]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/core/dev.c
net: net_enable_timestamp() can be called from irq contexts
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
40e4e713 142#include <linux/crash_dump.h>
1da177e4 143
342709ef
PE
144#include "net-sysfs.h"
145
d565b0a1
HX
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
5d38a079
HX
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
1da177e4 152static DEFINE_SPINLOCK(ptype_lock);
62532da9 153static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
62532da9 156static struct list_head offload_base __read_mostly;
1da177e4 157
ae78dbfa 158static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
ae78dbfa 162
1da177e4 163/*
7562f876 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
165 * semaphore.
166 *
c6d14c84 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
7562f876 170 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
1da177e4 182DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
183EXPORT_SYMBOL(dev_base_lock);
184
af12fa6e
ET
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
52bd2d62 188static unsigned int napi_gen_id = NR_CPUS;
6180d9de 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 190
18afa4b0 191static seqcount_t devnet_rename_seq;
c91f6df2 192
4e985ada
TG
193static inline void dev_base_seq_inc(struct net *net)
194{
643aa9cb 195 while (++net->dev_base_seq == 0)
196 ;
4e985ada
TG
197}
198
881d966b 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 200{
8387ff25 201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 202
08e9897d 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
204}
205
881d966b 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 207{
7c28bd0b 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
209}
210
e36fa2f7 211static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
212{
213#ifdef CONFIG_RPS
e36fa2f7 214 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
215#endif
216}
217
e36fa2f7 218static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
219{
220#ifdef CONFIG_RPS
e36fa2f7 221 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
222#endif
223}
224
ce286d32 225/* Device list insertion */
53759be9 226static void list_netdevice(struct net_device *dev)
ce286d32 227{
c346dca1 228 struct net *net = dev_net(dev);
ce286d32
EB
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
c6d14c84 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
ce286d32 237 write_unlock_bh(&dev_base_lock);
4e985ada
TG
238
239 dev_base_seq_inc(net);
ce286d32
EB
240}
241
fb699dfd
ED
242/* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
ce286d32
EB
245static void unlist_netdevice(struct net_device *dev)
246{
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
c6d14c84 251 list_del_rcu(&dev->dev_list);
72c9528b 252 hlist_del_rcu(&dev->name_hlist);
fb699dfd 253 hlist_del_rcu(&dev->index_hlist);
ce286d32 254 write_unlock_bh(&dev_base_lock);
4e985ada
TG
255
256 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
257}
258
1da177e4
LT
259/*
260 * Our notifier list
261 */
262
f07d5b94 263static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
264
265/*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
bea3348e 269
9958da05 270DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 271EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 272
cf508b12 273#ifdef CONFIG_LOCKDEP
723e98b7 274/*
c773e847 275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
276 * according to dev->type
277 */
643aa9cb 278static const unsigned short netdev_lock_type[] = {
279 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 294
643aa9cb 295static const char *const netdev_lock_name[] = {
296 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
311
312static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 313static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
314
315static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316{
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324}
325
cf508b12
DM
326static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
723e98b7
JP
328{
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334}
cf508b12
DM
335
336static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337{
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344}
723e98b7 345#else
cf508b12
DM
346static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348{
349}
350static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
351{
352}
353#endif
1da177e4
LT
354
355/*******************************************************************************
eb13da1a 356 *
357 * Protocol management and registration routines
358 *
359 *******************************************************************************/
1da177e4 360
1da177e4 361
1da177e4
LT
362/*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
c07b68e8
ED
378static inline struct list_head *ptype_head(const struct packet_type *pt)
379{
380 if (pt->type == htons(ETH_P_ALL))
7866a621 381 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 382 else
7866a621
SN
383 return pt->dev ? &pt->dev->ptype_specific :
384 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
385}
386
1da177e4
LT
387/**
388 * dev_add_pack - add packet handler
389 * @pt: packet type declaration
390 *
391 * Add a protocol handler to the networking stack. The passed &packet_type
392 * is linked into kernel lists and may not be freed until it has been
393 * removed from the kernel lists.
394 *
4ec93edb 395 * This call does not sleep therefore it can not
1da177e4
LT
396 * guarantee all CPU's that are in middle of receiving packets
397 * will see the new packet type (until the next received packet).
398 */
399
400void dev_add_pack(struct packet_type *pt)
401{
c07b68e8 402 struct list_head *head = ptype_head(pt);
1da177e4 403
c07b68e8
ED
404 spin_lock(&ptype_lock);
405 list_add_rcu(&pt->list, head);
406 spin_unlock(&ptype_lock);
1da177e4 407}
d1b19dff 408EXPORT_SYMBOL(dev_add_pack);
1da177e4 409
1da177e4
LT
410/**
411 * __dev_remove_pack - remove packet handler
412 * @pt: packet type declaration
413 *
414 * Remove a protocol handler that was previously added to the kernel
415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
416 * from the kernel lists and can be freed or reused once this function
4ec93edb 417 * returns.
1da177e4
LT
418 *
419 * The packet type might still be in use by receivers
420 * and must not be freed until after all the CPU's have gone
421 * through a quiescent state.
422 */
423void __dev_remove_pack(struct packet_type *pt)
424{
c07b68e8 425 struct list_head *head = ptype_head(pt);
1da177e4
LT
426 struct packet_type *pt1;
427
c07b68e8 428 spin_lock(&ptype_lock);
1da177e4
LT
429
430 list_for_each_entry(pt1, head, list) {
431 if (pt == pt1) {
432 list_del_rcu(&pt->list);
433 goto out;
434 }
435 }
436
7b6cd1ce 437 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 438out:
c07b68e8 439 spin_unlock(&ptype_lock);
1da177e4 440}
d1b19dff
ED
441EXPORT_SYMBOL(__dev_remove_pack);
442
1da177e4
LT
443/**
444 * dev_remove_pack - remove packet handler
445 * @pt: packet type declaration
446 *
447 * Remove a protocol handler that was previously added to the kernel
448 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
449 * from the kernel lists and can be freed or reused once this function
450 * returns.
451 *
452 * This call sleeps to guarantee that no CPU is looking at the packet
453 * type after return.
454 */
455void dev_remove_pack(struct packet_type *pt)
456{
457 __dev_remove_pack(pt);
4ec93edb 458
1da177e4
LT
459 synchronize_net();
460}
d1b19dff 461EXPORT_SYMBOL(dev_remove_pack);
1da177e4 462
62532da9
VY
463
464/**
465 * dev_add_offload - register offload handlers
466 * @po: protocol offload declaration
467 *
468 * Add protocol offload handlers to the networking stack. The passed
469 * &proto_offload is linked into kernel lists and may not be freed until
470 * it has been removed from the kernel lists.
471 *
472 * This call does not sleep therefore it can not
473 * guarantee all CPU's that are in middle of receiving packets
474 * will see the new offload handlers (until the next received packet).
475 */
476void dev_add_offload(struct packet_offload *po)
477{
bdef7de4 478 struct packet_offload *elem;
62532da9
VY
479
480 spin_lock(&offload_lock);
bdef7de4
DM
481 list_for_each_entry(elem, &offload_base, list) {
482 if (po->priority < elem->priority)
483 break;
484 }
485 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
486 spin_unlock(&offload_lock);
487}
488EXPORT_SYMBOL(dev_add_offload);
489
490/**
491 * __dev_remove_offload - remove offload handler
492 * @po: packet offload declaration
493 *
494 * Remove a protocol offload handler that was previously added to the
495 * kernel offload handlers by dev_add_offload(). The passed &offload_type
496 * is removed from the kernel lists and can be freed or reused once this
497 * function returns.
498 *
499 * The packet type might still be in use by receivers
500 * and must not be freed until after all the CPU's have gone
501 * through a quiescent state.
502 */
1d143d9f 503static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
504{
505 struct list_head *head = &offload_base;
506 struct packet_offload *po1;
507
c53aa505 508 spin_lock(&offload_lock);
62532da9
VY
509
510 list_for_each_entry(po1, head, list) {
511 if (po == po1) {
512 list_del_rcu(&po->list);
513 goto out;
514 }
515 }
516
517 pr_warn("dev_remove_offload: %p not found\n", po);
518out:
c53aa505 519 spin_unlock(&offload_lock);
62532da9 520}
62532da9
VY
521
522/**
523 * dev_remove_offload - remove packet offload handler
524 * @po: packet offload declaration
525 *
526 * Remove a packet offload handler that was previously added to the kernel
527 * offload handlers by dev_add_offload(). The passed &offload_type is
528 * removed from the kernel lists and can be freed or reused once this
529 * function returns.
530 *
531 * This call sleeps to guarantee that no CPU is looking at the packet
532 * type after return.
533 */
534void dev_remove_offload(struct packet_offload *po)
535{
536 __dev_remove_offload(po);
537
538 synchronize_net();
539}
540EXPORT_SYMBOL(dev_remove_offload);
541
1da177e4 542/******************************************************************************
eb13da1a 543 *
544 * Device Boot-time Settings Routines
545 *
546 ******************************************************************************/
1da177e4
LT
547
548/* Boot time configuration table */
549static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550
551/**
552 * netdev_boot_setup_add - add new setup entry
553 * @name: name of the device
554 * @map: configured settings for the device
555 *
556 * Adds new setup entry to the dev_boot_setup list. The function
557 * returns 0 on error and 1 on success. This is a generic routine to
558 * all netdevices.
559 */
560static int netdev_boot_setup_add(char *name, struct ifmap *map)
561{
562 struct netdev_boot_setup *s;
563 int i;
564
565 s = dev_boot_setup;
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
568 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 569 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
570 memcpy(&s[i].map, map, sizeof(s[i].map));
571 break;
572 }
573 }
574
575 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
576}
577
578/**
722c9a0c 579 * netdev_boot_setup_check - check boot time settings
580 * @dev: the netdevice
1da177e4 581 *
722c9a0c 582 * Check boot time settings for the device.
583 * The found settings are set for the device to be used
584 * later in the device probing.
585 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
586 */
587int netdev_boot_setup_check(struct net_device *dev)
588{
589 struct netdev_boot_setup *s = dev_boot_setup;
590 int i;
591
592 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
593 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 594 !strcmp(dev->name, s[i].name)) {
722c9a0c 595 dev->irq = s[i].map.irq;
596 dev->base_addr = s[i].map.base_addr;
597 dev->mem_start = s[i].map.mem_start;
598 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
599 return 1;
600 }
601 }
602 return 0;
603}
d1b19dff 604EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
605
606
607/**
722c9a0c 608 * netdev_boot_base - get address from boot time settings
609 * @prefix: prefix for network device
610 * @unit: id for network device
611 *
612 * Check boot time settings for the base address of device.
613 * The found settings are set for the device to be used
614 * later in the device probing.
615 * Returns 0 if no settings found.
1da177e4
LT
616 */
617unsigned long netdev_boot_base(const char *prefix, int unit)
618{
619 const struct netdev_boot_setup *s = dev_boot_setup;
620 char name[IFNAMSIZ];
621 int i;
622
623 sprintf(name, "%s%d", prefix, unit);
624
625 /*
626 * If device already registered then return base of 1
627 * to indicate not to probe for this interface
628 */
881d966b 629 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
630 return 1;
631
632 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
633 if (!strcmp(name, s[i].name))
634 return s[i].map.base_addr;
635 return 0;
636}
637
638/*
639 * Saves at boot time configured settings for any netdevice.
640 */
641int __init netdev_boot_setup(char *str)
642{
643 int ints[5];
644 struct ifmap map;
645
646 str = get_options(str, ARRAY_SIZE(ints), ints);
647 if (!str || !*str)
648 return 0;
649
650 /* Save settings */
651 memset(&map, 0, sizeof(map));
652 if (ints[0] > 0)
653 map.irq = ints[1];
654 if (ints[0] > 1)
655 map.base_addr = ints[2];
656 if (ints[0] > 2)
657 map.mem_start = ints[3];
658 if (ints[0] > 3)
659 map.mem_end = ints[4];
660
661 /* Add new entry to the list */
662 return netdev_boot_setup_add(str, &map);
663}
664
665__setup("netdev=", netdev_boot_setup);
666
667/*******************************************************************************
eb13da1a 668 *
669 * Device Interface Subroutines
670 *
671 *******************************************************************************/
1da177e4 672
a54acb3a
ND
673/**
674 * dev_get_iflink - get 'iflink' value of a interface
675 * @dev: targeted interface
676 *
677 * Indicates the ifindex the interface is linked to.
678 * Physical interfaces have the same 'ifindex' and 'iflink' values.
679 */
680
681int dev_get_iflink(const struct net_device *dev)
682{
683 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
684 return dev->netdev_ops->ndo_get_iflink(dev);
685
7a66bbc9 686 return dev->ifindex;
a54acb3a
ND
687}
688EXPORT_SYMBOL(dev_get_iflink);
689
fc4099f1
PS
690/**
691 * dev_fill_metadata_dst - Retrieve tunnel egress information.
692 * @dev: targeted interface
693 * @skb: The packet.
694 *
695 * For better visibility of tunnel traffic OVS needs to retrieve
696 * egress tunnel information for a packet. Following API allows
697 * user to get this info.
698 */
699int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
700{
701 struct ip_tunnel_info *info;
702
703 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
704 return -EINVAL;
705
706 info = skb_tunnel_info_unclone(skb);
707 if (!info)
708 return -ENOMEM;
709 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
710 return -EINVAL;
711
712 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
713}
714EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715
1da177e4
LT
716/**
717 * __dev_get_by_name - find a device by its name
c4ea43c5 718 * @net: the applicable net namespace
1da177e4
LT
719 * @name: name to find
720 *
721 * Find an interface by name. Must be called under RTNL semaphore
722 * or @dev_base_lock. If the name is found a pointer to the device
723 * is returned. If the name is not found then %NULL is returned. The
724 * reference counters are not incremented so the caller must be
725 * careful with locks.
726 */
727
881d966b 728struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 729{
0bd8d536
ED
730 struct net_device *dev;
731 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 732
b67bfe0d 733 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
734 if (!strncmp(dev->name, name, IFNAMSIZ))
735 return dev;
0bd8d536 736
1da177e4
LT
737 return NULL;
738}
d1b19dff 739EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 740
72c9528b 741/**
722c9a0c 742 * dev_get_by_name_rcu - find a device by its name
743 * @net: the applicable net namespace
744 * @name: name to find
745 *
746 * Find an interface by name.
747 * If the name is found a pointer to the device is returned.
748 * If the name is not found then %NULL is returned.
749 * The reference counters are not incremented so the caller must be
750 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
751 */
752
753struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
754{
72c9528b
ED
755 struct net_device *dev;
756 struct hlist_head *head = dev_name_hash(net, name);
757
b67bfe0d 758 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
759 if (!strncmp(dev->name, name, IFNAMSIZ))
760 return dev;
761
762 return NULL;
763}
764EXPORT_SYMBOL(dev_get_by_name_rcu);
765
1da177e4
LT
766/**
767 * dev_get_by_name - find a device by its name
c4ea43c5 768 * @net: the applicable net namespace
1da177e4
LT
769 * @name: name to find
770 *
771 * Find an interface by name. This can be called from any
772 * context and does its own locking. The returned handle has
773 * the usage count incremented and the caller must use dev_put() to
774 * release it when it is no longer needed. %NULL is returned if no
775 * matching device is found.
776 */
777
881d966b 778struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
779{
780 struct net_device *dev;
781
72c9528b
ED
782 rcu_read_lock();
783 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
784 if (dev)
785 dev_hold(dev);
72c9528b 786 rcu_read_unlock();
1da177e4
LT
787 return dev;
788}
d1b19dff 789EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
790
791/**
792 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 793 * @net: the applicable net namespace
1da177e4
LT
794 * @ifindex: index of device
795 *
796 * Search for an interface by index. Returns %NULL if the device
797 * is not found or a pointer to the device. The device has not
798 * had its reference counter increased so the caller must be careful
799 * about locking. The caller must hold either the RTNL semaphore
800 * or @dev_base_lock.
801 */
802
881d966b 803struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 804{
0bd8d536
ED
805 struct net_device *dev;
806 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 807
b67bfe0d 808 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
809 if (dev->ifindex == ifindex)
810 return dev;
0bd8d536 811
1da177e4
LT
812 return NULL;
813}
d1b19dff 814EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 815
fb699dfd
ED
816/**
817 * dev_get_by_index_rcu - find a device by its ifindex
818 * @net: the applicable net namespace
819 * @ifindex: index of device
820 *
821 * Search for an interface by index. Returns %NULL if the device
822 * is not found or a pointer to the device. The device has not
823 * had its reference counter increased so the caller must be careful
824 * about locking. The caller must hold RCU lock.
825 */
826
827struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
828{
fb699dfd
ED
829 struct net_device *dev;
830 struct hlist_head *head = dev_index_hash(net, ifindex);
831
b67bfe0d 832 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
833 if (dev->ifindex == ifindex)
834 return dev;
835
836 return NULL;
837}
838EXPORT_SYMBOL(dev_get_by_index_rcu);
839
1da177e4
LT
840
841/**
842 * dev_get_by_index - find a device by its ifindex
c4ea43c5 843 * @net: the applicable net namespace
1da177e4
LT
844 * @ifindex: index of device
845 *
846 * Search for an interface by index. Returns NULL if the device
847 * is not found or a pointer to the device. The device returned has
848 * had a reference added and the pointer is safe until the user calls
849 * dev_put to indicate they have finished with it.
850 */
851
881d966b 852struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
853{
854 struct net_device *dev;
855
fb699dfd
ED
856 rcu_read_lock();
857 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
858 if (dev)
859 dev_hold(dev);
fb699dfd 860 rcu_read_unlock();
1da177e4
LT
861 return dev;
862}
d1b19dff 863EXPORT_SYMBOL(dev_get_by_index);
1da177e4 864
5dbe7c17
NS
865/**
866 * netdev_get_name - get a netdevice name, knowing its ifindex.
867 * @net: network namespace
868 * @name: a pointer to the buffer where the name will be stored.
869 * @ifindex: the ifindex of the interface to get the name from.
870 *
871 * The use of raw_seqcount_begin() and cond_resched() before
872 * retrying is required as we want to give the writers a chance
873 * to complete when CONFIG_PREEMPT is not set.
874 */
875int netdev_get_name(struct net *net, char *name, int ifindex)
876{
877 struct net_device *dev;
878 unsigned int seq;
879
880retry:
881 seq = raw_seqcount_begin(&devnet_rename_seq);
882 rcu_read_lock();
883 dev = dev_get_by_index_rcu(net, ifindex);
884 if (!dev) {
885 rcu_read_unlock();
886 return -ENODEV;
887 }
888
889 strcpy(name, dev->name);
890 rcu_read_unlock();
891 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
892 cond_resched();
893 goto retry;
894 }
895
896 return 0;
897}
898
1da177e4 899/**
941666c2 900 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 901 * @net: the applicable net namespace
1da177e4
LT
902 * @type: media type of device
903 * @ha: hardware address
904 *
905 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
906 * is not found or a pointer to the device.
907 * The caller must hold RCU or RTNL.
941666c2 908 * The returned device has not had its ref count increased
1da177e4
LT
909 * and the caller must therefore be careful about locking
910 *
1da177e4
LT
911 */
912
941666c2
ED
913struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
914 const char *ha)
1da177e4
LT
915{
916 struct net_device *dev;
917
941666c2 918 for_each_netdev_rcu(net, dev)
1da177e4
LT
919 if (dev->type == type &&
920 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
921 return dev;
922
923 return NULL;
1da177e4 924}
941666c2 925EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 926
881d966b 927struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
928{
929 struct net_device *dev;
930
4e9cac2b 931 ASSERT_RTNL();
881d966b 932 for_each_netdev(net, dev)
4e9cac2b 933 if (dev->type == type)
7562f876
PE
934 return dev;
935
936 return NULL;
4e9cac2b 937}
4e9cac2b
PM
938EXPORT_SYMBOL(__dev_getfirstbyhwtype);
939
881d966b 940struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 941{
99fe3c39 942 struct net_device *dev, *ret = NULL;
4e9cac2b 943
99fe3c39
ED
944 rcu_read_lock();
945 for_each_netdev_rcu(net, dev)
946 if (dev->type == type) {
947 dev_hold(dev);
948 ret = dev;
949 break;
950 }
951 rcu_read_unlock();
952 return ret;
1da177e4 953}
1da177e4
LT
954EXPORT_SYMBOL(dev_getfirstbyhwtype);
955
956/**
6c555490 957 * __dev_get_by_flags - find any device with given flags
c4ea43c5 958 * @net: the applicable net namespace
1da177e4
LT
959 * @if_flags: IFF_* values
960 * @mask: bitmask of bits in if_flags to check
961 *
962 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 963 * is not found or a pointer to the device. Must be called inside
6c555490 964 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
965 */
966
6c555490
WC
967struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 unsigned short mask)
1da177e4 969{
7562f876 970 struct net_device *dev, *ret;
1da177e4 971
6c555490
WC
972 ASSERT_RTNL();
973
7562f876 974 ret = NULL;
6c555490 975 for_each_netdev(net, dev) {
1da177e4 976 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 977 ret = dev;
1da177e4
LT
978 break;
979 }
980 }
7562f876 981 return ret;
1da177e4 982}
6c555490 983EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
984
985/**
986 * dev_valid_name - check if name is okay for network device
987 * @name: name string
988 *
989 * Network device names need to be valid file names to
c7fa9d18
DM
990 * to allow sysfs to work. We also disallow any kind of
991 * whitespace.
1da177e4 992 */
95f050bf 993bool dev_valid_name(const char *name)
1da177e4 994{
c7fa9d18 995 if (*name == '\0')
95f050bf 996 return false;
b6fe17d6 997 if (strlen(name) >= IFNAMSIZ)
95f050bf 998 return false;
c7fa9d18 999 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1000 return false;
c7fa9d18
DM
1001
1002 while (*name) {
a4176a93 1003 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1004 return false;
c7fa9d18
DM
1005 name++;
1006 }
95f050bf 1007 return true;
1da177e4 1008}
d1b19dff 1009EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1010
1011/**
b267b179
EB
1012 * __dev_alloc_name - allocate a name for a device
1013 * @net: network namespace to allocate the device name in
1da177e4 1014 * @name: name format string
b267b179 1015 * @buf: scratch buffer and result name string
1da177e4
LT
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1024 */
1025
b267b179 1026static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1027{
1028 int i = 0;
1da177e4
LT
1029 const char *p;
1030 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1031 unsigned long *inuse;
1da177e4
LT
1032 struct net_device *d;
1033
1034 p = strnchr(name, IFNAMSIZ-1, '%');
1035 if (p) {
1036 /*
1037 * Verify the string as this thing may have come from
1038 * the user. There must be either one "%d" and no other "%"
1039 * characters.
1040 */
1041 if (p[1] != 'd' || strchr(p + 2, '%'))
1042 return -EINVAL;
1043
1044 /* Use one page as a bit array of possible slots */
cfcabdcc 1045 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1046 if (!inuse)
1047 return -ENOMEM;
1048
881d966b 1049 for_each_netdev(net, d) {
1da177e4
LT
1050 if (!sscanf(d->name, name, &i))
1051 continue;
1052 if (i < 0 || i >= max_netdevices)
1053 continue;
1054
1055 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1056 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1057 if (!strncmp(buf, d->name, IFNAMSIZ))
1058 set_bit(i, inuse);
1059 }
1060
1061 i = find_first_zero_bit(inuse, max_netdevices);
1062 free_page((unsigned long) inuse);
1063 }
1064
d9031024
OP
1065 if (buf != name)
1066 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1067 if (!__dev_get_by_name(net, buf))
1da177e4 1068 return i;
1da177e4
LT
1069
1070 /* It is possible to run out of possible slots
1071 * when the name is long and there isn't enough space left
1072 * for the digits, or if all bits are used.
1073 */
1074 return -ENFILE;
1075}
1076
b267b179
EB
1077/**
1078 * dev_alloc_name - allocate a name for a device
1079 * @dev: device
1080 * @name: name format string
1081 *
1082 * Passed a format string - eg "lt%d" it will try and find a suitable
1083 * id. It scans list of devices to build up a free map, then chooses
1084 * the first empty slot. The caller must hold the dev_base or rtnl lock
1085 * while allocating the name and adding the device in order to avoid
1086 * duplicates.
1087 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1088 * Returns the number of the unit assigned or a negative errno code.
1089 */
1090
1091int dev_alloc_name(struct net_device *dev, const char *name)
1092{
1093 char buf[IFNAMSIZ];
1094 struct net *net;
1095 int ret;
1096
c346dca1
YH
1097 BUG_ON(!dev_net(dev));
1098 net = dev_net(dev);
b267b179
EB
1099 ret = __dev_alloc_name(net, name, buf);
1100 if (ret >= 0)
1101 strlcpy(dev->name, buf, IFNAMSIZ);
1102 return ret;
1103}
d1b19dff 1104EXPORT_SYMBOL(dev_alloc_name);
b267b179 1105
828de4f6
G
1106static int dev_alloc_name_ns(struct net *net,
1107 struct net_device *dev,
1108 const char *name)
d9031024 1109{
828de4f6
G
1110 char buf[IFNAMSIZ];
1111 int ret;
8ce6cebc 1112
828de4f6
G
1113 ret = __dev_alloc_name(net, name, buf);
1114 if (ret >= 0)
1115 strlcpy(dev->name, buf, IFNAMSIZ);
1116 return ret;
1117}
1118
1119static int dev_get_valid_name(struct net *net,
1120 struct net_device *dev,
1121 const char *name)
1122{
1123 BUG_ON(!net);
8ce6cebc 1124
d9031024
OP
1125 if (!dev_valid_name(name))
1126 return -EINVAL;
1127
1c5cae81 1128 if (strchr(name, '%'))
828de4f6 1129 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1130 else if (__dev_get_by_name(net, name))
1131 return -EEXIST;
8ce6cebc
DL
1132 else if (dev->name != name)
1133 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1134
1135 return 0;
1136}
1da177e4
LT
1137
1138/**
1139 * dev_change_name - change name of a device
1140 * @dev: device
1141 * @newname: name (or format string) must be at least IFNAMSIZ
1142 *
1143 * Change name of a device, can pass format strings "eth%d".
1144 * for wildcarding.
1145 */
cf04a4c7 1146int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1147{
238fa362 1148 unsigned char old_assign_type;
fcc5a03a 1149 char oldname[IFNAMSIZ];
1da177e4 1150 int err = 0;
fcc5a03a 1151 int ret;
881d966b 1152 struct net *net;
1da177e4
LT
1153
1154 ASSERT_RTNL();
c346dca1 1155 BUG_ON(!dev_net(dev));
1da177e4 1156
c346dca1 1157 net = dev_net(dev);
1da177e4
LT
1158 if (dev->flags & IFF_UP)
1159 return -EBUSY;
1160
30e6c9fa 1161 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1162
1163 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1164 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1165 return 0;
c91f6df2 1166 }
c8d90dca 1167
fcc5a03a
HX
1168 memcpy(oldname, dev->name, IFNAMSIZ);
1169
828de4f6 1170 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1171 if (err < 0) {
30e6c9fa 1172 write_seqcount_end(&devnet_rename_seq);
d9031024 1173 return err;
c91f6df2 1174 }
1da177e4 1175
6fe82a39
VF
1176 if (oldname[0] && !strchr(oldname, '%'))
1177 netdev_info(dev, "renamed from %s\n", oldname);
1178
238fa362
TG
1179 old_assign_type = dev->name_assign_type;
1180 dev->name_assign_type = NET_NAME_RENAMED;
1181
fcc5a03a 1182rollback:
a1b3f594
EB
1183 ret = device_rename(&dev->dev, dev->name);
1184 if (ret) {
1185 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1186 dev->name_assign_type = old_assign_type;
30e6c9fa 1187 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1188 return ret;
dcc99773 1189 }
7f988eab 1190
30e6c9fa 1191 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1192
5bb025fa
VF
1193 netdev_adjacent_rename_links(dev, oldname);
1194
7f988eab 1195 write_lock_bh(&dev_base_lock);
372b2312 1196 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1197 write_unlock_bh(&dev_base_lock);
1198
1199 synchronize_rcu();
1200
1201 write_lock_bh(&dev_base_lock);
1202 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1203 write_unlock_bh(&dev_base_lock);
1204
056925ab 1205 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1206 ret = notifier_to_errno(ret);
1207
1208 if (ret) {
91e9c07b
ED
1209 /* err >= 0 after dev_alloc_name() or stores the first errno */
1210 if (err >= 0) {
fcc5a03a 1211 err = ret;
30e6c9fa 1212 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1213 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1214 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1215 dev->name_assign_type = old_assign_type;
1216 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1217 goto rollback;
91e9c07b 1218 } else {
7b6cd1ce 1219 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1220 dev->name, ret);
fcc5a03a
HX
1221 }
1222 }
1da177e4
LT
1223
1224 return err;
1225}
1226
0b815a1a
SH
1227/**
1228 * dev_set_alias - change ifalias of a device
1229 * @dev: device
1230 * @alias: name up to IFALIASZ
f0db275a 1231 * @len: limit of bytes to copy from info
0b815a1a
SH
1232 *
1233 * Set ifalias for a device,
1234 */
1235int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1236{
7364e445
AK
1237 char *new_ifalias;
1238
0b815a1a
SH
1239 ASSERT_RTNL();
1240
1241 if (len >= IFALIASZ)
1242 return -EINVAL;
1243
96ca4a2c 1244 if (!len) {
388dfc2d
SK
1245 kfree(dev->ifalias);
1246 dev->ifalias = NULL;
96ca4a2c
OH
1247 return 0;
1248 }
1249
7364e445
AK
1250 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1251 if (!new_ifalias)
0b815a1a 1252 return -ENOMEM;
7364e445 1253 dev->ifalias = new_ifalias;
0b815a1a
SH
1254
1255 strlcpy(dev->ifalias, alias, len+1);
1256 return len;
1257}
1258
1259
d8a33ac4 1260/**
3041a069 1261 * netdev_features_change - device changes features
d8a33ac4
SH
1262 * @dev: device to cause notification
1263 *
1264 * Called to indicate a device has changed features.
1265 */
1266void netdev_features_change(struct net_device *dev)
1267{
056925ab 1268 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1269}
1270EXPORT_SYMBOL(netdev_features_change);
1271
1da177e4
LT
1272/**
1273 * netdev_state_change - device changes state
1274 * @dev: device to cause notification
1275 *
1276 * Called to indicate a device has changed state. This function calls
1277 * the notifier chains for netdev_chain and sends a NEWLINK message
1278 * to the routing socket.
1279 */
1280void netdev_state_change(struct net_device *dev)
1281{
1282 if (dev->flags & IFF_UP) {
54951194
LP
1283 struct netdev_notifier_change_info change_info;
1284
1285 change_info.flags_changed = 0;
1286 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1287 &change_info.info);
7f294054 1288 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1289 }
1290}
d1b19dff 1291EXPORT_SYMBOL(netdev_state_change);
1da177e4 1292
ee89bab1 1293/**
722c9a0c 1294 * netdev_notify_peers - notify network peers about existence of @dev
1295 * @dev: network device
ee89bab1
AW
1296 *
1297 * Generate traffic such that interested network peers are aware of
1298 * @dev, such as by generating a gratuitous ARP. This may be used when
1299 * a device wants to inform the rest of the network about some sort of
1300 * reconfiguration such as a failover event or virtual machine
1301 * migration.
1302 */
1303void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1304{
ee89bab1
AW
1305 rtnl_lock();
1306 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1307 rtnl_unlock();
c1da4ac7 1308}
ee89bab1 1309EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1310
bd380811 1311static int __dev_open(struct net_device *dev)
1da177e4 1312{
d314774c 1313 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1314 int ret;
1da177e4 1315
e46b66bc
BH
1316 ASSERT_RTNL();
1317
1da177e4
LT
1318 if (!netif_device_present(dev))
1319 return -ENODEV;
1320
ca99ca14
NH
1321 /* Block netpoll from trying to do any rx path servicing.
