]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/core/dev.c
bpf: Fix compilation warning in __bpf_lru_list_rotate_inactive
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
40e4e713 142#include <linux/crash_dump.h>
1da177e4 143
342709ef
PE
144#include "net-sysfs.h"
145
d565b0a1
HX
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
5d38a079
HX
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
1da177e4 152static DEFINE_SPINLOCK(ptype_lock);
62532da9 153static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
62532da9 156static struct list_head offload_base __read_mostly;
1da177e4 157
ae78dbfa 158static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
ae78dbfa 162
1da177e4 163/*
7562f876 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
165 * semaphore.
166 *
c6d14c84 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
7562f876 170 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
1da177e4 182DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
183EXPORT_SYMBOL(dev_base_lock);
184
af12fa6e
ET
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
52bd2d62 188static unsigned int napi_gen_id = NR_CPUS;
6180d9de 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 190
18afa4b0 191static seqcount_t devnet_rename_seq;
c91f6df2 192
4e985ada
TG
193static inline void dev_base_seq_inc(struct net *net)
194{
195 while (++net->dev_base_seq == 0);
196}
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 199{
8387ff25 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 201
08e9897d 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
203}
204
881d966b 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 206{
7c28bd0b 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
208}
209
e36fa2f7 210static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
e36fa2f7 217static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
ce286d32 224/* Device list insertion */
53759be9 225static void list_netdevice(struct net_device *dev)
ce286d32 226{
c346dca1 227 struct net *net = dev_net(dev);
ce286d32
EB
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
c6d14c84 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
ce286d32 236 write_unlock_bh(&dev_base_lock);
4e985ada
TG
237
238 dev_base_seq_inc(net);
ce286d32
EB
239}
240
fb699dfd
ED
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
ce286d32
EB
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
c6d14c84 250 list_del_rcu(&dev->dev_list);
72c9528b 251 hlist_del_rcu(&dev->name_hlist);
fb699dfd 252 hlist_del_rcu(&dev->index_hlist);
ce286d32 253 write_unlock_bh(&dev_base_lock);
4e985ada
TG
254
255 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
256}
257
1da177e4
LT
258/*
259 * Our notifier list
260 */
261
f07d5b94 262static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
263
264/*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
bea3348e 268
9958da05 269DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 270EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 271
cf508b12 272#ifdef CONFIG_LOCKDEP
723e98b7 273/*
c773e847 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
275 * according to dev->type
276 */
277static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 293
36cbd3dc 294static const char *const netdev_lock_name[] =
723e98b7
JP
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
cf508b12
DM
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
723e98b7
JP
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
cf508b12
DM
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
723e98b7 344#else
cf508b12
DM
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
350{
351}
352#endif
1da177e4
LT
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
1da177e4
LT
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
c07b68e8
ED
376static inline struct list_head *ptype_head(const struct packet_type *pt)
377{
378 if (pt->type == htons(ETH_P_ALL))
7866a621 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 380 else
7866a621
SN
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
383}
384
1da177e4
LT
385/**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
4ec93edb 393 * This call does not sleep therefore it can not
1da177e4
LT
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398void dev_add_pack(struct packet_type *pt)
399{
c07b68e8 400 struct list_head *head = ptype_head(pt);
1da177e4 401
c07b68e8
ED
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
1da177e4 405}
d1b19dff 406EXPORT_SYMBOL(dev_add_pack);
1da177e4 407
1da177e4
LT
408/**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
4ec93edb 415 * returns.
1da177e4
LT
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421void __dev_remove_pack(struct packet_type *pt)
422{
c07b68e8 423 struct list_head *head = ptype_head(pt);
1da177e4
LT
424 struct packet_type *pt1;
425
c07b68e8 426 spin_lock(&ptype_lock);
1da177e4
LT
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
7b6cd1ce 435 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 436out:
c07b68e8 437 spin_unlock(&ptype_lock);
1da177e4 438}
d1b19dff
ED
439EXPORT_SYMBOL(__dev_remove_pack);
440
1da177e4
LT
441/**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453void dev_remove_pack(struct packet_type *pt)
454{
455 __dev_remove_pack(pt);
4ec93edb 456
1da177e4
LT
457 synchronize_net();
458}
d1b19dff 459EXPORT_SYMBOL(dev_remove_pack);
1da177e4 460
62532da9
VY
461
462/**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474void dev_add_offload(struct packet_offload *po)
475{
bdef7de4 476 struct packet_offload *elem;
62532da9
VY
477
478 spin_lock(&offload_lock);
bdef7de4
DM
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
484 spin_unlock(&offload_lock);
485}
486EXPORT_SYMBOL(dev_add_offload);
487
488/**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
1d143d9f 501static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
502{
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
c53aa505 506 spin_lock(&offload_lock);
62532da9
VY
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516out:
c53aa505 517 spin_unlock(&offload_lock);
62532da9 518}
62532da9
VY
519
520/**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532void dev_remove_offload(struct packet_offload *po)
533{
534 __dev_remove_offload(po);
535
536 synchronize_net();
537}
538EXPORT_SYMBOL(dev_remove_offload);
539
1da177e4
LT
540/******************************************************************************
541
542 Device Boot-time Settings Routines
543
544*******************************************************************************/
545
546/* Boot time configuration table */
547static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549/**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558static int netdev_boot_setup_add(char *name, struct ifmap *map)
559{
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 567 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574}
575
576/**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585int netdev_boot_setup_check(struct net_device *dev)
586{
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 592 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601}
d1b19dff 602EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
603
604
605/**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615unsigned long netdev_boot_base(const char *prefix, int unit)
616{
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
881d966b 627 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634}
635
636/*
637 * Saves at boot time configured settings for any netdevice.
638 */
639int __init netdev_boot_setup(char *str)
640{
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661}
662
663__setup("netdev=", netdev_boot_setup);
664
665/*******************************************************************************
666
667 Device Interface Subroutines
668
669*******************************************************************************/
670
a54acb3a
ND
671/**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679int dev_get_iflink(const struct net_device *dev)
680{
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
7a66bbc9 684 return dev->ifindex;
a54acb3a
ND
685}
686EXPORT_SYMBOL(dev_get_iflink);
687
fc4099f1
PS
688/**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698{
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711}
712EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
1da177e4
LT
714/**
715 * __dev_get_by_name - find a device by its name
c4ea43c5 716 * @net: the applicable net namespace
1da177e4
LT
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
881d966b 726struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 727{
0bd8d536
ED
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 730
b67bfe0d 731 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
0bd8d536 734
1da177e4
LT
735 return NULL;
736}
d1b19dff 737EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 738
72c9528b
ED
739/**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752{
72c9528b
ED
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
b67bfe0d 756 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761}
762EXPORT_SYMBOL(dev_get_by_name_rcu);
763
1da177e4
LT
764/**
765 * dev_get_by_name - find a device by its name
c4ea43c5 766 * @net: the applicable net namespace
1da177e4
LT
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
881d966b 776struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
777{
778 struct net_device *dev;
779
72c9528b
ED
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
782 if (dev)
783 dev_hold(dev);
72c9528b 784 rcu_read_unlock();
1da177e4
LT
785 return dev;
786}
d1b19dff 787EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
788
789/**
790 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 791 * @net: the applicable net namespace
1da177e4
LT
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
881d966b 801struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 802{
0bd8d536
ED
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 805
b67bfe0d 806 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
807 if (dev->ifindex == ifindex)
808 return dev;
0bd8d536 809
1da177e4
LT
810 return NULL;
811}
d1b19dff 812EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 813
fb699dfd
ED
814/**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826{
fb699dfd
ED
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
b67bfe0d 830 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835}
836EXPORT_SYMBOL(dev_get_by_index_rcu);
837
1da177e4
LT
838
839/**
840 * dev_get_by_index - find a device by its ifindex
c4ea43c5 841 * @net: the applicable net namespace
1da177e4
LT
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
881d966b 850struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
851{
852 struct net_device *dev;
853
fb699dfd
ED
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
856 if (dev)
857 dev_hold(dev);
fb699dfd 858 rcu_read_unlock();
1da177e4
LT
859 return dev;
860}
d1b19dff 861EXPORT_SYMBOL(dev_get_by_index);
1da177e4 862
5dbe7c17
NS
863/**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873int netdev_get_name(struct net *net, char *name, int ifindex)
874{
875 struct net_device *dev;
876 unsigned int seq;
877
878retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895}
896
1da177e4 897/**
941666c2 898 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 899 * @net: the applicable net namespace
1da177e4
LT
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
941666c2 906 * The returned device has not had its ref count increased
1da177e4
LT
907 * and the caller must therefore be careful about locking
908 *
1da177e4
LT
909 */
910
941666c2
ED
911struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
1da177e4
LT
913{
914 struct net_device *dev;
915
941666c2 916 for_each_netdev_rcu(net, dev)
1da177e4
LT
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
919 return dev;
920
921 return NULL;
1da177e4 922}
941666c2 923EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 924
881d966b 925struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
926{
927 struct net_device *dev;
928
4e9cac2b 929 ASSERT_RTNL();
881d966b 930 for_each_netdev(net, dev)
4e9cac2b 931 if (dev->type == type)
7562f876
PE
932 return dev;
933
934 return NULL;
4e9cac2b 935}
4e9cac2b
PM
936EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
881d966b 938struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 939{
99fe3c39 940 struct net_device *dev, *ret = NULL;
4e9cac2b 941
99fe3c39
ED
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
1da177e4 951}
1da177e4
LT
952EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954/**
6c555490 955 * __dev_get_by_flags - find any device with given flags
c4ea43c5 956 * @net: the applicable net namespace
1da177e4
LT
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 961 * is not found or a pointer to the device. Must be called inside
6c555490 962 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
963 */
964
6c555490
WC
965struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
1da177e4 967{
7562f876 968 struct net_device *dev, *ret;
1da177e4 969
6c555490
WC
970 ASSERT_RTNL();
971
7562f876 972 ret = NULL;
6c555490 973 for_each_netdev(net, dev) {
1da177e4 974 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 975 ret = dev;
1da177e4
LT
976 break;
977 }
978 }
7562f876 979 return ret;
1da177e4 980}
6c555490 981EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
982
983/**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
c7fa9d18
DM
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
1da177e4 990 */
95f050bf 991bool dev_valid_name(const char *name)
1da177e4 992{
c7fa9d18 993 if (*name == '\0')
95f050bf 994 return false;
b6fe17d6 995 if (strlen(name) >= IFNAMSIZ)
95f050bf 996 return false;
c7fa9d18 997 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 998 return false;
c7fa9d18
DM
999
1000 while (*name) {
a4176a93 1001 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1002 return false;
c7fa9d18
DM
1003 name++;
1004 }
95f050bf 1005 return true;
1da177e4 1006}
d1b19dff 1007EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1008
1009/**
b267b179
EB
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1da177e4 1012 * @name: name format string
b267b179 1013 * @buf: scratch buffer and result name string
1da177e4
LT
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1022 */
1023
b267b179 1024static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1025{
1026 int i = 0;
1da177e4
LT
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1029 unsigned long *inuse;
1da177e4
LT
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
cfcabdcc 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1044 if (!inuse)
1045 return -ENOMEM;
1046
881d966b 1047 for_each_netdev(net, d) {
1da177e4
LT
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1054 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
d9031024
OP
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1065 if (!__dev_get_by_name(net, buf))
1da177e4 1066 return i;
1da177e4
LT
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073}
1074
b267b179
EB
1075/**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089int dev_alloc_name(struct net_device *dev, const char *name)
1090{
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
c346dca1
YH
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
b267b179
EB
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101}
d1b19dff 1102EXPORT_SYMBOL(dev_alloc_name);
b267b179 1103
828de4f6
G
1104static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
d9031024 1107{
828de4f6
G
1108 char buf[IFNAMSIZ];
1109 int ret;
8ce6cebc 1110
828de4f6
G
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115}
1116
1117static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120{
1121 BUG_ON(!net);
8ce6cebc 1122
d9031024
OP
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1c5cae81 1126 if (strchr(name, '%'))
828de4f6 1127 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
8ce6cebc
DL
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1132
1133 return 0;
1134}
1da177e4
LT
1135
1136/**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
cf04a4c7 1144int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1145{
238fa362 1146 unsigned char old_assign_type;
fcc5a03a 1147 char oldname[IFNAMSIZ];
1da177e4 1148 int err = 0;
fcc5a03a 1149 int ret;
881d966b 1150 struct net *net;
1da177e4
LT
1151
1152 ASSERT_RTNL();
c346dca1 1153 BUG_ON(!dev_net(dev));
1da177e4 1154
c346dca1 1155 net = dev_net(dev);
1da177e4
LT
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
30e6c9fa 1159 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1162 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1163 return 0;
c91f6df2 1164 }
c8d90dca 1165
fcc5a03a
HX
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
828de4f6 1168 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1169 if (err < 0) {
30e6c9fa 1170 write_seqcount_end(&devnet_rename_seq);
d9031024 1171 return err;
c91f6df2 1172 }
1da177e4 1173
6fe82a39
VF
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
238fa362
TG
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
fcc5a03a 1180rollback:
a1b3f594
EB
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1184 dev->name_assign_type = old_assign_type;
30e6c9fa 1185 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1186 return ret;
dcc99773 1187 }
7f988eab 1188
30e6c9fa 1189 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1190
5bb025fa
VF
1191 netdev_adjacent_rename_links(dev, oldname);
1192
7f988eab 1193 write_lock_bh(&dev_base_lock);
372b2312 1194 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1201 write_unlock_bh(&dev_base_lock);
1202
056925ab 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
91e9c07b
ED
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
fcc5a03a 1209 err = ret;
30e6c9fa 1210 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1211 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1212 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1215 goto rollback;
91e9c07b 1216 } else {
7b6cd1ce 1217 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1218 dev->name, ret);
fcc5a03a
HX
1219 }
1220 }
1da177e4
LT
1221
1222 return err;
1223}
1224
0b815a1a
SH
1225/**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
f0db275a 1229 * @len: limit of bytes to copy from info
0b815a1a
SH
1230 *
1231 * Set ifalias for a device,
1232 */
1233int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234{
7364e445
AK
1235 char *new_ifalias;
1236
0b815a1a
SH
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
96ca4a2c 1242 if (!len) {
388dfc2d
SK
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
96ca4a2c
OH
1245 return 0;
1246 }
1247
7364e445
AK
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
0b815a1a 1250 return -ENOMEM;
7364e445 1251 dev->ifalias = new_ifalias;
0b815a1a
SH
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255}
1256
1257
d8a33ac4 1258/**
3041a069 1259 * netdev_features_change - device changes features
d8a33ac4
SH
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264void netdev_features_change(struct net_device *dev)
1265{
056925ab 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1267}
1268EXPORT_SYMBOL(netdev_features_change);
1269
1da177e4
LT
1270/**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278void netdev_state_change(struct net_device *dev)
1279{
1280 if (dev->flags & IFF_UP) {
54951194
LP
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
7f294054 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1287 }
1288}
d1b19dff 1289EXPORT_SYMBOL(netdev_state_change);
1da177e4 1290
ee89bab1
AW
1291/**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1302{
ee89bab1
AW
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
c1da4ac7 1306}
ee89bab1 1307EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1308
bd380811 1309static int __dev_open(struct net_device *dev)
1da177e4 1310{
d314774c 1311 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1312 int ret;
1da177e4 1313
e46b66bc
BH
1314 ASSERT_RTNL();
1315
1da177e4
LT
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
ca99ca14
NH
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
66b5552f 1323 netpoll_poll_disable(dev);
ca99ca14 1324
3b8bcfd5
JB
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1da177e4 1330 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1331
d314774c
SH
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
bada339b 1334
d314774c
SH
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1da177e4 1337
66b5552f 1338 netpoll_poll_enable(dev);
ca99ca14 1339
bada339b
JG
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1da177e4 1343 dev->flags |= IFF_UP;
4417da66 1344 dev_set_rx_mode(dev);
1da177e4 1345 dev_activate(dev);
7bf23575 1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1347 }
bada339b 1348
1da177e4
LT
1349 return ret;
1350}
1351
1352/**
bd380811
PM
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1da177e4 1355 *
bd380811
PM
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1da177e4 1363 */
bd380811
PM
1364int dev_open(struct net_device *dev)
1365{
1366 int ret;
1367
bd380811
PM
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
bd380811
PM
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
7f294054 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379}
1380EXPORT_SYMBOL(dev_open);
1381
44345724 1382static int __dev_close_many(struct list_head *head)
1da177e4 1383{
44345724 1384 struct net_device *dev;
e46b66bc 1385
bd380811 1386 ASSERT_RTNL();
9d5010db
DM
1387 might_sleep();
1388
5cde2829 1389 list_for_each_entry(dev, head, close_list) {
3f4df206 1390 /* Temporarily disable netpoll until the interface is down */
66b5552f 1391 netpoll_poll_disable(dev);
3f4df206 1392
44345724 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1394
44345724 1395 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1396
44345724
OP
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
4e857c58 1403 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1404 }
1da177e4 1405
44345724 1406 dev_deactivate_many(head);
d8b2a4d2 1407
5cde2829 1408 list_for_each_entry(dev, head, close_list) {
44345724 1409 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1410
44345724
OP
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
44345724 1421 dev->flags &= ~IFF_UP;
66b5552f 1422 netpoll_poll_enable(dev);
44345724
OP
1423 }
1424
1425 return 0;
1426}
1427
1428static int __dev_close(struct net_device *dev)
1429{
f87e6f47 1430 int retval;
44345724
OP
1431 LIST_HEAD(single);
1432
5cde2829 1433 list_add(&dev->close_list, &single);
f87e6f47
LT
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
ca99ca14 1436
f87e6f47 1437 return retval;
44345724
OP
1438}
1439
99c4a26a 1440int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1441{
1442 struct net_device *dev, *tmp;
1da177e4 1443
5cde2829
EB
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1446 if (!(dev->flags & IFF_UP))
5cde2829 1447 list_del_init(&dev->close_list);
44345724
OP
1448
1449 __dev_close_many(head);
1da177e4 1450
5cde2829 1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1454 if (unlink)
1455 list_del_init(&dev->close_list);
44345724 1456 }
bd380811
PM
1457
1458 return 0;
1459}
99c4a26a 1460EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1461
1462/**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471int dev_close(struct net_device *dev)
1472{
e14a5993
ED
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1da177e4 1475
5cde2829 1476 list_add(&dev->close_list, &single);
99c4a26a 1477 dev_close_many(&single, true);
e14a5993
ED
1478 list_del(&single);
1479 }
da6e378b 1480 return 0;
1da177e4 1481}
d1b19dff 1482EXPORT_SYMBOL(dev_close);
1da177e4
LT
1483
1484
0187bdfb
BH
1485/**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493void dev_disable_lro(struct net_device *dev)
1494{
fbe168ba
MK
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
529d0489 1497
bc5787c6
MM
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
27660515 1500
22d5969f
MM
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
0187bdfb
BH
1506}
1507EXPORT_SYMBOL(dev_disable_lro);
1508
351638e7
JP
1509static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511{
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516}
0187bdfb 1517
881d966b
EB
1518static int dev_boot_phase = 1;
1519
1da177e4
LT
1520/**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
4ec93edb 1530 * to the new notifier to allow device to have a race free
1da177e4
LT
1531 * view of the network device list.
1532 */
1533
1534int register_netdevice_notifier(struct notifier_block *nb)
1535{
1536 struct net_device *dev;
fcc5a03a 1537 struct net_device *last;
881d966b 1538 struct net *net;
1da177e4
LT
1539 int err;
1540
1541 rtnl_lock();
f07d5b94 1542 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1543 if (err)
1544 goto unlock;
881d966b
EB
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
351638e7 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1da177e4 1556
351638e7 1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1558 }
1da177e4 1559 }
fcc5a03a
HX
1560
1561unlock:
1da177e4
LT
1562 rtnl_unlock();
1563 return err;
fcc5a03a
HX
1564
1565rollback:
1566 last = dev;
881d966b
EB
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
8f891489 1570 goto outroll;
fcc5a03a 1571
881d966b 1572 if (dev->flags & IFF_UP) {
351638e7
JP
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1576 }
351638e7 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1578 }
fcc5a03a 1579 }
c67625a1 1580
8f891489 1581outroll:
c67625a1 1582 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1583 goto unlock;
1da177e4 1584}
d1b19dff 1585EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1586
1587/**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
7d3d43da
EB
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1da177e4
LT
1599 */
1600
1601int unregister_netdevice_notifier(struct notifier_block *nb)
1602{
7d3d43da
EB
1603 struct net_device *dev;
1604 struct net *net;
9f514950
HX
1605 int err;
1606
1607 rtnl_lock();
f07d5b94 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
351638e7
JP
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1618 }
351638e7 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1620 }
1621 }
1622unlock:
9f514950
HX
1623 rtnl_unlock();
1624 return err;
1da177e4 1625}
d1b19dff 1626EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1627
351638e7
JP
1628/**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1d143d9f 1638static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
351638e7
JP
1641{
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645}
351638e7 1646
1da177e4
LT
1647/**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
c4ea43c5 1650 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1651 *
1652 * Call all network notifier blocks. Parameters and return value
f07d5b94 1653 * are as for raw_notifier_call_chain().
1da177e4
LT
1654 */
1655
ad7379d4 1656int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1657{
351638e7
JP
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1661}
edf947f1 1662EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1663
1cf51900 1664#ifdef CONFIG_NET_INGRESS
4577139b
DB
1665static struct static_key ingress_needed __read_mostly;
1666
1667void net_inc_ingress_queue(void)
1668{
1669 static_key_slow_inc(&ingress_needed);
1670}
1671EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673void net_dec_ingress_queue(void)
1674{
1675 static_key_slow_dec(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678#endif
1679
1f211a1b
DB
1680#ifdef CONFIG_NET_EGRESS
1681static struct static_key egress_needed __read_mostly;
1682
1683void net_inc_egress_queue(void)
1684{
1685 static_key_slow_inc(&egress_needed);
1686}
1687EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689void net_dec_egress_queue(void)
1690{
1691 static_key_slow_dec(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694#endif
1695
c5905afb 1696static struct static_key netstamp_needed __read_mostly;
b90e5794 1697#ifdef HAVE_JUMP_LABEL
c5905afb 1698/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1699 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1700 * static_key_slow_dec() calls.
b90e5794
ED
1701 */
1702static atomic_t netstamp_needed_deferred;
1703#endif
1da177e4
LT
1704
1705void net_enable_timestamp(void)
1706{
b90e5794
ED
1707#ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710 if (deferred) {
1711 while (--deferred)
c5905afb 1712 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1713 return;
1714 }
1715#endif
c5905afb 1716 static_key_slow_inc(&netstamp_needed);
1da177e4 1717}
d1b19dff 1718EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1719
1720void net_disable_timestamp(void)
1721{
b90e5794
ED
1722#ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1726 }
1727#endif
c5905afb 1728 static_key_slow_dec(&netstamp_needed);
1da177e4 1729}
d1b19dff 1730EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1731
3b098e2d 1732static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1733{
588f0330 1734 skb->tstamp.tv64 = 0;
c5905afb 1735 if (static_key_false(&netstamp_needed))
a61bbcf2 1736 __net_timestamp(skb);
1da177e4
LT
1737}
1738
588f0330 1739#define net_timestamp_check(COND, SKB) \
c5905afb 1740 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1741 if ((COND) && !(SKB)->tstamp.tv64) \
1742 __net_timestamp(SKB); \
1743 } \
3b098e2d 1744
f4b05d27 1745bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1746{
1747 unsigned int len;
1748
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1751
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1755
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1758 */
1759 if (skb_is_gso(skb))
1760 return true;
1761
1762 return false;
1763}
1ee481fb 1764EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1765
a0265d28
HX
1766int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767{
4e3264d2 1768 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1769
4e3264d2
MKL
1770 if (likely(!ret)) {
1771 skb->protocol = eth_type_trans(skb, dev);
1772 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773 }
a0265d28 1774
4e3264d2 1775 return ret;
a0265d28
HX
1776}
1777EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778
44540960
AB
1779/**
1780 * dev_forward_skb - loopback an skb to another netif
1781 *
1782 * @dev: destination network device
1783 * @skb: buffer to forward
1784 *
1785 * return values:
1786 * NET_RX_SUCCESS (no congestion)
6ec82562 1787 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1788 *
1789 * dev_forward_skb can be used for injecting an skb from the
1790 * start_xmit function of one device into the receive queue
1791 * of another device.
1792 *
1793 * The receiving device may be in another namespace, so
1794 * we have to clear all information in the skb that could
1795 * impact namespace isolation.
1796 */
1797int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798{
a0265d28 1799 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1800}
1801EXPORT_SYMBOL_GPL(dev_forward_skb);
1802
71d9dec2
CG
1803static inline int deliver_skb(struct sk_buff *skb,
1804 struct packet_type *pt_prev,
1805 struct net_device *orig_dev)
1806{
1080e512
MT
1807 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808 return -ENOMEM;
71d9dec2
CG
1809 atomic_inc(&skb->users);
1810 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811}
1812
7866a621
SN
1813static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814 struct packet_type **pt,
fbcb2170
JP
1815 struct net_device *orig_dev,
1816 __be16 type,
7866a621
SN
1817 struct list_head *ptype_list)
1818{
1819 struct packet_type *ptype, *pt_prev = *pt;
1820
1821 list_for_each_entry_rcu(ptype, ptype_list, list) {
1822 if (ptype->type != type)
1823 continue;
1824 if (pt_prev)
fbcb2170 1825 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1826 pt_prev = ptype;
1827 }
1828 *pt = pt_prev;
1829}
1830
c0de08d0
EL
1831static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832{
a3d744e9 1833 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1834 return false;
1835
1836 if (ptype->id_match)
1837 return ptype->id_match(ptype, skb->sk);
1838 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839 return true;
1840
1841 return false;
1842}
1843
1da177e4
LT
1844/*
1845 * Support routine. Sends outgoing frames to any network
1846 * taps currently in use.
1847 */
1848
74b20582 1849void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1850{
1851 struct packet_type *ptype;
71d9dec2
CG
1852 struct sk_buff *skb2 = NULL;
1853 struct packet_type *pt_prev = NULL;
7866a621 1854 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1855
1da177e4 1856 rcu_read_lock();
7866a621
SN
1857again:
1858 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1859 /* Never send packets back to the socket
1860 * they originated from - MvS (miquels@drinkel.ow.org)
1861 */
7866a621
SN
1862 if (skb_loop_sk(ptype, skb))
1863 continue;
71d9dec2 1864
7866a621
SN
1865 if (pt_prev) {
1866 deliver_skb(skb2, pt_prev, skb->dev);
1867 pt_prev = ptype;
1868 continue;
1869 }
1da177e4 1870
7866a621
SN
1871 /* need to clone skb, done only once */
1872 skb2 = skb_clone(skb, GFP_ATOMIC);
1873 if (!skb2)
1874 goto out_unlock;
70978182 1875
7866a621 1876 net_timestamp_set(skb2);
1da177e4 1877
7866a621
SN
1878 /* skb->nh should be correctly
1879 * set by sender, so that the second statement is
1880 * just protection against buggy protocols.
1881 */
1882 skb_reset_mac_header(skb2);
1883
1884 if (skb_network_header(skb2) < skb2->data ||
1885 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887 ntohs(skb2->protocol),
1888 dev->name);
1889 skb_reset_network_header(skb2);
1da177e4 1890 }
7866a621
SN
1891
1892 skb2->transport_header = skb2->network_header;
1893 skb2->pkt_type = PACKET_OUTGOING;
1894 pt_prev = ptype;
1895 }
1896
1897 if (ptype_list == &ptype_all) {
1898 ptype_list = &dev->ptype_all;
1899 goto again;
1da177e4 1900 }
7866a621 1901out_unlock:
71d9dec2
CG
1902 if (pt_prev)
1903 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1904 rcu_read_unlock();
1905}
74b20582 1906EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1907
2c53040f
BH
1908/**
1909 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1910 * @dev: Network device
1911 * @txq: number of queues available
1912 *
1913 * If real_num_tx_queues is changed the tc mappings may no longer be
1914 * valid. To resolve this verify the tc mapping remains valid and if
1915 * not NULL the mapping. With no priorities mapping to this
1916 * offset/count pair it will no longer be used. In the worst case TC0
1917 * is invalid nothing can be done so disable priority mappings. If is
1918 * expected that drivers will fix this mapping if they can before
1919 * calling netif_set_real_num_tx_queues.
