]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/core/dev.c
latent_entropy: Mark functions with __latent_entropy
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
6ae23ad3 142#include <linux/sctp.h>
40e4e713 143#include <linux/crash_dump.h>
1da177e4 144
342709ef
PE
145#include "net-sysfs.h"
146
d565b0a1
HX
147/* Instead of increasing this, you should create a hash table. */
148#define MAX_GRO_SKBS 8
149
5d38a079
HX
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
1da177e4 153static DEFINE_SPINLOCK(ptype_lock);
62532da9 154static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
62532da9 157static struct list_head offload_base __read_mostly;
1da177e4 158
ae78dbfa 159static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
160static int call_netdevice_notifiers_info(unsigned long val,
161 struct net_device *dev,
162 struct netdev_notifier_info *info);
ae78dbfa 163
1da177e4 164/*
7562f876 165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
166 * semaphore.
167 *
c6d14c84 168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
169 *
170 * Writers must hold the rtnl semaphore while they loop through the
7562f876 171 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
172 * actual updates. This allows pure readers to access the list even
173 * while a writer is preparing to update it.
174 *
175 * To put it another way, dev_base_lock is held for writing only to
176 * protect against pure readers; the rtnl semaphore provides the
177 * protection against other writers.
178 *
179 * See, for example usages, register_netdevice() and
180 * unregister_netdevice(), which must be called with the rtnl
181 * semaphore held.
182 */
1da177e4 183DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
184EXPORT_SYMBOL(dev_base_lock);
185
af12fa6e
ET
186/* protects napi_hash addition/deletion and napi_gen_id */
187static DEFINE_SPINLOCK(napi_hash_lock);
188
52bd2d62 189static unsigned int napi_gen_id = NR_CPUS;
6180d9de 190static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 191
18afa4b0 192static seqcount_t devnet_rename_seq;
c91f6df2 193
4e985ada
TG
194static inline void dev_base_seq_inc(struct net *net)
195{
196 while (++net->dev_base_seq == 0);
197}
198
881d966b 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 200{
8387ff25 201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 202
08e9897d 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
204}
205
881d966b 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 207{
7c28bd0b 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
209}
210
e36fa2f7 211static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
212{
213#ifdef CONFIG_RPS
e36fa2f7 214 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
215#endif
216}
217
e36fa2f7 218static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
219{
220#ifdef CONFIG_RPS
e36fa2f7 221 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
222#endif
223}
224
ce286d32 225/* Device list insertion */
53759be9 226static void list_netdevice(struct net_device *dev)
ce286d32 227{
c346dca1 228 struct net *net = dev_net(dev);
ce286d32
EB
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
c6d14c84 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
ce286d32 237 write_unlock_bh(&dev_base_lock);
4e985ada
TG
238
239 dev_base_seq_inc(net);
ce286d32
EB
240}
241
fb699dfd
ED
242/* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
ce286d32
EB
245static void unlist_netdevice(struct net_device *dev)
246{
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
c6d14c84 251 list_del_rcu(&dev->dev_list);
72c9528b 252 hlist_del_rcu(&dev->name_hlist);
fb699dfd 253 hlist_del_rcu(&dev->index_hlist);
ce286d32 254 write_unlock_bh(&dev_base_lock);
4e985ada
TG
255
256 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
257}
258
1da177e4
LT
259/*
260 * Our notifier list
261 */
262
f07d5b94 263static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
264
265/*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
bea3348e 269
9958da05 270DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 271EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 272
cf508b12 273#ifdef CONFIG_LOCKDEP
723e98b7 274/*
c773e847 275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
276 * according to dev->type
277 */
278static const unsigned short netdev_lock_type[] =
279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 294
36cbd3dc 295static const char *const netdev_lock_name[] =
723e98b7
JP
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
311
312static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 313static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
314
315static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316{
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324}
325
cf508b12
DM
326static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
723e98b7
JP
328{
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334}
cf508b12
DM
335
336static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337{
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344}
723e98b7 345#else
cf508b12
DM
346static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348{
349}
350static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
351{
352}
353#endif
1da177e4
LT
354
355/*******************************************************************************
356
357 Protocol management and registration routines
358
359*******************************************************************************/
360
1da177e4
LT
361/*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
c07b68e8
ED
377static inline struct list_head *ptype_head(const struct packet_type *pt)
378{
379 if (pt->type == htons(ETH_P_ALL))
7866a621 380 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 381 else
7866a621
SN
382 return pt->dev ? &pt->dev->ptype_specific :
383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
384}
385
1da177e4
LT
386/**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
4ec93edb 394 * This call does not sleep therefore it can not
1da177e4
LT
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399void dev_add_pack(struct packet_type *pt)
400{
c07b68e8 401 struct list_head *head = ptype_head(pt);
1da177e4 402
c07b68e8
ED
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
1da177e4 406}
d1b19dff 407EXPORT_SYMBOL(dev_add_pack);
1da177e4 408
1da177e4
LT
409/**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
4ec93edb 416 * returns.
1da177e4
LT
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422void __dev_remove_pack(struct packet_type *pt)
423{
c07b68e8 424 struct list_head *head = ptype_head(pt);
1da177e4
LT
425 struct packet_type *pt1;
426
c07b68e8 427 spin_lock(&ptype_lock);
1da177e4
LT
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
7b6cd1ce 436 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 437out:
c07b68e8 438 spin_unlock(&ptype_lock);
1da177e4 439}
d1b19dff
ED
440EXPORT_SYMBOL(__dev_remove_pack);
441
1da177e4
LT
442/**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454void dev_remove_pack(struct packet_type *pt)
455{
456 __dev_remove_pack(pt);
4ec93edb 457
1da177e4
LT
458 synchronize_net();
459}
d1b19dff 460EXPORT_SYMBOL(dev_remove_pack);
1da177e4 461
62532da9
VY
462
463/**
464 * dev_add_offload - register offload handlers
465 * @po: protocol offload declaration
466 *
467 * Add protocol offload handlers to the networking stack. The passed
468 * &proto_offload is linked into kernel lists and may not be freed until
469 * it has been removed from the kernel lists.
470 *
471 * This call does not sleep therefore it can not
472 * guarantee all CPU's that are in middle of receiving packets
473 * will see the new offload handlers (until the next received packet).
474 */
475void dev_add_offload(struct packet_offload *po)
476{
bdef7de4 477 struct packet_offload *elem;
62532da9
VY
478
479 spin_lock(&offload_lock);
bdef7de4
DM
480 list_for_each_entry(elem, &offload_base, list) {
481 if (po->priority < elem->priority)
482 break;
483 }
484 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
485 spin_unlock(&offload_lock);
486}
487EXPORT_SYMBOL(dev_add_offload);
488
489/**
490 * __dev_remove_offload - remove offload handler
491 * @po: packet offload declaration
492 *
493 * Remove a protocol offload handler that was previously added to the
494 * kernel offload handlers by dev_add_offload(). The passed &offload_type
495 * is removed from the kernel lists and can be freed or reused once this
496 * function returns.
497 *
498 * The packet type might still be in use by receivers
499 * and must not be freed until after all the CPU's have gone
500 * through a quiescent state.
501 */
1d143d9f 502static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
503{
504 struct list_head *head = &offload_base;
505 struct packet_offload *po1;
506
c53aa505 507 spin_lock(&offload_lock);
62532da9
VY
508
509 list_for_each_entry(po1, head, list) {
510 if (po == po1) {
511 list_del_rcu(&po->list);
512 goto out;
513 }
514 }
515
516 pr_warn("dev_remove_offload: %p not found\n", po);
517out:
c53aa505 518 spin_unlock(&offload_lock);
62532da9 519}
62532da9
VY
520
521/**
522 * dev_remove_offload - remove packet offload handler
523 * @po: packet offload declaration
524 *
525 * Remove a packet offload handler that was previously added to the kernel
526 * offload handlers by dev_add_offload(). The passed &offload_type is
527 * removed from the kernel lists and can be freed or reused once this
528 * function returns.
529 *
530 * This call sleeps to guarantee that no CPU is looking at the packet
531 * type after return.
532 */
533void dev_remove_offload(struct packet_offload *po)
534{
535 __dev_remove_offload(po);
536
537 synchronize_net();
538}
539EXPORT_SYMBOL(dev_remove_offload);
540
1da177e4
LT
541/******************************************************************************
542
543 Device Boot-time Settings Routines
544
545*******************************************************************************/
546
547/* Boot time configuration table */
548static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550/**
551 * netdev_boot_setup_add - add new setup entry
552 * @name: name of the device
553 * @map: configured settings for the device
554 *
555 * Adds new setup entry to the dev_boot_setup list. The function
556 * returns 0 on error and 1 on success. This is a generic routine to
557 * all netdevices.
558 */
559static int netdev_boot_setup_add(char *name, struct ifmap *map)
560{
561 struct netdev_boot_setup *s;
562 int i;
563
564 s = dev_boot_setup;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 568 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
569 memcpy(&s[i].map, map, sizeof(s[i].map));
570 break;
571 }
572 }
573
574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575}
576
577/**
578 * netdev_boot_setup_check - check boot time settings
579 * @dev: the netdevice
580 *
581 * Check boot time settings for the device.
582 * The found settings are set for the device to be used
583 * later in the device probing.
584 * Returns 0 if no settings found, 1 if they are.
585 */
586int netdev_boot_setup_check(struct net_device *dev)
587{
588 struct netdev_boot_setup *s = dev_boot_setup;
589 int i;
590
591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 593 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
594 dev->irq = s[i].map.irq;
595 dev->base_addr = s[i].map.base_addr;
596 dev->mem_start = s[i].map.mem_start;
597 dev->mem_end = s[i].map.mem_end;
598 return 1;
599 }
600 }
601 return 0;
602}
d1b19dff 603EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
604
605
606/**
607 * netdev_boot_base - get address from boot time settings
608 * @prefix: prefix for network device
609 * @unit: id for network device
610 *
611 * Check boot time settings for the base address of device.
612 * The found settings are set for the device to be used
613 * later in the device probing.
614 * Returns 0 if no settings found.
615 */
616unsigned long netdev_boot_base(const char *prefix, int unit)
617{
618 const struct netdev_boot_setup *s = dev_boot_setup;
619 char name[IFNAMSIZ];
620 int i;
621
622 sprintf(name, "%s%d", prefix, unit);
623
624 /*
625 * If device already registered then return base of 1
626 * to indicate not to probe for this interface
627 */
881d966b 628 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
629 return 1;
630
631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 if (!strcmp(name, s[i].name))
633 return s[i].map.base_addr;
634 return 0;
635}
636
637/*
638 * Saves at boot time configured settings for any netdevice.
639 */
640int __init netdev_boot_setup(char *str)
641{
642 int ints[5];
643 struct ifmap map;
644
645 str = get_options(str, ARRAY_SIZE(ints), ints);
646 if (!str || !*str)
647 return 0;
648
649 /* Save settings */
650 memset(&map, 0, sizeof(map));
651 if (ints[0] > 0)
652 map.irq = ints[1];
653 if (ints[0] > 1)
654 map.base_addr = ints[2];
655 if (ints[0] > 2)
656 map.mem_start = ints[3];
657 if (ints[0] > 3)
658 map.mem_end = ints[4];
659
660 /* Add new entry to the list */
661 return netdev_boot_setup_add(str, &map);
662}
663
664__setup("netdev=", netdev_boot_setup);
665
666/*******************************************************************************
667
668 Device Interface Subroutines
669
670*******************************************************************************/
671
a54acb3a
ND
672/**
673 * dev_get_iflink - get 'iflink' value of a interface
674 * @dev: targeted interface
675 *
676 * Indicates the ifindex the interface is linked to.
677 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 */
679
680int dev_get_iflink(const struct net_device *dev)
681{
682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 return dev->netdev_ops->ndo_get_iflink(dev);
684
7a66bbc9 685 return dev->ifindex;
a54acb3a
ND
686}
687EXPORT_SYMBOL(dev_get_iflink);
688
fc4099f1
PS
689/**
690 * dev_fill_metadata_dst - Retrieve tunnel egress information.
691 * @dev: targeted interface
692 * @skb: The packet.
693 *
694 * For better visibility of tunnel traffic OVS needs to retrieve
695 * egress tunnel information for a packet. Following API allows
696 * user to get this info.
697 */
698int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699{
700 struct ip_tunnel_info *info;
701
702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
703 return -EINVAL;
704
705 info = skb_tunnel_info_unclone(skb);
706 if (!info)
707 return -ENOMEM;
708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 return -EINVAL;
710
711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712}
713EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
1da177e4
LT
715/**
716 * __dev_get_by_name - find a device by its name
c4ea43c5 717 * @net: the applicable net namespace
1da177e4
LT
718 * @name: name to find
719 *
720 * Find an interface by name. Must be called under RTNL semaphore
721 * or @dev_base_lock. If the name is found a pointer to the device
722 * is returned. If the name is not found then %NULL is returned. The
723 * reference counters are not incremented so the caller must be
724 * careful with locks.
725 */
726
881d966b 727struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 728{
0bd8d536
ED
729 struct net_device *dev;
730 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 731
b67bfe0d 732 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
733 if (!strncmp(dev->name, name, IFNAMSIZ))
734 return dev;
0bd8d536 735
1da177e4
LT
736 return NULL;
737}
d1b19dff 738EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 739
72c9528b
ED
740/**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753{
72c9528b
ED
754 struct net_device *dev;
755 struct hlist_head *head = dev_name_hash(net, name);
756
b67bfe0d 757 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
758 if (!strncmp(dev->name, name, IFNAMSIZ))
759 return dev;
760
761 return NULL;
762}
763EXPORT_SYMBOL(dev_get_by_name_rcu);
764
1da177e4
LT
765/**
766 * dev_get_by_name - find a device by its name
c4ea43c5 767 * @net: the applicable net namespace
1da177e4
LT
768 * @name: name to find
769 *
770 * Find an interface by name. This can be called from any
771 * context and does its own locking. The returned handle has
772 * the usage count incremented and the caller must use dev_put() to
773 * release it when it is no longer needed. %NULL is returned if no
774 * matching device is found.
775 */
776
881d966b 777struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
778{
779 struct net_device *dev;
780
72c9528b
ED
781 rcu_read_lock();
782 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
783 if (dev)
784 dev_hold(dev);
72c9528b 785 rcu_read_unlock();
1da177e4
LT
786 return dev;
787}
d1b19dff 788EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
789
790/**
791 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 792 * @net: the applicable net namespace
1da177e4
LT
793 * @ifindex: index of device
794 *
795 * Search for an interface by index. Returns %NULL if the device
796 * is not found or a pointer to the device. The device has not
797 * had its reference counter increased so the caller must be careful
798 * about locking. The caller must hold either the RTNL semaphore
799 * or @dev_base_lock.
800 */
801
881d966b 802struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 803{
0bd8d536
ED
804 struct net_device *dev;
805 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 806
b67bfe0d 807 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
808 if (dev->ifindex == ifindex)
809 return dev;
0bd8d536 810
1da177e4
LT
811 return NULL;
812}
d1b19dff 813EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 814
fb699dfd
ED
815/**
816 * dev_get_by_index_rcu - find a device by its ifindex
817 * @net: the applicable net namespace
818 * @ifindex: index of device
819 *
820 * Search for an interface by index. Returns %NULL if the device
821 * is not found or a pointer to the device. The device has not
822 * had its reference counter increased so the caller must be careful
823 * about locking. The caller must hold RCU lock.
824 */
825
826struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827{
fb699dfd
ED
828 struct net_device *dev;
829 struct hlist_head *head = dev_index_hash(net, ifindex);
830
b67bfe0d 831 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
832 if (dev->ifindex == ifindex)
833 return dev;
834
835 return NULL;
836}
837EXPORT_SYMBOL(dev_get_by_index_rcu);
838
1da177e4
LT
839
840/**
841 * dev_get_by_index - find a device by its ifindex
c4ea43c5 842 * @net: the applicable net namespace
1da177e4
LT
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns NULL if the device
846 * is not found or a pointer to the device. The device returned has
847 * had a reference added and the pointer is safe until the user calls
848 * dev_put to indicate they have finished with it.
849 */
850
881d966b 851struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
852{
853 struct net_device *dev;
854
fb699dfd
ED
855 rcu_read_lock();
856 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
857 if (dev)
858 dev_hold(dev);
fb699dfd 859 rcu_read_unlock();
1da177e4
LT
860 return dev;
861}
d1b19dff 862EXPORT_SYMBOL(dev_get_by_index);
1da177e4 863
5dbe7c17
NS
864/**
865 * netdev_get_name - get a netdevice name, knowing its ifindex.
866 * @net: network namespace
867 * @name: a pointer to the buffer where the name will be stored.
868 * @ifindex: the ifindex of the interface to get the name from.
869 *
870 * The use of raw_seqcount_begin() and cond_resched() before
871 * retrying is required as we want to give the writers a chance
872 * to complete when CONFIG_PREEMPT is not set.
873 */
874int netdev_get_name(struct net *net, char *name, int ifindex)
875{
876 struct net_device *dev;
877 unsigned int seq;
878
879retry:
880 seq = raw_seqcount_begin(&devnet_rename_seq);
881 rcu_read_lock();
882 dev = dev_get_by_index_rcu(net, ifindex);
883 if (!dev) {
884 rcu_read_unlock();
885 return -ENODEV;
886 }
887
888 strcpy(name, dev->name);
889 rcu_read_unlock();
890 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 cond_resched();
892 goto retry;
893 }
894
895 return 0;
896}
897
1da177e4 898/**
941666c2 899 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 900 * @net: the applicable net namespace
1da177e4
LT
901 * @type: media type of device
902 * @ha: hardware address
903 *
904 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
905 * is not found or a pointer to the device.
906 * The caller must hold RCU or RTNL.
941666c2 907 * The returned device has not had its ref count increased
1da177e4
LT
908 * and the caller must therefore be careful about locking
909 *
1da177e4
LT
910 */
911
941666c2
ED
912struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 const char *ha)
1da177e4
LT
914{
915 struct net_device *dev;
916
941666c2 917 for_each_netdev_rcu(net, dev)
1da177e4
LT
918 if (dev->type == type &&
919 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
920 return dev;
921
922 return NULL;
1da177e4 923}
941666c2 924EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 925
881d966b 926struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
927{
928 struct net_device *dev;
929
4e9cac2b 930 ASSERT_RTNL();
881d966b 931 for_each_netdev(net, dev)
4e9cac2b 932 if (dev->type == type)
7562f876
PE
933 return dev;
934
935 return NULL;
4e9cac2b 936}
4e9cac2b
PM
937EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
881d966b 939struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 940{
99fe3c39 941 struct net_device *dev, *ret = NULL;
4e9cac2b 942
99fe3c39
ED
943 rcu_read_lock();
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
946 dev_hold(dev);
947 ret = dev;
948 break;
949 }
950 rcu_read_unlock();
951 return ret;
1da177e4 952}
1da177e4
LT
953EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955/**
6c555490 956 * __dev_get_by_flags - find any device with given flags
c4ea43c5 957 * @net: the applicable net namespace
1da177e4
LT
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
960 *
961 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 962 * is not found or a pointer to the device. Must be called inside
6c555490 963 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
964 */
965
6c555490
WC
966struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 unsigned short mask)
1da177e4 968{
7562f876 969 struct net_device *dev, *ret;
1da177e4 970
6c555490
WC
971 ASSERT_RTNL();
972
7562f876 973 ret = NULL;
6c555490 974 for_each_netdev(net, dev) {
1da177e4 975 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 976 ret = dev;
1da177e4
LT
977 break;
978 }
979 }
7562f876 980 return ret;
1da177e4 981}
6c555490 982EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
983
984/**
985 * dev_valid_name - check if name is okay for network device
986 * @name: name string
987 *
988 * Network device names need to be valid file names to
c7fa9d18
DM
989 * to allow sysfs to work. We also disallow any kind of
990 * whitespace.
1da177e4 991 */
95f050bf 992bool dev_valid_name(const char *name)
1da177e4 993{
c7fa9d18 994 if (*name == '\0')
95f050bf 995 return false;
b6fe17d6 996 if (strlen(name) >= IFNAMSIZ)
95f050bf 997 return false;
c7fa9d18 998 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 999 return false;
c7fa9d18
DM
1000
1001 while (*name) {
a4176a93 1002 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1003 return false;
c7fa9d18
DM
1004 name++;
1005 }
95f050bf 1006 return true;
1da177e4 1007}
d1b19dff 1008EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1009
1010/**
b267b179
EB
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1da177e4 1013 * @name: name format string
b267b179 1014 * @buf: scratch buffer and result name string
1da177e4
LT
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1023 */
1024
b267b179 1025static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1026{
1027 int i = 0;
1da177e4
LT
1028 const char *p;
1029 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1030 unsigned long *inuse;
1da177e4
LT
1031 struct net_device *d;
1032
1033 p = strnchr(name, IFNAMSIZ-1, '%');
1034 if (p) {
1035 /*
1036 * Verify the string as this thing may have come from
1037 * the user. There must be either one "%d" and no other "%"
1038 * characters.
1039 */
1040 if (p[1] != 'd' || strchr(p + 2, '%'))
1041 return -EINVAL;
1042
1043 /* Use one page as a bit array of possible slots */
cfcabdcc 1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1045 if (!inuse)
1046 return -ENOMEM;
1047
881d966b 1048 for_each_netdev(net, d) {
1da177e4
LT
1049 if (!sscanf(d->name, name, &i))
1050 continue;
1051 if (i < 0 || i >= max_netdevices)
1052 continue;
1053
1054 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1055 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1056 if (!strncmp(buf, d->name, IFNAMSIZ))
1057 set_bit(i, inuse);
1058 }
1059
1060 i = find_first_zero_bit(inuse, max_netdevices);
1061 free_page((unsigned long) inuse);
1062 }
1063
d9031024
OP
1064 if (buf != name)
1065 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1066 if (!__dev_get_by_name(net, buf))
1da177e4 1067 return i;
1da177e4
LT
1068
1069 /* It is possible to run out of possible slots
1070 * when the name is long and there isn't enough space left
1071 * for the digits, or if all bits are used.
1072 */
1073 return -ENFILE;
1074}
1075
b267b179
EB
1076/**
1077 * dev_alloc_name - allocate a name for a device
1078 * @dev: device
1079 * @name: name format string
1080 *
1081 * Passed a format string - eg "lt%d" it will try and find a suitable
1082 * id. It scans list of devices to build up a free map, then chooses
1083 * the first empty slot. The caller must hold the dev_base or rtnl lock
1084 * while allocating the name and adding the device in order to avoid
1085 * duplicates.
1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087 * Returns the number of the unit assigned or a negative errno code.
1088 */
1089
1090int dev_alloc_name(struct net_device *dev, const char *name)
1091{
1092 char buf[IFNAMSIZ];
1093 struct net *net;
1094 int ret;
1095
c346dca1
YH
1096 BUG_ON(!dev_net(dev));
1097 net = dev_net(dev);
b267b179
EB
1098 ret = __dev_alloc_name(net, name, buf);
1099 if (ret >= 0)
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1101 return ret;
1102}
d1b19dff 1103EXPORT_SYMBOL(dev_alloc_name);
b267b179 1104
828de4f6
G
1105static int dev_alloc_name_ns(struct net *net,
1106 struct net_device *dev,
1107 const char *name)
d9031024 1108{
828de4f6
G
1109 char buf[IFNAMSIZ];
1110 int ret;
8ce6cebc 1111
828de4f6
G
1112 ret = __dev_alloc_name(net, name, buf);
1113 if (ret >= 0)
1114 strlcpy(dev->name, buf, IFNAMSIZ);
1115 return ret;
1116}
1117
1118static int dev_get_valid_name(struct net *net,
1119 struct net_device *dev,
1120 const char *name)
1121{
1122 BUG_ON(!net);
8ce6cebc 1123
d9031024
OP
1124 if (!dev_valid_name(name))
1125 return -EINVAL;
1126
1c5cae81 1127 if (strchr(name, '%'))
828de4f6 1128 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1129 else if (__dev_get_by_name(net, name))
1130 return -EEXIST;
8ce6cebc
DL
1131 else if (dev->name != name)
1132 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1133
1134 return 0;
1135}
1da177e4
LT
1136
1137/**
1138 * dev_change_name - change name of a device
1139 * @dev: device
1140 * @newname: name (or format string) must be at least IFNAMSIZ
1141 *
1142 * Change name of a device, can pass format strings "eth%d".
1143 * for wildcarding.
1144 */
cf04a4c7 1145int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1146{
238fa362 1147 unsigned char old_assign_type;
fcc5a03a 1148 char oldname[IFNAMSIZ];
1da177e4 1149 int err = 0;
fcc5a03a 1150 int ret;
881d966b 1151 struct net *net;
1da177e4
LT
1152
1153 ASSERT_RTNL();
c346dca1 1154 BUG_ON(!dev_net(dev));
1da177e4 1155
c346dca1 1156 net = dev_net(dev);
1da177e4
LT
1157 if (dev->flags & IFF_UP)
1158 return -EBUSY;
1159
30e6c9fa 1160 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1161
1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1163 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1164 return 0;
c91f6df2 1165 }
c8d90dca 1166
fcc5a03a
HX
1167 memcpy(oldname, dev->name, IFNAMSIZ);
1168
828de4f6 1169 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1170 if (err < 0) {
30e6c9fa 1171 write_seqcount_end(&devnet_rename_seq);
d9031024 1172 return err;
c91f6df2 1173 }
1da177e4 1174
6fe82a39
VF
1175 if (oldname[0] && !strchr(oldname, '%'))
1176 netdev_info(dev, "renamed from %s\n", oldname);
1177
238fa362
TG
1178 old_assign_type = dev->name_assign_type;
1179 dev->name_assign_type = NET_NAME_RENAMED;
1180
fcc5a03a 1181rollback:
a1b3f594
EB
1182 ret = device_rename(&dev->dev, dev->name);
1183 if (ret) {
1184 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1185 dev->name_assign_type = old_assign_type;
30e6c9fa 1186 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1187 return ret;
dcc99773 1188 }
7f988eab 1189
30e6c9fa 1190 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1191
5bb025fa
VF
1192 netdev_adjacent_rename_links(dev, oldname);
1193
7f988eab 1194 write_lock_bh(&dev_base_lock);
372b2312 1195 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1196 write_unlock_bh(&dev_base_lock);
1197
1198 synchronize_rcu();
1199
1200 write_lock_bh(&dev_base_lock);
1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1202 write_unlock_bh(&dev_base_lock);
1203
056925ab 1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1205 ret = notifier_to_errno(ret);
1206
1207 if (ret) {
91e9c07b
ED
1208 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209 if (err >= 0) {
fcc5a03a 1210 err = ret;
30e6c9fa 1211 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1212 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1213 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1214 dev->name_assign_type = old_assign_type;
1215 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1216 goto rollback;
91e9c07b 1217 } else {
7b6cd1ce 1218 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1219 dev->name, ret);
fcc5a03a
HX
1220 }
1221 }
1da177e4
LT
1222
1223 return err;
1224}
1225
0b815a1a
SH
1226/**
1227 * dev_set_alias - change ifalias of a device
1228 * @dev: device
1229 * @alias: name up to IFALIASZ
f0db275a 1230 * @len: limit of bytes to copy from info
0b815a1a
SH
1231 *
1232 * Set ifalias for a device,
1233 */
1234int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235{
7364e445
AK
1236 char *new_ifalias;
1237
0b815a1a
SH
1238 ASSERT_RTNL();
1239
1240 if (len >= IFALIASZ)
1241 return -EINVAL;
1242
96ca4a2c 1243 if (!len) {
388dfc2d
SK
1244 kfree(dev->ifalias);
1245 dev->ifalias = NULL;
96ca4a2c
OH
1246 return 0;
1247 }
1248
7364e445
AK
1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 if (!new_ifalias)
0b815a1a 1251 return -ENOMEM;
7364e445 1252 dev->ifalias = new_ifalias;
0b815a1a
SH
1253
1254 strlcpy(dev->ifalias, alias, len+1);
1255 return len;
1256}
1257
1258
d8a33ac4 1259/**
3041a069 1260 * netdev_features_change - device changes features
d8a33ac4
SH
1261 * @dev: device to cause notification
1262 *
1263 * Called to indicate a device has changed features.
1264 */
1265void netdev_features_change(struct net_device *dev)
1266{
056925ab 1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1268}
1269EXPORT_SYMBOL(netdev_features_change);
1270
1da177e4
LT
1271/**
1272 * netdev_state_change - device changes state
1273 * @dev: device to cause notification
1274 *
1275 * Called to indicate a device has changed state. This function calls
1276 * the notifier chains for netdev_chain and sends a NEWLINK message
1277 * to the routing socket.
1278 */
1279void netdev_state_change(struct net_device *dev)
1280{
1281 if (dev->flags & IFF_UP) {
54951194
LP
1282 struct netdev_notifier_change_info change_info;
1283
1284 change_info.flags_changed = 0;
1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 &change_info.info);
7f294054 1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1288 }
1289}
d1b19dff 1290EXPORT_SYMBOL(netdev_state_change);
1da177e4 1291
ee89bab1
AW
1292/**
1293 * netdev_notify_peers - notify network peers about existence of @dev
1294 * @dev: network device
1295 *
1296 * Generate traffic such that interested network peers are aware of
1297 * @dev, such as by generating a gratuitous ARP. This may be used when
1298 * a device wants to inform the rest of the network about some sort of
1299 * reconfiguration such as a failover event or virtual machine
1300 * migration.
1301 */
1302void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1303{
ee89bab1
AW
1304 rtnl_lock();
1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 rtnl_unlock();
c1da4ac7 1307}
ee89bab1 1308EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1309
bd380811 1310static int __dev_open(struct net_device *dev)
1da177e4 1311{
d314774c 1312 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1313 int ret;
1da177e4 1314
e46b66bc
BH
1315 ASSERT_RTNL();
1316
1da177e4
LT
1317 if (!netif_device_present(dev))
1318 return -ENODEV;
1319
ca99ca14
NH
1320 /* Block netpoll from trying to do any rx path servicing.
1321 * If we don't do this there is a chance ndo_poll_controller
1322 * or ndo_poll may be running while we open the device
1323 */
66b5552f 1324 netpoll_poll_disable(dev);
ca99ca14 1325
3b8bcfd5
JB
1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 ret = notifier_to_errno(ret);
1328 if (ret)
1329 return ret;
1330
1da177e4 1331 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1332
d314774c
SH
1333 if (ops->ndo_validate_addr)
1334 ret = ops->ndo_validate_addr(dev);
bada339b 1335
d314774c
SH
1336 if (!ret && ops->ndo_open)
1337 ret = ops->ndo_open(dev);
1da177e4 1338
66b5552f 1339 netpoll_poll_enable(dev);
ca99ca14 1340
bada339b
JG
1341 if (ret)
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343 else {
1da177e4 1344 dev->flags |= IFF_UP;
4417da66 1345 dev_set_rx_mode(dev);
1da177e4 1346 dev_activate(dev);
7bf23575 1347 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1348 }
bada339b 1349
1da177e4
LT
1350 return ret;
1351}
1352
1353/**
bd380811
PM
1354 * dev_open - prepare an interface for use.
