]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/core/dev.c
qed: fix invalid use of sizeof in qed_alloc_qm_data()
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
40e4e713 142#include <linux/crash_dump.h>
1da177e4 143
342709ef
PE
144#include "net-sysfs.h"
145
d565b0a1
HX
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
5d38a079
HX
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
1da177e4 152static DEFINE_SPINLOCK(ptype_lock);
62532da9 153static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
62532da9 156static struct list_head offload_base __read_mostly;
1da177e4 157
ae78dbfa 158static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
ae78dbfa 162
1da177e4 163/*
7562f876 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
165 * semaphore.
166 *
c6d14c84 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
7562f876 170 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
1da177e4 182DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
183EXPORT_SYMBOL(dev_base_lock);
184
af12fa6e
ET
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
52bd2d62 188static unsigned int napi_gen_id = NR_CPUS;
6180d9de 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 190
18afa4b0 191static seqcount_t devnet_rename_seq;
c91f6df2 192
4e985ada
TG
193static inline void dev_base_seq_inc(struct net *net)
194{
643aa9cb 195 while (++net->dev_base_seq == 0)
196 ;
4e985ada
TG
197}
198
881d966b 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 200{
8387ff25 201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 202
08e9897d 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
204}
205
881d966b 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 207{
7c28bd0b 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
209}
210
e36fa2f7 211static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
212{
213#ifdef CONFIG_RPS
e36fa2f7 214 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
215#endif
216}
217
e36fa2f7 218static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
219{
220#ifdef CONFIG_RPS
e36fa2f7 221 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
222#endif
223}
224
ce286d32 225/* Device list insertion */
53759be9 226static void list_netdevice(struct net_device *dev)
ce286d32 227{
c346dca1 228 struct net *net = dev_net(dev);
ce286d32
EB
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
c6d14c84 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
ce286d32 237 write_unlock_bh(&dev_base_lock);
4e985ada
TG
238
239 dev_base_seq_inc(net);
ce286d32
EB
240}
241
fb699dfd
ED
242/* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
ce286d32
EB
245static void unlist_netdevice(struct net_device *dev)
246{
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
c6d14c84 251 list_del_rcu(&dev->dev_list);
72c9528b 252 hlist_del_rcu(&dev->name_hlist);
fb699dfd 253 hlist_del_rcu(&dev->index_hlist);
ce286d32 254 write_unlock_bh(&dev_base_lock);
4e985ada
TG
255
256 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
257}
258
1da177e4
LT
259/*
260 * Our notifier list
261 */
262
f07d5b94 263static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
264
265/*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
bea3348e 269
9958da05 270DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 271EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 272
cf508b12 273#ifdef CONFIG_LOCKDEP
723e98b7 274/*
c773e847 275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
276 * according to dev->type
277 */
643aa9cb 278static const unsigned short netdev_lock_type[] = {
279 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 294
643aa9cb 295static const char *const netdev_lock_name[] = {
296 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
311
312static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 313static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
314
315static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316{
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324}
325
cf508b12
DM
326static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
723e98b7
JP
328{
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334}
cf508b12
DM
335
336static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337{
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344}
723e98b7 345#else
cf508b12
DM
346static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348{
349}
350static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
351{
352}
353#endif
1da177e4
LT
354
355/*******************************************************************************
eb13da1a 356 *
357 * Protocol management and registration routines
358 *
359 *******************************************************************************/
1da177e4 360
1da177e4 361
1da177e4
LT
362/*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
c07b68e8
ED
378static inline struct list_head *ptype_head(const struct packet_type *pt)
379{
380 if (pt->type == htons(ETH_P_ALL))
7866a621 381 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 382 else
7866a621
SN
383 return pt->dev ? &pt->dev->ptype_specific :
384 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
385}
386
1da177e4
LT
387/**
388 * dev_add_pack - add packet handler
389 * @pt: packet type declaration
390 *
391 * Add a protocol handler to the networking stack. The passed &packet_type
392 * is linked into kernel lists and may not be freed until it has been
393 * removed from the kernel lists.
394 *
4ec93edb 395 * This call does not sleep therefore it can not
1da177e4
LT
396 * guarantee all CPU's that are in middle of receiving packets
397 * will see the new packet type (until the next received packet).
398 */
399
400void dev_add_pack(struct packet_type *pt)
401{
c07b68e8 402 struct list_head *head = ptype_head(pt);
1da177e4 403
c07b68e8
ED
404 spin_lock(&ptype_lock);
405 list_add_rcu(&pt->list, head);
406 spin_unlock(&ptype_lock);
1da177e4 407}
d1b19dff 408EXPORT_SYMBOL(dev_add_pack);
1da177e4 409
1da177e4
LT
410/**
411 * __dev_remove_pack - remove packet handler
412 * @pt: packet type declaration
413 *
414 * Remove a protocol handler that was previously added to the kernel
415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
416 * from the kernel lists and can be freed or reused once this function
4ec93edb 417 * returns.
1da177e4
LT
418 *
419 * The packet type might still be in use by receivers
420 * and must not be freed until after all the CPU's have gone
421 * through a quiescent state.
422 */
423void __dev_remove_pack(struct packet_type *pt)
424{
c07b68e8 425 struct list_head *head = ptype_head(pt);
1da177e4
LT
426 struct packet_type *pt1;
427
c07b68e8 428 spin_lock(&ptype_lock);
1da177e4
LT
429
430 list_for_each_entry(pt1, head, list) {
431 if (pt == pt1) {
432 list_del_rcu(&pt->list);
433 goto out;
434 }
435 }
436
7b6cd1ce 437 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 438out:
c07b68e8 439 spin_unlock(&ptype_lock);
1da177e4 440}
d1b19dff
ED
441EXPORT_SYMBOL(__dev_remove_pack);
442
1da177e4
LT
443/**
444 * dev_remove_pack - remove packet handler
445 * @pt: packet type declaration
446 *
447 * Remove a protocol handler that was previously added to the kernel
448 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
449 * from the kernel lists and can be freed or reused once this function
450 * returns.
451 *
452 * This call sleeps to guarantee that no CPU is looking at the packet
453 * type after return.
454 */
455void dev_remove_pack(struct packet_type *pt)
456{
457 __dev_remove_pack(pt);
4ec93edb 458
1da177e4
LT
459 synchronize_net();
460}
d1b19dff 461EXPORT_SYMBOL(dev_remove_pack);
1da177e4 462
62532da9
VY
463
464/**
465 * dev_add_offload - register offload handlers
466 * @po: protocol offload declaration
467 *
468 * Add protocol offload handlers to the networking stack. The passed
469 * &proto_offload is linked into kernel lists and may not be freed until
470 * it has been removed from the kernel lists.
471 *
472 * This call does not sleep therefore it can not
473 * guarantee all CPU's that are in middle of receiving packets
474 * will see the new offload handlers (until the next received packet).
475 */
476void dev_add_offload(struct packet_offload *po)
477{
bdef7de4 478 struct packet_offload *elem;
62532da9
VY
479
480 spin_lock(&offload_lock);
bdef7de4
DM
481 list_for_each_entry(elem, &offload_base, list) {
482 if (po->priority < elem->priority)
483 break;
484 }
485 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
486 spin_unlock(&offload_lock);
487}
488EXPORT_SYMBOL(dev_add_offload);
489
490/**
491 * __dev_remove_offload - remove offload handler
492 * @po: packet offload declaration
493 *
494 * Remove a protocol offload handler that was previously added to the
495 * kernel offload handlers by dev_add_offload(). The passed &offload_type
496 * is removed from the kernel lists and can be freed or reused once this
497 * function returns.
498 *
499 * The packet type might still be in use by receivers
500 * and must not be freed until after all the CPU's have gone
501 * through a quiescent state.
502 */
1d143d9f 503static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
504{
505 struct list_head *head = &offload_base;
506 struct packet_offload *po1;
507
c53aa505 508 spin_lock(&offload_lock);
62532da9
VY
509
510 list_for_each_entry(po1, head, list) {
511 if (po == po1) {
512 list_del_rcu(&po->list);
513 goto out;
514 }
515 }
516
517 pr_warn("dev_remove_offload: %p not found\n", po);
518out:
c53aa505 519 spin_unlock(&offload_lock);
62532da9 520}
62532da9
VY
521
522/**
523 * dev_remove_offload - remove packet offload handler
524 * @po: packet offload declaration
525 *
526 * Remove a packet offload handler that was previously added to the kernel
527 * offload handlers by dev_add_offload(). The passed &offload_type is
528 * removed from the kernel lists and can be freed or reused once this
529 * function returns.
530 *
531 * This call sleeps to guarantee that no CPU is looking at the packet
532 * type after return.
533 */
534void dev_remove_offload(struct packet_offload *po)
535{
536 __dev_remove_offload(po);
537
538 synchronize_net();
539}
540EXPORT_SYMBOL(dev_remove_offload);
541
1da177e4 542/******************************************************************************
eb13da1a 543 *
544 * Device Boot-time Settings Routines
545 *
546 ******************************************************************************/
1da177e4
LT
547
548/* Boot time configuration table */
549static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550
551/**
552 * netdev_boot_setup_add - add new setup entry
553 * @name: name of the device
554 * @map: configured settings for the device
555 *
556 * Adds new setup entry to the dev_boot_setup list. The function
557 * returns 0 on error and 1 on success. This is a generic routine to
558 * all netdevices.
559 */
560static int netdev_boot_setup_add(char *name, struct ifmap *map)
561{
562 struct netdev_boot_setup *s;
563 int i;
564
565 s = dev_boot_setup;
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
568 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 569 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
570 memcpy(&s[i].map, map, sizeof(s[i].map));
571 break;
572 }
573 }
574
575 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
576}
577
578/**
722c9a0c 579 * netdev_boot_setup_check - check boot time settings
580 * @dev: the netdevice
1da177e4 581 *
722c9a0c 582 * Check boot time settings for the device.
583 * The found settings are set for the device to be used
584 * later in the device probing.
585 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
586 */
587int netdev_boot_setup_check(struct net_device *dev)
588{
589 struct netdev_boot_setup *s = dev_boot_setup;
590 int i;
591
592 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
593 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 594 !strcmp(dev->name, s[i].name)) {
722c9a0c 595 dev->irq = s[i].map.irq;
596 dev->base_addr = s[i].map.base_addr;
597 dev->mem_start = s[i].map.mem_start;
598 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
599 return 1;
600 }
601 }
602 return 0;
603}
d1b19dff 604EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
605
606
607/**
722c9a0c 608 * netdev_boot_base - get address from boot time settings
609 * @prefix: prefix for network device
610 * @unit: id for network device
611 *
612 * Check boot time settings for the base address of device.
613 * The found settings are set for the device to be used
614 * later in the device probing.
615 * Returns 0 if no settings found.
1da177e4
LT
616 */
617unsigned long netdev_boot_base(const char *prefix, int unit)
618{
619 const struct netdev_boot_setup *s = dev_boot_setup;
620 char name[IFNAMSIZ];
621 int i;
622
623 sprintf(name, "%s%d", prefix, unit);
624
625 /*
626 * If device already registered then return base of 1
627 * to indicate not to probe for this interface
628 */
881d966b 629 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
630 return 1;
631
632 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
633 if (!strcmp(name, s[i].name))
634 return s[i].map.base_addr;
635 return 0;
636}
637
638/*
639 * Saves at boot time configured settings for any netdevice.
640 */
641int __init netdev_boot_setup(char *str)
642{
643 int ints[5];
644 struct ifmap map;
645
646 str = get_options(str, ARRAY_SIZE(ints), ints);
647 if (!str || !*str)
648 return 0;
649
650 /* Save settings */
651 memset(&map, 0, sizeof(map));
652 if (ints[0] > 0)
653 map.irq = ints[1];
654 if (ints[0] > 1)
655 map.base_addr = ints[2];
656 if (ints[0] > 2)
657 map.mem_start = ints[3];
658 if (ints[0] > 3)
659 map.mem_end = ints[4];
660
661 /* Add new entry to the list */
662 return netdev_boot_setup_add(str, &map);
663}
664
665__setup("netdev=", netdev_boot_setup);
666
667/*******************************************************************************
eb13da1a 668 *
669 * Device Interface Subroutines
670 *
671 *******************************************************************************/
1da177e4 672
a54acb3a
ND
673/**
674 * dev_get_iflink - get 'iflink' value of a interface
675 * @dev: targeted interface
676 *
677 * Indicates the ifindex the interface is linked to.
678 * Physical interfaces have the same 'ifindex' and 'iflink' values.
679 */
680
681int dev_get_iflink(const struct net_device *dev)
682{
683 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
684 return dev->netdev_ops->ndo_get_iflink(dev);
685
7a66bbc9 686 return dev->ifindex;
a54acb3a
ND
687}
688EXPORT_SYMBOL(dev_get_iflink);
689
fc4099f1
PS
690/**
691 * dev_fill_metadata_dst - Retrieve tunnel egress information.
692 * @dev: targeted interface
693 * @skb: The packet.
694 *
695 * For better visibility of tunnel traffic OVS needs to retrieve
696 * egress tunnel information for a packet. Following API allows
697 * user to get this info.
698 */
699int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
700{
701 struct ip_tunnel_info *info;
702
703 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
704 return -EINVAL;
705
706 info = skb_tunnel_info_unclone(skb);
707 if (!info)
708 return -ENOMEM;
709 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
710 return -EINVAL;
711
712 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
713}
714EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715
1da177e4
LT
716/**
717 * __dev_get_by_name - find a device by its name
c4ea43c5 718 * @net: the applicable net namespace
1da177e4
LT
719 * @name: name to find
720 *
721 * Find an interface by name. Must be called under RTNL semaphore
722 * or @dev_base_lock. If the name is found a pointer to the device
723 * is returned. If the name is not found then %NULL is returned. The
724 * reference counters are not incremented so the caller must be
725 * careful with locks.
726 */
727
881d966b 728struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 729{
0bd8d536
ED
730 struct net_device *dev;
731 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 732
b67bfe0d 733 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
734 if (!strncmp(dev->name, name, IFNAMSIZ))
735 return dev;
0bd8d536 736
1da177e4
LT
737 return NULL;
738}
d1b19dff 739EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 740
72c9528b 741/**
722c9a0c 742 * dev_get_by_name_rcu - find a device by its name
743 * @net: the applicable net namespace
744 * @name: name to find
745 *
746 * Find an interface by name.
747 * If the name is found a pointer to the device is returned.
748 * If the name is not found then %NULL is returned.
749 * The reference counters are not incremented so the caller must be
750 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
751 */
752
753struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
754{
72c9528b
ED
755 struct net_device *dev;
756 struct hlist_head *head = dev_name_hash(net, name);
757
b67bfe0d 758 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
759 if (!strncmp(dev->name, name, IFNAMSIZ))
760 return dev;
761
762 return NULL;
763}
764EXPORT_SYMBOL(dev_get_by_name_rcu);
765
1da177e4
LT
766/**
767 * dev_get_by_name - find a device by its name
c4ea43c5 768 * @net: the applicable net namespace
1da177e4
LT
769 * @name: name to find
770 *
771 * Find an interface by name. This can be called from any
772 * context and does its own locking. The returned handle has
773 * the usage count incremented and the caller must use dev_put() to
774 * release it when it is no longer needed. %NULL is returned if no
775 * matching device is found.
