]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/core/dev.c
ipv6: defrag: drop non-last frags smaller than min mtu
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4
LT
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
a7862b45 98#include <linux/bpf.h>
b5cdae32 99#include <linux/bpf_trace.h>
457c4cbc 100#include <net/net_namespace.h>
1da177e4 101#include <net/sock.h>
02d62e86 102#include <net/busy_poll.h>
1da177e4 103#include <linux/rtnetlink.h>
1da177e4 104#include <linux/stat.h>
1da177e4 105#include <net/dst.h>
fc4099f1 106#include <net/dst_metadata.h>
1da177e4 107#include <net/pkt_sched.h>
87d83093 108#include <net/pkt_cls.h>
1da177e4 109#include <net/checksum.h>
44540960 110#include <net/xfrm.h>
1da177e4
LT
111#include <linux/highmem.h>
112#include <linux/init.h>
1da177e4 113#include <linux/module.h>
1da177e4
LT
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
25cd9ba0 127#include <net/mpls.h>
8f0f2223
DM
128#include <linux/ipv6.h>
129#include <linux/in.h>
b6b2fed1
DM
130#include <linux/jhash.h>
131#include <linux/random.h>
9cbc1cb8 132#include <trace/events/napi.h>
cf66ba58 133#include <trace/events/net.h>
07dc22e7 134#include <trace/events/skb.h>
5acbbd42 135#include <linux/pci.h>
caeda9b9 136#include <linux/inetdevice.h>
c445477d 137#include <linux/cpu_rmap.h>
c5905afb 138#include <linux/static_key.h>
af12fa6e 139#include <linux/hashtable.h>
60877a32 140#include <linux/vmalloc.h>
529d0489 141#include <linux/if_macvlan.h>
e7fd2885 142#include <linux/errqueue.h>
3b47d303 143#include <linux/hrtimer.h>
e687ad60 144#include <linux/netfilter_ingress.h>
40e4e713 145#include <linux/crash_dump.h>
b72b5bf6 146#include <linux/sctp.h>
ae847f40 147#include <net/udp_tunnel.h>
6621dd29 148#include <linux/net_namespace.h>
1da177e4 149
342709ef
PE
150#include "net-sysfs.h"
151
d565b0a1
HX
152#define MAX_GRO_SKBS 8
153
5d38a079
HX
154/* This should be increased if a protocol with a bigger head is added. */
155#define GRO_MAX_HEAD (MAX_HEADER + 128)
156
1da177e4 157static DEFINE_SPINLOCK(ptype_lock);
62532da9 158static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
62532da9 161static struct list_head offload_base __read_mostly;
1da177e4 162
ae78dbfa 163static int netif_rx_internal(struct sk_buff *skb);
54951194 164static int call_netdevice_notifiers_info(unsigned long val,
54951194 165 struct netdev_notifier_info *info);
90b602f8 166static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 167
1da177e4 168/*
7562f876 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
170 * semaphore.
171 *
c6d14c84 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
173 *
174 * Writers must hold the rtnl semaphore while they loop through the
7562f876 175 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
178 *
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
182 *
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
186 */
1da177e4 187DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
188EXPORT_SYMBOL(dev_base_lock);
189
6c557001
FW
190static DEFINE_MUTEX(ifalias_mutex);
191
af12fa6e
ET
192/* protects napi_hash addition/deletion and napi_gen_id */
193static DEFINE_SPINLOCK(napi_hash_lock);
194
52bd2d62 195static unsigned int napi_gen_id = NR_CPUS;
6180d9de 196static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 197
18afa4b0 198static seqcount_t devnet_rename_seq;
c91f6df2 199
4e985ada
TG
200static inline void dev_base_seq_inc(struct net *net)
201{
643aa9cb 202 while (++net->dev_base_seq == 0)
203 ;
4e985ada
TG
204}
205
881d966b 206static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 207{
8387ff25 208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 209
08e9897d 210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
211}
212
881d966b 213static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 214{
7c28bd0b 215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
216}
217
e36fa2f7 218static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
219{
220#ifdef CONFIG_RPS
e36fa2f7 221 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
222#endif
223}
224
e36fa2f7 225static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
226{
227#ifdef CONFIG_RPS
e36fa2f7 228 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
229#endif
230}
231
ce286d32 232/* Device list insertion */
53759be9 233static void list_netdevice(struct net_device *dev)
ce286d32 234{
c346dca1 235 struct net *net = dev_net(dev);
ce286d32
EB
236
237 ASSERT_RTNL();
238
239 write_lock_bh(&dev_base_lock);
c6d14c84 240 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
242 hlist_add_head_rcu(&dev->index_hlist,
243 dev_index_hash(net, dev->ifindex));
ce286d32 244 write_unlock_bh(&dev_base_lock);
4e985ada
TG
245
246 dev_base_seq_inc(net);
ce286d32
EB
247}
248
fb699dfd
ED
249/* Device list removal
250 * caller must respect a RCU grace period before freeing/reusing dev
251 */
ce286d32
EB
252static void unlist_netdevice(struct net_device *dev)
253{
254 ASSERT_RTNL();
255
256 /* Unlink dev from the device chain */
257 write_lock_bh(&dev_base_lock);
c6d14c84 258 list_del_rcu(&dev->dev_list);
72c9528b 259 hlist_del_rcu(&dev->name_hlist);
fb699dfd 260 hlist_del_rcu(&dev->index_hlist);
ce286d32 261 write_unlock_bh(&dev_base_lock);
4e985ada
TG
262
263 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
264}
265
1da177e4
LT
266/*
267 * Our notifier list
268 */
269
f07d5b94 270static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
271
272/*
273 * Device drivers call our routines to queue packets here. We empty the
274 * queue in the local softnet handler.
275 */
bea3348e 276
9958da05 277DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 278EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 279
cf508b12 280#ifdef CONFIG_LOCKDEP
723e98b7 281/*
c773e847 282 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
283 * according to dev->type
284 */
643aa9cb 285static const unsigned short netdev_lock_type[] = {
286 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
287 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
288 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
289 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
290 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
291 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
292 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
293 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
294 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
295 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
296 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
297 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
298 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
299 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
300 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 301
643aa9cb 302static const char *const netdev_lock_name[] = {
303 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
318
319static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 320static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
321
322static inline unsigned short netdev_lock_pos(unsigned short dev_type)
323{
324 int i;
325
326 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
327 if (netdev_lock_type[i] == dev_type)
328 return i;
329 /* the last key is used by default */
330 return ARRAY_SIZE(netdev_lock_type) - 1;
331}
332
cf508b12
DM
333static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
334 unsigned short dev_type)
723e98b7
JP
335{
336 int i;
337
338 i = netdev_lock_pos(dev_type);
339 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
340 netdev_lock_name[i]);
341}
cf508b12
DM
342
343static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344{
345 int i;
346
347 i = netdev_lock_pos(dev->type);
348 lockdep_set_class_and_name(&dev->addr_list_lock,
349 &netdev_addr_lock_key[i],
350 netdev_lock_name[i]);
351}
723e98b7 352#else
cf508b12
DM
353static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
354 unsigned short dev_type)
355{
356}
357static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
358{
359}
360#endif
1da177e4
LT
361
362/*******************************************************************************
eb13da1a 363 *
364 * Protocol management and registration routines
365 *
366 *******************************************************************************/
1da177e4 367
1da177e4 368
1da177e4
LT
369/*
370 * Add a protocol ID to the list. Now that the input handler is
371 * smarter we can dispense with all the messy stuff that used to be
372 * here.
373 *
374 * BEWARE!!! Protocol handlers, mangling input packets,
375 * MUST BE last in hash buckets and checking protocol handlers
376 * MUST start from promiscuous ptype_all chain in net_bh.
377 * It is true now, do not change it.
378 * Explanation follows: if protocol handler, mangling packet, will
379 * be the first on list, it is not able to sense, that packet
380 * is cloned and should be copied-on-write, so that it will
381 * change it and subsequent readers will get broken packet.
382 * --ANK (980803)
383 */
384
c07b68e8
ED
385static inline struct list_head *ptype_head(const struct packet_type *pt)
386{
387 if (pt->type == htons(ETH_P_ALL))
7866a621 388 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 389 else
7866a621
SN
390 return pt->dev ? &pt->dev->ptype_specific :
391 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
392}
393
1da177e4
LT
394/**
395 * dev_add_pack - add packet handler
396 * @pt: packet type declaration
397 *
398 * Add a protocol handler to the networking stack. The passed &packet_type
399 * is linked into kernel lists and may not be freed until it has been
400 * removed from the kernel lists.
401 *
4ec93edb 402 * This call does not sleep therefore it can not
1da177e4
LT
403 * guarantee all CPU's that are in middle of receiving packets
404 * will see the new packet type (until the next received packet).
405 */
406
407void dev_add_pack(struct packet_type *pt)
408{
c07b68e8 409 struct list_head *head = ptype_head(pt);
1da177e4 410
c07b68e8
ED
411 spin_lock(&ptype_lock);
412 list_add_rcu(&pt->list, head);
413 spin_unlock(&ptype_lock);
1da177e4 414}
d1b19dff 415EXPORT_SYMBOL(dev_add_pack);
1da177e4 416
1da177e4
LT
417/**
418 * __dev_remove_pack - remove packet handler
419 * @pt: packet type declaration
420 *
421 * Remove a protocol handler that was previously added to the kernel
422 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
423 * from the kernel lists and can be freed or reused once this function
4ec93edb 424 * returns.
1da177e4
LT
425 *
426 * The packet type might still be in use by receivers
427 * and must not be freed until after all the CPU's have gone
428 * through a quiescent state.
429 */
430void __dev_remove_pack(struct packet_type *pt)
431{
c07b68e8 432 struct list_head *head = ptype_head(pt);
1da177e4
LT
433 struct packet_type *pt1;
434
c07b68e8 435 spin_lock(&ptype_lock);
1da177e4
LT
436
437 list_for_each_entry(pt1, head, list) {
438 if (pt == pt1) {
439 list_del_rcu(&pt->list);
440 goto out;
441 }
442 }
443
7b6cd1ce 444 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 445out:
c07b68e8 446 spin_unlock(&ptype_lock);
1da177e4 447}
d1b19dff
ED
448EXPORT_SYMBOL(__dev_remove_pack);
449
1da177e4
LT
450/**
451 * dev_remove_pack - remove packet handler
452 * @pt: packet type declaration
453 *
454 * Remove a protocol handler that was previously added to the kernel
455 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
456 * from the kernel lists and can be freed or reused once this function
457 * returns.
458 *
459 * This call sleeps to guarantee that no CPU is looking at the packet
460 * type after return.
461 */
462void dev_remove_pack(struct packet_type *pt)
463{
464 __dev_remove_pack(pt);
4ec93edb 465
1da177e4
LT
466 synchronize_net();
467}
d1b19dff 468EXPORT_SYMBOL(dev_remove_pack);
1da177e4 469
62532da9
VY
470
471/**
472 * dev_add_offload - register offload handlers
473 * @po: protocol offload declaration
474 *
475 * Add protocol offload handlers to the networking stack. The passed
476 * &proto_offload is linked into kernel lists and may not be freed until
477 * it has been removed from the kernel lists.
478 *
479 * This call does not sleep therefore it can not
480 * guarantee all CPU's that are in middle of receiving packets
481 * will see the new offload handlers (until the next received packet).
482 */
483void dev_add_offload(struct packet_offload *po)
484{
bdef7de4 485 struct packet_offload *elem;
62532da9
VY
486
487 spin_lock(&offload_lock);
bdef7de4
DM
488 list_for_each_entry(elem, &offload_base, list) {
489 if (po->priority < elem->priority)
490 break;
491 }
492 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
493 spin_unlock(&offload_lock);
494}
495EXPORT_SYMBOL(dev_add_offload);
496
497/**
498 * __dev_remove_offload - remove offload handler
499 * @po: packet offload declaration
500 *
501 * Remove a protocol offload handler that was previously added to the
502 * kernel offload handlers by dev_add_offload(). The passed &offload_type
503 * is removed from the kernel lists and can be freed or reused once this
504 * function returns.
505 *
506 * The packet type might still be in use by receivers
507 * and must not be freed until after all the CPU's have gone
508 * through a quiescent state.
509 */
1d143d9f 510static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
511{
512 struct list_head *head = &offload_base;
513 struct packet_offload *po1;
514
c53aa505 515 spin_lock(&offload_lock);
62532da9
VY
516
517 list_for_each_entry(po1, head, list) {
518 if (po == po1) {
519 list_del_rcu(&po->list);
520 goto out;
521 }
522 }
523
524 pr_warn("dev_remove_offload: %p not found\n", po);
525out:
c53aa505 526 spin_unlock(&offload_lock);
62532da9 527}
62532da9
VY
528
529/**
530 * dev_remove_offload - remove packet offload handler
531 * @po: packet offload declaration
532 *
533 * Remove a packet offload handler that was previously added to the kernel
534 * offload handlers by dev_add_offload(). The passed &offload_type is
535 * removed from the kernel lists and can be freed or reused once this
536 * function returns.
537 *
538 * This call sleeps to guarantee that no CPU is looking at the packet
539 * type after return.
540 */
541void dev_remove_offload(struct packet_offload *po)
542{
543 __dev_remove_offload(po);
544
545 synchronize_net();
546}
547EXPORT_SYMBOL(dev_remove_offload);
548
1da177e4 549/******************************************************************************
eb13da1a 550 *
551 * Device Boot-time Settings Routines
552 *
553 ******************************************************************************/
1da177e4
LT
554
555/* Boot time configuration table */
556static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
557
558/**
559 * netdev_boot_setup_add - add new setup entry
560 * @name: name of the device
561 * @map: configured settings for the device
562 *
563 * Adds new setup entry to the dev_boot_setup list. The function
564 * returns 0 on error and 1 on success. This is a generic routine to
565 * all netdevices.
566 */
567static int netdev_boot_setup_add(char *name, struct ifmap *map)
568{
569 struct netdev_boot_setup *s;
570 int i;
571
572 s = dev_boot_setup;
573 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
575 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 576 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
577 memcpy(&s[i].map, map, sizeof(s[i].map));
578 break;
579 }
580 }
581
582 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
583}
584
585/**
722c9a0c 586 * netdev_boot_setup_check - check boot time settings
587 * @dev: the netdevice
1da177e4 588 *
722c9a0c 589 * Check boot time settings for the device.
590 * The found settings are set for the device to be used
591 * later in the device probing.
592 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
593 */
594int netdev_boot_setup_check(struct net_device *dev)
595{
596 struct netdev_boot_setup *s = dev_boot_setup;
597 int i;
598
599 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
600 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 601 !strcmp(dev->name, s[i].name)) {
722c9a0c 602 dev->irq = s[i].map.irq;
603 dev->base_addr = s[i].map.base_addr;
604 dev->mem_start = s[i].map.mem_start;
605 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
606 return 1;
607 }
608 }
609 return 0;
610}
d1b19dff 611EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
612
613
614/**
722c9a0c 615 * netdev_boot_base - get address from boot time settings
616 * @prefix: prefix for network device
617 * @unit: id for network device
618 *
619 * Check boot time settings for the base address of device.
620 * The found settings are set for the device to be used
621 * later in the device probing.
622 * Returns 0 if no settings found.
1da177e4
LT
623 */
624unsigned long netdev_boot_base(const char *prefix, int unit)
625{
626 const struct netdev_boot_setup *s = dev_boot_setup;
627 char name[IFNAMSIZ];
628 int i;
629
630 sprintf(name, "%s%d", prefix, unit);
631
632 /*
633 * If device already registered then return base of 1
634 * to indicate not to probe for this interface
635 */
881d966b 636 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
637 return 1;
638
639 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
640 if (!strcmp(name, s[i].name))
641 return s[i].map.base_addr;
642 return 0;
643}
644
645/*
646 * Saves at boot time configured settings for any netdevice.
647 */
648int __init netdev_boot_setup(char *str)
649{
650 int ints[5];
651 struct ifmap map;
652
653 str = get_options(str, ARRAY_SIZE(ints), ints);
654 if (!str || !*str)
655 return 0;
656
657 /* Save settings */
658 memset(&map, 0, sizeof(map));
659 if (ints[0] > 0)
660 map.irq = ints[1];
661 if (ints[0] > 1)
662 map.base_addr = ints[2];
663 if (ints[0] > 2)
664 map.mem_start = ints[3];
665 if (ints[0] > 3)
666 map.mem_end = ints[4];
667
668 /* Add new entry to the list */
669 return netdev_boot_setup_add(str, &map);
670}
671
672__setup("netdev=", netdev_boot_setup);
673
674/*******************************************************************************
eb13da1a 675 *
676 * Device Interface Subroutines
677 *
678 *******************************************************************************/
1da177e4 679
a54acb3a
ND
680/**
681 * dev_get_iflink - get 'iflink' value of a interface
682 * @dev: targeted interface
683 *
684 * Indicates the ifindex the interface is linked to.
685 * Physical interfaces have the same 'ifindex' and 'iflink' values.
686 */
687
688int dev_get_iflink(const struct net_device *dev)
689{
690 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
691 return dev->netdev_ops->ndo_get_iflink(dev);
692
7a66bbc9 693 return dev->ifindex;
a54acb3a
ND
694}
695EXPORT_SYMBOL(dev_get_iflink);
696
fc4099f1
PS
697/**
698 * dev_fill_metadata_dst - Retrieve tunnel egress information.
699 * @dev: targeted interface
700 * @skb: The packet.
701 *
702 * For better visibility of tunnel traffic OVS needs to retrieve
703 * egress tunnel information for a packet. Following API allows
704 * user to get this info.
705 */
706int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707{
708 struct ip_tunnel_info *info;
709
710 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
711 return -EINVAL;
712
713 info = skb_tunnel_info_unclone(skb);
714 if (!info)
715 return -ENOMEM;
716 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
717 return -EINVAL;
718
719 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720}
721EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
722
1da177e4
LT
723/**
724 * __dev_get_by_name - find a device by its name
c4ea43c5 725 * @net: the applicable net namespace
1da177e4
LT
726 * @name: name to find
727 *
728 * Find an interface by name. Must be called under RTNL semaphore
729 * or @dev_base_lock. If the name is found a pointer to the device
730 * is returned. If the name is not found then %NULL is returned. The
731 * reference counters are not incremented so the caller must be
732 * careful with locks.
733 */
734
881d966b 735struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 736{
0bd8d536
ED
737 struct net_device *dev;
738 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 739
b67bfe0d 740 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
741 if (!strncmp(dev->name, name, IFNAMSIZ))
742 return dev;
0bd8d536 743
1da177e4
LT
744 return NULL;
745}
d1b19dff 746EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 747
72c9528b 748/**
722c9a0c 749 * dev_get_by_name_rcu - find a device by its name
750 * @net: the applicable net namespace
751 * @name: name to find
752 *
753 * Find an interface by name.
754 * If the name is found a pointer to the device is returned.
755 * If the name is not found then %NULL is returned.
756 * The reference counters are not incremented so the caller must be
757 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
758 */
759
760struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761{
72c9528b
ED
762 struct net_device *dev;
763 struct hlist_head *head = dev_name_hash(net, name);
764
b67bfe0d 765 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
766 if (!strncmp(dev->name, name, IFNAMSIZ))
767 return dev;
768
769 return NULL;
770}
771EXPORT_SYMBOL(dev_get_by_name_rcu);
772
1da177e4
LT
773/**
774 * dev_get_by_name - find a device by its name
c4ea43c5 775 * @net: the applicable net namespace
1da177e4
LT
776 * @name: name to find
777 *
778 * Find an interface by name. This can be called from any
779 * context and does its own locking. The returned handle has
780 * the usage count incremented and the caller must use dev_put() to
781 * release it when it is no longer needed. %NULL is returned if no
782 * matching device is found.
783 */
784
881d966b 785struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
786{
787 struct net_device *dev;
788
72c9528b
ED
789 rcu_read_lock();
790 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
791 if (dev)
792 dev_hold(dev);
72c9528b 793 rcu_read_unlock();
1da177e4
LT
794 return dev;
795}
d1b19dff 796EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
797
798/**
799 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 800 * @net: the applicable net namespace
1da177e4
LT
801 * @ifindex: index of device
802 *
803 * Search for an interface by index. Returns %NULL if the device
804 * is not found or a pointer to the device. The device has not
805 * had its reference counter increased so the caller must be careful
806 * about locking. The caller must hold either the RTNL semaphore
807 * or @dev_base_lock.
808 */
809
881d966b 810struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 811{
0bd8d536
ED
812 struct net_device *dev;
813 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 814
b67bfe0d 815 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
816 if (dev->ifindex == ifindex)
817 return dev;
0bd8d536 818
1da177e4
LT
819 return NULL;
820}
d1b19dff 821EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 822
fb699dfd
ED
823/**
824 * dev_get_by_index_rcu - find a device by its ifindex
825 * @net: the applicable net namespace
826 * @ifindex: index of device
827 *
828 * Search for an interface by index. Returns %NULL if the device
829 * is not found or a pointer to the device. The device has not
830 * had its reference counter increased so the caller must be careful
831 * about locking. The caller must hold RCU lock.
832 */
833
834struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835{
fb699dfd
ED
836 struct net_device *dev;
837 struct hlist_head *head = dev_index_hash(net, ifindex);
838
b67bfe0d 839 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
840 if (dev->ifindex == ifindex)
841 return dev;
842
843 return NULL;
844}
845EXPORT_SYMBOL(dev_get_by_index_rcu);
846
1da177e4
LT
847
848/**
849 * dev_get_by_index - find a device by its ifindex
c4ea43c5 850 * @net: the applicable net namespace
1da177e4
LT
851 * @ifindex: index of device
852 *
853 * Search for an interface by index. Returns NULL if the device
854 * is not found or a pointer to the device. The device returned has
855 * had a reference added and the pointer is safe until the user calls
856 * dev_put to indicate they have finished with it.
857 */
858
881d966b 859struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
860{
861 struct net_device *dev;
862
fb699dfd
ED
863 rcu_read_lock();
864 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
865 if (dev)
866 dev_hold(dev);
fb699dfd 867 rcu_read_unlock();
1da177e4
LT
868 return dev;
869}
d1b19dff 870EXPORT_SYMBOL(dev_get_by_index);
1da177e4 871
90b602f8
ML
872/**
873 * dev_get_by_napi_id - find a device by napi_id
874 * @napi_id: ID of the NAPI struct
875 *
876 * Search for an interface by NAPI ID. Returns %NULL if the device
877 * is not found or a pointer to the device. The device has not had
878 * its reference counter increased so the caller must be careful
879 * about locking. The caller must hold RCU lock.
880 */
881
882struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883{
884 struct napi_struct *napi;
885
886 WARN_ON_ONCE(!rcu_read_lock_held());
887
888 if (napi_id < MIN_NAPI_ID)
889 return NULL;
890
891 napi = napi_by_id(napi_id);
892
893 return napi ? napi->dev : NULL;
894}
895EXPORT_SYMBOL(dev_get_by_napi_id);
896
5dbe7c17
NS
897/**
898 * netdev_get_name - get a netdevice name, knowing its ifindex.
899 * @net: network namespace
900 * @name: a pointer to the buffer where the name will be stored.
901 * @ifindex: the ifindex of the interface to get the name from.
902 *
903 * The use of raw_seqcount_begin() and cond_resched() before
904 * retrying is required as we want to give the writers a chance
905 * to complete when CONFIG_PREEMPT is not set.
906 */
907int netdev_get_name(struct net *net, char *name, int ifindex)
908{
909 struct net_device *dev;
910 unsigned int seq;
911
912retry:
913 seq = raw_seqcount_begin(&devnet_rename_seq);
914 rcu_read_lock();
915 dev = dev_get_by_index_rcu(net, ifindex);
916 if (!dev) {
917 rcu_read_unlock();
918 return -ENODEV;
919 }
920
921 strcpy(name, dev->name);
922 rcu_read_unlock();
923 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
924 cond_resched();
925 goto retry;
926 }
927
928 return 0;
929}
930
1da177e4 931/**
941666c2 932 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 933 * @net: the applicable net namespace
1da177e4
LT
934 * @type: media type of device
935 * @ha: hardware address
936 *
937 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
938 * is not found or a pointer to the device.
939 * The caller must hold RCU or RTNL.
941666c2 940 * The returned device has not had its ref count increased
1da177e4
LT
941 * and the caller must therefore be careful about locking
942 *
1da177e4
LT
943 */
944
941666c2
ED
945struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
946 const char *ha)
1da177e4
LT
947{
948 struct net_device *dev;
949
941666c2 950 for_each_netdev_rcu(net, dev)
1da177e4
LT
951 if (dev->type == type &&
952 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
953 return dev;
954
955 return NULL;
1da177e4 956}
941666c2 957EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 958
881d966b 959struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
960{
961 struct net_device *dev;
962
4e9cac2b 963 ASSERT_RTNL();
881d966b 964 for_each_netdev(net, dev)
4e9cac2b 965 if (dev->type == type)
7562f876
PE
966 return dev;
967
968 return NULL;
4e9cac2b 969}
4e9cac2b
PM
970EXPORT_SYMBOL(__dev_getfirstbyhwtype);
971
881d966b 972struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 973{
99fe3c39 974 struct net_device *dev, *ret = NULL;
4e9cac2b 975
99fe3c39
ED
976 rcu_read_lock();
977 for_each_netdev_rcu(net, dev)
978 if (dev->type == type) {
979 dev_hold(dev);
980 ret = dev;
981 break;
982 }
983 rcu_read_unlock();
984 return ret;
1da177e4 985}
1da177e4
LT
986EXPORT_SYMBOL(dev_getfirstbyhwtype);
987
988/**
6c555490 989 * __dev_get_by_flags - find any device with given flags
c4ea43c5 990 * @net: the applicable net namespace
1da177e4
LT
991 * @if_flags: IFF_* values
992 * @mask: bitmask of bits in if_flags to check
993 *
994 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 995 * is not found or a pointer to the device. Must be called inside
6c555490 996 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
997 */
998
6c555490
WC
999struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000 unsigned short mask)
1da177e4 1001{
7562f876 1002 struct net_device *dev, *ret;
1da177e4 1003
6c555490
WC
1004 ASSERT_RTNL();
1005
7562f876 1006 ret = NULL;
6c555490 1007 for_each_netdev(net, dev) {
1da177e4 1008 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1009 ret = dev;
1da177e4
LT
1010 break;
1011 }
1012 }
7562f876 1013 return ret;
1da177e4 1014}
6c555490 1015EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1016
1017/**
1018 * dev_valid_name - check if name is okay for network device
1019 * @name: name string
1020 *
1021 * Network device names need to be valid file names to
c7fa9d18
DM
1022 * to allow sysfs to work. We also disallow any kind of
1023 * whitespace.
1da177e4 1024 */
95f050bf 1025bool dev_valid_name(const char *name)
1da177e4 1026{
c7fa9d18 1027 if (*name == '\0')
95f050bf 1028 return false;
a9d48205 1029 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1030 return false;
c7fa9d18 1031 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1032 return false;
c7fa9d18
DM
1033
1034 while (*name) {
a4176a93 1035 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1036 return false;
c7fa9d18
DM
1037 name++;
1038 }
95f050bf 1039 return true;
1da177e4 1040}
d1b19dff 1041EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1042
1043/**
b267b179
EB
1044 * __dev_alloc_name - allocate a name for a device
1045 * @net: network namespace to allocate the device name in
1da177e4 1046 * @name: name format string
b267b179 1047 * @buf: scratch buffer and result name string
1da177e4
LT
1048 *
1049 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1050 * id. It scans list of devices to build up a free map, then chooses
1051 * the first empty slot. The caller must hold the dev_base or rtnl lock
1052 * while allocating the name and adding the device in order to avoid
1053 * duplicates.
1054 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1056 */
1057
b267b179 1058static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1059{
1060 int i = 0;
1da177e4
LT
1061 const char *p;
1062 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1063 unsigned long *inuse;
1da177e4
LT
1064 struct net_device *d;
1065
93809105
RV
1066 if (!dev_valid_name(name))
1067 return -EINVAL;
1068
51f299dd 1069 p = strchr(name, '%');
1da177e4
LT
1070 if (p) {
1071 /*
1072 * Verify the string as this thing may have come from
1073 * the user. There must be either one "%d" and no other "%"
1074 * characters.
1075 */
1076 if (p[1] != 'd' || strchr(p + 2, '%'))
1077 return -EINVAL;
1078
1079 /* Use one page as a bit array of possible slots */
cfcabdcc 1080 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1081 if (!inuse)
1082 return -ENOMEM;
1083
881d966b 1084 for_each_netdev(net, d) {
1da177e4
LT
1085 if (!sscanf(d->name, name, &i))
1086 continue;
1087 if (i < 0 || i >= max_netdevices)
1088 continue;
1089
1090 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1091 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1092 if (!strncmp(buf, d->name, IFNAMSIZ))
1093 set_bit(i, inuse);
1094 }
1095
1096 i = find_first_zero_bit(inuse, max_netdevices);
1097 free_page((unsigned long) inuse);
1098 }
1099
6224abda 1100 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1101 if (!__dev_get_by_name(net, buf))
1da177e4 1102 return i;
1da177e4
LT
1103
1104 /* It is possible to run out of possible slots
1105 * when the name is long and there isn't enough space left
1106 * for the digits, or if all bits are used.
1107 */
029b6d14 1108 return -ENFILE;
1da177e4
LT
1109}
1110
2c88b855
RV
1111static int dev_alloc_name_ns(struct net *net,
1112 struct net_device *dev,
1113 const char *name)
1114{
1115 char buf[IFNAMSIZ];
1116 int ret;
1117
c46d7642 1118 BUG_ON(!net);
2c88b855
RV
1119 ret = __dev_alloc_name(net, name, buf);
1120 if (ret >= 0)
1121 strlcpy(dev->name, buf, IFNAMSIZ);
1122 return ret;
1da177e4
LT
1123}
1124
b267b179
EB
1125/**
1126 * dev_alloc_name - allocate a name for a device
1127 * @dev: device
1128 * @name: name format string
1129 *
1130 * Passed a format string - eg "lt%d" it will try and find a suitable
1131 * id. It scans list of devices to build up a free map, then chooses
1132 * the first empty slot. The caller must hold the dev_base or rtnl lock
1133 * while allocating the name and adding the device in order to avoid
1134 * duplicates.
1135 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1136 * Returns the number of the unit assigned or a negative errno code.
1137 */
1138
1139int dev_alloc_name(struct net_device *dev, const char *name)
1140{
c46d7642 1141 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1142}
d1b19dff 1143EXPORT_SYMBOL(dev_alloc_name);
b267b179 1144
0ad646c8
CW
1145int dev_get_valid_name(struct net *net, struct net_device *dev,
1146 const char *name)
828de4f6 1147{
55a5ec9b
DM
1148 BUG_ON(!net);
1149
1150 if (!dev_valid_name(name))
1151 return -EINVAL;
1152
1153 if (strchr(name, '%'))
1154 return dev_alloc_name_ns(net, dev, name);
1155 else if (__dev_get_by_name(net, name))
1156 return -EEXIST;
1157 else if (dev->name != name)
1158 strlcpy(dev->name, name, IFNAMSIZ);
1159
1160 return 0;
d9031024 1161}
0ad646c8 1162EXPORT_SYMBOL(dev_get_valid_name);
1da177e4
LT
1163
1164/**
1165 * dev_change_name - change name of a device
1166 * @dev: device
1167 * @newname: name (or format string) must be at least IFNAMSIZ
1168 *
1169 * Change name of a device, can pass format strings "eth%d".
1170 * for wildcarding.
1171 */
cf04a4c7 1172int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1173{
238fa362 1174 unsigned char old_assign_type;
fcc5a03a 1175 char oldname[IFNAMSIZ];
1da177e4 1176 int err = 0;
fcc5a03a 1177 int ret;
881d966b 1178 struct net *net;
1da177e4
LT
1179
1180 ASSERT_RTNL();
c346dca1 1181 BUG_ON(!dev_net(dev));
1da177e4 1182
c346dca1 1183 net = dev_net(dev);
1da177e4
LT
1184 if (dev->flags & IFF_UP)
1185 return -EBUSY;
1186
30e6c9fa 1187 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1188
1189 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1190 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1191 return 0;
c91f6df2 1192 }
c8d90dca 1193
fcc5a03a
HX
1194 memcpy(oldname, dev->name, IFNAMSIZ);
1195
828de4f6 1196 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1197 if (err < 0) {
30e6c9fa 1198 write_seqcount_end(&devnet_rename_seq);
d9031024 1199 return err;
c91f6df2 1200 }
1da177e4 1201
6fe82a39
VF
1202 if (oldname[0] && !strchr(oldname, '%'))
1203 netdev_info(dev, "renamed from %s\n", oldname);
1204
238fa362
TG
1205 old_assign_type = dev->name_assign_type;
1206 dev->name_assign_type = NET_NAME_RENAMED;
1207
fcc5a03a 1208rollback:
a1b3f594
EB
1209 ret = device_rename(&dev->dev, dev->name);
1210 if (ret) {
1211 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1212 dev->name_assign_type = old_assign_type;
30e6c9fa 1213 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1214 return ret;
dcc99773 1215 }
7f988eab 1216
30e6c9fa 1217 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1218
5bb025fa
VF
1219 netdev_adjacent_rename_links(dev, oldname);
1220
7f988eab 1221 write_lock_bh(&dev_base_lock);
372b2312 1222 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1223 write_unlock_bh(&dev_base_lock);
1224
1225 synchronize_rcu();
1226
1227 write_lock_bh(&dev_base_lock);
1228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1229 write_unlock_bh(&dev_base_lock);
1230
056925ab 1231 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1232 ret = notifier_to_errno(ret);
1233
1234 if (ret) {
91e9c07b
ED
1235 /* err >= 0 after dev_alloc_name() or stores the first errno */
1236 if (err >= 0) {
fcc5a03a 1237 err = ret;
30e6c9fa 1238 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1239 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1240 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1241 dev->name_assign_type = old_assign_type;
1242 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1243 goto rollback;
91e9c07b 1244 } else {
7b6cd1ce 1245 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1246 dev->name, ret);
fcc5a03a
HX
1247 }
1248 }
1da177e4
LT
1249
1250 return err;
1251}
1252
0b815a1a
SH
1253/**
1254 * dev_set_alias - change ifalias of a device
1255 * @dev: device
1256 * @alias: name up to IFALIASZ
f0db275a 1257 * @len: limit of bytes to copy from info
0b815a1a
SH
1258 *
1259 * Set ifalias for a device,
1260 */
1261int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1262{
6c557001 1263 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1264
1265 if (len >= IFALIASZ)
1266 return -EINVAL;
1267
6c557001
FW
1268 if (len) {
1269 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1270 if (!new_alias)
1271 return -ENOMEM;
1272
1273 memcpy(new_alias->ifalias, alias, len);
1274 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1275 }
1276
6c557001
FW
1277 mutex_lock(&ifalias_mutex);
1278 rcu_swap_protected(dev->ifalias, new_alias,
1279 mutex_is_locked(&ifalias_mutex));
1280 mutex_unlock(&ifalias_mutex);
1281
1282 if (new_alias)
1283 kfree_rcu(new_alias, rcuhead);
0b815a1a 1284
0b815a1a
SH
1285 return len;
1286}
0fe554a4 1287EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1288
6c557001
FW
1289/**
1290 * dev_get_alias - get ifalias of a device
1291 * @dev: device
20e88320 1292 * @name: buffer to store name of ifalias
6c557001
FW
1293 * @len: size of buffer
1294 *
1295 * get ifalias for a device. Caller must make sure dev cannot go
1296 * away, e.g. rcu read lock or own a reference count to device.
1297 */
1298int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299{
1300 const struct dev_ifalias *alias;
1301 int ret = 0;
1302
1303 rcu_read_lock();
1304 alias = rcu_dereference(dev->ifalias);
1305 if (alias)
1306 ret = snprintf(name, len, "%s", alias->ifalias);
1307 rcu_read_unlock();
1308
1309 return ret;
1310}
0b815a1a 1311
d8a33ac4 1312/**
3041a069 1313 * netdev_features_change - device changes features
d8a33ac4
SH
1314 * @dev: device to cause notification
1315 *
1316 * Called to indicate a device has changed features.
1317 */
1318void netdev_features_change(struct net_device *dev)
1319{
056925ab 1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1321}
1322EXPORT_SYMBOL(netdev_features_change);
1323
1da177e4
LT
1324/**
1325 * netdev_state_change - device changes state
1326 * @dev: device to cause notification
1327 *
1328 * Called to indicate a device has changed state. This function calls
1329 * the notifier chains for netdev_chain and sends a NEWLINK message
1330 * to the routing socket.
1331 */
1332void netdev_state_change(struct net_device *dev)
1333{
1334 if (dev->flags & IFF_UP) {
51d0c047
DA
1335 struct netdev_notifier_change_info change_info = {
1336 .info.dev = dev,
1337 };
54951194 1338
51d0c047 1339 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1340 &change_info.info);
7f294054 1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1342 }
1343}
d1b19dff 1344EXPORT_SYMBOL(netdev_state_change);
1da177e4 1345
ee89bab1 1346/**
722c9a0c 1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
ee89bab1
AW
1349 *
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1354 * migration.
1355 */
1356void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1357{
ee89bab1
AW
1358 rtnl_lock();
1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1361 rtnl_unlock();
c1da4ac7 1362}
ee89bab1 1363EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1364
bd380811 1365static int __dev_open(struct net_device *dev)
1da177e4 1366{
d314774c 1367 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1368 int ret;
1da177e4 1369
e46b66bc
BH
1370 ASSERT_RTNL();
1371
1da177e4
LT
1372 if (!netif_device_present(dev))
1373 return -ENODEV;
1374
ca99ca14
NH
1375 /* Block netpoll from trying to do any rx path servicing.
