]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/core/dev.c
net: phy: micrel: disable NAND-tree for KSZ8021, KSZ8031, KSZ8051, KSZ8081
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4
LT
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
44540960 104#include <net/xfrm.h>
1da177e4
LT
105#include <linux/highmem.h>
106#include <linux/init.h>
1da177e4 107#include <linux/module.h>
1da177e4
LT
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
1da177e4 111#include <net/iw_handler.h>
1da177e4 112#include <asm/current.h>
5bdb9886 113#include <linux/audit.h>
db217334 114#include <linux/dmaengine.h>
f6a78bfc 115#include <linux/err.h>
c7fa9d18 116#include <linux/ctype.h>
723e98b7 117#include <linux/if_arp.h>
6de329e2 118#include <linux/if_vlan.h>
8f0f2223 119#include <linux/ip.h>
ad55dcaf 120#include <net/ip.h>
25cd9ba0 121#include <net/mpls.h>
8f0f2223
DM
122#include <linux/ipv6.h>
123#include <linux/in.h>
b6b2fed1
DM
124#include <linux/jhash.h>
125#include <linux/random.h>
9cbc1cb8 126#include <trace/events/napi.h>
cf66ba58 127#include <trace/events/net.h>
07dc22e7 128#include <trace/events/skb.h>
5acbbd42 129#include <linux/pci.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
1da177e4 138
342709ef
PE
139#include "net-sysfs.h"
140
d565b0a1
HX
141/* Instead of increasing this, you should create a hash table. */
142#define MAX_GRO_SKBS 8
143
5d38a079
HX
144/* This should be increased if a protocol with a bigger head is added. */
145#define GRO_MAX_HEAD (MAX_HEADER + 128)
146
1da177e4 147static DEFINE_SPINLOCK(ptype_lock);
62532da9 148static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
149struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150struct list_head ptype_all __read_mostly; /* Taps */
62532da9 151static struct list_head offload_base __read_mostly;
1da177e4 152
ae78dbfa 153static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
154static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
ae78dbfa 157
1da177e4 158/*
7562f876 159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
160 * semaphore.
161 *
c6d14c84 162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
7562f876 165 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
1da177e4 177DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
178EXPORT_SYMBOL(dev_base_lock);
179
af12fa6e
ET
180/* protects napi_hash addition/deletion and napi_gen_id */
181static DEFINE_SPINLOCK(napi_hash_lock);
182
183static unsigned int napi_gen_id;
184static DEFINE_HASHTABLE(napi_hash, 8);
185
18afa4b0 186static seqcount_t devnet_rename_seq;
c91f6df2 187
4e985ada
TG
188static inline void dev_base_seq_inc(struct net *net)
189{
190 while (++net->dev_base_seq == 0);
191}
192
881d966b 193static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 194{
95c96174
ED
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
08e9897d 197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
198}
199
881d966b 200static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 201{
7c28bd0b 202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
203}
204
e36fa2f7 205static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
206{
207#ifdef CONFIG_RPS
e36fa2f7 208 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
209#endif
210}
211
e36fa2f7 212static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
213{
214#ifdef CONFIG_RPS
e36fa2f7 215 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
216#endif
217}
218
ce286d32 219/* Device list insertion */
53759be9 220static void list_netdevice(struct net_device *dev)
ce286d32 221{
c346dca1 222 struct net *net = dev_net(dev);
ce286d32
EB
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
c6d14c84 227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
ce286d32 231 write_unlock_bh(&dev_base_lock);
4e985ada
TG
232
233 dev_base_seq_inc(net);
ce286d32
EB
234}
235
fb699dfd
ED
236/* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
ce286d32
EB
239static void unlist_netdevice(struct net_device *dev)
240{
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
c6d14c84 245 list_del_rcu(&dev->dev_list);
72c9528b 246 hlist_del_rcu(&dev->name_hlist);
fb699dfd 247 hlist_del_rcu(&dev->index_hlist);
ce286d32 248 write_unlock_bh(&dev_base_lock);
4e985ada
TG
249
250 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
251}
252
1da177e4
LT
253/*
254 * Our notifier list
255 */
256
f07d5b94 257static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
258
259/*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
bea3348e 263
9958da05 264DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 265EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 266
cf508b12 267#ifdef CONFIG_LOCKDEP
723e98b7 268/*
c773e847 269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
270 * according to dev->type
271 */
272static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 288
36cbd3dc 289static const char *const netdev_lock_name[] =
723e98b7
JP
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
305
306static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 307static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
308
309static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310{
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318}
319
cf508b12
DM
320static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
723e98b7
JP
322{
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328}
cf508b12
DM
329
330static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331{
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338}
723e98b7 339#else
cf508b12
DM
340static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342{
343}
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
345{
346}
347#endif
1da177e4
LT
348
349/*******************************************************************************
350
351 Protocol management and registration routines
352
353*******************************************************************************/
354
1da177e4
LT
355/*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
c07b68e8
ED
371static inline struct list_head *ptype_head(const struct packet_type *pt)
372{
373 if (pt->type == htons(ETH_P_ALL))
7866a621 374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 375 else
7866a621
SN
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
378}
379
1da177e4
LT
380/**
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
383 *
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
387 *
4ec93edb 388 * This call does not sleep therefore it can not
1da177e4
LT
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
391 */
392
393void dev_add_pack(struct packet_type *pt)
394{
c07b68e8 395 struct list_head *head = ptype_head(pt);
1da177e4 396
c07b68e8
ED
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
1da177e4 400}
d1b19dff 401EXPORT_SYMBOL(dev_add_pack);
1da177e4 402
1da177e4
LT
403/**
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
406 *
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
4ec93edb 410 * returns.
1da177e4
LT
411 *
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
415 */
416void __dev_remove_pack(struct packet_type *pt)
417{
c07b68e8 418 struct list_head *head = ptype_head(pt);
1da177e4
LT
419 struct packet_type *pt1;
420
c07b68e8 421 spin_lock(&ptype_lock);
1da177e4
LT
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
7b6cd1ce 430 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 431out:
c07b68e8 432 spin_unlock(&ptype_lock);
1da177e4 433}
d1b19dff
ED
434EXPORT_SYMBOL(__dev_remove_pack);
435
1da177e4
LT
436/**
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
439 *
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
443 * returns.
444 *
445 * This call sleeps to guarantee that no CPU is looking at the packet
446 * type after return.
447 */
448void dev_remove_pack(struct packet_type *pt)
449{
450 __dev_remove_pack(pt);
4ec93edb 451
1da177e4
LT
452 synchronize_net();
453}
d1b19dff 454EXPORT_SYMBOL(dev_remove_pack);
1da177e4 455
62532da9
VY
456
457/**
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
460 *
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
464 *
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
468 */
469void dev_add_offload(struct packet_offload *po)
470{
471 struct list_head *head = &offload_base;
472
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
476}
477EXPORT_SYMBOL(dev_add_offload);
478
479/**
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
482 *
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
486 * function returns.
487 *
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
491 */
1d143d9f 492static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
493{
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
496
c53aa505 497 spin_lock(&offload_lock);
62532da9
VY
498
499 list_for_each_entry(po1, head, list) {
500 if (po == po1) {
501 list_del_rcu(&po->list);
502 goto out;
503 }
504 }
505
506 pr_warn("dev_remove_offload: %p not found\n", po);
507out:
c53aa505 508 spin_unlock(&offload_lock);
62532da9 509}
62532da9
VY
510
511/**
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
514 *
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
518 * function returns.
519 *
520 * This call sleeps to guarantee that no CPU is looking at the packet
521 * type after return.
522 */
523void dev_remove_offload(struct packet_offload *po)
524{
525 __dev_remove_offload(po);
526
527 synchronize_net();
528}
529EXPORT_SYMBOL(dev_remove_offload);
530
1da177e4
LT
531/******************************************************************************
532
533 Device Boot-time Settings Routines
534
535*******************************************************************************/
536
537/* Boot time configuration table */
538static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540/**
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
544 *
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
547 * all netdevices.
548 */
549static int netdev_boot_setup_add(char *name, struct ifmap *map)
550{
551 struct netdev_boot_setup *s;
552 int i;
553
554 s = dev_boot_setup;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 558 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
559 memcpy(&s[i].map, map, sizeof(s[i].map));
560 break;
561 }
562 }
563
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565}
566
567/**
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
570 *
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
575 */
576int netdev_boot_setup_check(struct net_device *dev)
577{
578 struct netdev_boot_setup *s = dev_boot_setup;
579 int i;
580
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 583 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
588 return 1;
589 }
590 }
591 return 0;
592}
d1b19dff 593EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
594
595
596/**
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
600 *
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
605 */
606unsigned long netdev_boot_base(const char *prefix, int unit)
607{
608 const struct netdev_boot_setup *s = dev_boot_setup;
609 char name[IFNAMSIZ];
610 int i;
611
612 sprintf(name, "%s%d", prefix, unit);
613
614 /*
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
617 */
881d966b 618 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
619 return 1;
620
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
624 return 0;
625}
626
627/*
628 * Saves at boot time configured settings for any netdevice.
629 */
630int __init netdev_boot_setup(char *str)
631{
632 int ints[5];
633 struct ifmap map;
634
635 str = get_options(str, ARRAY_SIZE(ints), ints);
636 if (!str || !*str)
637 return 0;
638
639 /* Save settings */
640 memset(&map, 0, sizeof(map));
641 if (ints[0] > 0)
642 map.irq = ints[1];
643 if (ints[0] > 1)
644 map.base_addr = ints[2];
645 if (ints[0] > 2)
646 map.mem_start = ints[3];
647 if (ints[0] > 3)
648 map.mem_end = ints[4];
649
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
652}
653
654__setup("netdev=", netdev_boot_setup);
655
656/*******************************************************************************
657
658 Device Interface Subroutines
659
660*******************************************************************************/
661
662/**
663 * __dev_get_by_name - find a device by its name
c4ea43c5 664 * @net: the applicable net namespace
1da177e4
LT
665 * @name: name to find
666 *
667 * Find an interface by name. Must be called under RTNL semaphore
668 * or @dev_base_lock. If the name is found a pointer to the device
669 * is returned. If the name is not found then %NULL is returned. The
670 * reference counters are not incremented so the caller must be
671 * careful with locks.
672 */
673
881d966b 674struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 675{
0bd8d536
ED
676 struct net_device *dev;
677 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 678
b67bfe0d 679 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
680 if (!strncmp(dev->name, name, IFNAMSIZ))
681 return dev;
0bd8d536 682
1da177e4
LT
683 return NULL;
684}
d1b19dff 685EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 686
72c9528b
ED
687/**
688 * dev_get_by_name_rcu - find a device by its name
689 * @net: the applicable net namespace
690 * @name: name to find
691 *
692 * Find an interface by name.
693 * If the name is found a pointer to the device is returned.
694 * If the name is not found then %NULL is returned.
695 * The reference counters are not incremented so the caller must be
696 * careful with locks. The caller must hold RCU lock.
697 */
698
699struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
700{
72c9528b
ED
701 struct net_device *dev;
702 struct hlist_head *head = dev_name_hash(net, name);
703
b67bfe0d 704 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
705 if (!strncmp(dev->name, name, IFNAMSIZ))
706 return dev;
707
708 return NULL;
709}
710EXPORT_SYMBOL(dev_get_by_name_rcu);
711
1da177e4
LT
712/**
713 * dev_get_by_name - find a device by its name
c4ea43c5 714 * @net: the applicable net namespace
1da177e4
LT
715 * @name: name to find
716 *
717 * Find an interface by name. This can be called from any
718 * context and does its own locking. The returned handle has
719 * the usage count incremented and the caller must use dev_put() to
720 * release it when it is no longer needed. %NULL is returned if no
721 * matching device is found.
722 */
723
881d966b 724struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
725{
726 struct net_device *dev;
727
72c9528b
ED
728 rcu_read_lock();
729 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
730 if (dev)
731 dev_hold(dev);
72c9528b 732 rcu_read_unlock();
1da177e4
LT
733 return dev;
734}
d1b19dff 735EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
736
737/**
738 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 739 * @net: the applicable net namespace
1da177e4
LT
740 * @ifindex: index of device
741 *
742 * Search for an interface by index. Returns %NULL if the device
743 * is not found or a pointer to the device. The device has not
744 * had its reference counter increased so the caller must be careful
745 * about locking. The caller must hold either the RTNL semaphore
746 * or @dev_base_lock.
747 */
748
881d966b 749struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 750{
0bd8d536
ED
751 struct net_device *dev;
752 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 753
b67bfe0d 754 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
755 if (dev->ifindex == ifindex)
756 return dev;
0bd8d536 757
1da177e4
LT
758 return NULL;
759}
d1b19dff 760EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 761
fb699dfd
ED
762/**
763 * dev_get_by_index_rcu - find a device by its ifindex
764 * @net: the applicable net namespace
765 * @ifindex: index of device
766 *
767 * Search for an interface by index. Returns %NULL if the device
768 * is not found or a pointer to the device. The device has not
769 * had its reference counter increased so the caller must be careful
770 * about locking. The caller must hold RCU lock.
771 */
772
773struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
774{
fb699dfd
ED
775 struct net_device *dev;
776 struct hlist_head *head = dev_index_hash(net, ifindex);
777
b67bfe0d 778 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
779 if (dev->ifindex == ifindex)
780 return dev;
781
782 return NULL;
783}
784EXPORT_SYMBOL(dev_get_by_index_rcu);
785
1da177e4
LT
786
787/**
788 * dev_get_by_index - find a device by its ifindex
c4ea43c5 789 * @net: the applicable net namespace
1da177e4
LT
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns NULL if the device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
881d966b 798struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
799{
800 struct net_device *dev;
801
fb699dfd
ED
802 rcu_read_lock();
803 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
804 if (dev)
805 dev_hold(dev);
fb699dfd 806 rcu_read_unlock();
1da177e4
LT
807 return dev;
808}
d1b19dff 809EXPORT_SYMBOL(dev_get_by_index);
1da177e4 810
5dbe7c17
NS
811/**
812 * netdev_get_name - get a netdevice name, knowing its ifindex.
813 * @net: network namespace
814 * @name: a pointer to the buffer where the name will be stored.
815 * @ifindex: the ifindex of the interface to get the name from.
816 *
817 * The use of raw_seqcount_begin() and cond_resched() before
818 * retrying is required as we want to give the writers a chance
819 * to complete when CONFIG_PREEMPT is not set.
820 */
821int netdev_get_name(struct net *net, char *name, int ifindex)
822{
823 struct net_device *dev;
824 unsigned int seq;
825
826retry:
827 seq = raw_seqcount_begin(&devnet_rename_seq);
828 rcu_read_lock();
829 dev = dev_get_by_index_rcu(net, ifindex);
830 if (!dev) {
831 rcu_read_unlock();
832 return -ENODEV;
833 }
834
835 strcpy(name, dev->name);
836 rcu_read_unlock();
837 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
838 cond_resched();
839 goto retry;
840 }
841
842 return 0;
843}
844
1da177e4 845/**
941666c2 846 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 847 * @net: the applicable net namespace
1da177e4
LT
848 * @type: media type of device
849 * @ha: hardware address
850 *
851 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
852 * is not found or a pointer to the device.
853 * The caller must hold RCU or RTNL.
941666c2 854 * The returned device has not had its ref count increased
1da177e4
LT
855 * and the caller must therefore be careful about locking
856 *
1da177e4
LT
857 */
858
941666c2
ED
859struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
860 const char *ha)
1da177e4
LT
861{
862 struct net_device *dev;
863
941666c2 864 for_each_netdev_rcu(net, dev)
1da177e4
LT
865 if (dev->type == type &&
866 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
867 return dev;
868
869 return NULL;
1da177e4 870}
941666c2 871EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 872
881d966b 873struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
874{
875 struct net_device *dev;
876
4e9cac2b 877 ASSERT_RTNL();
881d966b 878 for_each_netdev(net, dev)
4e9cac2b 879 if (dev->type == type)
7562f876
PE
880 return dev;
881
882 return NULL;
4e9cac2b 883}
4e9cac2b
PM
884EXPORT_SYMBOL(__dev_getfirstbyhwtype);
885
881d966b 886struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 887{
99fe3c39 888 struct net_device *dev, *ret = NULL;
4e9cac2b 889
99fe3c39
ED
890 rcu_read_lock();
891 for_each_netdev_rcu(net, dev)
892 if (dev->type == type) {
893 dev_hold(dev);
894 ret = dev;
895 break;
896 }
897 rcu_read_unlock();
898 return ret;
1da177e4 899}
1da177e4
LT
900EXPORT_SYMBOL(dev_getfirstbyhwtype);
901
902/**
6c555490 903 * __dev_get_by_flags - find any device with given flags
c4ea43c5 904 * @net: the applicable net namespace
1da177e4
LT
905 * @if_flags: IFF_* values
906 * @mask: bitmask of bits in if_flags to check
907 *
908 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 909 * is not found or a pointer to the device. Must be called inside
6c555490 910 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
911 */
912
6c555490
WC
913struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
914 unsigned short mask)
1da177e4 915{
7562f876 916 struct net_device *dev, *ret;
1da177e4 917
6c555490
WC
918 ASSERT_RTNL();
919
7562f876 920 ret = NULL;
6c555490 921 for_each_netdev(net, dev) {
1da177e4 922 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 923 ret = dev;
1da177e4
LT
924 break;
925 }
926 }
7562f876 927 return ret;
1da177e4 928}
6c555490 929EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
930
931/**
932 * dev_valid_name - check if name is okay for network device
933 * @name: name string
934 *
935 * Network device names need to be valid file names to
c7fa9d18
DM
936 * to allow sysfs to work. We also disallow any kind of
937 * whitespace.
1da177e4 938 */
95f050bf 939bool dev_valid_name(const char *name)
1da177e4 940{
c7fa9d18 941 if (*name == '\0')
95f050bf 942 return false;
b6fe17d6 943 if (strlen(name) >= IFNAMSIZ)
95f050bf 944 return false;
c7fa9d18 945 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 946 return false;
c7fa9d18
DM
947
948 while (*name) {
949 if (*name == '/' || isspace(*name))
95f050bf 950 return false;
c7fa9d18
DM
951 name++;
952 }
95f050bf 953 return true;
1da177e4 954}
d1b19dff 955EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
956
957/**
b267b179
EB
958 * __dev_alloc_name - allocate a name for a device
959 * @net: network namespace to allocate the device name in
1da177e4 960 * @name: name format string
b267b179 961 * @buf: scratch buffer and result name string
1da177e4
LT
962 *
963 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
964 * id. It scans list of devices to build up a free map, then chooses
965 * the first empty slot. The caller must hold the dev_base or rtnl lock
966 * while allocating the name and adding the device in order to avoid
967 * duplicates.
968 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
969 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
970 */
971
b267b179 972static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
973{
974 int i = 0;
1da177e4
LT
975 const char *p;
976 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 977 unsigned long *inuse;
1da177e4
LT
978 struct net_device *d;
979
980 p = strnchr(name, IFNAMSIZ-1, '%');
981 if (p) {
982 /*
983 * Verify the string as this thing may have come from
984 * the user. There must be either one "%d" and no other "%"
985 * characters.
986 */
987 if (p[1] != 'd' || strchr(p + 2, '%'))
988 return -EINVAL;
989
990 /* Use one page as a bit array of possible slots */
cfcabdcc 991 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
992 if (!inuse)
993 return -ENOMEM;
994
881d966b 995 for_each_netdev(net, d) {
1da177e4
LT
996 if (!sscanf(d->name, name, &i))
997 continue;
998 if (i < 0 || i >= max_netdevices)
999 continue;
1000
1001 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1002 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1003 if (!strncmp(buf, d->name, IFNAMSIZ))
1004 set_bit(i, inuse);
1005 }
1006
1007 i = find_first_zero_bit(inuse, max_netdevices);
1008 free_page((unsigned long) inuse);
1009 }
1010
d9031024
OP
1011 if (buf != name)
1012 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1013 if (!__dev_get_by_name(net, buf))
1da177e4 1014 return i;
1da177e4
LT
1015
1016 /* It is possible to run out of possible slots
1017 * when the name is long and there isn't enough space left
1018 * for the digits, or if all bits are used.
1019 */
1020 return -ENFILE;
1021}
1022
b267b179
EB
1023/**
1024 * dev_alloc_name - allocate a name for a device
1025 * @dev: device
1026 * @name: name format string
1027 *
1028 * Passed a format string - eg "lt%d" it will try and find a suitable
1029 * id. It scans list of devices to build up a free map, then chooses
1030 * the first empty slot. The caller must hold the dev_base or rtnl lock
1031 * while allocating the name and adding the device in order to avoid
1032 * duplicates.
1033 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1034 * Returns the number of the unit assigned or a negative errno code.
1035 */
1036
1037int dev_alloc_name(struct net_device *dev, const char *name)
1038{
1039 char buf[IFNAMSIZ];
1040 struct net *net;
1041 int ret;
1042
c346dca1
YH
1043 BUG_ON(!dev_net(dev));
1044 net = dev_net(dev);
b267b179
EB
1045 ret = __dev_alloc_name(net, name, buf);
1046 if (ret >= 0)
1047 strlcpy(dev->name, buf, IFNAMSIZ);
1048 return ret;
1049}
d1b19dff 1050EXPORT_SYMBOL(dev_alloc_name);
b267b179 1051
828de4f6
G
1052static int dev_alloc_name_ns(struct net *net,
1053 struct net_device *dev,
1054 const char *name)
d9031024 1055{
828de4f6
G
1056 char buf[IFNAMSIZ];
1057 int ret;
8ce6cebc 1058
828de4f6
G
1059 ret = __dev_alloc_name(net, name, buf);
1060 if (ret >= 0)
1061 strlcpy(dev->name, buf, IFNAMSIZ);
1062 return ret;
1063}
1064
1065static int dev_get_valid_name(struct net *net,
1066 struct net_device *dev,
1067 const char *name)
1068{
1069 BUG_ON(!net);
8ce6cebc 1070
d9031024
OP
1071 if (!dev_valid_name(name))
1072 return -EINVAL;
1073
1c5cae81 1074 if (strchr(name, '%'))
828de4f6 1075 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1076 else if (__dev_get_by_name(net, name))
1077 return -EEXIST;
8ce6cebc
DL
1078 else if (dev->name != name)
1079 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1080
1081 return 0;
1082}
1da177e4
LT
1083
1084/**
1085 * dev_change_name - change name of a device
1086 * @dev: device
1087 * @newname: name (or format string) must be at least IFNAMSIZ
1088 *
1089 * Change name of a device, can pass format strings "eth%d".
1090 * for wildcarding.
1091 */
cf04a4c7 1092int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1093{
238fa362 1094 unsigned char old_assign_type;
fcc5a03a 1095 char oldname[IFNAMSIZ];
1da177e4 1096 int err = 0;
fcc5a03a 1097 int ret;
881d966b 1098 struct net *net;
1da177e4
LT
1099
1100 ASSERT_RTNL();
c346dca1 1101 BUG_ON(!dev_net(dev));
1da177e4 1102
c346dca1 1103 net = dev_net(dev);
1da177e4
LT
1104 if (dev->flags & IFF_UP)
1105 return -EBUSY;
1106
30e6c9fa 1107 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1108
1109 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1110 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1111 return 0;
c91f6df2 1112 }
c8d90dca 1113
fcc5a03a
HX
1114 memcpy(oldname, dev->name, IFNAMSIZ);
1115
828de4f6 1116 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1117 if (err < 0) {
30e6c9fa 1118 write_seqcount_end(&devnet_rename_seq);
d9031024 1119 return err;
c91f6df2 1120 }
1da177e4 1121
6fe82a39
VF
1122 if (oldname[0] && !strchr(oldname, '%'))
1123 netdev_info(dev, "renamed from %s\n", oldname);
1124
238fa362
TG
1125 old_assign_type = dev->name_assign_type;
1126 dev->name_assign_type = NET_NAME_RENAMED;
1127
fcc5a03a 1128rollback:
a1b3f594
EB
1129 ret = device_rename(&dev->dev, dev->name);
1130 if (ret) {
1131 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1132 dev->name_assign_type = old_assign_type;
30e6c9fa 1133 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1134 return ret;
dcc99773 1135 }
7f988eab 1136
30e6c9fa 1137 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1138
5bb025fa
VF
1139 netdev_adjacent_rename_links(dev, oldname);
1140
7f988eab 1141 write_lock_bh(&dev_base_lock);
372b2312 1142 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1143 write_unlock_bh(&dev_base_lock);
1144
1145 synchronize_rcu();
1146
1147 write_lock_bh(&dev_base_lock);
1148 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1149 write_unlock_bh(&dev_base_lock);
1150
056925ab 1151 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1152 ret = notifier_to_errno(ret);
1153
1154 if (ret) {
91e9c07b
ED
1155 /* err >= 0 after dev_alloc_name() or stores the first errno */
1156 if (err >= 0) {
fcc5a03a 1157 err = ret;
30e6c9fa 1158 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1159 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1160 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1161 dev->name_assign_type = old_assign_type;
1162 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1163 goto rollback;
91e9c07b 1164 } else {
7b6cd1ce 1165 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1166 dev->name, ret);
fcc5a03a
HX
1167 }
1168 }
1da177e4
LT
1169
1170 return err;
1171}
1172
0b815a1a
SH
1173/**
1174 * dev_set_alias - change ifalias of a device
1175 * @dev: device
1176 * @alias: name up to IFALIASZ
f0db275a 1177 * @len: limit of bytes to copy from info
0b815a1a
SH
1178 *
1179 * Set ifalias for a device,
1180 */
1181int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1182{
7364e445
AK
1183 char *new_ifalias;
1184
0b815a1a
SH
1185 ASSERT_RTNL();
1186
1187 if (len >= IFALIASZ)
1188 return -EINVAL;
1189
96ca4a2c 1190 if (!len) {
388dfc2d
SK
1191 kfree(dev->ifalias);
1192 dev->ifalias = NULL;
96ca4a2c
OH
1193 return 0;
1194 }
1195
7364e445
AK
1196 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1197 if (!new_ifalias)
0b815a1a 1198 return -ENOMEM;
7364e445 1199 dev->ifalias = new_ifalias;
0b815a1a
SH
1200
1201 strlcpy(dev->ifalias, alias, len+1);
1202 return len;
1203}
1204
1205
d8a33ac4 1206/**
3041a069 1207 * netdev_features_change - device changes features
d8a33ac4
SH
1208 * @dev: device to cause notification
1209 *
1210 * Called to indicate a device has changed features.
1211 */
1212void netdev_features_change(struct net_device *dev)
1213{
056925ab 1214 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1215}
1216EXPORT_SYMBOL(netdev_features_change);
1217
1da177e4
LT
1218/**
1219 * netdev_state_change - device changes state
1220 * @dev: device to cause notification
1221 *
1222 * Called to indicate a device has changed state. This function calls
1223 * the notifier chains for netdev_chain and sends a NEWLINK message
1224 * to the routing socket.
1225 */
1226void netdev_state_change(struct net_device *dev)
1227{
1228 if (dev->flags & IFF_UP) {
54951194
LP
1229 struct netdev_notifier_change_info change_info;
1230
1231 change_info.flags_changed = 0;
1232 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1233 &change_info.info);
7f294054 1234 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1235 }
1236}
d1b19dff 1237EXPORT_SYMBOL(netdev_state_change);
1da177e4 1238
ee89bab1
AW
1239/**
1240 * netdev_notify_peers - notify network peers about existence of @dev
1241 * @dev: network device
1242 *
1243 * Generate traffic such that interested network peers are aware of
1244 * @dev, such as by generating a gratuitous ARP. This may be used when
1245 * a device wants to inform the rest of the network about some sort of
1246 * reconfiguration such as a failover event or virtual machine
1247 * migration.
1248 */
1249void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1250{
ee89bab1
AW
1251 rtnl_lock();
1252 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1253 rtnl_unlock();
c1da4ac7 1254}
ee89bab1 1255EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1256
bd380811 1257static int __dev_open(struct net_device *dev)
1da177e4 1258{
d314774c 1259 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1260 int ret;
1da177e4 1261
e46b66bc
BH
1262 ASSERT_RTNL();
1263
1da177e4
LT
1264 if (!netif_device_present(dev))
1265 return -ENODEV;
1266
ca99ca14
NH
1267 /* Block netpoll from trying to do any rx path servicing.