1920 */
bb134d22 1921static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1922{
1923 int i;
1924 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925
1926 /* If TC0 is invalidated disable TC mapping */
1927 if (tc->offset + tc->count > txq) {
7b6cd1ce 1928 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1929 dev->num_tc = 0;
1930 return;
1931 }
1932
1933 /* Invalidated prio to tc mappings set to TC0 */
1934 for (i = 1; i < TC_BITMASK + 1; i++) {
1935 int q = netdev_get_prio_tc_map(dev, i);
1936
1937 tc = &dev->tc_to_txq[q];
1938 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1939 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940 i, q);
4f57c087
JF
1941 netdev_set_prio_tc_map(dev, i, 0);
1942 }
1943 }
1944}
1945
8d059b0f
AD
1946int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947{
1948 if (dev->num_tc) {
1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950 int i;
1951
1952 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953 if ((txq - tc->offset) < tc->count)
1954 return i;
1955 }
1956
1957 return -1;
1958 }
1959
1960 return 0;
1961}
1962
537c00de
AD
1963#ifdef CONFIG_XPS
1964static DEFINE_MUTEX(xps_map_mutex);
1965#define xmap_dereference(P) \
1966 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967
6234f874
AD
1968static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969 int tci, u16 index)
537c00de 1970{
10cdc3f3
AD
1971 struct xps_map *map = NULL;
1972 int pos;
537c00de 1973
10cdc3f3 1974 if (dev_maps)
6234f874
AD
1975 map = xmap_dereference(dev_maps->cpu_map[tci]);
1976 if (!map)
1977 return false;
537c00de 1978
6234f874
AD
1979 for (pos = map->len; pos--;) {
1980 if (map->queues[pos] != index)
1981 continue;
1982
1983 if (map->len > 1) {
1984 map->queues[pos] = map->queues[--map->len];
10cdc3f3 1985 break;
537c00de 1986 }
6234f874
AD
1987
1988 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989 kfree_rcu(map, rcu);
1990 return false;
537c00de
AD
1991 }
1992
6234f874 1993 return true;
10cdc3f3
AD
1994}
1995
6234f874
AD
1996static bool remove_xps_queue_cpu(struct net_device *dev,
1997 struct xps_dev_maps *dev_maps,
1998 int cpu, u16 offset, u16 count)
1999{
184c449f
AD
2000 int num_tc = dev->num_tc ? : 1;
2001 bool active = false;
2002 int tci;
6234f874 2003
184c449f
AD
2004 for (tci = cpu * num_tc; num_tc--; tci++) {
2005 int i, j;
2006
2007 for (i = count, j = offset; i--; j++) {
2008 if (!remove_xps_queue(dev_maps, cpu, j))
2009 break;
2010 }
2011
2012 active |= i < 0;
6234f874
AD
2013 }
2014
184c449f 2015 return active;
6234f874
AD
2016}
2017
2018static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019 u16 count)
10cdc3f3
AD
2020{
2021 struct xps_dev_maps *dev_maps;
024e9679 2022 int cpu, i;
10cdc3f3
AD
2023 bool active = false;
2024
2025 mutex_lock(&xps_map_mutex);
2026 dev_maps = xmap_dereference(dev->xps_maps);
2027
2028 if (!dev_maps)
2029 goto out_no_maps;
2030
6234f874
AD
2031 for_each_possible_cpu(cpu)
2032 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033 offset, count);
10cdc3f3
AD
2034
2035 if (!active) {
537c00de
AD
2036 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037 kfree_rcu(dev_maps, rcu);
2038 }
2039
6234f874 2040 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2041 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042 NUMA_NO_NODE);
2043
537c00de
AD
2044out_no_maps:
2045 mutex_unlock(&xps_map_mutex);
2046}
2047
6234f874
AD
2048static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049{
2050 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051}
2052
01c5f864
AD
2053static struct xps_map *expand_xps_map(struct xps_map *map,
2054 int cpu, u16 index)
2055{
2056 struct xps_map *new_map;
2057 int alloc_len = XPS_MIN_MAP_ALLOC;
2058 int i, pos;
2059
2060 for (pos = 0; map && pos < map->len; pos++) {
2061 if (map->queues[pos] != index)
2062 continue;
2063 return map;
2064 }
2065
2066 /* Need to add queue to this CPU's existing map */
2067 if (map) {
2068 if (pos < map->alloc_len)
2069 return map;
2070
2071 alloc_len = map->alloc_len * 2;
2072 }
2073
2074 /* Need to allocate new map to store queue on this CPU's map */
2075 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076 cpu_to_node(cpu));
2077 if (!new_map)
2078 return NULL;
2079
2080 for (i = 0; i < pos; i++)
2081 new_map->queues[i] = map->queues[i];
2082 new_map->alloc_len = alloc_len;
2083 new_map->len = pos;
2084
2085 return new_map;
2086}
2087
3573540c
MT
2088int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089 u16 index)
537c00de 2090{
01c5f864 2091 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2092 int i, cpu, tci, numa_node_id = -2;
2093 int maps_sz, num_tc = 1, tc = 0;
537c00de 2094 struct xps_map *map, *new_map;
01c5f864 2095 bool active = false;
537c00de 2096
184c449f
AD
2097 if (dev->num_tc) {
2098 num_tc = dev->num_tc;
2099 tc = netdev_txq_to_tc(dev, index);
2100 if (tc < 0)
2101 return -EINVAL;
2102 }
2103
2104 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105 if (maps_sz < L1_CACHE_BYTES)
2106 maps_sz = L1_CACHE_BYTES;
2107
537c00de
AD
2108 mutex_lock(&xps_map_mutex);
2109
2110 dev_maps = xmap_dereference(dev->xps_maps);
2111
01c5f864 2112 /* allocate memory for queue storage */
184c449f 2113 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2114 if (!new_dev_maps)
2115 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2116 if (!new_dev_maps) {
2117 mutex_unlock(&xps_map_mutex);
01c5f864 2118 return -ENOMEM;
2bb60cb9 2119 }
01c5f864 2120
184c449f
AD
2121 tci = cpu * num_tc + tc;
2122 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2123 NULL;
2124
2125 map = expand_xps_map(map, cpu, index);
2126 if (!map)
2127 goto error;
2128
184c449f 2129 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2130 }
2131
2132 if (!new_dev_maps)
2133 goto out_no_new_maps;
2134
537c00de 2135 for_each_possible_cpu(cpu) {
184c449f
AD
2136 /* copy maps belonging to foreign traffic classes */
2137 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138 /* fill in the new device map from the old device map */
2139 map = xmap_dereference(dev_maps->cpu_map[tci]);
2140 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141 }
2142
2143 /* We need to explicitly update tci as prevous loop
2144 * could break out early if dev_maps is NULL.
2145 */
2146 tci = cpu * num_tc + tc;
2147
01c5f864
AD
2148 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149 /* add queue to CPU maps */
2150 int pos = 0;
2151
184c449f 2152 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2153 while ((pos < map->len) && (map->queues[pos] != index))
2154 pos++;
2155
2156 if (pos == map->len)
2157 map->queues[map->len++] = index;
537c00de 2158#ifdef CONFIG_NUMA
537c00de
AD
2159 if (numa_node_id == -2)
2160 numa_node_id = cpu_to_node(cpu);
2161 else if (numa_node_id != cpu_to_node(cpu))
2162 numa_node_id = -1;
537c00de 2163#endif
01c5f864
AD
2164 } else if (dev_maps) {
2165 /* fill in the new device map from the old device map */
184c449f
AD
2166 map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2168 }
01c5f864 2169
184c449f
AD
2170 /* copy maps belonging to foreign traffic classes */
2171 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172 /* fill in the new device map from the old device map */
2173 map = xmap_dereference(dev_maps->cpu_map[tci]);
2174 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175 }
537c00de
AD
2176 }
2177
01c5f864
AD
2178 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179
537c00de 2180 /* Cleanup old maps */
184c449f
AD
2181 if (!dev_maps)
2182 goto out_no_old_maps;
2183
2184 for_each_possible_cpu(cpu) {
2185 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2188 if (map && map != new_map)
2189 kfree_rcu(map, rcu);
2190 }
537c00de
AD
2191 }
2192
184c449f
AD
2193 kfree_rcu(dev_maps, rcu);
2194
2195out_no_old_maps:
01c5f864
AD
2196 dev_maps = new_dev_maps;
2197 active = true;
537c00de 2198
01c5f864
AD
2199out_no_new_maps:
2200 /* update Tx queue numa node */
537c00de
AD
2201 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202 (numa_node_id >= 0) ? numa_node_id :
2203 NUMA_NO_NODE);
2204
01c5f864
AD
2205 if (!dev_maps)
2206 goto out_no_maps;
2207
2208 /* removes queue from unused CPUs */
2209 for_each_possible_cpu(cpu) {
184c449f
AD
2210 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211 active |= remove_xps_queue(dev_maps, tci, index);
2212 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213 active |= remove_xps_queue(dev_maps, tci, index);
2214 for (i = num_tc - tc, tci++; --i; tci++)
2215 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2216 }
2217
2218 /* free map if not active */
2219 if (!active) {
2220 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221 kfree_rcu(dev_maps, rcu);
2222 }
2223
2224out_no_maps:
537c00de
AD
2225 mutex_unlock(&xps_map_mutex);
2226
2227 return 0;
2228error:
01c5f864
AD
2229 /* remove any maps that we added */
2230 for_each_possible_cpu(cpu) {
184c449f
AD
2231 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233 map = dev_maps ?
2234 xmap_dereference(dev_maps->cpu_map[tci]) :
2235 NULL;
2236 if (new_map && new_map != map)
2237 kfree(new_map);
2238 }
01c5f864
AD
2239 }
2240
537c00de
AD
2241 mutex_unlock(&xps_map_mutex);
2242
537c00de
AD
2243 kfree(new_dev_maps);
2244 return -ENOMEM;
2245}
2246EXPORT_SYMBOL(netif_set_xps_queue);
2247
2248#endif
9cf1f6a8
AD
2249void netdev_reset_tc(struct net_device *dev)
2250{
6234f874
AD
2251#ifdef CONFIG_XPS
2252 netif_reset_xps_queues_gt(dev, 0);
2253#endif
9cf1f6a8
AD
2254 dev->num_tc = 0;
2255 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257}
2258EXPORT_SYMBOL(netdev_reset_tc);
2259
2260int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261{
2262 if (tc >= dev->num_tc)
2263 return -EINVAL;
2264
6234f874
AD
2265#ifdef CONFIG_XPS
2266 netif_reset_xps_queues(dev, offset, count);
2267#endif
9cf1f6a8
AD
2268 dev->tc_to_txq[tc].count = count;
2269 dev->tc_to_txq[tc].offset = offset;
2270 return 0;
2271}
2272EXPORT_SYMBOL(netdev_set_tc_queue);
2273
2274int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275{
2276 if (num_tc > TC_MAX_QUEUE)
2277 return -EINVAL;
2278
6234f874
AD
2279#ifdef CONFIG_XPS
2280 netif_reset_xps_queues_gt(dev, 0);
2281#endif
9cf1f6a8
AD
2282 dev->num_tc = num_tc;
2283 return 0;
2284}
2285EXPORT_SYMBOL(netdev_set_num_tc);
2286
f0796d5c
JF
2287/*
2288 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290 */
e6484930 2291int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2292{
1d24eb48
TH
2293 int rc;
2294
e6484930
TH
2295 if (txq < 1 || txq > dev->num_tx_queues)
2296 return -EINVAL;
f0796d5c 2297
5c56580b
BH
2298 if (dev->reg_state == NETREG_REGISTERED ||
2299 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2300 ASSERT_RTNL();
2301
1d24eb48
TH
2302 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303 txq);
bf264145
TH
2304 if (rc)
2305 return rc;
2306
4f57c087
JF
2307 if (dev->num_tc)
2308 netif_setup_tc(dev, txq);
2309
024e9679 2310 if (txq < dev->real_num_tx_queues) {
e6484930 2311 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2312#ifdef CONFIG_XPS
2313 netif_reset_xps_queues_gt(dev, txq);
2314#endif
2315 }
f0796d5c 2316 }
e6484930
TH
2317
2318 dev->real_num_tx_queues = txq;
2319 return 0;
f0796d5c
JF
2320}
2321EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2322
a953be53 2323#ifdef CONFIG_SYSFS
62fe0b40
BH
2324/**
2325 * netif_set_real_num_rx_queues - set actual number of RX queues used
2326 * @dev: Network device
2327 * @rxq: Actual number of RX queues
2328 *
2329 * This must be called either with the rtnl_lock held or before
2330 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2331 * negative error code. If called before registration, it always
2332 * succeeds.
62fe0b40
BH
2333 */
2334int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335{
2336 int rc;
2337
bd25fa7b
TH
2338 if (rxq < 1 || rxq > dev->num_rx_queues)
2339 return -EINVAL;
2340
62fe0b40
BH
2341 if (dev->reg_state == NETREG_REGISTERED) {
2342 ASSERT_RTNL();
2343
62fe0b40
BH
2344 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345 rxq);
2346 if (rc)
2347 return rc;
62fe0b40
BH
2348 }
2349
2350 dev->real_num_rx_queues = rxq;
2351 return 0;
2352}
2353EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354#endif
2355
2c53040f
BH
2356/**
2357 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2358 *
2359 * This routine should set an upper limit on the number of RSS queues
2360 * used by default by multiqueue devices.
2361 */
a55b138b 2362int netif_get_num_default_rss_queues(void)
16917b87 2363{
40e4e713
HS
2364 return is_kdump_kernel() ?
2365 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2366}
2367EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368
3bcb846c 2369static void __netif_reschedule(struct Qdisc *q)
56079431 2370{
def82a1d
JP
2371 struct softnet_data *sd;
2372 unsigned long flags;
56079431 2373
def82a1d 2374 local_irq_save(flags);
903ceff7 2375 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2376 q->next_sched = NULL;
2377 *sd->output_queue_tailp = q;
2378 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2379 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380 local_irq_restore(flags);
2381}
2382
2383void __netif_schedule(struct Qdisc *q)
2384{
2385 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386 __netif_reschedule(q);
56079431
DV
2387}
2388EXPORT_SYMBOL(__netif_schedule);
2389
e6247027
ED
2390struct dev_kfree_skb_cb {
2391 enum skb_free_reason reason;
2392};
2393
2394static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2395{
e6247027
ED
2396 return (struct dev_kfree_skb_cb *)skb->cb;
2397}
2398
46e5da40
JF
2399void netif_schedule_queue(struct netdev_queue *txq)
2400{
2401 rcu_read_lock();
2402 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403 struct Qdisc *q = rcu_dereference(txq->qdisc);
2404
2405 __netif_schedule(q);
2406 }
2407 rcu_read_unlock();
2408}
2409EXPORT_SYMBOL(netif_schedule_queue);
2410
2411/**
2412 * netif_wake_subqueue - allow sending packets on subqueue
2413 * @dev: network device
2414 * @queue_index: sub queue index
2415 *
2416 * Resume individual transmit queue of a device with multiple transmit queues.
2417 */
2418void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2419{
2420 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421
2422 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2423 struct Qdisc *q;
2424
2425 rcu_read_lock();
2426 q = rcu_dereference(txq->qdisc);
2427 __netif_schedule(q);
2428 rcu_read_unlock();
2429 }
2430}
2431EXPORT_SYMBOL(netif_wake_subqueue);
2432
2433void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2434{
2435 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2436 struct Qdisc *q;
2437
2438 rcu_read_lock();
2439 q = rcu_dereference(dev_queue->qdisc);
2440 __netif_schedule(q);
2441 rcu_read_unlock();
2442 }
2443}
2444EXPORT_SYMBOL(netif_tx_wake_queue);
2445
e6247027 2446void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2447{
e6247027 2448 unsigned long flags;
56079431 2449
e6247027
ED
2450 if (likely(atomic_read(&skb->users) == 1)) {
2451 smp_rmb();
2452 atomic_set(&skb->users, 0);
2453 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2454 return;
bea3348e 2455 }
e6247027
ED
2456 get_kfree_skb_cb(skb)->reason = reason;
2457 local_irq_save(flags);
2458 skb->next = __this_cpu_read(softnet_data.completion_queue);
2459 __this_cpu_write(softnet_data.completion_queue, skb);
2460 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461 local_irq_restore(flags);
56079431 2462}
e6247027 2463EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2464
e6247027 2465void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2466{
2467 if (in_irq() || irqs_disabled())
e6247027 2468 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2469 else
2470 dev_kfree_skb(skb);
2471}
e6247027 2472EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2473
2474
bea3348e
SH
2475/**
2476 * netif_device_detach - mark device as removed
2477 * @dev: network device
2478 *
2479 * Mark device as removed from system and therefore no longer available.
2480 */
56079431
DV
2481void netif_device_detach(struct net_device *dev)
2482{
2483 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2484 netif_running(dev)) {
d543103a 2485 netif_tx_stop_all_queues(dev);
56079431
DV
2486 }
2487}
2488EXPORT_SYMBOL(netif_device_detach);
2489
bea3348e
SH
2490/**
2491 * netif_device_attach - mark device as attached
2492 * @dev: network device
2493 *
2494 * Mark device as attached from system and restart if needed.
2495 */
56079431
DV
2496void netif_device_attach(struct net_device *dev)
2497{
2498 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2499 netif_running(dev)) {
d543103a 2500 netif_tx_wake_all_queues(dev);
4ec93edb 2501 __netdev_watchdog_up(dev);
56079431
DV
2502 }
2503}
2504EXPORT_SYMBOL(netif_device_attach);
2505
5605c762
JP
2506/*
2507 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2508 * to be used as a distribution range.
2509 */
2510u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2511 unsigned int num_tx_queues)
2512{
2513 u32 hash;
2514 u16 qoffset = 0;
2515 u16 qcount = num_tx_queues;
2516
2517 if (skb_rx_queue_recorded(skb)) {
2518 hash = skb_get_rx_queue(skb);
2519 while (unlikely(hash >= num_tx_queues))
2520 hash -= num_tx_queues;
2521 return hash;
2522 }
2523
2524 if (dev->num_tc) {
2525 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2526 qoffset = dev->tc_to_txq[tc].offset;
2527 qcount = dev->tc_to_txq[tc].count;
2528 }
2529
2530 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2531}
2532EXPORT_SYMBOL(__skb_tx_hash);
2533
36c92474
BH
2534static void skb_warn_bad_offload(const struct sk_buff *skb)
2535{
84d15ae5 2536 static const netdev_features_t null_features;
36c92474 2537 struct net_device *dev = skb->dev;
88ad4175 2538 const char *name = "";
36c92474 2539
c846ad9b
BG
2540 if (!net_ratelimit())
2541 return;
2542
88ad4175
BM
2543 if (dev) {
2544 if (dev->dev.parent)
2545 name = dev_driver_string(dev->dev.parent);
2546 else
2547 name = netdev_name(dev);
2548 }
36c92474
BH
2549 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2550 "gso_type=%d ip_summed=%d\n",
88ad4175 2551 name, dev ? &dev->features : &null_features,
65e9d2fa 2552 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2553 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2554 skb_shinfo(skb)->gso_type, skb->ip_summed);
2555}
2556
1da177e4
LT
2557/*
2558 * Invalidate hardware checksum when packet is to be mangled, and
2559 * complete checksum manually on outgoing path.
2560 */
84fa7933 2561int skb_checksum_help(struct sk_buff *skb)
1da177e4 2562{
d3bc23e7 2563 __wsum csum;
663ead3b 2564 int ret = 0, offset;
1da177e4 2565
84fa7933 2566 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2567 goto out_set_summed;
2568
2569 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2570 skb_warn_bad_offload(skb);
2571 return -EINVAL;
1da177e4
LT
2572 }
2573
cef401de
ED
2574 /* Before computing a checksum, we should make sure no frag could
2575 * be modified by an external entity : checksum could be wrong.
2576 */
2577 if (skb_has_shared_frag(skb)) {
2578 ret = __skb_linearize(skb);
2579 if (ret)
2580 goto out;
2581 }
2582
55508d60 2583 offset = skb_checksum_start_offset(skb);
a030847e
HX
2584 BUG_ON(offset >= skb_headlen(skb));
2585 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2586
2587 offset += skb->csum_offset;
2588 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2589
2590 if (skb_cloned(skb) &&
2591 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2592 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2593 if (ret)
2594 goto out;
2595 }
2596
4f2e4ad5 2597 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2598out_set_summed:
1da177e4 2599 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2600out:
1da177e4
LT
2601 return ret;
2602}
d1b19dff 2603EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2604
53d6471c 2605__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2606{
252e3346 2607 __be16 type = skb->protocol;
f6a78bfc 2608
19acc327
PS
2609 /* Tunnel gso handlers can set protocol to ethernet. */
2610 if (type == htons(ETH_P_TEB)) {
2611 struct ethhdr *eth;
2612
2613 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2614 return 0;
2615
2616 eth = (struct ethhdr *)skb_mac_header(skb);
2617 type = eth->h_proto;
2618 }
2619
d4bcef3f 2620 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2621}
2622
2623/**
2624 * skb_mac_gso_segment - mac layer segmentation handler.
2625 * @skb: buffer to segment
2626 * @features: features for the output path (see dev->features)
2627 */
2628struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2629 netdev_features_t features)
2630{
2631 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2632 struct packet_offload *ptype;
53d6471c
VY
2633 int vlan_depth = skb->mac_len;
2634 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2635
2636 if (unlikely(!type))
2637 return ERR_PTR(-EINVAL);
2638
53d6471c 2639 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2640
2641 rcu_read_lock();
22061d80 2642 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2643 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2644 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2645 break;
2646 }
2647 }
2648 rcu_read_unlock();
2649
98e399f8 2650 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2651
f6a78bfc
HX
2652 return segs;
2653}
05e8ef4a
PS
2654EXPORT_SYMBOL(skb_mac_gso_segment);
2655
2656
2657/* openvswitch calls this on rx path, so we need a different check.
2658 */
2659static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2660{
2661 if (tx_path)
2662 return skb->ip_summed != CHECKSUM_PARTIAL;
2663 else
2664 return skb->ip_summed == CHECKSUM_NONE;
2665}
2666
2667/**
2668 * __skb_gso_segment - Perform segmentation on skb.
2669 * @skb: buffer to segment
2670 * @features: features for the output path (see dev->features)
2671 * @tx_path: whether it is called in TX path
2672 *
2673 * This function segments the given skb and returns a list of segments.
2674 *
2675 * It may return NULL if the skb requires no segmentation. This is
2676 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2677 *
2678 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2679 */
2680struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2681 netdev_features_t features, bool tx_path)
2682{
2683 if (unlikely(skb_needs_check(skb, tx_path))) {
2684 int err;
2685
2686 skb_warn_bad_offload(skb);
2687
a40e0a66 2688 err = skb_cow_head(skb, 0);
2689 if (err < 0)
05e8ef4a
PS
2690 return ERR_PTR(err);
2691 }
2692
802ab55a
AD
2693 /* Only report GSO partial support if it will enable us to
2694 * support segmentation on this frame without needing additional
2695 * work.
2696 */
2697 if (features & NETIF_F_GSO_PARTIAL) {
2698 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2699 struct net_device *dev = skb->dev;
2700
2701 partial_features |= dev->features & dev->gso_partial_features;
2702 if (!skb_gso_ok(skb, features | partial_features))
2703 features &= ~NETIF_F_GSO_PARTIAL;
2704 }
2705
9207f9d4
KK
2706 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2707 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2708
68c33163 2709 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2710 SKB_GSO_CB(skb)->encap_level = 0;
2711
05e8ef4a
PS
2712 skb_reset_mac_header(skb);
2713 skb_reset_mac_len(skb);
2714
2715 return skb_mac_gso_segment(skb, features);
2716}
12b0004d 2717EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2718
fb286bb2
HX
2719/* Take action when hardware reception checksum errors are detected. */
2720#ifdef CONFIG_BUG
2721void netdev_rx_csum_fault(struct net_device *dev)
2722{
2723 if (net_ratelimit()) {
7b6cd1ce 2724 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2725 dump_stack();
2726 }
2727}
2728EXPORT_SYMBOL(netdev_rx_csum_fault);
2729#endif
2730
1da177e4
LT
2731/* Actually, we should eliminate this check as soon as we know, that:
2732 * 1. IOMMU is present and allows to map all the memory.
2733 * 2. No high memory really exists on this machine.
2734 */
2735
c1e756bf 2736static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2737{
3d3a8533 2738#ifdef CONFIG_HIGHMEM
1da177e4 2739 int i;
5acbbd42 2740 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2741 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2743 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2744 return 1;
ea2ab693 2745 }
5acbbd42 2746 }
1da177e4 2747
5acbbd42
FT
2748 if (PCI_DMA_BUS_IS_PHYS) {
2749 struct device *pdev = dev->dev.parent;
1da177e4 2750
9092c658
ED
2751 if (!pdev)
2752 return 0;
5acbbd42 2753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2756 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2757 return 1;
2758 }
2759 }
3d3a8533 2760#endif
1da177e4
LT
2761 return 0;
2762}
1da177e4 2763
3b392ddb
SH
2764/* If MPLS offload request, verify we are testing hardware MPLS features
2765 * instead of standard features for the netdev.
2766 */
d0edc7bf 2767#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2768static netdev_features_t net_mpls_features(struct sk_buff *skb,
2769 netdev_features_t features,
2770 __be16 type)
2771{
25cd9ba0 2772 if (eth_p_mpls(type))
3b392ddb
SH
2773 features &= skb->dev->mpls_features;
2774
2775 return features;
2776}
2777#else
2778static netdev_features_t net_mpls_features(struct sk_buff *skb,
2779 netdev_features_t features,
2780 __be16 type)
2781{
2782 return features;
2783}
2784#endif
2785
c8f44aff 2786static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2787 netdev_features_t features)
f01a5236 2788{
53d6471c 2789 int tmp;
3b392ddb
SH
2790 __be16 type;
2791
2792 type = skb_network_protocol(skb, &tmp);
2793 features = net_mpls_features(skb, features, type);
53d6471c 2794
c0d680e5 2795 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2796 !can_checksum_protocol(features, type)) {
996e8021 2797 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2798 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2799 features &= ~NETIF_F_SG;
2800 }
2801
2802 return features;
2803}
2804
e38f3025
TM
2805netdev_features_t passthru_features_check(struct sk_buff *skb,
2806 struct net_device *dev,
2807 netdev_features_t features)
2808{
2809 return features;
2810}
2811EXPORT_SYMBOL(passthru_features_check);
2812
8cb65d00
TM
2813static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2814 struct net_device *dev,
2815 netdev_features_t features)
2816{
2817 return vlan_features_check(skb, features);
2818}
2819
cbc53e08
AD
2820static netdev_features_t gso_features_check(const struct sk_buff *skb,
2821 struct net_device *dev,
2822 netdev_features_t features)
2823{
2824 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2825
2826 if (gso_segs > dev->gso_max_segs)
2827 return features & ~NETIF_F_GSO_MASK;
2828
802ab55a
AD
2829 /* Support for GSO partial features requires software
2830 * intervention before we can actually process the packets
2831 * so we need to strip support for any partial features now
2832 * and we can pull them back in after we have partially
2833 * segmented the frame.
2834 */
2835 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2836 features &= ~dev->gso_partial_features;
2837
2838 /* Make sure to clear the IPv4 ID mangling feature if the
2839 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2840 */
2841 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2842 struct iphdr *iph = skb->encapsulation ?