1376 * If we don't do this there is a chance ndo_poll_controller
1377 * or ndo_poll may be running while we open the device
1378 */
66b5552f 1379 netpoll_poll_disable(dev);
ca99ca14 1380
3b8bcfd5
JB
1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 ret = notifier_to_errno(ret);
1383 if (ret)
1384 return ret;
1385
1da177e4 1386 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1387
d314774c
SH
1388 if (ops->ndo_validate_addr)
1389 ret = ops->ndo_validate_addr(dev);
bada339b 1390
d314774c
SH
1391 if (!ret && ops->ndo_open)
1392 ret = ops->ndo_open(dev);
1da177e4 1393
66b5552f 1394 netpoll_poll_enable(dev);
ca99ca14 1395
bada339b
JG
1396 if (ret)
1397 clear_bit(__LINK_STATE_START, &dev->state);
1398 else {
1da177e4 1399 dev->flags |= IFF_UP;
4417da66 1400 dev_set_rx_mode(dev);
1da177e4 1401 dev_activate(dev);
7bf23575 1402 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1403 }
bada339b 1404
1da177e4
LT
1405 return ret;
1406}
1407
1408/**
bd380811
PM
1409 * dev_open - prepare an interface for use.
1410 * @dev: device to open
1da177e4 1411 *
bd380811
PM
1412 * Takes a device from down to up state. The device's private open
1413 * function is invoked and then the multicast lists are loaded. Finally
1414 * the device is moved into the up state and a %NETDEV_UP message is
1415 * sent to the netdev notifier chain.
1416 *
1417 * Calling this function on an active interface is a nop. On a failure
1418 * a negative errno code is returned.
1da177e4 1419 */
bd380811
PM
1420int dev_open(struct net_device *dev)
1421{
1422 int ret;
1423
bd380811
PM
1424 if (dev->flags & IFF_UP)
1425 return 0;
1426
bd380811
PM
1427 ret = __dev_open(dev);
1428 if (ret < 0)
1429 return ret;
1430
7f294054 1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1432 call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434 return ret;
1435}
1436EXPORT_SYMBOL(dev_open);
1437
7051b88a 1438static void __dev_close_many(struct list_head *head)
1da177e4 1439{
44345724 1440 struct net_device *dev;
e46b66bc 1441
bd380811 1442 ASSERT_RTNL();
9d5010db
DM
1443 might_sleep();
1444
5cde2829 1445 list_for_each_entry(dev, head, close_list) {
3f4df206 1446 /* Temporarily disable netpoll until the interface is down */
66b5552f 1447 netpoll_poll_disable(dev);
3f4df206 1448
44345724 1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1450
44345724 1451 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1452
44345724
OP
1453 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454 * can be even on different cpu. So just clear netif_running().
1455 *
1456 * dev->stop() will invoke napi_disable() on all of it's
1457 * napi_struct instances on this device.
1458 */
4e857c58 1459 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1460 }
1da177e4 1461
44345724 1462 dev_deactivate_many(head);
d8b2a4d2 1463
5cde2829 1464 list_for_each_entry(dev, head, close_list) {
44345724 1465 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1466
44345724
OP
1467 /*
1468 * Call the device specific close. This cannot fail.
1469 * Only if device is UP
1470 *
1471 * We allow it to be called even after a DETACH hot-plug
1472 * event.
1473 */
1474 if (ops->ndo_stop)
1475 ops->ndo_stop(dev);
1476
44345724 1477 dev->flags &= ~IFF_UP;
66b5552f 1478 netpoll_poll_enable(dev);
44345724 1479 }
44345724
OP
1480}
1481
7051b88a 1482static void __dev_close(struct net_device *dev)
44345724
OP
1483{
1484 LIST_HEAD(single);
1485
5cde2829 1486 list_add(&dev->close_list, &single);
7051b88a 1487 __dev_close_many(&single);
f87e6f47 1488 list_del(&single);
44345724
OP
1489}
1490
7051b88a 1491void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1492{
1493 struct net_device *dev, *tmp;
1da177e4 1494
5cde2829
EB
1495 /* Remove the devices that don't need to be closed */
1496 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1497 if (!(dev->flags & IFF_UP))
5cde2829 1498 list_del_init(&dev->close_list);
44345724
OP
1499
1500 __dev_close_many(head);
1da177e4 1501
5cde2829 1502 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1504 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1505 if (unlink)
1506 list_del_init(&dev->close_list);
44345724 1507 }
bd380811 1508}
99c4a26a 1509EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1510
1511/**
1512 * dev_close - shutdown an interface.
1513 * @dev: device to shutdown
1514 *
1515 * This function moves an active device into down state. A
1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518 * chain.
1519 */
7051b88a 1520void dev_close(struct net_device *dev)
bd380811 1521{
e14a5993
ED
1522 if (dev->flags & IFF_UP) {
1523 LIST_HEAD(single);
1da177e4 1524
5cde2829 1525 list_add(&dev->close_list, &single);
99c4a26a 1526 dev_close_many(&single, true);
e14a5993
ED
1527 list_del(&single);
1528 }
1da177e4 1529}
d1b19dff 1530EXPORT_SYMBOL(dev_close);
1da177e4
LT
1531
1532
0187bdfb
BH
1533/**
1534 * dev_disable_lro - disable Large Receive Offload on a device
1535 * @dev: device
1536 *
1537 * Disable Large Receive Offload (LRO) on a net device. Must be
1538 * called under RTNL. This is needed if received packets may be
1539 * forwarded to another interface.
1540 */
1541void dev_disable_lro(struct net_device *dev)
1542{
fbe168ba
MK
1543 struct net_device *lower_dev;
1544 struct list_head *iter;
529d0489 1545
bc5787c6
MM
1546 dev->wanted_features &= ~NETIF_F_LRO;
1547 netdev_update_features(dev);
27660515 1548
22d5969f
MM
1549 if (unlikely(dev->features & NETIF_F_LRO))
1550 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1551
1552 netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 dev_disable_lro(lower_dev);
0187bdfb
BH
1554}
1555EXPORT_SYMBOL(dev_disable_lro);
1556
56f5aa77
MC
1557/**
1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559 * @dev: device
1560 *
1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1562 * called under RTNL. This is needed if Generic XDP is installed on
1563 * the device.
1564 */
1565static void dev_disable_gro_hw(struct net_device *dev)
1566{
1567 dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 netdev_update_features(dev);
1569
1570 if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572}
1573
ede2762d
KT
1574const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575{
1576#define N(val) \
1577 case NETDEV_##val: \
1578 return "NETDEV_" __stringify(val);
1579 switch (cmd) {
1580 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1587 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
3f5ecd8a 1589 }
ede2762d
KT
1590#undef N
1591 return "UNKNOWN_NETDEV_EVENT";
1592}
1593EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594
351638e7
JP
1595static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596 struct net_device *dev)
1597{
51d0c047
DA
1598 struct netdev_notifier_info info = {
1599 .dev = dev,
1600 };
351638e7 1601
351638e7
JP
1602 return nb->notifier_call(nb, val, &info);
1603}
0187bdfb 1604
881d966b
EB
1605static int dev_boot_phase = 1;
1606
1da177e4 1607/**
722c9a0c 1608 * register_netdevice_notifier - register a network notifier block
1609 * @nb: notifier
1da177e4 1610 *
722c9a0c 1611 * Register a notifier to be called when network device events occur.
1612 * The notifier passed is linked into the kernel structures and must
1613 * not be reused until it has been unregistered. A negative errno code
1614 * is returned on a failure.
1da177e4 1615 *
722c9a0c 1616 * When registered all registration and up events are replayed
1617 * to the new notifier to allow device to have a race free
1618 * view of the network device list.
1da177e4
LT
1619 */
1620
1621int register_netdevice_notifier(struct notifier_block *nb)
1622{
1623 struct net_device *dev;
fcc5a03a 1624 struct net_device *last;
881d966b 1625 struct net *net;
1da177e4
LT
1626 int err;
1627
328fbe74
KT
1628 /* Close race with setup_net() and cleanup_net() */
1629 down_write(&pernet_ops_rwsem);
1da177e4 1630 rtnl_lock();
f07d5b94 1631 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1632 if (err)
1633 goto unlock;
881d966b
EB
1634 if (dev_boot_phase)
1635 goto unlock;
1636 for_each_net(net) {
1637 for_each_netdev(net, dev) {
351638e7 1638 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1639 err = notifier_to_errno(err);
1640 if (err)
1641 goto rollback;
1642
1643 if (!(dev->flags & IFF_UP))
1644 continue;
1da177e4 1645
351638e7 1646 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1647 }
1da177e4 1648 }
fcc5a03a
HX
1649
1650unlock:
1da177e4 1651 rtnl_unlock();
328fbe74 1652 up_write(&pernet_ops_rwsem);
1da177e4 1653 return err;
fcc5a03a
HX
1654
1655rollback:
1656 last = dev;
881d966b
EB
1657 for_each_net(net) {
1658 for_each_netdev(net, dev) {
1659 if (dev == last)
8f891489 1660 goto outroll;
fcc5a03a 1661
881d966b 1662 if (dev->flags & IFF_UP) {
351638e7
JP
1663 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664 dev);
1665 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1666 }
351638e7 1667 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1668 }
fcc5a03a 1669 }
c67625a1 1670
8f891489 1671outroll:
c67625a1 1672 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1673 goto unlock;
1da177e4 1674}
d1b19dff 1675EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1676
1677/**
722c9a0c 1678 * unregister_netdevice_notifier - unregister a network notifier block
1679 * @nb: notifier
1da177e4 1680 *
722c9a0c 1681 * Unregister a notifier previously registered by
1682 * register_netdevice_notifier(). The notifier is unlinked into the
1683 * kernel structures and may then be reused. A negative errno code
1684 * is returned on a failure.
7d3d43da 1685 *
722c9a0c 1686 * After unregistering unregister and down device events are synthesized
1687 * for all devices on the device list to the removed notifier to remove
1688 * the need for special case cleanup code.
1da177e4
LT
1689 */
1690
1691int unregister_netdevice_notifier(struct notifier_block *nb)
1692{
7d3d43da
EB
1693 struct net_device *dev;
1694 struct net *net;
9f514950
HX
1695 int err;
1696
328fbe74
KT
1697 /* Close race with setup_net() and cleanup_net() */
1698 down_write(&pernet_ops_rwsem);
9f514950 1699 rtnl_lock();
f07d5b94 1700 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1701 if (err)
1702 goto unlock;
1703
1704 for_each_net(net) {
1705 for_each_netdev(net, dev) {
1706 if (dev->flags & IFF_UP) {
351638e7
JP
1707 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708 dev);
1709 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1710 }
351638e7 1711 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1712 }
1713 }
1714unlock:
9f514950 1715 rtnl_unlock();
328fbe74 1716 up_write(&pernet_ops_rwsem);
9f514950 1717 return err;
1da177e4 1718}
d1b19dff 1719EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1720
351638e7
JP
1721/**
1722 * call_netdevice_notifiers_info - call all network notifier blocks
1723 * @val: value passed unmodified to notifier function
351638e7
JP
1724 * @info: notifier information data
1725 *
1726 * Call all network notifier blocks. Parameters and return value
1727 * are as for raw_notifier_call_chain().
1728 */
1729
1d143d9f 1730static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1731 struct netdev_notifier_info *info)
351638e7
JP
1732{
1733 ASSERT_RTNL();
351638e7
JP
1734 return raw_notifier_call_chain(&netdev_chain, val, info);
1735}
351638e7 1736
1da177e4
LT
1737/**
1738 * call_netdevice_notifiers - call all network notifier blocks
1739 * @val: value passed unmodified to notifier function
c4ea43c5 1740 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1741 *
1742 * Call all network notifier blocks. Parameters and return value
f07d5b94 1743 * are as for raw_notifier_call_chain().
1da177e4
LT
1744 */
1745
ad7379d4 1746int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1747{
51d0c047
DA
1748 struct netdev_notifier_info info = {
1749 .dev = dev,
1750 };
351638e7 1751
51d0c047 1752 return call_netdevice_notifiers_info(val, &info);
1da177e4 1753}
edf947f1 1754EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1755
1cf51900 1756#ifdef CONFIG_NET_INGRESS
aabf6772 1757static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
1758
1759void net_inc_ingress_queue(void)
1760{
aabf6772 1761 static_branch_inc(&ingress_needed_key);
4577139b
DB
1762}
1763EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764
1765void net_dec_ingress_queue(void)
1766{
aabf6772 1767 static_branch_dec(&ingress_needed_key);
4577139b
DB
1768}
1769EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770#endif
1771
1f211a1b 1772#ifdef CONFIG_NET_EGRESS
aabf6772 1773static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
1774
1775void net_inc_egress_queue(void)
1776{
aabf6772 1777 static_branch_inc(&egress_needed_key);
1f211a1b
DB
1778}
1779EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780
1781void net_dec_egress_queue(void)
1782{
aabf6772 1783 static_branch_dec(&egress_needed_key);
1f211a1b
DB
1784}
1785EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786#endif
1787
39e83922 1788static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
b90e5794 1789#ifdef HAVE_JUMP_LABEL
b90e5794 1790static atomic_t netstamp_needed_deferred;
13baa00a 1791static atomic_t netstamp_wanted;
5fa8bbda 1792static void netstamp_clear(struct work_struct *work)
1da177e4 1793{
b90e5794 1794 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1795 int wanted;
b90e5794 1796
13baa00a
ED
1797 wanted = atomic_add_return(deferred, &netstamp_wanted);
1798 if (wanted > 0)
39e83922 1799 static_branch_enable(&netstamp_needed_key);
13baa00a 1800 else
39e83922 1801 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
1802}
1803static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1804#endif
5fa8bbda
ED
1805
1806void net_enable_timestamp(void)
1807{
13baa00a
ED
1808#ifdef HAVE_JUMP_LABEL
1809 int wanted;
1810
1811 while (1) {
1812 wanted = atomic_read(&netstamp_wanted);
1813 if (wanted <= 0)
1814 break;
1815 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816 return;
1817 }
1818 atomic_inc(&netstamp_needed_deferred);
1819 schedule_work(&netstamp_work);
1820#else
39e83922 1821 static_branch_inc(&netstamp_needed_key);
13baa00a 1822#endif
1da177e4 1823}
d1b19dff 1824EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1825
1826void net_disable_timestamp(void)
1827{
b90e5794 1828#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1829 int wanted;
1830
1831 while (1) {
1832 wanted = atomic_read(&netstamp_wanted);
1833 if (wanted <= 1)
1834 break;
1835 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836 return;
1837 }
1838 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1839 schedule_work(&netstamp_work);
1840#else
39e83922 1841 static_branch_dec(&netstamp_needed_key);
5fa8bbda 1842#endif
1da177e4 1843}
d1b19dff 1844EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1845
3b098e2d 1846static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1847{
2456e855 1848 skb->tstamp = 0;
39e83922 1849 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 1850 __net_timestamp(skb);
1da177e4
LT
1851}
1852
39e83922
DB
1853#define net_timestamp_check(COND, SKB) \
1854 if (static_branch_unlikely(&netstamp_needed_key)) { \
1855 if ((COND) && !(SKB)->tstamp) \
1856 __net_timestamp(SKB); \
1857 } \
3b098e2d 1858
f4b05d27 1859bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1860{
1861 unsigned int len;
1862
1863 if (!(dev->flags & IFF_UP))
1864 return false;
1865
1866 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867 if (skb->len <= len)
1868 return true;
1869
1870 /* if TSO is enabled, we don't care about the length as the packet
1871 * could be forwarded without being segmented before
1872 */
1873 if (skb_is_gso(skb))
1874 return true;
1875
1876 return false;
1877}
1ee481fb 1878EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1879
a0265d28
HX
1880int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881{
4e3264d2 1882 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1883
4e3264d2
MKL
1884 if (likely(!ret)) {
1885 skb->protocol = eth_type_trans(skb, dev);
1886 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1887 }
a0265d28 1888
4e3264d2 1889 return ret;
a0265d28
HX
1890}
1891EXPORT_SYMBOL_GPL(__dev_forward_skb);
1892
44540960
AB
1893/**
1894 * dev_forward_skb - loopback an skb to another netif
1895 *
1896 * @dev: destination network device
1897 * @skb: buffer to forward
1898 *
1899 * return values:
1900 * NET_RX_SUCCESS (no congestion)
6ec82562 1901 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1902 *
1903 * dev_forward_skb can be used for injecting an skb from the
1904 * start_xmit function of one device into the receive queue
1905 * of another device.
1906 *
1907 * The receiving device may be in another namespace, so
1908 * we have to clear all information in the skb that could
1909 * impact namespace isolation.
1910 */
1911int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912{
a0265d28 1913 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1914}
1915EXPORT_SYMBOL_GPL(dev_forward_skb);
1916
71d9dec2
CG
1917static inline int deliver_skb(struct sk_buff *skb,
1918 struct packet_type *pt_prev,
1919 struct net_device *orig_dev)
1920{
1f8b977a 1921 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1922 return -ENOMEM;
63354797 1923 refcount_inc(&skb->users);
71d9dec2
CG
1924 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1925}
1926
7866a621
SN
1927static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928 struct packet_type **pt,
fbcb2170
JP
1929 struct net_device *orig_dev,
1930 __be16 type,
7866a621
SN
1931 struct list_head *ptype_list)
1932{
1933 struct packet_type *ptype, *pt_prev = *pt;
1934
1935 list_for_each_entry_rcu(ptype, ptype_list, list) {
1936 if (ptype->type != type)
1937 continue;
1938 if (pt_prev)
fbcb2170 1939 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1940 pt_prev = ptype;
1941 }
1942 *pt = pt_prev;
1943}
1944
c0de08d0
EL
1945static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946{
a3d744e9 1947 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1948 return false;
1949
1950 if (ptype->id_match)
1951 return ptype->id_match(ptype, skb->sk);
1952 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953 return true;
1954
1955 return false;
1956}
1957
1da177e4
LT
1958/*
1959 * Support routine. Sends outgoing frames to any network
1960 * taps currently in use.
1961 */
1962
74b20582 1963void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1964{
1965 struct packet_type *ptype;
71d9dec2
CG
1966 struct sk_buff *skb2 = NULL;
1967 struct packet_type *pt_prev = NULL;
7866a621 1968 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1969
1da177e4 1970 rcu_read_lock();
7866a621
SN
1971again:
1972 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1973 /* Never send packets back to the socket
1974 * they originated from - MvS (miquels@drinkel.ow.org)
1975 */
7866a621
SN
1976 if (skb_loop_sk(ptype, skb))
1977 continue;
71d9dec2 1978
7866a621
SN
1979 if (pt_prev) {
1980 deliver_skb(skb2, pt_prev, skb->dev);
1981 pt_prev = ptype;
1982 continue;
1983 }
1da177e4 1984
7866a621
SN
1985 /* need to clone skb, done only once */
1986 skb2 = skb_clone(skb, GFP_ATOMIC);
1987 if (!skb2)
1988 goto out_unlock;
70978182 1989
7866a621 1990 net_timestamp_set(skb2);
1da177e4 1991
7866a621
SN
1992 /* skb->nh should be correctly
1993 * set by sender, so that the second statement is
1994 * just protection against buggy protocols.
1995 */
1996 skb_reset_mac_header(skb2);
1997
1998 if (skb_network_header(skb2) < skb2->data ||
1999 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001 ntohs(skb2->protocol),
2002 dev->name);
2003 skb_reset_network_header(skb2);
1da177e4 2004 }
7866a621
SN
2005
2006 skb2->transport_header = skb2->network_header;
2007 skb2->pkt_type = PACKET_OUTGOING;
2008 pt_prev = ptype;
2009 }
2010
2011 if (ptype_list == &ptype_all) {
2012 ptype_list = &dev->ptype_all;
2013 goto again;
1da177e4 2014 }
7866a621 2015out_unlock:
581fe0ea
WB
2016 if (pt_prev) {
2017 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019 else
2020 kfree_skb(skb2);
2021 }
1da177e4
LT
2022 rcu_read_unlock();
2023}
74b20582 2024EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2025
2c53040f
BH
2026/**
2027 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2028 * @dev: Network device
2029 * @txq: number of queues available
2030 *
2031 * If real_num_tx_queues is changed the tc mappings may no longer be
2032 * valid. To resolve this verify the tc mapping remains valid and if
2033 * not NULL the mapping. With no priorities mapping to this
2034 * offset/count pair it will no longer be used. In the worst case TC0
2035 * is invalid nothing can be done so disable priority mappings. If is
2036 * expected that drivers will fix this mapping if they can before
2037 * calling netif_set_real_num_tx_queues.
2038 */
bb134d22 2039static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2040{
2041 int i;
2042 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043
2044 /* If TC0 is invalidated disable TC mapping */
2045 if (tc->offset + tc->count > txq) {
7b6cd1ce 2046 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2047 dev->num_tc = 0;
2048 return;
2049 }
2050
2051 /* Invalidated prio to tc mappings set to TC0 */
2052 for (i = 1; i < TC_BITMASK + 1; i++) {
2053 int q = netdev_get_prio_tc_map(dev, i);
2054
2055 tc = &dev->tc_to_txq[q];
2056 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2057 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058 i, q);
4f57c087
JF
2059 netdev_set_prio_tc_map(dev, i, 0);
2060 }
2061 }
2062}
2063
8d059b0f
AD
2064int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2065{
2066 if (dev->num_tc) {
2067 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068 int i;
2069
ffcfe25b 2070 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2071 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072 if ((txq - tc->offset) < tc->count)
2073 return i;
2074 }
2075
ffcfe25b 2076 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2077 return -1;
2078 }
2079
2080 return 0;
2081}
8a5f2166 2082EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2083
537c00de 2084#ifdef CONFIG_XPS
04157469
AN
2085struct static_key xps_needed __read_mostly;
2086EXPORT_SYMBOL(xps_needed);
2087struct static_key xps_rxqs_needed __read_mostly;
2088EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2089static DEFINE_MUTEX(xps_map_mutex);
2090#define xmap_dereference(P) \
2091 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2092
6234f874
AD
2093static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2094 int tci, u16 index)
537c00de 2095{
10cdc3f3
AD
2096 struct xps_map *map = NULL;
2097 int pos;
537c00de 2098
10cdc3f3 2099 if (dev_maps)
80d19669 2100 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2101 if (!map)
2102 return false;
537c00de 2103
6234f874
AD
2104 for (pos = map->len; pos--;) {
2105 if (map->queues[pos] != index)
2106 continue;
2107
2108 if (map->len > 1) {
2109 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2110 break;
537c00de 2111 }
6234f874 2112
80d19669 2113 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2114 kfree_rcu(map, rcu);
2115 return false;
537c00de
AD
2116 }
2117
6234f874 2118 return true;
10cdc3f3
AD
2119}
2120
6234f874
AD
2121static bool remove_xps_queue_cpu(struct net_device *dev,
2122 struct xps_dev_maps *dev_maps,
2123 int cpu, u16 offset, u16 count)
2124{
184c449f
AD
2125 int num_tc = dev->num_tc ? : 1;
2126 bool active = false;
2127 int tci;
6234f874 2128
184c449f
AD
2129 for (tci = cpu * num_tc; num_tc--; tci++) {
2130 int i, j;
2131
2132 for (i = count, j = offset; i--; j++) {
6358d49a 2133 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2134 break;
2135 }
2136
2137 active |= i < 0;
6234f874
AD
2138 }
2139
184c449f 2140 return active;
6234f874
AD
2141}
2142
80d19669
AN
2143static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2144 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2145 u16 offset, u16 count, bool is_rxqs_map)
2146{
2147 bool active = false;
2148 int i, j;
2149
2150 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2151 j < nr_ids;)
2152 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2153 count);
2154 if (!active) {
2155 if (is_rxqs_map) {
2156 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2157 } else {
2158 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2159
2160 for (i = offset + (count - 1); count--; i--)
2161 netdev_queue_numa_node_write(
2162 netdev_get_tx_queue(dev, i),
2163 NUMA_NO_NODE);
2164 }
2165 kfree_rcu(dev_maps, rcu);
2166 }
2167}
2168
6234f874
AD
2169static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2170 u16 count)
10cdc3f3 2171{
80d19669 2172 const unsigned long *possible_mask = NULL;
10cdc3f3 2173 struct xps_dev_maps *dev_maps;
80d19669 2174 unsigned int nr_ids;
10cdc3f3 2175
04157469
AN
2176 if (!static_key_false(&xps_needed))
2177 return;
10cdc3f3 2178
04157469 2179 mutex_lock(&xps_map_mutex);
10cdc3f3 2180
04157469
AN
2181 if (static_key_false(&xps_rxqs_needed)) {
2182 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2183 if (dev_maps) {
2184 nr_ids = dev->num_rx_queues;
2185 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2186 offset, count, true);
2187 }
537c00de
AD
2188 }
2189
80d19669
AN
2190 dev_maps = xmap_dereference(dev->xps_cpus_map);
2191 if (!dev_maps)
2192 goto out_no_maps;
2193
2194 if (num_possible_cpus() > 1)
2195 possible_mask = cpumask_bits(cpu_possible_mask);
2196 nr_ids = nr_cpu_ids;
2197 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2198 false);
024e9679 2199
537c00de 2200out_no_maps:
04157469
AN
2201 if (static_key_enabled(&xps_rxqs_needed))
2202 static_key_slow_dec(&xps_rxqs_needed);
2203
2204 static_key_slow_dec(&xps_needed);
537c00de
AD
2205 mutex_unlock(&xps_map_mutex);
2206}
2207
6234f874
AD
2208static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2209{
2210 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2211}
2212
80d19669
AN
2213static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2214 u16 index, bool is_rxqs_map)
01c5f864
AD
2215{
2216 struct xps_map *new_map;
2217 int alloc_len = XPS_MIN_MAP_ALLOC;
2218 int i, pos;
2219
2220 for (pos = 0; map && pos < map->len; pos++) {
2221 if (map->queues[pos] != index)
2222 continue;
2223 return map;
2224 }
2225
80d19669 2226 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2227 if (map) {
2228 if (pos < map->alloc_len)
2229 return map;
2230
2231 alloc_len = map->alloc_len * 2;
2232 }
2233
80d19669
AN
2234 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2235 * map
2236 */
2237 if (is_rxqs_map)
2238 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2239 else
2240 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2241 cpu_to_node(attr_index));
01c5f864
AD
2242 if (!new_map)
2243 return NULL;
2244
2245 for (i = 0; i < pos; i++)
2246 new_map->queues[i] = map->queues[i];
2247 new_map->alloc_len = alloc_len;
2248 new_map->len = pos;
2249
2250 return new_map;
2251}
2252
80d19669
AN
2253int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2254 u16 index, bool is_rxqs_map)
537c00de 2255{
80d19669 2256 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2257 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2258 int i, j, tci, numa_node_id = -2;
184c449f 2259 int maps_sz, num_tc = 1, tc = 0;
537c00de 2260 struct xps_map *map, *new_map;
01c5f864 2261 bool active = false;
80d19669 2262 unsigned int nr_ids;
537c00de 2263
184c449f 2264 if (dev->num_tc) {
ffcfe25b 2265 /* Do not allow XPS on subordinate device directly */
184c449f 2266 num_tc = dev->num_tc;
ffcfe25b
AD
2267 if (num_tc < 0)
2268 return -EINVAL;
2269
2270 /* If queue belongs to subordinate dev use its map */
2271 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2272
184c449f
AD
2273 tc = netdev_txq_to_tc(dev, index);
2274 if (tc < 0)
2275 return -EINVAL;
2276 }
2277
537c00de 2278 mutex_lock(&xps_map_mutex);
80d19669
AN
2279 if (is_rxqs_map) {
2280 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2281 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2282 nr_ids = dev->num_rx_queues;
2283 } else {
2284 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2285 if (num_possible_cpus() > 1) {
2286 online_mask = cpumask_bits(cpu_online_mask);
2287 possible_mask = cpumask_bits(cpu_possible_mask);
2288 }
2289 dev_maps = xmap_dereference(dev->xps_cpus_map);
2290 nr_ids = nr_cpu_ids;
2291 }
537c00de 2292
80d19669
AN
2293 if (maps_sz < L1_CACHE_BYTES)
2294 maps_sz = L1_CACHE_BYTES;
537c00de 2295
01c5f864 2296 /* allocate memory for queue storage */
80d19669
AN
2297 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2298 j < nr_ids;) {
01c5f864
AD
2299 if (!new_dev_maps)
2300 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2301 if (!new_dev_maps) {
2302 mutex_unlock(&xps_map_mutex);
01c5f864 2303 return -ENOMEM;
2bb60cb9 2304 }
01c5f864 2305
80d19669
AN
2306 tci = j * num_tc + tc;
2307 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2308 NULL;
2309
80d19669 2310 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2311 if (!map)
2312 goto error;
2313
80d19669 2314 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2315 }
2316
2317 if (!new_dev_maps)
2318 goto out_no_new_maps;
2319
04157469
AN
2320 static_key_slow_inc(&xps_needed);
2321 if (is_rxqs_map)
2322 static_key_slow_inc(&xps_rxqs_needed);
2323
80d19669
AN
2324 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2325 j < nr_ids;) {
184c449f 2326 /* copy maps belonging to foreign traffic classes */
80d19669 2327 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2328 /* fill in the new device map from the old device map */
80d19669
AN
2329 map = xmap_dereference(dev_maps->attr_map[tci]);
2330 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2331 }
2332
2333 /* We need to explicitly update tci as prevous loop
2334 * could break out early if dev_maps is NULL.
2335 */
80d19669 2336 tci = j * num_tc + tc;
184c449f 2337
80d19669
AN
2338 if (netif_attr_test_mask(j, mask, nr_ids) &&
2339 netif_attr_test_online(j, online_mask, nr_ids)) {
2340 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2341 int pos = 0;
2342
80d19669 2343 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2344 while ((pos < map->len) && (map->queues[pos] != index))
2345 pos++;
2346
2347 if (pos == map->len)
2348 map->queues[map->len++] = index;
537c00de 2349#ifdef CONFIG_NUMA
80d19669
AN
2350 if (!is_rxqs_map) {
2351 if (numa_node_id == -2)
2352 numa_node_id = cpu_to_node(j);
2353 else if (numa_node_id != cpu_to_node(j))
2354 numa_node_id = -1;
2355 }
537c00de 2356#endif
01c5f864
AD
2357 } else if (dev_maps) {
2358 /* fill in the new device map from the old device map */
80d19669
AN
2359 map = xmap_dereference(dev_maps->attr_map[tci]);
2360 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2361 }
01c5f864 2362
184c449f
AD
2363 /* copy maps belonging to foreign traffic classes */
2364 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2365 /* fill in the new device map from the old device map */
80d19669
AN
2366 map = xmap_dereference(dev_maps->attr_map[tci]);
2367 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2368 }
537c00de
AD
2369 }
2370
80d19669
AN
2371 if (is_rxqs_map)
2372 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2373 else
2374 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2375
537c00de 2376 /* Cleanup old maps */
184c449f
AD
2377 if (!dev_maps)
2378 goto out_no_old_maps;
2379
80d19669
AN
2380 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2381 j < nr_ids;) {
2382 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2383 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2384 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2385 if (map && map != new_map)
2386 kfree_rcu(map, rcu);
2387 }
537c00de
AD
2388 }
2389
184c449f
AD
2390 kfree_rcu(dev_maps, rcu);
2391
2392out_no_old_maps:
01c5f864
AD
2393 dev_maps = new_dev_maps;
2394 active = true;
537c00de 2395
01c5f864 2396out_no_new_maps:
80d19669
AN
2397 if (!is_rxqs_map) {
2398 /* update Tx queue numa node */
2399 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2400 (numa_node_id >= 0) ?
2401 numa_node_id : NUMA_NO_NODE);
2402 }
537c00de 2403
01c5f864
AD
2404 if (!dev_maps)
2405 goto out_no_maps;
2406
80d19669
AN
2407 /* removes tx-queue from unused CPUs/rx-queues */
2408 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2409 j < nr_ids;) {
2410 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2411 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2412 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2413 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2414 active |= remove_xps_queue(dev_maps, tci, index);
2415 for (i = num_tc - tc, tci++; --i; tci++)
2416 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2417 }
2418
2419 /* free map if not active */
2420 if (!active) {
80d19669
AN
2421 if (is_rxqs_map)
2422 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2423 else
2424 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
01c5f864
AD
2425 kfree_rcu(dev_maps, rcu);
2426 }
2427
2428out_no_maps:
537c00de
AD
2429 mutex_unlock(&xps_map_mutex);
2430
2431 return 0;
2432error:
01c5f864 2433 /* remove any maps that we added */
80d19669
AN
2434 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2435 j < nr_ids;) {
2436 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2437 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2438 map = dev_maps ?
80d19669 2439 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2440 NULL;
2441 if (new_map && new_map != map)
2442 kfree(new_map);
2443 }
01c5f864
AD
2444 }
2445
537c00de
AD
2446 mutex_unlock(&xps_map_mutex);
2447
537c00de
AD
2448 kfree(new_dev_maps);
2449 return -ENOMEM;
2450}
80d19669
AN
2451
2452int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2453 u16 index)
2454{
2455 return __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2456}
537c00de
AD
2457EXPORT_SYMBOL(netif_set_xps_queue);
2458
2459#endif
ffcfe25b
AD
2460static void netdev_unbind_all_sb_channels(struct net_device *dev)
2461{
2462 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2463
2464 /* Unbind any subordinate channels */
2465 while (txq-- != &dev->_tx[0]) {
2466 if (txq->sb_dev)
2467 netdev_unbind_sb_channel(dev, txq->sb_dev);
2468 }
2469}
2470
9cf1f6a8
AD
2471void netdev_reset_tc(struct net_device *dev)
2472{
6234f874
AD
2473#ifdef CONFIG_XPS
2474 netif_reset_xps_queues_gt(dev, 0);
2475#endif
ffcfe25b
AD
2476 netdev_unbind_all_sb_channels(dev);
2477
2478 /* Reset TC configuration of device */
9cf1f6a8
AD
2479 dev->num_tc = 0;
2480 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2481 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2482}
2483EXPORT_SYMBOL(netdev_reset_tc);
2484
2485int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2486{
2487 if (tc >= dev->num_tc)
2488 return -EINVAL;
2489
6234f874
AD
2490#ifdef CONFIG_XPS
2491 netif_reset_xps_queues(dev, offset, count);
2492#endif
9cf1f6a8
AD
2493 dev->tc_to_txq[tc].count = count;
2494 dev->tc_to_txq[tc].offset = offset;
2495 return 0;
2496}
2497EXPORT_SYMBOL(netdev_set_tc_queue);
2498
2499int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2500{
2501 if (num_tc > TC_MAX_QUEUE)
2502 return -EINVAL;
2503
6234f874
AD
2504#ifdef CONFIG_XPS
2505 netif_reset_xps_queues_gt(dev, 0);
2506#endif
ffcfe25b
AD
2507 netdev_unbind_all_sb_channels(dev);
2508
9cf1f6a8
AD
2509 dev->num_tc = num_tc;
2510 return 0;
2511}
2512EXPORT_SYMBOL(netdev_set_num_tc);
2513
ffcfe25b
AD
2514void netdev_unbind_sb_channel(struct net_device *dev,
2515 struct net_device *sb_dev)
2516{
2517 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2518
2519#ifdef CONFIG_XPS
2520 netif_reset_xps_queues_gt(sb_dev, 0);
2521#endif
2522 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2523 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2524
2525 while (txq-- != &dev->_tx[0]) {
2526 if (txq->sb_dev == sb_dev)
2527 txq->sb_dev = NULL;
2528 }
2529}
2530EXPORT_SYMBOL(netdev_unbind_sb_channel);
2531
2532int netdev_bind_sb_channel_queue(struct net_device *dev,
2533 struct net_device *sb_dev,
2534 u8 tc, u16 count, u16 offset)
2535{
2536 /* Make certain the sb_dev and dev are already configured */
2537 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2538 return -EINVAL;
2539
2540 /* We cannot hand out queues we don't have */
2541 if ((offset + count) > dev->real_num_tx_queues)
2542 return -EINVAL;
2543
2544 /* Record the mapping */
2545 sb_dev->tc_to_txq[tc].count = count;
2546 sb_dev->tc_to_txq[tc].offset = offset;
2547
2548 /* Provide a way for Tx queue to find the tc_to_txq map or
2549 * XPS map for itself.
2550 */
2551 while (count--)
2552 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2553
2554 return 0;
2555}
2556EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2557
2558int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2559{
2560 /* Do not use a multiqueue device to represent a subordinate channel */
2561 if (netif_is_multiqueue(dev))
2562 return -ENODEV;
2563
2564 /* We allow channels 1 - 32767 to be used for subordinate channels.
2565 * Channel 0 is meant to be "native" mode and used only to represent
2566 * the main root device. We allow writing 0 to reset the device back
2567 * to normal mode after being used as a subordinate channel.