1355 * @dev: device to open
1da177e4 1356 *
bd380811
PM
1357 * Takes a device from down to up state. The device's private open
1358 * function is invoked and then the multicast lists are loaded. Finally
1359 * the device is moved into the up state and a %NETDEV_UP message is
1360 * sent to the netdev notifier chain.
1361 *
1362 * Calling this function on an active interface is a nop. On a failure
1363 * a negative errno code is returned.
1da177e4 1364 */
bd380811
PM
1365int dev_open(struct net_device *dev)
1366{
1367 int ret;
1368
bd380811
PM
1369 if (dev->flags & IFF_UP)
1370 return 0;
1371
bd380811
PM
1372 ret = __dev_open(dev);
1373 if (ret < 0)
1374 return ret;
1375
7f294054 1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1377 call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379 return ret;
1380}
1381EXPORT_SYMBOL(dev_open);
1382
44345724 1383static int __dev_close_many(struct list_head *head)
1da177e4 1384{
44345724 1385 struct net_device *dev;
e46b66bc 1386
bd380811 1387 ASSERT_RTNL();
9d5010db
DM
1388 might_sleep();
1389
5cde2829 1390 list_for_each_entry(dev, head, close_list) {
3f4df206 1391 /* Temporarily disable netpoll until the interface is down */
66b5552f 1392 netpoll_poll_disable(dev);
3f4df206 1393
44345724 1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1395
44345724 1396 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1397
44345724
OP
1398 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399 * can be even on different cpu. So just clear netif_running().
1400 *
1401 * dev->stop() will invoke napi_disable() on all of it's
1402 * napi_struct instances on this device.
1403 */
4e857c58 1404 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1405 }
1da177e4 1406
44345724 1407 dev_deactivate_many(head);
d8b2a4d2 1408
5cde2829 1409 list_for_each_entry(dev, head, close_list) {
44345724 1410 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1411
44345724
OP
1412 /*
1413 * Call the device specific close. This cannot fail.
1414 * Only if device is UP
1415 *
1416 * We allow it to be called even after a DETACH hot-plug
1417 * event.
1418 */
1419 if (ops->ndo_stop)
1420 ops->ndo_stop(dev);
1421
44345724 1422 dev->flags &= ~IFF_UP;
66b5552f 1423 netpoll_poll_enable(dev);
44345724
OP
1424 }
1425
1426 return 0;
1427}
1428
1429static int __dev_close(struct net_device *dev)
1430{
f87e6f47 1431 int retval;
44345724
OP
1432 LIST_HEAD(single);
1433
5cde2829 1434 list_add(&dev->close_list, &single);
f87e6f47
LT
1435 retval = __dev_close_many(&single);
1436 list_del(&single);
ca99ca14 1437
f87e6f47 1438 return retval;
44345724
OP
1439}
1440
99c4a26a 1441int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1442{
1443 struct net_device *dev, *tmp;
1da177e4 1444
5cde2829
EB
1445 /* Remove the devices that don't need to be closed */
1446 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1447 if (!(dev->flags & IFF_UP))
5cde2829 1448 list_del_init(&dev->close_list);
44345724
OP
1449
1450 __dev_close_many(head);
1da177e4 1451
5cde2829 1452 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1454 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1455 if (unlink)
1456 list_del_init(&dev->close_list);
44345724 1457 }
bd380811
PM
1458
1459 return 0;
1460}
99c4a26a 1461EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1462
1463/**
1464 * dev_close - shutdown an interface.
1465 * @dev: device to shutdown
1466 *
1467 * This function moves an active device into down state. A
1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470 * chain.
1471 */
1472int dev_close(struct net_device *dev)
1473{
e14a5993
ED
1474 if (dev->flags & IFF_UP) {
1475 LIST_HEAD(single);
1da177e4 1476
5cde2829 1477 list_add(&dev->close_list, &single);
99c4a26a 1478 dev_close_many(&single, true);
e14a5993
ED
1479 list_del(&single);
1480 }
da6e378b 1481 return 0;
1da177e4 1482}
d1b19dff 1483EXPORT_SYMBOL(dev_close);
1da177e4
LT
1484
1485
0187bdfb
BH
1486/**
1487 * dev_disable_lro - disable Large Receive Offload on a device
1488 * @dev: device
1489 *
1490 * Disable Large Receive Offload (LRO) on a net device. Must be
1491 * called under RTNL. This is needed if received packets may be
1492 * forwarded to another interface.
1493 */
1494void dev_disable_lro(struct net_device *dev)
1495{
fbe168ba
MK
1496 struct net_device *lower_dev;
1497 struct list_head *iter;
529d0489 1498
bc5787c6
MM
1499 dev->wanted_features &= ~NETIF_F_LRO;
1500 netdev_update_features(dev);
27660515 1501
22d5969f
MM
1502 if (unlikely(dev->features & NETIF_F_LRO))
1503 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1504
1505 netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 dev_disable_lro(lower_dev);
0187bdfb
BH
1507}
1508EXPORT_SYMBOL(dev_disable_lro);
1509
351638e7
JP
1510static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 struct net_device *dev)
1512{
1513 struct netdev_notifier_info info;
1514
1515 netdev_notifier_info_init(&info, dev);
1516 return nb->notifier_call(nb, val, &info);
1517}
0187bdfb 1518
881d966b
EB
1519static int dev_boot_phase = 1;
1520
1da177e4
LT
1521/**
1522 * register_netdevice_notifier - register a network notifier block
1523 * @nb: notifier
1524 *
1525 * Register a notifier to be called when network device events occur.
1526 * The notifier passed is linked into the kernel structures and must
1527 * not be reused until it has been unregistered. A negative errno code
1528 * is returned on a failure.
1529 *
1530 * When registered all registration and up events are replayed
4ec93edb 1531 * to the new notifier to allow device to have a race free
1da177e4
LT
1532 * view of the network device list.
1533 */
1534
1535int register_netdevice_notifier(struct notifier_block *nb)
1536{
1537 struct net_device *dev;
fcc5a03a 1538 struct net_device *last;
881d966b 1539 struct net *net;
1da177e4
LT
1540 int err;
1541
1542 rtnl_lock();
f07d5b94 1543 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1544 if (err)
1545 goto unlock;
881d966b
EB
1546 if (dev_boot_phase)
1547 goto unlock;
1548 for_each_net(net) {
1549 for_each_netdev(net, dev) {
351638e7 1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1551 err = notifier_to_errno(err);
1552 if (err)
1553 goto rollback;
1554
1555 if (!(dev->flags & IFF_UP))
1556 continue;
1da177e4 1557
351638e7 1558 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1559 }
1da177e4 1560 }
fcc5a03a
HX
1561
1562unlock:
1da177e4
LT
1563 rtnl_unlock();
1564 return err;
fcc5a03a
HX
1565
1566rollback:
1567 last = dev;
881d966b
EB
1568 for_each_net(net) {
1569 for_each_netdev(net, dev) {
1570 if (dev == last)
8f891489 1571 goto outroll;
fcc5a03a 1572
881d966b 1573 if (dev->flags & IFF_UP) {
351638e7
JP
1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 dev);
1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1577 }
351638e7 1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1579 }
fcc5a03a 1580 }
c67625a1 1581
8f891489 1582outroll:
c67625a1 1583 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1584 goto unlock;
1da177e4 1585}
d1b19dff 1586EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1587
1588/**
1589 * unregister_netdevice_notifier - unregister a network notifier block
1590 * @nb: notifier
1591 *
1592 * Unregister a notifier previously registered by
1593 * register_netdevice_notifier(). The notifier is unlinked into the
1594 * kernel structures and may then be reused. A negative errno code
1595 * is returned on a failure.
7d3d43da
EB
1596 *
1597 * After unregistering unregister and down device events are synthesized
1598 * for all devices on the device list to the removed notifier to remove
1599 * the need for special case cleanup code.
1da177e4
LT
1600 */
1601
1602int unregister_netdevice_notifier(struct notifier_block *nb)
1603{
7d3d43da
EB
1604 struct net_device *dev;
1605 struct net *net;
9f514950
HX
1606 int err;
1607
1608 rtnl_lock();
f07d5b94 1609 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1610 if (err)
1611 goto unlock;
1612
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 if (dev->flags & IFF_UP) {
351638e7
JP
1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 dev);
1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1619 }
351638e7 1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1621 }
1622 }
1623unlock:
9f514950
HX
1624 rtnl_unlock();
1625 return err;
1da177e4 1626}
d1b19dff 1627EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1628
351638e7
JP
1629/**
1630 * call_netdevice_notifiers_info - call all network notifier blocks
1631 * @val: value passed unmodified to notifier function
1632 * @dev: net_device pointer passed unmodified to notifier function
1633 * @info: notifier information data
1634 *
1635 * Call all network notifier blocks. Parameters and return value
1636 * are as for raw_notifier_call_chain().
1637 */
1638
1d143d9f 1639static int call_netdevice_notifiers_info(unsigned long val,
1640 struct net_device *dev,
1641 struct netdev_notifier_info *info)
351638e7
JP
1642{
1643 ASSERT_RTNL();
1644 netdev_notifier_info_init(info, dev);
1645 return raw_notifier_call_chain(&netdev_chain, val, info);
1646}
351638e7 1647
1da177e4
LT
1648/**
1649 * call_netdevice_notifiers - call all network notifier blocks
1650 * @val: value passed unmodified to notifier function
c4ea43c5 1651 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1652 *
1653 * Call all network notifier blocks. Parameters and return value
f07d5b94 1654 * are as for raw_notifier_call_chain().
1da177e4
LT
1655 */
1656
ad7379d4 1657int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1658{
351638e7
JP
1659 struct netdev_notifier_info info;
1660
1661 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1662}
edf947f1 1663EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1664
1cf51900 1665#ifdef CONFIG_NET_INGRESS
4577139b
DB
1666static struct static_key ingress_needed __read_mostly;
1667
1668void net_inc_ingress_queue(void)
1669{
1670 static_key_slow_inc(&ingress_needed);
1671}
1672EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674void net_dec_ingress_queue(void)
1675{
1676 static_key_slow_dec(&ingress_needed);
1677}
1678EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679#endif
1680
1f211a1b
DB
1681#ifdef CONFIG_NET_EGRESS
1682static struct static_key egress_needed __read_mostly;
1683
1684void net_inc_egress_queue(void)
1685{
1686 static_key_slow_inc(&egress_needed);
1687}
1688EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690void net_dec_egress_queue(void)
1691{
1692 static_key_slow_dec(&egress_needed);
1693}
1694EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695#endif
1696
c5905afb 1697static struct static_key netstamp_needed __read_mostly;
b90e5794 1698#ifdef HAVE_JUMP_LABEL
c5905afb 1699/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1700 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1701 * static_key_slow_dec() calls.
b90e5794
ED
1702 */
1703static atomic_t netstamp_needed_deferred;
1704#endif
1da177e4
LT
1705
1706void net_enable_timestamp(void)
1707{
b90e5794
ED
1708#ifdef HAVE_JUMP_LABEL
1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711 if (deferred) {
1712 while (--deferred)
c5905afb 1713 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1714 return;
1715 }
1716#endif
c5905afb 1717 static_key_slow_inc(&netstamp_needed);
1da177e4 1718}
d1b19dff 1719EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1720
1721void net_disable_timestamp(void)
1722{
b90e5794
ED
1723#ifdef HAVE_JUMP_LABEL
1724 if (in_interrupt()) {
1725 atomic_inc(&netstamp_needed_deferred);
1726 return;
1727 }
1728#endif
c5905afb 1729 static_key_slow_dec(&netstamp_needed);
1da177e4 1730}
d1b19dff 1731EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1732
3b098e2d 1733static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1734{
588f0330 1735 skb->tstamp.tv64 = 0;
c5905afb 1736 if (static_key_false(&netstamp_needed))
a61bbcf2 1737 __net_timestamp(skb);
1da177e4
LT
1738}
1739
588f0330 1740#define net_timestamp_check(COND, SKB) \
c5905afb 1741 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1742 if ((COND) && !(SKB)->tstamp.tv64) \
1743 __net_timestamp(SKB); \
1744 } \
3b098e2d 1745
f4b05d27 1746bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1747{
1748 unsigned int len;
1749
1750 if (!(dev->flags & IFF_UP))
1751 return false;
1752
1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 if (skb->len <= len)
1755 return true;
1756
1757 /* if TSO is enabled, we don't care about the length as the packet
1758 * could be forwarded without being segmented before
1759 */
1760 if (skb_is_gso(skb))
1761 return true;
1762
1763 return false;
1764}
1ee481fb 1765EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1766
a0265d28
HX
1767int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768{
bbbf2df0
WB
1769 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1771 atomic_long_inc(&dev->rx_dropped);
1772 kfree_skb(skb);
1773 return NET_RX_DROP;
1774 }
1775
1776 skb_scrub_packet(skb, true);
08b4b8ea 1777 skb->priority = 0;
a0265d28 1778 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1780
1781 return 0;
1782}
1783EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
44540960
AB
1785/**
1786 * dev_forward_skb - loopback an skb to another netif
1787 *
1788 * @dev: destination network device
1789 * @skb: buffer to forward
1790 *
1791 * return values:
1792 * NET_RX_SUCCESS (no congestion)
6ec82562 1793 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1794 *
1795 * dev_forward_skb can be used for injecting an skb from the
1796 * start_xmit function of one device into the receive queue
1797 * of another device.
1798 *
1799 * The receiving device may be in another namespace, so
1800 * we have to clear all information in the skb that could
1801 * impact namespace isolation.
1802 */
1803int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804{
a0265d28 1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1806}
1807EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
71d9dec2
CG
1809static inline int deliver_skb(struct sk_buff *skb,
1810 struct packet_type *pt_prev,
1811 struct net_device *orig_dev)
1812{
1080e512
MT
1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 return -ENOMEM;
71d9dec2
CG
1815 atomic_inc(&skb->users);
1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817}
1818
7866a621
SN
1819static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 struct packet_type **pt,
fbcb2170
JP
1821 struct net_device *orig_dev,
1822 __be16 type,
7866a621
SN
1823 struct list_head *ptype_list)
1824{
1825 struct packet_type *ptype, *pt_prev = *pt;
1826
1827 list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 if (ptype->type != type)
1829 continue;
1830 if (pt_prev)
fbcb2170 1831 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1832 pt_prev = ptype;
1833 }
1834 *pt = pt_prev;
1835}
1836
c0de08d0
EL
1837static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838{
a3d744e9 1839 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1840 return false;
1841
1842 if (ptype->id_match)
1843 return ptype->id_match(ptype, skb->sk);
1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 return true;
1846
1847 return false;
1848}
1849
1da177e4
LT
1850/*
1851 * Support routine. Sends outgoing frames to any network
1852 * taps currently in use.
1853 */
1854
74b20582 1855void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1856{
1857 struct packet_type *ptype;
71d9dec2
CG
1858 struct sk_buff *skb2 = NULL;
1859 struct packet_type *pt_prev = NULL;
7866a621 1860 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1861
1da177e4 1862 rcu_read_lock();
7866a621
SN
1863again:
1864 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1865 /* Never send packets back to the socket
1866 * they originated from - MvS (miquels@drinkel.ow.org)
1867 */
7866a621
SN
1868 if (skb_loop_sk(ptype, skb))
1869 continue;
71d9dec2 1870
7866a621
SN
1871 if (pt_prev) {
1872 deliver_skb(skb2, pt_prev, skb->dev);
1873 pt_prev = ptype;
1874 continue;
1875 }
1da177e4 1876
7866a621
SN
1877 /* need to clone skb, done only once */
1878 skb2 = skb_clone(skb, GFP_ATOMIC);
1879 if (!skb2)
1880 goto out_unlock;
70978182 1881
7866a621 1882 net_timestamp_set(skb2);
1da177e4 1883
7866a621
SN
1884 /* skb->nh should be correctly
1885 * set by sender, so that the second statement is
1886 * just protection against buggy protocols.
1887 */
1888 skb_reset_mac_header(skb2);
1889
1890 if (skb_network_header(skb2) < skb2->data ||
1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 ntohs(skb2->protocol),
1894 dev->name);
1895 skb_reset_network_header(skb2);
1da177e4 1896 }
7866a621
SN
1897
1898 skb2->transport_header = skb2->network_header;
1899 skb2->pkt_type = PACKET_OUTGOING;
1900 pt_prev = ptype;
1901 }
1902
1903 if (ptype_list == &ptype_all) {
1904 ptype_list = &dev->ptype_all;
1905 goto again;
1da177e4 1906 }
7866a621 1907out_unlock:
71d9dec2
CG
1908 if (pt_prev)
1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1910 rcu_read_unlock();
1911}
74b20582 1912EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1913
2c53040f
BH
1914/**
1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1916 * @dev: Network device
1917 * @txq: number of queues available
1918 *
1919 * If real_num_tx_queues is changed the tc mappings may no longer be
1920 * valid. To resolve this verify the tc mapping remains valid and if
1921 * not NULL the mapping. With no priorities mapping to this
1922 * offset/count pair it will no longer be used. In the worst case TC0
1923 * is invalid nothing can be done so disable priority mappings. If is
1924 * expected that drivers will fix this mapping if they can before
1925 * calling netif_set_real_num_tx_queues.
1926 */
bb134d22 1927static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1928{
1929 int i;
1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932 /* If TC0 is invalidated disable TC mapping */
1933 if (tc->offset + tc->count > txq) {
7b6cd1ce 1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1935 dev->num_tc = 0;
1936 return;
1937 }
1938
1939 /* Invalidated prio to tc mappings set to TC0 */
1940 for (i = 1; i < TC_BITMASK + 1; i++) {
1941 int q = netdev_get_prio_tc_map(dev, i);
1942
1943 tc = &dev->tc_to_txq[q];
1944 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 i, q);
4f57c087
JF
1947 netdev_set_prio_tc_map(dev, i, 0);
1948 }
1949 }
1950}
1951
537c00de
AD
1952#ifdef CONFIG_XPS
1953static DEFINE_MUTEX(xps_map_mutex);
1954#define xmap_dereference(P) \
1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
10cdc3f3
AD
1957static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 int cpu, u16 index)
537c00de 1959{
10cdc3f3
AD
1960 struct xps_map *map = NULL;
1961 int pos;
537c00de 1962
10cdc3f3
AD
1963 if (dev_maps)
1964 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1965
10cdc3f3
AD
1966 for (pos = 0; map && pos < map->len; pos++) {
1967 if (map->queues[pos] == index) {
537c00de
AD
1968 if (map->len > 1) {
1969 map->queues[pos] = map->queues[--map->len];
1970 } else {
10cdc3f3 1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1972 kfree_rcu(map, rcu);
1973 map = NULL;
1974 }
10cdc3f3 1975 break;
537c00de 1976 }
537c00de
AD
1977 }
1978
10cdc3f3
AD
1979 return map;
1980}
1981
024e9679 1982static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1983{
1984 struct xps_dev_maps *dev_maps;
024e9679 1985 int cpu, i;
10cdc3f3
AD
1986 bool active = false;
1987
1988 mutex_lock(&xps_map_mutex);
1989 dev_maps = xmap_dereference(dev->xps_maps);
1990
1991 if (!dev_maps)
1992 goto out_no_maps;
1993
1994 for_each_possible_cpu(cpu) {
024e9679
AD
1995 for (i = index; i < dev->num_tx_queues; i++) {
1996 if (!remove_xps_queue(dev_maps, cpu, i))
1997 break;
1998 }
1999 if (i == dev->num_tx_queues)
10cdc3f3
AD
2000 active = true;
2001 }
2002
2003 if (!active) {
537c00de
AD
2004 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 kfree_rcu(dev_maps, rcu);
2006 }
2007
024e9679
AD
2008 for (i = index; i < dev->num_tx_queues; i++)
2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 NUMA_NO_NODE);
2011
537c00de
AD
2012out_no_maps:
2013 mutex_unlock(&xps_map_mutex);
2014}
2015
01c5f864
AD
2016static struct xps_map *expand_xps_map(struct xps_map *map,
2017 int cpu, u16 index)
2018{
2019 struct xps_map *new_map;
2020 int alloc_len = XPS_MIN_MAP_ALLOC;
2021 int i, pos;
2022
2023 for (pos = 0; map && pos < map->len; pos++) {
2024 if (map->queues[pos] != index)
2025 continue;
2026 return map;
2027 }
2028
2029 /* Need to add queue to this CPU's existing map */
2030 if (map) {
2031 if (pos < map->alloc_len)
2032 return map;
2033
2034 alloc_len = map->alloc_len * 2;
2035 }
2036
2037 /* Need to allocate new map to store queue on this CPU's map */
2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 cpu_to_node(cpu));
2040 if (!new_map)
2041 return NULL;
2042
2043 for (i = 0; i < pos; i++)
2044 new_map->queues[i] = map->queues[i];
2045 new_map->alloc_len = alloc_len;
2046 new_map->len = pos;
2047
2048 return new_map;
2049}
2050
3573540c
MT
2051int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 u16 index)
537c00de 2053{
01c5f864 2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2055 struct xps_map *map, *new_map;
537c00de 2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2057 int cpu, numa_node_id = -2;
2058 bool active = false;
537c00de
AD
2059
2060 mutex_lock(&xps_map_mutex);
2061
2062 dev_maps = xmap_dereference(dev->xps_maps);
2063
01c5f864
AD
2064 /* allocate memory for queue storage */
2065 for_each_online_cpu(cpu) {
2066 if (!cpumask_test_cpu(cpu, mask))
2067 continue;
2068
2069 if (!new_dev_maps)
2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2071 if (!new_dev_maps) {
2072 mutex_unlock(&xps_map_mutex);
01c5f864 2073 return -ENOMEM;
2bb60cb9 2074 }
01c5f864
AD
2075
2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 NULL;
2078
2079 map = expand_xps_map(map, cpu, index);
2080 if (!map)
2081 goto error;
2082
2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 }
2085
2086 if (!new_dev_maps)
2087 goto out_no_new_maps;
2088
537c00de 2089 for_each_possible_cpu(cpu) {
01c5f864
AD
2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 /* add queue to CPU maps */
2092 int pos = 0;
2093
2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 while ((pos < map->len) && (map->queues[pos] != index))
2096 pos++;
2097
2098 if (pos == map->len)
2099 map->queues[map->len++] = index;
537c00de 2100#ifdef CONFIG_NUMA
537c00de
AD
2101 if (numa_node_id == -2)
2102 numa_node_id = cpu_to_node(cpu);
2103 else if (numa_node_id != cpu_to_node(cpu))
2104 numa_node_id = -1;
537c00de 2105#endif
01c5f864
AD
2106 } else if (dev_maps) {
2107 /* fill in the new device map from the old device map */
2108 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2110 }
01c5f864 2111
537c00de
AD
2112 }
2113
01c5f864
AD
2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
537c00de 2116 /* Cleanup old maps */
01c5f864
AD
2117 if (dev_maps) {
2118 for_each_possible_cpu(cpu) {
2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 if (map && map != new_map)
2122 kfree_rcu(map, rcu);
2123 }
537c00de 2124
01c5f864 2125 kfree_rcu(dev_maps, rcu);
537c00de
AD
2126 }
2127
01c5f864
AD
2128 dev_maps = new_dev_maps;
2129 active = true;
537c00de 2130
01c5f864
AD
2131out_no_new_maps:
2132 /* update Tx queue numa node */
537c00de
AD
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 (numa_node_id >= 0) ? numa_node_id :
2135 NUMA_NO_NODE);
2136
01c5f864
AD
2137 if (!dev_maps)
2138 goto out_no_maps;
2139
2140 /* removes queue from unused CPUs */
2141 for_each_possible_cpu(cpu) {
2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 continue;
2144
2145 if (remove_xps_queue(dev_maps, cpu, index))
2146 active = true;
2147 }
2148
2149 /* free map if not active */
2150 if (!active) {
2151 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 kfree_rcu(dev_maps, rcu);
2153 }
2154
2155out_no_maps:
537c00de
AD
2156 mutex_unlock(&xps_map_mutex);
2157
2158 return 0;
2159error:
01c5f864
AD
2160 /* remove any maps that we added */
2161 for_each_possible_cpu(cpu) {
2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 NULL;
2165 if (new_map && new_map != map)
2166 kfree(new_map);
2167 }
2168
537c00de
AD
2169 mutex_unlock(&xps_map_mutex);
2170
537c00de
AD
2171 kfree(new_dev_maps);
2172 return -ENOMEM;
2173}
2174EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176#endif
f0796d5c
JF
2177/*
2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180 */
e6484930 2181int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2182{
1d24eb48
TH
2183 int rc;
2184
e6484930
TH
2185 if (txq < 1 || txq > dev->num_tx_queues)
2186 return -EINVAL;
f0796d5c 2187
5c56580b
BH
2188 if (dev->reg_state == NETREG_REGISTERED ||
2189 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2190 ASSERT_RTNL();
2191
1d24eb48
TH
2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 txq);
bf264145
TH
2194 if (rc)
2195 return rc;
2196
4f57c087
JF
2197 if (dev->num_tc)
2198 netif_setup_tc(dev, txq);
2199
024e9679 2200 if (txq < dev->real_num_tx_queues) {
e6484930 2201 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2202#ifdef CONFIG_XPS
2203 netif_reset_xps_queues_gt(dev, txq);
2204#endif
2205 }
f0796d5c 2206 }
e6484930
TH
2207
2208 dev->real_num_tx_queues = txq;
2209 return 0;
f0796d5c
JF
2210}
2211EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2212
a953be53 2213#ifdef CONFIG_SYSFS
62fe0b40
BH
2214/**
2215 * netif_set_real_num_rx_queues - set actual number of RX queues used
2216 * @dev: Network device
2217 * @rxq: Actual number of RX queues
2218 *
2219 * This must be called either with the rtnl_lock held or before
2220 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2221 * negative error code. If called before registration, it always
2222 * succeeds.
62fe0b40
BH
2223 */
2224int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225{
2226 int rc;
2227
bd25fa7b
TH
2228 if (rxq < 1 || rxq > dev->num_rx_queues)
2229 return -EINVAL;
2230
62fe0b40
BH
2231 if (dev->reg_state == NETREG_REGISTERED) {
2232 ASSERT_RTNL();
2233
62fe0b40
BH
2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 rxq);
2236 if (rc)
2237 return rc;
62fe0b40
BH
2238 }
2239
2240 dev->real_num_rx_queues = rxq;
2241 return 0;
2242}
2243EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244#endif
2245
2c53040f
BH
2246/**
2247 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2248 *
2249 * This routine should set an upper limit on the number of RSS queues
2250 * used by default by multiqueue devices.
2251 */
a55b138b 2252int netif_get_num_default_rss_queues(void)
16917b87 2253{
40e4e713
HS
2254 return is_kdump_kernel() ?
2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2256}
2257EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
3bcb846c 2259static void __netif_reschedule(struct Qdisc *q)
56079431 2260{
def82a1d
JP
2261 struct softnet_data *sd;
2262 unsigned long flags;
56079431 2263
def82a1d 2264 local_irq_save(flags);
903ceff7 2265 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2266 q->next_sched = NULL;
2267 *sd->output_queue_tailp = q;
2268 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2271}
2272
2273void __netif_schedule(struct Qdisc *q)
2274{
2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 __netif_reschedule(q);
56079431
DV
2277}
2278EXPORT_SYMBOL(__netif_schedule);
2279
e6247027
ED
2280struct dev_kfree_skb_cb {
2281 enum skb_free_reason reason;
2282};
2283
2284static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2285{
e6247027
ED
2286 return (struct dev_kfree_skb_cb *)skb->cb;
2287}
2288
46e5da40
JF
2289void netif_schedule_queue(struct netdev_queue *txq)
2290{
2291 rcu_read_lock();
2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295 __netif_schedule(q);
2296 }
2297 rcu_read_unlock();
2298}
2299EXPORT_SYMBOL(netif_schedule_queue);
2300
2301/**
2302 * netif_wake_subqueue - allow sending packets on subqueue
2303 * @dev: network device
2304 * @queue_index: sub queue index
2305 *
2306 * Resume individual transmit queue of a device with multiple transmit queues.
2307 */
2308void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309{
2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 struct Qdisc *q;
2314
2315 rcu_read_lock();
2316 q = rcu_dereference(txq->qdisc);
2317 __netif_schedule(q);
2318 rcu_read_unlock();
2319 }
2320}
2321EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324{
2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 struct Qdisc *q;
2327
2328 rcu_read_lock();
2329 q = rcu_dereference(dev_queue->qdisc);
2330 __netif_schedule(q);
2331 rcu_read_unlock();
2332 }
2333}
2334EXPORT_SYMBOL(netif_tx_wake_queue);
2335
e6247027 2336void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2337{
e6247027 2338 unsigned long flags;
56079431 2339
e6247027
ED
2340 if (likely(atomic_read(&skb->users) == 1)) {
2341 smp_rmb();
2342 atomic_set(&skb->users, 0);
2343 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 return;
bea3348e 2345 }
e6247027
ED
2346 get_kfree_skb_cb(skb)->reason = reason;
2347 local_irq_save(flags);
2348 skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 __this_cpu_write(softnet_data.completion_queue, skb);
2350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 local_irq_restore(flags);
56079431 2352}
e6247027 2353EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2354
e6247027 2355void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2356{
2357 if (in_irq() || irqs_disabled())
e6247027 2358 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2359 else
2360 dev_kfree_skb(skb);
2361}
e6247027 2362EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2363
2364
bea3348e
SH
2365/**
2366 * netif_device_detach - mark device as removed
2367 * @dev: network device
2368 *
2369 * Mark device as removed from system and therefore no longer available.
2370 */
56079431
DV
2371void netif_device_detach(struct net_device *dev)
2372{
2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 netif_running(dev)) {
d543103a 2375 netif_tx_stop_all_queues(dev);
56079431
DV
2376 }
2377}
2378EXPORT_SYMBOL(netif_device_detach);
2379
bea3348e
SH
2380/**
2381 * netif_device_attach - mark device as attached
2382 * @dev: network device
2383 *
2384 * Mark device as attached from system and restart if needed.
2385 */
56079431
DV
2386void netif_device_attach(struct net_device *dev)
2387{
2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 netif_running(dev)) {
d543103a 2390 netif_tx_wake_all_queues(dev);
4ec93edb 2391 __netdev_watchdog_up(dev);
56079431
DV
2392 }
2393}
2394EXPORT_SYMBOL(netif_device_attach);
2395
5605c762
JP
2396/*
2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398 * to be used as a distribution range.
