]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/core/dev.c
bpf: don't select potentially stale ri->map from buggy xdp progs
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4
LT
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
a7862b45 98#include <linux/bpf.h>
b5cdae32 99#include <linux/bpf_trace.h>
457c4cbc 100#include <net/net_namespace.h>
1da177e4 101#include <net/sock.h>
02d62e86 102#include <net/busy_poll.h>
1da177e4 103#include <linux/rtnetlink.h>
1da177e4 104#include <linux/stat.h>
1da177e4 105#include <net/dst.h>
fc4099f1 106#include <net/dst_metadata.h>
1da177e4 107#include <net/pkt_sched.h>
87d83093 108#include <net/pkt_cls.h>
1da177e4 109#include <net/checksum.h>
44540960 110#include <net/xfrm.h>
1da177e4
LT
111#include <linux/highmem.h>
112#include <linux/init.h>
1da177e4 113#include <linux/module.h>
1da177e4
LT
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
25cd9ba0 127#include <net/mpls.h>
8f0f2223
DM
128#include <linux/ipv6.h>
129#include <linux/in.h>
b6b2fed1
DM
130#include <linux/jhash.h>
131#include <linux/random.h>
9cbc1cb8 132#include <trace/events/napi.h>
cf66ba58 133#include <trace/events/net.h>
07dc22e7 134#include <trace/events/skb.h>
5acbbd42 135#include <linux/pci.h>
caeda9b9 136#include <linux/inetdevice.h>
c445477d 137#include <linux/cpu_rmap.h>
c5905afb 138#include <linux/static_key.h>
af12fa6e 139#include <linux/hashtable.h>
60877a32 140#include <linux/vmalloc.h>
529d0489 141#include <linux/if_macvlan.h>
e7fd2885 142#include <linux/errqueue.h>
3b47d303 143#include <linux/hrtimer.h>
e687ad60 144#include <linux/netfilter_ingress.h>
40e4e713 145#include <linux/crash_dump.h>
b72b5bf6 146#include <linux/sctp.h>
ae847f40 147#include <net/udp_tunnel.h>
1da177e4 148
342709ef
PE
149#include "net-sysfs.h"
150
d565b0a1
HX
151/* Instead of increasing this, you should create a hash table. */
152#define MAX_GRO_SKBS 8
153
5d38a079
HX
154/* This should be increased if a protocol with a bigger head is added. */
155#define GRO_MAX_HEAD (MAX_HEADER + 128)
156
1da177e4 157static DEFINE_SPINLOCK(ptype_lock);
62532da9 158static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
62532da9 161static struct list_head offload_base __read_mostly;
1da177e4 162
ae78dbfa 163static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
164static int call_netdevice_notifiers_info(unsigned long val,
165 struct net_device *dev,
166 struct netdev_notifier_info *info);
90b602f8 167static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 168
1da177e4 169/*
7562f876 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
171 * semaphore.
172 *
c6d14c84 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
7562f876 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
1da177e4 188DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
189EXPORT_SYMBOL(dev_base_lock);
190
af12fa6e
ET
191/* protects napi_hash addition/deletion and napi_gen_id */
192static DEFINE_SPINLOCK(napi_hash_lock);
193
52bd2d62 194static unsigned int napi_gen_id = NR_CPUS;
6180d9de 195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 196
18afa4b0 197static seqcount_t devnet_rename_seq;
c91f6df2 198
4e985ada
TG
199static inline void dev_base_seq_inc(struct net *net)
200{
643aa9cb 201 while (++net->dev_base_seq == 0)
202 ;
4e985ada
TG
203}
204
881d966b 205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 206{
8387ff25 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 208
08e9897d 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
210}
211
881d966b 212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 213{
7c28bd0b 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
215}
216
e36fa2f7 217static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
e36fa2f7 224static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
225{
226#ifdef CONFIG_RPS
e36fa2f7 227 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
228#endif
229}
230
ce286d32 231/* Device list insertion */
53759be9 232static void list_netdevice(struct net_device *dev)
ce286d32 233{
c346dca1 234 struct net *net = dev_net(dev);
ce286d32
EB
235
236 ASSERT_RTNL();
237
238 write_lock_bh(&dev_base_lock);
c6d14c84 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
241 hlist_add_head_rcu(&dev->index_hlist,
242 dev_index_hash(net, dev->ifindex));
ce286d32 243 write_unlock_bh(&dev_base_lock);
4e985ada
TG
244
245 dev_base_seq_inc(net);
ce286d32
EB
246}
247
fb699dfd
ED
248/* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
250 */
ce286d32
EB
251static void unlist_netdevice(struct net_device *dev)
252{
253 ASSERT_RTNL();
254
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock);
c6d14c84 257 list_del_rcu(&dev->dev_list);
72c9528b 258 hlist_del_rcu(&dev->name_hlist);
fb699dfd 259 hlist_del_rcu(&dev->index_hlist);
ce286d32 260 write_unlock_bh(&dev_base_lock);
4e985ada
TG
261
262 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
263}
264
1da177e4
LT
265/*
266 * Our notifier list
267 */
268
f07d5b94 269static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
270
271/*
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
274 */
bea3348e 275
9958da05 276DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 277EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 278
cf508b12 279#ifdef CONFIG_LOCKDEP
723e98b7 280/*
c773e847 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
282 * according to dev->type
283 */
643aa9cb 284static const unsigned short netdev_lock_type[] = {
285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 300
643aa9cb 301static const char *const netdev_lock_name[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
317
318static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 319static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
320
321static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322{
323 int i;
324
325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 if (netdev_lock_type[i] == dev_type)
327 return i;
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type) - 1;
330}
331
cf508b12
DM
332static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
723e98b7
JP
334{
335 int i;
336
337 i = netdev_lock_pos(dev_type);
338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 netdev_lock_name[i]);
340}
cf508b12
DM
341
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343{
344 int i;
345
346 i = netdev_lock_pos(dev->type);
347 lockdep_set_class_and_name(&dev->addr_list_lock,
348 &netdev_addr_lock_key[i],
349 netdev_lock_name[i]);
350}
723e98b7 351#else
cf508b12
DM
352static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 unsigned short dev_type)
354{
355}
356static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
357{
358}
359#endif
1da177e4
LT
360
361/*******************************************************************************
eb13da1a 362 *
363 * Protocol management and registration routines
364 *
365 *******************************************************************************/
1da177e4 366
1da177e4 367
1da177e4
LT
368/*
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
371 * here.
372 *
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
381 * --ANK (980803)
382 */
383
c07b68e8
ED
384static inline struct list_head *ptype_head(const struct packet_type *pt)
385{
386 if (pt->type == htons(ETH_P_ALL))
7866a621 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 388 else
7866a621
SN
389 return pt->dev ? &pt->dev->ptype_specific :
390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
391}
392
1da177e4
LT
393/**
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
396 *
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
400 *
4ec93edb 401 * This call does not sleep therefore it can not
1da177e4
LT
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
404 */
405
406void dev_add_pack(struct packet_type *pt)
407{
c07b68e8 408 struct list_head *head = ptype_head(pt);
1da177e4 409
c07b68e8
ED
410 spin_lock(&ptype_lock);
411 list_add_rcu(&pt->list, head);
412 spin_unlock(&ptype_lock);
1da177e4 413}
d1b19dff 414EXPORT_SYMBOL(dev_add_pack);
1da177e4 415
1da177e4
LT
416/**
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
419 *
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
4ec93edb 423 * returns.
1da177e4
LT
424 *
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
428 */
429void __dev_remove_pack(struct packet_type *pt)
430{
c07b68e8 431 struct list_head *head = ptype_head(pt);
1da177e4
LT
432 struct packet_type *pt1;
433
c07b68e8 434 spin_lock(&ptype_lock);
1da177e4
LT
435
436 list_for_each_entry(pt1, head, list) {
437 if (pt == pt1) {
438 list_del_rcu(&pt->list);
439 goto out;
440 }
441 }
442
7b6cd1ce 443 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 444out:
c07b68e8 445 spin_unlock(&ptype_lock);
1da177e4 446}
d1b19dff
ED
447EXPORT_SYMBOL(__dev_remove_pack);
448
1da177e4
LT
449/**
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
452 *
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
456 * returns.
457 *
458 * This call sleeps to guarantee that no CPU is looking at the packet
459 * type after return.
460 */
461void dev_remove_pack(struct packet_type *pt)
462{
463 __dev_remove_pack(pt);
4ec93edb 464
1da177e4
LT
465 synchronize_net();
466}
d1b19dff 467EXPORT_SYMBOL(dev_remove_pack);
1da177e4 468
62532da9
VY
469
470/**
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
473 *
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
477 *
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
481 */
482void dev_add_offload(struct packet_offload *po)
483{
bdef7de4 484 struct packet_offload *elem;
62532da9
VY
485
486 spin_lock(&offload_lock);
bdef7de4
DM
487 list_for_each_entry(elem, &offload_base, list) {
488 if (po->priority < elem->priority)
489 break;
490 }
491 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
492 spin_unlock(&offload_lock);
493}
494EXPORT_SYMBOL(dev_add_offload);
495
496/**
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
508 */
1d143d9f 509static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
510{
511 struct list_head *head = &offload_base;
512 struct packet_offload *po1;
513
c53aa505 514 spin_lock(&offload_lock);
62532da9
VY
515
516 list_for_each_entry(po1, head, list) {
517 if (po == po1) {
518 list_del_rcu(&po->list);
519 goto out;
520 }
521 }
522
523 pr_warn("dev_remove_offload: %p not found\n", po);
524out:
c53aa505 525 spin_unlock(&offload_lock);
62532da9 526}
62532da9
VY
527
528/**
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
531 *
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
535 * function returns.
536 *
537 * This call sleeps to guarantee that no CPU is looking at the packet
538 * type after return.
539 */
540void dev_remove_offload(struct packet_offload *po)
541{
542 __dev_remove_offload(po);
543
544 synchronize_net();
545}
546EXPORT_SYMBOL(dev_remove_offload);
547
1da177e4 548/******************************************************************************
eb13da1a 549 *
550 * Device Boot-time Settings Routines
551 *
552 ******************************************************************************/
1da177e4
LT
553
554/* Boot time configuration table */
555static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557/**
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
561 *
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
564 * all netdevices.
565 */
566static int netdev_boot_setup_add(char *name, struct ifmap *map)
567{
568 struct netdev_boot_setup *s;
569 int i;
570
571 s = dev_boot_setup;
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 575 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
576 memcpy(&s[i].map, map, sizeof(s[i].map));
577 break;
578 }
579 }
580
581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582}
583
584/**
722c9a0c 585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
1da177e4 587 *
722c9a0c 588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
592 */
593int netdev_boot_setup_check(struct net_device *dev)
594{
595 struct netdev_boot_setup *s = dev_boot_setup;
596 int i;
597
598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 600 !strcmp(dev->name, s[i].name)) {
722c9a0c 601 dev->irq = s[i].map.irq;
602 dev->base_addr = s[i].map.base_addr;
603 dev->mem_start = s[i].map.mem_start;
604 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
605 return 1;
606 }
607 }
608 return 0;
609}
d1b19dff 610EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
611
612
613/**
722c9a0c 614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
617 *
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
1da177e4
LT
622 */
623unsigned long netdev_boot_base(const char *prefix, int unit)
624{
625 const struct netdev_boot_setup *s = dev_boot_setup;
626 char name[IFNAMSIZ];
627 int i;
628
629 sprintf(name, "%s%d", prefix, unit);
630
631 /*
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
634 */
881d966b 635 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
636 return 1;
637
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 if (!strcmp(name, s[i].name))
640 return s[i].map.base_addr;
641 return 0;
642}
643
644/*
645 * Saves at boot time configured settings for any netdevice.
646 */
647int __init netdev_boot_setup(char *str)
648{
649 int ints[5];
650 struct ifmap map;
651
652 str = get_options(str, ARRAY_SIZE(ints), ints);
653 if (!str || !*str)
654 return 0;
655
656 /* Save settings */
657 memset(&map, 0, sizeof(map));
658 if (ints[0] > 0)
659 map.irq = ints[1];
660 if (ints[0] > 1)
661 map.base_addr = ints[2];
662 if (ints[0] > 2)
663 map.mem_start = ints[3];
664 if (ints[0] > 3)
665 map.mem_end = ints[4];
666
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str, &map);
669}
670
671__setup("netdev=", netdev_boot_setup);
672
673/*******************************************************************************
eb13da1a 674 *
675 * Device Interface Subroutines
676 *
677 *******************************************************************************/
1da177e4 678
a54acb3a
ND
679/**
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
682 *
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
685 */
686
687int dev_get_iflink(const struct net_device *dev)
688{
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
691
7a66bbc9 692 return dev->ifindex;
a54acb3a
ND
693}
694EXPORT_SYMBOL(dev_get_iflink);
695
fc4099f1
PS
696/**
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
699 * @skb: The packet.
700 *
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
704 */
705int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706{
707 struct ip_tunnel_info *info;
708
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
710 return -EINVAL;
711
712 info = skb_tunnel_info_unclone(skb);
713 if (!info)
714 return -ENOMEM;
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 return -EINVAL;
717
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719}
720EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
1da177e4
LT
722/**
723 * __dev_get_by_name - find a device by its name
c4ea43c5 724 * @net: the applicable net namespace
1da177e4
LT
725 * @name: name to find
726 *
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
732 */
733
881d966b 734struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 735{
0bd8d536
ED
736 struct net_device *dev;
737 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 738
b67bfe0d 739 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
740 if (!strncmp(dev->name, name, IFNAMSIZ))
741 return dev;
0bd8d536 742
1da177e4
LT
743 return NULL;
744}
d1b19dff 745EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 746
72c9528b 747/**
722c9a0c 748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
751 *
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
757 */
758
759struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760{
72c9528b
ED
761 struct net_device *dev;
762 struct hlist_head *head = dev_name_hash(net, name);
763
b67bfe0d 764 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
765 if (!strncmp(dev->name, name, IFNAMSIZ))
766 return dev;
767
768 return NULL;
769}
770EXPORT_SYMBOL(dev_get_by_name_rcu);
771
1da177e4
LT
772/**
773 * dev_get_by_name - find a device by its name
c4ea43c5 774 * @net: the applicable net namespace
1da177e4
LT
775 * @name: name to find
776 *
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
782 */
783
881d966b 784struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
785{
786 struct net_device *dev;
787
72c9528b
ED
788 rcu_read_lock();
789 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
790 if (dev)
791 dev_hold(dev);
72c9528b 792 rcu_read_unlock();
1da177e4
LT
793 return dev;
794}
d1b19dff 795EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
796
797/**
798 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 799 * @net: the applicable net namespace
1da177e4
LT
800 * @ifindex: index of device
801 *
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
806 * or @dev_base_lock.
807 */
808
881d966b 809struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 810{
0bd8d536
ED
811 struct net_device *dev;
812 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 813
b67bfe0d 814 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
815 if (dev->ifindex == ifindex)
816 return dev;
0bd8d536 817
1da177e4
LT
818 return NULL;
819}
d1b19dff 820EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 821
fb699dfd
ED
822/**
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
826 *
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
831 */
832
833struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834{
fb699dfd
ED
835 struct net_device *dev;
836 struct hlist_head *head = dev_index_hash(net, ifindex);
837
b67bfe0d 838 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
839 if (dev->ifindex == ifindex)
840 return dev;
841
842 return NULL;
843}
844EXPORT_SYMBOL(dev_get_by_index_rcu);
845
1da177e4
LT
846
847/**
848 * dev_get_by_index - find a device by its ifindex
c4ea43c5 849 * @net: the applicable net namespace
1da177e4
LT
850 * @ifindex: index of device
851 *
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
856 */
857
881d966b 858struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
859{
860 struct net_device *dev;
861
fb699dfd
ED
862 rcu_read_lock();
863 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
864 if (dev)
865 dev_hold(dev);
fb699dfd 866 rcu_read_unlock();
1da177e4
LT
867 return dev;
868}
d1b19dff 869EXPORT_SYMBOL(dev_get_by_index);
1da177e4 870
90b602f8
ML
871/**
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
874 *
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
879 */
880
881struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882{
883 struct napi_struct *napi;
884
885 WARN_ON_ONCE(!rcu_read_lock_held());
886
887 if (napi_id < MIN_NAPI_ID)
888 return NULL;
889
890 napi = napi_by_id(napi_id);
891
892 return napi ? napi->dev : NULL;
893}
894EXPORT_SYMBOL(dev_get_by_napi_id);
895
5dbe7c17
NS
896/**
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
901 *
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
905 */
906int netdev_get_name(struct net *net, char *name, int ifindex)
907{
908 struct net_device *dev;
909 unsigned int seq;
910
911retry:
912 seq = raw_seqcount_begin(&devnet_rename_seq);
913 rcu_read_lock();
914 dev = dev_get_by_index_rcu(net, ifindex);
915 if (!dev) {
916 rcu_read_unlock();
917 return -ENODEV;
918 }
919
920 strcpy(name, dev->name);
921 rcu_read_unlock();
922 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 cond_resched();
924 goto retry;
925 }
926
927 return 0;
928}
929
1da177e4 930/**
941666c2 931 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 932 * @net: the applicable net namespace
1da177e4
LT
933 * @type: media type of device
934 * @ha: hardware address
935 *
936 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
941666c2 939 * The returned device has not had its ref count increased
1da177e4
LT
940 * and the caller must therefore be careful about locking
941 *
1da177e4
LT
942 */
943
941666c2
ED
944struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 const char *ha)
1da177e4
LT
946{
947 struct net_device *dev;
948
941666c2 949 for_each_netdev_rcu(net, dev)
1da177e4
LT
950 if (dev->type == type &&
951 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
952 return dev;
953
954 return NULL;
1da177e4 955}
941666c2 956EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 957
881d966b 958struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
959{
960 struct net_device *dev;
961
4e9cac2b 962 ASSERT_RTNL();
881d966b 963 for_each_netdev(net, dev)
4e9cac2b 964 if (dev->type == type)
7562f876
PE
965 return dev;
966
967 return NULL;
4e9cac2b 968}
4e9cac2b
PM
969EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
881d966b 971struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 972{
99fe3c39 973 struct net_device *dev, *ret = NULL;
4e9cac2b 974
99fe3c39
ED
975 rcu_read_lock();
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type) {
978 dev_hold(dev);
979 ret = dev;
980 break;
981 }
982 rcu_read_unlock();
983 return ret;
1da177e4 984}
1da177e4
LT
985EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987/**
6c555490 988 * __dev_get_by_flags - find any device with given flags
c4ea43c5 989 * @net: the applicable net namespace
1da177e4
LT
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
992 *
993 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 994 * is not found or a pointer to the device. Must be called inside
6c555490 995 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
996 */
997
6c555490
WC
998struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 unsigned short mask)
1da177e4 1000{
7562f876 1001 struct net_device *dev, *ret;
1da177e4 1002
6c555490
WC
1003 ASSERT_RTNL();
1004
7562f876 1005 ret = NULL;
6c555490 1006 for_each_netdev(net, dev) {
1da177e4 1007 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1008 ret = dev;
1da177e4
LT
1009 break;
1010 }
1011 }
7562f876 1012 return ret;
1da177e4 1013}
6c555490 1014EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1015
1016/**
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1019 *
1020 * Network device names need to be valid file names to
c7fa9d18
DM
1021 * to allow sysfs to work. We also disallow any kind of
1022 * whitespace.
1da177e4 1023 */
95f050bf 1024bool dev_valid_name(const char *name)
1da177e4 1025{
c7fa9d18 1026 if (*name == '\0')
95f050bf 1027 return false;
b6fe17d6 1028 if (strlen(name) >= IFNAMSIZ)
95f050bf 1029 return false;
c7fa9d18 1030 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1031 return false;
c7fa9d18
DM
1032
1033 while (*name) {
a4176a93 1034 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1035 return false;
c7fa9d18
DM
1036 name++;
1037 }
95f050bf 1038 return true;
1da177e4 1039}
d1b19dff 1040EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1041
1042/**
b267b179
EB
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1da177e4 1045 * @name: name format string
b267b179 1046 * @buf: scratch buffer and result name string
1da177e4
LT
1047 *
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1052 * duplicates.
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1055 */
1056
b267b179 1057static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1058{
1059 int i = 0;
1da177e4
LT
1060 const char *p;
1061 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1062 unsigned long *inuse;
1da177e4
LT
1063 struct net_device *d;
1064
1065 p = strnchr(name, IFNAMSIZ-1, '%');
1066 if (p) {
1067 /*
1068 * Verify the string as this thing may have come from
1069 * the user. There must be either one "%d" and no other "%"
1070 * characters.
1071 */
1072 if (p[1] != 'd' || strchr(p + 2, '%'))
1073 return -EINVAL;
1074
1075 /* Use one page as a bit array of possible slots */
cfcabdcc 1076 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1077 if (!inuse)
1078 return -ENOMEM;
1079
881d966b 1080 for_each_netdev(net, d) {
1da177e4
LT
1081 if (!sscanf(d->name, name, &i))
1082 continue;
1083 if (i < 0 || i >= max_netdevices)
1084 continue;
1085
1086 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1087 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1088 if (!strncmp(buf, d->name, IFNAMSIZ))
1089 set_bit(i, inuse);
1090 }
1091
1092 i = find_first_zero_bit(inuse, max_netdevices);
1093 free_page((unsigned long) inuse);
1094 }
1095
d9031024
OP
1096 if (buf != name)
1097 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1098 if (!__dev_get_by_name(net, buf))
1da177e4 1099 return i;
1da177e4
LT
1100
1101 /* It is possible to run out of possible slots
1102 * when the name is long and there isn't enough space left
1103 * for the digits, or if all bits are used.
1104 */
1105 return -ENFILE;
1106}
1107
b267b179
EB
1108/**
1109 * dev_alloc_name - allocate a name for a device
1110 * @dev: device
1111 * @name: name format string
1112 *
1113 * Passed a format string - eg "lt%d" it will try and find a suitable
1114 * id. It scans list of devices to build up a free map, then chooses
1115 * the first empty slot. The caller must hold the dev_base or rtnl lock
1116 * while allocating the name and adding the device in order to avoid
1117 * duplicates.
1118 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1119 * Returns the number of the unit assigned or a negative errno code.
1120 */
1121
1122int dev_alloc_name(struct net_device *dev, const char *name)
1123{
1124 char buf[IFNAMSIZ];
1125 struct net *net;
1126 int ret;
1127
c346dca1
YH
1128 BUG_ON(!dev_net(dev));
1129 net = dev_net(dev);
b267b179
EB
1130 ret = __dev_alloc_name(net, name, buf);
1131 if (ret >= 0)
1132 strlcpy(dev->name, buf, IFNAMSIZ);
1133 return ret;
1134}
d1b19dff 1135EXPORT_SYMBOL(dev_alloc_name);
b267b179 1136
828de4f6
G
1137static int dev_alloc_name_ns(struct net *net,
1138 struct net_device *dev,
1139 const char *name)
d9031024 1140{
828de4f6
G
1141 char buf[IFNAMSIZ];
1142 int ret;
8ce6cebc 1143
828de4f6
G
1144 ret = __dev_alloc_name(net, name, buf);
1145 if (ret >= 0)
1146 strlcpy(dev->name, buf, IFNAMSIZ);
1147 return ret;
1148}
1149
1150static int dev_get_valid_name(struct net *net,
1151 struct net_device *dev,
1152 const char *name)
1153{
1154 BUG_ON(!net);
8ce6cebc 1155
d9031024
OP
1156 if (!dev_valid_name(name))
1157 return -EINVAL;
1158
1c5cae81 1159 if (strchr(name, '%'))
828de4f6 1160 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1161 else if (__dev_get_by_name(net, name))
1162 return -EEXIST;
8ce6cebc
DL
1163 else if (dev->name != name)
1164 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1165
1166 return 0;
1167}
1da177e4
LT
1168
1169/**
1170 * dev_change_name - change name of a device
1171 * @dev: device
1172 * @newname: name (or format string) must be at least IFNAMSIZ
1173 *
1174 * Change name of a device, can pass format strings "eth%d".
1175 * for wildcarding.
1176 */
cf04a4c7 1177int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1178{
238fa362 1179 unsigned char old_assign_type;
fcc5a03a 1180 char oldname[IFNAMSIZ];
1da177e4 1181 int err = 0;
fcc5a03a 1182 int ret;
881d966b 1183 struct net *net;
1da177e4
LT
1184
1185 ASSERT_RTNL();
c346dca1 1186 BUG_ON(!dev_net(dev));
1da177e4 1187
c346dca1 1188 net = dev_net(dev);
1da177e4
LT
1189 if (dev->flags & IFF_UP)
1190 return -EBUSY;
1191
30e6c9fa 1192 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1193
1194 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1195 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1196 return 0;
c91f6df2 1197 }
c8d90dca 1198
fcc5a03a
HX
1199 memcpy(oldname, dev->name, IFNAMSIZ);
1200
828de4f6 1201 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1202 if (err < 0) {
30e6c9fa 1203 write_seqcount_end(&devnet_rename_seq);
d9031024 1204 return err;
c91f6df2 1205 }
1da177e4 1206
6fe82a39
VF
1207 if (oldname[0] && !strchr(oldname, '%'))
1208 netdev_info(dev, "renamed from %s\n", oldname);
1209
238fa362
TG
1210 old_assign_type = dev->name_assign_type;
1211 dev->name_assign_type = NET_NAME_RENAMED;
1212
fcc5a03a 1213rollback:
a1b3f594
EB
1214 ret = device_rename(&dev->dev, dev->name);
1215 if (ret) {
1216 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1217 dev->name_assign_type = old_assign_type;
30e6c9fa 1218 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1219 return ret;
dcc99773 1220 }
7f988eab 1221
30e6c9fa 1222 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1223
5bb025fa
VF
1224 netdev_adjacent_rename_links(dev, oldname);
1225
7f988eab 1226 write_lock_bh(&dev_base_lock);
372b2312 1227 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1228 write_unlock_bh(&dev_base_lock);
1229
1230 synchronize_rcu();
1231
1232 write_lock_bh(&dev_base_lock);
1233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1234 write_unlock_bh(&dev_base_lock);
1235
056925ab 1236 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1237 ret = notifier_to_errno(ret);
1238
1239 if (ret) {
91e9c07b
ED
1240 /* err >= 0 after dev_alloc_name() or stores the first errno */
1241 if (err >= 0) {
fcc5a03a 1242 err = ret;
30e6c9fa 1243 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1244 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1245 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1246 dev->name_assign_type = old_assign_type;
1247 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1248 goto rollback;
91e9c07b 1249 } else {
7b6cd1ce 1250 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1251 dev->name, ret);
fcc5a03a
HX
1252 }
1253 }
1da177e4
LT
1254
1255 return err;
1256}
1257
0b815a1a
SH
1258/**
1259 * dev_set_alias - change ifalias of a device
1260 * @dev: device
1261 * @alias: name up to IFALIASZ
f0db275a 1262 * @len: limit of bytes to copy from info
0b815a1a
SH
1263 *
1264 * Set ifalias for a device,
1265 */
1266int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1267{
7364e445
AK
1268 char *new_ifalias;
1269
0b815a1a
SH
1270 ASSERT_RTNL();
1271
1272 if (len >= IFALIASZ)
1273 return -EINVAL;
1274
96ca4a2c 1275 if (!len) {
388dfc2d
SK
1276 kfree(dev->ifalias);
1277 dev->ifalias = NULL;
96ca4a2c
OH
1278 return 0;
1279 }
1280
7364e445
AK
1281 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1282 if (!new_ifalias)
0b815a1a 1283 return -ENOMEM;
7364e445 1284 dev->ifalias = new_ifalias;
c28294b9
AP
1285 memcpy(dev->ifalias, alias, len);
1286 dev->ifalias[len] = 0;
0b815a1a 1287
0b815a1a
SH
1288 return len;
1289}
1290
1291
d8a33ac4 1292/**
3041a069 1293 * netdev_features_change - device changes features
d8a33ac4
SH
1294 * @dev: device to cause notification
1295 *
1296 * Called to indicate a device has changed features.
1297 */
1298void netdev_features_change(struct net_device *dev)
1299{
056925ab 1300 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1301}
1302EXPORT_SYMBOL(netdev_features_change);
1303
1da177e4
LT
1304/**
1305 * netdev_state_change - device changes state
1306 * @dev: device to cause notification
1307 *
1308 * Called to indicate a device has changed state. This function calls
1309 * the notifier chains for netdev_chain and sends a NEWLINK message
1310 * to the routing socket.
1311 */
1312void netdev_state_change(struct net_device *dev)
1313{
1314 if (dev->flags & IFF_UP) {
54951194
LP
1315 struct netdev_notifier_change_info change_info;
1316
1317 change_info.flags_changed = 0;
1318 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1319 &change_info.info);
7f294054 1320 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1321 }
1322}
d1b19dff 1323EXPORT_SYMBOL(netdev_state_change);
1da177e4 1324
ee89bab1 1325/**
722c9a0c 1326 * netdev_notify_peers - notify network peers about existence of @dev
1327 * @dev: network device
ee89bab1
AW
1328 *
1329 * Generate traffic such that interested network peers are aware of
1330 * @dev, such as by generating a gratuitous ARP. This may be used when
1331 * a device wants to inform the rest of the network about some sort of
1332 * reconfiguration such as a failover event or virtual machine
1333 * migration.
1334 */
1335void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1336{
ee89bab1
AW
1337 rtnl_lock();
1338 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1339 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1340 rtnl_unlock();
c1da4ac7 1341}
ee89bab1 1342EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1343
bd380811 1344static int __dev_open(struct net_device *dev)
1da177e4 1345{
d314774c 1346 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1347 int ret;
1da177e4 1348
e46b66bc
BH
1349 ASSERT_RTNL();
1350
1da177e4
LT
1351 if (!netif_device_present(dev))
1352 return -ENODEV;
1353
ca99ca14
NH
1354 /* Block netpoll from trying to do any rx path servicing.
1355 * If we don't do this there is a chance ndo_poll_controller
1356 * or ndo_poll may be running while we open the device
1357 */
66b5552f 1358 netpoll_poll_disable(dev);
ca99ca14 1359
3b8bcfd5
JB
1360 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1361 ret = notifier_to_errno(ret);
1362 if (ret)
1363 return ret;
1364
1da177e4 1365 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1366
d314774c
SH
1367 if (ops->ndo_validate_addr)
1368 ret = ops->ndo_validate_addr(dev);
bada339b 1369
d314774c
SH
1370 if (!ret && ops->ndo_open)
1371 ret = ops->ndo_open(dev);
1da177e4 1372
66b5552f 1373 netpoll_poll_enable(dev);
ca99ca14 1374
bada339b
JG
1375 if (ret)
1376 clear_bit(__LINK_STATE_START, &dev->state);
1377 else {
1da177e4 1378 dev->flags |= IFF_UP;
4417da66 1379 dev_set_rx_mode(dev);
1da177e4 1380 dev_activate(dev);
7bf23575 1381 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1382 }
bada339b 1383
1da177e4
LT
1384 return ret;
1385}
1386
1387/**
bd380811
PM
1388 * dev_open - prepare an interface for use.
1389 * @dev: device to open
1da177e4 1390 *
bd380811
PM
1391 * Takes a device from down to up state. The device's private open
1392 * function is invoked and then the multicast lists are loaded. Finally
1393 * the device is moved into the up state and a %NETDEV_UP message is
1394 * sent to the netdev notifier chain.
1395 *
1396 * Calling this function on an active interface is a nop. On a failure
1397 * a negative errno code is returned.
1da177e4 1398 */
bd380811
PM
1399int dev_open(struct net_device *dev)
1400{
1401 int ret;
1402
bd380811
PM
1403 if (dev->flags & IFF_UP)
1404 return 0;
1405
bd380811
PM
1406 ret = __dev_open(dev);
1407 if (ret < 0)
1408 return ret;
1409
7f294054 1410 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1411 call_netdevice_notifiers(NETDEV_UP, dev);
1412
1413 return ret;
1414}
1415EXPORT_SYMBOL(dev_open);
1416
7051b88a 1417static void __dev_close_many(struct list_head *head)
1da177e4 1418{
44345724 1419 struct net_device *dev;
e46b66bc 1420
bd380811 1421 ASSERT_RTNL();
9d5010db
DM
1422 might_sleep();
1423
5cde2829 1424 list_for_each_entry(dev, head, close_list) {
3f4df206 1425 /* Temporarily disable netpoll until the interface is down */
66b5552f 1426 netpoll_poll_disable(dev);
3f4df206 1427
44345724 1428 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1429
44345724 1430 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1431
44345724
OP
1432 /* Synchronize to scheduled poll. We cannot touch poll list, it
1433 * can be even on different cpu. So just clear netif_running().
1434 *
1435 * dev->stop() will invoke napi_disable() on all of it's
1436 * napi_struct instances on this device.
1437 */
4e857c58 1438 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1439 }
1da177e4 1440
44345724 1441 dev_deactivate_many(head);
d8b2a4d2 1442
5cde2829 1443 list_for_each_entry(dev, head, close_list) {
44345724 1444 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1445
44345724
OP
1446 /*
1447 * Call the device specific close. This cannot fail.