1322 * If we don't do this there is a chance ndo_poll_controller
1323 * or ndo_poll may be running while we open the device
1324 */
66b5552f 1325 netpoll_poll_disable(dev);
ca99ca14 1326
3b8bcfd5
JB
1327 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1328 ret = notifier_to_errno(ret);
1329 if (ret)
1330 return ret;
1331
1da177e4 1332 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1333
d314774c
SH
1334 if (ops->ndo_validate_addr)
1335 ret = ops->ndo_validate_addr(dev);
bada339b 1336
d314774c
SH
1337 if (!ret && ops->ndo_open)
1338 ret = ops->ndo_open(dev);
1da177e4 1339
66b5552f 1340 netpoll_poll_enable(dev);
ca99ca14 1341
bada339b
JG
1342 if (ret)
1343 clear_bit(__LINK_STATE_START, &dev->state);
1344 else {
1da177e4 1345 dev->flags |= IFF_UP;
4417da66 1346 dev_set_rx_mode(dev);
1da177e4 1347 dev_activate(dev);
7bf23575 1348 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1349 }
bada339b 1350
1da177e4
LT
1351 return ret;
1352}
1353
1354/**
bd380811
PM
1355 * dev_open - prepare an interface for use.
1356 * @dev: device to open
1da177e4 1357 *
bd380811
PM
1358 * Takes a device from down to up state. The device's private open
1359 * function is invoked and then the multicast lists are loaded. Finally
1360 * the device is moved into the up state and a %NETDEV_UP message is
1361 * sent to the netdev notifier chain.
1362 *
1363 * Calling this function on an active interface is a nop. On a failure
1364 * a negative errno code is returned.
1da177e4 1365 */
bd380811
PM
1366int dev_open(struct net_device *dev)
1367{
1368 int ret;
1369
bd380811
PM
1370 if (dev->flags & IFF_UP)
1371 return 0;
1372
bd380811
PM
1373 ret = __dev_open(dev);
1374 if (ret < 0)
1375 return ret;
1376
7f294054 1377 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1378 call_netdevice_notifiers(NETDEV_UP, dev);
1379
1380 return ret;
1381}
1382EXPORT_SYMBOL(dev_open);
1383
44345724 1384static int __dev_close_many(struct list_head *head)
1da177e4 1385{
44345724 1386 struct net_device *dev;
e46b66bc 1387
bd380811 1388 ASSERT_RTNL();
9d5010db
DM
1389 might_sleep();
1390
5cde2829 1391 list_for_each_entry(dev, head, close_list) {
3f4df206 1392 /* Temporarily disable netpoll until the interface is down */
66b5552f 1393 netpoll_poll_disable(dev);
3f4df206 1394
44345724 1395 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1396
44345724 1397 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1398
44345724
OP
1399 /* Synchronize to scheduled poll. We cannot touch poll list, it
1400 * can be even on different cpu. So just clear netif_running().
1401 *
1402 * dev->stop() will invoke napi_disable() on all of it's
1403 * napi_struct instances on this device.
1404 */
4e857c58 1405 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1406 }
1da177e4 1407
44345724 1408 dev_deactivate_many(head);
d8b2a4d2 1409
5cde2829 1410 list_for_each_entry(dev, head, close_list) {
44345724 1411 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1412
44345724
OP
1413 /*
1414 * Call the device specific close. This cannot fail.
1415 * Only if device is UP
1416 *
1417 * We allow it to be called even after a DETACH hot-plug
1418 * event.
1419 */
1420 if (ops->ndo_stop)
1421 ops->ndo_stop(dev);
1422
44345724 1423 dev->flags &= ~IFF_UP;
66b5552f 1424 netpoll_poll_enable(dev);
44345724
OP
1425 }
1426
1427 return 0;
1428}
1429
1430static int __dev_close(struct net_device *dev)
1431{
f87e6f47 1432 int retval;
44345724
OP
1433 LIST_HEAD(single);
1434
5cde2829 1435 list_add(&dev->close_list, &single);
f87e6f47
LT
1436 retval = __dev_close_many(&single);
1437 list_del(&single);
ca99ca14 1438
f87e6f47 1439 return retval;
44345724
OP
1440}
1441
99c4a26a 1442int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1443{
1444 struct net_device *dev, *tmp;
1da177e4 1445
5cde2829
EB
1446 /* Remove the devices that don't need to be closed */
1447 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1448 if (!(dev->flags & IFF_UP))
5cde2829 1449 list_del_init(&dev->close_list);
44345724
OP
1450
1451 __dev_close_many(head);
1da177e4 1452
5cde2829 1453 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1454 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1455 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1456 if (unlink)
1457 list_del_init(&dev->close_list);
44345724 1458 }
bd380811
PM
1459
1460 return 0;
1461}
99c4a26a 1462EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1463
1464/**
1465 * dev_close - shutdown an interface.
1466 * @dev: device to shutdown
1467 *
1468 * This function moves an active device into down state. A
1469 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1470 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1471 * chain.
1472 */
1473int dev_close(struct net_device *dev)
1474{
e14a5993
ED
1475 if (dev->flags & IFF_UP) {
1476 LIST_HEAD(single);
1da177e4 1477
5cde2829 1478 list_add(&dev->close_list, &single);
99c4a26a 1479 dev_close_many(&single, true);
e14a5993
ED
1480 list_del(&single);
1481 }
da6e378b 1482 return 0;
1da177e4 1483}
d1b19dff 1484EXPORT_SYMBOL(dev_close);
1da177e4
LT
1485
1486
0187bdfb
BH
1487/**
1488 * dev_disable_lro - disable Large Receive Offload on a device
1489 * @dev: device
1490 *
1491 * Disable Large Receive Offload (LRO) on a net device. Must be
1492 * called under RTNL. This is needed if received packets may be
1493 * forwarded to another interface.
1494 */
1495void dev_disable_lro(struct net_device *dev)
1496{
fbe168ba
MK
1497 struct net_device *lower_dev;
1498 struct list_head *iter;
529d0489 1499
bc5787c6
MM
1500 dev->wanted_features &= ~NETIF_F_LRO;
1501 netdev_update_features(dev);
27660515 1502
22d5969f
MM
1503 if (unlikely(dev->features & NETIF_F_LRO))
1504 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1505
1506 netdev_for_each_lower_dev(dev, lower_dev, iter)
1507 dev_disable_lro(lower_dev);
0187bdfb
BH
1508}
1509EXPORT_SYMBOL(dev_disable_lro);
1510
351638e7
JP
1511static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1512 struct net_device *dev)
1513{
1514 struct netdev_notifier_info info;
1515
1516 netdev_notifier_info_init(&info, dev);
1517 return nb->notifier_call(nb, val, &info);
1518}
0187bdfb 1519
881d966b
EB
1520static int dev_boot_phase = 1;
1521
1da177e4 1522/**
722c9a0c 1523 * register_netdevice_notifier - register a network notifier block
1524 * @nb: notifier
1da177e4 1525 *
722c9a0c 1526 * Register a notifier to be called when network device events occur.
1527 * The notifier passed is linked into the kernel structures and must
1528 * not be reused until it has been unregistered. A negative errno code
1529 * is returned on a failure.
1da177e4 1530 *
722c9a0c 1531 * When registered all registration and up events are replayed
1532 * to the new notifier to allow device to have a race free
1533 * view of the network device list.
1da177e4
LT
1534 */
1535
1536int register_netdevice_notifier(struct notifier_block *nb)
1537{
1538 struct net_device *dev;
fcc5a03a 1539 struct net_device *last;
881d966b 1540 struct net *net;
1da177e4
LT
1541 int err;
1542
1543 rtnl_lock();
f07d5b94 1544 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1545 if (err)
1546 goto unlock;
881d966b
EB
1547 if (dev_boot_phase)
1548 goto unlock;
1549 for_each_net(net) {
1550 for_each_netdev(net, dev) {
351638e7 1551 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1552 err = notifier_to_errno(err);
1553 if (err)
1554 goto rollback;
1555
1556 if (!(dev->flags & IFF_UP))
1557 continue;
1da177e4 1558
351638e7 1559 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1560 }
1da177e4 1561 }
fcc5a03a
HX
1562
1563unlock:
1da177e4
LT
1564 rtnl_unlock();
1565 return err;
fcc5a03a
HX
1566
1567rollback:
1568 last = dev;
881d966b
EB
1569 for_each_net(net) {
1570 for_each_netdev(net, dev) {
1571 if (dev == last)
8f891489 1572 goto outroll;
fcc5a03a 1573
881d966b 1574 if (dev->flags & IFF_UP) {
351638e7
JP
1575 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1576 dev);
1577 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1578 }
351638e7 1579 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1580 }
fcc5a03a 1581 }
c67625a1 1582
8f891489 1583outroll:
c67625a1 1584 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1585 goto unlock;
1da177e4 1586}
d1b19dff 1587EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1588
1589/**
722c9a0c 1590 * unregister_netdevice_notifier - unregister a network notifier block
1591 * @nb: notifier
1da177e4 1592 *
722c9a0c 1593 * Unregister a notifier previously registered by
1594 * register_netdevice_notifier(). The notifier is unlinked into the
1595 * kernel structures and may then be reused. A negative errno code
1596 * is returned on a failure.
7d3d43da 1597 *
722c9a0c 1598 * After unregistering unregister and down device events are synthesized
1599 * for all devices on the device list to the removed notifier to remove
1600 * the need for special case cleanup code.
1da177e4
LT
1601 */
1602
1603int unregister_netdevice_notifier(struct notifier_block *nb)
1604{
7d3d43da
EB
1605 struct net_device *dev;
1606 struct net *net;
9f514950
HX
1607 int err;
1608
1609 rtnl_lock();
f07d5b94 1610 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1611 if (err)
1612 goto unlock;
1613
1614 for_each_net(net) {
1615 for_each_netdev(net, dev) {
1616 if (dev->flags & IFF_UP) {
351638e7
JP
1617 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1618 dev);
1619 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1620 }
351638e7 1621 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1622 }
1623 }
1624unlock:
9f514950
HX
1625 rtnl_unlock();
1626 return err;
1da177e4 1627}
d1b19dff 1628EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1629
351638e7
JP
1630/**
1631 * call_netdevice_notifiers_info - call all network notifier blocks
1632 * @val: value passed unmodified to notifier function
1633 * @dev: net_device pointer passed unmodified to notifier function
1634 * @info: notifier information data
1635 *
1636 * Call all network notifier blocks. Parameters and return value
1637 * are as for raw_notifier_call_chain().
1638 */
1639
1d143d9f 1640static int call_netdevice_notifiers_info(unsigned long val,
1641 struct net_device *dev,
1642 struct netdev_notifier_info *info)
351638e7
JP
1643{
1644 ASSERT_RTNL();
1645 netdev_notifier_info_init(info, dev);
1646 return raw_notifier_call_chain(&netdev_chain, val, info);
1647}
351638e7 1648
1da177e4
LT
1649/**
1650 * call_netdevice_notifiers - call all network notifier blocks
1651 * @val: value passed unmodified to notifier function
c4ea43c5 1652 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1653 *
1654 * Call all network notifier blocks. Parameters and return value
f07d5b94 1655 * are as for raw_notifier_call_chain().
1da177e4
LT
1656 */
1657
ad7379d4 1658int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1659{
351638e7
JP
1660 struct netdev_notifier_info info;
1661
1662 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1663}
edf947f1 1664EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1665
1cf51900 1666#ifdef CONFIG_NET_INGRESS
4577139b
DB
1667static struct static_key ingress_needed __read_mostly;
1668
1669void net_inc_ingress_queue(void)
1670{
1671 static_key_slow_inc(&ingress_needed);
1672}
1673EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1674
1675void net_dec_ingress_queue(void)
1676{
1677 static_key_slow_dec(&ingress_needed);
1678}
1679EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1680#endif
1681
1f211a1b
DB
1682#ifdef CONFIG_NET_EGRESS
1683static struct static_key egress_needed __read_mostly;
1684
1685void net_inc_egress_queue(void)
1686{
1687 static_key_slow_inc(&egress_needed);
1688}
1689EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1690
1691void net_dec_egress_queue(void)
1692{
1693 static_key_slow_dec(&egress_needed);
1694}
1695EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1696#endif
1697
c5905afb 1698static struct static_key netstamp_needed __read_mostly;
b90e5794 1699#ifdef HAVE_JUMP_LABEL
b90e5794 1700static atomic_t netstamp_needed_deferred;
13baa00a 1701static atomic_t netstamp_wanted;
5fa8bbda 1702static void netstamp_clear(struct work_struct *work)
1da177e4 1703{
b90e5794 1704 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1705 int wanted;
b90e5794 1706
13baa00a
ED
1707 wanted = atomic_add_return(deferred, &netstamp_wanted);
1708 if (wanted > 0)
1709 static_key_enable(&netstamp_needed);
1710 else
1711 static_key_disable(&netstamp_needed);
5fa8bbda
ED
1712}
1713static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1714#endif
5fa8bbda
ED
1715
1716void net_enable_timestamp(void)
1717{
13baa00a
ED
1718#ifdef HAVE_JUMP_LABEL
1719 int wanted;
1720
1721 while (1) {
1722 wanted = atomic_read(&netstamp_wanted);
1723 if (wanted <= 0)
1724 break;
1725 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1726 return;
1727 }
1728 atomic_inc(&netstamp_needed_deferred);
1729 schedule_work(&netstamp_work);
1730#else
c5905afb 1731 static_key_slow_inc(&netstamp_needed);
13baa00a 1732#endif
1da177e4 1733}
d1b19dff 1734EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1735
1736void net_disable_timestamp(void)
1737{
b90e5794 1738#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1739 int wanted;
1740
1741 while (1) {
1742 wanted = atomic_read(&netstamp_wanted);
1743 if (wanted <= 1)
1744 break;
1745 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1746 return;
1747 }
1748 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1749 schedule_work(&netstamp_work);
1750#else
c5905afb 1751 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1752#endif
1da177e4 1753}
d1b19dff 1754EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1755
3b098e2d 1756static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1757{
2456e855 1758 skb->tstamp = 0;
c5905afb 1759 if (static_key_false(&netstamp_needed))
a61bbcf2 1760 __net_timestamp(skb);
1da177e4
LT
1761}
1762
588f0330 1763#define net_timestamp_check(COND, SKB) \
c5905afb 1764 if (static_key_false(&netstamp_needed)) { \
2456e855 1765 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1766 __net_timestamp(SKB); \
1767 } \
3b098e2d 1768
f4b05d27 1769bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1770{
1771 unsigned int len;
1772
1773 if (!(dev->flags & IFF_UP))
1774 return false;
1775
1776 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1777 if (skb->len <= len)
1778 return true;
1779
1780 /* if TSO is enabled, we don't care about the length as the packet
1781 * could be forwarded without being segmented before
1782 */
1783 if (skb_is_gso(skb))
1784 return true;
1785
1786 return false;
1787}
1ee481fb 1788EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1789
a0265d28
HX
1790int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1791{
4e3264d2 1792 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1793
4e3264d2
MKL
1794 if (likely(!ret)) {
1795 skb->protocol = eth_type_trans(skb, dev);
1796 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1797 }
a0265d28 1798
4e3264d2 1799 return ret;
a0265d28
HX
1800}
1801EXPORT_SYMBOL_GPL(__dev_forward_skb);
1802
44540960
AB
1803/**
1804 * dev_forward_skb - loopback an skb to another netif
1805 *
1806 * @dev: destination network device
1807 * @skb: buffer to forward
1808 *
1809 * return values:
1810 * NET_RX_SUCCESS (no congestion)
6ec82562 1811 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1812 *
1813 * dev_forward_skb can be used for injecting an skb from the
1814 * start_xmit function of one device into the receive queue
1815 * of another device.
1816 *
1817 * The receiving device may be in another namespace, so
1818 * we have to clear all information in the skb that could
1819 * impact namespace isolation.
1820 */
1821int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1822{
a0265d28 1823 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1824}
1825EXPORT_SYMBOL_GPL(dev_forward_skb);
1826
71d9dec2
CG
1827static inline int deliver_skb(struct sk_buff *skb,
1828 struct packet_type *pt_prev,
1829 struct net_device *orig_dev)
1830{
1080e512
MT
1831 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1832 return -ENOMEM;
71d9dec2
CG
1833 atomic_inc(&skb->users);
1834 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1835}
1836
7866a621
SN
1837static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1838 struct packet_type **pt,
fbcb2170
JP
1839 struct net_device *orig_dev,
1840 __be16 type,
7866a621
SN
1841 struct list_head *ptype_list)
1842{
1843 struct packet_type *ptype, *pt_prev = *pt;
1844
1845 list_for_each_entry_rcu(ptype, ptype_list, list) {
1846 if (ptype->type != type)
1847 continue;
1848 if (pt_prev)
fbcb2170 1849 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1850 pt_prev = ptype;
1851 }
1852 *pt = pt_prev;
1853}
1854
c0de08d0
EL
1855static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1856{
a3d744e9 1857 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1858 return false;
1859
1860 if (ptype->id_match)
1861 return ptype->id_match(ptype, skb->sk);
1862 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1863 return true;
1864
1865 return false;
1866}
1867
1da177e4
LT
1868/*
1869 * Support routine. Sends outgoing frames to any network
1870 * taps currently in use.
1871 */
1872
74b20582 1873void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1874{
1875 struct packet_type *ptype;
71d9dec2
CG
1876 struct sk_buff *skb2 = NULL;
1877 struct packet_type *pt_prev = NULL;
7866a621 1878 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1879
1da177e4 1880 rcu_read_lock();
7866a621
SN
1881again:
1882 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1883 /* Never send packets back to the socket
1884 * they originated from - MvS (miquels@drinkel.ow.org)
1885 */
7866a621
SN
1886 if (skb_loop_sk(ptype, skb))
1887 continue;
71d9dec2 1888
7866a621
SN
1889 if (pt_prev) {
1890 deliver_skb(skb2, pt_prev, skb->dev);
1891 pt_prev = ptype;
1892 continue;
1893 }
1da177e4 1894
7866a621
SN
1895 /* need to clone skb, done only once */
1896 skb2 = skb_clone(skb, GFP_ATOMIC);
1897 if (!skb2)
1898 goto out_unlock;
70978182 1899
7866a621 1900 net_timestamp_set(skb2);
1da177e4 1901
7866a621
SN
1902 /* skb->nh should be correctly
1903 * set by sender, so that the second statement is
1904 * just protection against buggy protocols.
1905 */
1906 skb_reset_mac_header(skb2);
1907
1908 if (skb_network_header(skb2) < skb2->data ||
1909 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1910 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1911 ntohs(skb2->protocol),
1912 dev->name);
1913 skb_reset_network_header(skb2);
1da177e4 1914 }
7866a621
SN
1915
1916 skb2->transport_header = skb2->network_header;
1917 skb2->pkt_type = PACKET_OUTGOING;
1918 pt_prev = ptype;
1919 }
1920
1921 if (ptype_list == &ptype_all) {
1922 ptype_list = &dev->ptype_all;
1923 goto again;
1da177e4 1924 }
7866a621 1925out_unlock:
71d9dec2
CG
1926 if (pt_prev)
1927 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1928 rcu_read_unlock();
1929}
74b20582 1930EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1931
2c53040f
BH
1932/**
1933 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1934 * @dev: Network device
1935 * @txq: number of queues available
1936 *
1937 * If real_num_tx_queues is changed the tc mappings may no longer be
1938 * valid. To resolve this verify the tc mapping remains valid and if
1939 * not NULL the mapping. With no priorities mapping to this
1940 * offset/count pair it will no longer be used. In the worst case TC0
1941 * is invalid nothing can be done so disable priority mappings. If is
1942 * expected that drivers will fix this mapping if they can before
1943 * calling netif_set_real_num_tx_queues.
1944 */
bb134d22 1945static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1946{
1947 int i;
1948 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1949
1950 /* If TC0 is invalidated disable TC mapping */
1951 if (tc->offset + tc->count > txq) {
7b6cd1ce 1952 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1953 dev->num_tc = 0;
1954 return;
1955 }
1956
1957 /* Invalidated prio to tc mappings set to TC0 */
1958 for (i = 1; i < TC_BITMASK + 1; i++) {
1959 int q = netdev_get_prio_tc_map(dev, i);
1960
1961 tc = &dev->tc_to_txq[q];
1962 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1963 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1964 i, q);
4f57c087
JF
1965 netdev_set_prio_tc_map(dev, i, 0);
1966 }
1967 }
1968}
1969
8d059b0f
AD
1970int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1971{
1972 if (dev->num_tc) {
1973 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1974 int i;
1975
1976 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1977 if ((txq - tc->offset) < tc->count)
1978 return i;
1979 }
1980
1981 return -1;
1982 }
1983
1984 return 0;
1985}
1986
537c00de
AD
1987#ifdef CONFIG_XPS
1988static DEFINE_MUTEX(xps_map_mutex);
1989#define xmap_dereference(P) \
1990 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1991
6234f874
AD
1992static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1993 int tci, u16 index)
537c00de 1994{
10cdc3f3
AD
1995 struct xps_map *map = NULL;
1996 int pos;
537c00de 1997
10cdc3f3 1998 if (dev_maps)
6234f874
AD
1999 map = xmap_dereference(dev_maps->cpu_map[tci]);
2000 if (!map)
2001 return false;
537c00de 2002
6234f874
AD
2003 for (pos = map->len; pos--;) {
2004 if (map->queues[pos] != index)
2005 continue;
2006
2007 if (map->len > 1) {
2008 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2009 break;
537c00de 2010 }
6234f874
AD
2011
2012 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2013 kfree_rcu(map, rcu);
2014 return false;
537c00de
AD
2015 }
2016
6234f874 2017 return true;
10cdc3f3
AD
2018}
2019
6234f874
AD
2020static bool remove_xps_queue_cpu(struct net_device *dev,
2021 struct xps_dev_maps *dev_maps,
2022 int cpu, u16 offset, u16 count)
2023{
184c449f
AD
2024 int num_tc = dev->num_tc ? : 1;
2025 bool active = false;
2026 int tci;
6234f874 2027
184c449f
AD
2028 for (tci = cpu * num_tc; num_tc--; tci++) {
2029 int i, j;
2030
2031 for (i = count, j = offset; i--; j++) {
2032 if (!remove_xps_queue(dev_maps, cpu, j))
2033 break;
2034 }
2035
2036 active |= i < 0;
6234f874
AD
2037 }
2038
184c449f 2039 return active;
6234f874
AD
2040}
2041
2042static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2043 u16 count)
10cdc3f3
AD
2044{
2045 struct xps_dev_maps *dev_maps;
024e9679 2046 int cpu, i;
10cdc3f3
AD
2047 bool active = false;
2048
2049 mutex_lock(&xps_map_mutex);
2050 dev_maps = xmap_dereference(dev->xps_maps);
2051
2052 if (!dev_maps)
2053 goto out_no_maps;
2054
6234f874
AD
2055 for_each_possible_cpu(cpu)
2056 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2057 offset, count);
10cdc3f3
AD
2058
2059 if (!active) {
537c00de
AD
2060 RCU_INIT_POINTER(dev->xps_maps, NULL);
2061 kfree_rcu(dev_maps, rcu);
2062 }
2063
6234f874 2064 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2065 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2066 NUMA_NO_NODE);
2067
537c00de
AD
2068out_no_maps:
2069 mutex_unlock(&xps_map_mutex);
2070}
2071
6234f874
AD
2072static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2073{
2074 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2075}
2076
01c5f864
AD
2077static struct xps_map *expand_xps_map(struct xps_map *map,
2078 int cpu, u16 index)
2079{
2080 struct xps_map *new_map;
2081 int alloc_len = XPS_MIN_MAP_ALLOC;
2082 int i, pos;
2083
2084 for (pos = 0; map && pos < map->len; pos++) {
2085 if (map->queues[pos] != index)
2086 continue;
2087 return map;
2088 }
2089
2090 /* Need to add queue to this CPU's existing map */
2091 if (map) {
2092 if (pos < map->alloc_len)
2093 return map;
2094
2095 alloc_len = map->alloc_len * 2;
2096 }
2097
2098 /* Need to allocate new map to store queue on this CPU's map */
2099 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2100 cpu_to_node(cpu));
2101 if (!new_map)
2102 return NULL;
2103
2104 for (i = 0; i < pos; i++)
2105 new_map->queues[i] = map->queues[i];
2106 new_map->alloc_len = alloc_len;
2107 new_map->len = pos;
2108
2109 return new_map;
2110}
2111
3573540c
MT
2112int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2113 u16 index)
537c00de 2114{
01c5f864 2115 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2116 int i, cpu, tci, numa_node_id = -2;
2117 int maps_sz, num_tc = 1, tc = 0;
537c00de 2118 struct xps_map *map, *new_map;
01c5f864 2119 bool active = false;
537c00de 2120
184c449f
AD
2121 if (dev->num_tc) {
2122 num_tc = dev->num_tc;
2123 tc = netdev_txq_to_tc(dev, index);
2124 if (tc < 0)
2125 return -EINVAL;
2126 }
2127
2128 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2129 if (maps_sz < L1_CACHE_BYTES)
2130 maps_sz = L1_CACHE_BYTES;
2131
537c00de
AD
2132 mutex_lock(&xps_map_mutex);
2133
2134 dev_maps = xmap_dereference(dev->xps_maps);
2135
01c5f864 2136 /* allocate memory for queue storage */
184c449f 2137 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2138 if (!new_dev_maps)
2139 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2140 if (!new_dev_maps) {
2141 mutex_unlock(&xps_map_mutex);
01c5f864 2142 return -ENOMEM;
2bb60cb9 2143 }
01c5f864 2144
184c449f
AD
2145 tci = cpu * num_tc + tc;
2146 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2147 NULL;
2148
2149 map = expand_xps_map(map, cpu, index);
2150 if (!map)
2151 goto error;
2152
184c449f 2153 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2154 }
2155
2156 if (!new_dev_maps)
2157 goto out_no_new_maps;
2158
537c00de 2159 for_each_possible_cpu(cpu) {
184c449f
AD
2160 /* copy maps belonging to foreign traffic classes */
2161 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2162 /* fill in the new device map from the old device map */
2163 map = xmap_dereference(dev_maps->cpu_map[tci]);
2164 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2165 }
2166
2167 /* We need to explicitly update tci as prevous loop
2168 * could break out early if dev_maps is NULL.
2169 */
2170 tci = cpu * num_tc + tc;
2171
01c5f864
AD
2172 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2173 /* add queue to CPU maps */
2174 int pos = 0;
2175
184c449f 2176 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2177 while ((pos < map->len) && (map->queues[pos] != index))
2178 pos++;
2179
2180 if (pos == map->len)
2181 map->queues[map->len++] = index;
537c00de 2182#ifdef CONFIG_NUMA
537c00de
AD
2183 if (numa_node_id == -2)
2184 numa_node_id = cpu_to_node(cpu);
2185 else if (numa_node_id != cpu_to_node(cpu))
2186 numa_node_id = -1;
537c00de 2187#endif
01c5f864
AD
2188 } else if (dev_maps) {
2189 /* fill in the new device map from the old device map */
184c449f
AD
2190 map = xmap_dereference(dev_maps->cpu_map[tci]);
2191 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2192 }
01c5f864 2193
184c449f
AD
2194 /* copy maps belonging to foreign traffic classes */
2195 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2196 /* fill in the new device map from the old device map */
2197 map = xmap_dereference(dev_maps->cpu_map[tci]);
2198 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2199 }
537c00de
AD
2200 }
2201
01c5f864
AD
2202 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2203
537c00de 2204 /* Cleanup old maps */
184c449f
AD
2205 if (!dev_maps)
2206 goto out_no_old_maps;
2207
2208 for_each_possible_cpu(cpu) {
2209 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2210 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2211 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2212 if (map && map != new_map)
2213 kfree_rcu(map, rcu);
2214 }
537c00de
AD
2215 }
2216
184c449f
AD
2217 kfree_rcu(dev_maps, rcu);
2218
2219out_no_old_maps:
01c5f864
AD
2220 dev_maps = new_dev_maps;
2221 active = true;
537c00de 2222
01c5f864
AD
2223out_no_new_maps:
2224 /* update Tx queue numa node */
537c00de
AD
2225 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2226 (numa_node_id >= 0) ? numa_node_id :
2227 NUMA_NO_NODE);
2228
01c5f864
AD
2229 if (!dev_maps)
2230 goto out_no_maps;
2231
2232 /* removes queue from unused CPUs */
2233 for_each_possible_cpu(cpu) {
184c449f
AD
2234 for (i = tc, tci = cpu * num_tc; i--; tci++)
2235 active |= remove_xps_queue(dev_maps, tci, index);
2236 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2237 active |= remove_xps_queue(dev_maps, tci, index);
2238 for (i = num_tc - tc, tci++; --i; tci++)
2239 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2240 }
2241
2242 /* free map if not active */
2243 if (!active) {
2244 RCU_INIT_POINTER(dev->xps_maps, NULL);
2245 kfree_rcu(dev_maps, rcu);
2246 }
2247
2248out_no_maps:
537c00de
AD
2249 mutex_unlock(&xps_map_mutex);
2250
2251 return 0;
2252error:
01c5f864
AD
2253 /* remove any maps that we added */
2254 for_each_possible_cpu(cpu) {
184c449f
AD
2255 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2256 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2257 map = dev_maps ?
2258 xmap_dereference(dev_maps->cpu_map[tci]) :
2259 NULL;
2260 if (new_map && new_map != map)
2261 kfree(new_map);
2262 }
01c5f864
AD
2263 }
2264
537c00de
AD
2265 mutex_unlock(&xps_map_mutex);
2266
537c00de
AD
2267 kfree(new_dev_maps);
2268 return -ENOMEM;
2269}
2270EXPORT_SYMBOL(netif_set_xps_queue);
2271
2272#endif
9cf1f6a8
AD
2273void netdev_reset_tc(struct net_device *dev)
2274{
6234f874
AD
2275#ifdef CONFIG_XPS
2276 netif_reset_xps_queues_gt(dev, 0);
2277#endif
9cf1f6a8
AD
2278 dev->num_tc = 0;
2279 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2280 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2281}
2282EXPORT_SYMBOL(netdev_reset_tc);
2283
2284int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2285{
2286 if (tc >= dev->num_tc)
2287 return -EINVAL;
2288
6234f874
AD
2289#ifdef CONFIG_XPS
2290 netif_reset_xps_queues(dev, offset, count);
2291#endif
9cf1f6a8
AD
2292 dev->tc_to_txq[tc].count = count;
2293 dev->tc_to_txq[tc].offset = offset;
2294 return 0;
2295}
2296EXPORT_SYMBOL(netdev_set_tc_queue);
2297
2298int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2299{
2300 if (num_tc > TC_MAX_QUEUE)
2301 return -EINVAL;
2302
6234f874
AD
2303#ifdef CONFIG_XPS
2304 netif_reset_xps_queues_gt(dev, 0);
2305#endif
9cf1f6a8
AD
2306 dev->num_tc = num_tc;
2307 return 0;
2308}
2309EXPORT_SYMBOL(netdev_set_num_tc);
2310
f0796d5c
JF
2311/*
2312 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2313 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2314 */
e6484930 2315int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2316{
1d24eb48
TH
2317 int rc;
2318
e6484930
TH
2319 if (txq < 1 || txq > dev->num_tx_queues)
2320 return -EINVAL;
f0796d5c 2321
5c56580b
BH
2322 if (dev->reg_state == NETREG_REGISTERED ||
2323 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2324 ASSERT_RTNL();
2325
1d24eb48
TH
2326 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2327 txq);
bf264145
TH
2328 if (rc)
2329 return rc;
2330
4f57c087
JF
2331 if (dev->num_tc)
2332 netif_setup_tc(dev, txq);
2333
024e9679 2334 if (txq < dev->real_num_tx_queues) {
e6484930 2335 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2336#ifdef CONFIG_XPS
2337 netif_reset_xps_queues_gt(dev, txq);
2338#endif
2339 }
f0796d5c 2340 }
e6484930
TH
2341
2342 dev->real_num_tx_queues = txq;
2343 return 0;
f0796d5c
JF
2344}
2345EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2346
a953be53 2347#ifdef CONFIG_SYSFS
62fe0b40
BH
2348/**
2349 * netif_set_real_num_rx_queues - set actual number of RX queues used
2350 * @dev: Network device
2351 * @rxq: Actual number of RX queues
2352 *
2353 * This must be called either with the rtnl_lock held or before
2354 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2355 * negative error code. If called before registration, it always
2356 * succeeds.