2843 inner_ip_hdr(skb) : ip_hdr(skb);
2844
2845 if (!(iph->frag_off & htons(IP_DF)))
2846 features &= ~NETIF_F_TSO_MANGLEID;
2847 }
2848
2849 return features;
2850}
2851
c1e756bf 2852netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2853{
5f35227e 2854 struct net_device *dev = skb->dev;
fcbeb976 2855 netdev_features_t features = dev->features;
58e998c6 2856
cbc53e08
AD
2857 if (skb_is_gso(skb))
2858 features = gso_features_check(skb, dev, features);
30b678d8 2859
5f35227e
JG
2860 /* If encapsulation offload request, verify we are testing
2861 * hardware encapsulation features instead of standard
2862 * features for the netdev
2863 */
2864 if (skb->encapsulation)
2865 features &= dev->hw_enc_features;
2866
f5a7fb88
TM
2867 if (skb_vlan_tagged(skb))
2868 features = netdev_intersect_features(features,
2869 dev->vlan_features |
2870 NETIF_F_HW_VLAN_CTAG_TX |
2871 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2872
5f35227e
JG
2873 if (dev->netdev_ops->ndo_features_check)
2874 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2875 features);
8cb65d00
TM
2876 else
2877 features &= dflt_features_check(skb, dev, features);
5f35227e 2878
c1e756bf 2879 return harmonize_features(skb, features);
58e998c6 2880}
c1e756bf 2881EXPORT_SYMBOL(netif_skb_features);
58e998c6 2882
2ea25513 2883static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2884 struct netdev_queue *txq, bool more)
f6a78bfc 2885{
2ea25513
DM
2886 unsigned int len;
2887 int rc;
00829823 2888
7866a621 2889 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2890 dev_queue_xmit_nit(skb, dev);
fc741216 2891
2ea25513
DM
2892 len = skb->len;
2893 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2894 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2895 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2896
2ea25513
DM
2897 return rc;
2898}
7b9c6090 2899
8dcda22a
DM
2900struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2901 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2902{
2903 struct sk_buff *skb = first;
2904 int rc = NETDEV_TX_OK;
7b9c6090 2905
7f2e870f
DM
2906 while (skb) {
2907 struct sk_buff *next = skb->next;
fc70fb64 2908
7f2e870f 2909 skb->next = NULL;
95f6b3dd 2910 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2911 if (unlikely(!dev_xmit_complete(rc))) {
2912 skb->next = next;
2913 goto out;
2914 }
6afff0ca 2915
7f2e870f
DM
2916 skb = next;
2917 if (netif_xmit_stopped(txq) && skb) {
2918 rc = NETDEV_TX_BUSY;
2919 break;
9ccb8975 2920 }
7f2e870f 2921 }
9ccb8975 2922
7f2e870f
DM
2923out:
2924 *ret = rc;
2925 return skb;
2926}
b40863c6 2927
1ff0dc94
ED
2928static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2929 netdev_features_t features)
f6a78bfc 2930{
df8a39de 2931 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2932 !vlan_hw_offload_capable(features, skb->vlan_proto))
2933 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2934 return skb;
2935}
f6a78bfc 2936
55a93b3e 2937static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2938{
2939 netdev_features_t features;
f6a78bfc 2940
eae3f88e
DM
2941 features = netif_skb_features(skb);
2942 skb = validate_xmit_vlan(skb, features);
2943 if (unlikely(!skb))
2944 goto out_null;
7b9c6090 2945
8b86a61d 2946 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2947 struct sk_buff *segs;
2948
2949 segs = skb_gso_segment(skb, features);
cecda693 2950 if (IS_ERR(segs)) {
af6dabc9 2951 goto out_kfree_skb;
cecda693
JW
2952 } else if (segs) {
2953 consume_skb(skb);
2954 skb = segs;
f6a78bfc 2955 }
eae3f88e
DM
2956 } else {
2957 if (skb_needs_linearize(skb, features) &&
2958 __skb_linearize(skb))
2959 goto out_kfree_skb;
4ec93edb 2960
eae3f88e
DM
2961 /* If packet is not checksummed and device does not
2962 * support checksumming for this protocol, complete
2963 * checksumming here.
2964 */
2965 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2966 if (skb->encapsulation)
2967 skb_set_inner_transport_header(skb,
2968 skb_checksum_start_offset(skb));
2969 else
2970 skb_set_transport_header(skb,
2971 skb_checksum_start_offset(skb));
a188222b 2972 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2973 skb_checksum_help(skb))
2974 goto out_kfree_skb;
7b9c6090 2975 }
0c772159 2976 }
7b9c6090 2977
eae3f88e 2978 return skb;
fc70fb64 2979
f6a78bfc
HX
2980out_kfree_skb:
2981 kfree_skb(skb);
eae3f88e 2982out_null:
d21fd63e 2983 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
2984 return NULL;
2985}
6afff0ca 2986
55a93b3e
ED
2987struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2988{
2989 struct sk_buff *next, *head = NULL, *tail;
2990
bec3cfdc 2991 for (; skb != NULL; skb = next) {
55a93b3e
ED
2992 next = skb->next;
2993 skb->next = NULL;
bec3cfdc
ED
2994
2995 /* in case skb wont be segmented, point to itself */
2996 skb->prev = skb;
2997
55a93b3e 2998 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2999 if (!skb)
3000 continue;
55a93b3e 3001
bec3cfdc
ED
3002 if (!head)
3003 head = skb;
3004 else
3005 tail->next = skb;
3006 /* If skb was segmented, skb->prev points to
3007 * the last segment. If not, it still contains skb.
3008 */
3009 tail = skb->prev;
55a93b3e
ED
3010 }
3011 return head;
f6a78bfc 3012}
104ba78c 3013EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3014
1def9238
ED
3015static void qdisc_pkt_len_init(struct sk_buff *skb)
3016{
3017 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3018
3019 qdisc_skb_cb(skb)->pkt_len = skb->len;
3020
3021 /* To get more precise estimation of bytes sent on wire,
3022 * we add to pkt_len the headers size of all segments
3023 */
3024 if (shinfo->gso_size) {
757b8b1d 3025 unsigned int hdr_len;
15e5a030 3026 u16 gso_segs = shinfo->gso_segs;
1def9238 3027
757b8b1d
ED
3028 /* mac layer + network layer */
3029 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3030
3031 /* + transport layer */
1def9238
ED
3032 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033 hdr_len += tcp_hdrlen(skb);
3034 else
3035 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3036
3037 if (shinfo->gso_type & SKB_GSO_DODGY)
3038 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3039 shinfo->gso_size);
3040
3041 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3042 }
3043}
3044
bbd8a0d3
KK
3045static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046 struct net_device *dev,
3047 struct netdev_queue *txq)
3048{
3049 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3050 struct sk_buff *to_free = NULL;
a2da570d 3051 bool contended;
bbd8a0d3
KK
3052 int rc;
3053
a2da570d 3054 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3055 /*
3056 * Heuristic to force contended enqueues to serialize on a
3057 * separate lock before trying to get qdisc main lock.
f9eb8aea 3058 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3059 * often and dequeue packets faster.
79640a4c 3060 */
a2da570d 3061 contended = qdisc_is_running(q);
79640a4c
ED
3062 if (unlikely(contended))
3063 spin_lock(&q->busylock);
3064
bbd8a0d3
KK
3065 spin_lock(root_lock);
3066 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3067 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3068 rc = NET_XMIT_DROP;
3069 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3070 qdisc_run_begin(q)) {
bbd8a0d3
KK
3071 /*
3072 * This is a work-conserving queue; there are no old skbs
3073 * waiting to be sent out; and the qdisc is not running -
3074 * xmit the skb directly.
3075 */
bfe0d029 3076
bfe0d029
ED
3077 qdisc_bstats_update(q, skb);
3078
55a93b3e 3079 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3080 if (unlikely(contended)) {
3081 spin_unlock(&q->busylock);
3082 contended = false;
3083 }
bbd8a0d3 3084 __qdisc_run(q);
79640a4c 3085 } else
bc135b23 3086 qdisc_run_end(q);
bbd8a0d3
KK
3087
3088 rc = NET_XMIT_SUCCESS;
3089 } else {
520ac30f 3090 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3091 if (qdisc_run_begin(q)) {
3092 if (unlikely(contended)) {
3093 spin_unlock(&q->busylock);
3094 contended = false;
3095 }
3096 __qdisc_run(q);
3097 }
bbd8a0d3
KK
3098 }
3099 spin_unlock(root_lock);
520ac30f
ED
3100 if (unlikely(to_free))
3101 kfree_skb_list(to_free);
79640a4c
ED
3102 if (unlikely(contended))
3103 spin_unlock(&q->busylock);
bbd8a0d3
KK
3104 return rc;
3105}
3106
86f8515f 3107#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3108static void skb_update_prio(struct sk_buff *skb)
3109{
6977a79d 3110 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3111
91c68ce2 3112 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3113 unsigned int prioidx =
3114 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3115
3116 if (prioidx < map->priomap_len)
3117 skb->priority = map->priomap[prioidx];
3118 }
5bc1421e
NH
3119}
3120#else
3121#define skb_update_prio(skb)
3122#endif
3123
f60e5990 3124DEFINE_PER_CPU(int, xmit_recursion);
3125EXPORT_SYMBOL(xmit_recursion);
3126
95603e22
MM
3127/**
3128 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3129 * @net: network namespace this loopback is happening in
3130 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3131 * @skb: buffer to transmit
3132 */
0c4b51f0 3133int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3134{
3135 skb_reset_mac_header(skb);
3136 __skb_pull(skb, skb_network_offset(skb));
3137 skb->pkt_type = PACKET_LOOPBACK;
3138 skb->ip_summed = CHECKSUM_UNNECESSARY;
3139 WARN_ON(!skb_dst(skb));
3140 skb_dst_force(skb);
3141 netif_rx_ni(skb);
3142 return 0;
3143}
3144EXPORT_SYMBOL(dev_loopback_xmit);
3145
1f211a1b
DB
3146#ifdef CONFIG_NET_EGRESS
3147static struct sk_buff *
3148sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3149{
3150 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3151 struct tcf_result cl_res;
3152
3153 if (!cl)
3154 return skb;
3155
3156 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3157 * earlier by the caller.
3158 */
3159 qdisc_bstats_cpu_update(cl->q, skb);
3160
3161 switch (tc_classify(skb, cl, &cl_res, false)) {
3162 case TC_ACT_OK:
3163 case TC_ACT_RECLASSIFY:
3164 skb->tc_index = TC_H_MIN(cl_res.classid);
3165 break;
3166 case TC_ACT_SHOT:
3167 qdisc_qstats_cpu_drop(cl->q);
3168 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3169 kfree_skb(skb);
3170 return NULL;
1f211a1b
DB
3171 case TC_ACT_STOLEN:
3172 case TC_ACT_QUEUED:
3173 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3174 consume_skb(skb);
1f211a1b
DB
3175 return NULL;
3176 case TC_ACT_REDIRECT:
3177 /* No need to push/pop skb's mac_header here on egress! */
3178 skb_do_redirect(skb);
3179 *ret = NET_XMIT_SUCCESS;
3180 return NULL;
3181 default:
3182 break;
3183 }
3184
3185 return skb;
3186}
3187#endif /* CONFIG_NET_EGRESS */
3188
638b2a69
JP
3189static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3190{
3191#ifdef CONFIG_XPS
3192 struct xps_dev_maps *dev_maps;
3193 struct xps_map *map;
3194 int queue_index = -1;
3195
3196 rcu_read_lock();
3197 dev_maps = rcu_dereference(dev->xps_maps);
3198 if (dev_maps) {
184c449f
AD
3199 unsigned int tci = skb->sender_cpu - 1;
3200
3201 if (dev->num_tc) {
3202 tci *= dev->num_tc;
3203 tci += netdev_get_prio_tc_map(dev, skb->priority);
3204 }
3205
3206 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3207 if (map) {
3208 if (map->len == 1)
3209 queue_index = map->queues[0];
3210 else
3211 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3212 map->len)];
3213 if (unlikely(queue_index >= dev->real_num_tx_queues))
3214 queue_index = -1;
3215 }
3216 }
3217 rcu_read_unlock();
3218
3219 return queue_index;
3220#else
3221 return -1;
3222#endif
3223}
3224
3225static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3226{
3227 struct sock *sk = skb->sk;
3228 int queue_index = sk_tx_queue_get(sk);
3229
3230 if (queue_index < 0 || skb->ooo_okay ||
3231 queue_index >= dev->real_num_tx_queues) {
3232 int new_index = get_xps_queue(dev, skb);
3233 if (new_index < 0)
3234 new_index = skb_tx_hash(dev, skb);
3235
3236 if (queue_index != new_index && sk &&
004a5d01 3237 sk_fullsock(sk) &&
638b2a69
JP
3238 rcu_access_pointer(sk->sk_dst_cache))
3239 sk_tx_queue_set(sk, new_index);
3240
3241 queue_index = new_index;
3242 }
3243
3244 return queue_index;
3245}
3246
3247struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3248 struct sk_buff *skb,
3249 void *accel_priv)
3250{
3251 int queue_index = 0;
3252
3253#ifdef CONFIG_XPS
52bd2d62
ED
3254 u32 sender_cpu = skb->sender_cpu - 1;
3255
3256 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3257 skb->sender_cpu = raw_smp_processor_id() + 1;
3258#endif
3259
3260 if (dev->real_num_tx_queues != 1) {
3261 const struct net_device_ops *ops = dev->netdev_ops;
3262 if (ops->ndo_select_queue)
3263 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3264 __netdev_pick_tx);
3265 else
3266 queue_index = __netdev_pick_tx(dev, skb);
3267
3268 if (!accel_priv)
3269 queue_index = netdev_cap_txqueue(dev, queue_index);
3270 }
3271
3272 skb_set_queue_mapping(skb, queue_index);
3273 return netdev_get_tx_queue(dev, queue_index);
3274}
3275
d29f749e 3276/**
9d08dd3d 3277 * __dev_queue_xmit - transmit a buffer
d29f749e 3278 * @skb: buffer to transmit
9d08dd3d 3279 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3280 *
3281 * Queue a buffer for transmission to a network device. The caller must
3282 * have set the device and priority and built the buffer before calling
3283 * this function. The function can be called from an interrupt.
3284 *
3285 * A negative errno code is returned on a failure. A success does not
3286 * guarantee the frame will be transmitted as it may be dropped due
3287 * to congestion or traffic shaping.
3288 *
3289 * -----------------------------------------------------------------------------------
3290 * I notice this method can also return errors from the queue disciplines,
3291 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3292 * be positive.
3293 *
3294 * Regardless of the return value, the skb is consumed, so it is currently
3295 * difficult to retry a send to this method. (You can bump the ref count
3296 * before sending to hold a reference for retry if you are careful.)
3297 *
3298 * When calling this method, interrupts MUST be enabled. This is because
3299 * the BH enable code must have IRQs enabled so that it will not deadlock.
3300 * --BLG
3301 */
0a59f3a9 3302static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3303{
3304 struct net_device *dev = skb->dev;
dc2b4847 3305 struct netdev_queue *txq;
1da177e4
LT
3306 struct Qdisc *q;
3307 int rc = -ENOMEM;
3308
6d1ccff6
ED
3309 skb_reset_mac_header(skb);
3310
e7fd2885
WB
3311 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3312 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3313
4ec93edb
YH
3314 /* Disable soft irqs for various locks below. Also
3315 * stops preemption for RCU.
1da177e4 3316 */
4ec93edb 3317 rcu_read_lock_bh();
1da177e4 3318
5bc1421e
NH
3319 skb_update_prio(skb);
3320
1f211a1b
DB
3321 qdisc_pkt_len_init(skb);
3322#ifdef CONFIG_NET_CLS_ACT
3323 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3324# ifdef CONFIG_NET_EGRESS
3325 if (static_key_false(&egress_needed)) {
3326 skb = sch_handle_egress(skb, &rc, dev);
3327 if (!skb)
3328 goto out;
3329 }
3330# endif
3331#endif
02875878
ED
3332 /* If device/qdisc don't need skb->dst, release it right now while
3333 * its hot in this cpu cache.
3334 */
3335 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3336 skb_dst_drop(skb);
3337 else
3338 skb_dst_force(skb);
3339
f663dd9a 3340 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3341 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3342
cf66ba58 3343 trace_net_dev_queue(skb);
1da177e4 3344 if (q->enqueue) {
bbd8a0d3 3345 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3346 goto out;
1da177e4
LT
3347 }
3348
3349 /* The device has no queue. Common case for software devices:
3350 loopback, all the sorts of tunnels...
3351
932ff279
HX
3352 Really, it is unlikely that netif_tx_lock protection is necessary
3353 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3354 counters.)
3355 However, it is possible, that they rely on protection
3356 made by us here.
3357
3358 Check this and shot the lock. It is not prone from deadlocks.
3359 Either shot noqueue qdisc, it is even simpler 8)
3360 */
3361 if (dev->flags & IFF_UP) {
3362 int cpu = smp_processor_id(); /* ok because BHs are off */
3363
c773e847 3364 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3365 if (unlikely(__this_cpu_read(xmit_recursion) >
3366 XMIT_RECURSION_LIMIT))
745e20f1
ED
3367 goto recursion_alert;
3368
1f59533f
JDB
3369 skb = validate_xmit_skb(skb, dev);
3370 if (!skb)
d21fd63e 3371 goto out;
1f59533f 3372
c773e847 3373 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3374
73466498 3375 if (!netif_xmit_stopped(txq)) {
745e20f1 3376 __this_cpu_inc(xmit_recursion);
ce93718f 3377 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3378 __this_cpu_dec(xmit_recursion);
572a9d7b 3379 if (dev_xmit_complete(rc)) {
c773e847 3380 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3381 goto out;
3382 }
3383 }
c773e847 3384 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3385 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3386 dev->name);
1da177e4
LT
3387 } else {
3388 /* Recursion is detected! It is possible,
745e20f1
ED
3389 * unfortunately
3390 */
3391recursion_alert:
e87cc472
JP
3392 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3393 dev->name);
1da177e4
LT
3394 }
3395 }
3396
3397 rc = -ENETDOWN;
d4828d85 3398 rcu_read_unlock_bh();
1da177e4 3399
015f0688 3400 atomic_long_inc(&dev->tx_dropped);
1f59533f 3401 kfree_skb_list(skb);
1da177e4
LT
3402 return rc;
3403out:
d4828d85 3404 rcu_read_unlock_bh();
1da177e4
LT
3405 return rc;
3406}
f663dd9a 3407
2b4aa3ce 3408int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3409{
3410 return __dev_queue_xmit(skb, NULL);
3411}
2b4aa3ce 3412EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3413
f663dd9a
JW
3414int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3415{
3416 return __dev_queue_xmit(skb, accel_priv);
3417}
3418EXPORT_SYMBOL(dev_queue_xmit_accel);
3419
1da177e4
LT
3420
3421/*=======================================================================
3422 Receiver routines
3423 =======================================================================*/
3424
6b2bedc3 3425int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3426EXPORT_SYMBOL(netdev_max_backlog);
3427
3b098e2d 3428int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3429int netdev_budget __read_mostly = 300;
3430int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3431
eecfd7c4
ED
3432/* Called with irq disabled */
3433static inline void ____napi_schedule(struct softnet_data *sd,
3434 struct napi_struct *napi)
3435{
3436 list_add_tail(&napi->poll_list, &sd->poll_list);
3437 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3438}
3439
bfb564e7
KK
3440#ifdef CONFIG_RPS
3441
3442/* One global table that all flow-based protocols share. */
6e3f7faf 3443struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3444EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3445u32 rps_cpu_mask __read_mostly;
3446EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3447
c5905afb 3448struct static_key rps_needed __read_mostly;
3df97ba8 3449EXPORT_SYMBOL(rps_needed);
adc9300e 3450
c445477d
BH
3451static struct rps_dev_flow *
3452set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3453 struct rps_dev_flow *rflow, u16 next_cpu)
3454{
a31196b0 3455 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3456#ifdef CONFIG_RFS_ACCEL
3457 struct netdev_rx_queue *rxqueue;
3458 struct rps_dev_flow_table *flow_table;
3459 struct rps_dev_flow *old_rflow;
3460 u32 flow_id;
3461 u16 rxq_index;
3462 int rc;
3463
3464 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3465 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3466 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3467 goto out;
3468 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3469 if (rxq_index == skb_get_rx_queue(skb))
3470 goto out;
3471
3472 rxqueue = dev->_rx + rxq_index;
3473 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3474 if (!flow_table)
3475 goto out;
61b905da 3476 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3477 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3478 rxq_index, flow_id);
3479 if (rc < 0)
3480 goto out;
3481 old_rflow = rflow;
3482 rflow = &flow_table->flows[flow_id];
c445477d
BH
3483 rflow->filter = rc;
3484 if (old_rflow->filter == rflow->filter)
3485 old_rflow->filter = RPS_NO_FILTER;
3486 out:
3487#endif
3488 rflow->last_qtail =
09994d1b 3489 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3490 }
3491
09994d1b 3492 rflow->cpu = next_cpu;
c445477d
BH
3493 return rflow;
3494}
3495
bfb564e7
KK
3496/*
3497 * get_rps_cpu is called from netif_receive_skb and returns the target
3498 * CPU from the RPS map of the receiving queue for a given skb.
3499 * rcu_read_lock must be held on entry.
3500 */
3501static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3502 struct rps_dev_flow **rflowp)
3503{
567e4b79
ED
3504 const struct rps_sock_flow_table *sock_flow_table;
3505 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3506 struct rps_dev_flow_table *flow_table;
567e4b79 3507 struct rps_map *map;
bfb564e7 3508 int cpu = -1;
567e4b79 3509 u32 tcpu;
61b905da 3510 u32 hash;
bfb564e7
KK
3511
3512 if (skb_rx_queue_recorded(skb)) {
3513 u16 index = skb_get_rx_queue(skb);
567e4b79 3514
62fe0b40
BH
3515 if (unlikely(index >= dev->real_num_rx_queues)) {
3516 WARN_ONCE(dev->real_num_rx_queues > 1,
3517 "%s received packet on queue %u, but number "
3518 "of RX queues is %u\n",
3519 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3520 goto done;
3521 }
567e4b79
ED
3522 rxqueue += index;
3523 }
bfb564e7 3524
567e4b79
ED
3525 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3526
3527 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3528 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3529 if (!flow_table && !map)
bfb564e7
KK
3530 goto done;
3531
2d47b459 3532 skb_reset_network_header(skb);
61b905da
TH
3533 hash = skb_get_hash(skb);
3534 if (!hash)
bfb564e7
KK
3535 goto done;
3536
fec5e652
TH
3537 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3538 if (flow_table && sock_flow_table) {
fec5e652 3539 struct rps_dev_flow *rflow;
567e4b79
ED
3540 u32 next_cpu;
3541 u32 ident;
3542
3543 /* First check into global flow table if there is a match */
3544 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3545 if ((ident ^ hash) & ~rps_cpu_mask)
3546 goto try_rps;
fec5e652 3547
567e4b79
ED
3548 next_cpu = ident & rps_cpu_mask;
3549
3550 /* OK, now we know there is a match,
3551 * we can look at the local (per receive queue) flow table
3552 */
61b905da 3553 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3554 tcpu = rflow->cpu;
3555
fec5e652
TH
3556 /*
3557 * If the desired CPU (where last recvmsg was done) is
3558 * different from current CPU (one in the rx-queue flow
3559 * table entry), switch if one of the following holds:
a31196b0 3560 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3561 * - Current CPU is offline.
3562 * - The current CPU's queue tail has advanced beyond the
3563 * last packet that was enqueued using this table entry.
3564 * This guarantees that all previous packets for the flow
3565 * have been dequeued, thus preserving in order delivery.
3566 */
3567 if (unlikely(tcpu != next_cpu) &&
a31196b0 3568 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3569 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3570 rflow->last_qtail)) >= 0)) {
3571 tcpu = next_cpu;
c445477d 3572 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3573 }
c445477d 3574
a31196b0 3575 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3576 *rflowp = rflow;
3577 cpu = tcpu;
3578 goto done;
3579 }
3580 }
3581
567e4b79
ED
3582try_rps:
3583
0a9627f2 3584 if (map) {
8fc54f68 3585 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3586 if (cpu_online(tcpu)) {
3587 cpu = tcpu;
3588 goto done;
3589 }
3590 }
3591
3592done:
0a9627f2
TH
3593 return cpu;
3594}
3595
c445477d
BH
3596#ifdef CONFIG_RFS_ACCEL
3597
3598/**
3599 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3600 * @dev: Device on which the filter was set
3601 * @rxq_index: RX queue index
3602 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3603 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3604 *
3605 * Drivers that implement ndo_rx_flow_steer() should periodically call
3606 * this function for each installed filter and remove the filters for
3607 * which it returns %true.
3608 */
3609bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3610 u32 flow_id, u16 filter_id)
3611{
3612 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3613 struct rps_dev_flow_table *flow_table;
3614 struct rps_dev_flow *rflow;
3615 bool expire = true;
a31196b0 3616 unsigned int cpu;
c445477d
BH
3617
3618 rcu_read_lock();
3619 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3620 if (flow_table && flow_id <= flow_table->mask) {
3621 rflow = &flow_table->flows[flow_id];
3622 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3623 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3624 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3625 rflow->last_qtail) <
3626 (int)(10 * flow_table->mask)))
3627 expire = false;
3628 }
3629 rcu_read_unlock();
3630 return expire;
3631}
3632EXPORT_SYMBOL(rps_may_expire_flow);
3633
3634#endif /* CONFIG_RFS_ACCEL */
3635
0a9627f2 3636/* Called from hardirq (IPI) context */
e36fa2f7 3637static void rps_trigger_softirq(void *data)
0a9627f2 3638{
e36fa2f7
ED
3639 struct softnet_data *sd = data;
3640
eecfd7c4 3641 ____napi_schedule(sd, &sd->backlog);
dee42870 3642 sd->received_rps++;
0a9627f2 3643}
e36fa2f7 3644
fec5e652 3645#endif /* CONFIG_RPS */
0a9627f2 3646
e36fa2f7
ED
3647/*
3648 * Check if this softnet_data structure is another cpu one
3649 * If yes, queue it to our IPI list and return 1
3650 * If no, return 0
3651 */
3652static int rps_ipi_queued(struct softnet_data *sd)
3653{
3654#ifdef CONFIG_RPS
903ceff7 3655 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3656
3657 if (sd != mysd) {
3658 sd->rps_ipi_next = mysd->rps_ipi_list;
3659 mysd->rps_ipi_list = sd;
3660
3661 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3662 return 1;
3663 }
3664#endif /* CONFIG_RPS */
3665 return 0;
3666}
3667
99bbc707
WB
3668#ifdef CONFIG_NET_FLOW_LIMIT
3669int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3670#endif
3671
3672static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3673{
3674#ifdef CONFIG_NET_FLOW_LIMIT
3675 struct sd_flow_limit *fl;
3676 struct softnet_data *sd;
3677 unsigned int old_flow, new_flow;
3678
3679 if (qlen < (netdev_max_backlog >> 1))
3680 return false;
3681
903ceff7 3682 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3683
3684 rcu_read_lock();
3685 fl = rcu_dereference(sd->flow_limit);
3686 if (fl) {
3958afa1 3687 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3688 old_flow = fl->history[fl->history_head];
3689 fl->history[fl->history_head] = new_flow;
3690
3691 fl->history_head++;
3692 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3693
3694 if (likely(fl->buckets[old_flow]))
3695 fl->buckets[old_flow]--;
3696
3697 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3698 fl->count++;
3699 rcu_read_unlock();
3700 return true;
3701 }
3702 }
3703 rcu_read_unlock();
3704#endif
3705 return false;
3706}
3707
0a9627f2
TH
3708/*
3709 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3710 * queue (may be a remote CPU queue).
3711 */
fec5e652
TH
3712static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3713 unsigned int *qtail)
0a9627f2 3714{
e36fa2f7 3715 struct softnet_data *sd;
0a9627f2 3716 unsigned long flags;
99bbc707 3717 unsigned int qlen;
0a9627f2 3718
e36fa2f7 3719 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3720
3721 local_irq_save(flags);
0a9627f2 3722
e36fa2f7 3723 rps_lock(sd);
e9e4dd32
JA
3724 if (!netif_running(skb->dev))
3725 goto drop;
99bbc707
WB
3726 qlen = skb_queue_len(&sd->input_pkt_queue);
3727 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3728 if (qlen) {
0a9627f2 3729enqueue:
e36fa2f7 3730 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3731 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3732 rps_unlock(sd);
152102c7 3733 local_irq_restore(flags);
0a9627f2
TH
3734 return NET_RX_SUCCESS;
3735 }
3736
ebda37c2
ED
3737 /* Schedule NAPI for backlog device
3738 * We can use non atomic operation since we own the queue lock
3739 */
3740 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3741 if (!rps_ipi_queued(sd))
eecfd7c4 3742 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3743 }
3744 goto enqueue;
3745 }
3746
e9e4dd32 3747drop:
dee42870 3748 sd->dropped++;
e36fa2f7 3749 rps_unlock(sd);
0a9627f2 3750
0a9627f2
TH
3751 local_irq_restore(flags);
3752
caf586e5 3753 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3754 kfree_skb(skb);
3755 return NET_RX_DROP;
3756}
1da177e4 3757
ae78dbfa 3758static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3759{
b0e28f1e 3760 int ret;
1da177e4 3761
588f0330 3762 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3763
cf66ba58 3764 trace_netif_rx(skb);
df334545 3765#ifdef CONFIG_RPS
c5905afb 3766 if (static_key_false(&rps_needed)) {
fec5e652 3767 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3768 int cpu;
3769
cece1945 3770 preempt_disable();
b0e28f1e 3771 rcu_read_lock();
fec5e652
TH
3772
3773 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3774 if (cpu < 0)
3775 cpu = smp_processor_id();
fec5e652
TH
3776
3777 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3778
b0e28f1e 3779 rcu_read_unlock();
cece1945 3780 preempt_enable();
adc9300e
ED
3781 } else
3782#endif
fec5e652
TH
3783 {
3784 unsigned int qtail;
3785 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3786 put_cpu();
3787 }
b0e28f1e 3788 return ret;
1da177e4 3789}
ae78dbfa
BH
3790
3791/**
3792 * netif_rx - post buffer to the network code
3793 * @skb: buffer to post
3794 *
3795 * This function receives a packet from a device driver and queues it for
3796 * the upper (protocol) levels to process. It always succeeds. The buffer
3797 * may be dropped during processing for congestion control or by the
3798 * protocol layers.
