev, txq);
2976#endif
2977 }
ac5b7019
JK
2978 } else {
2979 dev->real_num_tx_queues = txq;
f0796d5c 2980 }
e6484930 2981
e6484930 2982 return 0;
f0796d5c
JF
2983}
2984EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2985
a953be53 2986#ifdef CONFIG_SYSFS
62fe0b40
BH
2987/**
2988 * netif_set_real_num_rx_queues - set actual number of RX queues used
2989 * @dev: Network device
2990 * @rxq: Actual number of RX queues
2991 *
2992 * This must be called either with the rtnl_lock held or before
2993 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2994 * negative error code. If called before registration, it always
2995 * succeeds.
62fe0b40
BH
2996 */
2997int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2998{
2999 int rc;
3000
bd25fa7b
TH
3001 if (rxq < 1 || rxq > dev->num_rx_queues)
3002 return -EINVAL;
3003
62fe0b40
BH
3004 if (dev->reg_state == NETREG_REGISTERED) {
3005 ASSERT_RTNL();
3006
62fe0b40
BH
3007 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3008 rxq);
3009 if (rc)
3010 return rc;
62fe0b40
BH
3011 }
3012
3013 dev->real_num_rx_queues = rxq;
3014 return 0;
3015}
3016EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3017#endif
3018
2c53040f
BH
3019/**
3020 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
3021 *
3022 * This routine should set an upper limit on the number of RSS queues
3023 * used by default by multiqueue devices.
3024 */
a55b138b 3025int netif_get_num_default_rss_queues(void)
16917b87 3026{
40e4e713
HS
3027 return is_kdump_kernel() ?
3028 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
3029}
3030EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3031
3bcb846c 3032static void __netif_reschedule(struct Qdisc *q)
56079431 3033{
def82a1d
JP
3034 struct softnet_data *sd;
3035 unsigned long flags;
56079431 3036
def82a1d 3037 local_irq_save(flags);
903ceff7 3038 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
3039 q->next_sched = NULL;
3040 *sd->output_queue_tailp = q;
3041 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
3042 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3043 local_irq_restore(flags);
3044}
3045
3046void __netif_schedule(struct Qdisc *q)
3047{
3048 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3049 __netif_reschedule(q);
56079431
DV
3050}
3051EXPORT_SYMBOL(__netif_schedule);
3052
e6247027
ED
3053struct dev_kfree_skb_cb {
3054 enum skb_free_reason reason;
3055};
3056
3057static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 3058{
e6247027
ED
3059 return (struct dev_kfree_skb_cb *)skb->cb;
3060}
3061
46e5da40
JF
3062void netif_schedule_queue(struct netdev_queue *txq)
3063{
3064 rcu_read_lock();
5be5515a 3065 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
3066 struct Qdisc *q = rcu_dereference(txq->qdisc);
3067
3068 __netif_schedule(q);
3069 }
3070 rcu_read_unlock();
3071}
3072EXPORT_SYMBOL(netif_schedule_queue);
3073
46e5da40
JF
3074void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3075{
3076 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3077 struct Qdisc *q;
3078
3079 rcu_read_lock();
3080 q = rcu_dereference(dev_queue->qdisc);
3081 __netif_schedule(q);
3082 rcu_read_unlock();
3083 }
3084}
3085EXPORT_SYMBOL(netif_tx_wake_queue);
3086
e6247027 3087void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3088{
e6247027 3089 unsigned long flags;
56079431 3090
9899886d
MJ
3091 if (unlikely(!skb))
3092 return;
3093
63354797 3094 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3095 smp_rmb();
63354797
RE
3096 refcount_set(&skb->users, 0);
3097 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3098 return;
bea3348e 3099 }
e6247027
ED
3100 get_kfree_skb_cb(skb)->reason = reason;
3101 local_irq_save(flags);
3102 skb->next = __this_cpu_read(softnet_data.completion_queue);
3103 __this_cpu_write(softnet_data.completion_queue, skb);
3104 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3105 local_irq_restore(flags);
56079431 3106}
e6247027 3107EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3108
e6247027 3109void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3110{
3111 if (in_irq() || irqs_disabled())
e6247027 3112 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3113 else
3114 dev_kfree_skb(skb);
3115}
e6247027 3116EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3117
3118
bea3348e
SH
3119/**
3120 * netif_device_detach - mark device as removed
3121 * @dev: network device
3122 *
3123 * Mark device as removed from system and therefore no longer available.
3124 */
56079431
DV
3125void netif_device_detach(struct net_device *dev)
3126{
3127 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3128 netif_running(dev)) {
d543103a 3129 netif_tx_stop_all_queues(dev);
56079431
DV
3130 }
3131}
3132EXPORT_SYMBOL(netif_device_detach);
3133
bea3348e
SH
3134/**
3135 * netif_device_attach - mark device as attached
3136 * @dev: network device
3137 *
3138 * Mark device as attached from system and restart if needed.
3139 */
56079431
DV
3140void netif_device_attach(struct net_device *dev)
3141{
3142 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3143 netif_running(dev)) {
d543103a 3144 netif_tx_wake_all_queues(dev);
4ec93edb 3145 __netdev_watchdog_up(dev);
56079431
DV
3146 }
3147}
3148EXPORT_SYMBOL(netif_device_attach);
3149
5605c762
JP
3150/*
3151 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3152 * to be used as a distribution range.
3153 */
eadec877
AD
3154static u16 skb_tx_hash(const struct net_device *dev,
3155 const struct net_device *sb_dev,
3156 struct sk_buff *skb)
5605c762
JP
3157{
3158 u32 hash;
3159 u16 qoffset = 0;
1b837d48 3160 u16 qcount = dev->real_num_tx_queues;
5605c762 3161
eadec877
AD
3162 if (dev->num_tc) {
3163 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3164
3165 qoffset = sb_dev->tc_to_txq[tc].offset;
3166 qcount = sb_dev->tc_to_txq[tc].count;
3167 }
3168
5605c762
JP
3169 if (skb_rx_queue_recorded(skb)) {
3170 hash = skb_get_rx_queue(skb);
6e11d157
AN
3171 if (hash >= qoffset)
3172 hash -= qoffset;
1b837d48
AD
3173 while (unlikely(hash >= qcount))
3174 hash -= qcount;
eadec877 3175 return hash + qoffset;
5605c762
JP
3176 }
3177
3178 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3179}
5605c762 3180
36c92474
BH
3181static void skb_warn_bad_offload(const struct sk_buff *skb)
3182{
84d15ae5 3183 static const netdev_features_t null_features;
36c92474 3184 struct net_device *dev = skb->dev;
88ad4175 3185 const char *name = "";
36c92474 3186
c846ad9b
BG
3187 if (!net_ratelimit())
3188 return;
3189
88ad4175
BM
3190 if (dev) {
3191 if (dev->dev.parent)
3192 name = dev_driver_string(dev->dev.parent);
3193 else
3194 name = netdev_name(dev);
3195 }
6413139d
WB
3196 skb_dump(KERN_WARNING, skb, false);
3197 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3198 name, dev ? &dev->features : &null_features,
6413139d 3199 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3200}
3201
1da177e4
LT
3202/*
3203 * Invalidate hardware checksum when packet is to be mangled, and
3204 * complete checksum manually on outgoing path.
3205 */
84fa7933 3206int skb_checksum_help(struct sk_buff *skb)
1da177e4 3207{
d3bc23e7 3208 __wsum csum;
663ead3b 3209 int ret = 0, offset;
1da177e4 3210
84fa7933 3211 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3212 goto out_set_summed;
3213
3aefd7d6 3214 if (unlikely(skb_is_gso(skb))) {
36c92474
BH
3215 skb_warn_bad_offload(skb);
3216 return -EINVAL;
1da177e4
LT
3217 }
3218
cef401de
ED
3219 /* Before computing a checksum, we should make sure no frag could
3220 * be modified by an external entity : checksum could be wrong.
3221 */
3222 if (skb_has_shared_frag(skb)) {
3223 ret = __skb_linearize(skb);
3224 if (ret)
3225 goto out;
3226 }
3227
55508d60 3228 offset = skb_checksum_start_offset(skb);
a030847e
HX
3229 BUG_ON(offset >= skb_headlen(skb));
3230 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3231
3232 offset += skb->csum_offset;
3233 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3234
8211fbfa
HK
3235 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3236 if (ret)
3237 goto out;
1da177e4 3238
4f2e4ad5 3239 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3240out_set_summed:
1da177e4 3241 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3242out:
1da177e4
LT
3243 return ret;
3244}
d1b19dff 3245EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3246
b72b5bf6
DC
3247int skb_crc32c_csum_help(struct sk_buff *skb)
3248{
3249 __le32 crc32c_csum;
3250 int ret = 0, offset, start;
3251
3252 if (skb->ip_summed != CHECKSUM_PARTIAL)
3253 goto out;
3254
3255 if (unlikely(skb_is_gso(skb)))
3256 goto out;
3257
3258 /* Before computing a checksum, we should make sure no frag could
3259 * be modified by an external entity : checksum could be wrong.
3260 */
3261 if (unlikely(skb_has_shared_frag(skb))) {
3262 ret = __skb_linearize(skb);
3263 if (ret)
3264 goto out;
3265 }
3266 start = skb_checksum_start_offset(skb);
3267 offset = start + offsetof(struct sctphdr, checksum);
3268 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3269 ret = -EINVAL;
3270 goto out;
3271 }
8211fbfa
HK
3272
3273 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3274 if (ret)
3275 goto out;
3276
b72b5bf6
DC
3277 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3278 skb->len - start, ~(__u32)0,
3279 crc32c_csum_stub));
3280 *(__le32 *)(skb->data + offset) = crc32c_csum;
3281 skb->ip_summed = CHECKSUM_NONE;
dba00306 3282 skb->csum_not_inet = 0;
b72b5bf6
DC
3283out:
3284 return ret;
3285}
3286
53d6471c 3287__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3288{
252e3346 3289 __be16 type = skb->protocol;
f6a78bfc 3290
19acc327
PS
3291 /* Tunnel gso handlers can set protocol to ethernet. */
3292 if (type == htons(ETH_P_TEB)) {
3293 struct ethhdr *eth;
3294
3295 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3296 return 0;
3297
1dfe82eb 3298 eth = (struct ethhdr *)skb->data;
19acc327
PS
3299 type = eth->h_proto;
3300 }
3301
d4bcef3f 3302 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3303}
3304
3305/**
3306 * skb_mac_gso_segment - mac layer segmentation handler.
3307 * @skb: buffer to segment
3308 * @features: features for the output path (see dev->features)
3309 */
3310struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3311 netdev_features_t features)
3312{
3313 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3314 struct packet_offload *ptype;
53d6471c
VY
3315 int vlan_depth = skb->mac_len;
3316 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3317
3318 if (unlikely(!type))
3319 return ERR_PTR(-EINVAL);
3320
53d6471c 3321 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3322
3323 rcu_read_lock();
22061d80 3324 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3325 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3326 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3327 break;
3328 }
3329 }
3330 rcu_read_unlock();
3331
98e399f8 3332 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3333
f6a78bfc
HX
3334 return segs;
3335}
05e8ef4a
PS
3336EXPORT_SYMBOL(skb_mac_gso_segment);
3337
3338
3339/* openvswitch calls this on rx path, so we need a different check.
3340 */
3341static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3342{
3343 if (tx_path)
0c19f846
WB
3344 return skb->ip_summed != CHECKSUM_PARTIAL &&
3345 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3346
3347 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3348}
3349
3350/**
3351 * __skb_gso_segment - Perform segmentation on skb.
3352 * @skb: buffer to segment
3353 * @features: features for the output path (see dev->features)
3354 * @tx_path: whether it is called in TX path
3355 *
3356 * This function segments the given skb and returns a list of segments.
3357 *
3358 * It may return NULL if the skb requires no segmentation. This is
3359 * only possible when GSO is used for verifying header integrity.
9207f9d4 3360 *
a08e7fd9 3361 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3362 */
3363struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3364 netdev_features_t features, bool tx_path)
3365{
b2504a5d
ED
3366 struct sk_buff *segs;
3367
05e8ef4a
PS
3368 if (unlikely(skb_needs_check(skb, tx_path))) {
3369 int err;
3370
b2504a5d 3371 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3372 err = skb_cow_head(skb, 0);
3373 if (err < 0)
05e8ef4a
PS
3374 return ERR_PTR(err);
3375 }
3376
802ab55a
AD
3377 /* Only report GSO partial support if it will enable us to
3378 * support segmentation on this frame without needing additional
3379 * work.
3380 */
3381 if (features & NETIF_F_GSO_PARTIAL) {
3382 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3383 struct net_device *dev = skb->dev;
3384
3385 partial_features |= dev->features & dev->gso_partial_features;
3386 if (!skb_gso_ok(skb, features | partial_features))
3387 features &= ~NETIF_F_GSO_PARTIAL;
3388 }
3389
a08e7fd9 3390 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3391 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3392
68c33163 3393 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3394 SKB_GSO_CB(skb)->encap_level = 0;
3395
05e8ef4a
PS
3396 skb_reset_mac_header(skb);
3397 skb_reset_mac_len(skb);
3398
b2504a5d
ED
3399 segs = skb_mac_gso_segment(skb, features);
3400
3a1296a3 3401 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3402 skb_warn_bad_offload(skb);
3403
3404 return segs;
05e8ef4a 3405}
12b0004d 3406EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3407
fb286bb2
HX
3408/* Take action when hardware reception checksum errors are detected. */
3409#ifdef CONFIG_BUG
7fe50ac8 3410void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3411{
3412 if (net_ratelimit()) {
7b6cd1ce 3413 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3414 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3415 dump_stack();
3416 }
3417}
3418EXPORT_SYMBOL(netdev_rx_csum_fault);
3419#endif
3420
ab74cfeb 3421/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3422static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3423{
3d3a8533 3424#ifdef CONFIG_HIGHMEM
1da177e4 3425 int i;
f4563a75 3426
5acbbd42 3427 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3430
ea2ab693 3431 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3432 return 1;
ea2ab693 3433 }
5acbbd42 3434 }
3d3a8533 3435#endif
1da177e4
LT
3436 return 0;
3437}
1da177e4 3438
3b392ddb
SH
3439/* If MPLS offload request, verify we are testing hardware MPLS features
3440 * instead of standard features for the netdev.
3441 */
d0edc7bf 3442#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3443static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 netdev_features_t features,
3445 __be16 type)
3446{
25cd9ba0 3447 if (eth_p_mpls(type))
3b392ddb
SH
3448 features &= skb->dev->mpls_features;
3449
3450 return features;
3451}
3452#else
3453static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 netdev_features_t features,
3455 __be16 type)
3456{
3457 return features;
3458}
3459#endif
3460
c8f44aff 3461static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3462 netdev_features_t features)
f01a5236 3463{
3b392ddb
SH
3464 __be16 type;
3465
9fc95f50 3466 type = skb_network_protocol(skb, NULL);
3b392ddb 3467 features = net_mpls_features(skb, features, type);
53d6471c 3468
c0d680e5 3469 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3470 !can_checksum_protocol(features, type)) {
996e8021 3471 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3472 }
7be2c82c
ED
3473 if (illegal_highdma(skb->dev, skb))
3474 features &= ~NETIF_F_SG;
f01a5236
JG
3475
3476 return features;
3477}
3478
e38f3025
TM
3479netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 struct net_device *dev,
3481 netdev_features_t features)
3482{
3483 return features;
3484}
3485EXPORT_SYMBOL(passthru_features_check);
3486
7ce23672 3487static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3488 struct net_device *dev,
3489 netdev_features_t features)
3490{
3491 return vlan_features_check(skb, features);
3492}
3493
cbc53e08
AD
3494static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 struct net_device *dev,
3496 netdev_features_t features)
3497{
3498 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499
3500 if (gso_segs > dev->gso_max_segs)
3501 return features & ~NETIF_F_GSO_MASK;
3502
1d155dfd
HK
3503 if (!skb_shinfo(skb)->gso_type) {
3504 skb_warn_bad_offload(skb);
3505 return features & ~NETIF_F_GSO_MASK;
3506 }
3507
802ab55a
AD
3508 /* Support for GSO partial features requires software
3509 * intervention before we can actually process the packets
3510 * so we need to strip support for any partial features now
3511 * and we can pull them back in after we have partially
3512 * segmented the frame.
3513 */
3514 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3515 features &= ~dev->gso_partial_features;
3516
3517 /* Make sure to clear the IPv4 ID mangling feature if the
3518 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3519 */
3520 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3521 struct iphdr *iph = skb->encapsulation ?
3522 inner_ip_hdr(skb) : ip_hdr(skb);
3523
3524 if (!(iph->frag_off & htons(IP_DF)))
3525 features &= ~NETIF_F_TSO_MANGLEID;
3526 }
3527
3528 return features;
3529}
3530
c1e756bf 3531netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3532{
5f35227e 3533 struct net_device *dev = skb->dev;
fcbeb976 3534 netdev_features_t features = dev->features;
58e998c6 3535
cbc53e08
AD
3536 if (skb_is_gso(skb))
3537 features = gso_features_check(skb, dev, features);
30b678d8 3538
5f35227e
JG
3539 /* If encapsulation offload request, verify we are testing
3540 * hardware encapsulation features instead of standard
3541 * features for the netdev
3542 */
3543 if (skb->encapsulation)
3544 features &= dev->hw_enc_features;
3545
f5a7fb88
TM
3546 if (skb_vlan_tagged(skb))
3547 features = netdev_intersect_features(features,
3548 dev->vlan_features |
3549 NETIF_F_HW_VLAN_CTAG_TX |
3550 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3551
5f35227e
JG
3552 if (dev->netdev_ops->ndo_features_check)
3553 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3554 features);
8cb65d00
TM
3555 else
3556 features &= dflt_features_check(skb, dev, features);
5f35227e 3557
c1e756bf 3558 return harmonize_features(skb, features);
58e998c6 3559}
c1e756bf 3560EXPORT_SYMBOL(netif_skb_features);
58e998c6 3561
2ea25513 3562static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3563 struct netdev_queue *txq, bool more)
f6a78bfc 3564{
2ea25513
DM
3565 unsigned int len;
3566 int rc;
00829823 3567
9f9a742d 3568 if (dev_nit_active(dev))
2ea25513 3569 dev_queue_xmit_nit(skb, dev);
fc741216 3570
2ea25513 3571 len = skb->len;
3744741a 3572 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
2ea25513 3573 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3574 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3575 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3576
2ea25513
DM
3577 return rc;
3578}
7b9c6090 3579
8dcda22a
DM
3580struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3581 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3582{
3583 struct sk_buff *skb = first;
3584 int rc = NETDEV_TX_OK;
7b9c6090 3585
7f2e870f
DM
3586 while (skb) {
3587 struct sk_buff *next = skb->next;
fc70fb64 3588
a8305bff 3589 skb_mark_not_on_list(skb);
95f6b3dd 3590 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3591 if (unlikely(!dev_xmit_complete(rc))) {
3592 skb->next = next;
3593 goto out;
3594 }
6afff0ca 3595
7f2e870f 3596 skb = next;
fe60faa5 3597 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3598 rc = NETDEV_TX_BUSY;
3599 break;
9ccb8975 3600 }
7f2e870f 3601 }
9ccb8975 3602
7f2e870f
DM
3603out:
3604 *ret = rc;
3605 return skb;
3606}
b40863c6 3607
1ff0dc94
ED
3608static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3609 netdev_features_t features)
f6a78bfc 3610{
df8a39de 3611 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3612 !vlan_hw_offload_capable(features, skb->vlan_proto))
3613 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3614 return skb;
3615}
f6a78bfc 3616
43c26a1a
DC
3617int skb_csum_hwoffload_help(struct sk_buff *skb,
3618 const netdev_features_t features)
3619{
3620 if (unlikely(skb->csum_not_inet))
3621 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3622 skb_crc32c_csum_help(skb);
3623
3624 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3625}
3626EXPORT_SYMBOL(skb_csum_hwoffload_help);
3627
f53c7239 3628static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3629{
3630 netdev_features_t features;
f6a78bfc 3631
eae3f88e
DM
3632 features = netif_skb_features(skb);
3633 skb = validate_xmit_vlan(skb, features);
3634 if (unlikely(!skb))
3635 goto out_null;
7b9c6090 3636
ebf4e808
IL
3637 skb = sk_validate_xmit_skb(skb, dev);
3638 if (unlikely(!skb))
3639 goto out_null;
3640
8b86a61d 3641 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3642 struct sk_buff *segs;
3643
3644 segs = skb_gso_segment(skb, features);
cecda693 3645 if (IS_ERR(segs)) {
af6dabc9 3646 goto out_kfree_skb;
cecda693
JW
3647 } else if (segs) {
3648 consume_skb(skb);
3649 skb = segs;
f6a78bfc 3650 }
eae3f88e
DM
3651 } else {
3652 if (skb_needs_linearize(skb, features) &&
3653 __skb_linearize(skb))
3654 goto out_kfree_skb;
4ec93edb 3655
eae3f88e
DM
3656 /* If packet is not checksummed and device does not
3657 * support checksumming for this protocol, complete
3658 * checksumming here.
3659 */
3660 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3661 if (skb->encapsulation)
3662 skb_set_inner_transport_header(skb,
3663 skb_checksum_start_offset(skb));
3664 else
3665 skb_set_transport_header(skb,
3666 skb_checksum_start_offset(skb));
43c26a1a 3667 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3668 goto out_kfree_skb;
7b9c6090 3669 }
0c772159 3670 }
7b9c6090 3671
f53c7239 3672 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3673
eae3f88e 3674 return skb;
fc70fb64 3675
f6a78bfc
HX
3676out_kfree_skb:
3677 kfree_skb(skb);
eae3f88e 3678out_null:
d21fd63e 3679 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3680 return NULL;
3681}
6afff0ca 3682
f53c7239 3683struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3684{
3685 struct sk_buff *next, *head = NULL, *tail;
3686
bec3cfdc 3687 for (; skb != NULL; skb = next) {
55a93b3e 3688 next = skb->next;
a8305bff 3689 skb_mark_not_on_list(skb);
bec3cfdc
ED
3690
3691 /* in case skb wont be segmented, point to itself */
3692 skb->prev = skb;
3693
f53c7239 3694 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3695 if (!skb)
3696 continue;
55a93b3e 3697
bec3cfdc
ED
3698 if (!head)
3699 head = skb;
3700 else
3701 tail->next = skb;
3702 /* If skb was segmented, skb->prev points to
3703 * the last segment. If not, it still contains skb.
3704 */
3705 tail = skb->prev;
55a93b3e
ED
3706 }
3707 return head;
f6a78bfc 3708}
104ba78c 3709EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3710
1def9238
ED
3711static void qdisc_pkt_len_init(struct sk_buff *skb)
3712{
3713 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3714
3715 qdisc_skb_cb(skb)->pkt_len = skb->len;
3716
3717 /* To get more precise estimation of bytes sent on wire,
3718 * we add to pkt_len the headers size of all segments
3719 */
a0dce875 3720 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3721 unsigned int hdr_len;
15e5a030 3722 u16 gso_segs = shinfo->gso_segs;
1def9238 3723
757b8b1d
ED
3724 /* mac layer + network layer */
3725 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3726
3727 /* + transport layer */
7c68d1a6
ED
3728 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3729 const struct tcphdr *th;
3730 struct tcphdr _tcphdr;
3731
3732 th = skb_header_pointer(skb, skb_transport_offset(skb),
3733 sizeof(_tcphdr), &_tcphdr);
3734 if (likely(th))
3735 hdr_len += __tcp_hdrlen(th);
3736 } else {
3737 struct udphdr _udphdr;
3738
3739 if (skb_header_pointer(skb, skb_transport_offset(skb),
3740 sizeof(_udphdr), &_udphdr))
3741 hdr_len += sizeof(struct udphdr);
3742 }
15e5a030
JW
3743
3744 if (shinfo->gso_type & SKB_GSO_DODGY)
3745 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3746 shinfo->gso_size);
3747
3748 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3749 }
3750}
3751
bbd8a0d3
KK
3752static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3753 struct net_device *dev,
3754 struct netdev_queue *txq)
3755{
3756 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3757 struct sk_buff *to_free = NULL;
a2da570d 3758 bool contended;
bbd8a0d3
KK
3759 int rc;
3760
a2da570d 3761 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3762
3763 if (q->flags & TCQ_F_NOLOCK) {
ac5c66f2 3764 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
379349e9 3765 qdisc_run(q);
6b3ba914
JF
3766
3767 if (unlikely(to_free))
3768 kfree_skb_list(to_free);
3769 return rc;
3770 }
3771
79640a4c
ED
3772 /*
3773 * Heuristic to force contended enqueues to serialize on a
3774 * separate lock before trying to get qdisc main lock.
f9eb8aea 3775 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3776 * often and dequeue packets faster.
79640a4c 3777 */
a2da570d 3778 contended = qdisc_is_running(q);
79640a4c
ED
3779 if (unlikely(contended))
3780 spin_lock(&q->busylock);
3781
bbd8a0d3
KK
3782 spin_lock(root_lock);
3783 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3784 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3785 rc = NET_XMIT_DROP;
3786 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3787 qdisc_run_begin(q)) {
bbd8a0d3
KK
3788 /*
3789 * This is a work-conserving queue; there are no old skbs
3790 * waiting to be sent out; and the qdisc is not running -
3791 * xmit the skb directly.
3792 */
bfe0d029 3793
bfe0d029
ED
3794 qdisc_bstats_update(q, skb);
3795
55a93b3e 3796 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3797 if (unlikely(contended)) {
3798 spin_unlock(&q->busylock);
3799 contended = false;
3800 }
bbd8a0d3 3801 __qdisc_run(q);
6c148184 3802 }
bbd8a0d3 3803
6c148184 3804 qdisc_run_end(q);
bbd8a0d3
KK
3805 rc = NET_XMIT_SUCCESS;
3806 } else {
ac5c66f2 3807 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3808 if (qdisc_run_begin(q)) {
3809 if (unlikely(contended)) {
3810 spin_unlock(&q->busylock);
3811 contended = false;
3812 }
3813 __qdisc_run(q);
6c148184 3814 qdisc_run_end(q);
79640a4c 3815 }
bbd8a0d3
KK
3816 }
3817 spin_unlock(root_lock);
520ac30f
ED
3818 if (unlikely(to_free))
3819 kfree_skb_list(to_free);
79640a4c
ED
3820 if (unlikely(contended))
3821 spin_unlock(&q->busylock);
bbd8a0d3
KK
3822 return rc;
3823}
3824
86f8515f 3825#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3826static void skb_update_prio(struct sk_buff *skb)
3827{
4dcb31d4
ED
3828 const struct netprio_map *map;
3829 const struct sock *sk;
3830 unsigned int prioidx;
5bc1421e 3831
4dcb31d4
ED
3832 if (skb->priority)
3833 return;
3834 map = rcu_dereference_bh(skb->dev->priomap);
3835 if (!map)
3836 return;
3837 sk = skb_to_full_sk(skb);
3838 if (!sk)
3839 return;
91c68ce2 3840
4dcb31d4
ED
3841 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3842
3843 if (prioidx < map->priomap_len)
3844 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3845}
3846#else
3847#define skb_update_prio(skb)
3848#endif
3849
95603e22
MM
3850/**
3851 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3852 * @net: network namespace this loopback is happening in
3853 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3854 * @skb: buffer to transmit
3855 */
0c4b51f0 3856int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3857{
3858 skb_reset_mac_header(skb);
3859 __skb_pull(skb, skb_network_offset(skb));
3860 skb->pkt_type = PACKET_LOOPBACK;
3861 skb->ip_summed = CHECKSUM_UNNECESSARY;
3862 WARN_ON(!skb_dst(skb));
3863 skb_dst_force(skb);
3864 netif_rx_ni(skb);
3865 return 0;
3866}
3867EXPORT_SYMBOL(dev_loopback_xmit);
3868
1f211a1b
DB
3869#ifdef CONFIG_NET_EGRESS
3870static struct sk_buff *
3871sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3872{
46209401 3873 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3874 struct tcf_result cl_res;
3875
46209401 3876 if (!miniq)
1f211a1b
DB
3877 return skb;
3878
8dc07fdb 3879 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
aadaca9e 3880 qdisc_skb_cb(skb)->mru = 0;
46209401 3881 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3882
46209401 3883 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3884 case TC_ACT_OK:
3885 case TC_ACT_RECLASSIFY:
3886 skb->tc_index = TC_H_MIN(cl_res.classid);
3887 break;
3888 case TC_ACT_SHOT:
46209401 3889 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3890 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3891 kfree_skb(skb);
3892 return NULL;
1f211a1b
DB
3893 case TC_ACT_STOLEN:
3894 case TC_ACT_QUEUED:
e25ea21f 3895 case TC_ACT_TRAP:
1f211a1b 3896 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3897 consume_skb(skb);
1f211a1b
DB
3898 return NULL;
3899 case TC_ACT_REDIRECT:
3900 /* No need to push/pop skb's mac_header here on egress! */
3901 skb_do_redirect(skb);
3902 *ret = NET_XMIT_SUCCESS;
3903 return NULL;
3904 default:
3905 break;
3906 }
357b6cc5 3907
1f211a1b
DB
3908 return skb;
3909}
3910#endif /* CONFIG_NET_EGRESS */
3911
fc9bab24
AN
3912#ifdef CONFIG_XPS
3913static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3914 struct xps_dev_maps *dev_maps, unsigned int tci)
3915{
3916 struct xps_map *map;
3917 int queue_index = -1;
3918
3919 if (dev->num_tc) {
3920 tci *= dev->num_tc;
3921 tci += netdev_get_prio_tc_map(dev, skb->priority);
3922 }
3923
3924 map = rcu_dereference(dev_maps->attr_map[tci]);
3925 if (map) {
3926 if (map->len == 1)
3927 queue_index = map->queues[0];
3928 else
3929 queue_index = map->queues[reciprocal_scale(
3930 skb_get_hash(skb), map->len)];
3931 if (unlikely(queue_index >= dev->real_num_tx_queues))
3932 queue_index = -1;
3933 }
3934 return queue_index;
3935}
3936#endif
3937
eadec877
AD
3938static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3939 struct sk_buff *skb)
638b2a69
JP
3940{
3941#ifdef CONFIG_XPS
3942 struct xps_dev_maps *dev_maps;
fc9bab24 3943 struct sock *sk = skb->sk;
638b2a69
JP
3944 int queue_index = -1;
3945
04157469
AN
3946 if (!static_key_false(&xps_needed))
3947 return -1;
3948
638b2a69 3949 rcu_read_lock();
fc9bab24
AN
3950 if (!static_key_false(&xps_rxqs_needed))
3951 goto get_cpus_map;
3952
eadec877 3953 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3954 if (dev_maps) {
fc9bab24 3955 int tci = sk_rx_queue_get(sk);
184c449f 3956
fc9bab24
AN
3957 if (tci >= 0 && tci < dev->num_rx_queues)
3958 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3959 tci);
3960 }
184c449f 3961
fc9bab24
AN
3962get_cpus_map:
3963 if (queue_index < 0) {
eadec877 3964 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3965 if (dev_maps) {
3966 unsigned int tci = skb->sender_cpu - 1;
3967
3968 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3969 tci);
638b2a69
JP
3970 }
3971 }
3972 rcu_read_unlock();
3973
3974 return queue_index;
3975#else
3976 return -1;
3977#endif
3978}
3979
a4ea8a3d 3980u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3981 struct net_device *sb_dev)
a4ea8a3d
AD
3982{
3983 return 0;
3984}
3985EXPORT_SYMBOL(dev_pick_tx_zero);
3986
3987u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3988 struct net_device *sb_dev)
a4ea8a3d
AD
3989{
3990 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3991}
3992EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3993
b71b5837
PA
3994u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3995 struct net_device *sb_dev)
638b2a69
JP
3996{
3997 struct sock *sk = skb->sk;
3998 int queue_index = sk_tx_queue_get(sk);
3999
eadec877
AD
4000 sb_dev = sb_dev ? : dev;
4001
638b2a69
JP
4002 if (queue_index < 0 || skb->ooo_okay ||
4003 queue_index >= dev->real_num_tx_queues) {
eadec877 4004 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 4005
638b2a69 4006 if (new_index < 0)
eadec877 4007 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
4008
4009 if (queue_index != new_index && sk &&
004a5d01 4010 sk_fullsock(sk) &&
638b2a69
JP
4011 rcu_access_pointer(sk->sk_dst_cache))
4012 sk_tx_queue_set(sk, new_index);
4013
4014 queue_index = new_index;
4015 }
4016
4017 return queue_index;
4018}
b71b5837 4019EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 4020
4bd97d51
PA
4021struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4022 struct sk_buff *skb,
4023 struct net_device *sb_dev)
638b2a69
JP
4024{
4025 int queue_index = 0;
4026
4027#ifdef CONFIG_XPS
52bd2d62
ED
4028 u32 sender_cpu = skb->sender_cpu - 1;
4029
4030 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
4031 skb->sender_cpu = raw_smp_processor_id() + 1;
4032#endif
4033
4034 if (dev->real_num_tx_queues != 1) {
4035 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 4036
638b2a69 4037 if (ops->ndo_select_queue)
a350ecce 4038 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 4039 else
4bd97d51 4040 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 4041
d584527c 4042 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
4043 }
4044
4045 skb_set_queue_mapping(skb, queue_index);
4046 return netdev_get_tx_queue(dev, queue_index);
4047}
4048
d29f749e 4049/**
9d08dd3d 4050 * __dev_queue_xmit - transmit a buffer
d29f749e 4051 * @skb: buffer to transmit
eadec877 4052 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
4053 *
4054 * Queue a buffer for transmission to a network device. The caller must
4055 * have set the device and priority and built the buffer before calling
4056 * this function. The function can be called from an interrupt.