1448 * Only if device is UP
1449 *
1450 * We allow it to be called even after a DETACH hot-plug
1451 * event.
1452 */
1453 if (ops->ndo_stop)
1454 ops->ndo_stop(dev);
1455
44345724 1456 dev->flags &= ~IFF_UP;
66b5552f 1457 netpoll_poll_enable(dev);
44345724 1458 }
44345724
OP
1459}
1460
7051b88a 1461static void __dev_close(struct net_device *dev)
44345724
OP
1462{
1463 LIST_HEAD(single);
1464
5cde2829 1465 list_add(&dev->close_list, &single);
7051b88a 1466 __dev_close_many(&single);
f87e6f47 1467 list_del(&single);
44345724
OP
1468}
1469
7051b88a 1470void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1471{
1472 struct net_device *dev, *tmp;
1da177e4 1473
5cde2829
EB
1474 /* Remove the devices that don't need to be closed */
1475 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1476 if (!(dev->flags & IFF_UP))
5cde2829 1477 list_del_init(&dev->close_list);
44345724
OP
1478
1479 __dev_close_many(head);
1da177e4 1480
5cde2829 1481 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1482 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1483 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1484 if (unlink)
1485 list_del_init(&dev->close_list);
44345724 1486 }
bd380811 1487}
99c4a26a 1488EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1489
1490/**
1491 * dev_close - shutdown an interface.
1492 * @dev: device to shutdown
1493 *
1494 * This function moves an active device into down state. A
1495 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1496 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1497 * chain.
1498 */
7051b88a 1499void dev_close(struct net_device *dev)
bd380811 1500{
e14a5993
ED
1501 if (dev->flags & IFF_UP) {
1502 LIST_HEAD(single);
1da177e4 1503
5cde2829 1504 list_add(&dev->close_list, &single);
99c4a26a 1505 dev_close_many(&single, true);
e14a5993
ED
1506 list_del(&single);
1507 }
1da177e4 1508}
d1b19dff 1509EXPORT_SYMBOL(dev_close);
1da177e4
LT
1510
1511
0187bdfb
BH
1512/**
1513 * dev_disable_lro - disable Large Receive Offload on a device
1514 * @dev: device
1515 *
1516 * Disable Large Receive Offload (LRO) on a net device. Must be
1517 * called under RTNL. This is needed if received packets may be
1518 * forwarded to another interface.
1519 */
1520void dev_disable_lro(struct net_device *dev)
1521{
fbe168ba
MK
1522 struct net_device *lower_dev;
1523 struct list_head *iter;
529d0489 1524
bc5787c6
MM
1525 dev->wanted_features &= ~NETIF_F_LRO;
1526 netdev_update_features(dev);
27660515 1527
22d5969f
MM
1528 if (unlikely(dev->features & NETIF_F_LRO))
1529 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1530
1531 netdev_for_each_lower_dev(dev, lower_dev, iter)
1532 dev_disable_lro(lower_dev);
0187bdfb
BH
1533}
1534EXPORT_SYMBOL(dev_disable_lro);
1535
351638e7
JP
1536static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1537 struct net_device *dev)
1538{
1539 struct netdev_notifier_info info;
1540
1541 netdev_notifier_info_init(&info, dev);
1542 return nb->notifier_call(nb, val, &info);
1543}
0187bdfb 1544
881d966b
EB
1545static int dev_boot_phase = 1;
1546
1da177e4 1547/**
722c9a0c 1548 * register_netdevice_notifier - register a network notifier block
1549 * @nb: notifier
1da177e4 1550 *
722c9a0c 1551 * Register a notifier to be called when network device events occur.
1552 * The notifier passed is linked into the kernel structures and must
1553 * not be reused until it has been unregistered. A negative errno code
1554 * is returned on a failure.
1da177e4 1555 *
722c9a0c 1556 * When registered all registration and up events are replayed
1557 * to the new notifier to allow device to have a race free
1558 * view of the network device list.
1da177e4
LT
1559 */
1560
1561int register_netdevice_notifier(struct notifier_block *nb)
1562{
1563 struct net_device *dev;
fcc5a03a 1564 struct net_device *last;
881d966b 1565 struct net *net;
1da177e4
LT
1566 int err;
1567
1568 rtnl_lock();
f07d5b94 1569 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1570 if (err)
1571 goto unlock;
881d966b
EB
1572 if (dev_boot_phase)
1573 goto unlock;
1574 for_each_net(net) {
1575 for_each_netdev(net, dev) {
351638e7 1576 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1577 err = notifier_to_errno(err);
1578 if (err)
1579 goto rollback;
1580
1581 if (!(dev->flags & IFF_UP))
1582 continue;
1da177e4 1583
351638e7 1584 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1585 }
1da177e4 1586 }
fcc5a03a
HX
1587
1588unlock:
1da177e4
LT
1589 rtnl_unlock();
1590 return err;
fcc5a03a
HX
1591
1592rollback:
1593 last = dev;
881d966b
EB
1594 for_each_net(net) {
1595 for_each_netdev(net, dev) {
1596 if (dev == last)
8f891489 1597 goto outroll;
fcc5a03a 1598
881d966b 1599 if (dev->flags & IFF_UP) {
351638e7
JP
1600 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1601 dev);
1602 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1603 }
351638e7 1604 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1605 }
fcc5a03a 1606 }
c67625a1 1607
8f891489 1608outroll:
c67625a1 1609 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1610 goto unlock;
1da177e4 1611}
d1b19dff 1612EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1613
1614/**
722c9a0c 1615 * unregister_netdevice_notifier - unregister a network notifier block
1616 * @nb: notifier
1da177e4 1617 *
722c9a0c 1618 * Unregister a notifier previously registered by
1619 * register_netdevice_notifier(). The notifier is unlinked into the
1620 * kernel structures and may then be reused. A negative errno code
1621 * is returned on a failure.
7d3d43da 1622 *
722c9a0c 1623 * After unregistering unregister and down device events are synthesized
1624 * for all devices on the device list to the removed notifier to remove
1625 * the need for special case cleanup code.
1da177e4
LT
1626 */
1627
1628int unregister_netdevice_notifier(struct notifier_block *nb)
1629{
7d3d43da
EB
1630 struct net_device *dev;
1631 struct net *net;
9f514950
HX
1632 int err;
1633
1634 rtnl_lock();
f07d5b94 1635 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1636 if (err)
1637 goto unlock;
1638
1639 for_each_net(net) {
1640 for_each_netdev(net, dev) {
1641 if (dev->flags & IFF_UP) {
351638e7
JP
1642 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1643 dev);
1644 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1645 }
351638e7 1646 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1647 }
1648 }
1649unlock:
9f514950
HX
1650 rtnl_unlock();
1651 return err;
1da177e4 1652}
d1b19dff 1653EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1654
351638e7
JP
1655/**
1656 * call_netdevice_notifiers_info - call all network notifier blocks
1657 * @val: value passed unmodified to notifier function
1658 * @dev: net_device pointer passed unmodified to notifier function
1659 * @info: notifier information data
1660 *
1661 * Call all network notifier blocks. Parameters and return value
1662 * are as for raw_notifier_call_chain().
1663 */
1664
1d143d9f 1665static int call_netdevice_notifiers_info(unsigned long val,
1666 struct net_device *dev,
1667 struct netdev_notifier_info *info)
351638e7
JP
1668{
1669 ASSERT_RTNL();
1670 netdev_notifier_info_init(info, dev);
1671 return raw_notifier_call_chain(&netdev_chain, val, info);
1672}
351638e7 1673
1da177e4
LT
1674/**
1675 * call_netdevice_notifiers - call all network notifier blocks
1676 * @val: value passed unmodified to notifier function
c4ea43c5 1677 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1678 *
1679 * Call all network notifier blocks. Parameters and return value
f07d5b94 1680 * are as for raw_notifier_call_chain().
1da177e4
LT
1681 */
1682
ad7379d4 1683int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1684{
351638e7
JP
1685 struct netdev_notifier_info info;
1686
1687 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1688}
edf947f1 1689EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1690
1cf51900 1691#ifdef CONFIG_NET_INGRESS
4577139b
DB
1692static struct static_key ingress_needed __read_mostly;
1693
1694void net_inc_ingress_queue(void)
1695{
1696 static_key_slow_inc(&ingress_needed);
1697}
1698EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1699
1700void net_dec_ingress_queue(void)
1701{
1702 static_key_slow_dec(&ingress_needed);
1703}
1704EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1705#endif
1706
1f211a1b
DB
1707#ifdef CONFIG_NET_EGRESS
1708static struct static_key egress_needed __read_mostly;
1709
1710void net_inc_egress_queue(void)
1711{
1712 static_key_slow_inc(&egress_needed);
1713}
1714EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1715
1716void net_dec_egress_queue(void)
1717{
1718 static_key_slow_dec(&egress_needed);
1719}
1720EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1721#endif
1722
c5905afb 1723static struct static_key netstamp_needed __read_mostly;
b90e5794 1724#ifdef HAVE_JUMP_LABEL
b90e5794 1725static atomic_t netstamp_needed_deferred;
13baa00a 1726static atomic_t netstamp_wanted;
5fa8bbda 1727static void netstamp_clear(struct work_struct *work)
1da177e4 1728{
b90e5794 1729 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1730 int wanted;
b90e5794 1731
13baa00a
ED
1732 wanted = atomic_add_return(deferred, &netstamp_wanted);
1733 if (wanted > 0)
1734 static_key_enable(&netstamp_needed);
1735 else
1736 static_key_disable(&netstamp_needed);
5fa8bbda
ED
1737}
1738static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1739#endif
5fa8bbda
ED
1740
1741void net_enable_timestamp(void)
1742{
13baa00a
ED
1743#ifdef HAVE_JUMP_LABEL
1744 int wanted;
1745
1746 while (1) {
1747 wanted = atomic_read(&netstamp_wanted);
1748 if (wanted <= 0)
1749 break;
1750 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1751 return;
1752 }
1753 atomic_inc(&netstamp_needed_deferred);
1754 schedule_work(&netstamp_work);
1755#else
c5905afb 1756 static_key_slow_inc(&netstamp_needed);
13baa00a 1757#endif
1da177e4 1758}
d1b19dff 1759EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1760
1761void net_disable_timestamp(void)
1762{
b90e5794 1763#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1764 int wanted;
1765
1766 while (1) {
1767 wanted = atomic_read(&netstamp_wanted);
1768 if (wanted <= 1)
1769 break;
1770 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1771 return;
1772 }
1773 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1774 schedule_work(&netstamp_work);
1775#else
c5905afb 1776 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1777#endif
1da177e4 1778}
d1b19dff 1779EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1780
3b098e2d 1781static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1782{
2456e855 1783 skb->tstamp = 0;
c5905afb 1784 if (static_key_false(&netstamp_needed))
a61bbcf2 1785 __net_timestamp(skb);
1da177e4
LT
1786}
1787
588f0330 1788#define net_timestamp_check(COND, SKB) \
c5905afb 1789 if (static_key_false(&netstamp_needed)) { \
2456e855 1790 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1791 __net_timestamp(SKB); \
1792 } \
3b098e2d 1793
f4b05d27 1794bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1795{
1796 unsigned int len;
1797
1798 if (!(dev->flags & IFF_UP))
1799 return false;
1800
1801 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1802 if (skb->len <= len)
1803 return true;
1804
1805 /* if TSO is enabled, we don't care about the length as the packet
1806 * could be forwarded without being segmented before
1807 */
1808 if (skb_is_gso(skb))
1809 return true;
1810
1811 return false;
1812}
1ee481fb 1813EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1814
a0265d28
HX
1815int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1816{
4e3264d2 1817 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1818
4e3264d2
MKL
1819 if (likely(!ret)) {
1820 skb->protocol = eth_type_trans(skb, dev);
1821 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1822 }
a0265d28 1823
4e3264d2 1824 return ret;
a0265d28
HX
1825}
1826EXPORT_SYMBOL_GPL(__dev_forward_skb);
1827
44540960
AB
1828/**
1829 * dev_forward_skb - loopback an skb to another netif
1830 *
1831 * @dev: destination network device
1832 * @skb: buffer to forward
1833 *
1834 * return values:
1835 * NET_RX_SUCCESS (no congestion)
6ec82562 1836 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1837 *
1838 * dev_forward_skb can be used for injecting an skb from the
1839 * start_xmit function of one device into the receive queue
1840 * of another device.
1841 *
1842 * The receiving device may be in another namespace, so
1843 * we have to clear all information in the skb that could
1844 * impact namespace isolation.
1845 */
1846int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1847{
a0265d28 1848 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1849}
1850EXPORT_SYMBOL_GPL(dev_forward_skb);
1851
71d9dec2
CG
1852static inline int deliver_skb(struct sk_buff *skb,
1853 struct packet_type *pt_prev,
1854 struct net_device *orig_dev)
1855{
1f8b977a 1856 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1857 return -ENOMEM;
63354797 1858 refcount_inc(&skb->users);
71d9dec2
CG
1859 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1860}
1861
7866a621
SN
1862static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1863 struct packet_type **pt,
fbcb2170
JP
1864 struct net_device *orig_dev,
1865 __be16 type,
7866a621
SN
1866 struct list_head *ptype_list)
1867{
1868 struct packet_type *ptype, *pt_prev = *pt;
1869
1870 list_for_each_entry_rcu(ptype, ptype_list, list) {
1871 if (ptype->type != type)
1872 continue;
1873 if (pt_prev)
fbcb2170 1874 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1875 pt_prev = ptype;
1876 }
1877 *pt = pt_prev;
1878}
1879
c0de08d0
EL
1880static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1881{
a3d744e9 1882 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1883 return false;
1884
1885 if (ptype->id_match)
1886 return ptype->id_match(ptype, skb->sk);
1887 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1888 return true;
1889
1890 return false;
1891}
1892
1da177e4
LT
1893/*
1894 * Support routine. Sends outgoing frames to any network
1895 * taps currently in use.
1896 */
1897
74b20582 1898void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1899{
1900 struct packet_type *ptype;
71d9dec2
CG
1901 struct sk_buff *skb2 = NULL;
1902 struct packet_type *pt_prev = NULL;
7866a621 1903 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1904
1da177e4 1905 rcu_read_lock();
7866a621
SN
1906again:
1907 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1908 /* Never send packets back to the socket
1909 * they originated from - MvS (miquels@drinkel.ow.org)
1910 */
7866a621
SN
1911 if (skb_loop_sk(ptype, skb))
1912 continue;
71d9dec2 1913
7866a621
SN
1914 if (pt_prev) {
1915 deliver_skb(skb2, pt_prev, skb->dev);
1916 pt_prev = ptype;
1917 continue;
1918 }
1da177e4 1919
7866a621
SN
1920 /* need to clone skb, done only once */
1921 skb2 = skb_clone(skb, GFP_ATOMIC);
1922 if (!skb2)
1923 goto out_unlock;
70978182 1924
7866a621 1925 net_timestamp_set(skb2);
1da177e4 1926
7866a621
SN
1927 /* skb->nh should be correctly
1928 * set by sender, so that the second statement is
1929 * just protection against buggy protocols.
1930 */
1931 skb_reset_mac_header(skb2);
1932
1933 if (skb_network_header(skb2) < skb2->data ||
1934 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1935 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1936 ntohs(skb2->protocol),
1937 dev->name);
1938 skb_reset_network_header(skb2);
1da177e4 1939 }
7866a621
SN
1940
1941 skb2->transport_header = skb2->network_header;
1942 skb2->pkt_type = PACKET_OUTGOING;
1943 pt_prev = ptype;
1944 }
1945
1946 if (ptype_list == &ptype_all) {
1947 ptype_list = &dev->ptype_all;
1948 goto again;
1da177e4 1949 }
7866a621 1950out_unlock:
71d9dec2
CG
1951 if (pt_prev)
1952 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1953 rcu_read_unlock();
1954}
74b20582 1955EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1956
2c53040f
BH
1957/**
1958 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1959 * @dev: Network device
1960 * @txq: number of queues available
1961 *
1962 * If real_num_tx_queues is changed the tc mappings may no longer be
1963 * valid. To resolve this verify the tc mapping remains valid and if
1964 * not NULL the mapping. With no priorities mapping to this
1965 * offset/count pair it will no longer be used. In the worst case TC0
1966 * is invalid nothing can be done so disable priority mappings. If is
1967 * expected that drivers will fix this mapping if they can before
1968 * calling netif_set_real_num_tx_queues.
1969 */
bb134d22 1970static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1971{
1972 int i;
1973 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1974
1975 /* If TC0 is invalidated disable TC mapping */
1976 if (tc->offset + tc->count > txq) {
7b6cd1ce 1977 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1978 dev->num_tc = 0;
1979 return;
1980 }
1981
1982 /* Invalidated prio to tc mappings set to TC0 */
1983 for (i = 1; i < TC_BITMASK + 1; i++) {
1984 int q = netdev_get_prio_tc_map(dev, i);
1985
1986 tc = &dev->tc_to_txq[q];
1987 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1988 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1989 i, q);
4f57c087
JF
1990 netdev_set_prio_tc_map(dev, i, 0);
1991 }
1992 }
1993}
1994
8d059b0f
AD
1995int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1996{
1997 if (dev->num_tc) {
1998 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1999 int i;
2000
2001 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2002 if ((txq - tc->offset) < tc->count)
2003 return i;
2004 }
2005
2006 return -1;
2007 }
2008
2009 return 0;
2010}
2011
537c00de
AD
2012#ifdef CONFIG_XPS
2013static DEFINE_MUTEX(xps_map_mutex);
2014#define xmap_dereference(P) \
2015 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2016
6234f874
AD
2017static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2018 int tci, u16 index)
537c00de 2019{
10cdc3f3
AD
2020 struct xps_map *map = NULL;
2021 int pos;
537c00de 2022
10cdc3f3 2023 if (dev_maps)
6234f874
AD
2024 map = xmap_dereference(dev_maps->cpu_map[tci]);
2025 if (!map)
2026 return false;
537c00de 2027
6234f874
AD
2028 for (pos = map->len; pos--;) {
2029 if (map->queues[pos] != index)
2030 continue;
2031
2032 if (map->len > 1) {
2033 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2034 break;
537c00de 2035 }
6234f874
AD
2036
2037 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2038 kfree_rcu(map, rcu);
2039 return false;
537c00de
AD
2040 }
2041
6234f874 2042 return true;
10cdc3f3
AD
2043}
2044
6234f874
AD
2045static bool remove_xps_queue_cpu(struct net_device *dev,
2046 struct xps_dev_maps *dev_maps,
2047 int cpu, u16 offset, u16 count)
2048{
184c449f
AD
2049 int num_tc = dev->num_tc ? : 1;
2050 bool active = false;
2051 int tci;
6234f874 2052
184c449f
AD
2053 for (tci = cpu * num_tc; num_tc--; tci++) {
2054 int i, j;
2055
2056 for (i = count, j = offset; i--; j++) {
2057 if (!remove_xps_queue(dev_maps, cpu, j))
2058 break;
2059 }
2060
2061 active |= i < 0;
6234f874
AD
2062 }
2063
184c449f 2064 return active;
6234f874
AD
2065}
2066
2067static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2068 u16 count)
10cdc3f3
AD
2069{
2070 struct xps_dev_maps *dev_maps;
024e9679 2071 int cpu, i;
10cdc3f3
AD
2072 bool active = false;
2073
2074 mutex_lock(&xps_map_mutex);
2075 dev_maps = xmap_dereference(dev->xps_maps);
2076
2077 if (!dev_maps)
2078 goto out_no_maps;
2079
6234f874
AD
2080 for_each_possible_cpu(cpu)
2081 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2082 offset, count);
10cdc3f3
AD
2083
2084 if (!active) {
537c00de
AD
2085 RCU_INIT_POINTER(dev->xps_maps, NULL);
2086 kfree_rcu(dev_maps, rcu);
2087 }
2088
6234f874 2089 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2090 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2091 NUMA_NO_NODE);
2092
537c00de
AD
2093out_no_maps:
2094 mutex_unlock(&xps_map_mutex);
2095}
2096
6234f874
AD
2097static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2098{
2099 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2100}
2101
01c5f864
AD
2102static struct xps_map *expand_xps_map(struct xps_map *map,
2103 int cpu, u16 index)
2104{
2105 struct xps_map *new_map;
2106 int alloc_len = XPS_MIN_MAP_ALLOC;
2107 int i, pos;
2108
2109 for (pos = 0; map && pos < map->len; pos++) {
2110 if (map->queues[pos] != index)
2111 continue;
2112 return map;
2113 }
2114
2115 /* Need to add queue to this CPU's existing map */
2116 if (map) {
2117 if (pos < map->alloc_len)
2118 return map;
2119
2120 alloc_len = map->alloc_len * 2;
2121 }
2122
2123 /* Need to allocate new map to store queue on this CPU's map */
2124 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2125 cpu_to_node(cpu));
2126 if (!new_map)
2127 return NULL;
2128
2129 for (i = 0; i < pos; i++)
2130 new_map->queues[i] = map->queues[i];
2131 new_map->alloc_len = alloc_len;
2132 new_map->len = pos;
2133
2134 return new_map;
2135}
2136
3573540c
MT
2137int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2138 u16 index)
537c00de 2139{
01c5f864 2140 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2141 int i, cpu, tci, numa_node_id = -2;
2142 int maps_sz, num_tc = 1, tc = 0;
537c00de 2143 struct xps_map *map, *new_map;
01c5f864 2144 bool active = false;
537c00de 2145
184c449f
AD
2146 if (dev->num_tc) {
2147 num_tc = dev->num_tc;
2148 tc = netdev_txq_to_tc(dev, index);
2149 if (tc < 0)
2150 return -EINVAL;
2151 }
2152
2153 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2154 if (maps_sz < L1_CACHE_BYTES)
2155 maps_sz = L1_CACHE_BYTES;
2156
537c00de
AD
2157 mutex_lock(&xps_map_mutex);
2158
2159 dev_maps = xmap_dereference(dev->xps_maps);
2160
01c5f864 2161 /* allocate memory for queue storage */
184c449f 2162 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2163 if (!new_dev_maps)
2164 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2165 if (!new_dev_maps) {
2166 mutex_unlock(&xps_map_mutex);
01c5f864 2167 return -ENOMEM;
2bb60cb9 2168 }
01c5f864 2169
184c449f
AD
2170 tci = cpu * num_tc + tc;
2171 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2172 NULL;
2173
2174 map = expand_xps_map(map, cpu, index);
2175 if (!map)
2176 goto error;
2177
184c449f 2178 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2179 }
2180
2181 if (!new_dev_maps)
2182 goto out_no_new_maps;
2183
537c00de 2184 for_each_possible_cpu(cpu) {
184c449f
AD
2185 /* copy maps belonging to foreign traffic classes */
2186 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2187 /* fill in the new device map from the old device map */
2188 map = xmap_dereference(dev_maps->cpu_map[tci]);
2189 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2190 }
2191
2192 /* We need to explicitly update tci as prevous loop
2193 * could break out early if dev_maps is NULL.
2194 */
2195 tci = cpu * num_tc + tc;
2196
01c5f864
AD
2197 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2198 /* add queue to CPU maps */
2199 int pos = 0;
2200
184c449f 2201 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2202 while ((pos < map->len) && (map->queues[pos] != index))
2203 pos++;
2204
2205 if (pos == map->len)
2206 map->queues[map->len++] = index;
537c00de 2207#ifdef CONFIG_NUMA
537c00de
AD
2208 if (numa_node_id == -2)
2209 numa_node_id = cpu_to_node(cpu);
2210 else if (numa_node_id != cpu_to_node(cpu))
2211 numa_node_id = -1;
537c00de 2212#endif
01c5f864
AD
2213 } else if (dev_maps) {
2214 /* fill in the new device map from the old device map */
184c449f
AD
2215 map = xmap_dereference(dev_maps->cpu_map[tci]);
2216 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2217 }
01c5f864 2218
184c449f
AD
2219 /* copy maps belonging to foreign traffic classes */
2220 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2221 /* fill in the new device map from the old device map */
2222 map = xmap_dereference(dev_maps->cpu_map[tci]);
2223 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2224 }
537c00de
AD
2225 }
2226
01c5f864
AD
2227 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2228
537c00de 2229 /* Cleanup old maps */
184c449f
AD
2230 if (!dev_maps)
2231 goto out_no_old_maps;
2232
2233 for_each_possible_cpu(cpu) {
2234 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2235 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2236 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2237 if (map && map != new_map)
2238 kfree_rcu(map, rcu);
2239 }
537c00de
AD
2240 }
2241
184c449f
AD
2242 kfree_rcu(dev_maps, rcu);
2243
2244out_no_old_maps:
01c5f864
AD
2245 dev_maps = new_dev_maps;
2246 active = true;
537c00de 2247
01c5f864
AD
2248out_no_new_maps:
2249 /* update Tx queue numa node */
537c00de
AD
2250 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2251 (numa_node_id >= 0) ? numa_node_id :
2252 NUMA_NO_NODE);
2253
01c5f864
AD
2254 if (!dev_maps)
2255 goto out_no_maps;
2256
2257 /* removes queue from unused CPUs */
2258 for_each_possible_cpu(cpu) {
184c449f
AD
2259 for (i = tc, tci = cpu * num_tc; i--; tci++)
2260 active |= remove_xps_queue(dev_maps, tci, index);
2261 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2262 active |= remove_xps_queue(dev_maps, tci, index);
2263 for (i = num_tc - tc, tci++; --i; tci++)
2264 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2265 }
2266
2267 /* free map if not active */
2268 if (!active) {
2269 RCU_INIT_POINTER(dev->xps_maps, NULL);
2270 kfree_rcu(dev_maps, rcu);
2271 }
2272
2273out_no_maps:
537c00de
AD
2274 mutex_unlock(&xps_map_mutex);
2275
2276 return 0;
2277error:
01c5f864
AD
2278 /* remove any maps that we added */
2279 for_each_possible_cpu(cpu) {
184c449f
AD
2280 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2281 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2282 map = dev_maps ?
2283 xmap_dereference(dev_maps->cpu_map[tci]) :
2284 NULL;
2285 if (new_map && new_map != map)
2286 kfree(new_map);
2287 }
01c5f864
AD
2288 }
2289
537c00de
AD
2290 mutex_unlock(&xps_map_mutex);
2291
537c00de
AD
2292 kfree(new_dev_maps);
2293 return -ENOMEM;
2294}
2295EXPORT_SYMBOL(netif_set_xps_queue);
2296
2297#endif
9cf1f6a8
AD
2298void netdev_reset_tc(struct net_device *dev)
2299{
6234f874
AD
2300#ifdef CONFIG_XPS
2301 netif_reset_xps_queues_gt(dev, 0);
2302#endif
9cf1f6a8
AD
2303 dev->num_tc = 0;
2304 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2305 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2306}
2307EXPORT_SYMBOL(netdev_reset_tc);
2308
2309int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2310{
2311 if (tc >= dev->num_tc)
2312 return -EINVAL;
2313
6234f874
AD
2314#ifdef CONFIG_XPS
2315 netif_reset_xps_queues(dev, offset, count);
2316#endif
9cf1f6a8
AD
2317 dev->tc_to_txq[tc].count = count;
2318 dev->tc_to_txq[tc].offset = offset;
2319 return 0;
2320}
2321EXPORT_SYMBOL(netdev_set_tc_queue);
2322
2323int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2324{
2325 if (num_tc > TC_MAX_QUEUE)
2326 return -EINVAL;
2327
6234f874
AD
2328#ifdef CONFIG_XPS
2329 netif_reset_xps_queues_gt(dev, 0);
2330#endif
9cf1f6a8
AD
2331 dev->num_tc = num_tc;
2332 return 0;
2333}
2334EXPORT_SYMBOL(netdev_set_num_tc);
2335
f0796d5c
JF
2336/*
2337 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2338 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2339 */
e6484930 2340int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2341{
1d24eb48
TH
2342 int rc;
2343
e6484930
TH
2344 if (txq < 1 || txq > dev->num_tx_queues)
2345 return -EINVAL;
f0796d5c 2346
5c56580b
BH
2347 if (dev->reg_state == NETREG_REGISTERED ||
2348 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2349 ASSERT_RTNL();
2350
1d24eb48
TH
2351 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2352 txq);
bf264145
TH
2353 if (rc)
2354 return rc;
2355
4f57c087
JF
2356 if (dev->num_tc)
2357 netif_setup_tc(dev, txq);
2358
024e9679 2359 if (txq < dev->real_num_tx_queues) {
e6484930 2360 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2361#ifdef CONFIG_XPS
2362 netif_reset_xps_queues_gt(dev, txq);
2363#endif
2364 }
f0796d5c 2365 }
e6484930
TH
2366
2367 dev->real_num_tx_queues = txq;
2368 return 0;
f0796d5c
JF
2369}
2370EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2371
a953be53 2372#ifdef CONFIG_SYSFS
62fe0b40
BH
2373/**
2374 * netif_set_real_num_rx_queues - set actual number of RX queues used
2375 * @dev: Network device
2376 * @rxq: Actual number of RX queues
2377 *
2378 * This must be called either with the rtnl_lock held or before
2379 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2380 * negative error code. If called before registration, it always
2381 * succeeds.
62fe0b40
BH
2382 */
2383int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2384{
2385 int rc;
2386
bd25fa7b
TH
2387 if (rxq < 1 || rxq > dev->num_rx_queues)
2388 return -EINVAL;
2389
62fe0b40
BH
2390 if (dev->reg_state == NETREG_REGISTERED) {
2391 ASSERT_RTNL();
2392
62fe0b40
BH
2393 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2394 rxq);
2395 if (rc)
2396 return rc;
62fe0b40
BH
2397 }
2398
2399 dev->real_num_rx_queues = rxq;
2400 return 0;
2401}
2402EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2403#endif
2404
2c53040f
BH
2405/**
2406 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2407 *
2408 * This routine should set an upper limit on the number of RSS queues
2409 * used by default by multiqueue devices.
2410 */
a55b138b 2411int netif_get_num_default_rss_queues(void)
16917b87 2412{
40e4e713
HS
2413 return is_kdump_kernel() ?
2414 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2415}
2416EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2417
3bcb846c 2418static void __netif_reschedule(struct Qdisc *q)
56079431 2419{
def82a1d
JP
2420 struct softnet_data *sd;
2421 unsigned long flags;
56079431 2422
def82a1d 2423 local_irq_save(flags);
903ceff7 2424 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2425 q->next_sched = NULL;
2426 *sd->output_queue_tailp = q;
2427 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2428 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2429 local_irq_restore(flags);
2430}
2431
2432void __netif_schedule(struct Qdisc *q)
2433{
2434 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2435 __netif_reschedule(q);
56079431
DV
2436}
2437EXPORT_SYMBOL(__netif_schedule);
2438
e6247027
ED
2439struct dev_kfree_skb_cb {
2440 enum skb_free_reason reason;
2441};
2442
2443static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2444{
e6247027
ED
2445 return (struct dev_kfree_skb_cb *)skb->cb;
2446}
2447
46e5da40
JF
2448void netif_schedule_queue(struct netdev_queue *txq)
2449{
2450 rcu_read_lock();
2451 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2452 struct Qdisc *q = rcu_dereference(txq->qdisc);
2453
2454 __netif_schedule(q);
2455 }
2456 rcu_read_unlock();
2457}
2458EXPORT_SYMBOL(netif_schedule_queue);
2459
46e5da40
JF
2460void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2461{
2462 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2463 struct Qdisc *q;
2464
2465 rcu_read_lock();
2466 q = rcu_dereference(dev_queue->qdisc);
2467 __netif_schedule(q);
2468 rcu_read_unlock();
2469 }
2470}
2471EXPORT_SYMBOL(netif_tx_wake_queue);
2472
e6247027 2473void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2474{
e6247027 2475 unsigned long flags;
56079431 2476
9899886d
MJ
2477 if (unlikely(!skb))
2478 return;
2479
63354797 2480 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2481 smp_rmb();
63354797
RE
2482 refcount_set(&skb->users, 0);
2483 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2484 return;
bea3348e 2485 }
e6247027
ED
2486 get_kfree_skb_cb(skb)->reason = reason;
2487 local_irq_save(flags);
2488 skb->next = __this_cpu_read(softnet_data.completion_queue);
2489 __this_cpu_write(softnet_data.completion_queue, skb);
2490 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2491 local_irq_restore(flags);
56079431 2492}
e6247027 2493EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2494
e6247027 2495void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2496{
2497 if (in_irq() || irqs_disabled())
e6247027 2498 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2499 else
2500 dev_kfree_skb(skb);
2501}
e6247027 2502EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2503
2504
bea3348e
SH
2505/**
2506 * netif_device_detach - mark device as removed
2507 * @dev: network device
2508 *
2509 * Mark device as removed from system and therefore no longer available.