776 */
777
881d966b 778struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
779{
780 struct net_device *dev;
781
72c9528b
ED
782 rcu_read_lock();
783 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
784 if (dev)
785 dev_hold(dev);
72c9528b 786 rcu_read_unlock();
1da177e4
LT
787 return dev;
788}
d1b19dff 789EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
790
791/**
792 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 793 * @net: the applicable net namespace
1da177e4
LT
794 * @ifindex: index of device
795 *
796 * Search for an interface by index. Returns %NULL if the device
797 * is not found or a pointer to the device. The device has not
798 * had its reference counter increased so the caller must be careful
799 * about locking. The caller must hold either the RTNL semaphore
800 * or @dev_base_lock.
801 */
802
881d966b 803struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 804{
0bd8d536
ED
805 struct net_device *dev;
806 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 807
b67bfe0d 808 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
809 if (dev->ifindex == ifindex)
810 return dev;
0bd8d536 811
1da177e4
LT
812 return NULL;
813}
d1b19dff 814EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 815
fb699dfd
ED
816/**
817 * dev_get_by_index_rcu - find a device by its ifindex
818 * @net: the applicable net namespace
819 * @ifindex: index of device
820 *
821 * Search for an interface by index. Returns %NULL if the device
822 * is not found or a pointer to the device. The device has not
823 * had its reference counter increased so the caller must be careful
824 * about locking. The caller must hold RCU lock.
825 */
826
827struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
828{
fb699dfd
ED
829 struct net_device *dev;
830 struct hlist_head *head = dev_index_hash(net, ifindex);
831
b67bfe0d 832 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
833 if (dev->ifindex == ifindex)
834 return dev;
835
836 return NULL;
837}
838EXPORT_SYMBOL(dev_get_by_index_rcu);
839
1da177e4
LT
840
841/**
842 * dev_get_by_index - find a device by its ifindex
c4ea43c5 843 * @net: the applicable net namespace
1da177e4
LT
844 * @ifindex: index of device
845 *
846 * Search for an interface by index. Returns NULL if the device
847 * is not found or a pointer to the device. The device returned has
848 * had a reference added and the pointer is safe until the user calls
849 * dev_put to indicate they have finished with it.
850 */
851
881d966b 852struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
853{
854 struct net_device *dev;
855
fb699dfd
ED
856 rcu_read_lock();
857 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
858 if (dev)
859 dev_hold(dev);
fb699dfd 860 rcu_read_unlock();
1da177e4
LT
861 return dev;
862}
d1b19dff 863EXPORT_SYMBOL(dev_get_by_index);
1da177e4 864
5dbe7c17
NS
865/**
866 * netdev_get_name - get a netdevice name, knowing its ifindex.
867 * @net: network namespace
868 * @name: a pointer to the buffer where the name will be stored.
869 * @ifindex: the ifindex of the interface to get the name from.
870 *
871 * The use of raw_seqcount_begin() and cond_resched() before
872 * retrying is required as we want to give the writers a chance
873 * to complete when CONFIG_PREEMPT is not set.
874 */
875int netdev_get_name(struct net *net, char *name, int ifindex)
876{
877 struct net_device *dev;
878 unsigned int seq;
879
880retry:
881 seq = raw_seqcount_begin(&devnet_rename_seq);
882 rcu_read_lock();
883 dev = dev_get_by_index_rcu(net, ifindex);
884 if (!dev) {
885 rcu_read_unlock();
886 return -ENODEV;
887 }
888
889 strcpy(name, dev->name);
890 rcu_read_unlock();
891 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
892 cond_resched();
893 goto retry;
894 }
895
896 return 0;
897}
898
1da177e4 899/**
941666c2 900 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 901 * @net: the applicable net namespace
1da177e4
LT
902 * @type: media type of device
903 * @ha: hardware address
904 *
905 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
906 * is not found or a pointer to the device.
907 * The caller must hold RCU or RTNL.
941666c2 908 * The returned device has not had its ref count increased
1da177e4
LT
909 * and the caller must therefore be careful about locking
910 *
1da177e4
LT
911 */
912
941666c2
ED
913struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
914 const char *ha)
1da177e4
LT
915{
916 struct net_device *dev;
917
941666c2 918 for_each_netdev_rcu(net, dev)
1da177e4
LT
919 if (dev->type == type &&
920 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
921 return dev;
922
923 return NULL;
1da177e4 924}
941666c2 925EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 926
881d966b 927struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
928{
929 struct net_device *dev;
930
4e9cac2b 931 ASSERT_RTNL();
881d966b 932 for_each_netdev(net, dev)
4e9cac2b 933 if (dev->type == type)
7562f876
PE
934 return dev;
935
936 return NULL;
4e9cac2b 937}
4e9cac2b
PM
938EXPORT_SYMBOL(__dev_getfirstbyhwtype);
939
881d966b 940struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 941{
99fe3c39 942 struct net_device *dev, *ret = NULL;
4e9cac2b 943
99fe3c39
ED
944 rcu_read_lock();
945 for_each_netdev_rcu(net, dev)
946 if (dev->type == type) {
947 dev_hold(dev);
948 ret = dev;
949 break;
950 }
951 rcu_read_unlock();
952 return ret;
1da177e4 953}
1da177e4
LT
954EXPORT_SYMBOL(dev_getfirstbyhwtype);
955
956/**
6c555490 957 * __dev_get_by_flags - find any device with given flags
c4ea43c5 958 * @net: the applicable net namespace
1da177e4
LT
959 * @if_flags: IFF_* values
960 * @mask: bitmask of bits in if_flags to check
961 *
962 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 963 * is not found or a pointer to the device. Must be called inside
6c555490 964 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
965 */
966
6c555490
WC
967struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 unsigned short mask)
1da177e4 969{
7562f876 970 struct net_device *dev, *ret;
1da177e4 971
6c555490
WC
972 ASSERT_RTNL();
973
7562f876 974 ret = NULL;
6c555490 975 for_each_netdev(net, dev) {
1da177e4 976 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 977 ret = dev;
1da177e4
LT
978 break;
979 }
980 }
7562f876 981 return ret;
1da177e4 982}
6c555490 983EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
984
985/**
986 * dev_valid_name - check if name is okay for network device
987 * @name: name string
988 *
989 * Network device names need to be valid file names to
c7fa9d18
DM
990 * to allow sysfs to work. We also disallow any kind of
991 * whitespace.
1da177e4 992 */
95f050bf 993bool dev_valid_name(const char *name)
1da177e4 994{
c7fa9d18 995 if (*name == '\0')
95f050bf 996 return false;
b6fe17d6 997 if (strlen(name) >= IFNAMSIZ)
95f050bf 998 return false;
c7fa9d18 999 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1000 return false;
c7fa9d18
DM
1001
1002 while (*name) {
a4176a93 1003 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1004 return false;
c7fa9d18
DM
1005 name++;
1006 }
95f050bf 1007 return true;
1da177e4 1008}
d1b19dff 1009EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1010
1011/**
b267b179
EB
1012 * __dev_alloc_name - allocate a name for a device
1013 * @net: network namespace to allocate the device name in
1da177e4 1014 * @name: name format string
b267b179 1015 * @buf: scratch buffer and result name string
1da177e4
LT
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1024 */
1025
b267b179 1026static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1027{
1028 int i = 0;
1da177e4
LT
1029 const char *p;
1030 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1031 unsigned long *inuse;
1da177e4
LT
1032 struct net_device *d;
1033
1034 p = strnchr(name, IFNAMSIZ-1, '%');
1035 if (p) {
1036 /*
1037 * Verify the string as this thing may have come from
1038 * the user. There must be either one "%d" and no other "%"
1039 * characters.
1040 */
1041 if (p[1] != 'd' || strchr(p + 2, '%'))
1042 return -EINVAL;
1043
1044 /* Use one page as a bit array of possible slots */
cfcabdcc 1045 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1046 if (!inuse)
1047 return -ENOMEM;
1048
881d966b 1049 for_each_netdev(net, d) {
1da177e4
LT
1050 if (!sscanf(d->name, name, &i))
1051 continue;
1052 if (i < 0 || i >= max_netdevices)
1053 continue;
1054
1055 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1056 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1057 if (!strncmp(buf, d->name, IFNAMSIZ))
1058 set_bit(i, inuse);
1059 }
1060
1061 i = find_first_zero_bit(inuse, max_netdevices);
1062 free_page((unsigned long) inuse);
1063 }
1064
d9031024
OP
1065 if (buf != name)
1066 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1067 if (!__dev_get_by_name(net, buf))
1da177e4 1068 return i;
1da177e4
LT
1069
1070 /* It is possible to run out of possible slots
1071 * when the name is long and there isn't enough space left
1072 * for the digits, or if all bits are used.
1073 */
1074 return -ENFILE;
1075}
1076
b267b179
EB
1077/**
1078 * dev_alloc_name - allocate a name for a device
1079 * @dev: device
1080 * @name: name format string
1081 *
1082 * Passed a format string - eg "lt%d" it will try and find a suitable
1083 * id. It scans list of devices to build up a free map, then chooses
1084 * the first empty slot. The caller must hold the dev_base or rtnl lock
1085 * while allocating the name and adding the device in order to avoid
1086 * duplicates.
1087 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1088 * Returns the number of the unit assigned or a negative errno code.
1089 */
1090
1091int dev_alloc_name(struct net_device *dev, const char *name)
1092{
1093 char buf[IFNAMSIZ];
1094 struct net *net;
1095 int ret;
1096
c346dca1
YH
1097 BUG_ON(!dev_net(dev));
1098 net = dev_net(dev);
b267b179
EB
1099 ret = __dev_alloc_name(net, name, buf);
1100 if (ret >= 0)
1101 strlcpy(dev->name, buf, IFNAMSIZ);
1102 return ret;
1103}
d1b19dff 1104EXPORT_SYMBOL(dev_alloc_name);
b267b179 1105
828de4f6
G
1106static int dev_alloc_name_ns(struct net *net,
1107 struct net_device *dev,
1108 const char *name)
d9031024 1109{
828de4f6
G
1110 char buf[IFNAMSIZ];
1111 int ret;
8ce6cebc 1112
828de4f6
G
1113 ret = __dev_alloc_name(net, name, buf);
1114 if (ret >= 0)
1115 strlcpy(dev->name, buf, IFNAMSIZ);
1116 return ret;
1117}
1118
1119static int dev_get_valid_name(struct net *net,
1120 struct net_device *dev,
1121 const char *name)
1122{
1123 BUG_ON(!net);
8ce6cebc 1124
d9031024
OP
1125 if (!dev_valid_name(name))
1126 return -EINVAL;
1127
1c5cae81 1128 if (strchr(name, '%'))
828de4f6 1129 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1130 else if (__dev_get_by_name(net, name))
1131 return -EEXIST;
8ce6cebc
DL
1132 else if (dev->name != name)
1133 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1134
1135 return 0;
1136}
1da177e4
LT
1137
1138/**
1139 * dev_change_name - change name of a device
1140 * @dev: device
1141 * @newname: name (or format string) must be at least IFNAMSIZ
1142 *
1143 * Change name of a device, can pass format strings "eth%d".
1144 * for wildcarding.
1145 */
cf04a4c7 1146int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1147{
238fa362 1148 unsigned char old_assign_type;
fcc5a03a 1149 char oldname[IFNAMSIZ];
1da177e4 1150 int err = 0;
fcc5a03a 1151 int ret;
881d966b 1152 struct net *net;
1da177e4
LT
1153
1154 ASSERT_RTNL();
c346dca1 1155 BUG_ON(!dev_net(dev));
1da177e4 1156
c346dca1 1157 net = dev_net(dev);
1da177e4
LT
1158 if (dev->flags & IFF_UP)
1159 return -EBUSY;
1160
30e6c9fa 1161 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1162
1163 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1164 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1165 return 0;
c91f6df2 1166 }
c8d90dca 1167
fcc5a03a
HX
1168 memcpy(oldname, dev->name, IFNAMSIZ);
1169
828de4f6 1170 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1171 if (err < 0) {
30e6c9fa 1172 write_seqcount_end(&devnet_rename_seq);
d9031024 1173 return err;
c91f6df2 1174 }
1da177e4 1175
6fe82a39
VF
1176 if (oldname[0] && !strchr(oldname, '%'))
1177 netdev_info(dev, "renamed from %s\n", oldname);
1178
238fa362
TG
1179 old_assign_type = dev->name_assign_type;
1180 dev->name_assign_type = NET_NAME_RENAMED;
1181
fcc5a03a 1182rollback:
a1b3f594
EB
1183 ret = device_rename(&dev->dev, dev->name);
1184 if (ret) {
1185 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1186 dev->name_assign_type = old_assign_type;
30e6c9fa 1187 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1188 return ret;
dcc99773 1189 }
7f988eab 1190
30e6c9fa 1191 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1192
5bb025fa
VF
1193 netdev_adjacent_rename_links(dev, oldname);
1194
7f988eab 1195 write_lock_bh(&dev_base_lock);
372b2312 1196 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1197 write_unlock_bh(&dev_base_lock);
1198
1199 synchronize_rcu();
1200
1201 write_lock_bh(&dev_base_lock);
1202 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1203 write_unlock_bh(&dev_base_lock);
1204
056925ab 1205 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1206 ret = notifier_to_errno(ret);
1207
1208 if (ret) {
91e9c07b
ED
1209 /* err >= 0 after dev_alloc_name() or stores the first errno */
1210 if (err >= 0) {
fcc5a03a 1211 err = ret;
30e6c9fa 1212 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1213 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1214 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1215 dev->name_assign_type = old_assign_type;
1216 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1217 goto rollback;
91e9c07b 1218 } else {
7b6cd1ce 1219 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1220 dev->name, ret);
fcc5a03a
HX
1221 }
1222 }
1da177e4
LT
1223
1224 return err;
1225}
1226
0b815a1a
SH
1227/**
1228 * dev_set_alias - change ifalias of a device
1229 * @dev: device
1230 * @alias: name up to IFALIASZ
f0db275a 1231 * @len: limit of bytes to copy from info
0b815a1a
SH
1232 *
1233 * Set ifalias for a device,
1234 */
1235int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1236{
7364e445
AK
1237 char *new_ifalias;
1238
0b815a1a
SH
1239 ASSERT_RTNL();
1240
1241 if (len >= IFALIASZ)
1242 return -EINVAL;
1243
96ca4a2c 1244 if (!len) {
388dfc2d
SK
1245 kfree(dev->ifalias);
1246 dev->ifalias = NULL;
96ca4a2c
OH
1247 return 0;
1248 }
1249
7364e445
AK
1250 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1251 if (!new_ifalias)
0b815a1a 1252 return -ENOMEM;
7364e445 1253 dev->ifalias = new_ifalias;
0b815a1a
SH
1254
1255 strlcpy(dev->ifalias, alias, len+1);
1256 return len;
1257}
1258
1259
d8a33ac4 1260/**
3041a069 1261 * netdev_features_change - device changes features
d8a33ac4
SH
1262 * @dev: device to cause notification
1263 *
1264 * Called to indicate a device has changed features.
1265 */
1266void netdev_features_change(struct net_device *dev)
1267{
056925ab 1268 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1269}
1270EXPORT_SYMBOL(netdev_features_change);
1271
1da177e4
LT
1272/**
1273 * netdev_state_change - device changes state
1274 * @dev: device to cause notification
1275 *
1276 * Called to indicate a device has changed state. This function calls
1277 * the notifier chains for netdev_chain and sends a NEWLINK message
1278 * to the routing socket.