1268 * If we don't do this there is a chance ndo_poll_controller
1269 * or ndo_poll may be running while we open the device
1270 */
66b5552f 1271 netpoll_poll_disable(dev);
ca99ca14 1272
3b8bcfd5
JB
1273 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1274 ret = notifier_to_errno(ret);
1275 if (ret)
1276 return ret;
1277
1da177e4 1278 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1279
d314774c
SH
1280 if (ops->ndo_validate_addr)
1281 ret = ops->ndo_validate_addr(dev);
bada339b 1282
d314774c
SH
1283 if (!ret && ops->ndo_open)
1284 ret = ops->ndo_open(dev);
1da177e4 1285
66b5552f 1286 netpoll_poll_enable(dev);
ca99ca14 1287
bada339b
JG
1288 if (ret)
1289 clear_bit(__LINK_STATE_START, &dev->state);
1290 else {
1da177e4 1291 dev->flags |= IFF_UP;
4417da66 1292 dev_set_rx_mode(dev);
1da177e4 1293 dev_activate(dev);
7bf23575 1294 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1295 }
bada339b 1296
1da177e4
LT
1297 return ret;
1298}
1299
1300/**
bd380811
PM
1301 * dev_open - prepare an interface for use.
1302 * @dev: device to open
1da177e4 1303 *
bd380811
PM
1304 * Takes a device from down to up state. The device's private open
1305 * function is invoked and then the multicast lists are loaded. Finally
1306 * the device is moved into the up state and a %NETDEV_UP message is
1307 * sent to the netdev notifier chain.
1308 *
1309 * Calling this function on an active interface is a nop. On a failure
1310 * a negative errno code is returned.
1da177e4 1311 */
bd380811
PM
1312int dev_open(struct net_device *dev)
1313{
1314 int ret;
1315
bd380811
PM
1316 if (dev->flags & IFF_UP)
1317 return 0;
1318
bd380811
PM
1319 ret = __dev_open(dev);
1320 if (ret < 0)
1321 return ret;
1322
7f294054 1323 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1324 call_netdevice_notifiers(NETDEV_UP, dev);
1325
1326 return ret;
1327}
1328EXPORT_SYMBOL(dev_open);
1329
44345724 1330static int __dev_close_many(struct list_head *head)
1da177e4 1331{
44345724 1332 struct net_device *dev;
e46b66bc 1333
bd380811 1334 ASSERT_RTNL();
9d5010db
DM
1335 might_sleep();
1336
5cde2829 1337 list_for_each_entry(dev, head, close_list) {
3f4df206 1338 /* Temporarily disable netpoll until the interface is down */
66b5552f 1339 netpoll_poll_disable(dev);
3f4df206 1340
44345724 1341 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1342
44345724 1343 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1344
44345724
OP
1345 /* Synchronize to scheduled poll. We cannot touch poll list, it
1346 * can be even on different cpu. So just clear netif_running().
1347 *
1348 * dev->stop() will invoke napi_disable() on all of it's
1349 * napi_struct instances on this device.
1350 */
4e857c58 1351 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1352 }
1da177e4 1353
44345724 1354 dev_deactivate_many(head);
d8b2a4d2 1355
5cde2829 1356 list_for_each_entry(dev, head, close_list) {
44345724 1357 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1358
44345724
OP
1359 /*
1360 * Call the device specific close. This cannot fail.
1361 * Only if device is UP
1362 *
1363 * We allow it to be called even after a DETACH hot-plug
1364 * event.
1365 */
1366 if (ops->ndo_stop)
1367 ops->ndo_stop(dev);
1368
44345724 1369 dev->flags &= ~IFF_UP;
66b5552f 1370 netpoll_poll_enable(dev);
44345724
OP
1371 }
1372
1373 return 0;
1374}
1375
1376static int __dev_close(struct net_device *dev)
1377{
f87e6f47 1378 int retval;
44345724
OP
1379 LIST_HEAD(single);
1380
5cde2829 1381 list_add(&dev->close_list, &single);
f87e6f47
LT
1382 retval = __dev_close_many(&single);
1383 list_del(&single);
ca99ca14 1384
f87e6f47 1385 return retval;
44345724
OP
1386}
1387
3fbd8758 1388static int dev_close_many(struct list_head *head)
44345724
OP
1389{
1390 struct net_device *dev, *tmp;
1da177e4 1391
5cde2829
EB
1392 /* Remove the devices that don't need to be closed */
1393 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1394 if (!(dev->flags & IFF_UP))
5cde2829 1395 list_del_init(&dev->close_list);
44345724
OP
1396
1397 __dev_close_many(head);
1da177e4 1398
5cde2829 1399 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1400 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1401 call_netdevice_notifiers(NETDEV_DOWN, dev);
5cde2829 1402 list_del_init(&dev->close_list);
44345724 1403 }
bd380811
PM
1404
1405 return 0;
1406}
1407
1408/**
1409 * dev_close - shutdown an interface.
1410 * @dev: device to shutdown
1411 *
1412 * This function moves an active device into down state. A
1413 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1414 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1415 * chain.
1416 */
1417int dev_close(struct net_device *dev)
1418{
e14a5993
ED
1419 if (dev->flags & IFF_UP) {
1420 LIST_HEAD(single);
1da177e4 1421
5cde2829 1422 list_add(&dev->close_list, &single);
e14a5993
ED
1423 dev_close_many(&single);
1424 list_del(&single);
1425 }
da6e378b 1426 return 0;
1da177e4 1427}
d1b19dff 1428EXPORT_SYMBOL(dev_close);
1da177e4
LT
1429
1430
0187bdfb
BH
1431/**
1432 * dev_disable_lro - disable Large Receive Offload on a device
1433 * @dev: device
1434 *
1435 * Disable Large Receive Offload (LRO) on a net device. Must be
1436 * called under RTNL. This is needed if received packets may be
1437 * forwarded to another interface.
1438 */
1439void dev_disable_lro(struct net_device *dev)
1440{
fbe168ba
MK
1441 struct net_device *lower_dev;
1442 struct list_head *iter;
529d0489 1443
bc5787c6
MM
1444 dev->wanted_features &= ~NETIF_F_LRO;
1445 netdev_update_features(dev);
27660515 1446
22d5969f
MM
1447 if (unlikely(dev->features & NETIF_F_LRO))
1448 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1449
1450 netdev_for_each_lower_dev(dev, lower_dev, iter)
1451 dev_disable_lro(lower_dev);
0187bdfb
BH
1452}
1453EXPORT_SYMBOL(dev_disable_lro);
1454
351638e7
JP
1455static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1456 struct net_device *dev)
1457{
1458 struct netdev_notifier_info info;
1459
1460 netdev_notifier_info_init(&info, dev);
1461 return nb->notifier_call(nb, val, &info);
1462}
0187bdfb 1463
881d966b
EB
1464static int dev_boot_phase = 1;
1465
1da177e4
LT
1466/**
1467 * register_netdevice_notifier - register a network notifier block
1468 * @nb: notifier
1469 *
1470 * Register a notifier to be called when network device events occur.
1471 * The notifier passed is linked into the kernel structures and must
1472 * not be reused until it has been unregistered. A negative errno code
1473 * is returned on a failure.
1474 *
1475 * When registered all registration and up events are replayed
4ec93edb 1476 * to the new notifier to allow device to have a race free
1da177e4
LT
1477 * view of the network device list.
1478 */
1479
1480int register_netdevice_notifier(struct notifier_block *nb)
1481{
1482 struct net_device *dev;
fcc5a03a 1483 struct net_device *last;
881d966b 1484 struct net *net;
1da177e4
LT
1485 int err;
1486
1487 rtnl_lock();
f07d5b94 1488 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1489 if (err)
1490 goto unlock;
881d966b
EB
1491 if (dev_boot_phase)
1492 goto unlock;
1493 for_each_net(net) {
1494 for_each_netdev(net, dev) {
351638e7 1495 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1496 err = notifier_to_errno(err);
1497 if (err)
1498 goto rollback;
1499
1500 if (!(dev->flags & IFF_UP))
1501 continue;
1da177e4 1502
351638e7 1503 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1504 }
1da177e4 1505 }
fcc5a03a
HX
1506
1507unlock:
1da177e4
LT
1508 rtnl_unlock();
1509 return err;
fcc5a03a
HX
1510
1511rollback:
1512 last = dev;
881d966b
EB
1513 for_each_net(net) {
1514 for_each_netdev(net, dev) {
1515 if (dev == last)
8f891489 1516 goto outroll;
fcc5a03a 1517
881d966b 1518 if (dev->flags & IFF_UP) {
351638e7
JP
1519 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1520 dev);
1521 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1522 }
351638e7 1523 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1524 }
fcc5a03a 1525 }
c67625a1 1526
8f891489 1527outroll:
c67625a1 1528 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1529 goto unlock;
1da177e4 1530}
d1b19dff 1531EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1532
1533/**
1534 * unregister_netdevice_notifier - unregister a network notifier block
1535 * @nb: notifier
1536 *
1537 * Unregister a notifier previously registered by
1538 * register_netdevice_notifier(). The notifier is unlinked into the
1539 * kernel structures and may then be reused. A negative errno code
1540 * is returned on a failure.
7d3d43da
EB
1541 *
1542 * After unregistering unregister and down device events are synthesized
1543 * for all devices on the device list to the removed notifier to remove
1544 * the need for special case cleanup code.
1da177e4
LT
1545 */
1546
1547int unregister_netdevice_notifier(struct notifier_block *nb)
1548{
7d3d43da
EB
1549 struct net_device *dev;
1550 struct net *net;
9f514950
HX
1551 int err;
1552
1553 rtnl_lock();
f07d5b94 1554 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1555 if (err)
1556 goto unlock;
1557
1558 for_each_net(net) {
1559 for_each_netdev(net, dev) {
1560 if (dev->flags & IFF_UP) {
351638e7
JP
1561 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1562 dev);
1563 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1564 }
351638e7 1565 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1566 }
1567 }
1568unlock:
9f514950
HX
1569 rtnl_unlock();
1570 return err;
1da177e4 1571}
d1b19dff 1572EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1573
351638e7
JP
1574/**
1575 * call_netdevice_notifiers_info - call all network notifier blocks
1576 * @val: value passed unmodified to notifier function
1577 * @dev: net_device pointer passed unmodified to notifier function
1578 * @info: notifier information data
1579 *
1580 * Call all network notifier blocks. Parameters and return value
1581 * are as for raw_notifier_call_chain().
1582 */
1583
1d143d9f 1584static int call_netdevice_notifiers_info(unsigned long val,
1585 struct net_device *dev,
1586 struct netdev_notifier_info *info)
351638e7
JP
1587{
1588 ASSERT_RTNL();
1589 netdev_notifier_info_init(info, dev);
1590 return raw_notifier_call_chain(&netdev_chain, val, info);
1591}
351638e7 1592
1da177e4
LT
1593/**
1594 * call_netdevice_notifiers - call all network notifier blocks
1595 * @val: value passed unmodified to notifier function
c4ea43c5 1596 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1597 *
1598 * Call all network notifier blocks. Parameters and return value
f07d5b94 1599 * are as for raw_notifier_call_chain().
1da177e4
LT
1600 */
1601
ad7379d4 1602int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1603{
351638e7
JP
1604 struct netdev_notifier_info info;
1605
1606 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1607}
edf947f1 1608EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1609
c5905afb 1610static struct static_key netstamp_needed __read_mostly;
b90e5794 1611#ifdef HAVE_JUMP_LABEL
c5905afb 1612/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1613 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1614 * static_key_slow_dec() calls.
b90e5794
ED
1615 */
1616static atomic_t netstamp_needed_deferred;
1617#endif
1da177e4
LT
1618
1619void net_enable_timestamp(void)
1620{
b90e5794
ED
1621#ifdef HAVE_JUMP_LABEL
1622 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1623
1624 if (deferred) {
1625 while (--deferred)
c5905afb 1626 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1627 return;
1628 }
1629#endif
c5905afb 1630 static_key_slow_inc(&netstamp_needed);
1da177e4 1631}
d1b19dff 1632EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1633
1634void net_disable_timestamp(void)
1635{
b90e5794
ED
1636#ifdef HAVE_JUMP_LABEL
1637 if (in_interrupt()) {
1638 atomic_inc(&netstamp_needed_deferred);
1639 return;
1640 }
1641#endif
c5905afb 1642 static_key_slow_dec(&netstamp_needed);
1da177e4 1643}
d1b19dff 1644EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1645
3b098e2d 1646static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1647{
588f0330 1648 skb->tstamp.tv64 = 0;
c5905afb 1649 if (static_key_false(&netstamp_needed))
a61bbcf2 1650 __net_timestamp(skb);
1da177e4
LT
1651}
1652
588f0330 1653#define net_timestamp_check(COND, SKB) \
c5905afb 1654 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1655 if ((COND) && !(SKB)->tstamp.tv64) \
1656 __net_timestamp(SKB); \
1657 } \
3b098e2d 1658
1ee481fb 1659bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1660{
1661 unsigned int len;
1662
1663 if (!(dev->flags & IFF_UP))
1664 return false;
1665
1666 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1667 if (skb->len <= len)
1668 return true;
1669
1670 /* if TSO is enabled, we don't care about the length as the packet
1671 * could be forwarded without being segmented before
1672 */
1673 if (skb_is_gso(skb))
1674 return true;
1675
1676 return false;
1677}
1ee481fb 1678EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1679
a0265d28
HX
1680int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1681{
1682 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1683 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1684 atomic_long_inc(&dev->rx_dropped);
1685 kfree_skb(skb);
1686 return NET_RX_DROP;
1687 }
1688 }
1689
1690 if (unlikely(!is_skb_forwardable(dev, skb))) {
1691 atomic_long_inc(&dev->rx_dropped);
1692 kfree_skb(skb);
1693 return NET_RX_DROP;
1694 }
1695
1696 skb_scrub_packet(skb, true);
1697 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1698 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1699
1700 return 0;
1701}
1702EXPORT_SYMBOL_GPL(__dev_forward_skb);
1703
44540960
AB
1704/**
1705 * dev_forward_skb - loopback an skb to another netif
1706 *
1707 * @dev: destination network device
1708 * @skb: buffer to forward
1709 *
1710 * return values:
1711 * NET_RX_SUCCESS (no congestion)
6ec82562 1712 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1713 *
1714 * dev_forward_skb can be used for injecting an skb from the
1715 * start_xmit function of one device into the receive queue
1716 * of another device.
1717 *
1718 * The receiving device may be in another namespace, so
1719 * we have to clear all information in the skb that could
1720 * impact namespace isolation.
1721 */
1722int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1723{
a0265d28 1724 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1725}
1726EXPORT_SYMBOL_GPL(dev_forward_skb);
1727
71d9dec2
CG
1728static inline int deliver_skb(struct sk_buff *skb,
1729 struct packet_type *pt_prev,
1730 struct net_device *orig_dev)
1731{
1080e512
MT
1732 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1733 return -ENOMEM;
71d9dec2
CG
1734 atomic_inc(&skb->users);
1735 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1736}
1737
7866a621
SN
1738static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1739 struct packet_type **pt,
1740 struct net_device *dev, __be16 type,
1741 struct list_head *ptype_list)
1742{
1743 struct packet_type *ptype, *pt_prev = *pt;
1744
1745 list_for_each_entry_rcu(ptype, ptype_list, list) {
1746 if (ptype->type != type)
1747 continue;
1748 if (pt_prev)
1749 deliver_skb(skb, pt_prev, dev);
1750 pt_prev = ptype;
1751 }
1752 *pt = pt_prev;
1753}
1754
c0de08d0
EL
1755static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1756{
a3d744e9 1757 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1758 return false;
1759
1760 if (ptype->id_match)
1761 return ptype->id_match(ptype, skb->sk);
1762 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1763 return true;
1764
1765 return false;
1766}
1767
1da177e4
LT
1768/*
1769 * Support routine. Sends outgoing frames to any network
1770 * taps currently in use.
1771 */
1772
f6a78bfc 1773static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1774{
1775 struct packet_type *ptype;
71d9dec2
CG
1776 struct sk_buff *skb2 = NULL;
1777 struct packet_type *pt_prev = NULL;
7866a621 1778 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1779
1da177e4 1780 rcu_read_lock();
7866a621
SN
1781again:
1782 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1783 /* Never send packets back to the socket
1784 * they originated from - MvS (miquels@drinkel.ow.org)
1785 */
7866a621
SN
1786 if (skb_loop_sk(ptype, skb))
1787 continue;
71d9dec2 1788
7866a621
SN
1789 if (pt_prev) {
1790 deliver_skb(skb2, pt_prev, skb->dev);
1791 pt_prev = ptype;
1792 continue;
1793 }
1da177e4 1794
7866a621
SN
1795 /* need to clone skb, done only once */
1796 skb2 = skb_clone(skb, GFP_ATOMIC);
1797 if (!skb2)
1798 goto out_unlock;
70978182 1799
7866a621 1800 net_timestamp_set(skb2);
1da177e4 1801
7866a621
SN
1802 /* skb->nh should be correctly
1803 * set by sender, so that the second statement is
1804 * just protection against buggy protocols.
1805 */
1806 skb_reset_mac_header(skb2);
1807
1808 if (skb_network_header(skb2) < skb2->data ||
1809 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1810 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1811 ntohs(skb2->protocol),
1812 dev->name);
1813 skb_reset_network_header(skb2);
1da177e4 1814 }
7866a621
SN
1815
1816 skb2->transport_header = skb2->network_header;
1817 skb2->pkt_type = PACKET_OUTGOING;
1818 pt_prev = ptype;
1819 }
1820
1821 if (ptype_list == &ptype_all) {
1822 ptype_list = &dev->ptype_all;
1823 goto again;
1da177e4 1824 }
7866a621 1825out_unlock:
71d9dec2
CG
1826 if (pt_prev)
1827 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1828 rcu_read_unlock();
1829}
1830
2c53040f
BH
1831/**
1832 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1833 * @dev: Network device
1834 * @txq: number of queues available
1835 *
1836 * If real_num_tx_queues is changed the tc mappings may no longer be
1837 * valid. To resolve this verify the tc mapping remains valid and if
1838 * not NULL the mapping. With no priorities mapping to this
1839 * offset/count pair it will no longer be used. In the worst case TC0
1840 * is invalid nothing can be done so disable priority mappings. If is
1841 * expected that drivers will fix this mapping if they can before
1842 * calling netif_set_real_num_tx_queues.
1843 */
bb134d22 1844static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1845{
1846 int i;
1847 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1848
1849 /* If TC0 is invalidated disable TC mapping */
1850 if (tc->offset + tc->count > txq) {
7b6cd1ce 1851 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1852 dev->num_tc = 0;
1853 return;
1854 }
1855
1856 /* Invalidated prio to tc mappings set to TC0 */
1857 for (i = 1; i < TC_BITMASK + 1; i++) {
1858 int q = netdev_get_prio_tc_map(dev, i);
1859
1860 tc = &dev->tc_to_txq[q];
1861 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1862 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1863 i, q);
4f57c087
JF
1864 netdev_set_prio_tc_map(dev, i, 0);
1865 }
1866 }
1867}
1868
537c00de
AD
1869#ifdef CONFIG_XPS
1870static DEFINE_MUTEX(xps_map_mutex);
1871#define xmap_dereference(P) \
1872 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1873
10cdc3f3
AD
1874static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1875 int cpu, u16 index)
537c00de 1876{
10cdc3f3
AD
1877 struct xps_map *map = NULL;
1878 int pos;
537c00de 1879
10cdc3f3
AD
1880 if (dev_maps)
1881 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1882
10cdc3f3
AD
1883 for (pos = 0; map && pos < map->len; pos++) {
1884 if (map->queues[pos] == index) {
537c00de
AD
1885 if (map->len > 1) {
1886 map->queues[pos] = map->queues[--map->len];
1887 } else {
10cdc3f3 1888 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1889 kfree_rcu(map, rcu);
1890 map = NULL;
1891 }
10cdc3f3 1892 break;
537c00de 1893 }
537c00de
AD
1894 }
1895
10cdc3f3
AD
1896 return map;
1897}
1898
024e9679 1899static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1900{
1901 struct xps_dev_maps *dev_maps;
024e9679 1902 int cpu, i;
10cdc3f3
AD
1903 bool active = false;
1904
1905 mutex_lock(&xps_map_mutex);
1906 dev_maps = xmap_dereference(dev->xps_maps);
1907
1908 if (!dev_maps)
1909 goto out_no_maps;
1910
1911 for_each_possible_cpu(cpu) {
024e9679
AD
1912 for (i = index; i < dev->num_tx_queues; i++) {
1913 if (!remove_xps_queue(dev_maps, cpu, i))
1914 break;
1915 }
1916 if (i == dev->num_tx_queues)
10cdc3f3
AD
1917 active = true;
1918 }
1919
1920 if (!active) {
537c00de
AD
1921 RCU_INIT_POINTER(dev->xps_maps, NULL);
1922 kfree_rcu(dev_maps, rcu);
1923 }
1924
024e9679
AD
1925 for (i = index; i < dev->num_tx_queues; i++)
1926 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1927 NUMA_NO_NODE);
1928
537c00de
AD
1929out_no_maps:
1930 mutex_unlock(&xps_map_mutex);
1931}
1932
01c5f864
AD
1933static struct xps_map *expand_xps_map(struct xps_map *map,
1934 int cpu, u16 index)
1935{
1936 struct xps_map *new_map;
1937 int alloc_len = XPS_MIN_MAP_ALLOC;
1938 int i, pos;
1939
1940 for (pos = 0; map && pos < map->len; pos++) {
1941 if (map->queues[pos] != index)
1942 continue;
1943 return map;
1944 }
1945
1946 /* Need to add queue to this CPU's existing map */
1947 if (map) {
1948 if (pos < map->alloc_len)
1949 return map;
1950
1951 alloc_len = map->alloc_len * 2;
1952 }
1953
1954 /* Need to allocate new map to store queue on this CPU's map */
1955 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1956 cpu_to_node(cpu));
1957 if (!new_map)
1958 return NULL;
1959
1960 for (i = 0; i < pos; i++)
1961 new_map->queues[i] = map->queues[i];
1962 new_map->alloc_len = alloc_len;
1963 new_map->len = pos;
1964
1965 return new_map;
1966}
1967
3573540c
MT
1968int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1969 u16 index)
537c00de 1970{
01c5f864 1971 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 1972 struct xps_map *map, *new_map;
537c00de 1973 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
1974 int cpu, numa_node_id = -2;
1975 bool active = false;
537c00de
AD
1976
1977 mutex_lock(&xps_map_mutex);
1978
1979 dev_maps = xmap_dereference(dev->xps_maps);
1980
01c5f864
AD
1981 /* allocate memory for queue storage */
1982 for_each_online_cpu(cpu) {
1983 if (!cpumask_test_cpu(cpu, mask))
1984 continue;
1985
1986 if (!new_dev_maps)
1987 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
1988 if (!new_dev_maps) {
1989 mutex_unlock(&xps_map_mutex);
01c5f864 1990 return -ENOMEM;
2bb60cb9 1991 }
01c5f864
AD
1992
1993 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1994 NULL;
1995
1996 map = expand_xps_map(map, cpu, index);
1997 if (!map)
1998 goto error;
1999
2000 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2001 }
2002
2003 if (!new_dev_maps)
2004 goto out_no_new_maps;
2005
537c00de 2006 for_each_possible_cpu(cpu) {
01c5f864
AD
2007 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2008 /* add queue to CPU maps */
2009 int pos = 0;
2010
2011 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 while ((pos < map->len) && (map->queues[pos] != index))
2013 pos++;
2014
2015 if (pos == map->len)
2016 map->queues[map->len++] = index;
537c00de 2017#ifdef CONFIG_NUMA
537c00de
AD
2018 if (numa_node_id == -2)
2019 numa_node_id = cpu_to_node(cpu);
2020 else if (numa_node_id != cpu_to_node(cpu))
2021 numa_node_id = -1;
537c00de 2022#endif
01c5f864
AD
2023 } else if (dev_maps) {
2024 /* fill in the new device map from the old device map */
2025 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2026 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2027 }
01c5f864 2028
537c00de
AD
2029 }
2030
01c5f864
AD
2031 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2032
537c00de 2033 /* Cleanup old maps */
01c5f864
AD
2034 if (dev_maps) {
2035 for_each_possible_cpu(cpu) {
2036 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2038 if (map && map != new_map)
2039 kfree_rcu(map, rcu);
2040 }
537c00de 2041
01c5f864 2042 kfree_rcu(dev_maps, rcu);
537c00de
AD
2043 }
2044
01c5f864
AD
2045 dev_maps = new_dev_maps;
2046 active = true;
537c00de 2047
01c5f864
AD
2048out_no_new_maps:
2049 /* update Tx queue numa node */
537c00de
AD
2050 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2051 (numa_node_id >= 0) ? numa_node_id :
2052 NUMA_NO_NODE);
2053
01c5f864
AD
2054 if (!dev_maps)
2055 goto out_no_maps;
2056
2057 /* removes queue from unused CPUs */
2058 for_each_possible_cpu(cpu) {
2059 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2060 continue;
2061
2062 if (remove_xps_queue(dev_maps, cpu, index))
2063 active = true;
2064 }
2065
2066 /* free map if not active */
2067 if (!active) {
2068 RCU_INIT_POINTER(dev->xps_maps, NULL);
2069 kfree_rcu(dev_maps, rcu);
2070 }
2071
2072out_no_maps:
537c00de
AD
2073 mutex_unlock(&xps_map_mutex);
2074
2075 return 0;
2076error:
01c5f864
AD
2077 /* remove any maps that we added */
2078 for_each_possible_cpu(cpu) {
2079 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2080 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2081 NULL;
2082 if (new_map && new_map != map)
2083 kfree(new_map);
2084 }
2085
537c00de
AD
2086 mutex_unlock(&xps_map_mutex);
2087
537c00de
AD
2088 kfree(new_dev_maps);
2089 return -ENOMEM;
2090}
2091EXPORT_SYMBOL(netif_set_xps_queue);
2092
2093#endif
f0796d5c
JF
2094/*
2095 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2096 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2097 */
e6484930 2098int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2099{
1d24eb48
TH
2100 int rc;
2101
e6484930
TH
2102 if (txq < 1 || txq > dev->num_tx_queues)
2103 return -EINVAL;
f0796d5c 2104
5c56580b
BH
2105 if (dev->reg_state == NETREG_REGISTERED ||
2106 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2107 ASSERT_RTNL();
2108
1d24eb48
TH
2109 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2110 txq);
bf264145
TH
2111 if (rc)
2112 return rc;
2113
4f57c087
JF
2114 if (dev->num_tc)
2115 netif_setup_tc(dev, txq);
2116
024e9679 2117 if (txq < dev->real_num_tx_queues) {
e6484930 2118 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2119#ifdef CONFIG_XPS
2120 netif_reset_xps_queues_gt(dev, txq);
2121#endif
2122 }
f0796d5c 2123 }
e6484930
TH
2124
2125 dev->real_num_tx_queues = txq;
2126 return 0;
f0796d5c
JF
2127}
2128EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2129
a953be53 2130#ifdef CONFIG_SYSFS
62fe0b40
BH
2131/**
2132 * netif_set_real_num_rx_queues - set actual number of RX queues used
2133 * @dev: Network device
2134 * @rxq: Actual number of RX queues
2135 *
2136 * This must be called either with the rtnl_lock held or before
2137 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2138 * negative error code. If called before registration, it always
2139 * succeeds.
62fe0b40
BH
2140 */
2141int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2142{
2143 int rc;
2144
bd25fa7b
TH
2145 if (rxq < 1 || rxq > dev->num_rx_queues)
2146 return -EINVAL;
2147
62fe0b40
BH
2148 if (dev->reg_state == NETREG_REGISTERED) {
2149 ASSERT_RTNL();
2150
62fe0b40
BH
2151 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2152 rxq);
2153 if (rc)
2154 return rc;
62fe0b40
BH
2155 }
2156
2157 dev->real_num_rx_queues = rxq;
2158 return 0;
2159}
2160EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2161#endif
2162
2c53040f
BH
2163/**
2164 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2165 *
2166 * This routine should set an upper limit on the number of RSS queues
2167 * used by default by multiqueue devices.