2510 */
56079431
DV
2511void netif_device_detach(struct net_device *dev)
2512{
2513 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2514 netif_running(dev)) {
d543103a 2515 netif_tx_stop_all_queues(dev);
56079431
DV
2516 }
2517}
2518EXPORT_SYMBOL(netif_device_detach);
2519
bea3348e
SH
2520/**
2521 * netif_device_attach - mark device as attached
2522 * @dev: network device
2523 *
2524 * Mark device as attached from system and restart if needed.
2525 */
56079431
DV
2526void netif_device_attach(struct net_device *dev)
2527{
2528 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2529 netif_running(dev)) {
d543103a 2530 netif_tx_wake_all_queues(dev);
4ec93edb 2531 __netdev_watchdog_up(dev);
56079431
DV
2532 }
2533}
2534EXPORT_SYMBOL(netif_device_attach);
2535
5605c762
JP
2536/*
2537 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2538 * to be used as a distribution range.
2539 */
2540u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2541 unsigned int num_tx_queues)
2542{
2543 u32 hash;
2544 u16 qoffset = 0;
2545 u16 qcount = num_tx_queues;
2546
2547 if (skb_rx_queue_recorded(skb)) {
2548 hash = skb_get_rx_queue(skb);
2549 while (unlikely(hash >= num_tx_queues))
2550 hash -= num_tx_queues;
2551 return hash;
2552 }
2553
2554 if (dev->num_tc) {
2555 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
f4563a75 2556
5605c762
JP
2557 qoffset = dev->tc_to_txq[tc].offset;
2558 qcount = dev->tc_to_txq[tc].count;
2559 }
2560
2561 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2562}
2563EXPORT_SYMBOL(__skb_tx_hash);
2564
36c92474
BH
2565static void skb_warn_bad_offload(const struct sk_buff *skb)
2566{
84d15ae5 2567 static const netdev_features_t null_features;
36c92474 2568 struct net_device *dev = skb->dev;
88ad4175 2569 const char *name = "";
36c92474 2570
c846ad9b
BG
2571 if (!net_ratelimit())
2572 return;
2573
88ad4175
BM
2574 if (dev) {
2575 if (dev->dev.parent)
2576 name = dev_driver_string(dev->dev.parent);
2577 else
2578 name = netdev_name(dev);
2579 }
36c92474
BH
2580 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2581 "gso_type=%d ip_summed=%d\n",
88ad4175 2582 name, dev ? &dev->features : &null_features,
65e9d2fa 2583 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2584 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2585 skb_shinfo(skb)->gso_type, skb->ip_summed);
2586}
2587
1da177e4
LT
2588/*
2589 * Invalidate hardware checksum when packet is to be mangled, and
2590 * complete checksum manually on outgoing path.
2591 */
84fa7933 2592int skb_checksum_help(struct sk_buff *skb)
1da177e4 2593{
d3bc23e7 2594 __wsum csum;
663ead3b 2595 int ret = 0, offset;
1da177e4 2596
84fa7933 2597 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2598 goto out_set_summed;
2599
2600 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2601 skb_warn_bad_offload(skb);
2602 return -EINVAL;
1da177e4
LT
2603 }
2604
cef401de
ED
2605 /* Before computing a checksum, we should make sure no frag could
2606 * be modified by an external entity : checksum could be wrong.
2607 */
2608 if (skb_has_shared_frag(skb)) {
2609 ret = __skb_linearize(skb);
2610 if (ret)
2611 goto out;
2612 }
2613
55508d60 2614 offset = skb_checksum_start_offset(skb);
a030847e
HX
2615 BUG_ON(offset >= skb_headlen(skb));
2616 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2617
2618 offset += skb->csum_offset;
2619 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2620
2621 if (skb_cloned(skb) &&
2622 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2623 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2624 if (ret)
2625 goto out;
2626 }
2627
4f2e4ad5 2628 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2629out_set_summed:
1da177e4 2630 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2631out:
1da177e4
LT
2632 return ret;
2633}
d1b19dff 2634EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2635
b72b5bf6
DC
2636int skb_crc32c_csum_help(struct sk_buff *skb)
2637{
2638 __le32 crc32c_csum;
2639 int ret = 0, offset, start;
2640
2641 if (skb->ip_summed != CHECKSUM_PARTIAL)
2642 goto out;
2643
2644 if (unlikely(skb_is_gso(skb)))
2645 goto out;
2646
2647 /* Before computing a checksum, we should make sure no frag could
2648 * be modified by an external entity : checksum could be wrong.
2649 */
2650 if (unlikely(skb_has_shared_frag(skb))) {
2651 ret = __skb_linearize(skb);
2652 if (ret)
2653 goto out;
2654 }
2655 start = skb_checksum_start_offset(skb);
2656 offset = start + offsetof(struct sctphdr, checksum);
2657 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2658 ret = -EINVAL;
2659 goto out;
2660 }
2661 if (skb_cloned(skb) &&
2662 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2663 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2664 if (ret)
2665 goto out;
2666 }
2667 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2668 skb->len - start, ~(__u32)0,
2669 crc32c_csum_stub));
2670 *(__le32 *)(skb->data + offset) = crc32c_csum;
2671 skb->ip_summed = CHECKSUM_NONE;
dba00306 2672 skb->csum_not_inet = 0;
b72b5bf6
DC
2673out:
2674 return ret;
2675}
2676
53d6471c 2677__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2678{
252e3346 2679 __be16 type = skb->protocol;
f6a78bfc 2680
19acc327
PS
2681 /* Tunnel gso handlers can set protocol to ethernet. */
2682 if (type == htons(ETH_P_TEB)) {
2683 struct ethhdr *eth;
2684
2685 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2686 return 0;
2687
2688 eth = (struct ethhdr *)skb_mac_header(skb);
2689 type = eth->h_proto;
2690 }
2691
d4bcef3f 2692 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2693}
2694
2695/**
2696 * skb_mac_gso_segment - mac layer segmentation handler.
2697 * @skb: buffer to segment
2698 * @features: features for the output path (see dev->features)
2699 */
2700struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2701 netdev_features_t features)
2702{
2703 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2704 struct packet_offload *ptype;
53d6471c
VY
2705 int vlan_depth = skb->mac_len;
2706 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2707
2708 if (unlikely(!type))
2709 return ERR_PTR(-EINVAL);
2710
53d6471c 2711 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2712
2713 rcu_read_lock();
22061d80 2714 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2715 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2716 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2717 break;
2718 }
2719 }
2720 rcu_read_unlock();
2721
98e399f8 2722 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2723
f6a78bfc
HX
2724 return segs;
2725}
05e8ef4a
PS
2726EXPORT_SYMBOL(skb_mac_gso_segment);
2727
2728
2729/* openvswitch calls this on rx path, so we need a different check.
2730 */
2731static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2732{
2733 if (tx_path)
93991221 2734 return skb->ip_summed != CHECKSUM_PARTIAL;
6e7bc478
ED
2735
2736 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2737}
2738
2739/**
2740 * __skb_gso_segment - Perform segmentation on skb.
2741 * @skb: buffer to segment
2742 * @features: features for the output path (see dev->features)
2743 * @tx_path: whether it is called in TX path
2744 *
2745 * This function segments the given skb and returns a list of segments.
2746 *
2747 * It may return NULL if the skb requires no segmentation. This is
2748 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2749 *
2750 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2751 */
2752struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2753 netdev_features_t features, bool tx_path)
2754{
b2504a5d
ED
2755 struct sk_buff *segs;
2756
05e8ef4a
PS
2757 if (unlikely(skb_needs_check(skb, tx_path))) {
2758 int err;
2759
b2504a5d 2760 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2761 err = skb_cow_head(skb, 0);
2762 if (err < 0)
05e8ef4a
PS
2763 return ERR_PTR(err);
2764 }
2765
802ab55a
AD
2766 /* Only report GSO partial support if it will enable us to
2767 * support segmentation on this frame without needing additional
2768 * work.
2769 */
2770 if (features & NETIF_F_GSO_PARTIAL) {
2771 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2772 struct net_device *dev = skb->dev;
2773
2774 partial_features |= dev->features & dev->gso_partial_features;
2775 if (!skb_gso_ok(skb, features | partial_features))
2776 features &= ~NETIF_F_GSO_PARTIAL;
2777 }
2778
9207f9d4
KK
2779 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2780 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2781
68c33163 2782 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2783 SKB_GSO_CB(skb)->encap_level = 0;
2784
05e8ef4a
PS
2785 skb_reset_mac_header(skb);
2786 skb_reset_mac_len(skb);
2787
b2504a5d
ED
2788 segs = skb_mac_gso_segment(skb, features);
2789
2790 if (unlikely(skb_needs_check(skb, tx_path)))
2791 skb_warn_bad_offload(skb);
2792
2793 return segs;
05e8ef4a 2794}
12b0004d 2795EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2796
fb286bb2
HX
2797/* Take action when hardware reception checksum errors are detected. */
2798#ifdef CONFIG_BUG
2799void netdev_rx_csum_fault(struct net_device *dev)
2800{
2801 if (net_ratelimit()) {
7b6cd1ce 2802 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2803 dump_stack();
2804 }
2805}
2806EXPORT_SYMBOL(netdev_rx_csum_fault);
2807#endif
2808
1da177e4
LT
2809/* Actually, we should eliminate this check as soon as we know, that:
2810 * 1. IOMMU is present and allows to map all the memory.
2811 * 2. No high memory really exists on this machine.
2812 */
2813
c1e756bf 2814static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2815{
3d3a8533 2816#ifdef CONFIG_HIGHMEM
1da177e4 2817 int i;
f4563a75 2818
5acbbd42 2819 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2820 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2821 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 2822
ea2ab693 2823 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2824 return 1;
ea2ab693 2825 }
5acbbd42 2826 }
1da177e4 2827
5acbbd42
FT
2828 if (PCI_DMA_BUS_IS_PHYS) {
2829 struct device *pdev = dev->dev.parent;
1da177e4 2830
9092c658
ED
2831 if (!pdev)
2832 return 0;
5acbbd42 2833 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2834 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2835 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
f4563a75 2836
5acbbd42
FT
2837 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2838 return 1;
2839 }
2840 }
3d3a8533 2841#endif
1da177e4
LT
2842 return 0;
2843}
1da177e4 2844
3b392ddb
SH
2845/* If MPLS offload request, verify we are testing hardware MPLS features
2846 * instead of standard features for the netdev.
2847 */
d0edc7bf 2848#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2849static netdev_features_t net_mpls_features(struct sk_buff *skb,
2850 netdev_features_t features,
2851 __be16 type)
2852{
25cd9ba0 2853 if (eth_p_mpls(type))
3b392ddb
SH
2854 features &= skb->dev->mpls_features;
2855
2856 return features;
2857}
2858#else
2859static netdev_features_t net_mpls_features(struct sk_buff *skb,
2860 netdev_features_t features,
2861 __be16 type)
2862{
2863 return features;
2864}
2865#endif
2866
c8f44aff 2867static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2868 netdev_features_t features)
f01a5236 2869{
53d6471c 2870 int tmp;
3b392ddb
SH
2871 __be16 type;
2872
2873 type = skb_network_protocol(skb, &tmp);
2874 features = net_mpls_features(skb, features, type);
53d6471c 2875
c0d680e5 2876 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2877 !can_checksum_protocol(features, type)) {
996e8021 2878 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2879 }
7be2c82c
ED
2880 if (illegal_highdma(skb->dev, skb))
2881 features &= ~NETIF_F_SG;
f01a5236
JG
2882
2883 return features;
2884}
2885
e38f3025
TM
2886netdev_features_t passthru_features_check(struct sk_buff *skb,
2887 struct net_device *dev,
2888 netdev_features_t features)
2889{
2890 return features;
2891}
2892EXPORT_SYMBOL(passthru_features_check);
2893
8cb65d00
TM
2894static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2895 struct net_device *dev,
2896 netdev_features_t features)
2897{
2898 return vlan_features_check(skb, features);
2899}
2900
cbc53e08
AD
2901static netdev_features_t gso_features_check(const struct sk_buff *skb,
2902 struct net_device *dev,
2903 netdev_features_t features)
2904{
2905 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2906
2907 if (gso_segs > dev->gso_max_segs)
2908 return features & ~NETIF_F_GSO_MASK;
2909
802ab55a
AD
2910 /* Support for GSO partial features requires software
2911 * intervention before we can actually process the packets
2912 * so we need to strip support for any partial features now
2913 * and we can pull them back in after we have partially
2914 * segmented the frame.
2915 */
2916 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2917 features &= ~dev->gso_partial_features;
2918
2919 /* Make sure to clear the IPv4 ID mangling feature if the
2920 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2921 */
2922 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2923 struct iphdr *iph = skb->encapsulation ?
2924 inner_ip_hdr(skb) : ip_hdr(skb);
2925
2926 if (!(iph->frag_off & htons(IP_DF)))
2927 features &= ~NETIF_F_TSO_MANGLEID;
2928 }
2929
2930 return features;
2931}
2932
c1e756bf 2933netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2934{
5f35227e 2935 struct net_device *dev = skb->dev;
fcbeb976 2936 netdev_features_t features = dev->features;
58e998c6 2937
cbc53e08
AD
2938 if (skb_is_gso(skb))
2939 features = gso_features_check(skb, dev, features);
30b678d8 2940
5f35227e
JG
2941 /* If encapsulation offload request, verify we are testing
2942 * hardware encapsulation features instead of standard
2943 * features for the netdev
2944 */
2945 if (skb->encapsulation)
2946 features &= dev->hw_enc_features;
2947
f5a7fb88
TM
2948 if (skb_vlan_tagged(skb))
2949 features = netdev_intersect_features(features,
2950 dev->vlan_features |
2951 NETIF_F_HW_VLAN_CTAG_TX |
2952 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2953
5f35227e
JG
2954 if (dev->netdev_ops->ndo_features_check)
2955 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2956 features);
8cb65d00
TM
2957 else
2958 features &= dflt_features_check(skb, dev, features);
5f35227e 2959
c1e756bf 2960 return harmonize_features(skb, features);
58e998c6 2961}
c1e756bf 2962EXPORT_SYMBOL(netif_skb_features);
58e998c6 2963
2ea25513 2964static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2965 struct netdev_queue *txq, bool more)
f6a78bfc 2966{
2ea25513
DM
2967 unsigned int len;
2968 int rc;
00829823 2969
7866a621 2970 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2971 dev_queue_xmit_nit(skb, dev);
fc741216 2972
2ea25513
DM
2973 len = skb->len;
2974 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2975 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2976 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2977
2ea25513
DM
2978 return rc;
2979}
7b9c6090 2980
8dcda22a
DM
2981struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2982 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2983{
2984 struct sk_buff *skb = first;
2985 int rc = NETDEV_TX_OK;
7b9c6090 2986
7f2e870f
DM
2987 while (skb) {
2988 struct sk_buff *next = skb->next;
fc70fb64 2989
7f2e870f 2990 skb->next = NULL;
95f6b3dd 2991 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2992 if (unlikely(!dev_xmit_complete(rc))) {
2993 skb->next = next;
2994 goto out;
2995 }
6afff0ca 2996
7f2e870f
DM
2997 skb = next;
2998 if (netif_xmit_stopped(txq) && skb) {
2999 rc = NETDEV_TX_BUSY;
3000 break;
9ccb8975 3001 }
7f2e870f 3002 }
9ccb8975 3003
7f2e870f
DM
3004out:
3005 *ret = rc;
3006 return skb;
3007}
b40863c6 3008
1ff0dc94
ED
3009static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3010 netdev_features_t features)
f6a78bfc 3011{
df8a39de 3012 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3013 !vlan_hw_offload_capable(features, skb->vlan_proto))
3014 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3015 return skb;
3016}
f6a78bfc 3017
43c26a1a
DC
3018int skb_csum_hwoffload_help(struct sk_buff *skb,
3019 const netdev_features_t features)
3020{
3021 if (unlikely(skb->csum_not_inet))
3022 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3023 skb_crc32c_csum_help(skb);
3024
3025 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3026}
3027EXPORT_SYMBOL(skb_csum_hwoffload_help);
3028
55a93b3e 3029static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
3030{
3031 netdev_features_t features;
f6a78bfc 3032
eae3f88e
DM
3033 features = netif_skb_features(skb);
3034 skb = validate_xmit_vlan(skb, features);
3035 if (unlikely(!skb))
3036 goto out_null;
7b9c6090 3037
8b86a61d 3038 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3039 struct sk_buff *segs;
3040
3041 segs = skb_gso_segment(skb, features);
cecda693 3042 if (IS_ERR(segs)) {
af6dabc9 3043 goto out_kfree_skb;
cecda693
JW
3044 } else if (segs) {
3045 consume_skb(skb);
3046 skb = segs;
f6a78bfc 3047 }
eae3f88e
DM
3048 } else {
3049 if (skb_needs_linearize(skb, features) &&
3050 __skb_linearize(skb))
3051 goto out_kfree_skb;
4ec93edb 3052
f6e27114
SK
3053 if (validate_xmit_xfrm(skb, features))
3054 goto out_kfree_skb;
3055
eae3f88e
DM
3056 /* If packet is not checksummed and device does not
3057 * support checksumming for this protocol, complete
3058 * checksumming here.
3059 */
3060 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3061 if (skb->encapsulation)
3062 skb_set_inner_transport_header(skb,
3063 skb_checksum_start_offset(skb));
3064 else
3065 skb_set_transport_header(skb,
3066 skb_checksum_start_offset(skb));
43c26a1a 3067 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3068 goto out_kfree_skb;
7b9c6090 3069 }
0c772159 3070 }
7b9c6090 3071
eae3f88e 3072 return skb;
fc70fb64 3073
f6a78bfc
HX
3074out_kfree_skb:
3075 kfree_skb(skb);
eae3f88e 3076out_null:
d21fd63e 3077 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3078 return NULL;
3079}
6afff0ca 3080
55a93b3e
ED
3081struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3082{
3083 struct sk_buff *next, *head = NULL, *tail;
3084
bec3cfdc 3085 for (; skb != NULL; skb = next) {
55a93b3e
ED
3086 next = skb->next;
3087 skb->next = NULL;
bec3cfdc
ED
3088
3089 /* in case skb wont be segmented, point to itself */
3090 skb->prev = skb;
3091
55a93b3e 3092 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3093 if (!skb)
3094 continue;
55a93b3e 3095
bec3cfdc
ED
3096 if (!head)
3097 head = skb;
3098 else
3099 tail->next = skb;
3100 /* If skb was segmented, skb->prev points to
3101 * the last segment. If not, it still contains skb.
3102 */
3103 tail = skb->prev;
55a93b3e
ED
3104 }
3105 return head;
f6a78bfc 3106}
104ba78c 3107EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3108
1def9238
ED
3109static void qdisc_pkt_len_init(struct sk_buff *skb)
3110{
3111 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3112
3113 qdisc_skb_cb(skb)->pkt_len = skb->len;
3114
3115 /* To get more precise estimation of bytes sent on wire,
3116 * we add to pkt_len the headers size of all segments
3117 */
3118 if (shinfo->gso_size) {
757b8b1d 3119 unsigned int hdr_len;
15e5a030 3120 u16 gso_segs = shinfo->gso_segs;
1def9238 3121
757b8b1d
ED
3122 /* mac layer + network layer */
3123 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3124
3125 /* + transport layer */
1def9238
ED
3126 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3127 hdr_len += tcp_hdrlen(skb);
3128 else
3129 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3130
3131 if (shinfo->gso_type & SKB_GSO_DODGY)
3132 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3133 shinfo->gso_size);
3134
3135 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3136 }
3137}
3138
bbd8a0d3
KK
3139static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3140 struct net_device *dev,
3141 struct netdev_queue *txq)
3142{
3143 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3144 struct sk_buff *to_free = NULL;
a2da570d 3145 bool contended;
bbd8a0d3
KK
3146 int rc;
3147
a2da570d 3148 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3149 /*
3150 * Heuristic to force contended enqueues to serialize on a
3151 * separate lock before trying to get qdisc main lock.
f9eb8aea 3152 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3153 * often and dequeue packets faster.
79640a4c 3154 */
a2da570d 3155 contended = qdisc_is_running(q);
79640a4c
ED
3156 if (unlikely(contended))
3157 spin_lock(&q->busylock);
3158
bbd8a0d3
KK
3159 spin_lock(root_lock);
3160 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3161 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3162 rc = NET_XMIT_DROP;
3163 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3164 qdisc_run_begin(q)) {
bbd8a0d3
KK
3165 /*
3166 * This is a work-conserving queue; there are no old skbs
3167 * waiting to be sent out; and the qdisc is not running -
3168 * xmit the skb directly.
3169 */
bfe0d029 3170
bfe0d029
ED
3171 qdisc_bstats_update(q, skb);
3172
55a93b3e 3173 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3174 if (unlikely(contended)) {
3175 spin_unlock(&q->busylock);
3176 contended = false;
3177 }
bbd8a0d3 3178 __qdisc_run(q);
79640a4c 3179 } else
bc135b23 3180 qdisc_run_end(q);
bbd8a0d3
KK
3181
3182 rc = NET_XMIT_SUCCESS;
3183 } else {
520ac30f 3184 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3185 if (qdisc_run_begin(q)) {
3186 if (unlikely(contended)) {
3187 spin_unlock(&q->busylock);
3188 contended = false;
3189 }
3190 __qdisc_run(q);
3191 }
bbd8a0d3
KK
3192 }
3193 spin_unlock(root_lock);
520ac30f
ED
3194 if (unlikely(to_free))
3195 kfree_skb_list(to_free);
79640a4c
ED
3196 if (unlikely(contended))
3197 spin_unlock(&q->busylock);
bbd8a0d3
KK
3198 return rc;
3199}
3200
86f8515f 3201#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3202static void skb_update_prio(struct sk_buff *skb)
3203{
6977a79d 3204 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3205
91c68ce2 3206 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3207 unsigned int prioidx =
3208 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3209
3210 if (prioidx < map->priomap_len)
3211 skb->priority = map->priomap[prioidx];
3212 }
5bc1421e
NH
3213}
3214#else
3215#define skb_update_prio(skb)
3216#endif
3217
f60e5990 3218DEFINE_PER_CPU(int, xmit_recursion);
3219EXPORT_SYMBOL(xmit_recursion);
3220
95603e22
MM
3221/**
3222 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3223 * @net: network namespace this loopback is happening in
3224 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3225 * @skb: buffer to transmit
3226 */
0c4b51f0 3227int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3228{
3229 skb_reset_mac_header(skb);
3230 __skb_pull(skb, skb_network_offset(skb));
3231 skb->pkt_type = PACKET_LOOPBACK;
3232 skb->ip_summed = CHECKSUM_UNNECESSARY;
3233 WARN_ON(!skb_dst(skb));
3234 skb_dst_force(skb);
3235 netif_rx_ni(skb);
3236 return 0;
3237}
3238EXPORT_SYMBOL(dev_loopback_xmit);
3239
1f211a1b
DB
3240#ifdef CONFIG_NET_EGRESS
3241static struct sk_buff *
3242sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3243{
3244 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3245 struct tcf_result cl_res;
3246
3247 if (!cl)
3248 return skb;
3249
8dc07fdb 3250 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
1f211a1b
DB
3251 qdisc_bstats_cpu_update(cl->q, skb);
3252
87d83093 3253 switch (tcf_classify(skb, cl, &cl_res, false)) {
1f211a1b
DB
3254 case TC_ACT_OK:
3255 case TC_ACT_RECLASSIFY:
3256 skb->tc_index = TC_H_MIN(cl_res.classid);
3257 break;
3258 case TC_ACT_SHOT:
3259 qdisc_qstats_cpu_drop(cl->q);
3260 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3261 kfree_skb(skb);
3262 return NULL;
1f211a1b
DB
3263 case TC_ACT_STOLEN:
3264 case TC_ACT_QUEUED:
e25ea21f 3265 case TC_ACT_TRAP:
1f211a1b 3266 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3267 consume_skb(skb);
1f211a1b
DB
3268 return NULL;
3269 case TC_ACT_REDIRECT:
3270 /* No need to push/pop skb's mac_header here on egress! */
3271 skb_do_redirect(skb);
3272 *ret = NET_XMIT_SUCCESS;
3273 return NULL;
3274 default:
3275 break;
3276 }
3277
3278 return skb;
3279}
3280#endif /* CONFIG_NET_EGRESS */
3281
638b2a69
JP
3282static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3283{
3284#ifdef CONFIG_XPS
3285 struct xps_dev_maps *dev_maps;
3286 struct xps_map *map;
3287 int queue_index = -1;
3288
3289 rcu_read_lock();
3290 dev_maps = rcu_dereference(dev->xps_maps);
3291 if (dev_maps) {
184c449f
AD
3292 unsigned int tci = skb->sender_cpu - 1;
3293
3294 if (dev->num_tc) {
3295 tci *= dev->num_tc;
3296 tci += netdev_get_prio_tc_map(dev, skb->priority);
3297 }
3298
3299 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3300 if (map) {
3301 if (map->len == 1)
3302 queue_index = map->queues[0];
3303 else
3304 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3305 map->len)];
3306 if (unlikely(queue_index >= dev->real_num_tx_queues))
3307 queue_index = -1;
3308 }
3309 }
3310 rcu_read_unlock();
3311
3312 return queue_index;
3313#else
3314 return -1;
3315#endif
3316}
3317
3318static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3319{
3320 struct sock *sk = skb->sk;
3321 int queue_index = sk_tx_queue_get(sk);
3322
3323 if (queue_index < 0 || skb->ooo_okay ||
3324 queue_index >= dev->real_num_tx_queues) {
3325 int new_index = get_xps_queue(dev, skb);
f4563a75 3326
638b2a69
JP
3327 if (new_index < 0)
3328 new_index = skb_tx_hash(dev, skb);
3329
3330 if (queue_index != new_index && sk &&
004a5d01 3331 sk_fullsock(sk) &&
638b2a69
JP
3332 rcu_access_pointer(sk->sk_dst_cache))
3333 sk_tx_queue_set(sk, new_index);
3334
3335 queue_index = new_index;
3336 }
3337
3338 return queue_index;
3339}
3340
3341struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3342 struct sk_buff *skb,
3343 void *accel_priv)
3344{
3345 int queue_index = 0;
3346
3347#ifdef CONFIG_XPS
52bd2d62
ED
3348 u32 sender_cpu = skb->sender_cpu - 1;
3349
3350 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3351 skb->sender_cpu = raw_smp_processor_id() + 1;
3352#endif
3353
3354 if (dev->real_num_tx_queues != 1) {
3355 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3356
638b2a69
JP
3357 if (ops->ndo_select_queue)
3358 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3359 __netdev_pick_tx);
3360 else
3361 queue_index = __netdev_pick_tx(dev, skb);
3362
3363 if (!accel_priv)
3364 queue_index = netdev_cap_txqueue(dev, queue_index);
3365 }
3366
3367 skb_set_queue_mapping(skb, queue_index);
3368 return netdev_get_tx_queue(dev, queue_index);
3369}
3370
d29f749e 3371/**
9d08dd3d 3372 * __dev_queue_xmit - transmit a buffer
d29f749e 3373 * @skb: buffer to transmit
9d08dd3d 3374 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3375 *
3376 * Queue a buffer for transmission to a network device. The caller must
3377 * have set the device and priority and built the buffer before calling
3378 * this function. The function can be called from an interrupt.
3379 *
3380 * A negative errno code is returned on a failure. A success does not
3381 * guarantee the frame will be transmitted as it may be dropped due
3382 * to congestion or traffic shaping.
3383 *
3384 * -----------------------------------------------------------------------------------
3385 * I notice this method can also return errors from the queue disciplines,
3386 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3387 * be positive.
3388 *
3389 * Regardless of the return value, the skb is consumed, so it is currently
3390 * difficult to retry a send to this method. (You can bump the ref count
3391 * before sending to hold a reference for retry if you are careful.)
3392 *
3393 * When calling this method, interrupts MUST be enabled. This is because
3394 * the BH enable code must have IRQs enabled so that it will not deadlock.
3395 * --BLG
3396 */
0a59f3a9 3397static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3398{
3399 struct net_device *dev = skb->dev;
dc2b4847 3400 struct netdev_queue *txq;
1da177e4
LT
3401 struct Qdisc *q;
3402 int rc = -ENOMEM;
3403
6d1ccff6
ED
3404 skb_reset_mac_header(skb);
3405
e7fd2885
WB
3406 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3407 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3408
4ec93edb
YH
3409 /* Disable soft irqs for various locks below. Also
3410 * stops preemption for RCU.
1da177e4 3411 */
4ec93edb 3412 rcu_read_lock_bh();
1da177e4 3413
5bc1421e
NH
3414 skb_update_prio(skb);
3415
1f211a1b
DB
3416 qdisc_pkt_len_init(skb);
3417#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3418 skb->tc_at_ingress = 0;
1f211a1b
DB
3419# ifdef CONFIG_NET_EGRESS
3420 if (static_key_false(&egress_needed)) {
3421 skb = sch_handle_egress(skb, &rc, dev);
3422 if (!skb)
3423 goto out;
3424 }
3425# endif
3426#endif
02875878
ED
3427 /* If device/qdisc don't need skb->dst, release it right now while
3428 * its hot in this cpu cache.
3429 */
3430 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3431 skb_dst_drop(skb);
3432 else
3433 skb_dst_force(skb);
3434
f663dd9a 3435 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3436 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3437
cf66ba58 3438 trace_net_dev_queue(skb);
1da177e4 3439 if (q->enqueue) {
bbd8a0d3 3440 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3441 goto out;
1da177e4
LT
3442 }
3443
3444 /* The device has no queue. Common case for software devices:
eb13da1a 3445 * loopback, all the sorts of tunnels...
1da177e4 3446
eb13da1a 3447 * Really, it is unlikely that netif_tx_lock protection is necessary
3448 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3449 * counters.)
3450 * However, it is possible, that they rely on protection
3451 * made by us here.
1da177e4 3452
eb13da1a 3453 * Check this and shot the lock. It is not prone from deadlocks.
3454 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3455 */
3456 if (dev->flags & IFF_UP) {
3457 int cpu = smp_processor_id(); /* ok because BHs are off */
3458
c773e847 3459 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3460 if (unlikely(__this_cpu_read(xmit_recursion) >
3461 XMIT_RECURSION_LIMIT))
745e20f1
ED
3462 goto recursion_alert;
3463
1f59533f
JDB
3464 skb = validate_xmit_skb(skb, dev);
3465 if (!skb)
d21fd63e 3466 goto out;
1f59533f 3467
c773e847 3468 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3469
73466498 3470 if (!netif_xmit_stopped(txq)) {
745e20f1 3471 __this_cpu_inc(xmit_recursion);
ce93718f 3472 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3473 __this_cpu_dec(xmit_recursion);
572a9d7b 3474 if (dev_xmit_complete(rc)) {
c773e847 3475 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3476 goto out;
3477 }
3478 }
c773e847 3479 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3480 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3481 dev->name);
1da177e4
LT
3482 } else {
3483 /* Recursion is detected! It is possible,
745e20f1
ED
3484 * unfortunately
3485 */
3486recursion_alert:
e87cc472
JP
3487 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3488 dev->name);
1da177e4
LT
3489 }
3490 }
3491
3492 rc = -ENETDOWN;
d4828d85 3493 rcu_read_unlock_bh();
1da177e4 3494
015f0688 3495 atomic_long_inc(&dev->tx_dropped);
1f59533f 3496 kfree_skb_list(skb);
1da177e4
LT
3497 return rc;
3498out:
d4828d85 3499 rcu_read_unlock_bh();
1da177e4
LT
3500 return rc;
3501}
f663dd9a 3502
2b4aa3ce 3503int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3504{
3505 return __dev_queue_xmit(skb, NULL);
3506}
2b4aa3ce 3507EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3508
f663dd9a
JW
3509int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3510{
3511 return __dev_queue_xmit(skb, accel_priv);
3512}
3513EXPORT_SYMBOL(dev_queue_xmit_accel);
3514
1da177e4 3515
eb13da1a 3516/*************************************************************************
3517 * Receiver routines
3518 *************************************************************************/
1da177e4 3519
6b2bedc3 3520int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3521EXPORT_SYMBOL(netdev_max_backlog);
3522
3b098e2d 3523int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3524int netdev_budget __read_mostly = 300;
7acf8a1e 3525unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3526int weight_p __read_mostly = 64; /* old backlog weight */
3527int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3528int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3529int dev_rx_weight __read_mostly = 64;
3530int dev_tx_weight __read_mostly = 64;
1da177e4 3531
eecfd7c4
ED
3532/* Called with irq disabled */
3533static inline void ____napi_schedule(struct softnet_data *sd,
3534 struct napi_struct *napi)
3535{
3536 list_add_tail(&napi->poll_list, &sd->poll_list);
3537 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3538}
3539
bfb564e7
KK
3540#ifdef CONFIG_RPS
3541
3542/* One global table that all flow-based protocols share. */
6e3f7faf 3543struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3544EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3545u32 rps_cpu_mask __read_mostly;
3546EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3547
c5905afb 3548struct static_key rps_needed __read_mostly;
3df97ba8 3549EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3550struct static_key rfs_needed __read_mostly;
3551EXPORT_SYMBOL(rfs_needed);
adc9300e 3552
c445477d
BH
3553static struct rps_dev_flow *
3554set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3555 struct rps_dev_flow *rflow, u16 next_cpu)
3556{
a31196b0 3557 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3558#ifdef CONFIG_RFS_ACCEL
3559 struct netdev_rx_queue *rxqueue;
3560 struct rps_dev_flow_table *flow_table;
3561 struct rps_dev_flow *old_rflow;
3562 u32 flow_id;
3563 u16 rxq_index;
3564 int rc;
3565
3566 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3567 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3568 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3569 goto out;
3570 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3571 if (rxq_index == skb_get_rx_queue(skb))
3572 goto out;
3573
3574 rxqueue = dev->_rx + rxq_index;
3575 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3576 if (!flow_table)
3577 goto out;
61b905da 3578 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3579 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3580 rxq_index, flow_id);
3581 if (rc < 0)
3582 goto out;
3583 old_rflow = rflow;
3584 rflow = &flow_table->flows[flow_id];
c445477d
BH
3585 rflow->filter = rc;
3586 if (old_rflow->filter == rflow->filter)
3587 old_rflow->filter = RPS_NO_FILTER;
3588 out:
3589#endif
3590 rflow->last_qtail =
09994d1b 3591 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3592 }
3593
09994d1b 3594 rflow->cpu = next_cpu;
c445477d
BH
3595 return rflow;
3596}
3597
bfb564e7
KK
3598/*
3599 * get_rps_cpu is called from netif_receive_skb and returns the target
3600 * CPU from the RPS map of the receiving queue for a given skb.