62fe0b40
BH
2357 */
2358int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2359{
2360 int rc;
2361
bd25fa7b
TH
2362 if (rxq < 1 || rxq > dev->num_rx_queues)
2363 return -EINVAL;
2364
62fe0b40
BH
2365 if (dev->reg_state == NETREG_REGISTERED) {
2366 ASSERT_RTNL();
2367
62fe0b40
BH
2368 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2369 rxq);
2370 if (rc)
2371 return rc;
62fe0b40
BH
2372 }
2373
2374 dev->real_num_rx_queues = rxq;
2375 return 0;
2376}
2377EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2378#endif
2379
2c53040f
BH
2380/**
2381 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2382 *
2383 * This routine should set an upper limit on the number of RSS queues
2384 * used by default by multiqueue devices.
2385 */
a55b138b 2386int netif_get_num_default_rss_queues(void)
16917b87 2387{
40e4e713
HS
2388 return is_kdump_kernel() ?
2389 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2390}
2391EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2392
3bcb846c 2393static void __netif_reschedule(struct Qdisc *q)
56079431 2394{
def82a1d
JP
2395 struct softnet_data *sd;
2396 unsigned long flags;
56079431 2397
def82a1d 2398 local_irq_save(flags);
903ceff7 2399 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2400 q->next_sched = NULL;
2401 *sd->output_queue_tailp = q;
2402 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2403 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2404 local_irq_restore(flags);
2405}
2406
2407void __netif_schedule(struct Qdisc *q)
2408{
2409 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2410 __netif_reschedule(q);
56079431
DV
2411}
2412EXPORT_SYMBOL(__netif_schedule);
2413
e6247027
ED
2414struct dev_kfree_skb_cb {
2415 enum skb_free_reason reason;
2416};
2417
2418static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2419{
e6247027
ED
2420 return (struct dev_kfree_skb_cb *)skb->cb;
2421}
2422
46e5da40
JF
2423void netif_schedule_queue(struct netdev_queue *txq)
2424{
2425 rcu_read_lock();
2426 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2427 struct Qdisc *q = rcu_dereference(txq->qdisc);
2428
2429 __netif_schedule(q);
2430 }
2431 rcu_read_unlock();
2432}
2433EXPORT_SYMBOL(netif_schedule_queue);
2434
46e5da40
JF
2435void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2436{
2437 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2438 struct Qdisc *q;
2439
2440 rcu_read_lock();
2441 q = rcu_dereference(dev_queue->qdisc);
2442 __netif_schedule(q);
2443 rcu_read_unlock();
2444 }
2445}
2446EXPORT_SYMBOL(netif_tx_wake_queue);
2447
e6247027 2448void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2449{
e6247027 2450 unsigned long flags;
56079431 2451
e6247027
ED
2452 if (likely(atomic_read(&skb->users) == 1)) {
2453 smp_rmb();
2454 atomic_set(&skb->users, 0);
2455 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2456 return;
bea3348e 2457 }
e6247027
ED
2458 get_kfree_skb_cb(skb)->reason = reason;
2459 local_irq_save(flags);
2460 skb->next = __this_cpu_read(softnet_data.completion_queue);
2461 __this_cpu_write(softnet_data.completion_queue, skb);
2462 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2463 local_irq_restore(flags);
56079431 2464}
e6247027 2465EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2466
e6247027 2467void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2468{
2469 if (in_irq() || irqs_disabled())
e6247027 2470 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2471 else
2472 dev_kfree_skb(skb);
2473}
e6247027 2474EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2475
2476
bea3348e
SH
2477/**
2478 * netif_device_detach - mark device as removed
2479 * @dev: network device
2480 *
2481 * Mark device as removed from system and therefore no longer available.
2482 */
56079431
DV
2483void netif_device_detach(struct net_device *dev)
2484{
2485 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2486 netif_running(dev)) {
d543103a 2487 netif_tx_stop_all_queues(dev);
56079431
DV
2488 }
2489}
2490EXPORT_SYMBOL(netif_device_detach);
2491
bea3348e
SH
2492/**
2493 * netif_device_attach - mark device as attached
2494 * @dev: network device
2495 *
2496 * Mark device as attached from system and restart if needed.
2497 */
56079431
DV
2498void netif_device_attach(struct net_device *dev)
2499{
2500 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2501 netif_running(dev)) {
d543103a 2502 netif_tx_wake_all_queues(dev);
4ec93edb 2503 __netdev_watchdog_up(dev);
56079431
DV
2504 }
2505}
2506EXPORT_SYMBOL(netif_device_attach);
2507
5605c762
JP
2508/*
2509 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2510 * to be used as a distribution range.
2511 */
2512u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2513 unsigned int num_tx_queues)
2514{
2515 u32 hash;
2516 u16 qoffset = 0;
2517 u16 qcount = num_tx_queues;
2518
2519 if (skb_rx_queue_recorded(skb)) {
2520 hash = skb_get_rx_queue(skb);
2521 while (unlikely(hash >= num_tx_queues))
2522 hash -= num_tx_queues;
2523 return hash;
2524 }
2525
2526 if (dev->num_tc) {
2527 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
f4563a75 2528
5605c762
JP
2529 qoffset = dev->tc_to_txq[tc].offset;
2530 qcount = dev->tc_to_txq[tc].count;
2531 }
2532
2533 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2534}
2535EXPORT_SYMBOL(__skb_tx_hash);
2536
36c92474
BH
2537static void skb_warn_bad_offload(const struct sk_buff *skb)
2538{
84d15ae5 2539 static const netdev_features_t null_features;
36c92474 2540 struct net_device *dev = skb->dev;
88ad4175 2541 const char *name = "";
36c92474 2542
c846ad9b
BG
2543 if (!net_ratelimit())
2544 return;
2545
88ad4175
BM
2546 if (dev) {
2547 if (dev->dev.parent)
2548 name = dev_driver_string(dev->dev.parent);
2549 else
2550 name = netdev_name(dev);
2551 }
36c92474
BH
2552 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2553 "gso_type=%d ip_summed=%d\n",
88ad4175 2554 name, dev ? &dev->features : &null_features,
65e9d2fa 2555 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2556 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2557 skb_shinfo(skb)->gso_type, skb->ip_summed);
2558}
2559
1da177e4
LT
2560/*
2561 * Invalidate hardware checksum when packet is to be mangled, and
2562 * complete checksum manually on outgoing path.
2563 */
84fa7933 2564int skb_checksum_help(struct sk_buff *skb)
1da177e4 2565{
d3bc23e7 2566 __wsum csum;
663ead3b 2567 int ret = 0, offset;
1da177e4 2568
84fa7933 2569 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2570 goto out_set_summed;
2571
2572 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2573 skb_warn_bad_offload(skb);
2574 return -EINVAL;
1da177e4
LT
2575 }
2576
cef401de
ED
2577 /* Before computing a checksum, we should make sure no frag could
2578 * be modified by an external entity : checksum could be wrong.
2579 */
2580 if (skb_has_shared_frag(skb)) {
2581 ret = __skb_linearize(skb);
2582 if (ret)
2583 goto out;
2584 }
2585
55508d60 2586 offset = skb_checksum_start_offset(skb);
a030847e
HX
2587 BUG_ON(offset >= skb_headlen(skb));
2588 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2589
2590 offset += skb->csum_offset;
2591 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2592
2593 if (skb_cloned(skb) &&
2594 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2595 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2596 if (ret)
2597 goto out;
2598 }
2599
4f2e4ad5 2600 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2601out_set_summed:
1da177e4 2602 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2603out:
1da177e4
LT
2604 return ret;
2605}
d1b19dff 2606EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2607
53d6471c 2608__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2609{
252e3346 2610 __be16 type = skb->protocol;
f6a78bfc 2611
19acc327
PS
2612 /* Tunnel gso handlers can set protocol to ethernet. */
2613 if (type == htons(ETH_P_TEB)) {
2614 struct ethhdr *eth;
2615
2616 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2617 return 0;
2618
2619 eth = (struct ethhdr *)skb_mac_header(skb);
2620 type = eth->h_proto;
2621 }
2622
d4bcef3f 2623 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2624}
2625
2626/**
2627 * skb_mac_gso_segment - mac layer segmentation handler.
2628 * @skb: buffer to segment
2629 * @features: features for the output path (see dev->features)
2630 */
2631struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2632 netdev_features_t features)
2633{
2634 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2635 struct packet_offload *ptype;
53d6471c
VY
2636 int vlan_depth = skb->mac_len;
2637 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2638
2639 if (unlikely(!type))
2640 return ERR_PTR(-EINVAL);
2641
53d6471c 2642 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2643
2644 rcu_read_lock();
22061d80 2645 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2646 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2647 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2648 break;
2649 }
2650 }
2651 rcu_read_unlock();
2652
98e399f8 2653 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2654
f6a78bfc
HX
2655 return segs;
2656}
05e8ef4a
PS
2657EXPORT_SYMBOL(skb_mac_gso_segment);
2658
2659
2660/* openvswitch calls this on rx path, so we need a different check.
2661 */
2662static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2663{
2664 if (tx_path)
6e7bc478
ED
2665 return skb->ip_summed != CHECKSUM_PARTIAL &&
2666 skb->ip_summed != CHECKSUM_NONE;
2667
2668 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2669}
2670
2671/**
2672 * __skb_gso_segment - Perform segmentation on skb.
2673 * @skb: buffer to segment
2674 * @features: features for the output path (see dev->features)
2675 * @tx_path: whether it is called in TX path
2676 *
2677 * This function segments the given skb and returns a list of segments.
2678 *
2679 * It may return NULL if the skb requires no segmentation. This is
2680 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2681 *
2682 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2683 */
2684struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2685 netdev_features_t features, bool tx_path)
2686{
b2504a5d
ED
2687 struct sk_buff *segs;
2688
05e8ef4a
PS
2689 if (unlikely(skb_needs_check(skb, tx_path))) {
2690 int err;
2691
b2504a5d 2692 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2693 err = skb_cow_head(skb, 0);
2694 if (err < 0)
05e8ef4a
PS
2695 return ERR_PTR(err);
2696 }
2697
802ab55a
AD
2698 /* Only report GSO partial support if it will enable us to
2699 * support segmentation on this frame without needing additional
2700 * work.
2701 */
2702 if (features & NETIF_F_GSO_PARTIAL) {
2703 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2704 struct net_device *dev = skb->dev;
2705
2706 partial_features |= dev->features & dev->gso_partial_features;
2707 if (!skb_gso_ok(skb, features | partial_features))
2708 features &= ~NETIF_F_GSO_PARTIAL;
2709 }
2710
9207f9d4
KK
2711 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2712 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2713
68c33163 2714 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2715 SKB_GSO_CB(skb)->encap_level = 0;
2716
05e8ef4a
PS
2717 skb_reset_mac_header(skb);
2718 skb_reset_mac_len(skb);
2719
b2504a5d
ED
2720 segs = skb_mac_gso_segment(skb, features);
2721
2722 if (unlikely(skb_needs_check(skb, tx_path)))
2723 skb_warn_bad_offload(skb);
2724
2725 return segs;
05e8ef4a 2726}
12b0004d 2727EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2728
fb286bb2
HX
2729/* Take action when hardware reception checksum errors are detected. */
2730#ifdef CONFIG_BUG
2731void netdev_rx_csum_fault(struct net_device *dev)
2732{
2733 if (net_ratelimit()) {
7b6cd1ce 2734 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2735 dump_stack();
2736 }
2737}
2738EXPORT_SYMBOL(netdev_rx_csum_fault);
2739#endif
2740
1da177e4
LT
2741/* Actually, we should eliminate this check as soon as we know, that:
2742 * 1. IOMMU is present and allows to map all the memory.
2743 * 2. No high memory really exists on this machine.
2744 */
2745
c1e756bf 2746static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2747{
3d3a8533 2748#ifdef CONFIG_HIGHMEM
1da177e4 2749 int i;
f4563a75 2750
5acbbd42 2751 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2752 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2753 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 2754
ea2ab693 2755 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2756 return 1;
ea2ab693 2757 }
5acbbd42 2758 }
1da177e4 2759
5acbbd42
FT
2760 if (PCI_DMA_BUS_IS_PHYS) {
2761 struct device *pdev = dev->dev.parent;
1da177e4 2762
9092c658
ED
2763 if (!pdev)
2764 return 0;
5acbbd42 2765 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2766 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2767 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
f4563a75 2768
5acbbd42
FT
2769 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2770 return 1;
2771 }
2772 }
3d3a8533 2773#endif
1da177e4
LT
2774 return 0;
2775}
1da177e4 2776
3b392ddb
SH
2777/* If MPLS offload request, verify we are testing hardware MPLS features
2778 * instead of standard features for the netdev.
2779 */
d0edc7bf 2780#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2781static netdev_features_t net_mpls_features(struct sk_buff *skb,
2782 netdev_features_t features,
2783 __be16 type)
2784{
25cd9ba0 2785 if (eth_p_mpls(type))
3b392ddb
SH
2786 features &= skb->dev->mpls_features;
2787
2788 return features;
2789}
2790#else
2791static netdev_features_t net_mpls_features(struct sk_buff *skb,
2792 netdev_features_t features,
2793 __be16 type)
2794{
2795 return features;
2796}
2797#endif
2798
c8f44aff 2799static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2800 netdev_features_t features)
f01a5236 2801{
53d6471c 2802 int tmp;
3b392ddb
SH
2803 __be16 type;
2804
2805 type = skb_network_protocol(skb, &tmp);
2806 features = net_mpls_features(skb, features, type);
53d6471c 2807
c0d680e5 2808 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2809 !can_checksum_protocol(features, type)) {
996e8021 2810 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2811 }
7be2c82c
ED
2812 if (illegal_highdma(skb->dev, skb))
2813 features &= ~NETIF_F_SG;
f01a5236
JG
2814
2815 return features;
2816}
2817
e38f3025
TM
2818netdev_features_t passthru_features_check(struct sk_buff *skb,
2819 struct net_device *dev,
2820 netdev_features_t features)
2821{
2822 return features;
2823}
2824EXPORT_SYMBOL(passthru_features_check);
2825
8cb65d00
TM
2826static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2827 struct net_device *dev,
2828 netdev_features_t features)
2829{
2830 return vlan_features_check(skb, features);
2831}
2832
cbc53e08
AD
2833static netdev_features_t gso_features_check(const struct sk_buff *skb,
2834 struct net_device *dev,
2835 netdev_features_t features)
2836{
2837 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2838
2839 if (gso_segs > dev->gso_max_segs)
2840 return features & ~NETIF_F_GSO_MASK;
2841
802ab55a
AD
2842 /* Support for GSO partial features requires software
2843 * intervention before we can actually process the packets
2844 * so we need to strip support for any partial features now
2845 * and we can pull them back in after we have partially
2846 * segmented the frame.
2847 */
2848 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2849 features &= ~dev->gso_partial_features;
2850
2851 /* Make sure to clear the IPv4 ID mangling feature if the
2852 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2853 */
2854 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2855 struct iphdr *iph = skb->encapsulation ?
2856 inner_ip_hdr(skb) : ip_hdr(skb);
2857
2858 if (!(iph->frag_off & htons(IP_DF)))
2859 features &= ~NETIF_F_TSO_MANGLEID;
2860 }
2861
2862 return features;
2863}
2864
c1e756bf 2865netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2866{
5f35227e 2867 struct net_device *dev = skb->dev;
fcbeb976 2868 netdev_features_t features = dev->features;
58e998c6 2869
cbc53e08
AD
2870 if (skb_is_gso(skb))
2871 features = gso_features_check(skb, dev, features);
30b678d8 2872
5f35227e
JG
2873 /* If encapsulation offload request, verify we are testing
2874 * hardware encapsulation features instead of standard
2875 * features for the netdev
2876 */
2877 if (skb->encapsulation)
2878 features &= dev->hw_enc_features;
2879
f5a7fb88
TM
2880 if (skb_vlan_tagged(skb))
2881 features = netdev_intersect_features(features,
2882 dev->vlan_features |
2883 NETIF_F_HW_VLAN_CTAG_TX |
2884 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2885
5f35227e
JG
2886 if (dev->netdev_ops->ndo_features_check)
2887 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2888 features);
8cb65d00
TM
2889 else
2890 features &= dflt_features_check(skb, dev, features);
5f35227e 2891
c1e756bf 2892 return harmonize_features(skb, features);
58e998c6 2893}
c1e756bf 2894EXPORT_SYMBOL(netif_skb_features);
58e998c6 2895
2ea25513 2896static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2897 struct netdev_queue *txq, bool more)
f6a78bfc 2898{
2ea25513
DM
2899 unsigned int len;
2900 int rc;
00829823 2901
7866a621 2902 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2903 dev_queue_xmit_nit(skb, dev);
fc741216 2904
2ea25513
DM
2905 len = skb->len;
2906 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2907 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2908 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2909
2ea25513
DM
2910 return rc;
2911}
7b9c6090 2912
8dcda22a
DM
2913struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2914 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2915{
2916 struct sk_buff *skb = first;
2917 int rc = NETDEV_TX_OK;
7b9c6090 2918
7f2e870f
DM
2919 while (skb) {
2920 struct sk_buff *next = skb->next;
fc70fb64 2921
7f2e870f 2922 skb->next = NULL;
95f6b3dd 2923 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2924 if (unlikely(!dev_xmit_complete(rc))) {
2925 skb->next = next;
2926 goto out;
2927 }
6afff0ca 2928
7f2e870f
DM
2929 skb = next;
2930 if (netif_xmit_stopped(txq) && skb) {
2931 rc = NETDEV_TX_BUSY;
2932 break;
9ccb8975 2933 }
7f2e870f 2934 }
9ccb8975 2935
7f2e870f
DM
2936out:
2937 *ret = rc;
2938 return skb;
2939}
b40863c6 2940
1ff0dc94
ED
2941static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2942 netdev_features_t features)
f6a78bfc 2943{
df8a39de 2944 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2945 !vlan_hw_offload_capable(features, skb->vlan_proto))
2946 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2947 return skb;
2948}
f6a78bfc 2949
55a93b3e 2950static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2951{
2952 netdev_features_t features;
f6a78bfc 2953
eae3f88e
DM
2954 features = netif_skb_features(skb);
2955 skb = validate_xmit_vlan(skb, features);
2956 if (unlikely(!skb))
2957 goto out_null;
7b9c6090 2958
8b86a61d 2959 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2960 struct sk_buff *segs;
2961
2962 segs = skb_gso_segment(skb, features);
cecda693 2963 if (IS_ERR(segs)) {
af6dabc9 2964 goto out_kfree_skb;
cecda693
JW
2965 } else if (segs) {
2966 consume_skb(skb);
2967 skb = segs;
f6a78bfc 2968 }
eae3f88e
DM
2969 } else {
2970 if (skb_needs_linearize(skb, features) &&
2971 __skb_linearize(skb))
2972 goto out_kfree_skb;
4ec93edb 2973
eae3f88e
DM
2974 /* If packet is not checksummed and device does not
2975 * support checksumming for this protocol, complete
2976 * checksumming here.
2977 */
2978 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2979 if (skb->encapsulation)
2980 skb_set_inner_transport_header(skb,
2981 skb_checksum_start_offset(skb));
2982 else
2983 skb_set_transport_header(skb,
2984 skb_checksum_start_offset(skb));
a188222b 2985 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2986 skb_checksum_help(skb))
2987 goto out_kfree_skb;
7b9c6090 2988 }
0c772159 2989 }
7b9c6090 2990
eae3f88e 2991 return skb;
fc70fb64 2992
f6a78bfc
HX
2993out_kfree_skb:
2994 kfree_skb(skb);
eae3f88e 2995out_null:
d21fd63e 2996 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
2997 return NULL;
2998}
6afff0ca 2999
55a93b3e
ED
3000struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3001{
3002 struct sk_buff *next, *head = NULL, *tail;
3003
bec3cfdc 3004 for (; skb != NULL; skb = next) {
55a93b3e
ED
3005 next = skb->next;
3006 skb->next = NULL;
bec3cfdc
ED
3007
3008 /* in case skb wont be segmented, point to itself */
3009 skb->prev = skb;
3010
55a93b3e 3011 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3012 if (!skb)
3013 continue;
55a93b3e 3014
bec3cfdc
ED
3015 if (!head)
3016 head = skb;
3017 else
3018 tail->next = skb;
3019 /* If skb was segmented, skb->prev points to
3020 * the last segment. If not, it still contains skb.
3021 */
3022 tail = skb->prev;
55a93b3e
ED
3023 }
3024 return head;
f6a78bfc 3025}
104ba78c 3026EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3027
1def9238
ED
3028static void qdisc_pkt_len_init(struct sk_buff *skb)
3029{
3030 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3031
3032 qdisc_skb_cb(skb)->pkt_len = skb->len;
3033
3034 /* To get more precise estimation of bytes sent on wire,
3035 * we add to pkt_len the headers size of all segments
3036 */
3037 if (shinfo->gso_size) {
757b8b1d 3038 unsigned int hdr_len;
15e5a030 3039 u16 gso_segs = shinfo->gso_segs;
1def9238 3040
757b8b1d
ED
3041 /* mac layer + network layer */
3042 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3043
3044 /* + transport layer */
1def9238
ED
3045 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3046 hdr_len += tcp_hdrlen(skb);
3047 else
3048 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3049
3050 if (shinfo->gso_type & SKB_GSO_DODGY)
3051 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3052 shinfo->gso_size);
3053
3054 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3055 }
3056}
3057
bbd8a0d3
KK
3058static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3059 struct net_device *dev,
3060 struct netdev_queue *txq)
3061{
3062 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3063 struct sk_buff *to_free = NULL;
a2da570d 3064 bool contended;
bbd8a0d3
KK
3065 int rc;
3066
a2da570d 3067 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3068 /*
3069 * Heuristic to force contended enqueues to serialize on a
3070 * separate lock before trying to get qdisc main lock.
f9eb8aea 3071 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3072 * often and dequeue packets faster.
79640a4c 3073 */
a2da570d 3074 contended = qdisc_is_running(q);
79640a4c
ED
3075 if (unlikely(contended))
3076 spin_lock(&q->busylock);
3077
bbd8a0d3
KK
3078 spin_lock(root_lock);
3079 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3080 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3081 rc = NET_XMIT_DROP;
3082 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3083 qdisc_run_begin(q)) {
bbd8a0d3
KK
3084 /*
3085 * This is a work-conserving queue; there are no old skbs
3086 * waiting to be sent out; and the qdisc is not running -
3087 * xmit the skb directly.
3088 */
bfe0d029 3089
bfe0d029
ED
3090 qdisc_bstats_update(q, skb);
3091
55a93b3e 3092 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3093 if (unlikely(contended)) {
3094 spin_unlock(&q->busylock);
3095 contended = false;
3096 }
bbd8a0d3 3097 __qdisc_run(q);
79640a4c 3098 } else
bc135b23 3099 qdisc_run_end(q);
bbd8a0d3
KK
3100
3101 rc = NET_XMIT_SUCCESS;
3102 } else {
520ac30f 3103 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3104 if (qdisc_run_begin(q)) {
3105 if (unlikely(contended)) {
3106 spin_unlock(&q->busylock);
3107 contended = false;
3108 }
3109 __qdisc_run(q);
3110 }
bbd8a0d3
KK
3111 }
3112 spin_unlock(root_lock);
520ac30f
ED
3113 if (unlikely(to_free))
3114 kfree_skb_list(to_free);
79640a4c
ED
3115 if (unlikely(contended))
3116 spin_unlock(&q->busylock);
bbd8a0d3
KK
3117 return rc;
3118}
3119
86f8515f 3120#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3121static void skb_update_prio(struct sk_buff *skb)
3122{
6977a79d 3123 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3124
91c68ce2 3125 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3126 unsigned int prioidx =
3127 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3128
3129 if (prioidx < map->priomap_len)
3130 skb->priority = map->priomap[prioidx];
3131 }
5bc1421e
NH
3132}
3133#else
3134#define skb_update_prio(skb)
3135#endif
3136
f60e5990 3137DEFINE_PER_CPU(int, xmit_recursion);
3138EXPORT_SYMBOL(xmit_recursion);
3139
95603e22
MM
3140/**
3141 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3142 * @net: network namespace this loopback is happening in
3143 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3144 * @skb: buffer to transmit
3145 */
0c4b51f0 3146int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3147{
3148 skb_reset_mac_header(skb);
3149 __skb_pull(skb, skb_network_offset(skb));
3150 skb->pkt_type = PACKET_LOOPBACK;
3151 skb->ip_summed = CHECKSUM_UNNECESSARY;
3152 WARN_ON(!skb_dst(skb));
3153 skb_dst_force(skb);
3154 netif_rx_ni(skb);
3155 return 0;
3156}
3157EXPORT_SYMBOL(dev_loopback_xmit);
3158
1f211a1b
DB
3159#ifdef CONFIG_NET_EGRESS
3160static struct sk_buff *
3161sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3162{
3163 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3164 struct tcf_result cl_res;
3165
3166 if (!cl)
3167 return skb;
3168
8dc07fdb 3169 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
1f211a1b
DB
3170 qdisc_bstats_cpu_update(cl->q, skb);
3171
3172 switch (tc_classify(skb, cl, &cl_res, false)) {
3173 case TC_ACT_OK:
3174 case TC_ACT_RECLASSIFY:
3175 skb->tc_index = TC_H_MIN(cl_res.classid);
3176 break;
3177 case TC_ACT_SHOT:
3178 qdisc_qstats_cpu_drop(cl->q);
3179 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3180 kfree_skb(skb);
3181 return NULL;
1f211a1b
DB
3182 case TC_ACT_STOLEN:
3183 case TC_ACT_QUEUED:
3184 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3185 consume_skb(skb);
1f211a1b
DB
3186 return NULL;
3187 case TC_ACT_REDIRECT:
3188 /* No need to push/pop skb's mac_header here on egress! */
3189 skb_do_redirect(skb);
3190 *ret = NET_XMIT_SUCCESS;
3191 return NULL;
3192 default:
3193 break;
3194 }
3195
3196 return skb;
3197}
3198#endif /* CONFIG_NET_EGRESS */
3199
638b2a69
JP
3200static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3201{
3202#ifdef CONFIG_XPS
3203 struct xps_dev_maps *dev_maps;
3204 struct xps_map *map;
3205 int queue_index = -1;
3206
3207 rcu_read_lock();
3208 dev_maps = rcu_dereference(dev->xps_maps);
3209 if (dev_maps) {
184c449f
AD
3210 unsigned int tci = skb->sender_cpu - 1;
3211
3212 if (dev->num_tc) {
3213 tci *= dev->num_tc;
3214 tci += netdev_get_prio_tc_map(dev, skb->priority);
3215 }
3216
3217 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3218 if (map) {
3219 if (map->len == 1)
3220 queue_index = map->queues[0];
3221 else
3222 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3223 map->len)];
3224 if (unlikely(queue_index >= dev->real_num_tx_queues))
3225 queue_index = -1;
3226 }
3227 }
3228 rcu_read_unlock();
3229
3230 return queue_index;
3231#else
3232 return -1;
3233#endif
3234}
3235
3236static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3237{
3238 struct sock *sk = skb->sk;
3239 int queue_index = sk_tx_queue_get(sk);
3240
3241 if (queue_index < 0 || skb->ooo_okay ||
3242 queue_index >= dev->real_num_tx_queues) {
3243 int new_index = get_xps_queue(dev, skb);
f4563a75 3244
638b2a69
JP
3245 if (new_index < 0)
3246 new_index = skb_tx_hash(dev, skb);
3247
3248 if (queue_index != new_index && sk &&
004a5d01 3249 sk_fullsock(sk) &&
638b2a69
JP
3250 rcu_access_pointer(sk->sk_dst_cache))
3251 sk_tx_queue_set(sk, new_index);
3252
3253 queue_index = new_index;
3254 }
3255
3256 return queue_index;
3257}
3258
3259struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3260 struct sk_buff *skb,
3261 void *accel_priv)
3262{
3263 int queue_index = 0;
3264
3265#ifdef CONFIG_XPS
52bd2d62
ED
3266 u32 sender_cpu = skb->sender_cpu - 1;
3267
3268 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3269 skb->sender_cpu = raw_smp_processor_id() + 1;
3270#endif
3271
3272 if (dev->real_num_tx_queues != 1) {
3273 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3274
638b2a69
JP
3275 if (ops->ndo_select_queue)
3276 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3277 __netdev_pick_tx);
3278 else
3279 queue_index = __netdev_pick_tx(dev, skb);
3280
3281 if (!accel_priv)
3282 queue_index = netdev_cap_txqueue(dev, queue_index);
3283 }
3284
3285 skb_set_queue_mapping(skb, queue_index);
3286 return netdev_get_tx_queue(dev, queue_index);
3287}
3288
d29f749e 3289/**
9d08dd3d 3290 * __dev_queue_xmit - transmit a buffer
d29f749e 3291 * @skb: buffer to transmit
9d08dd3d 3292 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3293 *
3294 * Queue a buffer for transmission to a network device. The caller must
3295 * have set the device and priority and built the buffer before calling
3296 * this function. The function can be called from an interrupt.
3297 *
3298 * A negative errno code is returned on a failure. A success does not
3299 * guarantee the frame will be transmitted as it may be dropped due
3300 * to congestion or traffic shaping.
3301 *
3302 * -----------------------------------------------------------------------------------
3303 * I notice this method can also return errors from the queue disciplines,
3304 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3305 * be positive.
3306 *
3307 * Regardless of the return value, the skb is consumed, so it is currently
3308 * difficult to retry a send to this method. (You can bump the ref count
3309 * before sending to hold a reference for retry if you are careful.)
3310 *
3311 * When calling this method, interrupts MUST be enabled. This is because
3312 * the BH enable code must have IRQs enabled so that it will not deadlock.
3313 * --BLG
3314 */
0a59f3a9 3315static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3316{
3317 struct net_device *dev = skb->dev;
dc2b4847 3318 struct netdev_queue *txq;
1da177e4
LT
3319 struct Qdisc *q;
3320 int rc = -ENOMEM;
3321
6d1ccff6
ED
3322 skb_reset_mac_header(skb);
3323
e7fd2885
WB
3324 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3325 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3326
4ec93edb
YH
3327 /* Disable soft irqs for various locks below. Also
3328 * stops preemption for RCU.
1da177e4 3329 */
4ec93edb 3330 rcu_read_lock_bh();
1da177e4 3331
5bc1421e
NH
3332 skb_update_prio(skb);
3333
1f211a1b
DB
3334 qdisc_pkt_len_init(skb);
3335#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3336 skb->tc_at_ingress = 0;
1f211a1b
DB
3337# ifdef CONFIG_NET_EGRESS
3338 if (static_key_false(&egress_needed)) {
3339 skb = sch_handle_egress(skb, &rc, dev);
3340 if (!skb)
3341 goto out;
3342 }
3343# endif
3344#endif
02875878
ED
3345 /* If device/qdisc don't need skb->dst, release it right now while
3346 * its hot in this cpu cache.
3347 */
3348 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3349 skb_dst_drop(skb);
3350 else
3351 skb_dst_force(skb);
3352
f663dd9a 3353 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3354 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3355
cf66ba58 3356 trace_net_dev_queue(skb);
1da177e4 3357 if (q->enqueue) {
bbd8a0d3 3358 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3359 goto out;
1da177e4
LT
3360 }
3361
3362 /* The device has no queue. Common case for software devices:
eb13da1a 3363 * loopback, all the sorts of tunnels...
1da177e4 3364
eb13da1a 3365 * Really, it is unlikely that netif_tx_lock protection is necessary
3366 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3367 * counters.)
3368 * However, it is possible, that they rely on protection
3369 * made by us here.
1da177e4 3370
eb13da1a 3371 * Check this and shot the lock. It is not prone from deadlocks.