2168 */
a55b138b 2169int netif_get_num_default_rss_queues(void)
16917b87
YM
2170{
2171 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2172}
2173EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2174
def82a1d 2175static inline void __netif_reschedule(struct Qdisc *q)
56079431 2176{
def82a1d
JP
2177 struct softnet_data *sd;
2178 unsigned long flags;
56079431 2179
def82a1d 2180 local_irq_save(flags);
903ceff7 2181 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2182 q->next_sched = NULL;
2183 *sd->output_queue_tailp = q;
2184 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2185 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2186 local_irq_restore(flags);
2187}
2188
2189void __netif_schedule(struct Qdisc *q)
2190{
2191 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2192 __netif_reschedule(q);
56079431
DV
2193}
2194EXPORT_SYMBOL(__netif_schedule);
2195
e6247027
ED
2196struct dev_kfree_skb_cb {
2197 enum skb_free_reason reason;
2198};
2199
2200static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2201{
e6247027
ED
2202 return (struct dev_kfree_skb_cb *)skb->cb;
2203}
2204
46e5da40
JF
2205void netif_schedule_queue(struct netdev_queue *txq)
2206{
2207 rcu_read_lock();
2208 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2209 struct Qdisc *q = rcu_dereference(txq->qdisc);
2210
2211 __netif_schedule(q);
2212 }
2213 rcu_read_unlock();
2214}
2215EXPORT_SYMBOL(netif_schedule_queue);
2216
2217/**
2218 * netif_wake_subqueue - allow sending packets on subqueue
2219 * @dev: network device
2220 * @queue_index: sub queue index
2221 *
2222 * Resume individual transmit queue of a device with multiple transmit queues.
2223 */
2224void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2225{
2226 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2227
2228 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2229 struct Qdisc *q;
2230
2231 rcu_read_lock();
2232 q = rcu_dereference(txq->qdisc);
2233 __netif_schedule(q);
2234 rcu_read_unlock();
2235 }
2236}
2237EXPORT_SYMBOL(netif_wake_subqueue);
2238
2239void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2240{
2241 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2242 struct Qdisc *q;
2243
2244 rcu_read_lock();
2245 q = rcu_dereference(dev_queue->qdisc);
2246 __netif_schedule(q);
2247 rcu_read_unlock();
2248 }
2249}
2250EXPORT_SYMBOL(netif_tx_wake_queue);
2251
e6247027 2252void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2253{
e6247027 2254 unsigned long flags;
56079431 2255
e6247027
ED
2256 if (likely(atomic_read(&skb->users) == 1)) {
2257 smp_rmb();
2258 atomic_set(&skb->users, 0);
2259 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2260 return;
bea3348e 2261 }
e6247027
ED
2262 get_kfree_skb_cb(skb)->reason = reason;
2263 local_irq_save(flags);
2264 skb->next = __this_cpu_read(softnet_data.completion_queue);
2265 __this_cpu_write(softnet_data.completion_queue, skb);
2266 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2267 local_irq_restore(flags);
56079431 2268}
e6247027 2269EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2270
e6247027 2271void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2272{
2273 if (in_irq() || irqs_disabled())
e6247027 2274 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2275 else
2276 dev_kfree_skb(skb);
2277}
e6247027 2278EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2279
2280
bea3348e
SH
2281/**
2282 * netif_device_detach - mark device as removed
2283 * @dev: network device
2284 *
2285 * Mark device as removed from system and therefore no longer available.
2286 */
56079431
DV
2287void netif_device_detach(struct net_device *dev)
2288{
2289 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2290 netif_running(dev)) {
d543103a 2291 netif_tx_stop_all_queues(dev);
56079431
DV
2292 }
2293}
2294EXPORT_SYMBOL(netif_device_detach);
2295
bea3348e
SH
2296/**
2297 * netif_device_attach - mark device as attached
2298 * @dev: network device
2299 *
2300 * Mark device as attached from system and restart if needed.
2301 */
56079431
DV
2302void netif_device_attach(struct net_device *dev)
2303{
2304 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2305 netif_running(dev)) {
d543103a 2306 netif_tx_wake_all_queues(dev);
4ec93edb 2307 __netdev_watchdog_up(dev);
56079431
DV
2308 }
2309}
2310EXPORT_SYMBOL(netif_device_attach);
2311
36c92474
BH
2312static void skb_warn_bad_offload(const struct sk_buff *skb)
2313{
65e9d2fa 2314 static const netdev_features_t null_features = 0;
36c92474
BH
2315 struct net_device *dev = skb->dev;
2316 const char *driver = "";
2317
c846ad9b
BG
2318 if (!net_ratelimit())
2319 return;
2320
36c92474
BH
2321 if (dev && dev->dev.parent)
2322 driver = dev_driver_string(dev->dev.parent);
2323
2324 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2325 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2326 driver, dev ? &dev->features : &null_features,
2327 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2328 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2329 skb_shinfo(skb)->gso_type, skb->ip_summed);
2330}
2331
1da177e4
LT
2332/*
2333 * Invalidate hardware checksum when packet is to be mangled, and
2334 * complete checksum manually on outgoing path.
2335 */
84fa7933 2336int skb_checksum_help(struct sk_buff *skb)
1da177e4 2337{
d3bc23e7 2338 __wsum csum;
663ead3b 2339 int ret = 0, offset;
1da177e4 2340
84fa7933 2341 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2342 goto out_set_summed;
2343
2344 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2345 skb_warn_bad_offload(skb);
2346 return -EINVAL;
1da177e4
LT
2347 }
2348
cef401de
ED
2349 /* Before computing a checksum, we should make sure no frag could
2350 * be modified by an external entity : checksum could be wrong.
2351 */
2352 if (skb_has_shared_frag(skb)) {
2353 ret = __skb_linearize(skb);
2354 if (ret)
2355 goto out;
2356 }
2357
55508d60 2358 offset = skb_checksum_start_offset(skb);
a030847e
HX
2359 BUG_ON(offset >= skb_headlen(skb));
2360 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2361
2362 offset += skb->csum_offset;
2363 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2364
2365 if (skb_cloned(skb) &&
2366 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2367 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2368 if (ret)
2369 goto out;
2370 }
2371
a030847e 2372 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2373out_set_summed:
1da177e4 2374 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2375out:
1da177e4
LT
2376 return ret;
2377}
d1b19dff 2378EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2379
53d6471c 2380__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2381{
252e3346 2382 __be16 type = skb->protocol;
f6a78bfc 2383
19acc327
PS
2384 /* Tunnel gso handlers can set protocol to ethernet. */
2385 if (type == htons(ETH_P_TEB)) {
2386 struct ethhdr *eth;
2387
2388 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2389 return 0;
2390
2391 eth = (struct ethhdr *)skb_mac_header(skb);
2392 type = eth->h_proto;
2393 }
2394
d4bcef3f 2395 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2396}
2397
2398/**
2399 * skb_mac_gso_segment - mac layer segmentation handler.
2400 * @skb: buffer to segment
2401 * @features: features for the output path (see dev->features)
2402 */
2403struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2404 netdev_features_t features)
2405{
2406 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2407 struct packet_offload *ptype;
53d6471c
VY
2408 int vlan_depth = skb->mac_len;
2409 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2410
2411 if (unlikely(!type))
2412 return ERR_PTR(-EINVAL);
2413
53d6471c 2414 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2415
2416 rcu_read_lock();
22061d80 2417 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2418 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2419 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2420 break;
2421 }
2422 }
2423 rcu_read_unlock();
2424
98e399f8 2425 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2426
f6a78bfc
HX
2427 return segs;
2428}
05e8ef4a
PS
2429EXPORT_SYMBOL(skb_mac_gso_segment);
2430
2431
2432/* openvswitch calls this on rx path, so we need a different check.
2433 */
2434static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2435{
2436 if (tx_path)
2437 return skb->ip_summed != CHECKSUM_PARTIAL;
2438 else
2439 return skb->ip_summed == CHECKSUM_NONE;
2440}
2441
2442/**
2443 * __skb_gso_segment - Perform segmentation on skb.
2444 * @skb: buffer to segment
2445 * @features: features for the output path (see dev->features)
2446 * @tx_path: whether it is called in TX path
2447 *
2448 * This function segments the given skb and returns a list of segments.
2449 *
2450 * It may return NULL if the skb requires no segmentation. This is
2451 * only possible when GSO is used for verifying header integrity.
2452 */
2453struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2454 netdev_features_t features, bool tx_path)
2455{
2456 if (unlikely(skb_needs_check(skb, tx_path))) {
2457 int err;
2458
2459 skb_warn_bad_offload(skb);
2460
a40e0a66 2461 err = skb_cow_head(skb, 0);
2462 if (err < 0)
05e8ef4a
PS
2463 return ERR_PTR(err);
2464 }
2465
68c33163 2466 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2467 SKB_GSO_CB(skb)->encap_level = 0;
2468
05e8ef4a
PS
2469 skb_reset_mac_header(skb);
2470 skb_reset_mac_len(skb);
2471
2472 return skb_mac_gso_segment(skb, features);
2473}
12b0004d 2474EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2475
fb286bb2
HX
2476/* Take action when hardware reception checksum errors are detected. */
2477#ifdef CONFIG_BUG
2478void netdev_rx_csum_fault(struct net_device *dev)
2479{
2480 if (net_ratelimit()) {
7b6cd1ce 2481 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2482 dump_stack();
2483 }
2484}
2485EXPORT_SYMBOL(netdev_rx_csum_fault);
2486#endif
2487
1da177e4
LT
2488/* Actually, we should eliminate this check as soon as we know, that:
2489 * 1. IOMMU is present and allows to map all the memory.
2490 * 2. No high memory really exists on this machine.
2491 */
2492
c1e756bf 2493static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2494{
3d3a8533 2495#ifdef CONFIG_HIGHMEM
1da177e4 2496 int i;
5acbbd42 2497 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2499 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2500 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2501 return 1;
ea2ab693 2502 }
5acbbd42 2503 }
1da177e4 2504
5acbbd42
FT
2505 if (PCI_DMA_BUS_IS_PHYS) {
2506 struct device *pdev = dev->dev.parent;
1da177e4 2507
9092c658
ED
2508 if (!pdev)
2509 return 0;
5acbbd42 2510 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2511 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2512 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2513 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2514 return 1;
2515 }
2516 }
3d3a8533 2517#endif
1da177e4
LT
2518 return 0;
2519}
1da177e4 2520
3b392ddb
SH
2521/* If MPLS offload request, verify we are testing hardware MPLS features
2522 * instead of standard features for the netdev.
2523 */
d0edc7bf 2524#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2525static netdev_features_t net_mpls_features(struct sk_buff *skb,
2526 netdev_features_t features,
2527 __be16 type)
2528{
25cd9ba0 2529 if (eth_p_mpls(type))
3b392ddb
SH
2530 features &= skb->dev->mpls_features;
2531
2532 return features;
2533}
2534#else
2535static netdev_features_t net_mpls_features(struct sk_buff *skb,
2536 netdev_features_t features,
2537 __be16 type)
2538{
2539 return features;
2540}
2541#endif
2542
c8f44aff 2543static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2544 netdev_features_t features)
f01a5236 2545{
53d6471c 2546 int tmp;
3b392ddb
SH
2547 __be16 type;
2548
2549 type = skb_network_protocol(skb, &tmp);
2550 features = net_mpls_features(skb, features, type);
53d6471c 2551
c0d680e5 2552 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2553 !can_checksum_protocol(features, type)) {
f01a5236 2554 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2555 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2556 features &= ~NETIF_F_SG;
2557 }
2558
2559 return features;
2560}
2561
c1e756bf 2562netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2563{
5f35227e 2564 struct net_device *dev = skb->dev;
fcbeb976
ED
2565 netdev_features_t features = dev->features;
2566 u16 gso_segs = skb_shinfo(skb)->gso_segs;
58e998c6
JG
2567 __be16 protocol = skb->protocol;
2568
fcbeb976 2569 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
30b678d8
BH
2570 features &= ~NETIF_F_GSO_MASK;
2571
5f35227e
JG
2572 /* If encapsulation offload request, verify we are testing
2573 * hardware encapsulation features instead of standard
2574 * features for the netdev
2575 */
2576 if (skb->encapsulation)
2577 features &= dev->hw_enc_features;
2578
df8a39de 2579 if (!skb_vlan_tag_present(skb)) {
796f2da8
TM
2580 if (unlikely(protocol == htons(ETH_P_8021Q) ||
2581 protocol == htons(ETH_P_8021AD))) {
2582 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2583 protocol = veh->h_vlan_encapsulated_proto;
2584 } else {
5f35227e 2585 goto finalize;
796f2da8 2586 }
f01a5236 2587 }
58e998c6 2588
db115037 2589 features = netdev_intersect_features(features,
fcbeb976 2590 dev->vlan_features |
db115037
MK
2591 NETIF_F_HW_VLAN_CTAG_TX |
2592 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2593
cdbaa0bb 2594 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
db115037
MK
2595 features = netdev_intersect_features(features,
2596 NETIF_F_SG |
2597 NETIF_F_HIGHDMA |
2598 NETIF_F_FRAGLIST |
2599 NETIF_F_GEN_CSUM |
2600 NETIF_F_HW_VLAN_CTAG_TX |
2601 NETIF_F_HW_VLAN_STAG_TX);
cdbaa0bb 2602
5f35227e
JG
2603finalize:
2604 if (dev->netdev_ops->ndo_features_check)
2605 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2606 features);
2607
c1e756bf 2608 return harmonize_features(skb, features);
58e998c6 2609}
c1e756bf 2610EXPORT_SYMBOL(netif_skb_features);
58e998c6 2611
2ea25513 2612static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2613 struct netdev_queue *txq, bool more)
f6a78bfc 2614{
2ea25513
DM
2615 unsigned int len;
2616 int rc;
00829823 2617
7866a621 2618 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2619 dev_queue_xmit_nit(skb, dev);
fc741216 2620
2ea25513
DM
2621 len = skb->len;
2622 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2623 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2624 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2625
2ea25513
DM
2626 return rc;
2627}
7b9c6090 2628
8dcda22a
DM
2629struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2630 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2631{
2632 struct sk_buff *skb = first;
2633 int rc = NETDEV_TX_OK;
7b9c6090 2634
7f2e870f
DM
2635 while (skb) {
2636 struct sk_buff *next = skb->next;
fc70fb64 2637
7f2e870f 2638 skb->next = NULL;
95f6b3dd 2639 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2640 if (unlikely(!dev_xmit_complete(rc))) {
2641 skb->next = next;
2642 goto out;
2643 }
6afff0ca 2644
7f2e870f
DM
2645 skb = next;
2646 if (netif_xmit_stopped(txq) && skb) {
2647 rc = NETDEV_TX_BUSY;
2648 break;
9ccb8975 2649 }
7f2e870f 2650 }
9ccb8975 2651
7f2e870f
DM
2652out:
2653 *ret = rc;
2654 return skb;
2655}
b40863c6 2656
1ff0dc94
ED
2657static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2658 netdev_features_t features)
f6a78bfc 2659{
df8a39de 2660 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2661 !vlan_hw_offload_capable(features, skb->vlan_proto))
2662 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2663 return skb;
2664}
f6a78bfc 2665
55a93b3e 2666static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2667{
2668 netdev_features_t features;
f6a78bfc 2669
eae3f88e
DM
2670 if (skb->next)
2671 return skb;
068a2de5 2672
eae3f88e
DM
2673 features = netif_skb_features(skb);
2674 skb = validate_xmit_vlan(skb, features);
2675 if (unlikely(!skb))
2676 goto out_null;
7b9c6090 2677
04ffcb25 2678 if (netif_needs_gso(dev, skb, features)) {
ce93718f
DM
2679 struct sk_buff *segs;
2680
2681 segs = skb_gso_segment(skb, features);
cecda693 2682 if (IS_ERR(segs)) {
af6dabc9 2683 goto out_kfree_skb;
cecda693
JW
2684 } else if (segs) {
2685 consume_skb(skb);
2686 skb = segs;
f6a78bfc 2687 }
eae3f88e
DM
2688 } else {
2689 if (skb_needs_linearize(skb, features) &&
2690 __skb_linearize(skb))
2691 goto out_kfree_skb;
4ec93edb 2692
eae3f88e
DM
2693 /* If packet is not checksummed and device does not
2694 * support checksumming for this protocol, complete
2695 * checksumming here.
2696 */
2697 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2698 if (skb->encapsulation)
2699 skb_set_inner_transport_header(skb,
2700 skb_checksum_start_offset(skb));
2701 else
2702 skb_set_transport_header(skb,
2703 skb_checksum_start_offset(skb));
2704 if (!(features & NETIF_F_ALL_CSUM) &&
2705 skb_checksum_help(skb))
2706 goto out_kfree_skb;
7b9c6090 2707 }
0c772159 2708 }
7b9c6090 2709
eae3f88e 2710 return skb;
fc70fb64 2711
f6a78bfc
HX
2712out_kfree_skb:
2713 kfree_skb(skb);
eae3f88e
DM
2714out_null:
2715 return NULL;
2716}
6afff0ca 2717
55a93b3e
ED
2718struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2719{
2720 struct sk_buff *next, *head = NULL, *tail;
2721
bec3cfdc 2722 for (; skb != NULL; skb = next) {
55a93b3e
ED
2723 next = skb->next;
2724 skb->next = NULL;
bec3cfdc
ED
2725
2726 /* in case skb wont be segmented, point to itself */
2727 skb->prev = skb;
2728
55a93b3e 2729 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2730 if (!skb)
2731 continue;
55a93b3e 2732
bec3cfdc
ED
2733 if (!head)
2734 head = skb;
2735 else
2736 tail->next = skb;
2737 /* If skb was segmented, skb->prev points to
2738 * the last segment. If not, it still contains skb.
2739 */
2740 tail = skb->prev;
55a93b3e
ED
2741 }
2742 return head;
f6a78bfc
HX
2743}
2744
1def9238
ED
2745static void qdisc_pkt_len_init(struct sk_buff *skb)
2746{
2747 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2748
2749 qdisc_skb_cb(skb)->pkt_len = skb->len;
2750
2751 /* To get more precise estimation of bytes sent on wire,
2752 * we add to pkt_len the headers size of all segments
2753 */
2754 if (shinfo->gso_size) {
757b8b1d 2755 unsigned int hdr_len;
15e5a030 2756 u16 gso_segs = shinfo->gso_segs;
1def9238 2757
757b8b1d
ED
2758 /* mac layer + network layer */
2759 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2760
2761 /* + transport layer */
1def9238
ED
2762 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2763 hdr_len += tcp_hdrlen(skb);
2764 else
2765 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2766
2767 if (shinfo->gso_type & SKB_GSO_DODGY)
2768 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2769 shinfo->gso_size);
2770
2771 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2772 }
2773}
2774
bbd8a0d3
KK
2775static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2776 struct net_device *dev,
2777 struct netdev_queue *txq)
2778{
2779 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2780 bool contended;
bbd8a0d3
KK
2781 int rc;
2782
1def9238 2783 qdisc_pkt_len_init(skb);
a2da570d 2784 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2785 /*
2786 * Heuristic to force contended enqueues to serialize on a
2787 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2788 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2789 * often and dequeue packets faster.
79640a4c 2790 */
a2da570d 2791 contended = qdisc_is_running(q);
79640a4c
ED
2792 if (unlikely(contended))
2793 spin_lock(&q->busylock);
2794
bbd8a0d3
KK
2795 spin_lock(root_lock);
2796 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2797 kfree_skb(skb);
2798 rc = NET_XMIT_DROP;
2799 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2800 qdisc_run_begin(q)) {
bbd8a0d3
KK
2801 /*
2802 * This is a work-conserving queue; there are no old skbs
2803 * waiting to be sent out; and the qdisc is not running -
2804 * xmit the skb directly.
2805 */
bfe0d029 2806
bfe0d029
ED
2807 qdisc_bstats_update(q, skb);
2808
55a93b3e 2809 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2810 if (unlikely(contended)) {
2811 spin_unlock(&q->busylock);
2812 contended = false;
2813 }
bbd8a0d3 2814 __qdisc_run(q);
79640a4c 2815 } else
bc135b23 2816 qdisc_run_end(q);
bbd8a0d3
KK
2817
2818 rc = NET_XMIT_SUCCESS;
2819 } else {
a2da570d 2820 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2821 if (qdisc_run_begin(q)) {
2822 if (unlikely(contended)) {
2823 spin_unlock(&q->busylock);
2824 contended = false;
2825 }
2826 __qdisc_run(q);
2827 }
bbd8a0d3
KK
2828 }
2829 spin_unlock(root_lock);
79640a4c
ED
2830 if (unlikely(contended))
2831 spin_unlock(&q->busylock);
bbd8a0d3
KK
2832 return rc;
2833}
2834
86f8515f 2835#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2836static void skb_update_prio(struct sk_buff *skb)
2837{
6977a79d 2838 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2839
91c68ce2
ED
2840 if (!skb->priority && skb->sk && map) {
2841 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2842
2843 if (prioidx < map->priomap_len)
2844 skb->priority = map->priomap[prioidx];
2845 }
5bc1421e
NH
2846}
2847#else
2848#define skb_update_prio(skb)
2849#endif
2850
745e20f1 2851static DEFINE_PER_CPU(int, xmit_recursion);
11a766ce 2852#define RECURSION_LIMIT 10
745e20f1 2853
95603e22
MM
2854/**
2855 * dev_loopback_xmit - loop back @skb
2856 * @skb: buffer to transmit
2857 */
2858int dev_loopback_xmit(struct sk_buff *skb)
2859{
2860 skb_reset_mac_header(skb);
2861 __skb_pull(skb, skb_network_offset(skb));
2862 skb->pkt_type = PACKET_LOOPBACK;
2863 skb->ip_summed = CHECKSUM_UNNECESSARY;
2864 WARN_ON(!skb_dst(skb));
2865 skb_dst_force(skb);
2866 netif_rx_ni(skb);
2867 return 0;
2868}
2869EXPORT_SYMBOL(dev_loopback_xmit);
2870
d29f749e 2871/**
9d08dd3d 2872 * __dev_queue_xmit - transmit a buffer
d29f749e 2873 * @skb: buffer to transmit
9d08dd3d 2874 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
2875 *
2876 * Queue a buffer for transmission to a network device. The caller must
2877 * have set the device and priority and built the buffer before calling
2878 * this function. The function can be called from an interrupt.
2879 *
2880 * A negative errno code is returned on a failure. A success does not
2881 * guarantee the frame will be transmitted as it may be dropped due
2882 * to congestion or traffic shaping.
2883 *
2884 * -----------------------------------------------------------------------------------
2885 * I notice this method can also return errors from the queue disciplines,
2886 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2887 * be positive.
2888 *
2889 * Regardless of the return value, the skb is consumed, so it is currently
2890 * difficult to retry a send to this method. (You can bump the ref count
2891 * before sending to hold a reference for retry if you are careful.)
2892 *
2893 * When calling this method, interrupts MUST be enabled. This is because
2894 * the BH enable code must have IRQs enabled so that it will not deadlock.
2895 * --BLG
2896 */
0a59f3a9 2897static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
2898{
2899 struct net_device *dev = skb->dev;
dc2b4847 2900 struct netdev_queue *txq;
1da177e4
LT
2901 struct Qdisc *q;
2902 int rc = -ENOMEM;
2903
6d1ccff6
ED
2904 skb_reset_mac_header(skb);
2905
e7fd2885
WB
2906 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2907 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2908
4ec93edb
YH
2909 /* Disable soft irqs for various locks below. Also
2910 * stops preemption for RCU.
1da177e4 2911 */
4ec93edb 2912 rcu_read_lock_bh();
1da177e4 2913
5bc1421e
NH
2914 skb_update_prio(skb);
2915
02875878
ED
2916 /* If device/qdisc don't need skb->dst, release it right now while
2917 * its hot in this cpu cache.
2918 */
2919 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2920 skb_dst_drop(skb);
2921 else
2922 skb_dst_force(skb);
2923
f663dd9a 2924 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 2925 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2926
1da177e4 2927#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2928 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 2929#endif
cf66ba58 2930 trace_net_dev_queue(skb);
1da177e4 2931 if (q->enqueue) {
bbd8a0d3 2932 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2933 goto out;
1da177e4
LT
2934 }
2935
2936 /* The device has no queue. Common case for software devices:
2937 loopback, all the sorts of tunnels...
2938
932ff279
HX
2939 Really, it is unlikely that netif_tx_lock protection is necessary
2940 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2941 counters.)
2942 However, it is possible, that they rely on protection
2943 made by us here.
2944
2945 Check this and shot the lock. It is not prone from deadlocks.
2946 Either shot noqueue qdisc, it is even simpler 8)
2947 */
2948 if (dev->flags & IFF_UP) {
2949 int cpu = smp_processor_id(); /* ok because BHs are off */
2950
c773e847 2951 if (txq->xmit_lock_owner != cpu) {
1da177e4 2952
745e20f1
ED
2953 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2954 goto recursion_alert;
2955
1f59533f
JDB
2956 skb = validate_xmit_skb(skb, dev);
2957 if (!skb)
2958 goto drop;
2959
c773e847 2960 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2961
73466498 2962 if (!netif_xmit_stopped(txq)) {
745e20f1 2963 __this_cpu_inc(xmit_recursion);
ce93718f 2964 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 2965 __this_cpu_dec(xmit_recursion);
572a9d7b 2966 if (dev_xmit_complete(rc)) {
c773e847 2967 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2968 goto out;
2969 }
2970 }
c773e847 2971 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
2972 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2973 dev->name);
1da177e4
LT
2974 } else {
2975 /* Recursion is detected! It is possible,
745e20f1
ED
2976 * unfortunately
2977 */
2978recursion_alert:
e87cc472
JP
2979 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2980 dev->name);
1da177e4
LT
2981 }
2982 }
2983
2984 rc = -ENETDOWN;
1f59533f 2985drop:
d4828d85 2986 rcu_read_unlock_bh();
1da177e4 2987
015f0688 2988 atomic_long_inc(&dev->tx_dropped);
1f59533f 2989 kfree_skb_list(skb);
1da177e4
LT
2990 return rc;
2991out:
d4828d85 2992 rcu_read_unlock_bh();
1da177e4
LT
2993 return rc;
2994}
f663dd9a
JW
2995
2996int dev_queue_xmit(struct sk_buff *skb)
2997{
2998 return __dev_queue_xmit(skb, NULL);
2999}
d1b19dff 3000EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3001
f663dd9a
JW
3002int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3003{
3004 return __dev_queue_xmit(skb, accel_priv);
3005}
3006EXPORT_SYMBOL(dev_queue_xmit_accel);
3007
1da177e4
LT
3008
3009/*=======================================================================
3010 Receiver routines
3011 =======================================================================*/
3012
6b2bedc3 3013int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3014EXPORT_SYMBOL(netdev_max_backlog);
3015
3b098e2d 3016int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3017int netdev_budget __read_mostly = 300;
3018int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3019
eecfd7c4
ED
3020/* Called with irq disabled */
3021static inline void ____napi_schedule(struct softnet_data *sd,
3022 struct napi_struct *napi)
3023{
3024 list_add_tail(&napi->poll_list, &sd->poll_list);
3025 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3026}
3027
bfb564e7
KK
3028#ifdef CONFIG_RPS
3029
3030/* One global table that all flow-based protocols share. */
6e3f7faf 3031struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3032EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3033u32 rps_cpu_mask __read_mostly;
3034EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3035
c5905afb 3036struct static_key rps_needed __read_mostly;
adc9300e 3037
c445477d
BH
3038static struct rps_dev_flow *
3039set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3040 struct rps_dev_flow *rflow, u16 next_cpu)
3041{
09994d1b 3042 if (next_cpu != RPS_NO_CPU) {
c445477d
BH
3043#ifdef CONFIG_RFS_ACCEL
3044 struct netdev_rx_queue *rxqueue;
3045 struct rps_dev_flow_table *flow_table;
3046 struct rps_dev_flow *old_rflow;
3047 u32 flow_id;
3048 u16 rxq_index;
3049 int rc;
3050
3051 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3052 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3053 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3054 goto out;
3055 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3056 if (rxq_index == skb_get_rx_queue(skb))
3057 goto out;
3058
3059 rxqueue = dev->_rx + rxq_index;
3060 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3061 if (!flow_table)
3062 goto out;
61b905da 3063 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3064 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3065 rxq_index, flow_id);
3066 if (rc < 0)
3067 goto out;
3068 old_rflow = rflow;
3069 rflow = &flow_table->flows[flow_id];
c445477d
BH
3070 rflow->filter = rc;
3071 if (old_rflow->filter == rflow->filter)
3072 old_rflow->filter = RPS_NO_FILTER;
3073 out:
3074#endif
3075 rflow->last_qtail =
09994d1b 3076 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3077 }
3078
09994d1b 3079 rflow->cpu = next_cpu;
c445477d
BH
3080 return rflow;
3081}
3082
bfb564e7
KK
3083/*
3084 * get_rps_cpu is called from netif_receive_skb and returns the target
3085 * CPU from the RPS map of the receiving queue for a given skb.