1279 */
1280void netdev_state_change(struct net_device *dev)
1281{
1282 if (dev->flags & IFF_UP) {
54951194
LP
1283 struct netdev_notifier_change_info change_info;
1284
1285 change_info.flags_changed = 0;
1286 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1287 &change_info.info);
7f294054 1288 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1289 }
1290}
d1b19dff 1291EXPORT_SYMBOL(netdev_state_change);
1da177e4 1292
ee89bab1 1293/**
722c9a0c 1294 * netdev_notify_peers - notify network peers about existence of @dev
1295 * @dev: network device
ee89bab1
AW
1296 *
1297 * Generate traffic such that interested network peers are aware of
1298 * @dev, such as by generating a gratuitous ARP. This may be used when
1299 * a device wants to inform the rest of the network about some sort of
1300 * reconfiguration such as a failover event or virtual machine
1301 * migration.
1302 */
1303void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1304{
ee89bab1
AW
1305 rtnl_lock();
1306 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1307 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1308 rtnl_unlock();
c1da4ac7 1309}
ee89bab1 1310EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1311
bd380811 1312static int __dev_open(struct net_device *dev)
1da177e4 1313{
d314774c 1314 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1315 int ret;
1da177e4 1316
e46b66bc
BH
1317 ASSERT_RTNL();
1318
1da177e4
LT
1319 if (!netif_device_present(dev))
1320 return -ENODEV;
1321
ca99ca14
NH
1322 /* Block netpoll from trying to do any rx path servicing.
1323 * If we don't do this there is a chance ndo_poll_controller
1324 * or ndo_poll may be running while we open the device
1325 */
66b5552f 1326 netpoll_poll_disable(dev);
ca99ca14 1327
3b8bcfd5
JB
1328 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1329 ret = notifier_to_errno(ret);
1330 if (ret)
1331 return ret;
1332
1da177e4 1333 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1334
d314774c
SH
1335 if (ops->ndo_validate_addr)
1336 ret = ops->ndo_validate_addr(dev);
bada339b 1337
d314774c
SH
1338 if (!ret && ops->ndo_open)
1339 ret = ops->ndo_open(dev);
1da177e4 1340
66b5552f 1341 netpoll_poll_enable(dev);
ca99ca14 1342
bada339b
JG
1343 if (ret)
1344 clear_bit(__LINK_STATE_START, &dev->state);
1345 else {
1da177e4 1346 dev->flags |= IFF_UP;
4417da66 1347 dev_set_rx_mode(dev);
1da177e4 1348 dev_activate(dev);
7bf23575 1349 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1350 }
bada339b 1351
1da177e4
LT
1352 return ret;
1353}
1354
1355/**
bd380811
PM
1356 * dev_open - prepare an interface for use.
1357 * @dev: device to open
1da177e4 1358 *
bd380811
PM
1359 * Takes a device from down to up state. The device's private open
1360 * function is invoked and then the multicast lists are loaded. Finally
1361 * the device is moved into the up state and a %NETDEV_UP message is
1362 * sent to the netdev notifier chain.
1363 *
1364 * Calling this function on an active interface is a nop. On a failure
1365 * a negative errno code is returned.
1da177e4 1366 */
bd380811
PM
1367int dev_open(struct net_device *dev)
1368{
1369 int ret;
1370
bd380811
PM
1371 if (dev->flags & IFF_UP)
1372 return 0;
1373
bd380811
PM
1374 ret = __dev_open(dev);
1375 if (ret < 0)
1376 return ret;
1377
7f294054 1378 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1379 call_netdevice_notifiers(NETDEV_UP, dev);
1380
1381 return ret;
1382}
1383EXPORT_SYMBOL(dev_open);
1384
44345724 1385static int __dev_close_many(struct list_head *head)
1da177e4 1386{
44345724 1387 struct net_device *dev;
e46b66bc 1388
bd380811 1389 ASSERT_RTNL();
9d5010db
DM
1390 might_sleep();
1391
5cde2829 1392 list_for_each_entry(dev, head, close_list) {
3f4df206 1393 /* Temporarily disable netpoll until the interface is down */
66b5552f 1394 netpoll_poll_disable(dev);
3f4df206 1395
44345724 1396 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1397
44345724 1398 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1399
44345724
OP
1400 /* Synchronize to scheduled poll. We cannot touch poll list, it
1401 * can be even on different cpu. So just clear netif_running().
1402 *
1403 * dev->stop() will invoke napi_disable() on all of it's
1404 * napi_struct instances on this device.
1405 */
4e857c58 1406 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1407 }
1da177e4 1408
44345724 1409 dev_deactivate_many(head);
d8b2a4d2 1410
5cde2829 1411 list_for_each_entry(dev, head, close_list) {
44345724 1412 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1413
44345724
OP
1414 /*
1415 * Call the device specific close. This cannot fail.
1416 * Only if device is UP
1417 *
1418 * We allow it to be called even after a DETACH hot-plug
1419 * event.
1420 */
1421 if (ops->ndo_stop)
1422 ops->ndo_stop(dev);
1423
44345724 1424 dev->flags &= ~IFF_UP;
66b5552f 1425 netpoll_poll_enable(dev);
44345724
OP
1426 }
1427
1428 return 0;
1429}
1430
1431static int __dev_close(struct net_device *dev)
1432{
f87e6f47 1433 int retval;
44345724
OP
1434 LIST_HEAD(single);
1435
5cde2829 1436 list_add(&dev->close_list, &single);
f87e6f47
LT
1437 retval = __dev_close_many(&single);
1438 list_del(&single);
ca99ca14 1439
f87e6f47 1440 return retval;
44345724
OP
1441}
1442
99c4a26a 1443int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1444{
1445 struct net_device *dev, *tmp;
1da177e4 1446
5cde2829
EB
1447 /* Remove the devices that don't need to be closed */
1448 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1449 if (!(dev->flags & IFF_UP))
5cde2829 1450 list_del_init(&dev->close_list);
44345724
OP
1451
1452 __dev_close_many(head);
1da177e4 1453
5cde2829 1454 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1455 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1456 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1457 if (unlink)
1458 list_del_init(&dev->close_list);
44345724 1459 }
bd380811
PM
1460
1461 return 0;
1462}
99c4a26a 1463EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1464
1465/**
1466 * dev_close - shutdown an interface.
1467 * @dev: device to shutdown
1468 *
1469 * This function moves an active device into down state. A
1470 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1471 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1472 * chain.
1473 */
1474int dev_close(struct net_device *dev)
1475{
e14a5993
ED
1476 if (dev->flags & IFF_UP) {
1477 LIST_HEAD(single);
1da177e4 1478
5cde2829 1479 list_add(&dev->close_list, &single);
99c4a26a 1480 dev_close_many(&single, true);
e14a5993
ED
1481 list_del(&single);
1482 }
da6e378b 1483 return 0;
1da177e4 1484}
d1b19dff 1485EXPORT_SYMBOL(dev_close);
1da177e4
LT
1486
1487
0187bdfb
BH
1488/**
1489 * dev_disable_lro - disable Large Receive Offload on a device
1490 * @dev: device
1491 *
1492 * Disable Large Receive Offload (LRO) on a net device. Must be
1493 * called under RTNL. This is needed if received packets may be
1494 * forwarded to another interface.
1495 */
1496void dev_disable_lro(struct net_device *dev)
1497{
fbe168ba
MK
1498 struct net_device *lower_dev;
1499 struct list_head *iter;
529d0489 1500
bc5787c6
MM
1501 dev->wanted_features &= ~NETIF_F_LRO;
1502 netdev_update_features(dev);
27660515 1503
22d5969f
MM
1504 if (unlikely(dev->features & NETIF_F_LRO))
1505 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1506
1507 netdev_for_each_lower_dev(dev, lower_dev, iter)
1508 dev_disable_lro(lower_dev);
0187bdfb
BH
1509}
1510EXPORT_SYMBOL(dev_disable_lro);
1511
351638e7
JP
1512static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1513 struct net_device *dev)
1514{
1515 struct netdev_notifier_info info;
1516
1517 netdev_notifier_info_init(&info, dev);
1518 return nb->notifier_call(nb, val, &info);
1519}
0187bdfb 1520
881d966b
EB
1521static int dev_boot_phase = 1;
1522
1da177e4 1523/**
722c9a0c 1524 * register_netdevice_notifier - register a network notifier block
1525 * @nb: notifier
1da177e4 1526 *
722c9a0c 1527 * Register a notifier to be called when network device events occur.
1528 * The notifier passed is linked into the kernel structures and must
1529 * not be reused until it has been unregistered. A negative errno code
1530 * is returned on a failure.
1da177e4 1531 *
722c9a0c 1532 * When registered all registration and up events are replayed
1533 * to the new notifier to allow device to have a race free
1534 * view of the network device list.
1da177e4
LT
1535 */
1536
1537int register_netdevice_notifier(struct notifier_block *nb)
1538{
1539 struct net_device *dev;
fcc5a03a 1540 struct net_device *last;
881d966b 1541 struct net *net;
1da177e4
LT
1542 int err;
1543
1544 rtnl_lock();
f07d5b94 1545 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1546 if (err)
1547 goto unlock;
881d966b
EB
1548 if (dev_boot_phase)
1549 goto unlock;
1550 for_each_net(net) {
1551 for_each_netdev(net, dev) {
351638e7 1552 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1553 err = notifier_to_errno(err);
1554 if (err)
1555 goto rollback;
1556
1557 if (!(dev->flags & IFF_UP))
1558 continue;
1da177e4 1559
351638e7 1560 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1561 }
1da177e4 1562 }
fcc5a03a
HX
1563
1564unlock:
1da177e4
LT
1565 rtnl_unlock();
1566 return err;
fcc5a03a
HX
1567
1568rollback:
1569 last = dev;
881d966b
EB
1570 for_each_net(net) {
1571 for_each_netdev(net, dev) {
1572 if (dev == last)
8f891489 1573 goto outroll;
fcc5a03a 1574
881d966b 1575 if (dev->flags & IFF_UP) {
351638e7
JP
1576 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1577 dev);
1578 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1579 }
351638e7 1580 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1581 }
fcc5a03a 1582 }
c67625a1 1583
8f891489 1584outroll:
c67625a1 1585 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1586 goto unlock;
1da177e4 1587}
d1b19dff 1588EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1589
1590/**
722c9a0c 1591 * unregister_netdevice_notifier - unregister a network notifier block
1592 * @nb: notifier
1da177e4 1593 *
722c9a0c 1594 * Unregister a notifier previously registered by
1595 * register_netdevice_notifier(). The notifier is unlinked into the
1596 * kernel structures and may then be reused. A negative errno code
1597 * is returned on a failure.
7d3d43da 1598 *
722c9a0c 1599 * After unregistering unregister and down device events are synthesized
1600 * for all devices on the device list to the removed notifier to remove
1601 * the need for special case cleanup code.
1da177e4
LT
1602 */
1603
1604int unregister_netdevice_notifier(struct notifier_block *nb)
1605{
7d3d43da
EB
1606 struct net_device *dev;
1607 struct net *net;
9f514950
HX
1608 int err;
1609
1610 rtnl_lock();
f07d5b94 1611 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1612 if (err)
1613 goto unlock;
1614
1615 for_each_net(net) {
1616 for_each_netdev(net, dev) {
1617 if (dev->flags & IFF_UP) {
351638e7
JP
1618 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1619 dev);
1620 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1621 }
351638e7 1622 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1623 }
1624 }
1625unlock:
9f514950
HX
1626 rtnl_unlock();
1627 return err;
1da177e4 1628}
d1b19dff 1629EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1630
351638e7
JP
1631/**
1632 * call_netdevice_notifiers_info - call all network notifier blocks
1633 * @val: value passed unmodified to notifier function
1634 * @dev: net_device pointer passed unmodified to notifier function
1635 * @info: notifier information data
1636 *
1637 * Call all network notifier blocks. Parameters and return value
1638 * are as for raw_notifier_call_chain().
1639 */
1640
1d143d9f 1641static int call_netdevice_notifiers_info(unsigned long val,
1642 struct net_device *dev,
1643 struct netdev_notifier_info *info)
351638e7
JP
1644{
1645 ASSERT_RTNL();
1646 netdev_notifier_info_init(info, dev);
1647 return raw_notifier_call_chain(&netdev_chain, val, info);
1648}
351638e7 1649
1da177e4
LT
1650/**
1651 * call_netdevice_notifiers - call all network notifier blocks
1652 * @val: value passed unmodified to notifier function
c4ea43c5 1653 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1654 *
1655 * Call all network notifier blocks. Parameters and return value
f07d5b94 1656 * are as for raw_notifier_call_chain().
1da177e4
LT
1657 */
1658
ad7379d4 1659int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1660{
351638e7
JP
1661 struct netdev_notifier_info info;
1662
1663 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1664}
edf947f1 1665EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1666
1cf51900 1667#ifdef CONFIG_NET_INGRESS
4577139b
DB
1668static struct static_key ingress_needed __read_mostly;
1669
1670void net_inc_ingress_queue(void)
1671{
1672 static_key_slow_inc(&ingress_needed);
1673}
1674EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1675
1676void net_dec_ingress_queue(void)
1677{
1678 static_key_slow_dec(&ingress_needed);
1679}
1680EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1681#endif
1682
1f211a1b
DB
1683#ifdef CONFIG_NET_EGRESS
1684static struct static_key egress_needed __read_mostly;
1685
1686void net_inc_egress_queue(void)
1687{
1688 static_key_slow_inc(&egress_needed);
1689}
1690EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1691
1692void net_dec_egress_queue(void)
1693{
1694 static_key_slow_dec(&egress_needed);
1695}
1696EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1697#endif
1698
c5905afb 1699static struct static_key netstamp_needed __read_mostly;
b90e5794 1700#ifdef HAVE_JUMP_LABEL
b90e5794 1701static atomic_t netstamp_needed_deferred;
13baa00a 1702static atomic_t netstamp_wanted;
5fa8bbda 1703static void netstamp_clear(struct work_struct *work)
1da177e4 1704{
b90e5794 1705 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1706 int wanted;
b90e5794 1707
13baa00a
ED
1708 wanted = atomic_add_return(deferred, &netstamp_wanted);
1709 if (wanted > 0)
1710 static_key_enable(&netstamp_needed);
1711 else
1712 static_key_disable(&netstamp_needed);
5fa8bbda
ED
1713}
1714static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1715#endif
5fa8bbda
ED
1716
1717void net_enable_timestamp(void)
1718{
13baa00a
ED
1719#ifdef HAVE_JUMP_LABEL
1720 int wanted;
1721
1722 while (1) {
1723 wanted = atomic_read(&netstamp_wanted);
1724 if (wanted <= 0)
1725 break;
1726 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1727 return;
1728 }
1729 atomic_inc(&netstamp_needed_deferred);
1730 schedule_work(&netstamp_work);
1731#else
c5905afb 1732 static_key_slow_inc(&netstamp_needed);
13baa00a 1733#endif
1da177e4 1734}
d1b19dff 1735EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1736
1737void net_disable_timestamp(void)
1738{
b90e5794 1739#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1740 int wanted;
1741
1742 while (1) {
1743 wanted = atomic_read(&netstamp_wanted);
1744 if (wanted <= 1)
1745 break;
1746 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1747 return;
1748 }
1749 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1750 schedule_work(&netstamp_work);
1751#else
c5905afb 1752 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1753#endif
1da177e4 1754}
d1b19dff 1755EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1756
3b098e2d 1757static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1758{
2456e855 1759 skb->tstamp = 0;
c5905afb 1760 if (static_key_false(&netstamp_needed))
a61bbcf2 1761 __net_timestamp(skb);
1da177e4
LT
1762}
1763
588f0330 1764#define net_timestamp_check(COND, SKB) \
c5905afb 1765 if (static_key_false(&netstamp_needed)) { \
2456e855 1766 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1767 __net_timestamp(SKB); \
1768 } \
3b098e2d 1769
f4b05d27 1770bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1771{
1772 unsigned int len;
1773
1774 if (!(dev->flags & IFF_UP))
1775 return false;
1776
1777 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1778 if (skb->len <= len)
1779 return true;
1780
1781 /* if TSO is enabled, we don't care about the length as the packet
1782 * could be forwarded without being segmented before
1783 */
1784 if (skb_is_gso(skb))
1785 return true;
1786
1787 return false;
1788}
1ee481fb 1789EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1790
a0265d28
HX
1791int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1792{
4e3264d2 1793 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1794
4e3264d2
MKL
1795 if (likely(!ret)) {
1796 skb->protocol = eth_type_trans(skb, dev);
1797 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1798 }
a0265d28 1799
4e3264d2 1800 return ret;
a0265d28
HX
1801}
1802EXPORT_SYMBOL_GPL(__dev_forward_skb);
1803
44540960
AB
1804/**
1805 * dev_forward_skb - loopback an skb to another netif
1806 *
1807 * @dev: destination network device
1808 * @skb: buffer to forward
1809 *
1810 * return values:
1811 * NET_RX_SUCCESS (no congestion)
6ec82562 1812 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1813 *
1814 * dev_forward_skb can be used for injecting an skb from the
1815 * start_xmit function of one device into the receive queue
1816 * of another device.