3372 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3373 */
3374 if (dev->flags & IFF_UP) {
3375 int cpu = smp_processor_id(); /* ok because BHs are off */
3376
c773e847 3377 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3378 if (unlikely(__this_cpu_read(xmit_recursion) >
3379 XMIT_RECURSION_LIMIT))
745e20f1
ED
3380 goto recursion_alert;
3381
1f59533f
JDB
3382 skb = validate_xmit_skb(skb, dev);
3383 if (!skb)
d21fd63e 3384 goto out;
1f59533f 3385
c773e847 3386 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3387
73466498 3388 if (!netif_xmit_stopped(txq)) {
745e20f1 3389 __this_cpu_inc(xmit_recursion);
ce93718f 3390 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3391 __this_cpu_dec(xmit_recursion);
572a9d7b 3392 if (dev_xmit_complete(rc)) {
c773e847 3393 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3394 goto out;
3395 }
3396 }
c773e847 3397 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3398 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3399 dev->name);
1da177e4
LT
3400 } else {
3401 /* Recursion is detected! It is possible,
745e20f1
ED
3402 * unfortunately
3403 */
3404recursion_alert:
e87cc472
JP
3405 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3406 dev->name);
1da177e4
LT
3407 }
3408 }
3409
3410 rc = -ENETDOWN;
d4828d85 3411 rcu_read_unlock_bh();
1da177e4 3412
015f0688 3413 atomic_long_inc(&dev->tx_dropped);
1f59533f 3414 kfree_skb_list(skb);
1da177e4
LT
3415 return rc;
3416out:
d4828d85 3417 rcu_read_unlock_bh();
1da177e4
LT
3418 return rc;
3419}
f663dd9a 3420
2b4aa3ce 3421int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3422{
3423 return __dev_queue_xmit(skb, NULL);
3424}
2b4aa3ce 3425EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3426
f663dd9a
JW
3427int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3428{
3429 return __dev_queue_xmit(skb, accel_priv);
3430}
3431EXPORT_SYMBOL(dev_queue_xmit_accel);
3432
1da177e4 3433
eb13da1a 3434/*************************************************************************
3435 * Receiver routines
3436 *************************************************************************/
1da177e4 3437
6b2bedc3 3438int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3439EXPORT_SYMBOL(netdev_max_backlog);
3440
3b098e2d 3441int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3442int netdev_budget __read_mostly = 300;
3d48b53f
MT
3443int weight_p __read_mostly = 64; /* old backlog weight */
3444int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3445int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3446int dev_rx_weight __read_mostly = 64;
3447int dev_tx_weight __read_mostly = 64;
1da177e4 3448
eecfd7c4
ED
3449/* Called with irq disabled */
3450static inline void ____napi_schedule(struct softnet_data *sd,
3451 struct napi_struct *napi)
3452{
3453 list_add_tail(&napi->poll_list, &sd->poll_list);
3454 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3455}
3456
bfb564e7
KK
3457#ifdef CONFIG_RPS
3458
3459/* One global table that all flow-based protocols share. */
6e3f7faf 3460struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3461EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3462u32 rps_cpu_mask __read_mostly;
3463EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3464
c5905afb 3465struct static_key rps_needed __read_mostly;
3df97ba8 3466EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3467struct static_key rfs_needed __read_mostly;
3468EXPORT_SYMBOL(rfs_needed);
adc9300e 3469
c445477d
BH
3470static struct rps_dev_flow *
3471set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3472 struct rps_dev_flow *rflow, u16 next_cpu)
3473{
a31196b0 3474 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3475#ifdef CONFIG_RFS_ACCEL
3476 struct netdev_rx_queue *rxqueue;
3477 struct rps_dev_flow_table *flow_table;
3478 struct rps_dev_flow *old_rflow;
3479 u32 flow_id;
3480 u16 rxq_index;
3481 int rc;
3482
3483 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3484 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3485 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3486 goto out;
3487 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3488 if (rxq_index == skb_get_rx_queue(skb))
3489 goto out;
3490
3491 rxqueue = dev->_rx + rxq_index;
3492 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3493 if (!flow_table)
3494 goto out;
61b905da 3495 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3496 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3497 rxq_index, flow_id);
3498 if (rc < 0)
3499 goto out;
3500 old_rflow = rflow;
3501 rflow = &flow_table->flows[flow_id];
c445477d
BH
3502 rflow->filter = rc;
3503 if (old_rflow->filter == rflow->filter)
3504 old_rflow->filter = RPS_NO_FILTER;
3505 out:
3506#endif
3507 rflow->last_qtail =
09994d1b 3508 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3509 }
3510
09994d1b 3511 rflow->cpu = next_cpu;
c445477d
BH
3512 return rflow;
3513}
3514
bfb564e7
KK
3515/*
3516 * get_rps_cpu is called from netif_receive_skb and returns the target
3517 * CPU from the RPS map of the receiving queue for a given skb.
3518 * rcu_read_lock must be held on entry.
3519 */
3520static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3521 struct rps_dev_flow **rflowp)
3522{
567e4b79
ED
3523 const struct rps_sock_flow_table *sock_flow_table;
3524 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3525 struct rps_dev_flow_table *flow_table;
567e4b79 3526 struct rps_map *map;
bfb564e7 3527 int cpu = -1;
567e4b79 3528 u32 tcpu;
61b905da 3529 u32 hash;
bfb564e7
KK
3530
3531 if (skb_rx_queue_recorded(skb)) {
3532 u16 index = skb_get_rx_queue(skb);
567e4b79 3533
62fe0b40
BH
3534 if (unlikely(index >= dev->real_num_rx_queues)) {
3535 WARN_ONCE(dev->real_num_rx_queues > 1,
3536 "%s received packet on queue %u, but number "
3537 "of RX queues is %u\n",
3538 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3539 goto done;
3540 }
567e4b79
ED
3541 rxqueue += index;
3542 }
bfb564e7 3543
567e4b79
ED
3544 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3545
3546 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3547 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3548 if (!flow_table && !map)
bfb564e7
KK
3549 goto done;
3550
2d47b459 3551 skb_reset_network_header(skb);
61b905da
TH
3552 hash = skb_get_hash(skb);
3553 if (!hash)
bfb564e7
KK
3554 goto done;
3555
fec5e652
TH
3556 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3557 if (flow_table && sock_flow_table) {
fec5e652 3558 struct rps_dev_flow *rflow;
567e4b79
ED
3559 u32 next_cpu;
3560 u32 ident;
3561
3562 /* First check into global flow table if there is a match */
3563 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3564 if ((ident ^ hash) & ~rps_cpu_mask)
3565 goto try_rps;
fec5e652 3566
567e4b79
ED
3567 next_cpu = ident & rps_cpu_mask;
3568
3569 /* OK, now we know there is a match,
3570 * we can look at the local (per receive queue) flow table
3571 */
61b905da 3572 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3573 tcpu = rflow->cpu;
3574
fec5e652
TH
3575 /*
3576 * If the desired CPU (where last recvmsg was done) is
3577 * different from current CPU (one in the rx-queue flow
3578 * table entry), switch if one of the following holds:
a31196b0 3579 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3580 * - Current CPU is offline.
3581 * - The current CPU's queue tail has advanced beyond the
3582 * last packet that was enqueued using this table entry.
3583 * This guarantees that all previous packets for the flow
3584 * have been dequeued, thus preserving in order delivery.
3585 */
3586 if (unlikely(tcpu != next_cpu) &&
a31196b0 3587 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3588 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3589 rflow->last_qtail)) >= 0)) {
3590 tcpu = next_cpu;
c445477d 3591 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3592 }
c445477d 3593
a31196b0 3594 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3595 *rflowp = rflow;
3596 cpu = tcpu;
3597 goto done;
3598 }
3599 }
3600
567e4b79
ED
3601try_rps:
3602
0a9627f2 3603 if (map) {
8fc54f68 3604 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3605 if (cpu_online(tcpu)) {
3606 cpu = tcpu;
3607 goto done;
3608 }
3609 }
3610
3611done:
0a9627f2
TH
3612 return cpu;
3613}
3614
c445477d
BH
3615#ifdef CONFIG_RFS_ACCEL
3616
3617/**
3618 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3619 * @dev: Device on which the filter was set
3620 * @rxq_index: RX queue index
3621 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3622 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3623 *
3624 * Drivers that implement ndo_rx_flow_steer() should periodically call
3625 * this function for each installed filter and remove the filters for
3626 * which it returns %true.
3627 */
3628bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3629 u32 flow_id, u16 filter_id)
3630{
3631 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3632 struct rps_dev_flow_table *flow_table;
3633 struct rps_dev_flow *rflow;
3634 bool expire = true;
a31196b0 3635 unsigned int cpu;
c445477d
BH
3636
3637 rcu_read_lock();
3638 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3639 if (flow_table && flow_id <= flow_table->mask) {
3640 rflow = &flow_table->flows[flow_id];
3641 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3642 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3643 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3644 rflow->last_qtail) <
3645 (int)(10 * flow_table->mask)))
3646 expire = false;
3647 }
3648 rcu_read_unlock();
3649 return expire;
3650}
3651EXPORT_SYMBOL(rps_may_expire_flow);
3652
3653#endif /* CONFIG_RFS_ACCEL */
3654
0a9627f2 3655/* Called from hardirq (IPI) context */
e36fa2f7 3656static void rps_trigger_softirq(void *data)
0a9627f2 3657{
e36fa2f7
ED
3658 struct softnet_data *sd = data;
3659
eecfd7c4 3660 ____napi_schedule(sd, &sd->backlog);
dee42870 3661 sd->received_rps++;
0a9627f2 3662}
e36fa2f7 3663
fec5e652 3664#endif /* CONFIG_RPS */
0a9627f2 3665
e36fa2f7
ED
3666/*
3667 * Check if this softnet_data structure is another cpu one
3668 * If yes, queue it to our IPI list and return 1
3669 * If no, return 0
3670 */
3671static int rps_ipi_queued(struct softnet_data *sd)
3672{
3673#ifdef CONFIG_RPS
903ceff7 3674 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3675
3676 if (sd != mysd) {
3677 sd->rps_ipi_next = mysd->rps_ipi_list;
3678 mysd->rps_ipi_list = sd;
3679
3680 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3681 return 1;
3682 }
3683#endif /* CONFIG_RPS */
3684 return 0;
3685}
3686
99bbc707
WB
3687#ifdef CONFIG_NET_FLOW_LIMIT
3688int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3689#endif
3690
3691static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3692{
3693#ifdef CONFIG_NET_FLOW_LIMIT
3694 struct sd_flow_limit *fl;
3695 struct softnet_data *sd;
3696 unsigned int old_flow, new_flow;
3697
3698 if (qlen < (netdev_max_backlog >> 1))
3699 return false;
3700
903ceff7 3701 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3702
3703 rcu_read_lock();
3704 fl = rcu_dereference(sd->flow_limit);
3705 if (fl) {
3958afa1 3706 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3707 old_flow = fl->history[fl->history_head];
3708 fl->history[fl->history_head] = new_flow;
3709
3710 fl->history_head++;
3711 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3712
3713 if (likely(fl->buckets[old_flow]))
3714 fl->buckets[old_flow]--;
3715
3716 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3717 fl->count++;
3718 rcu_read_unlock();
3719 return true;
3720 }
3721 }
3722 rcu_read_unlock();
3723#endif
3724 return false;
3725}
3726
0a9627f2
TH
3727/*
3728 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3729 * queue (may be a remote CPU queue).
3730 */
fec5e652
TH
3731static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3732 unsigned int *qtail)
0a9627f2 3733{
e36fa2f7 3734 struct softnet_data *sd;
0a9627f2 3735 unsigned long flags;
99bbc707 3736 unsigned int qlen;
0a9627f2 3737
e36fa2f7 3738 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3739
3740 local_irq_save(flags);
0a9627f2 3741
e36fa2f7 3742 rps_lock(sd);
e9e4dd32
JA
3743 if (!netif_running(skb->dev))
3744 goto drop;
99bbc707
WB
3745 qlen = skb_queue_len(&sd->input_pkt_queue);
3746 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3747 if (qlen) {
0a9627f2 3748enqueue:
e36fa2f7 3749 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3750 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3751 rps_unlock(sd);
152102c7 3752 local_irq_restore(flags);
0a9627f2
TH
3753 return NET_RX_SUCCESS;
3754 }
3755
ebda37c2
ED
3756 /* Schedule NAPI for backlog device
3757 * We can use non atomic operation since we own the queue lock
3758 */
3759 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3760 if (!rps_ipi_queued(sd))
eecfd7c4 3761 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3762 }
3763 goto enqueue;
3764 }
3765
e9e4dd32 3766drop:
dee42870 3767 sd->dropped++;
e36fa2f7 3768 rps_unlock(sd);
0a9627f2 3769
0a9627f2
TH
3770 local_irq_restore(flags);
3771
caf586e5 3772 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3773 kfree_skb(skb);
3774 return NET_RX_DROP;
3775}
1da177e4 3776
ae78dbfa 3777static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3778{
b0e28f1e 3779 int ret;
1da177e4 3780
588f0330 3781 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3782
cf66ba58 3783 trace_netif_rx(skb);
df334545 3784#ifdef CONFIG_RPS
c5905afb 3785 if (static_key_false(&rps_needed)) {
fec5e652 3786 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3787 int cpu;
3788
cece1945 3789 preempt_disable();
b0e28f1e 3790 rcu_read_lock();
fec5e652
TH
3791
3792 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3793 if (cpu < 0)
3794 cpu = smp_processor_id();
fec5e652
TH
3795
3796 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3797
b0e28f1e 3798 rcu_read_unlock();
cece1945 3799 preempt_enable();
adc9300e
ED
3800 } else
3801#endif
fec5e652
TH
3802 {
3803 unsigned int qtail;
f4563a75 3804
fec5e652
TH
3805 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3806 put_cpu();
3807 }
b0e28f1e 3808 return ret;
1da177e4 3809}
ae78dbfa
BH
3810
3811/**
3812 * netif_rx - post buffer to the network code
3813 * @skb: buffer to post
3814 *
3815 * This function receives a packet from a device driver and queues it for
3816 * the upper (protocol) levels to process. It always succeeds. The buffer
3817 * may be dropped during processing for congestion control or by the
3818 * protocol layers.
3819 *
3820 * return values:
3821 * NET_RX_SUCCESS (no congestion)
3822 * NET_RX_DROP (packet was dropped)
3823 *
3824 */
3825
3826int netif_rx(struct sk_buff *skb)
3827{
3828 trace_netif_rx_entry(skb);
3829
3830 return netif_rx_internal(skb);
3831}
d1b19dff 3832EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3833
3834int netif_rx_ni(struct sk_buff *skb)
3835{
3836 int err;
3837
ae78dbfa
BH
3838 trace_netif_rx_ni_entry(skb);
3839
1da177e4 3840 preempt_disable();
ae78dbfa 3841 err = netif_rx_internal(skb);
1da177e4
LT
3842 if (local_softirq_pending())
3843 do_softirq();
3844 preempt_enable();
3845
3846 return err;
3847}
1da177e4
LT
3848EXPORT_SYMBOL(netif_rx_ni);
3849
0766f788 3850static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3851{
903ceff7 3852 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3853
3854 if (sd->completion_queue) {
3855 struct sk_buff *clist;
3856
3857 local_irq_disable();
3858 clist = sd->completion_queue;
3859 sd->completion_queue = NULL;
3860 local_irq_enable();
3861
3862 while (clist) {
3863 struct sk_buff *skb = clist;
f4563a75 3864
1da177e4
LT
3865 clist = clist->next;
3866
547b792c 3867 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3868 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3869 trace_consume_skb(skb);
3870 else
3871 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3872
3873 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3874 __kfree_skb(skb);
3875 else
3876 __kfree_skb_defer(skb);
1da177e4 3877 }
15fad714
JDB
3878
3879 __kfree_skb_flush();
1da177e4
LT
3880 }
3881
3882 if (sd->output_queue) {
37437bb2 3883 struct Qdisc *head;
1da177e4
LT
3884
3885 local_irq_disable();
3886 head = sd->output_queue;
3887 sd->output_queue = NULL;
a9cbd588 3888 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3889 local_irq_enable();
3890
3891 while (head) {
37437bb2
DM
3892 struct Qdisc *q = head;
3893 spinlock_t *root_lock;
3894
1da177e4
LT
3895 head = head->next_sched;
3896
5fb66229 3897 root_lock = qdisc_lock(q);
3bcb846c
ED
3898 spin_lock(root_lock);
3899 /* We need to make sure head->next_sched is read
3900 * before clearing __QDISC_STATE_SCHED
3901 */
3902 smp_mb__before_atomic();
3903 clear_bit(__QDISC_STATE_SCHED, &q->state);
3904 qdisc_run(q);
3905 spin_unlock(root_lock);
1da177e4
LT
3906 }
3907 }
3908}
3909
181402a5 3910#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3911/* This hook is defined here for ATM LANE */
3912int (*br_fdb_test_addr_hook)(struct net_device *dev,
3913 unsigned char *addr) __read_mostly;
4fb019a0 3914EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3915#endif
1da177e4 3916
1f211a1b
DB
3917static inline struct sk_buff *
3918sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3919 struct net_device *orig_dev)
f697c3e8 3920{
e7582bab 3921#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3922 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3923 struct tcf_result cl_res;
24824a09 3924
c9e99fd0
DB
3925 /* If there's at least one ingress present somewhere (so
3926 * we get here via enabled static key), remaining devices
3927 * that are not configured with an ingress qdisc will bail
d2788d34 3928 * out here.
c9e99fd0 3929 */
d2788d34 3930 if (!cl)
4577139b 3931 return skb;
f697c3e8
HX
3932 if (*pt_prev) {
3933 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3934 *pt_prev = NULL;
1da177e4
LT
3935 }
3936
3365495c 3937 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 3938 skb->tc_at_ingress = 1;
24ea591d 3939 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3940
3b3ae880 3941 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3942 case TC_ACT_OK:
3943 case TC_ACT_RECLASSIFY:
3944 skb->tc_index = TC_H_MIN(cl_res.classid);
3945 break;
3946 case TC_ACT_SHOT:
24ea591d 3947 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3948 kfree_skb(skb);
3949 return NULL;
d2788d34
DB
3950 case TC_ACT_STOLEN:
3951 case TC_ACT_QUEUED:
8a3a4c6e 3952 consume_skb(skb);
d2788d34 3953 return NULL;
27b29f63
AS
3954 case TC_ACT_REDIRECT:
3955 /* skb_mac_header check was done by cls/act_bpf, so
3956 * we can safely push the L2 header back before
3957 * redirecting to another netdev
3958 */
3959 __skb_push(skb, skb->mac_len);
3960 skb_do_redirect(skb);
3961 return NULL;
d2788d34
DB
3962 default:
3963 break;
f697c3e8 3964 }
e7582bab 3965#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3966 return skb;
3967}
1da177e4 3968
24b27fc4
MB
3969/**
3970 * netdev_is_rx_handler_busy - check if receive handler is registered
3971 * @dev: device to check
3972 *
3973 * Check if a receive handler is already registered for a given device.
3974 * Return true if there one.
3975 *
3976 * The caller must hold the rtnl_mutex.
3977 */
3978bool netdev_is_rx_handler_busy(struct net_device *dev)
3979{
3980 ASSERT_RTNL();
3981 return dev && rtnl_dereference(dev->rx_handler);
3982}
3983EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3984
ab95bfe0
JP
3985/**
3986 * netdev_rx_handler_register - register receive handler
3987 * @dev: device to register a handler for
3988 * @rx_handler: receive handler to register
93e2c32b 3989 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3990 *
e227867f 3991 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3992 * called from __netif_receive_skb. A negative errno code is returned
3993 * on a failure.
3994 *
3995 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3996 *
3997 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3998 */
3999int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4000 rx_handler_func_t *rx_handler,
4001 void *rx_handler_data)
ab95bfe0 4002{
1b7cd004 4003 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4004 return -EBUSY;
4005
00cfec37 4006 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4007 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4008 rcu_assign_pointer(dev->rx_handler, rx_handler);
4009
4010 return 0;
4011}
4012EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4013
4014/**
4015 * netdev_rx_handler_unregister - unregister receive handler
4016 * @dev: device to unregister a handler from
4017 *
166ec369 4018 * Unregister a receive handler from a device.
ab95bfe0
JP
4019 *
4020 * The caller must hold the rtnl_mutex.
4021 */
4022void netdev_rx_handler_unregister(struct net_device *dev)
4023{
4024
4025 ASSERT_RTNL();
a9b3cd7f 4026 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4027 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4028 * section has a guarantee to see a non NULL rx_handler_data
4029 * as well.
4030 */
4031 synchronize_net();
a9b3cd7f 4032 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4033}
4034EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4035
b4b9e355
MG
4036/*
4037 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4038 * the special handling of PFMEMALLOC skbs.
4039 */
4040static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4041{
4042 switch (skb->protocol) {
2b8837ae
JP
4043 case htons(ETH_P_ARP):
4044 case htons(ETH_P_IP):
4045 case htons(ETH_P_IPV6):
4046 case htons(ETH_P_8021Q):
4047 case htons(ETH_P_8021AD):
b4b9e355
MG
4048 return true;
4049 default:
4050 return false;
4051 }
4052}
4053
e687ad60
PN
4054static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4055 int *ret, struct net_device *orig_dev)
4056{
e7582bab 4057#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4058 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4059 int ingress_retval;
4060
e687ad60
PN
4061 if (*pt_prev) {
4062 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4063 *pt_prev = NULL;
4064 }
4065
2c1e2703
AC
4066 rcu_read_lock();
4067 ingress_retval = nf_hook_ingress(skb);
4068 rcu_read_unlock();
4069 return ingress_retval;
e687ad60 4070 }
e7582bab 4071#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4072 return 0;
4073}
e687ad60 4074
9754e293 4075static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4076{
4077 struct packet_type *ptype, *pt_prev;
ab95bfe0 4078 rx_handler_func_t *rx_handler;
f2ccd8fa 4079 struct net_device *orig_dev;
8a4eb573 4080 bool deliver_exact = false;
1da177e4 4081 int ret = NET_RX_DROP;
252e3346 4082 __be16 type;
1da177e4 4083
588f0330 4084 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4085
cf66ba58 4086 trace_netif_receive_skb(skb);
9b22ea56 4087
cc9bd5ce 4088 orig_dev = skb->dev;
8f903c70 4089
c1d2bbe1 4090 skb_reset_network_header(skb);
fda55eca
ED
4091 if (!skb_transport_header_was_set(skb))
4092 skb_reset_transport_header(skb);
0b5c9db1 4093 skb_reset_mac_len(skb);
1da177e4
LT
4094
4095 pt_prev = NULL;
4096
63d8ea7f 4097another_round:
b6858177 4098 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4099
4100 __this_cpu_inc(softnet_data.processed);
4101
8ad227ff
PM
4102 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4103 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4104 skb = skb_vlan_untag(skb);
bcc6d479 4105 if (unlikely(!skb))
2c17d27c 4106 goto out;
bcc6d479
JP
4107 }
4108
e7246e12
WB
4109 if (skb_skip_tc_classify(skb))
4110 goto skip_classify;
1da177e4 4111
9754e293 4112 if (pfmemalloc)
b4b9e355
MG
4113 goto skip_taps;
4114
1da177e4 4115 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4116 if (pt_prev)
4117 ret = deliver_skb(skb, pt_prev, orig_dev);
4118 pt_prev = ptype;
4119 }
4120
4121 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4122 if (pt_prev)
4123 ret = deliver_skb(skb, pt_prev, orig_dev);
4124 pt_prev = ptype;
1da177e4
LT
4125 }
4126
b4b9e355 4127skip_taps:
1cf51900 4128#ifdef CONFIG_NET_INGRESS
4577139b 4129 if (static_key_false(&ingress_needed)) {
1f211a1b 4130 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4131 if (!skb)
2c17d27c 4132 goto out;
e687ad60
PN
4133
4134 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4135 goto out;
4577139b 4136 }
1cf51900 4137#endif
a5135bcf 4138 skb_reset_tc(skb);
e7246e12 4139skip_classify:
9754e293 4140 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4141 goto drop;
4142
df8a39de 4143 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4144 if (pt_prev) {
4145 ret = deliver_skb(skb, pt_prev, orig_dev);
4146 pt_prev = NULL;
4147 }
48cc32d3 4148 if (vlan_do_receive(&skb))
2425717b
JF
4149 goto another_round;
4150 else if (unlikely(!skb))
2c17d27c 4151 goto out;
2425717b
JF
4152 }
4153
48cc32d3 4154 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4155 if (rx_handler) {
4156 if (pt_prev) {
4157 ret = deliver_skb(skb, pt_prev, orig_dev);
4158 pt_prev = NULL;
4159 }
8a4eb573
JP
4160 switch (rx_handler(&skb)) {
4161 case RX_HANDLER_CONSUMED:
3bc1b1ad 4162 ret = NET_RX_SUCCESS;
2c17d27c 4163 goto out;
8a4eb573 4164 case RX_HANDLER_ANOTHER:
63d8ea7f 4165 goto another_round;
8a4eb573
JP
4166 case RX_HANDLER_EXACT:
4167 deliver_exact = true;
4168 case RX_HANDLER_PASS:
4169 break;
4170 default:
4171 BUG();
4172 }
ab95bfe0 4173 }
1da177e4 4174
df8a39de
JP
4175 if (unlikely(skb_vlan_tag_present(skb))) {
4176 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4177 skb->pkt_type = PACKET_OTHERHOST;
4178 /* Note: we might in the future use prio bits
4179 * and set skb->priority like in vlan_do_receive()
4180 * For the time being, just ignore Priority Code Point
4181 */
4182 skb->vlan_tci = 0;
4183 }
48cc32d3 4184
7866a621
SN
4185 type = skb->protocol;
4186
63d8ea7f 4187 /* deliver only exact match when indicated */
7866a621
SN
4188 if (likely(!deliver_exact)) {
4189 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190 &ptype_base[ntohs(type) &
4191 PTYPE_HASH_MASK]);
4192 }
1f3c8804 4193
7866a621
SN
4194 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195 &orig_dev->ptype_specific);
4196
4197 if (unlikely(skb->dev != orig_dev)) {
4198 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4199 &skb->dev->ptype_specific);
1da177e4
LT
4200 }
4201
4202 if (pt_prev) {
1080e512 4203 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4204 goto drop;
1080e512
MT
4205 else
4206 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4207 } else {
b4b9e355 4208drop:
6e7333d3
JW
4209 if (!deliver_exact)
4210 atomic_long_inc(&skb->dev->rx_dropped);
4211 else
4212 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4213 kfree_skb(skb);
4214 /* Jamal, now you will not able to escape explaining
4215 * me how you were going to use this. :-)
4216 */
4217 ret = NET_RX_DROP;
4218 }
4219
2c17d27c 4220out:
9754e293
DM
4221 return ret;
4222}
4223
4224static int __netif_receive_skb(struct sk_buff *skb)
4225{
4226 int ret;
4227
4228 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4229 unsigned long pflags = current->flags;
4230
4231 /*
4232 * PFMEMALLOC skbs are special, they should
4233 * - be delivered to SOCK_MEMALLOC sockets only
4234 * - stay away from userspace
4235 * - have bounded memory usage
4236 *
4237 * Use PF_MEMALLOC as this saves us from propagating the allocation
4238 * context down to all allocation sites.
4239 */
4240 current->flags |= PF_MEMALLOC;
4241 ret = __netif_receive_skb_core(skb, true);
4242 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4243 } else
4244 ret = __netif_receive_skb_core(skb, false);
4245
1da177e4
LT
4246 return ret;
4247}
0a9627f2 4248
ae78dbfa 4249static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4250{
2c17d27c
JA
4251 int ret;
4252
588f0330 4253 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4254
c1f19b51
RC
4255 if (skb_defer_rx_timestamp(skb))
4256 return NET_RX_SUCCESS;
4257
2c17d27c
JA
4258 rcu_read_lock();
4259
df334545 4260#ifdef CONFIG_RPS
c5905afb 4261 if (static_key_false(&rps_needed)) {
3b098e2d 4262 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4263 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4264
3b098e2d
ED
4265 if (cpu >= 0) {
4266 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4267 rcu_read_unlock();
adc9300e 4268 return ret;
3b098e2d 4269 }
fec5e652 4270 }
1e94d72f 4271#endif
2c17d27c
JA
4272 ret = __netif_receive_skb(skb);
4273 rcu_read_unlock();
4274 return ret;
0a9627f2 4275}
ae78dbfa
BH
4276
4277/**
4278 * netif_receive_skb - process receive buffer from network
4279 * @skb: buffer to process
4280 *
4281 * netif_receive_skb() is the main receive data processing function.
4282 * It always succeeds. The buffer may be dropped during processing
4283 * for congestion control or by the protocol layers.
4284 *
4285 * This function may only be called from softirq context and interrupts
4286 * should be enabled.
4287 *
4288 * Return values (usually ignored):
4289 * NET_RX_SUCCESS: no congestion
4290 * NET_RX_DROP: packet was dropped
4291 */
04eb4489 4292int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4293{
4294 trace_netif_receive_skb_entry(skb);
4295
4296 return netif_receive_skb_internal(skb);
4297}
04eb4489 4298EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4299
41852497 4300DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4301
4302/* Network device is going away, flush any packets still pending */
4303static void flush_backlog(struct work_struct *work)
6e583ce5 4304{
6e583ce5 4305 struct sk_buff *skb, *tmp;
145dd5f9
PA
4306 struct softnet_data *sd;
4307
4308 local_bh_disable();
4309 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4310
145dd5f9 4311 local_irq_disable();
e36fa2f7 4312 rps_lock(sd);
6e7676c1 4313 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4314 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4315 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4316 kfree_skb(skb);
76cc8b13 4317 input_queue_head_incr(sd);
6e583ce5 4318 }
6e7676c1 4319 }
e36fa2f7 4320 rps_unlock(sd);
145dd5f9 4321 local_irq_enable();
6e7676c1
CG
4322
4323 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4324 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4325 __skb_unlink(skb, &sd->process_queue);
4326 kfree_skb(skb);
76cc8b13 4327 input_queue_head_incr(sd);
6e7676c1
CG
4328 }
4329 }
145dd5f9
PA
4330 local_bh_enable();
4331}
4332
41852497 4333static void flush_all_backlogs(void)
145dd5f9
PA
4334{
4335 unsigned int cpu;
4336
4337 get_online_cpus();
4338
41852497
ED
4339 for_each_online_cpu(cpu)
4340 queue_work_on(cpu, system_highpri_wq,
4341 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4342
4343 for_each_online_cpu(cpu)
41852497 4344 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4345
4346 put_online_cpus();
6e583ce5
SH
4347}
4348
d565b0a1
HX
4349static int napi_gro_complete(struct sk_buff *skb)
4350{
22061d80 4351 struct packet_offload *ptype;
d565b0a1 4352 __be16 type = skb->protocol;
22061d80 4353 struct list_head *head = &offload_base;
d565b0a1
HX
4354 int err = -ENOENT;
4355
c3c7c254
ED
4356 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4357
fc59f9a3
HX
4358 if (NAPI_GRO_CB(skb)->count == 1) {
4359 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4360 goto out;
fc59f9a3 4361 }
d565b0a1
HX
4362
4363 rcu_read_lock();
4364 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4365 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4366 continue;
4367
299603e8 4368 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4369 break;
4370 }
4371 rcu_read_unlock();
4372
4373 if (err) {
4374 WARN_ON(&ptype->list == head);
4375 kfree_skb(skb);
4376 return NET_RX_SUCCESS;
4377 }
4378
4379out:
ae78dbfa 4380 return netif_receive_skb_internal(skb);
d565b0a1
HX
4381}
4382
2e71a6f8
ED
4383/* napi->gro_list contains packets ordered by age.
4384 * youngest packets at the head of it.
4385 * Complete skbs in reverse order to reduce latencies.