3086 * rcu_read_lock must be held on entry.
3087 */
3088static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3089 struct rps_dev_flow **rflowp)
3090{
567e4b79
ED
3091 const struct rps_sock_flow_table *sock_flow_table;
3092 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3093 struct rps_dev_flow_table *flow_table;
567e4b79 3094 struct rps_map *map;
bfb564e7 3095 int cpu = -1;
567e4b79 3096 u32 tcpu;
61b905da 3097 u32 hash;
bfb564e7
KK
3098
3099 if (skb_rx_queue_recorded(skb)) {
3100 u16 index = skb_get_rx_queue(skb);
567e4b79 3101
62fe0b40
BH
3102 if (unlikely(index >= dev->real_num_rx_queues)) {
3103 WARN_ONCE(dev->real_num_rx_queues > 1,
3104 "%s received packet on queue %u, but number "
3105 "of RX queues is %u\n",
3106 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3107 goto done;
3108 }
567e4b79
ED
3109 rxqueue += index;
3110 }
bfb564e7 3111
567e4b79
ED
3112 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3113
3114 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3115 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3116 if (!flow_table && !map)
bfb564e7
KK
3117 goto done;
3118
2d47b459 3119 skb_reset_network_header(skb);
61b905da
TH
3120 hash = skb_get_hash(skb);
3121 if (!hash)
bfb564e7
KK
3122 goto done;
3123
fec5e652
TH
3124 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3125 if (flow_table && sock_flow_table) {
fec5e652 3126 struct rps_dev_flow *rflow;
567e4b79
ED
3127 u32 next_cpu;
3128 u32 ident;
3129
3130 /* First check into global flow table if there is a match */
3131 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3132 if ((ident ^ hash) & ~rps_cpu_mask)
3133 goto try_rps;
fec5e652 3134
567e4b79
ED
3135 next_cpu = ident & rps_cpu_mask;
3136
3137 /* OK, now we know there is a match,
3138 * we can look at the local (per receive queue) flow table
3139 */
61b905da 3140 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3141 tcpu = rflow->cpu;
3142
fec5e652
TH
3143 /*
3144 * If the desired CPU (where last recvmsg was done) is
3145 * different from current CPU (one in the rx-queue flow
3146 * table entry), switch if one of the following holds:
3147 * - Current CPU is unset (equal to RPS_NO_CPU).
3148 * - Current CPU is offline.
3149 * - The current CPU's queue tail has advanced beyond the
3150 * last packet that was enqueued using this table entry.
3151 * This guarantees that all previous packets for the flow
3152 * have been dequeued, thus preserving in order delivery.
3153 */
3154 if (unlikely(tcpu != next_cpu) &&
3155 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3156 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3157 rflow->last_qtail)) >= 0)) {
3158 tcpu = next_cpu;
c445477d 3159 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3160 }
c445477d 3161
fec5e652
TH
3162 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3163 *rflowp = rflow;
3164 cpu = tcpu;
3165 goto done;
3166 }
3167 }
3168
567e4b79
ED
3169try_rps:
3170
0a9627f2 3171 if (map) {
8fc54f68 3172 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3173 if (cpu_online(tcpu)) {
3174 cpu = tcpu;
3175 goto done;
3176 }
3177 }
3178
3179done:
0a9627f2
TH
3180 return cpu;
3181}
3182
c445477d
BH
3183#ifdef CONFIG_RFS_ACCEL
3184
3185/**
3186 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3187 * @dev: Device on which the filter was set
3188 * @rxq_index: RX queue index
3189 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3190 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3191 *
3192 * Drivers that implement ndo_rx_flow_steer() should periodically call
3193 * this function for each installed filter and remove the filters for
3194 * which it returns %true.
3195 */
3196bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3197 u32 flow_id, u16 filter_id)
3198{
3199 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3200 struct rps_dev_flow_table *flow_table;
3201 struct rps_dev_flow *rflow;
3202 bool expire = true;
3203 int cpu;
3204
3205 rcu_read_lock();
3206 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3207 if (flow_table && flow_id <= flow_table->mask) {
3208 rflow = &flow_table->flows[flow_id];
3209 cpu = ACCESS_ONCE(rflow->cpu);
3210 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3211 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3212 rflow->last_qtail) <
3213 (int)(10 * flow_table->mask)))
3214 expire = false;
3215 }
3216 rcu_read_unlock();
3217 return expire;
3218}
3219EXPORT_SYMBOL(rps_may_expire_flow);
3220
3221#endif /* CONFIG_RFS_ACCEL */
3222
0a9627f2 3223/* Called from hardirq (IPI) context */
e36fa2f7 3224static void rps_trigger_softirq(void *data)
0a9627f2 3225{
e36fa2f7
ED
3226 struct softnet_data *sd = data;
3227
eecfd7c4 3228 ____napi_schedule(sd, &sd->backlog);
dee42870 3229 sd->received_rps++;
0a9627f2 3230}
e36fa2f7 3231
fec5e652 3232#endif /* CONFIG_RPS */
0a9627f2 3233
e36fa2f7
ED
3234/*
3235 * Check if this softnet_data structure is another cpu one
3236 * If yes, queue it to our IPI list and return 1
3237 * If no, return 0
3238 */
3239static int rps_ipi_queued(struct softnet_data *sd)
3240{
3241#ifdef CONFIG_RPS
903ceff7 3242 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3243
3244 if (sd != mysd) {
3245 sd->rps_ipi_next = mysd->rps_ipi_list;
3246 mysd->rps_ipi_list = sd;
3247
3248 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3249 return 1;
3250 }
3251#endif /* CONFIG_RPS */
3252 return 0;
3253}
3254
99bbc707
WB
3255#ifdef CONFIG_NET_FLOW_LIMIT
3256int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3257#endif
3258
3259static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3260{
3261#ifdef CONFIG_NET_FLOW_LIMIT
3262 struct sd_flow_limit *fl;
3263 struct softnet_data *sd;
3264 unsigned int old_flow, new_flow;
3265
3266 if (qlen < (netdev_max_backlog >> 1))
3267 return false;
3268
903ceff7 3269 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3270
3271 rcu_read_lock();
3272 fl = rcu_dereference(sd->flow_limit);
3273 if (fl) {
3958afa1 3274 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3275 old_flow = fl->history[fl->history_head];
3276 fl->history[fl->history_head] = new_flow;
3277
3278 fl->history_head++;
3279 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3280
3281 if (likely(fl->buckets[old_flow]))
3282 fl->buckets[old_flow]--;
3283
3284 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3285 fl->count++;
3286 rcu_read_unlock();
3287 return true;
3288 }
3289 }
3290 rcu_read_unlock();
3291#endif
3292 return false;
3293}
3294
0a9627f2
TH
3295/*
3296 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3297 * queue (may be a remote CPU queue).
3298 */
fec5e652
TH
3299static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3300 unsigned int *qtail)
0a9627f2 3301{
e36fa2f7 3302 struct softnet_data *sd;
0a9627f2 3303 unsigned long flags;
99bbc707 3304 unsigned int qlen;
0a9627f2 3305
e36fa2f7 3306 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3307
3308 local_irq_save(flags);
0a9627f2 3309
e36fa2f7 3310 rps_lock(sd);
99bbc707
WB
3311 qlen = skb_queue_len(&sd->input_pkt_queue);
3312 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3313 if (qlen) {
0a9627f2 3314enqueue:
e36fa2f7 3315 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3316 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3317 rps_unlock(sd);
152102c7 3318 local_irq_restore(flags);
0a9627f2
TH
3319 return NET_RX_SUCCESS;
3320 }
3321
ebda37c2
ED
3322 /* Schedule NAPI for backlog device
3323 * We can use non atomic operation since we own the queue lock
3324 */
3325 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3326 if (!rps_ipi_queued(sd))
eecfd7c4 3327 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3328 }
3329 goto enqueue;
3330 }
3331
dee42870 3332 sd->dropped++;
e36fa2f7 3333 rps_unlock(sd);
0a9627f2 3334
0a9627f2
TH
3335 local_irq_restore(flags);
3336
caf586e5 3337 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3338 kfree_skb(skb);
3339 return NET_RX_DROP;
3340}
1da177e4 3341
ae78dbfa 3342static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3343{
b0e28f1e 3344 int ret;
1da177e4 3345
588f0330 3346 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3347
cf66ba58 3348 trace_netif_rx(skb);
df334545 3349#ifdef CONFIG_RPS
c5905afb 3350 if (static_key_false(&rps_needed)) {
fec5e652 3351 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3352 int cpu;
3353
cece1945 3354 preempt_disable();
b0e28f1e 3355 rcu_read_lock();
fec5e652
TH
3356
3357 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3358 if (cpu < 0)
3359 cpu = smp_processor_id();
fec5e652
TH
3360
3361 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3362
b0e28f1e 3363 rcu_read_unlock();
cece1945 3364 preempt_enable();
adc9300e
ED
3365 } else
3366#endif
fec5e652
TH
3367 {
3368 unsigned int qtail;
3369 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3370 put_cpu();
3371 }
b0e28f1e 3372 return ret;
1da177e4 3373}
ae78dbfa
BH
3374
3375/**
3376 * netif_rx - post buffer to the network code
3377 * @skb: buffer to post
3378 *
3379 * This function receives a packet from a device driver and queues it for
3380 * the upper (protocol) levels to process. It always succeeds. The buffer
3381 * may be dropped during processing for congestion control or by the
3382 * protocol layers.
3383 *
3384 * return values:
3385 * NET_RX_SUCCESS (no congestion)
3386 * NET_RX_DROP (packet was dropped)
3387 *
3388 */
3389
3390int netif_rx(struct sk_buff *skb)
3391{
3392 trace_netif_rx_entry(skb);
3393
3394 return netif_rx_internal(skb);
3395}
d1b19dff 3396EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3397
3398int netif_rx_ni(struct sk_buff *skb)
3399{
3400 int err;
3401
ae78dbfa
BH
3402 trace_netif_rx_ni_entry(skb);
3403
1da177e4 3404 preempt_disable();
ae78dbfa 3405 err = netif_rx_internal(skb);
1da177e4
LT
3406 if (local_softirq_pending())
3407 do_softirq();
3408 preempt_enable();
3409
3410 return err;
3411}
1da177e4
LT
3412EXPORT_SYMBOL(netif_rx_ni);
3413
1da177e4
LT
3414static void net_tx_action(struct softirq_action *h)
3415{
903ceff7 3416 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3417
3418 if (sd->completion_queue) {
3419 struct sk_buff *clist;
3420
3421 local_irq_disable();
3422 clist = sd->completion_queue;
3423 sd->completion_queue = NULL;
3424 local_irq_enable();
3425
3426 while (clist) {
3427 struct sk_buff *skb = clist;
3428 clist = clist->next;
3429
547b792c 3430 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3431 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3432 trace_consume_skb(skb);
3433 else
3434 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3435 __kfree_skb(skb);
3436 }
3437 }
3438
3439 if (sd->output_queue) {
37437bb2 3440 struct Qdisc *head;
1da177e4
LT
3441
3442 local_irq_disable();
3443 head = sd->output_queue;
3444 sd->output_queue = NULL;
a9cbd588 3445 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3446 local_irq_enable();
3447
3448 while (head) {
37437bb2
DM
3449 struct Qdisc *q = head;
3450 spinlock_t *root_lock;
3451
1da177e4
LT
3452 head = head->next_sched;
3453
5fb66229 3454 root_lock = qdisc_lock(q);
37437bb2 3455 if (spin_trylock(root_lock)) {
4e857c58 3456 smp_mb__before_atomic();
def82a1d
JP
3457 clear_bit(__QDISC_STATE_SCHED,
3458 &q->state);
37437bb2
DM
3459 qdisc_run(q);
3460 spin_unlock(root_lock);
1da177e4 3461 } else {
195648bb 3462 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3463 &q->state)) {
195648bb 3464 __netif_reschedule(q);
e8a83e10 3465 } else {
4e857c58 3466 smp_mb__before_atomic();
e8a83e10
JP
3467 clear_bit(__QDISC_STATE_SCHED,
3468 &q->state);
3469 }
1da177e4
LT
3470 }
3471 }
3472 }
3473}
3474
ab95bfe0
JP
3475#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3476 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3477/* This hook is defined here for ATM LANE */
3478int (*br_fdb_test_addr_hook)(struct net_device *dev,
3479 unsigned char *addr) __read_mostly;
4fb019a0 3480EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3481#endif
1da177e4 3482
1da177e4
LT
3483#ifdef CONFIG_NET_CLS_ACT
3484/* TODO: Maybe we should just force sch_ingress to be compiled in
3485 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3486 * a compare and 2 stores extra right now if we dont have it on
3487 * but have CONFIG_NET_CLS_ACT
25985edc
LDM
3488 * NOTE: This doesn't stop any functionality; if you dont have
3489 * the ingress scheduler, you just can't add policies on ingress.
1da177e4
LT
3490 *
3491 */
24824a09 3492static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
1da177e4 3493{
1da177e4 3494 struct net_device *dev = skb->dev;
f697c3e8 3495 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
3496 int result = TC_ACT_OK;
3497 struct Qdisc *q;
4ec93edb 3498
de384830 3499 if (unlikely(MAX_RED_LOOP < ttl++)) {
e87cc472
JP
3500 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3501 skb->skb_iif, dev->ifindex);
f697c3e8
HX
3502 return TC_ACT_SHOT;
3503 }
1da177e4 3504
f697c3e8
HX
3505 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3506 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 3507
46e5da40 3508 q = rcu_dereference(rxq->qdisc);
8d50b53d 3509 if (q != &noop_qdisc) {
83874000 3510 spin_lock(qdisc_lock(q));
a9312ae8
DM
3511 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3512 result = qdisc_enqueue_root(skb, q);
83874000
DM
3513 spin_unlock(qdisc_lock(q));
3514 }
f697c3e8
HX
3515
3516 return result;
3517}
86e65da9 3518
f697c3e8
HX
3519static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3520 struct packet_type **pt_prev,
3521 int *ret, struct net_device *orig_dev)
3522{
24824a09
ED
3523 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3524
46e5da40 3525 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
f697c3e8 3526 goto out;
1da177e4 3527
f697c3e8
HX
3528 if (*pt_prev) {
3529 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3530 *pt_prev = NULL;
1da177e4
LT
3531 }
3532
24824a09 3533 switch (ing_filter(skb, rxq)) {
f697c3e8
HX
3534 case TC_ACT_SHOT:
3535 case TC_ACT_STOLEN:
3536 kfree_skb(skb);
3537 return NULL;
3538 }
3539
3540out:
3541 skb->tc_verd = 0;
3542 return skb;
1da177e4
LT
3543}
3544#endif
3545
ab95bfe0
JP
3546/**
3547 * netdev_rx_handler_register - register receive handler
3548 * @dev: device to register a handler for
3549 * @rx_handler: receive handler to register
93e2c32b 3550 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3551 *
e227867f 3552 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3553 * called from __netif_receive_skb. A negative errno code is returned
3554 * on a failure.
3555 *
3556 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3557 *
3558 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3559 */
3560int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3561 rx_handler_func_t *rx_handler,
3562 void *rx_handler_data)
ab95bfe0
JP
3563{
3564 ASSERT_RTNL();
3565
3566 if (dev->rx_handler)
3567 return -EBUSY;
3568
00cfec37 3569 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3570 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3571 rcu_assign_pointer(dev->rx_handler, rx_handler);
3572
3573 return 0;
3574}
3575EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3576
3577/**
3578 * netdev_rx_handler_unregister - unregister receive handler
3579 * @dev: device to unregister a handler from
3580 *
166ec369 3581 * Unregister a receive handler from a device.
ab95bfe0
JP
3582 *
3583 * The caller must hold the rtnl_mutex.
3584 */
3585void netdev_rx_handler_unregister(struct net_device *dev)
3586{
3587
3588 ASSERT_RTNL();
a9b3cd7f 3589 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3590 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3591 * section has a guarantee to see a non NULL rx_handler_data
3592 * as well.
3593 */
3594 synchronize_net();
a9b3cd7f 3595 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3596}
3597EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3598
b4b9e355
MG
3599/*
3600 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3601 * the special handling of PFMEMALLOC skbs.
3602 */
3603static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3604{
3605 switch (skb->protocol) {
2b8837ae
JP
3606 case htons(ETH_P_ARP):
3607 case htons(ETH_P_IP):
3608 case htons(ETH_P_IPV6):
3609 case htons(ETH_P_8021Q):
3610 case htons(ETH_P_8021AD):
b4b9e355
MG
3611 return true;
3612 default:
3613 return false;
3614 }
3615}
3616
9754e293 3617static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3618{
3619 struct packet_type *ptype, *pt_prev;
ab95bfe0 3620 rx_handler_func_t *rx_handler;
f2ccd8fa 3621 struct net_device *orig_dev;
8a4eb573 3622 bool deliver_exact = false;
1da177e4 3623 int ret = NET_RX_DROP;
252e3346 3624 __be16 type;
1da177e4 3625
588f0330 3626 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3627
cf66ba58 3628 trace_netif_receive_skb(skb);
9b22ea56 3629
cc9bd5ce 3630 orig_dev = skb->dev;
8f903c70 3631
c1d2bbe1 3632 skb_reset_network_header(skb);
fda55eca
ED
3633 if (!skb_transport_header_was_set(skb))
3634 skb_reset_transport_header(skb);
0b5c9db1 3635 skb_reset_mac_len(skb);
1da177e4
LT
3636
3637 pt_prev = NULL;
3638
3639 rcu_read_lock();
3640
63d8ea7f 3641another_round:
b6858177 3642 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3643
3644 __this_cpu_inc(softnet_data.processed);
3645
8ad227ff
PM
3646 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3647 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3648 skb = skb_vlan_untag(skb);
bcc6d479 3649 if (unlikely(!skb))
b4b9e355 3650 goto unlock;
bcc6d479
JP
3651 }
3652
1da177e4
LT
3653#ifdef CONFIG_NET_CLS_ACT
3654 if (skb->tc_verd & TC_NCLS) {
3655 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3656 goto ncls;
3657 }
3658#endif
3659
9754e293 3660 if (pfmemalloc)
b4b9e355
MG
3661 goto skip_taps;
3662
1da177e4 3663 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
3664 if (pt_prev)
3665 ret = deliver_skb(skb, pt_prev, orig_dev);
3666 pt_prev = ptype;
3667 }
3668
3669 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3670 if (pt_prev)
3671 ret = deliver_skb(skb, pt_prev, orig_dev);
3672 pt_prev = ptype;
1da177e4
LT
3673 }
3674
b4b9e355 3675skip_taps:
1da177e4 3676#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
3677 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3678 if (!skb)
b4b9e355 3679 goto unlock;
1da177e4
LT
3680ncls:
3681#endif
3682
9754e293 3683 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3684 goto drop;
3685
df8a39de 3686 if (skb_vlan_tag_present(skb)) {
2425717b
JF
3687 if (pt_prev) {
3688 ret = deliver_skb(skb, pt_prev, orig_dev);
3689 pt_prev = NULL;
3690 }
48cc32d3 3691 if (vlan_do_receive(&skb))
2425717b
JF
3692 goto another_round;
3693 else if (unlikely(!skb))
b4b9e355 3694 goto unlock;
2425717b
JF
3695 }
3696
48cc32d3 3697 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3698 if (rx_handler) {
3699 if (pt_prev) {
3700 ret = deliver_skb(skb, pt_prev, orig_dev);
3701 pt_prev = NULL;
3702 }
8a4eb573
JP
3703 switch (rx_handler(&skb)) {
3704 case RX_HANDLER_CONSUMED:
3bc1b1ad 3705 ret = NET_RX_SUCCESS;
b4b9e355 3706 goto unlock;
8a4eb573 3707 case RX_HANDLER_ANOTHER:
63d8ea7f 3708 goto another_round;
8a4eb573
JP
3709 case RX_HANDLER_EXACT:
3710 deliver_exact = true;
3711 case RX_HANDLER_PASS:
3712 break;
3713 default:
3714 BUG();
3715 }
ab95bfe0 3716 }
1da177e4 3717
df8a39de
JP
3718 if (unlikely(skb_vlan_tag_present(skb))) {
3719 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
3720 skb->pkt_type = PACKET_OTHERHOST;
3721 /* Note: we might in the future use prio bits
3722 * and set skb->priority like in vlan_do_receive()
3723 * For the time being, just ignore Priority Code Point
3724 */
3725 skb->vlan_tci = 0;
3726 }
48cc32d3 3727
7866a621
SN
3728 type = skb->protocol;
3729
63d8ea7f 3730 /* deliver only exact match when indicated */
7866a621
SN
3731 if (likely(!deliver_exact)) {
3732 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3733 &ptype_base[ntohs(type) &
3734 PTYPE_HASH_MASK]);
3735 }
1f3c8804 3736
7866a621
SN
3737 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3738 &orig_dev->ptype_specific);
3739
3740 if (unlikely(skb->dev != orig_dev)) {
3741 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3742 &skb->dev->ptype_specific);
1da177e4
LT
3743 }
3744
3745 if (pt_prev) {
1080e512 3746 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3747 goto drop;
1080e512
MT
3748 else
3749 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3750 } else {
b4b9e355 3751drop:
caf586e5 3752 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3753 kfree_skb(skb);
3754 /* Jamal, now you will not able to escape explaining
3755 * me how you were going to use this. :-)
3756 */
3757 ret = NET_RX_DROP;
3758 }
3759
b4b9e355 3760unlock:
1da177e4 3761 rcu_read_unlock();
9754e293
DM
3762 return ret;
3763}
3764
3765static int __netif_receive_skb(struct sk_buff *skb)
3766{
3767 int ret;
3768
3769 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3770 unsigned long pflags = current->flags;
3771
3772 /*
3773 * PFMEMALLOC skbs are special, they should
3774 * - be delivered to SOCK_MEMALLOC sockets only
3775 * - stay away from userspace
3776 * - have bounded memory usage
3777 *
3778 * Use PF_MEMALLOC as this saves us from propagating the allocation
3779 * context down to all allocation sites.
3780 */
3781 current->flags |= PF_MEMALLOC;
3782 ret = __netif_receive_skb_core(skb, true);
3783 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3784 } else
3785 ret = __netif_receive_skb_core(skb, false);
3786
1da177e4
LT
3787 return ret;
3788}
0a9627f2 3789
ae78dbfa 3790static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3791{
588f0330 3792 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3793
c1f19b51
RC
3794 if (skb_defer_rx_timestamp(skb))
3795 return NET_RX_SUCCESS;
3796
df334545 3797#ifdef CONFIG_RPS
c5905afb 3798 if (static_key_false(&rps_needed)) {
3b098e2d
ED
3799 struct rps_dev_flow voidflow, *rflow = &voidflow;
3800 int cpu, ret;
fec5e652 3801
3b098e2d
ED
3802 rcu_read_lock();
3803
3804 cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3805
3b098e2d
ED
3806 if (cpu >= 0) {
3807 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3808 rcu_read_unlock();
adc9300e 3809 return ret;
3b098e2d 3810 }
adc9300e 3811 rcu_read_unlock();
fec5e652 3812 }
1e94d72f 3813#endif
adc9300e 3814 return __netif_receive_skb(skb);
0a9627f2 3815}
ae78dbfa
BH
3816
3817/**
3818 * netif_receive_skb - process receive buffer from network
3819 * @skb: buffer to process
3820 *
3821 * netif_receive_skb() is the main receive data processing function.
3822 * It always succeeds. The buffer may be dropped during processing
3823 * for congestion control or by the protocol layers.
3824 *
3825 * This function may only be called from softirq context and interrupts
3826 * should be enabled.
3827 *
3828 * Return values (usually ignored):
3829 * NET_RX_SUCCESS: no congestion
3830 * NET_RX_DROP: packet was dropped
3831 */
3832int netif_receive_skb(struct sk_buff *skb)
3833{
3834 trace_netif_receive_skb_entry(skb);
3835
3836 return netif_receive_skb_internal(skb);
3837}
d1b19dff 3838EXPORT_SYMBOL(netif_receive_skb);
1da177e4 3839
88751275
ED
3840/* Network device is going away, flush any packets still pending
3841 * Called with irqs disabled.
3842 */
152102c7 3843static void flush_backlog(void *arg)
6e583ce5 3844{
152102c7 3845 struct net_device *dev = arg;
903ceff7 3846 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
3847 struct sk_buff *skb, *tmp;
3848
e36fa2f7 3849 rps_lock(sd);
6e7676c1 3850 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 3851 if (skb->dev == dev) {
e36fa2f7 3852 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 3853 kfree_skb(skb);
76cc8b13 3854 input_queue_head_incr(sd);
6e583ce5 3855 }
6e7676c1 3856 }
e36fa2f7 3857 rps_unlock(sd);
6e7676c1
CG
3858
3859 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3860 if (skb->dev == dev) {
3861 __skb_unlink(skb, &sd->process_queue);
3862 kfree_skb(skb);
76cc8b13 3863 input_queue_head_incr(sd);
6e7676c1
CG
3864 }
3865 }
6e583ce5
SH
3866}
3867
d565b0a1
HX
3868static int napi_gro_complete(struct sk_buff *skb)
3869{
22061d80 3870 struct packet_offload *ptype;
d565b0a1 3871 __be16 type = skb->protocol;
22061d80 3872 struct list_head *head = &offload_base;
d565b0a1
HX
3873 int err = -ENOENT;
3874
c3c7c254
ED
3875 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3876
fc59f9a3
HX
3877 if (NAPI_GRO_CB(skb)->count == 1) {
3878 skb_shinfo(skb)->gso_size = 0;
d565b0a1 3879 goto out;
fc59f9a3 3880 }
d565b0a1
HX
3881
3882 rcu_read_lock();
3883 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3884 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
3885 continue;
3886
299603e8 3887 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
3888 break;
3889 }
3890 rcu_read_unlock();
3891
3892 if (err) {
3893 WARN_ON(&ptype->list == head);
3894 kfree_skb(skb);
3895 return NET_RX_SUCCESS;
3896 }
3897
3898out:
ae78dbfa 3899 return netif_receive_skb_internal(skb);
d565b0a1
HX
3900}
3901
2e71a6f8
ED
3902/* napi->gro_list contains packets ordered by age.
3903 * youngest packets at the head of it.
3904 * Complete skbs in reverse order to reduce latencies.