4057 *
4058 * A negative errno code is returned on a failure. A success does not
4059 * guarantee the frame will be transmitted as it may be dropped due
4060 * to congestion or traffic shaping.
4061 *
4062 * -----------------------------------------------------------------------------------
4063 * I notice this method can also return errors from the queue disciplines,
4064 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4065 * be positive.
4066 *
4067 * Regardless of the return value, the skb is consumed, so it is currently
4068 * difficult to retry a send to this method. (You can bump the ref count
4069 * before sending to hold a reference for retry if you are careful.)
4070 *
4071 * When calling this method, interrupts MUST be enabled. This is because
4072 * the BH enable code must have IRQs enabled so that it will not deadlock.
4073 * --BLG
4074 */
eadec877 4075static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
4076{
4077 struct net_device *dev = skb->dev;
dc2b4847 4078 struct netdev_queue *txq;
1da177e4
LT
4079 struct Qdisc *q;
4080 int rc = -ENOMEM;
f53c7239 4081 bool again = false;
1da177e4 4082
6d1ccff6
ED
4083 skb_reset_mac_header(skb);
4084
e7fd2885
WB
4085 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4086 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4087
4ec93edb
YH
4088 /* Disable soft irqs for various locks below. Also
4089 * stops preemption for RCU.
1da177e4 4090 */
4ec93edb 4091 rcu_read_lock_bh();
1da177e4 4092
5bc1421e
NH
4093 skb_update_prio(skb);
4094
1f211a1b
DB
4095 qdisc_pkt_len_init(skb);
4096#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4097 skb->tc_at_ingress = 0;
357b6cc5 4098# ifdef CONFIG_NET_EGRESS
aabf6772 4099 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4100 skb = sch_handle_egress(skb, &rc, dev);
4101 if (!skb)
4102 goto out;
4103 }
357b6cc5 4104# endif
1f211a1b 4105#endif
02875878
ED
4106 /* If device/qdisc don't need skb->dst, release it right now while
4107 * its hot in this cpu cache.
4108 */
4109 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4110 skb_dst_drop(skb);
4111 else
4112 skb_dst_force(skb);
4113
4bd97d51 4114 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4115 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4116
cf66ba58 4117 trace_net_dev_queue(skb);
1da177e4 4118 if (q->enqueue) {
bbd8a0d3 4119 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4120 goto out;
1da177e4
LT
4121 }
4122
4123 /* The device has no queue. Common case for software devices:
eb13da1a 4124 * loopback, all the sorts of tunnels...
1da177e4 4125
eb13da1a 4126 * Really, it is unlikely that netif_tx_lock protection is necessary
4127 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4128 * counters.)
4129 * However, it is possible, that they rely on protection
4130 * made by us here.
1da177e4 4131
eb13da1a 4132 * Check this and shot the lock. It is not prone from deadlocks.
4133 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4134 */
4135 if (dev->flags & IFF_UP) {
4136 int cpu = smp_processor_id(); /* ok because BHs are off */
4137
c773e847 4138 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4139 if (dev_xmit_recursion())
745e20f1
ED
4140 goto recursion_alert;
4141
f53c7239 4142 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4143 if (!skb)
d21fd63e 4144 goto out;
1f59533f 4145
3744741a 4146 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
c773e847 4147 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4148
73466498 4149 if (!netif_xmit_stopped(txq)) {
97cdcf37 4150 dev_xmit_recursion_inc();
ce93718f 4151 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4152 dev_xmit_recursion_dec();
572a9d7b 4153 if (dev_xmit_complete(rc)) {
c773e847 4154 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4155 goto out;
4156 }
4157 }
c773e847 4158 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4159 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4160 dev->name);
1da177e4
LT
4161 } else {
4162 /* Recursion is detected! It is possible,
745e20f1
ED
4163 * unfortunately
4164 */
4165recursion_alert:
e87cc472
JP
4166 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4167 dev->name);
1da177e4
LT
4168 }
4169 }
4170
4171 rc = -ENETDOWN;
d4828d85 4172 rcu_read_unlock_bh();
1da177e4 4173
015f0688 4174 atomic_long_inc(&dev->tx_dropped);
1f59533f 4175 kfree_skb_list(skb);
1da177e4
LT
4176 return rc;
4177out:
d4828d85 4178 rcu_read_unlock_bh();
1da177e4
LT
4179 return rc;
4180}
f663dd9a 4181
2b4aa3ce 4182int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4183{
4184 return __dev_queue_xmit(skb, NULL);
4185}
2b4aa3ce 4186EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4187
eadec877 4188int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4189{
eadec877 4190 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4191}
4192EXPORT_SYMBOL(dev_queue_xmit_accel);
4193
36ccdf85 4194int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
865b03f2
MK
4195{
4196 struct net_device *dev = skb->dev;
4197 struct sk_buff *orig_skb = skb;
4198 struct netdev_queue *txq;
4199 int ret = NETDEV_TX_BUSY;
4200 bool again = false;
4201
4202 if (unlikely(!netif_running(dev) ||
4203 !netif_carrier_ok(dev)))
4204 goto drop;
4205
4206 skb = validate_xmit_skb_list(skb, dev, &again);
4207 if (skb != orig_skb)
4208 goto drop;
4209
4210 skb_set_queue_mapping(skb, queue_id);
4211 txq = skb_get_tx_queue(dev, skb);
3744741a 4212 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
865b03f2
MK
4213
4214 local_bh_disable();
4215
0ad6f6e7 4216 dev_xmit_recursion_inc();
865b03f2
MK
4217 HARD_TX_LOCK(dev, txq, smp_processor_id());
4218 if (!netif_xmit_frozen_or_drv_stopped(txq))
4219 ret = netdev_start_xmit(skb, dev, txq, false);
4220 HARD_TX_UNLOCK(dev, txq);
0ad6f6e7 4221 dev_xmit_recursion_dec();
865b03f2
MK
4222
4223 local_bh_enable();
865b03f2
MK
4224 return ret;
4225drop:
4226 atomic_long_inc(&dev->tx_dropped);
4227 kfree_skb_list(skb);
4228 return NET_XMIT_DROP;
4229}
36ccdf85 4230EXPORT_SYMBOL(__dev_direct_xmit);
1da177e4 4231
eb13da1a 4232/*************************************************************************
4233 * Receiver routines
4234 *************************************************************************/
1da177e4 4235
6b2bedc3 4236int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4237EXPORT_SYMBOL(netdev_max_backlog);
4238
3b098e2d 4239int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4240int netdev_budget __read_mostly = 300;
a4837980
KK
4241/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4242unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4243int weight_p __read_mostly = 64; /* old backlog weight */
4244int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4245int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4246int dev_rx_weight __read_mostly = 64;
4247int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4248/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4249int gro_normal_batch __read_mostly = 8;
1da177e4 4250
eecfd7c4
ED
4251/* Called with irq disabled */
4252static inline void ____napi_schedule(struct softnet_data *sd,
4253 struct napi_struct *napi)
4254{
4255 list_add_tail(&napi->poll_list, &sd->poll_list);
4256 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4257}
4258
bfb564e7
KK
4259#ifdef CONFIG_RPS
4260
4261/* One global table that all flow-based protocols share. */
6e3f7faf 4262struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4263EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4264u32 rps_cpu_mask __read_mostly;
4265EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4266
dc05360f 4267struct static_key_false rps_needed __read_mostly;
3df97ba8 4268EXPORT_SYMBOL(rps_needed);
dc05360f 4269struct static_key_false rfs_needed __read_mostly;
13bfff25 4270EXPORT_SYMBOL(rfs_needed);
adc9300e 4271
c445477d
BH
4272static struct rps_dev_flow *
4273set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4274 struct rps_dev_flow *rflow, u16 next_cpu)
4275{
a31196b0 4276 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4277#ifdef CONFIG_RFS_ACCEL
4278 struct netdev_rx_queue *rxqueue;
4279 struct rps_dev_flow_table *flow_table;
4280 struct rps_dev_flow *old_rflow;
4281 u32 flow_id;
4282 u16 rxq_index;
4283 int rc;
4284
4285 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4286 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4287 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4288 goto out;
4289 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4290 if (rxq_index == skb_get_rx_queue(skb))
4291 goto out;
4292
4293 rxqueue = dev->_rx + rxq_index;
4294 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4295 if (!flow_table)
4296 goto out;
61b905da 4297 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4298 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4299 rxq_index, flow_id);
4300 if (rc < 0)
4301 goto out;
4302 old_rflow = rflow;
4303 rflow = &flow_table->flows[flow_id];
c445477d
BH
4304 rflow->filter = rc;
4305 if (old_rflow->filter == rflow->filter)
4306 old_rflow->filter = RPS_NO_FILTER;
4307 out:
4308#endif
4309 rflow->last_qtail =
09994d1b 4310 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4311 }
4312
09994d1b 4313 rflow->cpu = next_cpu;
c445477d
BH
4314 return rflow;
4315}
4316
bfb564e7
KK
4317/*
4318 * get_rps_cpu is called from netif_receive_skb and returns the target
4319 * CPU from the RPS map of the receiving queue for a given skb.
4320 * rcu_read_lock must be held on entry.
4321 */
4322static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4323 struct rps_dev_flow **rflowp)
4324{
567e4b79
ED
4325 const struct rps_sock_flow_table *sock_flow_table;
4326 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4327 struct rps_dev_flow_table *flow_table;
567e4b79 4328 struct rps_map *map;
bfb564e7 4329 int cpu = -1;
567e4b79 4330 u32 tcpu;
61b905da 4331 u32 hash;
bfb564e7
KK
4332
4333 if (skb_rx_queue_recorded(skb)) {
4334 u16 index = skb_get_rx_queue(skb);
567e4b79 4335
62fe0b40
BH
4336 if (unlikely(index >= dev->real_num_rx_queues)) {
4337 WARN_ONCE(dev->real_num_rx_queues > 1,
4338 "%s received packet on queue %u, but number "
4339 "of RX queues is %u\n",
4340 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4341 goto done;
4342 }
567e4b79
ED
4343 rxqueue += index;
4344 }
bfb564e7 4345
567e4b79
ED
4346 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4347
4348 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4349 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4350 if (!flow_table && !map)
bfb564e7
KK
4351 goto done;
4352
2d47b459 4353 skb_reset_network_header(skb);
61b905da
TH
4354 hash = skb_get_hash(skb);
4355 if (!hash)
bfb564e7
KK
4356 goto done;
4357
fec5e652
TH
4358 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4359 if (flow_table && sock_flow_table) {
fec5e652 4360 struct rps_dev_flow *rflow;
567e4b79
ED
4361 u32 next_cpu;
4362 u32 ident;
4363
4364 /* First check into global flow table if there is a match */
4365 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4366 if ((ident ^ hash) & ~rps_cpu_mask)
4367 goto try_rps;
fec5e652 4368
567e4b79
ED
4369 next_cpu = ident & rps_cpu_mask;
4370
4371 /* OK, now we know there is a match,
4372 * we can look at the local (per receive queue) flow table
4373 */
61b905da 4374 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4375 tcpu = rflow->cpu;
4376
fec5e652
TH
4377 /*
4378 * If the desired CPU (where last recvmsg was done) is
4379 * different from current CPU (one in the rx-queue flow
4380 * table entry), switch if one of the following holds:
a31196b0 4381 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4382 * - Current CPU is offline.
4383 * - The current CPU's queue tail has advanced beyond the
4384 * last packet that was enqueued using this table entry.
4385 * This guarantees that all previous packets for the flow
4386 * have been dequeued, thus preserving in order delivery.
4387 */
4388 if (unlikely(tcpu != next_cpu) &&
a31196b0 4389 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4390 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4391 rflow->last_qtail)) >= 0)) {
4392 tcpu = next_cpu;
c445477d 4393 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4394 }
c445477d 4395
a31196b0 4396 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4397 *rflowp = rflow;
4398 cpu = tcpu;
4399 goto done;
4400 }
4401 }
4402
567e4b79
ED
4403try_rps:
4404
0a9627f2 4405 if (map) {
8fc54f68 4406 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4407 if (cpu_online(tcpu)) {
4408 cpu = tcpu;
4409 goto done;
4410 }
4411 }
4412
4413done:
0a9627f2
TH
4414 return cpu;
4415}
4416
c445477d
BH
4417#ifdef CONFIG_RFS_ACCEL
4418
4419/**
4420 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4421 * @dev: Device on which the filter was set
4422 * @rxq_index: RX queue index
4423 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4424 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4425 *
4426 * Drivers that implement ndo_rx_flow_steer() should periodically call
4427 * this function for each installed filter and remove the filters for
4428 * which it returns %true.
4429 */
4430bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4431 u32 flow_id, u16 filter_id)
4432{
4433 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4434 struct rps_dev_flow_table *flow_table;
4435 struct rps_dev_flow *rflow;
4436 bool expire = true;
a31196b0 4437 unsigned int cpu;
c445477d
BH
4438
4439 rcu_read_lock();
4440 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4441 if (flow_table && flow_id <= flow_table->mask) {
4442 rflow = &flow_table->flows[flow_id];
6aa7de05 4443 cpu = READ_ONCE(rflow->cpu);
a31196b0 4444 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4445 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4446 rflow->last_qtail) <
4447 (int)(10 * flow_table->mask)))
4448 expire = false;
4449 }
4450 rcu_read_unlock();
4451 return expire;
4452}
4453EXPORT_SYMBOL(rps_may_expire_flow);
4454
4455#endif /* CONFIG_RFS_ACCEL */
4456
0a9627f2 4457/* Called from hardirq (IPI) context */
e36fa2f7 4458static void rps_trigger_softirq(void *data)
0a9627f2 4459{
e36fa2f7
ED
4460 struct softnet_data *sd = data;
4461
eecfd7c4 4462 ____napi_schedule(sd, &sd->backlog);
dee42870 4463 sd->received_rps++;
0a9627f2 4464}
e36fa2f7 4465
fec5e652 4466#endif /* CONFIG_RPS */
0a9627f2 4467
e36fa2f7
ED
4468/*
4469 * Check if this softnet_data structure is another cpu one
4470 * If yes, queue it to our IPI list and return 1
4471 * If no, return 0
4472 */
4473static int rps_ipi_queued(struct softnet_data *sd)
4474{
4475#ifdef CONFIG_RPS
903ceff7 4476 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4477
4478 if (sd != mysd) {
4479 sd->rps_ipi_next = mysd->rps_ipi_list;
4480 mysd->rps_ipi_list = sd;
4481
4482 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4483 return 1;
4484 }
4485#endif /* CONFIG_RPS */
4486 return 0;
4487}
4488
99bbc707
WB
4489#ifdef CONFIG_NET_FLOW_LIMIT
4490int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4491#endif
4492
4493static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4494{
4495#ifdef CONFIG_NET_FLOW_LIMIT
4496 struct sd_flow_limit *fl;
4497 struct softnet_data *sd;
4498 unsigned int old_flow, new_flow;
4499
4500 if (qlen < (netdev_max_backlog >> 1))
4501 return false;
4502
903ceff7 4503 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4504
4505 rcu_read_lock();
4506 fl = rcu_dereference(sd->flow_limit);
4507 if (fl) {
3958afa1 4508 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4509 old_flow = fl->history[fl->history_head];
4510 fl->history[fl->history_head] = new_flow;
4511
4512 fl->history_head++;
4513 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4514
4515 if (likely(fl->buckets[old_flow]))
4516 fl->buckets[old_flow]--;
4517
4518 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4519 fl->count++;
4520 rcu_read_unlock();
4521 return true;
4522 }
4523 }
4524 rcu_read_unlock();
4525#endif
4526 return false;
4527}
4528
0a9627f2
TH
4529/*
4530 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4531 * queue (may be a remote CPU queue).
4532 */
fec5e652
TH
4533static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4534 unsigned int *qtail)
0a9627f2 4535{
e36fa2f7 4536 struct softnet_data *sd;
0a9627f2 4537 unsigned long flags;
99bbc707 4538 unsigned int qlen;
0a9627f2 4539
e36fa2f7 4540 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4541
4542 local_irq_save(flags);
0a9627f2 4543
e36fa2f7 4544 rps_lock(sd);
e9e4dd32
JA
4545 if (!netif_running(skb->dev))
4546 goto drop;
99bbc707
WB
4547 qlen = skb_queue_len(&sd->input_pkt_queue);
4548 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4549 if (qlen) {
0a9627f2 4550enqueue:
e36fa2f7 4551 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4552 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4553 rps_unlock(sd);
152102c7 4554 local_irq_restore(flags);
0a9627f2
TH
4555 return NET_RX_SUCCESS;
4556 }
4557
ebda37c2
ED
4558 /* Schedule NAPI for backlog device
4559 * We can use non atomic operation since we own the queue lock
4560 */
4561 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4562 if (!rps_ipi_queued(sd))
eecfd7c4 4563 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4564 }
4565 goto enqueue;
4566 }
4567
e9e4dd32 4568drop:
dee42870 4569 sd->dropped++;
e36fa2f7 4570 rps_unlock(sd);
0a9627f2 4571
0a9627f2
TH
4572 local_irq_restore(flags);
4573
caf586e5 4574 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4575 kfree_skb(skb);
4576 return NET_RX_DROP;
4577}
1da177e4 4578
e817f856
JDB
4579static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4580{
4581 struct net_device *dev = skb->dev;
4582 struct netdev_rx_queue *rxqueue;
4583
4584 rxqueue = dev->_rx;
4585
4586 if (skb_rx_queue_recorded(skb)) {
4587 u16 index = skb_get_rx_queue(skb);
4588
4589 if (unlikely(index >= dev->real_num_rx_queues)) {
4590 WARN_ONCE(dev->real_num_rx_queues > 1,
4591 "%s received packet on queue %u, but number "
4592 "of RX queues is %u\n",
4593 dev->name, index, dev->real_num_rx_queues);
4594
4595 return rxqueue; /* Return first rxqueue */
4596 }
4597 rxqueue += index;
4598 }
4599 return rxqueue;
4600}
4601
d4455169 4602static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4603 struct xdp_buff *xdp,
d4455169
JF
4604 struct bpf_prog *xdp_prog)
4605{
e817f856 4606 struct netdev_rx_queue *rxqueue;
198d83bb 4607 void *orig_data, *orig_data_end;
de8f3a83 4608 u32 metalen, act = XDP_DROP;
29724956
JDB
4609 __be16 orig_eth_type;
4610 struct ethhdr *eth;
4611 bool orig_bcast;
d4455169
JF
4612 int hlen, off;
4613 u32 mac_len;
4614
4615 /* Reinjected packets coming from act_mirred or similar should
4616 * not get XDP generic processing.
4617 */
2c64605b 4618 if (skb_is_redirected(skb))
d4455169
JF
4619 return XDP_PASS;
4620
de8f3a83
DB
4621 /* XDP packets must be linear and must have sufficient headroom
4622 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4623 * native XDP provides, thus we need to do it here as well.
4624 */
ad1e03b2 4625 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
de8f3a83
DB
4626 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4627 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4628 int troom = skb->tail + skb->data_len - skb->end;
4629
4630 /* In case we have to go down the path and also linearize,
4631 * then lets do the pskb_expand_head() work just once here.
4632 */
4633 if (pskb_expand_head(skb,
4634 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4635 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4636 goto do_drop;
2d17d8d7 4637 if (skb_linearize(skb))
de8f3a83
DB
4638 goto do_drop;
4639 }
d4455169
JF
4640
4641 /* The XDP program wants to see the packet starting at the MAC
4642 * header.
4643 */
4644 mac_len = skb->data - skb_mac_header(skb);
4645 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4646 xdp->data = skb->data - mac_len;
4647 xdp->data_meta = xdp->data;
4648 xdp->data_end = xdp->data + hlen;
4649 xdp->data_hard_start = skb->data - skb_headroom(skb);
a075767b
JDB
4650
4651 /* SKB "head" area always have tailroom for skb_shared_info */
4652 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4653 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4654
02671e23
BT
4655 orig_data_end = xdp->data_end;
4656 orig_data = xdp->data;
29724956
JDB
4657 eth = (struct ethhdr *)xdp->data;
4658 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4659 orig_eth_type = eth->h_proto;
d4455169 4660
e817f856 4661 rxqueue = netif_get_rxqueue(skb);
02671e23 4662 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4663
02671e23 4664 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4665
065af355 4666 /* check if bpf_xdp_adjust_head was used */
02671e23 4667 off = xdp->data - orig_data;
065af355
JDB
4668 if (off) {
4669 if (off > 0)
4670 __skb_pull(skb, off);
4671 else if (off < 0)
4672 __skb_push(skb, -off);
4673
4674 skb->mac_header += off;
4675 skb_reset_network_header(skb);
4676 }
d4455169 4677
a075767b
JDB
4678 /* check if bpf_xdp_adjust_tail was used */
4679 off = xdp->data_end - orig_data_end;
f7613120 4680 if (off != 0) {
02671e23 4681 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
a075767b 4682 skb->len += off; /* positive on grow, negative on shrink */
f7613120 4683 }
198d83bb 4684
29724956
JDB
4685 /* check if XDP changed eth hdr such SKB needs update */
4686 eth = (struct ethhdr *)xdp->data;
4687 if ((orig_eth_type != eth->h_proto) ||
4688 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4689 __skb_push(skb, ETH_HLEN);
4690 skb->protocol = eth_type_trans(skb, skb->dev);
4691 }
4692
d4455169 4693 switch (act) {
6103aa96 4694 case XDP_REDIRECT:
d4455169
JF
4695 case XDP_TX:
4696 __skb_push(skb, mac_len);
de8f3a83 4697 break;
d4455169 4698 case XDP_PASS:
02671e23 4699 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4700 if (metalen)
4701 skb_metadata_set(skb, metalen);
d4455169 4702 break;
d4455169
JF
4703 default:
4704 bpf_warn_invalid_xdp_action(act);
df561f66 4705 fallthrough;
d4455169
JF
4706 case XDP_ABORTED:
4707 trace_xdp_exception(skb->dev, xdp_prog, act);
df561f66 4708 fallthrough;
d4455169
JF
4709 case XDP_DROP:
4710 do_drop:
4711 kfree_skb(skb);
4712 break;
4713 }
4714
4715 return act;
4716}
4717
4718/* When doing generic XDP we have to bypass the qdisc layer and the
4719 * network taps in order to match in-driver-XDP behavior.
4720 */
7c497478 4721void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4722{
4723 struct net_device *dev = skb->dev;
4724 struct netdev_queue *txq;
4725 bool free_skb = true;
4726 int cpu, rc;
4727
4bd97d51 4728 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4729 cpu = smp_processor_id();
4730 HARD_TX_LOCK(dev, txq, cpu);
4731 if (!netif_xmit_stopped(txq)) {
4732 rc = netdev_start_xmit(skb, dev, txq, 0);
4733 if (dev_xmit_complete(rc))
4734 free_skb = false;
4735 }
4736 HARD_TX_UNLOCK(dev, txq);
4737 if (free_skb) {
4738 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4739 kfree_skb(skb);
4740 }
4741}
4742
02786475 4743static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4744
7c497478 4745int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4746{
d4455169 4747 if (xdp_prog) {
02671e23
BT
4748 struct xdp_buff xdp;
4749 u32 act;
6103aa96 4750 int err;
d4455169 4751
02671e23 4752 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4753 if (act != XDP_PASS) {
6103aa96
JF
4754 switch (act) {
4755 case XDP_REDIRECT:
2facaad6 4756 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4757 &xdp, xdp_prog);
6103aa96
JF
4758 if (err)
4759 goto out_redir;
02671e23 4760 break;
6103aa96 4761 case XDP_TX:
d4455169 4762 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4763 break;
4764 }
d4455169
JF
4765 return XDP_DROP;
4766 }
4767 }
4768 return XDP_PASS;
6103aa96 4769out_redir:
6103aa96
JF
4770 kfree_skb(skb);
4771 return XDP_DROP;
d4455169 4772}
7c497478 4773EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4774
ae78dbfa 4775static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4776{
b0e28f1e 4777 int ret;
1da177e4 4778
588f0330 4779 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4780
cf66ba58 4781 trace_netif_rx(skb);
d4455169 4782
df334545 4783#ifdef CONFIG_RPS
dc05360f 4784 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4785 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4786 int cpu;
4787
cece1945 4788 preempt_disable();
b0e28f1e 4789 rcu_read_lock();
fec5e652
TH
4790
4791 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4792 if (cpu < 0)
4793 cpu = smp_processor_id();
fec5e652
TH
4794
4795 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4796
b0e28f1e 4797 rcu_read_unlock();
cece1945 4798 preempt_enable();
adc9300e
ED
4799 } else
4800#endif
fec5e652
TH
4801 {
4802 unsigned int qtail;
f4563a75 4803
fec5e652
TH
4804 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4805 put_cpu();
4806 }
b0e28f1e 4807 return ret;
1da177e4 4808}
ae78dbfa
BH
4809
4810/**
4811 * netif_rx - post buffer to the network code
4812 * @skb: buffer to post
4813 *
4814 * This function receives a packet from a device driver and queues it for
4815 * the upper (protocol) levels to process. It always succeeds. The buffer
4816 * may be dropped during processing for congestion control or by the
4817 * protocol layers.
4818 *
4819 * return values:
4820 * NET_RX_SUCCESS (no congestion)
4821 * NET_RX_DROP (packet was dropped)
4822 *
4823 */
4824
4825int netif_rx(struct sk_buff *skb)
4826{
b0e3f1bd
GB
4827 int ret;
4828
ae78dbfa
BH
4829 trace_netif_rx_entry(skb);
4830
b0e3f1bd
GB
4831 ret = netif_rx_internal(skb);
4832 trace_netif_rx_exit(ret);
4833
4834 return ret;
ae78dbfa 4835}
d1b19dff 4836EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4837
4838int netif_rx_ni(struct sk_buff *skb)
4839{
4840 int err;
4841
ae78dbfa
BH
4842 trace_netif_rx_ni_entry(skb);
4843
1da177e4 4844 preempt_disable();
ae78dbfa 4845 err = netif_rx_internal(skb);
1da177e4
LT
4846 if (local_softirq_pending())
4847 do_softirq();
4848 preempt_enable();
b0e3f1bd 4849 trace_netif_rx_ni_exit(err);
1da177e4
LT
4850
4851 return err;
4852}
1da177e4
LT
4853EXPORT_SYMBOL(netif_rx_ni);
4854
c11171a4
SAS
4855int netif_rx_any_context(struct sk_buff *skb)
4856{
4857 /*
4858 * If invoked from contexts which do not invoke bottom half
4859 * processing either at return from interrupt or when softrqs are
4860 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4861 * directly.
4862 */
4863 if (in_interrupt())
4864 return netif_rx(skb);
4865 else
4866 return netif_rx_ni(skb);
4867}
4868EXPORT_SYMBOL(netif_rx_any_context);
4869
0766f788 4870static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4871{
903ceff7 4872 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4873
4874 if (sd->completion_queue) {
4875 struct sk_buff *clist;
4876
4877 local_irq_disable();
4878 clist = sd->completion_queue;
4879 sd->completion_queue = NULL;
4880 local_irq_enable();
4881
4882 while (clist) {
4883 struct sk_buff *skb = clist;
f4563a75 4884
1da177e4
LT
4885 clist = clist->next;
4886
63354797 4887 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4888 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4889 trace_consume_skb(skb);
4890 else
4891 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4892
4893 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4894 __kfree_skb(skb);
4895 else
4896 __kfree_skb_defer(skb);
1da177e4 4897 }
15fad714
JDB
4898
4899 __kfree_skb_flush();
1da177e4
LT
4900 }
4901
4902 if (sd->output_queue) {
37437bb2 4903 struct Qdisc *head;
1da177e4
LT
4904
4905 local_irq_disable();
4906 head = sd->output_queue;
4907 sd->output_queue = NULL;
a9cbd588 4908 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4909 local_irq_enable();
4910
4911 while (head) {
37437bb2 4912 struct Qdisc *q = head;
6b3ba914 4913 spinlock_t *root_lock = NULL;
37437bb2 4914
1da177e4
LT
4915 head = head->next_sched;
4916
6b3ba914
JF
4917 if (!(q->flags & TCQ_F_NOLOCK)) {
4918 root_lock = qdisc_lock(q);
4919 spin_lock(root_lock);
4920 }
3bcb846c
ED
4921 /* We need to make sure head->next_sched is read
4922 * before clearing __QDISC_STATE_SCHED
4923 */
4924 smp_mb__before_atomic();
4925 clear_bit(__QDISC_STATE_SCHED, &q->state);
4926 qdisc_run(q);
6b3ba914
JF
4927 if (root_lock)
4928 spin_unlock(root_lock);
1da177e4
LT
4929 }
4930 }
f53c7239
SK
4931
4932 xfrm_dev_backlog(sd);
1da177e4
LT
4933}
4934
181402a5 4935#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4936/* This hook is defined here for ATM LANE */
4937int (*br_fdb_test_addr_hook)(struct net_device *dev,
4938 unsigned char *addr) __read_mostly;
4fb019a0 4939EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4940#endif
1da177e4 4941
1f211a1b
DB
4942static inline struct sk_buff *
4943sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
9aa1206e 4944 struct net_device *orig_dev, bool *another)
f697c3e8 4945{
e7582bab 4946#ifdef CONFIG_NET_CLS_ACT
46209401 4947 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4948 struct tcf_result cl_res;
24824a09 4949
c9e99fd0
DB
4950 /* If there's at least one ingress present somewhere (so
4951 * we get here via enabled static key), remaining devices
4952 * that are not configured with an ingress qdisc will bail
d2788d34 4953 * out here.
c9e99fd0 4954 */
46209401 4955 if (!miniq)
4577139b 4956 return skb;
46209401 4957
f697c3e8
HX
4958 if (*pt_prev) {
4959 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4960 *pt_prev = NULL;
1da177e4
LT
4961 }
4962
3365495c 4963 qdisc_skb_cb(skb)->pkt_len = skb->len;
aadaca9e 4964 qdisc_skb_cb(skb)->mru = 0;
8dc07fdb 4965 skb->tc_at_ingress = 1;
46209401 4966 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4967
7d17c544
PB
4968 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4969 &cl_res, false)) {
d2788d34
DB
4970 case TC_ACT_OK:
4971 case TC_ACT_RECLASSIFY:
4972 skb->tc_index = TC_H_MIN(cl_res.classid);
4973 break;
4974 case TC_ACT_SHOT:
46209401 4975 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4976 kfree_skb(skb);
4977 return NULL;
d2788d34
DB
4978 case TC_ACT_STOLEN:
4979 case TC_ACT_QUEUED:
e25ea21f 4980 case TC_ACT_TRAP:
8a3a4c6e 4981 consume_skb(skb);
d2788d34 4982 return NULL;
27b29f63
AS
4983 case TC_ACT_REDIRECT:
4984 /* skb_mac_header check was done by cls/act_bpf, so
4985 * we can safely push the L2 header back before
4986 * redirecting to another netdev
4987 */
4988 __skb_push(skb, skb->mac_len);
9aa1206e
DB
4989 if (skb_do_redirect(skb) == -EAGAIN) {
4990 __skb_pull(skb, skb->mac_len);
4991 *another = true;
4992 break;
4993 }
27b29f63 4994 return NULL;
720f22fe 4995 case TC_ACT_CONSUMED:
cd11b164 4996 return NULL;
d2788d34
DB
4997 default:
4998 break;
f697c3e8 4999 }
e7582bab 5000#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
5001 return skb;
5002}
1da177e4 5003
24b27fc4
MB
5004/**
5005 * netdev_is_rx_handler_busy - check if receive handler is registered
5006 * @dev: device to check
5007 *
5008 * Check if a receive handler is already registered for a given device.
5009 * Return true if there one.
5010 *
5011 * The caller must hold the rtnl_mutex.
5012 */
5013bool netdev_is_rx_handler_busy(struct net_device *dev)
5014{
5015 ASSERT_RTNL();
5016 return dev && rtnl_dereference(dev->rx_handler);
5017}
5018EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5019
ab95bfe0
JP
5020/**
5021 * netdev_rx_handler_register - register receive handler
5022 * @dev: device to register a handler for
5023 * @rx_handler: receive handler to register
93e2c32b 5024 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 5025 *
e227867f 5026 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
5027 * called from __netif_receive_skb. A negative errno code is returned
5028 * on a failure.
5029 *
5030 * The caller must hold the rtnl_mutex.
8a4eb573
JP
5031 *
5032 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
5033 */
5034int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
5035 rx_handler_func_t *rx_handler,
5036 void *rx_handler_data)
ab95bfe0 5037{
1b7cd004 5038 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
5039 return -EBUSY;
5040
f5426250
PA
5041 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5042 return -EINVAL;
5043
00cfec37 5044 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 5045 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
5046 rcu_assign_pointer(dev->rx_handler, rx_handler);
5047
5048 return 0;
5049}
5050EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5051
5052/**
5053 * netdev_rx_handler_unregister - unregister receive handler
5054 * @dev: device to unregister a handler from
5055 *
166ec369 5056 * Unregister a receive handler from a device.
ab95bfe0
JP
5057 *
5058 * The caller must hold the rtnl_mutex.
5059 */
5060void netdev_rx_handler_unregister(struct net_device *dev)
5061{
5062
5063 ASSERT_RTNL();
a9b3cd7f 5064 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
5065 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5066 * section has a guarantee to see a non NULL rx_handler_data
5067 * as well.
5068 */
5069 synchronize_net();
a9b3cd7f 5070 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
5071}
5072EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5073
b4b9e355
MG
5074/*
5075 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5076 * the special handling of PFMEMALLOC skbs.