4386 */
4387void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4388{
2e71a6f8 4389 struct sk_buff *skb, *prev = NULL;
d565b0a1 4390
2e71a6f8
ED
4391 /* scan list and build reverse chain */
4392 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4393 skb->prev = prev;
4394 prev = skb;
4395 }
4396
4397 for (skb = prev; skb; skb = prev) {
d565b0a1 4398 skb->next = NULL;
2e71a6f8
ED
4399
4400 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4401 return;
4402
4403 prev = skb->prev;
d565b0a1 4404 napi_gro_complete(skb);
2e71a6f8 4405 napi->gro_count--;
d565b0a1
HX
4406 }
4407
4408 napi->gro_list = NULL;
4409}
86cac58b 4410EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4411
89c5fa33
ED
4412static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4413{
4414 struct sk_buff *p;
4415 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4416 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4417
4418 for (p = napi->gro_list; p; p = p->next) {
4419 unsigned long diffs;
4420
0b4cec8c
TH
4421 NAPI_GRO_CB(p)->flush = 0;
4422
4423 if (hash != skb_get_hash_raw(p)) {
4424 NAPI_GRO_CB(p)->same_flow = 0;
4425 continue;
4426 }
4427
89c5fa33
ED
4428 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4429 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4430 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4431 if (maclen == ETH_HLEN)
4432 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4433 skb_mac_header(skb));
89c5fa33
ED
4434 else if (!diffs)
4435 diffs = memcmp(skb_mac_header(p),
a50e233c 4436 skb_mac_header(skb),
89c5fa33
ED
4437 maclen);
4438 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4439 }
4440}
4441
299603e8
JC
4442static void skb_gro_reset_offset(struct sk_buff *skb)
4443{
4444 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4445 const skb_frag_t *frag0 = &pinfo->frags[0];
4446
4447 NAPI_GRO_CB(skb)->data_offset = 0;
4448 NAPI_GRO_CB(skb)->frag0 = NULL;
4449 NAPI_GRO_CB(skb)->frag0_len = 0;
4450
4451 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4452 pinfo->nr_frags &&
4453 !PageHighMem(skb_frag_page(frag0))) {
4454 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4455 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4456 skb_frag_size(frag0),
4457 skb->end - skb->tail);
89c5fa33
ED
4458 }
4459}
4460
a50e233c
ED
4461static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4462{
4463 struct skb_shared_info *pinfo = skb_shinfo(skb);
4464
4465 BUG_ON(skb->end - skb->tail < grow);
4466
4467 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4468
4469 skb->data_len -= grow;
4470 skb->tail += grow;
4471
4472 pinfo->frags[0].page_offset += grow;
4473 skb_frag_size_sub(&pinfo->frags[0], grow);
4474
4475 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4476 skb_frag_unref(skb, 0);
4477 memmove(pinfo->frags, pinfo->frags + 1,
4478 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4479 }
4480}
4481
bb728820 4482static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4483{
4484 struct sk_buff **pp = NULL;
22061d80 4485 struct packet_offload *ptype;
d565b0a1 4486 __be16 type = skb->protocol;
22061d80 4487 struct list_head *head = &offload_base;
0da2afd5 4488 int same_flow;
5b252f0c 4489 enum gro_result ret;
a50e233c 4490 int grow;
d565b0a1 4491
9c62a68d 4492 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4493 goto normal;
4494
d61d072e 4495 if (skb->csum_bad)
f17f5c91
HX
4496 goto normal;
4497
89c5fa33
ED
4498 gro_list_prepare(napi, skb);
4499
d565b0a1
HX
4500 rcu_read_lock();
4501 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4502 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4503 continue;
4504
86911732 4505 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4506 skb_reset_mac_len(skb);
d565b0a1 4507 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4508 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4509 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4510 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4511 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4512 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4513 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4514 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4515
662880f4
TH
4516 /* Setup for GRO checksum validation */
4517 switch (skb->ip_summed) {
4518 case CHECKSUM_COMPLETE:
4519 NAPI_GRO_CB(skb)->csum = skb->csum;
4520 NAPI_GRO_CB(skb)->csum_valid = 1;
4521 NAPI_GRO_CB(skb)->csum_cnt = 0;
4522 break;
4523 case CHECKSUM_UNNECESSARY:
4524 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4525 NAPI_GRO_CB(skb)->csum_valid = 0;
4526 break;
4527 default:
4528 NAPI_GRO_CB(skb)->csum_cnt = 0;
4529 NAPI_GRO_CB(skb)->csum_valid = 0;
4530 }
d565b0a1 4531
f191a1d1 4532 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4533 break;
4534 }
4535 rcu_read_unlock();
4536
4537 if (&ptype->list == head)
4538 goto normal;
4539
25393d3f
SK
4540 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4541 ret = GRO_CONSUMED;
4542 goto ok;
4543 }
4544
0da2afd5 4545 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4546 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4547
d565b0a1
HX
4548 if (pp) {
4549 struct sk_buff *nskb = *pp;
4550
4551 *pp = nskb->next;
4552 nskb->next = NULL;
4553 napi_gro_complete(nskb);
4ae5544f 4554 napi->gro_count--;
d565b0a1
HX
4555 }
4556
0da2afd5 4557 if (same_flow)
d565b0a1
HX
4558 goto ok;
4559
600adc18 4560 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4561 goto normal;
d565b0a1 4562
600adc18
ED
4563 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4564 struct sk_buff *nskb = napi->gro_list;
4565
4566 /* locate the end of the list to select the 'oldest' flow */
4567 while (nskb->next) {
4568 pp = &nskb->next;
4569 nskb = *pp;
4570 }
4571 *pp = NULL;
4572 nskb->next = NULL;
4573 napi_gro_complete(nskb);
4574 } else {
4575 napi->gro_count++;
4576 }
d565b0a1 4577 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4578 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4579 NAPI_GRO_CB(skb)->last = skb;
86911732 4580 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4581 skb->next = napi->gro_list;
4582 napi->gro_list = skb;
5d0d9be8 4583 ret = GRO_HELD;
d565b0a1 4584
ad0f9904 4585pull:
a50e233c
ED
4586 grow = skb_gro_offset(skb) - skb_headlen(skb);
4587 if (grow > 0)
4588 gro_pull_from_frag0(skb, grow);
d565b0a1 4589ok:
5d0d9be8 4590 return ret;
d565b0a1
HX
4591
4592normal:
ad0f9904
HX
4593 ret = GRO_NORMAL;
4594 goto pull;
5d38a079 4595}
96e93eab 4596
bf5a755f
JC
4597struct packet_offload *gro_find_receive_by_type(__be16 type)
4598{
4599 struct list_head *offload_head = &offload_base;
4600 struct packet_offload *ptype;
4601
4602 list_for_each_entry_rcu(ptype, offload_head, list) {
4603 if (ptype->type != type || !ptype->callbacks.gro_receive)
4604 continue;
4605 return ptype;
4606 }
4607 return NULL;
4608}
e27a2f83 4609EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4610
4611struct packet_offload *gro_find_complete_by_type(__be16 type)
4612{
4613 struct list_head *offload_head = &offload_base;
4614 struct packet_offload *ptype;
4615
4616 list_for_each_entry_rcu(ptype, offload_head, list) {
4617 if (ptype->type != type || !ptype->callbacks.gro_complete)
4618 continue;
4619 return ptype;
4620 }
4621 return NULL;
4622}
e27a2f83 4623EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4624
bb728820 4625static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4626{
5d0d9be8
HX
4627 switch (ret) {
4628 case GRO_NORMAL:
ae78dbfa 4629 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4630 ret = GRO_DROP;
4631 break;
5d38a079 4632
5d0d9be8 4633 case GRO_DROP:
5d38a079
HX
4634 kfree_skb(skb);
4635 break;
5b252f0c 4636
daa86548 4637 case GRO_MERGED_FREE:
ce87fc6c
JG
4638 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4639 skb_dst_drop(skb);
f991bb9d 4640 secpath_reset(skb);
d7e8883c 4641 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4642 } else {
d7e8883c 4643 __kfree_skb(skb);
ce87fc6c 4644 }
daa86548
ED
4645 break;
4646
5b252f0c
BH
4647 case GRO_HELD:
4648 case GRO_MERGED:
25393d3f 4649 case GRO_CONSUMED:
5b252f0c 4650 break;
5d38a079
HX
4651 }
4652
c7c4b3b6 4653 return ret;
5d0d9be8 4654}
5d0d9be8 4655
c7c4b3b6 4656gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4657{
93f93a44 4658 skb_mark_napi_id(skb, napi);
ae78dbfa 4659 trace_napi_gro_receive_entry(skb);
86911732 4660
a50e233c
ED
4661 skb_gro_reset_offset(skb);
4662
89c5fa33 4663 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4664}
4665EXPORT_SYMBOL(napi_gro_receive);
4666
d0c2b0d2 4667static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4668{
93a35f59
ED
4669 if (unlikely(skb->pfmemalloc)) {
4670 consume_skb(skb);
4671 return;
4672 }
96e93eab 4673 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4674 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4675 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4676 skb->vlan_tci = 0;
66c46d74 4677 skb->dev = napi->dev;
6d152e23 4678 skb->skb_iif = 0;
c3caf119
JC
4679 skb->encapsulation = 0;
4680 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4681 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 4682 secpath_reset(skb);
96e93eab
HX
4683
4684 napi->skb = skb;
4685}
96e93eab 4686
76620aaf 4687struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4688{
5d38a079 4689 struct sk_buff *skb = napi->skb;
5d38a079
HX
4690
4691 if (!skb) {
fd11a83d 4692 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4693 if (skb) {
4694 napi->skb = skb;
4695 skb_mark_napi_id(skb, napi);
4696 }
80595d59 4697 }
96e93eab
HX
4698 return skb;
4699}
76620aaf 4700EXPORT_SYMBOL(napi_get_frags);
96e93eab 4701
a50e233c
ED
4702static gro_result_t napi_frags_finish(struct napi_struct *napi,
4703 struct sk_buff *skb,
4704 gro_result_t ret)
96e93eab 4705{
5d0d9be8
HX
4706 switch (ret) {
4707 case GRO_NORMAL:
a50e233c
ED
4708 case GRO_HELD:
4709 __skb_push(skb, ETH_HLEN);
4710 skb->protocol = eth_type_trans(skb, skb->dev);
4711 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4712 ret = GRO_DROP;
86911732 4713 break;
5d38a079 4714
5d0d9be8 4715 case GRO_DROP:
5d0d9be8
HX
4716 case GRO_MERGED_FREE:
4717 napi_reuse_skb(napi, skb);
4718 break;
5b252f0c
BH
4719
4720 case GRO_MERGED:
25393d3f 4721 case GRO_CONSUMED:
5b252f0c 4722 break;
5d0d9be8 4723 }
5d38a079 4724
c7c4b3b6 4725 return ret;
5d38a079 4726}
5d0d9be8 4727
a50e233c
ED
4728/* Upper GRO stack assumes network header starts at gro_offset=0
4729 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4730 * We copy ethernet header into skb->data to have a common layout.
4731 */
4adb9c4a 4732static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4733{
4734 struct sk_buff *skb = napi->skb;
a50e233c
ED
4735 const struct ethhdr *eth;
4736 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4737
4738 napi->skb = NULL;
4739
a50e233c
ED
4740 skb_reset_mac_header(skb);
4741 skb_gro_reset_offset(skb);
4742
4743 eth = skb_gro_header_fast(skb, 0);
4744 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4745 eth = skb_gro_header_slow(skb, hlen, 0);
4746 if (unlikely(!eth)) {
4da46ceb
AC
4747 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4748 __func__, napi->dev->name);
a50e233c
ED
4749 napi_reuse_skb(napi, skb);
4750 return NULL;
4751 }
4752 } else {
4753 gro_pull_from_frag0(skb, hlen);
4754 NAPI_GRO_CB(skb)->frag0 += hlen;
4755 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4756 }
a50e233c
ED
4757 __skb_pull(skb, hlen);
4758
4759 /*
4760 * This works because the only protocols we care about don't require
4761 * special handling.
4762 * We'll fix it up properly in napi_frags_finish()
4763 */
4764 skb->protocol = eth->h_proto;
76620aaf 4765
76620aaf
HX
4766 return skb;
4767}
76620aaf 4768
c7c4b3b6 4769gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4770{
76620aaf 4771 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4772
4773 if (!skb)
c7c4b3b6 4774 return GRO_DROP;
5d0d9be8 4775
ae78dbfa
BH
4776 trace_napi_gro_frags_entry(skb);
4777
89c5fa33 4778 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4779}
5d38a079
HX
4780EXPORT_SYMBOL(napi_gro_frags);
4781
573e8fca
TH
4782/* Compute the checksum from gro_offset and return the folded value
4783 * after adding in any pseudo checksum.
4784 */
4785__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4786{
4787 __wsum wsum;
4788 __sum16 sum;
4789
4790 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4791
4792 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4793 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4794 if (likely(!sum)) {
4795 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4796 !skb->csum_complete_sw)
4797 netdev_rx_csum_fault(skb->dev);
4798 }
4799
4800 NAPI_GRO_CB(skb)->csum = wsum;
4801 NAPI_GRO_CB(skb)->csum_valid = 1;
4802
4803 return sum;
4804}
4805EXPORT_SYMBOL(__skb_gro_checksum_complete);
4806
e326bed2 4807/*
855abcf0 4808 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4809 * Note: called with local irq disabled, but exits with local irq enabled.
4810 */
4811static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4812{
4813#ifdef CONFIG_RPS
4814 struct softnet_data *remsd = sd->rps_ipi_list;
4815
4816 if (remsd) {
4817 sd->rps_ipi_list = NULL;
4818
4819 local_irq_enable();
4820
4821 /* Send pending IPI's to kick RPS processing on remote cpus. */
4822 while (remsd) {
4823 struct softnet_data *next = remsd->rps_ipi_next;
4824
4825 if (cpu_online(remsd->cpu))
c46fff2a 4826 smp_call_function_single_async(remsd->cpu,
fce8ad15 4827 &remsd->csd);
e326bed2
ED
4828 remsd = next;
4829 }
4830 } else
4831#endif
4832 local_irq_enable();
4833}
4834
d75b1ade
ED
4835static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4836{
4837#ifdef CONFIG_RPS
4838 return sd->rps_ipi_list != NULL;
4839#else
4840 return false;
4841#endif
4842}
4843
bea3348e 4844static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4845{
eecfd7c4 4846 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4847 bool again = true;
4848 int work = 0;
1da177e4 4849
e326bed2
ED
4850 /* Check if we have pending ipi, its better to send them now,
4851 * not waiting net_rx_action() end.
4852 */
d75b1ade 4853 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4854 local_irq_disable();
4855 net_rps_action_and_irq_enable(sd);
4856 }
d75b1ade 4857
3d48b53f 4858 napi->weight = dev_rx_weight;
145dd5f9 4859 while (again) {
1da177e4 4860 struct sk_buff *skb;
6e7676c1
CG
4861
4862 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4863 rcu_read_lock();
6e7676c1 4864 __netif_receive_skb(skb);
2c17d27c 4865 rcu_read_unlock();
76cc8b13 4866 input_queue_head_incr(sd);
145dd5f9 4867 if (++work >= quota)
76cc8b13 4868 return work;
145dd5f9 4869
6e7676c1 4870 }
1da177e4 4871
145dd5f9 4872 local_irq_disable();
e36fa2f7 4873 rps_lock(sd);
11ef7a89 4874 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4875 /*
4876 * Inline a custom version of __napi_complete().
4877 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4878 * and NAPI_STATE_SCHED is the only possible flag set
4879 * on backlog.
4880 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4881 * and we dont need an smp_mb() memory barrier.
4882 */
eecfd7c4 4883 napi->state = 0;
145dd5f9
PA
4884 again = false;
4885 } else {
4886 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4887 &sd->process_queue);
bea3348e 4888 }
e36fa2f7 4889 rps_unlock(sd);
145dd5f9 4890 local_irq_enable();
6e7676c1 4891 }
1da177e4 4892
bea3348e
SH
4893 return work;
4894}
1da177e4 4895
bea3348e
SH
4896/**
4897 * __napi_schedule - schedule for receive
c4ea43c5 4898 * @n: entry to schedule
bea3348e 4899 *
bc9ad166
ED
4900 * The entry's receive function will be scheduled to run.
4901 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4902 */
b5606c2d 4903void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4904{
4905 unsigned long flags;
1da177e4 4906
bea3348e 4907 local_irq_save(flags);
903ceff7 4908 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4909 local_irq_restore(flags);
1da177e4 4910}
bea3348e
SH
4911EXPORT_SYMBOL(__napi_schedule);
4912
39e6c820
ED
4913/**
4914 * napi_schedule_prep - check if napi can be scheduled
4915 * @n: napi context
4916 *
4917 * Test if NAPI routine is already running, and if not mark
4918 * it as running. This is used as a condition variable
4919 * insure only one NAPI poll instance runs. We also make
4920 * sure there is no pending NAPI disable.
4921 */
4922bool napi_schedule_prep(struct napi_struct *n)
4923{
4924 unsigned long val, new;
4925
4926 do {
4927 val = READ_ONCE(n->state);
4928 if (unlikely(val & NAPIF_STATE_DISABLE))
4929 return false;
4930 new = val | NAPIF_STATE_SCHED;
4931
4932 /* Sets STATE_MISSED bit if STATE_SCHED was already set
4933 * This was suggested by Alexander Duyck, as compiler
4934 * emits better code than :
4935 * if (val & NAPIF_STATE_SCHED)
4936 * new |= NAPIF_STATE_MISSED;
4937 */
4938 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
4939 NAPIF_STATE_MISSED;
4940 } while (cmpxchg(&n->state, val, new) != val);
4941
4942 return !(val & NAPIF_STATE_SCHED);
4943}
4944EXPORT_SYMBOL(napi_schedule_prep);
4945
bc9ad166
ED
4946/**
4947 * __napi_schedule_irqoff - schedule for receive
4948 * @n: entry to schedule
4949 *
4950 * Variant of __napi_schedule() assuming hard irqs are masked
4951 */
4952void __napi_schedule_irqoff(struct napi_struct *n)
4953{
4954 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4955}
4956EXPORT_SYMBOL(__napi_schedule_irqoff);
4957
364b6055 4958bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 4959{
39e6c820 4960 unsigned long flags, val, new;
d565b0a1
HX
4961
4962 /*
217f6974
ED
4963 * 1) Don't let napi dequeue from the cpu poll list
4964 * just in case its running on a different cpu.
4965 * 2) If we are busy polling, do nothing here, we have
4966 * the guarantee we will be called later.
d565b0a1 4967 */
217f6974
ED
4968 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4969 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 4970 return false;
d565b0a1 4971
3b47d303
ED
4972 if (n->gro_list) {
4973 unsigned long timeout = 0;
d75b1ade 4974
3b47d303
ED
4975 if (work_done)
4976 timeout = n->dev->gro_flush_timeout;
4977
4978 if (timeout)
4979 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4980 HRTIMER_MODE_REL_PINNED);
4981 else
4982 napi_gro_flush(n, false);
4983 }
02c1602e 4984 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
4985 /* If n->poll_list is not empty, we need to mask irqs */
4986 local_irq_save(flags);
02c1602e 4987 list_del_init(&n->poll_list);
d75b1ade
ED
4988 local_irq_restore(flags);
4989 }
39e6c820
ED
4990
4991 do {
4992 val = READ_ONCE(n->state);
4993
4994 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
4995
4996 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
4997
4998 /* If STATE_MISSED was set, leave STATE_SCHED set,
4999 * because we will call napi->poll() one more time.
5000 * This C code was suggested by Alexander Duyck to help gcc.
5001 */
5002 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5003 NAPIF_STATE_SCHED;
5004 } while (cmpxchg(&n->state, val, new) != val);
5005
5006 if (unlikely(val & NAPIF_STATE_MISSED)) {
5007 __napi_schedule(n);
5008 return false;
5009 }
5010
364b6055 5011 return true;
d565b0a1 5012}
3b47d303 5013EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5014
af12fa6e 5015/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5016static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5017{
5018 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5019 struct napi_struct *napi;
5020
5021 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5022 if (napi->napi_id == napi_id)
5023 return napi;
5024
5025 return NULL;
5026}
02d62e86
ED
5027
5028#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5029
ce6aea93 5030#define BUSY_POLL_BUDGET 8
217f6974
ED
5031
5032static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5033{
5034 int rc;
5035
39e6c820
ED
5036 /* Busy polling means there is a high chance device driver hard irq
5037 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5038 * set in napi_schedule_prep().
5039 * Since we are about to call napi->poll() once more, we can safely
5040 * clear NAPI_STATE_MISSED.
5041 *
5042 * Note: x86 could use a single "lock and ..." instruction
5043 * to perform these two clear_bit()
5044 */
5045 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5046 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5047
5048 local_bh_disable();
5049
5050 /* All we really want here is to re-enable device interrupts.
5051 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5052 */
5053 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5054 netpoll_poll_unlock(have_poll_lock);
5055 if (rc == BUSY_POLL_BUDGET)
5056 __napi_schedule(napi);
5057 local_bh_enable();
5058 if (local_softirq_pending())
5059 do_softirq();
5060}
5061
02d62e86
ED
5062bool sk_busy_loop(struct sock *sk, int nonblock)
5063{
5064 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
217f6974 5065 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 5066 void *have_poll_lock = NULL;
02d62e86 5067 struct napi_struct *napi;
217f6974
ED
5068 int rc;
5069
5070restart:
5071 rc = false;
5072 napi_poll = NULL;
02d62e86 5073
2a028ecb 5074 rcu_read_lock();
02d62e86
ED
5075
5076 napi = napi_by_id(sk->sk_napi_id);
5077 if (!napi)
5078 goto out;
5079
217f6974
ED
5080 preempt_disable();
5081 for (;;) {
ce6aea93 5082 rc = 0;
2a028ecb 5083 local_bh_disable();
217f6974
ED
5084 if (!napi_poll) {
5085 unsigned long val = READ_ONCE(napi->state);
5086
5087 /* If multiple threads are competing for this napi,
5088 * we avoid dirtying napi->state as much as we can.
5089 */
5090 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5091 NAPIF_STATE_IN_BUSY_POLL))
5092 goto count;
5093 if (cmpxchg(&napi->state, val,
5094 val | NAPIF_STATE_IN_BUSY_POLL |
5095 NAPIF_STATE_SCHED) != val)
5096 goto count;
5097 have_poll_lock = netpoll_poll_lock(napi);
5098 napi_poll = napi->poll;
5099 }
5100 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5101 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5102count:
2a028ecb 5103 if (rc > 0)
02a1d6e7
ED
5104 __NET_ADD_STATS(sock_net(sk),
5105 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 5106 local_bh_enable();
02d62e86 5107
217f6974
ED
5108 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5109 busy_loop_timeout(end_time))
5110 break;
02d62e86 5111
217f6974
ED
5112 if (unlikely(need_resched())) {
5113 if (napi_poll)
5114 busy_poll_stop(napi, have_poll_lock);
5115 preempt_enable();
5116 rcu_read_unlock();
5117 cond_resched();
5118 rc = !skb_queue_empty(&sk->sk_receive_queue);
5119 if (rc || busy_loop_timeout(end_time))
5120 return rc;
5121 goto restart;
5122 }
6cdf89b1 5123 cpu_relax();
217f6974
ED
5124 }
5125 if (napi_poll)
5126 busy_poll_stop(napi, have_poll_lock);
5127 preempt_enable();
02d62e86
ED
5128 rc = !skb_queue_empty(&sk->sk_receive_queue);
5129out:
2a028ecb 5130 rcu_read_unlock();
02d62e86
ED
5131 return rc;
5132}
5133EXPORT_SYMBOL(sk_busy_loop);
5134
5135#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5136
149d6ad8 5137static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5138{
d64b5e85
ED
5139 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5140 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5141 return;
af12fa6e 5142
52bd2d62 5143 spin_lock(&napi_hash_lock);
af12fa6e 5144
52bd2d62
ED
5145 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5146 do {
5147 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5148 napi_gen_id = NR_CPUS + 1;
5149 } while (napi_by_id(napi_gen_id));
5150 napi->napi_id = napi_gen_id;
af12fa6e 5151
52bd2d62
ED
5152 hlist_add_head_rcu(&napi->napi_hash_node,
5153 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5154
52bd2d62 5155 spin_unlock(&napi_hash_lock);
af12fa6e 5156}
af12fa6e
ET
5157
5158/* Warning : caller is responsible to make sure rcu grace period
5159 * is respected before freeing memory containing @napi
5160 */
34cbe27e 5161bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5162{
34cbe27e
ED
5163 bool rcu_sync_needed = false;
5164
af12fa6e
ET
5165 spin_lock(&napi_hash_lock);
5166
34cbe27e
ED
5167 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5168 rcu_sync_needed = true;
af12fa6e 5169 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5170 }
af12fa6e 5171 spin_unlock(&napi_hash_lock);
34cbe27e 5172 return rcu_sync_needed;
af12fa6e
ET
5173}
5174EXPORT_SYMBOL_GPL(napi_hash_del);
5175
3b47d303
ED
5176static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5177{
5178 struct napi_struct *napi;
5179
5180 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
5181
5182 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5183 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5184 */
5185 if (napi->gro_list && !napi_disable_pending(napi) &&
5186 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5187 __napi_schedule_irqoff(napi);
3b47d303
ED
5188
5189 return HRTIMER_NORESTART;
5190}
5191
d565b0a1
HX
5192void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5193 int (*poll)(struct napi_struct *, int), int weight)
5194{
5195 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5196 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5197 napi->timer.function = napi_watchdog;
4ae5544f 5198 napi->gro_count = 0;
d565b0a1 5199 napi->gro_list = NULL;
5d38a079 5200 napi->skb = NULL;
d565b0a1 5201 napi->poll = poll;
82dc3c63
ED
5202 if (weight > NAPI_POLL_WEIGHT)
5203 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5204 weight, dev->name);
d565b0a1
HX
5205 napi->weight = weight;
5206 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5207 napi->dev = dev;
5d38a079 5208#ifdef CONFIG_NETPOLL
d565b0a1
HX
5209 napi->poll_owner = -1;
5210#endif
5211 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5212 napi_hash_add(napi);
d565b0a1
HX
5213}
5214EXPORT_SYMBOL(netif_napi_add);
5215
3b47d303
ED
5216void napi_disable(struct napi_struct *n)
5217{
5218 might_sleep();
5219 set_bit(NAPI_STATE_DISABLE, &n->state);
5220
5221 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5222 msleep(1);
2d8bff12
NH
5223 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5224 msleep(1);
3b47d303
ED
5225
5226 hrtimer_cancel(&n->timer);
5227
5228 clear_bit(NAPI_STATE_DISABLE, &n->state);
5229}
5230EXPORT_SYMBOL(napi_disable);
5231
93d05d4a 5232/* Must be called in process context */
d565b0a1
HX
5233void netif_napi_del(struct napi_struct *napi)
5234{
93d05d4a
ED
5235 might_sleep();
5236 if (napi_hash_del(napi))
5237 synchronize_net();
d7b06636 5238 list_del_init(&napi->dev_list);
76620aaf 5239 napi_free_frags(napi);
d565b0a1 5240
289dccbe 5241 kfree_skb_list(napi->gro_list);
d565b0a1 5242 napi->gro_list = NULL;
4ae5544f 5243 napi->gro_count = 0;
d565b0a1
HX
5244}
5245EXPORT_SYMBOL(netif_napi_del);
5246
726ce70e
HX
5247static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5248{
5249 void *have;
5250 int work, weight;
5251
5252 list_del_init(&n->poll_list);
5253
5254 have = netpoll_poll_lock(n);
5255
5256 weight = n->weight;
5257
5258 /* This NAPI_STATE_SCHED test is for avoiding a race
5259 * with netpoll's poll_napi(). Only the entity which
5260 * obtains the lock and sees NAPI_STATE_SCHED set will
5261 * actually make the ->poll() call. Therefore we avoid
5262 * accidentally calling ->poll() when NAPI is not scheduled.
5263 */
5264 work = 0;
5265 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5266 work = n->poll(n, weight);
1db19db7 5267 trace_napi_poll(n, work, weight);
726ce70e
HX
5268 }
5269
5270 WARN_ON_ONCE(work > weight);
5271
5272 if (likely(work < weight))
5273 goto out_unlock;
5274
5275 /* Drivers must not modify the NAPI state if they
5276 * consume the entire weight. In such cases this code
5277 * still "owns" the NAPI instance and therefore can
5278 * move the instance around on the list at-will.
5279 */
5280 if (unlikely(napi_disable_pending(n))) {
5281 napi_complete(n);
5282 goto out_unlock;
5283 }
5284
5285 if (n->gro_list) {
5286 /* flush too old packets
5287 * If HZ < 1000, flush all packets.
5288 */
5289 napi_gro_flush(n, HZ >= 1000);
5290 }
5291
001ce546
HX
5292 /* Some drivers may have called napi_schedule
5293 * prior to exhausting their budget.
5294 */
5295 if (unlikely(!list_empty(&n->poll_list))) {
5296 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5297 n->dev ? n->dev->name : "backlog");
5298 goto out_unlock;
5299 }
5300
726ce70e
HX
5301 list_add_tail(&n->poll_list, repoll);
5302
5303out_unlock:
5304 netpoll_poll_unlock(have);
5305
5306 return work;
5307}
5308
0766f788 5309static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5310{
903ceff7 5311 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5312 unsigned long time_limit = jiffies + 2;
51b0bded 5313 int budget = netdev_budget;
d75b1ade
ED
5314 LIST_HEAD(list);
5315 LIST_HEAD(repoll);
53fb95d3 5316
1da177e4 5317 local_irq_disable();
d75b1ade
ED
5318 list_splice_init(&sd->poll_list, &list);
5319 local_irq_enable();
1da177e4 5320
ceb8d5bf 5321 for (;;) {
bea3348e 5322 struct napi_struct *n;
1da177e4 5323
ceb8d5bf
HX
5324 if (list_empty(&list)) {
5325 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5326 goto out;
ceb8d5bf
HX
5327 break;
5328 }
5329
6bd373eb
HX
5330 n = list_first_entry(&list, struct napi_struct, poll_list);
5331 budget -= napi_poll(n, &repoll);
5332
d75b1ade 5333 /* If softirq window is exhausted then punt.
24f8b238
SH
5334 * Allow this to run for 2 jiffies since which will allow
5335 * an average latency of 1.5/HZ.
bea3348e 5336 */
ceb8d5bf
HX
5337 if (unlikely(budget <= 0 ||
5338 time_after_eq(jiffies, time_limit))) {
5339 sd->time_squeeze++;
5340 break;
5341 }
1da177e4 5342 }
d75b1ade 5343
d75b1ade
ED
5344 local_irq_disable();
5345
5346 list_splice_tail_init(&sd->poll_list, &list);
5347 list_splice_tail(&repoll, &list);
5348 list_splice(&list, &sd->poll_list);
5349 if (!list_empty(&sd->poll_list))
5350 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5351
e326bed2 5352 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5353out:
5354 __kfree_skb_flush();
1da177e4
LT
5355}
5356
aa9d8560 5357struct netdev_adjacent {
9ff162a8 5358 struct net_device *dev;
5d261913
VF
5359
5360 /* upper master flag, there can only be one master device per list */
9ff162a8 5361 bool master;
5d261913 5362
5d261913
VF
5363 /* counter for the number of times this device was added to us */
5364 u16 ref_nr;
5365
402dae96
VF
5366 /* private field for the users */
5367 void *private;
5368
9ff162a8
JP
5369 struct list_head list;
5370 struct rcu_head rcu;
9ff162a8
JP
5371};
5372
6ea29da1 5373static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5374 struct list_head *adj_list)
9ff162a8 5375{
5d261913 5376 struct netdev_adjacent *adj;
5d261913 5377
2f268f12 5378 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5379 if (adj->dev == adj_dev)
5380 return adj;
9ff162a8
JP
5381 }
5382 return NULL;
5383}
5384
f1170fd4
DA
5385static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5386{
5387 struct net_device *dev = data;
5388
5389 return upper_dev == dev;
5390}
5391
9ff162a8
JP
5392/**
5393 * netdev_has_upper_dev - Check if device is linked to an upper device
5394 * @dev: device
5395 * @upper_dev: upper device to check
5396 *
5397 * Find out if a device is linked to specified upper device and return true
5398 * in case it is. Note that this checks only immediate upper device,
5399 * not through a complete stack of devices. The caller must hold the RTNL lock.