3905 */
3906void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 3907{
2e71a6f8 3908 struct sk_buff *skb, *prev = NULL;
d565b0a1 3909
2e71a6f8
ED
3910 /* scan list and build reverse chain */
3911 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3912 skb->prev = prev;
3913 prev = skb;
3914 }
3915
3916 for (skb = prev; skb; skb = prev) {
d565b0a1 3917 skb->next = NULL;
2e71a6f8
ED
3918
3919 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3920 return;
3921
3922 prev = skb->prev;
d565b0a1 3923 napi_gro_complete(skb);
2e71a6f8 3924 napi->gro_count--;
d565b0a1
HX
3925 }
3926
3927 napi->gro_list = NULL;
3928}
86cac58b 3929EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 3930
89c5fa33
ED
3931static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3932{
3933 struct sk_buff *p;
3934 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 3935 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
3936
3937 for (p = napi->gro_list; p; p = p->next) {
3938 unsigned long diffs;
3939
0b4cec8c
TH
3940 NAPI_GRO_CB(p)->flush = 0;
3941
3942 if (hash != skb_get_hash_raw(p)) {
3943 NAPI_GRO_CB(p)->same_flow = 0;
3944 continue;
3945 }
3946
89c5fa33
ED
3947 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3948 diffs |= p->vlan_tci ^ skb->vlan_tci;
3949 if (maclen == ETH_HLEN)
3950 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 3951 skb_mac_header(skb));
89c5fa33
ED
3952 else if (!diffs)
3953 diffs = memcmp(skb_mac_header(p),
a50e233c 3954 skb_mac_header(skb),
89c5fa33
ED
3955 maclen);
3956 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
3957 }
3958}
3959
299603e8
JC
3960static void skb_gro_reset_offset(struct sk_buff *skb)
3961{
3962 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3963 const skb_frag_t *frag0 = &pinfo->frags[0];
3964
3965 NAPI_GRO_CB(skb)->data_offset = 0;
3966 NAPI_GRO_CB(skb)->frag0 = NULL;
3967 NAPI_GRO_CB(skb)->frag0_len = 0;
3968
3969 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3970 pinfo->nr_frags &&
3971 !PageHighMem(skb_frag_page(frag0))) {
3972 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3973 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
3974 }
3975}
3976
a50e233c
ED
3977static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3978{
3979 struct skb_shared_info *pinfo = skb_shinfo(skb);
3980
3981 BUG_ON(skb->end - skb->tail < grow);
3982
3983 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3984
3985 skb->data_len -= grow;
3986 skb->tail += grow;
3987
3988 pinfo->frags[0].page_offset += grow;
3989 skb_frag_size_sub(&pinfo->frags[0], grow);
3990
3991 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3992 skb_frag_unref(skb, 0);
3993 memmove(pinfo->frags, pinfo->frags + 1,
3994 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3995 }
3996}
3997
bb728820 3998static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
3999{
4000 struct sk_buff **pp = NULL;
22061d80 4001 struct packet_offload *ptype;
d565b0a1 4002 __be16 type = skb->protocol;
22061d80 4003 struct list_head *head = &offload_base;
0da2afd5 4004 int same_flow;
5b252f0c 4005 enum gro_result ret;
a50e233c 4006 int grow;
d565b0a1 4007
9c62a68d 4008 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4009 goto normal;
4010
5a212329 4011 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4012 goto normal;
4013
89c5fa33
ED
4014 gro_list_prepare(napi, skb);
4015
d565b0a1
HX
4016 rcu_read_lock();
4017 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4018 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4019 continue;
4020
86911732 4021 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4022 skb_reset_mac_len(skb);
d565b0a1
HX
4023 NAPI_GRO_CB(skb)->same_flow = 0;
4024 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4025 NAPI_GRO_CB(skb)->free = 0;
b582ef09 4026 NAPI_GRO_CB(skb)->udp_mark = 0;
15e2396d 4027 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4028
662880f4
TH
4029 /* Setup for GRO checksum validation */
4030 switch (skb->ip_summed) {
4031 case CHECKSUM_COMPLETE:
4032 NAPI_GRO_CB(skb)->csum = skb->csum;
4033 NAPI_GRO_CB(skb)->csum_valid = 1;
4034 NAPI_GRO_CB(skb)->csum_cnt = 0;
4035 break;
4036 case CHECKSUM_UNNECESSARY:
4037 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4038 NAPI_GRO_CB(skb)->csum_valid = 0;
4039 break;
4040 default:
4041 NAPI_GRO_CB(skb)->csum_cnt = 0;
4042 NAPI_GRO_CB(skb)->csum_valid = 0;
4043 }
d565b0a1 4044
f191a1d1 4045 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4046 break;
4047 }
4048 rcu_read_unlock();
4049
4050 if (&ptype->list == head)
4051 goto normal;
4052
0da2afd5 4053 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4054 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4055
d565b0a1
HX
4056 if (pp) {
4057 struct sk_buff *nskb = *pp;
4058
4059 *pp = nskb->next;
4060 nskb->next = NULL;
4061 napi_gro_complete(nskb);
4ae5544f 4062 napi->gro_count--;
d565b0a1
HX
4063 }
4064
0da2afd5 4065 if (same_flow)
d565b0a1
HX
4066 goto ok;
4067
600adc18 4068 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4069 goto normal;
d565b0a1 4070
600adc18
ED
4071 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4072 struct sk_buff *nskb = napi->gro_list;
4073
4074 /* locate the end of the list to select the 'oldest' flow */
4075 while (nskb->next) {
4076 pp = &nskb->next;
4077 nskb = *pp;
4078 }
4079 *pp = NULL;
4080 nskb->next = NULL;
4081 napi_gro_complete(nskb);
4082 } else {
4083 napi->gro_count++;
4084 }
d565b0a1 4085 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4086 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4087 NAPI_GRO_CB(skb)->last = skb;
86911732 4088 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4089 skb->next = napi->gro_list;
4090 napi->gro_list = skb;
5d0d9be8 4091 ret = GRO_HELD;
d565b0a1 4092
ad0f9904 4093pull:
a50e233c
ED
4094 grow = skb_gro_offset(skb) - skb_headlen(skb);
4095 if (grow > 0)
4096 gro_pull_from_frag0(skb, grow);
d565b0a1 4097ok:
5d0d9be8 4098 return ret;
d565b0a1
HX
4099
4100normal:
ad0f9904
HX
4101 ret = GRO_NORMAL;
4102 goto pull;
5d38a079 4103}
96e93eab 4104
bf5a755f
JC
4105struct packet_offload *gro_find_receive_by_type(__be16 type)
4106{
4107 struct list_head *offload_head = &offload_base;
4108 struct packet_offload *ptype;
4109
4110 list_for_each_entry_rcu(ptype, offload_head, list) {
4111 if (ptype->type != type || !ptype->callbacks.gro_receive)
4112 continue;
4113 return ptype;
4114 }
4115 return NULL;
4116}
e27a2f83 4117EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4118
4119struct packet_offload *gro_find_complete_by_type(__be16 type)
4120{
4121 struct list_head *offload_head = &offload_base;
4122 struct packet_offload *ptype;
4123
4124 list_for_each_entry_rcu(ptype, offload_head, list) {
4125 if (ptype->type != type || !ptype->callbacks.gro_complete)
4126 continue;
4127 return ptype;
4128 }
4129 return NULL;
4130}
e27a2f83 4131EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4132
bb728820 4133static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4134{
5d0d9be8
HX
4135 switch (ret) {
4136 case GRO_NORMAL:
ae78dbfa 4137 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4138 ret = GRO_DROP;
4139 break;
5d38a079 4140
5d0d9be8 4141 case GRO_DROP:
5d38a079
HX
4142 kfree_skb(skb);
4143 break;
5b252f0c 4144
daa86548 4145 case GRO_MERGED_FREE:
d7e8883c
ED
4146 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4147 kmem_cache_free(skbuff_head_cache, skb);
4148 else
4149 __kfree_skb(skb);
daa86548
ED
4150 break;
4151
5b252f0c
BH
4152 case GRO_HELD:
4153 case GRO_MERGED:
4154 break;
5d38a079
HX
4155 }
4156
c7c4b3b6 4157 return ret;
5d0d9be8 4158}
5d0d9be8 4159
c7c4b3b6 4160gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4161{
ae78dbfa 4162 trace_napi_gro_receive_entry(skb);
86911732 4163
a50e233c
ED
4164 skb_gro_reset_offset(skb);
4165
89c5fa33 4166 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4167}
4168EXPORT_SYMBOL(napi_gro_receive);
4169
d0c2b0d2 4170static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4171{
93a35f59
ED
4172 if (unlikely(skb->pfmemalloc)) {
4173 consume_skb(skb);
4174 return;
4175 }
96e93eab 4176 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4177 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4178 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4179 skb->vlan_tci = 0;
66c46d74 4180 skb->dev = napi->dev;
6d152e23 4181 skb->skb_iif = 0;
c3caf119
JC
4182 skb->encapsulation = 0;
4183 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4184 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4185
4186 napi->skb = skb;
4187}
96e93eab 4188
76620aaf 4189struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4190{
5d38a079 4191 struct sk_buff *skb = napi->skb;
5d38a079
HX
4192
4193 if (!skb) {
fd11a83d 4194 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
84b9cd63 4195 napi->skb = skb;
80595d59 4196 }
96e93eab
HX
4197 return skb;
4198}
76620aaf 4199EXPORT_SYMBOL(napi_get_frags);
96e93eab 4200
a50e233c
ED
4201static gro_result_t napi_frags_finish(struct napi_struct *napi,
4202 struct sk_buff *skb,
4203 gro_result_t ret)
96e93eab 4204{
5d0d9be8
HX
4205 switch (ret) {
4206 case GRO_NORMAL:
a50e233c
ED
4207 case GRO_HELD:
4208 __skb_push(skb, ETH_HLEN);
4209 skb->protocol = eth_type_trans(skb, skb->dev);
4210 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4211 ret = GRO_DROP;
86911732 4212 break;
5d38a079 4213
5d0d9be8 4214 case GRO_DROP:
5d0d9be8
HX
4215 case GRO_MERGED_FREE:
4216 napi_reuse_skb(napi, skb);
4217 break;
5b252f0c
BH
4218
4219 case GRO_MERGED:
4220 break;
5d0d9be8 4221 }
5d38a079 4222
c7c4b3b6 4223 return ret;
5d38a079 4224}
5d0d9be8 4225
a50e233c
ED
4226/* Upper GRO stack assumes network header starts at gro_offset=0
4227 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4228 * We copy ethernet header into skb->data to have a common layout.
4229 */
4adb9c4a 4230static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4231{
4232 struct sk_buff *skb = napi->skb;
a50e233c
ED
4233 const struct ethhdr *eth;
4234 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4235
4236 napi->skb = NULL;
4237
a50e233c
ED
4238 skb_reset_mac_header(skb);
4239 skb_gro_reset_offset(skb);
4240
4241 eth = skb_gro_header_fast(skb, 0);
4242 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4243 eth = skb_gro_header_slow(skb, hlen, 0);
4244 if (unlikely(!eth)) {
4245 napi_reuse_skb(napi, skb);
4246 return NULL;
4247 }
4248 } else {
4249 gro_pull_from_frag0(skb, hlen);
4250 NAPI_GRO_CB(skb)->frag0 += hlen;
4251 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4252 }
a50e233c
ED
4253 __skb_pull(skb, hlen);
4254
4255 /*
4256 * This works because the only protocols we care about don't require
4257 * special handling.
4258 * We'll fix it up properly in napi_frags_finish()
4259 */
4260 skb->protocol = eth->h_proto;
76620aaf 4261
76620aaf
HX
4262 return skb;
4263}
76620aaf 4264
c7c4b3b6 4265gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4266{
76620aaf 4267 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4268
4269 if (!skb)
c7c4b3b6 4270 return GRO_DROP;
5d0d9be8 4271
ae78dbfa
BH
4272 trace_napi_gro_frags_entry(skb);
4273
89c5fa33 4274 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4275}
5d38a079
HX
4276EXPORT_SYMBOL(napi_gro_frags);
4277
573e8fca
TH
4278/* Compute the checksum from gro_offset and return the folded value
4279 * after adding in any pseudo checksum.
4280 */
4281__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4282{
4283 __wsum wsum;
4284 __sum16 sum;
4285
4286 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4287
4288 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4289 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4290 if (likely(!sum)) {
4291 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4292 !skb->csum_complete_sw)
4293 netdev_rx_csum_fault(skb->dev);
4294 }
4295
4296 NAPI_GRO_CB(skb)->csum = wsum;
4297 NAPI_GRO_CB(skb)->csum_valid = 1;
4298
4299 return sum;
4300}
4301EXPORT_SYMBOL(__skb_gro_checksum_complete);
4302
e326bed2 4303/*
855abcf0 4304 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4305 * Note: called with local irq disabled, but exits with local irq enabled.
4306 */
4307static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4308{
4309#ifdef CONFIG_RPS
4310 struct softnet_data *remsd = sd->rps_ipi_list;
4311
4312 if (remsd) {
4313 sd->rps_ipi_list = NULL;
4314
4315 local_irq_enable();
4316
4317 /* Send pending IPI's to kick RPS processing on remote cpus. */
4318 while (remsd) {
4319 struct softnet_data *next = remsd->rps_ipi_next;
4320
4321 if (cpu_online(remsd->cpu))
c46fff2a 4322 smp_call_function_single_async(remsd->cpu,
fce8ad15 4323 &remsd->csd);
e326bed2
ED
4324 remsd = next;
4325 }
4326 } else
4327#endif
4328 local_irq_enable();
4329}
4330
d75b1ade
ED
4331static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4332{
4333#ifdef CONFIG_RPS
4334 return sd->rps_ipi_list != NULL;
4335#else
4336 return false;
4337#endif
4338}
4339
bea3348e 4340static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4341{
4342 int work = 0;
eecfd7c4 4343 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4344
e326bed2
ED
4345 /* Check if we have pending ipi, its better to send them now,
4346 * not waiting net_rx_action() end.
4347 */
d75b1ade 4348 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4349 local_irq_disable();
4350 net_rps_action_and_irq_enable(sd);
4351 }
d75b1ade 4352
bea3348e 4353 napi->weight = weight_p;
6e7676c1 4354 local_irq_disable();
11ef7a89 4355 while (1) {
1da177e4 4356 struct sk_buff *skb;
6e7676c1
CG
4357
4358 while ((skb = __skb_dequeue(&sd->process_queue))) {
4359 local_irq_enable();
4360 __netif_receive_skb(skb);
6e7676c1 4361 local_irq_disable();
76cc8b13
TH
4362 input_queue_head_incr(sd);
4363 if (++work >= quota) {
4364 local_irq_enable();
4365 return work;
4366 }
6e7676c1 4367 }
1da177e4 4368
e36fa2f7 4369 rps_lock(sd);
11ef7a89 4370 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4371 /*
4372 * Inline a custom version of __napi_complete().
4373 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4374 * and NAPI_STATE_SCHED is the only possible flag set
4375 * on backlog.
4376 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4377 * and we dont need an smp_mb() memory barrier.
4378 */
eecfd7c4 4379 napi->state = 0;
11ef7a89 4380 rps_unlock(sd);
eecfd7c4 4381
11ef7a89 4382 break;
bea3348e 4383 }
11ef7a89
TH
4384
4385 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4386 &sd->process_queue);
e36fa2f7 4387 rps_unlock(sd);
6e7676c1
CG
4388 }
4389 local_irq_enable();
1da177e4 4390
bea3348e
SH
4391 return work;
4392}
1da177e4 4393
bea3348e
SH
4394/**
4395 * __napi_schedule - schedule for receive
c4ea43c5 4396 * @n: entry to schedule
bea3348e 4397 *
bc9ad166
ED
4398 * The entry's receive function will be scheduled to run.
4399 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4400 */
b5606c2d 4401void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4402{
4403 unsigned long flags;
1da177e4 4404
bea3348e 4405 local_irq_save(flags);
903ceff7 4406 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4407 local_irq_restore(flags);
1da177e4 4408}
bea3348e
SH
4409EXPORT_SYMBOL(__napi_schedule);
4410
bc9ad166
ED
4411/**
4412 * __napi_schedule_irqoff - schedule for receive
4413 * @n: entry to schedule
4414 *
4415 * Variant of __napi_schedule() assuming hard irqs are masked
4416 */
4417void __napi_schedule_irqoff(struct napi_struct *n)
4418{
4419 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4420}
4421EXPORT_SYMBOL(__napi_schedule_irqoff);
4422
d565b0a1
HX
4423void __napi_complete(struct napi_struct *n)
4424{
4425 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4426
d75b1ade 4427 list_del_init(&n->poll_list);
4e857c58 4428 smp_mb__before_atomic();
d565b0a1
HX
4429 clear_bit(NAPI_STATE_SCHED, &n->state);
4430}
4431EXPORT_SYMBOL(__napi_complete);
4432
3b47d303 4433void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4434{
4435 unsigned long flags;
4436
4437 /*
4438 * don't let napi dequeue from the cpu poll list
4439 * just in case its running on a different cpu
4440 */
4441 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4442 return;
4443
3b47d303
ED
4444 if (n->gro_list) {
4445 unsigned long timeout = 0;
d75b1ade 4446
3b47d303
ED
4447 if (work_done)
4448 timeout = n->dev->gro_flush_timeout;
4449
4450 if (timeout)
4451 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4452 HRTIMER_MODE_REL_PINNED);
4453 else
4454 napi_gro_flush(n, false);
4455 }
d75b1ade
ED
4456 if (likely(list_empty(&n->poll_list))) {
4457 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4458 } else {
4459 /* If n->poll_list is not empty, we need to mask irqs */
4460 local_irq_save(flags);
4461 __napi_complete(n);
4462 local_irq_restore(flags);
4463 }
d565b0a1 4464}
3b47d303 4465EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4466
af12fa6e
ET
4467/* must be called under rcu_read_lock(), as we dont take a reference */
4468struct napi_struct *napi_by_id(unsigned int napi_id)
4469{
4470 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4471 struct napi_struct *napi;
4472
4473 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4474 if (napi->napi_id == napi_id)
4475 return napi;
4476
4477 return NULL;
4478}
4479EXPORT_SYMBOL_GPL(napi_by_id);
4480
4481void napi_hash_add(struct napi_struct *napi)
4482{
4483 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4484
4485 spin_lock(&napi_hash_lock);
4486
4487 /* 0 is not a valid id, we also skip an id that is taken
4488 * we expect both events to be extremely rare
4489 */
4490 napi->napi_id = 0;
4491 while (!napi->napi_id) {
4492 napi->napi_id = ++napi_gen_id;
4493 if (napi_by_id(napi->napi_id))
4494 napi->napi_id = 0;
4495 }
4496
4497 hlist_add_head_rcu(&napi->napi_hash_node,
4498 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4499
4500 spin_unlock(&napi_hash_lock);
4501 }
4502}
4503EXPORT_SYMBOL_GPL(napi_hash_add);
4504
4505/* Warning : caller is responsible to make sure rcu grace period
4506 * is respected before freeing memory containing @napi
4507 */
4508void napi_hash_del(struct napi_struct *napi)
4509{
4510 spin_lock(&napi_hash_lock);
4511
4512 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4513 hlist_del_rcu(&napi->napi_hash_node);
4514
4515 spin_unlock(&napi_hash_lock);
4516}
4517EXPORT_SYMBOL_GPL(napi_hash_del);
4518
3b47d303
ED
4519static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4520{
4521 struct napi_struct *napi;
4522
4523 napi = container_of(timer, struct napi_struct, timer);
4524 if (napi->gro_list)
4525 napi_schedule(napi);
4526
4527 return HRTIMER_NORESTART;
4528}
4529
d565b0a1
HX
4530void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4531 int (*poll)(struct napi_struct *, int), int weight)
4532{
4533 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4534 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4535 napi->timer.function = napi_watchdog;
4ae5544f 4536 napi->gro_count = 0;
d565b0a1 4537 napi->gro_list = NULL;
5d38a079 4538 napi->skb = NULL;
d565b0a1 4539 napi->poll = poll;
82dc3c63
ED
4540 if (weight > NAPI_POLL_WEIGHT)
4541 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4542 weight, dev->name);
d565b0a1
HX
4543 napi->weight = weight;
4544 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4545 napi->dev = dev;
5d38a079 4546#ifdef CONFIG_NETPOLL
d565b0a1
HX
4547 spin_lock_init(&napi->poll_lock);
4548 napi->poll_owner = -1;
4549#endif
4550 set_bit(NAPI_STATE_SCHED, &napi->state);
4551}
4552EXPORT_SYMBOL(netif_napi_add);
4553
3b47d303
ED
4554void napi_disable(struct napi_struct *n)
4555{
4556 might_sleep();
4557 set_bit(NAPI_STATE_DISABLE, &n->state);
4558
4559 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4560 msleep(1);
4561
4562 hrtimer_cancel(&n->timer);
4563
4564 clear_bit(NAPI_STATE_DISABLE, &n->state);
4565}
4566EXPORT_SYMBOL(napi_disable);
4567
d565b0a1
HX
4568void netif_napi_del(struct napi_struct *napi)
4569{
d7b06636 4570 list_del_init(&napi->dev_list);
76620aaf 4571 napi_free_frags(napi);
d565b0a1 4572
289dccbe 4573 kfree_skb_list(napi->gro_list);
d565b0a1 4574 napi->gro_list = NULL;
4ae5544f 4575 napi->gro_count = 0;
d565b0a1
HX
4576}
4577EXPORT_SYMBOL(netif_napi_del);
4578
726ce70e
HX
4579static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4580{
4581 void *have;
4582 int work, weight;
4583
4584 list_del_init(&n->poll_list);
4585
4586 have = netpoll_poll_lock(n);
4587
4588 weight = n->weight;
4589
4590 /* This NAPI_STATE_SCHED test is for avoiding a race
4591 * with netpoll's poll_napi(). Only the entity which
4592 * obtains the lock and sees NAPI_STATE_SCHED set will
4593 * actually make the ->poll() call. Therefore we avoid
4594 * accidentally calling ->poll() when NAPI is not scheduled.
4595 */
4596 work = 0;
4597 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4598 work = n->poll(n, weight);
4599 trace_napi_poll(n);
4600 }
4601
4602 WARN_ON_ONCE(work > weight);
4603
4604 if (likely(work < weight))
4605 goto out_unlock;
4606
4607 /* Drivers must not modify the NAPI state if they
4608 * consume the entire weight. In such cases this code
4609 * still "owns" the NAPI instance and therefore can
4610 * move the instance around on the list at-will.
4611 */
4612 if (unlikely(napi_disable_pending(n))) {
4613 napi_complete(n);
4614 goto out_unlock;
4615 }
4616
4617 if (n->gro_list) {
4618 /* flush too old packets
4619 * If HZ < 1000, flush all packets.
4620 */
4621 napi_gro_flush(n, HZ >= 1000);
4622 }
4623
001ce546
HX
4624 /* Some drivers may have called napi_schedule
4625 * prior to exhausting their budget.
4626 */
4627 if (unlikely(!list_empty(&n->poll_list))) {
4628 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4629 n->dev ? n->dev->name : "backlog");
4630 goto out_unlock;
4631 }
4632
726ce70e
HX
4633 list_add_tail(&n->poll_list, repoll);
4634
4635out_unlock:
4636 netpoll_poll_unlock(have);
4637
4638 return work;
4639}
4640
1da177e4
LT
4641static void net_rx_action(struct softirq_action *h)
4642{
903ceff7 4643 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 4644 unsigned long time_limit = jiffies + 2;
51b0bded 4645 int budget = netdev_budget;
d75b1ade
ED
4646 LIST_HEAD(list);
4647 LIST_HEAD(repoll);
53fb95d3 4648
1da177e4 4649 local_irq_disable();
d75b1ade
ED
4650 list_splice_init(&sd->poll_list, &list);
4651 local_irq_enable();
1da177e4 4652
ceb8d5bf 4653 for (;;) {
bea3348e 4654 struct napi_struct *n;
1da177e4 4655
ceb8d5bf
HX
4656 if (list_empty(&list)) {
4657 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4658 return;
4659 break;
4660 }
4661
6bd373eb
HX
4662 n = list_first_entry(&list, struct napi_struct, poll_list);
4663 budget -= napi_poll(n, &repoll);
4664
d75b1ade 4665 /* If softirq window is exhausted then punt.
24f8b238
SH
4666 * Allow this to run for 2 jiffies since which will allow
4667 * an average latency of 1.5/HZ.
bea3348e 4668 */
ceb8d5bf
HX
4669 if (unlikely(budget <= 0 ||
4670 time_after_eq(jiffies, time_limit))) {
4671 sd->time_squeeze++;
4672 break;
4673 }
1da177e4 4674 }
d75b1ade 4675
d75b1ade
ED
4676 local_irq_disable();
4677
4678 list_splice_tail_init(&sd->poll_list, &list);
4679 list_splice_tail(&repoll, &list);
4680 list_splice(&list, &sd->poll_list);
4681 if (!list_empty(&sd->poll_list))
4682 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4683
e326bed2 4684 net_rps_action_and_irq_enable(sd);
1da177e4
LT
4685}
4686
aa9d8560 4687struct netdev_adjacent {
9ff162a8 4688 struct net_device *dev;
5d261913
VF
4689
4690 /* upper master flag, there can only be one master device per list */
9ff162a8 4691 bool master;
5d261913 4692
5d261913
VF
4693 /* counter for the number of times this device was added to us */
4694 u16 ref_nr;
4695
402dae96
VF
4696 /* private field for the users */
4697 void *private;
4698
9ff162a8
JP
4699 struct list_head list;
4700 struct rcu_head rcu;
9ff162a8
JP
4701};
4702
5d261913
VF
4703static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4704 struct net_device *adj_dev,
2f268f12 4705 struct list_head *adj_list)
9ff162a8 4706{
5d261913 4707 struct netdev_adjacent *adj;
5d261913 4708
2f268f12 4709 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4710 if (adj->dev == adj_dev)
4711 return adj;
9ff162a8
JP
4712 }
4713 return NULL;
4714}
4715
4716/**
4717 * netdev_has_upper_dev - Check if device is linked to an upper device
4718 * @dev: device
4719 * @upper_dev: upper device to check
4720 *
4721 * Find out if a device is linked to specified upper device and return true
4722 * in case it is. Note that this checks only immediate upper device,
4723 * not through a complete stack of devices. The caller must hold the RTNL lock.
4724 */
4725bool netdev_has_upper_dev(struct net_device *dev,
4726 struct net_device *upper_dev)
4727{
4728 ASSERT_RTNL();
4729
2f268f12 4730 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4731}
4732EXPORT_SYMBOL(netdev_has_upper_dev);
4733
4734/**
4735 * netdev_has_any_upper_dev - Check if device is linked to some device
4736 * @dev: device
4737 *
4738 * Find out if a device is linked to an upper device and return true in case
4739 * it is. The caller must hold the RTNL lock.
4740 */
1d143d9f 4741static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4742{
4743 ASSERT_RTNL();
4744
2f268f12 4745 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4746}
9ff162a8
JP
4747
4748/**
4749 * netdev_master_upper_dev_get - Get master upper device
4750 * @dev: device
4751 *
4752 * Find a master upper device and return pointer to it or NULL in case
4753 * it's not there. The caller must hold the RTNL lock.
4754 */
4755struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4756{
aa9d8560 4757 struct netdev_adjacent *upper;
9ff162a8
JP
4758
4759 ASSERT_RTNL();
4760
2f268f12 4761 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4762 return NULL;
4763
2f268f12 4764 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4765 struct netdev_adjacent, list);
9ff162a8
JP
4766 if (likely(upper->master))
4767 return upper->dev;
4768 return NULL;
4769}
4770EXPORT_SYMBOL(netdev_master_upper_dev_get);
4771
b6ccba4c
VF
4772void *netdev_adjacent_get_private(struct list_head *adj_list)
4773{
4774 struct netdev_adjacent *adj;
4775
4776 adj = list_entry(adj_list, struct netdev_adjacent, list);
4777
4778 return adj->private;
4779}
4780EXPORT_SYMBOL(netdev_adjacent_get_private);
4781
44a40855
VY
4782/**
4783 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4784 * @dev: device
4785 * @iter: list_head ** of the current position
4786 *
4787 * Gets the next device from the dev's upper list, starting from iter
4788 * position. The caller must hold RCU read lock.
4789 */
4790struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4791 struct list_head **iter)
4792{
4793 struct netdev_adjacent *upper;
4794
4795 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4796
4797 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4798
4799 if (&upper->list == &dev->adj_list.upper)
4800 return NULL;
4801
4802 *iter = &upper->list;
4803
4804 return upper->dev;
4805}
4806EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4807
31088a11
VF
4808/**
4809 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4810 * @dev: device
4811 * @iter: list_head ** of the current position
4812 *
4813 * Gets the next device from the dev's upper list, starting from iter
4814 * position. The caller must hold RCU read lock.
4815 */
2f268f12
VF
4816struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4817 struct list_head **iter)
48311f46
VF
4818{
4819 struct netdev_adjacent *upper;
4820
85328240 4821 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
4822
4823 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4824
2f268f12 4825 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
4826 return NULL;
4827
4828 *iter = &upper->list;
4829
4830 return upper->dev;
4831}
2f268f12 4832EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 4833
31088a11
VF
4834/**
4835 * netdev_lower_get_next_private - Get the next ->private from the
4836 * lower neighbour list
4837 * @dev: device
4838 * @iter: list_head ** of the current position
4839 *
4840 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4841 * list, starting from iter position. The caller must hold either hold the
4842 * RTNL lock or its own locking that guarantees that the neighbour lower
4843 * list will remain unchainged.