3601 * rcu_read_lock must be held on entry.
3602 */
3603static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3604 struct rps_dev_flow **rflowp)
3605{
567e4b79
ED
3606 const struct rps_sock_flow_table *sock_flow_table;
3607 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3608 struct rps_dev_flow_table *flow_table;
567e4b79 3609 struct rps_map *map;
bfb564e7 3610 int cpu = -1;
567e4b79 3611 u32 tcpu;
61b905da 3612 u32 hash;
bfb564e7
KK
3613
3614 if (skb_rx_queue_recorded(skb)) {
3615 u16 index = skb_get_rx_queue(skb);
567e4b79 3616
62fe0b40
BH
3617 if (unlikely(index >= dev->real_num_rx_queues)) {
3618 WARN_ONCE(dev->real_num_rx_queues > 1,
3619 "%s received packet on queue %u, but number "
3620 "of RX queues is %u\n",
3621 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3622 goto done;
3623 }
567e4b79
ED
3624 rxqueue += index;
3625 }
bfb564e7 3626
567e4b79
ED
3627 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3628
3629 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3630 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3631 if (!flow_table && !map)
bfb564e7
KK
3632 goto done;
3633
2d47b459 3634 skb_reset_network_header(skb);
61b905da
TH
3635 hash = skb_get_hash(skb);
3636 if (!hash)
bfb564e7
KK
3637 goto done;
3638
fec5e652
TH
3639 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3640 if (flow_table && sock_flow_table) {
fec5e652 3641 struct rps_dev_flow *rflow;
567e4b79
ED
3642 u32 next_cpu;
3643 u32 ident;
3644
3645 /* First check into global flow table if there is a match */
3646 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3647 if ((ident ^ hash) & ~rps_cpu_mask)
3648 goto try_rps;
fec5e652 3649
567e4b79
ED
3650 next_cpu = ident & rps_cpu_mask;
3651
3652 /* OK, now we know there is a match,
3653 * we can look at the local (per receive queue) flow table
3654 */
61b905da 3655 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3656 tcpu = rflow->cpu;
3657
fec5e652
TH
3658 /*
3659 * If the desired CPU (where last recvmsg was done) is
3660 * different from current CPU (one in the rx-queue flow
3661 * table entry), switch if one of the following holds:
a31196b0 3662 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3663 * - Current CPU is offline.
3664 * - The current CPU's queue tail has advanced beyond the
3665 * last packet that was enqueued using this table entry.
3666 * This guarantees that all previous packets for the flow
3667 * have been dequeued, thus preserving in order delivery.
3668 */
3669 if (unlikely(tcpu != next_cpu) &&
a31196b0 3670 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3671 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3672 rflow->last_qtail)) >= 0)) {
3673 tcpu = next_cpu;
c445477d 3674 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3675 }
c445477d 3676
a31196b0 3677 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3678 *rflowp = rflow;
3679 cpu = tcpu;
3680 goto done;
3681 }
3682 }
3683
567e4b79
ED
3684try_rps:
3685
0a9627f2 3686 if (map) {
8fc54f68 3687 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3688 if (cpu_online(tcpu)) {
3689 cpu = tcpu;
3690 goto done;
3691 }
3692 }
3693
3694done:
0a9627f2
TH
3695 return cpu;
3696}
3697
c445477d
BH
3698#ifdef CONFIG_RFS_ACCEL
3699
3700/**
3701 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3702 * @dev: Device on which the filter was set
3703 * @rxq_index: RX queue index
3704 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3705 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3706 *
3707 * Drivers that implement ndo_rx_flow_steer() should periodically call
3708 * this function for each installed filter and remove the filters for
3709 * which it returns %true.
3710 */
3711bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3712 u32 flow_id, u16 filter_id)
3713{
3714 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3715 struct rps_dev_flow_table *flow_table;
3716 struct rps_dev_flow *rflow;
3717 bool expire = true;
a31196b0 3718 unsigned int cpu;
c445477d
BH
3719
3720 rcu_read_lock();
3721 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3722 if (flow_table && flow_id <= flow_table->mask) {
3723 rflow = &flow_table->flows[flow_id];
3724 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3725 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3726 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3727 rflow->last_qtail) <
3728 (int)(10 * flow_table->mask)))
3729 expire = false;
3730 }
3731 rcu_read_unlock();
3732 return expire;
3733}
3734EXPORT_SYMBOL(rps_may_expire_flow);
3735
3736#endif /* CONFIG_RFS_ACCEL */
3737
0a9627f2 3738/* Called from hardirq (IPI) context */
e36fa2f7 3739static void rps_trigger_softirq(void *data)
0a9627f2 3740{
e36fa2f7
ED
3741 struct softnet_data *sd = data;
3742
eecfd7c4 3743 ____napi_schedule(sd, &sd->backlog);
dee42870 3744 sd->received_rps++;
0a9627f2 3745}
e36fa2f7 3746
fec5e652 3747#endif /* CONFIG_RPS */
0a9627f2 3748
e36fa2f7
ED
3749/*
3750 * Check if this softnet_data structure is another cpu one
3751 * If yes, queue it to our IPI list and return 1
3752 * If no, return 0
3753 */
3754static int rps_ipi_queued(struct softnet_data *sd)
3755{
3756#ifdef CONFIG_RPS
903ceff7 3757 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3758
3759 if (sd != mysd) {
3760 sd->rps_ipi_next = mysd->rps_ipi_list;
3761 mysd->rps_ipi_list = sd;
3762
3763 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3764 return 1;
3765 }
3766#endif /* CONFIG_RPS */
3767 return 0;
3768}
3769
99bbc707
WB
3770#ifdef CONFIG_NET_FLOW_LIMIT
3771int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3772#endif
3773
3774static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3775{
3776#ifdef CONFIG_NET_FLOW_LIMIT
3777 struct sd_flow_limit *fl;
3778 struct softnet_data *sd;
3779 unsigned int old_flow, new_flow;
3780
3781 if (qlen < (netdev_max_backlog >> 1))
3782 return false;
3783
903ceff7 3784 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3785
3786 rcu_read_lock();
3787 fl = rcu_dereference(sd->flow_limit);
3788 if (fl) {
3958afa1 3789 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3790 old_flow = fl->history[fl->history_head];
3791 fl->history[fl->history_head] = new_flow;
3792
3793 fl->history_head++;
3794 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3795
3796 if (likely(fl->buckets[old_flow]))
3797 fl->buckets[old_flow]--;
3798
3799 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3800 fl->count++;
3801 rcu_read_unlock();
3802 return true;
3803 }
3804 }
3805 rcu_read_unlock();
3806#endif
3807 return false;
3808}
3809
0a9627f2
TH
3810/*
3811 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3812 * queue (may be a remote CPU queue).
3813 */
fec5e652
TH
3814static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3815 unsigned int *qtail)
0a9627f2 3816{
e36fa2f7 3817 struct softnet_data *sd;
0a9627f2 3818 unsigned long flags;
99bbc707 3819 unsigned int qlen;
0a9627f2 3820
e36fa2f7 3821 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3822
3823 local_irq_save(flags);
0a9627f2 3824
e36fa2f7 3825 rps_lock(sd);
e9e4dd32
JA
3826 if (!netif_running(skb->dev))
3827 goto drop;
99bbc707
WB
3828 qlen = skb_queue_len(&sd->input_pkt_queue);
3829 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3830 if (qlen) {
0a9627f2 3831enqueue:
e36fa2f7 3832 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3833 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3834 rps_unlock(sd);
152102c7 3835 local_irq_restore(flags);
0a9627f2
TH
3836 return NET_RX_SUCCESS;
3837 }
3838
ebda37c2
ED
3839 /* Schedule NAPI for backlog device
3840 * We can use non atomic operation since we own the queue lock
3841 */
3842 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3843 if (!rps_ipi_queued(sd))
eecfd7c4 3844 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3845 }
3846 goto enqueue;
3847 }
3848
e9e4dd32 3849drop:
dee42870 3850 sd->dropped++;
e36fa2f7 3851 rps_unlock(sd);
0a9627f2 3852
0a9627f2
TH
3853 local_irq_restore(flags);
3854
caf586e5 3855 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3856 kfree_skb(skb);
3857 return NET_RX_DROP;
3858}
1da177e4 3859
d4455169
JF
3860static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3861 struct bpf_prog *xdp_prog)
3862{
3863 struct xdp_buff xdp;
3864 u32 act = XDP_DROP;
3865 void *orig_data;
3866 int hlen, off;
3867 u32 mac_len;
3868
3869 /* Reinjected packets coming from act_mirred or similar should
3870 * not get XDP generic processing.
3871 */
3872 if (skb_cloned(skb))
3873 return XDP_PASS;
3874
3875 if (skb_linearize(skb))
3876 goto do_drop;
3877
3878 /* The XDP program wants to see the packet starting at the MAC
3879 * header.
3880 */
3881 mac_len = skb->data - skb_mac_header(skb);
3882 hlen = skb_headlen(skb) + mac_len;
3883 xdp.data = skb->data - mac_len;
3884 xdp.data_end = xdp.data + hlen;
3885 xdp.data_hard_start = skb->data - skb_headroom(skb);
3886 orig_data = xdp.data;
3887
3888 act = bpf_prog_run_xdp(xdp_prog, &xdp);
3889
3890 off = xdp.data - orig_data;
3891 if (off > 0)
3892 __skb_pull(skb, off);
3893 else if (off < 0)
3894 __skb_push(skb, -off);
3895
3896 switch (act) {
6103aa96 3897 case XDP_REDIRECT:
d4455169
JF
3898 case XDP_TX:
3899 __skb_push(skb, mac_len);
3900 /* fall through */
3901 case XDP_PASS:
3902 break;
3903
3904 default:
3905 bpf_warn_invalid_xdp_action(act);
3906 /* fall through */
3907 case XDP_ABORTED:
3908 trace_xdp_exception(skb->dev, xdp_prog, act);
3909 /* fall through */
3910 case XDP_DROP:
3911 do_drop:
3912 kfree_skb(skb);
3913 break;
3914 }
3915
3916 return act;
3917}
3918
3919/* When doing generic XDP we have to bypass the qdisc layer and the
3920 * network taps in order to match in-driver-XDP behavior.
3921 */
7c497478 3922void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
3923{
3924 struct net_device *dev = skb->dev;
3925 struct netdev_queue *txq;
3926 bool free_skb = true;
3927 int cpu, rc;
3928
3929 txq = netdev_pick_tx(dev, skb, NULL);
3930 cpu = smp_processor_id();
3931 HARD_TX_LOCK(dev, txq, cpu);
3932 if (!netif_xmit_stopped(txq)) {
3933 rc = netdev_start_xmit(skb, dev, txq, 0);
3934 if (dev_xmit_complete(rc))
3935 free_skb = false;
3936 }
3937 HARD_TX_UNLOCK(dev, txq);
3938 if (free_skb) {
3939 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3940 kfree_skb(skb);
3941 }
3942}
7c497478 3943EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169
JF
3944
3945static struct static_key generic_xdp_needed __read_mostly;
3946
7c497478 3947int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 3948{
d4455169
JF
3949 if (xdp_prog) {
3950 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
6103aa96 3951 int err;
d4455169
JF
3952
3953 if (act != XDP_PASS) {
6103aa96
JF
3954 switch (act) {
3955 case XDP_REDIRECT:
2facaad6
JDB
3956 err = xdp_do_generic_redirect(skb->dev, skb,
3957 xdp_prog);
6103aa96
JF
3958 if (err)
3959 goto out_redir;
3960 /* fallthru to submit skb */
3961 case XDP_TX:
d4455169 3962 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
3963 break;
3964 }
d4455169
JF
3965 return XDP_DROP;
3966 }
3967 }
3968 return XDP_PASS;
6103aa96 3969out_redir:
6103aa96
JF
3970 kfree_skb(skb);
3971 return XDP_DROP;
d4455169 3972}
7c497478 3973EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 3974
ae78dbfa 3975static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3976{
b0e28f1e 3977 int ret;
1da177e4 3978
588f0330 3979 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3980
cf66ba58 3981 trace_netif_rx(skb);
d4455169
JF
3982
3983 if (static_key_false(&generic_xdp_needed)) {
7c497478
JW
3984 int ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
3985 skb);
d4455169 3986
6103aa96
JF
3987 /* Consider XDP consuming the packet a success from
3988 * the netdev point of view we do not want to count
3989 * this as an error.
3990 */
d4455169 3991 if (ret != XDP_PASS)
6103aa96 3992 return NET_RX_SUCCESS;
d4455169
JF
3993 }
3994
df334545 3995#ifdef CONFIG_RPS
c5905afb 3996 if (static_key_false(&rps_needed)) {
fec5e652 3997 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3998 int cpu;
3999
cece1945 4000 preempt_disable();
b0e28f1e 4001 rcu_read_lock();
fec5e652
TH
4002
4003 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4004 if (cpu < 0)
4005 cpu = smp_processor_id();
fec5e652
TH
4006
4007 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4008
b0e28f1e 4009 rcu_read_unlock();
cece1945 4010 preempt_enable();
adc9300e
ED
4011 } else
4012#endif
fec5e652
TH
4013 {
4014 unsigned int qtail;
f4563a75 4015
fec5e652
TH
4016 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4017 put_cpu();
4018 }
b0e28f1e 4019 return ret;
1da177e4 4020}
ae78dbfa
BH
4021
4022/**
4023 * netif_rx - post buffer to the network code
4024 * @skb: buffer to post
4025 *
4026 * This function receives a packet from a device driver and queues it for
4027 * the upper (protocol) levels to process. It always succeeds. The buffer
4028 * may be dropped during processing for congestion control or by the
4029 * protocol layers.
4030 *
4031 * return values:
4032 * NET_RX_SUCCESS (no congestion)
4033 * NET_RX_DROP (packet was dropped)
4034 *
4035 */
4036
4037int netif_rx(struct sk_buff *skb)
4038{
4039 trace_netif_rx_entry(skb);
4040
4041 return netif_rx_internal(skb);
4042}
d1b19dff 4043EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4044
4045int netif_rx_ni(struct sk_buff *skb)
4046{
4047 int err;
4048
ae78dbfa
BH
4049 trace_netif_rx_ni_entry(skb);
4050
1da177e4 4051 preempt_disable();
ae78dbfa 4052 err = netif_rx_internal(skb);
1da177e4
LT
4053 if (local_softirq_pending())
4054 do_softirq();
4055 preempt_enable();
4056
4057 return err;
4058}
1da177e4
LT
4059EXPORT_SYMBOL(netif_rx_ni);
4060
0766f788 4061static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4062{
903ceff7 4063 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4064
4065 if (sd->completion_queue) {
4066 struct sk_buff *clist;
4067
4068 local_irq_disable();
4069 clist = sd->completion_queue;
4070 sd->completion_queue = NULL;
4071 local_irq_enable();
4072
4073 while (clist) {
4074 struct sk_buff *skb = clist;
f4563a75 4075
1da177e4
LT
4076 clist = clist->next;
4077
63354797 4078 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4079 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4080 trace_consume_skb(skb);
4081 else
4082 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4083
4084 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4085 __kfree_skb(skb);
4086 else
4087 __kfree_skb_defer(skb);
1da177e4 4088 }
15fad714
JDB
4089
4090 __kfree_skb_flush();
1da177e4
LT
4091 }
4092
4093 if (sd->output_queue) {
37437bb2 4094 struct Qdisc *head;
1da177e4
LT
4095
4096 local_irq_disable();
4097 head = sd->output_queue;
4098 sd->output_queue = NULL;
a9cbd588 4099 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4100 local_irq_enable();
4101
4102 while (head) {
37437bb2
DM
4103 struct Qdisc *q = head;
4104 spinlock_t *root_lock;
4105
1da177e4
LT
4106 head = head->next_sched;
4107
5fb66229 4108 root_lock = qdisc_lock(q);
3bcb846c
ED
4109 spin_lock(root_lock);
4110 /* We need to make sure head->next_sched is read
4111 * before clearing __QDISC_STATE_SCHED
4112 */
4113 smp_mb__before_atomic();
4114 clear_bit(__QDISC_STATE_SCHED, &q->state);
4115 qdisc_run(q);
4116 spin_unlock(root_lock);
1da177e4
LT
4117 }
4118 }
4119}
4120
181402a5 4121#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4122/* This hook is defined here for ATM LANE */
4123int (*br_fdb_test_addr_hook)(struct net_device *dev,
4124 unsigned char *addr) __read_mostly;
4fb019a0 4125EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4126#endif
1da177e4 4127
1f211a1b
DB
4128static inline struct sk_buff *
4129sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4130 struct net_device *orig_dev)
f697c3e8 4131{
e7582bab 4132#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
4133 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4134 struct tcf_result cl_res;
24824a09 4135
c9e99fd0
DB
4136 /* If there's at least one ingress present somewhere (so
4137 * we get here via enabled static key), remaining devices
4138 * that are not configured with an ingress qdisc will bail
d2788d34 4139 * out here.
c9e99fd0 4140 */
d2788d34 4141 if (!cl)
4577139b 4142 return skb;
f697c3e8
HX
4143 if (*pt_prev) {
4144 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4145 *pt_prev = NULL;
1da177e4
LT
4146 }
4147
3365495c 4148 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4149 skb->tc_at_ingress = 1;
24ea591d 4150 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 4151
87d83093 4152 switch (tcf_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
4153 case TC_ACT_OK:
4154 case TC_ACT_RECLASSIFY:
4155 skb->tc_index = TC_H_MIN(cl_res.classid);
4156 break;
4157 case TC_ACT_SHOT:
24ea591d 4158 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
4159 kfree_skb(skb);
4160 return NULL;
d2788d34
DB
4161 case TC_ACT_STOLEN:
4162 case TC_ACT_QUEUED:
e25ea21f 4163 case TC_ACT_TRAP:
8a3a4c6e 4164 consume_skb(skb);
d2788d34 4165 return NULL;
27b29f63
AS
4166 case TC_ACT_REDIRECT:
4167 /* skb_mac_header check was done by cls/act_bpf, so
4168 * we can safely push the L2 header back before
4169 * redirecting to another netdev
4170 */
4171 __skb_push(skb, skb->mac_len);
4172 skb_do_redirect(skb);
4173 return NULL;
d2788d34
DB
4174 default:
4175 break;
f697c3e8 4176 }
e7582bab 4177#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4178 return skb;
4179}
1da177e4 4180
24b27fc4
MB
4181/**
4182 * netdev_is_rx_handler_busy - check if receive handler is registered
4183 * @dev: device to check
4184 *
4185 * Check if a receive handler is already registered for a given device.
4186 * Return true if there one.
4187 *
4188 * The caller must hold the rtnl_mutex.
4189 */
4190bool netdev_is_rx_handler_busy(struct net_device *dev)
4191{
4192 ASSERT_RTNL();
4193 return dev && rtnl_dereference(dev->rx_handler);
4194}
4195EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4196
ab95bfe0
JP
4197/**
4198 * netdev_rx_handler_register - register receive handler
4199 * @dev: device to register a handler for
4200 * @rx_handler: receive handler to register
93e2c32b 4201 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4202 *
e227867f 4203 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4204 * called from __netif_receive_skb. A negative errno code is returned
4205 * on a failure.
4206 *
4207 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4208 *
4209 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4210 */
4211int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4212 rx_handler_func_t *rx_handler,
4213 void *rx_handler_data)
ab95bfe0 4214{
1b7cd004 4215 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4216 return -EBUSY;
4217
00cfec37 4218 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4219 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4220 rcu_assign_pointer(dev->rx_handler, rx_handler);
4221
4222 return 0;
4223}
4224EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4225
4226/**
4227 * netdev_rx_handler_unregister - unregister receive handler
4228 * @dev: device to unregister a handler from
4229 *
166ec369 4230 * Unregister a receive handler from a device.
ab95bfe0
JP
4231 *
4232 * The caller must hold the rtnl_mutex.
4233 */
4234void netdev_rx_handler_unregister(struct net_device *dev)
4235{
4236
4237 ASSERT_RTNL();
a9b3cd7f 4238 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4239 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4240 * section has a guarantee to see a non NULL rx_handler_data
4241 * as well.
4242 */
4243 synchronize_net();
a9b3cd7f 4244 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4245}
4246EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4247
b4b9e355
MG
4248/*
4249 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4250 * the special handling of PFMEMALLOC skbs.
4251 */
4252static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4253{
4254 switch (skb->protocol) {
2b8837ae
JP
4255 case htons(ETH_P_ARP):
4256 case htons(ETH_P_IP):
4257 case htons(ETH_P_IPV6):
4258 case htons(ETH_P_8021Q):
4259 case htons(ETH_P_8021AD):
b4b9e355
MG
4260 return true;
4261 default:
4262 return false;
4263 }
4264}
4265
e687ad60
PN
4266static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4267 int *ret, struct net_device *orig_dev)
4268{
e7582bab 4269#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4270 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4271 int ingress_retval;
4272
e687ad60
PN
4273 if (*pt_prev) {
4274 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4275 *pt_prev = NULL;
4276 }
4277
2c1e2703
AC
4278 rcu_read_lock();
4279 ingress_retval = nf_hook_ingress(skb);
4280 rcu_read_unlock();
4281 return ingress_retval;
e687ad60 4282 }
e7582bab 4283#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4284 return 0;
4285}
e687ad60 4286
9754e293 4287static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4288{
4289 struct packet_type *ptype, *pt_prev;
ab95bfe0 4290 rx_handler_func_t *rx_handler;
f2ccd8fa 4291 struct net_device *orig_dev;
8a4eb573 4292 bool deliver_exact = false;
1da177e4 4293 int ret = NET_RX_DROP;
252e3346 4294 __be16 type;
1da177e4 4295
588f0330 4296 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4297
cf66ba58 4298 trace_netif_receive_skb(skb);
9b22ea56 4299
cc9bd5ce 4300 orig_dev = skb->dev;
8f903c70 4301
c1d2bbe1 4302 skb_reset_network_header(skb);
fda55eca
ED
4303 if (!skb_transport_header_was_set(skb))
4304 skb_reset_transport_header(skb);
0b5c9db1 4305 skb_reset_mac_len(skb);
1da177e4
LT
4306
4307 pt_prev = NULL;
4308
63d8ea7f 4309another_round:
b6858177 4310 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4311
4312 __this_cpu_inc(softnet_data.processed);
4313
8ad227ff
PM
4314 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4315 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4316 skb = skb_vlan_untag(skb);
bcc6d479 4317 if (unlikely(!skb))
2c17d27c 4318 goto out;
bcc6d479
JP
4319 }
4320
e7246e12
WB
4321 if (skb_skip_tc_classify(skb))
4322 goto skip_classify;
1da177e4 4323
9754e293 4324 if (pfmemalloc)
b4b9e355
MG
4325 goto skip_taps;
4326
1da177e4 4327 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4328 if (pt_prev)
4329 ret = deliver_skb(skb, pt_prev, orig_dev);
4330 pt_prev = ptype;
4331 }
4332
4333 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4334 if (pt_prev)
4335 ret = deliver_skb(skb, pt_prev, orig_dev);
4336 pt_prev = ptype;
1da177e4
LT
4337 }
4338
b4b9e355 4339skip_taps:
1cf51900 4340#ifdef CONFIG_NET_INGRESS
4577139b 4341 if (static_key_false(&ingress_needed)) {
1f211a1b 4342 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4343 if (!skb)
2c17d27c 4344 goto out;
e687ad60
PN
4345
4346 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4347 goto out;
4577139b 4348 }
1cf51900 4349#endif
a5135bcf 4350 skb_reset_tc(skb);
e7246e12 4351skip_classify:
9754e293 4352 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4353 goto drop;
4354
df8a39de 4355 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4356 if (pt_prev) {
4357 ret = deliver_skb(skb, pt_prev, orig_dev);
4358 pt_prev = NULL;
4359 }
48cc32d3 4360 if (vlan_do_receive(&skb))
2425717b
JF
4361 goto another_round;
4362 else if (unlikely(!skb))
2c17d27c 4363 goto out;
2425717b
JF
4364 }
4365
48cc32d3 4366 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4367 if (rx_handler) {
4368 if (pt_prev) {
4369 ret = deliver_skb(skb, pt_prev, orig_dev);
4370 pt_prev = NULL;
4371 }
8a4eb573
JP
4372 switch (rx_handler(&skb)) {
4373 case RX_HANDLER_CONSUMED:
3bc1b1ad 4374 ret = NET_RX_SUCCESS;
2c17d27c 4375 goto out;
8a4eb573 4376 case RX_HANDLER_ANOTHER:
63d8ea7f 4377 goto another_round;
8a4eb573
JP
4378 case RX_HANDLER_EXACT:
4379 deliver_exact = true;
4380 case RX_HANDLER_PASS:
4381 break;
4382 default:
4383 BUG();
4384 }
ab95bfe0 4385 }
1da177e4 4386
df8a39de
JP
4387 if (unlikely(skb_vlan_tag_present(skb))) {
4388 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4389 skb->pkt_type = PACKET_OTHERHOST;
4390 /* Note: we might in the future use prio bits
4391 * and set skb->priority like in vlan_do_receive()
4392 * For the time being, just ignore Priority Code Point
4393 */
4394 skb->vlan_tci = 0;
4395 }
48cc32d3 4396
7866a621
SN
4397 type = skb->protocol;
4398
63d8ea7f 4399 /* deliver only exact match when indicated */
7866a621
SN
4400 if (likely(!deliver_exact)) {
4401 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4402 &ptype_base[ntohs(type) &
4403 PTYPE_HASH_MASK]);
4404 }
1f3c8804 4405
7866a621
SN
4406 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4407 &orig_dev->ptype_specific);
4408
4409 if (unlikely(skb->dev != orig_dev)) {
4410 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4411 &skb->dev->ptype_specific);
1da177e4
LT
4412 }
4413
4414 if (pt_prev) {
1f8b977a 4415 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4416 goto drop;
1080e512
MT
4417 else
4418 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4419 } else {
b4b9e355 4420drop:
6e7333d3
JW
4421 if (!deliver_exact)
4422 atomic_long_inc(&skb->dev->rx_dropped);
4423 else
4424 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4425 kfree_skb(skb);
4426 /* Jamal, now you will not able to escape explaining
4427 * me how you were going to use this. :-)
4428 */
4429 ret = NET_RX_DROP;
4430 }
4431
2c17d27c 4432out:
9754e293
DM
4433 return ret;
4434}
4435
4436static int __netif_receive_skb(struct sk_buff *skb)
4437{
4438 int ret;
4439
4440 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 4441 unsigned int noreclaim_flag;
9754e293
DM
4442
4443 /*
4444 * PFMEMALLOC skbs are special, they should
4445 * - be delivered to SOCK_MEMALLOC sockets only
4446 * - stay away from userspace
4447 * - have bounded memory usage
4448 *
4449 * Use PF_MEMALLOC as this saves us from propagating the allocation
4450 * context down to all allocation sites.
4451 */
f1083048 4452 noreclaim_flag = memalloc_noreclaim_save();
9754e293 4453 ret = __netif_receive_skb_core(skb, true);
f1083048 4454 memalloc_noreclaim_restore(noreclaim_flag);
9754e293
DM
4455 } else
4456 ret = __netif_receive_skb_core(skb, false);
4457
1da177e4
LT
4458 return ret;
4459}
0a9627f2 4460
b5cdae32
DM
4461static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4462{
58038695 4463 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
4464 struct bpf_prog *new = xdp->prog;
4465 int ret = 0;
4466
4467 switch (xdp->command) {
58038695 4468 case XDP_SETUP_PROG:
b5cdae32
DM
4469 rcu_assign_pointer(dev->xdp_prog, new);
4470 if (old)
4471 bpf_prog_put(old);
4472
4473 if (old && !new) {
4474 static_key_slow_dec(&generic_xdp_needed);
4475 } else if (new && !old) {
4476 static_key_slow_inc(&generic_xdp_needed);
4477 dev_disable_lro(dev);
4478 }
4479 break;
b5cdae32
DM
4480
4481 case XDP_QUERY_PROG:
58038695
MKL
4482 xdp->prog_attached = !!old;
4483 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
4484 break;
4485
4486 default:
4487 ret = -EINVAL;
4488 break;
4489 }
4490
4491 return ret;
4492}
4493
ae78dbfa 4494static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4495{
2c17d27c
JA
4496 int ret;
4497
588f0330 4498 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4499
c1f19b51
RC
4500 if (skb_defer_rx_timestamp(skb))
4501 return NET_RX_SUCCESS;
4502
2c17d27c
JA
4503 rcu_read_lock();
4504
b5cdae32 4505 if (static_key_false(&generic_xdp_needed)) {
7c497478
JW
4506 int ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
4507 skb);
b5cdae32 4508
d4455169
JF
4509 if (ret != XDP_PASS) {
4510 rcu_read_unlock();
4511 return NET_RX_DROP;
b5cdae32
DM
4512 }
4513 }
4514
df334545 4515#ifdef CONFIG_RPS
c5905afb 4516 if (static_key_false(&rps_needed)) {
3b098e2d 4517 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4518 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4519
3b098e2d
ED
4520 if (cpu >= 0) {
4521 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4522 rcu_read_unlock();
adc9300e 4523 return ret;
3b098e2d 4524 }
fec5e652 4525 }
1e94d72f 4526#endif
2c17d27c
JA
4527 ret = __netif_receive_skb(skb);
4528 rcu_read_unlock();
4529 return ret;
0a9627f2 4530}
ae78dbfa
BH
4531
4532/**
4533 * netif_receive_skb - process receive buffer from network
4534 * @skb: buffer to process
4535 *
4536 * netif_receive_skb() is the main receive data processing function.
4537 * It always succeeds. The buffer may be dropped during processing
4538 * for congestion control or by the protocol layers.
4539 *
4540 * This function may only be called from softirq context and interrupts
4541 * should be enabled.
4542 *
4543 * Return values (usually ignored):
4544 * NET_RX_SUCCESS: no congestion
4545 * NET_RX_DROP: packet was dropped
4546 */
04eb4489 4547int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4548{
4549 trace_netif_receive_skb_entry(skb);
4550
4551 return netif_receive_skb_internal(skb);
4552}
04eb4489 4553EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4554
41852497 4555DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4556
4557/* Network device is going away, flush any packets still pending */
4558static void flush_backlog(struct work_struct *work)
6e583ce5 4559{
6e583ce5 4560 struct sk_buff *skb, *tmp;
145dd5f9
PA
4561 struct softnet_data *sd;
4562
4563 local_bh_disable();
4564 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4565
145dd5f9 4566 local_irq_disable();
e36fa2f7 4567 rps_lock(sd);
6e7676c1 4568 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4569 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4570 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4571 kfree_skb(skb);
76cc8b13 4572 input_queue_head_incr(sd);
6e583ce5 4573 }
6e7676c1 4574 }
e36fa2f7 4575 rps_unlock(sd);
145dd5f9 4576 local_irq_enable();
6e7676c1
CG
4577
4578 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4579 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4580 __skb_unlink(skb, &sd->process_queue);
4581 kfree_skb(skb);
76cc8b13 4582 input_queue_head_incr(sd);
6e7676c1
CG
4583 }
4584 }
145dd5f9
PA
4585 local_bh_enable();
4586}
4587
41852497 4588static void flush_all_backlogs(void)
145dd5f9
PA
4589{
4590 unsigned int cpu;
4591
4592 get_online_cpus();
4593
41852497
ED
4594 for_each_online_cpu(cpu)
4595 queue_work_on(cpu, system_highpri_wq,
4596 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4597
4598 for_each_online_cpu(cpu)
41852497 4599 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4600
4601 put_online_cpus();
6e583ce5
SH
4602}
4603
d565b0a1
HX
4604static int napi_gro_complete(struct sk_buff *skb)
4605{
22061d80 4606 struct packet_offload *ptype;
d565b0a1 4607 __be16 type = skb->protocol;
22061d80 4608 struct list_head *head = &offload_base;
d565b0a1
HX
4609 int err = -ENOENT;
4610
c3c7c254
ED
4611 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4612
fc59f9a3
HX
4613 if (NAPI_GRO_CB(skb)->count == 1) {
4614 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4615 goto out;
fc59f9a3 4616 }
d565b0a1
HX
4617
4618 rcu_read_lock();
4619 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4620 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4621 continue;
4622
299603e8 4623 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4624 break;
4625 }
4626 rcu_read_unlock();
4627
4628 if (err) {
4629 WARN_ON(&ptype->list == head);
4630 kfree_skb(skb);
4631 return NET_RX_SUCCESS;
4632 }
4633
4634out:
ae78dbfa 4635 return netif_receive_skb_internal(skb);
d565b0a1
HX
4636}
4637
2e71a6f8
ED
4638/* napi->gro_list contains packets ordered by age.