5400 */
5401bool netdev_has_upper_dev(struct net_device *dev,
5402 struct net_device *upper_dev)
5403{
5404 ASSERT_RTNL();
5405
f1170fd4
DA
5406 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5407 upper_dev);
9ff162a8
JP
5408}
5409EXPORT_SYMBOL(netdev_has_upper_dev);
5410
1a3f060c
DA
5411/**
5412 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5413 * @dev: device
5414 * @upper_dev: upper device to check
5415 *
5416 * Find out if a device is linked to specified upper device and return true
5417 * in case it is. Note that this checks the entire upper device chain.
5418 * The caller must hold rcu lock.
5419 */
5420
1a3f060c
DA
5421bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5422 struct net_device *upper_dev)
5423{
5424 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5425 upper_dev);
5426}
5427EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5428
9ff162a8
JP
5429/**
5430 * netdev_has_any_upper_dev - Check if device is linked to some device
5431 * @dev: device
5432 *
5433 * Find out if a device is linked to an upper device and return true in case
5434 * it is. The caller must hold the RTNL lock.
5435 */
1d143d9f 5436static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5437{
5438 ASSERT_RTNL();
5439
f1170fd4 5440 return !list_empty(&dev->adj_list.upper);
9ff162a8 5441}
9ff162a8
JP
5442
5443/**
5444 * netdev_master_upper_dev_get - Get master upper device
5445 * @dev: device
5446 *
5447 * Find a master upper device and return pointer to it or NULL in case
5448 * it's not there. The caller must hold the RTNL lock.
5449 */
5450struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5451{
aa9d8560 5452 struct netdev_adjacent *upper;
9ff162a8
JP
5453
5454 ASSERT_RTNL();
5455
2f268f12 5456 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5457 return NULL;
5458
2f268f12 5459 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5460 struct netdev_adjacent, list);
9ff162a8
JP
5461 if (likely(upper->master))
5462 return upper->dev;
5463 return NULL;
5464}
5465EXPORT_SYMBOL(netdev_master_upper_dev_get);
5466
0f524a80
DA
5467/**
5468 * netdev_has_any_lower_dev - Check if device is linked to some device
5469 * @dev: device
5470 *
5471 * Find out if a device is linked to a lower device and return true in case
5472 * it is. The caller must hold the RTNL lock.
5473 */
5474static bool netdev_has_any_lower_dev(struct net_device *dev)
5475{
5476 ASSERT_RTNL();
5477
5478 return !list_empty(&dev->adj_list.lower);
5479}
5480
b6ccba4c
VF
5481void *netdev_adjacent_get_private(struct list_head *adj_list)
5482{
5483 struct netdev_adjacent *adj;
5484
5485 adj = list_entry(adj_list, struct netdev_adjacent, list);
5486
5487 return adj->private;
5488}
5489EXPORT_SYMBOL(netdev_adjacent_get_private);
5490
44a40855
VY
5491/**
5492 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5493 * @dev: device
5494 * @iter: list_head ** of the current position
5495 *
5496 * Gets the next device from the dev's upper list, starting from iter
5497 * position. The caller must hold RCU read lock.
5498 */
5499struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5500 struct list_head **iter)
5501{
5502 struct netdev_adjacent *upper;
5503
5504 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5505
5506 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5507
5508 if (&upper->list == &dev->adj_list.upper)
5509 return NULL;
5510
5511 *iter = &upper->list;
5512
5513 return upper->dev;
5514}
5515EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5516
1a3f060c
DA
5517static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5518 struct list_head **iter)
5519{
5520 struct netdev_adjacent *upper;
5521
5522 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5523
5524 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5525
5526 if (&upper->list == &dev->adj_list.upper)
5527 return NULL;
5528
5529 *iter = &upper->list;
5530
5531 return upper->dev;
5532}
5533
5534int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5535 int (*fn)(struct net_device *dev,
5536 void *data),
5537 void *data)
5538{
5539 struct net_device *udev;
5540 struct list_head *iter;
5541 int ret;
5542
5543 for (iter = &dev->adj_list.upper,
5544 udev = netdev_next_upper_dev_rcu(dev, &iter);
5545 udev;
5546 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5547 /* first is the upper device itself */
5548 ret = fn(udev, data);
5549 if (ret)
5550 return ret;
5551
5552 /* then look at all of its upper devices */
5553 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5554 if (ret)
5555 return ret;
5556 }
5557
5558 return 0;
5559}
5560EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5561
31088a11
VF
5562/**
5563 * netdev_lower_get_next_private - Get the next ->private from the
5564 * lower neighbour list
5565 * @dev: device
5566 * @iter: list_head ** of the current position
5567 *
5568 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5569 * list, starting from iter position. The caller must hold either hold the
5570 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5571 * list will remain unchanged.
31088a11
VF
5572 */
5573void *netdev_lower_get_next_private(struct net_device *dev,
5574 struct list_head **iter)
5575{
5576 struct netdev_adjacent *lower;
5577
5578 lower = list_entry(*iter, struct netdev_adjacent, list);
5579
5580 if (&lower->list == &dev->adj_list.lower)
5581 return NULL;
5582
6859e7df 5583 *iter = lower->list.next;
31088a11
VF
5584
5585 return lower->private;
5586}
5587EXPORT_SYMBOL(netdev_lower_get_next_private);
5588
5589/**
5590 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5591 * lower neighbour list, RCU
5592 * variant
5593 * @dev: device
5594 * @iter: list_head ** of the current position
5595 *
5596 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5597 * list, starting from iter position. The caller must hold RCU read lock.
5598 */
5599void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5600 struct list_head **iter)
5601{
5602 struct netdev_adjacent *lower;
5603
5604 WARN_ON_ONCE(!rcu_read_lock_held());
5605
5606 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5607
5608 if (&lower->list == &dev->adj_list.lower)
5609 return NULL;
5610
6859e7df 5611 *iter = &lower->list;
31088a11
VF
5612
5613 return lower->private;
5614}
5615EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5616
4085ebe8
VY
5617/**
5618 * netdev_lower_get_next - Get the next device from the lower neighbour
5619 * list
5620 * @dev: device
5621 * @iter: list_head ** of the current position
5622 *
5623 * Gets the next netdev_adjacent from the dev's lower neighbour
5624 * list, starting from iter position. The caller must hold RTNL lock or
5625 * its own locking that guarantees that the neighbour lower
b469139e 5626 * list will remain unchanged.
4085ebe8
VY
5627 */
5628void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5629{
5630 struct netdev_adjacent *lower;
5631
cfdd28be 5632 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5633
5634 if (&lower->list == &dev->adj_list.lower)
5635 return NULL;
5636
cfdd28be 5637 *iter = lower->list.next;
4085ebe8
VY
5638
5639 return lower->dev;
5640}
5641EXPORT_SYMBOL(netdev_lower_get_next);
5642
1a3f060c
DA
5643static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5644 struct list_head **iter)
5645{
5646 struct netdev_adjacent *lower;
5647
46b5ab1a 5648 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5649
5650 if (&lower->list == &dev->adj_list.lower)
5651 return NULL;
5652
46b5ab1a 5653 *iter = &lower->list;
1a3f060c
DA
5654
5655 return lower->dev;
5656}
5657
5658int netdev_walk_all_lower_dev(struct net_device *dev,
5659 int (*fn)(struct net_device *dev,
5660 void *data),
5661 void *data)
5662{
5663 struct net_device *ldev;
5664 struct list_head *iter;
5665 int ret;
5666
5667 for (iter = &dev->adj_list.lower,
5668 ldev = netdev_next_lower_dev(dev, &iter);
5669 ldev;
5670 ldev = netdev_next_lower_dev(dev, &iter)) {
5671 /* first is the lower device itself */
5672 ret = fn(ldev, data);
5673 if (ret)
5674 return ret;
5675
5676 /* then look at all of its lower devices */
5677 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5678 if (ret)
5679 return ret;
5680 }
5681
5682 return 0;
5683}
5684EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5685
1a3f060c
DA
5686static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5687 struct list_head **iter)
5688{
5689 struct netdev_adjacent *lower;
5690
5691 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5692 if (&lower->list == &dev->adj_list.lower)
5693 return NULL;
5694
5695 *iter = &lower->list;
5696
5697 return lower->dev;
5698}
5699
5700int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5701 int (*fn)(struct net_device *dev,
5702 void *data),
5703 void *data)
5704{
5705 struct net_device *ldev;
5706 struct list_head *iter;
5707 int ret;
5708
5709 for (iter = &dev->adj_list.lower,
5710 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5711 ldev;
5712 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5713 /* first is the lower device itself */
5714 ret = fn(ldev, data);
5715 if (ret)
5716 return ret;
5717
5718 /* then look at all of its lower devices */
5719 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5720 if (ret)
5721 return ret;
5722 }
5723
5724 return 0;
5725}
5726EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5727
e001bfad 5728/**
5729 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5730 * lower neighbour list, RCU
5731 * variant
5732 * @dev: device
5733 *
5734 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5735 * list. The caller must hold RCU read lock.
5736 */
5737void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5738{
5739 struct netdev_adjacent *lower;
5740
5741 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5742 struct netdev_adjacent, list);
5743 if (lower)
5744 return lower->private;
5745 return NULL;
5746}
5747EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5748
9ff162a8
JP
5749/**
5750 * netdev_master_upper_dev_get_rcu - Get master upper device
5751 * @dev: device
5752 *
5753 * Find a master upper device and return pointer to it or NULL in case
5754 * it's not there. The caller must hold the RCU read lock.
5755 */
5756struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5757{
aa9d8560 5758 struct netdev_adjacent *upper;
9ff162a8 5759
2f268f12 5760 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5761 struct netdev_adjacent, list);
9ff162a8
JP
5762 if (upper && likely(upper->master))
5763 return upper->dev;
5764 return NULL;
5765}
5766EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5767
0a59f3a9 5768static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5769 struct net_device *adj_dev,
5770 struct list_head *dev_list)
5771{
5772 char linkname[IFNAMSIZ+7];
f4563a75 5773
3ee32707
VF
5774 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5775 "upper_%s" : "lower_%s", adj_dev->name);
5776 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5777 linkname);
5778}
0a59f3a9 5779static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5780 char *name,
5781 struct list_head *dev_list)
5782{
5783 char linkname[IFNAMSIZ+7];
f4563a75 5784
3ee32707
VF
5785 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5786 "upper_%s" : "lower_%s", name);
5787 sysfs_remove_link(&(dev->dev.kobj), linkname);
5788}
5789
7ce64c79
AF
5790static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5791 struct net_device *adj_dev,
5792 struct list_head *dev_list)
5793{
5794 return (dev_list == &dev->adj_list.upper ||
5795 dev_list == &dev->adj_list.lower) &&
5796 net_eq(dev_net(dev), dev_net(adj_dev));
5797}
3ee32707 5798
5d261913
VF
5799static int __netdev_adjacent_dev_insert(struct net_device *dev,
5800 struct net_device *adj_dev,
7863c054 5801 struct list_head *dev_list,
402dae96 5802 void *private, bool master)
5d261913
VF
5803{
5804 struct netdev_adjacent *adj;
842d67a7 5805 int ret;
5d261913 5806
6ea29da1 5807 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5808
5809 if (adj) {
790510d9 5810 adj->ref_nr += 1;
67b62f98
DA
5811 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5812 dev->name, adj_dev->name, adj->ref_nr);
5813
5d261913
VF
5814 return 0;
5815 }
5816
5817 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5818 if (!adj)
5819 return -ENOMEM;
5820
5821 adj->dev = adj_dev;
5822 adj->master = master;
790510d9 5823 adj->ref_nr = 1;
402dae96 5824 adj->private = private;
5d261913 5825 dev_hold(adj_dev);
2f268f12 5826
67b62f98
DA
5827 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5828 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 5829
7ce64c79 5830 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5831 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5832 if (ret)
5833 goto free_adj;
5834 }
5835
7863c054 5836 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5837 if (master) {
5838 ret = sysfs_create_link(&(dev->dev.kobj),
5839 &(adj_dev->dev.kobj), "master");
5840 if (ret)
5831d66e 5841 goto remove_symlinks;
842d67a7 5842
7863c054 5843 list_add_rcu(&adj->list, dev_list);
842d67a7 5844 } else {
7863c054 5845 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5846 }
5d261913
VF
5847
5848 return 0;
842d67a7 5849
5831d66e 5850remove_symlinks:
7ce64c79 5851 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5852 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5853free_adj:
5854 kfree(adj);
974daef7 5855 dev_put(adj_dev);
842d67a7
VF
5856
5857 return ret;
5d261913
VF
5858}
5859
1d143d9f 5860static void __netdev_adjacent_dev_remove(struct net_device *dev,
5861 struct net_device *adj_dev,
93409033 5862 u16 ref_nr,
1d143d9f 5863 struct list_head *dev_list)
5d261913
VF
5864{
5865 struct netdev_adjacent *adj;
5866
67b62f98
DA
5867 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5868 dev->name, adj_dev->name, ref_nr);
5869
6ea29da1 5870 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5871
2f268f12 5872 if (!adj) {
67b62f98 5873 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 5874 dev->name, adj_dev->name);
67b62f98
DA
5875 WARN_ON(1);
5876 return;
2f268f12 5877 }
5d261913 5878
93409033 5879 if (adj->ref_nr > ref_nr) {
67b62f98
DA
5880 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5881 dev->name, adj_dev->name, ref_nr,
5882 adj->ref_nr - ref_nr);
93409033 5883 adj->ref_nr -= ref_nr;
5d261913
VF
5884 return;
5885 }
5886
842d67a7
VF
5887 if (adj->master)
5888 sysfs_remove_link(&(dev->dev.kobj), "master");
5889
7ce64c79 5890 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5891 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5892
5d261913 5893 list_del_rcu(&adj->list);
67b62f98 5894 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 5895 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5896 dev_put(adj_dev);
5897 kfree_rcu(adj, rcu);
5898}
5899
1d143d9f 5900static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5901 struct net_device *upper_dev,
5902 struct list_head *up_list,
5903 struct list_head *down_list,
5904 void *private, bool master)
5d261913
VF
5905{
5906 int ret;
5907
790510d9 5908 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 5909 private, master);
5d261913
VF
5910 if (ret)
5911 return ret;
5912
790510d9 5913 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 5914 private, false);
5d261913 5915 if (ret) {
790510d9 5916 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
5917 return ret;
5918 }
5919
5920 return 0;
5921}
5922
1d143d9f 5923static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5924 struct net_device *upper_dev,
93409033 5925 u16 ref_nr,
1d143d9f 5926 struct list_head *up_list,
5927 struct list_head *down_list)
5d261913 5928{
93409033
AC
5929 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5930 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5931}
5932
1d143d9f 5933static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5934 struct net_device *upper_dev,
5935 void *private, bool master)
2f268f12 5936{
f1170fd4
DA
5937 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5938 &dev->adj_list.upper,
5939 &upper_dev->adj_list.lower,
5940 private, master);
5d261913
VF
5941}
5942
1d143d9f 5943static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5944 struct net_device *upper_dev)
2f268f12 5945{
93409033 5946 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5947 &dev->adj_list.upper,
5948 &upper_dev->adj_list.lower);
5949}
5d261913 5950
9ff162a8 5951static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5952 struct net_device *upper_dev, bool master,
29bf24af 5953 void *upper_priv, void *upper_info)
9ff162a8 5954{
0e4ead9d 5955 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5956 int ret = 0;
9ff162a8
JP
5957
5958 ASSERT_RTNL();
5959
5960 if (dev == upper_dev)
5961 return -EBUSY;
5962
5963 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 5964 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
5965 return -EBUSY;
5966
f1170fd4 5967 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
5968 return -EEXIST;
5969
5970 if (master && netdev_master_upper_dev_get(dev))
5971 return -EBUSY;
5972
0e4ead9d
JP
5973 changeupper_info.upper_dev = upper_dev;
5974 changeupper_info.master = master;
5975 changeupper_info.linking = true;
29bf24af 5976 changeupper_info.upper_info = upper_info;
0e4ead9d 5977
573c7ba0
JP
5978 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5979 &changeupper_info.info);
5980 ret = notifier_to_errno(ret);
5981 if (ret)
5982 return ret;
5983
6dffb044 5984 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5985 master);
5d261913
VF
5986 if (ret)
5987 return ret;
9ff162a8 5988
b03804e7
IS
5989 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5990 &changeupper_info.info);
5991 ret = notifier_to_errno(ret);
5992 if (ret)
f1170fd4 5993 goto rollback;
b03804e7 5994
9ff162a8 5995 return 0;
5d261913 5996
f1170fd4 5997rollback:
2f268f12 5998 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5999
6000 return ret;
9ff162a8
JP
6001}
6002
6003/**
6004 * netdev_upper_dev_link - Add a link to the upper device
6005 * @dev: device
6006 * @upper_dev: new upper device
6007 *
6008 * Adds a link to device which is upper to this one. The caller must hold
6009 * the RTNL lock. On a failure a negative errno code is returned.
6010 * On success the reference counts are adjusted and the function
6011 * returns zero.
6012 */
6013int netdev_upper_dev_link(struct net_device *dev,
6014 struct net_device *upper_dev)
6015{
29bf24af 6016 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
6017}
6018EXPORT_SYMBOL(netdev_upper_dev_link);
6019
6020/**
6021 * netdev_master_upper_dev_link - Add a master link to the upper device
6022 * @dev: device
6023 * @upper_dev: new upper device
6dffb044 6024 * @upper_priv: upper device private
29bf24af 6025 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
6026 *
6027 * Adds a link to device which is upper to this one. In this case, only
6028 * one master upper device can be linked, although other non-master devices
6029 * might be linked as well. The caller must hold the RTNL lock.
6030 * On a failure a negative errno code is returned. On success the reference
6031 * counts are adjusted and the function returns zero.
6032 */
6033int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 6034 struct net_device *upper_dev,
29bf24af 6035 void *upper_priv, void *upper_info)
9ff162a8 6036{
29bf24af
JP
6037 return __netdev_upper_dev_link(dev, upper_dev, true,
6038 upper_priv, upper_info);
9ff162a8
JP
6039}
6040EXPORT_SYMBOL(netdev_master_upper_dev_link);
6041
6042/**
6043 * netdev_upper_dev_unlink - Removes a link to upper device
6044 * @dev: device
6045 * @upper_dev: new upper device
6046 *
6047 * Removes a link to device which is upper to this one. The caller must hold
6048 * the RTNL lock.
6049 */
6050void netdev_upper_dev_unlink(struct net_device *dev,
6051 struct net_device *upper_dev)
6052{
0e4ead9d 6053 struct netdev_notifier_changeupper_info changeupper_info;
f4563a75 6054
9ff162a8
JP
6055 ASSERT_RTNL();
6056
0e4ead9d
JP
6057 changeupper_info.upper_dev = upper_dev;
6058 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6059 changeupper_info.linking = false;
6060
573c7ba0
JP
6061 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6062 &changeupper_info.info);
6063
2f268f12 6064 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6065
0e4ead9d
JP
6066 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6067 &changeupper_info.info);
9ff162a8
JP
6068}
6069EXPORT_SYMBOL(netdev_upper_dev_unlink);
6070
61bd3857
MS
6071/**
6072 * netdev_bonding_info_change - Dispatch event about slave change
6073 * @dev: device
4a26e453 6074 * @bonding_info: info to dispatch
61bd3857
MS
6075 *
6076 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6077 * The caller must hold the RTNL lock.
6078 */
6079void netdev_bonding_info_change(struct net_device *dev,
6080 struct netdev_bonding_info *bonding_info)
6081{
6082 struct netdev_notifier_bonding_info info;
6083
6084 memcpy(&info.bonding_info, bonding_info,
6085 sizeof(struct netdev_bonding_info));
6086 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6087 &info.info);
6088}
6089EXPORT_SYMBOL(netdev_bonding_info_change);
6090
2ce1ee17 6091static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6092{
6093 struct netdev_adjacent *iter;
6094
6095 struct net *net = dev_net(dev);
6096
6097 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6098 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6099 continue;
6100 netdev_adjacent_sysfs_add(iter->dev, dev,
6101 &iter->dev->adj_list.lower);
6102 netdev_adjacent_sysfs_add(dev, iter->dev,
6103 &dev->adj_list.upper);
6104 }
6105
6106 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6107 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6108 continue;
6109 netdev_adjacent_sysfs_add(iter->dev, dev,
6110 &iter->dev->adj_list.upper);
6111 netdev_adjacent_sysfs_add(dev, iter->dev,
6112 &dev->adj_list.lower);
6113 }
6114}
6115
2ce1ee17 6116static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6117{
6118 struct netdev_adjacent *iter;
6119
6120 struct net *net = dev_net(dev);
6121
6122 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6123 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6124 continue;
6125 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6126 &iter->dev->adj_list.lower);
6127 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6128 &dev->adj_list.upper);
6129 }
6130
6131 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6132 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6133 continue;
6134 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6135 &iter->dev->adj_list.upper);
6136 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6137 &dev->adj_list.lower);
6138 }
6139}
6140
5bb025fa 6141void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6142{
5bb025fa 6143 struct netdev_adjacent *iter;
402dae96 6144
4c75431a
AF
6145 struct net *net = dev_net(dev);
6146
5bb025fa 6147 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6148 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6149 continue;
5bb025fa
VF
6150 netdev_adjacent_sysfs_del(iter->dev, oldname,
6151 &iter->dev->adj_list.lower);
6152 netdev_adjacent_sysfs_add(iter->dev, dev,
6153 &iter->dev->adj_list.lower);
6154 }
402dae96 6155
5bb025fa 6156 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6157 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6158 continue;
5bb025fa
VF
6159 netdev_adjacent_sysfs_del(iter->dev, oldname,
6160 &iter->dev->adj_list.upper);
6161 netdev_adjacent_sysfs_add(iter->dev, dev,
6162 &iter->dev->adj_list.upper);
6163 }
402dae96 6164}
402dae96
VF
6165
6166void *netdev_lower_dev_get_private(struct net_device *dev,
6167 struct net_device *lower_dev)
6168{
6169 struct netdev_adjacent *lower;
6170
6171 if (!lower_dev)
6172 return NULL;
6ea29da1 6173 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6174 if (!lower)
6175 return NULL;
6176
6177 return lower->private;
6178}
6179EXPORT_SYMBOL(netdev_lower_dev_get_private);
6180
4085ebe8 6181
952fcfd0 6182int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6183{
6184 struct net_device *lower = NULL;
6185 struct list_head *iter;
6186 int max_nest = -1;
6187 int nest;
6188
6189 ASSERT_RTNL();
6190
6191 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6192 nest = dev_get_nest_level(lower);
4085ebe8
VY
6193 if (max_nest < nest)
6194 max_nest = nest;
6195 }
6196
952fcfd0 6197 return max_nest + 1;
4085ebe8
VY
6198}
6199EXPORT_SYMBOL(dev_get_nest_level);
6200
04d48266
JP
6201/**
6202 * netdev_lower_change - Dispatch event about lower device state change
6203 * @lower_dev: device
6204 * @lower_state_info: state to dispatch
6205 *
6206 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6207 * The caller must hold the RTNL lock.
6208 */
6209void netdev_lower_state_changed(struct net_device *lower_dev,
6210 void *lower_state_info)
6211{
6212 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6213
6214 ASSERT_RTNL();
6215 changelowerstate_info.lower_state_info = lower_state_info;
6216 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6217 &changelowerstate_info.info);
6218}
6219EXPORT_SYMBOL(netdev_lower_state_changed);
6220
b6c40d68
PM
6221static void dev_change_rx_flags(struct net_device *dev, int flags)
6222{
d314774c
SH
6223 const struct net_device_ops *ops = dev->netdev_ops;
6224
d2615bf4 6225 if (ops->ndo_change_rx_flags)
d314774c 6226 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6227}
6228
991fb3f7 6229static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6230{
b536db93 6231 unsigned int old_flags = dev->flags;
d04a48b0
EB
6232 kuid_t uid;
6233 kgid_t gid;
1da177e4 6234
24023451
PM
6235 ASSERT_RTNL();
6236
dad9b335
WC
6237 dev->flags |= IFF_PROMISC;
6238 dev->promiscuity += inc;
6239 if (dev->promiscuity == 0) {
6240 /*
6241 * Avoid overflow.
6242 * If inc causes overflow, untouch promisc and return error.
6243 */
6244 if (inc < 0)
6245 dev->flags &= ~IFF_PROMISC;
6246 else {
6247 dev->promiscuity -= inc;
7b6cd1ce
JP
6248 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6249 dev->name);
dad9b335
WC
6250 return -EOVERFLOW;
6251 }
6252 }
52609c0b 6253 if (dev->flags != old_flags) {
7b6cd1ce
JP
6254 pr_info("device %s %s promiscuous mode\n",
6255 dev->name,
6256 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6257 if (audit_enabled) {
6258 current_uid_gid(&uid, &gid);
7759db82
KHK
6259 audit_log(current->audit_context, GFP_ATOMIC,
6260 AUDIT_ANOM_PROMISCUOUS,
6261 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6262 dev->name, (dev->flags & IFF_PROMISC),
6263 (old_flags & IFF_PROMISC),
e1760bd5 6264 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6265 from_kuid(&init_user_ns, uid),
6266 from_kgid(&init_user_ns, gid),
7759db82 6267 audit_get_sessionid(current));
8192b0c4 6268 }
24023451 6269
b6c40d68 6270 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6271 }
991fb3f7
ND
6272 if (notify)
6273 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6274 return 0;
1da177e4
LT
6275}
6276
4417da66
PM
6277/**
6278 * dev_set_promiscuity - update promiscuity count on a device
6279 * @dev: device
6280 * @inc: modifier
6281 *
6282 * Add or remove promiscuity from a device. While the count in the device
6283 * remains above zero the interface remains promiscuous. Once it hits zero
6284 * the device reverts back to normal filtering operation. A negative inc
6285 * value is used to drop promiscuity on the device.
dad9b335 6286 * Return 0 if successful or a negative errno code on error.
4417da66 6287 */
dad9b335 6288int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6289{
b536db93 6290 unsigned int old_flags = dev->flags;
dad9b335 6291 int err;
4417da66 6292
991fb3f7 6293 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6294 if (err < 0)
dad9b335 6295 return err;
4417da66
PM
6296 if (dev->flags != old_flags)
6297 dev_set_rx_mode(dev);
dad9b335 6298 return err;
4417da66 6299}
d1b19dff 6300EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6301
991fb3f7 6302static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6303{
991fb3f7 6304 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6305
24023451
PM
6306 ASSERT_RTNL();
6307
1da177e4 6308 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6309 dev->allmulti += inc;
6310 if (dev->allmulti == 0) {
6311 /*
6312 * Avoid overflow.
6313 * If inc causes overflow, untouch allmulti and return error.
6314 */
6315 if (inc < 0)
6316 dev->flags &= ~IFF_ALLMULTI;
6317 else {
6318 dev->allmulti -= inc;
7b6cd1ce
JP
6319 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6320 dev->name);
dad9b335
WC
6321 return -EOVERFLOW;
6322 }
6323 }
24023451 6324 if (dev->flags ^ old_flags) {
b6c40d68 6325 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6326 dev_set_rx_mode(dev);
991fb3f7
ND
6327 if (notify)
6328 __dev_notify_flags(dev, old_flags,
6329 dev->gflags ^ old_gflags);
24023451 6330 }
dad9b335 6331 return 0;
4417da66 6332}
991fb3f7
ND
6333
6334/**
6335 * dev_set_allmulti - update allmulti count on a device
6336 * @dev: device
6337 * @inc: modifier
6338 *
6339 * Add or remove reception of all multicast frames to a device. While the
6340 * count in the device remains above zero the interface remains listening
6341 * to all interfaces. Once it hits zero the device reverts back to normal
6342 * filtering operation. A negative @inc value is used to drop the counter
6343 * when releasing a resource needing all multicasts.
6344 * Return 0 if successful or a negative errno code on error.
6345 */
6346
6347int dev_set_allmulti(struct net_device *dev, int inc)
6348{
6349 return __dev_set_allmulti(dev, inc, true);
6350}
d1b19dff 6351EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6352
6353/*
6354 * Upload unicast and multicast address lists to device and
6355 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6356 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6357 * are present.
6358 */
6359void __dev_set_rx_mode(struct net_device *dev)
6360{
d314774c
SH
6361 const struct net_device_ops *ops = dev->netdev_ops;
6362
4417da66
PM
6363 /* dev_open will call this function so the list will stay sane. */
6364 if (!(dev->flags&IFF_UP))
6365 return;
6366
6367 if (!netif_device_present(dev))
40b77c94 6368 return;
4417da66 6369
01789349 6370 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6371 /* Unicast addresses changes may only happen under the rtnl,
6372 * therefore calling __dev_set_promiscuity here is safe.
6373 */
32e7bfc4 6374 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6375 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6376 dev->uc_promisc = true;
32e7bfc4 6377 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6378 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6379 dev->uc_promisc = false;
4417da66 6380 }
4417da66 6381 }
01789349
JP
6382
6383 if (ops->ndo_set_rx_mode)
6384 ops->ndo_set_rx_mode(dev);
4417da66
PM
6385}
6386
6387void dev_set_rx_mode(struct net_device *dev)
6388{
b9e40857 6389 netif_addr_lock_bh(dev);
4417da66 6390 __dev_set_rx_mode(dev);
b9e40857 6391 netif_addr_unlock_bh(dev);
1da177e4
LT
6392}
6393
f0db275a
SH
6394/**
6395 * dev_get_flags - get flags reported to userspace
6396 * @dev: device
6397 *
6398 * Get the combination of flag bits exported through APIs to userspace.
6399 */
95c96174 6400unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6401{
95c96174 6402 unsigned int flags;
1da177e4
LT
6403
6404 flags = (dev->flags & ~(IFF_PROMISC |
6405 IFF_ALLMULTI |
b00055aa
SR
6406 IFF_RUNNING |
6407 IFF_LOWER_UP |
6408 IFF_DORMANT)) |
1da177e4
LT
6409 (dev->gflags & (IFF_PROMISC |
6410 IFF_ALLMULTI));
6411
b00055aa
SR
6412 if (netif_running(dev)) {
6413 if (netif_oper_up(dev))
6414 flags |= IFF_RUNNING;
6415 if (netif_carrier_ok(dev))
6416 flags |= IFF_LOWER_UP;
6417 if (netif_dormant(dev))
6418 flags |= IFF_DORMANT;
6419 }
1da177e4
LT
6420
6421 return flags;
6422}
d1b19dff 6423EXPORT_SYMBOL(dev_get_flags);
1da177e4 6424
bd380811 6425int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6426{
b536db93 6427 unsigned int old_flags = dev->flags;
bd380811 6428 int ret;
1da177e4 6429
24023451
PM
6430 ASSERT_RTNL();
6431
1da177e4
LT
6432 /*
6433 * Set the flags on our device.
6434 */
6435
6436 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6437 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6438 IFF_AUTOMEDIA)) |
6439 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6440 IFF_ALLMULTI));
6441
6442 /*
6443 * Load in the correct multicast list now the flags have changed.
6444 */
6445
b6c40d68
PM
6446 if ((old_flags ^ flags) & IFF_MULTICAST)
6447 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6448
4417da66 6449 dev_set_rx_mode(dev);
1da177e4
LT
6450
6451 /*
6452 * Have we downed the interface. We handle IFF_UP ourselves
6453 * according to user attempts to set it, rather than blindly
6454 * setting it.