2399 */
2400u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 unsigned int num_tx_queues)
2402{
2403 u32 hash;
2404 u16 qoffset = 0;
2405 u16 qcount = num_tx_queues;
2406
2407 if (skb_rx_queue_recorded(skb)) {
2408 hash = skb_get_rx_queue(skb);
2409 while (unlikely(hash >= num_tx_queues))
2410 hash -= num_tx_queues;
2411 return hash;
2412 }
2413
2414 if (dev->num_tc) {
2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 qoffset = dev->tc_to_txq[tc].offset;
2417 qcount = dev->tc_to_txq[tc].count;
2418 }
2419
2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421}
2422EXPORT_SYMBOL(__skb_tx_hash);
2423
36c92474
BH
2424static void skb_warn_bad_offload(const struct sk_buff *skb)
2425{
84d15ae5 2426 static const netdev_features_t null_features;
36c92474 2427 struct net_device *dev = skb->dev;
88ad4175 2428 const char *name = "";
36c92474 2429
c846ad9b
BG
2430 if (!net_ratelimit())
2431 return;
2432
88ad4175
BM
2433 if (dev) {
2434 if (dev->dev.parent)
2435 name = dev_driver_string(dev->dev.parent);
2436 else
2437 name = netdev_name(dev);
2438 }
36c92474
BH
2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 "gso_type=%d ip_summed=%d\n",
88ad4175 2441 name, dev ? &dev->features : &null_features,
65e9d2fa 2442 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 skb_shinfo(skb)->gso_type, skb->ip_summed);
2445}
2446
1da177e4
LT
2447/*
2448 * Invalidate hardware checksum when packet is to be mangled, and
2449 * complete checksum manually on outgoing path.
2450 */
84fa7933 2451int skb_checksum_help(struct sk_buff *skb)
1da177e4 2452{
d3bc23e7 2453 __wsum csum;
663ead3b 2454 int ret = 0, offset;
1da177e4 2455
84fa7933 2456 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2457 goto out_set_summed;
2458
2459 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2460 skb_warn_bad_offload(skb);
2461 return -EINVAL;
1da177e4
LT
2462 }
2463
cef401de
ED
2464 /* Before computing a checksum, we should make sure no frag could
2465 * be modified by an external entity : checksum could be wrong.
2466 */
2467 if (skb_has_shared_frag(skb)) {
2468 ret = __skb_linearize(skb);
2469 if (ret)
2470 goto out;
2471 }
2472
55508d60 2473 offset = skb_checksum_start_offset(skb);
a030847e
HX
2474 BUG_ON(offset >= skb_headlen(skb));
2475 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477 offset += skb->csum_offset;
2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480 if (skb_cloned(skb) &&
2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 if (ret)
2484 goto out;
2485 }
2486
a030847e 2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2488out_set_summed:
1da177e4 2489 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2490out:
1da177e4
LT
2491 return ret;
2492}
d1b19dff 2493EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2494
6ae23ad3
TH
2495/* skb_csum_offload_check - Driver helper function to determine if a device
2496 * with limited checksum offload capabilities is able to offload the checksum
2497 * for a given packet.
2498 *
2499 * Arguments:
2500 * skb - sk_buff for the packet in question
2501 * spec - contains the description of what device can offload
2502 * csum_encapped - returns true if the checksum being offloaded is
2503 * encpasulated. That is it is checksum for the transport header
2504 * in the inner headers.
2505 * checksum_help - when set indicates that helper function should
2506 * call skb_checksum_help if offload checks fail
2507 *
2508 * Returns:
2509 * true: Packet has passed the checksum checks and should be offloadable to
2510 * the device (a driver may still need to check for additional
2511 * restrictions of its device)
2512 * false: Checksum is not offloadable. If checksum_help was set then
2513 * skb_checksum_help was called to resolve checksum for non-GSO
2514 * packets and when IP protocol is not SCTP
2515 */
2516bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 const struct skb_csum_offl_spec *spec,
2518 bool *csum_encapped,
2519 bool csum_help)
2520{
2521 struct iphdr *iph;
2522 struct ipv6hdr *ipv6;
2523 void *nhdr;
2524 int protocol;
2525 u8 ip_proto;
2526
2527 if (skb->protocol == htons(ETH_P_8021Q) ||
2528 skb->protocol == htons(ETH_P_8021AD)) {
2529 if (!spec->vlan_okay)
2530 goto need_help;
2531 }
2532
2533 /* We check whether the checksum refers to a transport layer checksum in
2534 * the outermost header or an encapsulated transport layer checksum that
2535 * corresponds to the inner headers of the skb. If the checksum is for
2536 * something else in the packet we need help.
2537 */
2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 /* Non-encapsulated checksum */
2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 nhdr = skb_network_header(skb);
2542 *csum_encapped = false;
2543 if (spec->no_not_encapped)
2544 goto need_help;
2545 } else if (skb->encapsulation && spec->encap_okay &&
2546 skb_checksum_start_offset(skb) ==
2547 skb_inner_transport_offset(skb)) {
2548 /* Encapsulated checksum */
2549 *csum_encapped = true;
2550 switch (skb->inner_protocol_type) {
2551 case ENCAP_TYPE_ETHER:
2552 protocol = eproto_to_ipproto(skb->inner_protocol);
2553 break;
2554 case ENCAP_TYPE_IPPROTO:
2555 protocol = skb->inner_protocol;
2556 break;
2557 }
2558 nhdr = skb_inner_network_header(skb);
2559 } else {
2560 goto need_help;
2561 }
2562
2563 switch (protocol) {
2564 case IPPROTO_IP:
2565 if (!spec->ipv4_okay)
2566 goto need_help;
2567 iph = nhdr;
2568 ip_proto = iph->protocol;
2569 if (iph->ihl != 5 && !spec->ip_options_okay)
2570 goto need_help;
2571 break;
2572 case IPPROTO_IPV6:
2573 if (!spec->ipv6_okay)
2574 goto need_help;
2575 if (spec->no_encapped_ipv6 && *csum_encapped)
2576 goto need_help;
2577 ipv6 = nhdr;
2578 nhdr += sizeof(*ipv6);
2579 ip_proto = ipv6->nexthdr;
2580 break;
2581 default:
2582 goto need_help;
2583 }
2584
2585ip_proto_again:
2586 switch (ip_proto) {
2587 case IPPROTO_TCP:
2588 if (!spec->tcp_okay ||
2589 skb->csum_offset != offsetof(struct tcphdr, check))
2590 goto need_help;
2591 break;
2592 case IPPROTO_UDP:
2593 if (!spec->udp_okay ||
2594 skb->csum_offset != offsetof(struct udphdr, check))
2595 goto need_help;
2596 break;
2597 case IPPROTO_SCTP:
2598 if (!spec->sctp_okay ||
2599 skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 goto cant_help;
2601 break;
2602 case NEXTHDR_HOP:
2603 case NEXTHDR_ROUTING:
2604 case NEXTHDR_DEST: {
2605 u8 *opthdr = nhdr;
2606
2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 goto need_help;
2609
2610 ip_proto = opthdr[0];
2611 nhdr += (opthdr[1] + 1) << 3;
2612
2613 goto ip_proto_again;
2614 }
2615 default:
2616 goto need_help;
2617 }
2618
2619 /* Passed the tests for offloading checksum */
2620 return true;
2621
2622need_help:
2623 if (csum_help && !skb_shinfo(skb)->gso_size)
2624 skb_checksum_help(skb);
2625cant_help:
2626 return false;
2627}
2628EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
53d6471c 2630__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2631{
252e3346 2632 __be16 type = skb->protocol;
f6a78bfc 2633
19acc327
PS
2634 /* Tunnel gso handlers can set protocol to ethernet. */
2635 if (type == htons(ETH_P_TEB)) {
2636 struct ethhdr *eth;
2637
2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 return 0;
2640
2641 eth = (struct ethhdr *)skb_mac_header(skb);
2642 type = eth->h_proto;
2643 }
2644
d4bcef3f 2645 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2646}
2647
2648/**
2649 * skb_mac_gso_segment - mac layer segmentation handler.
2650 * @skb: buffer to segment
2651 * @features: features for the output path (see dev->features)
2652 */
2653struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 netdev_features_t features)
2655{
2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 struct packet_offload *ptype;
53d6471c
VY
2658 int vlan_depth = skb->mac_len;
2659 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2660
2661 if (unlikely(!type))
2662 return ERR_PTR(-EINVAL);
2663
53d6471c 2664 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2665
2666 rcu_read_lock();
22061d80 2667 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2668 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2669 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2670 break;
2671 }
2672 }
2673 rcu_read_unlock();
2674
98e399f8 2675 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2676
f6a78bfc
HX
2677 return segs;
2678}
05e8ef4a
PS
2679EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682/* openvswitch calls this on rx path, so we need a different check.
2683 */
2684static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685{
2686 if (tx_path)
2687 return skb->ip_summed != CHECKSUM_PARTIAL;
2688 else
2689 return skb->ip_summed == CHECKSUM_NONE;
2690}
2691
2692/**
2693 * __skb_gso_segment - Perform segmentation on skb.
2694 * @skb: buffer to segment
2695 * @features: features for the output path (see dev->features)
2696 * @tx_path: whether it is called in TX path
2697 *
2698 * This function segments the given skb and returns a list of segments.
2699 *
2700 * It may return NULL if the skb requires no segmentation. This is
2701 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2702 *
2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2704 */
2705struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 netdev_features_t features, bool tx_path)
2707{
2708 if (unlikely(skb_needs_check(skb, tx_path))) {
2709 int err;
2710
2711 skb_warn_bad_offload(skb);
2712
a40e0a66 2713 err = skb_cow_head(skb, 0);
2714 if (err < 0)
05e8ef4a
PS
2715 return ERR_PTR(err);
2716 }
2717
802ab55a
AD
2718 /* Only report GSO partial support if it will enable us to
2719 * support segmentation on this frame without needing additional
2720 * work.
2721 */
2722 if (features & NETIF_F_GSO_PARTIAL) {
2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 struct net_device *dev = skb->dev;
2725
2726 partial_features |= dev->features & dev->gso_partial_features;
2727 if (!skb_gso_ok(skb, features | partial_features))
2728 features &= ~NETIF_F_GSO_PARTIAL;
2729 }
2730
9207f9d4
KK
2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
68c33163 2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2735 SKB_GSO_CB(skb)->encap_level = 0;
2736
05e8ef4a
PS
2737 skb_reset_mac_header(skb);
2738 skb_reset_mac_len(skb);
2739
2740 return skb_mac_gso_segment(skb, features);
2741}
12b0004d 2742EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2743
fb286bb2
HX
2744/* Take action when hardware reception checksum errors are detected. */
2745#ifdef CONFIG_BUG
2746void netdev_rx_csum_fault(struct net_device *dev)
2747{
2748 if (net_ratelimit()) {
7b6cd1ce 2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2750 dump_stack();
2751 }
2752}
2753EXPORT_SYMBOL(netdev_rx_csum_fault);
2754#endif
2755
1da177e4
LT
2756/* Actually, we should eliminate this check as soon as we know, that:
2757 * 1. IOMMU is present and allows to map all the memory.
2758 * 2. No high memory really exists on this machine.
2759 */
2760
c1e756bf 2761static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2762{
3d3a8533 2763#ifdef CONFIG_HIGHMEM
1da177e4 2764 int i;
5acbbd42 2765 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2769 return 1;
ea2ab693 2770 }
5acbbd42 2771 }
1da177e4 2772
5acbbd42
FT
2773 if (PCI_DMA_BUS_IS_PHYS) {
2774 struct device *pdev = dev->dev.parent;
1da177e4 2775
9092c658
ED
2776 if (!pdev)
2777 return 0;
5acbbd42 2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 return 1;
2783 }
2784 }
3d3a8533 2785#endif
1da177e4
LT
2786 return 0;
2787}
1da177e4 2788
3b392ddb
SH
2789/* If MPLS offload request, verify we are testing hardware MPLS features
2790 * instead of standard features for the netdev.
2791 */
d0edc7bf 2792#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2793static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 netdev_features_t features,
2795 __be16 type)
2796{
25cd9ba0 2797 if (eth_p_mpls(type))
3b392ddb
SH
2798 features &= skb->dev->mpls_features;
2799
2800 return features;
2801}
2802#else
2803static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 netdev_features_t features,
2805 __be16 type)
2806{
2807 return features;
2808}
2809#endif
2810
c8f44aff 2811static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2812 netdev_features_t features)
f01a5236 2813{
53d6471c 2814 int tmp;
3b392ddb
SH
2815 __be16 type;
2816
2817 type = skb_network_protocol(skb, &tmp);
2818 features = net_mpls_features(skb, features, type);
53d6471c 2819
c0d680e5 2820 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2821 !can_checksum_protocol(features, type)) {
996e8021 2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2823 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2824 features &= ~NETIF_F_SG;
2825 }
2826
2827 return features;
2828}
2829
e38f3025
TM
2830netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 struct net_device *dev,
2832 netdev_features_t features)
2833{
2834 return features;
2835}
2836EXPORT_SYMBOL(passthru_features_check);
2837
8cb65d00
TM
2838static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 struct net_device *dev,
2840 netdev_features_t features)
2841{
2842 return vlan_features_check(skb, features);
2843}
2844
cbc53e08
AD
2845static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 struct net_device *dev,
2847 netdev_features_t features)
2848{
2849 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851 if (gso_segs > dev->gso_max_segs)
2852 return features & ~NETIF_F_GSO_MASK;
2853
802ab55a
AD
2854 /* Support for GSO partial features requires software
2855 * intervention before we can actually process the packets
2856 * so we need to strip support for any partial features now
2857 * and we can pull them back in after we have partially
2858 * segmented the frame.
2859 */
2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 features &= ~dev->gso_partial_features;
2862
2863 /* Make sure to clear the IPv4 ID mangling feature if the
2864 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2865 */
2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 struct iphdr *iph = skb->encapsulation ?
2868 inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870 if (!(iph->frag_off & htons(IP_DF)))
2871 features &= ~NETIF_F_TSO_MANGLEID;
2872 }
2873
2874 return features;
2875}
2876
c1e756bf 2877netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2878{
5f35227e 2879 struct net_device *dev = skb->dev;
fcbeb976 2880 netdev_features_t features = dev->features;
58e998c6 2881
cbc53e08
AD
2882 if (skb_is_gso(skb))
2883 features = gso_features_check(skb, dev, features);
30b678d8 2884
5f35227e
JG
2885 /* If encapsulation offload request, verify we are testing
2886 * hardware encapsulation features instead of standard
2887 * features for the netdev
2888 */
2889 if (skb->encapsulation)
2890 features &= dev->hw_enc_features;
2891
f5a7fb88
TM
2892 if (skb_vlan_tagged(skb))
2893 features = netdev_intersect_features(features,
2894 dev->vlan_features |
2895 NETIF_F_HW_VLAN_CTAG_TX |
2896 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2897
5f35227e
JG
2898 if (dev->netdev_ops->ndo_features_check)
2899 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 features);
8cb65d00
TM
2901 else
2902 features &= dflt_features_check(skb, dev, features);
5f35227e 2903
c1e756bf 2904 return harmonize_features(skb, features);
58e998c6 2905}
c1e756bf 2906EXPORT_SYMBOL(netif_skb_features);
58e998c6 2907
2ea25513 2908static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2909 struct netdev_queue *txq, bool more)
f6a78bfc 2910{
2ea25513
DM
2911 unsigned int len;
2912 int rc;
00829823 2913
7866a621 2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2915 dev_queue_xmit_nit(skb, dev);
fc741216 2916
2ea25513
DM
2917 len = skb->len;
2918 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2919 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2920 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2921
2ea25513
DM
2922 return rc;
2923}
7b9c6090 2924
8dcda22a
DM
2925struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2927{
2928 struct sk_buff *skb = first;
2929 int rc = NETDEV_TX_OK;
7b9c6090 2930
7f2e870f
DM
2931 while (skb) {
2932 struct sk_buff *next = skb->next;
fc70fb64 2933
7f2e870f 2934 skb->next = NULL;
95f6b3dd 2935 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2936 if (unlikely(!dev_xmit_complete(rc))) {
2937 skb->next = next;
2938 goto out;
2939 }
6afff0ca 2940
7f2e870f
DM
2941 skb = next;
2942 if (netif_xmit_stopped(txq) && skb) {
2943 rc = NETDEV_TX_BUSY;
2944 break;
9ccb8975 2945 }
7f2e870f 2946 }
9ccb8975 2947
7f2e870f
DM
2948out:
2949 *ret = rc;
2950 return skb;
2951}
b40863c6 2952
1ff0dc94
ED
2953static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 netdev_features_t features)
f6a78bfc 2955{
df8a39de 2956 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2957 !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2959 return skb;
2960}
f6a78bfc 2961
55a93b3e 2962static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2963{
2964 netdev_features_t features;
f6a78bfc 2965
eae3f88e
DM
2966 features = netif_skb_features(skb);
2967 skb = validate_xmit_vlan(skb, features);
2968 if (unlikely(!skb))
2969 goto out_null;
7b9c6090 2970
8b86a61d 2971 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2972 struct sk_buff *segs;
2973
2974 segs = skb_gso_segment(skb, features);
cecda693 2975 if (IS_ERR(segs)) {
af6dabc9 2976 goto out_kfree_skb;
cecda693
JW
2977 } else if (segs) {
2978 consume_skb(skb);
2979 skb = segs;
f6a78bfc 2980 }
eae3f88e
DM
2981 } else {
2982 if (skb_needs_linearize(skb, features) &&
2983 __skb_linearize(skb))
2984 goto out_kfree_skb;
4ec93edb 2985
eae3f88e
DM
2986 /* If packet is not checksummed and device does not
2987 * support checksumming for this protocol, complete
2988 * checksumming here.
2989 */
2990 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 if (skb->encapsulation)
2992 skb_set_inner_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 else
2995 skb_set_transport_header(skb,
2996 skb_checksum_start_offset(skb));
a188222b 2997 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2998 skb_checksum_help(skb))
2999 goto out_kfree_skb;
7b9c6090 3000 }
0c772159 3001 }
7b9c6090 3002
eae3f88e 3003 return skb;
fc70fb64 3004
f6a78bfc
HX
3005out_kfree_skb:
3006 kfree_skb(skb);
eae3f88e 3007out_null:
d21fd63e 3008 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3009 return NULL;
3010}
6afff0ca 3011
55a93b3e
ED
3012struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013{
3014 struct sk_buff *next, *head = NULL, *tail;
3015
bec3cfdc 3016 for (; skb != NULL; skb = next) {
55a93b3e
ED
3017 next = skb->next;
3018 skb->next = NULL;
bec3cfdc
ED
3019
3020 /* in case skb wont be segmented, point to itself */
3021 skb->prev = skb;
3022
55a93b3e 3023 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3024 if (!skb)
3025 continue;
55a93b3e 3026
bec3cfdc
ED
3027 if (!head)
3028 head = skb;
3029 else
3030 tail->next = skb;
3031 /* If skb was segmented, skb->prev points to
3032 * the last segment. If not, it still contains skb.
3033 */
3034 tail = skb->prev;
55a93b3e
ED
3035 }
3036 return head;
f6a78bfc
HX
3037}
3038
1def9238
ED
3039static void qdisc_pkt_len_init(struct sk_buff *skb)
3040{
3041 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043 qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045 /* To get more precise estimation of bytes sent on wire,
3046 * we add to pkt_len the headers size of all segments
3047 */
3048 if (shinfo->gso_size) {
757b8b1d 3049 unsigned int hdr_len;
15e5a030 3050 u16 gso_segs = shinfo->gso_segs;
1def9238 3051
757b8b1d
ED
3052 /* mac layer + network layer */
3053 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055 /* + transport layer */
1def9238
ED
3056 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057 hdr_len += tcp_hdrlen(skb);
3058 else
3059 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3060
3061 if (shinfo->gso_type & SKB_GSO_DODGY)
3062 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063 shinfo->gso_size);
3064
3065 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3066 }
3067}
3068
bbd8a0d3
KK
3069static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070 struct net_device *dev,
3071 struct netdev_queue *txq)
3072{
3073 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3074 struct sk_buff *to_free = NULL;
a2da570d 3075 bool contended;
bbd8a0d3
KK
3076 int rc;
3077
a2da570d 3078 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3079 /*
3080 * Heuristic to force contended enqueues to serialize on a
3081 * separate lock before trying to get qdisc main lock.
f9eb8aea 3082 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3083 * often and dequeue packets faster.
79640a4c 3084 */
a2da570d 3085 contended = qdisc_is_running(q);
79640a4c
ED
3086 if (unlikely(contended))
3087 spin_lock(&q->busylock);
3088
bbd8a0d3
KK
3089 spin_lock(root_lock);
3090 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3091 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3092 rc = NET_XMIT_DROP;
3093 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3094 qdisc_run_begin(q)) {
bbd8a0d3
KK
3095 /*
3096 * This is a work-conserving queue; there are no old skbs
3097 * waiting to be sent out; and the qdisc is not running -
3098 * xmit the skb directly.
3099 */
bfe0d029 3100
bfe0d029
ED
3101 qdisc_bstats_update(q, skb);
3102
55a93b3e 3103 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3104 if (unlikely(contended)) {
3105 spin_unlock(&q->busylock);
3106 contended = false;
3107 }
bbd8a0d3 3108 __qdisc_run(q);
79640a4c 3109 } else
bc135b23 3110 qdisc_run_end(q);
bbd8a0d3
KK
3111
3112 rc = NET_XMIT_SUCCESS;
3113 } else {
520ac30f 3114 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3115 if (qdisc_run_begin(q)) {
3116 if (unlikely(contended)) {
3117 spin_unlock(&q->busylock);
3118 contended = false;
3119 }
3120 __qdisc_run(q);
3121 }
bbd8a0d3
KK
3122 }
3123 spin_unlock(root_lock);
520ac30f
ED
3124 if (unlikely(to_free))
3125 kfree_skb_list(to_free);
79640a4c
ED
3126 if (unlikely(contended))
3127 spin_unlock(&q->busylock);
bbd8a0d3
KK
3128 return rc;
3129}
3130
86f8515f 3131#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3132static void skb_update_prio(struct sk_buff *skb)
3133{
6977a79d 3134 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3135
91c68ce2 3136 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3137 unsigned int prioidx =
3138 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3139
3140 if (prioidx < map->priomap_len)
3141 skb->priority = map->priomap[prioidx];
3142 }
5bc1421e
NH
3143}
3144#else
3145#define skb_update_prio(skb)
3146#endif
3147
f60e5990 3148DEFINE_PER_CPU(int, xmit_recursion);
3149EXPORT_SYMBOL(xmit_recursion);
3150
95603e22
MM
3151/**
3152 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3153 * @net: network namespace this loopback is happening in
3154 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3155 * @skb: buffer to transmit
3156 */
0c4b51f0 3157int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3158{
3159 skb_reset_mac_header(skb);
3160 __skb_pull(skb, skb_network_offset(skb));
3161 skb->pkt_type = PACKET_LOOPBACK;
3162 skb->ip_summed = CHECKSUM_UNNECESSARY;
3163 WARN_ON(!skb_dst(skb));
3164 skb_dst_force(skb);
3165 netif_rx_ni(skb);
3166 return 0;
3167}
3168EXPORT_SYMBOL(dev_loopback_xmit);
3169
1f211a1b
DB
3170#ifdef CONFIG_NET_EGRESS
3171static struct sk_buff *
3172sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173{
3174 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175 struct tcf_result cl_res;
3176
3177 if (!cl)
3178 return skb;
3179
3180 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181 * earlier by the caller.
3182 */
3183 qdisc_bstats_cpu_update(cl->q, skb);
3184
3185 switch (tc_classify(skb, cl, &cl_res, false)) {
3186 case TC_ACT_OK:
3187 case TC_ACT_RECLASSIFY:
3188 skb->tc_index = TC_H_MIN(cl_res.classid);
3189 break;
3190 case TC_ACT_SHOT:
3191 qdisc_qstats_cpu_drop(cl->q);
3192 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3193 kfree_skb(skb);
3194 return NULL;
1f211a1b
DB
3195 case TC_ACT_STOLEN:
3196 case TC_ACT_QUEUED:
3197 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3198 consume_skb(skb);
1f211a1b
DB
3199 return NULL;
3200 case TC_ACT_REDIRECT:
3201 /* No need to push/pop skb's mac_header here on egress! */
3202 skb_do_redirect(skb);
3203 *ret = NET_XMIT_SUCCESS;
3204 return NULL;
3205 default:
3206 break;
3207 }
3208
3209 return skb;
3210}
3211#endif /* CONFIG_NET_EGRESS */
3212
638b2a69
JP
3213static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214{
3215#ifdef CONFIG_XPS
3216 struct xps_dev_maps *dev_maps;
3217 struct xps_map *map;
3218 int queue_index = -1;
3219
3220 rcu_read_lock();
3221 dev_maps = rcu_dereference(dev->xps_maps);
3222 if (dev_maps) {
3223 map = rcu_dereference(
3224 dev_maps->cpu_map[skb->sender_cpu - 1]);
3225 if (map) {
3226 if (map->len == 1)
3227 queue_index = map->queues[0];
3228 else
3229 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230 map->len)];
3231 if (unlikely(queue_index >= dev->real_num_tx_queues))
3232 queue_index = -1;
3233 }
3234 }
3235 rcu_read_unlock();
3236
3237 return queue_index;
3238#else
3239 return -1;
3240#endif
3241}
3242
3243static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244{
3245 struct sock *sk = skb->sk;
3246 int queue_index = sk_tx_queue_get(sk);
3247
3248 if (queue_index < 0 || skb->ooo_okay ||
3249 queue_index >= dev->real_num_tx_queues) {
3250 int new_index = get_xps_queue(dev, skb);
3251 if (new_index < 0)
3252 new_index = skb_tx_hash(dev, skb);
3253
3254 if (queue_index != new_index && sk &&
004a5d01 3255 sk_fullsock(sk) &&
638b2a69
JP
3256 rcu_access_pointer(sk->sk_dst_cache))
3257 sk_tx_queue_set(sk, new_index);
3258
3259 queue_index = new_index;
3260 }
3261
3262 return queue_index;
3263}
3264
3265struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266 struct sk_buff *skb,
3267 void *accel_priv)
3268{
3269 int queue_index = 0;
3270
3271#ifdef CONFIG_XPS
52bd2d62
ED
3272 u32 sender_cpu = skb->sender_cpu - 1;
3273
3274 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3275 skb->sender_cpu = raw_smp_processor_id() + 1;
3276#endif
3277
3278 if (dev->real_num_tx_queues != 1) {
3279 const struct net_device_ops *ops = dev->netdev_ops;
3280 if (ops->ndo_select_queue)
3281 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282 __netdev_pick_tx);
3283 else
3284 queue_index = __netdev_pick_tx(dev, skb);
3285
3286 if (!accel_priv)
3287 queue_index = netdev_cap_txqueue(dev, queue_index);
3288 }
3289
3290 skb_set_queue_mapping(skb, queue_index);
3291 return netdev_get_tx_queue(dev, queue_index);
3292}
3293
d29f749e 3294/**
9d08dd3d 3295 * __dev_queue_xmit - transmit a buffer
d29f749e 3296 * @skb: buffer to transmit
9d08dd3d 3297 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3298 *
3299 * Queue a buffer for transmission to a network device. The caller must
3300 * have set the device and priority and built the buffer before calling
3301 * this function. The function can be called from an interrupt.
3302 *
3303 * A negative errno code is returned on a failure. A success does not
3304 * guarantee the frame will be transmitted as it may be dropped due
3305 * to congestion or traffic shaping.
3306 *
3307 * -----------------------------------------------------------------------------------
3308 * I notice this method can also return errors from the queue disciplines,
3309 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3310 * be positive.
3311 *
3312 * Regardless of the return value, the skb is consumed, so it is currently
3313 * difficult to retry a send to this method. (You can bump the ref count
3314 * before sending to hold a reference for retry if you are careful.)
3315 *
3316 * When calling this method, interrupts MUST be enabled. This is because
3317 * the BH enable code must have IRQs enabled so that it will not deadlock.
3318 * --BLG
3319 */
0a59f3a9 3320static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3321{
3322 struct net_device *dev = skb->dev;
dc2b4847 3323 struct netdev_queue *txq;
1da177e4
LT
3324 struct Qdisc *q;
3325 int rc = -ENOMEM;
3326
6d1ccff6
ED
3327 skb_reset_mac_header(skb);
3328
e7fd2885
WB
3329 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
4ec93edb
YH
3332 /* Disable soft irqs for various locks below. Also
3333 * stops preemption for RCU.
1da177e4 3334 */
4ec93edb 3335 rcu_read_lock_bh();
1da177e4 3336
5bc1421e
NH
3337 skb_update_prio(skb);
3338
1f211a1b
DB
3339 qdisc_pkt_len_init(skb);
3340#ifdef CONFIG_NET_CLS_ACT
3341 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342# ifdef CONFIG_NET_EGRESS
3343 if (static_key_false(&egress_needed)) {
3344 skb = sch_handle_egress(skb, &rc, dev);
3345 if (!skb)
3346 goto out;
3347 }
3348# endif
3349#endif
02875878
ED
3350 /* If device/qdisc don't need skb->dst, release it right now while
3351 * its hot in this cpu cache.
3352 */
3353 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354 skb_dst_drop(skb);
3355 else
3356 skb_dst_force(skb);
3357
0c4f691f
SF
3358#ifdef CONFIG_NET_SWITCHDEV
3359 /* Don't forward if offload device already forwarded */
3360 if (skb->offload_fwd_mark &&
3361 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3362 consume_skb(skb);
3363 rc = NET_XMIT_SUCCESS;
3364 goto out;
3365 }
3366#endif
3367
f663dd9a 3368 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3369 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3370
cf66ba58 3371 trace_net_dev_queue(skb);
1da177e4 3372 if (q->enqueue) {
bbd8a0d3 3373 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3374 goto out;
1da177e4
LT
3375 }
3376
3377 /* The device has no queue. Common case for software devices:
3378 loopback, all the sorts of tunnels...
3379
932ff279
HX
3380 Really, it is unlikely that netif_tx_lock protection is necessary
3381 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3382 counters.)
3383 However, it is possible, that they rely on protection
3384 made by us here.