5077 */
5078static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5079{
5080 switch (skb->protocol) {
2b8837ae
JP
5081 case htons(ETH_P_ARP):
5082 case htons(ETH_P_IP):
5083 case htons(ETH_P_IPV6):
5084 case htons(ETH_P_8021Q):
5085 case htons(ETH_P_8021AD):
b4b9e355
MG
5086 return true;
5087 default:
5088 return false;
5089 }
5090}
5091
e687ad60
PN
5092static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5093 int *ret, struct net_device *orig_dev)
5094{
5095 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
5096 int ingress_retval;
5097
e687ad60
PN
5098 if (*pt_prev) {
5099 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5100 *pt_prev = NULL;
5101 }
5102
2c1e2703
AC
5103 rcu_read_lock();
5104 ingress_retval = nf_hook_ingress(skb);
5105 rcu_read_unlock();
5106 return ingress_retval;
e687ad60
PN
5107 }
5108 return 0;
5109}
e687ad60 5110
c0bbbdc3 5111static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
88eb1944 5112 struct packet_type **ppt_prev)
1da177e4
LT
5113{
5114 struct packet_type *ptype, *pt_prev;
ab95bfe0 5115 rx_handler_func_t *rx_handler;
c0bbbdc3 5116 struct sk_buff *skb = *pskb;
f2ccd8fa 5117 struct net_device *orig_dev;
8a4eb573 5118 bool deliver_exact = false;
1da177e4 5119 int ret = NET_RX_DROP;
252e3346 5120 __be16 type;
1da177e4 5121
588f0330 5122 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5123
cf66ba58 5124 trace_netif_receive_skb(skb);
9b22ea56 5125
cc9bd5ce 5126 orig_dev = skb->dev;
8f903c70 5127
c1d2bbe1 5128 skb_reset_network_header(skb);
fda55eca
ED
5129 if (!skb_transport_header_was_set(skb))
5130 skb_reset_transport_header(skb);
0b5c9db1 5131 skb_reset_mac_len(skb);
1da177e4
LT
5132
5133 pt_prev = NULL;
5134
63d8ea7f 5135another_round:
b6858177 5136 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5137
5138 __this_cpu_inc(softnet_data.processed);
5139
458bf2f2
SH
5140 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5141 int ret2;
5142
5143 preempt_disable();
5144 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5145 preempt_enable();
5146
c0bbbdc3
BS
5147 if (ret2 != XDP_PASS) {
5148 ret = NET_RX_DROP;
5149 goto out;
5150 }
458bf2f2
SH
5151 skb_reset_mac_len(skb);
5152 }
5153
8ad227ff
PM
5154 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5155 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 5156 skb = skb_vlan_untag(skb);
bcc6d479 5157 if (unlikely(!skb))
2c17d27c 5158 goto out;
bcc6d479
JP
5159 }
5160
e7246e12
WB
5161 if (skb_skip_tc_classify(skb))
5162 goto skip_classify;
1da177e4 5163
9754e293 5164 if (pfmemalloc)
b4b9e355
MG
5165 goto skip_taps;
5166
1da177e4 5167 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5168 if (pt_prev)
5169 ret = deliver_skb(skb, pt_prev, orig_dev);
5170 pt_prev = ptype;
5171 }
5172
5173 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5174 if (pt_prev)
5175 ret = deliver_skb(skb, pt_prev, orig_dev);
5176 pt_prev = ptype;
1da177e4
LT
5177 }
5178
b4b9e355 5179skip_taps:
1cf51900 5180#ifdef CONFIG_NET_INGRESS
aabf6772 5181 if (static_branch_unlikely(&ingress_needed_key)) {
9aa1206e
DB
5182 bool another = false;
5183
5184 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5185 &another);
5186 if (another)
5187 goto another_round;
4577139b 5188 if (!skb)
2c17d27c 5189 goto out;
e687ad60
PN
5190
5191 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5192 goto out;
4577139b 5193 }
1cf51900 5194#endif
2c64605b 5195 skb_reset_redirect(skb);
e7246e12 5196skip_classify:
9754e293 5197 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5198 goto drop;
5199
df8a39de 5200 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5201 if (pt_prev) {
5202 ret = deliver_skb(skb, pt_prev, orig_dev);
5203 pt_prev = NULL;
5204 }
48cc32d3 5205 if (vlan_do_receive(&skb))
2425717b
JF
5206 goto another_round;
5207 else if (unlikely(!skb))
2c17d27c 5208 goto out;
2425717b
JF
5209 }
5210
48cc32d3 5211 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5212 if (rx_handler) {
5213 if (pt_prev) {
5214 ret = deliver_skb(skb, pt_prev, orig_dev);
5215 pt_prev = NULL;
5216 }
8a4eb573
JP
5217 switch (rx_handler(&skb)) {
5218 case RX_HANDLER_CONSUMED:
3bc1b1ad 5219 ret = NET_RX_SUCCESS;
2c17d27c 5220 goto out;
8a4eb573 5221 case RX_HANDLER_ANOTHER:
63d8ea7f 5222 goto another_round;
8a4eb573
JP
5223 case RX_HANDLER_EXACT:
5224 deliver_exact = true;
5225 case RX_HANDLER_PASS:
5226 break;
5227 default:
5228 BUG();
5229 }
ab95bfe0 5230 }
1da177e4 5231
b14a9fc4 5232 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
36b2f61a
GV
5233check_vlan_id:
5234 if (skb_vlan_tag_get_id(skb)) {
5235 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5236 * find vlan device.
5237 */
d4b812de 5238 skb->pkt_type = PACKET_OTHERHOST;
36b2f61a
GV
5239 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5240 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5241 /* Outer header is 802.1P with vlan 0, inner header is
5242 * 802.1Q or 802.1AD and vlan_do_receive() above could
5243 * not find vlan dev for vlan id 0.
5244 */
5245 __vlan_hwaccel_clear_tag(skb);
5246 skb = skb_vlan_untag(skb);
5247 if (unlikely(!skb))
5248 goto out;
5249 if (vlan_do_receive(&skb))
5250 /* After stripping off 802.1P header with vlan 0
5251 * vlan dev is found for inner header.
5252 */
5253 goto another_round;
5254 else if (unlikely(!skb))
5255 goto out;
5256 else
5257 /* We have stripped outer 802.1P vlan 0 header.
5258 * But could not find vlan dev.
5259 * check again for vlan id to set OTHERHOST.
5260 */
5261 goto check_vlan_id;
5262 }
d4b812de
ED
5263 /* Note: we might in the future use prio bits
5264 * and set skb->priority like in vlan_do_receive()
5265 * For the time being, just ignore Priority Code Point
5266 */
b1817524 5267 __vlan_hwaccel_clear_tag(skb);
d4b812de 5268 }
48cc32d3 5269
7866a621
SN
5270 type = skb->protocol;
5271
63d8ea7f 5272 /* deliver only exact match when indicated */
7866a621
SN
5273 if (likely(!deliver_exact)) {
5274 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5275 &ptype_base[ntohs(type) &
5276 PTYPE_HASH_MASK]);
5277 }
1f3c8804 5278
7866a621
SN
5279 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5280 &orig_dev->ptype_specific);
5281
5282 if (unlikely(skb->dev != orig_dev)) {
5283 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5284 &skb->dev->ptype_specific);
1da177e4
LT
5285 }
5286
5287 if (pt_prev) {
1f8b977a 5288 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5289 goto drop;
88eb1944 5290 *ppt_prev = pt_prev;
1da177e4 5291 } else {
b4b9e355 5292drop:
6e7333d3
JW
5293 if (!deliver_exact)
5294 atomic_long_inc(&skb->dev->rx_dropped);
5295 else
5296 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5297 kfree_skb(skb);
5298 /* Jamal, now you will not able to escape explaining
5299 * me how you were going to use this. :-)
5300 */
5301 ret = NET_RX_DROP;
5302 }
5303
2c17d27c 5304out:
c0bbbdc3
BS
5305 /* The invariant here is that if *ppt_prev is not NULL
5306 * then skb should also be non-NULL.
5307 *
5308 * Apparently *ppt_prev assignment above holds this invariant due to
5309 * skb dereferencing near it.
5310 */
5311 *pskb = skb;
9754e293
DM
5312 return ret;
5313}
5314
88eb1944
EC
5315static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5316{
5317 struct net_device *orig_dev = skb->dev;
5318 struct packet_type *pt_prev = NULL;
5319 int ret;
5320
c0bbbdc3 5321 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
88eb1944 5322 if (pt_prev)
f5737cba
PA
5323 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5324 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5325 return ret;
5326}
5327
1c601d82
JDB
5328/**
5329 * netif_receive_skb_core - special purpose version of netif_receive_skb
5330 * @skb: buffer to process
5331 *
5332 * More direct receive version of netif_receive_skb(). It should
5333 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5334 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5335 *
5336 * This function may only be called from softirq context and interrupts
5337 * should be enabled.
5338 *
5339 * Return values (usually ignored):
5340 * NET_RX_SUCCESS: no congestion
5341 * NET_RX_DROP: packet was dropped
5342 */
5343int netif_receive_skb_core(struct sk_buff *skb)
5344{
5345 int ret;
5346
5347 rcu_read_lock();
88eb1944 5348 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5349 rcu_read_unlock();
5350
5351 return ret;
5352}
5353EXPORT_SYMBOL(netif_receive_skb_core);
5354
88eb1944
EC
5355static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5356 struct packet_type *pt_prev,
5357 struct net_device *orig_dev)
4ce0017a
EC
5358{
5359 struct sk_buff *skb, *next;
5360
88eb1944
EC
5361 if (!pt_prev)
5362 return;
5363 if (list_empty(head))
5364 return;
17266ee9 5365 if (pt_prev->list_func != NULL)
fdf71426
PA
5366 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5367 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5368 else
9a5a90d1
AL
5369 list_for_each_entry_safe(skb, next, head, list) {
5370 skb_list_del_init(skb);
fdf71426 5371 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5372 }
88eb1944
EC
5373}
5374
5375static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5376{
5377 /* Fast-path assumptions:
5378 * - There is no RX handler.
5379 * - Only one packet_type matches.
5380 * If either of these fails, we will end up doing some per-packet
5381 * processing in-line, then handling the 'last ptype' for the whole
5382 * sublist. This can't cause out-of-order delivery to any single ptype,
5383 * because the 'last ptype' must be constant across the sublist, and all
5384 * other ptypes are handled per-packet.
5385 */
5386 /* Current (common) ptype of sublist */
5387 struct packet_type *pt_curr = NULL;
5388 /* Current (common) orig_dev of sublist */
5389 struct net_device *od_curr = NULL;
5390 struct list_head sublist;
5391 struct sk_buff *skb, *next;
5392
9af86f93 5393 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5394 list_for_each_entry_safe(skb, next, head, list) {
5395 struct net_device *orig_dev = skb->dev;
5396 struct packet_type *pt_prev = NULL;
5397
22f6bbb7 5398 skb_list_del_init(skb);
c0bbbdc3 5399 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
9af86f93
EC
5400 if (!pt_prev)
5401 continue;
88eb1944
EC
5402 if (pt_curr != pt_prev || od_curr != orig_dev) {
5403 /* dispatch old sublist */
88eb1944
EC
5404 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5405 /* start new sublist */
9af86f93 5406 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5407 pt_curr = pt_prev;
5408 od_curr = orig_dev;
5409 }
9af86f93 5410 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5411 }
5412
5413 /* dispatch final sublist */
9af86f93 5414 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5415}
5416
9754e293
DM
5417static int __netif_receive_skb(struct sk_buff *skb)
5418{
5419 int ret;
5420
5421 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5422 unsigned int noreclaim_flag;
9754e293
DM
5423
5424 /*
5425 * PFMEMALLOC skbs are special, they should
5426 * - be delivered to SOCK_MEMALLOC sockets only
5427 * - stay away from userspace
5428 * - have bounded memory usage
5429 *
5430 * Use PF_MEMALLOC as this saves us from propagating the allocation
5431 * context down to all allocation sites.
5432 */
f1083048 5433 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5434 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5435 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5436 } else
88eb1944 5437 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5438
1da177e4
LT
5439 return ret;
5440}
0a9627f2 5441
4ce0017a
EC
5442static void __netif_receive_skb_list(struct list_head *head)
5443{
5444 unsigned long noreclaim_flag = 0;
5445 struct sk_buff *skb, *next;
5446 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5447
5448 list_for_each_entry_safe(skb, next, head, list) {
5449 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5450 struct list_head sublist;
5451
5452 /* Handle the previous sublist */
5453 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5454 if (!list_empty(&sublist))
5455 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5456 pfmemalloc = !pfmemalloc;
5457 /* See comments in __netif_receive_skb */
5458 if (pfmemalloc)
5459 noreclaim_flag = memalloc_noreclaim_save();
5460 else
5461 memalloc_noreclaim_restore(noreclaim_flag);
5462 }
5463 }
5464 /* Handle the remaining sublist */
b9f463d6
EC
5465 if (!list_empty(head))
5466 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5467 /* Restore pflags */
5468 if (pfmemalloc)
5469 memalloc_noreclaim_restore(noreclaim_flag);
5470}
5471
f4e63525 5472static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5473{
58038695 5474 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5475 struct bpf_prog *new = xdp->prog;
5476 int ret = 0;
5477
fbee97fe
DA
5478 if (new) {
5479 u32 i;
5480
984fe94f
YZ
5481 mutex_lock(&new->aux->used_maps_mutex);
5482
fbee97fe
DA
5483 /* generic XDP does not work with DEVMAPs that can
5484 * have a bpf_prog installed on an entry
5485 */
5486 for (i = 0; i < new->aux->used_map_cnt; i++) {
984fe94f
YZ
5487 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5488 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5489 mutex_unlock(&new->aux->used_maps_mutex);
92164774 5490 return -EINVAL;
984fe94f 5491 }
fbee97fe 5492 }
984fe94f
YZ
5493
5494 mutex_unlock(&new->aux->used_maps_mutex);
fbee97fe
DA
5495 }
5496
b5cdae32 5497 switch (xdp->command) {
58038695 5498 case XDP_SETUP_PROG:
b5cdae32
DM
5499 rcu_assign_pointer(dev->xdp_prog, new);
5500 if (old)
5501 bpf_prog_put(old);
5502
5503 if (old && !new) {
02786475 5504 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5505 } else if (new && !old) {
02786475 5506 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5507 dev_disable_lro(dev);
56f5aa77 5508 dev_disable_gro_hw(dev);
b5cdae32
DM
5509 }
5510 break;
b5cdae32 5511
b5cdae32
DM
5512 default:
5513 ret = -EINVAL;
5514 break;
5515 }
5516
5517 return ret;
5518}
5519
ae78dbfa 5520static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5521{
2c17d27c
JA
5522 int ret;
5523
588f0330 5524 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5525
c1f19b51
RC
5526 if (skb_defer_rx_timestamp(skb))
5527 return NET_RX_SUCCESS;
5528
bbbe211c 5529 rcu_read_lock();
df334545 5530#ifdef CONFIG_RPS
dc05360f 5531 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5532 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5533 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5534
3b098e2d
ED
5535 if (cpu >= 0) {
5536 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5537 rcu_read_unlock();
adc9300e 5538 return ret;
3b098e2d 5539 }
fec5e652 5540 }
1e94d72f 5541#endif
2c17d27c
JA
5542 ret = __netif_receive_skb(skb);
5543 rcu_read_unlock();
5544 return ret;
0a9627f2 5545}
ae78dbfa 5546
7da517a3
EC
5547static void netif_receive_skb_list_internal(struct list_head *head)
5548{
7da517a3 5549 struct sk_buff *skb, *next;
8c057efa 5550 struct list_head sublist;
7da517a3 5551
8c057efa 5552 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5553 list_for_each_entry_safe(skb, next, head, list) {
5554 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5555 skb_list_del_init(skb);
8c057efa
EC
5556 if (!skb_defer_rx_timestamp(skb))
5557 list_add_tail(&skb->list, &sublist);
7da517a3 5558 }
8c057efa 5559 list_splice_init(&sublist, head);
7da517a3 5560
7da517a3
EC
5561 rcu_read_lock();
5562#ifdef CONFIG_RPS
dc05360f 5563 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5564 list_for_each_entry_safe(skb, next, head, list) {
5565 struct rps_dev_flow voidflow, *rflow = &voidflow;
5566 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5567
5568 if (cpu >= 0) {
8c057efa 5569 /* Will be handled, remove from list */
22f6bbb7 5570 skb_list_del_init(skb);
8c057efa 5571 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5572 }
5573 }
5574 }
5575#endif
5576 __netif_receive_skb_list(head);
5577 rcu_read_unlock();
5578}
5579
ae78dbfa
BH
5580/**
5581 * netif_receive_skb - process receive buffer from network
5582 * @skb: buffer to process
5583 *
5584 * netif_receive_skb() is the main receive data processing function.
5585 * It always succeeds. The buffer may be dropped during processing
5586 * for congestion control or by the protocol layers.
5587 *
5588 * This function may only be called from softirq context and interrupts
5589 * should be enabled.
5590 *
5591 * Return values (usually ignored):
5592 * NET_RX_SUCCESS: no congestion
5593 * NET_RX_DROP: packet was dropped
5594 */
04eb4489 5595int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5596{
b0e3f1bd
GB
5597 int ret;
5598
ae78dbfa
BH
5599 trace_netif_receive_skb_entry(skb);
5600
b0e3f1bd
GB
5601 ret = netif_receive_skb_internal(skb);
5602 trace_netif_receive_skb_exit(ret);
5603
5604 return ret;
ae78dbfa 5605}
04eb4489 5606EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5607
f6ad8c1b
EC
5608/**
5609 * netif_receive_skb_list - process many receive buffers from network
5610 * @head: list of skbs to process.
5611 *
7da517a3
EC
5612 * Since return value of netif_receive_skb() is normally ignored, and
5613 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5614 *
5615 * This function may only be called from softirq context and interrupts
5616 * should be enabled.
5617 */
5618void netif_receive_skb_list(struct list_head *head)
5619{
7da517a3 5620 struct sk_buff *skb;
f6ad8c1b 5621
b9f463d6
EC
5622 if (list_empty(head))
5623 return;
b0e3f1bd
GB
5624 if (trace_netif_receive_skb_list_entry_enabled()) {
5625 list_for_each_entry(skb, head, list)
5626 trace_netif_receive_skb_list_entry(skb);
5627 }
7da517a3 5628 netif_receive_skb_list_internal(head);
b0e3f1bd 5629 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5630}
5631EXPORT_SYMBOL(netif_receive_skb_list);
5632
ce1e2a77 5633static DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5634
5635/* Network device is going away, flush any packets still pending */
5636static void flush_backlog(struct work_struct *work)
6e583ce5 5637{
6e583ce5 5638 struct sk_buff *skb, *tmp;
145dd5f9
PA
5639 struct softnet_data *sd;
5640
5641 local_bh_disable();
5642 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5643
145dd5f9 5644 local_irq_disable();
e36fa2f7 5645 rps_lock(sd);
6e7676c1 5646 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5647 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5648 __skb_unlink(skb, &sd->input_pkt_queue);
7df5cb75 5649 dev_kfree_skb_irq(skb);
76cc8b13 5650 input_queue_head_incr(sd);
6e583ce5 5651 }
6e7676c1 5652 }
e36fa2f7 5653 rps_unlock(sd);
145dd5f9 5654 local_irq_enable();
6e7676c1
CG
5655
5656 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5657 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5658 __skb_unlink(skb, &sd->process_queue);
5659 kfree_skb(skb);
76cc8b13 5660 input_queue_head_incr(sd);
6e7676c1
CG
5661 }
5662 }
145dd5f9
PA
5663 local_bh_enable();
5664}
5665
2de79ee2
PA
5666static bool flush_required(int cpu)
5667{
5668#if IS_ENABLED(CONFIG_RPS)
5669 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5670 bool do_flush;
5671
5672 local_irq_disable();
5673 rps_lock(sd);
5674
5675 /* as insertion into process_queue happens with the rps lock held,
5676 * process_queue access may race only with dequeue
5677 */
5678 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5679 !skb_queue_empty_lockless(&sd->process_queue);
5680 rps_unlock(sd);
5681 local_irq_enable();
5682
5683 return do_flush;
5684#endif
5685 /* without RPS we can't safely check input_pkt_queue: during a
5686 * concurrent remote skb_queue_splice() we can detect as empty both
5687 * input_pkt_queue and process_queue even if the latter could end-up
5688 * containing a lot of packets.
5689 */
5690 return true;
5691}
5692
41852497 5693static void flush_all_backlogs(void)
145dd5f9 5694{
2de79ee2 5695 static cpumask_t flush_cpus;
145dd5f9
PA
5696 unsigned int cpu;
5697
2de79ee2
PA
5698 /* since we are under rtnl lock protection we can use static data
5699 * for the cpumask and avoid allocating on stack the possibly
5700 * large mask
5701 */
5702 ASSERT_RTNL();
5703
145dd5f9
PA
5704 get_online_cpus();
5705
2de79ee2
PA
5706 cpumask_clear(&flush_cpus);
5707 for_each_online_cpu(cpu) {
5708 if (flush_required(cpu)) {
5709 queue_work_on(cpu, system_highpri_wq,
5710 per_cpu_ptr(&flush_works, cpu));
5711 cpumask_set_cpu(cpu, &flush_cpus);
5712 }
5713 }
145dd5f9 5714
2de79ee2
PA
5715 /* we can have in flight packet[s] on the cpus we are not flushing,
5716 * synchronize_net() in rollback_registered_many() will take care of
5717 * them
5718 */
5719 for_each_cpu(cpu, &flush_cpus)
41852497 5720 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5721
5722 put_online_cpus();
6e583ce5
SH
5723}
5724
c8079432
MM
5725/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5726static void gro_normal_list(struct napi_struct *napi)
5727{
5728 if (!napi->rx_count)
5729 return;
5730 netif_receive_skb_list_internal(&napi->rx_list);
5731 INIT_LIST_HEAD(&napi->rx_list);
5732 napi->rx_count = 0;
5733}
5734
5735/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5736 * pass the whole batch up to the stack.
5737 */
8dc1c444 5738static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
c8079432
MM
5739{
5740 list_add_tail(&skb->list, &napi->rx_list);
8dc1c444
ED
5741 napi->rx_count += segs;
5742 if (napi->rx_count >= gro_normal_batch)
c8079432
MM
5743 gro_normal_list(napi);
5744}
5745
aaa5d90b
PA
5746INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5747INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
c8079432 5748static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5749{
22061d80 5750 struct packet_offload *ptype;
d565b0a1 5751 __be16 type = skb->protocol;
22061d80 5752 struct list_head *head = &offload_base;
d565b0a1
HX
5753 int err = -ENOENT;
5754
c3c7c254
ED
5755 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5756
fc59f9a3
HX
5757 if (NAPI_GRO_CB(skb)->count == 1) {
5758 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5759 goto out;
fc59f9a3 5760 }
d565b0a1
HX
5761
5762 rcu_read_lock();
5763 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5764 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5765 continue;
5766
aaa5d90b
PA
5767 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5768 ipv6_gro_complete, inet_gro_complete,
5769 skb, 0);
d565b0a1
HX
5770 break;
5771 }
5772 rcu_read_unlock();
5773
5774 if (err) {
5775 WARN_ON(&ptype->list == head);
5776 kfree_skb(skb);
5777 return NET_RX_SUCCESS;
5778 }
5779
5780out:
8dc1c444 5781 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
c8079432 5782 return NET_RX_SUCCESS;
d565b0a1
HX
5783}
5784
6312fe77 5785static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5786 bool flush_old)
d565b0a1 5787{
6312fe77 5788 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5789 struct sk_buff *skb, *p;
2e71a6f8 5790
07d78363 5791 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5792 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5793 return;
992cba7e 5794 skb_list_del_init(skb);
c8079432 5795 napi_gro_complete(napi, skb);
6312fe77 5796 napi->gro_hash[index].count--;
d565b0a1 5797 }
d9f37d01
LR
5798
5799 if (!napi->gro_hash[index].count)
5800 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5801}
07d78363 5802
6312fe77 5803/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5804 * youngest packets at the head of it.
5805 * Complete skbs in reverse order to reduce latencies.
5806 */
5807void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5808{
42519ede
ED
5809 unsigned long bitmask = napi->gro_bitmask;
5810 unsigned int i, base = ~0U;
07d78363 5811
42519ede
ED
5812 while ((i = ffs(bitmask)) != 0) {
5813 bitmask >>= i;
5814 base += i;
5815 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5816 }
07d78363 5817}
86cac58b 5818EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5819
07d78363
DM
5820static struct list_head *gro_list_prepare(struct napi_struct *napi,
5821 struct sk_buff *skb)
89c5fa33 5822{
89c5fa33 5823 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5824 u32 hash = skb_get_hash_raw(skb);
07d78363 5825 struct list_head *head;
d4546c25 5826 struct sk_buff *p;
89c5fa33 5827
6312fe77 5828 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5829 list_for_each_entry(p, head, list) {
89c5fa33
ED
5830 unsigned long diffs;
5831
0b4cec8c
TH
5832 NAPI_GRO_CB(p)->flush = 0;
5833
5834 if (hash != skb_get_hash_raw(p)) {
5835 NAPI_GRO_CB(p)->same_flow = 0;
5836 continue;
5837 }
5838
89c5fa33 5839 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5840 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5841 if (skb_vlan_tag_present(p))
fc5141cb 5842 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
ce87fc6c 5843 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5844 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5845 if (maclen == ETH_HLEN)
5846 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5847 skb_mac_header(skb));
89c5fa33
ED
5848 else if (!diffs)
5849 diffs = memcmp(skb_mac_header(p),
a50e233c 5850 skb_mac_header(skb),
89c5fa33
ED
5851 maclen);
5852 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5853 }
07d78363
DM
5854
5855 return head;
89c5fa33
ED
5856}
5857
299603e8
JC
5858static void skb_gro_reset_offset(struct sk_buff *skb)
5859{
5860 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5861 const skb_frag_t *frag0 = &pinfo->frags[0];
5862
5863 NAPI_GRO_CB(skb)->data_offset = 0;
5864 NAPI_GRO_CB(skb)->frag0 = NULL;
5865 NAPI_GRO_CB(skb)->frag0_len = 0;
5866
8aef998d 5867 if (!skb_headlen(skb) && pinfo->nr_frags &&
299603e8
JC
5868 !PageHighMem(skb_frag_page(frag0))) {
5869 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5870 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5871 skb_frag_size(frag0),
5872 skb->end - skb->tail);
89c5fa33
ED
5873 }
5874}
5875
a50e233c
ED
5876static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5877{
5878 struct skb_shared_info *pinfo = skb_shinfo(skb);
5879
5880 BUG_ON(skb->end - skb->tail < grow);
5881
5882 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5883
5884 skb->data_len -= grow;
5885 skb->tail += grow;
5886
b54c9d5b 5887 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5888 skb_frag_size_sub(&pinfo->frags[0], grow);
5889
5890 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5891 skb_frag_unref(skb, 0);
5892 memmove(pinfo->frags, pinfo->frags + 1,
5893 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5894 }
5895}
5896
c8079432 5897static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 5898{
6312fe77 5899 struct sk_buff *oldest;
07d78363 5900
6312fe77 5901 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5902
6312fe77 5903 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5904 * impossible.
5905 */
5906 if (WARN_ON_ONCE(!oldest))
5907 return;
5908
d9f37d01
LR
5909 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5910 * SKB to the chain.
07d78363 5911 */
ece23711 5912 skb_list_del_init(oldest);
c8079432 5913 napi_gro_complete(napi, oldest);
07d78363
DM
5914}
5915
aaa5d90b
PA
5916INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5917 struct sk_buff *));
5918INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5919 struct sk_buff *));
bb728820 5920static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5921{
6312fe77 5922 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5923 struct list_head *head = &offload_base;
22061d80 5924 struct packet_offload *ptype;
d565b0a1 5925 __be16 type = skb->protocol;
07d78363 5926 struct list_head *gro_head;
d4546c25 5927 struct sk_buff *pp = NULL;
5b252f0c 5928 enum gro_result ret;
d4546c25 5929 int same_flow;
a50e233c 5930 int grow;
d565b0a1 5931
b5cdae32 5932 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5933 goto normal;
5934
07d78363 5935 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5936
d565b0a1
HX
5937 rcu_read_lock();
5938 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5939 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5940 continue;
5941
86911732 5942 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5943 skb_reset_mac_len(skb);
d565b0a1 5944 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5945 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5946 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5947 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5948 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5949 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5950 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5951 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5952
662880f4
TH
5953 /* Setup for GRO checksum validation */
5954 switch (skb->ip_summed) {
5955 case CHECKSUM_COMPLETE:
5956 NAPI_GRO_CB(skb)->csum = skb->csum;
5957 NAPI_GRO_CB(skb)->csum_valid = 1;
5958 NAPI_GRO_CB(skb)->csum_cnt = 0;
5959 break;
5960 case CHECKSUM_UNNECESSARY:
5961 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5962 NAPI_GRO_CB(skb)->csum_valid = 0;
5963 break;
5964 default:
5965 NAPI_GRO_CB(skb)->csum_cnt = 0;
5966 NAPI_GRO_CB(skb)->csum_valid = 0;
5967 }
d565b0a1 5968
aaa5d90b
PA
5969 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5970 ipv6_gro_receive, inet_gro_receive,
5971 gro_head, skb);
d565b0a1
HX
5972 break;
5973 }
5974 rcu_read_unlock();
5975
5976 if (&ptype->list == head)
5977 goto normal;
5978
45586c70 5979 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
5980 ret = GRO_CONSUMED;
5981 goto ok;
5982 }
5983
0da2afd5 5984 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5985 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5986
d565b0a1 5987 if (pp) {
992cba7e 5988 skb_list_del_init(pp);
c8079432 5989 napi_gro_complete(napi, pp);
6312fe77 5990 napi->gro_hash[hash].count--;
d565b0a1
HX
5991 }
5992
0da2afd5 5993 if (same_flow)
d565b0a1
HX
5994 goto ok;
5995
600adc18 5996 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5997 goto normal;
d565b0a1 5998
6312fe77 5999 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
c8079432 6000 gro_flush_oldest(napi, gro_head);
600adc18 6001 } else {
6312fe77 6002 napi->gro_hash[hash].count++;
600adc18 6003 }
d565b0a1 6004 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 6005 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 6006 NAPI_GRO_CB(skb)->last = skb;
86911732 6007 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 6008 list_add(&skb->list, gro_head);
5d0d9be8 6009 ret = GRO_HELD;
d565b0a1 6010
ad0f9904 6011pull:
a50e233c
ED
6012 grow = skb_gro_offset(skb) - skb_headlen(skb);
6013 if (grow > 0)
6014 gro_pull_from_frag0(skb, grow);
d565b0a1 6015ok:
d9f37d01
LR
6016 if (napi->gro_hash[hash].count) {
6017 if (!test_bit(hash, &napi->gro_bitmask))
6018 __set_bit(hash, &napi->gro_bitmask);
6019 } else if (test_bit(hash, &napi->gro_bitmask)) {
6020 __clear_bit(hash, &napi->gro_bitmask);
6021 }
6022
5d0d9be8 6023 return ret;
d565b0a1
HX
6024
6025normal:
ad0f9904
HX
6026 ret = GRO_NORMAL;
6027 goto pull;
5d38a079 6028}
96e93eab 6029
bf5a755f
JC
6030struct packet_offload *gro_find_receive_by_type(__be16 type)
6031{
6032 struct list_head *offload_head = &offload_base;
6033 struct packet_offload *ptype;
6034
6035 list_for_each_entry_rcu(ptype, offload_head, list) {
6036 if (ptype->type != type || !ptype->callbacks.gro_receive)
6037 continue;
6038 return ptype;
6039 }
6040 return NULL;
6041}
e27a2f83 6042EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
6043
6044struct packet_offload *gro_find_complete_by_type(__be16 type)
6045{
6046 struct list_head *offload_head = &offload_base;
6047 struct packet_offload *ptype;
6048
6049 list_for_each_entry_rcu(ptype, offload_head, list) {
6050 if (ptype->type != type || !ptype->callbacks.gro_complete)
6051 continue;
6052 return ptype;
6053 }
6054 return NULL;
6055}
e27a2f83 6056EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 6057
e44699d2
MK
6058static void napi_skb_free_stolen_head(struct sk_buff *skb)
6059{
6060 skb_dst_drop(skb);
174e2381 6061 skb_ext_put(skb);
e44699d2
MK
6062 kmem_cache_free(skbuff_head_cache, skb);
6063}
6064
6570bc79
AL
6065static gro_result_t napi_skb_finish(struct napi_struct *napi,
6066 struct sk_buff *skb,
6067 gro_result_t ret)
5d38a079 6068{
5d0d9be8
HX
6069 switch (ret) {
6070 case GRO_NORMAL:
8dc1c444 6071 gro_normal_one(napi, skb, 1);
c7c4b3b6 6072 break;
5d38a079 6073
5d0d9be8 6074 case GRO_DROP:
5d38a079
HX
6075 kfree_skb(skb);
6076 break;
5b252f0c 6077
daa86548 6078 case GRO_MERGED_FREE:
e44699d2
MK
6079 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6080 napi_skb_free_stolen_head(skb);
6081 else
d7e8883c 6082 __kfree_skb(skb);
daa86548
ED
6083 break;
6084
5b252f0c
BH
6085 case GRO_HELD:
6086 case GRO_MERGED:
25393d3f 6087 case GRO_CONSUMED:
5b252f0c 6088 break;
5d38a079
HX
6089 }
6090
c7c4b3b6 6091 return ret;
5d0d9be8 6092}
5d0d9be8 6093
c7c4b3b6 6094gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 6095{
b0e3f1bd
GB
6096 gro_result_t ret;
6097
93f93a44 6098 skb_mark_napi_id(skb, napi);
ae78dbfa 6099 trace_napi_gro_receive_entry(skb);
86911732 6100
a50e233c
ED
6101 skb_gro_reset_offset(skb);
6102
6570bc79 6103 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
6104 trace_napi_gro_receive_exit(ret);
6105
6106 return ret;
d565b0a1
HX
6107}
6108EXPORT_SYMBOL(napi_gro_receive);
6109
d0c2b0d2 6110static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 6111{
93a35f59
ED
6112 if (unlikely(skb->pfmemalloc)) {
6113 consume_skb(skb);
6114 return;
6115 }
96e93eab 6116 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
6117 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6118 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 6119 __vlan_hwaccel_clear_tag(skb);
66c46d74 6120 skb->dev = napi->dev;
6d152e23 6121 skb->skb_iif = 0;
33d9a2c7
ED
6122
6123 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6124 skb->pkt_type = PACKET_HOST;
6125
c3caf119
JC
6126 skb->encapsulation = 0;
6127 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 6128 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 6129 skb_ext_reset(skb);
96e93eab
HX
6130
6131 napi->skb = skb;
6132}
96e93eab 6133
76620aaf 6134struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 6135{
5d38a079 6136 struct sk_buff *skb = napi->skb;
5d38a079
HX
6137
6138 if (!skb) {
fd11a83d 6139 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
6140 if (skb) {
6141 napi->skb = skb;
6142 skb_mark_napi_id(skb, napi);
6143 }
80595d59 6144 }
96e93eab
HX
6145 return skb;
6146}
76620aaf 6147EXPORT_SYMBOL(napi_get_frags);
96e93eab 6148
a50e233c
ED
6149static gro_result_t napi_frags_finish(struct napi_struct *napi,
6150 struct sk_buff *skb,
6151 gro_result_t ret)
96e93eab 6152{
5d0d9be8
HX
6153 switch (ret) {
6154 case GRO_NORMAL:
a50e233c
ED
6155 case GRO_HELD:
6156 __skb_push(skb, ETH_HLEN);
6157 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61 6158 if (ret == GRO_NORMAL)
8dc1c444 6159 gro_normal_one(napi, skb, 1);
86911732 6160 break;
5d38a079 6161
5d0d9be8 6162 case GRO_DROP:
5d0d9be8
HX
6163 napi_reuse_skb(napi, skb);
6164 break;
5b252f0c 6165
e44699d2
MK
6166 case GRO_MERGED_FREE:
6167 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6168 napi_skb_free_stolen_head(skb);
6169 else
6170 napi_reuse_skb(napi, skb);
6171 break;
6172
5b252f0c 6173 case GRO_MERGED:
25393d3f 6174 case GRO_CONSUMED:
5b252f0c 6175 break;
5d0d9be8 6176 }
5d38a079 6177
c7c4b3b6 6178 return ret;
5d38a079 6179}
5d0d9be8 6180
a50e233c
ED
6181/* Upper GRO stack assumes network header starts at gro_offset=0
6182 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6183 * We copy ethernet header into skb->data to have a common layout.