4639 * youngest packets at the head of it.
4640 * Complete skbs in reverse order to reduce latencies.
4641 */
4642void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4643{
2e71a6f8 4644 struct sk_buff *skb, *prev = NULL;
d565b0a1 4645
2e71a6f8
ED
4646 /* scan list and build reverse chain */
4647 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4648 skb->prev = prev;
4649 prev = skb;
4650 }
4651
4652 for (skb = prev; skb; skb = prev) {
d565b0a1 4653 skb->next = NULL;
2e71a6f8
ED
4654
4655 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4656 return;
4657
4658 prev = skb->prev;
d565b0a1 4659 napi_gro_complete(skb);
2e71a6f8 4660 napi->gro_count--;
d565b0a1
HX
4661 }
4662
4663 napi->gro_list = NULL;
4664}
86cac58b 4665EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4666
89c5fa33
ED
4667static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4668{
4669 struct sk_buff *p;
4670 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4671 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4672
4673 for (p = napi->gro_list; p; p = p->next) {
4674 unsigned long diffs;
4675
0b4cec8c
TH
4676 NAPI_GRO_CB(p)->flush = 0;
4677
4678 if (hash != skb_get_hash_raw(p)) {
4679 NAPI_GRO_CB(p)->same_flow = 0;
4680 continue;
4681 }
4682
89c5fa33
ED
4683 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4684 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4685 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4686 if (maclen == ETH_HLEN)
4687 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4688 skb_mac_header(skb));
89c5fa33
ED
4689 else if (!diffs)
4690 diffs = memcmp(skb_mac_header(p),
a50e233c 4691 skb_mac_header(skb),
89c5fa33
ED
4692 maclen);
4693 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4694 }
4695}
4696
299603e8
JC
4697static void skb_gro_reset_offset(struct sk_buff *skb)
4698{
4699 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4700 const skb_frag_t *frag0 = &pinfo->frags[0];
4701
4702 NAPI_GRO_CB(skb)->data_offset = 0;
4703 NAPI_GRO_CB(skb)->frag0 = NULL;
4704 NAPI_GRO_CB(skb)->frag0_len = 0;
4705
4706 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4707 pinfo->nr_frags &&
4708 !PageHighMem(skb_frag_page(frag0))) {
4709 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4710 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4711 skb_frag_size(frag0),
4712 skb->end - skb->tail);
89c5fa33
ED
4713 }
4714}
4715
a50e233c
ED
4716static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4717{
4718 struct skb_shared_info *pinfo = skb_shinfo(skb);
4719
4720 BUG_ON(skb->end - skb->tail < grow);
4721
4722 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4723
4724 skb->data_len -= grow;
4725 skb->tail += grow;
4726
4727 pinfo->frags[0].page_offset += grow;
4728 skb_frag_size_sub(&pinfo->frags[0], grow);
4729
4730 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4731 skb_frag_unref(skb, 0);
4732 memmove(pinfo->frags, pinfo->frags + 1,
4733 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4734 }
4735}
4736
bb728820 4737static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4738{
4739 struct sk_buff **pp = NULL;
22061d80 4740 struct packet_offload *ptype;
d565b0a1 4741 __be16 type = skb->protocol;
22061d80 4742 struct list_head *head = &offload_base;
0da2afd5 4743 int same_flow;
5b252f0c 4744 enum gro_result ret;
a50e233c 4745 int grow;
d565b0a1 4746
b5cdae32 4747 if (netif_elide_gro(skb->dev))
d565b0a1
HX
4748 goto normal;
4749
89c5fa33
ED
4750 gro_list_prepare(napi, skb);
4751
d565b0a1
HX
4752 rcu_read_lock();
4753 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4754 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4755 continue;
4756
86911732 4757 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4758 skb_reset_mac_len(skb);
d565b0a1 4759 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4760 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4761 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4762 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4763 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4764 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4765 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4766 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4767
662880f4
TH
4768 /* Setup for GRO checksum validation */
4769 switch (skb->ip_summed) {
4770 case CHECKSUM_COMPLETE:
4771 NAPI_GRO_CB(skb)->csum = skb->csum;
4772 NAPI_GRO_CB(skb)->csum_valid = 1;
4773 NAPI_GRO_CB(skb)->csum_cnt = 0;
4774 break;
4775 case CHECKSUM_UNNECESSARY:
4776 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4777 NAPI_GRO_CB(skb)->csum_valid = 0;
4778 break;
4779 default:
4780 NAPI_GRO_CB(skb)->csum_cnt = 0;
4781 NAPI_GRO_CB(skb)->csum_valid = 0;
4782 }
d565b0a1 4783
f191a1d1 4784 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4785 break;
4786 }
4787 rcu_read_unlock();
4788
4789 if (&ptype->list == head)
4790 goto normal;
4791
25393d3f
SK
4792 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4793 ret = GRO_CONSUMED;
4794 goto ok;
4795 }
4796
0da2afd5 4797 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4798 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4799
d565b0a1
HX
4800 if (pp) {
4801 struct sk_buff *nskb = *pp;
4802
4803 *pp = nskb->next;
4804 nskb->next = NULL;
4805 napi_gro_complete(nskb);
4ae5544f 4806 napi->gro_count--;
d565b0a1
HX
4807 }
4808
0da2afd5 4809 if (same_flow)
d565b0a1
HX
4810 goto ok;
4811
600adc18 4812 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4813 goto normal;
d565b0a1 4814
600adc18
ED
4815 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4816 struct sk_buff *nskb = napi->gro_list;
4817
4818 /* locate the end of the list to select the 'oldest' flow */
4819 while (nskb->next) {
4820 pp = &nskb->next;
4821 nskb = *pp;
4822 }
4823 *pp = NULL;
4824 nskb->next = NULL;
4825 napi_gro_complete(nskb);
4826 } else {
4827 napi->gro_count++;
4828 }
d565b0a1 4829 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4830 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4831 NAPI_GRO_CB(skb)->last = skb;
86911732 4832 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4833 skb->next = napi->gro_list;
4834 napi->gro_list = skb;
5d0d9be8 4835 ret = GRO_HELD;
d565b0a1 4836
ad0f9904 4837pull:
a50e233c
ED
4838 grow = skb_gro_offset(skb) - skb_headlen(skb);
4839 if (grow > 0)
4840 gro_pull_from_frag0(skb, grow);
d565b0a1 4841ok:
5d0d9be8 4842 return ret;
d565b0a1
HX
4843
4844normal:
ad0f9904
HX
4845 ret = GRO_NORMAL;
4846 goto pull;
5d38a079 4847}
96e93eab 4848
bf5a755f
JC
4849struct packet_offload *gro_find_receive_by_type(__be16 type)
4850{
4851 struct list_head *offload_head = &offload_base;
4852 struct packet_offload *ptype;
4853
4854 list_for_each_entry_rcu(ptype, offload_head, list) {
4855 if (ptype->type != type || !ptype->callbacks.gro_receive)
4856 continue;
4857 return ptype;
4858 }
4859 return NULL;
4860}
e27a2f83 4861EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4862
4863struct packet_offload *gro_find_complete_by_type(__be16 type)
4864{
4865 struct list_head *offload_head = &offload_base;
4866 struct packet_offload *ptype;
4867
4868 list_for_each_entry_rcu(ptype, offload_head, list) {
4869 if (ptype->type != type || !ptype->callbacks.gro_complete)
4870 continue;
4871 return ptype;
4872 }
4873 return NULL;
4874}
e27a2f83 4875EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4876
e44699d2
MK
4877static void napi_skb_free_stolen_head(struct sk_buff *skb)
4878{
4879 skb_dst_drop(skb);
4880 secpath_reset(skb);
4881 kmem_cache_free(skbuff_head_cache, skb);
4882}
4883
bb728820 4884static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4885{
5d0d9be8
HX
4886 switch (ret) {
4887 case GRO_NORMAL:
ae78dbfa 4888 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4889 ret = GRO_DROP;
4890 break;
5d38a079 4891
5d0d9be8 4892 case GRO_DROP:
5d38a079
HX
4893 kfree_skb(skb);
4894 break;
5b252f0c 4895
daa86548 4896 case GRO_MERGED_FREE:
e44699d2
MK
4897 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4898 napi_skb_free_stolen_head(skb);
4899 else
d7e8883c 4900 __kfree_skb(skb);
daa86548
ED
4901 break;
4902
5b252f0c
BH
4903 case GRO_HELD:
4904 case GRO_MERGED:
25393d3f 4905 case GRO_CONSUMED:
5b252f0c 4906 break;
5d38a079
HX
4907 }
4908
c7c4b3b6 4909 return ret;
5d0d9be8 4910}
5d0d9be8 4911
c7c4b3b6 4912gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4913{
93f93a44 4914 skb_mark_napi_id(skb, napi);
ae78dbfa 4915 trace_napi_gro_receive_entry(skb);
86911732 4916
a50e233c
ED
4917 skb_gro_reset_offset(skb);
4918
89c5fa33 4919 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4920}
4921EXPORT_SYMBOL(napi_gro_receive);
4922
d0c2b0d2 4923static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4924{
93a35f59
ED
4925 if (unlikely(skb->pfmemalloc)) {
4926 consume_skb(skb);
4927 return;
4928 }
96e93eab 4929 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4930 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4931 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4932 skb->vlan_tci = 0;
66c46d74 4933 skb->dev = napi->dev;
6d152e23 4934 skb->skb_iif = 0;
c3caf119
JC
4935 skb->encapsulation = 0;
4936 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4937 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 4938 secpath_reset(skb);
96e93eab
HX
4939
4940 napi->skb = skb;
4941}
96e93eab 4942
76620aaf 4943struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4944{
5d38a079 4945 struct sk_buff *skb = napi->skb;
5d38a079
HX
4946
4947 if (!skb) {
fd11a83d 4948 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4949 if (skb) {
4950 napi->skb = skb;
4951 skb_mark_napi_id(skb, napi);
4952 }
80595d59 4953 }
96e93eab
HX
4954 return skb;
4955}
76620aaf 4956EXPORT_SYMBOL(napi_get_frags);
96e93eab 4957
a50e233c
ED
4958static gro_result_t napi_frags_finish(struct napi_struct *napi,
4959 struct sk_buff *skb,
4960 gro_result_t ret)
96e93eab 4961{
5d0d9be8
HX
4962 switch (ret) {
4963 case GRO_NORMAL:
a50e233c
ED
4964 case GRO_HELD:
4965 __skb_push(skb, ETH_HLEN);
4966 skb->protocol = eth_type_trans(skb, skb->dev);
4967 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4968 ret = GRO_DROP;
86911732 4969 break;
5d38a079 4970
5d0d9be8 4971 case GRO_DROP:
5d0d9be8
HX
4972 napi_reuse_skb(napi, skb);
4973 break;
5b252f0c 4974
e44699d2
MK
4975 case GRO_MERGED_FREE:
4976 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4977 napi_skb_free_stolen_head(skb);
4978 else
4979 napi_reuse_skb(napi, skb);
4980 break;
4981
5b252f0c 4982 case GRO_MERGED:
25393d3f 4983 case GRO_CONSUMED:
5b252f0c 4984 break;
5d0d9be8 4985 }
5d38a079 4986
c7c4b3b6 4987 return ret;
5d38a079 4988}
5d0d9be8 4989
a50e233c
ED
4990/* Upper GRO stack assumes network header starts at gro_offset=0
4991 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4992 * We copy ethernet header into skb->data to have a common layout.
4993 */
4adb9c4a 4994static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4995{
4996 struct sk_buff *skb = napi->skb;
a50e233c
ED
4997 const struct ethhdr *eth;
4998 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4999
5000 napi->skb = NULL;
5001
a50e233c
ED
5002 skb_reset_mac_header(skb);
5003 skb_gro_reset_offset(skb);
5004
5005 eth = skb_gro_header_fast(skb, 0);
5006 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5007 eth = skb_gro_header_slow(skb, hlen, 0);
5008 if (unlikely(!eth)) {
4da46ceb
AC
5009 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5010 __func__, napi->dev->name);
a50e233c
ED
5011 napi_reuse_skb(napi, skb);
5012 return NULL;
5013 }
5014 } else {
5015 gro_pull_from_frag0(skb, hlen);
5016 NAPI_GRO_CB(skb)->frag0 += hlen;
5017 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5018 }
a50e233c
ED
5019 __skb_pull(skb, hlen);
5020
5021 /*
5022 * This works because the only protocols we care about don't require
5023 * special handling.
5024 * We'll fix it up properly in napi_frags_finish()
5025 */
5026 skb->protocol = eth->h_proto;
76620aaf 5027
76620aaf
HX
5028 return skb;
5029}
76620aaf 5030
c7c4b3b6 5031gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5032{
76620aaf 5033 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5034
5035 if (!skb)
c7c4b3b6 5036 return GRO_DROP;
5d0d9be8 5037
ae78dbfa
BH
5038 trace_napi_gro_frags_entry(skb);
5039
89c5fa33 5040 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 5041}
5d38a079
HX
5042EXPORT_SYMBOL(napi_gro_frags);
5043
573e8fca
TH
5044/* Compute the checksum from gro_offset and return the folded value
5045 * after adding in any pseudo checksum.
5046 */
5047__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5048{
5049 __wsum wsum;
5050 __sum16 sum;
5051
5052 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5053
5054 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5055 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5056 if (likely(!sum)) {
5057 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5058 !skb->csum_complete_sw)
5059 netdev_rx_csum_fault(skb->dev);
5060 }
5061
5062 NAPI_GRO_CB(skb)->csum = wsum;
5063 NAPI_GRO_CB(skb)->csum_valid = 1;
5064
5065 return sum;
5066}
5067EXPORT_SYMBOL(__skb_gro_checksum_complete);
5068
773fc8f6 5069static void net_rps_send_ipi(struct softnet_data *remsd)
5070{
5071#ifdef CONFIG_RPS
5072 while (remsd) {
5073 struct softnet_data *next = remsd->rps_ipi_next;
5074
5075 if (cpu_online(remsd->cpu))
5076 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5077 remsd = next;
5078 }
5079#endif
5080}
5081
e326bed2 5082/*
855abcf0 5083 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5084 * Note: called with local irq disabled, but exits with local irq enabled.
5085 */
5086static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5087{
5088#ifdef CONFIG_RPS
5089 struct softnet_data *remsd = sd->rps_ipi_list;
5090
5091 if (remsd) {
5092 sd->rps_ipi_list = NULL;
5093
5094 local_irq_enable();
5095
5096 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5097 net_rps_send_ipi(remsd);
e326bed2
ED
5098 } else
5099#endif
5100 local_irq_enable();
5101}
5102
d75b1ade
ED
5103static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5104{
5105#ifdef CONFIG_RPS
5106 return sd->rps_ipi_list != NULL;
5107#else
5108 return false;
5109#endif
5110}
5111
bea3348e 5112static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5113{
eecfd7c4 5114 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5115 bool again = true;
5116 int work = 0;
1da177e4 5117
e326bed2
ED
5118 /* Check if we have pending ipi, its better to send them now,
5119 * not waiting net_rx_action() end.
5120 */
d75b1ade 5121 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5122 local_irq_disable();
5123 net_rps_action_and_irq_enable(sd);
5124 }
d75b1ade 5125
3d48b53f 5126 napi->weight = dev_rx_weight;
145dd5f9 5127 while (again) {
1da177e4 5128 struct sk_buff *skb;
6e7676c1
CG
5129
5130 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5131 rcu_read_lock();
6e7676c1 5132 __netif_receive_skb(skb);
2c17d27c 5133 rcu_read_unlock();
76cc8b13 5134 input_queue_head_incr(sd);
145dd5f9 5135 if (++work >= quota)
76cc8b13 5136 return work;
145dd5f9 5137
6e7676c1 5138 }
1da177e4 5139
145dd5f9 5140 local_irq_disable();
e36fa2f7 5141 rps_lock(sd);
11ef7a89 5142 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5143 /*
5144 * Inline a custom version of __napi_complete().
5145 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5146 * and NAPI_STATE_SCHED is the only possible flag set
5147 * on backlog.
5148 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5149 * and we dont need an smp_mb() memory barrier.
5150 */
eecfd7c4 5151 napi->state = 0;
145dd5f9
PA
5152 again = false;
5153 } else {
5154 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5155 &sd->process_queue);
bea3348e 5156 }
e36fa2f7 5157 rps_unlock(sd);
145dd5f9 5158 local_irq_enable();
6e7676c1 5159 }
1da177e4 5160
bea3348e
SH
5161 return work;
5162}
1da177e4 5163
bea3348e
SH
5164/**
5165 * __napi_schedule - schedule for receive
c4ea43c5 5166 * @n: entry to schedule
bea3348e 5167 *
bc9ad166
ED
5168 * The entry's receive function will be scheduled to run.
5169 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5170 */
b5606c2d 5171void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5172{
5173 unsigned long flags;
1da177e4 5174
bea3348e 5175 local_irq_save(flags);
903ceff7 5176 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5177 local_irq_restore(flags);
1da177e4 5178}
bea3348e
SH
5179EXPORT_SYMBOL(__napi_schedule);
5180
39e6c820
ED
5181/**
5182 * napi_schedule_prep - check if napi can be scheduled
5183 * @n: napi context
5184 *
5185 * Test if NAPI routine is already running, and if not mark
5186 * it as running. This is used as a condition variable
5187 * insure only one NAPI poll instance runs. We also make
5188 * sure there is no pending NAPI disable.
5189 */
5190bool napi_schedule_prep(struct napi_struct *n)
5191{
5192 unsigned long val, new;
5193
5194 do {
5195 val = READ_ONCE(n->state);
5196 if (unlikely(val & NAPIF_STATE_DISABLE))
5197 return false;
5198 new = val | NAPIF_STATE_SCHED;
5199
5200 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5201 * This was suggested by Alexander Duyck, as compiler
5202 * emits better code than :
5203 * if (val & NAPIF_STATE_SCHED)
5204 * new |= NAPIF_STATE_MISSED;
5205 */
5206 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5207 NAPIF_STATE_MISSED;
5208 } while (cmpxchg(&n->state, val, new) != val);
5209
5210 return !(val & NAPIF_STATE_SCHED);
5211}
5212EXPORT_SYMBOL(napi_schedule_prep);
5213
bc9ad166
ED
5214/**
5215 * __napi_schedule_irqoff - schedule for receive
5216 * @n: entry to schedule
5217 *
5218 * Variant of __napi_schedule() assuming hard irqs are masked
5219 */
5220void __napi_schedule_irqoff(struct napi_struct *n)
5221{
5222 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5223}
5224EXPORT_SYMBOL(__napi_schedule_irqoff);
5225
364b6055 5226bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5227{
39e6c820 5228 unsigned long flags, val, new;
d565b0a1
HX
5229
5230 /*
217f6974
ED
5231 * 1) Don't let napi dequeue from the cpu poll list
5232 * just in case its running on a different cpu.
5233 * 2) If we are busy polling, do nothing here, we have
5234 * the guarantee we will be called later.
d565b0a1 5235 */
217f6974
ED
5236 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5237 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5238 return false;
d565b0a1 5239
3b47d303
ED
5240 if (n->gro_list) {
5241 unsigned long timeout = 0;
d75b1ade 5242
3b47d303
ED
5243 if (work_done)
5244 timeout = n->dev->gro_flush_timeout;
5245
5246 if (timeout)
5247 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5248 HRTIMER_MODE_REL_PINNED);
5249 else
5250 napi_gro_flush(n, false);
5251 }
02c1602e 5252 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5253 /* If n->poll_list is not empty, we need to mask irqs */
5254 local_irq_save(flags);
02c1602e 5255 list_del_init(&n->poll_list);
d75b1ade
ED
5256 local_irq_restore(flags);
5257 }
39e6c820
ED
5258
5259 do {
5260 val = READ_ONCE(n->state);
5261
5262 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5263
5264 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5265
5266 /* If STATE_MISSED was set, leave STATE_SCHED set,
5267 * because we will call napi->poll() one more time.
5268 * This C code was suggested by Alexander Duyck to help gcc.
5269 */
5270 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5271 NAPIF_STATE_SCHED;
5272 } while (cmpxchg(&n->state, val, new) != val);
5273
5274 if (unlikely(val & NAPIF_STATE_MISSED)) {
5275 __napi_schedule(n);
5276 return false;
5277 }
5278
364b6055 5279 return true;
d565b0a1 5280}
3b47d303 5281EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5282
af12fa6e 5283/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5284static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5285{
5286 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5287 struct napi_struct *napi;
5288
5289 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5290 if (napi->napi_id == napi_id)
5291 return napi;
5292
5293 return NULL;
5294}
02d62e86
ED
5295
5296#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5297
ce6aea93 5298#define BUSY_POLL_BUDGET 8
217f6974
ED
5299
5300static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5301{
5302 int rc;
5303
39e6c820
ED
5304 /* Busy polling means there is a high chance device driver hard irq
5305 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5306 * set in napi_schedule_prep().
5307 * Since we are about to call napi->poll() once more, we can safely
5308 * clear NAPI_STATE_MISSED.
5309 *
5310 * Note: x86 could use a single "lock and ..." instruction
5311 * to perform these two clear_bit()
5312 */
5313 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5314 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5315
5316 local_bh_disable();
5317
5318 /* All we really want here is to re-enable device interrupts.
5319 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5320 */
5321 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1e22391e 5322 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974
ED
5323 netpoll_poll_unlock(have_poll_lock);
5324 if (rc == BUSY_POLL_BUDGET)
5325 __napi_schedule(napi);
5326 local_bh_enable();
217f6974
ED
5327}
5328
7db6b048
SS
5329void napi_busy_loop(unsigned int napi_id,
5330 bool (*loop_end)(void *, unsigned long),
5331 void *loop_end_arg)
02d62e86 5332{
7db6b048 5333 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 5334 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 5335 void *have_poll_lock = NULL;
02d62e86 5336 struct napi_struct *napi;
217f6974
ED
5337
5338restart:
217f6974 5339 napi_poll = NULL;
02d62e86 5340
2a028ecb 5341 rcu_read_lock();
02d62e86 5342
545cd5e5 5343 napi = napi_by_id(napi_id);
02d62e86
ED
5344 if (!napi)
5345 goto out;
5346
217f6974
ED
5347 preempt_disable();
5348 for (;;) {
2b5cd0df
AD
5349 int work = 0;
5350
2a028ecb 5351 local_bh_disable();
217f6974
ED
5352 if (!napi_poll) {
5353 unsigned long val = READ_ONCE(napi->state);
5354
5355 /* If multiple threads are competing for this napi,
5356 * we avoid dirtying napi->state as much as we can.
5357 */
5358 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5359 NAPIF_STATE_IN_BUSY_POLL))
5360 goto count;
5361 if (cmpxchg(&napi->state, val,
5362 val | NAPIF_STATE_IN_BUSY_POLL |
5363 NAPIF_STATE_SCHED) != val)
5364 goto count;
5365 have_poll_lock = netpoll_poll_lock(napi);
5366 napi_poll = napi->poll;
5367 }
2b5cd0df
AD
5368 work = napi_poll(napi, BUSY_POLL_BUDGET);
5369 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 5370count:
2b5cd0df 5371 if (work > 0)
7db6b048 5372 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 5373 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 5374 local_bh_enable();
02d62e86 5375
7db6b048 5376 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 5377 break;
02d62e86 5378
217f6974
ED
5379 if (unlikely(need_resched())) {
5380 if (napi_poll)
5381 busy_poll_stop(napi, have_poll_lock);
5382 preempt_enable();
5383 rcu_read_unlock();
5384 cond_resched();
7db6b048 5385 if (loop_end(loop_end_arg, start_time))
2b5cd0df 5386 return;
217f6974
ED
5387 goto restart;
5388 }
6cdf89b1 5389 cpu_relax();
217f6974
ED
5390 }
5391 if (napi_poll)
5392 busy_poll_stop(napi, have_poll_lock);
5393 preempt_enable();
02d62e86 5394out:
2a028ecb 5395 rcu_read_unlock();
02d62e86 5396}
7db6b048 5397EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
5398
5399#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5400
149d6ad8 5401static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5402{
d64b5e85
ED
5403 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5404 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5405 return;
af12fa6e 5406
52bd2d62 5407 spin_lock(&napi_hash_lock);
af12fa6e 5408
545cd5e5 5409 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 5410 do {
545cd5e5
AD
5411 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5412 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
5413 } while (napi_by_id(napi_gen_id));
5414 napi->napi_id = napi_gen_id;
af12fa6e 5415
52bd2d62
ED
5416 hlist_add_head_rcu(&napi->napi_hash_node,
5417 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5418
52bd2d62 5419 spin_unlock(&napi_hash_lock);
af12fa6e 5420}
af12fa6e
ET
5421
5422/* Warning : caller is responsible to make sure rcu grace period
5423 * is respected before freeing memory containing @napi
5424 */
34cbe27e 5425bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5426{
34cbe27e
ED
5427 bool rcu_sync_needed = false;
5428
af12fa6e
ET
5429 spin_lock(&napi_hash_lock);
5430
34cbe27e
ED
5431 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5432 rcu_sync_needed = true;
af12fa6e 5433 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5434 }
af12fa6e 5435 spin_unlock(&napi_hash_lock);
34cbe27e 5436 return rcu_sync_needed;
af12fa6e
ET
5437}
5438EXPORT_SYMBOL_GPL(napi_hash_del);
5439
3b47d303
ED
5440static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5441{
5442 struct napi_struct *napi;
5443
5444 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
5445
5446 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5447 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5448 */
5449 if (napi->gro_list && !napi_disable_pending(napi) &&
5450 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5451 __napi_schedule_irqoff(napi);
3b47d303
ED
5452
5453 return HRTIMER_NORESTART;
5454}
5455
d565b0a1
HX
5456void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5457 int (*poll)(struct napi_struct *, int), int weight)
5458{
5459 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5460 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5461 napi->timer.function = napi_watchdog;
4ae5544f 5462 napi->gro_count = 0;
d565b0a1 5463 napi->gro_list = NULL;
5d38a079 5464 napi->skb = NULL;
d565b0a1 5465 napi->poll = poll;
82dc3c63
ED
5466 if (weight > NAPI_POLL_WEIGHT)
5467 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5468 weight, dev->name);
d565b0a1
HX
5469 napi->weight = weight;
5470 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5471 napi->dev = dev;
5d38a079 5472#ifdef CONFIG_NETPOLL
d565b0a1
HX
5473 napi->poll_owner = -1;
5474#endif
5475 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5476 napi_hash_add(napi);
d565b0a1
HX
5477}
5478EXPORT_SYMBOL(netif_napi_add);
5479
3b47d303
ED
5480void napi_disable(struct napi_struct *n)
5481{
5482 might_sleep();
5483 set_bit(NAPI_STATE_DISABLE, &n->state);
5484
5485 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5486 msleep(1);
2d8bff12
NH
5487 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5488 msleep(1);
3b47d303
ED
5489
5490 hrtimer_cancel(&n->timer);
5491
5492 clear_bit(NAPI_STATE_DISABLE, &n->state);
5493}
5494EXPORT_SYMBOL(napi_disable);
5495
93d05d4a 5496/* Must be called in process context */
d565b0a1
HX
5497void netif_napi_del(struct napi_struct *napi)
5498{
93d05d4a
ED
5499 might_sleep();
5500 if (napi_hash_del(napi))
5501 synchronize_net();
d7b06636 5502 list_del_init(&napi->dev_list);
76620aaf 5503 napi_free_frags(napi);
d565b0a1 5504
289dccbe 5505 kfree_skb_list(napi->gro_list);
d565b0a1 5506 napi->gro_list = NULL;
4ae5544f 5507 napi->gro_count = 0;
d565b0a1
HX
5508}
5509EXPORT_SYMBOL(netif_napi_del);
5510
726ce70e
HX
5511static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5512{
5513 void *have;
5514 int work, weight;
5515
5516 list_del_init(&n->poll_list);
5517
5518 have = netpoll_poll_lock(n);
5519
5520 weight = n->weight;
5521
5522 /* This NAPI_STATE_SCHED test is for avoiding a race
5523 * with netpoll's poll_napi(). Only the entity which
5524 * obtains the lock and sees NAPI_STATE_SCHED set will
5525 * actually make the ->poll() call. Therefore we avoid
5526 * accidentally calling ->poll() when NAPI is not scheduled.
5527 */
5528 work = 0;
5529 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5530 work = n->poll(n, weight);
1db19db7 5531 trace_napi_poll(n, work, weight);
726ce70e
HX
5532 }
5533
5534 WARN_ON_ONCE(work > weight);
5535
5536 if (likely(work < weight))
5537 goto out_unlock;
5538
5539 /* Drivers must not modify the NAPI state if they
5540 * consume the entire weight. In such cases this code
5541 * still "owns" the NAPI instance and therefore can
5542 * move the instance around on the list at-will.
5543 */
5544 if (unlikely(napi_disable_pending(n))) {
5545 napi_complete(n);
5546 goto out_unlock;
5547 }
5548
5549 if (n->gro_list) {
5550 /* flush too old packets
5551 * If HZ < 1000, flush all packets.
5552 */
5553 napi_gro_flush(n, HZ >= 1000);
5554 }
5555
001ce546
HX
5556 /* Some drivers may have called napi_schedule
5557 * prior to exhausting their budget.
5558 */
5559 if (unlikely(!list_empty(&n->poll_list))) {
5560 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5561 n->dev ? n->dev->name : "backlog");
5562 goto out_unlock;
5563 }
5564
726ce70e
HX
5565 list_add_tail(&n->poll_list, repoll);
5566
5567out_unlock:
5568 netpoll_poll_unlock(have);
5569
5570 return work;
5571}
5572
0766f788 5573static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5574{
903ceff7 5575 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
5576 unsigned long time_limit = jiffies +
5577 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 5578 int budget = netdev_budget;
d75b1ade
ED
5579 LIST_HEAD(list);
5580 LIST_HEAD(repoll);
53fb95d3 5581
1da177e4 5582 local_irq_disable();
d75b1ade
ED
5583 list_splice_init(&sd->poll_list, &list);
5584 local_irq_enable();
1da177e4 5585
ceb8d5bf 5586 for (;;) {
bea3348e 5587 struct napi_struct *n;
1da177e4 5588
ceb8d5bf
HX
5589 if (list_empty(&list)) {
5590 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5591 goto out;
ceb8d5bf
HX
5592 break;
5593 }
5594
6bd373eb
HX
5595 n = list_first_entry(&list, struct napi_struct, poll_list);
5596 budget -= napi_poll(n, &repoll);
5597
d75b1ade 5598 /* If softirq window is exhausted then punt.
24f8b238
SH
5599 * Allow this to run for 2 jiffies since which will allow
5600 * an average latency of 1.5/HZ.
bea3348e 5601 */
ceb8d5bf
HX
5602 if (unlikely(budget <= 0 ||
5603 time_after_eq(jiffies, time_limit))) {
5604 sd->time_squeeze++;
5605 break;
5606 }
1da177e4 5607 }
d75b1ade 5608
d75b1ade
ED
5609 local_irq_disable();
5610
5611 list_splice_tail_init(&sd->poll_list, &list);
5612 list_splice_tail(&repoll, &list);
5613 list_splice(&list, &sd->poll_list);
5614 if (!list_empty(&sd->poll_list))
5615 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5616
e326bed2 5617 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5618out:
5619 __kfree_skb_flush();
1da177e4
LT
5620}
5621
aa9d8560 5622struct netdev_adjacent {
9ff162a8 5623 struct net_device *dev;
5d261913
VF
5624
5625 /* upper master flag, there can only be one master device per list */
9ff162a8 5626 bool master;
5d261913 5627
5d261913
VF
5628 /* counter for the number of times this device was added to us */
5629 u16 ref_nr;
5630
402dae96
VF
5631 /* private field for the users */
5632 void *private;
5633
9ff162a8
JP
5634 struct list_head list;
5635 struct rcu_head rcu;
9ff162a8
JP
5636};
5637
6ea29da1 5638static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5639 struct list_head *adj_list)
9ff162a8 5640{
5d261913 5641 struct netdev_adjacent *adj;
5d261913 5642
2f268f12 5643 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5644 if (adj->dev == adj_dev)
5645 return adj;
9ff162a8
JP
5646 }
5647 return NULL;
5648}
5649
f1170fd4
DA
5650static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5651{
5652 struct net_device *dev = data;
5653
5654 return upper_dev == dev;
5655}
5656
9ff162a8
JP
5657/**
5658 * netdev_has_upper_dev - Check if device is linked to an upper device
5659 * @dev: device
5660 * @upper_dev: upper device to check
5661 *
5662 * Find out if a device is linked to specified upper device and return true
5663 * in case it is. Note that this checks only immediate upper device,
5664 * not through a complete stack of devices. The caller must hold the RTNL lock.