3385
3386 Check this and shot the lock. It is not prone from deadlocks.
3387 Either shot noqueue qdisc, it is even simpler 8)
3388 */
3389 if (dev->flags & IFF_UP) {
3390 int cpu = smp_processor_id(); /* ok because BHs are off */
3391
c773e847 3392 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3393 if (unlikely(__this_cpu_read(xmit_recursion) >
3394 XMIT_RECURSION_LIMIT))
745e20f1
ED
3395 goto recursion_alert;
3396
1f59533f
JDB
3397 skb = validate_xmit_skb(skb, dev);
3398 if (!skb)
d21fd63e 3399 goto out;
1f59533f 3400
c773e847 3401 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3402
73466498 3403 if (!netif_xmit_stopped(txq)) {
745e20f1 3404 __this_cpu_inc(xmit_recursion);
ce93718f 3405 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3406 __this_cpu_dec(xmit_recursion);
572a9d7b 3407 if (dev_xmit_complete(rc)) {
c773e847 3408 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3409 goto out;
3410 }
3411 }
c773e847 3412 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3413 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3414 dev->name);
1da177e4
LT
3415 } else {
3416 /* Recursion is detected! It is possible,
745e20f1
ED
3417 * unfortunately
3418 */
3419recursion_alert:
e87cc472
JP
3420 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3421 dev->name);
1da177e4
LT
3422 }
3423 }
3424
3425 rc = -ENETDOWN;
d4828d85 3426 rcu_read_unlock_bh();
1da177e4 3427
015f0688 3428 atomic_long_inc(&dev->tx_dropped);
1f59533f 3429 kfree_skb_list(skb);
1da177e4
LT
3430 return rc;
3431out:
d4828d85 3432 rcu_read_unlock_bh();
1da177e4
LT
3433 return rc;
3434}
f663dd9a 3435
2b4aa3ce 3436int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3437{
3438 return __dev_queue_xmit(skb, NULL);
3439}
2b4aa3ce 3440EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3441
f663dd9a
JW
3442int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3443{
3444 return __dev_queue_xmit(skb, accel_priv);
3445}
3446EXPORT_SYMBOL(dev_queue_xmit_accel);
3447
1da177e4
LT
3448
3449/*=======================================================================
3450 Receiver routines
3451 =======================================================================*/
3452
6b2bedc3 3453int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3454EXPORT_SYMBOL(netdev_max_backlog);
3455
3b098e2d 3456int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3457int netdev_budget __read_mostly = 300;
3458int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3459
eecfd7c4
ED
3460/* Called with irq disabled */
3461static inline void ____napi_schedule(struct softnet_data *sd,
3462 struct napi_struct *napi)
3463{
3464 list_add_tail(&napi->poll_list, &sd->poll_list);
3465 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3466}
3467
bfb564e7
KK
3468#ifdef CONFIG_RPS
3469
3470/* One global table that all flow-based protocols share. */
6e3f7faf 3471struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3472EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3473u32 rps_cpu_mask __read_mostly;
3474EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3475
c5905afb 3476struct static_key rps_needed __read_mostly;
3df97ba8 3477EXPORT_SYMBOL(rps_needed);
adc9300e 3478
c445477d
BH
3479static struct rps_dev_flow *
3480set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3481 struct rps_dev_flow *rflow, u16 next_cpu)
3482{
a31196b0 3483 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3484#ifdef CONFIG_RFS_ACCEL
3485 struct netdev_rx_queue *rxqueue;
3486 struct rps_dev_flow_table *flow_table;
3487 struct rps_dev_flow *old_rflow;
3488 u32 flow_id;
3489 u16 rxq_index;
3490 int rc;
3491
3492 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3493 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3494 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3495 goto out;
3496 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3497 if (rxq_index == skb_get_rx_queue(skb))
3498 goto out;
3499
3500 rxqueue = dev->_rx + rxq_index;
3501 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3502 if (!flow_table)
3503 goto out;
61b905da 3504 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3505 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3506 rxq_index, flow_id);
3507 if (rc < 0)
3508 goto out;
3509 old_rflow = rflow;
3510 rflow = &flow_table->flows[flow_id];
c445477d
BH
3511 rflow->filter = rc;
3512 if (old_rflow->filter == rflow->filter)
3513 old_rflow->filter = RPS_NO_FILTER;
3514 out:
3515#endif
3516 rflow->last_qtail =
09994d1b 3517 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3518 }
3519
09994d1b 3520 rflow->cpu = next_cpu;
c445477d
BH
3521 return rflow;
3522}
3523
bfb564e7
KK
3524/*
3525 * get_rps_cpu is called from netif_receive_skb and returns the target
3526 * CPU from the RPS map of the receiving queue for a given skb.
3527 * rcu_read_lock must be held on entry.
3528 */
3529static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3530 struct rps_dev_flow **rflowp)
3531{
567e4b79
ED
3532 const struct rps_sock_flow_table *sock_flow_table;
3533 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3534 struct rps_dev_flow_table *flow_table;
567e4b79 3535 struct rps_map *map;
bfb564e7 3536 int cpu = -1;
567e4b79 3537 u32 tcpu;
61b905da 3538 u32 hash;
bfb564e7
KK
3539
3540 if (skb_rx_queue_recorded(skb)) {
3541 u16 index = skb_get_rx_queue(skb);
567e4b79 3542
62fe0b40
BH
3543 if (unlikely(index >= dev->real_num_rx_queues)) {
3544 WARN_ONCE(dev->real_num_rx_queues > 1,
3545 "%s received packet on queue %u, but number "
3546 "of RX queues is %u\n",
3547 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3548 goto done;
3549 }
567e4b79
ED
3550 rxqueue += index;
3551 }
bfb564e7 3552
567e4b79
ED
3553 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3554
3555 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3556 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3557 if (!flow_table && !map)
bfb564e7
KK
3558 goto done;
3559
2d47b459 3560 skb_reset_network_header(skb);
61b905da
TH
3561 hash = skb_get_hash(skb);
3562 if (!hash)
bfb564e7
KK
3563 goto done;
3564
fec5e652
TH
3565 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3566 if (flow_table && sock_flow_table) {
fec5e652 3567 struct rps_dev_flow *rflow;
567e4b79
ED
3568 u32 next_cpu;
3569 u32 ident;
3570
3571 /* First check into global flow table if there is a match */
3572 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3573 if ((ident ^ hash) & ~rps_cpu_mask)
3574 goto try_rps;
fec5e652 3575
567e4b79
ED
3576 next_cpu = ident & rps_cpu_mask;
3577
3578 /* OK, now we know there is a match,
3579 * we can look at the local (per receive queue) flow table
3580 */
61b905da 3581 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3582 tcpu = rflow->cpu;
3583
fec5e652
TH
3584 /*
3585 * If the desired CPU (where last recvmsg was done) is
3586 * different from current CPU (one in the rx-queue flow
3587 * table entry), switch if one of the following holds:
a31196b0 3588 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3589 * - Current CPU is offline.
3590 * - The current CPU's queue tail has advanced beyond the
3591 * last packet that was enqueued using this table entry.
3592 * This guarantees that all previous packets for the flow
3593 * have been dequeued, thus preserving in order delivery.
3594 */
3595 if (unlikely(tcpu != next_cpu) &&
a31196b0 3596 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3597 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3598 rflow->last_qtail)) >= 0)) {
3599 tcpu = next_cpu;
c445477d 3600 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3601 }
c445477d 3602
a31196b0 3603 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3604 *rflowp = rflow;
3605 cpu = tcpu;
3606 goto done;
3607 }
3608 }
3609
567e4b79
ED
3610try_rps:
3611
0a9627f2 3612 if (map) {
8fc54f68 3613 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3614 if (cpu_online(tcpu)) {
3615 cpu = tcpu;
3616 goto done;
3617 }
3618 }
3619
3620done:
0a9627f2
TH
3621 return cpu;
3622}
3623
c445477d
BH
3624#ifdef CONFIG_RFS_ACCEL
3625
3626/**
3627 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3628 * @dev: Device on which the filter was set
3629 * @rxq_index: RX queue index
3630 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3631 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3632 *
3633 * Drivers that implement ndo_rx_flow_steer() should periodically call
3634 * this function for each installed filter and remove the filters for
3635 * which it returns %true.
3636 */
3637bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3638 u32 flow_id, u16 filter_id)
3639{
3640 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3641 struct rps_dev_flow_table *flow_table;
3642 struct rps_dev_flow *rflow;
3643 bool expire = true;
a31196b0 3644 unsigned int cpu;
c445477d
BH
3645
3646 rcu_read_lock();
3647 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3648 if (flow_table && flow_id <= flow_table->mask) {
3649 rflow = &flow_table->flows[flow_id];
3650 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3651 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3652 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3653 rflow->last_qtail) <
3654 (int)(10 * flow_table->mask)))
3655 expire = false;
3656 }
3657 rcu_read_unlock();
3658 return expire;
3659}
3660EXPORT_SYMBOL(rps_may_expire_flow);
3661
3662#endif /* CONFIG_RFS_ACCEL */
3663
0a9627f2 3664/* Called from hardirq (IPI) context */
e36fa2f7 3665static void rps_trigger_softirq(void *data)
0a9627f2 3666{
e36fa2f7
ED
3667 struct softnet_data *sd = data;
3668
eecfd7c4 3669 ____napi_schedule(sd, &sd->backlog);
dee42870 3670 sd->received_rps++;
0a9627f2 3671}
e36fa2f7 3672
fec5e652 3673#endif /* CONFIG_RPS */
0a9627f2 3674
e36fa2f7
ED
3675/*
3676 * Check if this softnet_data structure is another cpu one
3677 * If yes, queue it to our IPI list and return 1
3678 * If no, return 0
3679 */
3680static int rps_ipi_queued(struct softnet_data *sd)
3681{
3682#ifdef CONFIG_RPS
903ceff7 3683 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3684
3685 if (sd != mysd) {
3686 sd->rps_ipi_next = mysd->rps_ipi_list;
3687 mysd->rps_ipi_list = sd;
3688
3689 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3690 return 1;
3691 }
3692#endif /* CONFIG_RPS */
3693 return 0;
3694}
3695
99bbc707
WB
3696#ifdef CONFIG_NET_FLOW_LIMIT
3697int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3698#endif
3699
3700static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3701{
3702#ifdef CONFIG_NET_FLOW_LIMIT
3703 struct sd_flow_limit *fl;
3704 struct softnet_data *sd;
3705 unsigned int old_flow, new_flow;
3706
3707 if (qlen < (netdev_max_backlog >> 1))
3708 return false;
3709
903ceff7 3710 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3711
3712 rcu_read_lock();
3713 fl = rcu_dereference(sd->flow_limit);
3714 if (fl) {
3958afa1 3715 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3716 old_flow = fl->history[fl->history_head];
3717 fl->history[fl->history_head] = new_flow;
3718
3719 fl->history_head++;
3720 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3721
3722 if (likely(fl->buckets[old_flow]))
3723 fl->buckets[old_flow]--;
3724
3725 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3726 fl->count++;
3727 rcu_read_unlock();
3728 return true;
3729 }
3730 }
3731 rcu_read_unlock();
3732#endif
3733 return false;
3734}
3735
0a9627f2
TH
3736/*
3737 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3738 * queue (may be a remote CPU queue).
3739 */
fec5e652
TH
3740static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3741 unsigned int *qtail)
0a9627f2 3742{
e36fa2f7 3743 struct softnet_data *sd;
0a9627f2 3744 unsigned long flags;
99bbc707 3745 unsigned int qlen;
0a9627f2 3746
e36fa2f7 3747 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3748
3749 local_irq_save(flags);
0a9627f2 3750
e36fa2f7 3751 rps_lock(sd);
e9e4dd32
JA
3752 if (!netif_running(skb->dev))
3753 goto drop;
99bbc707
WB
3754 qlen = skb_queue_len(&sd->input_pkt_queue);
3755 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3756 if (qlen) {
0a9627f2 3757enqueue:
e36fa2f7 3758 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3759 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3760 rps_unlock(sd);
152102c7 3761 local_irq_restore(flags);
0a9627f2
TH
3762 return NET_RX_SUCCESS;
3763 }
3764
ebda37c2
ED
3765 /* Schedule NAPI for backlog device
3766 * We can use non atomic operation since we own the queue lock
3767 */
3768 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3769 if (!rps_ipi_queued(sd))
eecfd7c4 3770 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3771 }
3772 goto enqueue;
3773 }
3774
e9e4dd32 3775drop:
dee42870 3776 sd->dropped++;
e36fa2f7 3777 rps_unlock(sd);
0a9627f2 3778
0a9627f2
TH
3779 local_irq_restore(flags);
3780
caf586e5 3781 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3782 kfree_skb(skb);
3783 return NET_RX_DROP;
3784}
1da177e4 3785
ae78dbfa 3786static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3787{
b0e28f1e 3788 int ret;
1da177e4 3789
588f0330 3790 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3791
cf66ba58 3792 trace_netif_rx(skb);
df334545 3793#ifdef CONFIG_RPS
c5905afb 3794 if (static_key_false(&rps_needed)) {
fec5e652 3795 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3796 int cpu;
3797
cece1945 3798 preempt_disable();
b0e28f1e 3799 rcu_read_lock();
fec5e652
TH
3800
3801 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3802 if (cpu < 0)
3803 cpu = smp_processor_id();
fec5e652
TH
3804
3805 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3806
b0e28f1e 3807 rcu_read_unlock();
cece1945 3808 preempt_enable();
adc9300e
ED
3809 } else
3810#endif
fec5e652
TH
3811 {
3812 unsigned int qtail;
3813 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3814 put_cpu();
3815 }
b0e28f1e 3816 return ret;
1da177e4 3817}
ae78dbfa
BH
3818
3819/**
3820 * netif_rx - post buffer to the network code
3821 * @skb: buffer to post
3822 *
3823 * This function receives a packet from a device driver and queues it for
3824 * the upper (protocol) levels to process. It always succeeds. The buffer
3825 * may be dropped during processing for congestion control or by the
3826 * protocol layers.
3827 *
3828 * return values:
3829 * NET_RX_SUCCESS (no congestion)
3830 * NET_RX_DROP (packet was dropped)
3831 *
3832 */
3833
3834int netif_rx(struct sk_buff *skb)
3835{
3836 trace_netif_rx_entry(skb);
3837
3838 return netif_rx_internal(skb);
3839}
d1b19dff 3840EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3841
3842int netif_rx_ni(struct sk_buff *skb)
3843{
3844 int err;
3845
ae78dbfa
BH
3846 trace_netif_rx_ni_entry(skb);
3847
1da177e4 3848 preempt_disable();
ae78dbfa 3849 err = netif_rx_internal(skb);
1da177e4
LT
3850 if (local_softirq_pending())
3851 do_softirq();
3852 preempt_enable();
3853
3854 return err;
3855}
1da177e4
LT
3856EXPORT_SYMBOL(netif_rx_ni);
3857
0766f788 3858static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3859{
903ceff7 3860 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3861
3862 if (sd->completion_queue) {
3863 struct sk_buff *clist;
3864
3865 local_irq_disable();
3866 clist = sd->completion_queue;
3867 sd->completion_queue = NULL;
3868 local_irq_enable();
3869
3870 while (clist) {
3871 struct sk_buff *skb = clist;
3872 clist = clist->next;
3873
547b792c 3874 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3875 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3876 trace_consume_skb(skb);
3877 else
3878 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3879
3880 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3881 __kfree_skb(skb);
3882 else
3883 __kfree_skb_defer(skb);
1da177e4 3884 }
15fad714
JDB
3885
3886 __kfree_skb_flush();
1da177e4
LT
3887 }
3888
3889 if (sd->output_queue) {
37437bb2 3890 struct Qdisc *head;
1da177e4
LT
3891
3892 local_irq_disable();
3893 head = sd->output_queue;
3894 sd->output_queue = NULL;
a9cbd588 3895 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3896 local_irq_enable();
3897
3898 while (head) {
37437bb2
DM
3899 struct Qdisc *q = head;
3900 spinlock_t *root_lock;
3901
1da177e4
LT
3902 head = head->next_sched;
3903
5fb66229 3904 root_lock = qdisc_lock(q);
3bcb846c
ED
3905 spin_lock(root_lock);
3906 /* We need to make sure head->next_sched is read
3907 * before clearing __QDISC_STATE_SCHED
3908 */
3909 smp_mb__before_atomic();
3910 clear_bit(__QDISC_STATE_SCHED, &q->state);
3911 qdisc_run(q);
3912 spin_unlock(root_lock);
1da177e4
LT
3913 }
3914 }
3915}
3916
ab95bfe0
JP
3917#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3918 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3919/* This hook is defined here for ATM LANE */
3920int (*br_fdb_test_addr_hook)(struct net_device *dev,
3921 unsigned char *addr) __read_mostly;
4fb019a0 3922EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3923#endif
1da177e4 3924
1f211a1b
DB
3925static inline struct sk_buff *
3926sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3927 struct net_device *orig_dev)
f697c3e8 3928{
e7582bab 3929#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3930 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3931 struct tcf_result cl_res;
24824a09 3932
c9e99fd0
DB
3933 /* If there's at least one ingress present somewhere (so
3934 * we get here via enabled static key), remaining devices
3935 * that are not configured with an ingress qdisc will bail
d2788d34 3936 * out here.
c9e99fd0 3937 */
d2788d34 3938 if (!cl)
4577139b 3939 return skb;
f697c3e8
HX
3940 if (*pt_prev) {
3941 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3942 *pt_prev = NULL;
1da177e4
LT
3943 }
3944
3365495c 3945 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3946 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3947 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3948
3b3ae880 3949 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3950 case TC_ACT_OK:
3951 case TC_ACT_RECLASSIFY:
3952 skb->tc_index = TC_H_MIN(cl_res.classid);
3953 break;
3954 case TC_ACT_SHOT:
24ea591d 3955 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3956 kfree_skb(skb);
3957 return NULL;
d2788d34
DB
3958 case TC_ACT_STOLEN:
3959 case TC_ACT_QUEUED:
8a3a4c6e 3960 consume_skb(skb);
d2788d34 3961 return NULL;
27b29f63
AS
3962 case TC_ACT_REDIRECT:
3963 /* skb_mac_header check was done by cls/act_bpf, so
3964 * we can safely push the L2 header back before
3965 * redirecting to another netdev
3966 */
3967 __skb_push(skb, skb->mac_len);
3968 skb_do_redirect(skb);
3969 return NULL;
d2788d34
DB
3970 default:
3971 break;
f697c3e8 3972 }
e7582bab 3973#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3974 return skb;
3975}
1da177e4 3976
24b27fc4
MB
3977/**
3978 * netdev_is_rx_handler_busy - check if receive handler is registered
3979 * @dev: device to check
3980 *
3981 * Check if a receive handler is already registered for a given device.
3982 * Return true if there one.
3983 *
3984 * The caller must hold the rtnl_mutex.
3985 */
3986bool netdev_is_rx_handler_busy(struct net_device *dev)
3987{
3988 ASSERT_RTNL();
3989 return dev && rtnl_dereference(dev->rx_handler);
3990}
3991EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3992
ab95bfe0
JP
3993/**
3994 * netdev_rx_handler_register - register receive handler
3995 * @dev: device to register a handler for
3996 * @rx_handler: receive handler to register
93e2c32b 3997 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3998 *
e227867f 3999 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4000 * called from __netif_receive_skb. A negative errno code is returned
4001 * on a failure.
4002 *
4003 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4004 *
4005 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4006 */
4007int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4008 rx_handler_func_t *rx_handler,
4009 void *rx_handler_data)
ab95bfe0
JP
4010{
4011 ASSERT_RTNL();
4012
4013 if (dev->rx_handler)
4014 return -EBUSY;
4015
00cfec37 4016 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4017 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4018 rcu_assign_pointer(dev->rx_handler, rx_handler);
4019
4020 return 0;
4021}
4022EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4023
4024/**
4025 * netdev_rx_handler_unregister - unregister receive handler
4026 * @dev: device to unregister a handler from
4027 *
166ec369 4028 * Unregister a receive handler from a device.
ab95bfe0
JP
4029 *
4030 * The caller must hold the rtnl_mutex.
4031 */
4032void netdev_rx_handler_unregister(struct net_device *dev)
4033{
4034
4035 ASSERT_RTNL();
a9b3cd7f 4036 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4037 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4038 * section has a guarantee to see a non NULL rx_handler_data
4039 * as well.
4040 */
4041 synchronize_net();
a9b3cd7f 4042 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4043}
4044EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4045
b4b9e355
MG
4046/*
4047 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4048 * the special handling of PFMEMALLOC skbs.
4049 */
4050static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4051{
4052 switch (skb->protocol) {
2b8837ae
JP
4053 case htons(ETH_P_ARP):
4054 case htons(ETH_P_IP):
4055 case htons(ETH_P_IPV6):
4056 case htons(ETH_P_8021Q):
4057 case htons(ETH_P_8021AD):
b4b9e355
MG
4058 return true;
4059 default:
4060 return false;
4061 }
4062}
4063
e687ad60
PN
4064static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4065 int *ret, struct net_device *orig_dev)
4066{
e7582bab 4067#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
4068 if (nf_hook_ingress_active(skb)) {
4069 if (*pt_prev) {
4070 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4071 *pt_prev = NULL;
4072 }
4073
4074 return nf_hook_ingress(skb);
4075 }
e7582bab 4076#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4077 return 0;
4078}
e687ad60 4079
9754e293 4080static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4081{
4082 struct packet_type *ptype, *pt_prev;
ab95bfe0 4083 rx_handler_func_t *rx_handler;
f2ccd8fa 4084 struct net_device *orig_dev;
8a4eb573 4085 bool deliver_exact = false;
1da177e4 4086 int ret = NET_RX_DROP;
252e3346 4087 __be16 type;
1da177e4 4088
588f0330 4089 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4090
cf66ba58 4091 trace_netif_receive_skb(skb);
9b22ea56 4092
cc9bd5ce 4093 orig_dev = skb->dev;
8f903c70 4094
c1d2bbe1 4095 skb_reset_network_header(skb);
fda55eca
ED
4096 if (!skb_transport_header_was_set(skb))
4097 skb_reset_transport_header(skb);
0b5c9db1 4098 skb_reset_mac_len(skb);
1da177e4
LT
4099
4100 pt_prev = NULL;
4101
63d8ea7f 4102another_round:
b6858177 4103 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4104
4105 __this_cpu_inc(softnet_data.processed);
4106
8ad227ff
PM
4107 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4108 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4109 skb = skb_vlan_untag(skb);
bcc6d479 4110 if (unlikely(!skb))
2c17d27c 4111 goto out;
bcc6d479
JP
4112 }
4113
1da177e4
LT
4114#ifdef CONFIG_NET_CLS_ACT
4115 if (skb->tc_verd & TC_NCLS) {
4116 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4117 goto ncls;
4118 }
4119#endif
4120
9754e293 4121 if (pfmemalloc)
b4b9e355
MG
4122 goto skip_taps;
4123
1da177e4 4124 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4125 if (pt_prev)
4126 ret = deliver_skb(skb, pt_prev, orig_dev);
4127 pt_prev = ptype;
4128 }
4129
4130 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4131 if (pt_prev)
4132 ret = deliver_skb(skb, pt_prev, orig_dev);
4133 pt_prev = ptype;
1da177e4
LT
4134 }
4135
b4b9e355 4136skip_taps:
1cf51900 4137#ifdef CONFIG_NET_INGRESS
4577139b 4138 if (static_key_false(&ingress_needed)) {
1f211a1b 4139 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4140 if (!skb)
2c17d27c 4141 goto out;
e687ad60
PN
4142
4143 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4144 goto out;
4577139b 4145 }
1cf51900
PN
4146#endif
4147#ifdef CONFIG_NET_CLS_ACT
4577139b 4148 skb->tc_verd = 0;
1da177e4
LT
4149ncls:
4150#endif
9754e293 4151 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4152 goto drop;
4153
df8a39de 4154 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4155 if (pt_prev) {
4156 ret = deliver_skb(skb, pt_prev, orig_dev);
4157 pt_prev = NULL;
4158 }
48cc32d3 4159 if (vlan_do_receive(&skb))
2425717b
JF
4160 goto another_round;
4161 else if (unlikely(!skb))
2c17d27c 4162 goto out;
2425717b
JF
4163 }
4164
48cc32d3 4165 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4166 if (rx_handler) {
4167 if (pt_prev) {
4168 ret = deliver_skb(skb, pt_prev, orig_dev);
4169 pt_prev = NULL;
4170 }
8a4eb573
JP
4171 switch (rx_handler(&skb)) {
4172 case RX_HANDLER_CONSUMED:
3bc1b1ad 4173 ret = NET_RX_SUCCESS;
2c17d27c 4174 goto out;
8a4eb573 4175 case RX_HANDLER_ANOTHER:
63d8ea7f 4176 goto another_round;
8a4eb573
JP
4177 case RX_HANDLER_EXACT:
4178 deliver_exact = true;
4179 case RX_HANDLER_PASS:
4180 break;
4181 default:
4182 BUG();
4183 }
ab95bfe0 4184 }
1da177e4 4185
df8a39de
JP
4186 if (unlikely(skb_vlan_tag_present(skb))) {
4187 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4188 skb->pkt_type = PACKET_OTHERHOST;
4189 /* Note: we might in the future use prio bits
4190 * and set skb->priority like in vlan_do_receive()
4191 * For the time being, just ignore Priority Code Point
4192 */
4193 skb->vlan_tci = 0;
4194 }
48cc32d3 4195
7866a621
SN
4196 type = skb->protocol;
4197
63d8ea7f 4198 /* deliver only exact match when indicated */
7866a621
SN
4199 if (likely(!deliver_exact)) {
4200 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201 &ptype_base[ntohs(type) &
4202 PTYPE_HASH_MASK]);
4203 }
1f3c8804 4204
7866a621
SN
4205 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4206 &orig_dev->ptype_specific);
4207
4208 if (unlikely(skb->dev != orig_dev)) {
4209 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4210 &skb->dev->ptype_specific);
1da177e4
LT
4211 }
4212
4213 if (pt_prev) {
1080e512 4214 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4215 goto drop;
1080e512
MT
4216 else
4217 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4218 } else {
b4b9e355 4219drop:
6e7333d3
JW
4220 if (!deliver_exact)
4221 atomic_long_inc(&skb->dev->rx_dropped);
4222 else
4223 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4224 kfree_skb(skb);
4225 /* Jamal, now you will not able to escape explaining
4226 * me how you were going to use this. :-)
4227 */
4228 ret = NET_RX_DROP;
4229 }
4230
2c17d27c 4231out:
9754e293
DM
4232 return ret;
4233}
4234
4235static int __netif_receive_skb(struct sk_buff *skb)
4236{
4237 int ret;
4238
4239 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4240 unsigned long pflags = current->flags;
4241
4242 /*
4243 * PFMEMALLOC skbs are special, they should
4244 * - be delivered to SOCK_MEMALLOC sockets only
4245 * - stay away from userspace
4246 * - have bounded memory usage
4247 *
4248 * Use PF_MEMALLOC as this saves us from propagating the allocation
4249 * context down to all allocation sites.
4250 */
4251 current->flags |= PF_MEMALLOC;
4252 ret = __netif_receive_skb_core(skb, true);
4253 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4254 } else
4255 ret = __netif_receive_skb_core(skb, false);
4256
1da177e4
LT
4257 return ret;
4258}
0a9627f2 4259
ae78dbfa 4260static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4261{
2c17d27c
JA
4262 int ret;
4263
588f0330 4264 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4265
c1f19b51
RC
4266 if (skb_defer_rx_timestamp(skb))
4267 return NET_RX_SUCCESS;
4268
2c17d27c
JA
4269 rcu_read_lock();
4270
df334545 4271#ifdef CONFIG_RPS
c5905afb 4272 if (static_key_false(&rps_needed)) {
3b098e2d 4273 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4274 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4275
3b098e2d
ED
4276 if (cpu >= 0) {
4277 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4278 rcu_read_unlock();
adc9300e 4279 return ret;
3b098e2d 4280 }
fec5e652 4281 }
1e94d72f 4282#endif
2c17d27c
JA
4283 ret = __netif_receive_skb(skb);
4284 rcu_read_unlock();
4285 return ret;
0a9627f2 4286}
ae78dbfa
BH
4287
4288/**
4289 * netif_receive_skb - process receive buffer from network
4290 * @skb: buffer to process
4291 *
4292 * netif_receive_skb() is the main receive data processing function.
4293 * It always succeeds. The buffer may be dropped during processing
4294 * for congestion control or by the protocol layers.
4295 *
4296 * This function may only be called from softirq context and interrupts
4297 * should be enabled.
4298 *
4299 * Return values (usually ignored):
4300 * NET_RX_SUCCESS: no congestion
4301 * NET_RX_DROP: packet was dropped
4302 */
04eb4489 4303int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4304{
4305 trace_netif_receive_skb_entry(skb);
4306
4307 return netif_receive_skb_internal(skb);
4308}
04eb4489 4309EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4310
88751275
ED
4311/* Network device is going away, flush any packets still pending
4312 * Called with irqs disabled.
4313 */
152102c7 4314static void flush_backlog(void *arg)
6e583ce5 4315{
152102c7 4316 struct net_device *dev = arg;
903ceff7 4317 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4318 struct sk_buff *skb, *tmp;
4319
e36fa2f7 4320 rps_lock(sd);
6e7676c1 4321 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4322 if (skb->dev == dev) {
e36fa2f7 4323 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4324 kfree_skb(skb);
76cc8b13 4325 input_queue_head_incr(sd);
6e583ce5 4326 }
6e7676c1 4327 }
e36fa2f7 4328 rps_unlock(sd);
6e7676c1
CG
4329
4330 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4331 if (skb->dev == dev) {
4332 __skb_unlink(skb, &sd->process_queue);
4333 kfree_skb(skb);
76cc8b13 4334 input_queue_head_incr(sd);
6e7676c1
CG
4335 }
4336 }
6e583ce5
SH
4337}
4338
d565b0a1
HX
4339static int napi_gro_complete(struct sk_buff *skb)
4340{
22061d80 4341 struct packet_offload *ptype;
d565b0a1 4342 __be16 type = skb->protocol;
22061d80 4343 struct list_head *head = &offload_base;
d565b0a1
HX
4344 int err = -ENOENT;
4345
c3c7c254
ED
4346 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4347
fc59f9a3
HX
4348 if (NAPI_GRO_CB(skb)->count == 1) {
4349 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4350 goto out;
fc59f9a3 4351 }
d565b0a1
HX
4352
4353 rcu_read_lock();
4354 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4355 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4356 continue;
4357
299603e8 4358 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4359 break;
4360 }
4361 rcu_read_unlock();
4362
4363 if (err) {
4364 WARN_ON(&ptype->list == head);
4365 kfree_skb(skb);
4366 return NET_RX_SUCCESS;
4367 }
4368
4369out:
ae78dbfa 4370 return netif_receive_skb_internal(skb);
d565b0a1
HX
4371}
4372
2e71a6f8
ED
4373/* napi->gro_list contains packets ordered by age.
4374 * youngest packets at the head of it.
4375 * Complete skbs in reverse order to reduce latencies.