6184 */
4adb9c4a 6185static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
6186{
6187 struct sk_buff *skb = napi->skb;
a50e233c
ED
6188 const struct ethhdr *eth;
6189 unsigned int hlen = sizeof(*eth);
76620aaf
HX
6190
6191 napi->skb = NULL;
6192
a50e233c
ED
6193 skb_reset_mac_header(skb);
6194 skb_gro_reset_offset(skb);
6195
a50e233c
ED
6196 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6197 eth = skb_gro_header_slow(skb, hlen, 0);
6198 if (unlikely(!eth)) {
4da46ceb
AC
6199 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6200 __func__, napi->dev->name);
a50e233c
ED
6201 napi_reuse_skb(napi, skb);
6202 return NULL;
6203 }
6204 } else {
a4270d67 6205 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6206 gro_pull_from_frag0(skb, hlen);
6207 NAPI_GRO_CB(skb)->frag0 += hlen;
6208 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6209 }
a50e233c
ED
6210 __skb_pull(skb, hlen);
6211
6212 /*
6213 * This works because the only protocols we care about don't require
6214 * special handling.
6215 * We'll fix it up properly in napi_frags_finish()
6216 */
6217 skb->protocol = eth->h_proto;
76620aaf 6218
76620aaf
HX
6219 return skb;
6220}
76620aaf 6221
c7c4b3b6 6222gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6223{
b0e3f1bd 6224 gro_result_t ret;
76620aaf 6225 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
6226
6227 if (!skb)
c7c4b3b6 6228 return GRO_DROP;
5d0d9be8 6229
ae78dbfa
BH
6230 trace_napi_gro_frags_entry(skb);
6231
b0e3f1bd
GB
6232 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6233 trace_napi_gro_frags_exit(ret);
6234
6235 return ret;
5d0d9be8 6236}
5d38a079
HX
6237EXPORT_SYMBOL(napi_gro_frags);
6238
573e8fca
TH
6239/* Compute the checksum from gro_offset and return the folded value
6240 * after adding in any pseudo checksum.
6241 */
6242__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6243{
6244 __wsum wsum;
6245 __sum16 sum;
6246
6247 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6248
6249 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6250 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6251 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6252 if (likely(!sum)) {
6253 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6254 !skb->csum_complete_sw)
7fe50ac8 6255 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6256 }
6257
6258 NAPI_GRO_CB(skb)->csum = wsum;
6259 NAPI_GRO_CB(skb)->csum_valid = 1;
6260
6261 return sum;
6262}
6263EXPORT_SYMBOL(__skb_gro_checksum_complete);
6264
773fc8f6 6265static void net_rps_send_ipi(struct softnet_data *remsd)
6266{
6267#ifdef CONFIG_RPS
6268 while (remsd) {
6269 struct softnet_data *next = remsd->rps_ipi_next;
6270
6271 if (cpu_online(remsd->cpu))
6272 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6273 remsd = next;
6274 }
6275#endif
6276}
6277
e326bed2 6278/*
855abcf0 6279 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6280 * Note: called with local irq disabled, but exits with local irq enabled.
6281 */
6282static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6283{
6284#ifdef CONFIG_RPS
6285 struct softnet_data *remsd = sd->rps_ipi_list;
6286
6287 if (remsd) {
6288 sd->rps_ipi_list = NULL;
6289
6290 local_irq_enable();
6291
6292 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6293 net_rps_send_ipi(remsd);
e326bed2
ED
6294 } else
6295#endif
6296 local_irq_enable();
6297}
6298
d75b1ade
ED
6299static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6300{
6301#ifdef CONFIG_RPS
6302 return sd->rps_ipi_list != NULL;
6303#else
6304 return false;
6305#endif
6306}
6307
bea3348e 6308static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6309{
eecfd7c4 6310 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6311 bool again = true;
6312 int work = 0;
1da177e4 6313
e326bed2
ED
6314 /* Check if we have pending ipi, its better to send them now,
6315 * not waiting net_rx_action() end.
6316 */
d75b1ade 6317 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6318 local_irq_disable();
6319 net_rps_action_and_irq_enable(sd);
6320 }
d75b1ade 6321
3d48b53f 6322 napi->weight = dev_rx_weight;
145dd5f9 6323 while (again) {
1da177e4 6324 struct sk_buff *skb;
6e7676c1
CG
6325
6326 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6327 rcu_read_lock();
6e7676c1 6328 __netif_receive_skb(skb);
2c17d27c 6329 rcu_read_unlock();
76cc8b13 6330 input_queue_head_incr(sd);
145dd5f9 6331 if (++work >= quota)
76cc8b13 6332 return work;
145dd5f9 6333
6e7676c1 6334 }
1da177e4 6335
145dd5f9 6336 local_irq_disable();
e36fa2f7 6337 rps_lock(sd);
11ef7a89 6338 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6339 /*
6340 * Inline a custom version of __napi_complete().
6341 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6342 * and NAPI_STATE_SCHED is the only possible flag set
6343 * on backlog.
6344 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6345 * and we dont need an smp_mb() memory barrier.
6346 */
eecfd7c4 6347 napi->state = 0;
145dd5f9
PA
6348 again = false;
6349 } else {
6350 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6351 &sd->process_queue);
bea3348e 6352 }
e36fa2f7 6353 rps_unlock(sd);
145dd5f9 6354 local_irq_enable();
6e7676c1 6355 }
1da177e4 6356
bea3348e
SH
6357 return work;
6358}
1da177e4 6359
bea3348e
SH
6360/**
6361 * __napi_schedule - schedule for receive
c4ea43c5 6362 * @n: entry to schedule
bea3348e 6363 *
bc9ad166
ED
6364 * The entry's receive function will be scheduled to run.
6365 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6366 */
b5606c2d 6367void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6368{
6369 unsigned long flags;
1da177e4 6370
bea3348e 6371 local_irq_save(flags);
903ceff7 6372 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6373 local_irq_restore(flags);
1da177e4 6374}
bea3348e
SH
6375EXPORT_SYMBOL(__napi_schedule);
6376
39e6c820
ED
6377/**
6378 * napi_schedule_prep - check if napi can be scheduled
6379 * @n: napi context
6380 *
6381 * Test if NAPI routine is already running, and if not mark
ee1a4c84 6382 * it as running. This is used as a condition variable to
39e6c820
ED
6383 * insure only one NAPI poll instance runs. We also make
6384 * sure there is no pending NAPI disable.
6385 */
6386bool napi_schedule_prep(struct napi_struct *n)
6387{
6388 unsigned long val, new;
6389
6390 do {
6391 val = READ_ONCE(n->state);
6392 if (unlikely(val & NAPIF_STATE_DISABLE))
6393 return false;
6394 new = val | NAPIF_STATE_SCHED;
6395
6396 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6397 * This was suggested by Alexander Duyck, as compiler
6398 * emits better code than :
6399 * if (val & NAPIF_STATE_SCHED)
6400 * new |= NAPIF_STATE_MISSED;
6401 */
6402 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6403 NAPIF_STATE_MISSED;
6404 } while (cmpxchg(&n->state, val, new) != val);
6405
6406 return !(val & NAPIF_STATE_SCHED);
6407}
6408EXPORT_SYMBOL(napi_schedule_prep);
6409
bc9ad166
ED
6410/**
6411 * __napi_schedule_irqoff - schedule for receive
6412 * @n: entry to schedule
6413 *
6414 * Variant of __napi_schedule() assuming hard irqs are masked
6415 */
6416void __napi_schedule_irqoff(struct napi_struct *n)
6417{
6418 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6419}
6420EXPORT_SYMBOL(__napi_schedule_irqoff);
6421
364b6055 6422bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6423{
6f8b12d6
ED
6424 unsigned long flags, val, new, timeout = 0;
6425 bool ret = true;
d565b0a1
HX
6426
6427 /*
217f6974
ED
6428 * 1) Don't let napi dequeue from the cpu poll list
6429 * just in case its running on a different cpu.
6430 * 2) If we are busy polling, do nothing here, we have
6431 * the guarantee we will be called later.
d565b0a1 6432 */
217f6974
ED
6433 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6434 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6435 return false;
d565b0a1 6436
6f8b12d6
ED
6437 if (work_done) {
6438 if (n->gro_bitmask)
7e417a66
ED
6439 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6440 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
6441 }
6442 if (n->defer_hard_irqs_count > 0) {
6443 n->defer_hard_irqs_count--;
7e417a66 6444 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
6445 if (timeout)
6446 ret = false;
6447 }
6448 if (n->gro_bitmask) {
605108ac
PA
6449 /* When the NAPI instance uses a timeout and keeps postponing
6450 * it, we need to bound somehow the time packets are kept in
6451 * the GRO layer
6452 */
6453 napi_gro_flush(n, !!timeout);
3b47d303 6454 }
c8079432
MM
6455
6456 gro_normal_list(n);
6457
02c1602e 6458 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6459 /* If n->poll_list is not empty, we need to mask irqs */
6460 local_irq_save(flags);
02c1602e 6461 list_del_init(&n->poll_list);
d75b1ade
ED
6462 local_irq_restore(flags);
6463 }
39e6c820
ED
6464
6465 do {
6466 val = READ_ONCE(n->state);
6467
6468 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6469
7fd3253a
BT
6470 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6471 NAPIF_STATE_PREFER_BUSY_POLL);
39e6c820
ED
6472
6473 /* If STATE_MISSED was set, leave STATE_SCHED set,
6474 * because we will call napi->poll() one more time.
6475 * This C code was suggested by Alexander Duyck to help gcc.
6476 */
6477 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6478 NAPIF_STATE_SCHED;
6479 } while (cmpxchg(&n->state, val, new) != val);
6480
6481 if (unlikely(val & NAPIF_STATE_MISSED)) {
6482 __napi_schedule(n);
6483 return false;
6484 }
6485
6f8b12d6
ED
6486 if (timeout)
6487 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6488 HRTIMER_MODE_REL_PINNED);
6489 return ret;
d565b0a1 6490}
3b47d303 6491EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6492
af12fa6e 6493/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6494static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6495{
6496 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6497 struct napi_struct *napi;
6498
6499 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6500 if (napi->napi_id == napi_id)
6501 return napi;
6502
6503 return NULL;
6504}
02d62e86
ED
6505
6506#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6507
7fd3253a 6508static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
217f6974 6509{
7fd3253a
BT
6510 if (!skip_schedule) {
6511 gro_normal_list(napi);
6512 __napi_schedule(napi);
6513 return;
6514 }
217f6974 6515
7fd3253a
BT
6516 if (napi->gro_bitmask) {
6517 /* flush too old packets
6518 * If HZ < 1000, flush all packets.
6519 */
6520 napi_gro_flush(napi, HZ >= 1000);
6521 }
217f6974 6522
7fd3253a
BT
6523 gro_normal_list(napi);
6524 clear_bit(NAPI_STATE_SCHED, &napi->state);
6525}
6526
7c951caf
BT
6527static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6528 u16 budget)
217f6974 6529{
7fd3253a
BT
6530 bool skip_schedule = false;
6531 unsigned long timeout;
217f6974
ED
6532 int rc;
6533
39e6c820
ED
6534 /* Busy polling means there is a high chance device driver hard irq
6535 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6536 * set in napi_schedule_prep().
6537 * Since we are about to call napi->poll() once more, we can safely
6538 * clear NAPI_STATE_MISSED.
6539 *
6540 * Note: x86 could use a single "lock and ..." instruction
6541 * to perform these two clear_bit()
6542 */
6543 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6544 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6545
6546 local_bh_disable();
6547
7fd3253a
BT
6548 if (prefer_busy_poll) {
6549 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6550 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6551 if (napi->defer_hard_irqs_count && timeout) {
6552 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6553 skip_schedule = true;
6554 }
6555 }
6556
217f6974
ED
6557 /* All we really want here is to re-enable device interrupts.
6558 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6559 */
7c951caf 6560 rc = napi->poll(napi, budget);
323ebb61
EC
6561 /* We can't gro_normal_list() here, because napi->poll() might have
6562 * rearmed the napi (napi_complete_done()) in which case it could
6563 * already be running on another CPU.
6564 */
7c951caf 6565 trace_napi_poll(napi, rc, budget);
217f6974 6566 netpoll_poll_unlock(have_poll_lock);
7c951caf 6567 if (rc == budget)
7fd3253a 6568 __busy_poll_stop(napi, skip_schedule);
217f6974 6569 local_bh_enable();
217f6974
ED
6570}
6571
7db6b048
SS
6572void napi_busy_loop(unsigned int napi_id,
6573 bool (*loop_end)(void *, unsigned long),
7c951caf 6574 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
02d62e86 6575{
7db6b048 6576 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6577 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6578 void *have_poll_lock = NULL;
02d62e86 6579 struct napi_struct *napi;
217f6974
ED
6580
6581restart:
217f6974 6582 napi_poll = NULL;
02d62e86 6583
2a028ecb 6584 rcu_read_lock();
02d62e86 6585
545cd5e5 6586 napi = napi_by_id(napi_id);
02d62e86
ED
6587 if (!napi)
6588 goto out;
6589
217f6974
ED
6590 preempt_disable();
6591 for (;;) {
2b5cd0df
AD
6592 int work = 0;
6593
2a028ecb 6594 local_bh_disable();
217f6974
ED
6595 if (!napi_poll) {
6596 unsigned long val = READ_ONCE(napi->state);
6597
6598 /* If multiple threads are competing for this napi,
6599 * we avoid dirtying napi->state as much as we can.
6600 */
6601 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
7fd3253a
BT
6602 NAPIF_STATE_IN_BUSY_POLL)) {
6603 if (prefer_busy_poll)
6604 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6605 goto count;
7fd3253a 6606 }
217f6974
ED
6607 if (cmpxchg(&napi->state, val,
6608 val | NAPIF_STATE_IN_BUSY_POLL |
7fd3253a
BT
6609 NAPIF_STATE_SCHED) != val) {
6610 if (prefer_busy_poll)
6611 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6612 goto count;
7fd3253a 6613 }
217f6974
ED
6614 have_poll_lock = netpoll_poll_lock(napi);
6615 napi_poll = napi->poll;
6616 }
7c951caf
BT
6617 work = napi_poll(napi, budget);
6618 trace_napi_poll(napi, work, budget);
323ebb61 6619 gro_normal_list(napi);
217f6974 6620count:
2b5cd0df 6621 if (work > 0)
7db6b048 6622 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6623 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6624 local_bh_enable();
02d62e86 6625
7db6b048 6626 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6627 break;
02d62e86 6628
217f6974
ED
6629 if (unlikely(need_resched())) {
6630 if (napi_poll)
7c951caf 6631 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974
ED
6632 preempt_enable();
6633 rcu_read_unlock();
6634 cond_resched();
7db6b048 6635 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6636 return;
217f6974
ED
6637 goto restart;
6638 }
6cdf89b1 6639 cpu_relax();
217f6974
ED
6640 }
6641 if (napi_poll)
7c951caf 6642 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974 6643 preempt_enable();
02d62e86 6644out:
2a028ecb 6645 rcu_read_unlock();
02d62e86 6646}
7db6b048 6647EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6648
6649#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6650
149d6ad8 6651static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6652{
4d092dd2 6653 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
52bd2d62 6654 return;
af12fa6e 6655
52bd2d62 6656 spin_lock(&napi_hash_lock);
af12fa6e 6657
545cd5e5 6658 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6659 do {
545cd5e5
AD
6660 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6661 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6662 } while (napi_by_id(napi_gen_id));
6663 napi->napi_id = napi_gen_id;
af12fa6e 6664
52bd2d62
ED
6665 hlist_add_head_rcu(&napi->napi_hash_node,
6666 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6667
52bd2d62 6668 spin_unlock(&napi_hash_lock);
af12fa6e 6669}
af12fa6e
ET
6670
6671/* Warning : caller is responsible to make sure rcu grace period
6672 * is respected before freeing memory containing @napi
6673 */
5198d545 6674static void napi_hash_del(struct napi_struct *napi)
af12fa6e
ET
6675{
6676 spin_lock(&napi_hash_lock);
6677
4d092dd2 6678 hlist_del_init_rcu(&napi->napi_hash_node);
5198d545 6679
af12fa6e
ET
6680 spin_unlock(&napi_hash_lock);
6681}
af12fa6e 6682
3b47d303
ED
6683static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6684{
6685 struct napi_struct *napi;
6686
6687 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6688
6689 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6690 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6691 */
6f8b12d6 6692 if (!napi_disable_pending(napi) &&
7fd3253a
BT
6693 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6694 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
39e6c820 6695 __napi_schedule_irqoff(napi);
7fd3253a 6696 }
3b47d303
ED
6697
6698 return HRTIMER_NORESTART;
6699}
6700
7c4ec749 6701static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6702{
07d78363
DM
6703 int i;
6704
6312fe77
LR
6705 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6706 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6707 napi->gro_hash[i].count = 0;
6708 }
7c4ec749
DM
6709 napi->gro_bitmask = 0;
6710}
6711
6712void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6713 int (*poll)(struct napi_struct *, int), int weight)
6714{
4d092dd2
JK
6715 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6716 return;
6717
7c4ec749 6718 INIT_LIST_HEAD(&napi->poll_list);
4d092dd2 6719 INIT_HLIST_NODE(&napi->napi_hash_node);
7c4ec749
DM
6720 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6721 napi->timer.function = napi_watchdog;
6722 init_gro_hash(napi);
5d38a079 6723 napi->skb = NULL;
323ebb61
EC
6724 INIT_LIST_HEAD(&napi->rx_list);
6725 napi->rx_count = 0;
d565b0a1 6726 napi->poll = poll;
82dc3c63 6727 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6728 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6729 weight);
d565b0a1 6730 napi->weight = weight;
d565b0a1 6731 napi->dev = dev;
5d38a079 6732#ifdef CONFIG_NETPOLL
d565b0a1
HX
6733 napi->poll_owner = -1;
6734#endif
6735 set_bit(NAPI_STATE_SCHED, &napi->state);
96e97bc0
JK
6736 set_bit(NAPI_STATE_NPSVC, &napi->state);
6737 list_add_rcu(&napi->dev_list, &dev->napi_list);
93d05d4a 6738 napi_hash_add(napi);
d565b0a1
HX
6739}
6740EXPORT_SYMBOL(netif_napi_add);
6741
3b47d303
ED
6742void napi_disable(struct napi_struct *n)
6743{
6744 might_sleep();
6745 set_bit(NAPI_STATE_DISABLE, &n->state);
6746
6747 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6748 msleep(1);
2d8bff12
NH
6749 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6750 msleep(1);
3b47d303
ED
6751
6752 hrtimer_cancel(&n->timer);
6753
7fd3253a 6754 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
3b47d303
ED
6755 clear_bit(NAPI_STATE_DISABLE, &n->state);
6756}
6757EXPORT_SYMBOL(napi_disable);
6758
07d78363 6759static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6760{
07d78363 6761 int i;
d4546c25 6762
07d78363
DM
6763 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6764 struct sk_buff *skb, *n;
6765
6312fe77 6766 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6767 kfree_skb(skb);
6312fe77 6768 napi->gro_hash[i].count = 0;
07d78363 6769 }
d4546c25
DM
6770}
6771
93d05d4a 6772/* Must be called in process context */
5198d545 6773void __netif_napi_del(struct napi_struct *napi)
d565b0a1 6774{
4d092dd2
JK
6775 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6776 return;
6777
5198d545 6778 napi_hash_del(napi);
5251ef82 6779 list_del_rcu(&napi->dev_list);
76620aaf 6780 napi_free_frags(napi);
d565b0a1 6781
07d78363 6782 flush_gro_hash(napi);
d9f37d01 6783 napi->gro_bitmask = 0;
d565b0a1 6784}
5198d545 6785EXPORT_SYMBOL(__netif_napi_del);
d565b0a1 6786
726ce70e
HX
6787static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6788{
6789 void *have;
6790 int work, weight;
6791
6792 list_del_init(&n->poll_list);
6793
6794 have = netpoll_poll_lock(n);
6795
6796 weight = n->weight;
6797
6798 /* This NAPI_STATE_SCHED test is for avoiding a race
6799 * with netpoll's poll_napi(). Only the entity which
6800 * obtains the lock and sees NAPI_STATE_SCHED set will
6801 * actually make the ->poll() call. Therefore we avoid
6802 * accidentally calling ->poll() when NAPI is not scheduled.
6803 */
6804 work = 0;
6805 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6806 work = n->poll(n, weight);
1db19db7 6807 trace_napi_poll(n, work, weight);
726ce70e
HX
6808 }
6809
427d5838
ED
6810 if (unlikely(work > weight))
6811 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6812 n->poll, work, weight);
726ce70e
HX
6813
6814 if (likely(work < weight))
6815 goto out_unlock;
6816
6817 /* Drivers must not modify the NAPI state if they
6818 * consume the entire weight. In such cases this code
6819 * still "owns" the NAPI instance and therefore can
6820 * move the instance around on the list at-will.
6821 */
6822 if (unlikely(napi_disable_pending(n))) {
6823 napi_complete(n);
6824 goto out_unlock;
6825 }
6826
7fd3253a
BT
6827 /* The NAPI context has more processing work, but busy-polling
6828 * is preferred. Exit early.
6829 */
6830 if (napi_prefer_busy_poll(n)) {
6831 if (napi_complete_done(n, work)) {
6832 /* If timeout is not set, we need to make sure
6833 * that the NAPI is re-scheduled.
6834 */
6835 napi_schedule(n);
6836 }
6837 goto out_unlock;
6838 }
6839
d9f37d01 6840 if (n->gro_bitmask) {
726ce70e
HX
6841 /* flush too old packets
6842 * If HZ < 1000, flush all packets.
6843 */
6844 napi_gro_flush(n, HZ >= 1000);
6845 }
6846
c8079432
MM
6847 gro_normal_list(n);
6848
001ce546
HX
6849 /* Some drivers may have called napi_schedule
6850 * prior to exhausting their budget.
6851 */
6852 if (unlikely(!list_empty(&n->poll_list))) {
6853 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6854 n->dev ? n->dev->name : "backlog");
6855 goto out_unlock;
6856 }
6857
726ce70e
HX
6858 list_add_tail(&n->poll_list, repoll);
6859
6860out_unlock:
6861 netpoll_poll_unlock(have);
6862
6863 return work;
6864}
6865
0766f788 6866static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6867{
903ceff7 6868 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6869 unsigned long time_limit = jiffies +
6870 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6871 int budget = netdev_budget;
d75b1ade
ED
6872 LIST_HEAD(list);
6873 LIST_HEAD(repoll);
53fb95d3 6874
1da177e4 6875 local_irq_disable();
d75b1ade
ED
6876 list_splice_init(&sd->poll_list, &list);
6877 local_irq_enable();
1da177e4 6878
ceb8d5bf 6879 for (;;) {
bea3348e 6880 struct napi_struct *n;
1da177e4 6881
ceb8d5bf
HX
6882 if (list_empty(&list)) {
6883 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6884 goto out;
ceb8d5bf
HX
6885 break;
6886 }
6887
6bd373eb
HX
6888 n = list_first_entry(&list, struct napi_struct, poll_list);
6889 budget -= napi_poll(n, &repoll);
6890
d75b1ade 6891 /* If softirq window is exhausted then punt.
24f8b238
SH
6892 * Allow this to run for 2 jiffies since which will allow
6893 * an average latency of 1.5/HZ.
bea3348e 6894 */
ceb8d5bf
HX
6895 if (unlikely(budget <= 0 ||
6896 time_after_eq(jiffies, time_limit))) {
6897 sd->time_squeeze++;
6898 break;
6899 }
1da177e4 6900 }
d75b1ade 6901
d75b1ade
ED
6902 local_irq_disable();
6903
6904 list_splice_tail_init(&sd->poll_list, &list);
6905 list_splice_tail(&repoll, &list);
6906 list_splice(&list, &sd->poll_list);
6907 if (!list_empty(&sd->poll_list))
6908 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6909
e326bed2 6910 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6911out:
6912 __kfree_skb_flush();
1da177e4
LT
6913}
6914
aa9d8560 6915struct netdev_adjacent {
9ff162a8 6916 struct net_device *dev;
5d261913
VF
6917
6918 /* upper master flag, there can only be one master device per list */
9ff162a8 6919 bool master;
5d261913 6920
32b6d34f
TY
6921 /* lookup ignore flag */
6922 bool ignore;
6923
5d261913
VF
6924 /* counter for the number of times this device was added to us */
6925 u16 ref_nr;
6926
402dae96
VF
6927 /* private field for the users */
6928 void *private;
6929
9ff162a8
JP
6930 struct list_head list;
6931 struct rcu_head rcu;
9ff162a8
JP
6932};
6933
6ea29da1 6934static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6935 struct list_head *adj_list)
9ff162a8 6936{
5d261913 6937 struct netdev_adjacent *adj;
5d261913 6938
2f268f12 6939 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6940 if (adj->dev == adj_dev)
6941 return adj;
9ff162a8
JP
6942 }
6943 return NULL;
6944}
6945
eff74233
TY
6946static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6947 struct netdev_nested_priv *priv)
f1170fd4 6948{
eff74233 6949 struct net_device *dev = (struct net_device *)priv->data;
f1170fd4
DA
6950
6951 return upper_dev == dev;
6952}
6953
9ff162a8
JP
6954/**
6955 * netdev_has_upper_dev - Check if device is linked to an upper device
6956 * @dev: device
6957 * @upper_dev: upper device to check
6958 *
6959 * Find out if a device is linked to specified upper device and return true
6960 * in case it is. Note that this checks only immediate upper device,
6961 * not through a complete stack of devices. The caller must hold the RTNL lock.
6962 */
6963bool netdev_has_upper_dev(struct net_device *dev,
6964 struct net_device *upper_dev)
6965{
eff74233
TY
6966 struct netdev_nested_priv priv = {
6967 .data = (void *)upper_dev,
6968 };
6969
9ff162a8
JP
6970 ASSERT_RTNL();
6971
32b6d34f 6972 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 6973 &priv);
9ff162a8
JP
6974}
6975EXPORT_SYMBOL(netdev_has_upper_dev);
6976
1a3f060c 6977/**
c1639be9 6978 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
1a3f060c
DA
6979 * @dev: device
6980 * @upper_dev: upper device to check
6981 *
6982 * Find out if a device is linked to specified upper device and return true
6983 * in case it is. Note that this checks the entire upper device chain.
6984 * The caller must hold rcu lock.
6985 */
6986
1a3f060c
DA
6987bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6988 struct net_device *upper_dev)
6989{
eff74233
TY
6990 struct netdev_nested_priv priv = {
6991 .data = (void *)upper_dev,
6992 };
6993
32b6d34f 6994 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 6995 &priv);
1a3f060c
DA
6996}
6997EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6998
9ff162a8
JP
6999/**
7000 * netdev_has_any_upper_dev - Check if device is linked to some device
7001 * @dev: device
7002 *
7003 * Find out if a device is linked to an upper device and return true in case
7004 * it is. The caller must hold the RTNL lock.
7005 */
25cc72a3 7006bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
7007{
7008 ASSERT_RTNL();
7009
f1170fd4 7010 return !list_empty(&dev->adj_list.upper);
9ff162a8 7011}
25cc72a3 7012EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
7013
7014/**
7015 * netdev_master_upper_dev_get - Get master upper device
7016 * @dev: device
7017 *
7018 * Find a master upper device and return pointer to it or NULL in case
7019 * it's not there. The caller must hold the RTNL lock.
7020 */
7021struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7022{
aa9d8560 7023 struct netdev_adjacent *upper;
9ff162a8
JP
7024
7025 ASSERT_RTNL();
7026
2f268f12 7027 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
7028 return NULL;
7029
2f268f12 7030 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 7031 struct netdev_adjacent, list);
9ff162a8
JP
7032 if (likely(upper->master))
7033 return upper->dev;
7034 return NULL;
7035}
7036EXPORT_SYMBOL(netdev_master_upper_dev_get);
7037
32b6d34f
TY
7038static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7039{
7040 struct netdev_adjacent *upper;
7041
7042 ASSERT_RTNL();
7043
7044 if (list_empty(&dev->adj_list.upper))
7045 return NULL;
7046
7047 upper = list_first_entry(&dev->adj_list.upper,
7048 struct netdev_adjacent, list);
7049 if (likely(upper->master) && !upper->ignore)
7050 return upper->dev;
7051 return NULL;
7052}
7053
0f524a80
DA
7054/**
7055 * netdev_has_any_lower_dev - Check if device is linked to some device
7056 * @dev: device
7057 *
7058 * Find out if a device is linked to a lower device and return true in case
7059 * it is. The caller must hold the RTNL lock.
7060 */
7061static bool netdev_has_any_lower_dev(struct net_device *dev)
7062{
7063 ASSERT_RTNL();
7064
7065 return !list_empty(&dev->adj_list.lower);
7066}
7067
b6ccba4c
VF
7068void *netdev_adjacent_get_private(struct list_head *adj_list)
7069{
7070 struct netdev_adjacent *adj;
7071
7072 adj = list_entry(adj_list, struct netdev_adjacent, list);
7073
7074 return adj->private;
7075}
7076EXPORT_SYMBOL(netdev_adjacent_get_private);
7077
44a40855
VY
7078/**
7079 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7080 * @dev: device
7081 * @iter: list_head ** of the current position
7082 *
7083 * Gets the next device from the dev's upper list, starting from iter
7084 * position. The caller must hold RCU read lock.