2568 */
2569 if (channel > S16_MAX)
2570 return -EINVAL;
2571
2572 dev->num_tc = -channel;
2573
2574 return 0;
2575}
2576EXPORT_SYMBOL(netdev_set_sb_channel);
2577
f0796d5c
JF
2578/*
2579 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2580 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2581 */
e6484930 2582int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2583{
ac5b7019 2584 bool disabling;
1d24eb48
TH
2585 int rc;
2586
ac5b7019
JK
2587 disabling = txq < dev->real_num_tx_queues;
2588
e6484930
TH
2589 if (txq < 1 || txq > dev->num_tx_queues)
2590 return -EINVAL;
f0796d5c 2591
5c56580b
BH
2592 if (dev->reg_state == NETREG_REGISTERED ||
2593 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2594 ASSERT_RTNL();
2595
1d24eb48
TH
2596 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2597 txq);
bf264145
TH
2598 if (rc)
2599 return rc;
2600
4f57c087
JF
2601 if (dev->num_tc)
2602 netif_setup_tc(dev, txq);
2603
ac5b7019
JK
2604 dev->real_num_tx_queues = txq;
2605
2606 if (disabling) {
2607 synchronize_net();
e6484930 2608 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2609#ifdef CONFIG_XPS
2610 netif_reset_xps_queues_gt(dev, txq);
2611#endif
2612 }
ac5b7019
JK
2613 } else {
2614 dev->real_num_tx_queues = txq;
f0796d5c 2615 }
e6484930 2616
e6484930 2617 return 0;
f0796d5c
JF
2618}
2619EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2620
a953be53 2621#ifdef CONFIG_SYSFS
62fe0b40
BH
2622/**
2623 * netif_set_real_num_rx_queues - set actual number of RX queues used
2624 * @dev: Network device
2625 * @rxq: Actual number of RX queues
2626 *
2627 * This must be called either with the rtnl_lock held or before
2628 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2629 * negative error code. If called before registration, it always
2630 * succeeds.
62fe0b40
BH
2631 */
2632int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2633{
2634 int rc;
2635
bd25fa7b
TH
2636 if (rxq < 1 || rxq > dev->num_rx_queues)
2637 return -EINVAL;
2638
62fe0b40
BH
2639 if (dev->reg_state == NETREG_REGISTERED) {
2640 ASSERT_RTNL();
2641
62fe0b40
BH
2642 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2643 rxq);
2644 if (rc)
2645 return rc;
62fe0b40
BH
2646 }
2647
2648 dev->real_num_rx_queues = rxq;
2649 return 0;
2650}
2651EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2652#endif
2653
2c53040f
BH
2654/**
2655 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2656 *
2657 * This routine should set an upper limit on the number of RSS queues
2658 * used by default by multiqueue devices.
2659 */
a55b138b 2660int netif_get_num_default_rss_queues(void)
16917b87 2661{
40e4e713
HS
2662 return is_kdump_kernel() ?
2663 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2664}
2665EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2666
3bcb846c 2667static void __netif_reschedule(struct Qdisc *q)
56079431 2668{
def82a1d
JP
2669 struct softnet_data *sd;
2670 unsigned long flags;
56079431 2671
def82a1d 2672 local_irq_save(flags);
903ceff7 2673 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2674 q->next_sched = NULL;
2675 *sd->output_queue_tailp = q;
2676 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2677 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2678 local_irq_restore(flags);
2679}
2680
2681void __netif_schedule(struct Qdisc *q)
2682{
2683 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2684 __netif_reschedule(q);
56079431
DV
2685}
2686EXPORT_SYMBOL(__netif_schedule);
2687
e6247027
ED
2688struct dev_kfree_skb_cb {
2689 enum skb_free_reason reason;
2690};
2691
2692static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2693{
e6247027
ED
2694 return (struct dev_kfree_skb_cb *)skb->cb;
2695}
2696
46e5da40
JF
2697void netif_schedule_queue(struct netdev_queue *txq)
2698{
2699 rcu_read_lock();
2700 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2701 struct Qdisc *q = rcu_dereference(txq->qdisc);
2702
2703 __netif_schedule(q);
2704 }
2705 rcu_read_unlock();
2706}
2707EXPORT_SYMBOL(netif_schedule_queue);
2708
46e5da40
JF
2709void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2710{
2711 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2712 struct Qdisc *q;
2713
2714 rcu_read_lock();
2715 q = rcu_dereference(dev_queue->qdisc);
2716 __netif_schedule(q);
2717 rcu_read_unlock();
2718 }
2719}
2720EXPORT_SYMBOL(netif_tx_wake_queue);
2721
e6247027 2722void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2723{
e6247027 2724 unsigned long flags;
56079431 2725
9899886d
MJ
2726 if (unlikely(!skb))
2727 return;
2728
63354797 2729 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2730 smp_rmb();
63354797
RE
2731 refcount_set(&skb->users, 0);
2732 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2733 return;
bea3348e 2734 }
e6247027
ED
2735 get_kfree_skb_cb(skb)->reason = reason;
2736 local_irq_save(flags);
2737 skb->next = __this_cpu_read(softnet_data.completion_queue);
2738 __this_cpu_write(softnet_data.completion_queue, skb);
2739 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2740 local_irq_restore(flags);
56079431 2741}
e6247027 2742EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2743
e6247027 2744void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2745{
2746 if (in_irq() || irqs_disabled())
e6247027 2747 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2748 else
2749 dev_kfree_skb(skb);
2750}
e6247027 2751EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2752
2753
bea3348e
SH
2754/**
2755 * netif_device_detach - mark device as removed
2756 * @dev: network device
2757 *
2758 * Mark device as removed from system and therefore no longer available.
2759 */
56079431
DV
2760void netif_device_detach(struct net_device *dev)
2761{
2762 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2763 netif_running(dev)) {
d543103a 2764 netif_tx_stop_all_queues(dev);
56079431
DV
2765 }
2766}
2767EXPORT_SYMBOL(netif_device_detach);
2768
bea3348e
SH
2769/**
2770 * netif_device_attach - mark device as attached
2771 * @dev: network device
2772 *
2773 * Mark device as attached from system and restart if needed.
2774 */
56079431
DV
2775void netif_device_attach(struct net_device *dev)
2776{
2777 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2778 netif_running(dev)) {
d543103a 2779 netif_tx_wake_all_queues(dev);
4ec93edb 2780 __netdev_watchdog_up(dev);
56079431
DV
2781 }
2782}
2783EXPORT_SYMBOL(netif_device_attach);
2784
5605c762
JP
2785/*
2786 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2787 * to be used as a distribution range.
2788 */
eadec877
AD
2789static u16 skb_tx_hash(const struct net_device *dev,
2790 const struct net_device *sb_dev,
2791 struct sk_buff *skb)
5605c762
JP
2792{
2793 u32 hash;
2794 u16 qoffset = 0;
1b837d48 2795 u16 qcount = dev->real_num_tx_queues;
5605c762 2796
eadec877
AD
2797 if (dev->num_tc) {
2798 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2799
2800 qoffset = sb_dev->tc_to_txq[tc].offset;
2801 qcount = sb_dev->tc_to_txq[tc].count;
2802 }
2803
5605c762
JP
2804 if (skb_rx_queue_recorded(skb)) {
2805 hash = skb_get_rx_queue(skb);
1b837d48
AD
2806 while (unlikely(hash >= qcount))
2807 hash -= qcount;
eadec877 2808 return hash + qoffset;
5605c762
JP
2809 }
2810
2811 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2812}
5605c762 2813
36c92474
BH
2814static void skb_warn_bad_offload(const struct sk_buff *skb)
2815{
84d15ae5 2816 static const netdev_features_t null_features;
36c92474 2817 struct net_device *dev = skb->dev;
88ad4175 2818 const char *name = "";
36c92474 2819
c846ad9b
BG
2820 if (!net_ratelimit())
2821 return;
2822
88ad4175
BM
2823 if (dev) {
2824 if (dev->dev.parent)
2825 name = dev_driver_string(dev->dev.parent);
2826 else
2827 name = netdev_name(dev);
2828 }
36c92474
BH
2829 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2830 "gso_type=%d ip_summed=%d\n",
88ad4175 2831 name, dev ? &dev->features : &null_features,
65e9d2fa 2832 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2833 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2834 skb_shinfo(skb)->gso_type, skb->ip_summed);
2835}
2836
1da177e4
LT
2837/*
2838 * Invalidate hardware checksum when packet is to be mangled, and
2839 * complete checksum manually on outgoing path.
2840 */
84fa7933 2841int skb_checksum_help(struct sk_buff *skb)
1da177e4 2842{
d3bc23e7 2843 __wsum csum;
663ead3b 2844 int ret = 0, offset;
1da177e4 2845
84fa7933 2846 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2847 goto out_set_summed;
2848
2849 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2850 skb_warn_bad_offload(skb);
2851 return -EINVAL;
1da177e4
LT
2852 }
2853
cef401de
ED
2854 /* Before computing a checksum, we should make sure no frag could
2855 * be modified by an external entity : checksum could be wrong.
2856 */
2857 if (skb_has_shared_frag(skb)) {
2858 ret = __skb_linearize(skb);
2859 if (ret)
2860 goto out;
2861 }
2862
55508d60 2863 offset = skb_checksum_start_offset(skb);
a030847e
HX
2864 BUG_ON(offset >= skb_headlen(skb));
2865 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2866
2867 offset += skb->csum_offset;
2868 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2869
2870 if (skb_cloned(skb) &&
2871 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2872 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2873 if (ret)
2874 goto out;
2875 }
2876
4f2e4ad5 2877 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2878out_set_summed:
1da177e4 2879 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2880out:
1da177e4
LT
2881 return ret;
2882}
d1b19dff 2883EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2884
b72b5bf6
DC
2885int skb_crc32c_csum_help(struct sk_buff *skb)
2886{
2887 __le32 crc32c_csum;
2888 int ret = 0, offset, start;
2889
2890 if (skb->ip_summed != CHECKSUM_PARTIAL)
2891 goto out;
2892
2893 if (unlikely(skb_is_gso(skb)))
2894 goto out;
2895
2896 /* Before computing a checksum, we should make sure no frag could
2897 * be modified by an external entity : checksum could be wrong.
2898 */
2899 if (unlikely(skb_has_shared_frag(skb))) {
2900 ret = __skb_linearize(skb);
2901 if (ret)
2902 goto out;
2903 }
2904 start = skb_checksum_start_offset(skb);
2905 offset = start + offsetof(struct sctphdr, checksum);
2906 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2907 ret = -EINVAL;
2908 goto out;
2909 }
2910 if (skb_cloned(skb) &&
2911 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2912 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2913 if (ret)
2914 goto out;
2915 }
2916 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2917 skb->len - start, ~(__u32)0,
2918 crc32c_csum_stub));
2919 *(__le32 *)(skb->data + offset) = crc32c_csum;
2920 skb->ip_summed = CHECKSUM_NONE;
dba00306 2921 skb->csum_not_inet = 0;
b72b5bf6
DC
2922out:
2923 return ret;
2924}
2925
53d6471c 2926__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2927{
252e3346 2928 __be16 type = skb->protocol;
f6a78bfc 2929
19acc327
PS
2930 /* Tunnel gso handlers can set protocol to ethernet. */
2931 if (type == htons(ETH_P_TEB)) {
2932 struct ethhdr *eth;
2933
2934 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2935 return 0;
2936
1dfe82eb 2937 eth = (struct ethhdr *)skb->data;
19acc327
PS
2938 type = eth->h_proto;
2939 }
2940
d4bcef3f 2941 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2942}
2943
2944/**
2945 * skb_mac_gso_segment - mac layer segmentation handler.
2946 * @skb: buffer to segment
2947 * @features: features for the output path (see dev->features)
2948 */
2949struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2950 netdev_features_t features)
2951{
2952 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2953 struct packet_offload *ptype;
53d6471c
VY
2954 int vlan_depth = skb->mac_len;
2955 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2956
2957 if (unlikely(!type))
2958 return ERR_PTR(-EINVAL);
2959
53d6471c 2960 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2961
2962 rcu_read_lock();
22061d80 2963 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2964 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2965 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2966 break;
2967 }
2968 }
2969 rcu_read_unlock();
2970
98e399f8 2971 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2972
f6a78bfc
HX
2973 return segs;
2974}
05e8ef4a
PS
2975EXPORT_SYMBOL(skb_mac_gso_segment);
2976
2977
2978/* openvswitch calls this on rx path, so we need a different check.
2979 */
2980static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2981{
2982 if (tx_path)
0c19f846
WB
2983 return skb->ip_summed != CHECKSUM_PARTIAL &&
2984 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
2985
2986 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2987}
2988
2989/**
2990 * __skb_gso_segment - Perform segmentation on skb.
2991 * @skb: buffer to segment
2992 * @features: features for the output path (see dev->features)
2993 * @tx_path: whether it is called in TX path
2994 *
2995 * This function segments the given skb and returns a list of segments.
2996 *
2997 * It may return NULL if the skb requires no segmentation. This is
2998 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2999 *
3000 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3001 */
3002struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3003 netdev_features_t features, bool tx_path)
3004{
b2504a5d
ED
3005 struct sk_buff *segs;
3006
05e8ef4a
PS
3007 if (unlikely(skb_needs_check(skb, tx_path))) {
3008 int err;
3009
b2504a5d 3010 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3011 err = skb_cow_head(skb, 0);
3012 if (err < 0)
05e8ef4a
PS
3013 return ERR_PTR(err);
3014 }
3015
802ab55a
AD
3016 /* Only report GSO partial support if it will enable us to
3017 * support segmentation on this frame without needing additional
3018 * work.
3019 */
3020 if (features & NETIF_F_GSO_PARTIAL) {
3021 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3022 struct net_device *dev = skb->dev;
3023
3024 partial_features |= dev->features & dev->gso_partial_features;
3025 if (!skb_gso_ok(skb, features | partial_features))
3026 features &= ~NETIF_F_GSO_PARTIAL;
3027 }
3028
9207f9d4
KK
3029 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3030 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3031
68c33163 3032 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3033 SKB_GSO_CB(skb)->encap_level = 0;
3034
05e8ef4a
PS
3035 skb_reset_mac_header(skb);
3036 skb_reset_mac_len(skb);
3037
b2504a5d
ED
3038 segs = skb_mac_gso_segment(skb, features);
3039
8d74e9f8 3040 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3041 skb_warn_bad_offload(skb);
3042
3043 return segs;
05e8ef4a 3044}
12b0004d 3045EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3046
fb286bb2
HX
3047/* Take action when hardware reception checksum errors are detected. */
3048#ifdef CONFIG_BUG
3049void netdev_rx_csum_fault(struct net_device *dev)
3050{
3051 if (net_ratelimit()) {
7b6cd1ce 3052 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
3053 dump_stack();
3054 }
3055}
3056EXPORT_SYMBOL(netdev_rx_csum_fault);
3057#endif
3058
ab74cfeb 3059/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3060static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3061{
3d3a8533 3062#ifdef CONFIG_HIGHMEM
1da177e4 3063 int i;
f4563a75 3064
5acbbd42 3065 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3066 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3067 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3068
ea2ab693 3069 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3070 return 1;
ea2ab693 3071 }
5acbbd42 3072 }
3d3a8533 3073#endif
1da177e4
LT
3074 return 0;
3075}
1da177e4 3076
3b392ddb
SH
3077/* If MPLS offload request, verify we are testing hardware MPLS features
3078 * instead of standard features for the netdev.
3079 */
d0edc7bf 3080#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3081static netdev_features_t net_mpls_features(struct sk_buff *skb,
3082 netdev_features_t features,
3083 __be16 type)
3084{
25cd9ba0 3085 if (eth_p_mpls(type))
3b392ddb
SH
3086 features &= skb->dev->mpls_features;
3087
3088 return features;
3089}
3090#else
3091static netdev_features_t net_mpls_features(struct sk_buff *skb,
3092 netdev_features_t features,
3093 __be16 type)
3094{
3095 return features;
3096}
3097#endif
3098
c8f44aff 3099static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3100 netdev_features_t features)
f01a5236 3101{
53d6471c 3102 int tmp;
3b392ddb
SH
3103 __be16 type;
3104
3105 type = skb_network_protocol(skb, &tmp);
3106 features = net_mpls_features(skb, features, type);
53d6471c 3107
c0d680e5 3108 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3109 !can_checksum_protocol(features, type)) {
996e8021 3110 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3111 }
7be2c82c
ED
3112 if (illegal_highdma(skb->dev, skb))
3113 features &= ~NETIF_F_SG;
f01a5236
JG
3114
3115 return features;
3116}
3117
e38f3025
TM
3118netdev_features_t passthru_features_check(struct sk_buff *skb,
3119 struct net_device *dev,
3120 netdev_features_t features)
3121{
3122 return features;
3123}
3124EXPORT_SYMBOL(passthru_features_check);
3125
7ce23672 3126static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3127 struct net_device *dev,
3128 netdev_features_t features)
3129{
3130 return vlan_features_check(skb, features);
3131}
3132
cbc53e08
AD
3133static netdev_features_t gso_features_check(const struct sk_buff *skb,
3134 struct net_device *dev,
3135 netdev_features_t features)
3136{
3137 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3138
3139 if (gso_segs > dev->gso_max_segs)
3140 return features & ~NETIF_F_GSO_MASK;
3141
802ab55a
AD
3142 /* Support for GSO partial features requires software
3143 * intervention before we can actually process the packets
3144 * so we need to strip support for any partial features now
3145 * and we can pull them back in after we have partially
3146 * segmented the frame.
3147 */
3148 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3149 features &= ~dev->gso_partial_features;
3150
3151 /* Make sure to clear the IPv4 ID mangling feature if the
3152 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3153 */
3154 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3155 struct iphdr *iph = skb->encapsulation ?
3156 inner_ip_hdr(skb) : ip_hdr(skb);
3157
3158 if (!(iph->frag_off & htons(IP_DF)))
3159 features &= ~NETIF_F_TSO_MANGLEID;
3160 }
3161
3162 return features;
3163}
3164
c1e756bf 3165netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3166{
5f35227e 3167 struct net_device *dev = skb->dev;
fcbeb976 3168 netdev_features_t features = dev->features;
58e998c6 3169
cbc53e08
AD
3170 if (skb_is_gso(skb))
3171 features = gso_features_check(skb, dev, features);
30b678d8 3172
5f35227e
JG
3173 /* If encapsulation offload request, verify we are testing
3174 * hardware encapsulation features instead of standard
3175 * features for the netdev
3176 */
3177 if (skb->encapsulation)
3178 features &= dev->hw_enc_features;
3179
f5a7fb88
TM
3180 if (skb_vlan_tagged(skb))
3181 features = netdev_intersect_features(features,
3182 dev->vlan_features |
3183 NETIF_F_HW_VLAN_CTAG_TX |
3184 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3185
5f35227e
JG
3186 if (dev->netdev_ops->ndo_features_check)
3187 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3188 features);
8cb65d00
TM
3189 else
3190 features &= dflt_features_check(skb, dev, features);
5f35227e 3191
c1e756bf 3192 return harmonize_features(skb, features);
58e998c6 3193}
c1e756bf 3194EXPORT_SYMBOL(netif_skb_features);
58e998c6 3195
2ea25513 3196static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3197 struct netdev_queue *txq, bool more)
f6a78bfc 3198{
2ea25513
DM
3199 unsigned int len;
3200 int rc;
00829823 3201
7866a621 3202 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 3203 dev_queue_xmit_nit(skb, dev);
fc741216 3204
2ea25513
DM
3205 len = skb->len;
3206 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3207 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3208 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3209
2ea25513
DM
3210 return rc;
3211}
7b9c6090 3212
8dcda22a
DM
3213struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3214 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3215{
3216 struct sk_buff *skb = first;
3217 int rc = NETDEV_TX_OK;
7b9c6090 3218
7f2e870f
DM
3219 while (skb) {
3220 struct sk_buff *next = skb->next;
fc70fb64 3221
7f2e870f 3222 skb->next = NULL;
95f6b3dd 3223 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3224 if (unlikely(!dev_xmit_complete(rc))) {
3225 skb->next = next;
3226 goto out;
3227 }
6afff0ca 3228
7f2e870f
DM
3229 skb = next;
3230 if (netif_xmit_stopped(txq) && skb) {
3231 rc = NETDEV_TX_BUSY;
3232 break;
9ccb8975 3233 }
7f2e870f 3234 }
9ccb8975 3235
7f2e870f
DM
3236out:
3237 *ret = rc;
3238 return skb;
3239}
b40863c6 3240
1ff0dc94
ED
3241static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3242 netdev_features_t features)
f6a78bfc 3243{
df8a39de 3244 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3245 !vlan_hw_offload_capable(features, skb->vlan_proto))
3246 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3247 return skb;
3248}
f6a78bfc 3249
43c26a1a
DC
3250int skb_csum_hwoffload_help(struct sk_buff *skb,
3251 const netdev_features_t features)
3252{
3253 if (unlikely(skb->csum_not_inet))
3254 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3255 skb_crc32c_csum_help(skb);
3256
3257 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3258}
3259EXPORT_SYMBOL(skb_csum_hwoffload_help);
3260
f53c7239 3261static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3262{
3263 netdev_features_t features;
f6a78bfc 3264
eae3f88e
DM
3265 features = netif_skb_features(skb);
3266 skb = validate_xmit_vlan(skb, features);
3267 if (unlikely(!skb))
3268 goto out_null;
7b9c6090 3269
ebf4e808
IL
3270 skb = sk_validate_xmit_skb(skb, dev);
3271 if (unlikely(!skb))
3272 goto out_null;
3273
8b86a61d 3274 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3275 struct sk_buff *segs;
3276
3277 segs = skb_gso_segment(skb, features);
cecda693 3278 if (IS_ERR(segs)) {
af6dabc9 3279 goto out_kfree_skb;
cecda693
JW
3280 } else if (segs) {
3281 consume_skb(skb);
3282 skb = segs;
f6a78bfc 3283 }
eae3f88e
DM
3284 } else {
3285 if (skb_needs_linearize(skb, features) &&
3286 __skb_linearize(skb))
3287 goto out_kfree_skb;
4ec93edb 3288
eae3f88e
DM
3289 /* If packet is not checksummed and device does not
3290 * support checksumming for this protocol, complete
3291 * checksumming here.
3292 */
3293 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3294 if (skb->encapsulation)
3295 skb_set_inner_transport_header(skb,
3296 skb_checksum_start_offset(skb));
3297 else
3298 skb_set_transport_header(skb,
3299 skb_checksum_start_offset(skb));
43c26a1a 3300 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3301 goto out_kfree_skb;
7b9c6090 3302 }
0c772159 3303 }
7b9c6090 3304
f53c7239 3305 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3306
eae3f88e 3307 return skb;
fc70fb64 3308
f6a78bfc
HX
3309out_kfree_skb:
3310 kfree_skb(skb);
eae3f88e 3311out_null:
d21fd63e 3312 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3313 return NULL;
3314}
6afff0ca 3315
f53c7239 3316struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3317{
3318 struct sk_buff *next, *head = NULL, *tail;
3319
bec3cfdc 3320 for (; skb != NULL; skb = next) {
55a93b3e
ED
3321 next = skb->next;
3322 skb->next = NULL;
bec3cfdc
ED
3323
3324 /* in case skb wont be segmented, point to itself */
3325 skb->prev = skb;
3326
f53c7239 3327 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3328 if (!skb)
3329 continue;
55a93b3e 3330
bec3cfdc
ED
3331 if (!head)
3332 head = skb;
3333 else
3334 tail->next = skb;
3335 /* If skb was segmented, skb->prev points to
3336 * the last segment. If not, it still contains skb.
3337 */
3338 tail = skb->prev;
55a93b3e
ED
3339 }
3340 return head;
f6a78bfc 3341}
104ba78c 3342EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3343
1def9238
ED
3344static void qdisc_pkt_len_init(struct sk_buff *skb)
3345{
3346 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3347
3348 qdisc_skb_cb(skb)->pkt_len = skb->len;
3349
3350 /* To get more precise estimation of bytes sent on wire,
3351 * we add to pkt_len the headers size of all segments
3352 */
3353 if (shinfo->gso_size) {
757b8b1d 3354 unsigned int hdr_len;
15e5a030 3355 u16 gso_segs = shinfo->gso_segs;
1def9238 3356
757b8b1d
ED
3357 /* mac layer + network layer */
3358 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3359
3360 /* + transport layer */
7c68d1a6
ED
3361 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3362 const struct tcphdr *th;
3363 struct tcphdr _tcphdr;
3364
3365 th = skb_header_pointer(skb, skb_transport_offset(skb),
3366 sizeof(_tcphdr), &_tcphdr);
3367 if (likely(th))
3368 hdr_len += __tcp_hdrlen(th);
3369 } else {
3370 struct udphdr _udphdr;
3371
3372 if (skb_header_pointer(skb, skb_transport_offset(skb),
3373 sizeof(_udphdr), &_udphdr))
3374 hdr_len += sizeof(struct udphdr);
3375 }
15e5a030
JW
3376
3377 if (shinfo->gso_type & SKB_GSO_DODGY)
3378 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3379 shinfo->gso_size);
3380
3381 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3382 }
3383}
3384
bbd8a0d3
KK
3385static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3386 struct net_device *dev,
3387 struct netdev_queue *txq)
3388{
3389 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3390 struct sk_buff *to_free = NULL;
a2da570d 3391 bool contended;
bbd8a0d3
KK
3392 int rc;
3393
a2da570d 3394 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3395
3396 if (q->flags & TCQ_F_NOLOCK) {
3397 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3398 __qdisc_drop(skb, &to_free);
3399 rc = NET_XMIT_DROP;
3400 } else {
3401 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
32f7b44d 3402 qdisc_run(q);
6b3ba914
JF
3403 }
3404
3405 if (unlikely(to_free))
3406 kfree_skb_list(to_free);
3407 return rc;
3408 }
3409
79640a4c
ED
3410 /*
3411 * Heuristic to force contended enqueues to serialize on a
3412 * separate lock before trying to get qdisc main lock.
f9eb8aea 3413 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3414 * often and dequeue packets faster.
79640a4c 3415 */
a2da570d 3416 contended = qdisc_is_running(q);
79640a4c
ED
3417 if (unlikely(contended))
3418 spin_lock(&q->busylock);
3419
bbd8a0d3
KK
3420 spin_lock(root_lock);
3421 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3422 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3423 rc = NET_XMIT_DROP;
3424 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3425 qdisc_run_begin(q)) {
bbd8a0d3
KK
3426 /*
3427 * This is a work-conserving queue; there are no old skbs
3428 * waiting to be sent out; and the qdisc is not running -
3429 * xmit the skb directly.
3430 */
bfe0d029 3431
bfe0d029
ED
3432 qdisc_bstats_update(q, skb);
3433
55a93b3e 3434 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3435 if (unlikely(contended)) {
3436 spin_unlock(&q->busylock);
3437 contended = false;
3438 }
bbd8a0d3 3439 __qdisc_run(q);
6c148184 3440 }
bbd8a0d3 3441
6c148184 3442 qdisc_run_end(q);
bbd8a0d3
KK
3443 rc = NET_XMIT_SUCCESS;
3444 } else {
520ac30f 3445 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3446 if (qdisc_run_begin(q)) {
3447 if (unlikely(contended)) {
3448 spin_unlock(&q->busylock);
3449 contended = false;
3450 }
3451 __qdisc_run(q);
6c148184 3452 qdisc_run_end(q);
79640a4c 3453 }
bbd8a0d3
KK
3454 }
3455 spin_unlock(root_lock);
520ac30f
ED
3456 if (unlikely(to_free))
3457 kfree_skb_list(to_free);
79640a4c
ED
3458 if (unlikely(contended))
3459 spin_unlock(&q->busylock);
bbd8a0d3
KK
3460 return rc;
3461}
3462
86f8515f 3463#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3464static void skb_update_prio(struct sk_buff *skb)
3465{
4dcb31d4
ED
3466 const struct netprio_map *map;
3467 const struct sock *sk;
3468 unsigned int prioidx;
5bc1421e 3469
4dcb31d4
ED
3470 if (skb->priority)
3471 return;
3472 map = rcu_dereference_bh(skb->dev->priomap);
3473 if (!map)
3474 return;
3475 sk = skb_to_full_sk(skb);
3476 if (!sk)
3477 return;
91c68ce2 3478
4dcb31d4
ED
3479 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3480
3481 if (prioidx < map->priomap_len)
3482 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3483}
3484#else
3485#define skb_update_prio(skb)
3486#endif
3487
f60e5990 3488DEFINE_PER_CPU(int, xmit_recursion);
3489EXPORT_SYMBOL(xmit_recursion);
3490
95603e22
MM
3491/**
3492 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3493 * @net: network namespace this loopback is happening in
3494 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3495 * @skb: buffer to transmit
3496 */
0c4b51f0 3497int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3498{
3499 skb_reset_mac_header(skb);
3500 __skb_pull(skb, skb_network_offset(skb));
3501 skb->pkt_type = PACKET_LOOPBACK;
3502 skb->ip_summed = CHECKSUM_UNNECESSARY;
3503 WARN_ON(!skb_dst(skb));
3504 skb_dst_force(skb);
3505 netif_rx_ni(skb);
3506 return 0;
3507}
3508EXPORT_SYMBOL(dev_loopback_xmit);
3509
1f211a1b
DB
3510#ifdef CONFIG_NET_EGRESS
3511static struct sk_buff *
3512sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3513{
46209401 3514 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3515 struct tcf_result cl_res;
3516
46209401 3517 if (!miniq)
1f211a1b
DB
3518 return skb;
3519
8dc07fdb 3520 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3521 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3522
46209401 3523 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3524 case TC_ACT_OK:
3525 case TC_ACT_RECLASSIFY:
3526 skb->tc_index = TC_H_MIN(cl_res.classid);
3527 break;
3528 case TC_ACT_SHOT:
46209401 3529 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3530 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3531 kfree_skb(skb);
3532 return NULL;
1f211a1b
DB
3533 case TC_ACT_STOLEN:
3534 case TC_ACT_QUEUED:
e25ea21f 3535 case TC_ACT_TRAP:
1f211a1b 3536 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3537 consume_skb(skb);
1f211a1b
DB
3538 return NULL;
3539 case TC_ACT_REDIRECT:
3540 /* No need to push/pop skb's mac_header here on egress! */
3541 skb_do_redirect(skb);
3542 *ret = NET_XMIT_SUCCESS;
3543 return NULL;
3544 default:
3545 break;
3546 }
3547
3548 return skb;
3549}
3550#endif /* CONFIG_NET_EGRESS */
3551
fc9bab24
AN
3552#ifdef CONFIG_XPS
3553static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3554 struct xps_dev_maps *dev_maps, unsigned int tci)
3555{
3556 struct xps_map *map;
3557 int queue_index = -1;
3558
3559 if (dev->num_tc) {
3560 tci *= dev->num_tc;
3561 tci += netdev_get_prio_tc_map(dev, skb->priority);
3562 }
3563
3564 map = rcu_dereference(dev_maps->attr_map[tci]);
3565 if (map) {
3566 if (map->len == 1)
3567 queue_index = map->queues[0];
3568 else
3569 queue_index = map->queues[reciprocal_scale(
3570 skb_get_hash(skb), map->len)];
3571 if (unlikely(queue_index >= dev->real_num_tx_queues))
3572 queue_index = -1;
3573 }
3574 return queue_index;
3575}
3576#endif
3577
eadec877
AD
3578static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3579 struct sk_buff *skb)
638b2a69
JP
3580{
3581#ifdef CONFIG_XPS
3582 struct xps_dev_maps *dev_maps;
fc9bab24 3583 struct sock *sk = skb->sk;
638b2a69
JP
3584 int queue_index = -1;
3585
04157469
AN
3586 if (!static_key_false(&xps_needed))
3587 return -1;
3588
638b2a69 3589 rcu_read_lock();
fc9bab24
AN
3590 if (!static_key_false(&xps_rxqs_needed))
3591 goto get_cpus_map;
3592
eadec877 3593 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3594 if (dev_maps) {
fc9bab24 3595 int tci = sk_rx_queue_get(sk);
184c449f 3596
fc9bab24
AN
3597 if (tci >= 0 && tci < dev->num_rx_queues)
3598 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3599 tci);
3600 }
184c449f 3601
fc9bab24
AN
3602get_cpus_map:
3603 if (queue_index < 0) {
eadec877 3604 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3605 if (dev_maps) {
3606 unsigned int tci = skb->sender_cpu - 1;
3607
3608 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3609 tci);
638b2a69
JP
3610 }
3611 }
3612 rcu_read_unlock();
3613
3614 return queue_index;
3615#else
3616 return -1;
3617#endif
3618}
3619
a4ea8a3d 3620u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4f49dec9
AD
3621 struct net_device *sb_dev,
3622 select_queue_fallback_t fallback)
a4ea8a3d
AD
3623{
3624 return 0;
3625}
3626EXPORT_SYMBOL(dev_pick_tx_zero);
3627
3628u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4f49dec9
AD
3629 struct net_device *sb_dev,
3630 select_queue_fallback_t fallback)
a4ea8a3d
AD
3631{
3632 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3633}
3634EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3635
8ec56fc3
AD
3636static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3637 struct net_device *sb_dev)
638b2a69
JP
3638{
3639 struct sock *sk = skb->sk;
3640 int queue_index = sk_tx_queue_get(sk);
3641
eadec877
AD
3642 sb_dev = sb_dev ? : dev;
3643
638b2a69
JP
3644 if (queue_index < 0 || skb->ooo_okay ||
3645 queue_index >= dev->real_num_tx_queues) {
eadec877 3646 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3647
638b2a69 3648 if (new_index < 0)
eadec877 3649 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3650
3651 if (queue_index != new_index && sk &&
004a5d01 3652 sk_fullsock(sk) &&
638b2a69
JP
3653 rcu_access_pointer(sk->sk_dst_cache))
3654 sk_tx_queue_set(sk, new_index);
3655
3656 queue_index = new_index;
3657 }
3658
3659 return queue_index;
3660}
3661
3662struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3663 struct sk_buff *skb,
eadec877 3664 struct net_device *sb_dev)
638b2a69
JP
3665{
3666 int queue_index = 0;
3667
3668#ifdef CONFIG_XPS
52bd2d62
ED
3669 u32 sender_cpu = skb->sender_cpu - 1;
3670
3671 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3672 skb->sender_cpu = raw_smp_processor_id() + 1;
3673#endif
3674
3675 if (dev->real_num_tx_queues != 1) {
3676 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3677
638b2a69 3678 if (ops->ndo_select_queue)
eadec877 3679 queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
638b2a69
JP
3680 __netdev_pick_tx);
3681 else
8ec56fc3 3682 queue_index = __netdev_pick_tx(dev, skb, sb_dev);
638b2a69 3683
d584527c 3684 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
3685 }
3686
3687 skb_set_queue_mapping(skb, queue_index);
3688 return netdev_get_tx_queue(dev, queue_index);
3689}
3690
d29f749e 3691/**
9d08dd3d 3692 * __dev_queue_xmit - transmit a buffer
d29f749e 3693 * @skb: buffer to transmit
eadec877 3694 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
3695 *
3696 * Queue a buffer for transmission to a network device. The caller must
3697 * have set the device and priority and built the buffer before calling
3698 * this function. The function can be called from an interrupt.
3699 *
3700 * A negative errno code is returned on a failure. A success does not
3701 * guarantee the frame will be transmitted as it may be dropped due
3702 * to congestion or traffic shaping.
3703 *
3704 * -----------------------------------------------------------------------------------
3705 * I notice this method can also return errors from the queue disciplines,
3706 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3707 * be positive.
3708 *
3709 * Regardless of the return value, the skb is consumed, so it is currently
3710 * difficult to retry a send to this method. (You can bump the ref count
3711 * before sending to hold a reference for retry if you are careful.)
3712 *
3713 * When calling this method, interrupts MUST be enabled. This is because
3714 * the BH enable code must have IRQs enabled so that it will not deadlock.
3715 * --BLG
3716 */
eadec877 3717static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
3718{
3719 struct net_device *dev = skb->dev;
dc2b4847 3720 struct netdev_queue *txq;
1da177e4
LT
3721 struct Qdisc *q;
3722 int rc = -ENOMEM;
f53c7239 3723 bool again = false;
1da177e4 3724
6d1ccff6
ED
3725 skb_reset_mac_header(skb);
3726
e7fd2885
WB
3727 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3728 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3729
4ec93edb
YH
3730 /* Disable soft irqs for various locks below. Also
3731 * stops preemption for RCU.
1da177e4 3732 */
4ec93edb 3733 rcu_read_lock_bh();
1da177e4 3734
5bc1421e
NH
3735 skb_update_prio(skb);
3736
1f211a1b
DB
3737 qdisc_pkt_len_init(skb);
3738#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3739 skb->tc_at_ingress = 0;
1f211a1b 3740# ifdef CONFIG_NET_EGRESS
aabf6772 3741 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
3742 skb = sch_handle_egress(skb, &rc, dev);
3743 if (!skb)
3744 goto out;
3745 }
3746# endif
3747#endif
02875878
ED
3748 /* If device/qdisc don't need skb->dst, release it right now while
3749 * its hot in this cpu cache.
3750 */
3751 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3752 skb_dst_drop(skb);
3753 else
3754 skb_dst_force(skb);
3755
eadec877 3756 txq = netdev_pick_tx(dev, skb, sb_dev);
a898def2 3757 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3758
cf66ba58 3759 trace_net_dev_queue(skb);
1da177e4 3760 if (q->enqueue) {
bbd8a0d3 3761 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3762 goto out;
1da177e4
LT
3763 }
3764
3765 /* The device has no queue. Common case for software devices:
eb13da1a 3766 * loopback, all the sorts of tunnels...
1da177e4 3767
eb13da1a 3768 * Really, it is unlikely that netif_tx_lock protection is necessary
3769 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3770 * counters.)
3771 * However, it is possible, that they rely on protection
3772 * made by us here.
1da177e4 3773
eb13da1a 3774 * Check this and shot the lock. It is not prone from deadlocks.