4844 */
4845void *netdev_lower_get_next_private(struct net_device *dev,
4846 struct list_head **iter)
4847{
4848 struct netdev_adjacent *lower;
4849
4850 lower = list_entry(*iter, struct netdev_adjacent, list);
4851
4852 if (&lower->list == &dev->adj_list.lower)
4853 return NULL;
4854
6859e7df 4855 *iter = lower->list.next;
31088a11
VF
4856
4857 return lower->private;
4858}
4859EXPORT_SYMBOL(netdev_lower_get_next_private);
4860
4861/**
4862 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4863 * lower neighbour list, RCU
4864 * variant
4865 * @dev: device
4866 * @iter: list_head ** of the current position
4867 *
4868 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4869 * list, starting from iter position. The caller must hold RCU read lock.
4870 */
4871void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4872 struct list_head **iter)
4873{
4874 struct netdev_adjacent *lower;
4875
4876 WARN_ON_ONCE(!rcu_read_lock_held());
4877
4878 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4879
4880 if (&lower->list == &dev->adj_list.lower)
4881 return NULL;
4882
6859e7df 4883 *iter = &lower->list;
31088a11
VF
4884
4885 return lower->private;
4886}
4887EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4888
4085ebe8
VY
4889/**
4890 * netdev_lower_get_next - Get the next device from the lower neighbour
4891 * list
4892 * @dev: device
4893 * @iter: list_head ** of the current position
4894 *
4895 * Gets the next netdev_adjacent from the dev's lower neighbour
4896 * list, starting from iter position. The caller must hold RTNL lock or
4897 * its own locking that guarantees that the neighbour lower
4898 * list will remain unchainged.
4899 */
4900void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4901{
4902 struct netdev_adjacent *lower;
4903
4904 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4905
4906 if (&lower->list == &dev->adj_list.lower)
4907 return NULL;
4908
4909 *iter = &lower->list;
4910
4911 return lower->dev;
4912}
4913EXPORT_SYMBOL(netdev_lower_get_next);
4914
e001bfad 4915/**
4916 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4917 * lower neighbour list, RCU
4918 * variant
4919 * @dev: device
4920 *
4921 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4922 * list. The caller must hold RCU read lock.
4923 */
4924void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4925{
4926 struct netdev_adjacent *lower;
4927
4928 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4929 struct netdev_adjacent, list);
4930 if (lower)
4931 return lower->private;
4932 return NULL;
4933}
4934EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4935
9ff162a8
JP
4936/**
4937 * netdev_master_upper_dev_get_rcu - Get master upper device
4938 * @dev: device
4939 *
4940 * Find a master upper device and return pointer to it or NULL in case
4941 * it's not there. The caller must hold the RCU read lock.
4942 */
4943struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4944{
aa9d8560 4945 struct netdev_adjacent *upper;
9ff162a8 4946
2f268f12 4947 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 4948 struct netdev_adjacent, list);
9ff162a8
JP
4949 if (upper && likely(upper->master))
4950 return upper->dev;
4951 return NULL;
4952}
4953EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4954
0a59f3a9 4955static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
4956 struct net_device *adj_dev,
4957 struct list_head *dev_list)
4958{
4959 char linkname[IFNAMSIZ+7];
4960 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4961 "upper_%s" : "lower_%s", adj_dev->name);
4962 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4963 linkname);
4964}
0a59f3a9 4965static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
4966 char *name,
4967 struct list_head *dev_list)
4968{
4969 char linkname[IFNAMSIZ+7];
4970 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4971 "upper_%s" : "lower_%s", name);
4972 sysfs_remove_link(&(dev->dev.kobj), linkname);
4973}
4974
7ce64c79
AF
4975static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4976 struct net_device *adj_dev,
4977 struct list_head *dev_list)
4978{
4979 return (dev_list == &dev->adj_list.upper ||
4980 dev_list == &dev->adj_list.lower) &&
4981 net_eq(dev_net(dev), dev_net(adj_dev));
4982}
3ee32707 4983
5d261913
VF
4984static int __netdev_adjacent_dev_insert(struct net_device *dev,
4985 struct net_device *adj_dev,
7863c054 4986 struct list_head *dev_list,
402dae96 4987 void *private, bool master)
5d261913
VF
4988{
4989 struct netdev_adjacent *adj;
842d67a7 4990 int ret;
5d261913 4991
7863c054 4992 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913
VF
4993
4994 if (adj) {
5d261913
VF
4995 adj->ref_nr++;
4996 return 0;
4997 }
4998
4999 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5000 if (!adj)
5001 return -ENOMEM;
5002
5003 adj->dev = adj_dev;
5004 adj->master = master;
5d261913 5005 adj->ref_nr = 1;
402dae96 5006 adj->private = private;
5d261913 5007 dev_hold(adj_dev);
2f268f12
VF
5008
5009 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5010 adj_dev->name, dev->name, adj_dev->name);
5d261913 5011
7ce64c79 5012 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5013 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5014 if (ret)
5015 goto free_adj;
5016 }
5017
7863c054 5018 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5019 if (master) {
5020 ret = sysfs_create_link(&(dev->dev.kobj),
5021 &(adj_dev->dev.kobj), "master");
5022 if (ret)
5831d66e 5023 goto remove_symlinks;
842d67a7 5024
7863c054 5025 list_add_rcu(&adj->list, dev_list);
842d67a7 5026 } else {
7863c054 5027 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5028 }
5d261913
VF
5029
5030 return 0;
842d67a7 5031
5831d66e 5032remove_symlinks:
7ce64c79 5033 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5034 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5035free_adj:
5036 kfree(adj);
974daef7 5037 dev_put(adj_dev);
842d67a7
VF
5038
5039 return ret;
5d261913
VF
5040}
5041
1d143d9f 5042static void __netdev_adjacent_dev_remove(struct net_device *dev,
5043 struct net_device *adj_dev,
5044 struct list_head *dev_list)
5d261913
VF
5045{
5046 struct netdev_adjacent *adj;
5047
7863c054 5048 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913 5049
2f268f12
VF
5050 if (!adj) {
5051 pr_err("tried to remove device %s from %s\n",
5052 dev->name, adj_dev->name);
5d261913 5053 BUG();
2f268f12 5054 }
5d261913
VF
5055
5056 if (adj->ref_nr > 1) {
2f268f12
VF
5057 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5058 adj->ref_nr-1);
5d261913
VF
5059 adj->ref_nr--;
5060 return;
5061 }
5062
842d67a7
VF
5063 if (adj->master)
5064 sysfs_remove_link(&(dev->dev.kobj), "master");
5065
7ce64c79 5066 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5067 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5068
5d261913 5069 list_del_rcu(&adj->list);
2f268f12
VF
5070 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5071 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5072 dev_put(adj_dev);
5073 kfree_rcu(adj, rcu);
5074}
5075
1d143d9f 5076static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5077 struct net_device *upper_dev,
5078 struct list_head *up_list,
5079 struct list_head *down_list,
5080 void *private, bool master)
5d261913
VF
5081{
5082 int ret;
5083
402dae96
VF
5084 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5085 master);
5d261913
VF
5086 if (ret)
5087 return ret;
5088
402dae96
VF
5089 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5090 false);
5d261913 5091 if (ret) {
2f268f12 5092 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5093 return ret;
5094 }
5095
5096 return 0;
5097}
5098
1d143d9f 5099static int __netdev_adjacent_dev_link(struct net_device *dev,
5100 struct net_device *upper_dev)
5d261913 5101{
2f268f12
VF
5102 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5103 &dev->all_adj_list.upper,
5104 &upper_dev->all_adj_list.lower,
402dae96 5105 NULL, false);
5d261913
VF
5106}
5107
1d143d9f 5108static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5109 struct net_device *upper_dev,
5110 struct list_head *up_list,
5111 struct list_head *down_list)
5d261913 5112{
2f268f12
VF
5113 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5114 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5115}
5116
1d143d9f 5117static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5118 struct net_device *upper_dev)
5d261913 5119{
2f268f12
VF
5120 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5121 &dev->all_adj_list.upper,
5122 &upper_dev->all_adj_list.lower);
5123}
5124
1d143d9f 5125static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5126 struct net_device *upper_dev,
5127 void *private, bool master)
2f268f12
VF
5128{
5129 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5130
5131 if (ret)
5132 return ret;
5133
5134 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5135 &dev->adj_list.upper,
5136 &upper_dev->adj_list.lower,
402dae96 5137 private, master);
2f268f12
VF
5138 if (ret) {
5139 __netdev_adjacent_dev_unlink(dev, upper_dev);
5140 return ret;
5141 }
5142
5143 return 0;
5d261913
VF
5144}
5145
1d143d9f 5146static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5147 struct net_device *upper_dev)
2f268f12
VF
5148{
5149 __netdev_adjacent_dev_unlink(dev, upper_dev);
5150 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5151 &dev->adj_list.upper,
5152 &upper_dev->adj_list.lower);
5153}
5d261913 5154
9ff162a8 5155static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
5156 struct net_device *upper_dev, bool master,
5157 void *private)
9ff162a8 5158{
5d261913
VF
5159 struct netdev_adjacent *i, *j, *to_i, *to_j;
5160 int ret = 0;
9ff162a8
JP
5161
5162 ASSERT_RTNL();
5163
5164 if (dev == upper_dev)
5165 return -EBUSY;
5166
5167 /* To prevent loops, check if dev is not upper device to upper_dev. */
2f268f12 5168 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5169 return -EBUSY;
5170
2f268f12 5171 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
9ff162a8
JP
5172 return -EEXIST;
5173
5174 if (master && netdev_master_upper_dev_get(dev))
5175 return -EBUSY;
5176
402dae96
VF
5177 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5178 master);
5d261913
VF
5179 if (ret)
5180 return ret;
9ff162a8 5181
5d261913 5182 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5183 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5184 * versa, and don't forget the devices itself. All of these
5185 * links are non-neighbours.
5186 */
2f268f12
VF
5187 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5188 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5189 pr_debug("Interlinking %s with %s, non-neighbour\n",
5190 i->dev->name, j->dev->name);
5d261913
VF
5191 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5192 if (ret)
5193 goto rollback_mesh;
5194 }
5195 }
5196
5197 /* add dev to every upper_dev's upper device */
2f268f12
VF
5198 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5199 pr_debug("linking %s's upper device %s with %s\n",
5200 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5201 ret = __netdev_adjacent_dev_link(dev, i->dev);
5202 if (ret)
5203 goto rollback_upper_mesh;
5204 }
5205
5206 /* add upper_dev to every dev's lower device */
2f268f12
VF
5207 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5208 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5209 i->dev->name, upper_dev->name);
5d261913
VF
5210 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5211 if (ret)
5212 goto rollback_lower_mesh;
5213 }
9ff162a8 5214
42e52bf9 5215 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8 5216 return 0;
5d261913
VF
5217
5218rollback_lower_mesh:
5219 to_i = i;
2f268f12 5220 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5221 if (i == to_i)
5222 break;
5223 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5224 }
5225
5226 i = NULL;
5227
5228rollback_upper_mesh:
5229 to_i = i;
2f268f12 5230 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5231 if (i == to_i)
5232 break;
5233 __netdev_adjacent_dev_unlink(dev, i->dev);
5234 }
5235
5236 i = j = NULL;
5237
5238rollback_mesh:
5239 to_i = i;
5240 to_j = j;
2f268f12
VF
5241 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5242 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5243 if (i == to_i && j == to_j)
5244 break;
5245 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5246 }
5247 if (i == to_i)
5248 break;
5249 }
5250
2f268f12 5251 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5252
5253 return ret;
9ff162a8
JP
5254}
5255
5256/**
5257 * netdev_upper_dev_link - Add a link to the upper device
5258 * @dev: device
5259 * @upper_dev: new upper device
5260 *
5261 * Adds a link to device which is upper to this one. The caller must hold
5262 * the RTNL lock. On a failure a negative errno code is returned.
5263 * On success the reference counts are adjusted and the function
5264 * returns zero.
5265 */
5266int netdev_upper_dev_link(struct net_device *dev,
5267 struct net_device *upper_dev)
5268{
402dae96 5269 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5270}
5271EXPORT_SYMBOL(netdev_upper_dev_link);
5272
5273/**
5274 * netdev_master_upper_dev_link - Add a master link to the upper device
5275 * @dev: device
5276 * @upper_dev: new upper device
5277 *
5278 * Adds a link to device which is upper to this one. In this case, only
5279 * one master upper device can be linked, although other non-master devices
5280 * might be linked as well. The caller must hold the RTNL lock.
5281 * On a failure a negative errno code is returned. On success the reference
5282 * counts are adjusted and the function returns zero.
5283 */
5284int netdev_master_upper_dev_link(struct net_device *dev,
5285 struct net_device *upper_dev)
5286{
402dae96 5287 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5288}
5289EXPORT_SYMBOL(netdev_master_upper_dev_link);
5290
402dae96
VF
5291int netdev_master_upper_dev_link_private(struct net_device *dev,
5292 struct net_device *upper_dev,
5293 void *private)
5294{
5295 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5296}
5297EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5298
9ff162a8
JP
5299/**
5300 * netdev_upper_dev_unlink - Removes a link to upper device
5301 * @dev: device
5302 * @upper_dev: new upper device
5303 *
5304 * Removes a link to device which is upper to this one. The caller must hold
5305 * the RTNL lock.
5306 */
5307void netdev_upper_dev_unlink(struct net_device *dev,
5308 struct net_device *upper_dev)
5309{
5d261913 5310 struct netdev_adjacent *i, *j;
9ff162a8
JP
5311 ASSERT_RTNL();
5312
2f268f12 5313 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5314
5315 /* Here is the tricky part. We must remove all dev's lower
5316 * devices from all upper_dev's upper devices and vice
5317 * versa, to maintain the graph relationship.
5318 */
2f268f12
VF
5319 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5320 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5321 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5322
5323 /* remove also the devices itself from lower/upper device
5324 * list
5325 */
2f268f12 5326 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5327 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5328
2f268f12 5329 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5330 __netdev_adjacent_dev_unlink(dev, i->dev);
5331
42e52bf9 5332 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8
JP
5333}
5334EXPORT_SYMBOL(netdev_upper_dev_unlink);
5335
61bd3857
MS
5336/**
5337 * netdev_bonding_info_change - Dispatch event about slave change
5338 * @dev: device
5339 * @netdev_bonding_info: info to dispatch
5340 *
5341 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5342 * The caller must hold the RTNL lock.
5343 */
5344void netdev_bonding_info_change(struct net_device *dev,
5345 struct netdev_bonding_info *bonding_info)
5346{
5347 struct netdev_notifier_bonding_info info;
5348
5349 memcpy(&info.bonding_info, bonding_info,
5350 sizeof(struct netdev_bonding_info));
5351 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5352 &info.info);
5353}
5354EXPORT_SYMBOL(netdev_bonding_info_change);
5355
2ce1ee17 5356static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5357{
5358 struct netdev_adjacent *iter;
5359
5360 struct net *net = dev_net(dev);
5361
5362 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5363 if (!net_eq(net,dev_net(iter->dev)))
5364 continue;
5365 netdev_adjacent_sysfs_add(iter->dev, dev,
5366 &iter->dev->adj_list.lower);
5367 netdev_adjacent_sysfs_add(dev, iter->dev,
5368 &dev->adj_list.upper);
5369 }
5370
5371 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5372 if (!net_eq(net,dev_net(iter->dev)))
5373 continue;
5374 netdev_adjacent_sysfs_add(iter->dev, dev,
5375 &iter->dev->adj_list.upper);
5376 netdev_adjacent_sysfs_add(dev, iter->dev,
5377 &dev->adj_list.lower);
5378 }
5379}
5380
2ce1ee17 5381static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5382{
5383 struct netdev_adjacent *iter;
5384
5385 struct net *net = dev_net(dev);
5386
5387 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5388 if (!net_eq(net,dev_net(iter->dev)))
5389 continue;
5390 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5391 &iter->dev->adj_list.lower);
5392 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5393 &dev->adj_list.upper);
5394 }
5395
5396 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5397 if (!net_eq(net,dev_net(iter->dev)))
5398 continue;
5399 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5400 &iter->dev->adj_list.upper);
5401 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5402 &dev->adj_list.lower);
5403 }
5404}
5405
5bb025fa 5406void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5407{
5bb025fa 5408 struct netdev_adjacent *iter;
402dae96 5409
4c75431a
AF
5410 struct net *net = dev_net(dev);
5411
5bb025fa 5412 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5413 if (!net_eq(net,dev_net(iter->dev)))
5414 continue;
5bb025fa
VF
5415 netdev_adjacent_sysfs_del(iter->dev, oldname,
5416 &iter->dev->adj_list.lower);
5417 netdev_adjacent_sysfs_add(iter->dev, dev,
5418 &iter->dev->adj_list.lower);
5419 }
402dae96 5420
5bb025fa 5421 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5422 if (!net_eq(net,dev_net(iter->dev)))
5423 continue;
5bb025fa
VF
5424 netdev_adjacent_sysfs_del(iter->dev, oldname,
5425 &iter->dev->adj_list.upper);
5426 netdev_adjacent_sysfs_add(iter->dev, dev,
5427 &iter->dev->adj_list.upper);
5428 }
402dae96 5429}
402dae96
VF
5430
5431void *netdev_lower_dev_get_private(struct net_device *dev,
5432 struct net_device *lower_dev)
5433{
5434 struct netdev_adjacent *lower;
5435
5436 if (!lower_dev)
5437 return NULL;
5438 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5439 if (!lower)
5440 return NULL;
5441
5442 return lower->private;
5443}
5444EXPORT_SYMBOL(netdev_lower_dev_get_private);
5445
4085ebe8
VY
5446
5447int dev_get_nest_level(struct net_device *dev,
5448 bool (*type_check)(struct net_device *dev))
5449{
5450 struct net_device *lower = NULL;
5451 struct list_head *iter;
5452 int max_nest = -1;
5453 int nest;
5454
5455 ASSERT_RTNL();
5456
5457 netdev_for_each_lower_dev(dev, lower, iter) {
5458 nest = dev_get_nest_level(lower, type_check);
5459 if (max_nest < nest)
5460 max_nest = nest;
5461 }
5462
5463 if (type_check(dev))
5464 max_nest++;
5465
5466 return max_nest;
5467}
5468EXPORT_SYMBOL(dev_get_nest_level);
5469
b6c40d68
PM
5470static void dev_change_rx_flags(struct net_device *dev, int flags)
5471{
d314774c
SH
5472 const struct net_device_ops *ops = dev->netdev_ops;
5473
d2615bf4 5474 if (ops->ndo_change_rx_flags)
d314774c 5475 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5476}
5477
991fb3f7 5478static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5479{
b536db93 5480 unsigned int old_flags = dev->flags;
d04a48b0
EB
5481 kuid_t uid;
5482 kgid_t gid;
1da177e4 5483
24023451
PM
5484 ASSERT_RTNL();
5485
dad9b335
WC
5486 dev->flags |= IFF_PROMISC;
5487 dev->promiscuity += inc;
5488 if (dev->promiscuity == 0) {
5489 /*
5490 * Avoid overflow.
5491 * If inc causes overflow, untouch promisc and return error.
5492 */
5493 if (inc < 0)
5494 dev->flags &= ~IFF_PROMISC;
5495 else {
5496 dev->promiscuity -= inc;
7b6cd1ce
JP
5497 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5498 dev->name);
dad9b335
WC
5499 return -EOVERFLOW;
5500 }
5501 }
52609c0b 5502 if (dev->flags != old_flags) {
7b6cd1ce
JP
5503 pr_info("device %s %s promiscuous mode\n",
5504 dev->name,
5505 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5506 if (audit_enabled) {
5507 current_uid_gid(&uid, &gid);
7759db82
KHK
5508 audit_log(current->audit_context, GFP_ATOMIC,
5509 AUDIT_ANOM_PROMISCUOUS,
5510 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5511 dev->name, (dev->flags & IFF_PROMISC),
5512 (old_flags & IFF_PROMISC),
e1760bd5 5513 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5514 from_kuid(&init_user_ns, uid),
5515 from_kgid(&init_user_ns, gid),
7759db82 5516 audit_get_sessionid(current));
8192b0c4 5517 }
24023451 5518
b6c40d68 5519 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5520 }
991fb3f7
ND
5521 if (notify)
5522 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5523 return 0;
1da177e4
LT
5524}
5525
4417da66
PM
5526/**
5527 * dev_set_promiscuity - update promiscuity count on a device
5528 * @dev: device
5529 * @inc: modifier
5530 *
5531 * Add or remove promiscuity from a device. While the count in the device
5532 * remains above zero the interface remains promiscuous. Once it hits zero
5533 * the device reverts back to normal filtering operation. A negative inc
5534 * value is used to drop promiscuity on the device.
dad9b335 5535 * Return 0 if successful or a negative errno code on error.
4417da66 5536 */
dad9b335 5537int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5538{
b536db93 5539 unsigned int old_flags = dev->flags;
dad9b335 5540 int err;
4417da66 5541
991fb3f7 5542 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5543 if (err < 0)
dad9b335 5544 return err;
4417da66
PM
5545 if (dev->flags != old_flags)
5546 dev_set_rx_mode(dev);
dad9b335 5547 return err;
4417da66 5548}
d1b19dff 5549EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5550
991fb3f7 5551static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5552{
991fb3f7 5553 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5554
24023451
PM
5555 ASSERT_RTNL();
5556
1da177e4 5557 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5558 dev->allmulti += inc;
5559 if (dev->allmulti == 0) {
5560 /*
5561 * Avoid overflow.
5562 * If inc causes overflow, untouch allmulti and return error.
5563 */
5564 if (inc < 0)
5565 dev->flags &= ~IFF_ALLMULTI;
5566 else {
5567 dev->allmulti -= inc;
7b6cd1ce
JP
5568 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5569 dev->name);
dad9b335
WC
5570 return -EOVERFLOW;
5571 }
5572 }
24023451 5573 if (dev->flags ^ old_flags) {
b6c40d68 5574 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5575 dev_set_rx_mode(dev);
991fb3f7
ND
5576 if (notify)
5577 __dev_notify_flags(dev, old_flags,
5578 dev->gflags ^ old_gflags);
24023451 5579 }
dad9b335 5580 return 0;
4417da66 5581}
991fb3f7
ND
5582
5583/**
5584 * dev_set_allmulti - update allmulti count on a device
5585 * @dev: device
5586 * @inc: modifier
5587 *
5588 * Add or remove reception of all multicast frames to a device. While the
5589 * count in the device remains above zero the interface remains listening
5590 * to all interfaces. Once it hits zero the device reverts back to normal
5591 * filtering operation. A negative @inc value is used to drop the counter
5592 * when releasing a resource needing all multicasts.
5593 * Return 0 if successful or a negative errno code on error.
5594 */
5595
5596int dev_set_allmulti(struct net_device *dev, int inc)
5597{
5598 return __dev_set_allmulti(dev, inc, true);
5599}
d1b19dff 5600EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5601
5602/*
5603 * Upload unicast and multicast address lists to device and
5604 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5605 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5606 * are present.
5607 */
5608void __dev_set_rx_mode(struct net_device *dev)
5609{
d314774c
SH
5610 const struct net_device_ops *ops = dev->netdev_ops;
5611
4417da66
PM
5612 /* dev_open will call this function so the list will stay sane. */
5613 if (!(dev->flags&IFF_UP))
5614 return;
5615
5616 if (!netif_device_present(dev))
40b77c94 5617 return;
4417da66 5618
01789349 5619 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5620 /* Unicast addresses changes may only happen under the rtnl,
5621 * therefore calling __dev_set_promiscuity here is safe.
5622 */
32e7bfc4 5623 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5624 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5625 dev->uc_promisc = true;
32e7bfc4 5626 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5627 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5628 dev->uc_promisc = false;
4417da66 5629 }
4417da66 5630 }
01789349
JP
5631
5632 if (ops->ndo_set_rx_mode)
5633 ops->ndo_set_rx_mode(dev);
4417da66
PM
5634}
5635
5636void dev_set_rx_mode(struct net_device *dev)
5637{
b9e40857 5638 netif_addr_lock_bh(dev);
4417da66 5639 __dev_set_rx_mode(dev);
b9e40857 5640 netif_addr_unlock_bh(dev);
1da177e4
LT
5641}
5642
f0db275a
SH
5643/**
5644 * dev_get_flags - get flags reported to userspace
5645 * @dev: device
5646 *
5647 * Get the combination of flag bits exported through APIs to userspace.
5648 */
95c96174 5649unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5650{
95c96174 5651 unsigned int flags;
1da177e4
LT
5652
5653 flags = (dev->flags & ~(IFF_PROMISC |
5654 IFF_ALLMULTI |
b00055aa
SR
5655 IFF_RUNNING |
5656 IFF_LOWER_UP |
5657 IFF_DORMANT)) |
1da177e4
LT
5658 (dev->gflags & (IFF_PROMISC |
5659 IFF_ALLMULTI));
5660
b00055aa
SR
5661 if (netif_running(dev)) {
5662 if (netif_oper_up(dev))
5663 flags |= IFF_RUNNING;
5664 if (netif_carrier_ok(dev))
5665 flags |= IFF_LOWER_UP;
5666 if (netif_dormant(dev))
5667 flags |= IFF_DORMANT;
5668 }
1da177e4
LT
5669
5670 return flags;
5671}
d1b19dff 5672EXPORT_SYMBOL(dev_get_flags);
1da177e4 5673
bd380811 5674int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5675{
b536db93 5676 unsigned int old_flags = dev->flags;
bd380811 5677 int ret;
1da177e4 5678
24023451
PM
5679 ASSERT_RTNL();
5680
1da177e4
LT
5681 /*
5682 * Set the flags on our device.
5683 */
5684
5685 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5686 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5687 IFF_AUTOMEDIA)) |
5688 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5689 IFF_ALLMULTI));
5690
5691 /*
5692 * Load in the correct multicast list now the flags have changed.
5693 */
5694
b6c40d68
PM
5695 if ((old_flags ^ flags) & IFF_MULTICAST)
5696 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5697
4417da66 5698 dev_set_rx_mode(dev);
1da177e4
LT
5699
5700 /*
5701 * Have we downed the interface. We handle IFF_UP ourselves
5702 * according to user attempts to set it, rather than blindly
5703 * setting it.
5704 */
5705
5706 ret = 0;
d215d10f 5707 if ((old_flags ^ flags) & IFF_UP)
bd380811 5708 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5709
1da177e4 5710 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5711 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5712 unsigned int old_flags = dev->flags;
d1b19dff 5713
1da177e4 5714 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5715
5716 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5717 if (dev->flags != old_flags)
5718 dev_set_rx_mode(dev);
1da177e4
LT
5719 }
5720
5721 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5722 is important. Some (broken) drivers set IFF_PROMISC, when
5723 IFF_ALLMULTI is requested not asking us and not reporting.
5724 */
5725 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5726 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5727
1da177e4 5728 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5729 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5730 }
5731
bd380811
PM
5732 return ret;
5733}
5734
a528c219
ND
5735void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5736 unsigned int gchanges)
bd380811
PM
5737{
5738 unsigned int changes = dev->flags ^ old_flags;
5739
a528c219 5740 if (gchanges)
7f294054 5741 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5742
bd380811
PM
5743 if (changes & IFF_UP) {
5744 if (dev->flags & IFF_UP)
5745 call_netdevice_notifiers(NETDEV_UP, dev);
5746 else
5747 call_netdevice_notifiers(NETDEV_DOWN, dev);
5748 }
5749
5750 if (dev->flags & IFF_UP &&
be9efd36
JP
5751 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5752 struct netdev_notifier_change_info change_info;
5753
5754 change_info.flags_changed = changes;
5755 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5756 &change_info.info);
5757 }
bd380811
PM
5758}
5759
5760/**
5761 * dev_change_flags - change device settings
5762 * @dev: device
5763 * @flags: device state flags
5764 *
5765 * Change settings on device based state flags. The flags are
5766 * in the userspace exported format.
5767 */
b536db93 5768int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5769{
b536db93 5770 int ret;
991fb3f7 5771 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5772
5773 ret = __dev_change_flags(dev, flags);
5774 if (ret < 0)
5775 return ret;
5776
991fb3f7 5777 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5778 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5779 return ret;
5780}
d1b19dff 5781EXPORT_SYMBOL(dev_change_flags);
1da177e4 5782
2315dc91
VF
5783static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5784{
5785 const struct net_device_ops *ops = dev->netdev_ops;
5786
5787 if (ops->ndo_change_mtu)
5788 return ops->ndo_change_mtu(dev, new_mtu);
5789
5790 dev->mtu = new_mtu;
5791 return 0;
5792}
5793
f0db275a
SH
5794/**
5795 * dev_set_mtu - Change maximum transfer unit
5796 * @dev: device
5797 * @new_mtu: new transfer unit
5798 *
5799 * Change the maximum transfer size of the network device.