5665 */
5666bool netdev_has_upper_dev(struct net_device *dev,
5667 struct net_device *upper_dev)
5668{
5669 ASSERT_RTNL();
5670
f1170fd4
DA
5671 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5672 upper_dev);
9ff162a8
JP
5673}
5674EXPORT_SYMBOL(netdev_has_upper_dev);
5675
1a3f060c
DA
5676/**
5677 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5678 * @dev: device
5679 * @upper_dev: upper device to check
5680 *
5681 * Find out if a device is linked to specified upper device and return true
5682 * in case it is. Note that this checks the entire upper device chain.
5683 * The caller must hold rcu lock.
5684 */
5685
1a3f060c
DA
5686bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5687 struct net_device *upper_dev)
5688{
5689 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5690 upper_dev);
5691}
5692EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5693
9ff162a8
JP
5694/**
5695 * netdev_has_any_upper_dev - Check if device is linked to some device
5696 * @dev: device
5697 *
5698 * Find out if a device is linked to an upper device and return true in case
5699 * it is. The caller must hold the RTNL lock.
5700 */
25cc72a3 5701bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5702{
5703 ASSERT_RTNL();
5704
f1170fd4 5705 return !list_empty(&dev->adj_list.upper);
9ff162a8 5706}
25cc72a3 5707EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
5708
5709/**
5710 * netdev_master_upper_dev_get - Get master upper device
5711 * @dev: device
5712 *
5713 * Find a master upper device and return pointer to it or NULL in case
5714 * it's not there. The caller must hold the RTNL lock.
5715 */
5716struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5717{
aa9d8560 5718 struct netdev_adjacent *upper;
9ff162a8
JP
5719
5720 ASSERT_RTNL();
5721
2f268f12 5722 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5723 return NULL;
5724
2f268f12 5725 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5726 struct netdev_adjacent, list);
9ff162a8
JP
5727 if (likely(upper->master))
5728 return upper->dev;
5729 return NULL;
5730}
5731EXPORT_SYMBOL(netdev_master_upper_dev_get);
5732
0f524a80
DA
5733/**
5734 * netdev_has_any_lower_dev - Check if device is linked to some device
5735 * @dev: device
5736 *
5737 * Find out if a device is linked to a lower device and return true in case
5738 * it is. The caller must hold the RTNL lock.
5739 */
5740static bool netdev_has_any_lower_dev(struct net_device *dev)
5741{
5742 ASSERT_RTNL();
5743
5744 return !list_empty(&dev->adj_list.lower);
5745}
5746
b6ccba4c
VF
5747void *netdev_adjacent_get_private(struct list_head *adj_list)
5748{
5749 struct netdev_adjacent *adj;
5750
5751 adj = list_entry(adj_list, struct netdev_adjacent, list);
5752
5753 return adj->private;
5754}
5755EXPORT_SYMBOL(netdev_adjacent_get_private);
5756
44a40855
VY
5757/**
5758 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5759 * @dev: device
5760 * @iter: list_head ** of the current position
5761 *
5762 * Gets the next device from the dev's upper list, starting from iter
5763 * position. The caller must hold RCU read lock.
5764 */
5765struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5766 struct list_head **iter)
5767{
5768 struct netdev_adjacent *upper;
5769
5770 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5771
5772 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5773
5774 if (&upper->list == &dev->adj_list.upper)
5775 return NULL;
5776
5777 *iter = &upper->list;
5778
5779 return upper->dev;
5780}
5781EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5782
1a3f060c
DA
5783static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5784 struct list_head **iter)
5785{
5786 struct netdev_adjacent *upper;
5787
5788 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5789
5790 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5791
5792 if (&upper->list == &dev->adj_list.upper)
5793 return NULL;
5794
5795 *iter = &upper->list;
5796
5797 return upper->dev;
5798}
5799
5800int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5801 int (*fn)(struct net_device *dev,
5802 void *data),
5803 void *data)
5804{
5805 struct net_device *udev;
5806 struct list_head *iter;
5807 int ret;
5808
5809 for (iter = &dev->adj_list.upper,
5810 udev = netdev_next_upper_dev_rcu(dev, &iter);
5811 udev;
5812 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5813 /* first is the upper device itself */
5814 ret = fn(udev, data);
5815 if (ret)
5816 return ret;
5817
5818 /* then look at all of its upper devices */
5819 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5820 if (ret)
5821 return ret;
5822 }
5823
5824 return 0;
5825}
5826EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5827
31088a11
VF
5828/**
5829 * netdev_lower_get_next_private - Get the next ->private from the
5830 * lower neighbour list
5831 * @dev: device
5832 * @iter: list_head ** of the current position
5833 *
5834 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5835 * list, starting from iter position. The caller must hold either hold the
5836 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5837 * list will remain unchanged.
31088a11
VF
5838 */
5839void *netdev_lower_get_next_private(struct net_device *dev,
5840 struct list_head **iter)
5841{
5842 struct netdev_adjacent *lower;
5843
5844 lower = list_entry(*iter, struct netdev_adjacent, list);
5845
5846 if (&lower->list == &dev->adj_list.lower)
5847 return NULL;
5848
6859e7df 5849 *iter = lower->list.next;
31088a11
VF
5850
5851 return lower->private;
5852}
5853EXPORT_SYMBOL(netdev_lower_get_next_private);
5854
5855/**
5856 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5857 * lower neighbour list, RCU
5858 * variant
5859 * @dev: device
5860 * @iter: list_head ** of the current position
5861 *
5862 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5863 * list, starting from iter position. The caller must hold RCU read lock.
5864 */
5865void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5866 struct list_head **iter)
5867{
5868 struct netdev_adjacent *lower;
5869
5870 WARN_ON_ONCE(!rcu_read_lock_held());
5871
5872 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5873
5874 if (&lower->list == &dev->adj_list.lower)
5875 return NULL;
5876
6859e7df 5877 *iter = &lower->list;
31088a11
VF
5878
5879 return lower->private;
5880}
5881EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5882
4085ebe8
VY
5883/**
5884 * netdev_lower_get_next - Get the next device from the lower neighbour
5885 * list
5886 * @dev: device
5887 * @iter: list_head ** of the current position
5888 *
5889 * Gets the next netdev_adjacent from the dev's lower neighbour
5890 * list, starting from iter position. The caller must hold RTNL lock or
5891 * its own locking that guarantees that the neighbour lower
b469139e 5892 * list will remain unchanged.
4085ebe8
VY
5893 */
5894void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5895{
5896 struct netdev_adjacent *lower;
5897
cfdd28be 5898 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5899
5900 if (&lower->list == &dev->adj_list.lower)
5901 return NULL;
5902
cfdd28be 5903 *iter = lower->list.next;
4085ebe8
VY
5904
5905 return lower->dev;
5906}
5907EXPORT_SYMBOL(netdev_lower_get_next);
5908
1a3f060c
DA
5909static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5910 struct list_head **iter)
5911{
5912 struct netdev_adjacent *lower;
5913
46b5ab1a 5914 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5915
5916 if (&lower->list == &dev->adj_list.lower)
5917 return NULL;
5918
46b5ab1a 5919 *iter = &lower->list;
1a3f060c
DA
5920
5921 return lower->dev;
5922}
5923
5924int netdev_walk_all_lower_dev(struct net_device *dev,
5925 int (*fn)(struct net_device *dev,
5926 void *data),
5927 void *data)
5928{
5929 struct net_device *ldev;
5930 struct list_head *iter;
5931 int ret;
5932
5933 for (iter = &dev->adj_list.lower,
5934 ldev = netdev_next_lower_dev(dev, &iter);
5935 ldev;
5936 ldev = netdev_next_lower_dev(dev, &iter)) {
5937 /* first is the lower device itself */
5938 ret = fn(ldev, data);
5939 if (ret)
5940 return ret;
5941
5942 /* then look at all of its lower devices */
5943 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5944 if (ret)
5945 return ret;
5946 }
5947
5948 return 0;
5949}
5950EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5951
1a3f060c
DA
5952static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5953 struct list_head **iter)
5954{
5955 struct netdev_adjacent *lower;
5956
5957 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5958 if (&lower->list == &dev->adj_list.lower)
5959 return NULL;
5960
5961 *iter = &lower->list;
5962
5963 return lower->dev;
5964}
5965
5966int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5967 int (*fn)(struct net_device *dev,
5968 void *data),
5969 void *data)
5970{
5971 struct net_device *ldev;
5972 struct list_head *iter;
5973 int ret;
5974
5975 for (iter = &dev->adj_list.lower,
5976 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5977 ldev;
5978 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5979 /* first is the lower device itself */
5980 ret = fn(ldev, data);
5981 if (ret)
5982 return ret;
5983
5984 /* then look at all of its lower devices */
5985 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5986 if (ret)
5987 return ret;
5988 }
5989
5990 return 0;
5991}
5992EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5993
e001bfad 5994/**
5995 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5996 * lower neighbour list, RCU
5997 * variant
5998 * @dev: device
5999 *
6000 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6001 * list. The caller must hold RCU read lock.
6002 */
6003void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6004{
6005 struct netdev_adjacent *lower;
6006
6007 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6008 struct netdev_adjacent, list);
6009 if (lower)
6010 return lower->private;
6011 return NULL;
6012}
6013EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6014
9ff162a8
JP
6015/**
6016 * netdev_master_upper_dev_get_rcu - Get master upper device
6017 * @dev: device
6018 *
6019 * Find a master upper device and return pointer to it or NULL in case
6020 * it's not there. The caller must hold the RCU read lock.
6021 */
6022struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6023{
aa9d8560 6024 struct netdev_adjacent *upper;
9ff162a8 6025
2f268f12 6026 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6027 struct netdev_adjacent, list);
9ff162a8
JP
6028 if (upper && likely(upper->master))
6029 return upper->dev;
6030 return NULL;
6031}
6032EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6033
0a59f3a9 6034static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6035 struct net_device *adj_dev,
6036 struct list_head *dev_list)
6037{
6038 char linkname[IFNAMSIZ+7];
f4563a75 6039
3ee32707
VF
6040 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6041 "upper_%s" : "lower_%s", adj_dev->name);
6042 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6043 linkname);
6044}
0a59f3a9 6045static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6046 char *name,
6047 struct list_head *dev_list)
6048{
6049 char linkname[IFNAMSIZ+7];
f4563a75 6050
3ee32707
VF
6051 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6052 "upper_%s" : "lower_%s", name);
6053 sysfs_remove_link(&(dev->dev.kobj), linkname);
6054}
6055
7ce64c79
AF
6056static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6057 struct net_device *adj_dev,
6058 struct list_head *dev_list)
6059{
6060 return (dev_list == &dev->adj_list.upper ||
6061 dev_list == &dev->adj_list.lower) &&
6062 net_eq(dev_net(dev), dev_net(adj_dev));
6063}
3ee32707 6064
5d261913
VF
6065static int __netdev_adjacent_dev_insert(struct net_device *dev,
6066 struct net_device *adj_dev,
7863c054 6067 struct list_head *dev_list,
402dae96 6068 void *private, bool master)
5d261913
VF
6069{
6070 struct netdev_adjacent *adj;
842d67a7 6071 int ret;
5d261913 6072
6ea29da1 6073 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6074
6075 if (adj) {
790510d9 6076 adj->ref_nr += 1;
67b62f98
DA
6077 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6078 dev->name, adj_dev->name, adj->ref_nr);
6079
5d261913
VF
6080 return 0;
6081 }
6082
6083 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6084 if (!adj)
6085 return -ENOMEM;
6086
6087 adj->dev = adj_dev;
6088 adj->master = master;
790510d9 6089 adj->ref_nr = 1;
402dae96 6090 adj->private = private;
5d261913 6091 dev_hold(adj_dev);
2f268f12 6092
67b62f98
DA
6093 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6094 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6095
7ce64c79 6096 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6097 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6098 if (ret)
6099 goto free_adj;
6100 }
6101
7863c054 6102 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6103 if (master) {
6104 ret = sysfs_create_link(&(dev->dev.kobj),
6105 &(adj_dev->dev.kobj), "master");
6106 if (ret)
5831d66e 6107 goto remove_symlinks;
842d67a7 6108
7863c054 6109 list_add_rcu(&adj->list, dev_list);
842d67a7 6110 } else {
7863c054 6111 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6112 }
5d261913
VF
6113
6114 return 0;
842d67a7 6115
5831d66e 6116remove_symlinks:
7ce64c79 6117 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6118 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6119free_adj:
6120 kfree(adj);
974daef7 6121 dev_put(adj_dev);
842d67a7
VF
6122
6123 return ret;
5d261913
VF
6124}
6125
1d143d9f 6126static void __netdev_adjacent_dev_remove(struct net_device *dev,
6127 struct net_device *adj_dev,
93409033 6128 u16 ref_nr,
1d143d9f 6129 struct list_head *dev_list)
5d261913
VF
6130{
6131 struct netdev_adjacent *adj;
6132
67b62f98
DA
6133 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6134 dev->name, adj_dev->name, ref_nr);
6135
6ea29da1 6136 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6137
2f268f12 6138 if (!adj) {
67b62f98 6139 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6140 dev->name, adj_dev->name);
67b62f98
DA
6141 WARN_ON(1);
6142 return;
2f268f12 6143 }
5d261913 6144
93409033 6145 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6146 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6147 dev->name, adj_dev->name, ref_nr,
6148 adj->ref_nr - ref_nr);
93409033 6149 adj->ref_nr -= ref_nr;
5d261913
VF
6150 return;
6151 }
6152
842d67a7
VF
6153 if (adj->master)
6154 sysfs_remove_link(&(dev->dev.kobj), "master");
6155
7ce64c79 6156 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6157 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6158
5d261913 6159 list_del_rcu(&adj->list);
67b62f98 6160 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6161 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6162 dev_put(adj_dev);
6163 kfree_rcu(adj, rcu);
6164}
6165
1d143d9f 6166static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6167 struct net_device *upper_dev,
6168 struct list_head *up_list,
6169 struct list_head *down_list,
6170 void *private, bool master)
5d261913
VF
6171{
6172 int ret;
6173
790510d9 6174 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6175 private, master);
5d261913
VF
6176 if (ret)
6177 return ret;
6178
790510d9 6179 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 6180 private, false);
5d261913 6181 if (ret) {
790510d9 6182 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
6183 return ret;
6184 }
6185
6186 return 0;
6187}
6188
1d143d9f 6189static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6190 struct net_device *upper_dev,
93409033 6191 u16 ref_nr,
1d143d9f 6192 struct list_head *up_list,
6193 struct list_head *down_list)
5d261913 6194{
93409033
AC
6195 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6196 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
6197}
6198
1d143d9f 6199static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6200 struct net_device *upper_dev,
6201 void *private, bool master)
2f268f12 6202{
f1170fd4
DA
6203 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6204 &dev->adj_list.upper,
6205 &upper_dev->adj_list.lower,
6206 private, master);
5d261913
VF
6207}
6208
1d143d9f 6209static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6210 struct net_device *upper_dev)
2f268f12 6211{
93409033 6212 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
6213 &dev->adj_list.upper,
6214 &upper_dev->adj_list.lower);
6215}
5d261913 6216
9ff162a8 6217static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 6218 struct net_device *upper_dev, bool master,
29bf24af 6219 void *upper_priv, void *upper_info)
9ff162a8 6220{
0e4ead9d 6221 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 6222 int ret = 0;
9ff162a8
JP
6223
6224 ASSERT_RTNL();
6225
6226 if (dev == upper_dev)
6227 return -EBUSY;
6228
6229 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 6230 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
6231 return -EBUSY;
6232
f1170fd4 6233 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
6234 return -EEXIST;
6235
6236 if (master && netdev_master_upper_dev_get(dev))
6237 return -EBUSY;
6238
0e4ead9d
JP
6239 changeupper_info.upper_dev = upper_dev;
6240 changeupper_info.master = master;
6241 changeupper_info.linking = true;
29bf24af 6242 changeupper_info.upper_info = upper_info;
0e4ead9d 6243
573c7ba0
JP
6244 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6245 &changeupper_info.info);
6246 ret = notifier_to_errno(ret);
6247 if (ret)
6248 return ret;
6249
6dffb044 6250 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 6251 master);
5d261913
VF
6252 if (ret)
6253 return ret;
9ff162a8 6254
b03804e7
IS
6255 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6256 &changeupper_info.info);
6257 ret = notifier_to_errno(ret);
6258 if (ret)
f1170fd4 6259 goto rollback;
b03804e7 6260
9ff162a8 6261 return 0;
5d261913 6262
f1170fd4 6263rollback:
2f268f12 6264 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
6265
6266 return ret;
9ff162a8
JP
6267}
6268
6269/**
6270 * netdev_upper_dev_link - Add a link to the upper device
6271 * @dev: device
6272 * @upper_dev: new upper device
6273 *
6274 * Adds a link to device which is upper to this one. The caller must hold
6275 * the RTNL lock. On a failure a negative errno code is returned.
6276 * On success the reference counts are adjusted and the function
6277 * returns zero.
6278 */
6279int netdev_upper_dev_link(struct net_device *dev,
6280 struct net_device *upper_dev)
6281{
29bf24af 6282 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
6283}
6284EXPORT_SYMBOL(netdev_upper_dev_link);
6285
6286/**
6287 * netdev_master_upper_dev_link - Add a master link to the upper device
6288 * @dev: device
6289 * @upper_dev: new upper device
6dffb044 6290 * @upper_priv: upper device private
29bf24af 6291 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
6292 *
6293 * Adds a link to device which is upper to this one. In this case, only
6294 * one master upper device can be linked, although other non-master devices
6295 * might be linked as well. The caller must hold the RTNL lock.
6296 * On a failure a negative errno code is returned. On success the reference
6297 * counts are adjusted and the function returns zero.
6298 */
6299int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 6300 struct net_device *upper_dev,
29bf24af 6301 void *upper_priv, void *upper_info)
9ff162a8 6302{
29bf24af
JP
6303 return __netdev_upper_dev_link(dev, upper_dev, true,
6304 upper_priv, upper_info);
9ff162a8
JP
6305}
6306EXPORT_SYMBOL(netdev_master_upper_dev_link);
6307
6308/**
6309 * netdev_upper_dev_unlink - Removes a link to upper device
6310 * @dev: device
6311 * @upper_dev: new upper device
6312 *
6313 * Removes a link to device which is upper to this one. The caller must hold
6314 * the RTNL lock.
6315 */
6316void netdev_upper_dev_unlink(struct net_device *dev,
6317 struct net_device *upper_dev)
6318{
0e4ead9d 6319 struct netdev_notifier_changeupper_info changeupper_info;
f4563a75 6320
9ff162a8
JP
6321 ASSERT_RTNL();
6322
0e4ead9d
JP
6323 changeupper_info.upper_dev = upper_dev;
6324 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6325 changeupper_info.linking = false;
6326
573c7ba0
JP
6327 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6328 &changeupper_info.info);
6329
2f268f12 6330 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6331
0e4ead9d
JP
6332 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6333 &changeupper_info.info);
9ff162a8
JP
6334}
6335EXPORT_SYMBOL(netdev_upper_dev_unlink);
6336
61bd3857
MS
6337/**
6338 * netdev_bonding_info_change - Dispatch event about slave change
6339 * @dev: device
4a26e453 6340 * @bonding_info: info to dispatch
61bd3857
MS
6341 *
6342 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6343 * The caller must hold the RTNL lock.
6344 */
6345void netdev_bonding_info_change(struct net_device *dev,
6346 struct netdev_bonding_info *bonding_info)
6347{
6348 struct netdev_notifier_bonding_info info;
6349
6350 memcpy(&info.bonding_info, bonding_info,
6351 sizeof(struct netdev_bonding_info));
6352 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6353 &info.info);
6354}
6355EXPORT_SYMBOL(netdev_bonding_info_change);
6356
2ce1ee17 6357static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6358{
6359 struct netdev_adjacent *iter;
6360
6361 struct net *net = dev_net(dev);
6362
6363 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6364 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6365 continue;
6366 netdev_adjacent_sysfs_add(iter->dev, dev,
6367 &iter->dev->adj_list.lower);
6368 netdev_adjacent_sysfs_add(dev, iter->dev,
6369 &dev->adj_list.upper);
6370 }
6371
6372 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6373 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6374 continue;
6375 netdev_adjacent_sysfs_add(iter->dev, dev,
6376 &iter->dev->adj_list.upper);
6377 netdev_adjacent_sysfs_add(dev, iter->dev,
6378 &dev->adj_list.lower);
6379 }
6380}
6381
2ce1ee17 6382static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6383{
6384 struct netdev_adjacent *iter;
6385
6386 struct net *net = dev_net(dev);
6387
6388 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6389 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6390 continue;
6391 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6392 &iter->dev->adj_list.lower);
6393 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6394 &dev->adj_list.upper);
6395 }
6396
6397 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6398 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6399 continue;
6400 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6401 &iter->dev->adj_list.upper);
6402 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6403 &dev->adj_list.lower);
6404 }
6405}
6406
5bb025fa 6407void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6408{
5bb025fa 6409 struct netdev_adjacent *iter;
402dae96 6410
4c75431a
AF
6411 struct net *net = dev_net(dev);
6412
5bb025fa 6413 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6414 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6415 continue;
5bb025fa
VF
6416 netdev_adjacent_sysfs_del(iter->dev, oldname,
6417 &iter->dev->adj_list.lower);
6418 netdev_adjacent_sysfs_add(iter->dev, dev,
6419 &iter->dev->adj_list.lower);
6420 }
402dae96 6421
5bb025fa 6422 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6423 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6424 continue;
5bb025fa
VF
6425 netdev_adjacent_sysfs_del(iter->dev, oldname,
6426 &iter->dev->adj_list.upper);
6427 netdev_adjacent_sysfs_add(iter->dev, dev,
6428 &iter->dev->adj_list.upper);
6429 }
402dae96 6430}
402dae96
VF
6431
6432void *netdev_lower_dev_get_private(struct net_device *dev,
6433 struct net_device *lower_dev)
6434{
6435 struct netdev_adjacent *lower;
6436
6437 if (!lower_dev)
6438 return NULL;
6ea29da1 6439 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6440 if (!lower)
6441 return NULL;
6442
6443 return lower->private;
6444}
6445EXPORT_SYMBOL(netdev_lower_dev_get_private);
6446
4085ebe8 6447
952fcfd0 6448int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6449{
6450 struct net_device *lower = NULL;
6451 struct list_head *iter;
6452 int max_nest = -1;
6453 int nest;
6454
6455 ASSERT_RTNL();
6456
6457 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6458 nest = dev_get_nest_level(lower);
4085ebe8
VY
6459 if (max_nest < nest)
6460 max_nest = nest;
6461 }
6462
952fcfd0 6463 return max_nest + 1;
4085ebe8
VY
6464}
6465EXPORT_SYMBOL(dev_get_nest_level);
6466
04d48266
JP
6467/**
6468 * netdev_lower_change - Dispatch event about lower device state change
6469 * @lower_dev: device
6470 * @lower_state_info: state to dispatch
6471 *
6472 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6473 * The caller must hold the RTNL lock.
6474 */
6475void netdev_lower_state_changed(struct net_device *lower_dev,
6476 void *lower_state_info)
6477{
6478 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6479
6480 ASSERT_RTNL();
6481 changelowerstate_info.lower_state_info = lower_state_info;
6482 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6483 &changelowerstate_info.info);
6484}
6485EXPORT_SYMBOL(netdev_lower_state_changed);
6486
b6c40d68
PM
6487static void dev_change_rx_flags(struct net_device *dev, int flags)
6488{
d314774c
SH
6489 const struct net_device_ops *ops = dev->netdev_ops;
6490
d2615bf4 6491 if (ops->ndo_change_rx_flags)
d314774c 6492 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6493}
6494
991fb3f7 6495static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6496{
b536db93 6497 unsigned int old_flags = dev->flags;
d04a48b0
EB
6498 kuid_t uid;
6499 kgid_t gid;
1da177e4 6500
24023451
PM
6501 ASSERT_RTNL();
6502
dad9b335
WC
6503 dev->flags |= IFF_PROMISC;
6504 dev->promiscuity += inc;
6505 if (dev->promiscuity == 0) {
6506 /*
6507 * Avoid overflow.
6508 * If inc causes overflow, untouch promisc and return error.
6509 */
6510 if (inc < 0)
6511 dev->flags &= ~IFF_PROMISC;
6512 else {
6513 dev->promiscuity -= inc;
7b6cd1ce
JP
6514 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6515 dev->name);
dad9b335
WC
6516 return -EOVERFLOW;
6517 }
6518 }
52609c0b 6519 if (dev->flags != old_flags) {
7b6cd1ce
JP
6520 pr_info("device %s %s promiscuous mode\n",
6521 dev->name,
6522 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6523 if (audit_enabled) {
6524 current_uid_gid(&uid, &gid);
7759db82
KHK
6525 audit_log(current->audit_context, GFP_ATOMIC,
6526 AUDIT_ANOM_PROMISCUOUS,
6527 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6528 dev->name, (dev->flags & IFF_PROMISC),
6529 (old_flags & IFF_PROMISC),
e1760bd5 6530 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6531 from_kuid(&init_user_ns, uid),
6532 from_kgid(&init_user_ns, gid),
7759db82 6533 audit_get_sessionid(current));
8192b0c4 6534 }
24023451 6535
b6c40d68 6536 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6537 }
991fb3f7
ND
6538 if (notify)
6539 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6540 return 0;
1da177e4
LT
6541}
6542
4417da66
PM
6543/**
6544 * dev_set_promiscuity - update promiscuity count on a device
6545 * @dev: device
6546 * @inc: modifier
6547 *
6548 * Add or remove promiscuity from a device. While the count in the device
6549 * remains above zero the interface remains promiscuous. Once it hits zero
6550 * the device reverts back to normal filtering operation. A negative inc
6551 * value is used to drop promiscuity on the device.
dad9b335 6552 * Return 0 if successful or a negative errno code on error.
4417da66 6553 */
dad9b335 6554int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6555{
b536db93 6556 unsigned int old_flags = dev->flags;
dad9b335 6557 int err;
4417da66 6558
991fb3f7 6559 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6560 if (err < 0)
dad9b335 6561 return err;
4417da66
PM
6562 if (dev->flags != old_flags)
6563 dev_set_rx_mode(dev);
dad9b335 6564 return err;
4417da66 6565}
d1b19dff 6566EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6567
991fb3f7 6568static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6569{
991fb3f7 6570 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6571
24023451
PM
6572 ASSERT_RTNL();
6573
1da177e4 6574 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6575 dev->allmulti += inc;
6576 if (dev->allmulti == 0) {
6577 /*
6578 * Avoid overflow.
6579 * If inc causes overflow, untouch allmulti and return error.
6580 */
6581 if (inc < 0)
6582 dev->flags &= ~IFF_ALLMULTI;
6583 else {
6584 dev->allmulti -= inc;
7b6cd1ce
JP
6585 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6586 dev->name);
dad9b335
WC
6587 return -EOVERFLOW;
6588 }
6589 }
24023451 6590 if (dev->flags ^ old_flags) {
b6c40d68 6591 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6592 dev_set_rx_mode(dev);
991fb3f7
ND
6593 if (notify)
6594 __dev_notify_flags(dev, old_flags,
6595 dev->gflags ^ old_gflags);
24023451 6596 }
dad9b335 6597 return 0;
4417da66 6598}
991fb3f7
ND
6599
6600/**
6601 * dev_set_allmulti - update allmulti count on a device
6602 * @dev: device
6603 * @inc: modifier
6604 *
6605 * Add or remove reception of all multicast frames to a device. While the
6606 * count in the device remains above zero the interface remains listening
6607 * to all interfaces. Once it hits zero the device reverts back to normal
6608 * filtering operation. A negative @inc value is used to drop the counter
6609 * when releasing a resource needing all multicasts.
6610 * Return 0 if successful or a negative errno code on error.
6611 */
6612
6613int dev_set_allmulti(struct net_device *dev, int inc)
6614{
6615 return __dev_set_allmulti(dev, inc, true);
6616}
d1b19dff 6617EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6618
6619/*
6620 * Upload unicast and multicast address lists to device and
6621 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6622 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6623 * are present.
6624 */
6625void __dev_set_rx_mode(struct net_device *dev)
6626{
d314774c
SH
6627 const struct net_device_ops *ops = dev->netdev_ops;
6628
4417da66
PM
6629 /* dev_open will call this function so the list will stay sane. */
6630 if (!(dev->flags&IFF_UP))
6631 return;
6632
6633 if (!netif_device_present(dev))
40b77c94 6634 return;
4417da66 6635
01789349 6636 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6637 /* Unicast addresses changes may only happen under the rtnl,
6638 * therefore calling __dev_set_promiscuity here is safe.
6639 */
32e7bfc4 6640 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6641 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6642 dev->uc_promisc = true;
32e7bfc4 6643 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6644 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6645 dev->uc_promisc = false;
4417da66 6646 }
4417da66 6647 }
01789349
JP
6648
6649 if (ops->ndo_set_rx_mode)
6650 ops->ndo_set_rx_mode(dev);
4417da66
PM
6651}
6652
6653void dev_set_rx_mode(struct net_device *dev)
6654{
b9e40857 6655 netif_addr_lock_bh(dev);
4417da66 6656 __dev_set_rx_mode(dev);
b9e40857 6657 netif_addr_unlock_bh(dev);
1da177e4
LT
6658}
6659
f0db275a
SH
6660/**
6661 * dev_get_flags - get flags reported to userspace
6662 * @dev: device
6663 *
6664 * Get the combination of flag bits exported through APIs to userspace.
6665 */
95c96174 6666unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6667{
95c96174 6668 unsigned int flags;
1da177e4
LT
6669
6670 flags = (dev->flags & ~(IFF_PROMISC |
6671 IFF_ALLMULTI |
b00055aa
SR
6672 IFF_RUNNING |
6673 IFF_LOWER_UP |
6674 IFF_DORMANT)) |
1da177e4
LT
6675 (dev->gflags & (IFF_PROMISC |
6676 IFF_ALLMULTI));
6677
b00055aa
SR
6678 if (netif_running(dev)) {
6679 if (netif_oper_up(dev))
6680 flags |= IFF_RUNNING;
6681 if (netif_carrier_ok(dev))
6682 flags |= IFF_LOWER_UP;
6683 if (netif_dormant(dev))
6684 flags |= IFF_DORMANT;
6685 }
1da177e4
LT
6686
6687 return flags;
6688}
d1b19dff 6689EXPORT_SYMBOL(dev_get_flags);
1da177e4 6690
bd380811 6691int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6692{
b536db93 6693 unsigned int old_flags = dev->flags;
bd380811 6694 int ret;
1da177e4 6695
24023451
PM
6696 ASSERT_RTNL();
6697
1da177e4
LT
6698 /*
6699 * Set the flags on our device.
6700 */
6701
6702 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6703 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6704 IFF_AUTOMEDIA)) |
6705 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6706 IFF_ALLMULTI));
6707
6708 /*
6709 * Load in the correct multicast list now the flags have changed.
6710 */
6711
b6c40d68
PM
6712 if ((old_flags ^ flags) & IFF_MULTICAST)
6713 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6714
4417da66 6715 dev_set_rx_mode(dev);
1da177e4
LT
6716
6717 /*
6718 * Have we downed the interface. We handle IFF_UP ourselves
6719 * according to user attempts to set it, rather than blindly
6720 * setting it.