3775 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3776 */
3777 if (dev->flags & IFF_UP) {
3778 int cpu = smp_processor_id(); /* ok because BHs are off */
3779
c773e847 3780 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3781 if (unlikely(__this_cpu_read(xmit_recursion) >
3782 XMIT_RECURSION_LIMIT))
745e20f1
ED
3783 goto recursion_alert;
3784
f53c7239 3785 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 3786 if (!skb)
d21fd63e 3787 goto out;
1f59533f 3788
c773e847 3789 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3790
73466498 3791 if (!netif_xmit_stopped(txq)) {
745e20f1 3792 __this_cpu_inc(xmit_recursion);
ce93718f 3793 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3794 __this_cpu_dec(xmit_recursion);
572a9d7b 3795 if (dev_xmit_complete(rc)) {
c773e847 3796 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3797 goto out;
3798 }
3799 }
c773e847 3800 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3801 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3802 dev->name);
1da177e4
LT
3803 } else {
3804 /* Recursion is detected! It is possible,
745e20f1
ED
3805 * unfortunately
3806 */
3807recursion_alert:
e87cc472
JP
3808 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3809 dev->name);
1da177e4
LT
3810 }
3811 }
3812
3813 rc = -ENETDOWN;
d4828d85 3814 rcu_read_unlock_bh();
1da177e4 3815
015f0688 3816 atomic_long_inc(&dev->tx_dropped);
1f59533f 3817 kfree_skb_list(skb);
1da177e4
LT
3818 return rc;
3819out:
d4828d85 3820 rcu_read_unlock_bh();
1da177e4
LT
3821 return rc;
3822}
f663dd9a 3823
2b4aa3ce 3824int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3825{
3826 return __dev_queue_xmit(skb, NULL);
3827}
2b4aa3ce 3828EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3829
eadec877 3830int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 3831{
eadec877 3832 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
3833}
3834EXPORT_SYMBOL(dev_queue_xmit_accel);
3835
865b03f2
MK
3836int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3837{
3838 struct net_device *dev = skb->dev;
3839 struct sk_buff *orig_skb = skb;
3840 struct netdev_queue *txq;
3841 int ret = NETDEV_TX_BUSY;
3842 bool again = false;
3843
3844 if (unlikely(!netif_running(dev) ||
3845 !netif_carrier_ok(dev)))
3846 goto drop;
3847
3848 skb = validate_xmit_skb_list(skb, dev, &again);
3849 if (skb != orig_skb)
3850 goto drop;
3851
3852 skb_set_queue_mapping(skb, queue_id);
3853 txq = skb_get_tx_queue(dev, skb);
3854
3855 local_bh_disable();
3856
3857 HARD_TX_LOCK(dev, txq, smp_processor_id());
3858 if (!netif_xmit_frozen_or_drv_stopped(txq))
3859 ret = netdev_start_xmit(skb, dev, txq, false);
3860 HARD_TX_UNLOCK(dev, txq);
3861
3862 local_bh_enable();
3863
3864 if (!dev_xmit_complete(ret))
3865 kfree_skb(skb);
3866
3867 return ret;
3868drop:
3869 atomic_long_inc(&dev->tx_dropped);
3870 kfree_skb_list(skb);
3871 return NET_XMIT_DROP;
3872}
3873EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 3874
eb13da1a 3875/*************************************************************************
3876 * Receiver routines
3877 *************************************************************************/
1da177e4 3878
6b2bedc3 3879int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3880EXPORT_SYMBOL(netdev_max_backlog);
3881
3b098e2d 3882int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3883int netdev_budget __read_mostly = 300;
7acf8a1e 3884unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3885int weight_p __read_mostly = 64; /* old backlog weight */
3886int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3887int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3888int dev_rx_weight __read_mostly = 64;
3889int dev_tx_weight __read_mostly = 64;
1da177e4 3890
eecfd7c4
ED
3891/* Called with irq disabled */
3892static inline void ____napi_schedule(struct softnet_data *sd,
3893 struct napi_struct *napi)
3894{
3895 list_add_tail(&napi->poll_list, &sd->poll_list);
3896 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3897}
3898
bfb564e7
KK
3899#ifdef CONFIG_RPS
3900
3901/* One global table that all flow-based protocols share. */
6e3f7faf 3902struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3903EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3904u32 rps_cpu_mask __read_mostly;
3905EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3906
c5905afb 3907struct static_key rps_needed __read_mostly;
3df97ba8 3908EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3909struct static_key rfs_needed __read_mostly;
3910EXPORT_SYMBOL(rfs_needed);
adc9300e 3911
c445477d
BH
3912static struct rps_dev_flow *
3913set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3914 struct rps_dev_flow *rflow, u16 next_cpu)
3915{
a31196b0 3916 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3917#ifdef CONFIG_RFS_ACCEL
3918 struct netdev_rx_queue *rxqueue;
3919 struct rps_dev_flow_table *flow_table;
3920 struct rps_dev_flow *old_rflow;
3921 u32 flow_id;
3922 u16 rxq_index;
3923 int rc;
3924
3925 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3926 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3927 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3928 goto out;
3929 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3930 if (rxq_index == skb_get_rx_queue(skb))
3931 goto out;
3932
3933 rxqueue = dev->_rx + rxq_index;
3934 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3935 if (!flow_table)
3936 goto out;
61b905da 3937 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3938 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3939 rxq_index, flow_id);
3940 if (rc < 0)
3941 goto out;
3942 old_rflow = rflow;
3943 rflow = &flow_table->flows[flow_id];
c445477d
BH
3944 rflow->filter = rc;
3945 if (old_rflow->filter == rflow->filter)
3946 old_rflow->filter = RPS_NO_FILTER;
3947 out:
3948#endif
3949 rflow->last_qtail =
09994d1b 3950 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3951 }
3952
09994d1b 3953 rflow->cpu = next_cpu;
c445477d
BH
3954 return rflow;
3955}
3956
bfb564e7
KK
3957/*
3958 * get_rps_cpu is called from netif_receive_skb and returns the target
3959 * CPU from the RPS map of the receiving queue for a given skb.
3960 * rcu_read_lock must be held on entry.
3961 */
3962static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3963 struct rps_dev_flow **rflowp)
3964{
567e4b79
ED
3965 const struct rps_sock_flow_table *sock_flow_table;
3966 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3967 struct rps_dev_flow_table *flow_table;
567e4b79 3968 struct rps_map *map;
bfb564e7 3969 int cpu = -1;
567e4b79 3970 u32 tcpu;
61b905da 3971 u32 hash;
bfb564e7
KK
3972
3973 if (skb_rx_queue_recorded(skb)) {
3974 u16 index = skb_get_rx_queue(skb);
567e4b79 3975
62fe0b40
BH
3976 if (unlikely(index >= dev->real_num_rx_queues)) {
3977 WARN_ONCE(dev->real_num_rx_queues > 1,
3978 "%s received packet on queue %u, but number "
3979 "of RX queues is %u\n",
3980 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3981 goto done;
3982 }
567e4b79
ED
3983 rxqueue += index;
3984 }
bfb564e7 3985
567e4b79
ED
3986 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3987
3988 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3989 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3990 if (!flow_table && !map)
bfb564e7
KK
3991 goto done;
3992
2d47b459 3993 skb_reset_network_header(skb);
61b905da
TH
3994 hash = skb_get_hash(skb);
3995 if (!hash)
bfb564e7
KK
3996 goto done;
3997
fec5e652
TH
3998 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3999 if (flow_table && sock_flow_table) {
fec5e652 4000 struct rps_dev_flow *rflow;
567e4b79
ED
4001 u32 next_cpu;
4002 u32 ident;
4003
4004 /* First check into global flow table if there is a match */
4005 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4006 if ((ident ^ hash) & ~rps_cpu_mask)
4007 goto try_rps;
fec5e652 4008
567e4b79
ED
4009 next_cpu = ident & rps_cpu_mask;
4010
4011 /* OK, now we know there is a match,
4012 * we can look at the local (per receive queue) flow table
4013 */
61b905da 4014 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4015 tcpu = rflow->cpu;
4016
fec5e652
TH
4017 /*
4018 * If the desired CPU (where last recvmsg was done) is
4019 * different from current CPU (one in the rx-queue flow
4020 * table entry), switch if one of the following holds:
a31196b0 4021 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4022 * - Current CPU is offline.
4023 * - The current CPU's queue tail has advanced beyond the
4024 * last packet that was enqueued using this table entry.
4025 * This guarantees that all previous packets for the flow
4026 * have been dequeued, thus preserving in order delivery.
4027 */
4028 if (unlikely(tcpu != next_cpu) &&
a31196b0 4029 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4030 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4031 rflow->last_qtail)) >= 0)) {
4032 tcpu = next_cpu;
c445477d 4033 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4034 }
c445477d 4035
a31196b0 4036 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4037 *rflowp = rflow;
4038 cpu = tcpu;
4039 goto done;
4040 }
4041 }
4042
567e4b79
ED
4043try_rps:
4044
0a9627f2 4045 if (map) {
8fc54f68 4046 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4047 if (cpu_online(tcpu)) {
4048 cpu = tcpu;
4049 goto done;
4050 }
4051 }
4052
4053done:
0a9627f2
TH
4054 return cpu;
4055}
4056
c445477d
BH
4057#ifdef CONFIG_RFS_ACCEL
4058
4059/**
4060 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4061 * @dev: Device on which the filter was set
4062 * @rxq_index: RX queue index
4063 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4064 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4065 *
4066 * Drivers that implement ndo_rx_flow_steer() should periodically call
4067 * this function for each installed filter and remove the filters for
4068 * which it returns %true.
4069 */
4070bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4071 u32 flow_id, u16 filter_id)
4072{
4073 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4074 struct rps_dev_flow_table *flow_table;
4075 struct rps_dev_flow *rflow;
4076 bool expire = true;
a31196b0 4077 unsigned int cpu;
c445477d
BH
4078
4079 rcu_read_lock();
4080 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4081 if (flow_table && flow_id <= flow_table->mask) {
4082 rflow = &flow_table->flows[flow_id];
6aa7de05 4083 cpu = READ_ONCE(rflow->cpu);
a31196b0 4084 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4085 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4086 rflow->last_qtail) <
4087 (int)(10 * flow_table->mask)))
4088 expire = false;
4089 }
4090 rcu_read_unlock();
4091 return expire;
4092}
4093EXPORT_SYMBOL(rps_may_expire_flow);
4094
4095#endif /* CONFIG_RFS_ACCEL */
4096
0a9627f2 4097/* Called from hardirq (IPI) context */
e36fa2f7 4098static void rps_trigger_softirq(void *data)
0a9627f2 4099{
e36fa2f7
ED
4100 struct softnet_data *sd = data;
4101
eecfd7c4 4102 ____napi_schedule(sd, &sd->backlog);
dee42870 4103 sd->received_rps++;
0a9627f2 4104}
e36fa2f7 4105
fec5e652 4106#endif /* CONFIG_RPS */
0a9627f2 4107
e36fa2f7
ED
4108/*
4109 * Check if this softnet_data structure is another cpu one
4110 * If yes, queue it to our IPI list and return 1
4111 * If no, return 0
4112 */
4113static int rps_ipi_queued(struct softnet_data *sd)
4114{
4115#ifdef CONFIG_RPS
903ceff7 4116 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4117
4118 if (sd != mysd) {
4119 sd->rps_ipi_next = mysd->rps_ipi_list;
4120 mysd->rps_ipi_list = sd;
4121
4122 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4123 return 1;
4124 }
4125#endif /* CONFIG_RPS */
4126 return 0;
4127}
4128
99bbc707
WB
4129#ifdef CONFIG_NET_FLOW_LIMIT
4130int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4131#endif
4132
4133static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4134{
4135#ifdef CONFIG_NET_FLOW_LIMIT
4136 struct sd_flow_limit *fl;
4137 struct softnet_data *sd;
4138 unsigned int old_flow, new_flow;
4139
4140 if (qlen < (netdev_max_backlog >> 1))
4141 return false;
4142
903ceff7 4143 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4144
4145 rcu_read_lock();
4146 fl = rcu_dereference(sd->flow_limit);
4147 if (fl) {
3958afa1 4148 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4149 old_flow = fl->history[fl->history_head];
4150 fl->history[fl->history_head] = new_flow;
4151
4152 fl->history_head++;
4153 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4154
4155 if (likely(fl->buckets[old_flow]))
4156 fl->buckets[old_flow]--;
4157
4158 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4159 fl->count++;
4160 rcu_read_unlock();
4161 return true;
4162 }
4163 }
4164 rcu_read_unlock();
4165#endif
4166 return false;
4167}
4168
0a9627f2
TH
4169/*
4170 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4171 * queue (may be a remote CPU queue).
4172 */
fec5e652
TH
4173static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4174 unsigned int *qtail)
0a9627f2 4175{
e36fa2f7 4176 struct softnet_data *sd;
0a9627f2 4177 unsigned long flags;
99bbc707 4178 unsigned int qlen;
0a9627f2 4179
e36fa2f7 4180 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4181
4182 local_irq_save(flags);
0a9627f2 4183
e36fa2f7 4184 rps_lock(sd);
e9e4dd32
JA
4185 if (!netif_running(skb->dev))
4186 goto drop;
99bbc707
WB
4187 qlen = skb_queue_len(&sd->input_pkt_queue);
4188 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4189 if (qlen) {
0a9627f2 4190enqueue:
e36fa2f7 4191 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4192 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4193 rps_unlock(sd);
152102c7 4194 local_irq_restore(flags);
0a9627f2
TH
4195 return NET_RX_SUCCESS;
4196 }
4197
ebda37c2
ED
4198 /* Schedule NAPI for backlog device
4199 * We can use non atomic operation since we own the queue lock
4200 */
4201 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4202 if (!rps_ipi_queued(sd))
eecfd7c4 4203 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4204 }
4205 goto enqueue;
4206 }
4207
e9e4dd32 4208drop:
dee42870 4209 sd->dropped++;
e36fa2f7 4210 rps_unlock(sd);
0a9627f2 4211
0a9627f2
TH
4212 local_irq_restore(flags);
4213
caf586e5 4214 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4215 kfree_skb(skb);
4216 return NET_RX_DROP;
4217}
1da177e4 4218
e817f856
JDB
4219static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4220{
4221 struct net_device *dev = skb->dev;
4222 struct netdev_rx_queue *rxqueue;
4223
4224 rxqueue = dev->_rx;
4225
4226 if (skb_rx_queue_recorded(skb)) {
4227 u16 index = skb_get_rx_queue(skb);
4228
4229 if (unlikely(index >= dev->real_num_rx_queues)) {
4230 WARN_ONCE(dev->real_num_rx_queues > 1,
4231 "%s received packet on queue %u, but number "
4232 "of RX queues is %u\n",
4233 dev->name, index, dev->real_num_rx_queues);
4234
4235 return rxqueue; /* Return first rxqueue */
4236 }
4237 rxqueue += index;
4238 }
4239 return rxqueue;
4240}
4241
d4455169 4242static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4243 struct xdp_buff *xdp,
d4455169
JF
4244 struct bpf_prog *xdp_prog)
4245{
e817f856 4246 struct netdev_rx_queue *rxqueue;
198d83bb 4247 void *orig_data, *orig_data_end;
de8f3a83 4248 u32 metalen, act = XDP_DROP;
d4455169
JF
4249 int hlen, off;
4250 u32 mac_len;
4251
4252 /* Reinjected packets coming from act_mirred or similar should
4253 * not get XDP generic processing.
4254 */
cd11b164 4255 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
d4455169
JF
4256 return XDP_PASS;
4257
de8f3a83
DB
4258 /* XDP packets must be linear and must have sufficient headroom
4259 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4260 * native XDP provides, thus we need to do it here as well.
4261 */
4262 if (skb_is_nonlinear(skb) ||
4263 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4264 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4265 int troom = skb->tail + skb->data_len - skb->end;
4266
4267 /* In case we have to go down the path and also linearize,
4268 * then lets do the pskb_expand_head() work just once here.
4269 */
4270 if (pskb_expand_head(skb,
4271 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4272 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4273 goto do_drop;
2d17d8d7 4274 if (skb_linearize(skb))
de8f3a83
DB
4275 goto do_drop;
4276 }
d4455169
JF
4277
4278 /* The XDP program wants to see the packet starting at the MAC
4279 * header.
4280 */
4281 mac_len = skb->data - skb_mac_header(skb);
4282 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4283 xdp->data = skb->data - mac_len;
4284 xdp->data_meta = xdp->data;
4285 xdp->data_end = xdp->data + hlen;
4286 xdp->data_hard_start = skb->data - skb_headroom(skb);
4287 orig_data_end = xdp->data_end;
4288 orig_data = xdp->data;
d4455169 4289
e817f856 4290 rxqueue = netif_get_rxqueue(skb);
02671e23 4291 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4292
02671e23 4293 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4294
02671e23 4295 off = xdp->data - orig_data;
d4455169
JF
4296 if (off > 0)
4297 __skb_pull(skb, off);
4298 else if (off < 0)
4299 __skb_push(skb, -off);
92dd5452 4300 skb->mac_header += off;
d4455169 4301
198d83bb
NS
4302 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4303 * pckt.
4304 */
02671e23 4305 off = orig_data_end - xdp->data_end;
f7613120 4306 if (off != 0) {
02671e23 4307 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
f7613120 4308 skb->len -= off;
02671e23 4309
f7613120 4310 }
198d83bb 4311
d4455169 4312 switch (act) {
6103aa96 4313 case XDP_REDIRECT:
d4455169
JF
4314 case XDP_TX:
4315 __skb_push(skb, mac_len);
de8f3a83 4316 break;
d4455169 4317 case XDP_PASS:
02671e23 4318 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4319 if (metalen)
4320 skb_metadata_set(skb, metalen);
d4455169 4321 break;
d4455169
JF
4322 default:
4323 bpf_warn_invalid_xdp_action(act);
4324 /* fall through */
4325 case XDP_ABORTED:
4326 trace_xdp_exception(skb->dev, xdp_prog, act);
4327 /* fall through */
4328 case XDP_DROP:
4329 do_drop:
4330 kfree_skb(skb);
4331 break;
4332 }
4333
4334 return act;
4335}
4336
4337/* When doing generic XDP we have to bypass the qdisc layer and the
4338 * network taps in order to match in-driver-XDP behavior.
4339 */
7c497478 4340void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4341{
4342 struct net_device *dev = skb->dev;
4343 struct netdev_queue *txq;
4344 bool free_skb = true;
4345 int cpu, rc;
4346
4347 txq = netdev_pick_tx(dev, skb, NULL);
4348 cpu = smp_processor_id();
4349 HARD_TX_LOCK(dev, txq, cpu);
4350 if (!netif_xmit_stopped(txq)) {
4351 rc = netdev_start_xmit(skb, dev, txq, 0);
4352 if (dev_xmit_complete(rc))
4353 free_skb = false;
4354 }
4355 HARD_TX_UNLOCK(dev, txq);
4356 if (free_skb) {
4357 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4358 kfree_skb(skb);
4359 }
4360}
7c497478 4361EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169 4362
02786475 4363static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4364
7c497478 4365int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4366{
d4455169 4367 if (xdp_prog) {
02671e23
BT
4368 struct xdp_buff xdp;
4369 u32 act;
6103aa96 4370 int err;
d4455169 4371
02671e23 4372 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4373 if (act != XDP_PASS) {
6103aa96
JF
4374 switch (act) {
4375 case XDP_REDIRECT:
2facaad6 4376 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4377 &xdp, xdp_prog);
6103aa96
JF
4378 if (err)
4379 goto out_redir;
02671e23 4380 break;
6103aa96 4381 case XDP_TX:
d4455169 4382 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4383 break;
4384 }
d4455169
JF
4385 return XDP_DROP;
4386 }
4387 }
4388 return XDP_PASS;
6103aa96 4389out_redir:
6103aa96
JF
4390 kfree_skb(skb);
4391 return XDP_DROP;
d4455169 4392}
7c497478 4393EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4394
ae78dbfa 4395static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4396{
b0e28f1e 4397 int ret;
1da177e4 4398
588f0330 4399 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4400
cf66ba58 4401 trace_netif_rx(skb);
d4455169 4402
02786475 4403 if (static_branch_unlikely(&generic_xdp_needed_key)) {
bbbe211c
JF
4404 int ret;
4405
4406 preempt_disable();
4407 rcu_read_lock();
4408 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4409 rcu_read_unlock();
4410 preempt_enable();
d4455169 4411
6103aa96
JF
4412 /* Consider XDP consuming the packet a success from
4413 * the netdev point of view we do not want to count
4414 * this as an error.
4415 */
d4455169 4416 if (ret != XDP_PASS)
6103aa96 4417 return NET_RX_SUCCESS;
d4455169
JF
4418 }
4419
df334545 4420#ifdef CONFIG_RPS
c5905afb 4421 if (static_key_false(&rps_needed)) {
fec5e652 4422 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4423 int cpu;
4424
cece1945 4425 preempt_disable();
b0e28f1e 4426 rcu_read_lock();
fec5e652
TH
4427
4428 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4429 if (cpu < 0)
4430 cpu = smp_processor_id();
fec5e652
TH
4431
4432 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4433
b0e28f1e 4434 rcu_read_unlock();
cece1945 4435 preempt_enable();
adc9300e
ED
4436 } else
4437#endif
fec5e652
TH
4438 {
4439 unsigned int qtail;
f4563a75 4440
fec5e652
TH
4441 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4442 put_cpu();
4443 }
b0e28f1e 4444 return ret;
1da177e4 4445}
ae78dbfa
BH
4446
4447/**
4448 * netif_rx - post buffer to the network code
4449 * @skb: buffer to post
4450 *
4451 * This function receives a packet from a device driver and queues it for
4452 * the upper (protocol) levels to process. It always succeeds. The buffer
4453 * may be dropped during processing for congestion control or by the
4454 * protocol layers.
4455 *
4456 * return values:
4457 * NET_RX_SUCCESS (no congestion)
4458 * NET_RX_DROP (packet was dropped)
4459 *
4460 */
4461
4462int netif_rx(struct sk_buff *skb)
4463{
4464 trace_netif_rx_entry(skb);
4465
4466 return netif_rx_internal(skb);
4467}
d1b19dff 4468EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4469
4470int netif_rx_ni(struct sk_buff *skb)
4471{
4472 int err;
4473
ae78dbfa
BH
4474 trace_netif_rx_ni_entry(skb);
4475
1da177e4 4476 preempt_disable();
ae78dbfa 4477 err = netif_rx_internal(skb);
1da177e4
LT
4478 if (local_softirq_pending())
4479 do_softirq();
4480 preempt_enable();
4481
4482 return err;
4483}
1da177e4
LT
4484EXPORT_SYMBOL(netif_rx_ni);
4485
0766f788 4486static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4487{
903ceff7 4488 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4489
4490 if (sd->completion_queue) {
4491 struct sk_buff *clist;
4492
4493 local_irq_disable();
4494 clist = sd->completion_queue;
4495 sd->completion_queue = NULL;
4496 local_irq_enable();
4497
4498 while (clist) {
4499 struct sk_buff *skb = clist;
f4563a75 4500
1da177e4
LT
4501 clist = clist->next;
4502
63354797 4503 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4504 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4505 trace_consume_skb(skb);
4506 else
4507 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4508
4509 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4510 __kfree_skb(skb);
4511 else
4512 __kfree_skb_defer(skb);
1da177e4 4513 }
15fad714
JDB
4514
4515 __kfree_skb_flush();
1da177e4
LT
4516 }
4517
4518 if (sd->output_queue) {
37437bb2 4519 struct Qdisc *head;
1da177e4
LT
4520
4521 local_irq_disable();
4522 head = sd->output_queue;
4523 sd->output_queue = NULL;
a9cbd588 4524 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4525 local_irq_enable();
4526
4527 while (head) {
37437bb2 4528 struct Qdisc *q = head;
6b3ba914 4529 spinlock_t *root_lock = NULL;
37437bb2 4530
1da177e4
LT
4531 head = head->next_sched;
4532
6b3ba914
JF
4533 if (!(q->flags & TCQ_F_NOLOCK)) {
4534 root_lock = qdisc_lock(q);
4535 spin_lock(root_lock);
4536 }
3bcb846c
ED
4537 /* We need to make sure head->next_sched is read
4538 * before clearing __QDISC_STATE_SCHED
4539 */
4540 smp_mb__before_atomic();
4541 clear_bit(__QDISC_STATE_SCHED, &q->state);
4542 qdisc_run(q);
6b3ba914
JF
4543 if (root_lock)
4544 spin_unlock(root_lock);
1da177e4
LT
4545 }
4546 }
f53c7239
SK
4547
4548 xfrm_dev_backlog(sd);
1da177e4
LT
4549}
4550
181402a5 4551#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4552/* This hook is defined here for ATM LANE */
4553int (*br_fdb_test_addr_hook)(struct net_device *dev,
4554 unsigned char *addr) __read_mostly;
4fb019a0 4555EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4556#endif
1da177e4 4557
1f211a1b
DB
4558static inline struct sk_buff *
4559sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4560 struct net_device *orig_dev)
f697c3e8 4561{
e7582bab 4562#ifdef CONFIG_NET_CLS_ACT
46209401 4563 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4564 struct tcf_result cl_res;
24824a09 4565
c9e99fd0
DB
4566 /* If there's at least one ingress present somewhere (so
4567 * we get here via enabled static key), remaining devices
4568 * that are not configured with an ingress qdisc will bail
d2788d34 4569 * out here.
c9e99fd0 4570 */
46209401 4571 if (!miniq)
4577139b 4572 return skb;
46209401 4573
f697c3e8
HX
4574 if (*pt_prev) {
4575 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4576 *pt_prev = NULL;
1da177e4
LT
4577 }
4578
3365495c 4579 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4580 skb->tc_at_ingress = 1;
46209401 4581 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4582
46209401 4583 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
4584 case TC_ACT_OK:
4585 case TC_ACT_RECLASSIFY:
4586 skb->tc_index = TC_H_MIN(cl_res.classid);
4587 break;
4588 case TC_ACT_SHOT:
46209401 4589 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4590 kfree_skb(skb);
4591 return NULL;
d2788d34
DB
4592 case TC_ACT_STOLEN:
4593 case TC_ACT_QUEUED:
e25ea21f 4594 case TC_ACT_TRAP:
8a3a4c6e 4595 consume_skb(skb);
d2788d34 4596 return NULL;
27b29f63
AS
4597 case TC_ACT_REDIRECT:
4598 /* skb_mac_header check was done by cls/act_bpf, so
4599 * we can safely push the L2 header back before
4600 * redirecting to another netdev
4601 */
4602 __skb_push(skb, skb->mac_len);
4603 skb_do_redirect(skb);
4604 return NULL;
cd11b164
PA
4605 case TC_ACT_REINSERT:
4606 /* this does not scrub the packet, and updates stats on error */
4607 skb_tc_reinsert(skb, &cl_res);
4608 return NULL;
d2788d34
DB
4609 default:
4610 break;
f697c3e8 4611 }
e7582bab 4612#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4613 return skb;
4614}
1da177e4 4615
24b27fc4
MB
4616/**
4617 * netdev_is_rx_handler_busy - check if receive handler is registered
4618 * @dev: device to check
4619 *
4620 * Check if a receive handler is already registered for a given device.
4621 * Return true if there one.
4622 *
4623 * The caller must hold the rtnl_mutex.
4624 */
4625bool netdev_is_rx_handler_busy(struct net_device *dev)
4626{
4627 ASSERT_RTNL();
4628 return dev && rtnl_dereference(dev->rx_handler);
4629}
4630EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4631
ab95bfe0
JP
4632/**
4633 * netdev_rx_handler_register - register receive handler
4634 * @dev: device to register a handler for
4635 * @rx_handler: receive handler to register
93e2c32b 4636 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4637 *
e227867f 4638 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4639 * called from __netif_receive_skb. A negative errno code is returned
4640 * on a failure.
4641 *
4642 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4643 *
4644 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4645 */
4646int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4647 rx_handler_func_t *rx_handler,
4648 void *rx_handler_data)
ab95bfe0 4649{
1b7cd004 4650 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4651 return -EBUSY;
4652
f5426250
PA
4653 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4654 return -EINVAL;
4655
00cfec37 4656 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4657 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4658 rcu_assign_pointer(dev->rx_handler, rx_handler);
4659
4660 return 0;
4661}
4662EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4663
4664/**
4665 * netdev_rx_handler_unregister - unregister receive handler
4666 * @dev: device to unregister a handler from
4667 *
166ec369 4668 * Unregister a receive handler from a device.
ab95bfe0
JP
4669 *
4670 * The caller must hold the rtnl_mutex.
4671 */
4672void netdev_rx_handler_unregister(struct net_device *dev)
4673{
4674
4675 ASSERT_RTNL();
a9b3cd7f 4676 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4677 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4678 * section has a guarantee to see a non NULL rx_handler_data
4679 * as well.
4680 */
4681 synchronize_net();
a9b3cd7f 4682 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4683}
4684EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4685
b4b9e355
MG
4686/*
4687 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4688 * the special handling of PFMEMALLOC skbs.
4689 */
4690static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4691{
4692 switch (skb->protocol) {
2b8837ae
JP
4693 case htons(ETH_P_ARP):
4694 case htons(ETH_P_IP):
4695 case htons(ETH_P_IPV6):
4696 case htons(ETH_P_8021Q):
4697 case htons(ETH_P_8021AD):
b4b9e355
MG
4698 return true;
4699 default:
4700 return false;
4701 }
4702}
4703
e687ad60
PN
4704static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4705 int *ret, struct net_device *orig_dev)
4706{
e7582bab 4707#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4708 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4709 int ingress_retval;
4710
e687ad60
PN
4711 if (*pt_prev) {
4712 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4713 *pt_prev = NULL;
4714 }
4715
2c1e2703
AC
4716 rcu_read_lock();
4717 ingress_retval = nf_hook_ingress(skb);
4718 rcu_read_unlock();
4719 return ingress_retval;
e687ad60 4720 }
e7582bab 4721#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4722 return 0;
4723}
e687ad60 4724
88eb1944
EC
4725static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4726 struct packet_type **ppt_prev)
1da177e4
LT
4727{
4728 struct packet_type *ptype, *pt_prev;
ab95bfe0 4729 rx_handler_func_t *rx_handler;
f2ccd8fa 4730 struct net_device *orig_dev;
8a4eb573 4731 bool deliver_exact = false;
1da177e4 4732 int ret = NET_RX_DROP;
252e3346 4733 __be16 type;
1da177e4 4734
588f0330 4735 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4736
cf66ba58 4737 trace_netif_receive_skb(skb);
9b22ea56 4738
cc9bd5ce 4739 orig_dev = skb->dev;
8f903c70 4740
c1d2bbe1 4741 skb_reset_network_header(skb);
fda55eca
ED
4742 if (!skb_transport_header_was_set(skb))
4743 skb_reset_transport_header(skb);
0b5c9db1 4744 skb_reset_mac_len(skb);
1da177e4
LT
4745
4746 pt_prev = NULL;
4747
63d8ea7f 4748another_round:
b6858177 4749 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4750
4751 __this_cpu_inc(softnet_data.processed);
4752
8ad227ff
PM
4753 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4754 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4755 skb = skb_vlan_untag(skb);
bcc6d479 4756 if (unlikely(!skb))
2c17d27c 4757 goto out;
bcc6d479
JP
4758 }
4759
e7246e12
WB
4760 if (skb_skip_tc_classify(skb))
4761 goto skip_classify;
1da177e4 4762
9754e293 4763 if (pfmemalloc)
b4b9e355
MG
4764 goto skip_taps;
4765
1da177e4 4766 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4767 if (pt_prev)
4768 ret = deliver_skb(skb, pt_prev, orig_dev);
4769 pt_prev = ptype;
4770 }
4771
4772 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4773 if (pt_prev)
4774 ret = deliver_skb(skb, pt_prev, orig_dev);
4775 pt_prev = ptype;
1da177e4
LT
4776 }
4777
b4b9e355 4778skip_taps:
1cf51900 4779#ifdef CONFIG_NET_INGRESS
aabf6772 4780 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 4781 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4782 if (!skb)
2c17d27c 4783 goto out;
e687ad60
PN
4784
4785 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4786 goto out;
4577139b 4787 }
1cf51900 4788#endif
a5135bcf 4789 skb_reset_tc(skb);
e7246e12 4790skip_classify:
9754e293 4791 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4792 goto drop;
4793
df8a39de 4794 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4795 if (pt_prev) {
4796 ret = deliver_skb(skb, pt_prev, orig_dev);
4797 pt_prev = NULL;
4798 }
48cc32d3 4799 if (vlan_do_receive(&skb))
2425717b
JF
4800 goto another_round;
4801 else if (unlikely(!skb))
2c17d27c 4802 goto out;
2425717b
JF
4803 }
4804
48cc32d3 4805 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4806 if (rx_handler) {
4807 if (pt_prev) {
4808 ret = deliver_skb(skb, pt_prev, orig_dev);
4809 pt_prev = NULL;
4810 }
8a4eb573
JP
4811 switch (rx_handler(&skb)) {
4812 case RX_HANDLER_CONSUMED:
3bc1b1ad 4813 ret = NET_RX_SUCCESS;
2c17d27c 4814 goto out;
8a4eb573 4815 case RX_HANDLER_ANOTHER:
63d8ea7f 4816 goto another_round;
8a4eb573
JP
4817 case RX_HANDLER_EXACT:
4818 deliver_exact = true;
4819 case RX_HANDLER_PASS:
4820 break;
4821 default:
4822 BUG();
4823 }
ab95bfe0 4824 }
1da177e4 4825
df8a39de
JP
4826 if (unlikely(skb_vlan_tag_present(skb))) {
4827 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4828 skb->pkt_type = PACKET_OTHERHOST;
4829 /* Note: we might in the future use prio bits
4830 * and set skb->priority like in vlan_do_receive()
4831 * For the time being, just ignore Priority Code Point
4832 */
4833 skb->vlan_tci = 0;
4834 }
48cc32d3 4835
7866a621
SN
4836 type = skb->protocol;
4837
63d8ea7f 4838 /* deliver only exact match when indicated */
7866a621
SN
4839 if (likely(!deliver_exact)) {
4840 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4841 &ptype_base[ntohs(type) &
4842 PTYPE_HASH_MASK]);
4843 }
1f3c8804 4844
7866a621
SN
4845 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4846 &orig_dev->ptype_specific);
4847
4848 if (unlikely(skb->dev != orig_dev)) {
4849 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4850 &skb->dev->ptype_specific);
1da177e4
LT
4851 }
4852
4853 if (pt_prev) {
1f8b977a 4854 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4855 goto drop;
88eb1944 4856 *ppt_prev = pt_prev;
1da177e4 4857 } else {
b4b9e355 4858drop:
6e7333d3
JW
4859 if (!deliver_exact)
4860 atomic_long_inc(&skb->dev->rx_dropped);
4861 else
4862 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4863 kfree_skb(skb);
4864 /* Jamal, now you will not able to escape explaining
4865 * me how you were going to use this. :-)
4866 */
4867 ret = NET_RX_DROP;
4868 }
4869
2c17d27c 4870out:
9754e293
DM
4871 return ret;
4872}
4873
88eb1944
EC
4874static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4875{
4876 struct net_device *orig_dev = skb->dev;
4877 struct packet_type *pt_prev = NULL;
4878 int ret;
4879
4880 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4881 if (pt_prev)
4882 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4883 return ret;
4884}
4885
1c601d82
JDB
4886/**
4887 * netif_receive_skb_core - special purpose version of netif_receive_skb
4888 * @skb: buffer to process
4889 *
4890 * More direct receive version of netif_receive_skb(). It should
4891 * only be used by callers that have a need to skip RPS and Generic XDP.
4892 * Caller must also take care of handling if (page_is_)pfmemalloc.
4893 *
4894 * This function may only be called from softirq context and interrupts
4895 * should be enabled.
4896 *
4897 * Return values (usually ignored):
4898 * NET_RX_SUCCESS: no congestion
4899 * NET_RX_DROP: packet was dropped
4900 */
4901int netif_receive_skb_core(struct sk_buff *skb)
4902{
4903 int ret;
4904
4905 rcu_read_lock();
88eb1944 4906 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
4907 rcu_read_unlock();
4908
4909 return ret;
4910}
4911EXPORT_SYMBOL(netif_receive_skb_core);
4912
88eb1944
EC
4913static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4914 struct packet_type *pt_prev,
4915 struct net_device *orig_dev)
4ce0017a
EC
4916{
4917 struct sk_buff *skb, *next;
4918
88eb1944
EC
4919 if (!pt_prev)
4920 return;
4921 if (list_empty(head))
4922 return;
17266ee9
EC
4923 if (pt_prev->list_func != NULL)
4924 pt_prev->list_func(head, pt_prev, orig_dev);
4925 else
4926 list_for_each_entry_safe(skb, next, head, list)
4927 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
88eb1944
EC
4928}
4929
4930static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4931{
4932 /* Fast-path assumptions:
4933 * - There is no RX handler.
4934 * - Only one packet_type matches.
4935 * If either of these fails, we will end up doing some per-packet
4936 * processing in-line, then handling the 'last ptype' for the whole
4937 * sublist. This can't cause out-of-order delivery to any single ptype,
4938 * because the 'last ptype' must be constant across the sublist, and all
4939 * other ptypes are handled per-packet.