5800 */
1da177e4
LT
5801int dev_set_mtu(struct net_device *dev, int new_mtu)
5802{
2315dc91 5803 int err, orig_mtu;
1da177e4
LT
5804
5805 if (new_mtu == dev->mtu)
5806 return 0;
5807
5808 /* MTU must be positive. */
5809 if (new_mtu < 0)
5810 return -EINVAL;
5811
5812 if (!netif_device_present(dev))
5813 return -ENODEV;
5814
1d486bfb
VF
5815 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5816 err = notifier_to_errno(err);
5817 if (err)
5818 return err;
d314774c 5819
2315dc91
VF
5820 orig_mtu = dev->mtu;
5821 err = __dev_set_mtu(dev, new_mtu);
d314774c 5822
2315dc91
VF
5823 if (!err) {
5824 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5825 err = notifier_to_errno(err);
5826 if (err) {
5827 /* setting mtu back and notifying everyone again,
5828 * so that they have a chance to revert changes.
5829 */
5830 __dev_set_mtu(dev, orig_mtu);
5831 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5832 }
5833 }
1da177e4
LT
5834 return err;
5835}
d1b19dff 5836EXPORT_SYMBOL(dev_set_mtu);
1da177e4 5837
cbda10fa
VD
5838/**
5839 * dev_set_group - Change group this device belongs to
5840 * @dev: device
5841 * @new_group: group this device should belong to
5842 */
5843void dev_set_group(struct net_device *dev, int new_group)
5844{
5845 dev->group = new_group;
5846}
5847EXPORT_SYMBOL(dev_set_group);
5848
f0db275a
SH
5849/**
5850 * dev_set_mac_address - Change Media Access Control Address
5851 * @dev: device
5852 * @sa: new address
5853 *
5854 * Change the hardware (MAC) address of the device
5855 */
1da177e4
LT
5856int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5857{
d314774c 5858 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
5859 int err;
5860
d314774c 5861 if (!ops->ndo_set_mac_address)
1da177e4
LT
5862 return -EOPNOTSUPP;
5863 if (sa->sa_family != dev->type)
5864 return -EINVAL;
5865 if (!netif_device_present(dev))
5866 return -ENODEV;
d314774c 5867 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
5868 if (err)
5869 return err;
fbdeca2d 5870 dev->addr_assign_type = NET_ADDR_SET;
f6521516 5871 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 5872 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 5873 return 0;
1da177e4 5874}
d1b19dff 5875EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 5876
4bf84c35
JP
5877/**
5878 * dev_change_carrier - Change device carrier
5879 * @dev: device
691b3b7e 5880 * @new_carrier: new value
4bf84c35
JP
5881 *
5882 * Change device carrier
5883 */
5884int dev_change_carrier(struct net_device *dev, bool new_carrier)
5885{
5886 const struct net_device_ops *ops = dev->netdev_ops;
5887
5888 if (!ops->ndo_change_carrier)
5889 return -EOPNOTSUPP;
5890 if (!netif_device_present(dev))
5891 return -ENODEV;
5892 return ops->ndo_change_carrier(dev, new_carrier);
5893}
5894EXPORT_SYMBOL(dev_change_carrier);
5895
66b52b0d
JP
5896/**
5897 * dev_get_phys_port_id - Get device physical port ID
5898 * @dev: device
5899 * @ppid: port ID
5900 *
5901 * Get device physical port ID
5902 */
5903int dev_get_phys_port_id(struct net_device *dev,
02637fce 5904 struct netdev_phys_item_id *ppid)
66b52b0d
JP
5905{
5906 const struct net_device_ops *ops = dev->netdev_ops;
5907
5908 if (!ops->ndo_get_phys_port_id)
5909 return -EOPNOTSUPP;
5910 return ops->ndo_get_phys_port_id(dev, ppid);
5911}
5912EXPORT_SYMBOL(dev_get_phys_port_id);
5913
1da177e4
LT
5914/**
5915 * dev_new_index - allocate an ifindex
c4ea43c5 5916 * @net: the applicable net namespace
1da177e4
LT
5917 *
5918 * Returns a suitable unique value for a new device interface
5919 * number. The caller must hold the rtnl semaphore or the
5920 * dev_base_lock to be sure it remains unique.
5921 */
881d966b 5922static int dev_new_index(struct net *net)
1da177e4 5923{
aa79e66e 5924 int ifindex = net->ifindex;
1da177e4
LT
5925 for (;;) {
5926 if (++ifindex <= 0)
5927 ifindex = 1;
881d966b 5928 if (!__dev_get_by_index(net, ifindex))
aa79e66e 5929 return net->ifindex = ifindex;
1da177e4
LT
5930 }
5931}
5932
1da177e4 5933/* Delayed registration/unregisteration */
3b5b34fd 5934static LIST_HEAD(net_todo_list);
200b916f 5935DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 5936
6f05f629 5937static void net_set_todo(struct net_device *dev)
1da177e4 5938{
1da177e4 5939 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 5940 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
5941}
5942
9b5e383c 5943static void rollback_registered_many(struct list_head *head)
93ee31f1 5944{
e93737b0 5945 struct net_device *dev, *tmp;
5cde2829 5946 LIST_HEAD(close_head);
9b5e383c 5947
93ee31f1
DL
5948 BUG_ON(dev_boot_phase);
5949 ASSERT_RTNL();
5950
e93737b0 5951 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5952 /* Some devices call without registering
e93737b0
KK
5953 * for initialization unwind. Remove those
5954 * devices and proceed with the remaining.
9b5e383c
ED
5955 */
5956 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
5957 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5958 dev->name, dev);
93ee31f1 5959
9b5e383c 5960 WARN_ON(1);
e93737b0
KK
5961 list_del(&dev->unreg_list);
5962 continue;
9b5e383c 5963 }
449f4544 5964 dev->dismantle = true;
9b5e383c 5965 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 5966 }
93ee31f1 5967
44345724 5968 /* If device is running, close it first. */
5cde2829
EB
5969 list_for_each_entry(dev, head, unreg_list)
5970 list_add_tail(&dev->close_list, &close_head);
5971 dev_close_many(&close_head);
93ee31f1 5972
44345724 5973 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
5974 /* And unlink it from device chain. */
5975 unlist_netdevice(dev);
93ee31f1 5976
9b5e383c
ED
5977 dev->reg_state = NETREG_UNREGISTERING;
5978 }
93ee31f1
DL
5979
5980 synchronize_net();
5981
9b5e383c 5982 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
5983 struct sk_buff *skb = NULL;
5984
9b5e383c
ED
5985 /* Shutdown queueing discipline. */
5986 dev_shutdown(dev);
93ee31f1
DL
5987
5988
9b5e383c
ED
5989 /* Notify protocols, that we are about to destroy
5990 this device. They should clean all the things.
5991 */
5992 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 5993
395eea6c
MB
5994 if (!dev->rtnl_link_ops ||
5995 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5996 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5997 GFP_KERNEL);
5998
9b5e383c
ED
5999 /*
6000 * Flush the unicast and multicast chains
6001 */
a748ee24 6002 dev_uc_flush(dev);
22bedad3 6003 dev_mc_flush(dev);
93ee31f1 6004
9b5e383c
ED
6005 if (dev->netdev_ops->ndo_uninit)
6006 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6007
395eea6c
MB
6008 if (skb)
6009 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6010
9ff162a8
JP
6011 /* Notifier chain MUST detach us all upper devices. */
6012 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6013
9b5e383c
ED
6014 /* Remove entries from kobject tree */
6015 netdev_unregister_kobject(dev);
024e9679
AD
6016#ifdef CONFIG_XPS
6017 /* Remove XPS queueing entries */
6018 netif_reset_xps_queues_gt(dev, 0);
6019#endif
9b5e383c 6020 }
93ee31f1 6021
850a545b 6022 synchronize_net();
395264d5 6023
a5ee1551 6024 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6025 dev_put(dev);
6026}
6027
6028static void rollback_registered(struct net_device *dev)
6029{
6030 LIST_HEAD(single);
6031
6032 list_add(&dev->unreg_list, &single);
6033 rollback_registered_many(&single);
ceaaec98 6034 list_del(&single);
93ee31f1
DL
6035}
6036
c8f44aff
MM
6037static netdev_features_t netdev_fix_features(struct net_device *dev,
6038 netdev_features_t features)
b63365a2 6039{
57422dc5
MM
6040 /* Fix illegal checksum combinations */
6041 if ((features & NETIF_F_HW_CSUM) &&
6042 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6043 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6044 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6045 }
6046
b63365a2 6047 /* TSO requires that SG is present as well. */
ea2d3688 6048 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6049 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6050 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6051 }
6052
ec5f0615
PS
6053 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6054 !(features & NETIF_F_IP_CSUM)) {
6055 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6056 features &= ~NETIF_F_TSO;
6057 features &= ~NETIF_F_TSO_ECN;
6058 }
6059
6060 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6061 !(features & NETIF_F_IPV6_CSUM)) {
6062 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6063 features &= ~NETIF_F_TSO6;
6064 }
6065
31d8b9e0
BH
6066 /* TSO ECN requires that TSO is present as well. */
6067 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6068 features &= ~NETIF_F_TSO_ECN;
6069
212b573f
MM
6070 /* Software GSO depends on SG. */
6071 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6072 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6073 features &= ~NETIF_F_GSO;
6074 }
6075
acd1130e 6076 /* UFO needs SG and checksumming */
b63365a2 6077 if (features & NETIF_F_UFO) {
79032644
MM
6078 /* maybe split UFO into V4 and V6? */
6079 if (!((features & NETIF_F_GEN_CSUM) ||
6080 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6081 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6082 netdev_dbg(dev,
acd1130e 6083 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6084 features &= ~NETIF_F_UFO;
6085 }
6086
6087 if (!(features & NETIF_F_SG)) {
6f404e44 6088 netdev_dbg(dev,
acd1130e 6089 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6090 features &= ~NETIF_F_UFO;
6091 }
6092 }
6093
d0290214
JP
6094#ifdef CONFIG_NET_RX_BUSY_POLL
6095 if (dev->netdev_ops->ndo_busy_poll)
6096 features |= NETIF_F_BUSY_POLL;
6097 else
6098#endif
6099 features &= ~NETIF_F_BUSY_POLL;
6100
b63365a2
HX
6101 return features;
6102}
b63365a2 6103
6cb6a27c 6104int __netdev_update_features(struct net_device *dev)
5455c699 6105{
c8f44aff 6106 netdev_features_t features;
5455c699
MM
6107 int err = 0;
6108
87267485
MM
6109 ASSERT_RTNL();
6110
5455c699
MM
6111 features = netdev_get_wanted_features(dev);
6112
6113 if (dev->netdev_ops->ndo_fix_features)
6114 features = dev->netdev_ops->ndo_fix_features(dev, features);
6115
6116 /* driver might be less strict about feature dependencies */
6117 features = netdev_fix_features(dev, features);
6118
6119 if (dev->features == features)
6cb6a27c 6120 return 0;
5455c699 6121
c8f44aff
MM
6122 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6123 &dev->features, &features);
5455c699
MM
6124
6125 if (dev->netdev_ops->ndo_set_features)
6126 err = dev->netdev_ops->ndo_set_features(dev, features);
6127
6cb6a27c 6128 if (unlikely(err < 0)) {
5455c699 6129 netdev_err(dev,
c8f44aff
MM
6130 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6131 err, &features, &dev->features);
6cb6a27c
MM
6132 return -1;
6133 }
6134
6135 if (!err)
6136 dev->features = features;
6137
6138 return 1;
6139}
6140
afe12cc8
MM
6141/**
6142 * netdev_update_features - recalculate device features
6143 * @dev: the device to check
6144 *
6145 * Recalculate dev->features set and send notifications if it
6146 * has changed. Should be called after driver or hardware dependent
6147 * conditions might have changed that influence the features.
6148 */
6cb6a27c
MM
6149void netdev_update_features(struct net_device *dev)
6150{
6151 if (__netdev_update_features(dev))
6152 netdev_features_change(dev);
5455c699
MM
6153}
6154EXPORT_SYMBOL(netdev_update_features);
6155
afe12cc8
MM
6156/**
6157 * netdev_change_features - recalculate device features
6158 * @dev: the device to check
6159 *
6160 * Recalculate dev->features set and send notifications even
6161 * if they have not changed. Should be called instead of
6162 * netdev_update_features() if also dev->vlan_features might
6163 * have changed to allow the changes to be propagated to stacked
6164 * VLAN devices.
6165 */
6166void netdev_change_features(struct net_device *dev)
6167{
6168 __netdev_update_features(dev);
6169 netdev_features_change(dev);
6170}
6171EXPORT_SYMBOL(netdev_change_features);
6172
fc4a7489
PM
6173/**
6174 * netif_stacked_transfer_operstate - transfer operstate
6175 * @rootdev: the root or lower level device to transfer state from
6176 * @dev: the device to transfer operstate to
6177 *
6178 * Transfer operational state from root to device. This is normally
6179 * called when a stacking relationship exists between the root
6180 * device and the device(a leaf device).
6181 */
6182void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6183 struct net_device *dev)
6184{
6185 if (rootdev->operstate == IF_OPER_DORMANT)
6186 netif_dormant_on(dev);
6187 else
6188 netif_dormant_off(dev);
6189
6190 if (netif_carrier_ok(rootdev)) {
6191 if (!netif_carrier_ok(dev))
6192 netif_carrier_on(dev);
6193 } else {
6194 if (netif_carrier_ok(dev))
6195 netif_carrier_off(dev);
6196 }
6197}
6198EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6199
a953be53 6200#ifdef CONFIG_SYSFS
1b4bf461
ED
6201static int netif_alloc_rx_queues(struct net_device *dev)
6202{
1b4bf461 6203 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6204 struct netdev_rx_queue *rx;
10595902 6205 size_t sz = count * sizeof(*rx);
1b4bf461 6206
bd25fa7b 6207 BUG_ON(count < 1);
1b4bf461 6208
10595902
PG
6209 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6210 if (!rx) {
6211 rx = vzalloc(sz);
6212 if (!rx)
6213 return -ENOMEM;
6214 }
bd25fa7b
TH
6215 dev->_rx = rx;
6216
bd25fa7b 6217 for (i = 0; i < count; i++)
fe822240 6218 rx[i].dev = dev;
1b4bf461
ED
6219 return 0;
6220}
bf264145 6221#endif
1b4bf461 6222
aa942104
CG
6223static void netdev_init_one_queue(struct net_device *dev,
6224 struct netdev_queue *queue, void *_unused)
6225{
6226 /* Initialize queue lock */
6227 spin_lock_init(&queue->_xmit_lock);
6228 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6229 queue->xmit_lock_owner = -1;
b236da69 6230 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6231 queue->dev = dev;
114cf580
TH
6232#ifdef CONFIG_BQL
6233 dql_init(&queue->dql, HZ);
6234#endif
aa942104
CG
6235}
6236
60877a32
ED
6237static void netif_free_tx_queues(struct net_device *dev)
6238{
4cb28970 6239 kvfree(dev->_tx);
60877a32
ED
6240}
6241
e6484930
TH
6242static int netif_alloc_netdev_queues(struct net_device *dev)
6243{
6244 unsigned int count = dev->num_tx_queues;
6245 struct netdev_queue *tx;
60877a32 6246 size_t sz = count * sizeof(*tx);
e6484930 6247
60877a32 6248 BUG_ON(count < 1 || count > 0xffff);
62b5942a 6249
60877a32
ED
6250 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6251 if (!tx) {
6252 tx = vzalloc(sz);
6253 if (!tx)
6254 return -ENOMEM;
6255 }
e6484930 6256 dev->_tx = tx;
1d24eb48 6257
e6484930
TH
6258 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6259 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6260
6261 return 0;
e6484930
TH
6262}
6263
1da177e4
LT
6264/**
6265 * register_netdevice - register a network device
6266 * @dev: device to register
6267 *
6268 * Take a completed network device structure and add it to the kernel
6269 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6270 * chain. 0 is returned on success. A negative errno code is returned
6271 * on a failure to set up the device, or if the name is a duplicate.
6272 *
6273 * Callers must hold the rtnl semaphore. You may want
6274 * register_netdev() instead of this.
6275 *
6276 * BUGS:
6277 * The locking appears insufficient to guarantee two parallel registers
6278 * will not get the same name.
6279 */
6280
6281int register_netdevice(struct net_device *dev)
6282{
1da177e4 6283 int ret;
d314774c 6284 struct net *net = dev_net(dev);
1da177e4
LT
6285
6286 BUG_ON(dev_boot_phase);
6287 ASSERT_RTNL();
6288
b17a7c17
SH
6289 might_sleep();
6290
1da177e4
LT
6291 /* When net_device's are persistent, this will be fatal. */
6292 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6293 BUG_ON(!net);
1da177e4 6294
f1f28aa3 6295 spin_lock_init(&dev->addr_list_lock);
cf508b12 6296 netdev_set_addr_lockdep_class(dev);
1da177e4 6297
1da177e4
LT
6298 dev->iflink = -1;
6299
828de4f6 6300 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6301 if (ret < 0)
6302 goto out;
6303
1da177e4 6304 /* Init, if this function is available */
d314774c
SH
6305 if (dev->netdev_ops->ndo_init) {
6306 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6307 if (ret) {
6308 if (ret > 0)
6309 ret = -EIO;
90833aa4 6310 goto out;
1da177e4
LT
6311 }
6312 }
4ec93edb 6313
f646968f
PM
6314 if (((dev->hw_features | dev->features) &
6315 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6316 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6317 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6318 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6319 ret = -EINVAL;
6320 goto err_uninit;
6321 }
6322
9c7dafbf
PE
6323 ret = -EBUSY;
6324 if (!dev->ifindex)
6325 dev->ifindex = dev_new_index(net);
6326 else if (__dev_get_by_index(net, dev->ifindex))
6327 goto err_uninit;
6328
1da177e4
LT
6329 if (dev->iflink == -1)
6330 dev->iflink = dev->ifindex;
6331
5455c699
MM
6332 /* Transfer changeable features to wanted_features and enable
6333 * software offloads (GSO and GRO).
6334 */
6335 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6336 dev->features |= NETIF_F_SOFT_FEATURES;
6337 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6338
34324dc2
MM
6339 if (!(dev->flags & IFF_LOOPBACK)) {
6340 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6341 }
6342
1180e7d6 6343 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6344 */
1180e7d6 6345 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6346
ee579677
PS
6347 /* Make NETIF_F_SG inheritable to tunnel devices.
6348 */
6349 dev->hw_enc_features |= NETIF_F_SG;
6350
0d89d203
SH
6351 /* Make NETIF_F_SG inheritable to MPLS.
6352 */
6353 dev->mpls_features |= NETIF_F_SG;
6354
7ffbe3fd
JB
6355 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6356 ret = notifier_to_errno(ret);
6357 if (ret)
6358 goto err_uninit;
6359
8b41d188 6360 ret = netdev_register_kobject(dev);
b17a7c17 6361 if (ret)
7ce1b0ed 6362 goto err_uninit;
b17a7c17
SH
6363 dev->reg_state = NETREG_REGISTERED;
6364
6cb6a27c 6365 __netdev_update_features(dev);
8e9b59b2 6366
1da177e4
LT
6367 /*
6368 * Default initial state at registry is that the
6369 * device is present.
6370 */
6371
6372 set_bit(__LINK_STATE_PRESENT, &dev->state);
6373
8f4cccbb
BH
6374 linkwatch_init_dev(dev);
6375
1da177e4 6376 dev_init_scheduler(dev);
1da177e4 6377 dev_hold(dev);
ce286d32 6378 list_netdevice(dev);
7bf23575 6379 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6380
948b337e
JP
6381 /* If the device has permanent device address, driver should
6382 * set dev_addr and also addr_assign_type should be set to
6383 * NET_ADDR_PERM (default value).
6384 */
6385 if (dev->addr_assign_type == NET_ADDR_PERM)
6386 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6387
1da177e4 6388 /* Notify protocols, that a new device appeared. */
056925ab 6389 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6390 ret = notifier_to_errno(ret);
93ee31f1
DL
6391 if (ret) {
6392 rollback_registered(dev);
6393 dev->reg_state = NETREG_UNREGISTERED;
6394 }
d90a909e
EB
6395 /*
6396 * Prevent userspace races by waiting until the network
6397 * device is fully setup before sending notifications.
6398 */
a2835763
PM
6399 if (!dev->rtnl_link_ops ||
6400 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6401 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6402
6403out:
6404 return ret;
7ce1b0ed
HX
6405
6406err_uninit:
d314774c
SH
6407 if (dev->netdev_ops->ndo_uninit)
6408 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6409 goto out;
1da177e4 6410}
d1b19dff 6411EXPORT_SYMBOL(register_netdevice);
1da177e4 6412
937f1ba5
BH
6413/**
6414 * init_dummy_netdev - init a dummy network device for NAPI
6415 * @dev: device to init
6416 *
6417 * This takes a network device structure and initialize the minimum
6418 * amount of fields so it can be used to schedule NAPI polls without
6419 * registering a full blown interface. This is to be used by drivers
6420 * that need to tie several hardware interfaces to a single NAPI
6421 * poll scheduler due to HW limitations.
6422 */
6423int init_dummy_netdev(struct net_device *dev)
6424{
6425 /* Clear everything. Note we don't initialize spinlocks
6426 * are they aren't supposed to be taken by any of the
6427 * NAPI code and this dummy netdev is supposed to be
6428 * only ever used for NAPI polls
6429 */
6430 memset(dev, 0, sizeof(struct net_device));
6431
6432 /* make sure we BUG if trying to hit standard
6433 * register/unregister code path
6434 */
6435 dev->reg_state = NETREG_DUMMY;
6436
937f1ba5
BH
6437 /* NAPI wants this */
6438 INIT_LIST_HEAD(&dev->napi_list);
6439
6440 /* a dummy interface is started by default */
6441 set_bit(__LINK_STATE_PRESENT, &dev->state);
6442 set_bit(__LINK_STATE_START, &dev->state);
6443
29b4433d
ED
6444 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6445 * because users of this 'device' dont need to change
6446 * its refcount.
6447 */
6448
937f1ba5
BH
6449 return 0;
6450}
6451EXPORT_SYMBOL_GPL(init_dummy_netdev);
6452
6453
1da177e4
LT
6454/**
6455 * register_netdev - register a network device
6456 * @dev: device to register
6457 *
6458 * Take a completed network device structure and add it to the kernel
6459 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6460 * chain. 0 is returned on success. A negative errno code is returned
6461 * on a failure to set up the device, or if the name is a duplicate.
6462 *
38b4da38 6463 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6464 * and expands the device name if you passed a format string to
6465 * alloc_netdev.
6466 */
6467int register_netdev(struct net_device *dev)
6468{
6469 int err;
6470
6471 rtnl_lock();
1da177e4 6472 err = register_netdevice(dev);
1da177e4
LT
6473 rtnl_unlock();
6474 return err;
6475}
6476EXPORT_SYMBOL(register_netdev);
6477
29b4433d
ED
6478int netdev_refcnt_read(const struct net_device *dev)
6479{
6480 int i, refcnt = 0;
6481
6482 for_each_possible_cpu(i)
6483 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6484 return refcnt;
6485}
6486EXPORT_SYMBOL(netdev_refcnt_read);
6487
2c53040f 6488/**
1da177e4 6489 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6490 * @dev: target net_device
1da177e4
LT
6491 *
6492 * This is called when unregistering network devices.
6493 *
6494 * Any protocol or device that holds a reference should register
6495 * for netdevice notification, and cleanup and put back the
6496 * reference if they receive an UNREGISTER event.
6497 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6498 * call dev_put.
1da177e4
LT
6499 */
6500static void netdev_wait_allrefs(struct net_device *dev)
6501{
6502 unsigned long rebroadcast_time, warning_time;
29b4433d 6503 int refcnt;
1da177e4 6504
e014debe
ED
6505 linkwatch_forget_dev(dev);
6506
1da177e4 6507 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6508 refcnt = netdev_refcnt_read(dev);
6509
6510 while (refcnt != 0) {
1da177e4 6511 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6512 rtnl_lock();
1da177e4
LT
6513
6514 /* Rebroadcast unregister notification */
056925ab 6515 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6516
748e2d93 6517 __rtnl_unlock();
0115e8e3 6518 rcu_barrier();
748e2d93
ED
6519 rtnl_lock();
6520
0115e8e3 6521 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6522 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6523 &dev->state)) {
6524 /* We must not have linkwatch events
6525 * pending on unregister. If this
6526 * happens, we simply run the queue
6527 * unscheduled, resulting in a noop
6528 * for this device.
6529 */
6530 linkwatch_run_queue();
6531 }
6532
6756ae4b 6533 __rtnl_unlock();
1da177e4
LT
6534
6535 rebroadcast_time = jiffies;
6536 }
6537
6538 msleep(250);
6539
29b4433d
ED
6540 refcnt = netdev_refcnt_read(dev);
6541
1da177e4 6542 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6543 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6544 dev->name, refcnt);
1da177e4
LT
6545 warning_time = jiffies;
6546 }
6547 }
6548}
6549
6550/* The sequence is:
6551 *
6552 * rtnl_lock();
6553 * ...
6554 * register_netdevice(x1);
6555 * register_netdevice(x2);
6556 * ...
6557 * unregister_netdevice(y1);
6558 * unregister_netdevice(y2);
6559 * ...
6560 * rtnl_unlock();
6561 * free_netdev(y1);
6562 * free_netdev(y2);
6563 *
58ec3b4d 6564 * We are invoked by rtnl_unlock().
1da177e4 6565 * This allows us to deal with problems:
b17a7c17 6566 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6567 * without deadlocking with linkwatch via keventd.
6568 * 2) Since we run with the RTNL semaphore not held, we can sleep
6569 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6570 *
6571 * We must not return until all unregister events added during
6572 * the interval the lock was held have been completed.
1da177e4 6573 */
1da177e4
LT
6574void netdev_run_todo(void)
6575{
626ab0e6 6576 struct list_head list;
1da177e4 6577
1da177e4 6578 /* Snapshot list, allow later requests */
626ab0e6 6579 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6580
6581 __rtnl_unlock();
626ab0e6 6582
0115e8e3
ED
6583
6584 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6585 if (!list_empty(&list))
6586 rcu_barrier();
6587
1da177e4
LT
6588 while (!list_empty(&list)) {
6589 struct net_device *dev
e5e26d75 6590 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6591 list_del(&dev->todo_list);
6592
748e2d93 6593 rtnl_lock();
0115e8e3 6594 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6595 __rtnl_unlock();
0115e8e3 6596
b17a7c17 6597 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6598 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6599 dev->name, dev->reg_state);
6600 dump_stack();
6601 continue;
6602 }
1da177e4 6603
b17a7c17 6604 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6605
152102c7 6606 on_each_cpu(flush_backlog, dev, 1);
6e583ce5 6607
b17a7c17 6608 netdev_wait_allrefs(dev);
1da177e4 6609
b17a7c17 6610 /* paranoia */
29b4433d 6611 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
6612 BUG_ON(!list_empty(&dev->ptype_all));
6613 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
6614 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6615 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6616 WARN_ON(dev->dn_ptr);
1da177e4 6617
b17a7c17
SH
6618 if (dev->destructor)
6619 dev->destructor(dev);
9093bbb2 6620
50624c93
EB
6621 /* Report a network device has been unregistered */
6622 rtnl_lock();
6623 dev_net(dev)->dev_unreg_count--;
6624 __rtnl_unlock();
6625 wake_up(&netdev_unregistering_wq);
6626
9093bbb2
SH
6627 /* Free network device */
6628 kobject_put(&dev->dev.kobj);
1da177e4 6629 }
1da177e4
LT
6630}
6631
3cfde79c
BH
6632/* Convert net_device_stats to rtnl_link_stats64. They have the same
6633 * fields in the same order, with only the type differing.