4376 */
4377void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4378{
2e71a6f8 4379 struct sk_buff *skb, *prev = NULL;
d565b0a1 4380
2e71a6f8
ED
4381 /* scan list and build reverse chain */
4382 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4383 skb->prev = prev;
4384 prev = skb;
4385 }
4386
4387 for (skb = prev; skb; skb = prev) {
d565b0a1 4388 skb->next = NULL;
2e71a6f8
ED
4389
4390 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4391 return;
4392
4393 prev = skb->prev;
d565b0a1 4394 napi_gro_complete(skb);
2e71a6f8 4395 napi->gro_count--;
d565b0a1
HX
4396 }
4397
4398 napi->gro_list = NULL;
4399}
86cac58b 4400EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4401
89c5fa33
ED
4402static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4403{
4404 struct sk_buff *p;
4405 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4406 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4407
4408 for (p = napi->gro_list; p; p = p->next) {
4409 unsigned long diffs;
4410
0b4cec8c
TH
4411 NAPI_GRO_CB(p)->flush = 0;
4412
4413 if (hash != skb_get_hash_raw(p)) {
4414 NAPI_GRO_CB(p)->same_flow = 0;
4415 continue;
4416 }
4417
89c5fa33
ED
4418 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4419 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4420 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4421 if (maclen == ETH_HLEN)
4422 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4423 skb_mac_header(skb));
89c5fa33
ED
4424 else if (!diffs)
4425 diffs = memcmp(skb_mac_header(p),
a50e233c 4426 skb_mac_header(skb),
89c5fa33
ED
4427 maclen);
4428 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4429 }
4430}
4431
299603e8
JC
4432static void skb_gro_reset_offset(struct sk_buff *skb)
4433{
4434 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4435 const skb_frag_t *frag0 = &pinfo->frags[0];
4436
4437 NAPI_GRO_CB(skb)->data_offset = 0;
4438 NAPI_GRO_CB(skb)->frag0 = NULL;
4439 NAPI_GRO_CB(skb)->frag0_len = 0;
4440
4441 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4442 pinfo->nr_frags &&
4443 !PageHighMem(skb_frag_page(frag0))) {
4444 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4445 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4446 }
4447}
4448
a50e233c
ED
4449static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4450{
4451 struct skb_shared_info *pinfo = skb_shinfo(skb);
4452
4453 BUG_ON(skb->end - skb->tail < grow);
4454
4455 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4456
4457 skb->data_len -= grow;
4458 skb->tail += grow;
4459
4460 pinfo->frags[0].page_offset += grow;
4461 skb_frag_size_sub(&pinfo->frags[0], grow);
4462
4463 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4464 skb_frag_unref(skb, 0);
4465 memmove(pinfo->frags, pinfo->frags + 1,
4466 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4467 }
4468}
4469
bb728820 4470static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4471{
4472 struct sk_buff **pp = NULL;
22061d80 4473 struct packet_offload *ptype;
d565b0a1 4474 __be16 type = skb->protocol;
22061d80 4475 struct list_head *head = &offload_base;
0da2afd5 4476 int same_flow;
5b252f0c 4477 enum gro_result ret;
a50e233c 4478 int grow;
d565b0a1 4479
9c62a68d 4480 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4481 goto normal;
4482
5a212329 4483 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4484 goto normal;
4485
89c5fa33
ED
4486 gro_list_prepare(napi, skb);
4487
d565b0a1
HX
4488 rcu_read_lock();
4489 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4490 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4491 continue;
4492
86911732 4493 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4494 skb_reset_mac_len(skb);
d565b0a1
HX
4495 NAPI_GRO_CB(skb)->same_flow = 0;
4496 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4497 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4498 NAPI_GRO_CB(skb)->encap_mark = 0;
a0ca153f 4499 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4500 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4501 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4502
662880f4
TH
4503 /* Setup for GRO checksum validation */
4504 switch (skb->ip_summed) {
4505 case CHECKSUM_COMPLETE:
4506 NAPI_GRO_CB(skb)->csum = skb->csum;
4507 NAPI_GRO_CB(skb)->csum_valid = 1;
4508 NAPI_GRO_CB(skb)->csum_cnt = 0;
4509 break;
4510 case CHECKSUM_UNNECESSARY:
4511 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4512 NAPI_GRO_CB(skb)->csum_valid = 0;
4513 break;
4514 default:
4515 NAPI_GRO_CB(skb)->csum_cnt = 0;
4516 NAPI_GRO_CB(skb)->csum_valid = 0;
4517 }
d565b0a1 4518
f191a1d1 4519 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4520 break;
4521 }
4522 rcu_read_unlock();
4523
4524 if (&ptype->list == head)
4525 goto normal;
4526
0da2afd5 4527 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4528 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4529
d565b0a1
HX
4530 if (pp) {
4531 struct sk_buff *nskb = *pp;
4532
4533 *pp = nskb->next;
4534 nskb->next = NULL;
4535 napi_gro_complete(nskb);
4ae5544f 4536 napi->gro_count--;
d565b0a1
HX
4537 }
4538
0da2afd5 4539 if (same_flow)
d565b0a1
HX
4540 goto ok;
4541
600adc18 4542 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4543 goto normal;
d565b0a1 4544
600adc18
ED
4545 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4546 struct sk_buff *nskb = napi->gro_list;
4547
4548 /* locate the end of the list to select the 'oldest' flow */
4549 while (nskb->next) {
4550 pp = &nskb->next;
4551 nskb = *pp;
4552 }
4553 *pp = NULL;
4554 nskb->next = NULL;
4555 napi_gro_complete(nskb);
4556 } else {
4557 napi->gro_count++;
4558 }
d565b0a1 4559 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4560 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4561 NAPI_GRO_CB(skb)->last = skb;
86911732 4562 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4563 skb->next = napi->gro_list;
4564 napi->gro_list = skb;
5d0d9be8 4565 ret = GRO_HELD;
d565b0a1 4566
ad0f9904 4567pull:
a50e233c
ED
4568 grow = skb_gro_offset(skb) - skb_headlen(skb);
4569 if (grow > 0)
4570 gro_pull_from_frag0(skb, grow);
d565b0a1 4571ok:
5d0d9be8 4572 return ret;
d565b0a1
HX
4573
4574normal:
ad0f9904
HX
4575 ret = GRO_NORMAL;
4576 goto pull;
5d38a079 4577}
96e93eab 4578
bf5a755f
JC
4579struct packet_offload *gro_find_receive_by_type(__be16 type)
4580{
4581 struct list_head *offload_head = &offload_base;
4582 struct packet_offload *ptype;
4583
4584 list_for_each_entry_rcu(ptype, offload_head, list) {
4585 if (ptype->type != type || !ptype->callbacks.gro_receive)
4586 continue;
4587 return ptype;
4588 }
4589 return NULL;
4590}
e27a2f83 4591EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4592
4593struct packet_offload *gro_find_complete_by_type(__be16 type)
4594{
4595 struct list_head *offload_head = &offload_base;
4596 struct packet_offload *ptype;
4597
4598 list_for_each_entry_rcu(ptype, offload_head, list) {
4599 if (ptype->type != type || !ptype->callbacks.gro_complete)
4600 continue;
4601 return ptype;
4602 }
4603 return NULL;
4604}
e27a2f83 4605EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4606
bb728820 4607static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4608{
5d0d9be8
HX
4609 switch (ret) {
4610 case GRO_NORMAL:
ae78dbfa 4611 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4612 ret = GRO_DROP;
4613 break;
5d38a079 4614
5d0d9be8 4615 case GRO_DROP:
5d38a079
HX
4616 kfree_skb(skb);
4617 break;
5b252f0c 4618
daa86548 4619 case GRO_MERGED_FREE:
ce87fc6c
JG
4620 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4621 skb_dst_drop(skb);
d7e8883c 4622 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4623 } else {
d7e8883c 4624 __kfree_skb(skb);
ce87fc6c 4625 }
daa86548
ED
4626 break;
4627
5b252f0c
BH
4628 case GRO_HELD:
4629 case GRO_MERGED:
4630 break;
5d38a079
HX
4631 }
4632
c7c4b3b6 4633 return ret;
5d0d9be8 4634}
5d0d9be8 4635
c7c4b3b6 4636gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4637{
93f93a44 4638 skb_mark_napi_id(skb, napi);
ae78dbfa 4639 trace_napi_gro_receive_entry(skb);
86911732 4640
a50e233c
ED
4641 skb_gro_reset_offset(skb);
4642
89c5fa33 4643 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4644}
4645EXPORT_SYMBOL(napi_gro_receive);
4646
d0c2b0d2 4647static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4648{
93a35f59
ED
4649 if (unlikely(skb->pfmemalloc)) {
4650 consume_skb(skb);
4651 return;
4652 }
96e93eab 4653 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4654 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4655 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4656 skb->vlan_tci = 0;
66c46d74 4657 skb->dev = napi->dev;
6d152e23 4658 skb->skb_iif = 0;
c3caf119
JC
4659 skb->encapsulation = 0;
4660 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4661 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4662
4663 napi->skb = skb;
4664}
96e93eab 4665
76620aaf 4666struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4667{
5d38a079 4668 struct sk_buff *skb = napi->skb;
5d38a079
HX
4669
4670 if (!skb) {
fd11a83d 4671 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4672 if (skb) {
4673 napi->skb = skb;
4674 skb_mark_napi_id(skb, napi);
4675 }
80595d59 4676 }
96e93eab
HX
4677 return skb;
4678}
76620aaf 4679EXPORT_SYMBOL(napi_get_frags);
96e93eab 4680
a50e233c
ED
4681static gro_result_t napi_frags_finish(struct napi_struct *napi,
4682 struct sk_buff *skb,
4683 gro_result_t ret)
96e93eab 4684{
5d0d9be8
HX
4685 switch (ret) {
4686 case GRO_NORMAL:
a50e233c
ED
4687 case GRO_HELD:
4688 __skb_push(skb, ETH_HLEN);
4689 skb->protocol = eth_type_trans(skb, skb->dev);
4690 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4691 ret = GRO_DROP;
86911732 4692 break;
5d38a079 4693
5d0d9be8 4694 case GRO_DROP:
5d0d9be8
HX
4695 case GRO_MERGED_FREE:
4696 napi_reuse_skb(napi, skb);
4697 break;
5b252f0c
BH
4698
4699 case GRO_MERGED:
4700 break;
5d0d9be8 4701 }
5d38a079 4702
c7c4b3b6 4703 return ret;
5d38a079 4704}
5d0d9be8 4705
a50e233c
ED
4706/* Upper GRO stack assumes network header starts at gro_offset=0
4707 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4708 * We copy ethernet header into skb->data to have a common layout.
4709 */
4adb9c4a 4710static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4711{
4712 struct sk_buff *skb = napi->skb;
a50e233c
ED
4713 const struct ethhdr *eth;
4714 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4715
4716 napi->skb = NULL;
4717
a50e233c
ED
4718 skb_reset_mac_header(skb);
4719 skb_gro_reset_offset(skb);
4720
4721 eth = skb_gro_header_fast(skb, 0);
4722 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4723 eth = skb_gro_header_slow(skb, hlen, 0);
4724 if (unlikely(!eth)) {
4da46ceb
AC
4725 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4726 __func__, napi->dev->name);
a50e233c
ED
4727 napi_reuse_skb(napi, skb);
4728 return NULL;
4729 }
4730 } else {
4731 gro_pull_from_frag0(skb, hlen);
4732 NAPI_GRO_CB(skb)->frag0 += hlen;
4733 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4734 }
a50e233c
ED
4735 __skb_pull(skb, hlen);
4736
4737 /*
4738 * This works because the only protocols we care about don't require
4739 * special handling.
4740 * We'll fix it up properly in napi_frags_finish()
4741 */
4742 skb->protocol = eth->h_proto;
76620aaf 4743
76620aaf
HX
4744 return skb;
4745}
76620aaf 4746
c7c4b3b6 4747gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4748{
76620aaf 4749 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4750
4751 if (!skb)
c7c4b3b6 4752 return GRO_DROP;
5d0d9be8 4753
ae78dbfa
BH
4754 trace_napi_gro_frags_entry(skb);
4755
89c5fa33 4756 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4757}
5d38a079
HX
4758EXPORT_SYMBOL(napi_gro_frags);
4759
573e8fca
TH
4760/* Compute the checksum from gro_offset and return the folded value
4761 * after adding in any pseudo checksum.
4762 */
4763__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4764{
4765 __wsum wsum;
4766 __sum16 sum;
4767
4768 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4769
4770 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4771 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4772 if (likely(!sum)) {
4773 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4774 !skb->csum_complete_sw)
4775 netdev_rx_csum_fault(skb->dev);
4776 }
4777
4778 NAPI_GRO_CB(skb)->csum = wsum;
4779 NAPI_GRO_CB(skb)->csum_valid = 1;
4780
4781 return sum;
4782}
4783EXPORT_SYMBOL(__skb_gro_checksum_complete);
4784
e326bed2 4785/*
855abcf0 4786 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4787 * Note: called with local irq disabled, but exits with local irq enabled.
4788 */
4789static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4790{
4791#ifdef CONFIG_RPS
4792 struct softnet_data *remsd = sd->rps_ipi_list;
4793
4794 if (remsd) {
4795 sd->rps_ipi_list = NULL;
4796
4797 local_irq_enable();
4798
4799 /* Send pending IPI's to kick RPS processing on remote cpus. */
4800 while (remsd) {
4801 struct softnet_data *next = remsd->rps_ipi_next;
4802
4803 if (cpu_online(remsd->cpu))
c46fff2a 4804 smp_call_function_single_async(remsd->cpu,
fce8ad15 4805 &remsd->csd);
e326bed2
ED
4806 remsd = next;
4807 }
4808 } else
4809#endif
4810 local_irq_enable();
4811}
4812
d75b1ade
ED
4813static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4814{
4815#ifdef CONFIG_RPS
4816 return sd->rps_ipi_list != NULL;
4817#else
4818 return false;
4819#endif
4820}
4821
bea3348e 4822static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4823{
4824 int work = 0;
eecfd7c4 4825 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4826
e326bed2
ED
4827 /* Check if we have pending ipi, its better to send them now,
4828 * not waiting net_rx_action() end.
4829 */
d75b1ade 4830 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4831 local_irq_disable();
4832 net_rps_action_and_irq_enable(sd);
4833 }
d75b1ade 4834
bea3348e 4835 napi->weight = weight_p;
6e7676c1 4836 local_irq_disable();
11ef7a89 4837 while (1) {
1da177e4 4838 struct sk_buff *skb;
6e7676c1
CG
4839
4840 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4841 rcu_read_lock();
6e7676c1
CG
4842 local_irq_enable();
4843 __netif_receive_skb(skb);
2c17d27c 4844 rcu_read_unlock();
6e7676c1 4845 local_irq_disable();
76cc8b13
TH
4846 input_queue_head_incr(sd);
4847 if (++work >= quota) {
4848 local_irq_enable();
4849 return work;
4850 }
6e7676c1 4851 }
1da177e4 4852
e36fa2f7 4853 rps_lock(sd);
11ef7a89 4854 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4855 /*
4856 * Inline a custom version of __napi_complete().
4857 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4858 * and NAPI_STATE_SCHED is the only possible flag set
4859 * on backlog.
4860 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4861 * and we dont need an smp_mb() memory barrier.
4862 */
eecfd7c4 4863 napi->state = 0;
11ef7a89 4864 rps_unlock(sd);
eecfd7c4 4865
11ef7a89 4866 break;
bea3348e 4867 }
11ef7a89
TH
4868
4869 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4870 &sd->process_queue);
e36fa2f7 4871 rps_unlock(sd);
6e7676c1
CG
4872 }
4873 local_irq_enable();
1da177e4 4874
bea3348e
SH
4875 return work;
4876}
1da177e4 4877
bea3348e
SH
4878/**
4879 * __napi_schedule - schedule for receive
c4ea43c5 4880 * @n: entry to schedule
bea3348e 4881 *
bc9ad166
ED
4882 * The entry's receive function will be scheduled to run.
4883 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4884 */
b5606c2d 4885void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4886{
4887 unsigned long flags;
1da177e4 4888
bea3348e 4889 local_irq_save(flags);
903ceff7 4890 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4891 local_irq_restore(flags);
1da177e4 4892}
bea3348e
SH
4893EXPORT_SYMBOL(__napi_schedule);
4894
bc9ad166
ED
4895/**
4896 * __napi_schedule_irqoff - schedule for receive
4897 * @n: entry to schedule
4898 *
4899 * Variant of __napi_schedule() assuming hard irqs are masked
4900 */
4901void __napi_schedule_irqoff(struct napi_struct *n)
4902{
4903 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4904}
4905EXPORT_SYMBOL(__napi_schedule_irqoff);
4906
d565b0a1
HX
4907void __napi_complete(struct napi_struct *n)
4908{
4909 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4910
d75b1ade 4911 list_del_init(&n->poll_list);
4e857c58 4912 smp_mb__before_atomic();
d565b0a1
HX
4913 clear_bit(NAPI_STATE_SCHED, &n->state);
4914}
4915EXPORT_SYMBOL(__napi_complete);
4916
3b47d303 4917void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4918{
4919 unsigned long flags;
4920
4921 /*
4922 * don't let napi dequeue from the cpu poll list
4923 * just in case its running on a different cpu
4924 */
4925 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4926 return;
4927
3b47d303
ED
4928 if (n->gro_list) {
4929 unsigned long timeout = 0;
d75b1ade 4930
3b47d303
ED
4931 if (work_done)
4932 timeout = n->dev->gro_flush_timeout;
4933
4934 if (timeout)
4935 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4936 HRTIMER_MODE_REL_PINNED);
4937 else
4938 napi_gro_flush(n, false);
4939 }
d75b1ade
ED
4940 if (likely(list_empty(&n->poll_list))) {
4941 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4942 } else {
4943 /* If n->poll_list is not empty, we need to mask irqs */
4944 local_irq_save(flags);
4945 __napi_complete(n);
4946 local_irq_restore(flags);
4947 }
d565b0a1 4948}
3b47d303 4949EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4950
af12fa6e 4951/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4952static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4953{
4954 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4955 struct napi_struct *napi;
4956
4957 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4958 if (napi->napi_id == napi_id)
4959 return napi;
4960
4961 return NULL;
4962}
02d62e86
ED
4963
4964#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4965#define BUSY_POLL_BUDGET 8
02d62e86
ED
4966bool sk_busy_loop(struct sock *sk, int nonblock)
4967{
4968 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4969 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4970 struct napi_struct *napi;
4971 int rc = false;
4972
2a028ecb 4973 rcu_read_lock();
02d62e86
ED
4974
4975 napi = napi_by_id(sk->sk_napi_id);
4976 if (!napi)
4977 goto out;
4978
ce6aea93
ED
4979 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4980 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4981
4982 do {
ce6aea93 4983 rc = 0;
2a028ecb 4984 local_bh_disable();
ce6aea93
ED
4985 if (busy_poll) {
4986 rc = busy_poll(napi);
4987 } else if (napi_schedule_prep(napi)) {
4988 void *have = netpoll_poll_lock(napi);
4989
4990 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4991 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1db19db7 4992 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
ce6aea93
ED
4993 if (rc == BUSY_POLL_BUDGET) {
4994 napi_complete_done(napi, rc);
4995 napi_schedule(napi);
4996 }
4997 }
4998 netpoll_poll_unlock(have);
4999 }
2a028ecb 5000 if (rc > 0)
02a1d6e7
ED
5001 __NET_ADD_STATS(sock_net(sk),
5002 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 5003 local_bh_enable();
02d62e86
ED
5004
5005 if (rc == LL_FLUSH_FAILED)
5006 break; /* permanent failure */
5007
02d62e86 5008 cpu_relax();
02d62e86
ED
5009 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5010 !need_resched() && !busy_loop_timeout(end_time));
5011
5012 rc = !skb_queue_empty(&sk->sk_receive_queue);
5013out:
2a028ecb 5014 rcu_read_unlock();
02d62e86
ED
5015 return rc;
5016}
5017EXPORT_SYMBOL(sk_busy_loop);
5018
5019#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5020
5021void napi_hash_add(struct napi_struct *napi)
5022{
d64b5e85
ED
5023 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5024 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5025 return;
af12fa6e 5026
52bd2d62 5027 spin_lock(&napi_hash_lock);
af12fa6e 5028
52bd2d62
ED
5029 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5030 do {
5031 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5032 napi_gen_id = NR_CPUS + 1;
5033 } while (napi_by_id(napi_gen_id));
5034 napi->napi_id = napi_gen_id;
af12fa6e 5035
52bd2d62
ED
5036 hlist_add_head_rcu(&napi->napi_hash_node,
5037 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5038
52bd2d62 5039 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5040}
5041EXPORT_SYMBOL_GPL(napi_hash_add);
5042
5043/* Warning : caller is responsible to make sure rcu grace period
5044 * is respected before freeing memory containing @napi
5045 */
34cbe27e 5046bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5047{
34cbe27e
ED
5048 bool rcu_sync_needed = false;
5049
af12fa6e
ET
5050 spin_lock(&napi_hash_lock);
5051
34cbe27e
ED
5052 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5053 rcu_sync_needed = true;
af12fa6e 5054 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5055 }
af12fa6e 5056 spin_unlock(&napi_hash_lock);
34cbe27e 5057 return rcu_sync_needed;
af12fa6e
ET
5058}
5059EXPORT_SYMBOL_GPL(napi_hash_del);
5060
3b47d303
ED
5061static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5062{
5063 struct napi_struct *napi;
5064
5065 napi = container_of(timer, struct napi_struct, timer);
5066 if (napi->gro_list)
5067 napi_schedule(napi);
5068
5069 return HRTIMER_NORESTART;
5070}
5071
d565b0a1
HX
5072void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5073 int (*poll)(struct napi_struct *, int), int weight)
5074{
5075 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5076 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5077 napi->timer.function = napi_watchdog;
4ae5544f 5078 napi->gro_count = 0;
d565b0a1 5079 napi->gro_list = NULL;
5d38a079 5080 napi->skb = NULL;
d565b0a1 5081 napi->poll = poll;
82dc3c63
ED
5082 if (weight > NAPI_POLL_WEIGHT)
5083 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5084 weight, dev->name);
d565b0a1
HX
5085 napi->weight = weight;
5086 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5087 napi->dev = dev;
5d38a079 5088#ifdef CONFIG_NETPOLL
d565b0a1
HX
5089 spin_lock_init(&napi->poll_lock);
5090 napi->poll_owner = -1;
5091#endif
5092 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5093 napi_hash_add(napi);
d565b0a1
HX
5094}
5095EXPORT_SYMBOL(netif_napi_add);
5096
3b47d303
ED
5097void napi_disable(struct napi_struct *n)
5098{
5099 might_sleep();
5100 set_bit(NAPI_STATE_DISABLE, &n->state);
5101
5102 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5103 msleep(1);
2d8bff12
NH
5104 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5105 msleep(1);
3b47d303
ED
5106
5107 hrtimer_cancel(&n->timer);
5108
5109 clear_bit(NAPI_STATE_DISABLE, &n->state);
5110}
5111EXPORT_SYMBOL(napi_disable);
5112
93d05d4a 5113/* Must be called in process context */
d565b0a1
HX
5114void netif_napi_del(struct napi_struct *napi)
5115{
93d05d4a
ED
5116 might_sleep();
5117 if (napi_hash_del(napi))
5118 synchronize_net();
d7b06636 5119 list_del_init(&napi->dev_list);
76620aaf 5120 napi_free_frags(napi);
d565b0a1 5121
289dccbe 5122 kfree_skb_list(napi->gro_list);
d565b0a1 5123 napi->gro_list = NULL;
4ae5544f 5124 napi->gro_count = 0;
d565b0a1
HX
5125}
5126EXPORT_SYMBOL(netif_napi_del);
5127
726ce70e
HX
5128static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5129{
5130 void *have;
5131 int work, weight;
5132
5133 list_del_init(&n->poll_list);
5134
5135 have = netpoll_poll_lock(n);
5136
5137 weight = n->weight;
5138
5139 /* This NAPI_STATE_SCHED test is for avoiding a race
5140 * with netpoll's poll_napi(). Only the entity which
5141 * obtains the lock and sees NAPI_STATE_SCHED set will
5142 * actually make the ->poll() call. Therefore we avoid
5143 * accidentally calling ->poll() when NAPI is not scheduled.
5144 */
5145 work = 0;
5146 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5147 work = n->poll(n, weight);
1db19db7 5148 trace_napi_poll(n, work, weight);
726ce70e
HX
5149 }
5150
5151 WARN_ON_ONCE(work > weight);
5152
5153 if (likely(work < weight))
5154 goto out_unlock;
5155
5156 /* Drivers must not modify the NAPI state if they
5157 * consume the entire weight. In such cases this code
5158 * still "owns" the NAPI instance and therefore can
5159 * move the instance around on the list at-will.
5160 */
5161 if (unlikely(napi_disable_pending(n))) {
5162 napi_complete(n);
5163 goto out_unlock;
5164 }
5165
5166 if (n->gro_list) {
5167 /* flush too old packets
5168 * If HZ < 1000, flush all packets.
5169 */
5170 napi_gro_flush(n, HZ >= 1000);
5171 }
5172
001ce546
HX
5173 /* Some drivers may have called napi_schedule
5174 * prior to exhausting their budget.
5175 */
5176 if (unlikely(!list_empty(&n->poll_list))) {
5177 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5178 n->dev ? n->dev->name : "backlog");
5179 goto out_unlock;
5180 }
5181
726ce70e
HX
5182 list_add_tail(&n->poll_list, repoll);
5183
5184out_unlock:
5185 netpoll_poll_unlock(have);
5186
5187 return work;
5188}
5189
0766f788 5190static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5191{
903ceff7 5192 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5193 unsigned long time_limit = jiffies + 2;
51b0bded 5194 int budget = netdev_budget;
d75b1ade
ED
5195 LIST_HEAD(list);
5196 LIST_HEAD(repoll);
53fb95d3 5197
1da177e4 5198 local_irq_disable();
d75b1ade
ED
5199 list_splice_init(&sd->poll_list, &list);
5200 local_irq_enable();
1da177e4 5201
ceb8d5bf 5202 for (;;) {
bea3348e 5203 struct napi_struct *n;
1da177e4 5204
ceb8d5bf
HX
5205 if (list_empty(&list)) {
5206 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5207 return;
5208 break;
5209 }
5210
6bd373eb
HX
5211 n = list_first_entry(&list, struct napi_struct, poll_list);
5212 budget -= napi_poll(n, &repoll);
5213
d75b1ade 5214 /* If softirq window is exhausted then punt.
24f8b238
SH
5215 * Allow this to run for 2 jiffies since which will allow
5216 * an average latency of 1.5/HZ.
bea3348e 5217 */
ceb8d5bf
HX
5218 if (unlikely(budget <= 0 ||
5219 time_after_eq(jiffies, time_limit))) {
5220 sd->time_squeeze++;
5221 break;
5222 }
1da177e4 5223 }
d75b1ade 5224
795bb1c0 5225 __kfree_skb_flush();
d75b1ade
ED
5226 local_irq_disable();
5227
5228 list_splice_tail_init(&sd->poll_list, &list);
5229 list_splice_tail(&repoll, &list);
5230 list_splice(&list, &sd->poll_list);
5231 if (!list_empty(&sd->poll_list))
5232 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5233
e326bed2 5234 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5235}
5236
aa9d8560 5237struct netdev_adjacent {
9ff162a8 5238 struct net_device *dev;
5d261913
VF
5239
5240 /* upper master flag, there can only be one master device per list */
9ff162a8 5241 bool master;
5d261913 5242
5d261913
VF
5243 /* counter for the number of times this device was added to us */
5244 u16 ref_nr;
5245
402dae96
VF
5246 /* private field for the users */
5247 void *private;
5248
9ff162a8
JP
5249 struct list_head list;
5250 struct rcu_head rcu;
9ff162a8
JP
5251};
5252
6ea29da1 5253static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5254 struct list_head *adj_list)
9ff162a8 5255{
5d261913 5256 struct netdev_adjacent *adj;
5d261913 5257
2f268f12 5258 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5259 if (adj->dev == adj_dev)
5260 return adj;
9ff162a8
JP
5261 }
5262 return NULL;
5263}
5264
5265/**
5266 * netdev_has_upper_dev - Check if device is linked to an upper device
5267 * @dev: device
5268 * @upper_dev: upper device to check
5269 *
5270 * Find out if a device is linked to specified upper device and return true
5271 * in case it is. Note that this checks only immediate upper device,
5272 * not through a complete stack of devices. The caller must hold the RTNL lock.
5273 */
5274bool netdev_has_upper_dev(struct net_device *dev,
5275 struct net_device *upper_dev)
5276{
5277 ASSERT_RTNL();
5278
6ea29da1 5279 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5280}
5281EXPORT_SYMBOL(netdev_has_upper_dev);
5282
5283/**
5284 * netdev_has_any_upper_dev - Check if device is linked to some device
5285 * @dev: device
5286 *
5287 * Find out if a device is linked to an upper device and return true in case
5288 * it is. The caller must hold the RTNL lock.
5289 */
1d143d9f 5290static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5291{
5292 ASSERT_RTNL();
5293
2f268f12 5294 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5295}
9ff162a8
JP
5296
5297/**
5298 * netdev_master_upper_dev_get - Get master upper device
5299 * @dev: device
5300 *
5301 * Find a master upper device and return pointer to it or NULL in case
5302 * it's not there. The caller must hold the RTNL lock.
5303 */
5304struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5305{
aa9d8560 5306 struct netdev_adjacent *upper;
9ff162a8
JP
5307
5308 ASSERT_RTNL();
5309
2f268f12 5310 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5311 return NULL;
5312
2f268f12 5313 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5314 struct netdev_adjacent, list);
9ff162a8
JP
5315 if (likely(upper->master))
5316 return upper->dev;
5317 return NULL;
5318}
5319EXPORT_SYMBOL(netdev_master_upper_dev_get);
5320
b6ccba4c
VF
5321void *netdev_adjacent_get_private(struct list_head *adj_list)
5322{
5323 struct netdev_adjacent *adj;
5324
5325 adj = list_entry(adj_list, struct netdev_adjacent, list);
5326
5327 return adj->private;
5328}
5329EXPORT_SYMBOL(netdev_adjacent_get_private);
5330
44a40855
VY
5331/**
5332 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5333 * @dev: device
5334 * @iter: list_head ** of the current position
5335 *
5336 * Gets the next device from the dev's upper list, starting from iter
5337 * position. The caller must hold RCU read lock.
5338 */
5339struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5340 struct list_head **iter)
5341{
5342 struct netdev_adjacent *upper;
5343
5344 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5345
5346 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5347
5348 if (&upper->list == &dev->adj_list.upper)
5349 return NULL;
5350
5351 *iter = &upper->list;
5352
5353 return upper->dev;
5354}
5355EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5356
31088a11
VF
5357/**
5358 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5359 * @dev: device
5360 * @iter: list_head ** of the current position
5361 *
5362 * Gets the next device from the dev's upper list, starting from iter
5363 * position. The caller must hold RCU read lock.
5364 */
2f268f12
VF
5365struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5366 struct list_head **iter)
48311f46
VF
5367{
5368 struct netdev_adjacent *upper;
5369
85328240 5370 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5371
5372 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5373
2f268f12 5374 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5375 return NULL;
5376
5377 *iter = &upper->list;
5378
5379 return upper->dev;
5380}
2f268f12 5381EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5382
31088a11
VF
5383/**
5384 * netdev_lower_get_next_private - Get the next ->private from the
5385 * lower neighbour list
5386 * @dev: device
5387 * @iter: list_head ** of the current position
5388 *
5389 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5390 * list, starting from iter position. The caller must hold either hold the
5391 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5392 * list will remain unchanged.