1817 *
1818 * The receiving device may be in another namespace, so
1819 * we have to clear all information in the skb that could
1820 * impact namespace isolation.
1821 */
1822int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1823{
a0265d28 1824 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1825}
1826EXPORT_SYMBOL_GPL(dev_forward_skb);
1827
71d9dec2
CG
1828static inline int deliver_skb(struct sk_buff *skb,
1829 struct packet_type *pt_prev,
1830 struct net_device *orig_dev)
1831{
1080e512
MT
1832 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1833 return -ENOMEM;
71d9dec2
CG
1834 atomic_inc(&skb->users);
1835 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1836}
1837
7866a621
SN
1838static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1839 struct packet_type **pt,
fbcb2170
JP
1840 struct net_device *orig_dev,
1841 __be16 type,
7866a621
SN
1842 struct list_head *ptype_list)
1843{
1844 struct packet_type *ptype, *pt_prev = *pt;
1845
1846 list_for_each_entry_rcu(ptype, ptype_list, list) {
1847 if (ptype->type != type)
1848 continue;
1849 if (pt_prev)
fbcb2170 1850 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1851 pt_prev = ptype;
1852 }
1853 *pt = pt_prev;
1854}
1855
c0de08d0
EL
1856static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1857{
a3d744e9 1858 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1859 return false;
1860
1861 if (ptype->id_match)
1862 return ptype->id_match(ptype, skb->sk);
1863 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1864 return true;
1865
1866 return false;
1867}
1868
1da177e4
LT
1869/*
1870 * Support routine. Sends outgoing frames to any network
1871 * taps currently in use.
1872 */
1873
74b20582 1874void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1875{
1876 struct packet_type *ptype;
71d9dec2
CG
1877 struct sk_buff *skb2 = NULL;
1878 struct packet_type *pt_prev = NULL;
7866a621 1879 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1880
1da177e4 1881 rcu_read_lock();
7866a621
SN
1882again:
1883 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1884 /* Never send packets back to the socket
1885 * they originated from - MvS (miquels@drinkel.ow.org)
1886 */
7866a621
SN
1887 if (skb_loop_sk(ptype, skb))
1888 continue;
71d9dec2 1889
7866a621
SN
1890 if (pt_prev) {
1891 deliver_skb(skb2, pt_prev, skb->dev);
1892 pt_prev = ptype;
1893 continue;
1894 }
1da177e4 1895
7866a621
SN
1896 /* need to clone skb, done only once */
1897 skb2 = skb_clone(skb, GFP_ATOMIC);
1898 if (!skb2)
1899 goto out_unlock;
70978182 1900
7866a621 1901 net_timestamp_set(skb2);
1da177e4 1902
7866a621
SN
1903 /* skb->nh should be correctly
1904 * set by sender, so that the second statement is
1905 * just protection against buggy protocols.
1906 */
1907 skb_reset_mac_header(skb2);
1908
1909 if (skb_network_header(skb2) < skb2->data ||
1910 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1911 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1912 ntohs(skb2->protocol),
1913 dev->name);
1914 skb_reset_network_header(skb2);
1da177e4 1915 }
7866a621
SN
1916
1917 skb2->transport_header = skb2->network_header;
1918 skb2->pkt_type = PACKET_OUTGOING;
1919 pt_prev = ptype;
1920 }
1921
1922 if (ptype_list == &ptype_all) {
1923 ptype_list = &dev->ptype_all;
1924 goto again;
1da177e4 1925 }
7866a621 1926out_unlock:
71d9dec2
CG
1927 if (pt_prev)
1928 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1929 rcu_read_unlock();
1930}
74b20582 1931EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1932
2c53040f
BH
1933/**
1934 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1935 * @dev: Network device
1936 * @txq: number of queues available
1937 *
1938 * If real_num_tx_queues is changed the tc mappings may no longer be
1939 * valid. To resolve this verify the tc mapping remains valid and if
1940 * not NULL the mapping. With no priorities mapping to this
1941 * offset/count pair it will no longer be used. In the worst case TC0
1942 * is invalid nothing can be done so disable priority mappings. If is
1943 * expected that drivers will fix this mapping if they can before
1944 * calling netif_set_real_num_tx_queues.
1945 */
bb134d22 1946static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1947{
1948 int i;
1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950
1951 /* If TC0 is invalidated disable TC mapping */
1952 if (tc->offset + tc->count > txq) {
7b6cd1ce 1953 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1954 dev->num_tc = 0;
1955 return;
1956 }
1957
1958 /* Invalidated prio to tc mappings set to TC0 */
1959 for (i = 1; i < TC_BITMASK + 1; i++) {
1960 int q = netdev_get_prio_tc_map(dev, i);
1961
1962 tc = &dev->tc_to_txq[q];
1963 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1964 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1965 i, q);
4f57c087
JF
1966 netdev_set_prio_tc_map(dev, i, 0);
1967 }
1968 }
1969}
1970
8d059b0f
AD
1971int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1972{
1973 if (dev->num_tc) {
1974 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1975 int i;
1976
1977 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1978 if ((txq - tc->offset) < tc->count)
1979 return i;
1980 }
1981
1982 return -1;
1983 }
1984
1985 return 0;
1986}
1987
537c00de
AD
1988#ifdef CONFIG_XPS
1989static DEFINE_MUTEX(xps_map_mutex);
1990#define xmap_dereference(P) \
1991 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1992
6234f874
AD
1993static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1994 int tci, u16 index)
537c00de 1995{
10cdc3f3
AD
1996 struct xps_map *map = NULL;
1997 int pos;
537c00de 1998
10cdc3f3 1999 if (dev_maps)
6234f874
AD
2000 map = xmap_dereference(dev_maps->cpu_map[tci]);
2001 if (!map)
2002 return false;
537c00de 2003
6234f874
AD
2004 for (pos = map->len; pos--;) {
2005 if (map->queues[pos] != index)
2006 continue;
2007
2008 if (map->len > 1) {
2009 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2010 break;
537c00de 2011 }
6234f874
AD
2012
2013 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2014 kfree_rcu(map, rcu);
2015 return false;
537c00de
AD
2016 }
2017
6234f874 2018 return true;
10cdc3f3
AD
2019}
2020
6234f874
AD
2021static bool remove_xps_queue_cpu(struct net_device *dev,
2022 struct xps_dev_maps *dev_maps,
2023 int cpu, u16 offset, u16 count)
2024{
184c449f
AD
2025 int num_tc = dev->num_tc ? : 1;
2026 bool active = false;
2027 int tci;
6234f874 2028
184c449f
AD
2029 for (tci = cpu * num_tc; num_tc--; tci++) {
2030 int i, j;
2031
2032 for (i = count, j = offset; i--; j++) {
2033 if (!remove_xps_queue(dev_maps, cpu, j))
2034 break;
2035 }
2036
2037 active |= i < 0;
6234f874
AD
2038 }
2039
184c449f 2040 return active;
6234f874
AD
2041}
2042
2043static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2044 u16 count)
10cdc3f3
AD
2045{
2046 struct xps_dev_maps *dev_maps;
024e9679 2047 int cpu, i;
10cdc3f3
AD
2048 bool active = false;
2049
2050 mutex_lock(&xps_map_mutex);
2051 dev_maps = xmap_dereference(dev->xps_maps);
2052
2053 if (!dev_maps)
2054 goto out_no_maps;
2055
6234f874
AD
2056 for_each_possible_cpu(cpu)
2057 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2058 offset, count);
10cdc3f3
AD
2059
2060 if (!active) {
537c00de
AD
2061 RCU_INIT_POINTER(dev->xps_maps, NULL);
2062 kfree_rcu(dev_maps, rcu);
2063 }
2064
6234f874 2065 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2066 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2067 NUMA_NO_NODE);
2068
537c00de
AD
2069out_no_maps:
2070 mutex_unlock(&xps_map_mutex);
2071}
2072
6234f874
AD
2073static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2074{
2075 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2076}
2077
01c5f864
AD
2078static struct xps_map *expand_xps_map(struct xps_map *map,
2079 int cpu, u16 index)
2080{
2081 struct xps_map *new_map;
2082 int alloc_len = XPS_MIN_MAP_ALLOC;
2083 int i, pos;
2084
2085 for (pos = 0; map && pos < map->len; pos++) {
2086 if (map->queues[pos] != index)
2087 continue;
2088 return map;
2089 }
2090
2091 /* Need to add queue to this CPU's existing map */
2092 if (map) {
2093 if (pos < map->alloc_len)
2094 return map;
2095
2096 alloc_len = map->alloc_len * 2;
2097 }
2098
2099 /* Need to allocate new map to store queue on this CPU's map */
2100 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2101 cpu_to_node(cpu));
2102 if (!new_map)
2103 return NULL;
2104
2105 for (i = 0; i < pos; i++)
2106 new_map->queues[i] = map->queues[i];
2107 new_map->alloc_len = alloc_len;
2108 new_map->len = pos;
2109
2110 return new_map;
2111}
2112
3573540c
MT
2113int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2114 u16 index)
537c00de 2115{
01c5f864 2116 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2117 int i, cpu, tci, numa_node_id = -2;
2118 int maps_sz, num_tc = 1, tc = 0;
537c00de 2119 struct xps_map *map, *new_map;
01c5f864 2120 bool active = false;
537c00de 2121
184c449f
AD
2122 if (dev->num_tc) {
2123 num_tc = dev->num_tc;
2124 tc = netdev_txq_to_tc(dev, index);
2125 if (tc < 0)
2126 return -EINVAL;
2127 }
2128
2129 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2130 if (maps_sz < L1_CACHE_BYTES)
2131 maps_sz = L1_CACHE_BYTES;
2132
537c00de
AD
2133 mutex_lock(&xps_map_mutex);
2134
2135 dev_maps = xmap_dereference(dev->xps_maps);
2136
01c5f864 2137 /* allocate memory for queue storage */
184c449f 2138 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2139 if (!new_dev_maps)
2140 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2141 if (!new_dev_maps) {
2142 mutex_unlock(&xps_map_mutex);
01c5f864 2143 return -ENOMEM;
2bb60cb9 2144 }
01c5f864 2145
184c449f
AD
2146 tci = cpu * num_tc + tc;
2147 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2148 NULL;
2149
2150 map = expand_xps_map(map, cpu, index);
2151 if (!map)
2152 goto error;
2153
184c449f 2154 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2155 }
2156
2157 if (!new_dev_maps)
2158 goto out_no_new_maps;
2159
537c00de 2160 for_each_possible_cpu(cpu) {
184c449f
AD
2161 /* copy maps belonging to foreign traffic classes */
2162 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2163 /* fill in the new device map from the old device map */
2164 map = xmap_dereference(dev_maps->cpu_map[tci]);
2165 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2166 }
2167
2168 /* We need to explicitly update tci as prevous loop
2169 * could break out early if dev_maps is NULL.
2170 */
2171 tci = cpu * num_tc + tc;
2172
01c5f864
AD
2173 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2174 /* add queue to CPU maps */
2175 int pos = 0;
2176
184c449f 2177 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2178 while ((pos < map->len) && (map->queues[pos] != index))
2179 pos++;
2180
2181 if (pos == map->len)
2182 map->queues[map->len++] = index;
537c00de 2183#ifdef CONFIG_NUMA
537c00de
AD
2184 if (numa_node_id == -2)
2185 numa_node_id = cpu_to_node(cpu);
2186 else if (numa_node_id != cpu_to_node(cpu))
2187 numa_node_id = -1;
537c00de 2188#endif
01c5f864
AD
2189 } else if (dev_maps) {
2190 /* fill in the new device map from the old device map */
184c449f
AD
2191 map = xmap_dereference(dev_maps->cpu_map[tci]);
2192 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2193 }
01c5f864 2194
184c449f
AD
2195 /* copy maps belonging to foreign traffic classes */
2196 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2197 /* fill in the new device map from the old device map */
2198 map = xmap_dereference(dev_maps->cpu_map[tci]);
2199 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2200 }
537c00de
AD
2201 }
2202
01c5f864
AD
2203 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2204
537c00de 2205 /* Cleanup old maps */
184c449f
AD
2206 if (!dev_maps)
2207 goto out_no_old_maps;
2208
2209 for_each_possible_cpu(cpu) {
2210 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2211 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2212 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2213 if (map && map != new_map)
2214 kfree_rcu(map, rcu);
2215 }
537c00de
AD
2216 }
2217
184c449f
AD
2218 kfree_rcu(dev_maps, rcu);
2219
2220out_no_old_maps:
01c5f864
AD
2221 dev_maps = new_dev_maps;
2222 active = true;
537c00de 2223
01c5f864
AD
2224out_no_new_maps:
2225 /* update Tx queue numa node */
537c00de
AD
2226 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2227 (numa_node_id >= 0) ? numa_node_id :
2228 NUMA_NO_NODE);
2229
01c5f864
AD
2230 if (!dev_maps)
2231 goto out_no_maps;
2232
2233 /* removes queue from unused CPUs */
2234 for_each_possible_cpu(cpu) {
184c449f
AD
2235 for (i = tc, tci = cpu * num_tc; i--; tci++)
2236 active |= remove_xps_queue(dev_maps, tci, index);
2237 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2238 active |= remove_xps_queue(dev_maps, tci, index);
2239 for (i = num_tc - tc, tci++; --i; tci++)
2240 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2241 }
2242
2243 /* free map if not active */
2244 if (!active) {
2245 RCU_INIT_POINTER(dev->xps_maps, NULL);
2246 kfree_rcu(dev_maps, rcu);
2247 }
2248
2249out_no_maps:
537c00de
AD
2250 mutex_unlock(&xps_map_mutex);
2251
2252 return 0;
2253error:
01c5f864
AD
2254 /* remove any maps that we added */
2255 for_each_possible_cpu(cpu) {
184c449f
AD
2256 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2257 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2258 map = dev_maps ?