6721 */
6722
6723 ret = 0;
7051b88a 6724 if ((old_flags ^ flags) & IFF_UP) {
6725 if (old_flags & IFF_UP)
6726 __dev_close(dev);
6727 else
6728 ret = __dev_open(dev);
6729 }
1da177e4 6730
1da177e4 6731 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6732 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6733 unsigned int old_flags = dev->flags;
d1b19dff 6734
1da177e4 6735 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6736
6737 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6738 if (dev->flags != old_flags)
6739 dev_set_rx_mode(dev);
1da177e4
LT
6740 }
6741
6742 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 6743 * is important. Some (broken) drivers set IFF_PROMISC, when
6744 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
6745 */
6746 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6747 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6748
1da177e4 6749 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6750 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6751 }
6752
bd380811
PM
6753 return ret;
6754}
6755
a528c219
ND
6756void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6757 unsigned int gchanges)
bd380811
PM
6758{
6759 unsigned int changes = dev->flags ^ old_flags;
6760
a528c219 6761 if (gchanges)
7f294054 6762 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6763
bd380811
PM
6764 if (changes & IFF_UP) {
6765 if (dev->flags & IFF_UP)
6766 call_netdevice_notifiers(NETDEV_UP, dev);
6767 else
6768 call_netdevice_notifiers(NETDEV_DOWN, dev);
6769 }
6770
6771 if (dev->flags & IFF_UP &&
be9efd36
JP
6772 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6773 struct netdev_notifier_change_info change_info;
6774
6775 change_info.flags_changed = changes;
6776 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6777 &change_info.info);
6778 }
bd380811
PM
6779}
6780
6781/**
6782 * dev_change_flags - change device settings
6783 * @dev: device
6784 * @flags: device state flags
6785 *
6786 * Change settings on device based state flags. The flags are
6787 * in the userspace exported format.
6788 */
b536db93 6789int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6790{
b536db93 6791 int ret;
991fb3f7 6792 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6793
6794 ret = __dev_change_flags(dev, flags);
6795 if (ret < 0)
6796 return ret;
6797
991fb3f7 6798 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6799 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6800 return ret;
6801}
d1b19dff 6802EXPORT_SYMBOL(dev_change_flags);
1da177e4 6803
f51048c3 6804int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
6805{
6806 const struct net_device_ops *ops = dev->netdev_ops;
6807
6808 if (ops->ndo_change_mtu)
6809 return ops->ndo_change_mtu(dev, new_mtu);
6810
6811 dev->mtu = new_mtu;
6812 return 0;
6813}
f51048c3 6814EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 6815
f0db275a
SH
6816/**
6817 * dev_set_mtu - Change maximum transfer unit
6818 * @dev: device
6819 * @new_mtu: new transfer unit
6820 *
6821 * Change the maximum transfer size of the network device.
6822 */
1da177e4
LT
6823int dev_set_mtu(struct net_device *dev, int new_mtu)
6824{
2315dc91 6825 int err, orig_mtu;
1da177e4
LT
6826
6827 if (new_mtu == dev->mtu)
6828 return 0;
6829
61e84623
JW
6830 /* MTU must be positive, and in range */
6831 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6832 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6833 dev->name, new_mtu, dev->min_mtu);
1da177e4 6834 return -EINVAL;
61e84623
JW
6835 }
6836
6837 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6838 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6839 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6840 return -EINVAL;
6841 }
1da177e4
LT
6842
6843 if (!netif_device_present(dev))
6844 return -ENODEV;
6845
1d486bfb
VF
6846 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6847 err = notifier_to_errno(err);
6848 if (err)
6849 return err;
d314774c 6850
2315dc91
VF
6851 orig_mtu = dev->mtu;
6852 err = __dev_set_mtu(dev, new_mtu);
d314774c 6853
2315dc91
VF
6854 if (!err) {
6855 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6856 err = notifier_to_errno(err);
6857 if (err) {
6858 /* setting mtu back and notifying everyone again,
6859 * so that they have a chance to revert changes.
6860 */
6861 __dev_set_mtu(dev, orig_mtu);
6862 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6863 }
6864 }
1da177e4
LT
6865 return err;
6866}
d1b19dff 6867EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6868
cbda10fa
VD
6869/**
6870 * dev_set_group - Change group this device belongs to
6871 * @dev: device
6872 * @new_group: group this device should belong to
6873 */
6874void dev_set_group(struct net_device *dev, int new_group)
6875{
6876 dev->group = new_group;
6877}
6878EXPORT_SYMBOL(dev_set_group);
6879
f0db275a
SH
6880/**
6881 * dev_set_mac_address - Change Media Access Control Address
6882 * @dev: device
6883 * @sa: new address
6884 *
6885 * Change the hardware (MAC) address of the device
6886 */
1da177e4
LT
6887int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6888{
d314774c 6889 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6890 int err;
6891
d314774c 6892 if (!ops->ndo_set_mac_address)
1da177e4
LT
6893 return -EOPNOTSUPP;
6894 if (sa->sa_family != dev->type)
6895 return -EINVAL;
6896 if (!netif_device_present(dev))
6897 return -ENODEV;
d314774c 6898 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6899 if (err)
6900 return err;
fbdeca2d 6901 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6902 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6903 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6904 return 0;
1da177e4 6905}
d1b19dff 6906EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6907
4bf84c35
JP
6908/**
6909 * dev_change_carrier - Change device carrier
6910 * @dev: device
691b3b7e 6911 * @new_carrier: new value
4bf84c35
JP
6912 *
6913 * Change device carrier
6914 */
6915int dev_change_carrier(struct net_device *dev, bool new_carrier)
6916{
6917 const struct net_device_ops *ops = dev->netdev_ops;
6918
6919 if (!ops->ndo_change_carrier)
6920 return -EOPNOTSUPP;
6921 if (!netif_device_present(dev))
6922 return -ENODEV;
6923 return ops->ndo_change_carrier(dev, new_carrier);
6924}
6925EXPORT_SYMBOL(dev_change_carrier);
6926
66b52b0d
JP
6927/**
6928 * dev_get_phys_port_id - Get device physical port ID
6929 * @dev: device
6930 * @ppid: port ID
6931 *
6932 * Get device physical port ID
6933 */
6934int dev_get_phys_port_id(struct net_device *dev,
02637fce 6935 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6936{
6937 const struct net_device_ops *ops = dev->netdev_ops;
6938
6939 if (!ops->ndo_get_phys_port_id)
6940 return -EOPNOTSUPP;
6941 return ops->ndo_get_phys_port_id(dev, ppid);
6942}
6943EXPORT_SYMBOL(dev_get_phys_port_id);
6944
db24a904
DA
6945/**
6946 * dev_get_phys_port_name - Get device physical port name
6947 * @dev: device
6948 * @name: port name
ed49e650 6949 * @len: limit of bytes to copy to name
db24a904
DA
6950 *
6951 * Get device physical port name
6952 */
6953int dev_get_phys_port_name(struct net_device *dev,
6954 char *name, size_t len)
6955{
6956 const struct net_device_ops *ops = dev->netdev_ops;
6957
6958 if (!ops->ndo_get_phys_port_name)
6959 return -EOPNOTSUPP;
6960 return ops->ndo_get_phys_port_name(dev, name, len);
6961}
6962EXPORT_SYMBOL(dev_get_phys_port_name);
6963
d746d707
AK
6964/**
6965 * dev_change_proto_down - update protocol port state information
6966 * @dev: device
6967 * @proto_down: new value
6968 *
6969 * This info can be used by switch drivers to set the phys state of the
6970 * port.
6971 */
6972int dev_change_proto_down(struct net_device *dev, bool proto_down)
6973{
6974 const struct net_device_ops *ops = dev->netdev_ops;
6975
6976 if (!ops->ndo_change_proto_down)
6977 return -EOPNOTSUPP;
6978 if (!netif_device_present(dev))
6979 return -ENODEV;
6980 return ops->ndo_change_proto_down(dev, proto_down);
6981}
6982EXPORT_SYMBOL(dev_change_proto_down);
6983
ce158e58 6984u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
d67b9cd2
DB
6985{
6986 struct netdev_xdp xdp;
6987
6988 memset(&xdp, 0, sizeof(xdp));
6989 xdp.command = XDP_QUERY_PROG;
6990
6991 /* Query must always succeed. */
6992 WARN_ON(xdp_op(dev, &xdp) < 0);
58038695
MKL
6993 if (prog_id)
6994 *prog_id = xdp.prog_id;
6995
d67b9cd2
DB
6996 return xdp.prog_attached;
6997}
6998
6999static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
32d60277 7000 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
7001 struct bpf_prog *prog)
7002{
7003 struct netdev_xdp xdp;
7004
7005 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
7006 if (flags & XDP_FLAGS_HW_MODE)
7007 xdp.command = XDP_SETUP_PROG_HW;
7008 else
7009 xdp.command = XDP_SETUP_PROG;
d67b9cd2 7010 xdp.extack = extack;
32d60277 7011 xdp.flags = flags;
d67b9cd2
DB
7012 xdp.prog = prog;
7013
7014 return xdp_op(dev, &xdp);
7015}
7016
a7862b45
BB
7017/**
7018 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7019 * @dev: device
b5d60989 7020 * @extack: netlink extended ack
a7862b45 7021 * @fd: new program fd or negative value to clear
85de8576 7022 * @flags: xdp-related flags
a7862b45
BB
7023 *
7024 * Set or clear a bpf program for a device
7025 */
ddf9f970
JK
7026int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7027 int fd, u32 flags)
a7862b45
BB
7028{
7029 const struct net_device_ops *ops = dev->netdev_ops;
7030 struct bpf_prog *prog = NULL;
d67b9cd2 7031 xdp_op_t xdp_op, xdp_chk;
a7862b45
BB
7032 int err;
7033
85de8576
DB
7034 ASSERT_RTNL();
7035
d67b9cd2 7036 xdp_op = xdp_chk = ops->ndo_xdp;
ee5d032f 7037 if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
0489df9a 7038 return -EOPNOTSUPP;
b5cdae32
DM
7039 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7040 xdp_op = generic_xdp_install;
d67b9cd2
DB
7041 if (xdp_op == xdp_chk)
7042 xdp_chk = generic_xdp_install;
b5cdae32 7043
a7862b45 7044 if (fd >= 0) {
58038695 7045 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
d67b9cd2
DB
7046 return -EEXIST;
7047 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
58038695 7048 __dev_xdp_attached(dev, xdp_op, NULL))
d67b9cd2 7049 return -EBUSY;
85de8576 7050
a7862b45
BB
7051 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7052 if (IS_ERR(prog))
7053 return PTR_ERR(prog);
7054 }
7055
32d60277 7056 err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
a7862b45
BB
7057 if (err < 0 && prog)
7058 bpf_prog_put(prog);
7059
7060 return err;
7061}
a7862b45 7062
1da177e4
LT
7063/**
7064 * dev_new_index - allocate an ifindex
c4ea43c5 7065 * @net: the applicable net namespace
1da177e4
LT
7066 *
7067 * Returns a suitable unique value for a new device interface
7068 * number. The caller must hold the rtnl semaphore or the
7069 * dev_base_lock to be sure it remains unique.
7070 */
881d966b 7071static int dev_new_index(struct net *net)
1da177e4 7072{
aa79e66e 7073 int ifindex = net->ifindex;
f4563a75 7074
1da177e4
LT
7075 for (;;) {
7076 if (++ifindex <= 0)
7077 ifindex = 1;
881d966b 7078 if (!__dev_get_by_index(net, ifindex))
aa79e66e 7079 return net->ifindex = ifindex;
1da177e4
LT
7080 }
7081}
7082
1da177e4 7083/* Delayed registration/unregisteration */
3b5b34fd 7084static LIST_HEAD(net_todo_list);
200b916f 7085DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 7086
6f05f629 7087static void net_set_todo(struct net_device *dev)
1da177e4 7088{
1da177e4 7089 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 7090 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
7091}
7092
9b5e383c 7093static void rollback_registered_many(struct list_head *head)
93ee31f1 7094{
e93737b0 7095 struct net_device *dev, *tmp;
5cde2829 7096 LIST_HEAD(close_head);
9b5e383c 7097
93ee31f1
DL
7098 BUG_ON(dev_boot_phase);
7099 ASSERT_RTNL();
7100
e93737b0 7101 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 7102 /* Some devices call without registering
e93737b0
KK
7103 * for initialization unwind. Remove those
7104 * devices and proceed with the remaining.
9b5e383c
ED
7105 */
7106 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
7107 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7108 dev->name, dev);
93ee31f1 7109
9b5e383c 7110 WARN_ON(1);
e93737b0
KK
7111 list_del(&dev->unreg_list);
7112 continue;
9b5e383c 7113 }
449f4544 7114 dev->dismantle = true;
9b5e383c 7115 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 7116 }
93ee31f1 7117
44345724 7118 /* If device is running, close it first. */
5cde2829
EB
7119 list_for_each_entry(dev, head, unreg_list)
7120 list_add_tail(&dev->close_list, &close_head);
99c4a26a 7121 dev_close_many(&close_head, true);
93ee31f1 7122
44345724 7123 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
7124 /* And unlink it from device chain. */
7125 unlist_netdevice(dev);
93ee31f1 7126
9b5e383c
ED
7127 dev->reg_state = NETREG_UNREGISTERING;
7128 }
41852497 7129 flush_all_backlogs();
93ee31f1
DL
7130
7131 synchronize_net();
7132
9b5e383c 7133 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
7134 struct sk_buff *skb = NULL;
7135
9b5e383c
ED
7136 /* Shutdown queueing discipline. */
7137 dev_shutdown(dev);
93ee31f1
DL
7138
7139
9b5e383c 7140 /* Notify protocols, that we are about to destroy
eb13da1a 7141 * this device. They should clean all the things.
7142 */
9b5e383c 7143 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 7144
395eea6c
MB
7145 if (!dev->rtnl_link_ops ||
7146 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 7147 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
395eea6c
MB
7148 GFP_KERNEL);
7149
9b5e383c
ED
7150 /*
7151 * Flush the unicast and multicast chains
7152 */
a748ee24 7153 dev_uc_flush(dev);
22bedad3 7154 dev_mc_flush(dev);
93ee31f1 7155
9b5e383c
ED
7156 if (dev->netdev_ops->ndo_uninit)
7157 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 7158
395eea6c
MB
7159 if (skb)
7160 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 7161
9ff162a8
JP
7162 /* Notifier chain MUST detach us all upper devices. */
7163 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 7164 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 7165
9b5e383c
ED
7166 /* Remove entries from kobject tree */
7167 netdev_unregister_kobject(dev);
024e9679
AD
7168#ifdef CONFIG_XPS
7169 /* Remove XPS queueing entries */
7170 netif_reset_xps_queues_gt(dev, 0);
7171#endif
9b5e383c 7172 }
93ee31f1 7173
850a545b 7174 synchronize_net();
395264d5 7175
a5ee1551 7176 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
7177 dev_put(dev);
7178}
7179
7180static void rollback_registered(struct net_device *dev)
7181{
7182 LIST_HEAD(single);
7183
7184 list_add(&dev->unreg_list, &single);
7185 rollback_registered_many(&single);
ceaaec98 7186 list_del(&single);
93ee31f1
DL
7187}
7188
fd867d51
JW
7189static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7190 struct net_device *upper, netdev_features_t features)
7191{
7192 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7193 netdev_features_t feature;
5ba3f7d6 7194 int feature_bit;
fd867d51 7195
5ba3f7d6
JW
7196 for_each_netdev_feature(&upper_disables, feature_bit) {
7197 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7198 if (!(upper->wanted_features & feature)
7199 && (features & feature)) {
7200 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7201 &feature, upper->name);
7202 features &= ~feature;
7203 }
7204 }
7205
7206 return features;
7207}
7208
7209static void netdev_sync_lower_features(struct net_device *upper,
7210 struct net_device *lower, netdev_features_t features)
7211{
7212 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7213 netdev_features_t feature;
5ba3f7d6 7214 int feature_bit;
fd867d51 7215
5ba3f7d6
JW
7216 for_each_netdev_feature(&upper_disables, feature_bit) {
7217 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7218 if (!(features & feature) && (lower->features & feature)) {
7219 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7220 &feature, lower->name);
7221 lower->wanted_features &= ~feature;
7222 netdev_update_features(lower);
7223
7224 if (unlikely(lower->features & feature))
7225 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7226 &feature, lower->name);
7227 }
7228 }
7229}
7230
c8f44aff
MM
7231static netdev_features_t netdev_fix_features(struct net_device *dev,
7232 netdev_features_t features)
b63365a2 7233{
57422dc5
MM
7234 /* Fix illegal checksum combinations */
7235 if ((features & NETIF_F_HW_CSUM) &&
7236 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 7237 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
7238 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7239 }
7240
b63365a2 7241 /* TSO requires that SG is present as well. */
ea2d3688 7242 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 7243 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 7244 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
7245 }
7246
ec5f0615
PS
7247 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7248 !(features & NETIF_F_IP_CSUM)) {
7249 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7250 features &= ~NETIF_F_TSO;
7251 features &= ~NETIF_F_TSO_ECN;
7252 }
7253
7254 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7255 !(features & NETIF_F_IPV6_CSUM)) {
7256 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7257 features &= ~NETIF_F_TSO6;
7258 }
7259
b1dc497b
AD
7260 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7261 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7262 features &= ~NETIF_F_TSO_MANGLEID;
7263
31d8b9e0
BH
7264 /* TSO ECN requires that TSO is present as well. */
7265 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7266 features &= ~NETIF_F_TSO_ECN;
7267
212b573f
MM
7268 /* Software GSO depends on SG. */
7269 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 7270 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
7271 features &= ~NETIF_F_GSO;
7272 }
7273
802ab55a
AD
7274 /* GSO partial features require GSO partial be set */
7275 if ((features & dev->gso_partial_features) &&
7276 !(features & NETIF_F_GSO_PARTIAL)) {
7277 netdev_dbg(dev,
7278 "Dropping partially supported GSO features since no GSO partial.\n");
7279 features &= ~dev->gso_partial_features;
7280 }
7281
b63365a2
HX
7282 return features;
7283}
b63365a2 7284
6cb6a27c 7285int __netdev_update_features(struct net_device *dev)
5455c699 7286{
fd867d51 7287 struct net_device *upper, *lower;
c8f44aff 7288 netdev_features_t features;
fd867d51 7289 struct list_head *iter;
e7868a85 7290 int err = -1;
5455c699 7291
87267485
MM
7292 ASSERT_RTNL();
7293
5455c699
MM
7294 features = netdev_get_wanted_features(dev);
7295
7296 if (dev->netdev_ops->ndo_fix_features)
7297 features = dev->netdev_ops->ndo_fix_features(dev, features);
7298
7299 /* driver might be less strict about feature dependencies */
7300 features = netdev_fix_features(dev, features);
7301
fd867d51
JW
7302 /* some features can't be enabled if they're off an an upper device */
7303 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7304 features = netdev_sync_upper_features(dev, upper, features);
7305
5455c699 7306 if (dev->features == features)
e7868a85 7307 goto sync_lower;
5455c699 7308
c8f44aff
MM
7309 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7310 &dev->features, &features);
5455c699
MM
7311
7312 if (dev->netdev_ops->ndo_set_features)
7313 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7314 else
7315 err = 0;
5455c699 7316
6cb6a27c 7317 if (unlikely(err < 0)) {
5455c699 7318 netdev_err(dev,
c8f44aff
MM
7319 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7320 err, &features, &dev->features);
17b85d29
NA
7321 /* return non-0 since some features might have changed and
7322 * it's better to fire a spurious notification than miss it
7323 */
7324 return -1;
6cb6a27c
MM
7325 }
7326
e7868a85 7327sync_lower:
fd867d51
JW
7328 /* some features must be disabled on lower devices when disabled
7329 * on an upper device (think: bonding master or bridge)
7330 */
7331 netdev_for_each_lower_dev(dev, lower, iter)
7332 netdev_sync_lower_features(dev, lower, features);
7333
ae847f40
SD
7334 if (!err) {
7335 netdev_features_t diff = features ^ dev->features;
7336
7337 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7338 /* udp_tunnel_{get,drop}_rx_info both need
7339 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7340 * device, or they won't do anything.
7341 * Thus we need to update dev->features
7342 * *before* calling udp_tunnel_get_rx_info,
7343 * but *after* calling udp_tunnel_drop_rx_info.
7344 */
7345 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7346 dev->features = features;
7347 udp_tunnel_get_rx_info(dev);
7348 } else {
7349 udp_tunnel_drop_rx_info(dev);
7350 }
7351 }
7352
6cb6a27c 7353 dev->features = features;
ae847f40 7354 }
6cb6a27c 7355
e7868a85 7356 return err < 0 ? 0 : 1;
6cb6a27c
MM
7357}
7358
afe12cc8
MM
7359/**
7360 * netdev_update_features - recalculate device features
7361 * @dev: the device to check
7362 *
7363 * Recalculate dev->features set and send notifications if it
7364 * has changed. Should be called after driver or hardware dependent
7365 * conditions might have changed that influence the features.
7366 */
6cb6a27c
MM
7367void netdev_update_features(struct net_device *dev)
7368{
7369 if (__netdev_update_features(dev))
7370 netdev_features_change(dev);
5455c699
MM
7371}
7372EXPORT_SYMBOL(netdev_update_features);
7373
afe12cc8
MM
7374/**
7375 * netdev_change_features - recalculate device features
7376 * @dev: the device to check
7377 *
7378 * Recalculate dev->features set and send notifications even
7379 * if they have not changed. Should be called instead of
7380 * netdev_update_features() if also dev->vlan_features might
7381 * have changed to allow the changes to be propagated to stacked
7382 * VLAN devices.
7383 */
7384void netdev_change_features(struct net_device *dev)
7385{
7386 __netdev_update_features(dev);
7387 netdev_features_change(dev);
7388}
7389EXPORT_SYMBOL(netdev_change_features);
7390
fc4a7489
PM
7391/**
7392 * netif_stacked_transfer_operstate - transfer operstate
7393 * @rootdev: the root or lower level device to transfer state from
7394 * @dev: the device to transfer operstate to
7395 *
7396 * Transfer operational state from root to device. This is normally
7397 * called when a stacking relationship exists between the root
7398 * device and the device(a leaf device).
7399 */
7400void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7401 struct net_device *dev)
7402{
7403 if (rootdev->operstate == IF_OPER_DORMANT)
7404 netif_dormant_on(dev);
7405 else
7406 netif_dormant_off(dev);
7407
0575c86b
ZS
7408 if (netif_carrier_ok(rootdev))
7409 netif_carrier_on(dev);
7410 else
7411 netif_carrier_off(dev);
fc4a7489
PM
7412}
7413EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7414
a953be53 7415#ifdef CONFIG_SYSFS
1b4bf461
ED
7416static int netif_alloc_rx_queues(struct net_device *dev)
7417{
1b4bf461 7418 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7419 struct netdev_rx_queue *rx;
10595902 7420 size_t sz = count * sizeof(*rx);
1b4bf461 7421
bd25fa7b 7422 BUG_ON(count < 1);
1b4bf461 7423
dcda9b04 7424 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7425 if (!rx)
7426 return -ENOMEM;
7427
bd25fa7b
TH
7428 dev->_rx = rx;
7429
bd25fa7b 7430 for (i = 0; i < count; i++)
fe822240 7431 rx[i].dev = dev;
1b4bf461
ED
7432 return 0;
7433}
bf264145 7434#endif
1b4bf461 7435
aa942104
CG
7436static void netdev_init_one_queue(struct net_device *dev,
7437 struct netdev_queue *queue, void *_unused)
7438{
7439 /* Initialize queue lock */
7440 spin_lock_init(&queue->_xmit_lock);
7441 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7442 queue->xmit_lock_owner = -1;
b236da69 7443 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7444 queue->dev = dev;
114cf580
TH
7445#ifdef CONFIG_BQL
7446 dql_init(&queue->dql, HZ);
7447#endif
aa942104
CG
7448}
7449
60877a32
ED
7450static void netif_free_tx_queues(struct net_device *dev)
7451{
4cb28970 7452 kvfree(dev->_tx);
60877a32
ED
7453}
7454
e6484930
TH
7455static int netif_alloc_netdev_queues(struct net_device *dev)
7456{
7457 unsigned int count = dev->num_tx_queues;
7458 struct netdev_queue *tx;
60877a32 7459 size_t sz = count * sizeof(*tx);
e6484930 7460
d339727c
ED
7461 if (count < 1 || count > 0xffff)
7462 return -EINVAL;
62b5942a 7463
dcda9b04 7464 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7465 if (!tx)
7466 return -ENOMEM;
7467
e6484930 7468 dev->_tx = tx;
1d24eb48 7469
e6484930
TH
7470 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7471 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7472
7473 return 0;
e6484930
TH
7474}
7475
a2029240
DV
7476void netif_tx_stop_all_queues(struct net_device *dev)
7477{
7478 unsigned int i;
7479
7480 for (i = 0; i < dev->num_tx_queues; i++) {
7481 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 7482
a2029240
DV
7483 netif_tx_stop_queue(txq);
7484 }
7485}
7486EXPORT_SYMBOL(netif_tx_stop_all_queues);
7487
1da177e4
LT
7488/**
7489 * register_netdevice - register a network device
7490 * @dev: device to register
7491 *
7492 * Take a completed network device structure and add it to the kernel
7493 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7494 * chain. 0 is returned on success. A negative errno code is returned
7495 * on a failure to set up the device, or if the name is a duplicate.
7496 *
7497 * Callers must hold the rtnl semaphore. You may want
7498 * register_netdev() instead of this.
7499 *
7500 * BUGS:
7501 * The locking appears insufficient to guarantee two parallel registers
7502 * will not get the same name.
7503 */
7504
7505int register_netdevice(struct net_device *dev)
7506{
1da177e4 7507 int ret;
d314774c 7508 struct net *net = dev_net(dev);
1da177e4
LT
7509
7510 BUG_ON(dev_boot_phase);
7511 ASSERT_RTNL();
7512
b17a7c17
SH
7513 might_sleep();
7514
1da177e4
LT
7515 /* When net_device's are persistent, this will be fatal. */
7516 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7517 BUG_ON(!net);
1da177e4 7518
f1f28aa3 7519 spin_lock_init(&dev->addr_list_lock);
cf508b12 7520 netdev_set_addr_lockdep_class(dev);
1da177e4 7521
828de4f6 7522 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7523 if (ret < 0)
7524 goto out;
7525
1da177e4 7526 /* Init, if this function is available */
d314774c
SH
7527 if (dev->netdev_ops->ndo_init) {
7528 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7529 if (ret) {
7530 if (ret > 0)
7531 ret = -EIO;
90833aa4 7532 goto out;
1da177e4
LT
7533 }
7534 }
4ec93edb 7535
f646968f
PM
7536 if (((dev->hw_features | dev->features) &
7537 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7538 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7539 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7540 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7541 ret = -EINVAL;
7542 goto err_uninit;
7543 }
7544
9c7dafbf
PE
7545 ret = -EBUSY;
7546 if (!dev->ifindex)
7547 dev->ifindex = dev_new_index(net);
7548 else if (__dev_get_by_index(net, dev->ifindex))
7549 goto err_uninit;
7550
5455c699
MM
7551 /* Transfer changeable features to wanted_features and enable
7552 * software offloads (GSO and GRO).
7553 */
7554 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 7555 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
7556
7557 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7558 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7559 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7560 }
7561
14d1232f 7562 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7563
cbc53e08 7564 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7565 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7566
7f348a60
AD
7567 /* If IPv4 TCP segmentation offload is supported we should also
7568 * allow the device to enable segmenting the frame with the option
7569 * of ignoring a static IP ID value. This doesn't enable the
7570 * feature itself but allows the user to enable it later.
7571 */
cbc53e08
AD
7572 if (dev->hw_features & NETIF_F_TSO)
7573 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7574 if (dev->vlan_features & NETIF_F_TSO)
7575 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7576 if (dev->mpls_features & NETIF_F_TSO)
7577 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7578 if (dev->hw_enc_features & NETIF_F_TSO)
7579 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7580
1180e7d6 7581 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7582 */
1180e7d6 7583 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7584
ee579677
PS
7585 /* Make NETIF_F_SG inheritable to tunnel devices.
7586 */
802ab55a 7587 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7588
0d89d203
SH
7589 /* Make NETIF_F_SG inheritable to MPLS.
7590 */
7591 dev->mpls_features |= NETIF_F_SG;
7592
7ffbe3fd
JB
7593 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7594 ret = notifier_to_errno(ret);
7595 if (ret)
7596 goto err_uninit;
7597
8b41d188 7598 ret = netdev_register_kobject(dev);
b17a7c17 7599 if (ret)
7ce1b0ed 7600 goto err_uninit;
b17a7c17
SH
7601 dev->reg_state = NETREG_REGISTERED;
7602
6cb6a27c 7603 __netdev_update_features(dev);
8e9b59b2 7604
1da177e4
LT
7605 /*
7606 * Default initial state at registry is that the
7607 * device is present.
7608 */
7609
7610 set_bit(__LINK_STATE_PRESENT, &dev->state);
7611
8f4cccbb
BH
7612 linkwatch_init_dev(dev);
7613
1da177e4 7614 dev_init_scheduler(dev);
1da177e4 7615 dev_hold(dev);
ce286d32 7616 list_netdevice(dev);
7bf23575 7617 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7618
948b337e
JP
7619 /* If the device has permanent device address, driver should
7620 * set dev_addr and also addr_assign_type should be set to
7621 * NET_ADDR_PERM (default value).
7622 */
7623 if (dev->addr_assign_type == NET_ADDR_PERM)
7624 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7625
1da177e4 7626 /* Notify protocols, that a new device appeared. */
056925ab 7627 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7628 ret = notifier_to_errno(ret);
93ee31f1
DL
7629 if (ret) {
7630 rollback_registered(dev);
7631 dev->reg_state = NETREG_UNREGISTERED;
7632 }
d90a909e
EB
7633 /*
7634 * Prevent userspace races by waiting until the network
7635 * device is fully setup before sending notifications.
7636 */
a2835763
PM
7637 if (!dev->rtnl_link_ops ||
7638 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7639 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7640
7641out:
7642 return ret;
7ce1b0ed
HX
7643
7644err_uninit:
d314774c
SH
7645 if (dev->netdev_ops->ndo_uninit)
7646 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
7647 if (dev->priv_destructor)
7648 dev->priv_destructor(dev);
7ce1b0ed 7649 goto out;
1da177e4 7650}
d1b19dff 7651EXPORT_SYMBOL(register_netdevice);
1da177e4 7652
937f1ba5
BH
7653/**
7654 * init_dummy_netdev - init a dummy network device for NAPI
7655 * @dev: device to init
7656 *
7657 * This takes a network device structure and initialize the minimum
7658 * amount of fields so it can be used to schedule NAPI polls without
7659 * registering a full blown interface. This is to be used by drivers
7660 * that need to tie several hardware interfaces to a single NAPI
7661 * poll scheduler due to HW limitations.
7662 */
7663int init_dummy_netdev(struct net_device *dev)
7664{
7665 /* Clear everything. Note we don't initialize spinlocks
7666 * are they aren't supposed to be taken by any of the
7667 * NAPI code and this dummy netdev is supposed to be
7668 * only ever used for NAPI polls
7669 */
7670 memset(dev, 0, sizeof(struct net_device));
7671
7672 /* make sure we BUG if trying to hit standard
7673 * register/unregister code path
7674 */
7675 dev->reg_state = NETREG_DUMMY;
7676
937f1ba5
BH
7677 /* NAPI wants this */
7678 INIT_LIST_HEAD(&dev->napi_list);
7679
7680 /* a dummy interface is started by default */
7681 set_bit(__LINK_STATE_PRESENT, &dev->state);
7682 set_bit(__LINK_STATE_START, &dev->state);
7683
29b4433d
ED
7684 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7685 * because users of this 'device' dont need to change
7686 * its refcount.
7687 */
7688
937f1ba5
BH
7689 return 0;
7690}
7691EXPORT_SYMBOL_GPL(init_dummy_netdev);
7692
7693
1da177e4
LT
7694/**
7695 * register_netdev - register a network device
7696 * @dev: device to register
7697 *
7698 * Take a completed network device structure and add it to the kernel
7699 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7700 * chain. 0 is returned on success. A negative errno code is returned
7701 * on a failure to set up the device, or if the name is a duplicate.
7702 *
38b4da38 7703 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7704 * and expands the device name if you passed a format string to
7705 * alloc_netdev.
7706 */
7707int register_netdev(struct net_device *dev)
7708{
7709 int err;
7710
7711 rtnl_lock();
1da177e4 7712 err = register_netdevice(dev);
1da177e4
LT
7713 rtnl_unlock();
7714 return err;
7715}
7716EXPORT_SYMBOL(register_netdev);
7717
29b4433d
ED
7718int netdev_refcnt_read(const struct net_device *dev)
7719{
7720 int i, refcnt = 0;
7721
7722 for_each_possible_cpu(i)
7723 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7724 return refcnt;
7725}
7726EXPORT_SYMBOL(netdev_refcnt_read);
7727
2c53040f 7728/**
1da177e4 7729 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7730 * @dev: target net_device
1da177e4
LT
7731 *
7732 * This is called when unregistering network devices.
7733 *
7734 * Any protocol or device that holds a reference should register
7735 * for netdevice notification, and cleanup and put back the
7736 * reference if they receive an UNREGISTER event.
7737 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7738 * call dev_put.