3799 *
3800 * return values:
3801 * NET_RX_SUCCESS (no congestion)
3802 * NET_RX_DROP (packet was dropped)
3803 *
3804 */
3805
3806int netif_rx(struct sk_buff *skb)
3807{
3808 trace_netif_rx_entry(skb);
3809
3810 return netif_rx_internal(skb);
3811}
d1b19dff 3812EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3813
3814int netif_rx_ni(struct sk_buff *skb)
3815{
3816 int err;
3817
ae78dbfa
BH
3818 trace_netif_rx_ni_entry(skb);
3819
1da177e4 3820 preempt_disable();
ae78dbfa 3821 err = netif_rx_internal(skb);
1da177e4
LT
3822 if (local_softirq_pending())
3823 do_softirq();
3824 preempt_enable();
3825
3826 return err;
3827}
1da177e4
LT
3828EXPORT_SYMBOL(netif_rx_ni);
3829
0766f788 3830static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3831{
903ceff7 3832 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3833
3834 if (sd->completion_queue) {
3835 struct sk_buff *clist;
3836
3837 local_irq_disable();
3838 clist = sd->completion_queue;
3839 sd->completion_queue = NULL;
3840 local_irq_enable();
3841
3842 while (clist) {
3843 struct sk_buff *skb = clist;
3844 clist = clist->next;
3845
547b792c 3846 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3847 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3848 trace_consume_skb(skb);
3849 else
3850 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3851
3852 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3853 __kfree_skb(skb);
3854 else
3855 __kfree_skb_defer(skb);
1da177e4 3856 }
15fad714
JDB
3857
3858 __kfree_skb_flush();
1da177e4
LT
3859 }
3860
3861 if (sd->output_queue) {
37437bb2 3862 struct Qdisc *head;
1da177e4
LT
3863
3864 local_irq_disable();
3865 head = sd->output_queue;
3866 sd->output_queue = NULL;
a9cbd588 3867 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3868 local_irq_enable();
3869
3870 while (head) {
37437bb2
DM
3871 struct Qdisc *q = head;
3872 spinlock_t *root_lock;
3873
1da177e4
LT
3874 head = head->next_sched;
3875
5fb66229 3876 root_lock = qdisc_lock(q);
3bcb846c
ED
3877 spin_lock(root_lock);
3878 /* We need to make sure head->next_sched is read
3879 * before clearing __QDISC_STATE_SCHED
3880 */
3881 smp_mb__before_atomic();
3882 clear_bit(__QDISC_STATE_SCHED, &q->state);
3883 qdisc_run(q);
3884 spin_unlock(root_lock);
1da177e4
LT
3885 }
3886 }
3887}
3888
181402a5 3889#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3890/* This hook is defined here for ATM LANE */
3891int (*br_fdb_test_addr_hook)(struct net_device *dev,
3892 unsigned char *addr) __read_mostly;
4fb019a0 3893EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3894#endif
1da177e4 3895
1f211a1b
DB
3896static inline struct sk_buff *
3897sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3898 struct net_device *orig_dev)
f697c3e8 3899{
e7582bab 3900#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3901 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3902 struct tcf_result cl_res;
24824a09 3903
c9e99fd0
DB
3904 /* If there's at least one ingress present somewhere (so
3905 * we get here via enabled static key), remaining devices
3906 * that are not configured with an ingress qdisc will bail
d2788d34 3907 * out here.
c9e99fd0 3908 */
d2788d34 3909 if (!cl)
4577139b 3910 return skb;
f697c3e8
HX
3911 if (*pt_prev) {
3912 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3913 *pt_prev = NULL;
1da177e4
LT
3914 }
3915
3365495c 3916 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3917 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3918 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3919
3b3ae880 3920 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3921 case TC_ACT_OK:
3922 case TC_ACT_RECLASSIFY:
3923 skb->tc_index = TC_H_MIN(cl_res.classid);
3924 break;
3925 case TC_ACT_SHOT:
24ea591d 3926 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3927 kfree_skb(skb);
3928 return NULL;
d2788d34
DB
3929 case TC_ACT_STOLEN:
3930 case TC_ACT_QUEUED:
8a3a4c6e 3931 consume_skb(skb);
d2788d34 3932 return NULL;
27b29f63
AS
3933 case TC_ACT_REDIRECT:
3934 /* skb_mac_header check was done by cls/act_bpf, so
3935 * we can safely push the L2 header back before
3936 * redirecting to another netdev
3937 */
3938 __skb_push(skb, skb->mac_len);
3939 skb_do_redirect(skb);
3940 return NULL;
d2788d34
DB
3941 default:
3942 break;
f697c3e8 3943 }
e7582bab 3944#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3945 return skb;
3946}
1da177e4 3947
24b27fc4
MB
3948/**
3949 * netdev_is_rx_handler_busy - check if receive handler is registered
3950 * @dev: device to check
3951 *
3952 * Check if a receive handler is already registered for a given device.
3953 * Return true if there one.
3954 *
3955 * The caller must hold the rtnl_mutex.
3956 */
3957bool netdev_is_rx_handler_busy(struct net_device *dev)
3958{
3959 ASSERT_RTNL();
3960 return dev && rtnl_dereference(dev->rx_handler);
3961}
3962EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3963
ab95bfe0
JP
3964/**
3965 * netdev_rx_handler_register - register receive handler
3966 * @dev: device to register a handler for
3967 * @rx_handler: receive handler to register
93e2c32b 3968 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3969 *
e227867f 3970 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3971 * called from __netif_receive_skb. A negative errno code is returned
3972 * on a failure.
3973 *
3974 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3975 *
3976 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3977 */
3978int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3979 rx_handler_func_t *rx_handler,
3980 void *rx_handler_data)
ab95bfe0
JP
3981{
3982 ASSERT_RTNL();
3983
3984 if (dev->rx_handler)
3985 return -EBUSY;
3986
00cfec37 3987 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3988 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3989 rcu_assign_pointer(dev->rx_handler, rx_handler);
3990
3991 return 0;
3992}
3993EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3994
3995/**
3996 * netdev_rx_handler_unregister - unregister receive handler
3997 * @dev: device to unregister a handler from
3998 *
166ec369 3999 * Unregister a receive handler from a device.
ab95bfe0
JP
4000 *
4001 * The caller must hold the rtnl_mutex.
4002 */
4003void netdev_rx_handler_unregister(struct net_device *dev)
4004{
4005
4006 ASSERT_RTNL();
a9b3cd7f 4007 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4008 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4009 * section has a guarantee to see a non NULL rx_handler_data
4010 * as well.
4011 */
4012 synchronize_net();
a9b3cd7f 4013 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4014}
4015EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4016
b4b9e355
MG
4017/*
4018 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4019 * the special handling of PFMEMALLOC skbs.
4020 */
4021static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4022{
4023 switch (skb->protocol) {
2b8837ae
JP
4024 case htons(ETH_P_ARP):
4025 case htons(ETH_P_IP):
4026 case htons(ETH_P_IPV6):
4027 case htons(ETH_P_8021Q):
4028 case htons(ETH_P_8021AD):
b4b9e355
MG
4029 return true;
4030 default:
4031 return false;
4032 }
4033}
4034
e687ad60
PN
4035static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4036 int *ret, struct net_device *orig_dev)
4037{
e7582bab 4038#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4039 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4040 int ingress_retval;
4041
e687ad60
PN
4042 if (*pt_prev) {
4043 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4044 *pt_prev = NULL;
4045 }
4046
2c1e2703
AC
4047 rcu_read_lock();
4048 ingress_retval = nf_hook_ingress(skb);
4049 rcu_read_unlock();
4050 return ingress_retval;
e687ad60 4051 }
e7582bab 4052#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4053 return 0;
4054}
e687ad60 4055
9754e293 4056static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4057{
4058 struct packet_type *ptype, *pt_prev;
ab95bfe0 4059 rx_handler_func_t *rx_handler;
f2ccd8fa 4060 struct net_device *orig_dev;
8a4eb573 4061 bool deliver_exact = false;
1da177e4 4062 int ret = NET_RX_DROP;
252e3346 4063 __be16 type;
1da177e4 4064
588f0330 4065 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4066
cf66ba58 4067 trace_netif_receive_skb(skb);
9b22ea56 4068
cc9bd5ce 4069 orig_dev = skb->dev;
8f903c70 4070
c1d2bbe1 4071 skb_reset_network_header(skb);
fda55eca
ED
4072 if (!skb_transport_header_was_set(skb))
4073 skb_reset_transport_header(skb);
0b5c9db1 4074 skb_reset_mac_len(skb);
1da177e4
LT
4075
4076 pt_prev = NULL;
4077
63d8ea7f 4078another_round:
b6858177 4079 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4080
4081 __this_cpu_inc(softnet_data.processed);
4082
8ad227ff
PM
4083 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4084 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4085 skb = skb_vlan_untag(skb);
bcc6d479 4086 if (unlikely(!skb))
2c17d27c 4087 goto out;
bcc6d479
JP
4088 }
4089
1da177e4
LT
4090#ifdef CONFIG_NET_CLS_ACT
4091 if (skb->tc_verd & TC_NCLS) {
4092 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4093 goto ncls;
4094 }
4095#endif
4096
9754e293 4097 if (pfmemalloc)
b4b9e355
MG
4098 goto skip_taps;
4099
1da177e4 4100 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4101 if (pt_prev)
4102 ret = deliver_skb(skb, pt_prev, orig_dev);
4103 pt_prev = ptype;
4104 }
4105
4106 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4107 if (pt_prev)
4108 ret = deliver_skb(skb, pt_prev, orig_dev);
4109 pt_prev = ptype;
1da177e4
LT
4110 }
4111
b4b9e355 4112skip_taps:
1cf51900 4113#ifdef CONFIG_NET_INGRESS
4577139b 4114 if (static_key_false(&ingress_needed)) {
1f211a1b 4115 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4116 if (!skb)
2c17d27c 4117 goto out;
e687ad60
PN
4118
4119 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4120 goto out;
4577139b 4121 }
1cf51900
PN
4122#endif
4123#ifdef CONFIG_NET_CLS_ACT
4577139b 4124 skb->tc_verd = 0;
1da177e4
LT
4125ncls:
4126#endif
9754e293 4127 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4128 goto drop;
4129
df8a39de 4130 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4131 if (pt_prev) {
4132 ret = deliver_skb(skb, pt_prev, orig_dev);
4133 pt_prev = NULL;
4134 }
48cc32d3 4135 if (vlan_do_receive(&skb))
2425717b
JF
4136 goto another_round;
4137 else if (unlikely(!skb))
2c17d27c 4138 goto out;
2425717b
JF
4139 }
4140
48cc32d3 4141 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4142 if (rx_handler) {
4143 if (pt_prev) {
4144 ret = deliver_skb(skb, pt_prev, orig_dev);
4145 pt_prev = NULL;
4146 }
8a4eb573
JP
4147 switch (rx_handler(&skb)) {
4148 case RX_HANDLER_CONSUMED:
3bc1b1ad 4149 ret = NET_RX_SUCCESS;
2c17d27c 4150 goto out;
8a4eb573 4151 case RX_HANDLER_ANOTHER:
63d8ea7f 4152 goto another_round;
8a4eb573
JP
4153 case RX_HANDLER_EXACT:
4154 deliver_exact = true;
4155 case RX_HANDLER_PASS:
4156 break;
4157 default:
4158 BUG();
4159 }
ab95bfe0 4160 }
1da177e4 4161
df8a39de
JP
4162 if (unlikely(skb_vlan_tag_present(skb))) {
4163 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4164 skb->pkt_type = PACKET_OTHERHOST;
4165 /* Note: we might in the future use prio bits
4166 * and set skb->priority like in vlan_do_receive()
4167 * For the time being, just ignore Priority Code Point
4168 */
4169 skb->vlan_tci = 0;
4170 }
48cc32d3 4171
7866a621
SN
4172 type = skb->protocol;
4173
63d8ea7f 4174 /* deliver only exact match when indicated */
7866a621
SN
4175 if (likely(!deliver_exact)) {
4176 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4177 &ptype_base[ntohs(type) &
4178 PTYPE_HASH_MASK]);
4179 }
1f3c8804 4180
7866a621
SN
4181 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4182 &orig_dev->ptype_specific);
4183
4184 if (unlikely(skb->dev != orig_dev)) {
4185 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4186 &skb->dev->ptype_specific);
1da177e4
LT
4187 }
4188
4189 if (pt_prev) {
1080e512 4190 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4191 goto drop;
1080e512
MT
4192 else
4193 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4194 } else {
b4b9e355 4195drop:
6e7333d3
JW
4196 if (!deliver_exact)
4197 atomic_long_inc(&skb->dev->rx_dropped);
4198 else
4199 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4200 kfree_skb(skb);
4201 /* Jamal, now you will not able to escape explaining
4202 * me how you were going to use this. :-)
4203 */
4204 ret = NET_RX_DROP;
4205 }
4206
2c17d27c 4207out:
9754e293
DM
4208 return ret;
4209}
4210
4211static int __netif_receive_skb(struct sk_buff *skb)
4212{
4213 int ret;
4214
4215 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4216 unsigned long pflags = current->flags;
4217
4218 /*
4219 * PFMEMALLOC skbs are special, they should
4220 * - be delivered to SOCK_MEMALLOC sockets only
4221 * - stay away from userspace
4222 * - have bounded memory usage
4223 *
4224 * Use PF_MEMALLOC as this saves us from propagating the allocation
4225 * context down to all allocation sites.
4226 */
4227 current->flags |= PF_MEMALLOC;
4228 ret = __netif_receive_skb_core(skb, true);
4229 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4230 } else
4231 ret = __netif_receive_skb_core(skb, false);
4232
1da177e4
LT
4233 return ret;
4234}
0a9627f2 4235
ae78dbfa 4236static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4237{
2c17d27c
JA
4238 int ret;
4239
588f0330 4240 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4241
c1f19b51
RC
4242 if (skb_defer_rx_timestamp(skb))
4243 return NET_RX_SUCCESS;
4244
2c17d27c
JA
4245 rcu_read_lock();
4246
df334545 4247#ifdef CONFIG_RPS
c5905afb 4248 if (static_key_false(&rps_needed)) {
3b098e2d 4249 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4250 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4251
3b098e2d
ED
4252 if (cpu >= 0) {
4253 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4254 rcu_read_unlock();
adc9300e 4255 return ret;
3b098e2d 4256 }
fec5e652 4257 }
1e94d72f 4258#endif
2c17d27c
JA
4259 ret = __netif_receive_skb(skb);
4260 rcu_read_unlock();
4261 return ret;
0a9627f2 4262}
ae78dbfa
BH
4263
4264/**
4265 * netif_receive_skb - process receive buffer from network
4266 * @skb: buffer to process
4267 *
4268 * netif_receive_skb() is the main receive data processing function.
4269 * It always succeeds. The buffer may be dropped during processing
4270 * for congestion control or by the protocol layers.
4271 *
4272 * This function may only be called from softirq context and interrupts
4273 * should be enabled.
4274 *
4275 * Return values (usually ignored):
4276 * NET_RX_SUCCESS: no congestion
4277 * NET_RX_DROP: packet was dropped
4278 */
04eb4489 4279int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4280{
4281 trace_netif_receive_skb_entry(skb);
4282
4283 return netif_receive_skb_internal(skb);
4284}
04eb4489 4285EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4286
41852497 4287DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4288
4289/* Network device is going away, flush any packets still pending */
4290static void flush_backlog(struct work_struct *work)
6e583ce5 4291{
6e583ce5 4292 struct sk_buff *skb, *tmp;
145dd5f9
PA
4293 struct softnet_data *sd;
4294
4295 local_bh_disable();
4296 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4297
145dd5f9 4298 local_irq_disable();
e36fa2f7 4299 rps_lock(sd);
6e7676c1 4300 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4301 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4302 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4303 kfree_skb(skb);
76cc8b13 4304 input_queue_head_incr(sd);
6e583ce5 4305 }
6e7676c1 4306 }
e36fa2f7 4307 rps_unlock(sd);
145dd5f9 4308 local_irq_enable();
6e7676c1
CG
4309
4310 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4311 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4312 __skb_unlink(skb, &sd->process_queue);
4313 kfree_skb(skb);
76cc8b13 4314 input_queue_head_incr(sd);
6e7676c1
CG
4315 }
4316 }
145dd5f9
PA
4317 local_bh_enable();
4318}
4319
41852497 4320static void flush_all_backlogs(void)
145dd5f9
PA
4321{
4322 unsigned int cpu;
4323
4324 get_online_cpus();
4325
41852497
ED
4326 for_each_online_cpu(cpu)
4327 queue_work_on(cpu, system_highpri_wq,
4328 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4329
4330 for_each_online_cpu(cpu)
41852497 4331 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4332
4333 put_online_cpus();
6e583ce5
SH
4334}
4335
d565b0a1
HX
4336static int napi_gro_complete(struct sk_buff *skb)
4337{
22061d80 4338 struct packet_offload *ptype;
d565b0a1 4339 __be16 type = skb->protocol;
22061d80 4340 struct list_head *head = &offload_base;
d565b0a1
HX
4341 int err = -ENOENT;
4342
c3c7c254
ED
4343 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4344
fc59f9a3
HX
4345 if (NAPI_GRO_CB(skb)->count == 1) {
4346 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4347 goto out;
fc59f9a3 4348 }
d565b0a1
HX
4349
4350 rcu_read_lock();
4351 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4352 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4353 continue;
4354
299603e8 4355 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4356 break;
4357 }
4358 rcu_read_unlock();
4359
4360 if (err) {
4361 WARN_ON(&ptype->list == head);
4362 kfree_skb(skb);
4363 return NET_RX_SUCCESS;
4364 }
4365
4366out:
ae78dbfa 4367 return netif_receive_skb_internal(skb);
d565b0a1
HX
4368}
4369
2e71a6f8
ED
4370/* napi->gro_list contains packets ordered by age.
4371 * youngest packets at the head of it.
4372 * Complete skbs in reverse order to reduce latencies.
4373 */
4374void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4375{
2e71a6f8 4376 struct sk_buff *skb, *prev = NULL;
d565b0a1 4377
2e71a6f8
ED
4378 /* scan list and build reverse chain */
4379 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4380 skb->prev = prev;
4381 prev = skb;
4382 }
4383
4384 for (skb = prev; skb; skb = prev) {
d565b0a1 4385 skb->next = NULL;
2e71a6f8
ED
4386
4387 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4388 return;
4389
4390 prev = skb->prev;
d565b0a1 4391 napi_gro_complete(skb);
2e71a6f8 4392 napi->gro_count--;
d565b0a1
HX
4393 }
4394
4395 napi->gro_list = NULL;
4396}
86cac58b 4397EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4398
89c5fa33
ED
4399static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4400{
4401 struct sk_buff *p;
4402 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4403 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4404
4405 for (p = napi->gro_list; p; p = p->next) {
4406 unsigned long diffs;
4407
0b4cec8c
TH
4408 NAPI_GRO_CB(p)->flush = 0;
4409
4410 if (hash != skb_get_hash_raw(p)) {
4411 NAPI_GRO_CB(p)->same_flow = 0;
4412 continue;
4413 }
4414
89c5fa33
ED
4415 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4416 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4417 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4418 if (maclen == ETH_HLEN)
4419 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4420 skb_mac_header(skb));
89c5fa33
ED
4421 else if (!diffs)
4422 diffs = memcmp(skb_mac_header(p),
a50e233c 4423 skb_mac_header(skb),
89c5fa33
ED
4424 maclen);
4425 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4426 }
4427}
4428
299603e8
JC
4429static void skb_gro_reset_offset(struct sk_buff *skb)
4430{
4431 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4432 const skb_frag_t *frag0 = &pinfo->frags[0];
4433
4434 NAPI_GRO_CB(skb)->data_offset = 0;
4435 NAPI_GRO_CB(skb)->frag0 = NULL;
4436 NAPI_GRO_CB(skb)->frag0_len = 0;
4437
4438 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4439 pinfo->nr_frags &&
4440 !PageHighMem(skb_frag_page(frag0))) {
4441 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4442 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4443 }
4444}
4445
a50e233c
ED
4446static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4447{
4448 struct skb_shared_info *pinfo = skb_shinfo(skb);
4449
4450 BUG_ON(skb->end - skb->tail < grow);
4451
4452 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4453
4454 skb->data_len -= grow;
4455 skb->tail += grow;
4456
4457 pinfo->frags[0].page_offset += grow;
4458 skb_frag_size_sub(&pinfo->frags[0], grow);
4459
4460 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4461 skb_frag_unref(skb, 0);
4462 memmove(pinfo->frags, pinfo->frags + 1,
4463 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4464 }
4465}
4466
bb728820 4467static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4468{
4469 struct sk_buff **pp = NULL;
22061d80 4470 struct packet_offload *ptype;
d565b0a1 4471 __be16 type = skb->protocol;
22061d80 4472 struct list_head *head = &offload_base;
0da2afd5 4473 int same_flow;
5b252f0c 4474 enum gro_result ret;
a50e233c 4475 int grow;
d565b0a1 4476
9c62a68d 4477 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4478 goto normal;
4479
d61d072e 4480 if (skb->csum_bad)
f17f5c91
HX
4481 goto normal;
4482
89c5fa33
ED
4483 gro_list_prepare(napi, skb);
4484
d565b0a1
HX
4485 rcu_read_lock();
4486 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4487 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4488 continue;
4489
86911732 4490 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4491 skb_reset_mac_len(skb);
d565b0a1 4492 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4493 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4494 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4495 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4496 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4497 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4498 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4499 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4500
662880f4
TH
4501 /* Setup for GRO checksum validation */
4502 switch (skb->ip_summed) {
4503 case CHECKSUM_COMPLETE:
4504 NAPI_GRO_CB(skb)->csum = skb->csum;
4505 NAPI_GRO_CB(skb)->csum_valid = 1;
4506 NAPI_GRO_CB(skb)->csum_cnt = 0;
4507 break;
4508 case CHECKSUM_UNNECESSARY:
4509 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4510 NAPI_GRO_CB(skb)->csum_valid = 0;
4511 break;
4512 default:
4513 NAPI_GRO_CB(skb)->csum_cnt = 0;
4514 NAPI_GRO_CB(skb)->csum_valid = 0;
4515 }
d565b0a1 4516
f191a1d1 4517 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4518 break;
4519 }
4520 rcu_read_unlock();
4521
4522 if (&ptype->list == head)
4523 goto normal;
4524
0da2afd5 4525 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4526 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4527
d565b0a1
HX
4528 if (pp) {
4529 struct sk_buff *nskb = *pp;
4530
4531 *pp = nskb->next;
4532 nskb->next = NULL;
4533 napi_gro_complete(nskb);
4ae5544f 4534 napi->gro_count--;
d565b0a1
HX
4535 }
4536
0da2afd5 4537 if (same_flow)
d565b0a1
HX
4538 goto ok;
4539
600adc18 4540 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4541 goto normal;
d565b0a1 4542
600adc18
ED
4543 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4544 struct sk_buff *nskb = napi->gro_list;
4545
4546 /* locate the end of the list to select the 'oldest' flow */
4547 while (nskb->next) {
4548 pp = &nskb->next;
4549 nskb = *pp;
4550 }
4551 *pp = NULL;
4552 nskb->next = NULL;
4553 napi_gro_complete(nskb);
4554 } else {
4555 napi->gro_count++;
4556 }
d565b0a1 4557 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4558 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4559 NAPI_GRO_CB(skb)->last = skb;
86911732 4560 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4561 skb->next = napi->gro_list;
4562 napi->gro_list = skb;
5d0d9be8 4563 ret = GRO_HELD;
d565b0a1 4564
ad0f9904 4565pull:
a50e233c
ED
4566 grow = skb_gro_offset(skb) - skb_headlen(skb);
4567 if (grow > 0)
4568 gro_pull_from_frag0(skb, grow);
d565b0a1 4569ok:
5d0d9be8 4570 return ret;
d565b0a1
HX
4571
4572normal:
ad0f9904
HX
4573 ret = GRO_NORMAL;
4574 goto pull;
5d38a079 4575}
96e93eab 4576
bf5a755f
JC
4577struct packet_offload *gro_find_receive_by_type(__be16 type)
4578{
4579 struct list_head *offload_head = &offload_base;
4580 struct packet_offload *ptype;
4581
4582 list_for_each_entry_rcu(ptype, offload_head, list) {
4583 if (ptype->type != type || !ptype->callbacks.gro_receive)
4584 continue;
4585 return ptype;
4586 }
4587 return NULL;
4588}
e27a2f83 4589EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4590
4591struct packet_offload *gro_find_complete_by_type(__be16 type)
4592{
4593 struct list_head *offload_head = &offload_base;
4594 struct packet_offload *ptype;
4595
4596 list_for_each_entry_rcu(ptype, offload_head, list) {
4597 if (ptype->type != type || !ptype->callbacks.gro_complete)
4598 continue;
4599 return ptype;
4600 }
4601 return NULL;
4602}
e27a2f83 4603EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4604
bb728820 4605static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4606{
5d0d9be8
HX
4607 switch (ret) {
4608 case GRO_NORMAL:
ae78dbfa 4609 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4610 ret = GRO_DROP;
4611 break;
5d38a079 4612
5d0d9be8 4613 case GRO_DROP:
5d38a079
HX
4614 kfree_skb(skb);
4615 break;
5b252f0c 4616
daa86548 4617 case GRO_MERGED_FREE:
ce87fc6c
JG
4618 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4619 skb_dst_drop(skb);
d7e8883c 4620 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4621 } else {
d7e8883c 4622 __kfree_skb(skb);
ce87fc6c 4623 }
daa86548
ED
4624 break;
4625
5b252f0c
BH
4626 case GRO_HELD:
4627 case GRO_MERGED:
4628 break;
5d38a079
HX
4629 }
4630
c7c4b3b6 4631 return ret;
5d0d9be8 4632}
5d0d9be8 4633
c7c4b3b6 4634gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4635{
93f93a44 4636 skb_mark_napi_id(skb, napi);
ae78dbfa 4637 trace_napi_gro_receive_entry(skb);
86911732 4638
a50e233c
ED
4639 skb_gro_reset_offset(skb);
4640
89c5fa33 4641 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4642}
4643EXPORT_SYMBOL(napi_gro_receive);
4644
d0c2b0d2 4645static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4646{
93a35f59
ED
4647 if (unlikely(skb->pfmemalloc)) {
4648 consume_skb(skb);
4649 return;
4650 }
96e93eab 4651 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4652 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4653 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4654 skb->vlan_tci = 0;
66c46d74 4655 skb->dev = napi->dev;
6d152e23 4656 skb->skb_iif = 0;
c3caf119
JC
4657 skb->encapsulation = 0;
4658 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4659 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4660
4661 napi->skb = skb;
4662}
96e93eab 4663
76620aaf 4664struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4665{
5d38a079 4666 struct sk_buff *skb = napi->skb;
5d38a079
HX
4667
4668 if (!skb) {
fd11a83d 4669 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4670 if (skb) {
4671 napi->skb = skb;
4672 skb_mark_napi_id(skb, napi);
4673 }
80595d59 4674 }
96e93eab
HX
4675 return skb;
4676}
76620aaf 4677EXPORT_SYMBOL(napi_get_frags);
96e93eab 4678
a50e233c
ED
4679static gro_result_t napi_frags_finish(struct napi_struct *napi,
4680 struct sk_buff *skb,
4681 gro_result_t ret)
96e93eab 4682{
5d0d9be8
HX
4683 switch (ret) {
4684 case GRO_NORMAL:
a50e233c
ED
4685 case GRO_HELD:
4686 __skb_push(skb, ETH_HLEN);
4687 skb->protocol = eth_type_trans(skb, skb->dev);
4688 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4689 ret = GRO_DROP;
86911732 4690 break;
5d38a079 4691
5d0d9be8 4692 case GRO_DROP:
5d0d9be8
HX
4693 case GRO_MERGED_FREE:
4694 napi_reuse_skb(napi, skb);
4695 break;
5b252f0c
BH
4696
4697 case GRO_MERGED:
4698 break;
5d0d9be8 4699 }
5d38a079 4700
c7c4b3b6 4701 return ret;
5d38a079 4702}
5d0d9be8 4703
a50e233c
ED
4704/* Upper GRO stack assumes network header starts at gro_offset=0
4705 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4706 * We copy ethernet header into skb->data to have a common layout.