2259 xmap_dereference(dev_maps->cpu_map[tci]) :
2260 NULL;
2261 if (new_map && new_map != map)
2262 kfree(new_map);
2263 }
01c5f864
AD
2264 }
2265
537c00de
AD
2266 mutex_unlock(&xps_map_mutex);
2267
537c00de
AD
2268 kfree(new_dev_maps);
2269 return -ENOMEM;
2270}
2271EXPORT_SYMBOL(netif_set_xps_queue);
2272
2273#endif
9cf1f6a8
AD
2274void netdev_reset_tc(struct net_device *dev)
2275{
6234f874
AD
2276#ifdef CONFIG_XPS
2277 netif_reset_xps_queues_gt(dev, 0);
2278#endif
9cf1f6a8
AD
2279 dev->num_tc = 0;
2280 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2281 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2282}
2283EXPORT_SYMBOL(netdev_reset_tc);
2284
2285int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2286{
2287 if (tc >= dev->num_tc)
2288 return -EINVAL;
2289
6234f874
AD
2290#ifdef CONFIG_XPS
2291 netif_reset_xps_queues(dev, offset, count);
2292#endif
9cf1f6a8
AD
2293 dev->tc_to_txq[tc].count = count;
2294 dev->tc_to_txq[tc].offset = offset;
2295 return 0;
2296}
2297EXPORT_SYMBOL(netdev_set_tc_queue);
2298
2299int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2300{
2301 if (num_tc > TC_MAX_QUEUE)
2302 return -EINVAL;
2303
6234f874
AD
2304#ifdef CONFIG_XPS
2305 netif_reset_xps_queues_gt(dev, 0);
2306#endif
9cf1f6a8
AD
2307 dev->num_tc = num_tc;
2308 return 0;
2309}
2310EXPORT_SYMBOL(netdev_set_num_tc);
2311
f0796d5c
JF
2312/*
2313 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2314 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2315 */
e6484930 2316int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2317{
1d24eb48
TH
2318 int rc;
2319
e6484930
TH
2320 if (txq < 1 || txq > dev->num_tx_queues)
2321 return -EINVAL;
f0796d5c 2322
5c56580b
BH
2323 if (dev->reg_state == NETREG_REGISTERED ||
2324 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2325 ASSERT_RTNL();
2326
1d24eb48
TH
2327 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2328 txq);
bf264145
TH
2329 if (rc)
2330 return rc;
2331
4f57c087
JF
2332 if (dev->num_tc)
2333 netif_setup_tc(dev, txq);
2334
024e9679 2335 if (txq < dev->real_num_tx_queues) {
e6484930 2336 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2337#ifdef CONFIG_XPS
2338 netif_reset_xps_queues_gt(dev, txq);
2339#endif
2340 }
f0796d5c 2341 }
e6484930
TH
2342
2343 dev->real_num_tx_queues = txq;
2344 return 0;
f0796d5c
JF
2345}
2346EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2347
a953be53 2348#ifdef CONFIG_SYSFS
62fe0b40
BH
2349/**
2350 * netif_set_real_num_rx_queues - set actual number of RX queues used
2351 * @dev: Network device
2352 * @rxq: Actual number of RX queues
2353 *
2354 * This must be called either with the rtnl_lock held or before
2355 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2356 * negative error code. If called before registration, it always
2357 * succeeds.
62fe0b40
BH
2358 */
2359int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2360{
2361 int rc;
2362
bd25fa7b
TH
2363 if (rxq < 1 || rxq > dev->num_rx_queues)
2364 return -EINVAL;
2365
62fe0b40
BH
2366 if (dev->reg_state == NETREG_REGISTERED) {
2367 ASSERT_RTNL();
2368
62fe0b40
BH
2369 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2370 rxq);
2371 if (rc)
2372 return rc;
62fe0b40
BH
2373 }
2374
2375 dev->real_num_rx_queues = rxq;
2376 return 0;
2377}
2378EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2379#endif
2380
2c53040f
BH
2381/**
2382 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2383 *
2384 * This routine should set an upper limit on the number of RSS queues
2385 * used by default by multiqueue devices.
2386 */
a55b138b 2387int netif_get_num_default_rss_queues(void)
16917b87 2388{
40e4e713
HS
2389 return is_kdump_kernel() ?
2390 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2391}
2392EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2393
3bcb846c 2394static void __netif_reschedule(struct Qdisc *q)
56079431 2395{
def82a1d
JP
2396 struct softnet_data *sd;
2397 unsigned long flags;
56079431 2398
def82a1d 2399 local_irq_save(flags);
903ceff7 2400 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2401 q->next_sched = NULL;
2402 *sd->output_queue_tailp = q;
2403 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2404 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2405 local_irq_restore(flags);
2406}
2407
2408void __netif_schedule(struct Qdisc *q)
2409{
2410 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2411 __netif_reschedule(q);
56079431
DV
2412}
2413EXPORT_SYMBOL(__netif_schedule);
2414
e6247027
ED
2415struct dev_kfree_skb_cb {
2416 enum skb_free_reason reason;
2417};
2418
2419static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2420{
e6247027
ED
2421 return (struct dev_kfree_skb_cb *)skb->cb;
2422}
2423
46e5da40
JF
2424void netif_schedule_queue(struct netdev_queue *txq)
2425{
2426 rcu_read_lock();
2427 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2428 struct Qdisc *q = rcu_dereference(txq->qdisc);
2429
2430 __netif_schedule(q);
2431 }
2432 rcu_read_unlock();
2433}
2434EXPORT_SYMBOL(netif_schedule_queue);
2435
46e5da40
JF
2436void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2437{
2438 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2439 struct Qdisc *q;
2440
2441 rcu_read_lock();
2442 q = rcu_dereference(dev_queue->qdisc);
2443 __netif_schedule(q);
2444 rcu_read_unlock();
2445 }
2446}
2447EXPORT_SYMBOL(netif_tx_wake_queue);
2448
e6247027 2449void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2450{
e6247027 2451 unsigned long flags;
56079431 2452
e6247027
ED
2453 if (likely(atomic_read(&skb->users) == 1)) {
2454 smp_rmb();
2455 atomic_set(&skb->users, 0);
2456 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2457 return;
bea3348e 2458 }
e6247027
ED
2459 get_kfree_skb_cb(skb)->reason = reason;
2460 local_irq_save(flags);
2461 skb->next = __this_cpu_read(softnet_data.completion_queue);
2462 __this_cpu_write(softnet_data.completion_queue, skb);
2463 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2464 local_irq_restore(flags);
56079431 2465}
e6247027 2466EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2467
e6247027 2468void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2469{
2470 if (in_irq() || irqs_disabled())
e6247027 2471 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2472 else
2473 dev_kfree_skb(skb);
2474}
e6247027 2475EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2476
2477
bea3348e
SH
2478/**
2479 * netif_device_detach - mark device as removed
2480 * @dev: network device
2481 *
2482 * Mark device as removed from system and therefore no longer available.
2483 */
56079431
DV
2484void netif_device_detach(struct net_device *dev)
2485{
2486 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2487 netif_running(dev)) {
d543103a 2488 netif_tx_stop_all_queues(dev);
56079431
DV
2489 }
2490}
2491EXPORT_SYMBOL(netif_device_detach);
2492
bea3348e
SH
2493/**
2494 * netif_device_attach - mark device as attached
2495 * @dev: network device
2496 *
2497 * Mark device as attached from system and restart if needed.
2498 */
56079431
DV
2499void netif_device_attach(struct net_device *dev)
2500{
2501 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2502 netif_running(dev)) {
d543103a 2503 netif_tx_wake_all_queues(dev);
4ec93edb 2504 __netdev_watchdog_up(dev);
56079431
DV
2505 }
2506}
2507EXPORT_SYMBOL(netif_device_attach);
2508
5605c762
JP
2509/*
2510 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2511 * to be used as a distribution range.
2512 */
2513u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2514 unsigned int num_tx_queues)
2515{
2516 u32 hash;
2517 u16 qoffset = 0;
2518 u16 qcount = num_tx_queues;
2519
2520 if (skb_rx_queue_recorded(skb)) {
2521 hash = skb_get_rx_queue(skb);
2522 while (unlikely(hash >= num_tx_queues))
2523 hash -= num_tx_queues;
2524 return hash;
2525 }
2526
2527 if (dev->num_tc) {
2528 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
f4563a75 2529
5605c762
JP
2530 qoffset = dev->tc_to_txq[tc].offset;
2531 qcount = dev->tc_to_txq[tc].count;
2532 }
2533
2534 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2535}
2536EXPORT_SYMBOL(__skb_tx_hash);
2537
36c92474
BH
2538static void skb_warn_bad_offload(const struct sk_buff *skb)
2539{
84d15ae5 2540 static const netdev_features_t null_features;
36c92474 2541 struct net_device *dev = skb->dev;
88ad4175 2542 const char *name = "";
36c92474 2543
c846ad9b
BG
2544 if (!net_ratelimit())
2545 return;
2546
88ad4175
BM
2547 if (dev) {
2548 if (dev->dev.parent)
2549 name = dev_driver_string(dev->dev.parent);
2550 else
2551 name = netdev_name(dev);
2552 }
36c92474
BH
2553 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2554 "gso_type=%d ip_summed=%d\n",
88ad4175 2555 name, dev ? &dev->features : &null_features,
65e9d2fa 2556 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2557 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2558 skb_shinfo(skb)->gso_type, skb->ip_summed);
2559}
2560
1da177e4
LT
2561/*
2562 * Invalidate hardware checksum when packet is to be mangled, and
2563 * complete checksum manually on outgoing path.
2564 */
84fa7933 2565int skb_checksum_help(struct sk_buff *skb)
1da177e4 2566{
d3bc23e7 2567 __wsum csum;
663ead3b 2568 int ret = 0, offset;
1da177e4 2569
84fa7933 2570 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2571 goto out_set_summed;
2572
2573 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2574 skb_warn_bad_offload(skb);
2575 return -EINVAL;
1da177e4
LT
2576 }
2577
cef401de
ED
2578 /* Before computing a checksum, we should make sure no frag could
2579 * be modified by an external entity : checksum could be wrong.
2580 */
2581 if (skb_has_shared_frag(skb)) {
2582 ret = __skb_linearize(skb);
2583 if (ret)
2584 goto out;
2585 }
2586
55508d60 2587 offset = skb_checksum_start_offset(skb);
a030847e
HX
2588 BUG_ON(offset >= skb_headlen(skb));
2589 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2590
2591 offset += skb->csum_offset;
2592 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2593
2594 if (skb_cloned(skb) &&
2595 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2596 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2597 if (ret)
2598 goto out;
2599 }
2600
4f2e4ad5 2601 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2602out_set_summed:
1da177e4 2603 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2604out:
1da177e4
LT
2605 return ret;
2606}
d1b19dff 2607EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2608
53d6471c 2609__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2610{
252e3346 2611 __be16 type = skb->protocol;
f6a78bfc 2612
19acc327
PS
2613 /* Tunnel gso handlers can set protocol to ethernet. */
2614 if (type == htons(ETH_P_TEB)) {
2615 struct ethhdr *eth;
2616
2617 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2618 return 0;
2619
2620 eth = (struct ethhdr *)skb_mac_header(skb);
2621 type = eth->h_proto;
2622 }
2623
d4bcef3f 2624 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2625}
2626
2627/**
2628 * skb_mac_gso_segment - mac layer segmentation handler.
2629 * @skb: buffer to segment
2630 * @features: features for the output path (see dev->features)
2631 */
2632struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2633 netdev_features_t features)
2634{
2635 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2636 struct packet_offload *ptype;
53d6471c
VY
2637 int vlan_depth = skb->mac_len;
2638 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2639
2640 if (unlikely(!type))
2641 return ERR_PTR(-EINVAL);
2642
53d6471c 2643 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2644
2645 rcu_read_lock();
22061d80 2646 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2647 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2648 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2649 break;
2650 }
2651 }
2652 rcu_read_unlock();
2653
98e399f8 2654 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2655
f6a78bfc
HX
2656 return segs;
2657}
05e8ef4a
PS
2658EXPORT_SYMBOL(skb_mac_gso_segment);
2659
2660
2661/* openvswitch calls this on rx path, so we need a different check.
2662 */
2663static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2664{
2665 if (tx_path)
6e7bc478
ED
2666 return skb->ip_summed != CHECKSUM_PARTIAL &&
2667 skb->ip_summed != CHECKSUM_NONE;
2668
2669 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2670}
2671
2672/**
2673 * __skb_gso_segment - Perform segmentation on skb.
2674 * @skb: buffer to segment
2675 * @features: features for the output path (see dev->features)
2676 * @tx_path: whether it is called in TX path
2677 *
2678 * This function segments the given skb and returns a list of segments.
2679 *
2680 * It may return NULL if the skb requires no segmentation. This is
2681 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2682 *
2683 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2684 */
2685struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2686 netdev_features_t features, bool tx_path)
2687{
b2504a5d
ED
2688 struct sk_buff *segs;
2689
05e8ef4a
PS
2690 if (unlikely(skb_needs_check(skb, tx_path))) {
2691 int err;
2692
b2504a5d 2693 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2694 err = skb_cow_head(skb, 0);
2695 if (err < 0)
05e8ef4a
PS
2696 return ERR_PTR(err);
2697 }
2698
802ab55a
AD
2699 /* Only report GSO partial support if it will enable us to
2700 * support segmentation on this frame without needing additional
2701 * work.
2702 */
2703 if (features & NETIF_F_GSO_PARTIAL) {
2704 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2705 struct net_device *dev = skb->dev;
2706
2707 partial_features |= dev->features & dev->gso_partial_features;
2708 if (!skb_gso_ok(skb, features | partial_features))
2709 features &= ~NETIF_F_GSO_PARTIAL;
2710 }
2711
9207f9d4
KK
2712 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2713 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2714
68c33163 2715 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2716 SKB_GSO_CB(skb)->encap_level = 0;
2717
05e8ef4a
PS
2718 skb_reset_mac_header(skb);
2719 skb_reset_mac_len(skb);
2720
b2504a5d
ED
2721 segs = skb_mac_gso_segment(skb, features);
2722
2723 if (unlikely(skb_needs_check(skb, tx_path)))
2724 skb_warn_bad_offload(skb);
2725
2726 return segs;
05e8ef4a 2727}
12b0004d 2728EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2729
fb286bb2
HX
2730/* Take action when hardware reception checksum errors are detected. */
2731#ifdef CONFIG_BUG
2732void netdev_rx_csum_fault(struct net_device *dev)
2733{
2734 if (net_ratelimit()) {
7b6cd1ce 2735 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2736 dump_stack();
2737 }
2738}
2739EXPORT_SYMBOL(netdev_rx_csum_fault);
2740#endif
2741
1da177e4
LT
2742/* Actually, we should eliminate this check as soon as we know, that:
2743 * 1. IOMMU is present and allows to map all the memory.
2744 * 2. No high memory really exists on this machine.