1da177e4
LT
7739 */
7740static void netdev_wait_allrefs(struct net_device *dev)
7741{
7742 unsigned long rebroadcast_time, warning_time;
29b4433d 7743 int refcnt;
1da177e4 7744
e014debe
ED
7745 linkwatch_forget_dev(dev);
7746
1da177e4 7747 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7748 refcnt = netdev_refcnt_read(dev);
7749
7750 while (refcnt != 0) {
1da177e4 7751 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7752 rtnl_lock();
1da177e4
LT
7753
7754 /* Rebroadcast unregister notification */
056925ab 7755 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7756
748e2d93 7757 __rtnl_unlock();
0115e8e3 7758 rcu_barrier();
748e2d93
ED
7759 rtnl_lock();
7760
0115e8e3 7761 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7762 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7763 &dev->state)) {
7764 /* We must not have linkwatch events
7765 * pending on unregister. If this
7766 * happens, we simply run the queue
7767 * unscheduled, resulting in a noop
7768 * for this device.
7769 */
7770 linkwatch_run_queue();
7771 }
7772
6756ae4b 7773 __rtnl_unlock();
1da177e4
LT
7774
7775 rebroadcast_time = jiffies;
7776 }
7777
7778 msleep(250);
7779
29b4433d
ED
7780 refcnt = netdev_refcnt_read(dev);
7781
1da177e4 7782 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7783 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7784 dev->name, refcnt);
1da177e4
LT
7785 warning_time = jiffies;
7786 }
7787 }
7788}
7789
7790/* The sequence is:
7791 *
7792 * rtnl_lock();
7793 * ...
7794 * register_netdevice(x1);
7795 * register_netdevice(x2);
7796 * ...
7797 * unregister_netdevice(y1);
7798 * unregister_netdevice(y2);
7799 * ...
7800 * rtnl_unlock();
7801 * free_netdev(y1);
7802 * free_netdev(y2);
7803 *
58ec3b4d 7804 * We are invoked by rtnl_unlock().
1da177e4 7805 * This allows us to deal with problems:
b17a7c17 7806 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7807 * without deadlocking with linkwatch via keventd.
7808 * 2) Since we run with the RTNL semaphore not held, we can sleep
7809 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7810 *
7811 * We must not return until all unregister events added during
7812 * the interval the lock was held have been completed.
1da177e4 7813 */
1da177e4
LT
7814void netdev_run_todo(void)
7815{
626ab0e6 7816 struct list_head list;
1da177e4 7817
1da177e4 7818 /* Snapshot list, allow later requests */
626ab0e6 7819 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7820
7821 __rtnl_unlock();
626ab0e6 7822
0115e8e3
ED
7823
7824 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7825 if (!list_empty(&list))
7826 rcu_barrier();
7827
1da177e4
LT
7828 while (!list_empty(&list)) {
7829 struct net_device *dev
e5e26d75 7830 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7831 list_del(&dev->todo_list);
7832
748e2d93 7833 rtnl_lock();
0115e8e3 7834 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7835 __rtnl_unlock();
0115e8e3 7836
b17a7c17 7837 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7838 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7839 dev->name, dev->reg_state);
7840 dump_stack();
7841 continue;
7842 }
1da177e4 7843
b17a7c17 7844 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7845
b17a7c17 7846 netdev_wait_allrefs(dev);
1da177e4 7847
b17a7c17 7848 /* paranoia */
29b4433d 7849 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7850 BUG_ON(!list_empty(&dev->ptype_all));
7851 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7852 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7853 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7854 WARN_ON(dev->dn_ptr);
1da177e4 7855
cf124db5
DM
7856 if (dev->priv_destructor)
7857 dev->priv_destructor(dev);
7858 if (dev->needs_free_netdev)
7859 free_netdev(dev);
9093bbb2 7860
50624c93
EB
7861 /* Report a network device has been unregistered */
7862 rtnl_lock();
7863 dev_net(dev)->dev_unreg_count--;
7864 __rtnl_unlock();
7865 wake_up(&netdev_unregistering_wq);
7866
9093bbb2
SH
7867 /* Free network device */
7868 kobject_put(&dev->dev.kobj);
1da177e4 7869 }
1da177e4
LT
7870}
7871
9256645a
JW
7872/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7873 * all the same fields in the same order as net_device_stats, with only
7874 * the type differing, but rtnl_link_stats64 may have additional fields
7875 * at the end for newer counters.
3cfde79c 7876 */
77a1abf5
ED
7877void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7878 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7879{
7880#if BITS_PER_LONG == 64
9256645a 7881 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 7882 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
7883 /* zero out counters that only exist in rtnl_link_stats64 */
7884 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7885 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7886#else
9256645a 7887 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7888 const unsigned long *src = (const unsigned long *)netdev_stats;
7889 u64 *dst = (u64 *)stats64;
7890
9256645a 7891 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7892 for (i = 0; i < n; i++)
7893 dst[i] = src[i];
9256645a
JW
7894 /* zero out counters that only exist in rtnl_link_stats64 */
7895 memset((char *)stats64 + n * sizeof(u64), 0,
7896 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7897#endif
7898}
77a1abf5 7899EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7900
eeda3fd6
SH
7901/**
7902 * dev_get_stats - get network device statistics
7903 * @dev: device to get statistics from
28172739 7904 * @storage: place to store stats
eeda3fd6 7905 *
d7753516
BH
7906 * Get network statistics from device. Return @storage.
7907 * The device driver may provide its own method by setting
7908 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7909 * otherwise the internal statistics structure is used.
eeda3fd6 7910 */
d7753516
BH
7911struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7912 struct rtnl_link_stats64 *storage)
7004bf25 7913{
eeda3fd6
SH
7914 const struct net_device_ops *ops = dev->netdev_ops;
7915
28172739
ED
7916 if (ops->ndo_get_stats64) {
7917 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7918 ops->ndo_get_stats64(dev, storage);
7919 } else if (ops->ndo_get_stats) {
3cfde79c 7920 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7921 } else {
7922 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7923 }
6f64ec74
ED
7924 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7925 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7926 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 7927 return storage;
c45d286e 7928}
eeda3fd6 7929EXPORT_SYMBOL(dev_get_stats);
c45d286e 7930
24824a09 7931struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7932{
24824a09 7933 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7934
24824a09
ED
7935#ifdef CONFIG_NET_CLS_ACT
7936 if (queue)
7937 return queue;
7938 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7939 if (!queue)
7940 return NULL;
7941 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7942 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7943 queue->qdisc_sleeping = &noop_qdisc;
7944 rcu_assign_pointer(dev->ingress_queue, queue);
7945#endif
7946 return queue;
bb949fbd
DM
7947}
7948
2c60db03
ED
7949static const struct ethtool_ops default_ethtool_ops;
7950
d07d7507
SG
7951void netdev_set_default_ethtool_ops(struct net_device *dev,
7952 const struct ethtool_ops *ops)
7953{
7954 if (dev->ethtool_ops == &default_ethtool_ops)
7955 dev->ethtool_ops = ops;
7956}
7957EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7958
74d332c1
ED
7959void netdev_freemem(struct net_device *dev)
7960{
7961 char *addr = (char *)dev - dev->padded;
7962
4cb28970 7963 kvfree(addr);
74d332c1
ED
7964}
7965
1da177e4 7966/**
722c9a0c 7967 * alloc_netdev_mqs - allocate network device
7968 * @sizeof_priv: size of private data to allocate space for
7969 * @name: device name format string
7970 * @name_assign_type: origin of device name
7971 * @setup: callback to initialize device
7972 * @txqs: the number of TX subqueues to allocate
7973 * @rxqs: the number of RX subqueues to allocate
7974 *
7975 * Allocates a struct net_device with private data area for driver use
7976 * and performs basic initialization. Also allocates subqueue structs
7977 * for each queue on the device.
1da177e4 7978 */
36909ea4 7979struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7980 unsigned char name_assign_type,
36909ea4
TH
7981 void (*setup)(struct net_device *),
7982 unsigned int txqs, unsigned int rxqs)
1da177e4 7983{
1da177e4 7984 struct net_device *dev;
7943986c 7985 size_t alloc_size;
1ce8e7b5 7986 struct net_device *p;
1da177e4 7987
b6fe17d6
SH
7988 BUG_ON(strlen(name) >= sizeof(dev->name));
7989
36909ea4 7990 if (txqs < 1) {
7b6cd1ce 7991 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7992 return NULL;
7993 }
7994
a953be53 7995#ifdef CONFIG_SYSFS
36909ea4 7996 if (rxqs < 1) {
7b6cd1ce 7997 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7998 return NULL;
7999 }
8000#endif
8001
fd2ea0a7 8002 alloc_size = sizeof(struct net_device);
d1643d24
AD
8003 if (sizeof_priv) {
8004 /* ensure 32-byte alignment of private area */
1ce8e7b5 8005 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
8006 alloc_size += sizeof_priv;
8007 }
8008 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 8009 alloc_size += NETDEV_ALIGN - 1;
1da177e4 8010
dcda9b04 8011 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 8012 if (!p)
1da177e4 8013 return NULL;
1da177e4 8014
1ce8e7b5 8015 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 8016 dev->padded = (char *)dev - (char *)p;
ab9c73cc 8017
29b4433d
ED
8018 dev->pcpu_refcnt = alloc_percpu(int);
8019 if (!dev->pcpu_refcnt)
74d332c1 8020 goto free_dev;
ab9c73cc 8021
ab9c73cc 8022 if (dev_addr_init(dev))
29b4433d 8023 goto free_pcpu;
ab9c73cc 8024
22bedad3 8025 dev_mc_init(dev);
a748ee24 8026 dev_uc_init(dev);
ccffad25 8027
c346dca1 8028 dev_net_set(dev, &init_net);
1da177e4 8029
8d3bdbd5 8030 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 8031 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 8032
8d3bdbd5
DM
8033 INIT_LIST_HEAD(&dev->napi_list);
8034 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 8035 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 8036 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
8037 INIT_LIST_HEAD(&dev->adj_list.upper);
8038 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
8039 INIT_LIST_HEAD(&dev->ptype_all);
8040 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
8041#ifdef CONFIG_NET_SCHED
8042 hash_init(dev->qdisc_hash);
8043#endif
02875878 8044 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
8045 setup(dev);
8046
a813104d 8047 if (!dev->tx_queue_len) {
f84bb1ea 8048 dev->priv_flags |= IFF_NO_QUEUE;
11597084 8049 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 8050 }
906470c1 8051
36909ea4
TH
8052 dev->num_tx_queues = txqs;
8053 dev->real_num_tx_queues = txqs;
ed9af2e8 8054 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 8055 goto free_all;
e8a0464c 8056
a953be53 8057#ifdef CONFIG_SYSFS
36909ea4
TH
8058 dev->num_rx_queues = rxqs;
8059 dev->real_num_rx_queues = rxqs;
fe822240 8060 if (netif_alloc_rx_queues(dev))
8d3bdbd5 8061 goto free_all;
df334545 8062#endif
0a9627f2 8063
1da177e4 8064 strcpy(dev->name, name);
c835a677 8065 dev->name_assign_type = name_assign_type;
cbda10fa 8066 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
8067 if (!dev->ethtool_ops)
8068 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
8069
8070 nf_hook_ingress_init(dev);
8071
1da177e4 8072 return dev;
ab9c73cc 8073
8d3bdbd5
DM
8074free_all:
8075 free_netdev(dev);
8076 return NULL;
8077
29b4433d
ED
8078free_pcpu:
8079 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
8080free_dev:
8081 netdev_freemem(dev);
ab9c73cc 8082 return NULL;
1da177e4 8083}
36909ea4 8084EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
8085
8086/**
722c9a0c 8087 * free_netdev - free network device
8088 * @dev: device
1da177e4 8089 *
722c9a0c 8090 * This function does the last stage of destroying an allocated device
8091 * interface. The reference to the device object is released. If this
8092 * is the last reference then it will be freed.Must be called in process
8093 * context.
1da177e4
LT
8094 */
8095void free_netdev(struct net_device *dev)
8096{
d565b0a1 8097 struct napi_struct *p, *n;
b5cdae32 8098 struct bpf_prog *prog;
d565b0a1 8099
93d05d4a 8100 might_sleep();
60877a32 8101 netif_free_tx_queues(dev);
a953be53 8102#ifdef CONFIG_SYSFS
10595902 8103 kvfree(dev->_rx);
fe822240 8104#endif
e8a0464c 8105
33d480ce 8106 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 8107
f001fde5
JP
8108 /* Flush device addresses */
8109 dev_addr_flush(dev);
8110
d565b0a1
HX
8111 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8112 netif_napi_del(p);
8113
29b4433d
ED
8114 free_percpu(dev->pcpu_refcnt);
8115 dev->pcpu_refcnt = NULL;
8116
b5cdae32
DM
8117 prog = rcu_dereference_protected(dev->xdp_prog, 1);
8118 if (prog) {
8119 bpf_prog_put(prog);
8120 static_key_slow_dec(&generic_xdp_needed);
8121 }
8122
3041a069 8123 /* Compatibility with error handling in drivers */
1da177e4 8124 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 8125 netdev_freemem(dev);
1da177e4
LT
8126 return;
8127 }
8128
8129 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8130 dev->reg_state = NETREG_RELEASED;
8131
43cb76d9
GKH
8132 /* will free via device release */
8133 put_device(&dev->dev);
1da177e4 8134}
d1b19dff 8135EXPORT_SYMBOL(free_netdev);
4ec93edb 8136
f0db275a
SH
8137/**
8138 * synchronize_net - Synchronize with packet receive processing
8139 *
8140 * Wait for packets currently being received to be done.
8141 * Does not block later packets from starting.
8142 */
4ec93edb 8143void synchronize_net(void)
1da177e4
LT
8144{
8145 might_sleep();
be3fc413
ED
8146 if (rtnl_is_locked())
8147 synchronize_rcu_expedited();
8148 else
8149 synchronize_rcu();
1da177e4 8150}
d1b19dff 8151EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
8152
8153/**
44a0873d 8154 * unregister_netdevice_queue - remove device from the kernel
1da177e4 8155 * @dev: device
44a0873d 8156 * @head: list
6ebfbc06 8157 *
1da177e4 8158 * This function shuts down a device interface and removes it
d59b54b1 8159 * from the kernel tables.
44a0873d 8160 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
8161 *
8162 * Callers must hold the rtnl semaphore. You may want
8163 * unregister_netdev() instead of this.
8164 */
8165
44a0873d 8166void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 8167{
a6620712
HX
8168 ASSERT_RTNL();
8169
44a0873d 8170 if (head) {
9fdce099 8171 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
8172 } else {
8173 rollback_registered(dev);
8174 /* Finish processing unregister after unlock */
8175 net_set_todo(dev);
8176 }
1da177e4 8177}
44a0873d 8178EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 8179
9b5e383c
ED
8180/**
8181 * unregister_netdevice_many - unregister many devices
8182 * @head: list of devices
87757a91
ED
8183 *
8184 * Note: As most callers use a stack allocated list_head,
8185 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
8186 */
8187void unregister_netdevice_many(struct list_head *head)
8188{
8189 struct net_device *dev;
8190
8191 if (!list_empty(head)) {
8192 rollback_registered_many(head);
8193 list_for_each_entry(dev, head, unreg_list)
8194 net_set_todo(dev);
87757a91 8195 list_del(head);
9b5e383c
ED
8196 }
8197}
63c8099d 8198EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 8199
1da177e4
LT
8200/**
8201 * unregister_netdev - remove device from the kernel
8202 * @dev: device
8203 *
8204 * This function shuts down a device interface and removes it
d59b54b1 8205 * from the kernel tables.
1da177e4
LT
8206 *
8207 * This is just a wrapper for unregister_netdevice that takes
8208 * the rtnl semaphore. In general you want to use this and not
8209 * unregister_netdevice.
8210 */
8211void unregister_netdev(struct net_device *dev)
8212{
8213 rtnl_lock();
8214 unregister_netdevice(dev);
8215 rtnl_unlock();
8216}
1da177e4
LT
8217EXPORT_SYMBOL(unregister_netdev);
8218
ce286d32
EB
8219/**
8220 * dev_change_net_namespace - move device to different nethost namespace
8221 * @dev: device
8222 * @net: network namespace
8223 * @pat: If not NULL name pattern to try if the current device name
8224 * is already taken in the destination network namespace.
8225 *
8226 * This function shuts down a device interface and moves it
8227 * to a new network namespace. On success 0 is returned, on
8228 * a failure a netagive errno code is returned.
8229 *
8230 * Callers must hold the rtnl semaphore.
8231 */
8232
8233int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8234{
ce286d32
EB
8235 int err;
8236
8237 ASSERT_RTNL();
8238
8239 /* Don't allow namespace local devices to be moved. */
8240 err = -EINVAL;
8241 if (dev->features & NETIF_F_NETNS_LOCAL)
8242 goto out;
8243
8244 /* Ensure the device has been registrered */
ce286d32
EB
8245 if (dev->reg_state != NETREG_REGISTERED)
8246 goto out;
8247
8248 /* Get out if there is nothing todo */
8249 err = 0;
878628fb 8250 if (net_eq(dev_net(dev), net))
ce286d32
EB
8251 goto out;
8252
8253 /* Pick the destination device name, and ensure
8254 * we can use it in the destination network namespace.
8255 */
8256 err = -EEXIST;
d9031024 8257 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
8258 /* We get here if we can't use the current device name */
8259 if (!pat)
8260 goto out;
828de4f6 8261 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
8262 goto out;
8263 }
8264
8265 /*
8266 * And now a mini version of register_netdevice unregister_netdevice.
8267 */
8268
8269 /* If device is running close it first. */
9b772652 8270 dev_close(dev);
ce286d32
EB
8271
8272 /* And unlink it from device chain */
8273 err = -ENODEV;
8274 unlist_netdevice(dev);
8275
8276 synchronize_net();
8277
8278 /* Shutdown queueing discipline. */
8279 dev_shutdown(dev);
8280
8281 /* Notify protocols, that we are about to destroy
eb13da1a 8282 * this device. They should clean all the things.
8283 *
8284 * Note that dev->reg_state stays at NETREG_REGISTERED.
8285 * This is wanted because this way 8021q and macvlan know
8286 * the device is just moving and can keep their slaves up.
8287 */
ce286d32 8288 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
8289 rcu_barrier();
8290 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 8291 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
8292
8293 /*
8294 * Flush the unicast and multicast chains
8295 */
a748ee24 8296 dev_uc_flush(dev);
22bedad3 8297 dev_mc_flush(dev);
ce286d32 8298
4e66ae2e
SH
8299 /* Send a netdev-removed uevent to the old namespace */
8300 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 8301 netdev_adjacent_del_links(dev);
4e66ae2e 8302
ce286d32 8303 /* Actually switch the network namespace */
c346dca1 8304 dev_net_set(dev, net);
ce286d32 8305
ce286d32 8306 /* If there is an ifindex conflict assign a new one */
7a66bbc9 8307 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 8308 dev->ifindex = dev_new_index(net);
ce286d32 8309
4e66ae2e
SH
8310 /* Send a netdev-add uevent to the new namespace */
8311 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 8312 netdev_adjacent_add_links(dev);
4e66ae2e 8313
8b41d188 8314 /* Fixup kobjects */
a1b3f594 8315 err = device_rename(&dev->dev, dev->name);
8b41d188 8316 WARN_ON(err);
ce286d32
EB
8317
8318 /* Add the device back in the hashes */
8319 list_netdevice(dev);
8320
8321 /* Notify protocols, that a new device appeared. */
8322 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8323
d90a909e
EB
8324 /*
8325 * Prevent userspace races by waiting until the network
8326 * device is fully setup before sending notifications.
8327 */
7f294054 8328 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8329
ce286d32
EB
8330 synchronize_net();
8331 err = 0;
8332out:
8333 return err;
8334}
463d0183 8335EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8336
f0bf90de 8337static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8338{
8339 struct sk_buff **list_skb;
1da177e4 8340 struct sk_buff *skb;
f0bf90de 8341 unsigned int cpu;
97d8b6e3 8342 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 8343
1da177e4
LT
8344 local_irq_disable();
8345 cpu = smp_processor_id();
8346 sd = &per_cpu(softnet_data, cpu);
8347 oldsd = &per_cpu(softnet_data, oldcpu);
8348
8349 /* Find end of our completion_queue. */
8350 list_skb = &sd->completion_queue;
8351 while (*list_skb)
8352 list_skb = &(*list_skb)->next;
8353 /* Append completion queue from offline CPU. */
8354 *list_skb = oldsd->completion_queue;
8355 oldsd->completion_queue = NULL;
8356
1da177e4 8357 /* Append output queue from offline CPU. */
a9cbd588
CG
8358 if (oldsd->output_queue) {
8359 *sd->output_queue_tailp = oldsd->output_queue;
8360 sd->output_queue_tailp = oldsd->output_queue_tailp;
8361 oldsd->output_queue = NULL;
8362 oldsd->output_queue_tailp = &oldsd->output_queue;
8363 }
ac64da0b
ED
8364 /* Append NAPI poll list from offline CPU, with one exception :
8365 * process_backlog() must be called by cpu owning percpu backlog.
8366 * We properly handle process_queue & input_pkt_queue later.
8367 */
8368 while (!list_empty(&oldsd->poll_list)) {
8369 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8370 struct napi_struct,
8371 poll_list);
8372
8373 list_del_init(&napi->poll_list);
8374 if (napi->poll == process_backlog)
8375 napi->state = 0;
8376 else
8377 ____napi_schedule(sd, napi);
264524d5 8378 }
1da177e4
LT
8379
8380 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8381 local_irq_enable();
8382
773fc8f6 8383#ifdef CONFIG_RPS
8384 remsd = oldsd->rps_ipi_list;
8385 oldsd->rps_ipi_list = NULL;
8386#endif
8387 /* send out pending IPI's on offline CPU */
8388 net_rps_send_ipi(remsd);
8389
1da177e4 8390 /* Process offline CPU's input_pkt_queue */
76cc8b13 8391 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8392 netif_rx_ni(skb);
76cc8b13 8393 input_queue_head_incr(oldsd);
fec5e652 8394 }
ac64da0b 8395 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8396 netif_rx_ni(skb);
76cc8b13
TH
8397 input_queue_head_incr(oldsd);
8398 }
1da177e4 8399
f0bf90de 8400 return 0;
1da177e4 8401}
1da177e4 8402
7f353bf2 8403/**
b63365a2
HX
8404 * netdev_increment_features - increment feature set by one
8405 * @all: current feature set
8406 * @one: new feature set
8407 * @mask: mask feature set
7f353bf2
HX
8408 *
8409 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8410 * @one to the master device with current feature set @all. Will not
8411 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8412 */
c8f44aff
MM
8413netdev_features_t netdev_increment_features(netdev_features_t all,
8414 netdev_features_t one, netdev_features_t mask)
b63365a2 8415{
c8cd0989 8416 if (mask & NETIF_F_HW_CSUM)
a188222b 8417 mask |= NETIF_F_CSUM_MASK;
1742f183 8418 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8419
a188222b 8420 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8421 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8422
1742f183 8423 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8424 if (all & NETIF_F_HW_CSUM)
8425 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8426
8427 return all;
8428}
b63365a2 8429EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8430
430f03cd 8431static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8432{
8433 int i;
8434 struct hlist_head *hash;
8435
8436 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8437 if (hash != NULL)
8438 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8439 INIT_HLIST_HEAD(&hash[i]);
8440
8441 return hash;
8442}
8443
881d966b 8444/* Initialize per network namespace state */
4665079c 8445static int __net_init netdev_init(struct net *net)
881d966b 8446{
734b6541
RM
8447 if (net != &init_net)
8448 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8449
30d97d35
PE
8450 net->dev_name_head = netdev_create_hash();
8451 if (net->dev_name_head == NULL)
8452 goto err_name;
881d966b 8453
30d97d35
PE
8454 net->dev_index_head = netdev_create_hash();
8455 if (net->dev_index_head == NULL)
8456 goto err_idx;
881d966b
EB
8457
8458 return 0;
30d97d35
PE
8459
8460err_idx:
8461 kfree(net->dev_name_head);
8462err_name:
8463 return -ENOMEM;
881d966b
EB
8464}
8465
f0db275a
SH
8466/**
8467 * netdev_drivername - network driver for the device
8468 * @dev: network device
f0db275a
SH
8469 *
8470 * Determine network driver for device.
8471 */
3019de12 8472const char *netdev_drivername(const struct net_device *dev)
6579e57b 8473{
cf04a4c7
SH
8474 const struct device_driver *driver;
8475 const struct device *parent;
3019de12 8476 const char *empty = "";
6579e57b
AV
8477
8478 parent = dev->dev.parent;
6579e57b 8479 if (!parent)
3019de12 8480 return empty;
6579e57b
AV
8481
8482 driver = parent->driver;
8483 if (driver && driver->name)
3019de12
DM
8484 return driver->name;
8485 return empty;
6579e57b
AV
8486}
8487
6ea754eb
JP
8488static void __netdev_printk(const char *level, const struct net_device *dev,
8489 struct va_format *vaf)
256df2f3 8490{
b004ff49 8491 if (dev && dev->dev.parent) {
6ea754eb
JP
8492 dev_printk_emit(level[1] - '0',
8493 dev->dev.parent,
8494 "%s %s %s%s: %pV",
8495 dev_driver_string(dev->dev.parent),
8496 dev_name(dev->dev.parent),
8497 netdev_name(dev), netdev_reg_state(dev),
8498 vaf);
b004ff49 8499 } else if (dev) {
6ea754eb
JP
8500 printk("%s%s%s: %pV",
8501 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8502 } else {
6ea754eb 8503 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8504 }
256df2f3
JP
8505}
8506
6ea754eb
JP
8507void netdev_printk(const char *level, const struct net_device *dev,
8508 const char *format, ...)
256df2f3
JP
8509{
8510 struct va_format vaf;
8511 va_list args;
256df2f3
JP
8512
8513 va_start(args, format);
8514
8515 vaf.fmt = format;
8516 vaf.va = &args;
8517
6ea754eb 8518 __netdev_printk(level, dev, &vaf);
b004ff49 8519
256df2f3 8520 va_end(args);
256df2f3
JP
8521}
8522EXPORT_SYMBOL(netdev_printk);
8523
8524#define define_netdev_printk_level(func, level) \
6ea754eb 8525void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8526{ \
256df2f3
JP
8527 struct va_format vaf; \
8528 va_list args; \
8529 \
8530 va_start(args, fmt); \
8531 \
8532 vaf.fmt = fmt; \
8533 vaf.va = &args; \
8534 \
6ea754eb 8535 __netdev_printk(level, dev, &vaf); \
b004ff49 8536 \
256df2f3 8537 va_end(args); \
256df2f3
JP
8538} \
8539EXPORT_SYMBOL(func);
8540
8541define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8542define_netdev_printk_level(netdev_alert, KERN_ALERT);
8543define_netdev_printk_level(netdev_crit, KERN_CRIT);
8544define_netdev_printk_level(netdev_err, KERN_ERR);
8545define_netdev_printk_level(netdev_warn, KERN_WARNING);
8546define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8547define_netdev_printk_level(netdev_info, KERN_INFO);
8548
4665079c 8549static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8550{
8551 kfree(net->dev_name_head);
8552 kfree(net->dev_index_head);
8553}
8554
022cbae6 8555static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8556 .init = netdev_init,
8557 .exit = netdev_exit,
8558};
8559
4665079c 8560static void __net_exit default_device_exit(struct net *net)
ce286d32 8561{
e008b5fc 8562 struct net_device *dev, *aux;
ce286d32 8563 /*
e008b5fc 8564 * Push all migratable network devices back to the
ce286d32
EB
8565 * initial network namespace
8566 */
8567 rtnl_lock();
e008b5fc 8568 for_each_netdev_safe(net, dev, aux) {
ce286d32 8569 int err;
aca51397 8570 char fb_name[IFNAMSIZ];
ce286d32
EB
8571
8572 /* Ignore unmoveable devices (i.e. loopback) */
8573 if (dev->features & NETIF_F_NETNS_LOCAL)
8574 continue;
8575
e008b5fc
EB
8576 /* Leave virtual devices for the generic cleanup */
8577 if (dev->rtnl_link_ops)
8578 continue;
d0c082ce 8579
25985edc 8580 /* Push remaining network devices to init_net */
aca51397
PE
8581 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8582 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8583 if (err) {
7b6cd1ce
JP
8584 pr_emerg("%s: failed to move %s to init_net: %d\n",
8585 __func__, dev->name, err);
aca51397 8586 BUG();
ce286d32
EB
8587 }
8588 }
8589 rtnl_unlock();
8590}
8591
50624c93
EB
8592static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8593{
8594 /* Return with the rtnl_lock held when there are no network
8595 * devices unregistering in any network namespace in net_list.
8596 */
8597 struct net *net;
8598 bool unregistering;
ff960a73 8599 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8600
ff960a73 8601 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8602 for (;;) {
50624c93
EB
8603 unregistering = false;
8604 rtnl_lock();
8605 list_for_each_entry(net, net_list, exit_list) {
8606 if (net->dev_unreg_count > 0) {
8607 unregistering = true;
8608 break;
8609 }
8610 }
8611 if (!unregistering)
8612 break;
8613 __rtnl_unlock();
ff960a73
PZ
8614
8615 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8616 }
ff960a73 8617 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8618}
8619
04dc7f6b
EB
8620static void __net_exit default_device_exit_batch(struct list_head *net_list)
8621{
8622 /* At exit all network devices most be removed from a network
b595076a 8623 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8624 * Do this across as many network namespaces as possible to
8625 * improve batching efficiency.
8626 */
8627 struct net_device *dev;
8628 struct net *net;
8629 LIST_HEAD(dev_kill_list);
8630
50624c93
EB
8631 /* To prevent network device cleanup code from dereferencing
8632 * loopback devices or network devices that have been freed
8633 * wait here for all pending unregistrations to complete,
8634 * before unregistring the loopback device and allowing the
8635 * network namespace be freed.
8636 *
8637 * The netdev todo list containing all network devices
8638 * unregistrations that happen in default_device_exit_batch
8639 * will run in the rtnl_unlock() at the end of
8640 * default_device_exit_batch.
8641 */
8642 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8643 list_for_each_entry(net, net_list, exit_list) {
8644 for_each_netdev_reverse(net, dev) {
b0ab2fab 8645 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8646 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8647 else
8648 unregister_netdevice_queue(dev, &dev_kill_list);
8649 }
8650 }
8651 unregister_netdevice_many(&dev_kill_list);
8652 rtnl_unlock();
8653}
8654
022cbae6 8655static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8656 .exit = default_device_exit,
04dc7f6b 8657 .exit_batch = default_device_exit_batch,
ce286d32
EB
8658};
8659
1da177e4
LT
8660/*
8661 * Initialize the DEV module. At boot time this walks the device list and
8662 * unhooks any devices that fail to initialise (normally hardware not
8663 * present) and leaves us with a valid list of present and active devices.
8664 *
8665 */
8666
8667/*
8668 * This is called single threaded during boot, so no need
8669 * to take the rtnl semaphore.
8670 */
8671static int __init net_dev_init(void)
8672{
8673 int i, rc = -ENOMEM;
8674
8675 BUG_ON(!dev_boot_phase);
8676
1da177e4
LT
8677 if (dev_proc_init())
8678 goto out;
8679
8b41d188 8680 if (netdev_kobject_init())
1da177e4
LT
8681 goto out;
8682
8683 INIT_LIST_HEAD(&ptype_all);
82d8a867 8684 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8685 INIT_LIST_HEAD(&ptype_base[i]);
8686
62532da9
VY
8687 INIT_LIST_HEAD(&offload_base);
8688
881d966b
EB
8689 if (register_pernet_subsys(&netdev_net_ops))
8690 goto out;
1da177e4
LT
8691
8692 /*
8693 * Initialise the packet receive queues.
8694 */
8695
6f912042 8696 for_each_possible_cpu(i) {
41852497 8697 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8698 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8699
41852497
ED
8700 INIT_WORK(flush, flush_backlog);
8701
e36fa2f7 8702 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8703 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8704 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8705 sd->output_queue_tailp = &sd->output_queue;
df334545 8706#ifdef CONFIG_RPS
e36fa2f7
ED
8707 sd->csd.func = rps_trigger_softirq;
8708 sd->csd.info = sd;
e36fa2f7 8709 sd->cpu = i;
1e94d72f 8710#endif
0a9627f2 8711
e36fa2f7
ED
8712 sd->backlog.poll = process_backlog;
8713 sd->backlog.weight = weight_p;
1da177e4
LT
8714 }
8715
1da177e4
LT
8716 dev_boot_phase = 0;
8717
505d4f73
EB
8718 /* The loopback device is special if any other network devices
8719 * is present in a network namespace the loopback device must
8720 * be present. Since we now dynamically allocate and free the
8721 * loopback device ensure this invariant is maintained by
8722 * keeping the loopback device as the first device on the
8723 * list of network devices. Ensuring the loopback devices
8724 * is the first device that appears and the last network device
8725 * that disappears.
8726 */
8727 if (register_pernet_device(&loopback_net_ops))
8728 goto out;
8729
8730 if (register_pernet_device(&default_device_ops))
8731 goto out;
8732
962cf36c
CM
8733 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8734 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8735
f0bf90de
SAS
8736 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8737 NULL, dev_cpu_dead);
8738 WARN_ON(rc < 0);
1da177e4
LT
8739 rc = 0;
8740out:
8741 return rc;
8742}
8743
8744subsys_initcall(net_dev_init);