4707 */
4adb9c4a 4708static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4709{
4710 struct sk_buff *skb = napi->skb;
a50e233c
ED
4711 const struct ethhdr *eth;
4712 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4713
4714 napi->skb = NULL;
4715
a50e233c
ED
4716 skb_reset_mac_header(skb);
4717 skb_gro_reset_offset(skb);
4718
4719 eth = skb_gro_header_fast(skb, 0);
4720 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4721 eth = skb_gro_header_slow(skb, hlen, 0);
4722 if (unlikely(!eth)) {
4da46ceb
AC
4723 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4724 __func__, napi->dev->name);
a50e233c
ED
4725 napi_reuse_skb(napi, skb);
4726 return NULL;
4727 }
4728 } else {
4729 gro_pull_from_frag0(skb, hlen);
4730 NAPI_GRO_CB(skb)->frag0 += hlen;
4731 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4732 }
a50e233c
ED
4733 __skb_pull(skb, hlen);
4734
4735 /*
4736 * This works because the only protocols we care about don't require
4737 * special handling.
4738 * We'll fix it up properly in napi_frags_finish()
4739 */
4740 skb->protocol = eth->h_proto;
76620aaf 4741
76620aaf
HX
4742 return skb;
4743}
76620aaf 4744
c7c4b3b6 4745gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4746{
76620aaf 4747 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4748
4749 if (!skb)
c7c4b3b6 4750 return GRO_DROP;
5d0d9be8 4751
ae78dbfa
BH
4752 trace_napi_gro_frags_entry(skb);
4753
89c5fa33 4754 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4755}
5d38a079
HX
4756EXPORT_SYMBOL(napi_gro_frags);
4757
573e8fca
TH
4758/* Compute the checksum from gro_offset and return the folded value
4759 * after adding in any pseudo checksum.
4760 */
4761__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4762{
4763 __wsum wsum;
4764 __sum16 sum;
4765
4766 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4767
4768 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4769 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4770 if (likely(!sum)) {
4771 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4772 !skb->csum_complete_sw)
4773 netdev_rx_csum_fault(skb->dev);
4774 }
4775
4776 NAPI_GRO_CB(skb)->csum = wsum;
4777 NAPI_GRO_CB(skb)->csum_valid = 1;
4778
4779 return sum;
4780}
4781EXPORT_SYMBOL(__skb_gro_checksum_complete);
4782
e326bed2 4783/*
855abcf0 4784 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4785 * Note: called with local irq disabled, but exits with local irq enabled.
4786 */
4787static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4788{
4789#ifdef CONFIG_RPS
4790 struct softnet_data *remsd = sd->rps_ipi_list;
4791
4792 if (remsd) {
4793 sd->rps_ipi_list = NULL;
4794
4795 local_irq_enable();
4796
4797 /* Send pending IPI's to kick RPS processing on remote cpus. */
4798 while (remsd) {
4799 struct softnet_data *next = remsd->rps_ipi_next;
4800
4801 if (cpu_online(remsd->cpu))
c46fff2a 4802 smp_call_function_single_async(remsd->cpu,
fce8ad15 4803 &remsd->csd);
e326bed2
ED
4804 remsd = next;
4805 }
4806 } else
4807#endif
4808 local_irq_enable();
4809}
4810
d75b1ade
ED
4811static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4812{
4813#ifdef CONFIG_RPS
4814 return sd->rps_ipi_list != NULL;
4815#else
4816 return false;
4817#endif
4818}
4819
bea3348e 4820static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4821{
eecfd7c4 4822 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4823 bool again = true;
4824 int work = 0;
1da177e4 4825
e326bed2
ED
4826 /* Check if we have pending ipi, its better to send them now,
4827 * not waiting net_rx_action() end.
4828 */
d75b1ade 4829 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4830 local_irq_disable();
4831 net_rps_action_and_irq_enable(sd);
4832 }
d75b1ade 4833
bea3348e 4834 napi->weight = weight_p;
145dd5f9 4835 while (again) {
1da177e4 4836 struct sk_buff *skb;
6e7676c1
CG
4837
4838 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4839 rcu_read_lock();
6e7676c1 4840 __netif_receive_skb(skb);
2c17d27c 4841 rcu_read_unlock();
76cc8b13 4842 input_queue_head_incr(sd);
145dd5f9 4843 if (++work >= quota)
76cc8b13 4844 return work;
145dd5f9 4845
6e7676c1 4846 }
1da177e4 4847
145dd5f9 4848 local_irq_disable();
e36fa2f7 4849 rps_lock(sd);
11ef7a89 4850 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4851 /*
4852 * Inline a custom version of __napi_complete().
4853 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4854 * and NAPI_STATE_SCHED is the only possible flag set
4855 * on backlog.
4856 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4857 * and we dont need an smp_mb() memory barrier.
4858 */
eecfd7c4 4859 napi->state = 0;
145dd5f9
PA
4860 again = false;
4861 } else {
4862 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4863 &sd->process_queue);
bea3348e 4864 }
e36fa2f7 4865 rps_unlock(sd);
145dd5f9 4866 local_irq_enable();
6e7676c1 4867 }
1da177e4 4868
bea3348e
SH
4869 return work;
4870}
1da177e4 4871
bea3348e
SH
4872/**
4873 * __napi_schedule - schedule for receive
c4ea43c5 4874 * @n: entry to schedule
bea3348e 4875 *
bc9ad166
ED
4876 * The entry's receive function will be scheduled to run.
4877 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4878 */
b5606c2d 4879void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4880{
4881 unsigned long flags;
1da177e4 4882
bea3348e 4883 local_irq_save(flags);
903ceff7 4884 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4885 local_irq_restore(flags);
1da177e4 4886}
bea3348e
SH
4887EXPORT_SYMBOL(__napi_schedule);
4888
bc9ad166
ED
4889/**
4890 * __napi_schedule_irqoff - schedule for receive
4891 * @n: entry to schedule
4892 *
4893 * Variant of __napi_schedule() assuming hard irqs are masked
4894 */
4895void __napi_schedule_irqoff(struct napi_struct *n)
4896{
4897 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4898}
4899EXPORT_SYMBOL(__napi_schedule_irqoff);
4900
d565b0a1
HX
4901void __napi_complete(struct napi_struct *n)
4902{
4903 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4904
d75b1ade 4905 list_del_init(&n->poll_list);
4e857c58 4906 smp_mb__before_atomic();
d565b0a1
HX
4907 clear_bit(NAPI_STATE_SCHED, &n->state);
4908}
4909EXPORT_SYMBOL(__napi_complete);
4910
3b47d303 4911void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4912{
4913 unsigned long flags;
4914
4915 /*
4916 * don't let napi dequeue from the cpu poll list
4917 * just in case its running on a different cpu
4918 */
4919 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4920 return;
4921
3b47d303
ED
4922 if (n->gro_list) {
4923 unsigned long timeout = 0;
d75b1ade 4924
3b47d303
ED
4925 if (work_done)
4926 timeout = n->dev->gro_flush_timeout;
4927
4928 if (timeout)
4929 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4930 HRTIMER_MODE_REL_PINNED);
4931 else
4932 napi_gro_flush(n, false);
4933 }
d75b1ade
ED
4934 if (likely(list_empty(&n->poll_list))) {
4935 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4936 } else {
4937 /* If n->poll_list is not empty, we need to mask irqs */
4938 local_irq_save(flags);
4939 __napi_complete(n);
4940 local_irq_restore(flags);
4941 }
d565b0a1 4942}
3b47d303 4943EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4944
af12fa6e 4945/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4946static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4947{
4948 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4949 struct napi_struct *napi;
4950
4951 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4952 if (napi->napi_id == napi_id)
4953 return napi;
4954
4955 return NULL;
4956}
02d62e86
ED
4957
4958#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4959#define BUSY_POLL_BUDGET 8
02d62e86
ED
4960bool sk_busy_loop(struct sock *sk, int nonblock)
4961{
4962 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4963 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4964 struct napi_struct *napi;
4965 int rc = false;
4966
2a028ecb 4967 rcu_read_lock();
02d62e86
ED
4968
4969 napi = napi_by_id(sk->sk_napi_id);
4970 if (!napi)
4971 goto out;
4972
ce6aea93
ED
4973 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4974 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4975
4976 do {
ce6aea93 4977 rc = 0;
2a028ecb 4978 local_bh_disable();
ce6aea93
ED
4979 if (busy_poll) {
4980 rc = busy_poll(napi);
4981 } else if (napi_schedule_prep(napi)) {
4982 void *have = netpoll_poll_lock(napi);
4983
4984 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4985 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1db19db7 4986 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
ce6aea93
ED
4987 if (rc == BUSY_POLL_BUDGET) {
4988 napi_complete_done(napi, rc);
4989 napi_schedule(napi);
4990 }
4991 }
4992 netpoll_poll_unlock(have);
4993 }
2a028ecb 4994 if (rc > 0)
02a1d6e7
ED
4995 __NET_ADD_STATS(sock_net(sk),
4996 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 4997 local_bh_enable();
02d62e86
ED
4998
4999 if (rc == LL_FLUSH_FAILED)
5000 break; /* permanent failure */
5001
02d62e86 5002 cpu_relax();
02d62e86
ED
5003 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5004 !need_resched() && !busy_loop_timeout(end_time));
5005
5006 rc = !skb_queue_empty(&sk->sk_receive_queue);
5007out:
2a028ecb 5008 rcu_read_unlock();
02d62e86
ED
5009 return rc;
5010}
5011EXPORT_SYMBOL(sk_busy_loop);
5012
5013#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5014
149d6ad8 5015static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5016{
d64b5e85
ED
5017 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5018 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5019 return;
af12fa6e 5020
52bd2d62 5021 spin_lock(&napi_hash_lock);
af12fa6e 5022
52bd2d62
ED
5023 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5024 do {
5025 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5026 napi_gen_id = NR_CPUS + 1;
5027 } while (napi_by_id(napi_gen_id));
5028 napi->napi_id = napi_gen_id;
af12fa6e 5029
52bd2d62
ED
5030 hlist_add_head_rcu(&napi->napi_hash_node,
5031 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5032
52bd2d62 5033 spin_unlock(&napi_hash_lock);
af12fa6e 5034}
af12fa6e
ET
5035
5036/* Warning : caller is responsible to make sure rcu grace period
5037 * is respected before freeing memory containing @napi
5038 */
34cbe27e 5039bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5040{
34cbe27e
ED
5041 bool rcu_sync_needed = false;
5042
af12fa6e
ET
5043 spin_lock(&napi_hash_lock);
5044
34cbe27e
ED
5045 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5046 rcu_sync_needed = true;
af12fa6e 5047 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5048 }
af12fa6e 5049 spin_unlock(&napi_hash_lock);
34cbe27e 5050 return rcu_sync_needed;
af12fa6e
ET
5051}
5052EXPORT_SYMBOL_GPL(napi_hash_del);
5053
3b47d303
ED
5054static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5055{
5056 struct napi_struct *napi;
5057
5058 napi = container_of(timer, struct napi_struct, timer);
5059 if (napi->gro_list)
5060 napi_schedule(napi);
5061
5062 return HRTIMER_NORESTART;
5063}
5064
d565b0a1
HX
5065void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5066 int (*poll)(struct napi_struct *, int), int weight)
5067{
5068 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5069 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5070 napi->timer.function = napi_watchdog;
4ae5544f 5071 napi->gro_count = 0;
d565b0a1 5072 napi->gro_list = NULL;
5d38a079 5073 napi->skb = NULL;
d565b0a1 5074 napi->poll = poll;
82dc3c63
ED
5075 if (weight > NAPI_POLL_WEIGHT)
5076 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5077 weight, dev->name);
d565b0a1
HX
5078 napi->weight = weight;
5079 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5080 napi->dev = dev;
5d38a079 5081#ifdef CONFIG_NETPOLL
d565b0a1
HX
5082 spin_lock_init(&napi->poll_lock);
5083 napi->poll_owner = -1;
5084#endif
5085 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5086 napi_hash_add(napi);
d565b0a1
HX
5087}
5088EXPORT_SYMBOL(netif_napi_add);
5089
3b47d303
ED
5090void napi_disable(struct napi_struct *n)
5091{
5092 might_sleep();
5093 set_bit(NAPI_STATE_DISABLE, &n->state);
5094
5095 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5096 msleep(1);
2d8bff12
NH
5097 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5098 msleep(1);
3b47d303
ED
5099
5100 hrtimer_cancel(&n->timer);
5101
5102 clear_bit(NAPI_STATE_DISABLE, &n->state);
5103}
5104EXPORT_SYMBOL(napi_disable);
5105
93d05d4a 5106/* Must be called in process context */
d565b0a1
HX
5107void netif_napi_del(struct napi_struct *napi)
5108{
93d05d4a
ED
5109 might_sleep();
5110 if (napi_hash_del(napi))
5111 synchronize_net();
d7b06636 5112 list_del_init(&napi->dev_list);
76620aaf 5113 napi_free_frags(napi);
d565b0a1 5114
289dccbe 5115 kfree_skb_list(napi->gro_list);
d565b0a1 5116 napi->gro_list = NULL;
4ae5544f 5117 napi->gro_count = 0;
d565b0a1
HX
5118}
5119EXPORT_SYMBOL(netif_napi_del);
5120
726ce70e
HX
5121static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5122{
5123 void *have;
5124 int work, weight;
5125
5126 list_del_init(&n->poll_list);
5127
5128 have = netpoll_poll_lock(n);
5129
5130 weight = n->weight;
5131
5132 /* This NAPI_STATE_SCHED test is for avoiding a race
5133 * with netpoll's poll_napi(). Only the entity which
5134 * obtains the lock and sees NAPI_STATE_SCHED set will
5135 * actually make the ->poll() call. Therefore we avoid
5136 * accidentally calling ->poll() when NAPI is not scheduled.
5137 */
5138 work = 0;
5139 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5140 work = n->poll(n, weight);
1db19db7 5141 trace_napi_poll(n, work, weight);
726ce70e
HX
5142 }
5143
5144 WARN_ON_ONCE(work > weight);
5145
5146 if (likely(work < weight))
5147 goto out_unlock;
5148
5149 /* Drivers must not modify the NAPI state if they
5150 * consume the entire weight. In such cases this code
5151 * still "owns" the NAPI instance and therefore can
5152 * move the instance around on the list at-will.
5153 */
5154 if (unlikely(napi_disable_pending(n))) {
5155 napi_complete(n);
5156 goto out_unlock;
5157 }
5158
5159 if (n->gro_list) {
5160 /* flush too old packets
5161 * If HZ < 1000, flush all packets.
5162 */
5163 napi_gro_flush(n, HZ >= 1000);
5164 }
5165
001ce546
HX
5166 /* Some drivers may have called napi_schedule
5167 * prior to exhausting their budget.
5168 */
5169 if (unlikely(!list_empty(&n->poll_list))) {
5170 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5171 n->dev ? n->dev->name : "backlog");
5172 goto out_unlock;
5173 }
5174
726ce70e
HX
5175 list_add_tail(&n->poll_list, repoll);
5176
5177out_unlock:
5178 netpoll_poll_unlock(have);
5179
5180 return work;
5181}
5182
0766f788 5183static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5184{
903ceff7 5185 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5186 unsigned long time_limit = jiffies + 2;
51b0bded 5187 int budget = netdev_budget;
d75b1ade
ED
5188 LIST_HEAD(list);
5189 LIST_HEAD(repoll);
53fb95d3 5190
1da177e4 5191 local_irq_disable();
d75b1ade
ED
5192 list_splice_init(&sd->poll_list, &list);
5193 local_irq_enable();
1da177e4 5194
ceb8d5bf 5195 for (;;) {
bea3348e 5196 struct napi_struct *n;
1da177e4 5197
ceb8d5bf
HX
5198 if (list_empty(&list)) {
5199 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5200 return;
5201 break;
5202 }
5203
6bd373eb
HX
5204 n = list_first_entry(&list, struct napi_struct, poll_list);
5205 budget -= napi_poll(n, &repoll);
5206
d75b1ade 5207 /* If softirq window is exhausted then punt.
24f8b238
SH
5208 * Allow this to run for 2 jiffies since which will allow
5209 * an average latency of 1.5/HZ.
bea3348e 5210 */
ceb8d5bf
HX
5211 if (unlikely(budget <= 0 ||
5212 time_after_eq(jiffies, time_limit))) {
5213 sd->time_squeeze++;
5214 break;
5215 }
1da177e4 5216 }
d75b1ade 5217
795bb1c0 5218 __kfree_skb_flush();
d75b1ade
ED
5219 local_irq_disable();
5220
5221 list_splice_tail_init(&sd->poll_list, &list);
5222 list_splice_tail(&repoll, &list);
5223 list_splice(&list, &sd->poll_list);
5224 if (!list_empty(&sd->poll_list))
5225 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5226
e326bed2 5227 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5228}
5229
aa9d8560 5230struct netdev_adjacent {
9ff162a8 5231 struct net_device *dev;
5d261913
VF
5232
5233 /* upper master flag, there can only be one master device per list */
9ff162a8 5234 bool master;
5d261913 5235
5d261913
VF
5236 /* counter for the number of times this device was added to us */
5237 u16 ref_nr;
5238
402dae96
VF
5239 /* private field for the users */
5240 void *private;
5241
9ff162a8
JP
5242 struct list_head list;
5243 struct rcu_head rcu;
9ff162a8
JP
5244};
5245
6ea29da1 5246static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5247 struct list_head *adj_list)
9ff162a8 5248{
5d261913 5249 struct netdev_adjacent *adj;
5d261913 5250
2f268f12 5251 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5252 if (adj->dev == adj_dev)
5253 return adj;
9ff162a8
JP
5254 }
5255 return NULL;
5256}
5257
f1170fd4
DA
5258static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5259{
5260 struct net_device *dev = data;
5261
5262 return upper_dev == dev;
5263}
5264
9ff162a8
JP
5265/**
5266 * netdev_has_upper_dev - Check if device is linked to an upper device
5267 * @dev: device
5268 * @upper_dev: upper device to check
5269 *
5270 * Find out if a device is linked to specified upper device and return true
5271 * in case it is. Note that this checks only immediate upper device,
5272 * not through a complete stack of devices. The caller must hold the RTNL lock.
5273 */
5274bool netdev_has_upper_dev(struct net_device *dev,
5275 struct net_device *upper_dev)
5276{
5277 ASSERT_RTNL();
5278
f1170fd4
DA
5279 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5280 upper_dev);
9ff162a8
JP
5281}
5282EXPORT_SYMBOL(netdev_has_upper_dev);
5283
1a3f060c
DA
5284/**
5285 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5286 * @dev: device
5287 * @upper_dev: upper device to check
5288 *
5289 * Find out if a device is linked to specified upper device and return true
5290 * in case it is. Note that this checks the entire upper device chain.
5291 * The caller must hold rcu lock.
5292 */
5293
1a3f060c
DA
5294bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5295 struct net_device *upper_dev)
5296{
5297 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5298 upper_dev);
5299}
5300EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5301
9ff162a8
JP
5302/**
5303 * netdev_has_any_upper_dev - Check if device is linked to some device
5304 * @dev: device
5305 *
5306 * Find out if a device is linked to an upper device and return true in case
5307 * it is. The caller must hold the RTNL lock.
5308 */
1d143d9f 5309static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5310{
5311 ASSERT_RTNL();
5312
f1170fd4 5313 return !list_empty(&dev->adj_list.upper);
9ff162a8 5314}
9ff162a8
JP
5315
5316/**
5317 * netdev_master_upper_dev_get - Get master upper device
5318 * @dev: device
5319 *
5320 * Find a master upper device and return pointer to it or NULL in case
5321 * it's not there. The caller must hold the RTNL lock.
5322 */
5323struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5324{
aa9d8560 5325 struct netdev_adjacent *upper;
9ff162a8
JP
5326
5327 ASSERT_RTNL();
5328
2f268f12 5329 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5330 return NULL;
5331
2f268f12 5332 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5333 struct netdev_adjacent, list);
9ff162a8
JP
5334 if (likely(upper->master))
5335 return upper->dev;
5336 return NULL;
5337}
5338EXPORT_SYMBOL(netdev_master_upper_dev_get);
5339
0f524a80
DA
5340/**
5341 * netdev_has_any_lower_dev - Check if device is linked to some device
5342 * @dev: device
5343 *
5344 * Find out if a device is linked to a lower device and return true in case
5345 * it is. The caller must hold the RTNL lock.
5346 */
5347static bool netdev_has_any_lower_dev(struct net_device *dev)
5348{
5349 ASSERT_RTNL();
5350
5351 return !list_empty(&dev->adj_list.lower);
5352}
5353
b6ccba4c
VF
5354void *netdev_adjacent_get_private(struct list_head *adj_list)
5355{
5356 struct netdev_adjacent *adj;
5357
5358 adj = list_entry(adj_list, struct netdev_adjacent, list);
5359
5360 return adj->private;
5361}
5362EXPORT_SYMBOL(netdev_adjacent_get_private);
5363
44a40855
VY
5364/**
5365 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5366 * @dev: device
5367 * @iter: list_head ** of the current position
5368 *
5369 * Gets the next device from the dev's upper list, starting from iter
5370 * position. The caller must hold RCU read lock.
5371 */
5372struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5373 struct list_head **iter)
5374{
5375 struct netdev_adjacent *upper;
5376
5377 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5378
5379 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5380
5381 if (&upper->list == &dev->adj_list.upper)
5382 return NULL;
5383
5384 *iter = &upper->list;
5385
5386 return upper->dev;
5387}
5388EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5389
1a3f060c
DA
5390static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5391 struct list_head **iter)
5392{
5393 struct netdev_adjacent *upper;
5394
5395 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5396
5397 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5398
5399 if (&upper->list == &dev->adj_list.upper)
5400 return NULL;
5401
5402 *iter = &upper->list;
5403
5404 return upper->dev;
5405}
5406
5407int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5408 int (*fn)(struct net_device *dev,
5409 void *data),
5410 void *data)
5411{
5412 struct net_device *udev;
5413 struct list_head *iter;
5414 int ret;
5415
5416 for (iter = &dev->adj_list.upper,
5417 udev = netdev_next_upper_dev_rcu(dev, &iter);
5418 udev;
5419 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5420 /* first is the upper device itself */
5421 ret = fn(udev, data);
5422 if (ret)
5423 return ret;
5424
5425 /* then look at all of its upper devices */
5426 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5427 if (ret)
5428 return ret;
5429 }
5430
5431 return 0;
5432}
5433EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5434
31088a11
VF
5435/**
5436 * netdev_lower_get_next_private - Get the next ->private from the
5437 * lower neighbour list
5438 * @dev: device
5439 * @iter: list_head ** of the current position
5440 *
5441 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5442 * list, starting from iter position. The caller must hold either hold the
5443 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5444 * list will remain unchanged.
31088a11
VF
5445 */
5446void *netdev_lower_get_next_private(struct net_device *dev,
5447 struct list_head **iter)
5448{
5449 struct netdev_adjacent *lower;
5450
5451 lower = list_entry(*iter, struct netdev_adjacent, list);
5452
5453 if (&lower->list == &dev->adj_list.lower)
5454 return NULL;
5455
6859e7df 5456 *iter = lower->list.next;
31088a11
VF
5457
5458 return lower->private;
5459}
5460EXPORT_SYMBOL(netdev_lower_get_next_private);
5461
5462/**
5463 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5464 * lower neighbour list, RCU
5465 * variant
5466 * @dev: device
5467 * @iter: list_head ** of the current position
5468 *
5469 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5470 * list, starting from iter position. The caller must hold RCU read lock.
5471 */
5472void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5473 struct list_head **iter)
5474{
5475 struct netdev_adjacent *lower;
5476
5477 WARN_ON_ONCE(!rcu_read_lock_held());
5478
5479 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5480
5481 if (&lower->list == &dev->adj_list.lower)
5482 return NULL;
5483
6859e7df 5484 *iter = &lower->list;
31088a11
VF
5485
5486 return lower->private;
5487}
5488EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5489
4085ebe8
VY
5490/**
5491 * netdev_lower_get_next - Get the next device from the lower neighbour
5492 * list
5493 * @dev: device
5494 * @iter: list_head ** of the current position
5495 *
5496 * Gets the next netdev_adjacent from the dev's lower neighbour
5497 * list, starting from iter position. The caller must hold RTNL lock or
5498 * its own locking that guarantees that the neighbour lower
b469139e 5499 * list will remain unchanged.
4085ebe8
VY
5500 */
5501void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5502{
5503 struct netdev_adjacent *lower;
5504
cfdd28be 5505 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5506
5507 if (&lower->list == &dev->adj_list.lower)
5508 return NULL;
5509
cfdd28be 5510 *iter = lower->list.next;
4085ebe8
VY
5511
5512 return lower->dev;
5513}
5514EXPORT_SYMBOL(netdev_lower_get_next);
5515
1a3f060c
DA
5516static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5517 struct list_head **iter)
5518{
5519 struct netdev_adjacent *lower;
5520
46b5ab1a 5521 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5522
5523 if (&lower->list == &dev->adj_list.lower)
5524 return NULL;
5525
46b5ab1a 5526 *iter = &lower->list;
1a3f060c
DA
5527
5528 return lower->dev;
5529}
5530
5531int netdev_walk_all_lower_dev(struct net_device *dev,
5532 int (*fn)(struct net_device *dev,
5533 void *data),
5534 void *data)
5535{
5536 struct net_device *ldev;
5537 struct list_head *iter;
5538 int ret;
5539
5540 for (iter = &dev->adj_list.lower,
5541 ldev = netdev_next_lower_dev(dev, &iter);
5542 ldev;
5543 ldev = netdev_next_lower_dev(dev, &iter)) {
5544 /* first is the lower device itself */
5545 ret = fn(ldev, data);
5546 if (ret)
5547 return ret;
5548
5549 /* then look at all of its lower devices */
5550 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5551 if (ret)
5552 return ret;
5553 }
5554
5555 return 0;
5556}
5557EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5558
1a3f060c
DA
5559static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5560 struct list_head **iter)
5561{
5562 struct netdev_adjacent *lower;
5563
5564 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5565 if (&lower->list == &dev->adj_list.lower)
5566 return NULL;
5567
5568 *iter = &lower->list;
5569
5570 return lower->dev;
5571}
5572
5573int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5574 int (*fn)(struct net_device *dev,
5575 void *data),
5576 void *data)
5577{
5578 struct net_device *ldev;
5579 struct list_head *iter;
5580 int ret;
5581
5582 for (iter = &dev->adj_list.lower,
5583 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5584 ldev;
5585 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5586 /* first is the lower device itself */
5587 ret = fn(ldev, data);
5588 if (ret)
5589 return ret;
5590
5591 /* then look at all of its lower devices */
5592 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5593 if (ret)
5594 return ret;
5595 }
5596
5597 return 0;
5598}
5599EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5600
e001bfad 5601/**
5602 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5603 * lower neighbour list, RCU
5604 * variant
5605 * @dev: device
5606 *
5607 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5608 * list. The caller must hold RCU read lock.
5609 */
5610void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5611{
5612 struct netdev_adjacent *lower;
5613
5614 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5615 struct netdev_adjacent, list);
5616 if (lower)
5617 return lower->private;
5618 return NULL;
5619}
5620EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5621
9ff162a8
JP
5622/**
5623 * netdev_master_upper_dev_get_rcu - Get master upper device
5624 * @dev: device
5625 *
5626 * Find a master upper device and return pointer to it or NULL in case
5627 * it's not there. The caller must hold the RCU read lock.