7085 */
7086struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7087 struct list_head **iter)
7088{
7089 struct netdev_adjacent *upper;
7090
7091 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7092
7093 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7094
7095 if (&upper->list == &dev->adj_list.upper)
7096 return NULL;
7097
7098 *iter = &upper->list;
7099
7100 return upper->dev;
7101}
7102EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7103
32b6d34f
TY
7104static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7105 struct list_head **iter,
7106 bool *ignore)
5343da4c
TY
7107{
7108 struct netdev_adjacent *upper;
7109
7110 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7111
7112 if (&upper->list == &dev->adj_list.upper)
7113 return NULL;
7114
7115 *iter = &upper->list;
32b6d34f 7116 *ignore = upper->ignore;
5343da4c
TY
7117
7118 return upper->dev;
7119}
7120
1a3f060c
DA
7121static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7122 struct list_head **iter)
7123{
7124 struct netdev_adjacent *upper;
7125
7126 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7127
7128 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7129
7130 if (&upper->list == &dev->adj_list.upper)
7131 return NULL;
7132
7133 *iter = &upper->list;
7134
7135 return upper->dev;
7136}
7137
32b6d34f
TY
7138static int __netdev_walk_all_upper_dev(struct net_device *dev,
7139 int (*fn)(struct net_device *dev,
eff74233
TY
7140 struct netdev_nested_priv *priv),
7141 struct netdev_nested_priv *priv)
5343da4c
TY
7142{
7143 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7144 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7145 int ret, cur = 0;
32b6d34f 7146 bool ignore;
5343da4c
TY
7147
7148 now = dev;
7149 iter = &dev->adj_list.upper;
7150
7151 while (1) {
7152 if (now != dev) {
eff74233 7153 ret = fn(now, priv);
5343da4c
TY
7154 if (ret)
7155 return ret;
7156 }
7157
7158 next = NULL;
7159 while (1) {
32b6d34f 7160 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
7161 if (!udev)
7162 break;
32b6d34f
TY
7163 if (ignore)
7164 continue;
5343da4c
TY
7165
7166 next = udev;
7167 niter = &udev->adj_list.upper;
7168 dev_stack[cur] = now;
7169 iter_stack[cur++] = iter;
7170 break;
7171 }
7172
7173 if (!next) {
7174 if (!cur)
7175 return 0;
7176 next = dev_stack[--cur];
7177 niter = iter_stack[cur];
7178 }
7179
7180 now = next;
7181 iter = niter;
7182 }
7183
7184 return 0;
7185}
7186
1a3f060c
DA
7187int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7188 int (*fn)(struct net_device *dev,
eff74233
TY
7189 struct netdev_nested_priv *priv),
7190 struct netdev_nested_priv *priv)
1a3f060c 7191{
5343da4c
TY
7192 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7193 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7194 int ret, cur = 0;
1a3f060c 7195
5343da4c
TY
7196 now = dev;
7197 iter = &dev->adj_list.upper;
1a3f060c 7198
5343da4c
TY
7199 while (1) {
7200 if (now != dev) {
eff74233 7201 ret = fn(now, priv);
5343da4c
TY
7202 if (ret)
7203 return ret;
7204 }
7205
7206 next = NULL;
7207 while (1) {
7208 udev = netdev_next_upper_dev_rcu(now, &iter);
7209 if (!udev)
7210 break;
7211
7212 next = udev;
7213 niter = &udev->adj_list.upper;
7214 dev_stack[cur] = now;
7215 iter_stack[cur++] = iter;
7216 break;
7217 }
7218
7219 if (!next) {
7220 if (!cur)
7221 return 0;
7222 next = dev_stack[--cur];
7223 niter = iter_stack[cur];
7224 }
7225
7226 now = next;
7227 iter = niter;
1a3f060c
DA
7228 }
7229
7230 return 0;
7231}
7232EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7233
32b6d34f
TY
7234static bool __netdev_has_upper_dev(struct net_device *dev,
7235 struct net_device *upper_dev)
7236{
eff74233 7237 struct netdev_nested_priv priv = {
1fc70edb 7238 .flags = 0,
eff74233
TY
7239 .data = (void *)upper_dev,
7240 };
7241
32b6d34f
TY
7242 ASSERT_RTNL();
7243
7244 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
eff74233 7245 &priv);
32b6d34f
TY
7246}
7247
31088a11
VF
7248/**
7249 * netdev_lower_get_next_private - Get the next ->private from the
7250 * lower neighbour list
7251 * @dev: device
7252 * @iter: list_head ** of the current position
7253 *
7254 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7255 * list, starting from iter position. The caller must hold either hold the
7256 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 7257 * list will remain unchanged.
31088a11
VF
7258 */
7259void *netdev_lower_get_next_private(struct net_device *dev,
7260 struct list_head **iter)
7261{
7262 struct netdev_adjacent *lower;
7263
7264 lower = list_entry(*iter, struct netdev_adjacent, list);
7265
7266 if (&lower->list == &dev->adj_list.lower)
7267 return NULL;
7268
6859e7df 7269 *iter = lower->list.next;
31088a11
VF
7270
7271 return lower->private;
7272}
7273EXPORT_SYMBOL(netdev_lower_get_next_private);
7274
7275/**
7276 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7277 * lower neighbour list, RCU
7278 * variant
7279 * @dev: device
7280 * @iter: list_head ** of the current position
7281 *
7282 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7283 * list, starting from iter position. The caller must hold RCU read lock.
7284 */
7285void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7286 struct list_head **iter)
7287{
7288 struct netdev_adjacent *lower;
7289
7290 WARN_ON_ONCE(!rcu_read_lock_held());
7291
7292 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7293
7294 if (&lower->list == &dev->adj_list.lower)
7295 return NULL;
7296
6859e7df 7297 *iter = &lower->list;
31088a11
VF
7298
7299 return lower->private;
7300}
7301EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7302
4085ebe8
VY
7303/**
7304 * netdev_lower_get_next - Get the next device from the lower neighbour
7305 * list
7306 * @dev: device
7307 * @iter: list_head ** of the current position
7308 *
7309 * Gets the next netdev_adjacent from the dev's lower neighbour
7310 * list, starting from iter position. The caller must hold RTNL lock or
7311 * its own locking that guarantees that the neighbour lower
b469139e 7312 * list will remain unchanged.
4085ebe8
VY
7313 */
7314void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7315{
7316 struct netdev_adjacent *lower;
7317
cfdd28be 7318 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7319
7320 if (&lower->list == &dev->adj_list.lower)
7321 return NULL;
7322
cfdd28be 7323 *iter = lower->list.next;
4085ebe8
VY
7324
7325 return lower->dev;
7326}
7327EXPORT_SYMBOL(netdev_lower_get_next);
7328
1a3f060c
DA
7329static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7330 struct list_head **iter)
7331{
7332 struct netdev_adjacent *lower;
7333
46b5ab1a 7334 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7335
7336 if (&lower->list == &dev->adj_list.lower)
7337 return NULL;
7338
46b5ab1a 7339 *iter = &lower->list;
1a3f060c
DA
7340
7341 return lower->dev;
7342}
7343
32b6d34f
TY
7344static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7345 struct list_head **iter,
7346 bool *ignore)
7347{
7348 struct netdev_adjacent *lower;
7349
7350 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7351
7352 if (&lower->list == &dev->adj_list.lower)
7353 return NULL;
7354
7355 *iter = &lower->list;
7356 *ignore = lower->ignore;
7357
7358 return lower->dev;
7359}
7360
1a3f060c
DA
7361int netdev_walk_all_lower_dev(struct net_device *dev,
7362 int (*fn)(struct net_device *dev,
eff74233
TY
7363 struct netdev_nested_priv *priv),
7364 struct netdev_nested_priv *priv)
1a3f060c 7365{
5343da4c
TY
7366 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7367 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7368 int ret, cur = 0;
1a3f060c 7369
5343da4c
TY
7370 now = dev;
7371 iter = &dev->adj_list.lower;
1a3f060c 7372
5343da4c
TY
7373 while (1) {
7374 if (now != dev) {
eff74233 7375 ret = fn(now, priv);
5343da4c
TY
7376 if (ret)
7377 return ret;
7378 }
7379
7380 next = NULL;
7381 while (1) {
7382 ldev = netdev_next_lower_dev(now, &iter);
7383 if (!ldev)
7384 break;
7385
7386 next = ldev;
7387 niter = &ldev->adj_list.lower;
7388 dev_stack[cur] = now;
7389 iter_stack[cur++] = iter;
7390 break;
7391 }
7392
7393 if (!next) {
7394 if (!cur)
7395 return 0;
7396 next = dev_stack[--cur];
7397 niter = iter_stack[cur];
7398 }
7399
7400 now = next;
7401 iter = niter;
1a3f060c
DA
7402 }
7403
7404 return 0;
7405}
7406EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7407
32b6d34f
TY
7408static int __netdev_walk_all_lower_dev(struct net_device *dev,
7409 int (*fn)(struct net_device *dev,
eff74233
TY
7410 struct netdev_nested_priv *priv),
7411 struct netdev_nested_priv *priv)
32b6d34f
TY
7412{
7413 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7414 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7415 int ret, cur = 0;
7416 bool ignore;
7417
7418 now = dev;
7419 iter = &dev->adj_list.lower;
7420
7421 while (1) {
7422 if (now != dev) {
eff74233 7423 ret = fn(now, priv);
32b6d34f
TY
7424 if (ret)
7425 return ret;
7426 }
7427
7428 next = NULL;
7429 while (1) {
7430 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7431 if (!ldev)
7432 break;
7433 if (ignore)
7434 continue;
7435
7436 next = ldev;
7437 niter = &ldev->adj_list.lower;
7438 dev_stack[cur] = now;
7439 iter_stack[cur++] = iter;
7440 break;
7441 }
7442
7443 if (!next) {
7444 if (!cur)
7445 return 0;
7446 next = dev_stack[--cur];
7447 niter = iter_stack[cur];
7448 }
7449
7450 now = next;
7451 iter = niter;
7452 }
7453
7454 return 0;
7455}
7456
7151affe
TY
7457struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7458 struct list_head **iter)
1a3f060c
DA
7459{
7460 struct netdev_adjacent *lower;
7461
7462 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7463 if (&lower->list == &dev->adj_list.lower)
7464 return NULL;
7465
7466 *iter = &lower->list;
7467
7468 return lower->dev;
7469}
7151affe 7470EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7471
5343da4c
TY
7472static u8 __netdev_upper_depth(struct net_device *dev)
7473{
7474 struct net_device *udev;
7475 struct list_head *iter;
7476 u8 max_depth = 0;
32b6d34f 7477 bool ignore;
5343da4c
TY
7478
7479 for (iter = &dev->adj_list.upper,
32b6d34f 7480 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7481 udev;
32b6d34f
TY
7482 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7483 if (ignore)
7484 continue;
5343da4c
TY
7485 if (max_depth < udev->upper_level)
7486 max_depth = udev->upper_level;
7487 }
7488
7489 return max_depth;
7490}
7491
7492static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7493{
7494 struct net_device *ldev;
7495 struct list_head *iter;
5343da4c 7496 u8 max_depth = 0;
32b6d34f 7497 bool ignore;
1a3f060c
DA
7498
7499 for (iter = &dev->adj_list.lower,
32b6d34f 7500 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7501 ldev;
32b6d34f
TY
7502 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7503 if (ignore)
7504 continue;
5343da4c
TY
7505 if (max_depth < ldev->lower_level)
7506 max_depth = ldev->lower_level;
7507 }
1a3f060c 7508
5343da4c
TY
7509 return max_depth;
7510}
7511
eff74233
TY
7512static int __netdev_update_upper_level(struct net_device *dev,
7513 struct netdev_nested_priv *__unused)
5343da4c
TY
7514{
7515 dev->upper_level = __netdev_upper_depth(dev) + 1;
7516 return 0;
7517}
7518
eff74233 7519static int __netdev_update_lower_level(struct net_device *dev,
1fc70edb 7520 struct netdev_nested_priv *priv)
5343da4c
TY
7521{
7522 dev->lower_level = __netdev_lower_depth(dev) + 1;
1fc70edb
TY
7523
7524#ifdef CONFIG_LOCKDEP
7525 if (!priv)
7526 return 0;
7527
7528 if (priv->flags & NESTED_SYNC_IMM)
7529 dev->nested_level = dev->lower_level - 1;
7530 if (priv->flags & NESTED_SYNC_TODO)
7531 net_unlink_todo(dev);
7532#endif
5343da4c
TY
7533 return 0;
7534}
7535
7536int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7537 int (*fn)(struct net_device *dev,
eff74233
TY
7538 struct netdev_nested_priv *priv),
7539 struct netdev_nested_priv *priv)
5343da4c
TY
7540{
7541 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7542 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7543 int ret, cur = 0;
7544
7545 now = dev;
7546 iter = &dev->adj_list.lower;
7547
7548 while (1) {
7549 if (now != dev) {
eff74233 7550 ret = fn(now, priv);
5343da4c
TY
7551 if (ret)
7552 return ret;
7553 }
7554
7555 next = NULL;
7556 while (1) {
7557 ldev = netdev_next_lower_dev_rcu(now, &iter);
7558 if (!ldev)
7559 break;
7560
7561 next = ldev;
7562 niter = &ldev->adj_list.lower;
7563 dev_stack[cur] = now;
7564 iter_stack[cur++] = iter;
7565 break;
7566 }
7567
7568 if (!next) {
7569 if (!cur)
7570 return 0;
7571 next = dev_stack[--cur];
7572 niter = iter_stack[cur];
7573 }
7574
7575 now = next;
7576 iter = niter;
1a3f060c
DA
7577 }
7578
7579 return 0;
7580}
7581EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7582
e001bfad 7583/**
7584 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7585 * lower neighbour list, RCU
7586 * variant
7587 * @dev: device
7588 *
7589 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7590 * list. The caller must hold RCU read lock.
7591 */
7592void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7593{
7594 struct netdev_adjacent *lower;
7595
7596 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7597 struct netdev_adjacent, list);
7598 if (lower)
7599 return lower->private;
7600 return NULL;
7601}
7602EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7603
9ff162a8
JP
7604/**
7605 * netdev_master_upper_dev_get_rcu - Get master upper device
7606 * @dev: device
7607 *
7608 * Find a master upper device and return pointer to it or NULL in case
7609 * it's not there. The caller must hold the RCU read lock.
7610 */
7611struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7612{
aa9d8560 7613 struct netdev_adjacent *upper;
9ff162a8 7614
2f268f12 7615 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7616 struct netdev_adjacent, list);
9ff162a8
JP
7617 if (upper && likely(upper->master))
7618 return upper->dev;
7619 return NULL;
7620}
7621EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7622
0a59f3a9 7623static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7624 struct net_device *adj_dev,
7625 struct list_head *dev_list)
7626{
7627 char linkname[IFNAMSIZ+7];
f4563a75 7628
3ee32707
VF
7629 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7630 "upper_%s" : "lower_%s", adj_dev->name);
7631 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7632 linkname);
7633}
0a59f3a9 7634static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7635 char *name,
7636 struct list_head *dev_list)
7637{
7638 char linkname[IFNAMSIZ+7];
f4563a75 7639
3ee32707
VF
7640 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7641 "upper_%s" : "lower_%s", name);
7642 sysfs_remove_link(&(dev->dev.kobj), linkname);
7643}
7644
7ce64c79
AF
7645static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7646 struct net_device *adj_dev,
7647 struct list_head *dev_list)
7648{
7649 return (dev_list == &dev->adj_list.upper ||
7650 dev_list == &dev->adj_list.lower) &&
7651 net_eq(dev_net(dev), dev_net(adj_dev));
7652}
3ee32707 7653
5d261913
VF
7654static int __netdev_adjacent_dev_insert(struct net_device *dev,
7655 struct net_device *adj_dev,
7863c054 7656 struct list_head *dev_list,
402dae96 7657 void *private, bool master)
5d261913
VF
7658{
7659 struct netdev_adjacent *adj;
842d67a7 7660 int ret;
5d261913 7661
6ea29da1 7662 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7663
7664 if (adj) {
790510d9 7665 adj->ref_nr += 1;
67b62f98
DA
7666 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7667 dev->name, adj_dev->name, adj->ref_nr);
7668
5d261913
VF
7669 return 0;
7670 }
7671
7672 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7673 if (!adj)
7674 return -ENOMEM;
7675
7676 adj->dev = adj_dev;
7677 adj->master = master;
790510d9 7678 adj->ref_nr = 1;
402dae96 7679 adj->private = private;
32b6d34f 7680 adj->ignore = false;
5d261913 7681 dev_hold(adj_dev);
2f268f12 7682
67b62f98
DA
7683 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7684 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7685
7ce64c79 7686 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7687 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7688 if (ret)
7689 goto free_adj;
7690 }
7691
7863c054 7692 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7693 if (master) {
7694 ret = sysfs_create_link(&(dev->dev.kobj),
7695 &(adj_dev->dev.kobj), "master");
7696 if (ret)
5831d66e 7697 goto remove_symlinks;
842d67a7 7698
7863c054 7699 list_add_rcu(&adj->list, dev_list);
842d67a7 7700 } else {
7863c054 7701 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7702 }
5d261913
VF
7703
7704 return 0;
842d67a7 7705
5831d66e 7706remove_symlinks:
7ce64c79 7707 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7708 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7709free_adj:
7710 kfree(adj);
974daef7 7711 dev_put(adj_dev);
842d67a7
VF
7712
7713 return ret;
5d261913
VF
7714}
7715
1d143d9f 7716static void __netdev_adjacent_dev_remove(struct net_device *dev,
7717 struct net_device *adj_dev,
93409033 7718 u16 ref_nr,
1d143d9f 7719 struct list_head *dev_list)
5d261913
VF
7720{
7721 struct netdev_adjacent *adj;
7722
67b62f98
DA
7723 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7724 dev->name, adj_dev->name, ref_nr);
7725
6ea29da1 7726 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7727
2f268f12 7728 if (!adj) {
67b62f98 7729 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7730 dev->name, adj_dev->name);
67b62f98
DA
7731 WARN_ON(1);
7732 return;
2f268f12 7733 }
5d261913 7734
93409033 7735 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7736 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7737 dev->name, adj_dev->name, ref_nr,
7738 adj->ref_nr - ref_nr);
93409033 7739 adj->ref_nr -= ref_nr;
5d261913
VF
7740 return;
7741 }
7742
842d67a7
VF
7743 if (adj->master)
7744 sysfs_remove_link(&(dev->dev.kobj), "master");
7745
7ce64c79 7746 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7747 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7748
5d261913 7749 list_del_rcu(&adj->list);
67b62f98 7750 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7751 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7752 dev_put(adj_dev);
7753 kfree_rcu(adj, rcu);
7754}
7755
1d143d9f 7756static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7757 struct net_device *upper_dev,
7758 struct list_head *up_list,
7759 struct list_head *down_list,
7760 void *private, bool master)
5d261913
VF
7761{
7762 int ret;
7763
790510d9 7764 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7765 private, master);
5d261913
VF
7766 if (ret)
7767 return ret;
7768
790510d9 7769 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7770 private, false);
5d261913 7771 if (ret) {
790510d9 7772 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7773 return ret;
7774 }
7775
7776 return 0;
7777}
7778
1d143d9f 7779static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7780 struct net_device *upper_dev,
93409033 7781 u16 ref_nr,
1d143d9f 7782 struct list_head *up_list,
7783 struct list_head *down_list)
5d261913 7784{
93409033
AC
7785 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7786 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7787}
7788
1d143d9f 7789static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7790 struct net_device *upper_dev,
7791 void *private, bool master)
2f268f12 7792{
f1170fd4
DA
7793 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7794 &dev->adj_list.upper,
7795 &upper_dev->adj_list.lower,
7796 private, master);
5d261913
VF
7797}
7798
1d143d9f 7799static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7800 struct net_device *upper_dev)
2f268f12 7801{
93409033 7802 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7803 &dev->adj_list.upper,
7804 &upper_dev->adj_list.lower);
7805}
5d261913 7806
9ff162a8 7807static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7808 struct net_device *upper_dev, bool master,
42ab19ee 7809 void *upper_priv, void *upper_info,
1fc70edb 7810 struct netdev_nested_priv *priv,
42ab19ee 7811 struct netlink_ext_ack *extack)
9ff162a8 7812{
51d0c047
DA
7813 struct netdev_notifier_changeupper_info changeupper_info = {
7814 .info = {
7815 .dev = dev,
42ab19ee 7816 .extack = extack,
51d0c047
DA
7817 },
7818 .upper_dev = upper_dev,
7819 .master = master,
7820 .linking = true,
7821 .upper_info = upper_info,
7822 };
50d629e7 7823 struct net_device *master_dev;
5d261913 7824 int ret = 0;
9ff162a8
JP
7825
7826 ASSERT_RTNL();
7827
7828 if (dev == upper_dev)
7829 return -EBUSY;
7830
7831 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7832 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7833 return -EBUSY;
7834
5343da4c
TY
7835 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7836 return -EMLINK;
7837
50d629e7 7838 if (!master) {
32b6d34f 7839 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7840 return -EEXIST;
7841 } else {
32b6d34f 7842 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7843 if (master_dev)
7844 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7845 }
9ff162a8 7846
51d0c047 7847 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7848 &changeupper_info.info);
7849 ret = notifier_to_errno(ret);
7850 if (ret)
7851 return ret;
7852
6dffb044 7853 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7854 master);
5d261913
VF
7855 if (ret)
7856 return ret;
9ff162a8 7857
51d0c047 7858 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7859 &changeupper_info.info);
7860 ret = notifier_to_errno(ret);
7861 if (ret)
f1170fd4 7862 goto rollback;
b03804e7 7863
5343da4c 7864 __netdev_update_upper_level(dev, NULL);
32b6d34f 7865 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 7866
1fc70edb 7867 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 7868 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 7869 priv);
5343da4c 7870
9ff162a8 7871 return 0;
5d261913 7872
f1170fd4 7873rollback:
2f268f12 7874 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7875
7876 return ret;
9ff162a8
JP
7877}
7878
7879/**
7880 * netdev_upper_dev_link - Add a link to the upper device
7881 * @dev: device
7882 * @upper_dev: new upper device
7a006d59 7883 * @extack: netlink extended ack
9ff162a8
JP
7884 *
7885 * Adds a link to device which is upper to this one. The caller must hold
7886 * the RTNL lock. On a failure a negative errno code is returned.
7887 * On success the reference counts are adjusted and the function
7888 * returns zero.
7889 */
7890int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7891 struct net_device *upper_dev,
7892 struct netlink_ext_ack *extack)
9ff162a8 7893{
1fc70edb
TY
7894 struct netdev_nested_priv priv = {
7895 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7896 .data = NULL,
7897 };
7898
42ab19ee 7899 return __netdev_upper_dev_link(dev, upper_dev, false,
1fc70edb 7900 NULL, NULL, &priv, extack);
9ff162a8
JP
7901}
7902EXPORT_SYMBOL(netdev_upper_dev_link);
7903
7904/**
7905 * netdev_master_upper_dev_link - Add a master link to the upper device
7906 * @dev: device
7907 * @upper_dev: new upper device
6dffb044 7908 * @upper_priv: upper device private
29bf24af 7909 * @upper_info: upper info to be passed down via notifier
7a006d59 7910 * @extack: netlink extended ack
9ff162a8
JP
7911 *
7912 * Adds a link to device which is upper to this one. In this case, only
7913 * one master upper device can be linked, although other non-master devices
7914 * might be linked as well. The caller must hold the RTNL lock.
7915 * On a failure a negative errno code is returned. On success the reference
7916 * counts are adjusted and the function returns zero.
7917 */
7918int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7919 struct net_device *upper_dev,
42ab19ee
DA
7920 void *upper_priv, void *upper_info,
7921 struct netlink_ext_ack *extack)
9ff162a8 7922{
1fc70edb
TY
7923 struct netdev_nested_priv priv = {
7924 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7925 .data = NULL,
7926 };
7927
29bf24af 7928 return __netdev_upper_dev_link(dev, upper_dev, true,
1fc70edb 7929 upper_priv, upper_info, &priv, extack);
9ff162a8
JP
7930}
7931EXPORT_SYMBOL(netdev_master_upper_dev_link);
7932
fe8300fd 7933static void __netdev_upper_dev_unlink(struct net_device *dev,
1fc70edb
TY
7934 struct net_device *upper_dev,
7935 struct netdev_nested_priv *priv)
9ff162a8 7936{
51d0c047
DA
7937 struct netdev_notifier_changeupper_info changeupper_info = {
7938 .info = {
7939 .dev = dev,
7940 },
7941 .upper_dev = upper_dev,
7942 .linking = false,
7943 };
f4563a75 7944
9ff162a8
JP
7945 ASSERT_RTNL();
7946
0e4ead9d 7947 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7948
51d0c047 7949 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7950 &changeupper_info.info);
7951
2f268f12 7952 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7953
51d0c047 7954 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7955 &changeupper_info.info);
5343da4c
TY
7956
7957 __netdev_update_upper_level(dev, NULL);
32b6d34f 7958 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 7959
1fc70edb 7960 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 7961 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 7962 priv);
9ff162a8 7963}
fe8300fd
TY
7964
7965/**
7966 * netdev_upper_dev_unlink - Removes a link to upper device
7967 * @dev: device
7968 * @upper_dev: new upper device
7969 *
7970 * Removes a link to device which is upper to this one. The caller must hold
7971 * the RTNL lock.
7972 */
7973void netdev_upper_dev_unlink(struct net_device *dev,
7974 struct net_device *upper_dev)
7975{
1fc70edb
TY
7976 struct netdev_nested_priv priv = {
7977 .flags = NESTED_SYNC_TODO,
7978 .data = NULL,
7979 };
7980
7981 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
9ff162a8
JP
7982}
7983EXPORT_SYMBOL(netdev_upper_dev_unlink);
7984
32b6d34f
TY
7985static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7986 struct net_device *lower_dev,
7987 bool val)
7988{
7989 struct netdev_adjacent *adj;
7990
7991 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7992 if (adj)
7993 adj->ignore = val;
7994
7995 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7996 if (adj)
7997 adj->ignore = val;
7998}
7999
8000static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8001 struct net_device *lower_dev)
8002{
8003 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8004}
8005
8006static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8007 struct net_device *lower_dev)
8008{
8009 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8010}
8011
8012int netdev_adjacent_change_prepare(struct net_device *old_dev,
8013 struct net_device *new_dev,
8014 struct net_device *dev,
8015 struct netlink_ext_ack *extack)
8016{
1fc70edb
TY
8017 struct netdev_nested_priv priv = {
8018 .flags = 0,
8019 .data = NULL,
8020 };
32b6d34f
TY
8021 int err;
8022
8023 if (!new_dev)
8024 return 0;
8025
8026 if (old_dev && new_dev != old_dev)
8027 netdev_adjacent_dev_disable(dev, old_dev);
1fc70edb
TY
8028 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8029 extack);
32b6d34f
TY
8030 if (err) {
8031 if (old_dev && new_dev != old_dev)
8032 netdev_adjacent_dev_enable(dev, old_dev);
8033 return err;
8034 }
8035
8036 return 0;
8037}
8038EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8039
8040void netdev_adjacent_change_commit(struct net_device *old_dev,
8041 struct net_device *new_dev,
8042 struct net_device *dev)
8043{
1fc70edb
TY
8044 struct netdev_nested_priv priv = {
8045 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8046 .data = NULL,
8047 };
8048
32b6d34f
TY
8049 if (!new_dev || !old_dev)
8050 return;
8051
8052 if (new_dev == old_dev)
8053 return;
8054
8055 netdev_adjacent_dev_enable(dev, old_dev);
1fc70edb 8056 __netdev_upper_dev_unlink(old_dev, dev, &priv);
32b6d34f
TY
8057}
8058EXPORT_SYMBOL(netdev_adjacent_change_commit);
8059
8060void netdev_adjacent_change_abort(struct net_device *old_dev,
8061 struct net_device *new_dev,
8062 struct net_device *dev)
8063{
1fc70edb
TY
8064 struct netdev_nested_priv priv = {
8065 .flags = 0,
8066 .data = NULL,
8067 };
8068
32b6d34f
TY
8069 if (!new_dev)
8070 return;
8071
8072 if (old_dev && new_dev != old_dev)
8073 netdev_adjacent_dev_enable(dev, old_dev);
8074
1fc70edb 8075 __netdev_upper_dev_unlink(new_dev, dev, &priv);
32b6d34f
TY
8076}
8077EXPORT_SYMBOL(netdev_adjacent_change_abort);
8078
61bd3857
MS
8079/**
8080 * netdev_bonding_info_change - Dispatch event about slave change
8081 * @dev: device
4a26e453 8082 * @bonding_info: info to dispatch
61bd3857
MS
8083 *
8084 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8085 * The caller must hold the RTNL lock.
8086 */
8087void netdev_bonding_info_change(struct net_device *dev,
8088 struct netdev_bonding_info *bonding_info)
8089{
51d0c047
DA
8090 struct netdev_notifier_bonding_info info = {
8091 .info.dev = dev,
8092 };
61bd3857
MS
8093
8094 memcpy(&info.bonding_info, bonding_info,
8095 sizeof(struct netdev_bonding_info));
51d0c047 8096 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
8097 &info.info);
8098}
8099EXPORT_SYMBOL(netdev_bonding_info_change);
8100
cff9f12b
MG
8101/**
8102 * netdev_get_xmit_slave - Get the xmit slave of master device
8842500d 8103 * @dev: device
cff9f12b
MG
8104 * @skb: The packet
8105 * @all_slaves: assume all the slaves are active
8106 *
8107 * The reference counters are not incremented so the caller must be
8108 * careful with locks. The caller must hold RCU lock.
8109 * %NULL is returned if no slave is found.
8110 */
8111
8112struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8113 struct sk_buff *skb,
8114 bool all_slaves)
8115{
8116 const struct net_device_ops *ops = dev->netdev_ops;
8117
8118 if (!ops->ndo_get_xmit_slave)
8119 return NULL;
8120 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8121}
8122EXPORT_SYMBOL(netdev_get_xmit_slave);
8123
2ce1ee17 8124static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
8125{
8126 struct netdev_adjacent *iter;
8127
8128 struct net *net = dev_net(dev);
8129
8130 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8131 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8132 continue;
8133 netdev_adjacent_sysfs_add(iter->dev, dev,
8134 &iter->dev->adj_list.lower);
8135 netdev_adjacent_sysfs_add(dev, iter->dev,
8136 &dev->adj_list.upper);
8137 }
8138
8139 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8140 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8141 continue;
8142 netdev_adjacent_sysfs_add(iter->dev, dev,
8143 &iter->dev->adj_list.upper);
8144 netdev_adjacent_sysfs_add(dev, iter->dev,
8145 &dev->adj_list.lower);
8146 }
8147}
8148
2ce1ee17 8149static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
8150{
8151 struct netdev_adjacent *iter;
8152
8153 struct net *net = dev_net(dev);
8154
8155 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8156 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8157 continue;
8158 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8159 &iter->dev->adj_list.lower);
8160 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8161 &dev->adj_list.upper);
8162 }
8163
8164 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8165 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8166 continue;
8167 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8168 &iter->dev->adj_list.upper);
8169 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8170 &dev->adj_list.lower);
8171 }
8172}
8173
5bb025fa 8174void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 8175{
5bb025fa 8176 struct netdev_adjacent *iter;
402dae96 8177
4c75431a
AF
8178 struct net *net = dev_net(dev);
8179
5bb025fa 8180 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8181 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8182 continue;
5bb025fa
VF
8183 netdev_adjacent_sysfs_del(iter->dev, oldname,
8184 &iter->dev->adj_list.lower);
8185 netdev_adjacent_sysfs_add(iter->dev, dev,
8186 &iter->dev->adj_list.lower);
8187 }
402dae96 8188
5bb025fa 8189 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8190 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8191 continue;
5bb025fa
VF
8192 netdev_adjacent_sysfs_del(iter->dev, oldname,
8193 &iter->dev->adj_list.upper);
8194 netdev_adjacent_sysfs_add(iter->dev, dev,
8195 &iter->dev->adj_list.upper);
8196 }
402dae96 8197}
402dae96
VF
8198
8199void *netdev_lower_dev_get_private(struct net_device *dev,
8200 struct net_device *lower_dev)
8201{
8202 struct netdev_adjacent *lower;
8203
8204 if (!lower_dev)
8205 return NULL;
6ea29da1 8206 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
8207 if (!lower)
8208 return NULL;
8209
8210 return lower->private;
8211}
8212EXPORT_SYMBOL(netdev_lower_dev_get_private);
8213
4085ebe8 8214
04d48266 8215/**
c1639be9 8216 * netdev_lower_state_changed - Dispatch event about lower device state change
04d48266
JP
8217 * @lower_dev: device
8218 * @lower_state_info: state to dispatch
8219 *
8220 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8221 * The caller must hold the RTNL lock.
8222 */
8223void netdev_lower_state_changed(struct net_device *lower_dev,
8224 void *lower_state_info)
8225{
51d0c047
DA
8226 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8227 .info.dev = lower_dev,
8228 };
04d48266
JP
8229
8230 ASSERT_RTNL();
8231 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 8232 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
8233 &changelowerstate_info.info);
8234}
8235EXPORT_SYMBOL(netdev_lower_state_changed);
8236
b6c40d68
PM
8237static void dev_change_rx_flags(struct net_device *dev, int flags)
8238{
d314774c
SH
8239 const struct net_device_ops *ops = dev->netdev_ops;
8240
d2615bf4 8241 if (ops->ndo_change_rx_flags)
d314774c 8242 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
8243}
8244
991fb3f7 8245static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 8246{
b536db93 8247 unsigned int old_flags = dev->flags;
d04a48b0
EB
8248 kuid_t uid;
8249 kgid_t gid;
1da177e4 8250
24023451
PM
8251 ASSERT_RTNL();
8252
dad9b335
WC
8253 dev->flags |= IFF_PROMISC;
8254 dev->promiscuity += inc;
8255 if (dev->promiscuity == 0) {
8256 /*
8257 * Avoid overflow.
8258 * If inc causes overflow, untouch promisc and return error.