6455 */
6456
6457 ret = 0;
d215d10f 6458 if ((old_flags ^ flags) & IFF_UP)
bd380811 6459 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6460
1da177e4 6461 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6462 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6463 unsigned int old_flags = dev->flags;
d1b19dff 6464
1da177e4 6465 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6466
6467 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6468 if (dev->flags != old_flags)
6469 dev_set_rx_mode(dev);
1da177e4
LT
6470 }
6471
6472 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 6473 * is important. Some (broken) drivers set IFF_PROMISC, when
6474 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
6475 */
6476 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6477 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6478
1da177e4 6479 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6480 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6481 }
6482
bd380811
PM
6483 return ret;
6484}
6485
a528c219
ND
6486void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6487 unsigned int gchanges)
bd380811
PM
6488{
6489 unsigned int changes = dev->flags ^ old_flags;
6490
a528c219 6491 if (gchanges)
7f294054 6492 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6493
bd380811
PM
6494 if (changes & IFF_UP) {
6495 if (dev->flags & IFF_UP)
6496 call_netdevice_notifiers(NETDEV_UP, dev);
6497 else
6498 call_netdevice_notifiers(NETDEV_DOWN, dev);
6499 }
6500
6501 if (dev->flags & IFF_UP &&
be9efd36
JP
6502 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6503 struct netdev_notifier_change_info change_info;
6504
6505 change_info.flags_changed = changes;
6506 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6507 &change_info.info);
6508 }
bd380811
PM
6509}
6510
6511/**
6512 * dev_change_flags - change device settings
6513 * @dev: device
6514 * @flags: device state flags
6515 *
6516 * Change settings on device based state flags. The flags are
6517 * in the userspace exported format.
6518 */
b536db93 6519int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6520{
b536db93 6521 int ret;
991fb3f7 6522 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6523
6524 ret = __dev_change_flags(dev, flags);
6525 if (ret < 0)
6526 return ret;
6527
991fb3f7 6528 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6529 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6530 return ret;
6531}
d1b19dff 6532EXPORT_SYMBOL(dev_change_flags);
1da177e4 6533
2315dc91
VF
6534static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6535{
6536 const struct net_device_ops *ops = dev->netdev_ops;
6537
6538 if (ops->ndo_change_mtu)
6539 return ops->ndo_change_mtu(dev, new_mtu);
6540
6541 dev->mtu = new_mtu;
6542 return 0;
6543}
6544
f0db275a
SH
6545/**
6546 * dev_set_mtu - Change maximum transfer unit
6547 * @dev: device
6548 * @new_mtu: new transfer unit
6549 *
6550 * Change the maximum transfer size of the network device.
6551 */
1da177e4
LT
6552int dev_set_mtu(struct net_device *dev, int new_mtu)
6553{
2315dc91 6554 int err, orig_mtu;
1da177e4
LT
6555
6556 if (new_mtu == dev->mtu)
6557 return 0;
6558
61e84623
JW
6559 /* MTU must be positive, and in range */
6560 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6561 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6562 dev->name, new_mtu, dev->min_mtu);
1da177e4 6563 return -EINVAL;
61e84623
JW
6564 }
6565
6566 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6567 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6568 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6569 return -EINVAL;
6570 }
1da177e4
LT
6571
6572 if (!netif_device_present(dev))
6573 return -ENODEV;
6574
1d486bfb
VF
6575 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6576 err = notifier_to_errno(err);
6577 if (err)
6578 return err;
d314774c 6579
2315dc91
VF
6580 orig_mtu = dev->mtu;
6581 err = __dev_set_mtu(dev, new_mtu);
d314774c 6582
2315dc91
VF
6583 if (!err) {
6584 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6585 err = notifier_to_errno(err);
6586 if (err) {
6587 /* setting mtu back and notifying everyone again,
6588 * so that they have a chance to revert changes.
6589 */
6590 __dev_set_mtu(dev, orig_mtu);
6591 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6592 }
6593 }
1da177e4
LT
6594 return err;
6595}
d1b19dff 6596EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6597
cbda10fa
VD
6598/**
6599 * dev_set_group - Change group this device belongs to
6600 * @dev: device
6601 * @new_group: group this device should belong to
6602 */
6603void dev_set_group(struct net_device *dev, int new_group)
6604{
6605 dev->group = new_group;
6606}
6607EXPORT_SYMBOL(dev_set_group);
6608
f0db275a
SH
6609/**
6610 * dev_set_mac_address - Change Media Access Control Address
6611 * @dev: device
6612 * @sa: new address
6613 *
6614 * Change the hardware (MAC) address of the device
6615 */
1da177e4
LT
6616int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6617{
d314774c 6618 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6619 int err;
6620
d314774c 6621 if (!ops->ndo_set_mac_address)
1da177e4
LT
6622 return -EOPNOTSUPP;
6623 if (sa->sa_family != dev->type)
6624 return -EINVAL;
6625 if (!netif_device_present(dev))
6626 return -ENODEV;
d314774c 6627 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6628 if (err)
6629 return err;
fbdeca2d 6630 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6631 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6632 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6633 return 0;
1da177e4 6634}
d1b19dff 6635EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6636
4bf84c35
JP
6637/**
6638 * dev_change_carrier - Change device carrier
6639 * @dev: device
691b3b7e 6640 * @new_carrier: new value
4bf84c35
JP
6641 *
6642 * Change device carrier
6643 */
6644int dev_change_carrier(struct net_device *dev, bool new_carrier)
6645{
6646 const struct net_device_ops *ops = dev->netdev_ops;
6647
6648 if (!ops->ndo_change_carrier)
6649 return -EOPNOTSUPP;
6650 if (!netif_device_present(dev))
6651 return -ENODEV;
6652 return ops->ndo_change_carrier(dev, new_carrier);
6653}
6654EXPORT_SYMBOL(dev_change_carrier);
6655
66b52b0d
JP
6656/**
6657 * dev_get_phys_port_id - Get device physical port ID
6658 * @dev: device
6659 * @ppid: port ID
6660 *
6661 * Get device physical port ID
6662 */
6663int dev_get_phys_port_id(struct net_device *dev,
02637fce 6664 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6665{
6666 const struct net_device_ops *ops = dev->netdev_ops;
6667
6668 if (!ops->ndo_get_phys_port_id)
6669 return -EOPNOTSUPP;
6670 return ops->ndo_get_phys_port_id(dev, ppid);
6671}
6672EXPORT_SYMBOL(dev_get_phys_port_id);
6673
db24a904
DA
6674/**
6675 * dev_get_phys_port_name - Get device physical port name
6676 * @dev: device
6677 * @name: port name
ed49e650 6678 * @len: limit of bytes to copy to name
db24a904
DA
6679 *
6680 * Get device physical port name
6681 */
6682int dev_get_phys_port_name(struct net_device *dev,
6683 char *name, size_t len)
6684{
6685 const struct net_device_ops *ops = dev->netdev_ops;
6686
6687 if (!ops->ndo_get_phys_port_name)
6688 return -EOPNOTSUPP;
6689 return ops->ndo_get_phys_port_name(dev, name, len);
6690}
6691EXPORT_SYMBOL(dev_get_phys_port_name);
6692
d746d707
AK
6693/**
6694 * dev_change_proto_down - update protocol port state information
6695 * @dev: device
6696 * @proto_down: new value
6697 *
6698 * This info can be used by switch drivers to set the phys state of the
6699 * port.
6700 */
6701int dev_change_proto_down(struct net_device *dev, bool proto_down)
6702{
6703 const struct net_device_ops *ops = dev->netdev_ops;
6704
6705 if (!ops->ndo_change_proto_down)
6706 return -EOPNOTSUPP;
6707 if (!netif_device_present(dev))
6708 return -ENODEV;
6709 return ops->ndo_change_proto_down(dev, proto_down);
6710}
6711EXPORT_SYMBOL(dev_change_proto_down);
6712
a7862b45
BB
6713/**
6714 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6715 * @dev: device
6716 * @fd: new program fd or negative value to clear
85de8576 6717 * @flags: xdp-related flags
a7862b45
BB
6718 *
6719 * Set or clear a bpf program for a device
6720 */
85de8576 6721int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
a7862b45
BB
6722{
6723 const struct net_device_ops *ops = dev->netdev_ops;
6724 struct bpf_prog *prog = NULL;
85de8576 6725 struct netdev_xdp xdp;
a7862b45
BB
6726 int err;
6727
85de8576
DB
6728 ASSERT_RTNL();
6729
a7862b45
BB
6730 if (!ops->ndo_xdp)
6731 return -EOPNOTSUPP;
6732 if (fd >= 0) {
85de8576
DB
6733 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6734 memset(&xdp, 0, sizeof(xdp));
6735 xdp.command = XDP_QUERY_PROG;
6736
6737 err = ops->ndo_xdp(dev, &xdp);
6738 if (err < 0)
6739 return err;
6740 if (xdp.prog_attached)
6741 return -EBUSY;
6742 }
6743
a7862b45
BB
6744 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6745 if (IS_ERR(prog))
6746 return PTR_ERR(prog);
6747 }
6748
85de8576 6749 memset(&xdp, 0, sizeof(xdp));
a7862b45
BB
6750 xdp.command = XDP_SETUP_PROG;
6751 xdp.prog = prog;
85de8576 6752
a7862b45
BB
6753 err = ops->ndo_xdp(dev, &xdp);
6754 if (err < 0 && prog)
6755 bpf_prog_put(prog);
6756
6757 return err;
6758}
6759EXPORT_SYMBOL(dev_change_xdp_fd);
6760
1da177e4
LT
6761/**
6762 * dev_new_index - allocate an ifindex
c4ea43c5 6763 * @net: the applicable net namespace
1da177e4
LT
6764 *
6765 * Returns a suitable unique value for a new device interface
6766 * number. The caller must hold the rtnl semaphore or the
6767 * dev_base_lock to be sure it remains unique.
6768 */
881d966b 6769static int dev_new_index(struct net *net)
1da177e4 6770{
aa79e66e 6771 int ifindex = net->ifindex;
f4563a75 6772
1da177e4
LT
6773 for (;;) {
6774 if (++ifindex <= 0)
6775 ifindex = 1;
881d966b 6776 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6777 return net->ifindex = ifindex;
1da177e4
LT
6778 }
6779}
6780
1da177e4 6781/* Delayed registration/unregisteration */
3b5b34fd 6782static LIST_HEAD(net_todo_list);
200b916f 6783DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6784
6f05f629 6785static void net_set_todo(struct net_device *dev)
1da177e4 6786{
1da177e4 6787 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6788 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6789}
6790
9b5e383c 6791static void rollback_registered_many(struct list_head *head)
93ee31f1 6792{
e93737b0 6793 struct net_device *dev, *tmp;
5cde2829 6794 LIST_HEAD(close_head);
9b5e383c 6795
93ee31f1
DL
6796 BUG_ON(dev_boot_phase);
6797 ASSERT_RTNL();
6798
e93737b0 6799 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6800 /* Some devices call without registering
e93737b0
KK
6801 * for initialization unwind. Remove those
6802 * devices and proceed with the remaining.
9b5e383c
ED
6803 */
6804 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6805 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6806 dev->name, dev);
93ee31f1 6807
9b5e383c 6808 WARN_ON(1);
e93737b0
KK
6809 list_del(&dev->unreg_list);
6810 continue;
9b5e383c 6811 }
449f4544 6812 dev->dismantle = true;
9b5e383c 6813 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6814 }
93ee31f1 6815
44345724 6816 /* If device is running, close it first. */
5cde2829
EB
6817 list_for_each_entry(dev, head, unreg_list)
6818 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6819 dev_close_many(&close_head, true);
93ee31f1 6820
44345724 6821 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6822 /* And unlink it from device chain. */
6823 unlist_netdevice(dev);
93ee31f1 6824
9b5e383c
ED
6825 dev->reg_state = NETREG_UNREGISTERING;
6826 }
41852497 6827 flush_all_backlogs();
93ee31f1
DL
6828
6829 synchronize_net();
6830
9b5e383c 6831 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6832 struct sk_buff *skb = NULL;
6833
9b5e383c
ED
6834 /* Shutdown queueing discipline. */
6835 dev_shutdown(dev);
93ee31f1
DL
6836
6837
9b5e383c 6838 /* Notify protocols, that we are about to destroy
eb13da1a 6839 * this device. They should clean all the things.
6840 */
9b5e383c 6841 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6842
395eea6c
MB
6843 if (!dev->rtnl_link_ops ||
6844 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6845 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6846 GFP_KERNEL);
6847
9b5e383c
ED
6848 /*
6849 * Flush the unicast and multicast chains
6850 */
a748ee24 6851 dev_uc_flush(dev);
22bedad3 6852 dev_mc_flush(dev);
93ee31f1 6853
9b5e383c
ED
6854 if (dev->netdev_ops->ndo_uninit)
6855 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6856
395eea6c
MB
6857 if (skb)
6858 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6859
9ff162a8
JP
6860 /* Notifier chain MUST detach us all upper devices. */
6861 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 6862 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 6863
9b5e383c
ED
6864 /* Remove entries from kobject tree */
6865 netdev_unregister_kobject(dev);
024e9679
AD
6866#ifdef CONFIG_XPS
6867 /* Remove XPS queueing entries */
6868 netif_reset_xps_queues_gt(dev, 0);
6869#endif
9b5e383c 6870 }
93ee31f1 6871
850a545b 6872 synchronize_net();
395264d5 6873
a5ee1551 6874 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6875 dev_put(dev);
6876}
6877
6878static void rollback_registered(struct net_device *dev)
6879{
6880 LIST_HEAD(single);
6881
6882 list_add(&dev->unreg_list, &single);
6883 rollback_registered_many(&single);
ceaaec98 6884 list_del(&single);
93ee31f1
DL
6885}
6886
fd867d51
JW
6887static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6888 struct net_device *upper, netdev_features_t features)
6889{
6890 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6891 netdev_features_t feature;
5ba3f7d6 6892 int feature_bit;
fd867d51 6893
5ba3f7d6
JW
6894 for_each_netdev_feature(&upper_disables, feature_bit) {
6895 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6896 if (!(upper->wanted_features & feature)
6897 && (features & feature)) {
6898 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6899 &feature, upper->name);
6900 features &= ~feature;
6901 }
6902 }
6903
6904 return features;
6905}
6906
6907static void netdev_sync_lower_features(struct net_device *upper,
6908 struct net_device *lower, netdev_features_t features)
6909{
6910 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6911 netdev_features_t feature;
5ba3f7d6 6912 int feature_bit;
fd867d51 6913
5ba3f7d6
JW
6914 for_each_netdev_feature(&upper_disables, feature_bit) {
6915 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6916 if (!(features & feature) && (lower->features & feature)) {
6917 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6918 &feature, lower->name);
6919 lower->wanted_features &= ~feature;
6920 netdev_update_features(lower);
6921
6922 if (unlikely(lower->features & feature))
6923 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6924 &feature, lower->name);
6925 }
6926 }
6927}
6928
c8f44aff
MM
6929static netdev_features_t netdev_fix_features(struct net_device *dev,
6930 netdev_features_t features)
b63365a2 6931{
57422dc5
MM
6932 /* Fix illegal checksum combinations */
6933 if ((features & NETIF_F_HW_CSUM) &&
6934 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6935 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6936 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6937 }
6938
b63365a2 6939 /* TSO requires that SG is present as well. */
ea2d3688 6940 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6941 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6942 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6943 }
6944
ec5f0615
PS
6945 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6946 !(features & NETIF_F_IP_CSUM)) {
6947 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6948 features &= ~NETIF_F_TSO;
6949 features &= ~NETIF_F_TSO_ECN;
6950 }
6951
6952 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6953 !(features & NETIF_F_IPV6_CSUM)) {
6954 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6955 features &= ~NETIF_F_TSO6;
6956 }
6957
b1dc497b
AD
6958 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6959 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6960 features &= ~NETIF_F_TSO_MANGLEID;
6961
31d8b9e0
BH
6962 /* TSO ECN requires that TSO is present as well. */
6963 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6964 features &= ~NETIF_F_TSO_ECN;
6965
212b573f
MM
6966 /* Software GSO depends on SG. */
6967 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6968 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6969 features &= ~NETIF_F_GSO;
6970 }
6971
acd1130e 6972 /* UFO needs SG and checksumming */
b63365a2 6973 if (features & NETIF_F_UFO) {
79032644 6974 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6975 if (!(features & NETIF_F_HW_CSUM) &&
6976 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6977 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6978 netdev_dbg(dev,
acd1130e 6979 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6980 features &= ~NETIF_F_UFO;
6981 }
6982
6983 if (!(features & NETIF_F_SG)) {
6f404e44 6984 netdev_dbg(dev,
acd1130e 6985 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6986 features &= ~NETIF_F_UFO;
6987 }
6988 }
6989
802ab55a
AD
6990 /* GSO partial features require GSO partial be set */
6991 if ((features & dev->gso_partial_features) &&
6992 !(features & NETIF_F_GSO_PARTIAL)) {
6993 netdev_dbg(dev,
6994 "Dropping partially supported GSO features since no GSO partial.\n");
6995 features &= ~dev->gso_partial_features;
6996 }
6997
b63365a2
HX
6998 return features;
6999}
b63365a2 7000
6cb6a27c 7001int __netdev_update_features(struct net_device *dev)
5455c699 7002{
fd867d51 7003 struct net_device *upper, *lower;
c8f44aff 7004 netdev_features_t features;
fd867d51 7005 struct list_head *iter;
e7868a85 7006 int err = -1;
5455c699 7007
87267485
MM
7008 ASSERT_RTNL();
7009
5455c699
MM
7010 features = netdev_get_wanted_features(dev);
7011
7012 if (dev->netdev_ops->ndo_fix_features)
7013 features = dev->netdev_ops->ndo_fix_features(dev, features);
7014
7015 /* driver might be less strict about feature dependencies */
7016 features = netdev_fix_features(dev, features);
7017
fd867d51
JW
7018 /* some features can't be enabled if they're off an an upper device */
7019 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7020 features = netdev_sync_upper_features(dev, upper, features);
7021
5455c699 7022 if (dev->features == features)
e7868a85 7023 goto sync_lower;
5455c699 7024
c8f44aff
MM
7025 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7026 &dev->features, &features);
5455c699
MM
7027
7028 if (dev->netdev_ops->ndo_set_features)
7029 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7030 else
7031 err = 0;
5455c699 7032
6cb6a27c 7033 if (unlikely(err < 0)) {
5455c699 7034 netdev_err(dev,
c8f44aff
MM
7035 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7036 err, &features, &dev->features);
17b85d29
NA
7037 /* return non-0 since some features might have changed and
7038 * it's better to fire a spurious notification than miss it
7039 */
7040 return -1;
6cb6a27c
MM
7041 }
7042
e7868a85 7043sync_lower:
fd867d51
JW
7044 /* some features must be disabled on lower devices when disabled
7045 * on an upper device (think: bonding master or bridge)
7046 */
7047 netdev_for_each_lower_dev(dev, lower, iter)
7048 netdev_sync_lower_features(dev, lower, features);
7049
6cb6a27c
MM
7050 if (!err)
7051 dev->features = features;
7052
e7868a85 7053 return err < 0 ? 0 : 1;
6cb6a27c
MM
7054}
7055
afe12cc8
MM
7056/**
7057 * netdev_update_features - recalculate device features
7058 * @dev: the device to check
7059 *
7060 * Recalculate dev->features set and send notifications if it
7061 * has changed. Should be called after driver or hardware dependent
7062 * conditions might have changed that influence the features.
7063 */
6cb6a27c
MM
7064void netdev_update_features(struct net_device *dev)
7065{
7066 if (__netdev_update_features(dev))
7067 netdev_features_change(dev);
5455c699
MM
7068}
7069EXPORT_SYMBOL(netdev_update_features);
7070
afe12cc8
MM
7071/**
7072 * netdev_change_features - recalculate device features
7073 * @dev: the device to check
7074 *
7075 * Recalculate dev->features set and send notifications even
7076 * if they have not changed. Should be called instead of
7077 * netdev_update_features() if also dev->vlan_features might
7078 * have changed to allow the changes to be propagated to stacked
7079 * VLAN devices.
7080 */
7081void netdev_change_features(struct net_device *dev)
7082{
7083 __netdev_update_features(dev);
7084 netdev_features_change(dev);
7085}
7086EXPORT_SYMBOL(netdev_change_features);
7087
fc4a7489
PM
7088/**
7089 * netif_stacked_transfer_operstate - transfer operstate
7090 * @rootdev: the root or lower level device to transfer state from
7091 * @dev: the device to transfer operstate to
7092 *
7093 * Transfer operational state from root to device. This is normally
7094 * called when a stacking relationship exists between the root
7095 * device and the device(a leaf device).
7096 */
7097void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7098 struct net_device *dev)
7099{
7100 if (rootdev->operstate == IF_OPER_DORMANT)
7101 netif_dormant_on(dev);
7102 else
7103 netif_dormant_off(dev);
7104
7105 if (netif_carrier_ok(rootdev)) {
7106 if (!netif_carrier_ok(dev))
7107 netif_carrier_on(dev);
7108 } else {
7109 if (netif_carrier_ok(dev))
7110 netif_carrier_off(dev);
7111 }
7112}
7113EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7114
a953be53 7115#ifdef CONFIG_SYSFS
1b4bf461
ED
7116static int netif_alloc_rx_queues(struct net_device *dev)
7117{
1b4bf461 7118 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7119 struct netdev_rx_queue *rx;
10595902 7120 size_t sz = count * sizeof(*rx);
1b4bf461 7121
bd25fa7b 7122 BUG_ON(count < 1);
1b4bf461 7123
10595902
PG
7124 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7125 if (!rx) {
7126 rx = vzalloc(sz);
7127 if (!rx)
7128 return -ENOMEM;
7129 }
bd25fa7b
TH
7130 dev->_rx = rx;
7131
bd25fa7b 7132 for (i = 0; i < count; i++)
fe822240 7133 rx[i].dev = dev;
1b4bf461
ED
7134 return 0;
7135}
bf264145 7136#endif
1b4bf461 7137
aa942104
CG
7138static void netdev_init_one_queue(struct net_device *dev,
7139 struct netdev_queue *queue, void *_unused)
7140{
7141 /* Initialize queue lock */
7142 spin_lock_init(&queue->_xmit_lock);
7143 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7144 queue->xmit_lock_owner = -1;
b236da69 7145 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7146 queue->dev = dev;
114cf580
TH
7147#ifdef CONFIG_BQL
7148 dql_init(&queue->dql, HZ);
7149#endif
aa942104
CG
7150}
7151
60877a32
ED
7152static void netif_free_tx_queues(struct net_device *dev)
7153{
4cb28970 7154 kvfree(dev->_tx);
60877a32
ED
7155}
7156
e6484930
TH
7157static int netif_alloc_netdev_queues(struct net_device *dev)
7158{
7159 unsigned int count = dev->num_tx_queues;
7160 struct netdev_queue *tx;
60877a32 7161 size_t sz = count * sizeof(*tx);
e6484930 7162
d339727c
ED
7163 if (count < 1 || count > 0xffff)
7164 return -EINVAL;
62b5942a 7165
60877a32
ED
7166 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7167 if (!tx) {
7168 tx = vzalloc(sz);
7169 if (!tx)
7170 return -ENOMEM;
7171 }
e6484930 7172 dev->_tx = tx;
1d24eb48 7173
e6484930
TH
7174 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7175 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7176
7177 return 0;
e6484930
TH
7178}
7179
a2029240
DV
7180void netif_tx_stop_all_queues(struct net_device *dev)
7181{
7182 unsigned int i;
7183
7184 for (i = 0; i < dev->num_tx_queues; i++) {
7185 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 7186
a2029240
DV
7187 netif_tx_stop_queue(txq);
7188 }
7189}
7190EXPORT_SYMBOL(netif_tx_stop_all_queues);
7191
1da177e4
LT
7192/**
7193 * register_netdevice - register a network device
7194 * @dev: device to register
7195 *
7196 * Take a completed network device structure and add it to the kernel
7197 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7198 * chain. 0 is returned on success. A negative errno code is returned
7199 * on a failure to set up the device, or if the name is a duplicate.
7200 *
7201 * Callers must hold the rtnl semaphore. You may want
7202 * register_netdev() instead of this.
7203 *
7204 * BUGS:
7205 * The locking appears insufficient to guarantee two parallel registers
7206 * will not get the same name.
7207 */
7208
7209int register_netdevice(struct net_device *dev)
7210{
1da177e4 7211 int ret;
d314774c 7212 struct net *net = dev_net(dev);
1da177e4
LT
7213
7214 BUG_ON(dev_boot_phase);
7215 ASSERT_RTNL();
7216
b17a7c17
SH
7217 might_sleep();
7218
1da177e4
LT
7219 /* When net_device's are persistent, this will be fatal. */
7220 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7221 BUG_ON(!net);
1da177e4 7222
f1f28aa3 7223 spin_lock_init(&dev->addr_list_lock);
cf508b12 7224 netdev_set_addr_lockdep_class(dev);
1da177e4 7225
828de4f6 7226 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7227 if (ret < 0)
7228 goto out;
7229
1da177e4 7230 /* Init, if this function is available */
d314774c
SH
7231 if (dev->netdev_ops->ndo_init) {
7232 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7233 if (ret) {
7234 if (ret > 0)
7235 ret = -EIO;
90833aa4 7236 goto out;
1da177e4
LT
7237 }
7238 }
4ec93edb 7239
f646968f
PM
7240 if (((dev->hw_features | dev->features) &
7241 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7242 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7243 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7244 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7245 ret = -EINVAL;
7246 goto err_uninit;
7247 }
7248
9c7dafbf
PE
7249 ret = -EBUSY;
7250 if (!dev->ifindex)
7251 dev->ifindex = dev_new_index(net);
7252 else if (__dev_get_by_index(net, dev->ifindex))
7253 goto err_uninit;
7254
5455c699
MM
7255 /* Transfer changeable features to wanted_features and enable
7256 * software offloads (GSO and GRO).
7257 */
7258 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7259 dev->features |= NETIF_F_SOFT_FEATURES;
7260 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7261
cbc53e08 7262 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7263 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7264
7f348a60
AD
7265 /* If IPv4 TCP segmentation offload is supported we should also
7266 * allow the device to enable segmenting the frame with the option
7267 * of ignoring a static IP ID value. This doesn't enable the
7268 * feature itself but allows the user to enable it later.
7269 */
cbc53e08
AD
7270 if (dev->hw_features & NETIF_F_TSO)
7271 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7272 if (dev->vlan_features & NETIF_F_TSO)
7273 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7274 if (dev->mpls_features & NETIF_F_TSO)
7275 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7276 if (dev->hw_enc_features & NETIF_F_TSO)
7277 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7278
1180e7d6 7279 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7280 */
1180e7d6 7281 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7282
ee579677
PS
7283 /* Make NETIF_F_SG inheritable to tunnel devices.
7284 */
802ab55a 7285 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7286
0d89d203
SH
7287 /* Make NETIF_F_SG inheritable to MPLS.
7288 */
7289 dev->mpls_features |= NETIF_F_SG;
7290
7ffbe3fd
JB
7291 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7292 ret = notifier_to_errno(ret);
7293 if (ret)
7294 goto err_uninit;
7295
8b41d188 7296 ret = netdev_register_kobject(dev);
b17a7c17 7297 if (ret)
7ce1b0ed 7298 goto err_uninit;
b17a7c17
SH
7299 dev->reg_state = NETREG_REGISTERED;
7300
6cb6a27c 7301 __netdev_update_features(dev);
8e9b59b2 7302
1da177e4
LT
7303 /*
7304 * Default initial state at registry is that the
7305 * device is present.
7306 */
7307
7308 set_bit(__LINK_STATE_PRESENT, &dev->state);
7309
8f4cccbb
BH
7310 linkwatch_init_dev(dev);
7311
1da177e4 7312 dev_init_scheduler(dev);
1da177e4 7313 dev_hold(dev);
ce286d32 7314 list_netdevice(dev);
7bf23575 7315 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7316
948b337e
JP
7317 /* If the device has permanent device address, driver should
7318 * set dev_addr and also addr_assign_type should be set to
7319 * NET_ADDR_PERM (default value).
7320 */
7321 if (dev->addr_assign_type == NET_ADDR_PERM)
7322 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7323
1da177e4 7324 /* Notify protocols, that a new device appeared. */
056925ab 7325 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7326 ret = notifier_to_errno(ret);
93ee31f1
DL
7327 if (ret) {
7328 rollback_registered(dev);
7329 dev->reg_state = NETREG_UNREGISTERED;
7330 }
d90a909e
EB
7331 /*
7332 * Prevent userspace races by waiting until the network
7333 * device is fully setup before sending notifications.
7334 */
a2835763
PM
7335 if (!dev->rtnl_link_ops ||
7336 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7337 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7338
7339out:
7340 return ret;
7ce1b0ed
HX
7341
7342err_uninit:
d314774c
SH
7343 if (dev->netdev_ops->ndo_uninit)
7344 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7345 goto out;
1da177e4 7346}
d1b19dff 7347EXPORT_SYMBOL(register_netdevice);
1da177e4 7348
937f1ba5
BH
7349/**
7350 * init_dummy_netdev - init a dummy network device for NAPI
7351 * @dev: device to init
7352 *
7353 * This takes a network device structure and initialize the minimum
7354 * amount of fields so it can be used to schedule NAPI polls without
7355 * registering a full blown interface. This is to be used by drivers
7356 * that need to tie several hardware interfaces to a single NAPI
7357 * poll scheduler due to HW limitations.
7358 */
7359int init_dummy_netdev(struct net_device *dev)
7360{
7361 /* Clear everything. Note we don't initialize spinlocks
7362 * are they aren't supposed to be taken by any of the
7363 * NAPI code and this dummy netdev is supposed to be
7364 * only ever used for NAPI polls
7365 */
7366 memset(dev, 0, sizeof(struct net_device));
7367
7368 /* make sure we BUG if trying to hit standard
7369 * register/unregister code path
7370 */
7371 dev->reg_state = NETREG_DUMMY;
7372
937f1ba5
BH
7373 /* NAPI wants this */
7374 INIT_LIST_HEAD(&dev->napi_list);
7375
7376 /* a dummy interface is started by default */
7377 set_bit(__LINK_STATE_PRESENT, &dev->state);
7378 set_bit(__LINK_STATE_START, &dev->state);
7379
29b4433d
ED
7380 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7381 * because users of this 'device' dont need to change
7382 * its refcount.
7383 */
7384
937f1ba5
BH
7385 return 0;
7386}
7387EXPORT_SYMBOL_GPL(init_dummy_netdev);
7388
7389
1da177e4
LT
7390/**
7391 * register_netdev - register a network device
7392 * @dev: device to register
7393 *
7394 * Take a completed network device structure and add it to the kernel
7395 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7396 * chain. 0 is returned on success. A negative errno code is returned
7397 * on a failure to set up the device, or if the name is a duplicate.
7398 *
38b4da38 7399 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7400 * and expands the device name if you passed a format string to
7401 * alloc_netdev.
7402 */
7403int register_netdev(struct net_device *dev)
7404{
7405 int err;
7406
7407 rtnl_lock();
1da177e4 7408 err = register_netdevice(dev);
1da177e4
LT
7409 rtnl_unlock();
7410 return err;
7411}
7412EXPORT_SYMBOL(register_netdev);
7413
29b4433d
ED
7414int netdev_refcnt_read(const struct net_device *dev)
7415{
7416 int i, refcnt = 0;
7417
7418 for_each_possible_cpu(i)
7419 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7420 return refcnt;
7421}
7422EXPORT_SYMBOL(netdev_refcnt_read);
7423
2c53040f 7424/**
1da177e4 7425 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7426 * @dev: target net_device
1da177e4
LT
7427 *
7428 * This is called when unregistering network devices.
7429 *
7430 * Any protocol or device that holds a reference should register
7431 * for netdevice notification, and cleanup and put back the
7432 * reference if they receive an UNREGISTER event.
7433 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7434 * call dev_put.
1da177e4
LT
7435 */
7436static void netdev_wait_allrefs(struct net_device *dev)
7437{
7438 unsigned long rebroadcast_time, warning_time;
29b4433d 7439 int refcnt;
1da177e4 7440
e014debe
ED
7441 linkwatch_forget_dev(dev);
7442
1da177e4 7443 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7444 refcnt = netdev_refcnt_read(dev);
7445
7446 while (refcnt != 0) {
1da177e4 7447 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7448 rtnl_lock();
1da177e4
LT
7449
7450 /* Rebroadcast unregister notification */
056925ab 7451 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7452
748e2d93 7453 __rtnl_unlock();
0115e8e3 7454 rcu_barrier();
748e2d93
ED
7455 rtnl_lock();
7456
0115e8e3 7457 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7458 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7459 &dev->state)) {
7460 /* We must not have linkwatch events
7461 * pending on unregister. If this
7462 * happens, we simply run the queue
7463 * unscheduled, resulting in a noop
7464 * for this device.