2745 */
2746
c1e756bf 2747static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2748{
3d3a8533 2749#ifdef CONFIG_HIGHMEM
1da177e4 2750 int i;
f4563a75 2751
5acbbd42 2752 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 2755
ea2ab693 2756 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2757 return 1;
ea2ab693 2758 }
5acbbd42 2759 }
1da177e4 2760
5acbbd42
FT
2761 if (PCI_DMA_BUS_IS_PHYS) {
2762 struct device *pdev = dev->dev.parent;
1da177e4 2763
9092c658
ED
2764 if (!pdev)
2765 return 0;
5acbbd42 2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
f4563a75 2769
5acbbd42
FT
2770 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2771 return 1;
2772 }
2773 }
3d3a8533 2774#endif
1da177e4
LT
2775 return 0;
2776}
1da177e4 2777
3b392ddb
SH
2778/* If MPLS offload request, verify we are testing hardware MPLS features
2779 * instead of standard features for the netdev.
2780 */
d0edc7bf 2781#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2782static netdev_features_t net_mpls_features(struct sk_buff *skb,
2783 netdev_features_t features,
2784 __be16 type)
2785{
25cd9ba0 2786 if (eth_p_mpls(type))
3b392ddb
SH
2787 features &= skb->dev->mpls_features;
2788
2789 return features;
2790}
2791#else
2792static netdev_features_t net_mpls_features(struct sk_buff *skb,
2793 netdev_features_t features,
2794 __be16 type)
2795{
2796 return features;
2797}
2798#endif
2799
c8f44aff 2800static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2801 netdev_features_t features)
f01a5236 2802{
53d6471c 2803 int tmp;
3b392ddb
SH
2804 __be16 type;
2805
2806 type = skb_network_protocol(skb, &tmp);
2807 features = net_mpls_features(skb, features, type);
53d6471c 2808
c0d680e5 2809 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2810 !can_checksum_protocol(features, type)) {
996e8021 2811 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2812 }
7be2c82c
ED
2813 if (illegal_highdma(skb->dev, skb))
2814 features &= ~NETIF_F_SG;
f01a5236
JG
2815
2816 return features;
2817}
2818
e38f3025
TM
2819netdev_features_t passthru_features_check(struct sk_buff *skb,
2820 struct net_device *dev,
2821 netdev_features_t features)
2822{
2823 return features;
2824}
2825EXPORT_SYMBOL(passthru_features_check);
2826
8cb65d00
TM
2827static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2828 struct net_device *dev,
2829 netdev_features_t features)
2830{
2831 return vlan_features_check(skb, features);
2832}
2833
cbc53e08
AD
2834static netdev_features_t gso_features_check(const struct sk_buff *skb,
2835 struct net_device *dev,
2836 netdev_features_t features)
2837{
2838 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2839
2840 if (gso_segs > dev->gso_max_segs)
2841 return features & ~NETIF_F_GSO_MASK;
2842
802ab55a
AD
2843 /* Support for GSO partial features requires software
2844 * intervention before we can actually process the packets
2845 * so we need to strip support for any partial features now
2846 * and we can pull them back in after we have partially
2847 * segmented the frame.
2848 */
2849 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2850 features &= ~dev->gso_partial_features;
2851
2852 /* Make sure to clear the IPv4 ID mangling feature if the
2853 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2854 */
2855 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2856 struct iphdr *iph = skb->encapsulation ?
2857 inner_ip_hdr(skb) : ip_hdr(skb);
2858
2859 if (!(iph->frag_off & htons(IP_DF)))
2860 features &= ~NETIF_F_TSO_MANGLEID;
2861 }
2862
2863 return features;
2864}
2865
c1e756bf 2866netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2867{
5f35227e 2868 struct net_device *dev = skb->dev;
fcbeb976 2869 netdev_features_t features = dev->features;
58e998c6 2870
cbc53e08
AD
2871 if (skb_is_gso(skb))
2872 features = gso_features_check(skb, dev, features);
30b678d8 2873
5f35227e
JG
2874 /* If encapsulation offload request, verify we are testing
2875 * hardware encapsulation features instead of standard
2876 * features for the netdev
2877 */
2878 if (skb->encapsulation)
2879 features &= dev->hw_enc_features;
2880
f5a7fb88
TM
2881 if (skb_vlan_tagged(skb))
2882 features = netdev_intersect_features(features,
2883 dev->vlan_features |
2884 NETIF_F_HW_VLAN_CTAG_TX |
2885 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2886
5f35227e
JG
2887 if (dev->netdev_ops->ndo_features_check)
2888 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2889 features);
8cb65d00
TM
2890 else
2891 features &= dflt_features_check(skb, dev, features);
5f35227e 2892
c1e756bf 2893 return harmonize_features(skb, features);
58e998c6 2894}
c1e756bf 2895EXPORT_SYMBOL(netif_skb_features);
58e998c6 2896
2ea25513 2897static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2898 struct netdev_queue *txq, bool more)
f6a78bfc 2899{
2ea25513
DM
2900 unsigned int len;
2901 int rc;
00829823 2902
7866a621 2903 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2904 dev_queue_xmit_nit(skb, dev);
fc741216 2905
2ea25513
DM
2906 len = skb->len;
2907 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2908 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2909 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2910
2ea25513
DM
2911 return rc;
2912}
7b9c6090 2913
8dcda22a
DM
2914struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2915 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2916{
2917 struct sk_buff *skb = first;
2918 int rc = NETDEV_TX_OK;
7b9c6090 2919
7f2e870f
DM
2920 while (skb) {
2921 struct sk_buff *next = skb->next;
fc70fb64 2922
7f2e870f 2923 skb->next = NULL;
95f6b3dd 2924 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2925 if (unlikely(!dev_xmit_complete(rc))) {
2926 skb->next = next;
2927 goto out;
2928 }
6afff0ca 2929
7f2e870f
DM
2930 skb = next;
2931 if (netif_xmit_stopped(txq) && skb) {
2932 rc = NETDEV_TX_BUSY;
2933 break;
9ccb8975 2934 }
7f2e870f 2935 }
9ccb8975 2936
7f2e870f
DM
2937out:
2938 *ret = rc;
2939 return skb;
2940}
b40863c6 2941
1ff0dc94
ED
2942static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2943 netdev_features_t features)
f6a78bfc 2944{
df8a39de 2945 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2946 !vlan_hw_offload_capable(features, skb->vlan_proto))
2947 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2948 return skb;
2949}
f6a78bfc 2950
55a93b3e 2951static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2952{
2953 netdev_features_t features;
f6a78bfc 2954
eae3f88e
DM
2955 features = netif_skb_features(skb);
2956 skb = validate_xmit_vlan(skb, features);
2957 if (unlikely(!skb))
2958 goto out_null;
7b9c6090 2959
8b86a61d 2960 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2961 struct sk_buff *segs;
2962
2963 segs = skb_gso_segment(skb, features);
cecda693 2964 if (IS_ERR(segs)) {
af6dabc9 2965 goto out_kfree_skb;
cecda693
JW
2966 } else if (segs) {
2967 consume_skb(skb);
2968 skb = segs;
f6a78bfc 2969 }
eae3f88e
DM
2970 } else {
2971 if (skb_needs_linearize(skb, features) &&
2972 __skb_linearize(skb))
2973 goto out_kfree_skb;
4ec93edb 2974
f6e27114
SK
2975 if (validate_xmit_xfrm(skb, features))
2976 goto out_kfree_skb;
2977
eae3f88e
DM
2978 /* If packet is not checksummed and device does not
2979 * support checksumming for this protocol, complete
2980 * checksumming here.
2981 */
2982 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2983 if (skb->encapsulation)
2984 skb_set_inner_transport_header(skb,
2985 skb_checksum_start_offset(skb));
2986 else
2987 skb_set_transport_header(skb,
2988 skb_checksum_start_offset(skb));
a188222b 2989 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2990 skb_checksum_help(skb))
2991 goto out_kfree_skb;
7b9c6090 2992 }
0c772159 2993 }
7b9c6090 2994
eae3f88e 2995 return skb;
fc70fb64 2996
f6a78bfc
HX
2997out_kfree_skb:
2998 kfree_skb(skb);
eae3f88e 2999out_null:
d21fd63e 3000 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3001 return NULL;
3002}
6afff0ca 3003
55a93b3e
ED
3004struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3005{
3006 struct sk_buff *next, *head = NULL, *tail;
3007
bec3cfdc 3008 for (; skb != NULL; skb = next) {
55a93b3e
ED
3009 next = skb->next;
3010 skb->next = NULL;
bec3cfdc
ED
3011
3012 /* in case skb wont be segmented, point to itself */
3013 skb->prev = skb;
3014
55a93b3e 3015 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3016 if (!skb)
3017 continue;
55a93b3e 3018
bec3cfdc
ED
3019 if (!head)
3020 head = skb;
3021 else
3022 tail->next = skb;
3023 /* If skb was segmented, skb->prev points to
3024 * the last segment. If not, it still contains skb.
3025 */
3026 tail = skb->prev;
55a93b3e
ED
3027 }
3028 return head;
f6a78bfc 3029}
104ba78c 3030EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3031
1def9238
ED
3032static void qdisc_pkt_len_init(struct sk_buff *skb)
3033{
3034 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3035
3036 qdisc_skb_cb(skb)->pkt_len = skb->len;
3037
3038 /* To get more precise estimation of bytes sent on wire,
3039 * we add to pkt_len the headers size of all segments
3040 */
3041 if (shinfo->gso_size) {
757b8b1d 3042 unsigned int hdr_len;
15e5a030 3043 u16 gso_segs = shinfo->gso_segs;
1def9238 3044
757b8b1d
ED
3045 /* mac layer + network layer */
3046 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3047
3048 /* + transport layer */
1def9238
ED
3049 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3050 hdr_len += tcp_hdrlen(skb);
3051 else
3052 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3053
3054 if (shinfo->gso_type & SKB_GSO_DODGY)
3055 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3056 shinfo->gso_size);
3057
3058 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3059 }
3060}
3061
bbd8a0d3
KK
3062static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3063 struct net_device *dev,
3064 struct netdev_queue *txq)
3065{
3066 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3067 struct sk_buff *to_free = NULL;
a2da570d 3068 bool contended;
bbd8a0d3
KK
3069 int rc;
3070
a2da570d 3071 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3072 /*
3073 * Heuristic to force contended enqueues to serialize on a
3074 * separate lock before trying to get qdisc main lock.
f9eb8aea 3075 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3076 * often and dequeue packets faster.
79640a4c 3077 */
a2da570d 3078 contended = qdisc_is_running(q);
79640a4c
ED
3079 if (unlikely(contended))
3080 spin_lock(&q->busylock);
3081
bbd8a0d3
KK
3082 spin_lock(root_lock);
3083 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3084 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3085 rc = NET_XMIT_DROP;
3086 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3087 qdisc_run_begin(q)) {
bbd8a0d3
KK
3088 /*
3089 * This is a work-conserving queue; there are no old skbs
3090 * waiting to be sent out; and the qdisc is not running -
3091 * xmit the skb directly.
3092 */
bfe0d029 3093
bfe0d029
ED
3094 qdisc_bstats_update(q, skb);
3095
55a93b3e 3096 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3097 if (unlikely(contended)) {
3098 spin_unlock(&q->busylock);
3099 contended = false;
3100 }
bbd8a0d3 3101 __qdisc_run(q);
79640a4c 3102 } else
bc135b23 3103 qdisc_run_end(q);
bbd8a0d3
KK
3104
3105 rc = NET_XMIT_SUCCESS;
3106 } else {
520ac30f 3107 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3108 if (qdisc_run_begin(q)) {
3109 if (unlikely(contended)) {
3110 spin_unlock(&q->busylock);
3111 contended = false;
3112 }
3113 __qdisc_run(q);
3114 }
bbd8a0d3
KK
3115 }
3116 spin_unlock(root_lock);
520ac30f
ED
3117 if (unlikely(to_free))
3118 kfree_skb_list(to_free);
79640a4c
ED
3119 if (unlikely(contended))
3120 spin_unlock(&q->busylock);
bbd8a0d3
KK
3121 return rc;
3122}
3123
86f8515f 3124#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3125static void skb_update_prio(struct sk_buff *skb)
3126{
6977a79d 3127 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3128
91c68ce2 3129 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3130 unsigned int prioidx =
3131 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3132
3133 if (prioidx < map->priomap_len)
3134 skb->priority = map->priomap[prioidx];
3135 }
5bc1421e
NH
3136}
3137#else
3138#define skb_update_prio(skb)
3139#endif
3140
f60e5990 3141DEFINE_PER_CPU(int, xmit_recursion);
3142EXPORT_SYMBOL(xmit_recursion);
3143
95603e22
MM
3144/**
3145 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3146 * @net: network namespace this loopback is happening in
3147 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3148 * @skb: buffer to transmit
3149 */
0c4b51f0 3150int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3151{
3152 skb_reset_mac_header(skb);
3153 __skb_pull(skb, skb_network_offset(skb));
3154 skb->pkt_type = PACKET_LOOPBACK;
3155 skb->ip_summed = CHECKSUM_UNNECESSARY;
3156 WARN_ON(!skb_dst(skb));
3157 skb_dst_force(skb);
3158 netif_rx_ni(skb);
3159 return 0;
3160}
3161EXPORT_SYMBOL(dev_loopback_xmit);
3162
1f211a1b
DB
3163#ifdef CONFIG_NET_EGRESS
3164static struct sk_buff *
3165sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3166{
3167 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3168 struct tcf_result cl_res;
3169
3170 if (!cl)
3171 return skb;
3172
8dc07fdb 3173 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
1f211a1b
DB
3174 qdisc_bstats_cpu_update(cl->q, skb);
3175
3176 switch (tc_classify(skb, cl, &cl_res, false)) {
3177 case TC_ACT_OK:
3178 case TC_ACT_RECLASSIFY:
3179 skb->tc_index = TC_H_MIN(cl_res.classid);
3180 break;
3181 case TC_ACT_SHOT:
3182 qdisc_qstats_cpu_drop(cl->q);
3183 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3184 kfree_skb(skb);
3185 return NULL;
1f211a1b
DB
3186 case TC_ACT_STOLEN:
3187 case TC_ACT_QUEUED:
3188 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3189 consume_skb(skb);
1f211a1b
DB
3190 return NULL;
3191 case TC_ACT_REDIRECT:
3192 /* No need to push/pop skb's mac_header here on egress! */
3193 skb_do_redirect(skb);
3194 *ret = NET_XMIT_SUCCESS;
3195 return NULL;
3196 default:
3197 break;
3198 }
3199
3200 return skb;
3201}
3202#endif /* CONFIG_NET_EGRESS */
3203
638b2a69
JP
3204static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3205{
3206#ifdef CONFIG_XPS
3207 struct xps_dev_maps *dev_maps;
3208 struct xps_map *map;
3209 int queue_index = -1;
3210
3211 rcu_read_lock();
3212 dev_maps = rcu_dereference(dev->xps_maps);
3213 if (dev_maps) {
184c449f
AD
3214 unsigned int tci = skb->sender_cpu - 1;
3215
3216 if (dev->num_tc) {
3217 tci *= dev->num_tc;
3218 tci += netdev_get_prio_tc_map(dev, skb->priority);
3219 }
3220
3221 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3222 if (map) {
3223 if (map->len == 1)
3224 queue_index = map->queues[0];
3225 else
3226 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3227 map->len)];
3228 if (unlikely(queue_index >= dev->real_num_tx_queues))
3229 queue_index = -1;
3230 }
3231 }
3232 rcu_read_unlock();
3233
3234 return queue_index;
3235#else
3236 return -1;
3237#endif
3238}
3239
3240static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3241{
3242 struct sock *sk = skb->sk;
3243 int queue_index = sk_tx_queue_get(sk);
3244
3245 if (queue_index < 0 || skb->ooo_okay ||
3246 queue_index >= dev->real_num_tx_queues) {
3247 int new_index = get_xps_queue(dev, skb);
f4563a75 3248
638b2a69
JP
3249 if (new_index < 0)
3250 new_index = skb_tx_hash(dev, skb);
3251
3252 if (queue_index != new_index && sk &&
004a5d01 3253 sk_fullsock(sk) &&
638b2a69
JP
3254 rcu_access_pointer(sk->sk_dst_cache))
3255 sk_tx_queue_set(sk, new_index);
3256
3257 queue_index = new_index;
3258 }
3259
3260 return queue_index;
3261}
3262
3263struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3264 struct sk_buff *skb,
3265 void *accel_priv)
3266{
3267 int queue_index = 0;
3268
3269#ifdef CONFIG_XPS
52bd2d62
ED
3270 u32 sender_cpu = skb->sender_cpu - 1;
3271
3272 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3273 skb->sender_cpu = raw_smp_processor_id() + 1;
3274#endif
3275
3276 if (dev->real_num_tx_queues != 1) {
3277 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3278
638b2a69
JP
3279 if (ops->ndo_select_queue)
3280 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3281 __netdev_pick_tx);
3282 else
3283 queue_index = __netdev_pick_tx(dev, skb);
3284
3285 if (!accel_priv)
3286 queue_index = netdev_cap_txqueue(dev, queue_index);
3287 }
3288
3289 skb_set_queue_mapping(skb, queue_index);
3290 return netdev_get_tx_queue(dev, queue_index);
3291}
3292
d29f749e 3293/**
9d08dd3d 3294 * __dev_queue_xmit - transmit a buffer
d29f749e 3295 * @skb: buffer to transmit
9d08dd3d 3296 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3297 *
3298 * Queue a buffer for transmission to a network device. The caller must
3299 * have set the device and priority and built the buffer before calling
3300 * this function. The function can be called from an interrupt.