5628 */
5629struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5630{
aa9d8560 5631 struct netdev_adjacent *upper;
9ff162a8 5632
2f268f12 5633 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5634 struct netdev_adjacent, list);
9ff162a8
JP
5635 if (upper && likely(upper->master))
5636 return upper->dev;
5637 return NULL;
5638}
5639EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5640
0a59f3a9 5641static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5642 struct net_device *adj_dev,
5643 struct list_head *dev_list)
5644{
5645 char linkname[IFNAMSIZ+7];
5646 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5647 "upper_%s" : "lower_%s", adj_dev->name);
5648 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5649 linkname);
5650}
0a59f3a9 5651static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5652 char *name,
5653 struct list_head *dev_list)
5654{
5655 char linkname[IFNAMSIZ+7];
5656 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5657 "upper_%s" : "lower_%s", name);
5658 sysfs_remove_link(&(dev->dev.kobj), linkname);
5659}
5660
7ce64c79
AF
5661static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5662 struct net_device *adj_dev,
5663 struct list_head *dev_list)
5664{
5665 return (dev_list == &dev->adj_list.upper ||
5666 dev_list == &dev->adj_list.lower) &&
5667 net_eq(dev_net(dev), dev_net(adj_dev));
5668}
3ee32707 5669
5d261913
VF
5670static int __netdev_adjacent_dev_insert(struct net_device *dev,
5671 struct net_device *adj_dev,
7863c054 5672 struct list_head *dev_list,
402dae96 5673 void *private, bool master)
5d261913
VF
5674{
5675 struct netdev_adjacent *adj;
842d67a7 5676 int ret;
5d261913 5677
6ea29da1 5678 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5679
5680 if (adj) {
790510d9 5681 adj->ref_nr += 1;
67b62f98
DA
5682 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5683 dev->name, adj_dev->name, adj->ref_nr);
5684
5d261913
VF
5685 return 0;
5686 }
5687
5688 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5689 if (!adj)
5690 return -ENOMEM;
5691
5692 adj->dev = adj_dev;
5693 adj->master = master;
790510d9 5694 adj->ref_nr = 1;
402dae96 5695 adj->private = private;
5d261913 5696 dev_hold(adj_dev);
2f268f12 5697
67b62f98
DA
5698 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5699 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 5700
7ce64c79 5701 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5702 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5703 if (ret)
5704 goto free_adj;
5705 }
5706
7863c054 5707 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5708 if (master) {
5709 ret = sysfs_create_link(&(dev->dev.kobj),
5710 &(adj_dev->dev.kobj), "master");
5711 if (ret)
5831d66e 5712 goto remove_symlinks;
842d67a7 5713
7863c054 5714 list_add_rcu(&adj->list, dev_list);
842d67a7 5715 } else {
7863c054 5716 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5717 }
5d261913
VF
5718
5719 return 0;
842d67a7 5720
5831d66e 5721remove_symlinks:
7ce64c79 5722 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5723 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5724free_adj:
5725 kfree(adj);
974daef7 5726 dev_put(adj_dev);
842d67a7
VF
5727
5728 return ret;
5d261913
VF
5729}
5730
1d143d9f 5731static void __netdev_adjacent_dev_remove(struct net_device *dev,
5732 struct net_device *adj_dev,
93409033 5733 u16 ref_nr,
1d143d9f 5734 struct list_head *dev_list)
5d261913
VF
5735{
5736 struct netdev_adjacent *adj;
5737
67b62f98
DA
5738 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5739 dev->name, adj_dev->name, ref_nr);
5740
6ea29da1 5741 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5742
2f268f12 5743 if (!adj) {
67b62f98 5744 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 5745 dev->name, adj_dev->name);
67b62f98
DA
5746 WARN_ON(1);
5747 return;
2f268f12 5748 }
5d261913 5749
93409033 5750 if (adj->ref_nr > ref_nr) {
67b62f98
DA
5751 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5752 dev->name, adj_dev->name, ref_nr,
5753 adj->ref_nr - ref_nr);
93409033 5754 adj->ref_nr -= ref_nr;
5d261913
VF
5755 return;
5756 }
5757
842d67a7
VF
5758 if (adj->master)
5759 sysfs_remove_link(&(dev->dev.kobj), "master");
5760
7ce64c79 5761 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5762 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5763
5d261913 5764 list_del_rcu(&adj->list);
67b62f98 5765 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 5766 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5767 dev_put(adj_dev);
5768 kfree_rcu(adj, rcu);
5769}
5770
1d143d9f 5771static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5772 struct net_device *upper_dev,
5773 struct list_head *up_list,
5774 struct list_head *down_list,
5775 void *private, bool master)
5d261913
VF
5776{
5777 int ret;
5778
790510d9 5779 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 5780 private, master);
5d261913
VF
5781 if (ret)
5782 return ret;
5783
790510d9 5784 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 5785 private, false);
5d261913 5786 if (ret) {
790510d9 5787 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
5788 return ret;
5789 }
5790
5791 return 0;
5792}
5793
1d143d9f 5794static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5795 struct net_device *upper_dev,
93409033 5796 u16 ref_nr,
1d143d9f 5797 struct list_head *up_list,
5798 struct list_head *down_list)
5d261913 5799{
93409033
AC
5800 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5801 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5802}
5803
1d143d9f 5804static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5805 struct net_device *upper_dev,
5806 void *private, bool master)
2f268f12 5807{
f1170fd4
DA
5808 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5809 &dev->adj_list.upper,
5810 &upper_dev->adj_list.lower,
5811 private, master);
5d261913
VF
5812}
5813
1d143d9f 5814static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5815 struct net_device *upper_dev)
2f268f12 5816{
93409033 5817 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5818 &dev->adj_list.upper,
5819 &upper_dev->adj_list.lower);
5820}
5d261913 5821
9ff162a8 5822static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5823 struct net_device *upper_dev, bool master,
29bf24af 5824 void *upper_priv, void *upper_info)
9ff162a8 5825{
0e4ead9d 5826 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5827 int ret = 0;
9ff162a8
JP
5828
5829 ASSERT_RTNL();
5830
5831 if (dev == upper_dev)
5832 return -EBUSY;
5833
5834 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 5835 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
5836 return -EBUSY;
5837
f1170fd4 5838 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
5839 return -EEXIST;
5840
5841 if (master && netdev_master_upper_dev_get(dev))
5842 return -EBUSY;
5843
0e4ead9d
JP
5844 changeupper_info.upper_dev = upper_dev;
5845 changeupper_info.master = master;
5846 changeupper_info.linking = true;
29bf24af 5847 changeupper_info.upper_info = upper_info;
0e4ead9d 5848
573c7ba0
JP
5849 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5850 &changeupper_info.info);
5851 ret = notifier_to_errno(ret);
5852 if (ret)
5853 return ret;
5854
6dffb044 5855 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5856 master);
5d261913
VF
5857 if (ret)
5858 return ret;
9ff162a8 5859
b03804e7
IS
5860 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5861 &changeupper_info.info);
5862 ret = notifier_to_errno(ret);
5863 if (ret)
f1170fd4 5864 goto rollback;
b03804e7 5865
9ff162a8 5866 return 0;
5d261913 5867
f1170fd4 5868rollback:
2f268f12 5869 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5870
5871 return ret;
9ff162a8
JP
5872}
5873
5874/**
5875 * netdev_upper_dev_link - Add a link to the upper device
5876 * @dev: device
5877 * @upper_dev: new upper device
5878 *
5879 * Adds a link to device which is upper to this one. The caller must hold
5880 * the RTNL lock. On a failure a negative errno code is returned.
5881 * On success the reference counts are adjusted and the function
5882 * returns zero.
5883 */
5884int netdev_upper_dev_link(struct net_device *dev,
5885 struct net_device *upper_dev)
5886{
29bf24af 5887 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5888}
5889EXPORT_SYMBOL(netdev_upper_dev_link);
5890
5891/**
5892 * netdev_master_upper_dev_link - Add a master link to the upper device
5893 * @dev: device
5894 * @upper_dev: new upper device
6dffb044 5895 * @upper_priv: upper device private
29bf24af 5896 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5897 *
5898 * Adds a link to device which is upper to this one. In this case, only
5899 * one master upper device can be linked, although other non-master devices
5900 * might be linked as well. The caller must hold the RTNL lock.
5901 * On a failure a negative errno code is returned. On success the reference
5902 * counts are adjusted and the function returns zero.
5903 */
5904int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5905 struct net_device *upper_dev,
29bf24af 5906 void *upper_priv, void *upper_info)
9ff162a8 5907{
29bf24af
JP
5908 return __netdev_upper_dev_link(dev, upper_dev, true,
5909 upper_priv, upper_info);
9ff162a8
JP
5910}
5911EXPORT_SYMBOL(netdev_master_upper_dev_link);
5912
5913/**
5914 * netdev_upper_dev_unlink - Removes a link to upper device
5915 * @dev: device
5916 * @upper_dev: new upper device
5917 *
5918 * Removes a link to device which is upper to this one. The caller must hold
5919 * the RTNL lock.
5920 */
5921void netdev_upper_dev_unlink(struct net_device *dev,
5922 struct net_device *upper_dev)
5923{
0e4ead9d 5924 struct netdev_notifier_changeupper_info changeupper_info;
9ff162a8
JP
5925 ASSERT_RTNL();
5926
0e4ead9d
JP
5927 changeupper_info.upper_dev = upper_dev;
5928 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5929 changeupper_info.linking = false;
5930
573c7ba0
JP
5931 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5932 &changeupper_info.info);
5933
2f268f12 5934 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 5935
0e4ead9d
JP
5936 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5937 &changeupper_info.info);
9ff162a8
JP
5938}
5939EXPORT_SYMBOL(netdev_upper_dev_unlink);
5940
61bd3857
MS
5941/**
5942 * netdev_bonding_info_change - Dispatch event about slave change
5943 * @dev: device
4a26e453 5944 * @bonding_info: info to dispatch
61bd3857
MS
5945 *
5946 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5947 * The caller must hold the RTNL lock.
5948 */
5949void netdev_bonding_info_change(struct net_device *dev,
5950 struct netdev_bonding_info *bonding_info)
5951{
5952 struct netdev_notifier_bonding_info info;
5953
5954 memcpy(&info.bonding_info, bonding_info,
5955 sizeof(struct netdev_bonding_info));
5956 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5957 &info.info);
5958}
5959EXPORT_SYMBOL(netdev_bonding_info_change);
5960
2ce1ee17 5961static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5962{
5963 struct netdev_adjacent *iter;
5964
5965 struct net *net = dev_net(dev);
5966
5967 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5968 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5969 continue;
5970 netdev_adjacent_sysfs_add(iter->dev, dev,
5971 &iter->dev->adj_list.lower);
5972 netdev_adjacent_sysfs_add(dev, iter->dev,
5973 &dev->adj_list.upper);
5974 }
5975
5976 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5977 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5978 continue;
5979 netdev_adjacent_sysfs_add(iter->dev, dev,
5980 &iter->dev->adj_list.upper);
5981 netdev_adjacent_sysfs_add(dev, iter->dev,
5982 &dev->adj_list.lower);
5983 }
5984}
5985
2ce1ee17 5986static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5987{
5988 struct netdev_adjacent *iter;
5989
5990 struct net *net = dev_net(dev);
5991
5992 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5993 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5994 continue;
5995 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5996 &iter->dev->adj_list.lower);
5997 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5998 &dev->adj_list.upper);
5999 }
6000
6001 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6002 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6003 continue;
6004 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6005 &iter->dev->adj_list.upper);
6006 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6007 &dev->adj_list.lower);
6008 }
6009}
6010
5bb025fa 6011void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6012{
5bb025fa 6013 struct netdev_adjacent *iter;
402dae96 6014
4c75431a
AF
6015 struct net *net = dev_net(dev);
6016
5bb025fa 6017 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6018 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6019 continue;
5bb025fa
VF
6020 netdev_adjacent_sysfs_del(iter->dev, oldname,
6021 &iter->dev->adj_list.lower);
6022 netdev_adjacent_sysfs_add(iter->dev, dev,
6023 &iter->dev->adj_list.lower);
6024 }
402dae96 6025
5bb025fa 6026 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6027 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6028 continue;
5bb025fa
VF
6029 netdev_adjacent_sysfs_del(iter->dev, oldname,
6030 &iter->dev->adj_list.upper);
6031 netdev_adjacent_sysfs_add(iter->dev, dev,
6032 &iter->dev->adj_list.upper);
6033 }
402dae96 6034}
402dae96
VF
6035
6036void *netdev_lower_dev_get_private(struct net_device *dev,
6037 struct net_device *lower_dev)
6038{
6039 struct netdev_adjacent *lower;
6040
6041 if (!lower_dev)
6042 return NULL;
6ea29da1 6043 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6044 if (!lower)
6045 return NULL;
6046
6047 return lower->private;
6048}
6049EXPORT_SYMBOL(netdev_lower_dev_get_private);
6050
4085ebe8 6051
952fcfd0 6052int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6053{
6054 struct net_device *lower = NULL;
6055 struct list_head *iter;
6056 int max_nest = -1;
6057 int nest;
6058
6059 ASSERT_RTNL();
6060
6061 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6062 nest = dev_get_nest_level(lower);
4085ebe8
VY
6063 if (max_nest < nest)
6064 max_nest = nest;
6065 }
6066
952fcfd0 6067 return max_nest + 1;
4085ebe8
VY
6068}
6069EXPORT_SYMBOL(dev_get_nest_level);
6070
04d48266
JP
6071/**
6072 * netdev_lower_change - Dispatch event about lower device state change
6073 * @lower_dev: device
6074 * @lower_state_info: state to dispatch
6075 *
6076 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6077 * The caller must hold the RTNL lock.
6078 */
6079void netdev_lower_state_changed(struct net_device *lower_dev,
6080 void *lower_state_info)
6081{
6082 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6083
6084 ASSERT_RTNL();
6085 changelowerstate_info.lower_state_info = lower_state_info;
6086 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6087 &changelowerstate_info.info);
6088}
6089EXPORT_SYMBOL(netdev_lower_state_changed);
6090
18bfb924
JP
6091int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6092 struct neighbour *n)
6093{
6094 struct net_device *lower_dev, *stop_dev;
6095 struct list_head *iter;
6096 int err;
6097
6098 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6099 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6100 continue;
6101 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6102 if (err) {
6103 stop_dev = lower_dev;
6104 goto rollback;
6105 }
6106 }
6107 return 0;
6108
6109rollback:
6110 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6111 if (lower_dev == stop_dev)
6112 break;
6113 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6114 continue;
6115 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6116 }
6117 return err;
6118}
6119EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6120
6121void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6122 struct neighbour *n)
6123{
6124 struct net_device *lower_dev;
6125 struct list_head *iter;
6126
6127 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6128 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6129 continue;
6130 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6131 }
6132}
6133EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6134
b6c40d68
PM
6135static void dev_change_rx_flags(struct net_device *dev, int flags)
6136{
d314774c
SH
6137 const struct net_device_ops *ops = dev->netdev_ops;
6138
d2615bf4 6139 if (ops->ndo_change_rx_flags)
d314774c 6140 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6141}
6142
991fb3f7 6143static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6144{
b536db93 6145 unsigned int old_flags = dev->flags;
d04a48b0
EB
6146 kuid_t uid;
6147 kgid_t gid;
1da177e4 6148
24023451
PM
6149 ASSERT_RTNL();
6150
dad9b335
WC
6151 dev->flags |= IFF_PROMISC;
6152 dev->promiscuity += inc;
6153 if (dev->promiscuity == 0) {
6154 /*
6155 * Avoid overflow.
6156 * If inc causes overflow, untouch promisc and return error.
6157 */
6158 if (inc < 0)
6159 dev->flags &= ~IFF_PROMISC;
6160 else {
6161 dev->promiscuity -= inc;
7b6cd1ce
JP
6162 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6163 dev->name);
dad9b335
WC
6164 return -EOVERFLOW;
6165 }
6166 }
52609c0b 6167 if (dev->flags != old_flags) {
7b6cd1ce
JP
6168 pr_info("device %s %s promiscuous mode\n",
6169 dev->name,
6170 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6171 if (audit_enabled) {
6172 current_uid_gid(&uid, &gid);
7759db82
KHK
6173 audit_log(current->audit_context, GFP_ATOMIC,
6174 AUDIT_ANOM_PROMISCUOUS,
6175 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6176 dev->name, (dev->flags & IFF_PROMISC),
6177 (old_flags & IFF_PROMISC),
e1760bd5 6178 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6179 from_kuid(&init_user_ns, uid),
6180 from_kgid(&init_user_ns, gid),
7759db82 6181 audit_get_sessionid(current));
8192b0c4 6182 }
24023451 6183
b6c40d68 6184 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6185 }
991fb3f7
ND
6186 if (notify)
6187 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6188 return 0;
1da177e4
LT
6189}
6190
4417da66
PM
6191/**
6192 * dev_set_promiscuity - update promiscuity count on a device
6193 * @dev: device
6194 * @inc: modifier
6195 *
6196 * Add or remove promiscuity from a device. While the count in the device
6197 * remains above zero the interface remains promiscuous. Once it hits zero
6198 * the device reverts back to normal filtering operation. A negative inc
6199 * value is used to drop promiscuity on the device.
dad9b335 6200 * Return 0 if successful or a negative errno code on error.
4417da66 6201 */
dad9b335 6202int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6203{
b536db93 6204 unsigned int old_flags = dev->flags;
dad9b335 6205 int err;
4417da66 6206
991fb3f7 6207 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6208 if (err < 0)
dad9b335 6209 return err;
4417da66
PM
6210 if (dev->flags != old_flags)
6211 dev_set_rx_mode(dev);
dad9b335 6212 return err;
4417da66 6213}
d1b19dff 6214EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6215
991fb3f7 6216static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6217{
991fb3f7 6218 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6219
24023451
PM
6220 ASSERT_RTNL();
6221
1da177e4 6222 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6223 dev->allmulti += inc;
6224 if (dev->allmulti == 0) {
6225 /*
6226 * Avoid overflow.
6227 * If inc causes overflow, untouch allmulti and return error.
6228 */
6229 if (inc < 0)
6230 dev->flags &= ~IFF_ALLMULTI;
6231 else {
6232 dev->allmulti -= inc;
7b6cd1ce
JP
6233 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6234 dev->name);
dad9b335
WC
6235 return -EOVERFLOW;
6236 }
6237 }
24023451 6238 if (dev->flags ^ old_flags) {
b6c40d68 6239 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6240 dev_set_rx_mode(dev);
991fb3f7
ND
6241 if (notify)
6242 __dev_notify_flags(dev, old_flags,
6243 dev->gflags ^ old_gflags);
24023451 6244 }
dad9b335 6245 return 0;
4417da66 6246}
991fb3f7
ND
6247
6248/**
6249 * dev_set_allmulti - update allmulti count on a device
6250 * @dev: device
6251 * @inc: modifier
6252 *
6253 * Add or remove reception of all multicast frames to a device. While the
6254 * count in the device remains above zero the interface remains listening
6255 * to all interfaces. Once it hits zero the device reverts back to normal
6256 * filtering operation. A negative @inc value is used to drop the counter
6257 * when releasing a resource needing all multicasts.
6258 * Return 0 if successful or a negative errno code on error.
6259 */
6260
6261int dev_set_allmulti(struct net_device *dev, int inc)
6262{
6263 return __dev_set_allmulti(dev, inc, true);
6264}
d1b19dff 6265EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6266
6267/*
6268 * Upload unicast and multicast address lists to device and
6269 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6270 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6271 * are present.
6272 */
6273void __dev_set_rx_mode(struct net_device *dev)
6274{
d314774c
SH
6275 const struct net_device_ops *ops = dev->netdev_ops;
6276
4417da66
PM
6277 /* dev_open will call this function so the list will stay sane. */
6278 if (!(dev->flags&IFF_UP))
6279 return;
6280
6281 if (!netif_device_present(dev))
40b77c94 6282 return;
4417da66 6283
01789349 6284 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6285 /* Unicast addresses changes may only happen under the rtnl,
6286 * therefore calling __dev_set_promiscuity here is safe.
6287 */
32e7bfc4 6288 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6289 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6290 dev->uc_promisc = true;
32e7bfc4 6291 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6292 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6293 dev->uc_promisc = false;
4417da66 6294 }
4417da66 6295 }
01789349
JP
6296
6297 if (ops->ndo_set_rx_mode)
6298 ops->ndo_set_rx_mode(dev);
4417da66
PM
6299}
6300
6301void dev_set_rx_mode(struct net_device *dev)
6302{
b9e40857 6303 netif_addr_lock_bh(dev);
4417da66 6304 __dev_set_rx_mode(dev);
b9e40857 6305 netif_addr_unlock_bh(dev);
1da177e4
LT
6306}
6307
f0db275a
SH
6308/**
6309 * dev_get_flags - get flags reported to userspace
6310 * @dev: device
6311 *
6312 * Get the combination of flag bits exported through APIs to userspace.
6313 */
95c96174 6314unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6315{
95c96174 6316 unsigned int flags;
1da177e4
LT
6317
6318 flags = (dev->flags & ~(IFF_PROMISC |
6319 IFF_ALLMULTI |
b00055aa
SR
6320 IFF_RUNNING |
6321 IFF_LOWER_UP |
6322 IFF_DORMANT)) |
1da177e4
LT
6323 (dev->gflags & (IFF_PROMISC |
6324 IFF_ALLMULTI));
6325
b00055aa
SR
6326 if (netif_running(dev)) {
6327 if (netif_oper_up(dev))
6328 flags |= IFF_RUNNING;
6329 if (netif_carrier_ok(dev))
6330 flags |= IFF_LOWER_UP;
6331 if (netif_dormant(dev))
6332 flags |= IFF_DORMANT;
6333 }
1da177e4
LT
6334
6335 return flags;
6336}
d1b19dff 6337EXPORT_SYMBOL(dev_get_flags);
1da177e4 6338
bd380811 6339int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6340{
b536db93 6341 unsigned int old_flags = dev->flags;
bd380811 6342 int ret;
1da177e4 6343
24023451
PM
6344 ASSERT_RTNL();
6345
1da177e4
LT
6346 /*
6347 * Set the flags on our device.
6348 */
6349
6350 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6351 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6352 IFF_AUTOMEDIA)) |
6353 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6354 IFF_ALLMULTI));
6355
6356 /*
6357 * Load in the correct multicast list now the flags have changed.
6358 */
6359
b6c40d68
PM
6360 if ((old_flags ^ flags) & IFF_MULTICAST)
6361 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6362
4417da66 6363 dev_set_rx_mode(dev);
1da177e4
LT
6364
6365 /*
6366 * Have we downed the interface. We handle IFF_UP ourselves
6367 * according to user attempts to set it, rather than blindly
6368 * setting it.
6369 */
6370
6371 ret = 0;
d215d10f 6372 if ((old_flags ^ flags) & IFF_UP)
bd380811 6373 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6374
1da177e4 6375 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6376 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6377 unsigned int old_flags = dev->flags;
d1b19dff 6378
1da177e4 6379 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6380
6381 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6382 if (dev->flags != old_flags)
6383 dev_set_rx_mode(dev);
1da177e4
LT
6384 }
6385
6386 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6387 is important. Some (broken) drivers set IFF_PROMISC, when
6388 IFF_ALLMULTI is requested not asking us and not reporting.
6389 */
6390 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6391 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6392
1da177e4 6393 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6394 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6395 }
6396
bd380811
PM
6397 return ret;
6398}
6399
a528c219
ND
6400void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6401 unsigned int gchanges)
bd380811
PM
6402{
6403 unsigned int changes = dev->flags ^ old_flags;
6404
a528c219 6405 if (gchanges)
7f294054 6406 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6407
bd380811
PM
6408 if (changes & IFF_UP) {
6409 if (dev->flags & IFF_UP)
6410 call_netdevice_notifiers(NETDEV_UP, dev);
6411 else
6412 call_netdevice_notifiers(NETDEV_DOWN, dev);
6413 }
6414
6415 if (dev->flags & IFF_UP &&
be9efd36
JP
6416 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6417 struct netdev_notifier_change_info change_info;
6418
6419 change_info.flags_changed = changes;
6420 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6421 &change_info.info);
6422 }
bd380811
PM
6423}
6424
6425/**
6426 * dev_change_flags - change device settings
6427 * @dev: device
6428 * @flags: device state flags
6429 *
6430 * Change settings on device based state flags. The flags are
6431 * in the userspace exported format.
6432 */
b536db93 6433int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6434{
b536db93 6435 int ret;
991fb3f7 6436 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6437
6438 ret = __dev_change_flags(dev, flags);
6439 if (ret < 0)
6440 return ret;
6441
991fb3f7 6442 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6443 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6444 return ret;
6445}
d1b19dff 6446EXPORT_SYMBOL(dev_change_flags);
1da177e4 6447
2315dc91
VF
6448static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6449{
6450 const struct net_device_ops *ops = dev->netdev_ops;
6451
6452 if (ops->ndo_change_mtu)
6453 return ops->ndo_change_mtu(dev, new_mtu);
6454
6455 dev->mtu = new_mtu;
6456 return 0;
6457}
6458
f0db275a
SH
6459/**
6460 * dev_set_mtu - Change maximum transfer unit
6461 * @dev: device
6462 * @new_mtu: new transfer unit
6463 *
6464 * Change the maximum transfer size of the network device.
6465 */
1da177e4
LT
6466int dev_set_mtu(struct net_device *dev, int new_mtu)
6467{
2315dc91 6468 int err, orig_mtu;
1da177e4
LT
6469
6470 if (new_mtu == dev->mtu)
6471 return 0;
6472
61e84623
JW
6473 /* MTU must be positive, and in range */
6474 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6475 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6476 dev->name, new_mtu, dev->min_mtu);
1da177e4 6477 return -EINVAL;
61e84623
JW
6478 }
6479
6480 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6481 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6482 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6483 return -EINVAL;
6484 }
1da177e4
LT
6485
6486 if (!netif_device_present(dev))
6487 return -ENODEV;
6488
1d486bfb
VF
6489 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6490 err = notifier_to_errno(err);
6491 if (err)
6492 return err;
d314774c 6493
2315dc91
VF
6494 orig_mtu = dev->mtu;
6495 err = __dev_set_mtu(dev, new_mtu);
d314774c 6496
2315dc91
VF
6497 if (!err) {
6498 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6499 err = notifier_to_errno(err);
6500 if (err) {
6501 /* setting mtu back and notifying everyone again,
6502 * so that they have a chance to revert changes.
6503 */
6504 __dev_set_mtu(dev, orig_mtu);
6505 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6506 }
6507 }
1da177e4
LT
6508 return err;
6509}
d1b19dff 6510EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6511
cbda10fa
VD
6512/**
6513 * dev_set_group - Change group this device belongs to
6514 * @dev: device
6515 * @new_group: group this device should belong to
6516 */
6517void dev_set_group(struct net_device *dev, int new_group)
6518{
6519 dev->group = new_group;
6520}
6521EXPORT_SYMBOL(dev_set_group);
6522
f0db275a
SH
6523/**
6524 * dev_set_mac_address - Change Media Access Control Address
6525 * @dev: device
6526 * @sa: new address
6527 *
6528 * Change the hardware (MAC) address of the device
6529 */
1da177e4
LT
6530int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6531{
d314774c 6532 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6533 int err;
6534
d314774c 6535 if (!ops->ndo_set_mac_address)
1da177e4
LT
6536 return -EOPNOTSUPP;
6537 if (sa->sa_family != dev->type)
6538 return -EINVAL;
6539 if (!netif_device_present(dev))
6540 return -ENODEV;
d314774c 6541 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6542 if (err)
6543 return err;
fbdeca2d 6544 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6545 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6546 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6547 return 0;
1da177e4 6548}
d1b19dff 6549EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6550
4bf84c35
JP
6551/**
6552 * dev_change_carrier - Change device carrier
6553 * @dev: device
691b3b7e 6554 * @new_carrier: new value
4bf84c35
JP
6555 *
6556 * Change device carrier
6557 */
6558int dev_change_carrier(struct net_device *dev, bool new_carrier)
6559{
6560 const struct net_device_ops *ops = dev->netdev_ops;
6561
6562 if (!ops->ndo_change_carrier)
6563 return -EOPNOTSUPP;
6564 if (!netif_device_present(dev))
6565 return -ENODEV;
6566 return ops->ndo_change_carrier(dev, new_carrier);
6567}
6568EXPORT_SYMBOL(dev_change_carrier);
6569
66b52b0d
JP
6570/**
6571 * dev_get_phys_port_id - Get device physical port ID
6572 * @dev: device
6573 * @ppid: port ID
6574 *
6575 * Get device physical port ID
6576 */
6577int dev_get_phys_port_id(struct net_device *dev,
02637fce 6578 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6579{
6580 const struct net_device_ops *ops = dev->netdev_ops;
6581
6582 if (!ops->ndo_get_phys_port_id)
6583 return -EOPNOTSUPP;
6584 return ops->ndo_get_phys_port_id(dev, ppid);
6585}
6586EXPORT_SYMBOL(dev_get_phys_port_id);
6587
db24a904
DA
6588/**
6589 * dev_get_phys_port_name - Get device physical port name
6590 * @dev: device
6591 * @name: port name
ed49e650 6592 * @len: limit of bytes to copy to name
db24a904
DA
6593 *
6594 * Get device physical port name
6595 */
6596int dev_get_phys_port_name(struct net_device *dev,
6597 char *name, size_t len)
6598{
6599 const struct net_device_ops *ops = dev->netdev_ops;
6600
6601 if (!ops->ndo_get_phys_port_name)
6602 return -EOPNOTSUPP;
6603 return ops->ndo_get_phys_port_name(dev, name, len);
6604}
6605EXPORT_SYMBOL(dev_get_phys_port_name);
6606
d746d707
AK
6607/**
6608 * dev_change_proto_down - update protocol port state information
6609 * @dev: device
6610 * @proto_down: new value
6611 *
6612 * This info can be used by switch drivers to set the phys state of the
6613 * port.