7465 */
7466 linkwatch_run_queue();
7467 }
7468
6756ae4b 7469 __rtnl_unlock();
1da177e4
LT
7470
7471 rebroadcast_time = jiffies;
7472 }
7473
7474 msleep(250);
7475
29b4433d
ED
7476 refcnt = netdev_refcnt_read(dev);
7477
1da177e4 7478 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7479 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7480 dev->name, refcnt);
1da177e4
LT
7481 warning_time = jiffies;
7482 }
7483 }
7484}
7485
7486/* The sequence is:
7487 *
7488 * rtnl_lock();
7489 * ...
7490 * register_netdevice(x1);
7491 * register_netdevice(x2);
7492 * ...
7493 * unregister_netdevice(y1);
7494 * unregister_netdevice(y2);
7495 * ...
7496 * rtnl_unlock();
7497 * free_netdev(y1);
7498 * free_netdev(y2);
7499 *
58ec3b4d 7500 * We are invoked by rtnl_unlock().
1da177e4 7501 * This allows us to deal with problems:
b17a7c17 7502 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7503 * without deadlocking with linkwatch via keventd.
7504 * 2) Since we run with the RTNL semaphore not held, we can sleep
7505 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7506 *
7507 * We must not return until all unregister events added during
7508 * the interval the lock was held have been completed.
1da177e4 7509 */
1da177e4
LT
7510void netdev_run_todo(void)
7511{
626ab0e6 7512 struct list_head list;
1da177e4 7513
1da177e4 7514 /* Snapshot list, allow later requests */
626ab0e6 7515 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7516
7517 __rtnl_unlock();
626ab0e6 7518
0115e8e3
ED
7519
7520 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7521 if (!list_empty(&list))
7522 rcu_barrier();
7523
1da177e4
LT
7524 while (!list_empty(&list)) {
7525 struct net_device *dev
e5e26d75 7526 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7527 list_del(&dev->todo_list);
7528
748e2d93 7529 rtnl_lock();
0115e8e3 7530 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7531 __rtnl_unlock();
0115e8e3 7532
b17a7c17 7533 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7534 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7535 dev->name, dev->reg_state);
7536 dump_stack();
7537 continue;
7538 }
1da177e4 7539
b17a7c17 7540 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7541
b17a7c17 7542 netdev_wait_allrefs(dev);
1da177e4 7543
b17a7c17 7544 /* paranoia */
29b4433d 7545 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7546 BUG_ON(!list_empty(&dev->ptype_all));
7547 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7548 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7549 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7550 WARN_ON(dev->dn_ptr);
1da177e4 7551
b17a7c17
SH
7552 if (dev->destructor)
7553 dev->destructor(dev);
9093bbb2 7554
50624c93
EB
7555 /* Report a network device has been unregistered */
7556 rtnl_lock();
7557 dev_net(dev)->dev_unreg_count--;
7558 __rtnl_unlock();
7559 wake_up(&netdev_unregistering_wq);
7560
9093bbb2
SH
7561 /* Free network device */
7562 kobject_put(&dev->dev.kobj);
1da177e4 7563 }
1da177e4
LT
7564}
7565
9256645a
JW
7566/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7567 * all the same fields in the same order as net_device_stats, with only
7568 * the type differing, but rtnl_link_stats64 may have additional fields
7569 * at the end for newer counters.
3cfde79c 7570 */
77a1abf5
ED
7571void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7572 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7573{
7574#if BITS_PER_LONG == 64
9256645a 7575 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7576 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7577 /* zero out counters that only exist in rtnl_link_stats64 */
7578 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7579 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7580#else
9256645a 7581 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7582 const unsigned long *src = (const unsigned long *)netdev_stats;
7583 u64 *dst = (u64 *)stats64;
7584
9256645a 7585 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7586 for (i = 0; i < n; i++)
7587 dst[i] = src[i];
9256645a
JW
7588 /* zero out counters that only exist in rtnl_link_stats64 */
7589 memset((char *)stats64 + n * sizeof(u64), 0,
7590 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7591#endif
7592}
77a1abf5 7593EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7594
eeda3fd6
SH
7595/**
7596 * dev_get_stats - get network device statistics
7597 * @dev: device to get statistics from
28172739 7598 * @storage: place to store stats
eeda3fd6 7599 *
d7753516
BH
7600 * Get network statistics from device. Return @storage.
7601 * The device driver may provide its own method by setting
7602 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7603 * otherwise the internal statistics structure is used.
eeda3fd6 7604 */
d7753516
BH
7605struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7606 struct rtnl_link_stats64 *storage)
7004bf25 7607{
eeda3fd6
SH
7608 const struct net_device_ops *ops = dev->netdev_ops;
7609
28172739
ED
7610 if (ops->ndo_get_stats64) {
7611 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7612 ops->ndo_get_stats64(dev, storage);
7613 } else if (ops->ndo_get_stats) {
3cfde79c 7614 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7615 } else {
7616 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7617 }
caf586e5 7618 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7619 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7620 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7621 return storage;
c45d286e 7622}
eeda3fd6 7623EXPORT_SYMBOL(dev_get_stats);
c45d286e 7624
24824a09 7625struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7626{
24824a09 7627 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7628
24824a09
ED
7629#ifdef CONFIG_NET_CLS_ACT
7630 if (queue)
7631 return queue;
7632 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7633 if (!queue)
7634 return NULL;
7635 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7636 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7637 queue->qdisc_sleeping = &noop_qdisc;
7638 rcu_assign_pointer(dev->ingress_queue, queue);
7639#endif
7640 return queue;
bb949fbd
DM
7641}
7642
2c60db03
ED
7643static const struct ethtool_ops default_ethtool_ops;
7644
d07d7507
SG
7645void netdev_set_default_ethtool_ops(struct net_device *dev,
7646 const struct ethtool_ops *ops)
7647{
7648 if (dev->ethtool_ops == &default_ethtool_ops)
7649 dev->ethtool_ops = ops;
7650}
7651EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7652
74d332c1
ED
7653void netdev_freemem(struct net_device *dev)
7654{
7655 char *addr = (char *)dev - dev->padded;
7656
4cb28970 7657 kvfree(addr);
74d332c1
ED
7658}
7659
1da177e4 7660/**
722c9a0c 7661 * alloc_netdev_mqs - allocate network device
7662 * @sizeof_priv: size of private data to allocate space for
7663 * @name: device name format string
7664 * @name_assign_type: origin of device name
7665 * @setup: callback to initialize device
7666 * @txqs: the number of TX subqueues to allocate
7667 * @rxqs: the number of RX subqueues to allocate
7668 *
7669 * Allocates a struct net_device with private data area for driver use
7670 * and performs basic initialization. Also allocates subqueue structs
7671 * for each queue on the device.
1da177e4 7672 */
36909ea4 7673struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7674 unsigned char name_assign_type,
36909ea4
TH
7675 void (*setup)(struct net_device *),
7676 unsigned int txqs, unsigned int rxqs)
1da177e4 7677{
1da177e4 7678 struct net_device *dev;
7943986c 7679 size_t alloc_size;
1ce8e7b5 7680 struct net_device *p;
1da177e4 7681
b6fe17d6
SH
7682 BUG_ON(strlen(name) >= sizeof(dev->name));
7683
36909ea4 7684 if (txqs < 1) {
7b6cd1ce 7685 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7686 return NULL;
7687 }
7688
a953be53 7689#ifdef CONFIG_SYSFS
36909ea4 7690 if (rxqs < 1) {
7b6cd1ce 7691 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7692 return NULL;
7693 }
7694#endif
7695
fd2ea0a7 7696 alloc_size = sizeof(struct net_device);
d1643d24
AD
7697 if (sizeof_priv) {
7698 /* ensure 32-byte alignment of private area */
1ce8e7b5 7699 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7700 alloc_size += sizeof_priv;
7701 }
7702 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7703 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7704
74d332c1
ED
7705 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7706 if (!p)
7707 p = vzalloc(alloc_size);
62b5942a 7708 if (!p)
1da177e4 7709 return NULL;
1da177e4 7710
1ce8e7b5 7711 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7712 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7713
29b4433d
ED
7714 dev->pcpu_refcnt = alloc_percpu(int);
7715 if (!dev->pcpu_refcnt)
74d332c1 7716 goto free_dev;
ab9c73cc 7717
ab9c73cc 7718 if (dev_addr_init(dev))
29b4433d 7719 goto free_pcpu;
ab9c73cc 7720
22bedad3 7721 dev_mc_init(dev);
a748ee24 7722 dev_uc_init(dev);
ccffad25 7723
c346dca1 7724 dev_net_set(dev, &init_net);
1da177e4 7725
8d3bdbd5 7726 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7727 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7728
8d3bdbd5
DM
7729 INIT_LIST_HEAD(&dev->napi_list);
7730 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7731 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7732 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7733 INIT_LIST_HEAD(&dev->adj_list.upper);
7734 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
7735 INIT_LIST_HEAD(&dev->ptype_all);
7736 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7737#ifdef CONFIG_NET_SCHED
7738 hash_init(dev->qdisc_hash);
7739#endif
02875878 7740 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7741 setup(dev);
7742
a813104d 7743 if (!dev->tx_queue_len) {
f84bb1ea 7744 dev->priv_flags |= IFF_NO_QUEUE;
11597084 7745 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 7746 }
906470c1 7747
36909ea4
TH
7748 dev->num_tx_queues = txqs;
7749 dev->real_num_tx_queues = txqs;
ed9af2e8 7750 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7751 goto free_all;
e8a0464c 7752
a953be53 7753#ifdef CONFIG_SYSFS
36909ea4
TH
7754 dev->num_rx_queues = rxqs;
7755 dev->real_num_rx_queues = rxqs;
fe822240 7756 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7757 goto free_all;
df334545 7758#endif
0a9627f2 7759
1da177e4 7760 strcpy(dev->name, name);
c835a677 7761 dev->name_assign_type = name_assign_type;
cbda10fa 7762 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7763 if (!dev->ethtool_ops)
7764 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7765
7766 nf_hook_ingress_init(dev);
7767
1da177e4 7768 return dev;
ab9c73cc 7769
8d3bdbd5
DM
7770free_all:
7771 free_netdev(dev);
7772 return NULL;
7773
29b4433d
ED
7774free_pcpu:
7775 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7776free_dev:
7777 netdev_freemem(dev);
ab9c73cc 7778 return NULL;
1da177e4 7779}
36909ea4 7780EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7781
7782/**
722c9a0c 7783 * free_netdev - free network device
7784 * @dev: device
1da177e4 7785 *
722c9a0c 7786 * This function does the last stage of destroying an allocated device
7787 * interface. The reference to the device object is released. If this
7788 * is the last reference then it will be freed.Must be called in process
7789 * context.
1da177e4
LT
7790 */
7791void free_netdev(struct net_device *dev)
7792{
d565b0a1
HX
7793 struct napi_struct *p, *n;
7794
93d05d4a 7795 might_sleep();
60877a32 7796 netif_free_tx_queues(dev);
a953be53 7797#ifdef CONFIG_SYSFS
10595902 7798 kvfree(dev->_rx);
fe822240 7799#endif
e8a0464c 7800
33d480ce 7801 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7802
f001fde5
JP
7803 /* Flush device addresses */
7804 dev_addr_flush(dev);
7805
d565b0a1
HX
7806 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7807 netif_napi_del(p);
7808
29b4433d
ED
7809 free_percpu(dev->pcpu_refcnt);
7810 dev->pcpu_refcnt = NULL;
7811
3041a069 7812 /* Compatibility with error handling in drivers */
1da177e4 7813 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7814 netdev_freemem(dev);
1da177e4
LT
7815 return;
7816 }
7817
7818 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7819 dev->reg_state = NETREG_RELEASED;
7820
43cb76d9
GKH
7821 /* will free via device release */
7822 put_device(&dev->dev);
1da177e4 7823}
d1b19dff 7824EXPORT_SYMBOL(free_netdev);
4ec93edb 7825
f0db275a
SH
7826/**
7827 * synchronize_net - Synchronize with packet receive processing
7828 *
7829 * Wait for packets currently being received to be done.
7830 * Does not block later packets from starting.
7831 */
4ec93edb 7832void synchronize_net(void)
1da177e4
LT
7833{
7834 might_sleep();
be3fc413
ED
7835 if (rtnl_is_locked())
7836 synchronize_rcu_expedited();
7837 else
7838 synchronize_rcu();
1da177e4 7839}
d1b19dff 7840EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7841
7842/**
44a0873d 7843 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7844 * @dev: device
44a0873d 7845 * @head: list
6ebfbc06 7846 *
1da177e4 7847 * This function shuts down a device interface and removes it
d59b54b1 7848 * from the kernel tables.
44a0873d 7849 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7850 *
7851 * Callers must hold the rtnl semaphore. You may want
7852 * unregister_netdev() instead of this.
7853 */
7854
44a0873d 7855void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7856{
a6620712
HX
7857 ASSERT_RTNL();
7858
44a0873d 7859 if (head) {
9fdce099 7860 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7861 } else {
7862 rollback_registered(dev);
7863 /* Finish processing unregister after unlock */
7864 net_set_todo(dev);
7865 }
1da177e4 7866}
44a0873d 7867EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7868
9b5e383c
ED
7869/**
7870 * unregister_netdevice_many - unregister many devices
7871 * @head: list of devices
87757a91
ED
7872 *
7873 * Note: As most callers use a stack allocated list_head,
7874 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7875 */
7876void unregister_netdevice_many(struct list_head *head)
7877{
7878 struct net_device *dev;
7879
7880 if (!list_empty(head)) {
7881 rollback_registered_many(head);
7882 list_for_each_entry(dev, head, unreg_list)
7883 net_set_todo(dev);
87757a91 7884 list_del(head);
9b5e383c
ED
7885 }
7886}
63c8099d 7887EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7888
1da177e4
LT
7889/**
7890 * unregister_netdev - remove device from the kernel
7891 * @dev: device
7892 *
7893 * This function shuts down a device interface and removes it
d59b54b1 7894 * from the kernel tables.
1da177e4
LT
7895 *
7896 * This is just a wrapper for unregister_netdevice that takes
7897 * the rtnl semaphore. In general you want to use this and not
7898 * unregister_netdevice.
7899 */
7900void unregister_netdev(struct net_device *dev)
7901{
7902 rtnl_lock();
7903 unregister_netdevice(dev);
7904 rtnl_unlock();
7905}
1da177e4
LT
7906EXPORT_SYMBOL(unregister_netdev);
7907
ce286d32
EB
7908/**
7909 * dev_change_net_namespace - move device to different nethost namespace
7910 * @dev: device
7911 * @net: network namespace
7912 * @pat: If not NULL name pattern to try if the current device name
7913 * is already taken in the destination network namespace.
7914 *
7915 * This function shuts down a device interface and moves it
7916 * to a new network namespace. On success 0 is returned, on
7917 * a failure a netagive errno code is returned.
7918 *
7919 * Callers must hold the rtnl semaphore.
7920 */
7921
7922int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7923{
ce286d32
EB
7924 int err;
7925
7926 ASSERT_RTNL();
7927
7928 /* Don't allow namespace local devices to be moved. */
7929 err = -EINVAL;
7930 if (dev->features & NETIF_F_NETNS_LOCAL)
7931 goto out;
7932
7933 /* Ensure the device has been registrered */
ce286d32
EB
7934 if (dev->reg_state != NETREG_REGISTERED)
7935 goto out;
7936
7937 /* Get out if there is nothing todo */
7938 err = 0;
878628fb 7939 if (net_eq(dev_net(dev), net))
ce286d32
EB
7940 goto out;
7941
7942 /* Pick the destination device name, and ensure
7943 * we can use it in the destination network namespace.
7944 */
7945 err = -EEXIST;
d9031024 7946 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7947 /* We get here if we can't use the current device name */
7948 if (!pat)
7949 goto out;
828de4f6 7950 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7951 goto out;
7952 }
7953
7954 /*
7955 * And now a mini version of register_netdevice unregister_netdevice.
7956 */
7957
7958 /* If device is running close it first. */
9b772652 7959 dev_close(dev);
ce286d32
EB
7960
7961 /* And unlink it from device chain */
7962 err = -ENODEV;
7963 unlist_netdevice(dev);
7964
7965 synchronize_net();
7966
7967 /* Shutdown queueing discipline. */
7968 dev_shutdown(dev);
7969
7970 /* Notify protocols, that we are about to destroy
eb13da1a 7971 * this device. They should clean all the things.
7972 *
7973 * Note that dev->reg_state stays at NETREG_REGISTERED.
7974 * This is wanted because this way 8021q and macvlan know
7975 * the device is just moving and can keep their slaves up.
7976 */
ce286d32 7977 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7978 rcu_barrier();
7979 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7980 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7981
7982 /*
7983 * Flush the unicast and multicast chains
7984 */
a748ee24 7985 dev_uc_flush(dev);
22bedad3 7986 dev_mc_flush(dev);
ce286d32 7987
4e66ae2e
SH
7988 /* Send a netdev-removed uevent to the old namespace */
7989 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7990 netdev_adjacent_del_links(dev);
4e66ae2e 7991
ce286d32 7992 /* Actually switch the network namespace */
c346dca1 7993 dev_net_set(dev, net);
ce286d32 7994
ce286d32 7995 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7996 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7997 dev->ifindex = dev_new_index(net);
ce286d32 7998
4e66ae2e
SH
7999 /* Send a netdev-add uevent to the new namespace */
8000 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 8001 netdev_adjacent_add_links(dev);
4e66ae2e 8002
8b41d188 8003 /* Fixup kobjects */
a1b3f594 8004 err = device_rename(&dev->dev, dev->name);
8b41d188 8005 WARN_ON(err);
ce286d32
EB
8006
8007 /* Add the device back in the hashes */
8008 list_netdevice(dev);
8009
8010 /* Notify protocols, that a new device appeared. */
8011 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8012
d90a909e
EB
8013 /*
8014 * Prevent userspace races by waiting until the network
8015 * device is fully setup before sending notifications.
8016 */
7f294054 8017 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8018
ce286d32
EB
8019 synchronize_net();
8020 err = 0;
8021out:
8022 return err;
8023}
463d0183 8024EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8025
f0bf90de 8026static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8027{
8028 struct sk_buff **list_skb;
1da177e4 8029 struct sk_buff *skb;
f0bf90de 8030 unsigned int cpu;
1da177e4
LT
8031 struct softnet_data *sd, *oldsd;
8032
1da177e4
LT
8033 local_irq_disable();
8034 cpu = smp_processor_id();
8035 sd = &per_cpu(softnet_data, cpu);
8036 oldsd = &per_cpu(softnet_data, oldcpu);
8037
8038 /* Find end of our completion_queue. */
8039 list_skb = &sd->completion_queue;
8040 while (*list_skb)
8041 list_skb = &(*list_skb)->next;
8042 /* Append completion queue from offline CPU. */
8043 *list_skb = oldsd->completion_queue;
8044 oldsd->completion_queue = NULL;
8045
1da177e4 8046 /* Append output queue from offline CPU. */
a9cbd588
CG
8047 if (oldsd->output_queue) {
8048 *sd->output_queue_tailp = oldsd->output_queue;
8049 sd->output_queue_tailp = oldsd->output_queue_tailp;
8050 oldsd->output_queue = NULL;
8051 oldsd->output_queue_tailp = &oldsd->output_queue;
8052 }
ac64da0b
ED
8053 /* Append NAPI poll list from offline CPU, with one exception :
8054 * process_backlog() must be called by cpu owning percpu backlog.
8055 * We properly handle process_queue & input_pkt_queue later.
8056 */
8057 while (!list_empty(&oldsd->poll_list)) {
8058 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8059 struct napi_struct,
8060 poll_list);
8061
8062 list_del_init(&napi->poll_list);
8063 if (napi->poll == process_backlog)
8064 napi->state = 0;
8065 else
8066 ____napi_schedule(sd, napi);
264524d5 8067 }
1da177e4
LT
8068
8069 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8070 local_irq_enable();
8071
8072 /* Process offline CPU's input_pkt_queue */
76cc8b13 8073 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8074 netif_rx_ni(skb);
76cc8b13 8075 input_queue_head_incr(oldsd);
fec5e652 8076 }
ac64da0b 8077 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8078 netif_rx_ni(skb);
76cc8b13
TH
8079 input_queue_head_incr(oldsd);
8080 }
1da177e4 8081
f0bf90de 8082 return 0;
1da177e4 8083}
1da177e4 8084
7f353bf2 8085/**
b63365a2
HX
8086 * netdev_increment_features - increment feature set by one
8087 * @all: current feature set
8088 * @one: new feature set
8089 * @mask: mask feature set
7f353bf2
HX
8090 *
8091 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8092 * @one to the master device with current feature set @all. Will not
8093 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8094 */
c8f44aff
MM
8095netdev_features_t netdev_increment_features(netdev_features_t all,
8096 netdev_features_t one, netdev_features_t mask)
b63365a2 8097{
c8cd0989 8098 if (mask & NETIF_F_HW_CSUM)
a188222b 8099 mask |= NETIF_F_CSUM_MASK;
1742f183 8100 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8101
a188222b 8102 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8103 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8104
1742f183 8105 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8106 if (all & NETIF_F_HW_CSUM)
8107 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8108
8109 return all;
8110}
b63365a2 8111EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8112
430f03cd 8113static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8114{
8115 int i;
8116 struct hlist_head *hash;
8117
8118 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8119 if (hash != NULL)
8120 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8121 INIT_HLIST_HEAD(&hash[i]);
8122
8123 return hash;
8124}
8125
881d966b 8126/* Initialize per network namespace state */
4665079c 8127static int __net_init netdev_init(struct net *net)
881d966b 8128{
734b6541
RM
8129 if (net != &init_net)
8130 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8131
30d97d35
PE
8132 net->dev_name_head = netdev_create_hash();
8133 if (net->dev_name_head == NULL)
8134 goto err_name;
881d966b 8135
30d97d35
PE
8136 net->dev_index_head = netdev_create_hash();
8137 if (net->dev_index_head == NULL)
8138 goto err_idx;
881d966b
EB
8139
8140 return 0;
30d97d35
PE
8141
8142err_idx:
8143 kfree(net->dev_name_head);
8144err_name:
8145 return -ENOMEM;
881d966b
EB
8146}
8147
f0db275a
SH
8148/**
8149 * netdev_drivername - network driver for the device
8150 * @dev: network device
f0db275a
SH
8151 *
8152 * Determine network driver for device.
8153 */
3019de12 8154const char *netdev_drivername(const struct net_device *dev)
6579e57b 8155{
cf04a4c7
SH
8156 const struct device_driver *driver;
8157 const struct device *parent;
3019de12 8158 const char *empty = "";
6579e57b
AV
8159
8160 parent = dev->dev.parent;
6579e57b 8161 if (!parent)
3019de12 8162 return empty;
6579e57b
AV
8163
8164 driver = parent->driver;
8165 if (driver && driver->name)
3019de12
DM
8166 return driver->name;
8167 return empty;
6579e57b
AV
8168}
8169
6ea754eb
JP
8170static void __netdev_printk(const char *level, const struct net_device *dev,
8171 struct va_format *vaf)
256df2f3 8172{
b004ff49 8173 if (dev && dev->dev.parent) {
6ea754eb
JP
8174 dev_printk_emit(level[1] - '0',
8175 dev->dev.parent,
8176 "%s %s %s%s: %pV",
8177 dev_driver_string(dev->dev.parent),
8178 dev_name(dev->dev.parent),
8179 netdev_name(dev), netdev_reg_state(dev),
8180 vaf);
b004ff49 8181 } else if (dev) {
6ea754eb
JP
8182 printk("%s%s%s: %pV",
8183 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8184 } else {
6ea754eb 8185 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8186 }
256df2f3
JP
8187}
8188
6ea754eb
JP
8189void netdev_printk(const char *level, const struct net_device *dev,
8190 const char *format, ...)
256df2f3
JP
8191{
8192 struct va_format vaf;
8193 va_list args;
256df2f3
JP
8194
8195 va_start(args, format);
8196
8197 vaf.fmt = format;
8198 vaf.va = &args;
8199
6ea754eb 8200 __netdev_printk(level, dev, &vaf);
b004ff49 8201
256df2f3 8202 va_end(args);
256df2f3
JP
8203}
8204EXPORT_SYMBOL(netdev_printk);
8205
8206#define define_netdev_printk_level(func, level) \
6ea754eb 8207void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8208{ \
256df2f3
JP
8209 struct va_format vaf; \
8210 va_list args; \
8211 \
8212 va_start(args, fmt); \
8213 \
8214 vaf.fmt = fmt; \
8215 vaf.va = &args; \
8216 \
6ea754eb 8217 __netdev_printk(level, dev, &vaf); \
b004ff49 8218 \
256df2f3 8219 va_end(args); \
256df2f3
JP
8220} \
8221EXPORT_SYMBOL(func);
8222
8223define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8224define_netdev_printk_level(netdev_alert, KERN_ALERT);
8225define_netdev_printk_level(netdev_crit, KERN_CRIT);
8226define_netdev_printk_level(netdev_err, KERN_ERR);
8227define_netdev_printk_level(netdev_warn, KERN_WARNING);
8228define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8229define_netdev_printk_level(netdev_info, KERN_INFO);
8230
4665079c 8231static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8232{
8233 kfree(net->dev_name_head);
8234 kfree(net->dev_index_head);
8235}
8236
022cbae6 8237static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8238 .init = netdev_init,
8239 .exit = netdev_exit,
8240};
8241
4665079c 8242static void __net_exit default_device_exit(struct net *net)
ce286d32 8243{
e008b5fc 8244 struct net_device *dev, *aux;
ce286d32 8245 /*
e008b5fc 8246 * Push all migratable network devices back to the
ce286d32
EB
8247 * initial network namespace
8248 */
8249 rtnl_lock();
e008b5fc 8250 for_each_netdev_safe(net, dev, aux) {
ce286d32 8251 int err;
aca51397 8252 char fb_name[IFNAMSIZ];
ce286d32
EB
8253
8254 /* Ignore unmoveable devices (i.e. loopback) */
8255 if (dev->features & NETIF_F_NETNS_LOCAL)
8256 continue;
8257
e008b5fc
EB
8258 /* Leave virtual devices for the generic cleanup */
8259 if (dev->rtnl_link_ops)
8260 continue;
d0c082ce 8261
25985edc 8262 /* Push remaining network devices to init_net */
aca51397
PE
8263 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8264 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8265 if (err) {
7b6cd1ce
JP
8266 pr_emerg("%s: failed to move %s to init_net: %d\n",
8267 __func__, dev->name, err);
aca51397 8268 BUG();
ce286d32
EB
8269 }
8270 }
8271 rtnl_unlock();
8272}
8273
50624c93
EB
8274static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8275{
8276 /* Return with the rtnl_lock held when there are no network
8277 * devices unregistering in any network namespace in net_list.
8278 */
8279 struct net *net;
8280 bool unregistering;
ff960a73 8281 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8282
ff960a73 8283 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8284 for (;;) {
50624c93
EB
8285 unregistering = false;
8286 rtnl_lock();
8287 list_for_each_entry(net, net_list, exit_list) {
8288 if (net->dev_unreg_count > 0) {
8289 unregistering = true;
8290 break;
8291 }
8292 }
8293 if (!unregistering)
8294 break;
8295 __rtnl_unlock();
ff960a73
PZ
8296
8297 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8298 }
ff960a73 8299 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8300}
8301
04dc7f6b
EB
8302static void __net_exit default_device_exit_batch(struct list_head *net_list)
8303{
8304 /* At exit all network devices most be removed from a network
b595076a 8305 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8306 * Do this across as many network namespaces as possible to
8307 * improve batching efficiency.
8308 */
8309 struct net_device *dev;
8310 struct net *net;
8311 LIST_HEAD(dev_kill_list);
8312
50624c93
EB
8313 /* To prevent network device cleanup code from dereferencing
8314 * loopback devices or network devices that have been freed
8315 * wait here for all pending unregistrations to complete,
8316 * before unregistring the loopback device and allowing the
8317 * network namespace be freed.
8318 *
8319 * The netdev todo list containing all network devices
8320 * unregistrations that happen in default_device_exit_batch
8321 * will run in the rtnl_unlock() at the end of
8322 * default_device_exit_batch.
8323 */
8324 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8325 list_for_each_entry(net, net_list, exit_list) {
8326 for_each_netdev_reverse(net, dev) {
b0ab2fab 8327 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8328 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8329 else
8330 unregister_netdevice_queue(dev, &dev_kill_list);
8331 }
8332 }
8333 unregister_netdevice_many(&dev_kill_list);
8334 rtnl_unlock();
8335}
8336
022cbae6 8337static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8338 .exit = default_device_exit,
04dc7f6b 8339 .exit_batch = default_device_exit_batch,
ce286d32
EB
8340};
8341
1da177e4
LT
8342/*
8343 * Initialize the DEV module. At boot time this walks the device list and
8344 * unhooks any devices that fail to initialise (normally hardware not
8345 * present) and leaves us with a valid list of present and active devices.
8346 *
8347 */
8348
8349/*
8350 * This is called single threaded during boot, so no need
8351 * to take the rtnl semaphore.
8352 */
8353static int __init net_dev_init(void)
8354{
8355 int i, rc = -ENOMEM;
8356
8357 BUG_ON(!dev_boot_phase);
8358
1da177e4
LT
8359 if (dev_proc_init())
8360 goto out;
8361
8b41d188 8362 if (netdev_kobject_init())
1da177e4
LT
8363 goto out;
8364
8365 INIT_LIST_HEAD(&ptype_all);
82d8a867 8366 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8367 INIT_LIST_HEAD(&ptype_base[i]);
8368
62532da9
VY
8369 INIT_LIST_HEAD(&offload_base);
8370
881d966b
EB
8371 if (register_pernet_subsys(&netdev_net_ops))
8372 goto out;
1da177e4
LT
8373
8374 /*
8375 * Initialise the packet receive queues.
8376 */
8377
6f912042 8378 for_each_possible_cpu(i) {
41852497 8379 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8380 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8381
41852497
ED
8382 INIT_WORK(flush, flush_backlog);
8383
e36fa2f7 8384 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8385 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8386 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8387 sd->output_queue_tailp = &sd->output_queue;
df334545 8388#ifdef CONFIG_RPS
e36fa2f7
ED
8389 sd->csd.func = rps_trigger_softirq;
8390 sd->csd.info = sd;
e36fa2f7 8391 sd->cpu = i;
1e94d72f 8392#endif
0a9627f2 8393
e36fa2f7
ED
8394 sd->backlog.poll = process_backlog;
8395 sd->backlog.weight = weight_p;
1da177e4
LT
8396 }
8397
1da177e4
LT
8398 dev_boot_phase = 0;
8399
505d4f73
EB
8400 /* The loopback device is special if any other network devices
8401 * is present in a network namespace the loopback device must
8402 * be present. Since we now dynamically allocate and free the
8403 * loopback device ensure this invariant is maintained by
8404 * keeping the loopback device as the first device on the
8405 * list of network devices. Ensuring the loopback devices
8406 * is the first device that appears and the last network device
8407 * that disappears.
8408 */
8409 if (register_pernet_device(&loopback_net_ops))
8410 goto out;
8411
8412 if (register_pernet_device(&default_device_ops))
8413 goto out;
8414
962cf36c
CM
8415 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8416 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8417
f0bf90de
SAS
8418 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8419 NULL, dev_cpu_dead);
8420 WARN_ON(rc < 0);
f38a9eb1 8421 dst_subsys_init();
1da177e4
LT
8422 rc = 0;
8423out:
8424 return rc;
8425}
8426
8427subsys_initcall(net_dev_init);