4940 */
4941 /* Current (common) ptype of sublist */
4942 struct packet_type *pt_curr = NULL;
4943 /* Current (common) orig_dev of sublist */
4944 struct net_device *od_curr = NULL;
4945 struct list_head sublist;
4946 struct sk_buff *skb, *next;
4947
9af86f93 4948 INIT_LIST_HEAD(&sublist);
88eb1944
EC
4949 list_for_each_entry_safe(skb, next, head, list) {
4950 struct net_device *orig_dev = skb->dev;
4951 struct packet_type *pt_prev = NULL;
4952
9af86f93 4953 list_del(&skb->list);
88eb1944 4954 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
9af86f93
EC
4955 if (!pt_prev)
4956 continue;
88eb1944
EC
4957 if (pt_curr != pt_prev || od_curr != orig_dev) {
4958 /* dispatch old sublist */
88eb1944
EC
4959 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4960 /* start new sublist */
9af86f93 4961 INIT_LIST_HEAD(&sublist);
88eb1944
EC
4962 pt_curr = pt_prev;
4963 od_curr = orig_dev;
4964 }
9af86f93 4965 list_add_tail(&skb->list, &sublist);
88eb1944
EC
4966 }
4967
4968 /* dispatch final sublist */
9af86f93 4969 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
4970}
4971
9754e293
DM
4972static int __netif_receive_skb(struct sk_buff *skb)
4973{
4974 int ret;
4975
4976 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 4977 unsigned int noreclaim_flag;
9754e293
DM
4978
4979 /*
4980 * PFMEMALLOC skbs are special, they should
4981 * - be delivered to SOCK_MEMALLOC sockets only
4982 * - stay away from userspace
4983 * - have bounded memory usage
4984 *
4985 * Use PF_MEMALLOC as this saves us from propagating the allocation
4986 * context down to all allocation sites.
4987 */
f1083048 4988 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 4989 ret = __netif_receive_skb_one_core(skb, true);
f1083048 4990 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 4991 } else
88eb1944 4992 ret = __netif_receive_skb_one_core(skb, false);
9754e293 4993
1da177e4
LT
4994 return ret;
4995}
0a9627f2 4996
4ce0017a
EC
4997static void __netif_receive_skb_list(struct list_head *head)
4998{
4999 unsigned long noreclaim_flag = 0;
5000 struct sk_buff *skb, *next;
5001 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5002
5003 list_for_each_entry_safe(skb, next, head, list) {
5004 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5005 struct list_head sublist;
5006
5007 /* Handle the previous sublist */
5008 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5009 if (!list_empty(&sublist))
5010 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5011 pfmemalloc = !pfmemalloc;
5012 /* See comments in __netif_receive_skb */
5013 if (pfmemalloc)
5014 noreclaim_flag = memalloc_noreclaim_save();
5015 else
5016 memalloc_noreclaim_restore(noreclaim_flag);
5017 }
5018 }
5019 /* Handle the remaining sublist */
b9f463d6
EC
5020 if (!list_empty(head))
5021 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5022 /* Restore pflags */
5023 if (pfmemalloc)
5024 memalloc_noreclaim_restore(noreclaim_flag);
5025}
5026
f4e63525 5027static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5028{
58038695 5029 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5030 struct bpf_prog *new = xdp->prog;
5031 int ret = 0;
5032
5033 switch (xdp->command) {
58038695 5034 case XDP_SETUP_PROG:
b5cdae32
DM
5035 rcu_assign_pointer(dev->xdp_prog, new);
5036 if (old)
5037 bpf_prog_put(old);
5038
5039 if (old && !new) {
02786475 5040 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5041 } else if (new && !old) {
02786475 5042 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5043 dev_disable_lro(dev);
56f5aa77 5044 dev_disable_gro_hw(dev);
b5cdae32
DM
5045 }
5046 break;
b5cdae32
DM
5047
5048 case XDP_QUERY_PROG:
58038695 5049 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
5050 break;
5051
5052 default:
5053 ret = -EINVAL;
5054 break;
5055 }
5056
5057 return ret;
5058}
5059
ae78dbfa 5060static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5061{
2c17d27c
JA
5062 int ret;
5063
588f0330 5064 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5065
c1f19b51
RC
5066 if (skb_defer_rx_timestamp(skb))
5067 return NET_RX_SUCCESS;
5068
02786475 5069 if (static_branch_unlikely(&generic_xdp_needed_key)) {
bbbe211c 5070 int ret;
b5cdae32 5071
bbbe211c
JF
5072 preempt_disable();
5073 rcu_read_lock();
5074 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5075 rcu_read_unlock();
5076 preempt_enable();
5077
5078 if (ret != XDP_PASS)
d4455169 5079 return NET_RX_DROP;
b5cdae32
DM
5080 }
5081
bbbe211c 5082 rcu_read_lock();
df334545 5083#ifdef CONFIG_RPS
c5905afb 5084 if (static_key_false(&rps_needed)) {
3b098e2d 5085 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5086 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5087
3b098e2d
ED
5088 if (cpu >= 0) {
5089 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5090 rcu_read_unlock();
adc9300e 5091 return ret;
3b098e2d 5092 }
fec5e652 5093 }
1e94d72f 5094#endif
2c17d27c
JA
5095 ret = __netif_receive_skb(skb);
5096 rcu_read_unlock();
5097 return ret;
0a9627f2 5098}
ae78dbfa 5099
7da517a3
EC
5100static void netif_receive_skb_list_internal(struct list_head *head)
5101{
5102 struct bpf_prog *xdp_prog = NULL;
5103 struct sk_buff *skb, *next;
8c057efa 5104 struct list_head sublist;
7da517a3 5105
8c057efa 5106 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5107 list_for_each_entry_safe(skb, next, head, list) {
5108 net_timestamp_check(netdev_tstamp_prequeue, skb);
8c057efa
EC
5109 list_del(&skb->list);
5110 if (!skb_defer_rx_timestamp(skb))
5111 list_add_tail(&skb->list, &sublist);
7da517a3 5112 }
8c057efa 5113 list_splice_init(&sublist, head);
7da517a3
EC
5114
5115 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5116 preempt_disable();
5117 rcu_read_lock();
5118 list_for_each_entry_safe(skb, next, head, list) {
5119 xdp_prog = rcu_dereference(skb->dev->xdp_prog);
8c057efa
EC
5120 list_del(&skb->list);
5121 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5122 list_add_tail(&skb->list, &sublist);
7da517a3
EC
5123 }
5124 rcu_read_unlock();
5125 preempt_enable();
8c057efa
EC
5126 /* Put passed packets back on main list */
5127 list_splice_init(&sublist, head);
7da517a3
EC
5128 }
5129
5130 rcu_read_lock();
5131#ifdef CONFIG_RPS
5132 if (static_key_false(&rps_needed)) {
5133 list_for_each_entry_safe(skb, next, head, list) {
5134 struct rps_dev_flow voidflow, *rflow = &voidflow;
5135 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5136
5137 if (cpu >= 0) {
8c057efa 5138 /* Will be handled, remove from list */
7da517a3 5139 list_del(&skb->list);
8c057efa 5140 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5141 }
5142 }
5143 }
5144#endif
5145 __netif_receive_skb_list(head);
5146 rcu_read_unlock();
5147}
5148
ae78dbfa
BH
5149/**
5150 * netif_receive_skb - process receive buffer from network
5151 * @skb: buffer to process
5152 *
5153 * netif_receive_skb() is the main receive data processing function.
5154 * It always succeeds. The buffer may be dropped during processing
5155 * for congestion control or by the protocol layers.
5156 *
5157 * This function may only be called from softirq context and interrupts
5158 * should be enabled.
5159 *
5160 * Return values (usually ignored):
5161 * NET_RX_SUCCESS: no congestion
5162 * NET_RX_DROP: packet was dropped
5163 */
04eb4489 5164int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
5165{
5166 trace_netif_receive_skb_entry(skb);
5167
5168 return netif_receive_skb_internal(skb);
5169}
04eb4489 5170EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5171
f6ad8c1b
EC
5172/**
5173 * netif_receive_skb_list - process many receive buffers from network
5174 * @head: list of skbs to process.
5175 *
7da517a3
EC
5176 * Since return value of netif_receive_skb() is normally ignored, and
5177 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5178 *
5179 * This function may only be called from softirq context and interrupts
5180 * should be enabled.
5181 */
5182void netif_receive_skb_list(struct list_head *head)
5183{
7da517a3 5184 struct sk_buff *skb;
f6ad8c1b 5185
b9f463d6
EC
5186 if (list_empty(head))
5187 return;
920572b7
EC
5188 list_for_each_entry(skb, head, list)
5189 trace_netif_receive_skb_list_entry(skb);
7da517a3 5190 netif_receive_skb_list_internal(head);
f6ad8c1b
EC
5191}
5192EXPORT_SYMBOL(netif_receive_skb_list);
5193
41852497 5194DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5195
5196/* Network device is going away, flush any packets still pending */
5197static void flush_backlog(struct work_struct *work)
6e583ce5 5198{
6e583ce5 5199 struct sk_buff *skb, *tmp;
145dd5f9
PA
5200 struct softnet_data *sd;
5201
5202 local_bh_disable();
5203 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5204
145dd5f9 5205 local_irq_disable();
e36fa2f7 5206 rps_lock(sd);
6e7676c1 5207 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5208 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5209 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 5210 kfree_skb(skb);
76cc8b13 5211 input_queue_head_incr(sd);
6e583ce5 5212 }
6e7676c1 5213 }
e36fa2f7 5214 rps_unlock(sd);
145dd5f9 5215 local_irq_enable();
6e7676c1
CG
5216
5217 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5218 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5219 __skb_unlink(skb, &sd->process_queue);
5220 kfree_skb(skb);
76cc8b13 5221 input_queue_head_incr(sd);
6e7676c1
CG
5222 }
5223 }
145dd5f9
PA
5224 local_bh_enable();
5225}
5226
41852497 5227static void flush_all_backlogs(void)
145dd5f9
PA
5228{
5229 unsigned int cpu;
5230
5231 get_online_cpus();
5232
41852497
ED
5233 for_each_online_cpu(cpu)
5234 queue_work_on(cpu, system_highpri_wq,
5235 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5236
5237 for_each_online_cpu(cpu)
41852497 5238 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5239
5240 put_online_cpus();
6e583ce5
SH
5241}
5242
d565b0a1
HX
5243static int napi_gro_complete(struct sk_buff *skb)
5244{
22061d80 5245 struct packet_offload *ptype;
d565b0a1 5246 __be16 type = skb->protocol;
22061d80 5247 struct list_head *head = &offload_base;
d565b0a1
HX
5248 int err = -ENOENT;
5249
c3c7c254
ED
5250 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5251
fc59f9a3
HX
5252 if (NAPI_GRO_CB(skb)->count == 1) {
5253 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5254 goto out;
fc59f9a3 5255 }
d565b0a1
HX
5256
5257 rcu_read_lock();
5258 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5259 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5260 continue;
5261
299603e8 5262 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
5263 break;
5264 }
5265 rcu_read_unlock();
5266
5267 if (err) {
5268 WARN_ON(&ptype->list == head);
5269 kfree_skb(skb);
5270 return NET_RX_SUCCESS;
5271 }
5272
5273out:
ae78dbfa 5274 return netif_receive_skb_internal(skb);
d565b0a1
HX
5275}
5276
6312fe77 5277static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5278 bool flush_old)
d565b0a1 5279{
6312fe77 5280 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5281 struct sk_buff *skb, *p;
2e71a6f8 5282
07d78363 5283 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5284 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5285 return;
68d2f84a
PB
5286 list_del(&skb->list);
5287 skb->next = NULL;
d565b0a1 5288 napi_gro_complete(skb);
6312fe77 5289 napi->gro_hash[index].count--;
d565b0a1 5290 }
d9f37d01
LR
5291
5292 if (!napi->gro_hash[index].count)
5293 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5294}
07d78363 5295
6312fe77 5296/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5297 * youngest packets at the head of it.
5298 * Complete skbs in reverse order to reduce latencies.
5299 */
5300void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5301{
6312fe77 5302 u32 i;
07d78363 5303
d9f37d01
LR
5304 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5305 if (test_bit(i, &napi->gro_bitmask))
5306 __napi_gro_flush_chain(napi, i, flush_old);
5307 }
07d78363 5308}
86cac58b 5309EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5310
07d78363
DM
5311static struct list_head *gro_list_prepare(struct napi_struct *napi,
5312 struct sk_buff *skb)
89c5fa33 5313{
89c5fa33 5314 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5315 u32 hash = skb_get_hash_raw(skb);
07d78363 5316 struct list_head *head;
d4546c25 5317 struct sk_buff *p;
89c5fa33 5318
6312fe77 5319 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5320 list_for_each_entry(p, head, list) {
89c5fa33
ED
5321 unsigned long diffs;
5322
0b4cec8c
TH
5323 NAPI_GRO_CB(p)->flush = 0;
5324
5325 if (hash != skb_get_hash_raw(p)) {
5326 NAPI_GRO_CB(p)->same_flow = 0;
5327 continue;
5328 }
5329
89c5fa33
ED
5330 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5331 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 5332 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5333 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5334 if (maclen == ETH_HLEN)
5335 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5336 skb_mac_header(skb));
89c5fa33
ED
5337 else if (!diffs)
5338 diffs = memcmp(skb_mac_header(p),
a50e233c 5339 skb_mac_header(skb),
89c5fa33
ED
5340 maclen);
5341 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5342 }
07d78363
DM
5343
5344 return head;
89c5fa33
ED
5345}
5346
299603e8
JC
5347static void skb_gro_reset_offset(struct sk_buff *skb)
5348{
5349 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5350 const skb_frag_t *frag0 = &pinfo->frags[0];
5351
5352 NAPI_GRO_CB(skb)->data_offset = 0;
5353 NAPI_GRO_CB(skb)->frag0 = NULL;
5354 NAPI_GRO_CB(skb)->frag0_len = 0;
5355
5356 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5357 pinfo->nr_frags &&
5358 !PageHighMem(skb_frag_page(frag0))) {
5359 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5360 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5361 skb_frag_size(frag0),
5362 skb->end - skb->tail);
89c5fa33
ED
5363 }
5364}
5365
a50e233c
ED
5366static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5367{
5368 struct skb_shared_info *pinfo = skb_shinfo(skb);
5369
5370 BUG_ON(skb->end - skb->tail < grow);
5371
5372 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5373
5374 skb->data_len -= grow;
5375 skb->tail += grow;
5376
5377 pinfo->frags[0].page_offset += grow;
5378 skb_frag_size_sub(&pinfo->frags[0], grow);
5379
5380 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5381 skb_frag_unref(skb, 0);
5382 memmove(pinfo->frags, pinfo->frags + 1,
5383 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5384 }
5385}
5386
6312fe77 5387static void gro_flush_oldest(struct list_head *head)
07d78363 5388{
6312fe77 5389 struct sk_buff *oldest;
07d78363 5390
6312fe77 5391 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5392
6312fe77 5393 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5394 * impossible.
5395 */
5396 if (WARN_ON_ONCE(!oldest))
5397 return;
5398
d9f37d01
LR
5399 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5400 * SKB to the chain.
07d78363
DM
5401 */
5402 list_del(&oldest->list);
5403 napi_gro_complete(oldest);
5404}
5405
bb728820 5406static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5407{
6312fe77 5408 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5409 struct list_head *head = &offload_base;
22061d80 5410 struct packet_offload *ptype;
d565b0a1 5411 __be16 type = skb->protocol;
07d78363 5412 struct list_head *gro_head;
d4546c25 5413 struct sk_buff *pp = NULL;
5b252f0c 5414 enum gro_result ret;
d4546c25 5415 int same_flow;
a50e233c 5416 int grow;
d565b0a1 5417
b5cdae32 5418 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5419 goto normal;
5420
07d78363 5421 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5422
d565b0a1
HX
5423 rcu_read_lock();
5424 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5425 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5426 continue;
5427
86911732 5428 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5429 skb_reset_mac_len(skb);
d565b0a1 5430 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5431 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5432 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5433 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5434 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5435 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5436 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5437 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5438
662880f4
TH
5439 /* Setup for GRO checksum validation */
5440 switch (skb->ip_summed) {
5441 case CHECKSUM_COMPLETE:
5442 NAPI_GRO_CB(skb)->csum = skb->csum;
5443 NAPI_GRO_CB(skb)->csum_valid = 1;
5444 NAPI_GRO_CB(skb)->csum_cnt = 0;
5445 break;
5446 case CHECKSUM_UNNECESSARY:
5447 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5448 NAPI_GRO_CB(skb)->csum_valid = 0;
5449 break;
5450 default:
5451 NAPI_GRO_CB(skb)->csum_cnt = 0;
5452 NAPI_GRO_CB(skb)->csum_valid = 0;
5453 }
d565b0a1 5454
07d78363 5455 pp = ptype->callbacks.gro_receive(gro_head, skb);
d565b0a1
HX
5456 break;
5457 }
5458 rcu_read_unlock();
5459
5460 if (&ptype->list == head)
5461 goto normal;
5462
25393d3f
SK
5463 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5464 ret = GRO_CONSUMED;
5465 goto ok;
5466 }
5467
0da2afd5 5468 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5469 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5470
d565b0a1 5471 if (pp) {
68d2f84a
PB
5472 list_del(&pp->list);
5473 pp->next = NULL;
d4546c25 5474 napi_gro_complete(pp);
6312fe77 5475 napi->gro_hash[hash].count--;
d565b0a1
HX
5476 }
5477
0da2afd5 5478 if (same_flow)
d565b0a1
HX
5479 goto ok;
5480
600adc18 5481 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5482 goto normal;
d565b0a1 5483
6312fe77
LR
5484 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5485 gro_flush_oldest(gro_head);
600adc18 5486 } else {
6312fe77 5487 napi->gro_hash[hash].count++;
600adc18 5488 }
d565b0a1 5489 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5490 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5491 NAPI_GRO_CB(skb)->last = skb;
86911732 5492 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5493 list_add(&skb->list, gro_head);
5d0d9be8 5494 ret = GRO_HELD;
d565b0a1 5495
ad0f9904 5496pull:
a50e233c
ED
5497 grow = skb_gro_offset(skb) - skb_headlen(skb);
5498 if (grow > 0)
5499 gro_pull_from_frag0(skb, grow);
d565b0a1 5500ok:
d9f37d01
LR
5501 if (napi->gro_hash[hash].count) {
5502 if (!test_bit(hash, &napi->gro_bitmask))
5503 __set_bit(hash, &napi->gro_bitmask);
5504 } else if (test_bit(hash, &napi->gro_bitmask)) {
5505 __clear_bit(hash, &napi->gro_bitmask);
5506 }
5507
5d0d9be8 5508 return ret;
d565b0a1
HX
5509
5510normal:
ad0f9904
HX
5511 ret = GRO_NORMAL;
5512 goto pull;
5d38a079 5513}
96e93eab 5514
bf5a755f
JC
5515struct packet_offload *gro_find_receive_by_type(__be16 type)
5516{
5517 struct list_head *offload_head = &offload_base;
5518 struct packet_offload *ptype;
5519
5520 list_for_each_entry_rcu(ptype, offload_head, list) {
5521 if (ptype->type != type || !ptype->callbacks.gro_receive)
5522 continue;
5523 return ptype;
5524 }
5525 return NULL;
5526}
e27a2f83 5527EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
5528
5529struct packet_offload *gro_find_complete_by_type(__be16 type)
5530{
5531 struct list_head *offload_head = &offload_base;
5532 struct packet_offload *ptype;
5533
5534 list_for_each_entry_rcu(ptype, offload_head, list) {
5535 if (ptype->type != type || !ptype->callbacks.gro_complete)
5536 continue;
5537 return ptype;
5538 }
5539 return NULL;
5540}
e27a2f83 5541EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5542
e44699d2
MK
5543static void napi_skb_free_stolen_head(struct sk_buff *skb)
5544{
5545 skb_dst_drop(skb);
5546 secpath_reset(skb);
5547 kmem_cache_free(skbuff_head_cache, skb);
5548}
5549
bb728820 5550static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 5551{
5d0d9be8
HX
5552 switch (ret) {
5553 case GRO_NORMAL:
ae78dbfa 5554 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
5555 ret = GRO_DROP;
5556 break;
5d38a079 5557
5d0d9be8 5558 case GRO_DROP:
5d38a079
HX
5559 kfree_skb(skb);
5560 break;
5b252f0c 5561
daa86548 5562 case GRO_MERGED_FREE:
e44699d2
MK
5563 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5564 napi_skb_free_stolen_head(skb);
5565 else
d7e8883c 5566 __kfree_skb(skb);
daa86548
ED
5567 break;
5568
5b252f0c
BH
5569 case GRO_HELD:
5570 case GRO_MERGED:
25393d3f 5571 case GRO_CONSUMED:
5b252f0c 5572 break;
5d38a079
HX
5573 }
5574
c7c4b3b6 5575 return ret;
5d0d9be8 5576}
5d0d9be8 5577
c7c4b3b6 5578gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 5579{
93f93a44 5580 skb_mark_napi_id(skb, napi);
ae78dbfa 5581 trace_napi_gro_receive_entry(skb);
86911732 5582
a50e233c
ED
5583 skb_gro_reset_offset(skb);
5584
89c5fa33 5585 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
5586}
5587EXPORT_SYMBOL(napi_gro_receive);
5588
d0c2b0d2 5589static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5590{
93a35f59
ED
5591 if (unlikely(skb->pfmemalloc)) {
5592 consume_skb(skb);
5593 return;
5594 }
96e93eab 5595 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5596 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5597 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 5598 skb->vlan_tci = 0;
66c46d74 5599 skb->dev = napi->dev;
6d152e23 5600 skb->skb_iif = 0;
c3caf119
JC
5601 skb->encapsulation = 0;
5602 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5603 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 5604 secpath_reset(skb);
96e93eab
HX
5605
5606 napi->skb = skb;
5607}
96e93eab 5608
76620aaf 5609struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5610{
5d38a079 5611 struct sk_buff *skb = napi->skb;
5d38a079
HX
5612
5613 if (!skb) {
fd11a83d 5614 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5615 if (skb) {
5616 napi->skb = skb;
5617 skb_mark_napi_id(skb, napi);
5618 }
80595d59 5619 }
96e93eab
HX
5620 return skb;
5621}
76620aaf 5622EXPORT_SYMBOL(napi_get_frags);
96e93eab 5623
a50e233c
ED
5624static gro_result_t napi_frags_finish(struct napi_struct *napi,
5625 struct sk_buff *skb,
5626 gro_result_t ret)
96e93eab 5627{
5d0d9be8
HX
5628 switch (ret) {
5629 case GRO_NORMAL:
a50e233c
ED
5630 case GRO_HELD:
5631 __skb_push(skb, ETH_HLEN);
5632 skb->protocol = eth_type_trans(skb, skb->dev);
5633 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 5634 ret = GRO_DROP;
86911732 5635 break;
5d38a079 5636
5d0d9be8 5637 case GRO_DROP:
5d0d9be8
HX
5638 napi_reuse_skb(napi, skb);
5639 break;
5b252f0c 5640
e44699d2
MK
5641 case GRO_MERGED_FREE:
5642 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5643 napi_skb_free_stolen_head(skb);
5644 else
5645 napi_reuse_skb(napi, skb);
5646 break;
5647
5b252f0c 5648 case GRO_MERGED:
25393d3f 5649 case GRO_CONSUMED:
5b252f0c 5650 break;
5d0d9be8 5651 }
5d38a079 5652
c7c4b3b6 5653 return ret;
5d38a079 5654}
5d0d9be8 5655
a50e233c
ED
5656/* Upper GRO stack assumes network header starts at gro_offset=0
5657 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5658 * We copy ethernet header into skb->data to have a common layout.
5659 */
4adb9c4a 5660static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5661{
5662 struct sk_buff *skb = napi->skb;
a50e233c
ED
5663 const struct ethhdr *eth;
5664 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5665
5666 napi->skb = NULL;
5667
a50e233c
ED
5668 skb_reset_mac_header(skb);
5669 skb_gro_reset_offset(skb);
5670
5671 eth = skb_gro_header_fast(skb, 0);
5672 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5673 eth = skb_gro_header_slow(skb, hlen, 0);
5674 if (unlikely(!eth)) {
4da46ceb
AC
5675 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5676 __func__, napi->dev->name);
a50e233c
ED
5677 napi_reuse_skb(napi, skb);
5678 return NULL;
5679 }
5680 } else {
5681 gro_pull_from_frag0(skb, hlen);
5682 NAPI_GRO_CB(skb)->frag0 += hlen;
5683 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5684 }
a50e233c
ED
5685 __skb_pull(skb, hlen);
5686
5687 /*
5688 * This works because the only protocols we care about don't require
5689 * special handling.
5690 * We'll fix it up properly in napi_frags_finish()
5691 */
5692 skb->protocol = eth->h_proto;
76620aaf 5693
76620aaf
HX
5694 return skb;
5695}
76620aaf 5696
c7c4b3b6 5697gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5698{
76620aaf 5699 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5700
5701 if (!skb)
c7c4b3b6 5702 return GRO_DROP;
5d0d9be8 5703
ae78dbfa
BH
5704 trace_napi_gro_frags_entry(skb);
5705
89c5fa33 5706 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 5707}
5d38a079
HX
5708EXPORT_SYMBOL(napi_gro_frags);
5709
573e8fca
TH
5710/* Compute the checksum from gro_offset and return the folded value
5711 * after adding in any pseudo checksum.
5712 */
5713__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5714{
5715 __wsum wsum;
5716 __sum16 sum;
5717
5718 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5719
5720 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5721 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5722 if (likely(!sum)) {
5723 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5724 !skb->csum_complete_sw)
5725 netdev_rx_csum_fault(skb->dev);
5726 }
5727
5728 NAPI_GRO_CB(skb)->csum = wsum;
5729 NAPI_GRO_CB(skb)->csum_valid = 1;
5730
5731 return sum;
5732}
5733EXPORT_SYMBOL(__skb_gro_checksum_complete);
5734
773fc8f6 5735static void net_rps_send_ipi(struct softnet_data *remsd)
5736{
5737#ifdef CONFIG_RPS
5738 while (remsd) {
5739 struct softnet_data *next = remsd->rps_ipi_next;
5740
5741 if (cpu_online(remsd->cpu))
5742 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5743 remsd = next;
5744 }
5745#endif
5746}
5747
e326bed2 5748/*
855abcf0 5749 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5750 * Note: called with local irq disabled, but exits with local irq enabled.
5751 */
5752static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5753{
5754#ifdef CONFIG_RPS
5755 struct softnet_data *remsd = sd->rps_ipi_list;
5756
5757 if (remsd) {
5758 sd->rps_ipi_list = NULL;
5759
5760 local_irq_enable();
5761
5762 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5763 net_rps_send_ipi(remsd);
e326bed2
ED
5764 } else
5765#endif
5766 local_irq_enable();
5767}
5768
d75b1ade
ED
5769static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5770{
5771#ifdef CONFIG_RPS
5772 return sd->rps_ipi_list != NULL;
5773#else
5774 return false;
5775#endif
5776}
5777
bea3348e 5778static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5779{
eecfd7c4 5780 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5781 bool again = true;
5782 int work = 0;
1da177e4 5783
e326bed2
ED
5784 /* Check if we have pending ipi, its better to send them now,
5785 * not waiting net_rx_action() end.
5786 */
d75b1ade 5787 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5788 local_irq_disable();
5789 net_rps_action_and_irq_enable(sd);
5790 }
d75b1ade 5791
3d48b53f 5792 napi->weight = dev_rx_weight;
145dd5f9 5793 while (again) {
1da177e4 5794 struct sk_buff *skb;
6e7676c1
CG
5795
5796 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5797 rcu_read_lock();
6e7676c1 5798 __netif_receive_skb(skb);
2c17d27c 5799 rcu_read_unlock();
76cc8b13 5800 input_queue_head_incr(sd);
145dd5f9 5801 if (++work >= quota)
76cc8b13 5802 return work;
145dd5f9 5803
6e7676c1 5804 }
1da177e4 5805
145dd5f9 5806 local_irq_disable();
e36fa2f7 5807 rps_lock(sd);
11ef7a89 5808 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5809 /*
5810 * Inline a custom version of __napi_complete().
5811 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5812 * and NAPI_STATE_SCHED is the only possible flag set
5813 * on backlog.
5814 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5815 * and we dont need an smp_mb() memory barrier.
5816 */
eecfd7c4 5817 napi->state = 0;
145dd5f9
PA
5818 again = false;
5819 } else {
5820 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5821 &sd->process_queue);
bea3348e 5822 }
e36fa2f7 5823 rps_unlock(sd);
145dd5f9 5824 local_irq_enable();
6e7676c1 5825 }
1da177e4 5826
bea3348e
SH
5827 return work;
5828}
1da177e4 5829
bea3348e
SH
5830/**
5831 * __napi_schedule - schedule for receive
c4ea43c5 5832 * @n: entry to schedule
bea3348e 5833 *
bc9ad166
ED
5834 * The entry's receive function will be scheduled to run.
5835 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5836 */
b5606c2d 5837void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5838{
5839 unsigned long flags;
1da177e4 5840
bea3348e 5841 local_irq_save(flags);
903ceff7 5842 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5843 local_irq_restore(flags);
1da177e4 5844}
bea3348e
SH
5845EXPORT_SYMBOL(__napi_schedule);
5846
39e6c820
ED
5847/**
5848 * napi_schedule_prep - check if napi can be scheduled
5849 * @n: napi context
5850 *
5851 * Test if NAPI routine is already running, and if not mark
5852 * it as running. This is used as a condition variable
5853 * insure only one NAPI poll instance runs. We also make
5854 * sure there is no pending NAPI disable.
5855 */
5856bool napi_schedule_prep(struct napi_struct *n)
5857{
5858 unsigned long val, new;
5859
5860 do {
5861 val = READ_ONCE(n->state);
5862 if (unlikely(val & NAPIF_STATE_DISABLE))
5863 return false;
5864 new = val | NAPIF_STATE_SCHED;
5865
5866 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5867 * This was suggested by Alexander Duyck, as compiler
5868 * emits better code than :
5869 * if (val & NAPIF_STATE_SCHED)
5870 * new |= NAPIF_STATE_MISSED;
5871 */
5872 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5873 NAPIF_STATE_MISSED;
5874 } while (cmpxchg(&n->state, val, new) != val);
5875
5876 return !(val & NAPIF_STATE_SCHED);
5877}
5878EXPORT_SYMBOL(napi_schedule_prep);
5879
bc9ad166
ED
5880/**
5881 * __napi_schedule_irqoff - schedule for receive
5882 * @n: entry to schedule
5883 *
5884 * Variant of __napi_schedule() assuming hard irqs are masked
5885 */
5886void __napi_schedule_irqoff(struct napi_struct *n)
5887{
5888 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5889}
5890EXPORT_SYMBOL(__napi_schedule_irqoff);
5891
364b6055 5892bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5893{
39e6c820 5894 unsigned long flags, val, new;
d565b0a1
HX
5895
5896 /*
217f6974
ED
5897 * 1) Don't let napi dequeue from the cpu poll list
5898 * just in case its running on a different cpu.
5899 * 2) If we are busy polling, do nothing here, we have
5900 * the guarantee we will be called later.
d565b0a1 5901 */
217f6974
ED
5902 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5903 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5904 return false;
d565b0a1 5905
d9f37d01 5906 if (n->gro_bitmask) {
3b47d303 5907 unsigned long timeout = 0;
d75b1ade 5908
3b47d303
ED
5909 if (work_done)
5910 timeout = n->dev->gro_flush_timeout;
5911
5912 if (timeout)
5913 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5914 HRTIMER_MODE_REL_PINNED);
5915 else
5916 napi_gro_flush(n, false);
5917 }
02c1602e 5918 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5919 /* If n->poll_list is not empty, we need to mask irqs */
5920 local_irq_save(flags);
02c1602e 5921 list_del_init(&n->poll_list);
d75b1ade
ED
5922 local_irq_restore(flags);
5923 }
39e6c820
ED
5924
5925 do {
5926 val = READ_ONCE(n->state);
5927
5928 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5929
5930 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5931
5932 /* If STATE_MISSED was set, leave STATE_SCHED set,
5933 * because we will call napi->poll() one more time.
5934 * This C code was suggested by Alexander Duyck to help gcc.
5935 */
5936 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5937 NAPIF_STATE_SCHED;
5938 } while (cmpxchg(&n->state, val, new) != val);
5939
5940 if (unlikely(val & NAPIF_STATE_MISSED)) {
5941 __napi_schedule(n);
5942 return false;
5943 }
5944
364b6055 5945 return true;
d565b0a1 5946}
3b47d303 5947EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5948
af12fa6e 5949/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5950static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5951{
5952 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5953 struct napi_struct *napi;
5954
5955 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5956 if (napi->napi_id == napi_id)
5957 return napi;
5958
5959 return NULL;
5960}
02d62e86
ED
5961
5962#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5963
ce6aea93 5964#define BUSY_POLL_BUDGET 8
217f6974
ED
5965
5966static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5967{
5968 int rc;
5969
39e6c820
ED
5970 /* Busy polling means there is a high chance device driver hard irq
5971 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5972 * set in napi_schedule_prep().
5973 * Since we are about to call napi->poll() once more, we can safely
5974 * clear NAPI_STATE_MISSED.
5975 *
5976 * Note: x86 could use a single "lock and ..." instruction
5977 * to perform these two clear_bit()
5978 */
5979 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5980 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5981
5982 local_bh_disable();
5983
5984 /* All we really want here is to re-enable device interrupts.
5985 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5986 */
5987 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1e22391e 5988 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974
ED
5989 netpoll_poll_unlock(have_poll_lock);
5990 if (rc == BUSY_POLL_BUDGET)
5991 __napi_schedule(napi);
5992 local_bh_enable();
217f6974
ED
5993}
5994
7db6b048
SS
5995void napi_busy_loop(unsigned int napi_id,
5996 bool (*loop_end)(void *, unsigned long),
5997 void *loop_end_arg)
02d62e86 5998{
7db6b048 5999 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6000 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6001 void *have_poll_lock = NULL;
02d62e86 6002 struct napi_struct *napi;
217f6974
ED
6003
6004restart:
217f6974 6005 napi_poll = NULL;
02d62e86 6006
2a028ecb 6007 rcu_read_lock();
02d62e86 6008
545cd5e5 6009 napi = napi_by_id(napi_id);
02d62e86
ED
6010 if (!napi)
6011 goto out;
6012
217f6974
ED
6013 preempt_disable();
6014 for (;;) {
2b5cd0df
AD
6015 int work = 0;
6016
2a028ecb 6017 local_bh_disable();
217f6974
ED
6018 if (!napi_poll) {
6019 unsigned long val = READ_ONCE(napi->state);
6020
6021 /* If multiple threads are competing for this napi,
6022 * we avoid dirtying napi->state as much as we can.
6023 */
6024 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6025 NAPIF_STATE_IN_BUSY_POLL))
6026 goto count;
6027 if (cmpxchg(&napi->state, val,
6028 val | NAPIF_STATE_IN_BUSY_POLL |
6029 NAPIF_STATE_SCHED) != val)
6030 goto count;
6031 have_poll_lock = netpoll_poll_lock(napi);
6032 napi_poll = napi->poll;
6033 }
2b5cd0df
AD
6034 work = napi_poll(napi, BUSY_POLL_BUDGET);
6035 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 6036count:
2b5cd0df 6037 if (work > 0)
7db6b048 6038 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6039 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6040 local_bh_enable();
02d62e86 6041
7db6b048 6042 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6043 break;
02d62e86 6044
217f6974
ED
6045 if (unlikely(need_resched())) {
6046 if (napi_poll)
6047 busy_poll_stop(napi, have_poll_lock);
6048 preempt_enable();
6049 rcu_read_unlock();
6050 cond_resched();
7db6b048 6051 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6052 return;
217f6974
ED
6053 goto restart;
6054 }
6cdf89b1 6055 cpu_relax();
217f6974
ED
6056 }
6057 if (napi_poll)
6058 busy_poll_stop(napi, have_poll_lock);
6059 preempt_enable();
02d62e86 6060out:
2a028ecb 6061 rcu_read_unlock();
02d62e86 6062}
7db6b048 6063EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6064
6065#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6066
149d6ad8 6067static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6068{
d64b5e85
ED
6069 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6070 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 6071 return;
af12fa6e 6072
52bd2d62 6073 spin_lock(&napi_hash_lock);
af12fa6e 6074
545cd5e5 6075 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6076 do {
545cd5e5
AD
6077 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6078 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6079 } while (napi_by_id(napi_gen_id));
6080 napi->napi_id = napi_gen_id;
af12fa6e 6081
52bd2d62
ED
6082 hlist_add_head_rcu(&napi->napi_hash_node,
6083 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6084
52bd2d62 6085 spin_unlock(&napi_hash_lock);
af12fa6e 6086}
af12fa6e
ET
6087
6088/* Warning : caller is responsible to make sure rcu grace period
6089 * is respected before freeing memory containing @napi
6090 */
34cbe27e 6091bool napi_hash_del(struct napi_struct *napi)
af12fa6e 6092{
34cbe27e
ED
6093 bool rcu_sync_needed = false;
6094
af12fa6e
ET
6095 spin_lock(&napi_hash_lock);
6096
34cbe27e
ED
6097 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6098 rcu_sync_needed = true;
af12fa6e 6099 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 6100 }
af12fa6e 6101 spin_unlock(&napi_hash_lock);
34cbe27e 6102 return rcu_sync_needed;
af12fa6e
ET
6103}
6104EXPORT_SYMBOL_GPL(napi_hash_del);
6105
3b47d303
ED
6106static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6107{
6108 struct napi_struct *napi;
6109
6110 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6111
6112 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6113 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6114 */
d9f37d01 6115 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
39e6c820
ED
6116 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6117 __napi_schedule_irqoff(napi);
3b47d303
ED
6118
6119 return HRTIMER_NORESTART;
6120}
6121
7c4ec749 6122static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6123{
07d78363
DM
6124 int i;
6125
6312fe77
LR
6126 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6127 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6128 napi->gro_hash[i].count = 0;
6129 }
7c4ec749
DM
6130 napi->gro_bitmask = 0;
6131}
6132
6133void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6134 int (*poll)(struct napi_struct *, int), int weight)
6135{
6136 INIT_LIST_HEAD(&napi->poll_list);
6137 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6138 napi->timer.function = napi_watchdog;
6139 init_gro_hash(napi);
5d38a079 6140 napi->skb = NULL;
d565b0a1 6141 napi->poll = poll;
82dc3c63
ED
6142 if (weight > NAPI_POLL_WEIGHT)
6143 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6144 weight, dev->name);
d565b0a1
HX
6145 napi->weight = weight;
6146 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 6147 napi->dev = dev;
5d38a079 6148#ifdef CONFIG_NETPOLL
d565b0a1
HX
6149 napi->poll_owner = -1;
6150#endif
6151 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 6152 napi_hash_add(napi);
d565b0a1
HX
6153}
6154EXPORT_SYMBOL(netif_napi_add);
6155
3b47d303
ED
6156void napi_disable(struct napi_struct *n)
6157{
6158 might_sleep();
6159 set_bit(NAPI_STATE_DISABLE, &n->state);
6160
6161 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6162 msleep(1);
2d8bff12
NH
6163 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6164 msleep(1);
3b47d303
ED
6165
6166 hrtimer_cancel(&n->timer);
6167
6168 clear_bit(NAPI_STATE_DISABLE, &n->state);
6169}
6170EXPORT_SYMBOL(napi_disable);
6171
07d78363 6172static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6173{
07d78363 6174 int i;
d4546c25 6175
07d78363
DM
6176 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6177 struct sk_buff *skb, *n;
6178
6312fe77 6179 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6180 kfree_skb(skb);
6312fe77 6181 napi->gro_hash[i].count = 0;
07d78363 6182 }
d4546c25
DM
6183}
6184
93d05d4a 6185/* Must be called in process context */
d565b0a1
HX
6186void netif_napi_del(struct napi_struct *napi)
6187{
93d05d4a
ED
6188 might_sleep();
6189 if (napi_hash_del(napi))
6190 synchronize_net();
d7b06636 6191 list_del_init(&napi->dev_list);
76620aaf 6192 napi_free_frags(napi);
d565b0a1 6193
07d78363 6194 flush_gro_hash(napi);
d9f37d01 6195 napi->gro_bitmask = 0;
d565b0a1
HX
6196}
6197EXPORT_SYMBOL(netif_napi_del);
6198
726ce70e
HX
6199static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6200{
6201 void *have;
6202 int work, weight;
6203
6204 list_del_init(&n->poll_list);
6205
6206 have = netpoll_poll_lock(n);
6207
6208 weight = n->weight;
6209
6210 /* This NAPI_STATE_SCHED test is for avoiding a race
6211 * with netpoll's poll_napi(). Only the entity which
6212 * obtains the lock and sees NAPI_STATE_SCHED set will
6213 * actually make the ->poll() call. Therefore we avoid
6214 * accidentally calling ->poll() when NAPI is not scheduled.