3301 *
3302 * A negative errno code is returned on a failure. A success does not
3303 * guarantee the frame will be transmitted as it may be dropped due
3304 * to congestion or traffic shaping.
3305 *
3306 * -----------------------------------------------------------------------------------
3307 * I notice this method can also return errors from the queue disciplines,
3308 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3309 * be positive.
3310 *
3311 * Regardless of the return value, the skb is consumed, so it is currently
3312 * difficult to retry a send to this method. (You can bump the ref count
3313 * before sending to hold a reference for retry if you are careful.)
3314 *
3315 * When calling this method, interrupts MUST be enabled. This is because
3316 * the BH enable code must have IRQs enabled so that it will not deadlock.
3317 * --BLG
3318 */
0a59f3a9 3319static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3320{
3321 struct net_device *dev = skb->dev;
dc2b4847 3322 struct netdev_queue *txq;
1da177e4
LT
3323 struct Qdisc *q;
3324 int rc = -ENOMEM;
3325
6d1ccff6
ED
3326 skb_reset_mac_header(skb);
3327
e7fd2885
WB
3328 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3329 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3330
4ec93edb
YH
3331 /* Disable soft irqs for various locks below. Also
3332 * stops preemption for RCU.
1da177e4 3333 */
4ec93edb 3334 rcu_read_lock_bh();
1da177e4 3335
5bc1421e
NH
3336 skb_update_prio(skb);
3337
1f211a1b
DB
3338 qdisc_pkt_len_init(skb);
3339#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3340 skb->tc_at_ingress = 0;
1f211a1b
DB
3341# ifdef CONFIG_NET_EGRESS
3342 if (static_key_false(&egress_needed)) {
3343 skb = sch_handle_egress(skb, &rc, dev);
3344 if (!skb)
3345 goto out;
3346 }
3347# endif
3348#endif
02875878
ED
3349 /* If device/qdisc don't need skb->dst, release it right now while
3350 * its hot in this cpu cache.
3351 */
3352 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3353 skb_dst_drop(skb);
3354 else
3355 skb_dst_force(skb);
3356
f663dd9a 3357 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3358 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3359
cf66ba58 3360 trace_net_dev_queue(skb);
1da177e4 3361 if (q->enqueue) {
bbd8a0d3 3362 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3363 goto out;
1da177e4
LT
3364 }
3365
3366 /* The device has no queue. Common case for software devices:
eb13da1a 3367 * loopback, all the sorts of tunnels...
1da177e4 3368
eb13da1a 3369 * Really, it is unlikely that netif_tx_lock protection is necessary
3370 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3371 * counters.)
3372 * However, it is possible, that they rely on protection
3373 * made by us here.
1da177e4 3374
eb13da1a 3375 * Check this and shot the lock. It is not prone from deadlocks.
3376 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3377 */
3378 if (dev->flags & IFF_UP) {
3379 int cpu = smp_processor_id(); /* ok because BHs are off */
3380
c773e847 3381 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3382 if (unlikely(__this_cpu_read(xmit_recursion) >
3383 XMIT_RECURSION_LIMIT))
745e20f1
ED
3384 goto recursion_alert;
3385
1f59533f
JDB
3386 skb = validate_xmit_skb(skb, dev);
3387 if (!skb)
d21fd63e 3388 goto out;
1f59533f 3389
c773e847 3390 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3391
73466498 3392 if (!netif_xmit_stopped(txq)) {
745e20f1 3393 __this_cpu_inc(xmit_recursion);
ce93718f 3394 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3395 __this_cpu_dec(xmit_recursion);
572a9d7b 3396 if (dev_xmit_complete(rc)) {
c773e847 3397 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3398 goto out;
3399 }
3400 }
c773e847 3401 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3402 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3403 dev->name);
1da177e4
LT
3404 } else {
3405 /* Recursion is detected! It is possible,
745e20f1
ED
3406 * unfortunately
3407 */
3408recursion_alert:
e87cc472
JP
3409 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3410 dev->name);
1da177e4
LT
3411 }
3412 }
3413
3414 rc = -ENETDOWN;
d4828d85 3415 rcu_read_unlock_bh();
1da177e4 3416
015f0688 3417 atomic_long_inc(&dev->tx_dropped);
1f59533f 3418 kfree_skb_list(skb);
1da177e4
LT
3419 return rc;
3420out:
d4828d85 3421 rcu_read_unlock_bh();
1da177e4
LT
3422 return rc;
3423}
f663dd9a 3424
2b4aa3ce 3425int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3426{
3427 return __dev_queue_xmit(skb, NULL);
3428}
2b4aa3ce 3429EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3430
f663dd9a
JW
3431int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3432{
3433 return __dev_queue_xmit(skb, accel_priv);
3434}
3435EXPORT_SYMBOL(dev_queue_xmit_accel);
3436
1da177e4 3437
eb13da1a 3438/*************************************************************************
3439 * Receiver routines
3440 *************************************************************************/
1da177e4 3441
6b2bedc3 3442int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3443EXPORT_SYMBOL(netdev_max_backlog);
3444
3b098e2d 3445int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3446int netdev_budget __read_mostly = 300;
7acf8a1e 3447unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3448int weight_p __read_mostly = 64; /* old backlog weight */
3449int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3450int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3451int dev_rx_weight __read_mostly = 64;
3452int dev_tx_weight __read_mostly = 64;
1da177e4 3453
eecfd7c4
ED
3454/* Called with irq disabled */
3455static inline void ____napi_schedule(struct softnet_data *sd,
3456 struct napi_struct *napi)
3457{
3458 list_add_tail(&napi->poll_list, &sd->poll_list);
3459 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3460}
3461
bfb564e7
KK
3462#ifdef CONFIG_RPS
3463
3464/* One global table that all flow-based protocols share. */
6e3f7faf 3465struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3466EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3467u32 rps_cpu_mask __read_mostly;
3468EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3469
c5905afb 3470struct static_key rps_needed __read_mostly;
3df97ba8 3471EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3472struct static_key rfs_needed __read_mostly;
3473EXPORT_SYMBOL(rfs_needed);
adc9300e 3474
c445477d
BH
3475static struct rps_dev_flow *
3476set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3477 struct rps_dev_flow *rflow, u16 next_cpu)
3478{
a31196b0 3479 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3480#ifdef CONFIG_RFS_ACCEL
3481 struct netdev_rx_queue *rxqueue;
3482 struct rps_dev_flow_table *flow_table;
3483 struct rps_dev_flow *old_rflow;
3484 u32 flow_id;
3485 u16 rxq_index;
3486 int rc;
3487
3488 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3489 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3490 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3491 goto out;
3492 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3493 if (rxq_index == skb_get_rx_queue(skb))
3494 goto out;
3495
3496 rxqueue = dev->_rx + rxq_index;
3497 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3498 if (!flow_table)
3499 goto out;
61b905da 3500 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3501 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3502 rxq_index, flow_id);
3503 if (rc < 0)
3504 goto out;
3505 old_rflow = rflow;
3506 rflow = &flow_table->flows[flow_id];
c445477d
BH
3507 rflow->filter = rc;
3508 if (old_rflow->filter == rflow->filter)
3509 old_rflow->filter = RPS_NO_FILTER;
3510 out:
3511#endif
3512 rflow->last_qtail =
09994d1b 3513 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3514 }
3515
09994d1b 3516 rflow->cpu = next_cpu;
c445477d
BH
3517 return rflow;
3518}
3519
bfb564e7
KK
3520/*
3521 * get_rps_cpu is called from netif_receive_skb and returns the target
3522 * CPU from the RPS map of the receiving queue for a given skb.
3523 * rcu_read_lock must be held on entry.
3524 */
3525static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3526 struct rps_dev_flow **rflowp)
3527{
567e4b79
ED
3528 const struct rps_sock_flow_table *sock_flow_table;
3529 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3530 struct rps_dev_flow_table *flow_table;
567e4b79 3531 struct rps_map *map;
bfb564e7 3532 int cpu = -1;
567e4b79 3533 u32 tcpu;
61b905da 3534 u32 hash;
bfb564e7
KK
3535
3536 if (skb_rx_queue_recorded(skb)) {
3537 u16 index = skb_get_rx_queue(skb);
567e4b79 3538
62fe0b40
BH
3539 if (unlikely(index >= dev->real_num_rx_queues)) {
3540 WARN_ONCE(dev->real_num_rx_queues > 1,
3541 "%s received packet on queue %u, but number "
3542 "of RX queues is %u\n",
3543 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3544 goto done;
3545 }
567e4b79
ED
3546 rxqueue += index;
3547 }
bfb564e7 3548
567e4b79
ED
3549 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3550
3551 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3552 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3553 if (!flow_table && !map)
bfb564e7
KK
3554 goto done;
3555
2d47b459 3556 skb_reset_network_header(skb);
61b905da
TH
3557 hash = skb_get_hash(skb);
3558 if (!hash)
bfb564e7
KK
3559 goto done;
3560
fec5e652
TH
3561 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3562 if (flow_table && sock_flow_table) {
fec5e652 3563 struct rps_dev_flow *rflow;
567e4b79
ED
3564 u32 next_cpu;
3565 u32 ident;
3566
3567 /* First check into global flow table if there is a match */
3568 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3569 if ((ident ^ hash) & ~rps_cpu_mask)
3570 goto try_rps;
fec5e652 3571
567e4b79
ED
3572 next_cpu = ident & rps_cpu_mask;
3573
3574 /* OK, now we know there is a match,
3575 * we can look at the local (per receive queue) flow table
3576 */
61b905da 3577 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3578 tcpu = rflow->cpu;
3579
fec5e652
TH
3580 /*
3581 * If the desired CPU (where last recvmsg was done) is
3582 * different from current CPU (one in the rx-queue flow
3583 * table entry), switch if one of the following holds:
a31196b0 3584 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3585 * - Current CPU is offline.
3586 * - The current CPU's queue tail has advanced beyond the
3587 * last packet that was enqueued using this table entry.
3588 * This guarantees that all previous packets for the flow
3589 * have been dequeued, thus preserving in order delivery.
3590 */
3591 if (unlikely(tcpu != next_cpu) &&
a31196b0 3592 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3593 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3594 rflow->last_qtail)) >= 0)) {
3595 tcpu = next_cpu;
c445477d 3596 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3597 }
c445477d 3598
a31196b0 3599 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3600 *rflowp = rflow;
3601 cpu = tcpu;
3602 goto done;
3603 }
3604 }
3605
567e4b79
ED
3606try_rps:
3607
0a9627f2 3608 if (map) {
8fc54f68 3609 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3610 if (cpu_online(tcpu)) {
3611 cpu = tcpu;
3612 goto done;
3613 }
3614 }
3615
3616done:
0a9627f2
TH
3617 return cpu;
3618}
3619
c445477d
BH
3620#ifdef CONFIG_RFS_ACCEL
3621
3622/**
3623 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3624 * @dev: Device on which the filter was set
3625 * @rxq_index: RX queue index
3626 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3627 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3628 *
3629 * Drivers that implement ndo_rx_flow_steer() should periodically call
3630 * this function for each installed filter and remove the filters for
3631 * which it returns %true.
3632 */
3633bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3634 u32 flow_id, u16 filter_id)
3635{
3636 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3637 struct rps_dev_flow_table *flow_table;
3638 struct rps_dev_flow *rflow;
3639 bool expire = true;
a31196b0 3640 unsigned int cpu;
c445477d
BH
3641
3642 rcu_read_lock();
3643 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3644 if (flow_table && flow_id <= flow_table->mask) {
3645 rflow = &flow_table->flows[flow_id];
3646 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3647 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3648 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3649 rflow->last_qtail) <
3650 (int)(10 * flow_table->mask)))
3651 expire = false;
3652 }
3653 rcu_read_unlock();
3654 return expire;
3655}
3656EXPORT_SYMBOL(rps_may_expire_flow);
3657
3658#endif /* CONFIG_RFS_ACCEL */
3659
0a9627f2 3660/* Called from hardirq (IPI) context */
e36fa2f7 3661static void rps_trigger_softirq(void *data)
0a9627f2 3662{
e36fa2f7
ED
3663 struct softnet_data *sd = data;
3664
eecfd7c4 3665 ____napi_schedule(sd, &sd->backlog);
dee42870 3666 sd->received_rps++;
0a9627f2 3667}
e36fa2f7 3668
fec5e652 3669#endif /* CONFIG_RPS */
0a9627f2 3670
e36fa2f7
ED
3671/*
3672 * Check if this softnet_data structure is another cpu one
3673 * If yes, queue it to our IPI list and return 1
3674 * If no, return 0
3675 */
3676static int rps_ipi_queued(struct softnet_data *sd)
3677{
3678#ifdef CONFIG_RPS
903ceff7 3679 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3680
3681 if (sd != mysd) {
3682 sd->rps_ipi_next = mysd->rps_ipi_list;
3683 mysd->rps_ipi_list = sd;
3684
3685 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3686 return 1;
3687 }
3688#endif /* CONFIG_RPS */
3689 return 0;
3690}
3691
99bbc707
WB
3692#ifdef CONFIG_NET_FLOW_LIMIT
3693int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3694#endif
3695
3696static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3697{
3698#ifdef CONFIG_NET_FLOW_LIMIT
3699 struct sd_flow_limit *fl;
3700 struct softnet_data *sd;
3701 unsigned int old_flow, new_flow;
3702
3703 if (qlen < (netdev_max_backlog >> 1))
3704 return false;
3705
903ceff7 3706 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3707
3708 rcu_read_lock();
3709 fl = rcu_dereference(sd->flow_limit);
3710 if (fl) {
3958afa1 3711 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3712 old_flow = fl->history[fl->history_head];
3713 fl->history[fl->history_head] = new_flow;
3714
3715 fl->history_head++;
3716 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3717
3718 if (likely(fl->buckets[old_flow]))
3719 fl->buckets[old_flow]--;
3720
3721 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3722 fl->count++;
3723 rcu_read_unlock();
3724 return true;
3725 }
3726 }
3727 rcu_read_unlock();
3728#endif
3729 return false;
3730}
3731
0a9627f2
TH
3732/*
3733 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3734 * queue (may be a remote CPU queue).