6614 */
6615int dev_change_proto_down(struct net_device *dev, bool proto_down)
6616{
6617 const struct net_device_ops *ops = dev->netdev_ops;
6618
6619 if (!ops->ndo_change_proto_down)
6620 return -EOPNOTSUPP;
6621 if (!netif_device_present(dev))
6622 return -ENODEV;
6623 return ops->ndo_change_proto_down(dev, proto_down);
6624}
6625EXPORT_SYMBOL(dev_change_proto_down);
6626
a7862b45
BB
6627/**
6628 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6629 * @dev: device
6630 * @fd: new program fd or negative value to clear
6631 *
6632 * Set or clear a bpf program for a device
6633 */
6634int dev_change_xdp_fd(struct net_device *dev, int fd)
6635{
6636 const struct net_device_ops *ops = dev->netdev_ops;
6637 struct bpf_prog *prog = NULL;
6638 struct netdev_xdp xdp = {};
6639 int err;
6640
6641 if (!ops->ndo_xdp)
6642 return -EOPNOTSUPP;
6643 if (fd >= 0) {
6644 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6645 if (IS_ERR(prog))
6646 return PTR_ERR(prog);
6647 }
6648
6649 xdp.command = XDP_SETUP_PROG;
6650 xdp.prog = prog;
6651 err = ops->ndo_xdp(dev, &xdp);
6652 if (err < 0 && prog)
6653 bpf_prog_put(prog);
6654
6655 return err;
6656}
6657EXPORT_SYMBOL(dev_change_xdp_fd);
6658
1da177e4
LT
6659/**
6660 * dev_new_index - allocate an ifindex
c4ea43c5 6661 * @net: the applicable net namespace
1da177e4
LT
6662 *
6663 * Returns a suitable unique value for a new device interface
6664 * number. The caller must hold the rtnl semaphore or the
6665 * dev_base_lock to be sure it remains unique.
6666 */
881d966b 6667static int dev_new_index(struct net *net)
1da177e4 6668{
aa79e66e 6669 int ifindex = net->ifindex;
1da177e4
LT
6670 for (;;) {
6671 if (++ifindex <= 0)
6672 ifindex = 1;
881d966b 6673 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6674 return net->ifindex = ifindex;
1da177e4
LT
6675 }
6676}
6677
1da177e4 6678/* Delayed registration/unregisteration */
3b5b34fd 6679static LIST_HEAD(net_todo_list);
200b916f 6680DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6681
6f05f629 6682static void net_set_todo(struct net_device *dev)
1da177e4 6683{
1da177e4 6684 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6685 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6686}
6687
9b5e383c 6688static void rollback_registered_many(struct list_head *head)
93ee31f1 6689{
e93737b0 6690 struct net_device *dev, *tmp;
5cde2829 6691 LIST_HEAD(close_head);
9b5e383c 6692
93ee31f1
DL
6693 BUG_ON(dev_boot_phase);
6694 ASSERT_RTNL();
6695
e93737b0 6696 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6697 /* Some devices call without registering
e93737b0
KK
6698 * for initialization unwind. Remove those
6699 * devices and proceed with the remaining.
9b5e383c
ED
6700 */
6701 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6702 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6703 dev->name, dev);
93ee31f1 6704
9b5e383c 6705 WARN_ON(1);
e93737b0
KK
6706 list_del(&dev->unreg_list);
6707 continue;
9b5e383c 6708 }
449f4544 6709 dev->dismantle = true;
9b5e383c 6710 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6711 }
93ee31f1 6712
44345724 6713 /* If device is running, close it first. */
5cde2829
EB
6714 list_for_each_entry(dev, head, unreg_list)
6715 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6716 dev_close_many(&close_head, true);
93ee31f1 6717
44345724 6718 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6719 /* And unlink it from device chain. */
6720 unlist_netdevice(dev);
93ee31f1 6721
9b5e383c
ED
6722 dev->reg_state = NETREG_UNREGISTERING;
6723 }
41852497 6724 flush_all_backlogs();
93ee31f1
DL
6725
6726 synchronize_net();
6727
9b5e383c 6728 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6729 struct sk_buff *skb = NULL;
6730
9b5e383c
ED
6731 /* Shutdown queueing discipline. */
6732 dev_shutdown(dev);
93ee31f1
DL
6733
6734
9b5e383c
ED
6735 /* Notify protocols, that we are about to destroy
6736 this device. They should clean all the things.
6737 */
6738 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6739
395eea6c
MB
6740 if (!dev->rtnl_link_ops ||
6741 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6742 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6743 GFP_KERNEL);
6744
9b5e383c
ED
6745 /*
6746 * Flush the unicast and multicast chains
6747 */
a748ee24 6748 dev_uc_flush(dev);
22bedad3 6749 dev_mc_flush(dev);
93ee31f1 6750
9b5e383c
ED
6751 if (dev->netdev_ops->ndo_uninit)
6752 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6753
395eea6c
MB
6754 if (skb)
6755 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6756
9ff162a8
JP
6757 /* Notifier chain MUST detach us all upper devices. */
6758 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 6759 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 6760
9b5e383c
ED
6761 /* Remove entries from kobject tree */
6762 netdev_unregister_kobject(dev);
024e9679
AD
6763#ifdef CONFIG_XPS
6764 /* Remove XPS queueing entries */
6765 netif_reset_xps_queues_gt(dev, 0);
6766#endif
9b5e383c 6767 }
93ee31f1 6768
850a545b 6769 synchronize_net();
395264d5 6770
a5ee1551 6771 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6772 dev_put(dev);
6773}
6774
6775static void rollback_registered(struct net_device *dev)
6776{
6777 LIST_HEAD(single);
6778
6779 list_add(&dev->unreg_list, &single);
6780 rollback_registered_many(&single);
ceaaec98 6781 list_del(&single);
93ee31f1
DL
6782}
6783
fd867d51
JW
6784static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6785 struct net_device *upper, netdev_features_t features)
6786{
6787 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6788 netdev_features_t feature;
5ba3f7d6 6789 int feature_bit;
fd867d51 6790
5ba3f7d6
JW
6791 for_each_netdev_feature(&upper_disables, feature_bit) {
6792 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6793 if (!(upper->wanted_features & feature)
6794 && (features & feature)) {
6795 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6796 &feature, upper->name);
6797 features &= ~feature;
6798 }
6799 }
6800
6801 return features;
6802}
6803
6804static void netdev_sync_lower_features(struct net_device *upper,
6805 struct net_device *lower, netdev_features_t features)
6806{
6807 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6808 netdev_features_t feature;
5ba3f7d6 6809 int feature_bit;
fd867d51 6810
5ba3f7d6
JW
6811 for_each_netdev_feature(&upper_disables, feature_bit) {
6812 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6813 if (!(features & feature) && (lower->features & feature)) {
6814 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6815 &feature, lower->name);
6816 lower->wanted_features &= ~feature;
6817 netdev_update_features(lower);
6818
6819 if (unlikely(lower->features & feature))
6820 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6821 &feature, lower->name);
6822 }
6823 }
6824}
6825
c8f44aff
MM
6826static netdev_features_t netdev_fix_features(struct net_device *dev,
6827 netdev_features_t features)
b63365a2 6828{
57422dc5
MM
6829 /* Fix illegal checksum combinations */
6830 if ((features & NETIF_F_HW_CSUM) &&
6831 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6832 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6833 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6834 }
6835
b63365a2 6836 /* TSO requires that SG is present as well. */
ea2d3688 6837 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6838 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6839 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6840 }
6841
ec5f0615
PS
6842 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6843 !(features & NETIF_F_IP_CSUM)) {
6844 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6845 features &= ~NETIF_F_TSO;
6846 features &= ~NETIF_F_TSO_ECN;
6847 }
6848
6849 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6850 !(features & NETIF_F_IPV6_CSUM)) {
6851 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6852 features &= ~NETIF_F_TSO6;
6853 }
6854
b1dc497b
AD
6855 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6856 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6857 features &= ~NETIF_F_TSO_MANGLEID;
6858
31d8b9e0
BH
6859 /* TSO ECN requires that TSO is present as well. */
6860 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6861 features &= ~NETIF_F_TSO_ECN;
6862
212b573f
MM
6863 /* Software GSO depends on SG. */
6864 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6865 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6866 features &= ~NETIF_F_GSO;
6867 }
6868
acd1130e 6869 /* UFO needs SG and checksumming */
b63365a2 6870 if (features & NETIF_F_UFO) {
79032644 6871 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6872 if (!(features & NETIF_F_HW_CSUM) &&
6873 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6874 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6875 netdev_dbg(dev,
acd1130e 6876 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6877 features &= ~NETIF_F_UFO;
6878 }
6879
6880 if (!(features & NETIF_F_SG)) {
6f404e44 6881 netdev_dbg(dev,
acd1130e 6882 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6883 features &= ~NETIF_F_UFO;
6884 }
6885 }
6886
802ab55a
AD
6887 /* GSO partial features require GSO partial be set */
6888 if ((features & dev->gso_partial_features) &&
6889 !(features & NETIF_F_GSO_PARTIAL)) {
6890 netdev_dbg(dev,
6891 "Dropping partially supported GSO features since no GSO partial.\n");
6892 features &= ~dev->gso_partial_features;
6893 }
6894
d0290214
JP
6895#ifdef CONFIG_NET_RX_BUSY_POLL
6896 if (dev->netdev_ops->ndo_busy_poll)
6897 features |= NETIF_F_BUSY_POLL;
6898 else
6899#endif
6900 features &= ~NETIF_F_BUSY_POLL;
6901
b63365a2
HX
6902 return features;
6903}
b63365a2 6904
6cb6a27c 6905int __netdev_update_features(struct net_device *dev)
5455c699 6906{
fd867d51 6907 struct net_device *upper, *lower;
c8f44aff 6908 netdev_features_t features;
fd867d51 6909 struct list_head *iter;
e7868a85 6910 int err = -1;
5455c699 6911
87267485
MM
6912 ASSERT_RTNL();
6913
5455c699
MM
6914 features = netdev_get_wanted_features(dev);
6915
6916 if (dev->netdev_ops->ndo_fix_features)
6917 features = dev->netdev_ops->ndo_fix_features(dev, features);
6918
6919 /* driver might be less strict about feature dependencies */
6920 features = netdev_fix_features(dev, features);
6921
fd867d51
JW
6922 /* some features can't be enabled if they're off an an upper device */
6923 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6924 features = netdev_sync_upper_features(dev, upper, features);
6925
5455c699 6926 if (dev->features == features)
e7868a85 6927 goto sync_lower;
5455c699 6928
c8f44aff
MM
6929 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6930 &dev->features, &features);
5455c699
MM
6931
6932 if (dev->netdev_ops->ndo_set_features)
6933 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6934 else
6935 err = 0;
5455c699 6936
6cb6a27c 6937 if (unlikely(err < 0)) {
5455c699 6938 netdev_err(dev,
c8f44aff
MM
6939 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6940 err, &features, &dev->features);
17b85d29
NA
6941 /* return non-0 since some features might have changed and
6942 * it's better to fire a spurious notification than miss it
6943 */
6944 return -1;
6cb6a27c
MM
6945 }
6946
e7868a85 6947sync_lower:
fd867d51
JW
6948 /* some features must be disabled on lower devices when disabled
6949 * on an upper device (think: bonding master or bridge)
6950 */
6951 netdev_for_each_lower_dev(dev, lower, iter)
6952 netdev_sync_lower_features(dev, lower, features);
6953
6cb6a27c
MM
6954 if (!err)
6955 dev->features = features;
6956
e7868a85 6957 return err < 0 ? 0 : 1;
6cb6a27c
MM
6958}
6959
afe12cc8
MM
6960/**
6961 * netdev_update_features - recalculate device features
6962 * @dev: the device to check
6963 *
6964 * Recalculate dev->features set and send notifications if it
6965 * has changed. Should be called after driver or hardware dependent
6966 * conditions might have changed that influence the features.
6967 */
6cb6a27c
MM
6968void netdev_update_features(struct net_device *dev)
6969{
6970 if (__netdev_update_features(dev))
6971 netdev_features_change(dev);
5455c699
MM
6972}
6973EXPORT_SYMBOL(netdev_update_features);
6974
afe12cc8
MM
6975/**
6976 * netdev_change_features - recalculate device features
6977 * @dev: the device to check
6978 *
6979 * Recalculate dev->features set and send notifications even
6980 * if they have not changed. Should be called instead of
6981 * netdev_update_features() if also dev->vlan_features might
6982 * have changed to allow the changes to be propagated to stacked
6983 * VLAN devices.
6984 */
6985void netdev_change_features(struct net_device *dev)
6986{
6987 __netdev_update_features(dev);
6988 netdev_features_change(dev);
6989}
6990EXPORT_SYMBOL(netdev_change_features);
6991
fc4a7489
PM
6992/**
6993 * netif_stacked_transfer_operstate - transfer operstate
6994 * @rootdev: the root or lower level device to transfer state from
6995 * @dev: the device to transfer operstate to
6996 *
6997 * Transfer operational state from root to device. This is normally
6998 * called when a stacking relationship exists between the root
6999 * device and the device(a leaf device).
7000 */
7001void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7002 struct net_device *dev)
7003{
7004 if (rootdev->operstate == IF_OPER_DORMANT)
7005 netif_dormant_on(dev);
7006 else
7007 netif_dormant_off(dev);
7008
7009 if (netif_carrier_ok(rootdev)) {
7010 if (!netif_carrier_ok(dev))
7011 netif_carrier_on(dev);
7012 } else {
7013 if (netif_carrier_ok(dev))
7014 netif_carrier_off(dev);
7015 }
7016}
7017EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7018
a953be53 7019#ifdef CONFIG_SYSFS
1b4bf461
ED
7020static int netif_alloc_rx_queues(struct net_device *dev)
7021{
1b4bf461 7022 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7023 struct netdev_rx_queue *rx;
10595902 7024 size_t sz = count * sizeof(*rx);
1b4bf461 7025
bd25fa7b 7026 BUG_ON(count < 1);
1b4bf461 7027
10595902
PG
7028 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7029 if (!rx) {
7030 rx = vzalloc(sz);
7031 if (!rx)
7032 return -ENOMEM;
7033 }
bd25fa7b
TH
7034 dev->_rx = rx;
7035
bd25fa7b 7036 for (i = 0; i < count; i++)
fe822240 7037 rx[i].dev = dev;
1b4bf461
ED
7038 return 0;
7039}
bf264145 7040#endif
1b4bf461 7041
aa942104
CG
7042static void netdev_init_one_queue(struct net_device *dev,
7043 struct netdev_queue *queue, void *_unused)
7044{
7045 /* Initialize queue lock */
7046 spin_lock_init(&queue->_xmit_lock);
7047 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7048 queue->xmit_lock_owner = -1;
b236da69 7049 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7050 queue->dev = dev;
114cf580
TH
7051#ifdef CONFIG_BQL
7052 dql_init(&queue->dql, HZ);
7053#endif
aa942104
CG
7054}
7055
60877a32
ED
7056static void netif_free_tx_queues(struct net_device *dev)
7057{
4cb28970 7058 kvfree(dev->_tx);
60877a32
ED
7059}
7060
e6484930
TH
7061static int netif_alloc_netdev_queues(struct net_device *dev)
7062{
7063 unsigned int count = dev->num_tx_queues;
7064 struct netdev_queue *tx;
60877a32 7065 size_t sz = count * sizeof(*tx);
e6484930 7066
d339727c
ED
7067 if (count < 1 || count > 0xffff)
7068 return -EINVAL;
62b5942a 7069
60877a32
ED
7070 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7071 if (!tx) {
7072 tx = vzalloc(sz);
7073 if (!tx)
7074 return -ENOMEM;
7075 }
e6484930 7076 dev->_tx = tx;
1d24eb48 7077
e6484930
TH
7078 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7079 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7080
7081 return 0;
e6484930
TH
7082}
7083
a2029240
DV
7084void netif_tx_stop_all_queues(struct net_device *dev)
7085{
7086 unsigned int i;
7087
7088 for (i = 0; i < dev->num_tx_queues; i++) {
7089 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7090 netif_tx_stop_queue(txq);
7091 }
7092}
7093EXPORT_SYMBOL(netif_tx_stop_all_queues);
7094
1da177e4
LT
7095/**
7096 * register_netdevice - register a network device
7097 * @dev: device to register
7098 *
7099 * Take a completed network device structure and add it to the kernel
7100 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7101 * chain. 0 is returned on success. A negative errno code is returned
7102 * on a failure to set up the device, or if the name is a duplicate.
7103 *
7104 * Callers must hold the rtnl semaphore. You may want
7105 * register_netdev() instead of this.
7106 *
7107 * BUGS:
7108 * The locking appears insufficient to guarantee two parallel registers
7109 * will not get the same name.
7110 */
7111
7112int register_netdevice(struct net_device *dev)
7113{
1da177e4 7114 int ret;
d314774c 7115 struct net *net = dev_net(dev);
1da177e4
LT
7116
7117 BUG_ON(dev_boot_phase);
7118 ASSERT_RTNL();
7119
b17a7c17
SH
7120 might_sleep();
7121
1da177e4
LT
7122 /* When net_device's are persistent, this will be fatal. */
7123 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7124 BUG_ON(!net);
1da177e4 7125
f1f28aa3 7126 spin_lock_init(&dev->addr_list_lock);
cf508b12 7127 netdev_set_addr_lockdep_class(dev);
1da177e4 7128
828de4f6 7129 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7130 if (ret < 0)
7131 goto out;
7132
1da177e4 7133 /* Init, if this function is available */
d314774c
SH
7134 if (dev->netdev_ops->ndo_init) {
7135 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7136 if (ret) {
7137 if (ret > 0)
7138 ret = -EIO;
90833aa4 7139 goto out;
1da177e4
LT
7140 }
7141 }
4ec93edb 7142
f646968f
PM
7143 if (((dev->hw_features | dev->features) &
7144 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7145 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7146 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7147 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7148 ret = -EINVAL;
7149 goto err_uninit;
7150 }
7151
9c7dafbf
PE
7152 ret = -EBUSY;
7153 if (!dev->ifindex)
7154 dev->ifindex = dev_new_index(net);
7155 else if (__dev_get_by_index(net, dev->ifindex))
7156 goto err_uninit;
7157
5455c699
MM
7158 /* Transfer changeable features to wanted_features and enable
7159 * software offloads (GSO and GRO).
7160 */
7161 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7162 dev->features |= NETIF_F_SOFT_FEATURES;
7163 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7164
cbc53e08 7165 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7166 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7167
7f348a60
AD
7168 /* If IPv4 TCP segmentation offload is supported we should also
7169 * allow the device to enable segmenting the frame with the option
7170 * of ignoring a static IP ID value. This doesn't enable the
7171 * feature itself but allows the user to enable it later.
7172 */
cbc53e08
AD
7173 if (dev->hw_features & NETIF_F_TSO)
7174 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7175 if (dev->vlan_features & NETIF_F_TSO)
7176 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7177 if (dev->mpls_features & NETIF_F_TSO)
7178 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7179 if (dev->hw_enc_features & NETIF_F_TSO)
7180 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7181
1180e7d6 7182 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7183 */
1180e7d6 7184 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7185
ee579677
PS
7186 /* Make NETIF_F_SG inheritable to tunnel devices.
7187 */
802ab55a 7188 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7189
0d89d203
SH
7190 /* Make NETIF_F_SG inheritable to MPLS.
7191 */
7192 dev->mpls_features |= NETIF_F_SG;
7193
7ffbe3fd
JB
7194 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7195 ret = notifier_to_errno(ret);
7196 if (ret)
7197 goto err_uninit;
7198
8b41d188 7199 ret = netdev_register_kobject(dev);
b17a7c17 7200 if (ret)
7ce1b0ed 7201 goto err_uninit;
b17a7c17
SH
7202 dev->reg_state = NETREG_REGISTERED;
7203
6cb6a27c 7204 __netdev_update_features(dev);
8e9b59b2 7205
1da177e4
LT
7206 /*
7207 * Default initial state at registry is that the
7208 * device is present.
7209 */
7210
7211 set_bit(__LINK_STATE_PRESENT, &dev->state);
7212
8f4cccbb
BH
7213 linkwatch_init_dev(dev);
7214
1da177e4 7215 dev_init_scheduler(dev);
1da177e4 7216 dev_hold(dev);
ce286d32 7217 list_netdevice(dev);
7bf23575 7218 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7219
948b337e
JP
7220 /* If the device has permanent device address, driver should
7221 * set dev_addr and also addr_assign_type should be set to
7222 * NET_ADDR_PERM (default value).
7223 */
7224 if (dev->addr_assign_type == NET_ADDR_PERM)
7225 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7226
1da177e4 7227 /* Notify protocols, that a new device appeared. */
056925ab 7228 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7229 ret = notifier_to_errno(ret);
93ee31f1
DL
7230 if (ret) {
7231 rollback_registered(dev);
7232 dev->reg_state = NETREG_UNREGISTERED;
7233 }
d90a909e
EB
7234 /*
7235 * Prevent userspace races by waiting until the network
7236 * device is fully setup before sending notifications.
7237 */
a2835763
PM
7238 if (!dev->rtnl_link_ops ||
7239 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7240 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7241
7242out:
7243 return ret;
7ce1b0ed
HX
7244
7245err_uninit:
d314774c
SH
7246 if (dev->netdev_ops->ndo_uninit)
7247 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7248 goto out;
1da177e4 7249}
d1b19dff 7250EXPORT_SYMBOL(register_netdevice);
1da177e4 7251
937f1ba5
BH
7252/**
7253 * init_dummy_netdev - init a dummy network device for NAPI
7254 * @dev: device to init
7255 *
7256 * This takes a network device structure and initialize the minimum
7257 * amount of fields so it can be used to schedule NAPI polls without
7258 * registering a full blown interface. This is to be used by drivers
7259 * that need to tie several hardware interfaces to a single NAPI
7260 * poll scheduler due to HW limitations.
7261 */
7262int init_dummy_netdev(struct net_device *dev)
7263{
7264 /* Clear everything. Note we don't initialize spinlocks
7265 * are they aren't supposed to be taken by any of the
7266 * NAPI code and this dummy netdev is supposed to be
7267 * only ever used for NAPI polls
7268 */
7269 memset(dev, 0, sizeof(struct net_device));
7270
7271 /* make sure we BUG if trying to hit standard
7272 * register/unregister code path
7273 */
7274 dev->reg_state = NETREG_DUMMY;
7275
937f1ba5
BH
7276 /* NAPI wants this */
7277 INIT_LIST_HEAD(&dev->napi_list);
7278
7279 /* a dummy interface is started by default */
7280 set_bit(__LINK_STATE_PRESENT, &dev->state);
7281 set_bit(__LINK_STATE_START, &dev->state);
7282
29b4433d
ED
7283 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7284 * because users of this 'device' dont need to change
7285 * its refcount.
7286 */
7287
937f1ba5
BH
7288 return 0;
7289}
7290EXPORT_SYMBOL_GPL(init_dummy_netdev);
7291
7292
1da177e4
LT
7293/**
7294 * register_netdev - register a network device
7295 * @dev: device to register
7296 *
7297 * Take a completed network device structure and add it to the kernel
7298 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7299 * chain. 0 is returned on success. A negative errno code is returned
7300 * on a failure to set up the device, or if the name is a duplicate.
7301 *
38b4da38 7302 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7303 * and expands the device name if you passed a format string to
7304 * alloc_netdev.
7305 */
7306int register_netdev(struct net_device *dev)
7307{
7308 int err;
7309
7310 rtnl_lock();
1da177e4 7311 err = register_netdevice(dev);
1da177e4
LT
7312 rtnl_unlock();
7313 return err;
7314}
7315EXPORT_SYMBOL(register_netdev);
7316
29b4433d
ED
7317int netdev_refcnt_read(const struct net_device *dev)
7318{
7319 int i, refcnt = 0;
7320
7321 for_each_possible_cpu(i)
7322 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7323 return refcnt;
7324}
7325EXPORT_SYMBOL(netdev_refcnt_read);
7326
2c53040f 7327/**
1da177e4 7328 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7329 * @dev: target net_device
1da177e4
LT
7330 *
7331 * This is called when unregistering network devices.
7332 *
7333 * Any protocol or device that holds a reference should register
7334 * for netdevice notification, and cleanup and put back the
7335 * reference if they receive an UNREGISTER event.
7336 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7337 * call dev_put.
1da177e4
LT
7338 */
7339static void netdev_wait_allrefs(struct net_device *dev)
7340{
7341 unsigned long rebroadcast_time, warning_time;
29b4433d 7342 int refcnt;
1da177e4 7343
e014debe
ED
7344 linkwatch_forget_dev(dev);
7345
1da177e4 7346 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7347 refcnt = netdev_refcnt_read(dev);
7348
7349 while (refcnt != 0) {
1da177e4 7350 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7351 rtnl_lock();
1da177e4
LT
7352
7353 /* Rebroadcast unregister notification */
056925ab 7354 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7355
748e2d93 7356 __rtnl_unlock();
0115e8e3 7357 rcu_barrier();
748e2d93
ED
7358 rtnl_lock();
7359
0115e8e3 7360 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7361 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7362 &dev->state)) {
7363 /* We must not have linkwatch events
7364 * pending on unregister. If this
7365 * happens, we simply run the queue
7366 * unscheduled, resulting in a noop
7367 * for this device.
7368 */
7369 linkwatch_run_queue();
7370 }
7371
6756ae4b 7372 __rtnl_unlock();
1da177e4
LT
7373
7374 rebroadcast_time = jiffies;
7375 }
7376
7377 msleep(250);
7378
29b4433d
ED
7379 refcnt = netdev_refcnt_read(dev);
7380
1da177e4 7381 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7382 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7383 dev->name, refcnt);
1da177e4
LT
7384 warning_time = jiffies;
7385 }
7386 }
7387}
7388
7389/* The sequence is:
7390 *
7391 * rtnl_lock();
7392 * ...
7393 * register_netdevice(x1);
7394 * register_netdevice(x2);
7395 * ...
7396 * unregister_netdevice(y1);
7397 * unregister_netdevice(y2);
7398 * ...
7399 * rtnl_unlock();
7400 * free_netdev(y1);
7401 * free_netdev(y2);
7402 *
58ec3b4d 7403 * We are invoked by rtnl_unlock().
1da177e4 7404 * This allows us to deal with problems:
b17a7c17 7405 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7406 * without deadlocking with linkwatch via keventd.
7407 * 2) Since we run with the RTNL semaphore not held, we can sleep
7408 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7409 *
7410 * We must not return until all unregister events added during
7411 * the interval the lock was held have been completed.
1da177e4 7412 */
1da177e4
LT
7413void netdev_run_todo(void)
7414{
626ab0e6 7415 struct list_head list;
1da177e4 7416
1da177e4 7417 /* Snapshot list, allow later requests */
626ab0e6 7418 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7419
7420 __rtnl_unlock();
626ab0e6 7421
0115e8e3
ED
7422
7423 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7424 if (!list_empty(&list))
7425 rcu_barrier();
7426
1da177e4
LT
7427 while (!list_empty(&list)) {
7428 struct net_device *dev
e5e26d75 7429 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7430 list_del(&dev->todo_list);
7431
748e2d93 7432 rtnl_lock();
0115e8e3 7433 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7434 __rtnl_unlock();
0115e8e3 7435
b17a7c17 7436 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7437 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7438 dev->name, dev->reg_state);
7439 dump_stack();
7440 continue;
7441 }
1da177e4 7442
b17a7c17 7443 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7444
b17a7c17 7445 netdev_wait_allrefs(dev);
1da177e4 7446
b17a7c17 7447 /* paranoia */
29b4433d 7448 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7449 BUG_ON(!list_empty(&dev->ptype_all));
7450 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7451 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7452 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7453 WARN_ON(dev->dn_ptr);
1da177e4 7454
b17a7c17
SH
7455 if (dev->destructor)
7456 dev->destructor(dev);
9093bbb2 7457
50624c93
EB
7458 /* Report a network device has been unregistered */
7459 rtnl_lock();
7460 dev_net(dev)->dev_unreg_count--;
7461 __rtnl_unlock();
7462 wake_up(&netdev_unregistering_wq);
7463
9093bbb2
SH
7464 /* Free network device */
7465 kobject_put(&dev->dev.kobj);
1da177e4 7466 }
1da177e4
LT
7467}
7468
9256645a
JW
7469/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7470 * all the same fields in the same order as net_device_stats, with only
7471 * the type differing, but rtnl_link_stats64 may have additional fields
7472 * at the end for newer counters.