31088a11
VF
5393 */
5394void *netdev_lower_get_next_private(struct net_device *dev,
5395 struct list_head **iter)
5396{
5397 struct netdev_adjacent *lower;
5398
5399 lower = list_entry(*iter, struct netdev_adjacent, list);
5400
5401 if (&lower->list == &dev->adj_list.lower)
5402 return NULL;
5403
6859e7df 5404 *iter = lower->list.next;
31088a11
VF
5405
5406 return lower->private;
5407}
5408EXPORT_SYMBOL(netdev_lower_get_next_private);
5409
5410/**
5411 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5412 * lower neighbour list, RCU
5413 * variant
5414 * @dev: device
5415 * @iter: list_head ** of the current position
5416 *
5417 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5418 * list, starting from iter position. The caller must hold RCU read lock.
5419 */
5420void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5421 struct list_head **iter)
5422{
5423 struct netdev_adjacent *lower;
5424
5425 WARN_ON_ONCE(!rcu_read_lock_held());
5426
5427 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5428
5429 if (&lower->list == &dev->adj_list.lower)
5430 return NULL;
5431
6859e7df 5432 *iter = &lower->list;
31088a11
VF
5433
5434 return lower->private;
5435}
5436EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5437
4085ebe8
VY
5438/**
5439 * netdev_lower_get_next - Get the next device from the lower neighbour
5440 * list
5441 * @dev: device
5442 * @iter: list_head ** of the current position
5443 *
5444 * Gets the next netdev_adjacent from the dev's lower neighbour
5445 * list, starting from iter position. The caller must hold RTNL lock or
5446 * its own locking that guarantees that the neighbour lower
b469139e 5447 * list will remain unchanged.
4085ebe8
VY
5448 */
5449void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5450{
5451 struct netdev_adjacent *lower;
5452
cfdd28be 5453 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5454
5455 if (&lower->list == &dev->adj_list.lower)
5456 return NULL;
5457
cfdd28be 5458 *iter = lower->list.next;
4085ebe8
VY
5459
5460 return lower->dev;
5461}
5462EXPORT_SYMBOL(netdev_lower_get_next);
5463
7ce856aa
JP
5464/**
5465 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5466 * @dev: device
5467 * @iter: list_head ** of the current position
5468 *
5469 * Gets the next netdev_adjacent from the dev's all lower neighbour
5470 * list, starting from iter position. The caller must hold RTNL lock or
5471 * its own locking that guarantees that the neighbour all lower
5472 * list will remain unchanged.
5473 */
5474struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5475{
5476 struct netdev_adjacent *lower;
5477
5478 lower = list_entry(*iter, struct netdev_adjacent, list);
5479
5480 if (&lower->list == &dev->all_adj_list.lower)
5481 return NULL;
5482
5483 *iter = lower->list.next;
5484
5485 return lower->dev;
5486}
5487EXPORT_SYMBOL(netdev_all_lower_get_next);
5488
5489/**
5490 * netdev_all_lower_get_next_rcu - Get the next device from all
5491 * lower neighbour list, RCU variant
5492 * @dev: device
5493 * @iter: list_head ** of the current position
5494 *
5495 * Gets the next netdev_adjacent from the dev's all lower neighbour
5496 * list, starting from iter position. The caller must hold RCU read lock.
5497 */
5498struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5499 struct list_head **iter)
5500{
5501 struct netdev_adjacent *lower;
5502
5503 lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5504 struct netdev_adjacent, list);
5505
5506 return lower ? lower->dev : NULL;
5507}
5508EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5509
e001bfad 5510/**
5511 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5512 * lower neighbour list, RCU
5513 * variant
5514 * @dev: device
5515 *
5516 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5517 * list. The caller must hold RCU read lock.
5518 */
5519void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5520{
5521 struct netdev_adjacent *lower;
5522
5523 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5524 struct netdev_adjacent, list);
5525 if (lower)
5526 return lower->private;
5527 return NULL;
5528}
5529EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5530
9ff162a8
JP
5531/**
5532 * netdev_master_upper_dev_get_rcu - Get master upper device
5533 * @dev: device
5534 *
5535 * Find a master upper device and return pointer to it or NULL in case
5536 * it's not there. The caller must hold the RCU read lock.
5537 */
5538struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5539{
aa9d8560 5540 struct netdev_adjacent *upper;
9ff162a8 5541
2f268f12 5542 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5543 struct netdev_adjacent, list);
9ff162a8
JP
5544 if (upper && likely(upper->master))
5545 return upper->dev;
5546 return NULL;
5547}
5548EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5549
0a59f3a9 5550static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5551 struct net_device *adj_dev,
5552 struct list_head *dev_list)
5553{
5554 char linkname[IFNAMSIZ+7];
5555 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5556 "upper_%s" : "lower_%s", adj_dev->name);
5557 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5558 linkname);
5559}
0a59f3a9 5560static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5561 char *name,
5562 struct list_head *dev_list)
5563{
5564 char linkname[IFNAMSIZ+7];
5565 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5566 "upper_%s" : "lower_%s", name);
5567 sysfs_remove_link(&(dev->dev.kobj), linkname);
5568}
5569
7ce64c79
AF
5570static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5571 struct net_device *adj_dev,
5572 struct list_head *dev_list)
5573{
5574 return (dev_list == &dev->adj_list.upper ||
5575 dev_list == &dev->adj_list.lower) &&
5576 net_eq(dev_net(dev), dev_net(adj_dev));
5577}
3ee32707 5578
5d261913
VF
5579static int __netdev_adjacent_dev_insert(struct net_device *dev,
5580 struct net_device *adj_dev,
7863c054 5581 struct list_head *dev_list,
402dae96 5582 void *private, bool master)
5d261913
VF
5583{
5584 struct netdev_adjacent *adj;
842d67a7 5585 int ret;
5d261913 5586
6ea29da1 5587 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5588
5589 if (adj) {
5d261913
VF
5590 adj->ref_nr++;
5591 return 0;
5592 }
5593
5594 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5595 if (!adj)
5596 return -ENOMEM;
5597
5598 adj->dev = adj_dev;
5599 adj->master = master;
5d261913 5600 adj->ref_nr = 1;
402dae96 5601 adj->private = private;
5d261913 5602 dev_hold(adj_dev);
2f268f12
VF
5603
5604 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5605 adj_dev->name, dev->name, adj_dev->name);
5d261913 5606
7ce64c79 5607 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5608 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5609 if (ret)
5610 goto free_adj;
5611 }
5612
7863c054 5613 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5614 if (master) {
5615 ret = sysfs_create_link(&(dev->dev.kobj),
5616 &(adj_dev->dev.kobj), "master");
5617 if (ret)
5831d66e 5618 goto remove_symlinks;
842d67a7 5619
7863c054 5620 list_add_rcu(&adj->list, dev_list);
842d67a7 5621 } else {
7863c054 5622 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5623 }
5d261913
VF
5624
5625 return 0;
842d67a7 5626
5831d66e 5627remove_symlinks:
7ce64c79 5628 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5629 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5630free_adj:
5631 kfree(adj);
974daef7 5632 dev_put(adj_dev);
842d67a7
VF
5633
5634 return ret;
5d261913
VF
5635}
5636
1d143d9f 5637static void __netdev_adjacent_dev_remove(struct net_device *dev,
5638 struct net_device *adj_dev,
5639 struct list_head *dev_list)
5d261913
VF
5640{
5641 struct netdev_adjacent *adj;
5642
6ea29da1 5643 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5644
2f268f12
VF
5645 if (!adj) {
5646 pr_err("tried to remove device %s from %s\n",
5647 dev->name, adj_dev->name);
5d261913 5648 BUG();
2f268f12 5649 }
5d261913
VF
5650
5651 if (adj->ref_nr > 1) {
2f268f12
VF
5652 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5653 adj->ref_nr-1);
5d261913
VF
5654 adj->ref_nr--;
5655 return;
5656 }
5657
842d67a7
VF
5658 if (adj->master)
5659 sysfs_remove_link(&(dev->dev.kobj), "master");
5660
7ce64c79 5661 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5662 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5663
5d261913 5664 list_del_rcu(&adj->list);
2f268f12
VF
5665 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5666 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5667 dev_put(adj_dev);
5668 kfree_rcu(adj, rcu);
5669}
5670
1d143d9f 5671static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5672 struct net_device *upper_dev,
5673 struct list_head *up_list,
5674 struct list_head *down_list,
5675 void *private, bool master)
5d261913
VF
5676{
5677 int ret;
5678
402dae96
VF
5679 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5680 master);
5d261913
VF
5681 if (ret)
5682 return ret;
5683
402dae96
VF
5684 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5685 false);
5d261913 5686 if (ret) {
2f268f12 5687 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5688 return ret;
5689 }
5690
5691 return 0;
5692}
5693
1d143d9f 5694static int __netdev_adjacent_dev_link(struct net_device *dev,
5695 struct net_device *upper_dev)
5d261913 5696{
2f268f12
VF
5697 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5698 &dev->all_adj_list.upper,
5699 &upper_dev->all_adj_list.lower,
402dae96 5700 NULL, false);
5d261913
VF
5701}
5702
1d143d9f 5703static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5704 struct net_device *upper_dev,
5705 struct list_head *up_list,
5706 struct list_head *down_list)
5d261913 5707{
2f268f12
VF
5708 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5709 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5710}
5711
1d143d9f 5712static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5713 struct net_device *upper_dev)
5d261913 5714{
2f268f12
VF
5715 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5716 &dev->all_adj_list.upper,
5717 &upper_dev->all_adj_list.lower);
5718}
5719
1d143d9f 5720static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5721 struct net_device *upper_dev,
5722 void *private, bool master)
2f268f12
VF
5723{
5724 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5725
5726 if (ret)
5727 return ret;
5728
5729 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5730 &dev->adj_list.upper,
5731 &upper_dev->adj_list.lower,
402dae96 5732 private, master);
2f268f12
VF
5733 if (ret) {
5734 __netdev_adjacent_dev_unlink(dev, upper_dev);
5735 return ret;
5736 }
5737
5738 return 0;
5d261913
VF
5739}
5740
1d143d9f 5741static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5742 struct net_device *upper_dev)
2f268f12
VF
5743{
5744 __netdev_adjacent_dev_unlink(dev, upper_dev);
5745 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5746 &dev->adj_list.upper,
5747 &upper_dev->adj_list.lower);
5748}
5d261913 5749
9ff162a8 5750static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5751 struct net_device *upper_dev, bool master,
29bf24af 5752 void *upper_priv, void *upper_info)
9ff162a8 5753{
0e4ead9d 5754 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5755 struct netdev_adjacent *i, *j, *to_i, *to_j;
5756 int ret = 0;
9ff162a8
JP
5757
5758 ASSERT_RTNL();
5759
5760 if (dev == upper_dev)
5761 return -EBUSY;
5762
5763 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5764 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5765 return -EBUSY;
5766
6ea29da1 5767 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5768 return -EEXIST;
5769
5770 if (master && netdev_master_upper_dev_get(dev))
5771 return -EBUSY;
5772
0e4ead9d
JP
5773 changeupper_info.upper_dev = upper_dev;
5774 changeupper_info.master = master;
5775 changeupper_info.linking = true;
29bf24af 5776 changeupper_info.upper_info = upper_info;
0e4ead9d 5777
573c7ba0
JP
5778 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5779 &changeupper_info.info);
5780 ret = notifier_to_errno(ret);
5781 if (ret)
5782 return ret;
5783
6dffb044 5784 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5785 master);
5d261913
VF
5786 if (ret)
5787 return ret;
9ff162a8 5788
5d261913 5789 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5790 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5791 * versa, and don't forget the devices itself. All of these
5792 * links are non-neighbours.
5793 */
2f268f12
VF
5794 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5795 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5796 pr_debug("Interlinking %s with %s, non-neighbour\n",
5797 i->dev->name, j->dev->name);
5d261913
VF
5798 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5799 if (ret)
5800 goto rollback_mesh;
5801 }
5802 }
5803
5804 /* add dev to every upper_dev's upper device */
2f268f12
VF
5805 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5806 pr_debug("linking %s's upper device %s with %s\n",
5807 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5808 ret = __netdev_adjacent_dev_link(dev, i->dev);
5809 if (ret)
5810 goto rollback_upper_mesh;
5811 }
5812
5813 /* add upper_dev to every dev's lower device */
2f268f12
VF
5814 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5815 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5816 i->dev->name, upper_dev->name);
5d261913
VF
5817 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5818 if (ret)
5819 goto rollback_lower_mesh;
5820 }
9ff162a8 5821
b03804e7
IS
5822 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5823 &changeupper_info.info);
5824 ret = notifier_to_errno(ret);
5825 if (ret)
5826 goto rollback_lower_mesh;
5827
9ff162a8 5828 return 0;
5d261913
VF
5829
5830rollback_lower_mesh:
5831 to_i = i;
2f268f12 5832 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5833 if (i == to_i)
5834 break;
5835 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5836 }
5837
5838 i = NULL;
5839
5840rollback_upper_mesh:
5841 to_i = i;
2f268f12 5842 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5843 if (i == to_i)
5844 break;
5845 __netdev_adjacent_dev_unlink(dev, i->dev);
5846 }
5847
5848 i = j = NULL;
5849
5850rollback_mesh:
5851 to_i = i;
5852 to_j = j;
2f268f12
VF
5853 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5854 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5855 if (i == to_i && j == to_j)
5856 break;
5857 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5858 }
5859 if (i == to_i)
5860 break;
5861 }
5862
2f268f12 5863 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5864
5865 return ret;
9ff162a8
JP
5866}
5867
5868/**
5869 * netdev_upper_dev_link - Add a link to the upper device
5870 * @dev: device
5871 * @upper_dev: new upper device
5872 *
5873 * Adds a link to device which is upper to this one. The caller must hold
5874 * the RTNL lock. On a failure a negative errno code is returned.
5875 * On success the reference counts are adjusted and the function
5876 * returns zero.
5877 */
5878int netdev_upper_dev_link(struct net_device *dev,
5879 struct net_device *upper_dev)
5880{
29bf24af 5881 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5882}
5883EXPORT_SYMBOL(netdev_upper_dev_link);
5884
5885/**
5886 * netdev_master_upper_dev_link - Add a master link to the upper device
5887 * @dev: device
5888 * @upper_dev: new upper device
6dffb044 5889 * @upper_priv: upper device private
29bf24af 5890 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5891 *
5892 * Adds a link to device which is upper to this one. In this case, only
5893 * one master upper device can be linked, although other non-master devices
5894 * might be linked as well. The caller must hold the RTNL lock.
5895 * On a failure a negative errno code is returned. On success the reference
5896 * counts are adjusted and the function returns zero.
5897 */
5898int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5899 struct net_device *upper_dev,
29bf24af 5900 void *upper_priv, void *upper_info)
9ff162a8 5901{
29bf24af
JP
5902 return __netdev_upper_dev_link(dev, upper_dev, true,
5903 upper_priv, upper_info);
9ff162a8
JP
5904}
5905EXPORT_SYMBOL(netdev_master_upper_dev_link);
5906
5907/**
5908 * netdev_upper_dev_unlink - Removes a link to upper device
5909 * @dev: device
5910 * @upper_dev: new upper device
5911 *
5912 * Removes a link to device which is upper to this one. The caller must hold
5913 * the RTNL lock.
5914 */
5915void netdev_upper_dev_unlink(struct net_device *dev,
5916 struct net_device *upper_dev)
5917{
0e4ead9d 5918 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5919 struct netdev_adjacent *i, *j;
9ff162a8
JP
5920 ASSERT_RTNL();
5921
0e4ead9d
JP
5922 changeupper_info.upper_dev = upper_dev;
5923 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5924 changeupper_info.linking = false;
5925
573c7ba0
JP
5926 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5927 &changeupper_info.info);
5928
2f268f12 5929 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5930
5931 /* Here is the tricky part. We must remove all dev's lower
5932 * devices from all upper_dev's upper devices and vice
5933 * versa, to maintain the graph relationship.
5934 */
2f268f12
VF
5935 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5936 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5937 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5938
5939 /* remove also the devices itself from lower/upper device
5940 * list
5941 */
2f268f12 5942 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5943 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5944
2f268f12 5945 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5946 __netdev_adjacent_dev_unlink(dev, i->dev);
5947
0e4ead9d
JP
5948 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5949 &changeupper_info.info);
9ff162a8
JP
5950}
5951EXPORT_SYMBOL(netdev_upper_dev_unlink);
5952
61bd3857
MS
5953/**
5954 * netdev_bonding_info_change - Dispatch event about slave change
5955 * @dev: device
4a26e453 5956 * @bonding_info: info to dispatch
61bd3857
MS
5957 *
5958 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5959 * The caller must hold the RTNL lock.
5960 */
5961void netdev_bonding_info_change(struct net_device *dev,
5962 struct netdev_bonding_info *bonding_info)
5963{
5964 struct netdev_notifier_bonding_info info;
5965
5966 memcpy(&info.bonding_info, bonding_info,
5967 sizeof(struct netdev_bonding_info));
5968 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5969 &info.info);
5970}
5971EXPORT_SYMBOL(netdev_bonding_info_change);
5972
2ce1ee17 5973static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5974{
5975 struct netdev_adjacent *iter;
5976
5977 struct net *net = dev_net(dev);
5978
5979 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5980 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5981 continue;
5982 netdev_adjacent_sysfs_add(iter->dev, dev,
5983 &iter->dev->adj_list.lower);
5984 netdev_adjacent_sysfs_add(dev, iter->dev,
5985 &dev->adj_list.upper);
5986 }
5987
5988 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5989 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5990 continue;
5991 netdev_adjacent_sysfs_add(iter->dev, dev,
5992 &iter->dev->adj_list.upper);
5993 netdev_adjacent_sysfs_add(dev, iter->dev,
5994 &dev->adj_list.lower);
5995 }
5996}
5997
2ce1ee17 5998static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5999{
6000 struct netdev_adjacent *iter;
6001
6002 struct net *net = dev_net(dev);
6003
6004 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6005 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6006 continue;
6007 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6008 &iter->dev->adj_list.lower);
6009 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6010 &dev->adj_list.upper);
6011 }
6012
6013 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6014 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6015 continue;
6016 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6017 &iter->dev->adj_list.upper);
6018 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6019 &dev->adj_list.lower);
6020 }
6021}
6022
5bb025fa 6023void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6024{
5bb025fa 6025 struct netdev_adjacent *iter;
402dae96 6026
4c75431a
AF
6027 struct net *net = dev_net(dev);
6028
5bb025fa 6029 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6030 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6031 continue;
5bb025fa
VF
6032 netdev_adjacent_sysfs_del(iter->dev, oldname,
6033 &iter->dev->adj_list.lower);
6034 netdev_adjacent_sysfs_add(iter->dev, dev,
6035 &iter->dev->adj_list.lower);
6036 }
402dae96 6037
5bb025fa 6038 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6039 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6040 continue;
5bb025fa
VF
6041 netdev_adjacent_sysfs_del(iter->dev, oldname,
6042 &iter->dev->adj_list.upper);
6043 netdev_adjacent_sysfs_add(iter->dev, dev,
6044 &iter->dev->adj_list.upper);
6045 }
402dae96 6046}
402dae96
VF
6047
6048void *netdev_lower_dev_get_private(struct net_device *dev,
6049 struct net_device *lower_dev)
6050{
6051 struct netdev_adjacent *lower;
6052
6053 if (!lower_dev)
6054 return NULL;
6ea29da1 6055 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6056 if (!lower)
6057 return NULL;
6058
6059 return lower->private;
6060}
6061EXPORT_SYMBOL(netdev_lower_dev_get_private);
6062
4085ebe8 6063
952fcfd0 6064int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6065{
6066 struct net_device *lower = NULL;
6067 struct list_head *iter;
6068 int max_nest = -1;
6069 int nest;
6070
6071 ASSERT_RTNL();
6072
6073 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6074 nest = dev_get_nest_level(lower);
4085ebe8
VY
6075 if (max_nest < nest)
6076 max_nest = nest;
6077 }
6078
952fcfd0 6079 return max_nest + 1;
4085ebe8
VY
6080}
6081EXPORT_SYMBOL(dev_get_nest_level);
6082
04d48266
JP
6083/**
6084 * netdev_lower_change - Dispatch event about lower device state change
6085 * @lower_dev: device
6086 * @lower_state_info: state to dispatch
6087 *
6088 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6089 * The caller must hold the RTNL lock.
6090 */
6091void netdev_lower_state_changed(struct net_device *lower_dev,
6092 void *lower_state_info)
6093{
6094 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6095
6096 ASSERT_RTNL();
6097 changelowerstate_info.lower_state_info = lower_state_info;
6098 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6099 &changelowerstate_info.info);
6100}
6101EXPORT_SYMBOL(netdev_lower_state_changed);
6102
18bfb924
JP
6103int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6104 struct neighbour *n)
6105{
6106 struct net_device *lower_dev, *stop_dev;
6107 struct list_head *iter;
6108 int err;
6109
6110 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6111 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6112 continue;
6113 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6114 if (err) {
6115 stop_dev = lower_dev;
6116 goto rollback;
6117 }
6118 }
6119 return 0;
6120
6121rollback:
6122 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6123 if (lower_dev == stop_dev)
6124 break;
6125 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6126 continue;
6127 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6128 }
6129 return err;
6130}
6131EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6132
6133void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6134 struct neighbour *n)
6135{
6136 struct net_device *lower_dev;
6137 struct list_head *iter;
6138
6139 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6140 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6141 continue;
6142 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6143 }
6144}
6145EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6146
b6c40d68
PM
6147static void dev_change_rx_flags(struct net_device *dev, int flags)
6148{
d314774c
SH
6149 const struct net_device_ops *ops = dev->netdev_ops;
6150
d2615bf4 6151 if (ops->ndo_change_rx_flags)
d314774c 6152 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6153}
6154
991fb3f7 6155static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6156{
b536db93 6157 unsigned int old_flags = dev->flags;
d04a48b0
EB
6158 kuid_t uid;
6159 kgid_t gid;
1da177e4 6160
24023451
PM
6161 ASSERT_RTNL();
6162
dad9b335
WC
6163 dev->flags |= IFF_PROMISC;
6164 dev->promiscuity += inc;
6165 if (dev->promiscuity == 0) {
6166 /*
6167 * Avoid overflow.
6168 * If inc causes overflow, untouch promisc and return error.
6169 */
6170 if (inc < 0)
6171 dev->flags &= ~IFF_PROMISC;
6172 else {
6173 dev->promiscuity -= inc;
7b6cd1ce
JP
6174 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6175 dev->name);
dad9b335
WC
6176 return -EOVERFLOW;
6177 }
6178 }
52609c0b 6179 if (dev->flags != old_flags) {
7b6cd1ce
JP
6180 pr_info("device %s %s promiscuous mode\n",
6181 dev->name,
6182 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6183 if (audit_enabled) {
6184 current_uid_gid(&uid, &gid);
7759db82
KHK
6185 audit_log(current->audit_context, GFP_ATOMIC,
6186 AUDIT_ANOM_PROMISCUOUS,
6187 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6188 dev->name, (dev->flags & IFF_PROMISC),
6189 (old_flags & IFF_PROMISC),
e1760bd5 6190 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6191 from_kuid(&init_user_ns, uid),
6192 from_kgid(&init_user_ns, gid),
7759db82 6193 audit_get_sessionid(current));
8192b0c4 6194 }
24023451 6195
b6c40d68 6196 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6197 }
991fb3f7
ND
6198 if (notify)
6199 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6200 return 0;
1da177e4
LT
6201}
6202
4417da66
PM
6203/**
6204 * dev_set_promiscuity - update promiscuity count on a device
6205 * @dev: device
6206 * @inc: modifier
6207 *
6208 * Add or remove promiscuity from a device. While the count in the device
6209 * remains above zero the interface remains promiscuous. Once it hits zero
6210 * the device reverts back to normal filtering operation. A negative inc
6211 * value is used to drop promiscuity on the device.
dad9b335 6212 * Return 0 if successful or a negative errno code on error.
4417da66 6213 */
dad9b335 6214int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6215{
b536db93 6216 unsigned int old_flags = dev->flags;
dad9b335 6217 int err;
4417da66 6218
991fb3f7 6219 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6220 if (err < 0)
dad9b335 6221 return err;
4417da66
PM
6222 if (dev->flags != old_flags)
6223 dev_set_rx_mode(dev);
dad9b335 6224 return err;
4417da66 6225}
d1b19dff 6226EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6227
991fb3f7 6228static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6229{
991fb3f7 6230 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6231
24023451
PM
6232 ASSERT_RTNL();
6233
1da177e4 6234 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6235 dev->allmulti += inc;
6236 if (dev->allmulti == 0) {
6237 /*
6238 * Avoid overflow.
6239 * If inc causes overflow, untouch allmulti and return error.
6240 */
6241 if (inc < 0)
6242 dev->flags &= ~IFF_ALLMULTI;
6243 else {
6244 dev->allmulti -= inc;
7b6cd1ce
JP
6245 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6246 dev->name);
dad9b335
WC
6247 return -EOVERFLOW;
6248 }
6249 }
24023451 6250 if (dev->flags ^ old_flags) {
b6c40d68 6251 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6252 dev_set_rx_mode(dev);
991fb3f7
ND
6253 if (notify)
6254 __dev_notify_flags(dev, old_flags,
6255 dev->gflags ^ old_gflags);
24023451 6256 }
dad9b335 6257 return 0;
4417da66 6258}
991fb3f7
ND
6259
6260/**
6261 * dev_set_allmulti - update allmulti count on a device
6262 * @dev: device
6263 * @inc: modifier
6264 *
6265 * Add or remove reception of all multicast frames to a device. While the
6266 * count in the device remains above zero the interface remains listening
6267 * to all interfaces. Once it hits zero the device reverts back to normal
6268 * filtering operation. A negative @inc value is used to drop the counter
6269 * when releasing a resource needing all multicasts.
6270 * Return 0 if successful or a negative errno code on error.
6271 */
6272
6273int dev_set_allmulti(struct net_device *dev, int inc)
6274{
6275 return __dev_set_allmulti(dev, inc, true);
6276}
d1b19dff 6277EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6278
6279/*
6280 * Upload unicast and multicast address lists to device and
6281 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6282 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6283 * are present.
6284 */
6285void __dev_set_rx_mode(struct net_device *dev)
6286{
d314774c
SH
6287 const struct net_device_ops *ops = dev->netdev_ops;
6288
4417da66
PM
6289 /* dev_open will call this function so the list will stay sane. */
6290 if (!(dev->flags&IFF_UP))
6291 return;
6292
6293 if (!netif_device_present(dev))
40b77c94 6294 return;
4417da66 6295
01789349 6296 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6297 /* Unicast addresses changes may only happen under the rtnl,
6298 * therefore calling __dev_set_promiscuity here is safe.
6299 */
32e7bfc4 6300 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6301 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6302 dev->uc_promisc = true;
32e7bfc4 6303 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6304 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6305 dev->uc_promisc = false;
4417da66 6306 }
4417da66 6307 }
01789349
JP
6308
6309 if (ops->ndo_set_rx_mode)
6310 ops->ndo_set_rx_mode(dev);
4417da66
PM
6311}
6312
6313void dev_set_rx_mode(struct net_device *dev)
6314{
b9e40857 6315 netif_addr_lock_bh(dev);
4417da66 6316 __dev_set_rx_mode(dev);
b9e40857 6317 netif_addr_unlock_bh(dev);
1da177e4
LT
6318}
6319
f0db275a
SH
6320/**
6321 * dev_get_flags - get flags reported to userspace
6322 * @dev: device
6323 *
6324 * Get the combination of flag bits exported through APIs to userspace.
6325 */
95c96174 6326unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6327{
95c96174 6328 unsigned int flags;
1da177e4
LT
6329
6330 flags = (dev->flags & ~(IFF_PROMISC |
6331 IFF_ALLMULTI |
b00055aa
SR
6332 IFF_RUNNING |
6333 IFF_LOWER_UP |
6334 IFF_DORMANT)) |
1da177e4
LT
6335 (dev->gflags & (IFF_PROMISC |
6336 IFF_ALLMULTI));
6337
b00055aa
SR
6338 if (netif_running(dev)) {
6339 if (netif_oper_up(dev))
6340 flags |= IFF_RUNNING;
6341 if (netif_carrier_ok(dev))
6342 flags |= IFF_LOWER_UP;
6343 if (netif_dormant(dev))
6344 flags |= IFF_DORMANT;
6345 }
1da177e4
LT
6346
6347 return flags;
6348}
d1b19dff 6349EXPORT_SYMBOL(dev_get_flags);
1da177e4 6350
bd380811 6351int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6352{
b536db93 6353 unsigned int old_flags = dev->flags;
bd380811 6354 int ret;
1da177e4 6355
24023451
PM
6356 ASSERT_RTNL();
6357
1da177e4
LT
6358 /*
6359 * Set the flags on our device.
6360 */
6361
6362 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6363 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6364 IFF_AUTOMEDIA)) |
6365 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6366 IFF_ALLMULTI));
6367
6368 /*
6369 * Load in the correct multicast list now the flags have changed.
6370 */
6371
b6c40d68
PM
6372 if ((old_flags ^ flags) & IFF_MULTICAST)
6373 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6374
4417da66 6375 dev_set_rx_mode(dev);
1da177e4
LT
6376
6377 /*
6378 * Have we downed the interface. We handle IFF_UP ourselves
6379 * according to user attempts to set it, rather than blindly
6380 * setting it.
6381 */
6382
6383 ret = 0;
d215d10f 6384 if ((old_flags ^ flags) & IFF_UP)
bd380811 6385 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6386
1da177e4 6387 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6388 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6389 unsigned int old_flags = dev->flags;
d1b19dff 6390
1da177e4 6391 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6392
6393 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6394 if (dev->flags != old_flags)
6395 dev_set_rx_mode(dev);
1da177e4
LT
6396 }
6397
6398 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6399 is important. Some (broken) drivers set IFF_PROMISC, when
6400 IFF_ALLMULTI is requested not asking us and not reporting.
6401 */
6402 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6403 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6404
1da177e4 6405 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6406 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6407 }
6408
bd380811
PM
6409 return ret;
6410}
6411
a528c219
ND
6412void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6413 unsigned int gchanges)
bd380811
PM
6414{
6415 unsigned int changes = dev->flags ^ old_flags;
6416
a528c219 6417 if (gchanges)
7f294054 6418 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6419
bd380811
PM
6420 if (changes & IFF_UP) {
6421 if (dev->flags & IFF_UP)
6422 call_netdevice_notifiers(NETDEV_UP, dev);
6423 else
6424 call_netdevice_notifiers(NETDEV_DOWN, dev);
6425 }
6426
6427 if (dev->flags & IFF_UP &&
be9efd36
JP
6428 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6429 struct netdev_notifier_change_info change_info;
6430
6431 change_info.flags_changed = changes;
6432 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6433 &change_info.info);
6434 }
bd380811
PM
6435}
6436
6437/**
6438 * dev_change_flags - change device settings
6439 * @dev: device
6440 * @flags: device state flags
6441 *
6442 * Change settings on device based state flags. The flags are
6443 * in the userspace exported format.