6215 */
6216 work = 0;
6217 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6218 work = n->poll(n, weight);
1db19db7 6219 trace_napi_poll(n, work, weight);
726ce70e
HX
6220 }
6221
6222 WARN_ON_ONCE(work > weight);
6223
6224 if (likely(work < weight))
6225 goto out_unlock;
6226
6227 /* Drivers must not modify the NAPI state if they
6228 * consume the entire weight. In such cases this code
6229 * still "owns" the NAPI instance and therefore can
6230 * move the instance around on the list at-will.
6231 */
6232 if (unlikely(napi_disable_pending(n))) {
6233 napi_complete(n);
6234 goto out_unlock;
6235 }
6236
d9f37d01 6237 if (n->gro_bitmask) {
726ce70e
HX
6238 /* flush too old packets
6239 * If HZ < 1000, flush all packets.
6240 */
6241 napi_gro_flush(n, HZ >= 1000);
6242 }
6243
001ce546
HX
6244 /* Some drivers may have called napi_schedule
6245 * prior to exhausting their budget.
6246 */
6247 if (unlikely(!list_empty(&n->poll_list))) {
6248 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6249 n->dev ? n->dev->name : "backlog");
6250 goto out_unlock;
6251 }
6252
726ce70e
HX
6253 list_add_tail(&n->poll_list, repoll);
6254
6255out_unlock:
6256 netpoll_poll_unlock(have);
6257
6258 return work;
6259}
6260
0766f788 6261static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6262{
903ceff7 6263 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6264 unsigned long time_limit = jiffies +
6265 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6266 int budget = netdev_budget;
d75b1ade
ED
6267 LIST_HEAD(list);
6268 LIST_HEAD(repoll);
53fb95d3 6269
1da177e4 6270 local_irq_disable();
d75b1ade
ED
6271 list_splice_init(&sd->poll_list, &list);
6272 local_irq_enable();
1da177e4 6273
ceb8d5bf 6274 for (;;) {
bea3348e 6275 struct napi_struct *n;
1da177e4 6276
ceb8d5bf
HX
6277 if (list_empty(&list)) {
6278 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6279 goto out;
ceb8d5bf
HX
6280 break;
6281 }
6282
6bd373eb
HX
6283 n = list_first_entry(&list, struct napi_struct, poll_list);
6284 budget -= napi_poll(n, &repoll);
6285
d75b1ade 6286 /* If softirq window is exhausted then punt.
24f8b238
SH
6287 * Allow this to run for 2 jiffies since which will allow
6288 * an average latency of 1.5/HZ.
bea3348e 6289 */
ceb8d5bf
HX
6290 if (unlikely(budget <= 0 ||
6291 time_after_eq(jiffies, time_limit))) {
6292 sd->time_squeeze++;
6293 break;
6294 }
1da177e4 6295 }
d75b1ade 6296
d75b1ade
ED
6297 local_irq_disable();
6298
6299 list_splice_tail_init(&sd->poll_list, &list);
6300 list_splice_tail(&repoll, &list);
6301 list_splice(&list, &sd->poll_list);
6302 if (!list_empty(&sd->poll_list))
6303 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6304
e326bed2 6305 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6306out:
6307 __kfree_skb_flush();
1da177e4
LT
6308}
6309
aa9d8560 6310struct netdev_adjacent {
9ff162a8 6311 struct net_device *dev;
5d261913
VF
6312
6313 /* upper master flag, there can only be one master device per list */
9ff162a8 6314 bool master;
5d261913 6315
5d261913
VF
6316 /* counter for the number of times this device was added to us */
6317 u16 ref_nr;
6318
402dae96
VF
6319 /* private field for the users */
6320 void *private;
6321
9ff162a8
JP
6322 struct list_head list;
6323 struct rcu_head rcu;
9ff162a8
JP
6324};
6325
6ea29da1 6326static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6327 struct list_head *adj_list)
9ff162a8 6328{
5d261913 6329 struct netdev_adjacent *adj;
5d261913 6330
2f268f12 6331 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6332 if (adj->dev == adj_dev)
6333 return adj;
9ff162a8
JP
6334 }
6335 return NULL;
6336}
6337
f1170fd4
DA
6338static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6339{
6340 struct net_device *dev = data;
6341
6342 return upper_dev == dev;
6343}
6344
9ff162a8
JP
6345/**
6346 * netdev_has_upper_dev - Check if device is linked to an upper device
6347 * @dev: device
6348 * @upper_dev: upper device to check
6349 *
6350 * Find out if a device is linked to specified upper device and return true
6351 * in case it is. Note that this checks only immediate upper device,
6352 * not through a complete stack of devices. The caller must hold the RTNL lock.
6353 */
6354bool netdev_has_upper_dev(struct net_device *dev,
6355 struct net_device *upper_dev)
6356{
6357 ASSERT_RTNL();
6358
f1170fd4
DA
6359 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6360 upper_dev);
9ff162a8
JP
6361}
6362EXPORT_SYMBOL(netdev_has_upper_dev);
6363
1a3f060c
DA
6364/**
6365 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6366 * @dev: device
6367 * @upper_dev: upper device to check
6368 *
6369 * Find out if a device is linked to specified upper device and return true
6370 * in case it is. Note that this checks the entire upper device chain.
6371 * The caller must hold rcu lock.
6372 */
6373
1a3f060c
DA
6374bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6375 struct net_device *upper_dev)
6376{
6377 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6378 upper_dev);
6379}
6380EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6381
9ff162a8
JP
6382/**
6383 * netdev_has_any_upper_dev - Check if device is linked to some device
6384 * @dev: device
6385 *
6386 * Find out if a device is linked to an upper device and return true in case
6387 * it is. The caller must hold the RTNL lock.
6388 */
25cc72a3 6389bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6390{
6391 ASSERT_RTNL();
6392
f1170fd4 6393 return !list_empty(&dev->adj_list.upper);
9ff162a8 6394}
25cc72a3 6395EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6396
6397/**
6398 * netdev_master_upper_dev_get - Get master upper device
6399 * @dev: device
6400 *
6401 * Find a master upper device and return pointer to it or NULL in case
6402 * it's not there. The caller must hold the RTNL lock.
6403 */
6404struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6405{
aa9d8560 6406 struct netdev_adjacent *upper;
9ff162a8
JP
6407
6408 ASSERT_RTNL();
6409
2f268f12 6410 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6411 return NULL;
6412
2f268f12 6413 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6414 struct netdev_adjacent, list);
9ff162a8
JP
6415 if (likely(upper->master))
6416 return upper->dev;
6417 return NULL;
6418}
6419EXPORT_SYMBOL(netdev_master_upper_dev_get);
6420
0f524a80
DA
6421/**
6422 * netdev_has_any_lower_dev - Check if device is linked to some device
6423 * @dev: device
6424 *
6425 * Find out if a device is linked to a lower device and return true in case
6426 * it is. The caller must hold the RTNL lock.
6427 */
6428static bool netdev_has_any_lower_dev(struct net_device *dev)
6429{
6430 ASSERT_RTNL();
6431
6432 return !list_empty(&dev->adj_list.lower);
6433}
6434
b6ccba4c
VF
6435void *netdev_adjacent_get_private(struct list_head *adj_list)
6436{
6437 struct netdev_adjacent *adj;
6438
6439 adj = list_entry(adj_list, struct netdev_adjacent, list);
6440
6441 return adj->private;
6442}
6443EXPORT_SYMBOL(netdev_adjacent_get_private);
6444
44a40855
VY
6445/**
6446 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6447 * @dev: device
6448 * @iter: list_head ** of the current position
6449 *
6450 * Gets the next device from the dev's upper list, starting from iter
6451 * position. The caller must hold RCU read lock.
6452 */
6453struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6454 struct list_head **iter)
6455{
6456 struct netdev_adjacent *upper;
6457
6458 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6459
6460 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6461
6462 if (&upper->list == &dev->adj_list.upper)
6463 return NULL;
6464
6465 *iter = &upper->list;
6466
6467 return upper->dev;
6468}
6469EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6470
1a3f060c
DA
6471static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6472 struct list_head **iter)
6473{
6474 struct netdev_adjacent *upper;
6475
6476 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6477
6478 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6479
6480 if (&upper->list == &dev->adj_list.upper)
6481 return NULL;
6482
6483 *iter = &upper->list;
6484
6485 return upper->dev;
6486}
6487
6488int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6489 int (*fn)(struct net_device *dev,
6490 void *data),
6491 void *data)
6492{
6493 struct net_device *udev;
6494 struct list_head *iter;
6495 int ret;
6496
6497 for (iter = &dev->adj_list.upper,
6498 udev = netdev_next_upper_dev_rcu(dev, &iter);
6499 udev;
6500 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6501 /* first is the upper device itself */
6502 ret = fn(udev, data);
6503 if (ret)
6504 return ret;
6505
6506 /* then look at all of its upper devices */
6507 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6508 if (ret)
6509 return ret;
6510 }
6511
6512 return 0;
6513}
6514EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6515
31088a11
VF
6516/**
6517 * netdev_lower_get_next_private - Get the next ->private from the
6518 * lower neighbour list
6519 * @dev: device
6520 * @iter: list_head ** of the current position
6521 *
6522 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6523 * list, starting from iter position. The caller must hold either hold the
6524 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 6525 * list will remain unchanged.
31088a11
VF
6526 */
6527void *netdev_lower_get_next_private(struct net_device *dev,
6528 struct list_head **iter)
6529{
6530 struct netdev_adjacent *lower;
6531
6532 lower = list_entry(*iter, struct netdev_adjacent, list);
6533
6534 if (&lower->list == &dev->adj_list.lower)
6535 return NULL;
6536
6859e7df 6537 *iter = lower->list.next;
31088a11
VF
6538
6539 return lower->private;
6540}
6541EXPORT_SYMBOL(netdev_lower_get_next_private);
6542
6543/**
6544 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6545 * lower neighbour list, RCU
6546 * variant
6547 * @dev: device
6548 * @iter: list_head ** of the current position
6549 *
6550 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6551 * list, starting from iter position. The caller must hold RCU read lock.
6552 */
6553void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6554 struct list_head **iter)
6555{
6556 struct netdev_adjacent *lower;
6557
6558 WARN_ON_ONCE(!rcu_read_lock_held());
6559
6560 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6561
6562 if (&lower->list == &dev->adj_list.lower)
6563 return NULL;
6564
6859e7df 6565 *iter = &lower->list;
31088a11
VF
6566
6567 return lower->private;
6568}
6569EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6570
4085ebe8
VY
6571/**
6572 * netdev_lower_get_next - Get the next device from the lower neighbour
6573 * list
6574 * @dev: device
6575 * @iter: list_head ** of the current position
6576 *
6577 * Gets the next netdev_adjacent from the dev's lower neighbour
6578 * list, starting from iter position. The caller must hold RTNL lock or
6579 * its own locking that guarantees that the neighbour lower
b469139e 6580 * list will remain unchanged.
4085ebe8
VY
6581 */
6582void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6583{
6584 struct netdev_adjacent *lower;
6585
cfdd28be 6586 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
6587
6588 if (&lower->list == &dev->adj_list.lower)
6589 return NULL;
6590
cfdd28be 6591 *iter = lower->list.next;
4085ebe8
VY
6592
6593 return lower->dev;
6594}
6595EXPORT_SYMBOL(netdev_lower_get_next);
6596
1a3f060c
DA
6597static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6598 struct list_head **iter)
6599{
6600 struct netdev_adjacent *lower;
6601
46b5ab1a 6602 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
6603
6604 if (&lower->list == &dev->adj_list.lower)
6605 return NULL;
6606
46b5ab1a 6607 *iter = &lower->list;
1a3f060c
DA
6608
6609 return lower->dev;
6610}
6611
6612int netdev_walk_all_lower_dev(struct net_device *dev,
6613 int (*fn)(struct net_device *dev,
6614 void *data),
6615 void *data)
6616{
6617 struct net_device *ldev;
6618 struct list_head *iter;
6619 int ret;
6620
6621 for (iter = &dev->adj_list.lower,
6622 ldev = netdev_next_lower_dev(dev, &iter);
6623 ldev;
6624 ldev = netdev_next_lower_dev(dev, &iter)) {
6625 /* first is the lower device itself */
6626 ret = fn(ldev, data);
6627 if (ret)
6628 return ret;
6629
6630 /* then look at all of its lower devices */
6631 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6632 if (ret)
6633 return ret;
6634 }
6635
6636 return 0;
6637}
6638EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6639
1a3f060c
DA
6640static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6641 struct list_head **iter)
6642{
6643 struct netdev_adjacent *lower;
6644
6645 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6646 if (&lower->list == &dev->adj_list.lower)
6647 return NULL;
6648
6649 *iter = &lower->list;
6650
6651 return lower->dev;
6652}
6653
6654int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6655 int (*fn)(struct net_device *dev,
6656 void *data),
6657 void *data)
6658{
6659 struct net_device *ldev;
6660 struct list_head *iter;
6661 int ret;
6662
6663 for (iter = &dev->adj_list.lower,
6664 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6665 ldev;
6666 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6667 /* first is the lower device itself */
6668 ret = fn(ldev, data);
6669 if (ret)
6670 return ret;
6671
6672 /* then look at all of its lower devices */
6673 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6674 if (ret)
6675 return ret;
6676 }
6677
6678 return 0;
6679}
6680EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6681
e001bfad 6682/**
6683 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6684 * lower neighbour list, RCU
6685 * variant
6686 * @dev: device
6687 *
6688 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6689 * list. The caller must hold RCU read lock.
6690 */
6691void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6692{
6693 struct netdev_adjacent *lower;
6694
6695 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6696 struct netdev_adjacent, list);
6697 if (lower)
6698 return lower->private;
6699 return NULL;
6700}
6701EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6702
9ff162a8
JP
6703/**
6704 * netdev_master_upper_dev_get_rcu - Get master upper device
6705 * @dev: device
6706 *
6707 * Find a master upper device and return pointer to it or NULL in case
6708 * it's not there. The caller must hold the RCU read lock.
6709 */
6710struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6711{
aa9d8560 6712 struct netdev_adjacent *upper;
9ff162a8 6713
2f268f12 6714 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6715 struct netdev_adjacent, list);
9ff162a8
JP
6716 if (upper && likely(upper->master))
6717 return upper->dev;
6718 return NULL;
6719}
6720EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6721
0a59f3a9 6722static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6723 struct net_device *adj_dev,
6724 struct list_head *dev_list)
6725{
6726 char linkname[IFNAMSIZ+7];
f4563a75 6727
3ee32707
VF
6728 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6729 "upper_%s" : "lower_%s", adj_dev->name);
6730 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6731 linkname);
6732}
0a59f3a9 6733static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6734 char *name,
6735 struct list_head *dev_list)
6736{
6737 char linkname[IFNAMSIZ+7];
f4563a75 6738
3ee32707
VF
6739 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6740 "upper_%s" : "lower_%s", name);
6741 sysfs_remove_link(&(dev->dev.kobj), linkname);
6742}
6743
7ce64c79
AF
6744static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6745 struct net_device *adj_dev,
6746 struct list_head *dev_list)
6747{
6748 return (dev_list == &dev->adj_list.upper ||
6749 dev_list == &dev->adj_list.lower) &&
6750 net_eq(dev_net(dev), dev_net(adj_dev));
6751}
3ee32707 6752
5d261913
VF
6753static int __netdev_adjacent_dev_insert(struct net_device *dev,
6754 struct net_device *adj_dev,
7863c054 6755 struct list_head *dev_list,
402dae96 6756 void *private, bool master)
5d261913
VF
6757{
6758 struct netdev_adjacent *adj;
842d67a7 6759 int ret;
5d261913 6760
6ea29da1 6761 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6762
6763 if (adj) {
790510d9 6764 adj->ref_nr += 1;
67b62f98
DA
6765 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6766 dev->name, adj_dev->name, adj->ref_nr);
6767
5d261913
VF
6768 return 0;
6769 }
6770
6771 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6772 if (!adj)
6773 return -ENOMEM;
6774
6775 adj->dev = adj_dev;
6776 adj->master = master;
790510d9 6777 adj->ref_nr = 1;
402dae96 6778 adj->private = private;
5d261913 6779 dev_hold(adj_dev);
2f268f12 6780
67b62f98
DA
6781 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6782 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6783
7ce64c79 6784 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6785 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6786 if (ret)
6787 goto free_adj;
6788 }
6789
7863c054 6790 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6791 if (master) {
6792 ret = sysfs_create_link(&(dev->dev.kobj),
6793 &(adj_dev->dev.kobj), "master");
6794 if (ret)
5831d66e 6795 goto remove_symlinks;
842d67a7 6796
7863c054 6797 list_add_rcu(&adj->list, dev_list);
842d67a7 6798 } else {
7863c054 6799 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6800 }
5d261913
VF
6801
6802 return 0;
842d67a7 6803
5831d66e 6804remove_symlinks:
7ce64c79 6805 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6806 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6807free_adj:
6808 kfree(adj);
974daef7 6809 dev_put(adj_dev);
842d67a7
VF
6810
6811 return ret;
5d261913
VF
6812}
6813
1d143d9f 6814static void __netdev_adjacent_dev_remove(struct net_device *dev,
6815 struct net_device *adj_dev,
93409033 6816 u16 ref_nr,
1d143d9f 6817 struct list_head *dev_list)
5d261913
VF
6818{
6819 struct netdev_adjacent *adj;
6820
67b62f98
DA
6821 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6822 dev->name, adj_dev->name, ref_nr);
6823
6ea29da1 6824 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6825
2f268f12 6826 if (!adj) {
67b62f98 6827 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6828 dev->name, adj_dev->name);
67b62f98
DA
6829 WARN_ON(1);
6830 return;
2f268f12 6831 }
5d261913 6832
93409033 6833 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6834 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6835 dev->name, adj_dev->name, ref_nr,
6836 adj->ref_nr - ref_nr);
93409033 6837 adj->ref_nr -= ref_nr;
5d261913
VF
6838 return;
6839 }
6840
842d67a7
VF
6841 if (adj->master)
6842 sysfs_remove_link(&(dev->dev.kobj), "master");
6843
7ce64c79 6844 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6845 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6846
5d261913 6847 list_del_rcu(&adj->list);
67b62f98 6848 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6849 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6850 dev_put(adj_dev);
6851 kfree_rcu(adj, rcu);
6852}
6853
1d143d9f 6854static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6855 struct net_device *upper_dev,
6856 struct list_head *up_list,
6857 struct list_head *down_list,
6858 void *private, bool master)
5d261913
VF
6859{
6860 int ret;
6861
790510d9 6862 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6863 private, master);
5d261913
VF
6864 if (ret)
6865 return ret;
6866
790510d9 6867 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 6868 private, false);
5d261913 6869 if (ret) {
790510d9 6870 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
6871 return ret;
6872 }
6873
6874 return 0;
6875}
6876
1d143d9f 6877static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6878 struct net_device *upper_dev,
93409033 6879 u16 ref_nr,
1d143d9f 6880 struct list_head *up_list,
6881 struct list_head *down_list)
5d261913 6882{
93409033
AC
6883 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6884 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
6885}
6886
1d143d9f 6887static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6888 struct net_device *upper_dev,
6889 void *private, bool master)
2f268f12 6890{
f1170fd4
DA
6891 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6892 &dev->adj_list.upper,
6893 &upper_dev->adj_list.lower,
6894 private, master);
5d261913
VF
6895}
6896
1d143d9f 6897static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6898 struct net_device *upper_dev)
2f268f12 6899{
93409033 6900 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
6901 &dev->adj_list.upper,
6902 &upper_dev->adj_list.lower);
6903}
5d261913 6904
9ff162a8 6905static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 6906 struct net_device *upper_dev, bool master,
42ab19ee
DA
6907 void *upper_priv, void *upper_info,
6908 struct netlink_ext_ack *extack)
9ff162a8 6909{
51d0c047
DA
6910 struct netdev_notifier_changeupper_info changeupper_info = {
6911 .info = {
6912 .dev = dev,
42ab19ee 6913 .extack = extack,
51d0c047
DA
6914 },
6915 .upper_dev = upper_dev,
6916 .master = master,
6917 .linking = true,
6918 .upper_info = upper_info,
6919 };
50d629e7 6920 struct net_device *master_dev;
5d261913 6921 int ret = 0;
9ff162a8
JP
6922
6923 ASSERT_RTNL();
6924
6925 if (dev == upper_dev)
6926 return -EBUSY;
6927
6928 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 6929 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
6930 return -EBUSY;
6931
50d629e7
MM
6932 if (!master) {
6933 if (netdev_has_upper_dev(dev, upper_dev))
6934 return -EEXIST;
6935 } else {
6936 master_dev = netdev_master_upper_dev_get(dev);
6937 if (master_dev)
6938 return master_dev == upper_dev ? -EEXIST : -EBUSY;
6939 }
9ff162a8 6940
51d0c047 6941 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
6942 &changeupper_info.info);
6943 ret = notifier_to_errno(ret);
6944 if (ret)
6945 return ret;
6946
6dffb044 6947 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 6948 master);
5d261913
VF
6949 if (ret)
6950 return ret;
9ff162a8 6951
51d0c047 6952 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
6953 &changeupper_info.info);
6954 ret = notifier_to_errno(ret);
6955 if (ret)
f1170fd4 6956 goto rollback;
b03804e7 6957
9ff162a8 6958 return 0;
5d261913 6959
f1170fd4 6960rollback:
2f268f12 6961 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
6962
6963 return ret;
9ff162a8
JP
6964}
6965
6966/**
6967 * netdev_upper_dev_link - Add a link to the upper device
6968 * @dev: device
6969 * @upper_dev: new upper device
7a006d59 6970 * @extack: netlink extended ack
9ff162a8
JP
6971 *
6972 * Adds a link to device which is upper to this one. The caller must hold
6973 * the RTNL lock. On a failure a negative errno code is returned.
6974 * On success the reference counts are adjusted and the function
6975 * returns zero.
6976 */
6977int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
6978 struct net_device *upper_dev,
6979 struct netlink_ext_ack *extack)
9ff162a8 6980{
42ab19ee
DA
6981 return __netdev_upper_dev_link(dev, upper_dev, false,
6982 NULL, NULL, extack);
9ff162a8
JP
6983}
6984EXPORT_SYMBOL(netdev_upper_dev_link);
6985
6986/**
6987 * netdev_master_upper_dev_link - Add a master link to the upper device
6988 * @dev: device
6989 * @upper_dev: new upper device
6dffb044 6990 * @upper_priv: upper device private
29bf24af 6991 * @upper_info: upper info to be passed down via notifier
7a006d59 6992 * @extack: netlink extended ack
9ff162a8
JP
6993 *
6994 * Adds a link to device which is upper to this one. In this case, only
6995 * one master upper device can be linked, although other non-master devices
6996 * might be linked as well. The caller must hold the RTNL lock.
6997 * On a failure a negative errno code is returned. On success the reference
6998 * counts are adjusted and the function returns zero.
6999 */
7000int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7001 struct net_device *upper_dev,
42ab19ee
DA
7002 void *upper_priv, void *upper_info,
7003 struct netlink_ext_ack *extack)
9ff162a8 7004{
29bf24af 7005 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7006 upper_priv, upper_info, extack);
9ff162a8
JP
7007}
7008EXPORT_SYMBOL(netdev_master_upper_dev_link);
7009
7010/**
7011 * netdev_upper_dev_unlink - Removes a link to upper device
7012 * @dev: device
7013 * @upper_dev: new upper device
7014 *
7015 * Removes a link to device which is upper to this one. The caller must hold
7016 * the RTNL lock.
7017 */
7018void netdev_upper_dev_unlink(struct net_device *dev,
7019 struct net_device *upper_dev)
7020{
51d0c047
DA
7021 struct netdev_notifier_changeupper_info changeupper_info = {
7022 .info = {
7023 .dev = dev,
7024 },
7025 .upper_dev = upper_dev,
7026 .linking = false,
7027 };
f4563a75 7028
9ff162a8
JP
7029 ASSERT_RTNL();
7030
0e4ead9d 7031 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7032
51d0c047 7033 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7034 &changeupper_info.info);
7035
2f268f12 7036 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7037
51d0c047 7038 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7039 &changeupper_info.info);
9ff162a8
JP
7040}
7041EXPORT_SYMBOL(netdev_upper_dev_unlink);
7042
61bd3857
MS
7043/**
7044 * netdev_bonding_info_change - Dispatch event about slave change
7045 * @dev: device
4a26e453 7046 * @bonding_info: info to dispatch
61bd3857
MS
7047 *
7048 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7049 * The caller must hold the RTNL lock.
7050 */
7051void netdev_bonding_info_change(struct net_device *dev,
7052 struct netdev_bonding_info *bonding_info)
7053{
51d0c047
DA
7054 struct netdev_notifier_bonding_info info = {
7055 .info.dev = dev,
7056 };
61bd3857
MS
7057
7058 memcpy(&info.bonding_info, bonding_info,
7059 sizeof(struct netdev_bonding_info));
51d0c047 7060 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7061 &info.info);
7062}
7063EXPORT_SYMBOL(netdev_bonding_info_change);
7064
2ce1ee17 7065static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7066{
7067 struct netdev_adjacent *iter;
7068
7069 struct net *net = dev_net(dev);
7070
7071 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7072 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7073 continue;
7074 netdev_adjacent_sysfs_add(iter->dev, dev,
7075 &iter->dev->adj_list.lower);
7076 netdev_adjacent_sysfs_add(dev, iter->dev,
7077 &dev->adj_list.upper);
7078 }
7079
7080 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7081 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7082 continue;
7083 netdev_adjacent_sysfs_add(iter->dev, dev,
7084 &iter->dev->adj_list.upper);
7085 netdev_adjacent_sysfs_add(dev, iter->dev,
7086 &dev->adj_list.lower);
7087 }
7088}
7089
2ce1ee17 7090static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
7091{
7092 struct netdev_adjacent *iter;
7093
7094 struct net *net = dev_net(dev);
7095
7096 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7097 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7098 continue;
7099 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7100 &iter->dev->adj_list.lower);
7101 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7102 &dev->adj_list.upper);
7103 }
7104
7105 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7106 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7107 continue;
7108 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7109 &iter->dev->adj_list.upper);
7110 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7111 &dev->adj_list.lower);
7112 }
7113}
7114
5bb025fa 7115void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 7116{
5bb025fa 7117 struct netdev_adjacent *iter;
402dae96 7118
4c75431a
AF
7119 struct net *net = dev_net(dev);
7120
5bb025fa 7121 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7122 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7123 continue;
5bb025fa
VF
7124 netdev_adjacent_sysfs_del(iter->dev, oldname,
7125 &iter->dev->adj_list.lower);
7126 netdev_adjacent_sysfs_add(iter->dev, dev,
7127 &iter->dev->adj_list.lower);
7128 }
402dae96 7129
5bb025fa 7130 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7131 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7132 continue;
5bb025fa
VF
7133 netdev_adjacent_sysfs_del(iter->dev, oldname,
7134 &iter->dev->adj_list.upper);
7135 netdev_adjacent_sysfs_add(iter->dev, dev,
7136 &iter->dev->adj_list.upper);
7137 }
402dae96 7138}
402dae96
VF
7139
7140void *netdev_lower_dev_get_private(struct net_device *dev,
7141 struct net_device *lower_dev)
7142{
7143 struct netdev_adjacent *lower;
7144
7145 if (!lower_dev)
7146 return NULL;
6ea29da1 7147 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
7148 if (!lower)
7149 return NULL;
7150
7151 return lower->private;
7152}
7153EXPORT_SYMBOL(netdev_lower_dev_get_private);
7154
4085ebe8 7155
952fcfd0 7156int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
7157{
7158 struct net_device *lower = NULL;
7159 struct list_head *iter;
7160 int max_nest = -1;
7161 int nest;
7162
7163 ASSERT_RTNL();
7164
7165 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 7166 nest = dev_get_nest_level(lower);
4085ebe8
VY
7167 if (max_nest < nest)
7168 max_nest = nest;
7169 }
7170
952fcfd0 7171 return max_nest + 1;
4085ebe8
VY
7172}
7173EXPORT_SYMBOL(dev_get_nest_level);
7174
04d48266
JP
7175/**
7176 * netdev_lower_change - Dispatch event about lower device state change
7177 * @lower_dev: device
7178 * @lower_state_info: state to dispatch
7179 *
7180 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7181 * The caller must hold the RTNL lock.
7182 */
7183void netdev_lower_state_changed(struct net_device *lower_dev,
7184 void *lower_state_info)
7185{
51d0c047
DA
7186 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7187 .info.dev = lower_dev,
7188 };
04d48266
JP
7189
7190 ASSERT_RTNL();
7191 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 7192 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
7193 &changelowerstate_info.info);
7194}
7195EXPORT_SYMBOL(netdev_lower_state_changed);
7196
b6c40d68
PM
7197static void dev_change_rx_flags(struct net_device *dev, int flags)
7198{
d314774c
SH
7199 const struct net_device_ops *ops = dev->netdev_ops;
7200
d2615bf4 7201 if (ops->ndo_change_rx_flags)
d314774c 7202 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
7203}
7204
991fb3f7 7205static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 7206{
b536db93 7207 unsigned int old_flags = dev->flags;
d04a48b0
EB
7208 kuid_t uid;
7209 kgid_t gid;
1da177e4 7210
24023451
PM
7211 ASSERT_RTNL();
7212
dad9b335
WC
7213 dev->flags |= IFF_PROMISC;
7214 dev->promiscuity += inc;
7215 if (dev->promiscuity == 0) {
7216 /*
7217 * Avoid overflow.
7218 * If inc causes overflow, untouch promisc and return error.
7219 */
7220 if (inc < 0)
7221 dev->flags &= ~IFF_PROMISC;
7222 else {
7223 dev->promiscuity -= inc;
7b6cd1ce
JP
7224 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7225 dev->name);
dad9b335
WC
7226 return -EOVERFLOW;
7227 }
7228 }
52609c0b 7229 if (dev->flags != old_flags) {
7b6cd1ce
JP
7230 pr_info("device %s %s promiscuous mode\n",
7231 dev->name,
7232 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
7233 if (audit_enabled) {
7234 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
7235 audit_log(audit_context(), GFP_ATOMIC,
7236 AUDIT_ANOM_PROMISCUOUS,
7237 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7238 dev->name, (dev->flags & IFF_PROMISC),
7239 (old_flags & IFF_PROMISC),
7240 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7241 from_kuid(&init_user_ns, uid),
7242 from_kgid(&init_user_ns, gid),
7243 audit_get_sessionid(current));
8192b0c4 7244 }
24023451 7245
b6c40d68 7246 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 7247 }
991fb3f7
ND
7248 if (notify)
7249 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 7250 return 0;
1da177e4
LT
7251}
7252
4417da66
PM
7253/**
7254 * dev_set_promiscuity - update promiscuity count on a device
7255 * @dev: device
7256 * @inc: modifier
7257 *
7258 * Add or remove promiscuity from a device. While the count in the device
7259 * remains above zero the interface remains promiscuous. Once it hits zero
7260 * the device reverts back to normal filtering operation. A negative inc
7261 * value is used to drop promiscuity on the device.
dad9b335 7262 * Return 0 if successful or a negative errno code on error.
4417da66 7263 */
dad9b335 7264int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 7265{
b536db93 7266 unsigned int old_flags = dev->flags;
dad9b335 7267 int err;
4417da66 7268
991fb3f7 7269 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 7270 if (err < 0)
dad9b335 7271 return err;
4417da66
PM
7272 if (dev->flags != old_flags)
7273 dev_set_rx_mode(dev);
dad9b335 7274 return err;
4417da66 7275}
d1b19dff 7276EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 7277
991fb3f7 7278static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 7279{
991fb3f7 7280 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 7281
24023451
PM
7282 ASSERT_RTNL();
7283
1da177e4 7284 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
7285 dev->allmulti += inc;
7286 if (dev->allmulti == 0) {
7287 /*
7288 * Avoid overflow.
7289 * If inc causes overflow, untouch allmulti and return error.
7290 */
7291 if (inc < 0)
7292 dev->flags &= ~IFF_ALLMULTI;
7293 else {
7294 dev->allmulti -= inc;
7b6cd1ce
JP
7295 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7296 dev->name);
dad9b335
WC
7297 return -EOVERFLOW;
7298 }
7299 }
24023451 7300 if (dev->flags ^ old_flags) {
b6c40d68 7301 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 7302 dev_set_rx_mode(dev);
991fb3f7
ND
7303 if (notify)
7304 __dev_notify_flags(dev, old_flags,
7305 dev->gflags ^ old_gflags);
24023451 7306 }
dad9b335 7307 return 0;
4417da66 7308}
991fb3f7
ND
7309
7310/**
7311 * dev_set_allmulti - update allmulti count on a device
7312 * @dev: device
7313 * @inc: modifier
7314 *
7315 * Add or remove reception of all multicast frames to a device. While the
7316 * count in the device remains above zero the interface remains listening
7317 * to all interfaces. Once it hits zero the device reverts back to normal
7318 * filtering operation. A negative @inc value is used to drop the counter
7319 * when releasing a resource needing all multicasts.
7320 * Return 0 if successful or a negative errno code on error.
7321 */
7322
7323int dev_set_allmulti(struct net_device *dev, int inc)
7324{
7325 return __dev_set_allmulti(dev, inc, true);
7326}
d1b19dff 7327EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
7328
7329/*
7330 * Upload unicast and multicast address lists to device and
7331 * configure RX filtering. When the device doesn't support unicast
53ccaae1 7332 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
7333 * are present.
7334 */
7335void __dev_set_rx_mode(struct net_device *dev)
7336{
d314774c
SH
7337 const struct net_device_ops *ops = dev->netdev_ops;
7338
4417da66
PM
7339 /* dev_open will call this function so the list will stay sane. */
7340 if (!(dev->flags&IFF_UP))
7341 return;
7342
7343 if (!netif_device_present(dev))
40b77c94 7344 return;
4417da66 7345
01789349 7346 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
7347 /* Unicast addresses changes may only happen under the rtnl,
7348 * therefore calling __dev_set_promiscuity here is safe.
7349 */
32e7bfc4 7350 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 7351 __dev_set_promiscuity(dev, 1, false);
2d348d1f 7352 dev->uc_promisc = true;
32e7bfc4 7353 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 7354 __dev_set_promiscuity(dev, -1, false);
2d348d1f 7355 dev->uc_promisc = false;
4417da66 7356 }
4417da66 7357 }
01789349
JP
7358
7359 if (ops->ndo_set_rx_mode)
7360 ops->ndo_set_rx_mode(dev);
4417da66
PM
7361}
7362
7363void dev_set_rx_mode(struct net_device *dev)
7364{
b9e40857 7365 netif_addr_lock_bh(dev);
4417da66 7366 __dev_set_rx_mode(dev);
b9e40857 7367 netif_addr_unlock_bh(dev);
1da177e4
LT
7368}
7369
f0db275a
SH
7370/**
7371 * dev_get_flags - get flags reported to userspace
7372 * @dev: device
7373 *
7374 * Get the combination of flag bits exported through APIs to userspace.