3cfde79c 7473 */
77a1abf5
ED
7474void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7475 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7476{
7477#if BITS_PER_LONG == 64
9256645a 7478 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7479 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7480 /* zero out counters that only exist in rtnl_link_stats64 */
7481 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7482 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7483#else
9256645a 7484 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7485 const unsigned long *src = (const unsigned long *)netdev_stats;
7486 u64 *dst = (u64 *)stats64;
7487
9256645a 7488 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7489 for (i = 0; i < n; i++)
7490 dst[i] = src[i];
9256645a
JW
7491 /* zero out counters that only exist in rtnl_link_stats64 */
7492 memset((char *)stats64 + n * sizeof(u64), 0,
7493 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7494#endif
7495}
77a1abf5 7496EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7497
eeda3fd6
SH
7498/**
7499 * dev_get_stats - get network device statistics
7500 * @dev: device to get statistics from
28172739 7501 * @storage: place to store stats
eeda3fd6 7502 *
d7753516
BH
7503 * Get network statistics from device. Return @storage.
7504 * The device driver may provide its own method by setting
7505 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7506 * otherwise the internal statistics structure is used.
eeda3fd6 7507 */
d7753516
BH
7508struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7509 struct rtnl_link_stats64 *storage)
7004bf25 7510{
eeda3fd6
SH
7511 const struct net_device_ops *ops = dev->netdev_ops;
7512
28172739
ED
7513 if (ops->ndo_get_stats64) {
7514 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7515 ops->ndo_get_stats64(dev, storage);
7516 } else if (ops->ndo_get_stats) {
3cfde79c 7517 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7518 } else {
7519 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7520 }
caf586e5 7521 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7522 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7523 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7524 return storage;
c45d286e 7525}
eeda3fd6 7526EXPORT_SYMBOL(dev_get_stats);
c45d286e 7527
24824a09 7528struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7529{
24824a09 7530 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7531
24824a09
ED
7532#ifdef CONFIG_NET_CLS_ACT
7533 if (queue)
7534 return queue;
7535 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7536 if (!queue)
7537 return NULL;
7538 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7539 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7540 queue->qdisc_sleeping = &noop_qdisc;
7541 rcu_assign_pointer(dev->ingress_queue, queue);
7542#endif
7543 return queue;
bb949fbd
DM
7544}
7545
2c60db03
ED
7546static const struct ethtool_ops default_ethtool_ops;
7547
d07d7507
SG
7548void netdev_set_default_ethtool_ops(struct net_device *dev,
7549 const struct ethtool_ops *ops)
7550{
7551 if (dev->ethtool_ops == &default_ethtool_ops)
7552 dev->ethtool_ops = ops;
7553}
7554EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7555
74d332c1
ED
7556void netdev_freemem(struct net_device *dev)
7557{
7558 char *addr = (char *)dev - dev->padded;
7559
4cb28970 7560 kvfree(addr);
74d332c1
ED
7561}
7562
1da177e4 7563/**
36909ea4 7564 * alloc_netdev_mqs - allocate network device
c835a677
TG
7565 * @sizeof_priv: size of private data to allocate space for
7566 * @name: device name format string
7567 * @name_assign_type: origin of device name
7568 * @setup: callback to initialize device
7569 * @txqs: the number of TX subqueues to allocate
7570 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7571 *
7572 * Allocates a struct net_device with private data area for driver use
90e51adf 7573 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7574 * for each queue on the device.
1da177e4 7575 */
36909ea4 7576struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7577 unsigned char name_assign_type,
36909ea4
TH
7578 void (*setup)(struct net_device *),
7579 unsigned int txqs, unsigned int rxqs)
1da177e4 7580{
1da177e4 7581 struct net_device *dev;
7943986c 7582 size_t alloc_size;
1ce8e7b5 7583 struct net_device *p;
1da177e4 7584
b6fe17d6
SH
7585 BUG_ON(strlen(name) >= sizeof(dev->name));
7586
36909ea4 7587 if (txqs < 1) {
7b6cd1ce 7588 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7589 return NULL;
7590 }
7591
a953be53 7592#ifdef CONFIG_SYSFS
36909ea4 7593 if (rxqs < 1) {
7b6cd1ce 7594 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7595 return NULL;
7596 }
7597#endif
7598
fd2ea0a7 7599 alloc_size = sizeof(struct net_device);
d1643d24
AD
7600 if (sizeof_priv) {
7601 /* ensure 32-byte alignment of private area */
1ce8e7b5 7602 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7603 alloc_size += sizeof_priv;
7604 }
7605 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7606 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7607
74d332c1
ED
7608 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7609 if (!p)
7610 p = vzalloc(alloc_size);
62b5942a 7611 if (!p)
1da177e4 7612 return NULL;
1da177e4 7613
1ce8e7b5 7614 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7615 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7616
29b4433d
ED
7617 dev->pcpu_refcnt = alloc_percpu(int);
7618 if (!dev->pcpu_refcnt)
74d332c1 7619 goto free_dev;
ab9c73cc 7620
ab9c73cc 7621 if (dev_addr_init(dev))
29b4433d 7622 goto free_pcpu;
ab9c73cc 7623
22bedad3 7624 dev_mc_init(dev);
a748ee24 7625 dev_uc_init(dev);
ccffad25 7626
c346dca1 7627 dev_net_set(dev, &init_net);
1da177e4 7628
8d3bdbd5 7629 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7630 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7631
8d3bdbd5
DM
7632 INIT_LIST_HEAD(&dev->napi_list);
7633 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7634 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7635 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7636 INIT_LIST_HEAD(&dev->adj_list.upper);
7637 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
7638 INIT_LIST_HEAD(&dev->ptype_all);
7639 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7640#ifdef CONFIG_NET_SCHED
7641 hash_init(dev->qdisc_hash);
7642#endif
02875878 7643 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7644 setup(dev);
7645
a813104d 7646 if (!dev->tx_queue_len) {
f84bb1ea 7647 dev->priv_flags |= IFF_NO_QUEUE;
11597084 7648 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 7649 }
906470c1 7650
36909ea4
TH
7651 dev->num_tx_queues = txqs;
7652 dev->real_num_tx_queues = txqs;
ed9af2e8 7653 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7654 goto free_all;
e8a0464c 7655
a953be53 7656#ifdef CONFIG_SYSFS
36909ea4
TH
7657 dev->num_rx_queues = rxqs;
7658 dev->real_num_rx_queues = rxqs;
fe822240 7659 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7660 goto free_all;
df334545 7661#endif
0a9627f2 7662
1da177e4 7663 strcpy(dev->name, name);
c835a677 7664 dev->name_assign_type = name_assign_type;
cbda10fa 7665 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7666 if (!dev->ethtool_ops)
7667 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7668
7669 nf_hook_ingress_init(dev);
7670
1da177e4 7671 return dev;
ab9c73cc 7672
8d3bdbd5
DM
7673free_all:
7674 free_netdev(dev);
7675 return NULL;
7676
29b4433d
ED
7677free_pcpu:
7678 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7679free_dev:
7680 netdev_freemem(dev);
ab9c73cc 7681 return NULL;
1da177e4 7682}
36909ea4 7683EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7684
7685/**
7686 * free_netdev - free network device
7687 * @dev: device
7688 *
4ec93edb
YH
7689 * This function does the last stage of destroying an allocated device
7690 * interface. The reference to the device object is released.
1da177e4 7691 * If this is the last reference then it will be freed.
93d05d4a 7692 * Must be called in process context.
1da177e4
LT
7693 */
7694void free_netdev(struct net_device *dev)
7695{
d565b0a1
HX
7696 struct napi_struct *p, *n;
7697
93d05d4a 7698 might_sleep();
60877a32 7699 netif_free_tx_queues(dev);
a953be53 7700#ifdef CONFIG_SYSFS
10595902 7701 kvfree(dev->_rx);
fe822240 7702#endif
e8a0464c 7703
33d480ce 7704 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7705
f001fde5
JP
7706 /* Flush device addresses */
7707 dev_addr_flush(dev);
7708
d565b0a1
HX
7709 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7710 netif_napi_del(p);
7711
29b4433d
ED
7712 free_percpu(dev->pcpu_refcnt);
7713 dev->pcpu_refcnt = NULL;
7714
3041a069 7715 /* Compatibility with error handling in drivers */
1da177e4 7716 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7717 netdev_freemem(dev);
1da177e4
LT
7718 return;
7719 }
7720
7721 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7722 dev->reg_state = NETREG_RELEASED;
7723
43cb76d9
GKH
7724 /* will free via device release */
7725 put_device(&dev->dev);
1da177e4 7726}
d1b19dff 7727EXPORT_SYMBOL(free_netdev);
4ec93edb 7728
f0db275a
SH
7729/**
7730 * synchronize_net - Synchronize with packet receive processing
7731 *
7732 * Wait for packets currently being received to be done.
7733 * Does not block later packets from starting.
7734 */
4ec93edb 7735void synchronize_net(void)
1da177e4
LT
7736{
7737 might_sleep();
be3fc413
ED
7738 if (rtnl_is_locked())
7739 synchronize_rcu_expedited();
7740 else
7741 synchronize_rcu();
1da177e4 7742}
d1b19dff 7743EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7744
7745/**
44a0873d 7746 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7747 * @dev: device
44a0873d 7748 * @head: list
6ebfbc06 7749 *
1da177e4 7750 * This function shuts down a device interface and removes it
d59b54b1 7751 * from the kernel tables.
44a0873d 7752 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7753 *
7754 * Callers must hold the rtnl semaphore. You may want
7755 * unregister_netdev() instead of this.
7756 */
7757
44a0873d 7758void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7759{
a6620712
HX
7760 ASSERT_RTNL();
7761
44a0873d 7762 if (head) {
9fdce099 7763 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7764 } else {
7765 rollback_registered(dev);
7766 /* Finish processing unregister after unlock */
7767 net_set_todo(dev);
7768 }
1da177e4 7769}
44a0873d 7770EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7771
9b5e383c
ED
7772/**
7773 * unregister_netdevice_many - unregister many devices
7774 * @head: list of devices
87757a91
ED
7775 *
7776 * Note: As most callers use a stack allocated list_head,
7777 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7778 */
7779void unregister_netdevice_many(struct list_head *head)
7780{
7781 struct net_device *dev;
7782
7783 if (!list_empty(head)) {
7784 rollback_registered_many(head);
7785 list_for_each_entry(dev, head, unreg_list)
7786 net_set_todo(dev);
87757a91 7787 list_del(head);
9b5e383c
ED
7788 }
7789}
63c8099d 7790EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7791
1da177e4
LT
7792/**
7793 * unregister_netdev - remove device from the kernel
7794 * @dev: device
7795 *
7796 * This function shuts down a device interface and removes it
d59b54b1 7797 * from the kernel tables.
1da177e4
LT
7798 *
7799 * This is just a wrapper for unregister_netdevice that takes
7800 * the rtnl semaphore. In general you want to use this and not
7801 * unregister_netdevice.
7802 */
7803void unregister_netdev(struct net_device *dev)
7804{
7805 rtnl_lock();
7806 unregister_netdevice(dev);
7807 rtnl_unlock();
7808}
1da177e4
LT
7809EXPORT_SYMBOL(unregister_netdev);
7810
ce286d32
EB
7811/**
7812 * dev_change_net_namespace - move device to different nethost namespace
7813 * @dev: device
7814 * @net: network namespace
7815 * @pat: If not NULL name pattern to try if the current device name
7816 * is already taken in the destination network namespace.
7817 *
7818 * This function shuts down a device interface and moves it
7819 * to a new network namespace. On success 0 is returned, on
7820 * a failure a netagive errno code is returned.
7821 *
7822 * Callers must hold the rtnl semaphore.
7823 */
7824
7825int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7826{
ce286d32
EB
7827 int err;
7828
7829 ASSERT_RTNL();
7830
7831 /* Don't allow namespace local devices to be moved. */
7832 err = -EINVAL;
7833 if (dev->features & NETIF_F_NETNS_LOCAL)
7834 goto out;
7835
7836 /* Ensure the device has been registrered */
ce286d32
EB
7837 if (dev->reg_state != NETREG_REGISTERED)
7838 goto out;
7839
7840 /* Get out if there is nothing todo */
7841 err = 0;
878628fb 7842 if (net_eq(dev_net(dev), net))
ce286d32
EB
7843 goto out;
7844
7845 /* Pick the destination device name, and ensure
7846 * we can use it in the destination network namespace.
7847 */
7848 err = -EEXIST;
d9031024 7849 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7850 /* We get here if we can't use the current device name */
7851 if (!pat)
7852 goto out;
828de4f6 7853 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7854 goto out;
7855 }
7856
7857 /*
7858 * And now a mini version of register_netdevice unregister_netdevice.
7859 */
7860
7861 /* If device is running close it first. */
9b772652 7862 dev_close(dev);
ce286d32
EB
7863
7864 /* And unlink it from device chain */
7865 err = -ENODEV;
7866 unlist_netdevice(dev);
7867
7868 synchronize_net();
7869
7870 /* Shutdown queueing discipline. */
7871 dev_shutdown(dev);
7872
7873 /* Notify protocols, that we are about to destroy
7874 this device. They should clean all the things.
3b27e105
DL
7875
7876 Note that dev->reg_state stays at NETREG_REGISTERED.
7877 This is wanted because this way 8021q and macvlan know
7878 the device is just moving and can keep their slaves up.
ce286d32
EB
7879 */
7880 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7881 rcu_barrier();
7882 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7883 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7884
7885 /*
7886 * Flush the unicast and multicast chains
7887 */
a748ee24 7888 dev_uc_flush(dev);
22bedad3 7889 dev_mc_flush(dev);
ce286d32 7890
4e66ae2e
SH
7891 /* Send a netdev-removed uevent to the old namespace */
7892 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7893 netdev_adjacent_del_links(dev);
4e66ae2e 7894
ce286d32 7895 /* Actually switch the network namespace */
c346dca1 7896 dev_net_set(dev, net);
ce286d32 7897
ce286d32 7898 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7899 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7900 dev->ifindex = dev_new_index(net);
ce286d32 7901
4e66ae2e
SH
7902 /* Send a netdev-add uevent to the new namespace */
7903 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7904 netdev_adjacent_add_links(dev);
4e66ae2e 7905
8b41d188 7906 /* Fixup kobjects */
a1b3f594 7907 err = device_rename(&dev->dev, dev->name);
8b41d188 7908 WARN_ON(err);
ce286d32
EB
7909
7910 /* Add the device back in the hashes */
7911 list_netdevice(dev);
7912
7913 /* Notify protocols, that a new device appeared. */
7914 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7915
d90a909e
EB
7916 /*
7917 * Prevent userspace races by waiting until the network
7918 * device is fully setup before sending notifications.
7919 */
7f294054 7920 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7921
ce286d32
EB
7922 synchronize_net();
7923 err = 0;
7924out:
7925 return err;
7926}
463d0183 7927EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7928
1da177e4
LT
7929static int dev_cpu_callback(struct notifier_block *nfb,
7930 unsigned long action,
7931 void *ocpu)
7932{
7933 struct sk_buff **list_skb;
1da177e4
LT
7934 struct sk_buff *skb;
7935 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7936 struct softnet_data *sd, *oldsd;
7937
8bb78442 7938 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7939 return NOTIFY_OK;
7940
7941 local_irq_disable();
7942 cpu = smp_processor_id();
7943 sd = &per_cpu(softnet_data, cpu);
7944 oldsd = &per_cpu(softnet_data, oldcpu);
7945
7946 /* Find end of our completion_queue. */
7947 list_skb = &sd->completion_queue;
7948 while (*list_skb)
7949 list_skb = &(*list_skb)->next;
7950 /* Append completion queue from offline CPU. */
7951 *list_skb = oldsd->completion_queue;
7952 oldsd->completion_queue = NULL;
7953
1da177e4 7954 /* Append output queue from offline CPU. */
a9cbd588
CG
7955 if (oldsd->output_queue) {
7956 *sd->output_queue_tailp = oldsd->output_queue;
7957 sd->output_queue_tailp = oldsd->output_queue_tailp;
7958 oldsd->output_queue = NULL;
7959 oldsd->output_queue_tailp = &oldsd->output_queue;
7960 }
ac64da0b
ED
7961 /* Append NAPI poll list from offline CPU, with one exception :
7962 * process_backlog() must be called by cpu owning percpu backlog.
7963 * We properly handle process_queue & input_pkt_queue later.
7964 */
7965 while (!list_empty(&oldsd->poll_list)) {
7966 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7967 struct napi_struct,
7968 poll_list);
7969
7970 list_del_init(&napi->poll_list);
7971 if (napi->poll == process_backlog)
7972 napi->state = 0;
7973 else
7974 ____napi_schedule(sd, napi);
264524d5 7975 }
1da177e4
LT
7976
7977 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7978 local_irq_enable();
7979
7980 /* Process offline CPU's input_pkt_queue */
76cc8b13 7981 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7982 netif_rx_ni(skb);
76cc8b13 7983 input_queue_head_incr(oldsd);
fec5e652 7984 }
ac64da0b 7985 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7986 netif_rx_ni(skb);
76cc8b13
TH
7987 input_queue_head_incr(oldsd);
7988 }
1da177e4
LT
7989
7990 return NOTIFY_OK;
7991}
1da177e4
LT
7992
7993
7f353bf2 7994/**
b63365a2
HX
7995 * netdev_increment_features - increment feature set by one
7996 * @all: current feature set
7997 * @one: new feature set
7998 * @mask: mask feature set
7f353bf2
HX
7999 *
8000 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8001 * @one to the master device with current feature set @all. Will not
8002 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8003 */
c8f44aff
MM
8004netdev_features_t netdev_increment_features(netdev_features_t all,
8005 netdev_features_t one, netdev_features_t mask)
b63365a2 8006{
c8cd0989 8007 if (mask & NETIF_F_HW_CSUM)
a188222b 8008 mask |= NETIF_F_CSUM_MASK;
1742f183 8009 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8010
a188222b 8011 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8012 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8013
1742f183 8014 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8015 if (all & NETIF_F_HW_CSUM)
8016 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8017
8018 return all;
8019}
b63365a2 8020EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8021
430f03cd 8022static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8023{
8024 int i;
8025 struct hlist_head *hash;
8026
8027 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8028 if (hash != NULL)
8029 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8030 INIT_HLIST_HEAD(&hash[i]);
8031
8032 return hash;
8033}
8034
881d966b 8035/* Initialize per network namespace state */
4665079c 8036static int __net_init netdev_init(struct net *net)
881d966b 8037{
734b6541
RM
8038 if (net != &init_net)
8039 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8040
30d97d35
PE
8041 net->dev_name_head = netdev_create_hash();
8042 if (net->dev_name_head == NULL)
8043 goto err_name;
881d966b 8044
30d97d35
PE
8045 net->dev_index_head = netdev_create_hash();
8046 if (net->dev_index_head == NULL)
8047 goto err_idx;
881d966b
EB
8048
8049 return 0;
30d97d35
PE
8050
8051err_idx:
8052 kfree(net->dev_name_head);
8053err_name:
8054 return -ENOMEM;
881d966b
EB
8055}
8056
f0db275a
SH
8057/**
8058 * netdev_drivername - network driver for the device
8059 * @dev: network device
f0db275a
SH
8060 *
8061 * Determine network driver for device.
8062 */
3019de12 8063const char *netdev_drivername(const struct net_device *dev)
6579e57b 8064{
cf04a4c7
SH
8065 const struct device_driver *driver;
8066 const struct device *parent;
3019de12 8067 const char *empty = "";
6579e57b
AV
8068
8069 parent = dev->dev.parent;
6579e57b 8070 if (!parent)
3019de12 8071 return empty;
6579e57b
AV
8072
8073 driver = parent->driver;
8074 if (driver && driver->name)
3019de12
DM
8075 return driver->name;
8076 return empty;
6579e57b
AV
8077}
8078
6ea754eb
JP
8079static void __netdev_printk(const char *level, const struct net_device *dev,
8080 struct va_format *vaf)
256df2f3 8081{
b004ff49 8082 if (dev && dev->dev.parent) {
6ea754eb
JP
8083 dev_printk_emit(level[1] - '0',
8084 dev->dev.parent,
8085 "%s %s %s%s: %pV",
8086 dev_driver_string(dev->dev.parent),
8087 dev_name(dev->dev.parent),
8088 netdev_name(dev), netdev_reg_state(dev),
8089 vaf);
b004ff49 8090 } else if (dev) {
6ea754eb
JP
8091 printk("%s%s%s: %pV",
8092 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8093 } else {
6ea754eb 8094 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8095 }
256df2f3
JP
8096}
8097
6ea754eb
JP
8098void netdev_printk(const char *level, const struct net_device *dev,
8099 const char *format, ...)
256df2f3
JP
8100{
8101 struct va_format vaf;
8102 va_list args;
256df2f3
JP
8103
8104 va_start(args, format);
8105
8106 vaf.fmt = format;
8107 vaf.va = &args;
8108
6ea754eb 8109 __netdev_printk(level, dev, &vaf);
b004ff49 8110
256df2f3 8111 va_end(args);
256df2f3
JP
8112}
8113EXPORT_SYMBOL(netdev_printk);
8114
8115#define define_netdev_printk_level(func, level) \
6ea754eb 8116void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8117{ \
256df2f3
JP
8118 struct va_format vaf; \
8119 va_list args; \
8120 \
8121 va_start(args, fmt); \
8122 \
8123 vaf.fmt = fmt; \
8124 vaf.va = &args; \
8125 \
6ea754eb 8126 __netdev_printk(level, dev, &vaf); \
b004ff49 8127 \
256df2f3 8128 va_end(args); \
256df2f3
JP
8129} \
8130EXPORT_SYMBOL(func);
8131
8132define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8133define_netdev_printk_level(netdev_alert, KERN_ALERT);
8134define_netdev_printk_level(netdev_crit, KERN_CRIT);
8135define_netdev_printk_level(netdev_err, KERN_ERR);
8136define_netdev_printk_level(netdev_warn, KERN_WARNING);
8137define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8138define_netdev_printk_level(netdev_info, KERN_INFO);
8139
4665079c 8140static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8141{
8142 kfree(net->dev_name_head);
8143 kfree(net->dev_index_head);
8144}
8145
022cbae6 8146static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8147 .init = netdev_init,
8148 .exit = netdev_exit,
8149};
8150
4665079c 8151static void __net_exit default_device_exit(struct net *net)
ce286d32 8152{
e008b5fc 8153 struct net_device *dev, *aux;
ce286d32 8154 /*
e008b5fc 8155 * Push all migratable network devices back to the
ce286d32
EB
8156 * initial network namespace
8157 */
8158 rtnl_lock();
e008b5fc 8159 for_each_netdev_safe(net, dev, aux) {
ce286d32 8160 int err;
aca51397 8161 char fb_name[IFNAMSIZ];
ce286d32
EB
8162
8163 /* Ignore unmoveable devices (i.e. loopback) */
8164 if (dev->features & NETIF_F_NETNS_LOCAL)
8165 continue;
8166
e008b5fc
EB
8167 /* Leave virtual devices for the generic cleanup */
8168 if (dev->rtnl_link_ops)
8169 continue;
d0c082ce 8170
25985edc 8171 /* Push remaining network devices to init_net */
aca51397
PE
8172 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8173 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8174 if (err) {
7b6cd1ce
JP
8175 pr_emerg("%s: failed to move %s to init_net: %d\n",
8176 __func__, dev->name, err);
aca51397 8177 BUG();
ce286d32
EB
8178 }
8179 }
8180 rtnl_unlock();
8181}
8182
50624c93
EB
8183static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8184{
8185 /* Return with the rtnl_lock held when there are no network
8186 * devices unregistering in any network namespace in net_list.
8187 */
8188 struct net *net;
8189 bool unregistering;
ff960a73 8190 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8191
ff960a73 8192 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8193 for (;;) {
50624c93
EB
8194 unregistering = false;
8195 rtnl_lock();
8196 list_for_each_entry(net, net_list, exit_list) {
8197 if (net->dev_unreg_count > 0) {
8198 unregistering = true;
8199 break;
8200 }
8201 }
8202 if (!unregistering)
8203 break;
8204 __rtnl_unlock();
ff960a73
PZ
8205
8206 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8207 }
ff960a73 8208 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8209}
8210
04dc7f6b
EB
8211static void __net_exit default_device_exit_batch(struct list_head *net_list)
8212{
8213 /* At exit all network devices most be removed from a network
b595076a 8214 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8215 * Do this across as many network namespaces as possible to
8216 * improve batching efficiency.
8217 */
8218 struct net_device *dev;
8219 struct net *net;
8220 LIST_HEAD(dev_kill_list);
8221
50624c93
EB
8222 /* To prevent network device cleanup code from dereferencing
8223 * loopback devices or network devices that have been freed
8224 * wait here for all pending unregistrations to complete,
8225 * before unregistring the loopback device and allowing the
8226 * network namespace be freed.
8227 *
8228 * The netdev todo list containing all network devices
8229 * unregistrations that happen in default_device_exit_batch
8230 * will run in the rtnl_unlock() at the end of
8231 * default_device_exit_batch.
8232 */
8233 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8234 list_for_each_entry(net, net_list, exit_list) {
8235 for_each_netdev_reverse(net, dev) {
b0ab2fab 8236 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8237 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8238 else
8239 unregister_netdevice_queue(dev, &dev_kill_list);
8240 }
8241 }
8242 unregister_netdevice_many(&dev_kill_list);
8243 rtnl_unlock();
8244}
8245
022cbae6 8246static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8247 .exit = default_device_exit,
04dc7f6b 8248 .exit_batch = default_device_exit_batch,
ce286d32
EB
8249};
8250
1da177e4
LT
8251/*
8252 * Initialize the DEV module. At boot time this walks the device list and
8253 * unhooks any devices that fail to initialise (normally hardware not
8254 * present) and leaves us with a valid list of present and active devices.
8255 *
8256 */
8257
8258/*
8259 * This is called single threaded during boot, so no need
8260 * to take the rtnl semaphore.
8261 */
8262static int __init net_dev_init(void)
8263{
8264 int i, rc = -ENOMEM;
8265
8266 BUG_ON(!dev_boot_phase);
8267
1da177e4
LT
8268 if (dev_proc_init())
8269 goto out;
8270
8b41d188 8271 if (netdev_kobject_init())
1da177e4
LT
8272 goto out;
8273
8274 INIT_LIST_HEAD(&ptype_all);
82d8a867 8275 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8276 INIT_LIST_HEAD(&ptype_base[i]);
8277
62532da9
VY
8278 INIT_LIST_HEAD(&offload_base);
8279
881d966b
EB
8280 if (register_pernet_subsys(&netdev_net_ops))
8281 goto out;
1da177e4
LT
8282
8283 /*
8284 * Initialise the packet receive queues.
8285 */
8286
6f912042 8287 for_each_possible_cpu(i) {
41852497 8288 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8289 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8290
41852497
ED
8291 INIT_WORK(flush, flush_backlog);
8292
e36fa2f7 8293 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8294 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8295 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8296 sd->output_queue_tailp = &sd->output_queue;
df334545 8297#ifdef CONFIG_RPS
e36fa2f7
ED
8298 sd->csd.func = rps_trigger_softirq;
8299 sd->csd.info = sd;
e36fa2f7 8300 sd->cpu = i;
1e94d72f 8301#endif
0a9627f2 8302
e36fa2f7
ED
8303 sd->backlog.poll = process_backlog;
8304 sd->backlog.weight = weight_p;
1da177e4
LT
8305 }
8306
1da177e4
LT
8307 dev_boot_phase = 0;
8308
505d4f73
EB
8309 /* The loopback device is special if any other network devices
8310 * is present in a network namespace the loopback device must
8311 * be present. Since we now dynamically allocate and free the
8312 * loopback device ensure this invariant is maintained by
8313 * keeping the loopback device as the first device on the
8314 * list of network devices. Ensuring the loopback devices
8315 * is the first device that appears and the last network device
8316 * that disappears.
8317 */
8318 if (register_pernet_device(&loopback_net_ops))
8319 goto out;
8320
8321 if (register_pernet_device(&default_device_ops))
8322 goto out;
8323
962cf36c
CM
8324 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8325 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8326
8327 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8328 dst_subsys_init();
1da177e4
LT
8329 rc = 0;
8330out:
8331 return rc;
8332}
8333
8334subsys_initcall(net_dev_init);