6444 */
b536db93 6445int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6446{
b536db93 6447 int ret;
991fb3f7 6448 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6449
6450 ret = __dev_change_flags(dev, flags);
6451 if (ret < 0)
6452 return ret;
6453
991fb3f7 6454 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6455 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6456 return ret;
6457}
d1b19dff 6458EXPORT_SYMBOL(dev_change_flags);
1da177e4 6459
2315dc91
VF
6460static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6461{
6462 const struct net_device_ops *ops = dev->netdev_ops;
6463
6464 if (ops->ndo_change_mtu)
6465 return ops->ndo_change_mtu(dev, new_mtu);
6466
6467 dev->mtu = new_mtu;
6468 return 0;
6469}
6470
f0db275a
SH
6471/**
6472 * dev_set_mtu - Change maximum transfer unit
6473 * @dev: device
6474 * @new_mtu: new transfer unit
6475 *
6476 * Change the maximum transfer size of the network device.
6477 */
1da177e4
LT
6478int dev_set_mtu(struct net_device *dev, int new_mtu)
6479{
2315dc91 6480 int err, orig_mtu;
1da177e4
LT
6481
6482 if (new_mtu == dev->mtu)
6483 return 0;
6484
6485 /* MTU must be positive. */
6486 if (new_mtu < 0)
6487 return -EINVAL;
6488
6489 if (!netif_device_present(dev))
6490 return -ENODEV;
6491
1d486bfb
VF
6492 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6493 err = notifier_to_errno(err);
6494 if (err)
6495 return err;
d314774c 6496
2315dc91
VF
6497 orig_mtu = dev->mtu;
6498 err = __dev_set_mtu(dev, new_mtu);
d314774c 6499
2315dc91
VF
6500 if (!err) {
6501 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6502 err = notifier_to_errno(err);
6503 if (err) {
6504 /* setting mtu back and notifying everyone again,
6505 * so that they have a chance to revert changes.
6506 */
6507 __dev_set_mtu(dev, orig_mtu);
6508 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6509 }
6510 }
1da177e4
LT
6511 return err;
6512}
d1b19dff 6513EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6514
cbda10fa
VD
6515/**
6516 * dev_set_group - Change group this device belongs to
6517 * @dev: device
6518 * @new_group: group this device should belong to
6519 */
6520void dev_set_group(struct net_device *dev, int new_group)
6521{
6522 dev->group = new_group;
6523}
6524EXPORT_SYMBOL(dev_set_group);
6525
f0db275a
SH
6526/**
6527 * dev_set_mac_address - Change Media Access Control Address
6528 * @dev: device
6529 * @sa: new address
6530 *
6531 * Change the hardware (MAC) address of the device
6532 */
1da177e4
LT
6533int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6534{
d314774c 6535 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6536 int err;
6537
d314774c 6538 if (!ops->ndo_set_mac_address)
1da177e4
LT
6539 return -EOPNOTSUPP;
6540 if (sa->sa_family != dev->type)
6541 return -EINVAL;
6542 if (!netif_device_present(dev))
6543 return -ENODEV;
d314774c 6544 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6545 if (err)
6546 return err;
fbdeca2d 6547 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6548 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6549 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6550 return 0;
1da177e4 6551}
d1b19dff 6552EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6553
4bf84c35
JP
6554/**
6555 * dev_change_carrier - Change device carrier
6556 * @dev: device
691b3b7e 6557 * @new_carrier: new value
4bf84c35
JP
6558 *
6559 * Change device carrier
6560 */
6561int dev_change_carrier(struct net_device *dev, bool new_carrier)
6562{
6563 const struct net_device_ops *ops = dev->netdev_ops;
6564
6565 if (!ops->ndo_change_carrier)
6566 return -EOPNOTSUPP;
6567 if (!netif_device_present(dev))
6568 return -ENODEV;
6569 return ops->ndo_change_carrier(dev, new_carrier);
6570}
6571EXPORT_SYMBOL(dev_change_carrier);
6572
66b52b0d
JP
6573/**
6574 * dev_get_phys_port_id - Get device physical port ID
6575 * @dev: device
6576 * @ppid: port ID
6577 *
6578 * Get device physical port ID
6579 */
6580int dev_get_phys_port_id(struct net_device *dev,
02637fce 6581 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6582{
6583 const struct net_device_ops *ops = dev->netdev_ops;
6584
6585 if (!ops->ndo_get_phys_port_id)
6586 return -EOPNOTSUPP;
6587 return ops->ndo_get_phys_port_id(dev, ppid);
6588}
6589EXPORT_SYMBOL(dev_get_phys_port_id);
6590
db24a904
DA
6591/**
6592 * dev_get_phys_port_name - Get device physical port name
6593 * @dev: device
6594 * @name: port name
ed49e650 6595 * @len: limit of bytes to copy to name
db24a904
DA
6596 *
6597 * Get device physical port name
6598 */
6599int dev_get_phys_port_name(struct net_device *dev,
6600 char *name, size_t len)
6601{
6602 const struct net_device_ops *ops = dev->netdev_ops;
6603
6604 if (!ops->ndo_get_phys_port_name)
6605 return -EOPNOTSUPP;
6606 return ops->ndo_get_phys_port_name(dev, name, len);
6607}
6608EXPORT_SYMBOL(dev_get_phys_port_name);
6609
d746d707
AK
6610/**
6611 * dev_change_proto_down - update protocol port state information
6612 * @dev: device
6613 * @proto_down: new value
6614 *
6615 * This info can be used by switch drivers to set the phys state of the
6616 * port.
6617 */
6618int dev_change_proto_down(struct net_device *dev, bool proto_down)
6619{
6620 const struct net_device_ops *ops = dev->netdev_ops;
6621
6622 if (!ops->ndo_change_proto_down)
6623 return -EOPNOTSUPP;
6624 if (!netif_device_present(dev))
6625 return -ENODEV;
6626 return ops->ndo_change_proto_down(dev, proto_down);
6627}
6628EXPORT_SYMBOL(dev_change_proto_down);
6629
a7862b45
BB
6630/**
6631 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6632 * @dev: device
6633 * @fd: new program fd or negative value to clear
6634 *
6635 * Set or clear a bpf program for a device
6636 */
6637int dev_change_xdp_fd(struct net_device *dev, int fd)
6638{
6639 const struct net_device_ops *ops = dev->netdev_ops;
6640 struct bpf_prog *prog = NULL;
6641 struct netdev_xdp xdp = {};
6642 int err;
6643
6644 if (!ops->ndo_xdp)
6645 return -EOPNOTSUPP;
6646 if (fd >= 0) {
6647 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6648 if (IS_ERR(prog))
6649 return PTR_ERR(prog);
6650 }
6651
6652 xdp.command = XDP_SETUP_PROG;
6653 xdp.prog = prog;
6654 err = ops->ndo_xdp(dev, &xdp);
6655 if (err < 0 && prog)
6656 bpf_prog_put(prog);
6657
6658 return err;
6659}
6660EXPORT_SYMBOL(dev_change_xdp_fd);
6661
1da177e4
LT
6662/**
6663 * dev_new_index - allocate an ifindex
c4ea43c5 6664 * @net: the applicable net namespace
1da177e4
LT
6665 *
6666 * Returns a suitable unique value for a new device interface
6667 * number. The caller must hold the rtnl semaphore or the
6668 * dev_base_lock to be sure it remains unique.
6669 */
881d966b 6670static int dev_new_index(struct net *net)
1da177e4 6671{
aa79e66e 6672 int ifindex = net->ifindex;
1da177e4
LT
6673 for (;;) {
6674 if (++ifindex <= 0)
6675 ifindex = 1;
881d966b 6676 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6677 return net->ifindex = ifindex;
1da177e4
LT
6678 }
6679}
6680
1da177e4 6681/* Delayed registration/unregisteration */
3b5b34fd 6682static LIST_HEAD(net_todo_list);
200b916f 6683DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6684
6f05f629 6685static void net_set_todo(struct net_device *dev)
1da177e4 6686{
1da177e4 6687 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6688 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6689}
6690
9b5e383c 6691static void rollback_registered_many(struct list_head *head)
93ee31f1 6692{
e93737b0 6693 struct net_device *dev, *tmp;
5cde2829 6694 LIST_HEAD(close_head);
9b5e383c 6695
93ee31f1
DL
6696 BUG_ON(dev_boot_phase);
6697 ASSERT_RTNL();
6698
e93737b0 6699 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6700 /* Some devices call without registering
e93737b0
KK
6701 * for initialization unwind. Remove those
6702 * devices and proceed with the remaining.
9b5e383c
ED
6703 */
6704 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6705 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6706 dev->name, dev);
93ee31f1 6707
9b5e383c 6708 WARN_ON(1);
e93737b0
KK
6709 list_del(&dev->unreg_list);
6710 continue;
9b5e383c 6711 }
449f4544 6712 dev->dismantle = true;
9b5e383c 6713 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6714 }
93ee31f1 6715
44345724 6716 /* If device is running, close it first. */
5cde2829
EB
6717 list_for_each_entry(dev, head, unreg_list)
6718 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6719 dev_close_many(&close_head, true);
93ee31f1 6720
44345724 6721 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6722 /* And unlink it from device chain. */
6723 unlist_netdevice(dev);
93ee31f1 6724
9b5e383c 6725 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6726 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6727 }
93ee31f1
DL
6728
6729 synchronize_net();
6730
9b5e383c 6731 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6732 struct sk_buff *skb = NULL;
6733
9b5e383c
ED
6734 /* Shutdown queueing discipline. */
6735 dev_shutdown(dev);
93ee31f1
DL
6736
6737
9b5e383c
ED
6738 /* Notify protocols, that we are about to destroy
6739 this device. They should clean all the things.
6740 */
6741 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6742
395eea6c
MB
6743 if (!dev->rtnl_link_ops ||
6744 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6745 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6746 GFP_KERNEL);
6747
9b5e383c
ED
6748 /*
6749 * Flush the unicast and multicast chains
6750 */
a748ee24 6751 dev_uc_flush(dev);
22bedad3 6752 dev_mc_flush(dev);
93ee31f1 6753
9b5e383c
ED
6754 if (dev->netdev_ops->ndo_uninit)
6755 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6756
395eea6c
MB
6757 if (skb)
6758 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6759
9ff162a8
JP
6760 /* Notifier chain MUST detach us all upper devices. */
6761 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6762
9b5e383c
ED
6763 /* Remove entries from kobject tree */
6764 netdev_unregister_kobject(dev);
024e9679
AD
6765#ifdef CONFIG_XPS
6766 /* Remove XPS queueing entries */
6767 netif_reset_xps_queues_gt(dev, 0);
6768#endif
9b5e383c 6769 }
93ee31f1 6770
850a545b 6771 synchronize_net();
395264d5 6772
a5ee1551 6773 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6774 dev_put(dev);
6775}
6776
6777static void rollback_registered(struct net_device *dev)
6778{
6779 LIST_HEAD(single);
6780
6781 list_add(&dev->unreg_list, &single);
6782 rollback_registered_many(&single);
ceaaec98 6783 list_del(&single);
93ee31f1
DL
6784}
6785
fd867d51
JW
6786static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6787 struct net_device *upper, netdev_features_t features)
6788{
6789 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6790 netdev_features_t feature;
5ba3f7d6 6791 int feature_bit;
fd867d51 6792
5ba3f7d6
JW
6793 for_each_netdev_feature(&upper_disables, feature_bit) {
6794 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6795 if (!(upper->wanted_features & feature)
6796 && (features & feature)) {
6797 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6798 &feature, upper->name);
6799 features &= ~feature;
6800 }
6801 }
6802
6803 return features;
6804}
6805
6806static void netdev_sync_lower_features(struct net_device *upper,
6807 struct net_device *lower, netdev_features_t features)
6808{
6809 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6810 netdev_features_t feature;
5ba3f7d6 6811 int feature_bit;
fd867d51 6812
5ba3f7d6
JW
6813 for_each_netdev_feature(&upper_disables, feature_bit) {
6814 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6815 if (!(features & feature) && (lower->features & feature)) {
6816 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6817 &feature, lower->name);
6818 lower->wanted_features &= ~feature;
6819 netdev_update_features(lower);
6820
6821 if (unlikely(lower->features & feature))
6822 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6823 &feature, lower->name);
6824 }
6825 }
6826}
6827
c8f44aff
MM
6828static netdev_features_t netdev_fix_features(struct net_device *dev,
6829 netdev_features_t features)
b63365a2 6830{
57422dc5
MM
6831 /* Fix illegal checksum combinations */
6832 if ((features & NETIF_F_HW_CSUM) &&
6833 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6834 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6835 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6836 }
6837
b63365a2 6838 /* TSO requires that SG is present as well. */
ea2d3688 6839 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6840 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6841 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6842 }
6843
ec5f0615
PS
6844 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6845 !(features & NETIF_F_IP_CSUM)) {
6846 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6847 features &= ~NETIF_F_TSO;
6848 features &= ~NETIF_F_TSO_ECN;
6849 }
6850
6851 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6852 !(features & NETIF_F_IPV6_CSUM)) {
6853 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6854 features &= ~NETIF_F_TSO6;
6855 }
6856
b1dc497b
AD
6857 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6858 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6859 features &= ~NETIF_F_TSO_MANGLEID;
6860
31d8b9e0
BH
6861 /* TSO ECN requires that TSO is present as well. */
6862 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6863 features &= ~NETIF_F_TSO_ECN;
6864
212b573f
MM
6865 /* Software GSO depends on SG. */
6866 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6867 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6868 features &= ~NETIF_F_GSO;
6869 }
6870
acd1130e 6871 /* UFO needs SG and checksumming */
b63365a2 6872 if (features & NETIF_F_UFO) {
79032644 6873 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6874 if (!(features & NETIF_F_HW_CSUM) &&
6875 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6876 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6877 netdev_dbg(dev,
acd1130e 6878 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6879 features &= ~NETIF_F_UFO;
6880 }
6881
6882 if (!(features & NETIF_F_SG)) {
6f404e44 6883 netdev_dbg(dev,
acd1130e 6884 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6885 features &= ~NETIF_F_UFO;
6886 }
6887 }
6888
802ab55a
AD
6889 /* GSO partial features require GSO partial be set */
6890 if ((features & dev->gso_partial_features) &&
6891 !(features & NETIF_F_GSO_PARTIAL)) {
6892 netdev_dbg(dev,
6893 "Dropping partially supported GSO features since no GSO partial.\n");
6894 features &= ~dev->gso_partial_features;
6895 }
6896
d0290214
JP
6897#ifdef CONFIG_NET_RX_BUSY_POLL
6898 if (dev->netdev_ops->ndo_busy_poll)
6899 features |= NETIF_F_BUSY_POLL;
6900 else
6901#endif
6902 features &= ~NETIF_F_BUSY_POLL;
6903
b63365a2
HX
6904 return features;
6905}
b63365a2 6906
6cb6a27c 6907int __netdev_update_features(struct net_device *dev)
5455c699 6908{
fd867d51 6909 struct net_device *upper, *lower;
c8f44aff 6910 netdev_features_t features;
fd867d51 6911 struct list_head *iter;
e7868a85 6912 int err = -1;
5455c699 6913
87267485
MM
6914 ASSERT_RTNL();
6915
5455c699
MM
6916 features = netdev_get_wanted_features(dev);
6917
6918 if (dev->netdev_ops->ndo_fix_features)
6919 features = dev->netdev_ops->ndo_fix_features(dev, features);
6920
6921 /* driver might be less strict about feature dependencies */
6922 features = netdev_fix_features(dev, features);
6923
fd867d51
JW
6924 /* some features can't be enabled if they're off an an upper device */
6925 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6926 features = netdev_sync_upper_features(dev, upper, features);
6927
5455c699 6928 if (dev->features == features)
e7868a85 6929 goto sync_lower;
5455c699 6930
c8f44aff
MM
6931 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6932 &dev->features, &features);
5455c699
MM
6933
6934 if (dev->netdev_ops->ndo_set_features)
6935 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6936 else
6937 err = 0;
5455c699 6938
6cb6a27c 6939 if (unlikely(err < 0)) {
5455c699 6940 netdev_err(dev,
c8f44aff
MM
6941 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6942 err, &features, &dev->features);
17b85d29
NA
6943 /* return non-0 since some features might have changed and
6944 * it's better to fire a spurious notification than miss it
6945 */
6946 return -1;
6cb6a27c
MM
6947 }
6948
e7868a85 6949sync_lower:
fd867d51
JW
6950 /* some features must be disabled on lower devices when disabled
6951 * on an upper device (think: bonding master or bridge)
6952 */
6953 netdev_for_each_lower_dev(dev, lower, iter)
6954 netdev_sync_lower_features(dev, lower, features);
6955
6cb6a27c
MM
6956 if (!err)
6957 dev->features = features;
6958
e7868a85 6959 return err < 0 ? 0 : 1;
6cb6a27c
MM
6960}
6961
afe12cc8
MM
6962/**
6963 * netdev_update_features - recalculate device features
6964 * @dev: the device to check
6965 *
6966 * Recalculate dev->features set and send notifications if it
6967 * has changed. Should be called after driver or hardware dependent
6968 * conditions might have changed that influence the features.
6969 */
6cb6a27c
MM
6970void netdev_update_features(struct net_device *dev)
6971{
6972 if (__netdev_update_features(dev))
6973 netdev_features_change(dev);
5455c699
MM
6974}
6975EXPORT_SYMBOL(netdev_update_features);
6976
afe12cc8
MM
6977/**
6978 * netdev_change_features - recalculate device features
6979 * @dev: the device to check
6980 *
6981 * Recalculate dev->features set and send notifications even
6982 * if they have not changed. Should be called instead of
6983 * netdev_update_features() if also dev->vlan_features might
6984 * have changed to allow the changes to be propagated to stacked
6985 * VLAN devices.
6986 */
6987void netdev_change_features(struct net_device *dev)
6988{
6989 __netdev_update_features(dev);
6990 netdev_features_change(dev);
6991}
6992EXPORT_SYMBOL(netdev_change_features);
6993
fc4a7489
PM
6994/**
6995 * netif_stacked_transfer_operstate - transfer operstate
6996 * @rootdev: the root or lower level device to transfer state from
6997 * @dev: the device to transfer operstate to
6998 *
6999 * Transfer operational state from root to device. This is normally
7000 * called when a stacking relationship exists between the root
7001 * device and the device(a leaf device).
7002 */
7003void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7004 struct net_device *dev)
7005{
7006 if (rootdev->operstate == IF_OPER_DORMANT)
7007 netif_dormant_on(dev);
7008 else
7009 netif_dormant_off(dev);
7010
7011 if (netif_carrier_ok(rootdev)) {
7012 if (!netif_carrier_ok(dev))
7013 netif_carrier_on(dev);
7014 } else {
7015 if (netif_carrier_ok(dev))
7016 netif_carrier_off(dev);
7017 }
7018}
7019EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7020
a953be53 7021#ifdef CONFIG_SYSFS
1b4bf461
ED
7022static int netif_alloc_rx_queues(struct net_device *dev)
7023{
1b4bf461 7024 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7025 struct netdev_rx_queue *rx;
10595902 7026 size_t sz = count * sizeof(*rx);
1b4bf461 7027
bd25fa7b 7028 BUG_ON(count < 1);
1b4bf461 7029
10595902
PG
7030 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7031 if (!rx) {
7032 rx = vzalloc(sz);
7033 if (!rx)
7034 return -ENOMEM;
7035 }
bd25fa7b
TH
7036 dev->_rx = rx;
7037
bd25fa7b 7038 for (i = 0; i < count; i++)
fe822240 7039 rx[i].dev = dev;
1b4bf461
ED
7040 return 0;
7041}
bf264145 7042#endif
1b4bf461 7043
aa942104
CG
7044static void netdev_init_one_queue(struct net_device *dev,
7045 struct netdev_queue *queue, void *_unused)
7046{
7047 /* Initialize queue lock */
7048 spin_lock_init(&queue->_xmit_lock);
7049 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7050 queue->xmit_lock_owner = -1;
b236da69 7051 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7052 queue->dev = dev;
114cf580
TH
7053#ifdef CONFIG_BQL
7054 dql_init(&queue->dql, HZ);
7055#endif
aa942104
CG
7056}
7057
60877a32
ED
7058static void netif_free_tx_queues(struct net_device *dev)
7059{
4cb28970 7060 kvfree(dev->_tx);
60877a32
ED
7061}
7062
e6484930
TH
7063static int netif_alloc_netdev_queues(struct net_device *dev)
7064{
7065 unsigned int count = dev->num_tx_queues;
7066 struct netdev_queue *tx;
60877a32 7067 size_t sz = count * sizeof(*tx);
e6484930 7068
d339727c
ED
7069 if (count < 1 || count > 0xffff)
7070 return -EINVAL;
62b5942a 7071
60877a32
ED
7072 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7073 if (!tx) {
7074 tx = vzalloc(sz);
7075 if (!tx)
7076 return -ENOMEM;
7077 }
e6484930 7078 dev->_tx = tx;
1d24eb48 7079
e6484930
TH
7080 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7081 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7082
7083 return 0;
e6484930
TH
7084}
7085
a2029240
DV
7086void netif_tx_stop_all_queues(struct net_device *dev)
7087{
7088 unsigned int i;
7089
7090 for (i = 0; i < dev->num_tx_queues; i++) {
7091 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7092 netif_tx_stop_queue(txq);
7093 }
7094}
7095EXPORT_SYMBOL(netif_tx_stop_all_queues);
7096
1da177e4
LT
7097/**
7098 * register_netdevice - register a network device
7099 * @dev: device to register
7100 *
7101 * Take a completed network device structure and add it to the kernel
7102 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7103 * chain. 0 is returned on success. A negative errno code is returned
7104 * on a failure to set up the device, or if the name is a duplicate.
7105 *
7106 * Callers must hold the rtnl semaphore. You may want
7107 * register_netdev() instead of this.
7108 *
7109 * BUGS:
7110 * The locking appears insufficient to guarantee two parallel registers
7111 * will not get the same name.
7112 */
7113
7114int register_netdevice(struct net_device *dev)
7115{
1da177e4 7116 int ret;
d314774c 7117 struct net *net = dev_net(dev);
1da177e4
LT
7118
7119 BUG_ON(dev_boot_phase);
7120 ASSERT_RTNL();
7121
b17a7c17
SH
7122 might_sleep();
7123
1da177e4
LT
7124 /* When net_device's are persistent, this will be fatal. */
7125 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7126 BUG_ON(!net);
1da177e4 7127
f1f28aa3 7128 spin_lock_init(&dev->addr_list_lock);
cf508b12 7129 netdev_set_addr_lockdep_class(dev);
1da177e4 7130
828de4f6 7131 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7132 if (ret < 0)
7133 goto out;
7134
1da177e4 7135 /* Init, if this function is available */
d314774c
SH
7136 if (dev->netdev_ops->ndo_init) {
7137 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7138 if (ret) {
7139 if (ret > 0)
7140 ret = -EIO;
90833aa4 7141 goto out;
1da177e4
LT
7142 }
7143 }
4ec93edb 7144
f646968f
PM
7145 if (((dev->hw_features | dev->features) &
7146 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7147 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7148 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7149 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7150 ret = -EINVAL;
7151 goto err_uninit;
7152 }
7153
9c7dafbf
PE
7154 ret = -EBUSY;
7155 if (!dev->ifindex)
7156 dev->ifindex = dev_new_index(net);
7157 else if (__dev_get_by_index(net, dev->ifindex))
7158 goto err_uninit;
7159
5455c699
MM
7160 /* Transfer changeable features to wanted_features and enable
7161 * software offloads (GSO and GRO).
7162 */
7163 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7164 dev->features |= NETIF_F_SOFT_FEATURES;
7165 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7166
cbc53e08 7167 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7168 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7169
7f348a60
AD
7170 /* If IPv4 TCP segmentation offload is supported we should also
7171 * allow the device to enable segmenting the frame with the option
7172 * of ignoring a static IP ID value. This doesn't enable the
7173 * feature itself but allows the user to enable it later.
7174 */
cbc53e08
AD
7175 if (dev->hw_features & NETIF_F_TSO)
7176 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7177 if (dev->vlan_features & NETIF_F_TSO)
7178 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7179 if (dev->mpls_features & NETIF_F_TSO)
7180 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7181 if (dev->hw_enc_features & NETIF_F_TSO)
7182 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7183
1180e7d6 7184 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7185 */
1180e7d6 7186 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7187
ee579677
PS
7188 /* Make NETIF_F_SG inheritable to tunnel devices.
7189 */
802ab55a 7190 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7191
0d89d203
SH
7192 /* Make NETIF_F_SG inheritable to MPLS.
7193 */
7194 dev->mpls_features |= NETIF_F_SG;
7195
7ffbe3fd
JB
7196 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7197 ret = notifier_to_errno(ret);
7198 if (ret)
7199 goto err_uninit;
7200
8b41d188 7201 ret = netdev_register_kobject(dev);
b17a7c17 7202 if (ret)
7ce1b0ed 7203 goto err_uninit;
b17a7c17
SH
7204 dev->reg_state = NETREG_REGISTERED;
7205
6cb6a27c 7206 __netdev_update_features(dev);
8e9b59b2 7207
1da177e4
LT
7208 /*
7209 * Default initial state at registry is that the
7210 * device is present.
7211 */
7212
7213 set_bit(__LINK_STATE_PRESENT, &dev->state);
7214
8f4cccbb
BH
7215 linkwatch_init_dev(dev);
7216
1da177e4 7217 dev_init_scheduler(dev);
1da177e4 7218 dev_hold(dev);
ce286d32 7219 list_netdevice(dev);
7bf23575 7220 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7221
948b337e
JP
7222 /* If the device has permanent device address, driver should
7223 * set dev_addr and also addr_assign_type should be set to
7224 * NET_ADDR_PERM (default value).
7225 */
7226 if (dev->addr_assign_type == NET_ADDR_PERM)
7227 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7228
1da177e4 7229 /* Notify protocols, that a new device appeared. */
056925ab 7230 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7231 ret = notifier_to_errno(ret);
93ee31f1
DL
7232 if (ret) {
7233 rollback_registered(dev);
7234 dev->reg_state = NETREG_UNREGISTERED;
7235 }
d90a909e
EB
7236 /*
7237 * Prevent userspace races by waiting until the network
7238 * device is fully setup before sending notifications.
7239 */
a2835763
PM
7240 if (!dev->rtnl_link_ops ||
7241 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7242 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7243
7244out:
7245 return ret;
7ce1b0ed
HX
7246
7247err_uninit:
d314774c
SH
7248 if (dev->netdev_ops->ndo_uninit)
7249 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7250 goto out;
1da177e4 7251}
d1b19dff 7252EXPORT_SYMBOL(register_netdevice);
1da177e4 7253
937f1ba5
BH
7254/**
7255 * init_dummy_netdev - init a dummy network device for NAPI
7256 * @dev: device to init
7257 *
7258 * This takes a network device structure and initialize the minimum
7259 * amount of fields so it can be used to schedule NAPI polls without
7260 * registering a full blown interface. This is to be used by drivers
7261 * that need to tie several hardware interfaces to a single NAPI
7262 * poll scheduler due to HW limitations.
7263 */
7264int init_dummy_netdev(struct net_device *dev)
7265{
7266 /* Clear everything. Note we don't initialize spinlocks
7267 * are they aren't supposed to be taken by any of the
7268 * NAPI code and this dummy netdev is supposed to be
7269 * only ever used for NAPI polls
7270 */
7271 memset(dev, 0, sizeof(struct net_device));
7272
7273 /* make sure we BUG if trying to hit standard
7274 * register/unregister code path
7275 */
7276 dev->reg_state = NETREG_DUMMY;
7277
937f1ba5
BH
7278 /* NAPI wants this */
7279 INIT_LIST_HEAD(&dev->napi_list);
7280
7281 /* a dummy interface is started by default */
7282 set_bit(__LINK_STATE_PRESENT, &dev->state);
7283 set_bit(__LINK_STATE_START, &dev->state);
7284
29b4433d
ED
7285 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7286 * because users of this 'device' dont need to change
7287 * its refcount.
7288 */
7289
937f1ba5
BH
7290 return 0;
7291}
7292EXPORT_SYMBOL_GPL(init_dummy_netdev);
7293
7294
1da177e4
LT
7295/**
7296 * register_netdev - register a network device
7297 * @dev: device to register
7298 *
7299 * Take a completed network device structure and add it to the kernel
7300 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7301 * chain. 0 is returned on success. A negative errno code is returned
7302 * on a failure to set up the device, or if the name is a duplicate.
7303 *
38b4da38 7304 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7305 * and expands the device name if you passed a format string to
7306 * alloc_netdev.
7307 */
7308int register_netdev(struct net_device *dev)
7309{
7310 int err;
7311
7312 rtnl_lock();
1da177e4 7313 err = register_netdevice(dev);
1da177e4
LT
7314 rtnl_unlock();
7315 return err;
7316}
7317EXPORT_SYMBOL(register_netdev);
7318
29b4433d
ED
7319int netdev_refcnt_read(const struct net_device *dev)
7320{
7321 int i, refcnt = 0;
7322
7323 for_each_possible_cpu(i)
7324 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7325 return refcnt;
7326}
7327EXPORT_SYMBOL(netdev_refcnt_read);
7328
2c53040f 7329/**
1da177e4 7330 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7331 * @dev: target net_device
1da177e4
LT
7332 *
7333 * This is called when unregistering network devices.
7334 *
7335 * Any protocol or device that holds a reference should register
7336 * for netdevice notification, and cleanup and put back the
7337 * reference if they receive an UNREGISTER event.
7338 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7339 * call dev_put.
1da177e4
LT
7340 */
7341static void netdev_wait_allrefs(struct net_device *dev)
7342{
7343 unsigned long rebroadcast_time, warning_time;
29b4433d 7344 int refcnt;
1da177e4 7345
e014debe
ED
7346 linkwatch_forget_dev(dev);
7347
1da177e4 7348 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7349 refcnt = netdev_refcnt_read(dev);
7350
7351 while (refcnt != 0) {
1da177e4 7352 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7353 rtnl_lock();
1da177e4
LT
7354
7355 /* Rebroadcast unregister notification */
056925ab 7356 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7357
748e2d93 7358 __rtnl_unlock();
0115e8e3 7359 rcu_barrier();
748e2d93
ED
7360 rtnl_lock();
7361
0115e8e3 7362 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7363 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7364 &dev->state)) {
7365 /* We must not have linkwatch events
7366 * pending on unregister. If this
7367 * happens, we simply run the queue
7368 * unscheduled, resulting in a noop
7369 * for this device.
7370 */
7371 linkwatch_run_queue();
7372 }
7373
6756ae4b 7374 __rtnl_unlock();
1da177e4
LT
7375
7376 rebroadcast_time = jiffies;
7377 }
7378
7379 msleep(250);
7380
29b4433d
ED
7381 refcnt = netdev_refcnt_read(dev);
7382
1da177e4 7383 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7384 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7385 dev->name, refcnt);
1da177e4
LT
7386 warning_time = jiffies;
7387 }
7388 }
7389}
7390
7391/* The sequence is:
7392 *
7393 * rtnl_lock();
7394 * ...