7375 */
95c96174 7376unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 7377{
95c96174 7378 unsigned int flags;
1da177e4
LT
7379
7380 flags = (dev->flags & ~(IFF_PROMISC |
7381 IFF_ALLMULTI |
b00055aa
SR
7382 IFF_RUNNING |
7383 IFF_LOWER_UP |
7384 IFF_DORMANT)) |
1da177e4
LT
7385 (dev->gflags & (IFF_PROMISC |
7386 IFF_ALLMULTI));
7387
b00055aa
SR
7388 if (netif_running(dev)) {
7389 if (netif_oper_up(dev))
7390 flags |= IFF_RUNNING;
7391 if (netif_carrier_ok(dev))
7392 flags |= IFF_LOWER_UP;
7393 if (netif_dormant(dev))
7394 flags |= IFF_DORMANT;
7395 }
1da177e4
LT
7396
7397 return flags;
7398}
d1b19dff 7399EXPORT_SYMBOL(dev_get_flags);
1da177e4 7400
bd380811 7401int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 7402{
b536db93 7403 unsigned int old_flags = dev->flags;
bd380811 7404 int ret;
1da177e4 7405
24023451
PM
7406 ASSERT_RTNL();
7407
1da177e4
LT
7408 /*
7409 * Set the flags on our device.
7410 */
7411
7412 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7413 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7414 IFF_AUTOMEDIA)) |
7415 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7416 IFF_ALLMULTI));
7417
7418 /*
7419 * Load in the correct multicast list now the flags have changed.
7420 */
7421
b6c40d68
PM
7422 if ((old_flags ^ flags) & IFF_MULTICAST)
7423 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 7424
4417da66 7425 dev_set_rx_mode(dev);
1da177e4
LT
7426
7427 /*
7428 * Have we downed the interface. We handle IFF_UP ourselves
7429 * according to user attempts to set it, rather than blindly
7430 * setting it.
7431 */
7432
7433 ret = 0;
7051b88a 7434 if ((old_flags ^ flags) & IFF_UP) {
7435 if (old_flags & IFF_UP)
7436 __dev_close(dev);
7437 else
7438 ret = __dev_open(dev);
7439 }
1da177e4 7440
1da177e4 7441 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 7442 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 7443 unsigned int old_flags = dev->flags;
d1b19dff 7444
1da177e4 7445 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
7446
7447 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7448 if (dev->flags != old_flags)
7449 dev_set_rx_mode(dev);
1da177e4
LT
7450 }
7451
7452 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 7453 * is important. Some (broken) drivers set IFF_PROMISC, when
7454 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
7455 */
7456 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
7457 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7458
1da177e4 7459 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 7460 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
7461 }
7462
bd380811
PM
7463 return ret;
7464}
7465
a528c219
ND
7466void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7467 unsigned int gchanges)
bd380811
PM
7468{
7469 unsigned int changes = dev->flags ^ old_flags;
7470
a528c219 7471 if (gchanges)
7f294054 7472 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 7473
bd380811
PM
7474 if (changes & IFF_UP) {
7475 if (dev->flags & IFF_UP)
7476 call_netdevice_notifiers(NETDEV_UP, dev);
7477 else
7478 call_netdevice_notifiers(NETDEV_DOWN, dev);
7479 }
7480
7481 if (dev->flags & IFF_UP &&
be9efd36 7482 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
7483 struct netdev_notifier_change_info change_info = {
7484 .info = {
7485 .dev = dev,
7486 },
7487 .flags_changed = changes,
7488 };
be9efd36 7489
51d0c047 7490 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 7491 }
bd380811
PM
7492}
7493
7494/**
7495 * dev_change_flags - change device settings
7496 * @dev: device
7497 * @flags: device state flags
7498 *
7499 * Change settings on device based state flags. The flags are
7500 * in the userspace exported format.
7501 */
b536db93 7502int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 7503{
b536db93 7504 int ret;
991fb3f7 7505 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
7506
7507 ret = __dev_change_flags(dev, flags);
7508 if (ret < 0)
7509 return ret;
7510
991fb3f7 7511 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 7512 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
7513 return ret;
7514}
d1b19dff 7515EXPORT_SYMBOL(dev_change_flags);
1da177e4 7516
f51048c3 7517int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
7518{
7519 const struct net_device_ops *ops = dev->netdev_ops;
7520
7521 if (ops->ndo_change_mtu)
7522 return ops->ndo_change_mtu(dev, new_mtu);
7523
7524 dev->mtu = new_mtu;
7525 return 0;
7526}
f51048c3 7527EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 7528
f0db275a 7529/**
7a4c53be 7530 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
7531 * @dev: device
7532 * @new_mtu: new transfer unit
7a4c53be 7533 * @extack: netlink extended ack
f0db275a
SH
7534 *
7535 * Change the maximum transfer size of the network device.
7536 */
7a4c53be
SH
7537int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7538 struct netlink_ext_ack *extack)
1da177e4 7539{
2315dc91 7540 int err, orig_mtu;
1da177e4
LT
7541
7542 if (new_mtu == dev->mtu)
7543 return 0;
7544
61e84623
JW
7545 /* MTU must be positive, and in range */
7546 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7a4c53be 7547 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
1da177e4 7548 return -EINVAL;
61e84623
JW
7549 }
7550
7551 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7a4c53be 7552 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
61e84623
JW
7553 return -EINVAL;
7554 }
1da177e4
LT
7555
7556 if (!netif_device_present(dev))
7557 return -ENODEV;
7558
1d486bfb
VF
7559 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7560 err = notifier_to_errno(err);
7561 if (err)
7562 return err;
d314774c 7563
2315dc91
VF
7564 orig_mtu = dev->mtu;
7565 err = __dev_set_mtu(dev, new_mtu);
d314774c 7566
2315dc91
VF
7567 if (!err) {
7568 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7569 err = notifier_to_errno(err);
7570 if (err) {
7571 /* setting mtu back and notifying everyone again,
7572 * so that they have a chance to revert changes.
7573 */
7574 __dev_set_mtu(dev, orig_mtu);
7575 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7576 }
7577 }
1da177e4
LT
7578 return err;
7579}
7a4c53be
SH
7580
7581int dev_set_mtu(struct net_device *dev, int new_mtu)
7582{
7583 struct netlink_ext_ack extack;
7584 int err;
7585
7586 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7587 if (err)
7588 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7589 return err;
7590}
d1b19dff 7591EXPORT_SYMBOL(dev_set_mtu);
1da177e4 7592
6a643ddb
CW
7593/**
7594 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7595 * @dev: device
7596 * @new_len: new tx queue length
7597 */
7598int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7599{
7600 unsigned int orig_len = dev->tx_queue_len;
7601 int res;
7602
7603 if (new_len != (unsigned int)new_len)
7604 return -ERANGE;
7605
7606 if (new_len != orig_len) {
7607 dev->tx_queue_len = new_len;
7608 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7609 res = notifier_to_errno(res);
7effaf06
TT
7610 if (res)
7611 goto err_rollback;
7612 res = dev_qdisc_change_tx_queue_len(dev);
7613 if (res)
7614 goto err_rollback;
6a643ddb
CW
7615 }
7616
7617 return 0;
7effaf06
TT
7618
7619err_rollback:
7620 netdev_err(dev, "refused to change device tx_queue_len\n");
7621 dev->tx_queue_len = orig_len;
7622 return res;
6a643ddb
CW
7623}
7624
cbda10fa
VD
7625/**
7626 * dev_set_group - Change group this device belongs to
7627 * @dev: device
7628 * @new_group: group this device should belong to
7629 */
7630void dev_set_group(struct net_device *dev, int new_group)
7631{
7632 dev->group = new_group;
7633}
7634EXPORT_SYMBOL(dev_set_group);
7635
f0db275a
SH
7636/**
7637 * dev_set_mac_address - Change Media Access Control Address
7638 * @dev: device
7639 * @sa: new address
7640 *
7641 * Change the hardware (MAC) address of the device
7642 */
1da177e4
LT
7643int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7644{
d314774c 7645 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
7646 int err;
7647
d314774c 7648 if (!ops->ndo_set_mac_address)
1da177e4
LT
7649 return -EOPNOTSUPP;
7650 if (sa->sa_family != dev->type)
7651 return -EINVAL;
7652 if (!netif_device_present(dev))
7653 return -ENODEV;
d314774c 7654 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
7655 if (err)
7656 return err;
fbdeca2d 7657 dev->addr_assign_type = NET_ADDR_SET;
f6521516 7658 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 7659 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 7660 return 0;
1da177e4 7661}
d1b19dff 7662EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 7663
4bf84c35
JP
7664/**
7665 * dev_change_carrier - Change device carrier
7666 * @dev: device
691b3b7e 7667 * @new_carrier: new value
4bf84c35
JP
7668 *
7669 * Change device carrier
7670 */
7671int dev_change_carrier(struct net_device *dev, bool new_carrier)
7672{
7673 const struct net_device_ops *ops = dev->netdev_ops;
7674
7675 if (!ops->ndo_change_carrier)
7676 return -EOPNOTSUPP;
7677 if (!netif_device_present(dev))
7678 return -ENODEV;
7679 return ops->ndo_change_carrier(dev, new_carrier);
7680}
7681EXPORT_SYMBOL(dev_change_carrier);
7682
66b52b0d
JP
7683/**
7684 * dev_get_phys_port_id - Get device physical port ID
7685 * @dev: device
7686 * @ppid: port ID
7687 *
7688 * Get device physical port ID
7689 */
7690int dev_get_phys_port_id(struct net_device *dev,
02637fce 7691 struct netdev_phys_item_id *ppid)
66b52b0d
JP
7692{
7693 const struct net_device_ops *ops = dev->netdev_ops;
7694
7695 if (!ops->ndo_get_phys_port_id)
7696 return -EOPNOTSUPP;
7697 return ops->ndo_get_phys_port_id(dev, ppid);
7698}
7699EXPORT_SYMBOL(dev_get_phys_port_id);
7700
db24a904
DA
7701/**
7702 * dev_get_phys_port_name - Get device physical port name
7703 * @dev: device
7704 * @name: port name
ed49e650 7705 * @len: limit of bytes to copy to name
db24a904
DA
7706 *
7707 * Get device physical port name
7708 */
7709int dev_get_phys_port_name(struct net_device *dev,
7710 char *name, size_t len)
7711{
7712 const struct net_device_ops *ops = dev->netdev_ops;
7713
7714 if (!ops->ndo_get_phys_port_name)
7715 return -EOPNOTSUPP;
7716 return ops->ndo_get_phys_port_name(dev, name, len);
7717}
7718EXPORT_SYMBOL(dev_get_phys_port_name);
7719
d746d707
AK
7720/**
7721 * dev_change_proto_down - update protocol port state information
7722 * @dev: device
7723 * @proto_down: new value
7724 *
7725 * This info can be used by switch drivers to set the phys state of the
7726 * port.
7727 */
7728int dev_change_proto_down(struct net_device *dev, bool proto_down)
7729{
7730 const struct net_device_ops *ops = dev->netdev_ops;
7731
7732 if (!ops->ndo_change_proto_down)
7733 return -EOPNOTSUPP;
7734 if (!netif_device_present(dev))
7735 return -ENODEV;
7736 return ops->ndo_change_proto_down(dev, proto_down);
7737}
7738EXPORT_SYMBOL(dev_change_proto_down);
7739
a25717d2
JK
7740u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7741 enum bpf_netdev_command cmd)
d67b9cd2 7742{
a25717d2 7743 struct netdev_bpf xdp;
d67b9cd2 7744
a25717d2
JK
7745 if (!bpf_op)
7746 return 0;
118b4aa2 7747
a25717d2
JK
7748 memset(&xdp, 0, sizeof(xdp));
7749 xdp.command = cmd;
118b4aa2 7750
a25717d2
JK
7751 /* Query must always succeed. */
7752 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
58038695 7753
6b867589 7754 return xdp.prog_id;
d67b9cd2
DB
7755}
7756
f4e63525 7757static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 7758 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
7759 struct bpf_prog *prog)
7760{
f4e63525 7761 struct netdev_bpf xdp;
d67b9cd2
DB
7762
7763 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
7764 if (flags & XDP_FLAGS_HW_MODE)
7765 xdp.command = XDP_SETUP_PROG_HW;
7766 else
7767 xdp.command = XDP_SETUP_PROG;
d67b9cd2 7768 xdp.extack = extack;
32d60277 7769 xdp.flags = flags;
d67b9cd2
DB
7770 xdp.prog = prog;
7771
f4e63525 7772 return bpf_op(dev, &xdp);
d67b9cd2
DB
7773}
7774
bd0b2e7f
JK
7775static void dev_xdp_uninstall(struct net_device *dev)
7776{
7777 struct netdev_bpf xdp;
7778 bpf_op_t ndo_bpf;
7779
7780 /* Remove generic XDP */
7781 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7782
7783 /* Remove from the driver */
7784 ndo_bpf = dev->netdev_ops->ndo_bpf;
7785 if (!ndo_bpf)
7786 return;
7787
a25717d2
JK
7788 memset(&xdp, 0, sizeof(xdp));
7789 xdp.command = XDP_QUERY_PROG;
7790 WARN_ON(ndo_bpf(dev, &xdp));
7791 if (xdp.prog_id)
7792 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7793 NULL));
bd0b2e7f 7794
a25717d2
JK
7795 /* Remove HW offload */
7796 memset(&xdp, 0, sizeof(xdp));
7797 xdp.command = XDP_QUERY_PROG_HW;
7798 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7799 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7800 NULL));
bd0b2e7f
JK
7801}
7802
a7862b45
BB
7803/**
7804 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7805 * @dev: device
b5d60989 7806 * @extack: netlink extended ack
a7862b45 7807 * @fd: new program fd or negative value to clear
85de8576 7808 * @flags: xdp-related flags
a7862b45
BB
7809 *
7810 * Set or clear a bpf program for a device
7811 */
ddf9f970
JK
7812int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7813 int fd, u32 flags)
a7862b45
BB
7814{
7815 const struct net_device_ops *ops = dev->netdev_ops;
a25717d2 7816 enum bpf_netdev_command query;
a7862b45 7817 struct bpf_prog *prog = NULL;
f4e63525 7818 bpf_op_t bpf_op, bpf_chk;
a7862b45
BB
7819 int err;
7820
85de8576
DB
7821 ASSERT_RTNL();
7822
a25717d2
JK
7823 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7824
f4e63525
JK
7825 bpf_op = bpf_chk = ops->ndo_bpf;
7826 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
0489df9a 7827 return -EOPNOTSUPP;
f4e63525
JK
7828 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7829 bpf_op = generic_xdp_install;
7830 if (bpf_op == bpf_chk)
7831 bpf_chk = generic_xdp_install;
b5cdae32 7832
a7862b45 7833 if (fd >= 0) {
a25717d2
JK
7834 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7835 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
d67b9cd2
DB
7836 return -EEXIST;
7837 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
a25717d2 7838 __dev_xdp_query(dev, bpf_op, query))
d67b9cd2 7839 return -EBUSY;
85de8576 7840
288b3de5
JK
7841 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7842 bpf_op == ops->ndo_bpf);
a7862b45
BB
7843 if (IS_ERR(prog))
7844 return PTR_ERR(prog);
441a3303
JK
7845
7846 if (!(flags & XDP_FLAGS_HW_MODE) &&
7847 bpf_prog_is_dev_bound(prog->aux)) {
7848 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7849 bpf_prog_put(prog);
7850 return -EINVAL;
7851 }
a7862b45
BB
7852 }
7853
f4e63525 7854 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
7855 if (err < 0 && prog)
7856 bpf_prog_put(prog);
7857
7858 return err;
7859}
a7862b45 7860
1da177e4
LT
7861/**
7862 * dev_new_index - allocate an ifindex
c4ea43c5 7863 * @net: the applicable net namespace
1da177e4
LT
7864 *
7865 * Returns a suitable unique value for a new device interface
7866 * number. The caller must hold the rtnl semaphore or the
7867 * dev_base_lock to be sure it remains unique.
7868 */
881d966b 7869static int dev_new_index(struct net *net)
1da177e4 7870{
aa79e66e 7871 int ifindex = net->ifindex;
f4563a75 7872
1da177e4
LT
7873 for (;;) {
7874 if (++ifindex <= 0)
7875 ifindex = 1;
881d966b 7876 if (!__dev_get_by_index(net, ifindex))
aa79e66e 7877 return net->ifindex = ifindex;
1da177e4
LT
7878 }
7879}
7880
1da177e4 7881/* Delayed registration/unregisteration */
3b5b34fd 7882static LIST_HEAD(net_todo_list);
200b916f 7883DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 7884
6f05f629 7885static void net_set_todo(struct net_device *dev)
1da177e4 7886{
1da177e4 7887 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 7888 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
7889}
7890
9b5e383c 7891static void rollback_registered_many(struct list_head *head)
93ee31f1 7892{
e93737b0 7893 struct net_device *dev, *tmp;
5cde2829 7894 LIST_HEAD(close_head);
9b5e383c 7895
93ee31f1
DL
7896 BUG_ON(dev_boot_phase);
7897 ASSERT_RTNL();
7898
e93737b0 7899 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 7900 /* Some devices call without registering
e93737b0
KK
7901 * for initialization unwind. Remove those
7902 * devices and proceed with the remaining.
9b5e383c
ED
7903 */
7904 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
7905 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7906 dev->name, dev);
93ee31f1 7907
9b5e383c 7908 WARN_ON(1);
e93737b0
KK
7909 list_del(&dev->unreg_list);
7910 continue;
9b5e383c 7911 }
449f4544 7912 dev->dismantle = true;
9b5e383c 7913 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 7914 }
93ee31f1 7915
44345724 7916 /* If device is running, close it first. */
5cde2829
EB
7917 list_for_each_entry(dev, head, unreg_list)
7918 list_add_tail(&dev->close_list, &close_head);
99c4a26a 7919 dev_close_many(&close_head, true);
93ee31f1 7920
44345724 7921 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
7922 /* And unlink it from device chain. */
7923 unlist_netdevice(dev);
93ee31f1 7924
9b5e383c
ED
7925 dev->reg_state = NETREG_UNREGISTERING;
7926 }
41852497 7927 flush_all_backlogs();
93ee31f1
DL
7928
7929 synchronize_net();
7930
9b5e383c 7931 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
7932 struct sk_buff *skb = NULL;
7933
9b5e383c
ED
7934 /* Shutdown queueing discipline. */
7935 dev_shutdown(dev);
93ee31f1 7936
bd0b2e7f 7937 dev_xdp_uninstall(dev);
93ee31f1 7938
9b5e383c 7939 /* Notify protocols, that we are about to destroy
eb13da1a 7940 * this device. They should clean all the things.
7941 */
9b5e383c 7942 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 7943
395eea6c
MB
7944 if (!dev->rtnl_link_ops ||
7945 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 7946 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 7947 GFP_KERNEL, NULL, 0);
395eea6c 7948
9b5e383c
ED
7949 /*
7950 * Flush the unicast and multicast chains
7951 */
a748ee24 7952 dev_uc_flush(dev);
22bedad3 7953 dev_mc_flush(dev);
93ee31f1 7954
9b5e383c
ED
7955 if (dev->netdev_ops->ndo_uninit)
7956 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 7957
395eea6c
MB
7958 if (skb)
7959 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 7960
9ff162a8
JP
7961 /* Notifier chain MUST detach us all upper devices. */
7962 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 7963 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 7964
9b5e383c
ED
7965 /* Remove entries from kobject tree */
7966 netdev_unregister_kobject(dev);
024e9679
AD
7967#ifdef CONFIG_XPS
7968 /* Remove XPS queueing entries */
7969 netif_reset_xps_queues_gt(dev, 0);
7970#endif
9b5e383c 7971 }
93ee31f1 7972
850a545b 7973 synchronize_net();
395264d5 7974
a5ee1551 7975 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
7976 dev_put(dev);
7977}
7978
7979static void rollback_registered(struct net_device *dev)
7980{
7981 LIST_HEAD(single);
7982
7983 list_add(&dev->unreg_list, &single);
7984 rollback_registered_many(&single);
ceaaec98 7985 list_del(&single);
93ee31f1
DL
7986}
7987
fd867d51
JW
7988static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7989 struct net_device *upper, netdev_features_t features)
7990{
7991 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7992 netdev_features_t feature;
5ba3f7d6 7993 int feature_bit;
fd867d51 7994
5ba3f7d6
JW
7995 for_each_netdev_feature(&upper_disables, feature_bit) {
7996 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7997 if (!(upper->wanted_features & feature)
7998 && (features & feature)) {
7999 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8000 &feature, upper->name);
8001 features &= ~feature;
8002 }
8003 }
8004
8005 return features;
8006}
8007
8008static void netdev_sync_lower_features(struct net_device *upper,
8009 struct net_device *lower, netdev_features_t features)
8010{
8011 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8012 netdev_features_t feature;
5ba3f7d6 8013 int feature_bit;
fd867d51 8014
5ba3f7d6
JW
8015 for_each_netdev_feature(&upper_disables, feature_bit) {
8016 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8017 if (!(features & feature) && (lower->features & feature)) {
8018 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8019 &feature, lower->name);
8020 lower->wanted_features &= ~feature;
8021 netdev_update_features(lower);
8022
8023 if (unlikely(lower->features & feature))
8024 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8025 &feature, lower->name);
8026 }
8027 }
8028}
8029
c8f44aff
MM
8030static netdev_features_t netdev_fix_features(struct net_device *dev,
8031 netdev_features_t features)
b63365a2 8032{
57422dc5
MM
8033 /* Fix illegal checksum combinations */
8034 if ((features & NETIF_F_HW_CSUM) &&
8035 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 8036 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
8037 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8038 }
8039
b63365a2 8040 /* TSO requires that SG is present as well. */
ea2d3688 8041 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 8042 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 8043 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
8044 }
8045
ec5f0615
PS
8046 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8047 !(features & NETIF_F_IP_CSUM)) {
8048 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8049 features &= ~NETIF_F_TSO;
8050 features &= ~NETIF_F_TSO_ECN;
8051 }
8052
8053 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8054 !(features & NETIF_F_IPV6_CSUM)) {
8055 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8056 features &= ~NETIF_F_TSO6;
8057 }
8058
b1dc497b
AD
8059 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8060 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8061 features &= ~NETIF_F_TSO_MANGLEID;
8062
31d8b9e0
BH
8063 /* TSO ECN requires that TSO is present as well. */
8064 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8065 features &= ~NETIF_F_TSO_ECN;
8066
212b573f
MM
8067 /* Software GSO depends on SG. */
8068 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 8069 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
8070 features &= ~NETIF_F_GSO;
8071 }
8072
802ab55a
AD
8073 /* GSO partial features require GSO partial be set */
8074 if ((features & dev->gso_partial_features) &&
8075 !(features & NETIF_F_GSO_PARTIAL)) {
8076 netdev_dbg(dev,
8077 "Dropping partially supported GSO features since no GSO partial.\n");
8078 features &= ~dev->gso_partial_features;
8079 }
8080
fb1f5f79
MC
8081 if (!(features & NETIF_F_RXCSUM)) {
8082 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8083 * successfully merged by hardware must also have the
8084 * checksum verified by hardware. If the user does not
8085 * want to enable RXCSUM, logically, we should disable GRO_HW.
8086 */
8087 if (features & NETIF_F_GRO_HW) {
8088 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8089 features &= ~NETIF_F_GRO_HW;
8090 }
8091 }
8092
de8d5ab2
GP
8093 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8094 if (features & NETIF_F_RXFCS) {
8095 if (features & NETIF_F_LRO) {
8096 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8097 features &= ~NETIF_F_LRO;
8098 }
8099
8100 if (features & NETIF_F_GRO_HW) {
8101 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8102 features &= ~NETIF_F_GRO_HW;
8103 }
e6c6a929
GP
8104 }
8105
b63365a2
HX
8106 return features;
8107}
b63365a2 8108
6cb6a27c 8109int __netdev_update_features(struct net_device *dev)
5455c699 8110{
fd867d51 8111 struct net_device *upper, *lower;
c8f44aff 8112 netdev_features_t features;
fd867d51 8113 struct list_head *iter;
e7868a85 8114 int err = -1;
5455c699 8115
87267485
MM
8116 ASSERT_RTNL();
8117
5455c699
MM
8118 features = netdev_get_wanted_features(dev);
8119
8120 if (dev->netdev_ops->ndo_fix_features)
8121 features = dev->netdev_ops->ndo_fix_features(dev, features);
8122
8123 /* driver might be less strict about feature dependencies */
8124 features = netdev_fix_features(dev, features);
8125
fd867d51
JW
8126 /* some features can't be enabled if they're off an an upper device */
8127 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8128 features = netdev_sync_upper_features(dev, upper, features);
8129
5455c699 8130 if (dev->features == features)
e7868a85 8131 goto sync_lower;
5455c699 8132
c8f44aff
MM
8133 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8134 &dev->features, &features);
5455c699
MM
8135
8136 if (dev->netdev_ops->ndo_set_features)
8137 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
8138 else
8139 err = 0;
5455c699 8140
6cb6a27c 8141 if (unlikely(err < 0)) {
5455c699 8142 netdev_err(dev,
c8f44aff
MM
8143 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8144 err, &features, &dev->features);
17b85d29
NA
8145 /* return non-0 since some features might have changed and
8146 * it's better to fire a spurious notification than miss it
8147 */
8148 return -1;
6cb6a27c
MM
8149 }
8150
e7868a85 8151sync_lower:
fd867d51
JW
8152 /* some features must be disabled on lower devices when disabled
8153 * on an upper device (think: bonding master or bridge)
8154 */
8155 netdev_for_each_lower_dev(dev, lower, iter)
8156 netdev_sync_lower_features(dev, lower, features);
8157
ae847f40
SD
8158 if (!err) {
8159 netdev_features_t diff = features ^ dev->features;
8160
8161 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8162 /* udp_tunnel_{get,drop}_rx_info both need
8163 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8164 * device, or they won't do anything.
8165 * Thus we need to update dev->features
8166 * *before* calling udp_tunnel_get_rx_info,
8167 * but *after* calling udp_tunnel_drop_rx_info.
8168 */
8169 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8170 dev->features = features;
8171 udp_tunnel_get_rx_info(dev);
8172 } else {
8173 udp_tunnel_drop_rx_info(dev);
8174 }
8175 }
8176
9daae9bd
GP
8177 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8178 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8179 dev->features = features;
8180 err |= vlan_get_rx_ctag_filter_info(dev);
8181 } else {
8182 vlan_drop_rx_ctag_filter_info(dev);
8183 }
8184 }
8185
8186 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8187 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8188 dev->features = features;
8189 err |= vlan_get_rx_stag_filter_info(dev);
8190 } else {
8191 vlan_drop_rx_stag_filter_info(dev);
8192 }
8193 }
8194
6cb6a27c 8195 dev->features = features;
ae847f40 8196 }
6cb6a27c 8197
e7868a85 8198 return err < 0 ? 0 : 1;
6cb6a27c
MM
8199}
8200
afe12cc8
MM
8201/**
8202 * netdev_update_features - recalculate device features
8203 * @dev: the device to check
8204 *
8205 * Recalculate dev->features set and send notifications if it
8206 * has changed. Should be called after driver or hardware dependent
8207 * conditions might have changed that influence the features.
8208 */
6cb6a27c
MM
8209void netdev_update_features(struct net_device *dev)
8210{
8211 if (__netdev_update_features(dev))
8212 netdev_features_change(dev);
5455c699
MM
8213}
8214EXPORT_SYMBOL(netdev_update_features);
8215
afe12cc8
MM
8216/**
8217 * netdev_change_features - recalculate device features
8218 * @dev: the device to check
8219 *
8220 * Recalculate dev->features set and send notifications even
8221 * if they have not changed. Should be called instead of
8222 * netdev_update_features() if also dev->vlan_features might
8223 * have changed to allow the changes to be propagated to stacked
8224 * VLAN devices.
8225 */
8226void netdev_change_features(struct net_device *dev)
8227{
8228 __netdev_update_features(dev);
8229 netdev_features_change(dev);
8230}
8231EXPORT_SYMBOL(netdev_change_features);
8232
fc4a7489
PM
8233/**
8234 * netif_stacked_transfer_operstate - transfer operstate
8235 * @rootdev: the root or lower level device to transfer state from
8236 * @dev: the device to transfer operstate to
8237 *
8238 * Transfer operational state from root to device. This is normally
8239 * called when a stacking relationship exists between the root
8240 * device and the device(a leaf device).
8241 */
8242void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8243 struct net_device *dev)
8244{
8245 if (rootdev->operstate == IF_OPER_DORMANT)
8246 netif_dormant_on(dev);
8247 else
8248 netif_dormant_off(dev);
8249
0575c86b
ZS
8250 if (netif_carrier_ok(rootdev))
8251 netif_carrier_on(dev);
8252 else
8253 netif_carrier_off(dev);
fc4a7489
PM
8254}
8255EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8256
1b4bf461
ED
8257static int netif_alloc_rx_queues(struct net_device *dev)
8258{
1b4bf461 8259 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 8260 struct netdev_rx_queue *rx;
10595902 8261 size_t sz = count * sizeof(*rx);
e817f856 8262 int err = 0;
1b4bf461 8263
bd25fa7b 8264 BUG_ON(count < 1);
1b4bf461 8265
dcda9b04 8266 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8267 if (!rx)
8268 return -ENOMEM;
8269
bd25fa7b
TH
8270 dev->_rx = rx;
8271
e817f856 8272 for (i = 0; i < count; i++) {
fe822240 8273 rx[i].dev = dev;
e817f856
JDB
8274
8275 /* XDP RX-queue setup */
8276 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8277 if (err < 0)
8278 goto err_rxq_info;
8279 }
1b4bf461 8280 return 0;
e817f856
JDB
8281
8282err_rxq_info:
8283 /* Rollback successful reg's and free other resources */
8284 while (i--)
8285 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 8286 kvfree(dev->_rx);
e817f856
JDB
8287 dev->_rx = NULL;
8288 return err;
8289}
8290
8291static void netif_free_rx_queues(struct net_device *dev)
8292{
8293 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
8294
8295 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8296 if (!dev->_rx)
8297 return;
8298
e817f856 8299 for (i = 0; i < count; i++)
82aaff2f
JK
8300 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8301
8302 kvfree(dev->_rx);
1b4bf461
ED
8303}
8304
aa942104
CG
8305static void netdev_init_one_queue(struct net_device *dev,
8306 struct netdev_queue *queue, void *_unused)
8307{
8308 /* Initialize queue lock */
8309 spin_lock_init(&queue->_xmit_lock);
8310 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8311 queue->xmit_lock_owner = -1;
b236da69 8312 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 8313 queue->dev = dev;
114cf580
TH
8314#ifdef CONFIG_BQL
8315 dql_init(&queue->dql, HZ);
8316#endif
aa942104
CG
8317}
8318
60877a32
ED
8319static void netif_free_tx_queues(struct net_device *dev)
8320{
4cb28970 8321 kvfree(dev->_tx);
60877a32
ED
8322}
8323
e6484930
TH
8324static int netif_alloc_netdev_queues(struct net_device *dev)
8325{
8326 unsigned int count = dev->num_tx_queues;
8327 struct netdev_queue *tx;
60877a32 8328 size_t sz = count * sizeof(*tx);
e6484930 8329
d339727c
ED
8330 if (count < 1 || count > 0xffff)
8331 return -EINVAL;
62b5942a 8332
dcda9b04 8333 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8334 if (!tx)
8335 return -ENOMEM;
8336
e6484930 8337 dev->_tx = tx;
1d24eb48 8338
e6484930
TH
8339 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8340 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
8341
8342 return 0;
e6484930
TH
8343}
8344
a2029240
DV
8345void netif_tx_stop_all_queues(struct net_device *dev)
8346{
8347 unsigned int i;
8348
8349 for (i = 0; i < dev->num_tx_queues; i++) {
8350 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 8351
a2029240
DV
8352 netif_tx_stop_queue(txq);
8353 }
8354}
8355EXPORT_SYMBOL(netif_tx_stop_all_queues);
8356
1da177e4
LT
8357/**
8358 * register_netdevice - register a network device
8359 * @dev: device to register
8360 *
8361 * Take a completed network device structure and add it to the kernel
8362 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8363 * chain. 0 is returned on success. A negative errno code is returned
8364 * on a failure to set up the device, or if the name is a duplicate.
8365 *
8366 * Callers must hold the rtnl semaphore. You may want
8367 * register_netdev() instead of this.
8368 *
8369 * BUGS:
8370 * The locking appears insufficient to guarantee two parallel registers
8371 * will not get the same name.
8372 */
8373
8374int register_netdevice(struct net_device *dev)
8375{
1da177e4 8376 int ret;
d314774c 8377 struct net *net = dev_net(dev);
1da177e4 8378
e283de3a
FF
8379 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8380 NETDEV_FEATURE_COUNT);
1da177e4
LT
8381 BUG_ON(dev_boot_phase);
8382 ASSERT_RTNL();
8383
b17a7c17
SH
8384 might_sleep();
8385
1da177e4
LT
8386 /* When net_device's are persistent, this will be fatal. */
8387 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 8388 BUG_ON(!net);
1da177e4 8389
f1f28aa3 8390 spin_lock_init(&dev->addr_list_lock);
cf508b12 8391 netdev_set_addr_lockdep_class(dev);
1da177e4 8392
828de4f6 8393 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
8394 if (ret < 0)
8395 goto out;
8396
1da177e4 8397 /* Init, if this function is available */
d314774c
SH
8398 if (dev->netdev_ops->ndo_init) {
8399 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
8400 if (ret) {
8401 if (ret > 0)
8402 ret = -EIO;
90833aa4 8403 goto out;
1da177e4
LT
8404 }
8405 }
4ec93edb 8406
f646968f
PM
8407 if (((dev->hw_features | dev->features) &
8408 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
8409 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8410 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8411 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8412 ret = -EINVAL;
8413 goto err_uninit;
8414 }
8415
9c7dafbf
PE
8416 ret = -EBUSY;
8417 if (!dev->ifindex)
8418 dev->ifindex = dev_new_index(net);
8419 else if (__dev_get_by_index(net, dev->ifindex))
8420 goto err_uninit;
8421
5455c699
MM
8422 /* Transfer changeable features to wanted_features and enable
8423 * software offloads (GSO and GRO).
8424 */
8425 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 8426 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
8427
8428 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8429 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8430 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8431 }
8432
14d1232f 8433 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 8434
cbc53e08 8435 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 8436 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 8437
7f348a60
AD
8438 /* If IPv4 TCP segmentation offload is supported we should also
8439 * allow the device to enable segmenting the frame with the option
8440 * of ignoring a static IP ID value. This doesn't enable the
8441 * feature itself but allows the user to enable it later.
8442 */
cbc53e08
AD
8443 if (dev->hw_features & NETIF_F_TSO)
8444 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
8445 if (dev->vlan_features & NETIF_F_TSO)
8446 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8447 if (dev->mpls_features & NETIF_F_TSO)
8448 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8449 if (dev->hw_enc_features & NETIF_F_TSO)
8450 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 8451
1180e7d6 8452 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 8453 */
1180e7d6 8454 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 8455
ee579677
PS
8456 /* Make NETIF_F_SG inheritable to tunnel devices.
8457 */
802ab55a 8458 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 8459
0d89d203
SH
8460 /* Make NETIF_F_SG inheritable to MPLS.
8461 */
8462 dev->mpls_features |= NETIF_F_SG;
8463
7ffbe3fd
JB
8464 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8465 ret = notifier_to_errno(ret);
8466 if (ret)
8467 goto err_uninit;
8468
8b41d188 8469 ret = netdev_register_kobject(dev);
b17a7c17 8470 if (ret)
7ce1b0ed 8471 goto err_uninit;
b17a7c17
SH
8472 dev->reg_state = NETREG_REGISTERED;
8473
6cb6a27c 8474 __netdev_update_features(dev);
8e9b59b2 8475
1da177e4
LT
8476 /*
8477 * Default initial state at registry is that the
8478 * device is present.
8479 */
8480
8481 set_bit(__LINK_STATE_PRESENT, &dev->state);
8482
8f4cccbb
BH
8483 linkwatch_init_dev(dev);
8484
1da177e4 8485 dev_init_scheduler(dev);
1da177e4 8486 dev_hold(dev);
ce286d32 8487 list_netdevice(dev);
7bf23575 8488 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 8489
948b337e
JP
8490 /* If the device has permanent device address, driver should
8491 * set dev_addr and also addr_assign_type should be set to
8492 * NET_ADDR_PERM (default value).
8493 */
8494 if (dev->addr_assign_type == NET_ADDR_PERM)
8495 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8496
1da177e4 8497 /* Notify protocols, that a new device appeared. */
056925ab 8498 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 8499 ret = notifier_to_errno(ret);
93ee31f1
DL
8500 if (ret) {
8501 rollback_registered(dev);
8502 dev->reg_state = NETREG_UNREGISTERED;
8503 }
d90a909e
EB
8504 /*
8505 * Prevent userspace races by waiting until the network
8506 * device is fully setup before sending notifications.