6634 */
77a1abf5
ED
6635void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6636 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6637{
6638#if BITS_PER_LONG == 64
77a1abf5
ED
6639 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6640 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6641#else
6642 size_t i, n = sizeof(*stats64) / sizeof(u64);
6643 const unsigned long *src = (const unsigned long *)netdev_stats;
6644 u64 *dst = (u64 *)stats64;
6645
6646 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6647 sizeof(*stats64) / sizeof(u64));
6648 for (i = 0; i < n; i++)
6649 dst[i] = src[i];
6650#endif
6651}
77a1abf5 6652EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6653
eeda3fd6
SH
6654/**
6655 * dev_get_stats - get network device statistics
6656 * @dev: device to get statistics from
28172739 6657 * @storage: place to store stats
eeda3fd6 6658 *
d7753516
BH
6659 * Get network statistics from device. Return @storage.
6660 * The device driver may provide its own method by setting
6661 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6662 * otherwise the internal statistics structure is used.
eeda3fd6 6663 */
d7753516
BH
6664struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6665 struct rtnl_link_stats64 *storage)
7004bf25 6666{
eeda3fd6
SH
6667 const struct net_device_ops *ops = dev->netdev_ops;
6668
28172739
ED
6669 if (ops->ndo_get_stats64) {
6670 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6671 ops->ndo_get_stats64(dev, storage);
6672 } else if (ops->ndo_get_stats) {
3cfde79c 6673 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6674 } else {
6675 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6676 }
caf586e5 6677 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6678 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6679 return storage;
c45d286e 6680}
eeda3fd6 6681EXPORT_SYMBOL(dev_get_stats);
c45d286e 6682
24824a09 6683struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6684{
24824a09 6685 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6686
24824a09
ED
6687#ifdef CONFIG_NET_CLS_ACT
6688 if (queue)
6689 return queue;
6690 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6691 if (!queue)
6692 return NULL;
6693 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 6694 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
6695 queue->qdisc_sleeping = &noop_qdisc;
6696 rcu_assign_pointer(dev->ingress_queue, queue);
6697#endif
6698 return queue;
bb949fbd
DM
6699}
6700
2c60db03
ED
6701static const struct ethtool_ops default_ethtool_ops;
6702
d07d7507
SG
6703void netdev_set_default_ethtool_ops(struct net_device *dev,
6704 const struct ethtool_ops *ops)
6705{
6706 if (dev->ethtool_ops == &default_ethtool_ops)
6707 dev->ethtool_ops = ops;
6708}
6709EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6710
74d332c1
ED
6711void netdev_freemem(struct net_device *dev)
6712{
6713 char *addr = (char *)dev - dev->padded;
6714
4cb28970 6715 kvfree(addr);
74d332c1
ED
6716}
6717
1da177e4 6718/**
36909ea4 6719 * alloc_netdev_mqs - allocate network device
c835a677
TG
6720 * @sizeof_priv: size of private data to allocate space for
6721 * @name: device name format string
6722 * @name_assign_type: origin of device name
6723 * @setup: callback to initialize device
6724 * @txqs: the number of TX subqueues to allocate
6725 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6726 *
6727 * Allocates a struct net_device with private data area for driver use
90e51adf 6728 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6729 * for each queue on the device.
1da177e4 6730 */
36909ea4 6731struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6732 unsigned char name_assign_type,
36909ea4
TH
6733 void (*setup)(struct net_device *),
6734 unsigned int txqs, unsigned int rxqs)
1da177e4 6735{
1da177e4 6736 struct net_device *dev;
7943986c 6737 size_t alloc_size;
1ce8e7b5 6738 struct net_device *p;
1da177e4 6739
b6fe17d6
SH
6740 BUG_ON(strlen(name) >= sizeof(dev->name));
6741
36909ea4 6742 if (txqs < 1) {
7b6cd1ce 6743 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6744 return NULL;
6745 }
6746
a953be53 6747#ifdef CONFIG_SYSFS
36909ea4 6748 if (rxqs < 1) {
7b6cd1ce 6749 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6750 return NULL;
6751 }
6752#endif
6753
fd2ea0a7 6754 alloc_size = sizeof(struct net_device);
d1643d24
AD
6755 if (sizeof_priv) {
6756 /* ensure 32-byte alignment of private area */
1ce8e7b5 6757 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6758 alloc_size += sizeof_priv;
6759 }
6760 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 6761 alloc_size += NETDEV_ALIGN - 1;
1da177e4 6762
74d332c1
ED
6763 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6764 if (!p)
6765 p = vzalloc(alloc_size);
62b5942a 6766 if (!p)
1da177e4 6767 return NULL;
1da177e4 6768
1ce8e7b5 6769 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 6770 dev->padded = (char *)dev - (char *)p;
ab9c73cc 6771
29b4433d
ED
6772 dev->pcpu_refcnt = alloc_percpu(int);
6773 if (!dev->pcpu_refcnt)
74d332c1 6774 goto free_dev;
ab9c73cc 6775
ab9c73cc 6776 if (dev_addr_init(dev))
29b4433d 6777 goto free_pcpu;
ab9c73cc 6778
22bedad3 6779 dev_mc_init(dev);
a748ee24 6780 dev_uc_init(dev);
ccffad25 6781
c346dca1 6782 dev_net_set(dev, &init_net);
1da177e4 6783
8d3bdbd5 6784 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 6785 dev->gso_max_segs = GSO_MAX_SEGS;
fcbeb976 6786 dev->gso_min_segs = 0;
8d3bdbd5 6787
8d3bdbd5
DM
6788 INIT_LIST_HEAD(&dev->napi_list);
6789 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 6790 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 6791 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
6792 INIT_LIST_HEAD(&dev->adj_list.upper);
6793 INIT_LIST_HEAD(&dev->adj_list.lower);
6794 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6795 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
6796 INIT_LIST_HEAD(&dev->ptype_all);
6797 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 6798 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
6799 setup(dev);
6800
36909ea4
TH
6801 dev->num_tx_queues = txqs;
6802 dev->real_num_tx_queues = txqs;
ed9af2e8 6803 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 6804 goto free_all;
e8a0464c 6805
a953be53 6806#ifdef CONFIG_SYSFS
36909ea4
TH
6807 dev->num_rx_queues = rxqs;
6808 dev->real_num_rx_queues = rxqs;
fe822240 6809 if (netif_alloc_rx_queues(dev))
8d3bdbd5 6810 goto free_all;
df334545 6811#endif
0a9627f2 6812
1da177e4 6813 strcpy(dev->name, name);
c835a677 6814 dev->name_assign_type = name_assign_type;
cbda10fa 6815 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
6816 if (!dev->ethtool_ops)
6817 dev->ethtool_ops = &default_ethtool_ops;
1da177e4 6818 return dev;
ab9c73cc 6819
8d3bdbd5
DM
6820free_all:
6821 free_netdev(dev);
6822 return NULL;
6823
29b4433d
ED
6824free_pcpu:
6825 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
6826free_dev:
6827 netdev_freemem(dev);
ab9c73cc 6828 return NULL;
1da177e4 6829}
36909ea4 6830EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
6831
6832/**
6833 * free_netdev - free network device
6834 * @dev: device
6835 *
4ec93edb
YH
6836 * This function does the last stage of destroying an allocated device
6837 * interface. The reference to the device object is released.
1da177e4
LT
6838 * If this is the last reference then it will be freed.
6839 */
6840void free_netdev(struct net_device *dev)
6841{
d565b0a1
HX
6842 struct napi_struct *p, *n;
6843
f3005d7f
DL
6844 release_net(dev_net(dev));
6845
60877a32 6846 netif_free_tx_queues(dev);
a953be53 6847#ifdef CONFIG_SYSFS
10595902 6848 kvfree(dev->_rx);
fe822240 6849#endif
e8a0464c 6850
33d480ce 6851 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 6852
f001fde5
JP
6853 /* Flush device addresses */
6854 dev_addr_flush(dev);
6855
d565b0a1
HX
6856 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6857 netif_napi_del(p);
6858
29b4433d
ED
6859 free_percpu(dev->pcpu_refcnt);
6860 dev->pcpu_refcnt = NULL;
6861
3041a069 6862 /* Compatibility with error handling in drivers */
1da177e4 6863 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 6864 netdev_freemem(dev);
1da177e4
LT
6865 return;
6866 }
6867
6868 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6869 dev->reg_state = NETREG_RELEASED;
6870
43cb76d9
GKH
6871 /* will free via device release */
6872 put_device(&dev->dev);
1da177e4 6873}
d1b19dff 6874EXPORT_SYMBOL(free_netdev);
4ec93edb 6875
f0db275a
SH
6876/**
6877 * synchronize_net - Synchronize with packet receive processing
6878 *
6879 * Wait for packets currently being received to be done.
6880 * Does not block later packets from starting.
6881 */
4ec93edb 6882void synchronize_net(void)
1da177e4
LT
6883{
6884 might_sleep();
be3fc413
ED
6885 if (rtnl_is_locked())
6886 synchronize_rcu_expedited();
6887 else
6888 synchronize_rcu();
1da177e4 6889}
d1b19dff 6890EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
6891
6892/**
44a0873d 6893 * unregister_netdevice_queue - remove device from the kernel
1da177e4 6894 * @dev: device
44a0873d 6895 * @head: list
6ebfbc06 6896 *
1da177e4 6897 * This function shuts down a device interface and removes it
d59b54b1 6898 * from the kernel tables.
44a0873d 6899 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
6900 *
6901 * Callers must hold the rtnl semaphore. You may want
6902 * unregister_netdev() instead of this.
6903 */
6904
44a0873d 6905void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 6906{
a6620712
HX
6907 ASSERT_RTNL();
6908
44a0873d 6909 if (head) {
9fdce099 6910 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
6911 } else {
6912 rollback_registered(dev);
6913 /* Finish processing unregister after unlock */
6914 net_set_todo(dev);
6915 }
1da177e4 6916}
44a0873d 6917EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 6918
9b5e383c
ED
6919/**
6920 * unregister_netdevice_many - unregister many devices
6921 * @head: list of devices
87757a91
ED
6922 *
6923 * Note: As most callers use a stack allocated list_head,
6924 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
6925 */
6926void unregister_netdevice_many(struct list_head *head)
6927{
6928 struct net_device *dev;
6929
6930 if (!list_empty(head)) {
6931 rollback_registered_many(head);
6932 list_for_each_entry(dev, head, unreg_list)
6933 net_set_todo(dev);
87757a91 6934 list_del(head);
9b5e383c
ED
6935 }
6936}
63c8099d 6937EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 6938
1da177e4
LT
6939/**
6940 * unregister_netdev - remove device from the kernel
6941 * @dev: device
6942 *
6943 * This function shuts down a device interface and removes it
d59b54b1 6944 * from the kernel tables.
1da177e4
LT
6945 *
6946 * This is just a wrapper for unregister_netdevice that takes
6947 * the rtnl semaphore. In general you want to use this and not
6948 * unregister_netdevice.
6949 */
6950void unregister_netdev(struct net_device *dev)
6951{
6952 rtnl_lock();
6953 unregister_netdevice(dev);
6954 rtnl_unlock();
6955}
1da177e4
LT
6956EXPORT_SYMBOL(unregister_netdev);
6957
ce286d32
EB
6958/**
6959 * dev_change_net_namespace - move device to different nethost namespace
6960 * @dev: device
6961 * @net: network namespace
6962 * @pat: If not NULL name pattern to try if the current device name
6963 * is already taken in the destination network namespace.
6964 *
6965 * This function shuts down a device interface and moves it
6966 * to a new network namespace. On success 0 is returned, on
6967 * a failure a netagive errno code is returned.
6968 *
6969 * Callers must hold the rtnl semaphore.
6970 */
6971
6972int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6973{
ce286d32
EB
6974 int err;
6975
6976 ASSERT_RTNL();
6977
6978 /* Don't allow namespace local devices to be moved. */
6979 err = -EINVAL;
6980 if (dev->features & NETIF_F_NETNS_LOCAL)
6981 goto out;
6982
6983 /* Ensure the device has been registrered */
ce286d32
EB
6984 if (dev->reg_state != NETREG_REGISTERED)
6985 goto out;
6986
6987 /* Get out if there is nothing todo */
6988 err = 0;
878628fb 6989 if (net_eq(dev_net(dev), net))
ce286d32
EB
6990 goto out;
6991
6992 /* Pick the destination device name, and ensure
6993 * we can use it in the destination network namespace.
6994 */
6995 err = -EEXIST;
d9031024 6996 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
6997 /* We get here if we can't use the current device name */
6998 if (!pat)
6999 goto out;
828de4f6 7000 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7001 goto out;
7002 }
7003
7004 /*
7005 * And now a mini version of register_netdevice unregister_netdevice.
7006 */
7007
7008 /* If device is running close it first. */
9b772652 7009 dev_close(dev);
ce286d32
EB
7010
7011 /* And unlink it from device chain */
7012 err = -ENODEV;
7013 unlist_netdevice(dev);
7014
7015 synchronize_net();
7016
7017 /* Shutdown queueing discipline. */
7018 dev_shutdown(dev);
7019
7020 /* Notify protocols, that we are about to destroy
7021 this device. They should clean all the things.
3b27e105
DL
7022
7023 Note that dev->reg_state stays at NETREG_REGISTERED.
7024 This is wanted because this way 8021q and macvlan know
7025 the device is just moving and can keep their slaves up.
ce286d32
EB
7026 */
7027 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7028 rcu_barrier();
7029 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7030 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7031
7032 /*
7033 * Flush the unicast and multicast chains
7034 */
a748ee24 7035 dev_uc_flush(dev);
22bedad3 7036 dev_mc_flush(dev);
ce286d32 7037
4e66ae2e
SH
7038 /* Send a netdev-removed uevent to the old namespace */
7039 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7040 netdev_adjacent_del_links(dev);
4e66ae2e 7041
ce286d32 7042 /* Actually switch the network namespace */
c346dca1 7043 dev_net_set(dev, net);
ce286d32 7044
ce286d32
EB
7045 /* If there is an ifindex conflict assign a new one */
7046 if (__dev_get_by_index(net, dev->ifindex)) {
7047 int iflink = (dev->iflink == dev->ifindex);
7048 dev->ifindex = dev_new_index(net);
7049 if (iflink)
7050 dev->iflink = dev->ifindex;
7051 }
7052
4e66ae2e
SH
7053 /* Send a netdev-add uevent to the new namespace */
7054 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7055 netdev_adjacent_add_links(dev);
4e66ae2e 7056
8b41d188 7057 /* Fixup kobjects */
a1b3f594 7058 err = device_rename(&dev->dev, dev->name);
8b41d188 7059 WARN_ON(err);
ce286d32
EB
7060
7061 /* Add the device back in the hashes */
7062 list_netdevice(dev);
7063
7064 /* Notify protocols, that a new device appeared. */
7065 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7066
d90a909e
EB
7067 /*
7068 * Prevent userspace races by waiting until the network
7069 * device is fully setup before sending notifications.
7070 */
7f294054 7071 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7072
ce286d32
EB
7073 synchronize_net();
7074 err = 0;
7075out:
7076 return err;
7077}
463d0183 7078EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7079
1da177e4
LT
7080static int dev_cpu_callback(struct notifier_block *nfb,
7081 unsigned long action,
7082 void *ocpu)
7083{
7084 struct sk_buff **list_skb;
1da177e4
LT
7085 struct sk_buff *skb;
7086 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7087 struct softnet_data *sd, *oldsd;
7088
8bb78442 7089 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7090 return NOTIFY_OK;
7091
7092 local_irq_disable();
7093 cpu = smp_processor_id();
7094 sd = &per_cpu(softnet_data, cpu);
7095 oldsd = &per_cpu(softnet_data, oldcpu);
7096
7097 /* Find end of our completion_queue. */
7098 list_skb = &sd->completion_queue;
7099 while (*list_skb)
7100 list_skb = &(*list_skb)->next;
7101 /* Append completion queue from offline CPU. */
7102 *list_skb = oldsd->completion_queue;
7103 oldsd->completion_queue = NULL;
7104
1da177e4 7105 /* Append output queue from offline CPU. */
a9cbd588
CG
7106 if (oldsd->output_queue) {
7107 *sd->output_queue_tailp = oldsd->output_queue;
7108 sd->output_queue_tailp = oldsd->output_queue_tailp;
7109 oldsd->output_queue = NULL;
7110 oldsd->output_queue_tailp = &oldsd->output_queue;
7111 }
ac64da0b
ED
7112 /* Append NAPI poll list from offline CPU, with one exception :
7113 * process_backlog() must be called by cpu owning percpu backlog.
7114 * We properly handle process_queue & input_pkt_queue later.
7115 */
7116 while (!list_empty(&oldsd->poll_list)) {
7117 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7118 struct napi_struct,
7119 poll_list);
7120
7121 list_del_init(&napi->poll_list);
7122 if (napi->poll == process_backlog)
7123 napi->state = 0;
7124 else
7125 ____napi_schedule(sd, napi);
264524d5 7126 }
1da177e4
LT
7127
7128 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7129 local_irq_enable();
7130
7131 /* Process offline CPU's input_pkt_queue */
76cc8b13 7132 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7133 netif_rx_ni(skb);
76cc8b13 7134 input_queue_head_incr(oldsd);
fec5e652 7135 }
ac64da0b 7136 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7137 netif_rx_ni(skb);
76cc8b13
TH
7138 input_queue_head_incr(oldsd);
7139 }
1da177e4
LT
7140
7141 return NOTIFY_OK;
7142}
1da177e4
LT
7143
7144
7f353bf2 7145/**
b63365a2
HX
7146 * netdev_increment_features - increment feature set by one
7147 * @all: current feature set
7148 * @one: new feature set
7149 * @mask: mask feature set
7f353bf2
HX
7150 *
7151 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7152 * @one to the master device with current feature set @all. Will not
7153 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7154 */
c8f44aff
MM
7155netdev_features_t netdev_increment_features(netdev_features_t all,
7156 netdev_features_t one, netdev_features_t mask)
b63365a2 7157{
1742f183
MM
7158 if (mask & NETIF_F_GEN_CSUM)
7159 mask |= NETIF_F_ALL_CSUM;
7160 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7161
1742f183
MM
7162 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7163 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7164
1742f183
MM
7165 /* If one device supports hw checksumming, set for all. */
7166 if (all & NETIF_F_GEN_CSUM)
7167 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
7168
7169 return all;
7170}
b63365a2 7171EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7172
430f03cd 7173static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7174{
7175 int i;
7176 struct hlist_head *hash;
7177
7178 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7179 if (hash != NULL)
7180 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7181 INIT_HLIST_HEAD(&hash[i]);
7182
7183 return hash;
7184}
7185
881d966b 7186/* Initialize per network namespace state */
4665079c 7187static int __net_init netdev_init(struct net *net)
881d966b 7188{
734b6541
RM
7189 if (net != &init_net)
7190 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7191
30d97d35
PE
7192 net->dev_name_head = netdev_create_hash();
7193 if (net->dev_name_head == NULL)
7194 goto err_name;
881d966b 7195
30d97d35
PE
7196 net->dev_index_head = netdev_create_hash();
7197 if (net->dev_index_head == NULL)
7198 goto err_idx;
881d966b
EB
7199
7200 return 0;
30d97d35
PE
7201
7202err_idx:
7203 kfree(net->dev_name_head);
7204err_name:
7205 return -ENOMEM;
881d966b
EB
7206}
7207
f0db275a
SH
7208/**
7209 * netdev_drivername - network driver for the device
7210 * @dev: network device
f0db275a
SH
7211 *
7212 * Determine network driver for device.
7213 */
3019de12 7214const char *netdev_drivername(const struct net_device *dev)
6579e57b 7215{
cf04a4c7
SH
7216 const struct device_driver *driver;
7217 const struct device *parent;
3019de12 7218 const char *empty = "";
6579e57b
AV
7219
7220 parent = dev->dev.parent;
6579e57b 7221 if (!parent)
3019de12 7222 return empty;
6579e57b
AV
7223
7224 driver = parent->driver;
7225 if (driver && driver->name)
3019de12
DM
7226 return driver->name;
7227 return empty;
6579e57b
AV
7228}
7229
6ea754eb
JP
7230static void __netdev_printk(const char *level, const struct net_device *dev,
7231 struct va_format *vaf)
256df2f3 7232{
b004ff49 7233 if (dev && dev->dev.parent) {
6ea754eb
JP
7234 dev_printk_emit(level[1] - '0',
7235 dev->dev.parent,
7236 "%s %s %s%s: %pV",
7237 dev_driver_string(dev->dev.parent),
7238 dev_name(dev->dev.parent),
7239 netdev_name(dev), netdev_reg_state(dev),
7240 vaf);
b004ff49 7241 } else if (dev) {
6ea754eb
JP
7242 printk("%s%s%s: %pV",
7243 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7244 } else {
6ea754eb 7245 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7246 }
256df2f3
JP
7247}
7248
6ea754eb
JP
7249void netdev_printk(const char *level, const struct net_device *dev,
7250 const char *format, ...)
256df2f3
JP
7251{
7252 struct va_format vaf;
7253 va_list args;
256df2f3
JP
7254
7255 va_start(args, format);
7256
7257 vaf.fmt = format;
7258 vaf.va = &args;
7259
6ea754eb 7260 __netdev_printk(level, dev, &vaf);
b004ff49 7261
256df2f3 7262 va_end(args);
256df2f3
JP
7263}
7264EXPORT_SYMBOL(netdev_printk);
7265
7266#define define_netdev_printk_level(func, level) \
6ea754eb 7267void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7268{ \
256df2f3
JP
7269 struct va_format vaf; \
7270 va_list args; \
7271 \
7272 va_start(args, fmt); \
7273 \
7274 vaf.fmt = fmt; \
7275 vaf.va = &args; \
7276 \
6ea754eb 7277 __netdev_printk(level, dev, &vaf); \
b004ff49 7278 \
256df2f3 7279 va_end(args); \
256df2f3
JP
7280} \
7281EXPORT_SYMBOL(func);
7282
7283define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7284define_netdev_printk_level(netdev_alert, KERN_ALERT);
7285define_netdev_printk_level(netdev_crit, KERN_CRIT);
7286define_netdev_printk_level(netdev_err, KERN_ERR);
7287define_netdev_printk_level(netdev_warn, KERN_WARNING);
7288define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7289define_netdev_printk_level(netdev_info, KERN_INFO);
7290
4665079c 7291static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7292{
7293 kfree(net->dev_name_head);
7294 kfree(net->dev_index_head);
7295}
7296
022cbae6 7297static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7298 .init = netdev_init,
7299 .exit = netdev_exit,
7300};
7301
4665079c 7302static void __net_exit default_device_exit(struct net *net)
ce286d32 7303{
e008b5fc 7304 struct net_device *dev, *aux;
ce286d32 7305 /*
e008b5fc 7306 * Push all migratable network devices back to the
ce286d32
EB
7307 * initial network namespace
7308 */
7309 rtnl_lock();
e008b5fc 7310 for_each_netdev_safe(net, dev, aux) {
ce286d32 7311 int err;
aca51397 7312 char fb_name[IFNAMSIZ];
ce286d32
EB
7313
7314 /* Ignore unmoveable devices (i.e. loopback) */
7315 if (dev->features & NETIF_F_NETNS_LOCAL)
7316 continue;
7317
e008b5fc
EB
7318 /* Leave virtual devices for the generic cleanup */
7319 if (dev->rtnl_link_ops)
7320 continue;
d0c082ce 7321
25985edc 7322 /* Push remaining network devices to init_net */
aca51397
PE
7323 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7324 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7325 if (err) {
7b6cd1ce
JP
7326 pr_emerg("%s: failed to move %s to init_net: %d\n",
7327 __func__, dev->name, err);
aca51397 7328 BUG();
ce286d32
EB
7329 }
7330 }
7331 rtnl_unlock();
7332}
7333
50624c93
EB
7334static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7335{
7336 /* Return with the rtnl_lock held when there are no network
7337 * devices unregistering in any network namespace in net_list.
7338 */
7339 struct net *net;
7340 bool unregistering;
ff960a73 7341 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 7342
ff960a73 7343 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 7344 for (;;) {
50624c93
EB
7345 unregistering = false;
7346 rtnl_lock();
7347 list_for_each_entry(net, net_list, exit_list) {
7348 if (net->dev_unreg_count > 0) {
7349 unregistering = true;
7350 break;
7351 }
7352 }
7353 if (!unregistering)
7354 break;
7355 __rtnl_unlock();
ff960a73
PZ
7356
7357 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 7358 }
ff960a73 7359 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
7360}
7361
04dc7f6b
EB
7362static void __net_exit default_device_exit_batch(struct list_head *net_list)
7363{
7364 /* At exit all network devices most be removed from a network
b595076a 7365 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7366 * Do this across as many network namespaces as possible to
7367 * improve batching efficiency.
7368 */
7369 struct net_device *dev;
7370 struct net *net;
7371 LIST_HEAD(dev_kill_list);
7372
50624c93
EB
7373 /* To prevent network device cleanup code from dereferencing
7374 * loopback devices or network devices that have been freed
7375 * wait here for all pending unregistrations to complete,
7376 * before unregistring the loopback device and allowing the
7377 * network namespace be freed.
7378 *
7379 * The netdev todo list containing all network devices
7380 * unregistrations that happen in default_device_exit_batch
7381 * will run in the rtnl_unlock() at the end of
7382 * default_device_exit_batch.
7383 */
7384 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7385 list_for_each_entry(net, net_list, exit_list) {
7386 for_each_netdev_reverse(net, dev) {
b0ab2fab 7387 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7388 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7389 else
7390 unregister_netdevice_queue(dev, &dev_kill_list);
7391 }
7392 }
7393 unregister_netdevice_many(&dev_kill_list);
7394 rtnl_unlock();
7395}
7396
022cbae6 7397static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7398 .exit = default_device_exit,
04dc7f6b 7399 .exit_batch = default_device_exit_batch,
ce286d32
EB
7400};
7401
1da177e4
LT
7402/*
7403 * Initialize the DEV module. At boot time this walks the device list and
7404 * unhooks any devices that fail to initialise (normally hardware not
7405 * present) and leaves us with a valid list of present and active devices.
7406 *
7407 */
7408
7409/*
7410 * This is called single threaded during boot, so no need
7411 * to take the rtnl semaphore.
7412 */
7413static int __init net_dev_init(void)
7414{
7415 int i, rc = -ENOMEM;
7416
7417 BUG_ON(!dev_boot_phase);
7418
1da177e4
LT
7419 if (dev_proc_init())
7420 goto out;
7421
8b41d188 7422 if (netdev_kobject_init())
1da177e4
LT
7423 goto out;
7424
7425 INIT_LIST_HEAD(&ptype_all);
82d8a867 7426 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7427 INIT_LIST_HEAD(&ptype_base[i]);
7428
62532da9
VY
7429 INIT_LIST_HEAD(&offload_base);
7430
881d966b
EB
7431 if (register_pernet_subsys(&netdev_net_ops))
7432 goto out;
1da177e4
LT
7433
7434 /*
7435 * Initialise the packet receive queues.
7436 */
7437
6f912042 7438 for_each_possible_cpu(i) {
e36fa2f7 7439 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7440
e36fa2f7 7441 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7442 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7443 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7444 sd->output_queue_tailp = &sd->output_queue;
df334545 7445#ifdef CONFIG_RPS
e36fa2f7
ED
7446 sd->csd.func = rps_trigger_softirq;
7447 sd->csd.info = sd;
e36fa2f7 7448 sd->cpu = i;
1e94d72f 7449#endif
0a9627f2 7450
e36fa2f7
ED
7451 sd->backlog.poll = process_backlog;
7452 sd->backlog.weight = weight_p;
1da177e4
LT
7453 }
7454
1da177e4
LT
7455 dev_boot_phase = 0;
7456
505d4f73
EB
7457 /* The loopback device is special if any other network devices
7458 * is present in a network namespace the loopback device must
7459 * be present. Since we now dynamically allocate and free the
7460 * loopback device ensure this invariant is maintained by
7461 * keeping the loopback device as the first device on the
7462 * list of network devices. Ensuring the loopback devices
7463 * is the first device that appears and the last network device
7464 * that disappears.
7465 */
7466 if (register_pernet_device(&loopback_net_ops))
7467 goto out;
7468
7469 if (register_pernet_device(&default_device_ops))
7470 goto out;
7471
962cf36c
CM
7472 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7473 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7474
7475 hotcpu_notifier(dev_cpu_callback, 0);
7476 dst_init();
1da177e4
LT
7477 rc = 0;
7478out:
7479 return rc;
7480}
7481
7482subsys_initcall(net_dev_init);