7395 * register_netdevice(x1);
7396 * register_netdevice(x2);
7397 * ...
7398 * unregister_netdevice(y1);
7399 * unregister_netdevice(y2);
7400 * ...
7401 * rtnl_unlock();
7402 * free_netdev(y1);
7403 * free_netdev(y2);
7404 *
58ec3b4d 7405 * We are invoked by rtnl_unlock().
1da177e4 7406 * This allows us to deal with problems:
b17a7c17 7407 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7408 * without deadlocking with linkwatch via keventd.
7409 * 2) Since we run with the RTNL semaphore not held, we can sleep
7410 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7411 *
7412 * We must not return until all unregister events added during
7413 * the interval the lock was held have been completed.
1da177e4 7414 */
1da177e4
LT
7415void netdev_run_todo(void)
7416{
626ab0e6 7417 struct list_head list;
1da177e4 7418
1da177e4 7419 /* Snapshot list, allow later requests */
626ab0e6 7420 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7421
7422 __rtnl_unlock();
626ab0e6 7423
0115e8e3
ED
7424
7425 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7426 if (!list_empty(&list))
7427 rcu_barrier();
7428
1da177e4
LT
7429 while (!list_empty(&list)) {
7430 struct net_device *dev
e5e26d75 7431 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7432 list_del(&dev->todo_list);
7433
748e2d93 7434 rtnl_lock();
0115e8e3 7435 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7436 __rtnl_unlock();
0115e8e3 7437
b17a7c17 7438 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7439 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7440 dev->name, dev->reg_state);
7441 dump_stack();
7442 continue;
7443 }
1da177e4 7444
b17a7c17 7445 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7446
b17a7c17 7447 netdev_wait_allrefs(dev);
1da177e4 7448
b17a7c17 7449 /* paranoia */
29b4433d 7450 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7451 BUG_ON(!list_empty(&dev->ptype_all));
7452 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7453 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7454 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7455 WARN_ON(dev->dn_ptr);
1da177e4 7456
b17a7c17
SH
7457 if (dev->destructor)
7458 dev->destructor(dev);
9093bbb2 7459
50624c93
EB
7460 /* Report a network device has been unregistered */
7461 rtnl_lock();
7462 dev_net(dev)->dev_unreg_count--;
7463 __rtnl_unlock();
7464 wake_up(&netdev_unregistering_wq);
7465
9093bbb2
SH
7466 /* Free network device */
7467 kobject_put(&dev->dev.kobj);
1da177e4 7468 }
1da177e4
LT
7469}
7470
9256645a
JW
7471/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7472 * all the same fields in the same order as net_device_stats, with only
7473 * the type differing, but rtnl_link_stats64 may have additional fields
7474 * at the end for newer counters.
3cfde79c 7475 */
77a1abf5
ED
7476void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7477 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7478{
7479#if BITS_PER_LONG == 64
9256645a 7480 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7481 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7482 /* zero out counters that only exist in rtnl_link_stats64 */
7483 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7484 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7485#else
9256645a 7486 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7487 const unsigned long *src = (const unsigned long *)netdev_stats;
7488 u64 *dst = (u64 *)stats64;
7489
9256645a 7490 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7491 for (i = 0; i < n; i++)
7492 dst[i] = src[i];
9256645a
JW
7493 /* zero out counters that only exist in rtnl_link_stats64 */
7494 memset((char *)stats64 + n * sizeof(u64), 0,
7495 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7496#endif
7497}
77a1abf5 7498EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7499
eeda3fd6
SH
7500/**
7501 * dev_get_stats - get network device statistics
7502 * @dev: device to get statistics from
28172739 7503 * @storage: place to store stats
eeda3fd6 7504 *
d7753516
BH
7505 * Get network statistics from device. Return @storage.
7506 * The device driver may provide its own method by setting
7507 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7508 * otherwise the internal statistics structure is used.
eeda3fd6 7509 */
d7753516
BH
7510struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7511 struct rtnl_link_stats64 *storage)
7004bf25 7512{
eeda3fd6
SH
7513 const struct net_device_ops *ops = dev->netdev_ops;
7514
28172739
ED
7515 if (ops->ndo_get_stats64) {
7516 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7517 ops->ndo_get_stats64(dev, storage);
7518 } else if (ops->ndo_get_stats) {
3cfde79c 7519 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7520 } else {
7521 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7522 }
caf586e5 7523 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7524 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7525 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7526 return storage;
c45d286e 7527}
eeda3fd6 7528EXPORT_SYMBOL(dev_get_stats);
c45d286e 7529
24824a09 7530struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7531{
24824a09 7532 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7533
24824a09
ED
7534#ifdef CONFIG_NET_CLS_ACT
7535 if (queue)
7536 return queue;
7537 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7538 if (!queue)
7539 return NULL;
7540 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7541 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7542 queue->qdisc_sleeping = &noop_qdisc;
7543 rcu_assign_pointer(dev->ingress_queue, queue);
7544#endif
7545 return queue;
bb949fbd
DM
7546}
7547
2c60db03
ED
7548static const struct ethtool_ops default_ethtool_ops;
7549
d07d7507
SG
7550void netdev_set_default_ethtool_ops(struct net_device *dev,
7551 const struct ethtool_ops *ops)
7552{
7553 if (dev->ethtool_ops == &default_ethtool_ops)
7554 dev->ethtool_ops = ops;
7555}
7556EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7557
74d332c1
ED
7558void netdev_freemem(struct net_device *dev)
7559{
7560 char *addr = (char *)dev - dev->padded;
7561
4cb28970 7562 kvfree(addr);
74d332c1
ED
7563}
7564
1da177e4 7565/**
36909ea4 7566 * alloc_netdev_mqs - allocate network device
c835a677
TG
7567 * @sizeof_priv: size of private data to allocate space for
7568 * @name: device name format string
7569 * @name_assign_type: origin of device name
7570 * @setup: callback to initialize device
7571 * @txqs: the number of TX subqueues to allocate
7572 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7573 *
7574 * Allocates a struct net_device with private data area for driver use
90e51adf 7575 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7576 * for each queue on the device.
1da177e4 7577 */
36909ea4 7578struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7579 unsigned char name_assign_type,
36909ea4
TH
7580 void (*setup)(struct net_device *),
7581 unsigned int txqs, unsigned int rxqs)
1da177e4 7582{
1da177e4 7583 struct net_device *dev;
7943986c 7584 size_t alloc_size;
1ce8e7b5 7585 struct net_device *p;
1da177e4 7586
b6fe17d6
SH
7587 BUG_ON(strlen(name) >= sizeof(dev->name));
7588
36909ea4 7589 if (txqs < 1) {
7b6cd1ce 7590 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7591 return NULL;
7592 }
7593
a953be53 7594#ifdef CONFIG_SYSFS
36909ea4 7595 if (rxqs < 1) {
7b6cd1ce 7596 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7597 return NULL;
7598 }
7599#endif
7600
fd2ea0a7 7601 alloc_size = sizeof(struct net_device);
d1643d24
AD
7602 if (sizeof_priv) {
7603 /* ensure 32-byte alignment of private area */
1ce8e7b5 7604 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7605 alloc_size += sizeof_priv;
7606 }
7607 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7608 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7609
74d332c1
ED
7610 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7611 if (!p)
7612 p = vzalloc(alloc_size);
62b5942a 7613 if (!p)
1da177e4 7614 return NULL;
1da177e4 7615
1ce8e7b5 7616 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7617 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7618
29b4433d
ED
7619 dev->pcpu_refcnt = alloc_percpu(int);
7620 if (!dev->pcpu_refcnt)
74d332c1 7621 goto free_dev;
ab9c73cc 7622
ab9c73cc 7623 if (dev_addr_init(dev))
29b4433d 7624 goto free_pcpu;
ab9c73cc 7625
22bedad3 7626 dev_mc_init(dev);
a748ee24 7627 dev_uc_init(dev);
ccffad25 7628
c346dca1 7629 dev_net_set(dev, &init_net);
1da177e4 7630
8d3bdbd5 7631 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7632 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7633
8d3bdbd5
DM
7634 INIT_LIST_HEAD(&dev->napi_list);
7635 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7636 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7637 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7638 INIT_LIST_HEAD(&dev->adj_list.upper);
7639 INIT_LIST_HEAD(&dev->adj_list.lower);
7640 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7641 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7642 INIT_LIST_HEAD(&dev->ptype_all);
7643 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7644 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7645 setup(dev);
7646
a813104d 7647 if (!dev->tx_queue_len) {
f84bb1ea 7648 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7649 dev->tx_queue_len = 1;
7650 }
906470c1 7651
36909ea4
TH
7652 dev->num_tx_queues = txqs;
7653 dev->real_num_tx_queues = txqs;
ed9af2e8 7654 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7655 goto free_all;
e8a0464c 7656
a953be53 7657#ifdef CONFIG_SYSFS
36909ea4
TH
7658 dev->num_rx_queues = rxqs;
7659 dev->real_num_rx_queues = rxqs;
fe822240 7660 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7661 goto free_all;
df334545 7662#endif
0a9627f2 7663
1da177e4 7664 strcpy(dev->name, name);
c835a677 7665 dev->name_assign_type = name_assign_type;
cbda10fa 7666 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7667 if (!dev->ethtool_ops)
7668 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7669
7670 nf_hook_ingress_init(dev);
7671
1da177e4 7672 return dev;
ab9c73cc 7673
8d3bdbd5
DM
7674free_all:
7675 free_netdev(dev);
7676 return NULL;
7677
29b4433d
ED
7678free_pcpu:
7679 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7680free_dev:
7681 netdev_freemem(dev);
ab9c73cc 7682 return NULL;
1da177e4 7683}
36909ea4 7684EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7685
7686/**
7687 * free_netdev - free network device
7688 * @dev: device
7689 *
4ec93edb
YH
7690 * This function does the last stage of destroying an allocated device
7691 * interface. The reference to the device object is released.
1da177e4 7692 * If this is the last reference then it will be freed.
93d05d4a 7693 * Must be called in process context.
1da177e4
LT
7694 */
7695void free_netdev(struct net_device *dev)
7696{
d565b0a1
HX
7697 struct napi_struct *p, *n;
7698
93d05d4a 7699 might_sleep();
60877a32 7700 netif_free_tx_queues(dev);
a953be53 7701#ifdef CONFIG_SYSFS
10595902 7702 kvfree(dev->_rx);
fe822240 7703#endif
e8a0464c 7704
33d480ce 7705 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7706
f001fde5
JP
7707 /* Flush device addresses */
7708 dev_addr_flush(dev);
7709
d565b0a1
HX
7710 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7711 netif_napi_del(p);
7712
29b4433d
ED
7713 free_percpu(dev->pcpu_refcnt);
7714 dev->pcpu_refcnt = NULL;
7715
3041a069 7716 /* Compatibility with error handling in drivers */
1da177e4 7717 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7718 netdev_freemem(dev);
1da177e4
LT
7719 return;
7720 }
7721
7722 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7723 dev->reg_state = NETREG_RELEASED;
7724
43cb76d9
GKH
7725 /* will free via device release */
7726 put_device(&dev->dev);
1da177e4 7727}
d1b19dff 7728EXPORT_SYMBOL(free_netdev);
4ec93edb 7729
f0db275a
SH
7730/**
7731 * synchronize_net - Synchronize with packet receive processing
7732 *
7733 * Wait for packets currently being received to be done.
7734 * Does not block later packets from starting.
7735 */
4ec93edb 7736void synchronize_net(void)
1da177e4
LT
7737{
7738 might_sleep();
be3fc413
ED
7739 if (rtnl_is_locked())
7740 synchronize_rcu_expedited();
7741 else
7742 synchronize_rcu();
1da177e4 7743}
d1b19dff 7744EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7745
7746/**
44a0873d 7747 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7748 * @dev: device
44a0873d 7749 * @head: list
6ebfbc06 7750 *
1da177e4 7751 * This function shuts down a device interface and removes it
d59b54b1 7752 * from the kernel tables.
44a0873d 7753 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7754 *
7755 * Callers must hold the rtnl semaphore. You may want
7756 * unregister_netdev() instead of this.
7757 */
7758
44a0873d 7759void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7760{
a6620712
HX
7761 ASSERT_RTNL();
7762
44a0873d 7763 if (head) {
9fdce099 7764 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7765 } else {
7766 rollback_registered(dev);
7767 /* Finish processing unregister after unlock */
7768 net_set_todo(dev);
7769 }
1da177e4 7770}
44a0873d 7771EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7772
9b5e383c
ED
7773/**
7774 * unregister_netdevice_many - unregister many devices
7775 * @head: list of devices
87757a91
ED
7776 *
7777 * Note: As most callers use a stack allocated list_head,
7778 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7779 */
7780void unregister_netdevice_many(struct list_head *head)
7781{
7782 struct net_device *dev;
7783
7784 if (!list_empty(head)) {
7785 rollback_registered_many(head);
7786 list_for_each_entry(dev, head, unreg_list)
7787 net_set_todo(dev);
87757a91 7788 list_del(head);
9b5e383c
ED
7789 }
7790}
63c8099d 7791EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7792
1da177e4
LT
7793/**
7794 * unregister_netdev - remove device from the kernel
7795 * @dev: device
7796 *
7797 * This function shuts down a device interface and removes it
d59b54b1 7798 * from the kernel tables.
1da177e4
LT
7799 *
7800 * This is just a wrapper for unregister_netdevice that takes
7801 * the rtnl semaphore. In general you want to use this and not
7802 * unregister_netdevice.
7803 */
7804void unregister_netdev(struct net_device *dev)
7805{
7806 rtnl_lock();
7807 unregister_netdevice(dev);
7808 rtnl_unlock();
7809}
1da177e4
LT
7810EXPORT_SYMBOL(unregister_netdev);
7811
ce286d32
EB
7812/**
7813 * dev_change_net_namespace - move device to different nethost namespace
7814 * @dev: device
7815 * @net: network namespace
7816 * @pat: If not NULL name pattern to try if the current device name
7817 * is already taken in the destination network namespace.
7818 *
7819 * This function shuts down a device interface and moves it
7820 * to a new network namespace. On success 0 is returned, on
7821 * a failure a netagive errno code is returned.
7822 *
7823 * Callers must hold the rtnl semaphore.
7824 */
7825
7826int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7827{
ce286d32
EB
7828 int err;
7829
7830 ASSERT_RTNL();
7831
7832 /* Don't allow namespace local devices to be moved. */
7833 err = -EINVAL;
7834 if (dev->features & NETIF_F_NETNS_LOCAL)
7835 goto out;
7836
7837 /* Ensure the device has been registrered */
ce286d32
EB
7838 if (dev->reg_state != NETREG_REGISTERED)
7839 goto out;
7840
7841 /* Get out if there is nothing todo */
7842 err = 0;
878628fb 7843 if (net_eq(dev_net(dev), net))
ce286d32
EB
7844 goto out;
7845
7846 /* Pick the destination device name, and ensure
7847 * we can use it in the destination network namespace.
7848 */
7849 err = -EEXIST;
d9031024 7850 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7851 /* We get here if we can't use the current device name */
7852 if (!pat)
7853 goto out;
828de4f6 7854 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7855 goto out;
7856 }
7857
7858 /*
7859 * And now a mini version of register_netdevice unregister_netdevice.
7860 */
7861
7862 /* If device is running close it first. */
9b772652 7863 dev_close(dev);
ce286d32
EB
7864
7865 /* And unlink it from device chain */
7866 err = -ENODEV;
7867 unlist_netdevice(dev);
7868
7869 synchronize_net();
7870
7871 /* Shutdown queueing discipline. */
7872 dev_shutdown(dev);
7873
7874 /* Notify protocols, that we are about to destroy
7875 this device. They should clean all the things.
3b27e105
DL
7876
7877 Note that dev->reg_state stays at NETREG_REGISTERED.
7878 This is wanted because this way 8021q and macvlan know
7879 the device is just moving and can keep their slaves up.
ce286d32
EB
7880 */
7881 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7882 rcu_barrier();
7883 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7884 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7885
7886 /*
7887 * Flush the unicast and multicast chains
7888 */
a748ee24 7889 dev_uc_flush(dev);
22bedad3 7890 dev_mc_flush(dev);
ce286d32 7891
4e66ae2e
SH
7892 /* Send a netdev-removed uevent to the old namespace */
7893 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7894 netdev_adjacent_del_links(dev);
4e66ae2e 7895
ce286d32 7896 /* Actually switch the network namespace */
c346dca1 7897 dev_net_set(dev, net);
ce286d32 7898
ce286d32 7899 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7900 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7901 dev->ifindex = dev_new_index(net);
ce286d32 7902
4e66ae2e
SH
7903 /* Send a netdev-add uevent to the new namespace */
7904 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7905 netdev_adjacent_add_links(dev);
4e66ae2e 7906
8b41d188 7907 /* Fixup kobjects */
a1b3f594 7908 err = device_rename(&dev->dev, dev->name);
8b41d188 7909 WARN_ON(err);
ce286d32
EB
7910
7911 /* Add the device back in the hashes */
7912 list_netdevice(dev);
7913
7914 /* Notify protocols, that a new device appeared. */
7915 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7916
d90a909e
EB
7917 /*
7918 * Prevent userspace races by waiting until the network
7919 * device is fully setup before sending notifications.
7920 */
7f294054 7921 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7922
ce286d32
EB
7923 synchronize_net();
7924 err = 0;
7925out:
7926 return err;
7927}
463d0183 7928EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7929
1da177e4
LT
7930static int dev_cpu_callback(struct notifier_block *nfb,
7931 unsigned long action,
7932 void *ocpu)
7933{
7934 struct sk_buff **list_skb;
1da177e4
LT
7935 struct sk_buff *skb;
7936 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7937 struct softnet_data *sd, *oldsd;
7938
8bb78442 7939 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7940 return NOTIFY_OK;
7941
7942 local_irq_disable();
7943 cpu = smp_processor_id();
7944 sd = &per_cpu(softnet_data, cpu);
7945 oldsd = &per_cpu(softnet_data, oldcpu);
7946
7947 /* Find end of our completion_queue. */
7948 list_skb = &sd->completion_queue;
7949 while (*list_skb)
7950 list_skb = &(*list_skb)->next;
7951 /* Append completion queue from offline CPU. */
7952 *list_skb = oldsd->completion_queue;
7953 oldsd->completion_queue = NULL;
7954
1da177e4 7955 /* Append output queue from offline CPU. */
a9cbd588
CG
7956 if (oldsd->output_queue) {
7957 *sd->output_queue_tailp = oldsd->output_queue;
7958 sd->output_queue_tailp = oldsd->output_queue_tailp;
7959 oldsd->output_queue = NULL;
7960 oldsd->output_queue_tailp = &oldsd->output_queue;
7961 }
ac64da0b
ED
7962 /* Append NAPI poll list from offline CPU, with one exception :
7963 * process_backlog() must be called by cpu owning percpu backlog.
7964 * We properly handle process_queue & input_pkt_queue later.
7965 */
7966 while (!list_empty(&oldsd->poll_list)) {
7967 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7968 struct napi_struct,
7969 poll_list);
7970
7971 list_del_init(&napi->poll_list);
7972 if (napi->poll == process_backlog)
7973 napi->state = 0;
7974 else
7975 ____napi_schedule(sd, napi);
264524d5 7976 }
1da177e4
LT
7977
7978 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7979 local_irq_enable();
7980
7981 /* Process offline CPU's input_pkt_queue */
76cc8b13 7982 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7983 netif_rx_ni(skb);
76cc8b13 7984 input_queue_head_incr(oldsd);
fec5e652 7985 }
ac64da0b 7986 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7987 netif_rx_ni(skb);
76cc8b13
TH
7988 input_queue_head_incr(oldsd);
7989 }
1da177e4
LT
7990
7991 return NOTIFY_OK;
7992}
1da177e4
LT
7993
7994
7f353bf2 7995/**
b63365a2
HX
7996 * netdev_increment_features - increment feature set by one
7997 * @all: current feature set
7998 * @one: new feature set
7999 * @mask: mask feature set
7f353bf2
HX
8000 *
8001 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8002 * @one to the master device with current feature set @all. Will not
8003 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8004 */
c8f44aff
MM
8005netdev_features_t netdev_increment_features(netdev_features_t all,
8006 netdev_features_t one, netdev_features_t mask)
b63365a2 8007{
c8cd0989 8008 if (mask & NETIF_F_HW_CSUM)
a188222b 8009 mask |= NETIF_F_CSUM_MASK;
1742f183 8010 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8011
a188222b 8012 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8013 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8014
1742f183 8015 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8016 if (all & NETIF_F_HW_CSUM)
8017 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8018
8019 return all;
8020}
b63365a2 8021EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8022
430f03cd 8023static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8024{
8025 int i;
8026 struct hlist_head *hash;
8027
8028 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8029 if (hash != NULL)
8030 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8031 INIT_HLIST_HEAD(&hash[i]);
8032
8033 return hash;
8034}
8035
881d966b 8036/* Initialize per network namespace state */
4665079c 8037static int __net_init netdev_init(struct net *net)
881d966b 8038{
734b6541
RM
8039 if (net != &init_net)
8040 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8041
30d97d35
PE
8042 net->dev_name_head = netdev_create_hash();
8043 if (net->dev_name_head == NULL)
8044 goto err_name;
881d966b 8045
30d97d35
PE
8046 net->dev_index_head = netdev_create_hash();
8047 if (net->dev_index_head == NULL)
8048 goto err_idx;
881d966b
EB
8049
8050 return 0;
30d97d35
PE
8051
8052err_idx:
8053 kfree(net->dev_name_head);
8054err_name:
8055 return -ENOMEM;
881d966b
EB
8056}
8057
f0db275a
SH
8058/**
8059 * netdev_drivername - network driver for the device
8060 * @dev: network device
f0db275a
SH
8061 *
8062 * Determine network driver for device.
8063 */
3019de12 8064const char *netdev_drivername(const struct net_device *dev)
6579e57b 8065{
cf04a4c7
SH
8066 const struct device_driver *driver;
8067 const struct device *parent;
3019de12 8068 const char *empty = "";
6579e57b
AV
8069
8070 parent = dev->dev.parent;
6579e57b 8071 if (!parent)
3019de12 8072 return empty;
6579e57b
AV
8073
8074 driver = parent->driver;
8075 if (driver && driver->name)
3019de12
DM
8076 return driver->name;
8077 return empty;
6579e57b
AV
8078}
8079
6ea754eb
JP
8080static void __netdev_printk(const char *level, const struct net_device *dev,
8081 struct va_format *vaf)
256df2f3 8082{
b004ff49 8083 if (dev && dev->dev.parent) {
6ea754eb
JP
8084 dev_printk_emit(level[1] - '0',
8085 dev->dev.parent,
8086 "%s %s %s%s: %pV",
8087 dev_driver_string(dev->dev.parent),
8088 dev_name(dev->dev.parent),
8089 netdev_name(dev), netdev_reg_state(dev),
8090 vaf);
b004ff49 8091 } else if (dev) {
6ea754eb
JP
8092 printk("%s%s%s: %pV",
8093 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8094 } else {
6ea754eb 8095 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8096 }
256df2f3
JP
8097}
8098
6ea754eb
JP
8099void netdev_printk(const char *level, const struct net_device *dev,
8100 const char *format, ...)
256df2f3
JP
8101{
8102 struct va_format vaf;
8103 va_list args;
256df2f3
JP
8104
8105 va_start(args, format);
8106
8107 vaf.fmt = format;
8108 vaf.va = &args;
8109
6ea754eb 8110 __netdev_printk(level, dev, &vaf);
b004ff49 8111
256df2f3 8112 va_end(args);
256df2f3
JP
8113}
8114EXPORT_SYMBOL(netdev_printk);
8115
8116#define define_netdev_printk_level(func, level) \
6ea754eb 8117void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8118{ \
256df2f3
JP
8119 struct va_format vaf; \
8120 va_list args; \
8121 \
8122 va_start(args, fmt); \
8123 \
8124 vaf.fmt = fmt; \
8125 vaf.va = &args; \
8126 \
6ea754eb 8127 __netdev_printk(level, dev, &vaf); \
b004ff49 8128 \
256df2f3 8129 va_end(args); \
256df2f3
JP
8130} \
8131EXPORT_SYMBOL(func);
8132
8133define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8134define_netdev_printk_level(netdev_alert, KERN_ALERT);
8135define_netdev_printk_level(netdev_crit, KERN_CRIT);
8136define_netdev_printk_level(netdev_err, KERN_ERR);
8137define_netdev_printk_level(netdev_warn, KERN_WARNING);
8138define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8139define_netdev_printk_level(netdev_info, KERN_INFO);
8140
4665079c 8141static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8142{
8143 kfree(net->dev_name_head);
8144 kfree(net->dev_index_head);
8145}
8146
022cbae6 8147static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8148 .init = netdev_init,
8149 .exit = netdev_exit,
8150};
8151
4665079c 8152static void __net_exit default_device_exit(struct net *net)
ce286d32 8153{
e008b5fc 8154 struct net_device *dev, *aux;
ce286d32 8155 /*
e008b5fc 8156 * Push all migratable network devices back to the
ce286d32
EB
8157 * initial network namespace
8158 */
8159 rtnl_lock();
e008b5fc 8160 for_each_netdev_safe(net, dev, aux) {
ce286d32 8161 int err;
aca51397 8162 char fb_name[IFNAMSIZ];
ce286d32
EB
8163
8164 /* Ignore unmoveable devices (i.e. loopback) */
8165 if (dev->features & NETIF_F_NETNS_LOCAL)
8166 continue;
8167
e008b5fc
EB
8168 /* Leave virtual devices for the generic cleanup */
8169 if (dev->rtnl_link_ops)
8170 continue;
d0c082ce 8171
25985edc 8172 /* Push remaining network devices to init_net */
aca51397
PE
8173 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8174 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8175 if (err) {
7b6cd1ce
JP
8176 pr_emerg("%s: failed to move %s to init_net: %d\n",
8177 __func__, dev->name, err);
aca51397 8178 BUG();
ce286d32
EB
8179 }
8180 }
8181 rtnl_unlock();
8182}
8183
50624c93
EB
8184static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8185{
8186 /* Return with the rtnl_lock held when there are no network
8187 * devices unregistering in any network namespace in net_list.
8188 */
8189 struct net *net;
8190 bool unregistering;
ff960a73 8191 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8192
ff960a73 8193 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8194 for (;;) {
50624c93
EB
8195 unregistering = false;
8196 rtnl_lock();
8197 list_for_each_entry(net, net_list, exit_list) {
8198 if (net->dev_unreg_count > 0) {
8199 unregistering = true;
8200 break;
8201 }
8202 }
8203 if (!unregistering)
8204 break;
8205 __rtnl_unlock();
ff960a73
PZ
8206
8207 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8208 }
ff960a73 8209 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8210}
8211
04dc7f6b
EB
8212static void __net_exit default_device_exit_batch(struct list_head *net_list)
8213{
8214 /* At exit all network devices most be removed from a network
b595076a 8215 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8216 * Do this across as many network namespaces as possible to
8217 * improve batching efficiency.
8218 */
8219 struct net_device *dev;
8220 struct net *net;
8221 LIST_HEAD(dev_kill_list);
8222
50624c93
EB
8223 /* To prevent network device cleanup code from dereferencing
8224 * loopback devices or network devices that have been freed
8225 * wait here for all pending unregistrations to complete,
8226 * before unregistring the loopback device and allowing the
8227 * network namespace be freed.
8228 *
8229 * The netdev todo list containing all network devices
8230 * unregistrations that happen in default_device_exit_batch
8231 * will run in the rtnl_unlock() at the end of
8232 * default_device_exit_batch.
8233 */
8234 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8235 list_for_each_entry(net, net_list, exit_list) {
8236 for_each_netdev_reverse(net, dev) {
b0ab2fab 8237 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8238 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8239 else
8240 unregister_netdevice_queue(dev, &dev_kill_list);
8241 }
8242 }
8243 unregister_netdevice_many(&dev_kill_list);
8244 rtnl_unlock();
8245}
8246
022cbae6 8247static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8248 .exit = default_device_exit,
04dc7f6b 8249 .exit_batch = default_device_exit_batch,
ce286d32
EB
8250};
8251
1da177e4
LT
8252/*
8253 * Initialize the DEV module. At boot time this walks the device list and
8254 * unhooks any devices that fail to initialise (normally hardware not
8255 * present) and leaves us with a valid list of present and active devices.
8256 *
8257 */
8258
8259/*
8260 * This is called single threaded during boot, so no need
8261 * to take the rtnl semaphore.
8262 */
8263static int __init net_dev_init(void)
8264{
8265 int i, rc = -ENOMEM;
8266
8267 BUG_ON(!dev_boot_phase);
8268
1da177e4
LT
8269 if (dev_proc_init())
8270 goto out;
8271
8b41d188 8272 if (netdev_kobject_init())
1da177e4
LT
8273 goto out;
8274
8275 INIT_LIST_HEAD(&ptype_all);
82d8a867 8276 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8277 INIT_LIST_HEAD(&ptype_base[i]);
8278
62532da9
VY
8279 INIT_LIST_HEAD(&offload_base);
8280
881d966b
EB
8281 if (register_pernet_subsys(&netdev_net_ops))
8282 goto out;
1da177e4
LT
8283
8284 /*
8285 * Initialise the packet receive queues.
8286 */
8287
6f912042 8288 for_each_possible_cpu(i) {
e36fa2f7 8289 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8290
e36fa2f7 8291 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8292 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8293 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8294 sd->output_queue_tailp = &sd->output_queue;
df334545 8295#ifdef CONFIG_RPS
e36fa2f7
ED
8296 sd->csd.func = rps_trigger_softirq;
8297 sd->csd.info = sd;
e36fa2f7 8298 sd->cpu = i;
1e94d72f 8299#endif
0a9627f2 8300
e36fa2f7
ED
8301 sd->backlog.poll = process_backlog;
8302 sd->backlog.weight = weight_p;
1da177e4
LT
8303 }
8304
1da177e4
LT
8305 dev_boot_phase = 0;
8306
505d4f73
EB
8307 /* The loopback device is special if any other network devices
8308 * is present in a network namespace the loopback device must
8309 * be present. Since we now dynamically allocate and free the
8310 * loopback device ensure this invariant is maintained by
8311 * keeping the loopback device as the first device on the
8312 * list of network devices. Ensuring the loopback devices
8313 * is the first device that appears and the last network device
8314 * that disappears.
8315 */
8316 if (register_pernet_device(&loopback_net_ops))
8317 goto out;
8318
8319 if (register_pernet_device(&default_device_ops))
8320 goto out;
8321
962cf36c
CM
8322 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8323 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8324
8325 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8326 dst_subsys_init();
1da177e4
LT
8327 rc = 0;
8328out:
8329 return rc;
8330}
8331
8332subsys_initcall(net_dev_init);