8259 */
8260 if (inc < 0)
8261 dev->flags &= ~IFF_PROMISC;
8262 else {
8263 dev->promiscuity -= inc;
7b6cd1ce
JP
8264 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8265 dev->name);
dad9b335
WC
8266 return -EOVERFLOW;
8267 }
8268 }
52609c0b 8269 if (dev->flags != old_flags) {
7b6cd1ce
JP
8270 pr_info("device %s %s promiscuous mode\n",
8271 dev->name,
8272 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
8273 if (audit_enabled) {
8274 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
8275 audit_log(audit_context(), GFP_ATOMIC,
8276 AUDIT_ANOM_PROMISCUOUS,
8277 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8278 dev->name, (dev->flags & IFF_PROMISC),
8279 (old_flags & IFF_PROMISC),
8280 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8281 from_kuid(&init_user_ns, uid),
8282 from_kgid(&init_user_ns, gid),
8283 audit_get_sessionid(current));
8192b0c4 8284 }
24023451 8285
b6c40d68 8286 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 8287 }
991fb3f7
ND
8288 if (notify)
8289 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 8290 return 0;
1da177e4
LT
8291}
8292
4417da66
PM
8293/**
8294 * dev_set_promiscuity - update promiscuity count on a device
8295 * @dev: device
8296 * @inc: modifier
8297 *
8298 * Add or remove promiscuity from a device. While the count in the device
8299 * remains above zero the interface remains promiscuous. Once it hits zero
8300 * the device reverts back to normal filtering operation. A negative inc
8301 * value is used to drop promiscuity on the device.
dad9b335 8302 * Return 0 if successful or a negative errno code on error.
4417da66 8303 */
dad9b335 8304int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 8305{
b536db93 8306 unsigned int old_flags = dev->flags;
dad9b335 8307 int err;
4417da66 8308
991fb3f7 8309 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 8310 if (err < 0)
dad9b335 8311 return err;
4417da66
PM
8312 if (dev->flags != old_flags)
8313 dev_set_rx_mode(dev);
dad9b335 8314 return err;
4417da66 8315}
d1b19dff 8316EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 8317
991fb3f7 8318static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 8319{
991fb3f7 8320 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 8321
24023451
PM
8322 ASSERT_RTNL();
8323
1da177e4 8324 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8325 dev->allmulti += inc;
8326 if (dev->allmulti == 0) {
8327 /*
8328 * Avoid overflow.
8329 * If inc causes overflow, untouch allmulti and return error.
8330 */
8331 if (inc < 0)
8332 dev->flags &= ~IFF_ALLMULTI;
8333 else {
8334 dev->allmulti -= inc;
7b6cd1ce
JP
8335 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8336 dev->name);
dad9b335
WC
8337 return -EOVERFLOW;
8338 }
8339 }
24023451 8340 if (dev->flags ^ old_flags) {
b6c40d68 8341 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8342 dev_set_rx_mode(dev);
991fb3f7
ND
8343 if (notify)
8344 __dev_notify_flags(dev, old_flags,
8345 dev->gflags ^ old_gflags);
24023451 8346 }
dad9b335 8347 return 0;
4417da66 8348}
991fb3f7
ND
8349
8350/**
8351 * dev_set_allmulti - update allmulti count on a device
8352 * @dev: device
8353 * @inc: modifier
8354 *
8355 * Add or remove reception of all multicast frames to a device. While the
8356 * count in the device remains above zero the interface remains listening
8357 * to all interfaces. Once it hits zero the device reverts back to normal
8358 * filtering operation. A negative @inc value is used to drop the counter
8359 * when releasing a resource needing all multicasts.
8360 * Return 0 if successful or a negative errno code on error.
8361 */
8362
8363int dev_set_allmulti(struct net_device *dev, int inc)
8364{
8365 return __dev_set_allmulti(dev, inc, true);
8366}
d1b19dff 8367EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8368
8369/*
8370 * Upload unicast and multicast address lists to device and
8371 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8372 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8373 * are present.
8374 */
8375void __dev_set_rx_mode(struct net_device *dev)
8376{
d314774c
SH
8377 const struct net_device_ops *ops = dev->netdev_ops;
8378
4417da66
PM
8379 /* dev_open will call this function so the list will stay sane. */
8380 if (!(dev->flags&IFF_UP))
8381 return;
8382
8383 if (!netif_device_present(dev))
40b77c94 8384 return;
4417da66 8385
01789349 8386 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8387 /* Unicast addresses changes may only happen under the rtnl,
8388 * therefore calling __dev_set_promiscuity here is safe.
8389 */
32e7bfc4 8390 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8391 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8392 dev->uc_promisc = true;
32e7bfc4 8393 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8394 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8395 dev->uc_promisc = false;
4417da66 8396 }
4417da66 8397 }
01789349
JP
8398
8399 if (ops->ndo_set_rx_mode)
8400 ops->ndo_set_rx_mode(dev);
4417da66
PM
8401}
8402
8403void dev_set_rx_mode(struct net_device *dev)
8404{
b9e40857 8405 netif_addr_lock_bh(dev);
4417da66 8406 __dev_set_rx_mode(dev);
b9e40857 8407 netif_addr_unlock_bh(dev);
1da177e4
LT
8408}
8409
f0db275a
SH
8410/**
8411 * dev_get_flags - get flags reported to userspace
8412 * @dev: device
8413 *
8414 * Get the combination of flag bits exported through APIs to userspace.
8415 */
95c96174 8416unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8417{
95c96174 8418 unsigned int flags;
1da177e4
LT
8419
8420 flags = (dev->flags & ~(IFF_PROMISC |
8421 IFF_ALLMULTI |
b00055aa
SR
8422 IFF_RUNNING |
8423 IFF_LOWER_UP |
8424 IFF_DORMANT)) |
1da177e4
LT
8425 (dev->gflags & (IFF_PROMISC |
8426 IFF_ALLMULTI));
8427
b00055aa
SR
8428 if (netif_running(dev)) {
8429 if (netif_oper_up(dev))
8430 flags |= IFF_RUNNING;
8431 if (netif_carrier_ok(dev))
8432 flags |= IFF_LOWER_UP;
8433 if (netif_dormant(dev))
8434 flags |= IFF_DORMANT;
8435 }
1da177e4
LT
8436
8437 return flags;
8438}
d1b19dff 8439EXPORT_SYMBOL(dev_get_flags);
1da177e4 8440
6d040321
PM
8441int __dev_change_flags(struct net_device *dev, unsigned int flags,
8442 struct netlink_ext_ack *extack)
1da177e4 8443{
b536db93 8444 unsigned int old_flags = dev->flags;
bd380811 8445 int ret;
1da177e4 8446
24023451
PM
8447 ASSERT_RTNL();
8448
1da177e4
LT
8449 /*
8450 * Set the flags on our device.
8451 */
8452
8453 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8454 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8455 IFF_AUTOMEDIA)) |
8456 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8457 IFF_ALLMULTI));
8458
8459 /*
8460 * Load in the correct multicast list now the flags have changed.
8461 */
8462
b6c40d68
PM
8463 if ((old_flags ^ flags) & IFF_MULTICAST)
8464 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8465
4417da66 8466 dev_set_rx_mode(dev);
1da177e4
LT
8467
8468 /*
8469 * Have we downed the interface. We handle IFF_UP ourselves
8470 * according to user attempts to set it, rather than blindly
8471 * setting it.
8472 */
8473
8474 ret = 0;
7051b88a 8475 if ((old_flags ^ flags) & IFF_UP) {
8476 if (old_flags & IFF_UP)
8477 __dev_close(dev);
8478 else
40c900aa 8479 ret = __dev_open(dev, extack);
7051b88a 8480 }
1da177e4 8481
1da177e4 8482 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8483 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8484 unsigned int old_flags = dev->flags;
d1b19dff 8485
1da177e4 8486 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8487
8488 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8489 if (dev->flags != old_flags)
8490 dev_set_rx_mode(dev);
1da177e4
LT
8491 }
8492
8493 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8494 * is important. Some (broken) drivers set IFF_PROMISC, when
8495 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8496 */
8497 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8498 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8499
1da177e4 8500 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8501 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8502 }
8503
bd380811
PM
8504 return ret;
8505}
8506
a528c219
ND
8507void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8508 unsigned int gchanges)
bd380811
PM
8509{
8510 unsigned int changes = dev->flags ^ old_flags;
8511
a528c219 8512 if (gchanges)
7f294054 8513 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8514
bd380811
PM
8515 if (changes & IFF_UP) {
8516 if (dev->flags & IFF_UP)
8517 call_netdevice_notifiers(NETDEV_UP, dev);
8518 else
8519 call_netdevice_notifiers(NETDEV_DOWN, dev);
8520 }
8521
8522 if (dev->flags & IFF_UP &&
be9efd36 8523 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8524 struct netdev_notifier_change_info change_info = {
8525 .info = {
8526 .dev = dev,
8527 },
8528 .flags_changed = changes,
8529 };
be9efd36 8530
51d0c047 8531 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8532 }
bd380811
PM
8533}
8534
8535/**
8536 * dev_change_flags - change device settings
8537 * @dev: device
8538 * @flags: device state flags
567c5e13 8539 * @extack: netlink extended ack
bd380811
PM
8540 *
8541 * Change settings on device based state flags. The flags are
8542 * in the userspace exported format.
8543 */
567c5e13
PM
8544int dev_change_flags(struct net_device *dev, unsigned int flags,
8545 struct netlink_ext_ack *extack)
bd380811 8546{
b536db93 8547 int ret;
991fb3f7 8548 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8549
6d040321 8550 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8551 if (ret < 0)
8552 return ret;
8553
991fb3f7 8554 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8555 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8556 return ret;
8557}
d1b19dff 8558EXPORT_SYMBOL(dev_change_flags);
1da177e4 8559
f51048c3 8560int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8561{
8562 const struct net_device_ops *ops = dev->netdev_ops;
8563
8564 if (ops->ndo_change_mtu)
8565 return ops->ndo_change_mtu(dev, new_mtu);
8566
501a90c9
ED
8567 /* Pairs with all the lockless reads of dev->mtu in the stack */
8568 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8569 return 0;
8570}
f51048c3 8571EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8572
d836f5c6
ED
8573int dev_validate_mtu(struct net_device *dev, int new_mtu,
8574 struct netlink_ext_ack *extack)
8575{
8576 /* MTU must be positive, and in range */
8577 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8578 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8579 return -EINVAL;
8580 }
8581
8582 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8583 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8584 return -EINVAL;
8585 }
8586 return 0;
8587}
8588
f0db275a 8589/**
7a4c53be 8590 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8591 * @dev: device
8592 * @new_mtu: new transfer unit
7a4c53be 8593 * @extack: netlink extended ack
f0db275a
SH
8594 *
8595 * Change the maximum transfer size of the network device.
8596 */
7a4c53be
SH
8597int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8598 struct netlink_ext_ack *extack)
1da177e4 8599{
2315dc91 8600 int err, orig_mtu;
1da177e4
LT
8601
8602 if (new_mtu == dev->mtu)
8603 return 0;
8604
d836f5c6
ED
8605 err = dev_validate_mtu(dev, new_mtu, extack);
8606 if (err)
8607 return err;
1da177e4
LT
8608
8609 if (!netif_device_present(dev))
8610 return -ENODEV;
8611
1d486bfb
VF
8612 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8613 err = notifier_to_errno(err);
8614 if (err)
8615 return err;
d314774c 8616
2315dc91
VF
8617 orig_mtu = dev->mtu;
8618 err = __dev_set_mtu(dev, new_mtu);
d314774c 8619
2315dc91 8620 if (!err) {
af7d6cce
SD
8621 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8622 orig_mtu);
2315dc91
VF
8623 err = notifier_to_errno(err);
8624 if (err) {
8625 /* setting mtu back and notifying everyone again,
8626 * so that they have a chance to revert changes.
8627 */
8628 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8629 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8630 new_mtu);
2315dc91
VF
8631 }
8632 }
1da177e4
LT
8633 return err;
8634}
7a4c53be
SH
8635
8636int dev_set_mtu(struct net_device *dev, int new_mtu)
8637{
8638 struct netlink_ext_ack extack;
8639 int err;
8640
a6bcfc89 8641 memset(&extack, 0, sizeof(extack));
7a4c53be 8642 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8643 if (err && extack._msg)
7a4c53be
SH
8644 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8645 return err;
8646}
d1b19dff 8647EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8648
6a643ddb
CW
8649/**
8650 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8651 * @dev: device
8652 * @new_len: new tx queue length
8653 */
8654int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8655{
8656 unsigned int orig_len = dev->tx_queue_len;
8657 int res;
8658
8659 if (new_len != (unsigned int)new_len)
8660 return -ERANGE;
8661
8662 if (new_len != orig_len) {
8663 dev->tx_queue_len = new_len;
8664 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8665 res = notifier_to_errno(res);
7effaf06
TT
8666 if (res)
8667 goto err_rollback;
8668 res = dev_qdisc_change_tx_queue_len(dev);
8669 if (res)
8670 goto err_rollback;
6a643ddb
CW
8671 }
8672
8673 return 0;
7effaf06
TT
8674
8675err_rollback:
8676 netdev_err(dev, "refused to change device tx_queue_len\n");
8677 dev->tx_queue_len = orig_len;
8678 return res;
6a643ddb
CW
8679}
8680
cbda10fa
VD
8681/**
8682 * dev_set_group - Change group this device belongs to
8683 * @dev: device
8684 * @new_group: group this device should belong to
8685 */
8686void dev_set_group(struct net_device *dev, int new_group)
8687{
8688 dev->group = new_group;
8689}
8690EXPORT_SYMBOL(dev_set_group);
8691
d59cdf94
PM
8692/**
8693 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8694 * @dev: device
8695 * @addr: new address
8696 * @extack: netlink extended ack
8697 */
8698int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8699 struct netlink_ext_ack *extack)
8700{
8701 struct netdev_notifier_pre_changeaddr_info info = {
8702 .info.dev = dev,
8703 .info.extack = extack,
8704 .dev_addr = addr,
8705 };
8706 int rc;
8707
8708 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8709 return notifier_to_errno(rc);
8710}
8711EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8712
f0db275a
SH
8713/**
8714 * dev_set_mac_address - Change Media Access Control Address
8715 * @dev: device
8716 * @sa: new address
3a37a963 8717 * @extack: netlink extended ack
f0db275a
SH
8718 *
8719 * Change the hardware (MAC) address of the device
8720 */
3a37a963
PM
8721int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8722 struct netlink_ext_ack *extack)
1da177e4 8723{
d314774c 8724 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8725 int err;
8726
d314774c 8727 if (!ops->ndo_set_mac_address)
1da177e4
LT
8728 return -EOPNOTSUPP;
8729 if (sa->sa_family != dev->type)
8730 return -EINVAL;
8731 if (!netif_device_present(dev))
8732 return -ENODEV;
d59cdf94
PM
8733 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8734 if (err)
8735 return err;
d314774c 8736 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8737 if (err)
8738 return err;
fbdeca2d 8739 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8740 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8741 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8742 return 0;
1da177e4 8743}
d1b19dff 8744EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8745
4bf84c35
JP
8746/**
8747 * dev_change_carrier - Change device carrier
8748 * @dev: device
691b3b7e 8749 * @new_carrier: new value
4bf84c35
JP
8750 *
8751 * Change device carrier
8752 */
8753int dev_change_carrier(struct net_device *dev, bool new_carrier)
8754{
8755 const struct net_device_ops *ops = dev->netdev_ops;
8756
8757 if (!ops->ndo_change_carrier)
8758 return -EOPNOTSUPP;
8759 if (!netif_device_present(dev))
8760 return -ENODEV;
8761 return ops->ndo_change_carrier(dev, new_carrier);
8762}
8763EXPORT_SYMBOL(dev_change_carrier);
8764
66b52b0d
JP
8765/**
8766 * dev_get_phys_port_id - Get device physical port ID
8767 * @dev: device
8768 * @ppid: port ID
8769 *
8770 * Get device physical port ID
8771 */
8772int dev_get_phys_port_id(struct net_device *dev,
02637fce 8773 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8774{
8775 const struct net_device_ops *ops = dev->netdev_ops;
8776
8777 if (!ops->ndo_get_phys_port_id)
8778 return -EOPNOTSUPP;
8779 return ops->ndo_get_phys_port_id(dev, ppid);
8780}
8781EXPORT_SYMBOL(dev_get_phys_port_id);
8782
db24a904
DA
8783/**
8784 * dev_get_phys_port_name - Get device physical port name
8785 * @dev: device
8786 * @name: port name
ed49e650 8787 * @len: limit of bytes to copy to name
db24a904
DA
8788 *
8789 * Get device physical port name
8790 */
8791int dev_get_phys_port_name(struct net_device *dev,
8792 char *name, size_t len)
8793{
8794 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8795 int err;
db24a904 8796
af3836df
JP
8797 if (ops->ndo_get_phys_port_name) {
8798 err = ops->ndo_get_phys_port_name(dev, name, len);
8799 if (err != -EOPNOTSUPP)
8800 return err;
8801 }
8802 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
8803}
8804EXPORT_SYMBOL(dev_get_phys_port_name);
8805
d6abc596
FF
8806/**
8807 * dev_get_port_parent_id - Get the device's port parent identifier
8808 * @dev: network device
8809 * @ppid: pointer to a storage for the port's parent identifier
8810 * @recurse: allow/disallow recursion to lower devices
8811 *
8812 * Get the devices's port parent identifier
8813 */
8814int dev_get_port_parent_id(struct net_device *dev,
8815 struct netdev_phys_item_id *ppid,
8816 bool recurse)
8817{
8818 const struct net_device_ops *ops = dev->netdev_ops;
8819 struct netdev_phys_item_id first = { };
8820 struct net_device *lower_dev;
8821 struct list_head *iter;
7e1146e8
JP
8822 int err;
8823
8824 if (ops->ndo_get_port_parent_id) {
8825 err = ops->ndo_get_port_parent_id(dev, ppid);
8826 if (err != -EOPNOTSUPP)
8827 return err;
8828 }
d6abc596 8829
7e1146e8
JP
8830 err = devlink_compat_switch_id_get(dev, ppid);
8831 if (!err || err != -EOPNOTSUPP)
8832 return err;
d6abc596
FF
8833
8834 if (!recurse)
7e1146e8 8835 return -EOPNOTSUPP;
d6abc596
FF
8836
8837 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8838 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8839 if (err)
8840 break;
8841 if (!first.id_len)
8842 first = *ppid;
8843 else if (memcmp(&first, ppid, sizeof(*ppid)))
e1b9efe6 8844 return -EOPNOTSUPP;
d6abc596
FF
8845 }
8846
8847 return err;
8848}
8849EXPORT_SYMBOL(dev_get_port_parent_id);
8850
8851/**
8852 * netdev_port_same_parent_id - Indicate if two network devices have
8853 * the same port parent identifier
8854 * @a: first network device
8855 * @b: second network device
8856 */
8857bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8858{
8859 struct netdev_phys_item_id a_id = { };
8860 struct netdev_phys_item_id b_id = { };
8861
8862 if (dev_get_port_parent_id(a, &a_id, true) ||
8863 dev_get_port_parent_id(b, &b_id, true))
8864 return false;
8865
8866 return netdev_phys_item_id_same(&a_id, &b_id);
8867}
8868EXPORT_SYMBOL(netdev_port_same_parent_id);
8869
d746d707
AK
8870/**
8871 * dev_change_proto_down - update protocol port state information
8872 * @dev: device
8873 * @proto_down: new value
8874 *
8875 * This info can be used by switch drivers to set the phys state of the
8876 * port.
8877 */
8878int dev_change_proto_down(struct net_device *dev, bool proto_down)
8879{
8880 const struct net_device_ops *ops = dev->netdev_ops;
8881
8882 if (!ops->ndo_change_proto_down)
8883 return -EOPNOTSUPP;
8884 if (!netif_device_present(dev))
8885 return -ENODEV;
8886 return ops->ndo_change_proto_down(dev, proto_down);
8887}
8888EXPORT_SYMBOL(dev_change_proto_down);
8889
b5899679
AR
8890/**
8891 * dev_change_proto_down_generic - generic implementation for
8892 * ndo_change_proto_down that sets carrier according to
8893 * proto_down.
8894 *
8895 * @dev: device
8896 * @proto_down: new value
8897 */
8898int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8899{
8900 if (proto_down)
8901 netif_carrier_off(dev);
8902 else
8903 netif_carrier_on(dev);
8904 dev->proto_down = proto_down;
8905 return 0;
8906}
8907EXPORT_SYMBOL(dev_change_proto_down_generic);
8908
829eb208
RP
8909/**
8910 * dev_change_proto_down_reason - proto down reason
8911 *
8912 * @dev: device
8913 * @mask: proto down mask
8914 * @value: proto down value
8915 */
8916void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8917 u32 value)
8918{
8919 int b;
8920
8921 if (!mask) {
8922 dev->proto_down_reason = value;
8923 } else {
8924 for_each_set_bit(b, &mask, 32) {
8925 if (value & (1 << b))
8926 dev->proto_down_reason |= BIT(b);
8927 else
8928 dev->proto_down_reason &= ~BIT(b);
8929 }
8930 }
8931}
8932EXPORT_SYMBOL(dev_change_proto_down_reason);
8933
aa8d3a71
AN
8934struct bpf_xdp_link {
8935 struct bpf_link link;
8936 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8937 int flags;
8938};
8939
c8a36f19 8940static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
d67b9cd2 8941{
7f0a8382
AN
8942 if (flags & XDP_FLAGS_HW_MODE)
8943 return XDP_MODE_HW;
8944 if (flags & XDP_FLAGS_DRV_MODE)
8945 return XDP_MODE_DRV;
c8a36f19
AN
8946 if (flags & XDP_FLAGS_SKB_MODE)
8947 return XDP_MODE_SKB;
8948 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
7f0a8382 8949}
d67b9cd2 8950
7f0a8382
AN
8951static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8952{
8953 switch (mode) {
8954 case XDP_MODE_SKB:
8955 return generic_xdp_install;
8956 case XDP_MODE_DRV:
8957 case XDP_MODE_HW:
8958 return dev->netdev_ops->ndo_bpf;
8959 default:
8960 return NULL;
5d867245 8961 }
7f0a8382 8962}
118b4aa2 8963
aa8d3a71
AN
8964static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8965 enum bpf_xdp_mode mode)
8966{
8967 return dev->xdp_state[mode].link;
8968}
8969
7f0a8382
AN
8970static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8971 enum bpf_xdp_mode mode)
8972{
aa8d3a71
AN
8973 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8974
8975 if (link)
8976 return link->link.prog;
7f0a8382
AN
8977 return dev->xdp_state[mode].prog;
8978}
8979
998f1729
THJ
8980static u8 dev_xdp_prog_count(struct net_device *dev)
8981{
8982 u8 count = 0;
8983 int i;
8984
8985 for (i = 0; i < __MAX_XDP_MODE; i++)
8986 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8987 count++;
8988 return count;
8989}
8990
7f0a8382
AN
8991u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8992{
8993 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
118b4aa2 8994
7f0a8382
AN
8995 return prog ? prog->aux->id : 0;
8996}
58038695 8997
aa8d3a71
AN
8998static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8999 struct bpf_xdp_link *link)
9000{
9001 dev->xdp_state[mode].link = link;
9002 dev->xdp_state[mode].prog = NULL;
d67b9cd2
DB
9003}
9004
7f0a8382
AN
9005static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9006 struct bpf_prog *prog)
9007{
aa8d3a71 9008 dev->xdp_state[mode].link = NULL;
7f0a8382 9009 dev->xdp_state[mode].prog = prog;
d67b9cd2
DB
9010}
9011
7f0a8382
AN
9012static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9013 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9014 u32 flags, struct bpf_prog *prog)
d67b9cd2 9015{
f4e63525 9016 struct netdev_bpf xdp;
7e6897f9
BT
9017 int err;
9018
d67b9cd2 9019 memset(&xdp, 0, sizeof(xdp));
7f0a8382 9020 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
d67b9cd2 9021 xdp.extack = extack;
32d60277 9022 xdp.flags = flags;
d67b9cd2
DB
9023 xdp.prog = prog;
9024
7f0a8382
AN
9025 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9026 * "moved" into driver), so they don't increment it on their own, but
9027 * they do decrement refcnt when program is detached or replaced.
9028 * Given net_device also owns link/prog, we need to bump refcnt here
9029 * to prevent drivers from underflowing it.
9030 */
9031 if (prog)
9032 bpf_prog_inc(prog);
7e6897f9 9033 err = bpf_op(dev, &xdp);
7f0a8382
AN
9034 if (err) {
9035 if (prog)
9036 bpf_prog_put(prog);
9037 return err;
9038 }
7e6897f9 9039
7f0a8382
AN
9040 if (mode != XDP_MODE_HW)
9041 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
7e6897f9 9042
7f0a8382 9043 return 0;
d67b9cd2
DB
9044}
9045
bd0b2e7f
JK
9046static void dev_xdp_uninstall(struct net_device *dev)
9047{
aa8d3a71 9048 struct bpf_xdp_link *link;
7f0a8382
AN
9049 struct bpf_prog *prog;
9050 enum bpf_xdp_mode mode;
9051 bpf_op_t bpf_op;
bd0b2e7f 9052
7f0a8382 9053 ASSERT_RTNL();
bd0b2e7f 9054
7f0a8382
AN
9055 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9056 prog = dev_xdp_prog(dev, mode);
9057 if (!prog)
9058 continue;
bd0b2e7f 9059
7f0a8382
AN
9060 bpf_op = dev_xdp_bpf_op(dev, mode);
9061 if (!bpf_op)
9062 continue;
bd0b2e7f 9063
7f0a8382
AN
9064 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9065
aa8d3a71
AN
9066 /* auto-detach link from net device */
9067 link = dev_xdp_link(dev, mode);
9068 if (link)
9069 link->dev = NULL;
9070 else
9071 bpf_prog_put(prog);
9072
9073 dev_xdp_set_link(dev, mode, NULL);
7f0a8382 9074 }
bd0b2e7f
JK
9075}
9076
d4baa936 9077static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
aa8d3a71
AN
9078 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9079 struct bpf_prog *old_prog, u32 flags)
a7862b45 9080{
998f1729 9081 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
d4baa936
AN
9082 struct bpf_prog *cur_prog;
9083 enum bpf_xdp_mode mode;
7f0a8382 9084 bpf_op_t bpf_op;
a7862b45
BB
9085 int err;
9086
85de8576
DB
9087 ASSERT_RTNL();
9088
aa8d3a71
AN
9089 /* either link or prog attachment, never both */
9090 if (link && (new_prog || old_prog))
9091 return -EINVAL;
9092 /* link supports only XDP mode flags */
9093 if (link && (flags & ~XDP_FLAGS_MODES)) {
9094 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9095 return -EINVAL;
9096 }
998f1729
THJ
9097 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9098 if (num_modes > 1) {
d4baa936
AN
9099 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9100 return -EINVAL;
9101 }
998f1729
THJ
9102 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9103 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9104 NL_SET_ERR_MSG(extack,
9105 "More than one program loaded, unset mode is ambiguous");
9106 return -EINVAL;
9107 }
d4baa936
AN
9108 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9109 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9110 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9111 return -EINVAL;
01dde20c 9112 }
a25717d2 9113
c8a36f19 9114 mode = dev_xdp_mode(dev, flags);
aa8d3a71
AN
9115 /* can't replace attached link */
9116 if (dev_xdp_link(dev, mode)) {
9117 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9118 return -EBUSY;
01dde20c 9119 }
c14a9f63 9120
d4baa936 9121 cur_prog = dev_xdp_prog(dev, mode);
aa8d3a71
AN
9122 /* can't replace attached prog with link */
9123 if (link && cur_prog) {
9124 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9125 return -EBUSY;
9126 }
d4baa936
AN
9127 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9128 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9129 return -EEXIST;
92234c8f 9130 }
c14a9f63 9131
aa8d3a71
AN
9132 /* put effective new program into new_prog */
9133 if (link)
9134 new_prog = link->link.prog;
85de8576 9135
d4baa936
AN
9136 if (new_prog) {
9137 bool offload = mode == XDP_MODE_HW;
7f0a8382
AN
9138 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9139 ? XDP_MODE_DRV : XDP_MODE_SKB;
441a3303 9140
068d9d1e
AN
9141 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9142 NL_SET_ERR_MSG(extack, "XDP program already attached");
9143 return -EBUSY;
9144 }
d4baa936 9145 if (!offload && dev_xdp_prog(dev, other_mode)) {
7f0a8382 9146 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
d67b9cd2 9147 return -EEXIST;
01dde20c 9148 }
d4baa936 9149 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
7f0a8382 9150 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
441a3303
JK
9151 return -EINVAL;
9152 }
d4baa936 9153 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
fbee97fe 9154 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
fbee97fe
DA
9155 return -EINVAL;
9156 }
d4baa936
AN
9157 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9158 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
92164774
LB
9159 return -EINVAL;
9160 }
d4baa936 9161 }
92164774 9162
d4baa936
AN
9163 /* don't call drivers if the effective program didn't change */
9164 if (new_prog != cur_prog) {
9165 bpf_op = dev_xdp_bpf_op(dev, mode);
9166 if (!bpf_op) {
9167 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9168 return -EOPNOTSUPP;
c14a9f63 9169 }
a7862b45 9170
d4baa936
AN
9171 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9172 if (err)
9173 return err;
7f0a8382 9174 }
d4baa936 9175
aa8d3a71
AN
9176 if (link)
9177 dev_xdp_set_link(dev, mode, link);
9178 else
9179 dev_xdp_set_prog(dev, mode, new_prog);
d4baa936
AN
9180 if (cur_prog)
9181 bpf_prog_put(cur_prog);
a7862b45 9182
7f0a8382 9183 return 0;
a7862b45 9184}
a7862b45 9185
aa8d3a71
AN
9186static int dev_xdp_attach_link(struct net_device *dev,
9187 struct netlink_ext_ack *extack,
9188 struct bpf_xdp_link *link)
9189{
9190 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9191}
9192
9193static int dev_xdp_detach_link(struct net_device *dev,
9194 struct netlink_ext_ack *extack,
9195 struct bpf_xdp_link *link)
9196{
9197 enum bpf_xdp_mode mode;
9198 bpf_op_t bpf_op;
9199
9200 ASSERT_RTNL();
9201
c8a36f19 9202 mode = dev_xdp_mode(dev, link->flags);
aa8d3a71
AN
9203 if (dev_xdp_link(dev, mode) != link)
9204 return -EINVAL;
9205
9206 bpf_op = dev_xdp_bpf_op(dev, mode);
9207 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9208 dev_xdp_set_link(dev, mode, NULL);
9209 return 0;
9210}
9211
9212static void bpf_xdp_link_release(struct bpf_link *link)
9213{
9214 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9215
9216 rtnl_lock();
9217
9218 /* if racing with net_device's tear down, xdp_link->dev might be
9219 * already NULL, in which case link was already auto-detached
9220 */
73b11c2a 9221 if (xdp_link->dev) {
aa8d3a71 9222 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
73b11c2a
AN
9223 xdp_link->dev = NULL;
9224 }
aa8d3a71
AN
9225
9226 rtnl_unlock();
9227}
9228
73b11c2a
AN
9229static int bpf_xdp_link_detach(struct bpf_link *link)
9230{
9231 bpf_xdp_link_release(link);
9232 return 0;
9233}
9234
aa8d3a71
AN
9235static void bpf_xdp_link_dealloc(struct bpf_link *link)
9236{
9237 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9238
9239 kfree(xdp_link);
9240}
9241
c1931c97
AN
9242static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9243 struct seq_file *seq)
9244{
9245 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9246 u32 ifindex = 0;
9247
9248 rtnl_lock();
9249 if (xdp_link->dev)
9250 ifindex = xdp_link->dev->ifindex;
9251 rtnl_unlock();
9252
9253 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9254}
9255
9256static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9257 struct bpf_link_info *info)
9258{
9259 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9260 u32 ifindex = 0;
9261
9262 rtnl_lock();
9263 if (xdp_link->dev)
9264 ifindex = xdp_link->dev->ifindex;
9265 rtnl_unlock();
9266
9267 info->xdp.ifindex = ifindex;
9268 return 0;
9269}
9270
026a4c28
AN
9271static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9272 struct bpf_prog *old_prog)
9273{
9274 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9275 enum bpf_xdp_mode mode;
9276 bpf_op_t bpf_op;
9277 int err = 0;
9278
9279 rtnl_lock();
9280
9281 /* link might have been auto-released already, so fail */
9282 if (!xdp_link->dev) {
9283 err = -ENOLINK;
9284 goto out_unlock;
9285 }
9286
9287 if (old_prog && link->prog != old_prog) {
9288 err = -EPERM;
9289 goto out_unlock;
9290 }
9291 old_prog = link->prog;
9292 if (old_prog == new_prog) {
9293 /* no-op, don't disturb drivers */
9294 bpf_prog_put(new_prog);
9295 goto out_unlock;
9296 }
9297
c8a36f19 9298 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
026a4c28
AN
9299 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9300 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9301 xdp_link->flags, new_prog);
9302 if (err)
9303 goto out_unlock;
9304
9305 old_prog = xchg(&link->prog, new_prog);
9306 bpf_prog_put(old_prog);
9307
9308out_unlock:
9309 rtnl_unlock();
9310 return err;
9311}
9312
aa8d3a71
AN
9313static const struct bpf_link_ops bpf_xdp_link_lops = {
9314 .release = bpf_xdp_link_release,
9315 .dealloc = bpf_xdp_link_dealloc,
73b11c2a 9316 .detach = bpf_xdp_link_detach,
c1931c97
AN
9317 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9318 .fill_link_info = bpf_xdp_link_fill_link_info,
026a4c28 9319 .update_prog = bpf_xdp_link_update,
aa8d3a71
AN
9320};
9321
9322int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9323{
9324 struct net *net = current->nsproxy->net_ns;
9325 struct bpf_link_primer link_primer;
9326 struct bpf_xdp_link *link;
9327 struct net_device *dev;
9328 int err, fd;
9329
9330 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9331 if (!dev)
9332 return -EINVAL;
9333
9334 link = kzalloc(sizeof(*link), GFP_USER);
9335 if (!link) {
9336 err = -ENOMEM;
9337 goto out_put_dev;
9338 }
9339
9340 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9341 link->dev = dev;
9342 link->flags = attr->link_create.flags;
9343
9344 err = bpf_link_prime(&link->link, &link_primer);
9345 if (err) {
9346 kfree(link);
9347 goto out_put_dev;
9348 }
9349
9350 rtnl_lock();
9351 err = dev_xdp_attach_link(dev, NULL, link);
9352 rtnl_unlock();
9353
9354 if (err) {
9355 bpf_link_cleanup(&link_primer);
9356 goto out_put_dev;
9357 }
9358
9359 fd = bpf_link_settle(&link_primer);
9360 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9361 dev_put(dev);
9362 return fd;
9363
9364out_put_dev:
9365 dev_put(dev);
9366 return err;
9367}
9368
d4baa936
AN
9369/**
9370 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9371 * @dev: device
9372 * @extack: netlink extended ack
9373 * @fd: new program fd or negative value to clear
9374 * @expected_fd: old program fd that userspace expects to replace or clear
9375 * @flags: xdp-related flags
9376 *
9377 * Set or clear a bpf program for a device
9378 */
9379int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9380 int fd, int expected_fd, u32 flags)
9381{
c8a36f19 9382 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
d4baa936
AN
9383 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9384 int err;
9385
9386 ASSERT_RTNL();
9387
9388 if (fd >= 0) {
9389 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9390 mode != XDP_MODE_SKB);
9391 if (IS_ERR(new_prog))
9392 return PTR_ERR(new_prog);
9393 }
9394
9395 if (expected_fd >= 0) {
9396 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9397 mode != XDP_MODE_SKB);
9398 if (IS_ERR(old_prog)) {
9399 err = PTR_ERR(old_prog);
9400 old_prog = NULL;
9401 goto err_out;
c14a9f63 9402 }
a7862b45
BB
9403 }
9404
aa8d3a71 9405 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
a7862b45 9406
d4baa936
AN
9407err_out:
9408 if (err && new_prog)
9409 bpf_prog_put(new_prog);
9410 if (old_prog)
9411 bpf_prog_put(old_prog);
a7862b45
BB
9412 return err;
9413}
a7862b45 9414
1da177e4
LT
9415/**
9416 * dev_new_index - allocate an ifindex
c4ea43c5 9417 * @net: the applicable net namespace
1da177e4
LT
9418 *
9419 * Returns a suitable unique value for a new device interface
9420 * number. The caller must hold the rtnl semaphore or the
9421 * dev_base_lock to be sure it remains unique.