8507 */
a2835763
PM
8508 if (!dev->rtnl_link_ops ||
8509 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 8510 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
8511
8512out:
8513 return ret;
7ce1b0ed
HX
8514
8515err_uninit:
d314774c
SH
8516 if (dev->netdev_ops->ndo_uninit)
8517 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
8518 if (dev->priv_destructor)
8519 dev->priv_destructor(dev);
7ce1b0ed 8520 goto out;
1da177e4 8521}
d1b19dff 8522EXPORT_SYMBOL(register_netdevice);
1da177e4 8523
937f1ba5
BH
8524/**
8525 * init_dummy_netdev - init a dummy network device for NAPI
8526 * @dev: device to init
8527 *
8528 * This takes a network device structure and initialize the minimum
8529 * amount of fields so it can be used to schedule NAPI polls without
8530 * registering a full blown interface. This is to be used by drivers
8531 * that need to tie several hardware interfaces to a single NAPI
8532 * poll scheduler due to HW limitations.
8533 */
8534int init_dummy_netdev(struct net_device *dev)
8535{
8536 /* Clear everything. Note we don't initialize spinlocks
8537 * are they aren't supposed to be taken by any of the
8538 * NAPI code and this dummy netdev is supposed to be
8539 * only ever used for NAPI polls
8540 */
8541 memset(dev, 0, sizeof(struct net_device));
8542
8543 /* make sure we BUG if trying to hit standard
8544 * register/unregister code path
8545 */
8546 dev->reg_state = NETREG_DUMMY;
8547
937f1ba5
BH
8548 /* NAPI wants this */
8549 INIT_LIST_HEAD(&dev->napi_list);
8550
8551 /* a dummy interface is started by default */
8552 set_bit(__LINK_STATE_PRESENT, &dev->state);
8553 set_bit(__LINK_STATE_START, &dev->state);
8554
29b4433d
ED
8555 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8556 * because users of this 'device' dont need to change
8557 * its refcount.
8558 */
8559
937f1ba5
BH
8560 return 0;
8561}
8562EXPORT_SYMBOL_GPL(init_dummy_netdev);
8563
8564
1da177e4
LT
8565/**
8566 * register_netdev - register a network device
8567 * @dev: device to register
8568 *
8569 * Take a completed network device structure and add it to the kernel
8570 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8571 * chain. 0 is returned on success. A negative errno code is returned
8572 * on a failure to set up the device, or if the name is a duplicate.
8573 *
38b4da38 8574 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
8575 * and expands the device name if you passed a format string to
8576 * alloc_netdev.
8577 */
8578int register_netdev(struct net_device *dev)
8579{
8580 int err;
8581
b0f3debc
KT
8582 if (rtnl_lock_killable())
8583 return -EINTR;
1da177e4 8584 err = register_netdevice(dev);
1da177e4
LT
8585 rtnl_unlock();
8586 return err;
8587}
8588EXPORT_SYMBOL(register_netdev);
8589
29b4433d
ED
8590int netdev_refcnt_read(const struct net_device *dev)
8591{
8592 int i, refcnt = 0;
8593
8594 for_each_possible_cpu(i)
8595 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8596 return refcnt;
8597}
8598EXPORT_SYMBOL(netdev_refcnt_read);
8599
2c53040f 8600/**
1da177e4 8601 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 8602 * @dev: target net_device
1da177e4
LT
8603 *
8604 * This is called when unregistering network devices.
8605 *
8606 * Any protocol or device that holds a reference should register
8607 * for netdevice notification, and cleanup and put back the
8608 * reference if they receive an UNREGISTER event.
8609 * We can get stuck here if buggy protocols don't correctly
4ec93edb 8610 * call dev_put.
1da177e4
LT
8611 */
8612static void netdev_wait_allrefs(struct net_device *dev)
8613{
8614 unsigned long rebroadcast_time, warning_time;
29b4433d 8615 int refcnt;
1da177e4 8616
e014debe
ED
8617 linkwatch_forget_dev(dev);
8618
1da177e4 8619 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
8620 refcnt = netdev_refcnt_read(dev);
8621
8622 while (refcnt != 0) {
1da177e4 8623 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 8624 rtnl_lock();
1da177e4
LT
8625
8626 /* Rebroadcast unregister notification */
056925ab 8627 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 8628
748e2d93 8629 __rtnl_unlock();
0115e8e3 8630 rcu_barrier();
748e2d93
ED
8631 rtnl_lock();
8632
1da177e4
LT
8633 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8634 &dev->state)) {
8635 /* We must not have linkwatch events
8636 * pending on unregister. If this
8637 * happens, we simply run the queue
8638 * unscheduled, resulting in a noop
8639 * for this device.
8640 */
8641 linkwatch_run_queue();
8642 }
8643
6756ae4b 8644 __rtnl_unlock();
1da177e4
LT
8645
8646 rebroadcast_time = jiffies;
8647 }
8648
8649 msleep(250);
8650
29b4433d
ED
8651 refcnt = netdev_refcnt_read(dev);
8652
1da177e4 8653 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
8654 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8655 dev->name, refcnt);
1da177e4
LT
8656 warning_time = jiffies;
8657 }
8658 }
8659}
8660
8661/* The sequence is:
8662 *
8663 * rtnl_lock();
8664 * ...
8665 * register_netdevice(x1);
8666 * register_netdevice(x2);
8667 * ...
8668 * unregister_netdevice(y1);
8669 * unregister_netdevice(y2);
8670 * ...
8671 * rtnl_unlock();
8672 * free_netdev(y1);
8673 * free_netdev(y2);
8674 *
58ec3b4d 8675 * We are invoked by rtnl_unlock().
1da177e4 8676 * This allows us to deal with problems:
b17a7c17 8677 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
8678 * without deadlocking with linkwatch via keventd.
8679 * 2) Since we run with the RTNL semaphore not held, we can sleep
8680 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
8681 *
8682 * We must not return until all unregister events added during
8683 * the interval the lock was held have been completed.
1da177e4 8684 */
1da177e4
LT
8685void netdev_run_todo(void)
8686{
626ab0e6 8687 struct list_head list;
1da177e4 8688
1da177e4 8689 /* Snapshot list, allow later requests */
626ab0e6 8690 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
8691
8692 __rtnl_unlock();
626ab0e6 8693
0115e8e3
ED
8694
8695 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
8696 if (!list_empty(&list))
8697 rcu_barrier();
8698
1da177e4
LT
8699 while (!list_empty(&list)) {
8700 struct net_device *dev
e5e26d75 8701 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
8702 list_del(&dev->todo_list);
8703
b17a7c17 8704 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 8705 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
8706 dev->name, dev->reg_state);
8707 dump_stack();
8708 continue;
8709 }
1da177e4 8710
b17a7c17 8711 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 8712
b17a7c17 8713 netdev_wait_allrefs(dev);
1da177e4 8714
b17a7c17 8715 /* paranoia */
29b4433d 8716 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
8717 BUG_ON(!list_empty(&dev->ptype_all));
8718 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
8719 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8720 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 8721#if IS_ENABLED(CONFIG_DECNET)
547b792c 8722 WARN_ON(dev->dn_ptr);
330c7272 8723#endif
cf124db5
DM
8724 if (dev->priv_destructor)
8725 dev->priv_destructor(dev);
8726 if (dev->needs_free_netdev)
8727 free_netdev(dev);
9093bbb2 8728
50624c93
EB
8729 /* Report a network device has been unregistered */
8730 rtnl_lock();
8731 dev_net(dev)->dev_unreg_count--;
8732 __rtnl_unlock();
8733 wake_up(&netdev_unregistering_wq);
8734
9093bbb2
SH
8735 /* Free network device */
8736 kobject_put(&dev->dev.kobj);
1da177e4 8737 }
1da177e4
LT
8738}
8739
9256645a
JW
8740/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8741 * all the same fields in the same order as net_device_stats, with only
8742 * the type differing, but rtnl_link_stats64 may have additional fields
8743 * at the end for newer counters.
3cfde79c 8744 */
77a1abf5
ED
8745void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8746 const struct net_device_stats *netdev_stats)
3cfde79c
BH
8747{
8748#if BITS_PER_LONG == 64
9256645a 8749 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 8750 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
8751 /* zero out counters that only exist in rtnl_link_stats64 */
8752 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8753 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 8754#else
9256645a 8755 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
8756 const unsigned long *src = (const unsigned long *)netdev_stats;
8757 u64 *dst = (u64 *)stats64;
8758
9256645a 8759 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
8760 for (i = 0; i < n; i++)
8761 dst[i] = src[i];
9256645a
JW
8762 /* zero out counters that only exist in rtnl_link_stats64 */
8763 memset((char *)stats64 + n * sizeof(u64), 0,
8764 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
8765#endif
8766}
77a1abf5 8767EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 8768
eeda3fd6
SH
8769/**
8770 * dev_get_stats - get network device statistics
8771 * @dev: device to get statistics from
28172739 8772 * @storage: place to store stats
eeda3fd6 8773 *
d7753516
BH
8774 * Get network statistics from device. Return @storage.
8775 * The device driver may provide its own method by setting
8776 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8777 * otherwise the internal statistics structure is used.
eeda3fd6 8778 */
d7753516
BH
8779struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8780 struct rtnl_link_stats64 *storage)
7004bf25 8781{
eeda3fd6
SH
8782 const struct net_device_ops *ops = dev->netdev_ops;
8783
28172739
ED
8784 if (ops->ndo_get_stats64) {
8785 memset(storage, 0, sizeof(*storage));
caf586e5
ED
8786 ops->ndo_get_stats64(dev, storage);
8787 } else if (ops->ndo_get_stats) {
3cfde79c 8788 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
8789 } else {
8790 netdev_stats_to_stats64(storage, &dev->stats);
28172739 8791 }
6f64ec74
ED
8792 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8793 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8794 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 8795 return storage;
c45d286e 8796}
eeda3fd6 8797EXPORT_SYMBOL(dev_get_stats);
c45d286e 8798
24824a09 8799struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 8800{
24824a09 8801 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 8802
24824a09
ED
8803#ifdef CONFIG_NET_CLS_ACT
8804 if (queue)
8805 return queue;
8806 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8807 if (!queue)
8808 return NULL;
8809 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 8810 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
8811 queue->qdisc_sleeping = &noop_qdisc;
8812 rcu_assign_pointer(dev->ingress_queue, queue);
8813#endif
8814 return queue;
bb949fbd
DM
8815}
8816
2c60db03
ED
8817static const struct ethtool_ops default_ethtool_ops;
8818
d07d7507
SG
8819void netdev_set_default_ethtool_ops(struct net_device *dev,
8820 const struct ethtool_ops *ops)
8821{
8822 if (dev->ethtool_ops == &default_ethtool_ops)
8823 dev->ethtool_ops = ops;
8824}
8825EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8826
74d332c1
ED
8827void netdev_freemem(struct net_device *dev)
8828{
8829 char *addr = (char *)dev - dev->padded;
8830
4cb28970 8831 kvfree(addr);
74d332c1
ED
8832}
8833
1da177e4 8834/**
722c9a0c 8835 * alloc_netdev_mqs - allocate network device
8836 * @sizeof_priv: size of private data to allocate space for
8837 * @name: device name format string
8838 * @name_assign_type: origin of device name
8839 * @setup: callback to initialize device
8840 * @txqs: the number of TX subqueues to allocate
8841 * @rxqs: the number of RX subqueues to allocate
8842 *
8843 * Allocates a struct net_device with private data area for driver use
8844 * and performs basic initialization. Also allocates subqueue structs
8845 * for each queue on the device.
1da177e4 8846 */
36909ea4 8847struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 8848 unsigned char name_assign_type,
36909ea4
TH
8849 void (*setup)(struct net_device *),
8850 unsigned int txqs, unsigned int rxqs)
1da177e4 8851{
1da177e4 8852 struct net_device *dev;
52a59bd5 8853 unsigned int alloc_size;
1ce8e7b5 8854 struct net_device *p;
1da177e4 8855
b6fe17d6
SH
8856 BUG_ON(strlen(name) >= sizeof(dev->name));
8857
36909ea4 8858 if (txqs < 1) {
7b6cd1ce 8859 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
8860 return NULL;
8861 }
8862
36909ea4 8863 if (rxqs < 1) {
7b6cd1ce 8864 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
8865 return NULL;
8866 }
36909ea4 8867
fd2ea0a7 8868 alloc_size = sizeof(struct net_device);
d1643d24
AD
8869 if (sizeof_priv) {
8870 /* ensure 32-byte alignment of private area */
1ce8e7b5 8871 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
8872 alloc_size += sizeof_priv;
8873 }
8874 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 8875 alloc_size += NETDEV_ALIGN - 1;
1da177e4 8876
dcda9b04 8877 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 8878 if (!p)
1da177e4 8879 return NULL;
1da177e4 8880
1ce8e7b5 8881 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 8882 dev->padded = (char *)dev - (char *)p;
ab9c73cc 8883
29b4433d
ED
8884 dev->pcpu_refcnt = alloc_percpu(int);
8885 if (!dev->pcpu_refcnt)
74d332c1 8886 goto free_dev;
ab9c73cc 8887
ab9c73cc 8888 if (dev_addr_init(dev))
29b4433d 8889 goto free_pcpu;
ab9c73cc 8890
22bedad3 8891 dev_mc_init(dev);
a748ee24 8892 dev_uc_init(dev);
ccffad25 8893
c346dca1 8894 dev_net_set(dev, &init_net);
1da177e4 8895
8d3bdbd5 8896 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 8897 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 8898
8d3bdbd5
DM
8899 INIT_LIST_HEAD(&dev->napi_list);
8900 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 8901 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 8902 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
8903 INIT_LIST_HEAD(&dev->adj_list.upper);
8904 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
8905 INIT_LIST_HEAD(&dev->ptype_all);
8906 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
8907#ifdef CONFIG_NET_SCHED
8908 hash_init(dev->qdisc_hash);
8909#endif
02875878 8910 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
8911 setup(dev);
8912
a813104d 8913 if (!dev->tx_queue_len) {
f84bb1ea 8914 dev->priv_flags |= IFF_NO_QUEUE;
11597084 8915 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 8916 }
906470c1 8917
36909ea4
TH
8918 dev->num_tx_queues = txqs;
8919 dev->real_num_tx_queues = txqs;
ed9af2e8 8920 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 8921 goto free_all;
e8a0464c 8922
36909ea4
TH
8923 dev->num_rx_queues = rxqs;
8924 dev->real_num_rx_queues = rxqs;
fe822240 8925 if (netif_alloc_rx_queues(dev))
8d3bdbd5 8926 goto free_all;
0a9627f2 8927
1da177e4 8928 strcpy(dev->name, name);
c835a677 8929 dev->name_assign_type = name_assign_type;
cbda10fa 8930 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
8931 if (!dev->ethtool_ops)
8932 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
8933
8934 nf_hook_ingress_init(dev);
8935
1da177e4 8936 return dev;
ab9c73cc 8937
8d3bdbd5
DM
8938free_all:
8939 free_netdev(dev);
8940 return NULL;
8941
29b4433d
ED
8942free_pcpu:
8943 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
8944free_dev:
8945 netdev_freemem(dev);
ab9c73cc 8946 return NULL;
1da177e4 8947}
36909ea4 8948EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
8949
8950/**
722c9a0c 8951 * free_netdev - free network device
8952 * @dev: device
1da177e4 8953 *
722c9a0c 8954 * This function does the last stage of destroying an allocated device
8955 * interface. The reference to the device object is released. If this
8956 * is the last reference then it will be freed.Must be called in process
8957 * context.
1da177e4
LT
8958 */
8959void free_netdev(struct net_device *dev)
8960{
d565b0a1
HX
8961 struct napi_struct *p, *n;
8962
93d05d4a 8963 might_sleep();
60877a32 8964 netif_free_tx_queues(dev);
e817f856 8965 netif_free_rx_queues(dev);
e8a0464c 8966
33d480ce 8967 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 8968
f001fde5
JP
8969 /* Flush device addresses */
8970 dev_addr_flush(dev);
8971
d565b0a1
HX
8972 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8973 netif_napi_del(p);
8974
29b4433d
ED
8975 free_percpu(dev->pcpu_refcnt);
8976 dev->pcpu_refcnt = NULL;
8977
3041a069 8978 /* Compatibility with error handling in drivers */
1da177e4 8979 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 8980 netdev_freemem(dev);
1da177e4
LT
8981 return;
8982 }
8983
8984 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8985 dev->reg_state = NETREG_RELEASED;
8986
43cb76d9
GKH
8987 /* will free via device release */
8988 put_device(&dev->dev);
1da177e4 8989}
d1b19dff 8990EXPORT_SYMBOL(free_netdev);
4ec93edb 8991
f0db275a
SH
8992/**
8993 * synchronize_net - Synchronize with packet receive processing
8994 *
8995 * Wait for packets currently being received to be done.
8996 * Does not block later packets from starting.
8997 */
4ec93edb 8998void synchronize_net(void)
1da177e4
LT
8999{
9000 might_sleep();
be3fc413
ED
9001 if (rtnl_is_locked())
9002 synchronize_rcu_expedited();
9003 else
9004 synchronize_rcu();
1da177e4 9005}
d1b19dff 9006EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
9007
9008/**
44a0873d 9009 * unregister_netdevice_queue - remove device from the kernel
1da177e4 9010 * @dev: device
44a0873d 9011 * @head: list
6ebfbc06 9012 *
1da177e4 9013 * This function shuts down a device interface and removes it
d59b54b1 9014 * from the kernel tables.
44a0873d 9015 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
9016 *
9017 * Callers must hold the rtnl semaphore. You may want
9018 * unregister_netdev() instead of this.
9019 */
9020
44a0873d 9021void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 9022{
a6620712
HX
9023 ASSERT_RTNL();
9024
44a0873d 9025 if (head) {
9fdce099 9026 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
9027 } else {
9028 rollback_registered(dev);
9029 /* Finish processing unregister after unlock */
9030 net_set_todo(dev);
9031 }
1da177e4 9032}
44a0873d 9033EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 9034
9b5e383c
ED
9035/**
9036 * unregister_netdevice_many - unregister many devices
9037 * @head: list of devices
87757a91
ED
9038 *
9039 * Note: As most callers use a stack allocated list_head,
9040 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
9041 */
9042void unregister_netdevice_many(struct list_head *head)
9043{
9044 struct net_device *dev;
9045
9046 if (!list_empty(head)) {
9047 rollback_registered_many(head);
9048 list_for_each_entry(dev, head, unreg_list)
9049 net_set_todo(dev);
87757a91 9050 list_del(head);
9b5e383c
ED
9051 }
9052}
63c8099d 9053EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 9054
1da177e4
LT
9055/**
9056 * unregister_netdev - remove device from the kernel
9057 * @dev: device
9058 *
9059 * This function shuts down a device interface and removes it
d59b54b1 9060 * from the kernel tables.
1da177e4
LT
9061 *
9062 * This is just a wrapper for unregister_netdevice that takes
9063 * the rtnl semaphore. In general you want to use this and not
9064 * unregister_netdevice.
9065 */
9066void unregister_netdev(struct net_device *dev)
9067{
9068 rtnl_lock();
9069 unregister_netdevice(dev);
9070 rtnl_unlock();
9071}
1da177e4
LT
9072EXPORT_SYMBOL(unregister_netdev);
9073
ce286d32
EB
9074/**
9075 * dev_change_net_namespace - move device to different nethost namespace
9076 * @dev: device
9077 * @net: network namespace
9078 * @pat: If not NULL name pattern to try if the current device name
9079 * is already taken in the destination network namespace.
9080 *
9081 * This function shuts down a device interface and moves it
9082 * to a new network namespace. On success 0 is returned, on
9083 * a failure a netagive errno code is returned.
9084 *
9085 * Callers must hold the rtnl semaphore.
9086 */
9087
9088int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9089{
38e01b30 9090 int err, new_nsid, new_ifindex;
ce286d32
EB
9091
9092 ASSERT_RTNL();
9093
9094 /* Don't allow namespace local devices to be moved. */
9095 err = -EINVAL;
9096 if (dev->features & NETIF_F_NETNS_LOCAL)
9097 goto out;
9098
9099 /* Ensure the device has been registrered */
ce286d32
EB
9100 if (dev->reg_state != NETREG_REGISTERED)
9101 goto out;
9102
9103 /* Get out if there is nothing todo */
9104 err = 0;
878628fb 9105 if (net_eq(dev_net(dev), net))
ce286d32
EB
9106 goto out;
9107
9108 /* Pick the destination device name, and ensure
9109 * we can use it in the destination network namespace.
9110 */
9111 err = -EEXIST;
d9031024 9112 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
9113 /* We get here if we can't use the current device name */
9114 if (!pat)
9115 goto out;
7892bd08
LR
9116 err = dev_get_valid_name(net, dev, pat);
9117 if (err < 0)
ce286d32
EB
9118 goto out;
9119 }
9120
9121 /*
9122 * And now a mini version of register_netdevice unregister_netdevice.
9123 */
9124
9125 /* If device is running close it first. */
9b772652 9126 dev_close(dev);
ce286d32
EB
9127
9128 /* And unlink it from device chain */
ce286d32
EB
9129 unlist_netdevice(dev);
9130
9131 synchronize_net();
9132
9133 /* Shutdown queueing discipline. */
9134 dev_shutdown(dev);
9135
9136 /* Notify protocols, that we are about to destroy
eb13da1a 9137 * this device. They should clean all the things.
9138 *
9139 * Note that dev->reg_state stays at NETREG_REGISTERED.
9140 * This is wanted because this way 8021q and macvlan know
9141 * the device is just moving and can keep their slaves up.
9142 */
ce286d32 9143 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 9144 rcu_barrier();
38e01b30 9145
c36ac8e2 9146 new_nsid = peernet2id_alloc(dev_net(dev), net);
38e01b30
ND
9147 /* If there is an ifindex conflict assign a new one */
9148 if (__dev_get_by_index(net, dev->ifindex))
9149 new_ifindex = dev_new_index(net);
9150 else
9151 new_ifindex = dev->ifindex;
9152
9153 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9154 new_ifindex);
ce286d32
EB
9155
9156 /*
9157 * Flush the unicast and multicast chains
9158 */
a748ee24 9159 dev_uc_flush(dev);
22bedad3 9160 dev_mc_flush(dev);
ce286d32 9161
4e66ae2e
SH
9162 /* Send a netdev-removed uevent to the old namespace */
9163 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 9164 netdev_adjacent_del_links(dev);
4e66ae2e 9165
ce286d32 9166 /* Actually switch the network namespace */
c346dca1 9167 dev_net_set(dev, net);
38e01b30 9168 dev->ifindex = new_ifindex;
ce286d32 9169
4e66ae2e
SH
9170 /* Send a netdev-add uevent to the new namespace */
9171 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 9172 netdev_adjacent_add_links(dev);
4e66ae2e 9173
8b41d188 9174 /* Fixup kobjects */
a1b3f594 9175 err = device_rename(&dev->dev, dev->name);
8b41d188 9176 WARN_ON(err);
ce286d32
EB
9177
9178 /* Add the device back in the hashes */
9179 list_netdevice(dev);
9180
9181 /* Notify protocols, that a new device appeared. */
9182 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9183
d90a909e
EB
9184 /*
9185 * Prevent userspace races by waiting until the network
9186 * device is fully setup before sending notifications.
9187 */
7f294054 9188 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 9189
ce286d32
EB
9190 synchronize_net();
9191 err = 0;
9192out:
9193 return err;
9194}
463d0183 9195EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 9196
f0bf90de 9197static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
9198{
9199 struct sk_buff **list_skb;
1da177e4 9200 struct sk_buff *skb;
f0bf90de 9201 unsigned int cpu;
97d8b6e3 9202 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 9203
1da177e4
LT
9204 local_irq_disable();
9205 cpu = smp_processor_id();
9206 sd = &per_cpu(softnet_data, cpu);
9207 oldsd = &per_cpu(softnet_data, oldcpu);
9208
9209 /* Find end of our completion_queue. */
9210 list_skb = &sd->completion_queue;
9211 while (*list_skb)
9212 list_skb = &(*list_skb)->next;
9213 /* Append completion queue from offline CPU. */
9214 *list_skb = oldsd->completion_queue;
9215 oldsd->completion_queue = NULL;
9216
1da177e4 9217 /* Append output queue from offline CPU. */
a9cbd588
CG
9218 if (oldsd->output_queue) {
9219 *sd->output_queue_tailp = oldsd->output_queue;
9220 sd->output_queue_tailp = oldsd->output_queue_tailp;
9221 oldsd->output_queue = NULL;
9222 oldsd->output_queue_tailp = &oldsd->output_queue;
9223 }
ac64da0b
ED
9224 /* Append NAPI poll list from offline CPU, with one exception :
9225 * process_backlog() must be called by cpu owning percpu backlog.
9226 * We properly handle process_queue & input_pkt_queue later.
9227 */
9228 while (!list_empty(&oldsd->poll_list)) {
9229 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9230 struct napi_struct,
9231 poll_list);
9232
9233 list_del_init(&napi->poll_list);
9234 if (napi->poll == process_backlog)
9235 napi->state = 0;
9236 else
9237 ____napi_schedule(sd, napi);
264524d5 9238 }
1da177e4
LT
9239
9240 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9241 local_irq_enable();
9242
773fc8f6 9243#ifdef CONFIG_RPS
9244 remsd = oldsd->rps_ipi_list;
9245 oldsd->rps_ipi_list = NULL;
9246#endif
9247 /* send out pending IPI's on offline CPU */
9248 net_rps_send_ipi(remsd);
9249
1da177e4 9250 /* Process offline CPU's input_pkt_queue */
76cc8b13 9251 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 9252 netif_rx_ni(skb);
76cc8b13 9253 input_queue_head_incr(oldsd);
fec5e652 9254 }
ac64da0b 9255 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 9256 netif_rx_ni(skb);
76cc8b13
TH
9257 input_queue_head_incr(oldsd);
9258 }
1da177e4 9259
f0bf90de 9260 return 0;
1da177e4 9261}
1da177e4 9262
7f353bf2 9263/**
b63365a2
HX
9264 * netdev_increment_features - increment feature set by one
9265 * @all: current feature set
9266 * @one: new feature set
9267 * @mask: mask feature set
7f353bf2
HX
9268 *
9269 * Computes a new feature set after adding a device with feature set
b63365a2
HX
9270 * @one to the master device with current feature set @all. Will not
9271 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 9272 */
c8f44aff
MM
9273netdev_features_t netdev_increment_features(netdev_features_t all,
9274 netdev_features_t one, netdev_features_t mask)
b63365a2 9275{
c8cd0989 9276 if (mask & NETIF_F_HW_CSUM)
a188222b 9277 mask |= NETIF_F_CSUM_MASK;
1742f183 9278 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 9279
a188222b 9280 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 9281 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 9282
1742f183 9283 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
9284 if (all & NETIF_F_HW_CSUM)
9285 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
9286
9287 return all;
9288}
b63365a2 9289EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 9290
430f03cd 9291static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
9292{
9293 int i;
9294 struct hlist_head *hash;
9295
6da2ec56 9296 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
9297 if (hash != NULL)
9298 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9299 INIT_HLIST_HEAD(&hash[i]);
9300
9301 return hash;
9302}
9303
881d966b 9304/* Initialize per network namespace state */
4665079c 9305static int __net_init netdev_init(struct net *net)
881d966b 9306{
d9f37d01 9307 BUILD_BUG_ON(GRO_HASH_BUCKETS >
ccdb5171 9308 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
d9f37d01 9309
734b6541
RM
9310 if (net != &init_net)
9311 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 9312
30d97d35
PE
9313 net->dev_name_head = netdev_create_hash();
9314 if (net->dev_name_head == NULL)
9315 goto err_name;
881d966b 9316
30d97d35
PE
9317 net->dev_index_head = netdev_create_hash();
9318 if (net->dev_index_head == NULL)
9319 goto err_idx;
881d966b
EB
9320
9321 return 0;
30d97d35
PE
9322
9323err_idx:
9324 kfree(net->dev_name_head);
9325err_name:
9326 return -ENOMEM;
881d966b
EB
9327}
9328
f0db275a
SH
9329/**
9330 * netdev_drivername - network driver for the device
9331 * @dev: network device
f0db275a
SH
9332 *
9333 * Determine network driver for device.
9334 */
3019de12 9335const char *netdev_drivername(const struct net_device *dev)
6579e57b 9336{
cf04a4c7
SH
9337 const struct device_driver *driver;
9338 const struct device *parent;
3019de12 9339 const char *empty = "";
6579e57b
AV
9340
9341 parent = dev->dev.parent;
6579e57b 9342 if (!parent)
3019de12 9343 return empty;
6579e57b
AV
9344
9345 driver = parent->driver;
9346 if (driver && driver->name)
3019de12
DM
9347 return driver->name;
9348 return empty;
6579e57b
AV
9349}
9350
6ea754eb
JP
9351static void __netdev_printk(const char *level, const struct net_device *dev,
9352 struct va_format *vaf)
256df2f3 9353{
b004ff49 9354 if (dev && dev->dev.parent) {
6ea754eb
JP
9355 dev_printk_emit(level[1] - '0',
9356 dev->dev.parent,
9357 "%s %s %s%s: %pV",
9358 dev_driver_string(dev->dev.parent),
9359 dev_name(dev->dev.parent),
9360 netdev_name(dev), netdev_reg_state(dev),
9361 vaf);
b004ff49 9362 } else if (dev) {
6ea754eb
JP
9363 printk("%s%s%s: %pV",
9364 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 9365 } else {
6ea754eb 9366 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 9367 }
256df2f3
JP
9368}
9369
6ea754eb
JP
9370void netdev_printk(const char *level, const struct net_device *dev,
9371 const char *format, ...)
256df2f3
JP
9372{
9373 struct va_format vaf;
9374 va_list args;
256df2f3
JP
9375
9376 va_start(args, format);
9377
9378 vaf.fmt = format;
9379 vaf.va = &args;
9380
6ea754eb 9381 __netdev_printk(level, dev, &vaf);
b004ff49 9382
256df2f3 9383 va_end(args);
256df2f3
JP
9384}
9385EXPORT_SYMBOL(netdev_printk);
9386
9387#define define_netdev_printk_level(func, level) \
6ea754eb 9388void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 9389{ \
256df2f3
JP
9390 struct va_format vaf; \
9391 va_list args; \
9392 \
9393 va_start(args, fmt); \
9394 \
9395 vaf.fmt = fmt; \
9396 vaf.va = &args; \
9397 \
6ea754eb 9398 __netdev_printk(level, dev, &vaf); \
b004ff49 9399 \
256df2f3 9400 va_end(args); \
256df2f3
JP
9401} \
9402EXPORT_SYMBOL(func);
9403
9404define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9405define_netdev_printk_level(netdev_alert, KERN_ALERT);
9406define_netdev_printk_level(netdev_crit, KERN_CRIT);
9407define_netdev_printk_level(netdev_err, KERN_ERR);
9408define_netdev_printk_level(netdev_warn, KERN_WARNING);
9409define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9410define_netdev_printk_level(netdev_info, KERN_INFO);
9411
4665079c 9412static void __net_exit netdev_exit(struct net *net)
881d966b
EB
9413{
9414 kfree(net->dev_name_head);
9415 kfree(net->dev_index_head);
ee21b18b
VA
9416 if (net != &init_net)
9417 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
9418}
9419
022cbae6 9420static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
9421 .init = netdev_init,
9422 .exit = netdev_exit,
9423};
9424
4665079c 9425static void __net_exit default_device_exit(struct net *net)
ce286d32 9426{
e008b5fc 9427 struct net_device *dev, *aux;
ce286d32 9428 /*
e008b5fc 9429 * Push all migratable network devices back to the
ce286d32
EB
9430 * initial network namespace
9431 */
9432 rtnl_lock();
e008b5fc 9433 for_each_netdev_safe(net, dev, aux) {
ce286d32 9434 int err;
aca51397 9435 char fb_name[IFNAMSIZ];
ce286d32
EB
9436
9437 /* Ignore unmoveable devices (i.e. loopback) */
9438 if (dev->features & NETIF_F_NETNS_LOCAL)
9439 continue;
9440
e008b5fc
EB
9441 /* Leave virtual devices for the generic cleanup */
9442 if (dev->rtnl_link_ops)
9443 continue;
d0c082ce 9444
25985edc 9445 /* Push remaining network devices to init_net */
aca51397
PE
9446 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9447 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 9448 if (err) {
7b6cd1ce
JP
9449 pr_emerg("%s: failed to move %s to init_net: %d\n",
9450 __func__, dev->name, err);
aca51397 9451 BUG();
ce286d32
EB
9452 }
9453 }
9454 rtnl_unlock();
9455}
9456
50624c93
EB
9457static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9458{
9459 /* Return with the rtnl_lock held when there are no network
9460 * devices unregistering in any network namespace in net_list.
9461 */
9462 struct net *net;
9463 bool unregistering;
ff960a73 9464 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 9465
ff960a73 9466 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 9467 for (;;) {
50624c93
EB
9468 unregistering = false;
9469 rtnl_lock();
9470 list_for_each_entry(net, net_list, exit_list) {
9471 if (net->dev_unreg_count > 0) {
9472 unregistering = true;
9473 break;
9474 }
9475 }
9476 if (!unregistering)
9477 break;
9478 __rtnl_unlock();
ff960a73
PZ
9479
9480 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 9481 }
ff960a73 9482 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
9483}
9484
04dc7f6b
EB
9485static void __net_exit default_device_exit_batch(struct list_head *net_list)
9486{
9487 /* At exit all network devices most be removed from a network
b595076a 9488 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
9489 * Do this across as many network namespaces as possible to
9490 * improve batching efficiency.
9491 */
9492 struct net_device *dev;
9493 struct net *net;
9494 LIST_HEAD(dev_kill_list);
9495
50624c93
EB
9496 /* To prevent network device cleanup code from dereferencing
9497 * loopback devices or network devices that have been freed
9498 * wait here for all pending unregistrations to complete,
9499 * before unregistring the loopback device and allowing the
9500 * network namespace be freed.
9501 *
9502 * The netdev todo list containing all network devices
9503 * unregistrations that happen in default_device_exit_batch
9504 * will run in the rtnl_unlock() at the end of
9505 * default_device_exit_batch.
9506 */
9507 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
9508 list_for_each_entry(net, net_list, exit_list) {
9509 for_each_netdev_reverse(net, dev) {
b0ab2fab 9510 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
9511 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9512 else
9513 unregister_netdevice_queue(dev, &dev_kill_list);
9514 }
9515 }
9516 unregister_netdevice_many(&dev_kill_list);
9517 rtnl_unlock();
9518}
9519
022cbae6 9520static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 9521 .exit = default_device_exit,
04dc7f6b 9522 .exit_batch = default_device_exit_batch,
ce286d32
EB
9523};
9524
1da177e4
LT
9525/*
9526 * Initialize the DEV module. At boot time this walks the device list and
9527 * unhooks any devices that fail to initialise (normally hardware not
9528 * present) and leaves us with a valid list of present and active devices.
9529 *
9530 */
9531
9532/*
9533 * This is called single threaded during boot, so no need
9534 * to take the rtnl semaphore.
9535 */
9536static int __init net_dev_init(void)
9537{
9538 int i, rc = -ENOMEM;
9539
9540 BUG_ON(!dev_boot_phase);
9541
1da177e4
LT
9542 if (dev_proc_init())
9543 goto out;
9544
8b41d188 9545 if (netdev_kobject_init())
1da177e4
LT
9546 goto out;
9547
9548 INIT_LIST_HEAD(&ptype_all);
82d8a867 9549 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
9550 INIT_LIST_HEAD(&ptype_base[i]);
9551
62532da9
VY
9552 INIT_LIST_HEAD(&offload_base);
9553
881d966b
EB
9554 if (register_pernet_subsys(&netdev_net_ops))
9555 goto out;
1da177e4
LT
9556
9557 /*
9558 * Initialise the packet receive queues.
9559 */
9560
6f912042 9561 for_each_possible_cpu(i) {
41852497 9562 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 9563 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 9564
41852497
ED
9565 INIT_WORK(flush, flush_backlog);
9566
e36fa2f7 9567 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 9568 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
9569#ifdef CONFIG_XFRM_OFFLOAD
9570 skb_queue_head_init(&sd->xfrm_backlog);
9571#endif
e36fa2f7 9572 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 9573 sd->output_queue_tailp = &sd->output_queue;
df334545 9574#ifdef CONFIG_RPS
e36fa2f7
ED
9575 sd->csd.func = rps_trigger_softirq;
9576 sd->csd.info = sd;
e36fa2f7 9577 sd->cpu = i;
1e94d72f 9578#endif
0a9627f2 9579
7c4ec749 9580 init_gro_hash(&sd->backlog);
e36fa2f7
ED
9581 sd->backlog.poll = process_backlog;
9582 sd->backlog.weight = weight_p;
1da177e4
LT
9583 }
9584
1da177e4
LT
9585 dev_boot_phase = 0;
9586
505d4f73
EB
9587 /* The loopback device is special if any other network devices
9588 * is present in a network namespace the loopback device must
9589 * be present. Since we now dynamically allocate and free the
9590 * loopback device ensure this invariant is maintained by
9591 * keeping the loopback device as the first device on the
9592 * list of network devices. Ensuring the loopback devices
9593 * is the first device that appears and the last network device
9594 * that disappears.
9595 */
9596 if (register_pernet_device(&loopback_net_ops))
9597 goto out;
9598
9599 if (register_pernet_device(&default_device_ops))
9600 goto out;
9601
962cf36c
CM
9602 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9603 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 9604
f0bf90de
SAS
9605 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9606 NULL, dev_cpu_dead);
9607 WARN_ON(rc < 0);
1da177e4
LT
9608 rc = 0;
9609out:
9610 return rc;
9611}
9612
9613subsys_initcall(net_dev_init);