9422 */
881d966b 9423static int dev_new_index(struct net *net)
1da177e4 9424{
aa79e66e 9425 int ifindex = net->ifindex;
f4563a75 9426
1da177e4
LT
9427 for (;;) {
9428 if (++ifindex <= 0)
9429 ifindex = 1;
881d966b 9430 if (!__dev_get_by_index(net, ifindex))
aa79e66e 9431 return net->ifindex = ifindex;
1da177e4
LT
9432 }
9433}
9434
1da177e4 9435/* Delayed registration/unregisteration */
3b5b34fd 9436static LIST_HEAD(net_todo_list);
200b916f 9437DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 9438
6f05f629 9439static void net_set_todo(struct net_device *dev)
1da177e4 9440{
1da177e4 9441 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 9442 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
9443}
9444
9b5e383c 9445static void rollback_registered_many(struct list_head *head)
93ee31f1 9446{
e93737b0 9447 struct net_device *dev, *tmp;
5cde2829 9448 LIST_HEAD(close_head);
9b5e383c 9449
93ee31f1
DL
9450 BUG_ON(dev_boot_phase);
9451 ASSERT_RTNL();
9452
e93737b0 9453 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 9454 /* Some devices call without registering
e93737b0
KK
9455 * for initialization unwind. Remove those
9456 * devices and proceed with the remaining.
9b5e383c
ED
9457 */
9458 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
9459 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9460 dev->name, dev);
93ee31f1 9461
9b5e383c 9462 WARN_ON(1);
e93737b0
KK
9463 list_del(&dev->unreg_list);
9464 continue;
9b5e383c 9465 }
449f4544 9466 dev->dismantle = true;
9b5e383c 9467 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 9468 }
93ee31f1 9469
44345724 9470 /* If device is running, close it first. */
5cde2829
EB
9471 list_for_each_entry(dev, head, unreg_list)
9472 list_add_tail(&dev->close_list, &close_head);
99c4a26a 9473 dev_close_many(&close_head, true);
93ee31f1 9474
44345724 9475 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
9476 /* And unlink it from device chain. */
9477 unlist_netdevice(dev);
93ee31f1 9478
9b5e383c
ED
9479 dev->reg_state = NETREG_UNREGISTERING;
9480 }
41852497 9481 flush_all_backlogs();
93ee31f1
DL
9482
9483 synchronize_net();
9484
9b5e383c 9485 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
9486 struct sk_buff *skb = NULL;
9487
9b5e383c
ED
9488 /* Shutdown queueing discipline. */
9489 dev_shutdown(dev);
93ee31f1 9490
bd0b2e7f 9491 dev_xdp_uninstall(dev);
93ee31f1 9492
9b5e383c 9493 /* Notify protocols, that we are about to destroy
eb13da1a 9494 * this device. They should clean all the things.
9495 */
9b5e383c 9496 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 9497
395eea6c
MB
9498 if (!dev->rtnl_link_ops ||
9499 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 9500 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 9501 GFP_KERNEL, NULL, 0);
395eea6c 9502
9b5e383c
ED
9503 /*
9504 * Flush the unicast and multicast chains
9505 */
a748ee24 9506 dev_uc_flush(dev);
22bedad3 9507 dev_mc_flush(dev);
93ee31f1 9508
36fbf1e5 9509 netdev_name_node_alt_flush(dev);
ff927412
JP
9510 netdev_name_node_free(dev->name_node);
9511
9b5e383c
ED
9512 if (dev->netdev_ops->ndo_uninit)
9513 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 9514
395eea6c
MB
9515 if (skb)
9516 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 9517
9ff162a8
JP
9518 /* Notifier chain MUST detach us all upper devices. */
9519 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 9520 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 9521
9b5e383c
ED
9522 /* Remove entries from kobject tree */
9523 netdev_unregister_kobject(dev);
024e9679
AD
9524#ifdef CONFIG_XPS
9525 /* Remove XPS queueing entries */
9526 netif_reset_xps_queues_gt(dev, 0);
9527#endif
9b5e383c 9528 }
93ee31f1 9529
850a545b 9530 synchronize_net();
395264d5 9531
a5ee1551 9532 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
9533 dev_put(dev);
9534}
9535
9536static void rollback_registered(struct net_device *dev)
9537{
9538 LIST_HEAD(single);
9539
9540 list_add(&dev->unreg_list, &single);
9541 rollback_registered_many(&single);
ceaaec98 9542 list_del(&single);
93ee31f1
DL
9543}
9544
fd867d51
JW
9545static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9546 struct net_device *upper, netdev_features_t features)
9547{
9548 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9549 netdev_features_t feature;
5ba3f7d6 9550 int feature_bit;
fd867d51 9551
3b89ea9c 9552 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9553 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9554 if (!(upper->wanted_features & feature)
9555 && (features & feature)) {
9556 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9557 &feature, upper->name);
9558 features &= ~feature;
9559 }
9560 }
9561
9562 return features;
9563}
9564
9565static void netdev_sync_lower_features(struct net_device *upper,
9566 struct net_device *lower, netdev_features_t features)
9567{
9568 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9569 netdev_features_t feature;
5ba3f7d6 9570 int feature_bit;
fd867d51 9571
3b89ea9c 9572 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9573 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9574 if (!(features & feature) && (lower->features & feature)) {
9575 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9576 &feature, lower->name);
9577 lower->wanted_features &= ~feature;
dd912306 9578 __netdev_update_features(lower);
fd867d51
JW
9579
9580 if (unlikely(lower->features & feature))
9581 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9582 &feature, lower->name);
dd912306
CW
9583 else
9584 netdev_features_change(lower);
fd867d51
JW
9585 }
9586 }
9587}
9588
c8f44aff
MM
9589static netdev_features_t netdev_fix_features(struct net_device *dev,
9590 netdev_features_t features)
b63365a2 9591{
57422dc5
MM
9592 /* Fix illegal checksum combinations */
9593 if ((features & NETIF_F_HW_CSUM) &&
9594 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 9595 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
9596 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9597 }
9598
b63365a2 9599 /* TSO requires that SG is present as well. */
ea2d3688 9600 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 9601 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 9602 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
9603 }
9604
ec5f0615
PS
9605 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9606 !(features & NETIF_F_IP_CSUM)) {
9607 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9608 features &= ~NETIF_F_TSO;
9609 features &= ~NETIF_F_TSO_ECN;
9610 }
9611
9612 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9613 !(features & NETIF_F_IPV6_CSUM)) {
9614 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9615 features &= ~NETIF_F_TSO6;
9616 }
9617
b1dc497b
AD
9618 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9619 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9620 features &= ~NETIF_F_TSO_MANGLEID;
9621
31d8b9e0
BH
9622 /* TSO ECN requires that TSO is present as well. */
9623 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9624 features &= ~NETIF_F_TSO_ECN;
9625
212b573f
MM
9626 /* Software GSO depends on SG. */
9627 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 9628 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
9629 features &= ~NETIF_F_GSO;
9630 }
9631
802ab55a
AD
9632 /* GSO partial features require GSO partial be set */
9633 if ((features & dev->gso_partial_features) &&
9634 !(features & NETIF_F_GSO_PARTIAL)) {
9635 netdev_dbg(dev,
9636 "Dropping partially supported GSO features since no GSO partial.\n");
9637 features &= ~dev->gso_partial_features;
9638 }
9639
fb1f5f79
MC
9640 if (!(features & NETIF_F_RXCSUM)) {
9641 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9642 * successfully merged by hardware must also have the
9643 * checksum verified by hardware. If the user does not
9644 * want to enable RXCSUM, logically, we should disable GRO_HW.
9645 */
9646 if (features & NETIF_F_GRO_HW) {
9647 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9648 features &= ~NETIF_F_GRO_HW;
9649 }
9650 }
9651
de8d5ab2
GP
9652 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9653 if (features & NETIF_F_RXFCS) {
9654 if (features & NETIF_F_LRO) {
9655 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9656 features &= ~NETIF_F_LRO;
9657 }
9658
9659 if (features & NETIF_F_GRO_HW) {
9660 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9661 features &= ~NETIF_F_GRO_HW;
9662 }
e6c6a929
GP
9663 }
9664
25537d71
TT
9665 if (features & NETIF_F_HW_TLS_TX) {
9666 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9667 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9668 bool hw_csum = features & NETIF_F_HW_CSUM;
9669
9670 if (!ip_csum && !hw_csum) {
9671 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9672 features &= ~NETIF_F_HW_TLS_TX;
9673 }
ae0b04b2
TT
9674 }
9675
a3eb4e9d
TT
9676 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9677 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9678 features &= ~NETIF_F_HW_TLS_RX;
9679 }
9680
b63365a2
HX
9681 return features;
9682}
b63365a2 9683
6cb6a27c 9684int __netdev_update_features(struct net_device *dev)
5455c699 9685{
fd867d51 9686 struct net_device *upper, *lower;
c8f44aff 9687 netdev_features_t features;
fd867d51 9688 struct list_head *iter;
e7868a85 9689 int err = -1;
5455c699 9690
87267485
MM
9691 ASSERT_RTNL();
9692
5455c699
MM
9693 features = netdev_get_wanted_features(dev);
9694
9695 if (dev->netdev_ops->ndo_fix_features)
9696 features = dev->netdev_ops->ndo_fix_features(dev, features);
9697
9698 /* driver might be less strict about feature dependencies */
9699 features = netdev_fix_features(dev, features);
9700
4250b75b 9701 /* some features can't be enabled if they're off on an upper device */
fd867d51
JW
9702 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9703 features = netdev_sync_upper_features(dev, upper, features);
9704
5455c699 9705 if (dev->features == features)
e7868a85 9706 goto sync_lower;
5455c699 9707
c8f44aff
MM
9708 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9709 &dev->features, &features);
5455c699
MM
9710
9711 if (dev->netdev_ops->ndo_set_features)
9712 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9713 else
9714 err = 0;
5455c699 9715
6cb6a27c 9716 if (unlikely(err < 0)) {
5455c699 9717 netdev_err(dev,
c8f44aff
MM
9718 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9719 err, &features, &dev->features);
17b85d29
NA
9720 /* return non-0 since some features might have changed and
9721 * it's better to fire a spurious notification than miss it
9722 */
9723 return -1;
6cb6a27c
MM
9724 }
9725
e7868a85 9726sync_lower:
fd867d51
JW
9727 /* some features must be disabled on lower devices when disabled
9728 * on an upper device (think: bonding master or bridge)
9729 */
9730 netdev_for_each_lower_dev(dev, lower, iter)
9731 netdev_sync_lower_features(dev, lower, features);
9732
ae847f40
SD
9733 if (!err) {
9734 netdev_features_t diff = features ^ dev->features;
9735
9736 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9737 /* udp_tunnel_{get,drop}_rx_info both need
9738 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9739 * device, or they won't do anything.
9740 * Thus we need to update dev->features
9741 * *before* calling udp_tunnel_get_rx_info,
9742 * but *after* calling udp_tunnel_drop_rx_info.
9743 */
9744 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9745 dev->features = features;
9746 udp_tunnel_get_rx_info(dev);
9747 } else {
9748 udp_tunnel_drop_rx_info(dev);
9749 }
9750 }
9751
9daae9bd
GP
9752 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9753 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9754 dev->features = features;
9755 err |= vlan_get_rx_ctag_filter_info(dev);
9756 } else {
9757 vlan_drop_rx_ctag_filter_info(dev);
9758 }
9759 }
9760
9761 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9762 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9763 dev->features = features;
9764 err |= vlan_get_rx_stag_filter_info(dev);
9765 } else {
9766 vlan_drop_rx_stag_filter_info(dev);
9767 }
9768 }
9769
6cb6a27c 9770 dev->features = features;
ae847f40 9771 }
6cb6a27c 9772
e7868a85 9773 return err < 0 ? 0 : 1;
6cb6a27c
MM
9774}
9775
afe12cc8
MM
9776/**
9777 * netdev_update_features - recalculate device features
9778 * @dev: the device to check
9779 *
9780 * Recalculate dev->features set and send notifications if it
9781 * has changed. Should be called after driver or hardware dependent
9782 * conditions might have changed that influence the features.
9783 */
6cb6a27c
MM
9784void netdev_update_features(struct net_device *dev)
9785{
9786 if (__netdev_update_features(dev))
9787 netdev_features_change(dev);
5455c699
MM
9788}
9789EXPORT_SYMBOL(netdev_update_features);
9790
afe12cc8
MM
9791/**
9792 * netdev_change_features - recalculate device features
9793 * @dev: the device to check
9794 *
9795 * Recalculate dev->features set and send notifications even
9796 * if they have not changed. Should be called instead of
9797 * netdev_update_features() if also dev->vlan_features might
9798 * have changed to allow the changes to be propagated to stacked
9799 * VLAN devices.
9800 */
9801void netdev_change_features(struct net_device *dev)
9802{
9803 __netdev_update_features(dev);
9804 netdev_features_change(dev);
9805}
9806EXPORT_SYMBOL(netdev_change_features);
9807
fc4a7489
PM
9808/**
9809 * netif_stacked_transfer_operstate - transfer operstate
9810 * @rootdev: the root or lower level device to transfer state from
9811 * @dev: the device to transfer operstate to
9812 *
9813 * Transfer operational state from root to device. This is normally
9814 * called when a stacking relationship exists between the root
9815 * device and the device(a leaf device).
9816 */
9817void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9818 struct net_device *dev)
9819{
9820 if (rootdev->operstate == IF_OPER_DORMANT)
9821 netif_dormant_on(dev);
9822 else
9823 netif_dormant_off(dev);
9824
eec517cd
AL
9825 if (rootdev->operstate == IF_OPER_TESTING)
9826 netif_testing_on(dev);
9827 else
9828 netif_testing_off(dev);
9829
0575c86b
ZS
9830 if (netif_carrier_ok(rootdev))
9831 netif_carrier_on(dev);
9832 else
9833 netif_carrier_off(dev);
fc4a7489
PM
9834}
9835EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9836
1b4bf461
ED
9837static int netif_alloc_rx_queues(struct net_device *dev)
9838{
1b4bf461 9839 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 9840 struct netdev_rx_queue *rx;
10595902 9841 size_t sz = count * sizeof(*rx);
e817f856 9842 int err = 0;
1b4bf461 9843
bd25fa7b 9844 BUG_ON(count < 1);
1b4bf461 9845
dcda9b04 9846 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9847 if (!rx)
9848 return -ENOMEM;
9849
bd25fa7b
TH
9850 dev->_rx = rx;
9851
e817f856 9852 for (i = 0; i < count; i++) {
fe822240 9853 rx[i].dev = dev;
e817f856
JDB
9854
9855 /* XDP RX-queue setup */
b02e5a0e 9856 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
e817f856
JDB
9857 if (err < 0)
9858 goto err_rxq_info;
9859 }
1b4bf461 9860 return 0;
e817f856
JDB
9861
9862err_rxq_info:
9863 /* Rollback successful reg's and free other resources */
9864 while (i--)
9865 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 9866 kvfree(dev->_rx);
e817f856
JDB
9867 dev->_rx = NULL;
9868 return err;
9869}
9870
9871static void netif_free_rx_queues(struct net_device *dev)
9872{
9873 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
9874
9875 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9876 if (!dev->_rx)
9877 return;
9878
e817f856 9879 for (i = 0; i < count; i++)
82aaff2f
JK
9880 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9881
9882 kvfree(dev->_rx);
1b4bf461
ED
9883}
9884
aa942104
CG
9885static void netdev_init_one_queue(struct net_device *dev,
9886 struct netdev_queue *queue, void *_unused)
9887{
9888 /* Initialize queue lock */
9889 spin_lock_init(&queue->_xmit_lock);
1a33e10e 9890 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
aa942104 9891 queue->xmit_lock_owner = -1;
b236da69 9892 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 9893 queue->dev = dev;
114cf580
TH
9894#ifdef CONFIG_BQL
9895 dql_init(&queue->dql, HZ);
9896#endif
aa942104
CG
9897}
9898
60877a32
ED
9899static void netif_free_tx_queues(struct net_device *dev)
9900{
4cb28970 9901 kvfree(dev->_tx);
60877a32
ED
9902}
9903
e6484930
TH
9904static int netif_alloc_netdev_queues(struct net_device *dev)
9905{
9906 unsigned int count = dev->num_tx_queues;
9907 struct netdev_queue *tx;
60877a32 9908 size_t sz = count * sizeof(*tx);
e6484930 9909
d339727c
ED
9910 if (count < 1 || count > 0xffff)
9911 return -EINVAL;
62b5942a 9912
dcda9b04 9913 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9914 if (!tx)
9915 return -ENOMEM;
9916
e6484930 9917 dev->_tx = tx;
1d24eb48 9918
e6484930
TH
9919 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9920 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
9921
9922 return 0;
e6484930
TH
9923}
9924
a2029240
DV
9925void netif_tx_stop_all_queues(struct net_device *dev)
9926{
9927 unsigned int i;
9928
9929 for (i = 0; i < dev->num_tx_queues; i++) {
9930 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 9931
a2029240
DV
9932 netif_tx_stop_queue(txq);
9933 }
9934}
9935EXPORT_SYMBOL(netif_tx_stop_all_queues);
9936
1da177e4
LT
9937/**
9938 * register_netdevice - register a network device
9939 * @dev: device to register
9940 *
9941 * Take a completed network device structure and add it to the kernel
9942 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9943 * chain. 0 is returned on success. A negative errno code is returned
9944 * on a failure to set up the device, or if the name is a duplicate.
9945 *
9946 * Callers must hold the rtnl semaphore. You may want
9947 * register_netdev() instead of this.
9948 *
9949 * BUGS:
9950 * The locking appears insufficient to guarantee two parallel registers
9951 * will not get the same name.
9952 */
9953
9954int register_netdevice(struct net_device *dev)
9955{
1da177e4 9956 int ret;
d314774c 9957 struct net *net = dev_net(dev);
1da177e4 9958
e283de3a
FF
9959 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9960 NETDEV_FEATURE_COUNT);
1da177e4
LT
9961 BUG_ON(dev_boot_phase);
9962 ASSERT_RTNL();
9963
b17a7c17
SH
9964 might_sleep();
9965
1da177e4
LT
9966 /* When net_device's are persistent, this will be fatal. */
9967 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 9968 BUG_ON(!net);
1da177e4 9969
9000edb7
JK
9970 ret = ethtool_check_ops(dev->ethtool_ops);
9971 if (ret)
9972 return ret;
9973
f1f28aa3 9974 spin_lock_init(&dev->addr_list_lock);
845e0ebb 9975 netdev_set_addr_lockdep_class(dev);
1da177e4 9976
828de4f6 9977 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
9978 if (ret < 0)
9979 goto out;
9980
9077f052 9981 ret = -ENOMEM;
ff927412
JP
9982 dev->name_node = netdev_name_node_head_alloc(dev);
9983 if (!dev->name_node)
9984 goto out;
9985
1da177e4 9986 /* Init, if this function is available */
d314774c
SH
9987 if (dev->netdev_ops->ndo_init) {
9988 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
9989 if (ret) {
9990 if (ret > 0)
9991 ret = -EIO;
42c17fa6 9992 goto err_free_name;
1da177e4
LT
9993 }
9994 }
4ec93edb 9995
f646968f
PM
9996 if (((dev->hw_features | dev->features) &
9997 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
9998 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9999 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10000 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10001 ret = -EINVAL;
10002 goto err_uninit;
10003 }
10004
9c7dafbf
PE
10005 ret = -EBUSY;
10006 if (!dev->ifindex)
10007 dev->ifindex = dev_new_index(net);
10008 else if (__dev_get_by_index(net, dev->ifindex))
10009 goto err_uninit;
10010
5455c699
MM
10011 /* Transfer changeable features to wanted_features and enable
10012 * software offloads (GSO and GRO).
10013 */
1a3c998f 10014 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 10015 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
10016
10017 if (dev->netdev_ops->ndo_udp_tunnel_add) {
10018 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10019 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10020 }
10021
14d1232f 10022 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 10023
cbc53e08 10024 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 10025 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 10026
7f348a60
AD
10027 /* If IPv4 TCP segmentation offload is supported we should also
10028 * allow the device to enable segmenting the frame with the option
10029 * of ignoring a static IP ID value. This doesn't enable the
10030 * feature itself but allows the user to enable it later.
10031 */
cbc53e08
AD
10032 if (dev->hw_features & NETIF_F_TSO)
10033 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
10034 if (dev->vlan_features & NETIF_F_TSO)
10035 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10036 if (dev->mpls_features & NETIF_F_TSO)
10037 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10038 if (dev->hw_enc_features & NETIF_F_TSO)
10039 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 10040
1180e7d6 10041 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 10042 */
1180e7d6 10043 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 10044
ee579677
PS
10045 /* Make NETIF_F_SG inheritable to tunnel devices.
10046 */
802ab55a 10047 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 10048
0d89d203
SH
10049 /* Make NETIF_F_SG inheritable to MPLS.
10050 */
10051 dev->mpls_features |= NETIF_F_SG;
10052
7ffbe3fd
JB
10053 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10054 ret = notifier_to_errno(ret);
10055 if (ret)
10056 goto err_uninit;
10057
8b41d188 10058 ret = netdev_register_kobject(dev);
cb626bf5
JH
10059 if (ret) {
10060 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 10061 goto err_uninit;
cb626bf5 10062 }
b17a7c17
SH
10063 dev->reg_state = NETREG_REGISTERED;
10064
6cb6a27c 10065 __netdev_update_features(dev);
8e9b59b2 10066
1da177e4
LT
10067 /*
10068 * Default initial state at registry is that the
10069 * device is present.
10070 */
10071
10072 set_bit(__LINK_STATE_PRESENT, &dev->state);
10073
8f4cccbb
BH
10074 linkwatch_init_dev(dev);
10075
1da177e4 10076 dev_init_scheduler(dev);
1da177e4 10077 dev_hold(dev);
ce286d32 10078 list_netdevice(dev);
7bf23575 10079 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 10080
948b337e
JP
10081 /* If the device has permanent device address, driver should
10082 * set dev_addr and also addr_assign_type should be set to
10083 * NET_ADDR_PERM (default value).
10084 */
10085 if (dev->addr_assign_type == NET_ADDR_PERM)
10086 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10087
1da177e4 10088 /* Notify protocols, that a new device appeared. */
056925ab 10089 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 10090 ret = notifier_to_errno(ret);
93ee31f1 10091 if (ret) {
766b0515
JK
10092 /* Expect explicit free_netdev() on failure */
10093 dev->needs_free_netdev = false;
93ee31f1 10094 rollback_registered(dev);
766b0515
JK
10095 net_set_todo(dev);
10096 goto out;
93ee31f1 10097 }
d90a909e
EB
10098 /*
10099 * Prevent userspace races by waiting until the network
10100 * device is fully setup before sending notifications.
10101 */
a2835763
PM
10102 if (!dev->rtnl_link_ops ||
10103 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 10104 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
10105
10106out:
10107 return ret;
7ce1b0ed
HX
10108
10109err_uninit:
d314774c
SH
10110 if (dev->netdev_ops->ndo_uninit)
10111 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
10112 if (dev->priv_destructor)
10113 dev->priv_destructor(dev);
42c17fa6
DC
10114err_free_name:
10115 netdev_name_node_free(dev->name_node);
7ce1b0ed 10116 goto out;
1da177e4 10117}
d1b19dff 10118EXPORT_SYMBOL(register_netdevice);
1da177e4 10119
937f1ba5
BH
10120/**
10121 * init_dummy_netdev - init a dummy network device for NAPI
10122 * @dev: device to init
10123 *
10124 * This takes a network device structure and initialize the minimum
10125 * amount of fields so it can be used to schedule NAPI polls without
10126 * registering a full blown interface. This is to be used by drivers
10127 * that need to tie several hardware interfaces to a single NAPI
10128 * poll scheduler due to HW limitations.
10129 */
10130int init_dummy_netdev(struct net_device *dev)
10131{
10132 /* Clear everything. Note we don't initialize spinlocks
10133 * are they aren't supposed to be taken by any of the
10134 * NAPI code and this dummy netdev is supposed to be
10135 * only ever used for NAPI polls
10136 */
10137 memset(dev, 0, sizeof(struct net_device));
10138
10139 /* make sure we BUG if trying to hit standard
10140 * register/unregister code path
10141 */
10142 dev->reg_state = NETREG_DUMMY;
10143
937f1ba5
BH
10144 /* NAPI wants this */
10145 INIT_LIST_HEAD(&dev->napi_list);
10146
10147 /* a dummy interface is started by default */
10148 set_bit(__LINK_STATE_PRESENT, &dev->state);
10149 set_bit(__LINK_STATE_START, &dev->state);
10150
35edfdc7
JE
10151 /* napi_busy_loop stats accounting wants this */
10152 dev_net_set(dev, &init_net);
10153
29b4433d
ED
10154 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10155 * because users of this 'device' dont need to change
10156 * its refcount.
10157 */
10158
937f1ba5
BH
10159 return 0;
10160}
10161EXPORT_SYMBOL_GPL(init_dummy_netdev);
10162
10163
1da177e4
LT
10164/**
10165 * register_netdev - register a network device
10166 * @dev: device to register
10167 *
10168 * Take a completed network device structure and add it to the kernel
10169 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10170 * chain. 0 is returned on success. A negative errno code is returned
10171 * on a failure to set up the device, or if the name is a duplicate.
10172 *
38b4da38 10173 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
10174 * and expands the device name if you passed a format string to
10175 * alloc_netdev.
10176 */
10177int register_netdev(struct net_device *dev)
10178{
10179 int err;
10180
b0f3debc
KT
10181 if (rtnl_lock_killable())
10182 return -EINTR;
1da177e4 10183 err = register_netdevice(dev);
1da177e4
LT
10184 rtnl_unlock();
10185 return err;
10186}
10187EXPORT_SYMBOL(register_netdev);
10188
29b4433d
ED
10189int netdev_refcnt_read(const struct net_device *dev)
10190{
10191 int i, refcnt = 0;
10192
10193 for_each_possible_cpu(i)
10194 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10195 return refcnt;
10196}
10197EXPORT_SYMBOL(netdev_refcnt_read);
10198
de2b541b
MCC
10199#define WAIT_REFS_MIN_MSECS 1
10200#define WAIT_REFS_MAX_MSECS 250
2c53040f 10201/**
1da177e4 10202 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 10203 * @dev: target net_device
1da177e4
LT
10204 *
10205 * This is called when unregistering network devices.
10206 *
10207 * Any protocol or device that holds a reference should register
10208 * for netdevice notification, and cleanup and put back the
10209 * reference if they receive an UNREGISTER event.
10210 * We can get stuck here if buggy protocols don't correctly
4ec93edb 10211 * call dev_put.
1da177e4
LT
10212 */
10213static void netdev_wait_allrefs(struct net_device *dev)
10214{
10215 unsigned long rebroadcast_time, warning_time;
0e4be9e5 10216 int wait = 0, refcnt;
1da177e4 10217
e014debe
ED
10218 linkwatch_forget_dev(dev);
10219
1da177e4 10220 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
10221 refcnt = netdev_refcnt_read(dev);
10222
10223 while (refcnt != 0) {
1da177e4 10224 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 10225 rtnl_lock();
1da177e4
LT
10226
10227 /* Rebroadcast unregister notification */
056925ab 10228 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 10229
748e2d93 10230 __rtnl_unlock();
0115e8e3 10231 rcu_barrier();
748e2d93
ED
10232 rtnl_lock();
10233
1da177e4
LT
10234 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10235 &dev->state)) {
10236 /* We must not have linkwatch events
10237 * pending on unregister. If this
10238 * happens, we simply run the queue
10239 * unscheduled, resulting in a noop
10240 * for this device.
10241 */
10242 linkwatch_run_queue();
10243 }
10244
6756ae4b 10245 __rtnl_unlock();
1da177e4
LT
10246
10247 rebroadcast_time = jiffies;
10248 }
10249
0e4be9e5
FR
10250 if (!wait) {
10251 rcu_barrier();
10252 wait = WAIT_REFS_MIN_MSECS;
10253 } else {
10254 msleep(wait);
10255 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10256 }
1da177e4 10257
29b4433d
ED
10258 refcnt = netdev_refcnt_read(dev);
10259
d7c04b05 10260 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
10261 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10262 dev->name, refcnt);
1da177e4
LT
10263 warning_time = jiffies;
10264 }
10265 }
10266}
10267
10268/* The sequence is:
10269 *
10270 * rtnl_lock();
10271 * ...
10272 * register_netdevice(x1);
10273 * register_netdevice(x2);
10274 * ...
10275 * unregister_netdevice(y1);
10276 * unregister_netdevice(y2);
10277 * ...
10278 * rtnl_unlock();
10279 * free_netdev(y1);
10280 * free_netdev(y2);
10281 *
58ec3b4d 10282 * We are invoked by rtnl_unlock().
1da177e4 10283 * This allows us to deal with problems:
b17a7c17 10284 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
10285 * without deadlocking with linkwatch via keventd.
10286 * 2) Since we run with the RTNL semaphore not held, we can sleep
10287 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
10288 *
10289 * We must not return until all unregister events added during
10290 * the interval the lock was held have been completed.
1da177e4 10291 */
1da177e4
LT
10292void netdev_run_todo(void)
10293{
626ab0e6 10294 struct list_head list;
1fc70edb
TY
10295#ifdef CONFIG_LOCKDEP
10296 struct list_head unlink_list;
10297
10298 list_replace_init(&net_unlink_list, &unlink_list);
10299
10300 while (!list_empty(&unlink_list)) {
10301 struct net_device *dev = list_first_entry(&unlink_list,
10302 struct net_device,
10303 unlink_list);
0e8b8d6a 10304 list_del_init(&dev->unlink_list);
1fc70edb
TY
10305 dev->nested_level = dev->lower_level - 1;
10306 }
10307#endif
1da177e4 10308
1da177e4 10309 /* Snapshot list, allow later requests */
626ab0e6 10310 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
10311
10312 __rtnl_unlock();
626ab0e6 10313
0115e8e3
ED
10314
10315 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
10316 if (!list_empty(&list))
10317 rcu_barrier();
10318
1da177e4
LT
10319 while (!list_empty(&list)) {
10320 struct net_device *dev
e5e26d75 10321 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
10322 list_del(&dev->todo_list);
10323
b17a7c17 10324 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 10325 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
10326 dev->name, dev->reg_state);
10327 dump_stack();
10328 continue;
10329 }
1da177e4 10330
b17a7c17 10331 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 10332
b17a7c17 10333 netdev_wait_allrefs(dev);
1da177e4 10334
b17a7c17 10335 /* paranoia */
29b4433d 10336 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
10337 BUG_ON(!list_empty(&dev->ptype_all));
10338 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
10339 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10340 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 10341#if IS_ENABLED(CONFIG_DECNET)
547b792c 10342 WARN_ON(dev->dn_ptr);
330c7272 10343#endif
cf124db5
DM
10344 if (dev->priv_destructor)
10345 dev->priv_destructor(dev);
10346 if (dev->needs_free_netdev)
10347 free_netdev(dev);
9093bbb2 10348
50624c93
EB
10349 /* Report a network device has been unregistered */
10350 rtnl_lock();
10351 dev_net(dev)->dev_unreg_count--;
10352 __rtnl_unlock();
10353 wake_up(&netdev_unregistering_wq);
10354
9093bbb2
SH
10355 /* Free network device */
10356 kobject_put(&dev->dev.kobj);
1da177e4 10357 }
1da177e4
LT
10358}
10359
9256645a
JW
10360/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10361 * all the same fields in the same order as net_device_stats, with only
10362 * the type differing, but rtnl_link_stats64 may have additional fields
10363 * at the end for newer counters.
3cfde79c 10364 */
77a1abf5
ED
10365void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10366 const struct net_device_stats *netdev_stats)
3cfde79c
BH
10367{
10368#if BITS_PER_LONG == 64
9256645a 10369 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 10370 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
10371 /* zero out counters that only exist in rtnl_link_stats64 */
10372 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10373 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 10374#else
9256645a 10375 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
10376 const unsigned long *src = (const unsigned long *)netdev_stats;
10377 u64 *dst = (u64 *)stats64;
10378
9256645a 10379 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
10380 for (i = 0; i < n; i++)
10381 dst[i] = src[i];
9256645a
JW
10382 /* zero out counters that only exist in rtnl_link_stats64 */
10383 memset((char *)stats64 + n * sizeof(u64), 0,
10384 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
10385#endif
10386}
77a1abf5 10387EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 10388
eeda3fd6
SH
10389/**
10390 * dev_get_stats - get network device statistics
10391 * @dev: device to get statistics from
28172739 10392 * @storage: place to store stats
eeda3fd6 10393 *
d7753516
BH
10394 * Get network statistics from device. Return @storage.
10395 * The device driver may provide its own method by setting
10396 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10397 * otherwise the internal statistics structure is used.
eeda3fd6 10398 */
d7753516
BH
10399struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10400 struct rtnl_link_stats64 *storage)
7004bf25 10401{
eeda3fd6
SH
10402 const struct net_device_ops *ops = dev->netdev_ops;
10403
28172739
ED
10404 if (ops->ndo_get_stats64) {
10405 memset(storage, 0, sizeof(*storage));
caf586e5
ED
10406 ops->ndo_get_stats64(dev, storage);
10407 } else if (ops->ndo_get_stats) {
3cfde79c 10408 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
10409 } else {
10410 netdev_stats_to_stats64(storage, &dev->stats);
28172739 10411 }
6f64ec74
ED
10412 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10413 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10414 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 10415 return storage;
c45d286e 10416}
eeda3fd6 10417EXPORT_SYMBOL(dev_get_stats);
c45d286e 10418
44fa32f0
HK
10419/**
10420 * dev_fetch_sw_netstats - get per-cpu network device statistics
10421 * @s: place to store stats
10422 * @netstats: per-cpu network stats to read from
10423 *
10424 * Read per-cpu network statistics and populate the related fields in @s.
10425 */
10426void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10427 const struct pcpu_sw_netstats __percpu *netstats)
10428{
10429 int cpu;
10430
10431 for_each_possible_cpu(cpu) {
10432 const struct pcpu_sw_netstats *stats;
10433 struct pcpu_sw_netstats tmp;
10434 unsigned int start;
10435
10436 stats = per_cpu_ptr(netstats, cpu);
10437 do {
10438 start = u64_stats_fetch_begin_irq(&stats->syncp);
10439 tmp.rx_packets = stats->rx_packets;
10440 tmp.rx_bytes = stats->rx_bytes;
10441 tmp.tx_packets = stats->tx_packets;
10442 tmp.tx_bytes = stats->tx_bytes;
10443 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10444
10445 s->rx_packets += tmp.rx_packets;
10446 s->rx_bytes += tmp.rx_bytes;
10447 s->tx_packets += tmp.tx_packets;
10448 s->tx_bytes += tmp.tx_bytes;
10449 }
10450}
10451EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10452
a1839426
HK
10453/**
10454 * dev_get_tstats64 - ndo_get_stats64 implementation
10455 * @dev: device to get statistics from
10456 * @s: place to store stats
10457 *
10458 * Populate @s from dev->stats and dev->tstats. Can be used as
10459 * ndo_get_stats64() callback.
10460 */
10461void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10462{
10463 netdev_stats_to_stats64(s, &dev->stats);
10464 dev_fetch_sw_netstats(s, dev->tstats);
10465}
10466EXPORT_SYMBOL_GPL(dev_get_tstats64);
10467
24824a09 10468struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 10469{
24824a09 10470 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 10471
24824a09
ED
10472#ifdef CONFIG_NET_CLS_ACT
10473 if (queue)
10474 return queue;
10475 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10476 if (!queue)
10477 return NULL;
10478 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 10479 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
10480 queue->qdisc_sleeping = &noop_qdisc;
10481 rcu_assign_pointer(dev->ingress_queue, queue);
10482#endif
10483 return queue;
bb949fbd
DM
10484}
10485
2c60db03
ED
10486static const struct ethtool_ops default_ethtool_ops;
10487
d07d7507
SG
10488void netdev_set_default_ethtool_ops(struct net_device *dev,
10489 const struct ethtool_ops *ops)
10490{
10491 if (dev->ethtool_ops == &default_ethtool_ops)
10492 dev->ethtool_ops = ops;
10493}
10494EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10495
74d332c1
ED
10496void netdev_freemem(struct net_device *dev)
10497{
10498 char *addr = (char *)dev - dev->padded;
10499
4cb28970 10500 kvfree(addr);
74d332c1
ED
10501}
10502
1da177e4 10503/**
722c9a0c 10504 * alloc_netdev_mqs - allocate network device
10505 * @sizeof_priv: size of private data to allocate space for
10506 * @name: device name format string
10507 * @name_assign_type: origin of device name
10508 * @setup: callback to initialize device
10509 * @txqs: the number of TX subqueues to allocate
10510 * @rxqs: the number of RX subqueues to allocate
10511 *
10512 * Allocates a struct net_device with private data area for driver use
10513 * and performs basic initialization. Also allocates subqueue structs
10514 * for each queue on the device.
1da177e4 10515 */
36909ea4 10516struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 10517 unsigned char name_assign_type,
36909ea4
TH
10518 void (*setup)(struct net_device *),
10519 unsigned int txqs, unsigned int rxqs)
1da177e4 10520{
1da177e4 10521 struct net_device *dev;
52a59bd5 10522 unsigned int alloc_size;
1ce8e7b5 10523 struct net_device *p;
1da177e4 10524
b6fe17d6
SH
10525 BUG_ON(strlen(name) >= sizeof(dev->name));
10526
36909ea4 10527 if (txqs < 1) {
7b6cd1ce 10528 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
10529 return NULL;
10530 }
10531
36909ea4 10532 if (rxqs < 1) {
7b6cd1ce 10533 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
10534 return NULL;
10535 }
36909ea4 10536
fd2ea0a7 10537 alloc_size = sizeof(struct net_device);
d1643d24
AD
10538 if (sizeof_priv) {
10539 /* ensure 32-byte alignment of private area */
1ce8e7b5 10540 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
10541 alloc_size += sizeof_priv;
10542 }
10543 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 10544 alloc_size += NETDEV_ALIGN - 1;
1da177e4 10545
dcda9b04 10546 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 10547 if (!p)
1da177e4 10548 return NULL;
1da177e4 10549
1ce8e7b5 10550 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 10551 dev->padded = (char *)dev - (char *)p;
ab9c73cc 10552
29b4433d
ED
10553 dev->pcpu_refcnt = alloc_percpu(int);
10554 if (!dev->pcpu_refcnt)
74d332c1 10555 goto free_dev;
ab9c73cc 10556
ab9c73cc 10557 if (dev_addr_init(dev))
29b4433d 10558 goto free_pcpu;
ab9c73cc 10559
22bedad3 10560 dev_mc_init(dev);
a748ee24 10561 dev_uc_init(dev);
ccffad25 10562
c346dca1 10563 dev_net_set(dev, &init_net);
1da177e4 10564
8d3bdbd5 10565 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 10566 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
10567 dev->upper_level = 1;
10568 dev->lower_level = 1;
1fc70edb
TY
10569#ifdef CONFIG_LOCKDEP
10570 dev->nested_level = 0;
10571 INIT_LIST_HEAD(&dev->unlink_list);
10572#endif
8d3bdbd5 10573
8d3bdbd5
DM
10574 INIT_LIST_HEAD(&dev->napi_list);
10575 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 10576 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 10577 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
10578 INIT_LIST_HEAD(&dev->adj_list.upper);
10579 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
10580 INIT_LIST_HEAD(&dev->ptype_all);
10581 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 10582 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
10583#ifdef CONFIG_NET_SCHED
10584 hash_init(dev->qdisc_hash);
10585#endif
02875878 10586 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
10587 setup(dev);
10588
a813104d 10589 if (!dev->tx_queue_len) {
f84bb1ea 10590 dev->priv_flags |= IFF_NO_QUEUE;
11597084 10591 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 10592 }
906470c1 10593
36909ea4
TH
10594 dev->num_tx_queues = txqs;
10595 dev->real_num_tx_queues = txqs;
ed9af2e8 10596 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 10597 goto free_all;
e8a0464c 10598
36909ea4
TH
10599 dev->num_rx_queues = rxqs;
10600 dev->real_num_rx_queues = rxqs;
fe822240 10601 if (netif_alloc_rx_queues(dev))
8d3bdbd5 10602 goto free_all;
0a9627f2 10603
1da177e4 10604 strcpy(dev->name, name);
c835a677 10605 dev->name_assign_type = name_assign_type;
cbda10fa 10606 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
10607 if (!dev->ethtool_ops)
10608 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 10609
357b6cc5 10610 nf_hook_ingress_init(dev);
e687ad60 10611
1da177e4 10612 return dev;
ab9c73cc 10613
8d3bdbd5
DM
10614free_all:
10615 free_netdev(dev);
10616 return NULL;
10617
29b4433d
ED
10618free_pcpu:
10619 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
10620free_dev:
10621 netdev_freemem(dev);
ab9c73cc 10622 return NULL;
1da177e4 10623}
36909ea4 10624EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
10625
10626/**
722c9a0c 10627 * free_netdev - free network device
10628 * @dev: device
1da177e4 10629 *
722c9a0c 10630 * This function does the last stage of destroying an allocated device
10631 * interface. The reference to the device object is released. If this
10632 * is the last reference then it will be freed.Must be called in process
10633 * context.
1da177e4
LT
10634 */
10635void free_netdev(struct net_device *dev)
10636{
d565b0a1
HX
10637 struct napi_struct *p, *n;
10638
93d05d4a 10639 might_sleep();
c269a24c
JK
10640
10641 /* When called immediately after register_netdevice() failed the unwind
10642 * handling may still be dismantling the device. Handle that case by
10643 * deferring the free.
10644 */
10645 if (dev->reg_state == NETREG_UNREGISTERING) {
10646 ASSERT_RTNL();
10647 dev->needs_free_netdev = true;
10648 return;
10649 }
10650
60877a32 10651 netif_free_tx_queues(dev);
e817f856 10652 netif_free_rx_queues(dev);
e8a0464c 10653
33d480ce 10654 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 10655
f001fde5
JP
10656 /* Flush device addresses */
10657 dev_addr_flush(dev);
10658
d565b0a1
HX
10659 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10660 netif_napi_del(p);
10661
29b4433d
ED
10662 free_percpu(dev->pcpu_refcnt);
10663 dev->pcpu_refcnt = NULL;
75ccae62
THJ
10664 free_percpu(dev->xdp_bulkq);
10665 dev->xdp_bulkq = NULL;
29b4433d 10666
3041a069 10667 /* Compatibility with error handling in drivers */
1da177e4 10668 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 10669 netdev_freemem(dev);
1da177e4
LT
10670 return;
10671 }
10672
10673 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10674 dev->reg_state = NETREG_RELEASED;
10675
43cb76d9
GKH
10676 /* will free via device release */
10677 put_device(&dev->dev);
1da177e4 10678}
d1b19dff 10679EXPORT_SYMBOL(free_netdev);
4ec93edb 10680
f0db275a
SH
10681/**
10682 * synchronize_net - Synchronize with packet receive processing
10683 *
10684 * Wait for packets currently being received to be done.
10685 * Does not block later packets from starting.
10686 */
4ec93edb 10687void synchronize_net(void)
1da177e4
LT
10688{
10689 might_sleep();
be3fc413
ED
10690 if (rtnl_is_locked())
10691 synchronize_rcu_expedited();
10692 else
10693 synchronize_rcu();
1da177e4 10694}
d1b19dff 10695EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
10696
10697/**
44a0873d 10698 * unregister_netdevice_queue - remove device from the kernel
1da177e4 10699 * @dev: device
44a0873d 10700 * @head: list
6ebfbc06 10701 *
1da177e4 10702 * This function shuts down a device interface and removes it
d59b54b1 10703 * from the kernel tables.
44a0873d 10704 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
10705 *
10706 * Callers must hold the rtnl semaphore. You may want
10707 * unregister_netdev() instead of this.
10708 */
10709
44a0873d 10710void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 10711{
a6620712
HX
10712 ASSERT_RTNL();
10713
44a0873d 10714 if (head) {
9fdce099 10715 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
10716 } else {
10717 rollback_registered(dev);
10718 /* Finish processing unregister after unlock */
10719 net_set_todo(dev);
10720 }
1da177e4 10721}
44a0873d 10722EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 10723
9b5e383c
ED
10724/**
10725 * unregister_netdevice_many - unregister many devices
10726 * @head: list of devices
87757a91
ED
10727 *
10728 * Note: As most callers use a stack allocated list_head,
10729 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
10730 */
10731void unregister_netdevice_many(struct list_head *head)
10732{
10733 struct net_device *dev;
10734
10735 if (!list_empty(head)) {
10736 rollback_registered_many(head);
10737 list_for_each_entry(dev, head, unreg_list)
10738 net_set_todo(dev);
87757a91 10739 list_del(head);
9b5e383c
ED
10740 }
10741}
63c8099d 10742EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 10743
1da177e4
LT
10744/**
10745 * unregister_netdev - remove device from the kernel
10746 * @dev: device
10747 *
10748 * This function shuts down a device interface and removes it
d59b54b1 10749 * from the kernel tables.
1da177e4
LT
10750 *
10751 * This is just a wrapper for unregister_netdevice that takes
10752 * the rtnl semaphore. In general you want to use this and not
10753 * unregister_netdevice.
10754 */
10755void unregister_netdev(struct net_device *dev)
10756{
10757 rtnl_lock();
10758 unregister_netdevice(dev);
10759 rtnl_unlock();
10760}
1da177e4
LT
10761EXPORT_SYMBOL(unregister_netdev);
10762
ce286d32
EB
10763/**
10764 * dev_change_net_namespace - move device to different nethost namespace
10765 * @dev: device
10766 * @net: network namespace
10767 * @pat: If not NULL name pattern to try if the current device name
10768 * is already taken in the destination network namespace.
10769 *
10770 * This function shuts down a device interface and moves it
10771 * to a new network namespace. On success 0 is returned, on
10772 * a failure a netagive errno code is returned.
10773 *
10774 * Callers must hold the rtnl semaphore.
10775 */
10776
10777int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10778{
ef6a4c88 10779 struct net *net_old = dev_net(dev);
38e01b30 10780 int err, new_nsid, new_ifindex;
ce286d32
EB
10781
10782 ASSERT_RTNL();
10783
10784 /* Don't allow namespace local devices to be moved. */
10785 err = -EINVAL;
10786 if (dev->features & NETIF_F_NETNS_LOCAL)
10787 goto out;
10788
10789 /* Ensure the device has been registrered */
ce286d32
EB
10790 if (dev->reg_state != NETREG_REGISTERED)
10791 goto out;
10792
10793 /* Get out if there is nothing todo */
10794 err = 0;
ef6a4c88 10795 if (net_eq(net_old, net))
ce286d32
EB
10796 goto out;
10797
10798 /* Pick the destination device name, and ensure
10799 * we can use it in the destination network namespace.
10800 */
10801 err = -EEXIST;
d9031024 10802 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
10803 /* We get here if we can't use the current device name */
10804 if (!pat)
10805 goto out;
7892bd08
LR
10806 err = dev_get_valid_name(net, dev, pat);
10807 if (err < 0)
ce286d32
EB
10808 goto out;
10809 }
10810
10811 /*
10812 * And now a mini version of register_netdevice unregister_netdevice.
10813 */
10814
10815 /* If device is running close it first. */
9b772652 10816 dev_close(dev);
ce286d32
EB
10817
10818 /* And unlink it from device chain */
ce286d32
EB
10819 unlist_netdevice(dev);
10820
10821 synchronize_net();
10822
10823 /* Shutdown queueing discipline. */
10824 dev_shutdown(dev);
10825
10826 /* Notify protocols, that we are about to destroy
eb13da1a 10827 * this device. They should clean all the things.
10828 *
10829 * Note that dev->reg_state stays at NETREG_REGISTERED.
10830 * This is wanted because this way 8021q and macvlan know
10831 * the device is just moving and can keep their slaves up.
10832 */
ce286d32 10833 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 10834 rcu_barrier();
38e01b30 10835
d4e4fdf9 10836 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30
ND
10837 /* If there is an ifindex conflict assign a new one */
10838 if (__dev_get_by_index(net, dev->ifindex))
10839 new_ifindex = dev_new_index(net);
10840 else
10841 new_ifindex = dev->ifindex;
10842
10843 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10844 new_ifindex);
ce286d32
EB
10845
10846 /*
10847 * Flush the unicast and multicast chains
10848 */
a748ee24 10849 dev_uc_flush(dev);
22bedad3 10850 dev_mc_flush(dev);
ce286d32 10851
4e66ae2e
SH
10852 /* Send a netdev-removed uevent to the old namespace */
10853 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 10854 netdev_adjacent_del_links(dev);
4e66ae2e 10855
93642e14
JP
10856 /* Move per-net netdevice notifiers that are following the netdevice */
10857 move_netdevice_notifiers_dev_net(dev, net);
10858
ce286d32 10859 /* Actually switch the network namespace */
c346dca1 10860 dev_net_set(dev, net);
38e01b30 10861 dev->ifindex = new_ifindex;
ce286d32 10862
4e66ae2e
SH
10863 /* Send a netdev-add uevent to the new namespace */
10864 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 10865 netdev_adjacent_add_links(dev);
4e66ae2e 10866
8b41d188 10867 /* Fixup kobjects */
a1b3f594 10868 err = device_rename(&dev->dev, dev->name);
8b41d188 10869 WARN_ON(err);
ce286d32 10870
ef6a4c88
CB
10871 /* Adapt owner in case owning user namespace of target network
10872 * namespace is different from the original one.
10873 */
10874 err = netdev_change_owner(dev, net_old, net);
10875 WARN_ON(err);
10876
ce286d32
EB
10877 /* Add the device back in the hashes */
10878 list_netdevice(dev);
10879
10880 /* Notify protocols, that a new device appeared. */
10881 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10882
d90a909e
EB
10883 /*
10884 * Prevent userspace races by waiting until the network
10885 * device is fully setup before sending notifications.
10886 */
7f294054 10887 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 10888
ce286d32
EB
10889 synchronize_net();
10890 err = 0;
10891out:
10892 return err;
10893}
463d0183 10894EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 10895
f0bf90de 10896static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
10897{
10898 struct sk_buff **list_skb;
1da177e4 10899 struct sk_buff *skb;
f0bf90de 10900 unsigned int cpu;
97d8b6e3 10901 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 10902
1da177e4
LT
10903 local_irq_disable();
10904 cpu = smp_processor_id();
10905 sd = &per_cpu(softnet_data, cpu);
10906 oldsd = &per_cpu(softnet_data, oldcpu);
10907
10908 /* Find end of our completion_queue. */
10909 list_skb = &sd->completion_queue;
10910 while (*list_skb)
10911 list_skb = &(*list_skb)->next;
10912 /* Append completion queue from offline CPU. */
10913 *list_skb = oldsd->completion_queue;
10914 oldsd->completion_queue = NULL;
10915
1da177e4 10916 /* Append output queue from offline CPU. */
a9cbd588
CG
10917 if (oldsd->output_queue) {
10918 *sd->output_queue_tailp = oldsd->output_queue;
10919 sd->output_queue_tailp = oldsd->output_queue_tailp;
10920 oldsd->output_queue = NULL;
10921 oldsd->output_queue_tailp = &oldsd->output_queue;
10922 }
ac64da0b
ED
10923 /* Append NAPI poll list from offline CPU, with one exception :
10924 * process_backlog() must be called by cpu owning percpu backlog.
10925 * We properly handle process_queue & input_pkt_queue later.
10926 */
10927 while (!list_empty(&oldsd->poll_list)) {
10928 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10929 struct napi_struct,
10930 poll_list);
10931
10932 list_del_init(&napi->poll_list);
10933 if (napi->poll == process_backlog)
10934 napi->state = 0;
10935 else
10936 ____napi_schedule(sd, napi);
264524d5 10937 }
1da177e4
LT
10938
10939 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10940 local_irq_enable();
10941
773fc8f6 10942#ifdef CONFIG_RPS
10943 remsd = oldsd->rps_ipi_list;
10944 oldsd->rps_ipi_list = NULL;
10945#endif
10946 /* send out pending IPI's on offline CPU */
10947 net_rps_send_ipi(remsd);
10948
1da177e4 10949 /* Process offline CPU's input_pkt_queue */
76cc8b13 10950 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 10951 netif_rx_ni(skb);
76cc8b13 10952 input_queue_head_incr(oldsd);
fec5e652 10953 }
ac64da0b 10954 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 10955 netif_rx_ni(skb);
76cc8b13
TH
10956 input_queue_head_incr(oldsd);
10957 }
1da177e4 10958
f0bf90de 10959 return 0;
1da177e4 10960}
1da177e4 10961
7f353bf2 10962/**
b63365a2
HX
10963 * netdev_increment_features - increment feature set by one
10964 * @all: current feature set
10965 * @one: new feature set
10966 * @mask: mask feature set
7f353bf2
HX
10967 *
10968 * Computes a new feature set after adding a device with feature set
b63365a2
HX
10969 * @one to the master device with current feature set @all. Will not
10970 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 10971 */
c8f44aff
MM
10972netdev_features_t netdev_increment_features(netdev_features_t all,
10973 netdev_features_t one, netdev_features_t mask)
b63365a2 10974{
c8cd0989 10975 if (mask & NETIF_F_HW_CSUM)
a188222b 10976 mask |= NETIF_F_CSUM_MASK;
1742f183 10977 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 10978
a188222b 10979 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 10980 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 10981
1742f183 10982 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
10983 if (all & NETIF_F_HW_CSUM)
10984 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
10985
10986 return all;
10987}
b63365a2 10988EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 10989
430f03cd 10990static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
10991{
10992 int i;
10993 struct hlist_head *hash;
10994
6da2ec56 10995 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
10996 if (hash != NULL)
10997 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10998 INIT_HLIST_HEAD(&hash[i]);
10999
11000 return hash;
11001}
11002
881d966b 11003/* Initialize per network namespace state */
4665079c 11004static int __net_init netdev_init(struct net *net)
881d966b 11005{
d9f37d01 11006 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 11007 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 11008
734b6541
RM
11009 if (net != &init_net)
11010 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 11011
30d97d35
PE
11012 net->dev_name_head = netdev_create_hash();
11013 if (net->dev_name_head == NULL)
11014 goto err_name;
881d966b 11015
30d97d35
PE
11016 net->dev_index_head = netdev_create_hash();
11017 if (net->dev_index_head == NULL)
11018 goto err_idx;
881d966b 11019
a30c7b42
JP
11020 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11021
881d966b 11022 return 0;
30d97d35
PE
11023
11024err_idx:
11025 kfree(net->dev_name_head);
11026err_name:
11027 return -ENOMEM;
881d966b
EB
11028}
11029
f0db275a
SH
11030/**
11031 * netdev_drivername - network driver for the device
11032 * @dev: network device
f0db275a
SH
11033 *
11034 * Determine network driver for device.
11035 */
3019de12 11036const char *netdev_drivername(const struct net_device *dev)
6579e57b 11037{
cf04a4c7
SH
11038 const struct device_driver *driver;
11039 const struct device *parent;
3019de12 11040 const char *empty = "";
6579e57b
AV
11041
11042 parent = dev->dev.parent;
6579e57b 11043 if (!parent)
3019de12 11044 return empty;
6579e57b
AV
11045
11046 driver = parent->driver;
11047 if (driver && driver->name)
3019de12
DM
11048 return driver->name;
11049 return empty;
6579e57b
AV
11050}
11051
6ea754eb
JP
11052static void __netdev_printk(const char *level, const struct net_device *dev,
11053 struct va_format *vaf)
256df2f3 11054{
b004ff49 11055 if (dev && dev->dev.parent) {
6ea754eb
JP
11056 dev_printk_emit(level[1] - '0',
11057 dev->dev.parent,
11058 "%s %s %s%s: %pV",
11059 dev_driver_string(dev->dev.parent),
11060 dev_name(dev->dev.parent),
11061 netdev_name(dev), netdev_reg_state(dev),
11062 vaf);
b004ff49 11063 } else if (dev) {
6ea754eb
JP
11064 printk("%s%s%s: %pV",
11065 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 11066 } else {
6ea754eb 11067 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 11068 }
256df2f3
JP
11069}
11070
6ea754eb
JP
11071void netdev_printk(const char *level, const struct net_device *dev,
11072 const char *format, ...)
256df2f3
JP
11073{
11074 struct va_format vaf;
11075 va_list args;
256df2f3
JP
11076
11077 va_start(args, format);
11078
11079 vaf.fmt = format;
11080 vaf.va = &args;
11081
6ea754eb 11082 __netdev_printk(level, dev, &vaf);
b004ff49 11083
256df2f3 11084 va_end(args);
256df2f3
JP
11085}
11086EXPORT_SYMBOL(netdev_printk);
11087
11088#define define_netdev_printk_level(func, level) \
6ea754eb 11089void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 11090{ \
256df2f3
JP
11091 struct va_format vaf; \
11092 va_list args; \
11093 \
11094 va_start(args, fmt); \
11095 \
11096 vaf.fmt = fmt; \
11097 vaf.va = &args; \
11098 \
6ea754eb 11099 __netdev_printk(level, dev, &vaf); \
b004ff49 11100 \
256df2f3 11101 va_end(args); \
256df2f3
JP
11102} \
11103EXPORT_SYMBOL(func);
11104
11105define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11106define_netdev_printk_level(netdev_alert, KERN_ALERT);
11107define_netdev_printk_level(netdev_crit, KERN_CRIT);
11108define_netdev_printk_level(netdev_err, KERN_ERR);
11109define_netdev_printk_level(netdev_warn, KERN_WARNING);
11110define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11111define_netdev_printk_level(netdev_info, KERN_INFO);
11112
4665079c 11113static void __net_exit netdev_exit(struct net *net)
881d966b
EB
11114{
11115 kfree(net->dev_name_head);
11116 kfree(net->dev_index_head);
ee21b18b
VA
11117 if (net != &init_net)
11118 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
11119}
11120
022cbae6 11121static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
11122 .init = netdev_init,
11123 .exit = netdev_exit,
11124};
11125
4665079c 11126static void __net_exit default_device_exit(struct net *net)
ce286d32 11127{
e008b5fc 11128 struct net_device *dev, *aux;
ce286d32 11129 /*
e008b5fc 11130 * Push all migratable network devices back to the
ce286d32
EB
11131 * initial network namespace
11132 */
11133 rtnl_lock();
e008b5fc 11134 for_each_netdev_safe(net, dev, aux) {
ce286d32 11135 int err;
aca51397 11136 char fb_name[IFNAMSIZ];
ce286d32
EB
11137
11138 /* Ignore unmoveable devices (i.e. loopback) */
11139 if (dev->features & NETIF_F_NETNS_LOCAL)
11140 continue;
11141
e008b5fc
EB
11142 /* Leave virtual devices for the generic cleanup */
11143 if (dev->rtnl_link_ops)
11144 continue;
d0c082ce 11145
25985edc 11146 /* Push remaining network devices to init_net */
aca51397 11147 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
11148 if (__dev_get_by_name(&init_net, fb_name))
11149 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 11150 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 11151 if (err) {
7b6cd1ce
JP
11152 pr_emerg("%s: failed to move %s to init_net: %d\n",
11153 __func__, dev->name, err);
aca51397 11154 BUG();
ce286d32
EB
11155 }
11156 }
11157 rtnl_unlock();
11158}
11159
50624c93
EB
11160static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11161{
11162 /* Return with the rtnl_lock held when there are no network
11163 * devices unregistering in any network namespace in net_list.
11164 */
11165 struct net *net;
11166 bool unregistering;
ff960a73 11167 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 11168
ff960a73 11169 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 11170 for (;;) {
50624c93
EB
11171 unregistering = false;
11172 rtnl_lock();
11173 list_for_each_entry(net, net_list, exit_list) {
11174 if (net->dev_unreg_count > 0) {
11175 unregistering = true;
11176 break;
11177 }
11178 }
11179 if (!unregistering)
11180 break;
11181 __rtnl_unlock();
ff960a73
PZ
11182
11183 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 11184 }
ff960a73 11185 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
11186}
11187
04dc7f6b
EB
11188static void __net_exit default_device_exit_batch(struct list_head *net_list)
11189{
11190 /* At exit all network devices most be removed from a network
b595076a 11191 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
11192 * Do this across as many network namespaces as possible to
11193 * improve batching efficiency.
11194 */
11195 struct net_device *dev;
11196 struct net *net;
11197 LIST_HEAD(dev_kill_list);
11198
50624c93
EB
11199 /* To prevent network device cleanup code from dereferencing
11200 * loopback devices or network devices that have been freed
11201 * wait here for all pending unregistrations to complete,
11202 * before unregistring the loopback device and allowing the
11203 * network namespace be freed.
11204 *
11205 * The netdev todo list containing all network devices
11206 * unregistrations that happen in default_device_exit_batch
11207 * will run in the rtnl_unlock() at the end of
11208 * default_device_exit_batch.
11209 */
11210 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
11211 list_for_each_entry(net, net_list, exit_list) {
11212 for_each_netdev_reverse(net, dev) {
b0ab2fab 11213 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
11214 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11215 else
11216 unregister_netdevice_queue(dev, &dev_kill_list);
11217 }
11218 }
11219 unregister_netdevice_many(&dev_kill_list);
11220 rtnl_unlock();
11221}
11222
022cbae6 11223static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 11224 .exit = default_device_exit,
04dc7f6b 11225 .exit_batch = default_device_exit_batch,
ce286d32
EB
11226};
11227
1da177e4
LT
11228/*
11229 * Initialize the DEV module. At boot time this walks the device list and
11230 * unhooks any devices that fail to initialise (normally hardware not
11231 * present) and leaves us with a valid list of present and active devices.
11232 *
11233 */
11234
11235/*
11236 * This is called single threaded during boot, so no need
11237 * to take the rtnl semaphore.
11238 */
11239static int __init net_dev_init(void)
11240{
11241 int i, rc = -ENOMEM;
11242
11243 BUG_ON(!dev_boot_phase);
11244
1da177e4
LT
11245 if (dev_proc_init())
11246 goto out;
11247
8b41d188 11248 if (netdev_kobject_init())
1da177e4
LT
11249 goto out;
11250
11251 INIT_LIST_HEAD(&ptype_all);
82d8a867 11252 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
11253 INIT_LIST_HEAD(&ptype_base[i]);
11254
62532da9
VY
11255 INIT_LIST_HEAD(&offload_base);
11256
881d966b
EB
11257 if (register_pernet_subsys(&netdev_net_ops))
11258 goto out;
1da177e4
LT
11259
11260 /*
11261 * Initialise the packet receive queues.
11262 */
11263
6f912042 11264 for_each_possible_cpu(i) {
41852497 11265 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 11266 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 11267
41852497
ED
11268 INIT_WORK(flush, flush_backlog);
11269
e36fa2f7 11270 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 11271 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
11272#ifdef CONFIG_XFRM_OFFLOAD
11273 skb_queue_head_init(&sd->xfrm_backlog);
11274#endif
e36fa2f7 11275 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 11276 sd->output_queue_tailp = &sd->output_queue;
df334545 11277#ifdef CONFIG_RPS
545b8c8d 11278 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
e36fa2f7 11279 sd->cpu = i;
1e94d72f 11280#endif
0a9627f2 11281
7c4ec749 11282 init_gro_hash(&sd->backlog);
e36fa2f7
ED
11283 sd->backlog.poll = process_backlog;
11284 sd->backlog.weight = weight_p;
1da177e4
LT
11285 }
11286
1da177e4
LT
11287 dev_boot_phase = 0;
11288
505d4f73
EB
11289 /* The loopback device is special if any other network devices
11290 * is present in a network namespace the loopback device must
11291 * be present. Since we now dynamically allocate and free the
11292 * loopback device ensure this invariant is maintained by
11293 * keeping the loopback device as the first device on the
11294 * list of network devices. Ensuring the loopback devices
11295 * is the first device that appears and the last network device
11296 * that disappears.
11297 */
11298 if (register_pernet_device(&loopback_net_ops))
11299 goto out;
11300
11301 if (register_pernet_device(&default_device_ops))
11302 goto out;
11303
962cf36c
CM
11304 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11305 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 11306
f0bf90de
SAS
11307 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11308 NULL, dev_cpu_dead);
11309 WARN_ON(rc < 0);
1da177e4
LT
11310 rc = 0;
11311out:
11312 return rc;
11313}
11314
11315subsys_initcall(net_dev_init);