3735 */
fec5e652
TH
3736static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3737 unsigned int *qtail)
0a9627f2 3738{
e36fa2f7 3739 struct softnet_data *sd;
0a9627f2 3740 unsigned long flags;
99bbc707 3741 unsigned int qlen;
0a9627f2 3742
e36fa2f7 3743 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3744
3745 local_irq_save(flags);
0a9627f2 3746
e36fa2f7 3747 rps_lock(sd);
e9e4dd32
JA
3748 if (!netif_running(skb->dev))
3749 goto drop;
99bbc707
WB
3750 qlen = skb_queue_len(&sd->input_pkt_queue);
3751 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3752 if (qlen) {
0a9627f2 3753enqueue:
e36fa2f7 3754 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3755 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3756 rps_unlock(sd);
152102c7 3757 local_irq_restore(flags);
0a9627f2
TH
3758 return NET_RX_SUCCESS;
3759 }
3760
ebda37c2
ED
3761 /* Schedule NAPI for backlog device
3762 * We can use non atomic operation since we own the queue lock
3763 */
3764 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3765 if (!rps_ipi_queued(sd))
eecfd7c4 3766 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3767 }
3768 goto enqueue;
3769 }
3770
e9e4dd32 3771drop:
dee42870 3772 sd->dropped++;
e36fa2f7 3773 rps_unlock(sd);
0a9627f2 3774
0a9627f2
TH
3775 local_irq_restore(flags);
3776
caf586e5 3777 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3778 kfree_skb(skb);
3779 return NET_RX_DROP;
3780}
1da177e4 3781
ae78dbfa 3782static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3783{
b0e28f1e 3784 int ret;
1da177e4 3785
588f0330 3786 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3787
cf66ba58 3788 trace_netif_rx(skb);
df334545 3789#ifdef CONFIG_RPS
c5905afb 3790 if (static_key_false(&rps_needed)) {
fec5e652 3791 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3792 int cpu;
3793
cece1945 3794 preempt_disable();
b0e28f1e 3795 rcu_read_lock();
fec5e652
TH
3796
3797 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3798 if (cpu < 0)
3799 cpu = smp_processor_id();
fec5e652
TH
3800
3801 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3802
b0e28f1e 3803 rcu_read_unlock();
cece1945 3804 preempt_enable();
adc9300e
ED
3805 } else
3806#endif
fec5e652
TH
3807 {
3808 unsigned int qtail;
f4563a75 3809
fec5e652
TH
3810 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3811 put_cpu();
3812 }
b0e28f1e 3813 return ret;
1da177e4 3814}
ae78dbfa
BH
3815
3816/**
3817 * netif_rx - post buffer to the network code
3818 * @skb: buffer to post
3819 *
3820 * This function receives a packet from a device driver and queues it for
3821 * the upper (protocol) levels to process. It always succeeds. The buffer
3822 * may be dropped during processing for congestion control or by the
3823 * protocol layers.
3824 *
3825 * return values:
3826 * NET_RX_SUCCESS (no congestion)
3827 * NET_RX_DROP (packet was dropped)
3828 *
3829 */
3830
3831int netif_rx(struct sk_buff *skb)
3832{
3833 trace_netif_rx_entry(skb);
3834
3835 return netif_rx_internal(skb);
3836}
d1b19dff 3837EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3838
3839int netif_rx_ni(struct sk_buff *skb)
3840{
3841 int err;
3842
ae78dbfa
BH
3843 trace_netif_rx_ni_entry(skb);
3844
1da177e4 3845 preempt_disable();
ae78dbfa 3846 err = netif_rx_internal(skb);
1da177e4
LT
3847 if (local_softirq_pending())
3848 do_softirq();
3849 preempt_enable();
3850
3851 return err;
3852}
1da177e4
LT
3853EXPORT_SYMBOL(netif_rx_ni);
3854
0766f788 3855static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3856{
903ceff7 3857 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3858
3859 if (sd->completion_queue) {
3860 struct sk_buff *clist;
3861
3862 local_irq_disable();
3863 clist = sd->completion_queue;
3864 sd->completion_queue = NULL;
3865 local_irq_enable();
3866
3867 while (clist) {
3868 struct sk_buff *skb = clist;
f4563a75 3869
1da177e4
LT
3870 clist = clist->next;
3871
547b792c 3872 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3873 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3874 trace_consume_skb(skb);
3875 else
3876 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3877
3878 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3879 __kfree_skb(skb);
3880 else
3881 __kfree_skb_defer(skb);
1da177e4 3882 }
15fad714
JDB
3883
3884 __kfree_skb_flush();
1da177e4
LT
3885 }
3886
3887 if (sd->output_queue) {
37437bb2 3888 struct Qdisc *head;
1da177e4
LT
3889
3890 local_irq_disable();
3891 head = sd->output_queue;
3892 sd->output_queue = NULL;
a9cbd588 3893 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3894 local_irq_enable();
3895
3896 while (head) {
37437bb2
DM
3897 struct Qdisc *q = head;
3898 spinlock_t *root_lock;
3899
1da177e4
LT
3900 head = head->next_sched;
3901
5fb66229 3902 root_lock = qdisc_lock(q);
3bcb846c
ED
3903 spin_lock(root_lock);
3904 /* We need to make sure head->next_sched is read
3905 * before clearing __QDISC_STATE_SCHED
3906 */
3907 smp_mb__before_atomic();
3908 clear_bit(__QDISC_STATE_SCHED, &q->state);
3909 qdisc_run(q);
3910 spin_unlock(root_lock);
1da177e4
LT
3911 }
3912 }
3913}
3914
181402a5 3915#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3916/* This hook is defined here for ATM LANE */
3917int (*br_fdb_test_addr_hook)(struct net_device *dev,
3918 unsigned char *addr) __read_mostly;
4fb019a0 3919EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3920#endif
1da177e4 3921
1f211a1b
DB
3922static inline struct sk_buff *
3923sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3924 struct net_device *orig_dev)
f697c3e8 3925{
e7582bab 3926#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3927 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3928 struct tcf_result cl_res;
24824a09 3929
c9e99fd0
DB
3930 /* If there's at least one ingress present somewhere (so
3931 * we get here via enabled static key), remaining devices
3932 * that are not configured with an ingress qdisc will bail
d2788d34 3933 * out here.
c9e99fd0 3934 */
d2788d34 3935 if (!cl)
4577139b 3936 return skb;
f697c3e8
HX
3937 if (*pt_prev) {
3938 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3939 *pt_prev = NULL;
1da177e4
LT
3940 }
3941
3365495c 3942 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 3943 skb->tc_at_ingress = 1;
24ea591d 3944 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3945
3b3ae880 3946 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3947 case TC_ACT_OK:
3948 case TC_ACT_RECLASSIFY:
3949 skb->tc_index = TC_H_MIN(cl_res.classid);
3950 break;
3951 case TC_ACT_SHOT:
24ea591d 3952 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3953 kfree_skb(skb);
3954 return NULL;
d2788d34
DB
3955 case TC_ACT_STOLEN:
3956 case TC_ACT_QUEUED:
8a3a4c6e 3957 consume_skb(skb);
d2788d34 3958 return NULL;
27b29f63
AS
3959 case TC_ACT_REDIRECT:
3960 /* skb_mac_header check was done by cls/act_bpf, so
3961 * we can safely push the L2 header back before
3962 * redirecting to another netdev
3963 */
3964 __skb_push(skb, skb->mac_len);
3965 skb_do_redirect(skb);
3966 return NULL;
d2788d34
DB
3967 default:
3968 break;
f697c3e8 3969 }
e7582bab 3970#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3971 return skb;
3972}
1da177e4 3973
24b27fc4
MB
3974/**
3975 * netdev_is_rx_handler_busy - check if receive handler is registered
3976 * @dev: device to check
3977 *
3978 * Check if a receive handler is already registered for a given device.
3979 * Return true if there one.
3980 *
3981 * The caller must hold the rtnl_mutex.
3982 */
3983bool netdev_is_rx_handler_busy(struct net_device *dev)
3984{
3985 ASSERT_RTNL();
3986 return dev && rtnl_dereference(dev->rx_handler);
3987}
3988EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3989
ab95bfe0
JP
3990/**
3991 * netdev_rx_handler_register - register receive handler
3992 * @dev: device to register a handler for
3993 * @rx_handler: receive handler to register
93e2c32b 3994 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3995 *
e227867f 3996 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3997 * called from __netif_receive_skb. A negative errno code is returned
3998 * on a failure.
3999 *
4000 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4001 *
4002 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4003 */
4004int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4005 rx_handler_func_t *rx_handler,
4006 void *rx_handler_data)
ab95bfe0 4007{
1b7cd004 4008 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4009 return -EBUSY;
4010
00cfec37 4011 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4012 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4013 rcu_assign_pointer(dev->rx_handler, rx_handler);
4014
4015 return 0;
4016}
4017EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4018
4019/**
4020 * netdev_rx_handler_unregister - unregister receive handler
4021 * @dev: device to unregister a handler from
4022 *
166ec369 4023 * Unregister a receive handler from a device.
ab95bfe0
JP
4024 *
4025 * The caller must hold the rtnl_mutex.
4026 */
4027void netdev_rx_handler_unregister(struct net_device *dev)
4028{
4029
4030 ASSERT_RTNL();
a9b3cd7f 4031 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4032 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4033 * section has a guarantee to see a non NULL rx_handler_data
4034 * as well.
4035 */
4036 synchronize_net();
a9b3cd7f 4037 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4038}
4039EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4040
b4b9e355
MG
4041/*
4042 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4043 * the special handling of PFMEMALLOC skbs.
4044 */
4045static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4046{
4047 switch (skb->protocol) {
2b8837ae
JP
4048 case htons(ETH_P_ARP):
4049 case htons(ETH_P_IP):
4050 case htons(ETH_P_IPV6):
4051 case htons(ETH_P_8021Q):
4052 case htons(ETH_P_8021AD):
b4b9e355
MG
4053 return true;
4054 default:
4055 return false;
4056 }
4057}
4058
e687ad60
PN
4059static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4060 int *ret, struct net_device *orig_dev)
4061{
e7582bab 4062#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4063 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4064 int ingress_retval;
4065
e687ad60
PN
4066 if (*pt_prev) {
4067 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4068 *pt_prev = NULL;
4069 }
4070
2c1e2703
AC
4071 rcu_read_lock();
4072 ingress_retval = nf_hook_ingress(skb);
4073 rcu_read_unlock();
4074 return ingress_retval;
e687ad60 4075 }
e7582bab 4076#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4077 return 0;
4078}
e687ad60 4079
9754e293 4080static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4081{
4082 struct packet_type *ptype, *pt_prev;
ab95bfe0 4083 rx_handler_func_t *rx_handler;
f2ccd8fa 4084 struct net_device *orig_dev;
8a4eb573 4085 bool deliver_exact = false;
1da177e4 4086 int ret = NET_RX_DROP;
252e3346 4087 __be16 type;
1da177e4 4088
588f0330 4089 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4090
cf66ba58 4091 trace_netif_receive_skb(skb);
9b22ea56 4092
cc9bd5ce 4093 orig_dev = skb->dev;
8f903c70 4094
c1d2bbe1 4095 skb_reset_network_header(skb);
fda55eca
ED
4096 if (!skb_transport_header_was_set(skb))
4097 skb_reset_transport_header(skb);
0b5c9db1 4098 skb_reset_mac_len(skb);
1da177e4
LT
4099
4100 pt_prev = NULL;
4101
63d8ea7f 4102another_round:
b6858177 4103 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4104
4105 __this_cpu_inc(softnet_data.processed);
4106
8ad227ff
PM
4107 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4108 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4109 skb = skb_vlan_untag(skb);
bcc6d479 4110 if (unlikely(!skb))
2c17d27c 4111 goto out;
bcc6d479
JP
4112 }
4113
e7246e12
WB
4114 if (skb_skip_tc_classify(skb))
4115 goto skip_classify;
1da177e4 4116
9754e293 4117 if (pfmemalloc)
b4b9e355
MG
4118 goto skip_taps;
4119
1da177e4 4120 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4121 if (pt_prev)
4122 ret = deliver_skb(skb, pt_prev, orig_dev);
4123 pt_prev = ptype;
4124 }
4125
4126 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4127 if (pt_prev)
4128 ret = deliver_skb(skb, pt_prev, orig_dev);
4129 pt_prev = ptype;
1da177e4
LT
4130 }
4131
b4b9e355 4132skip_taps:
1cf51900 4133#ifdef CONFIG_NET_INGRESS
4577139b 4134 if (static_key_false(&ingress_needed)) {
1f211a1b 4135 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4136 if (!skb)
2c17d27c 4137 goto out;
e687ad60
PN
4138
4139 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4140 goto out;
4577139b 4141 }
1cf51900 4142#endif
a5135bcf 4143 skb_reset_tc(skb);
e7246e12 4144skip_classify:
9754e293 4145 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4146 goto drop;
4147
df8a39de 4148 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4149 if (pt_prev) {
4150 ret = deliver_skb(skb, pt_prev, orig_dev);
4151 pt_prev = NULL;
4152 }
48cc32d3 4153 if (vlan_do_receive(&skb))
2425717b
JF
4154 goto another_round;
4155 else if (unlikely(!skb))
2c17d27c 4156 goto out;
2425717b
JF
4157 }
4158
48cc32d3 4159 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4160 if (rx_handler) {
4161 if (pt_prev) {
4162 ret = deliver_skb(skb, pt_prev, orig_dev);
4163 pt_prev = NULL;
4164 }
8a4eb573
JP
4165 switch (rx_handler(&skb)) {
4166 case RX_HANDLER_CONSUMED:
3bc1b1ad 4167 ret = NET_RX_SUCCESS;
2c17d27c 4168 goto out;
8a4eb573 4169 case RX_HANDLER_ANOTHER:
63d8ea7f 4170 goto another_round;
8a4eb573
JP
4171 case RX_HANDLER_EXACT:
4172 deliver_exact = true;
4173 case RX_HANDLER_PASS:
4174 break;
4175 default:
4176 BUG();
4177 }
ab95bfe0 4178 }
1da177e4 4179
df8a39de
JP
4180 if (unlikely(skb_vlan_tag_present(skb))) {
4181 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4182 skb->pkt_type = PACKET_OTHERHOST;
4183 /* Note: we might in the future use prio bits
4184 * and set skb->priority like in vlan_do_receive()
4185 * For the time being, just ignore Priority Code Point
4186 */
4187 skb->vlan_tci = 0;
4188 }
48cc32d3 4189
7866a621
SN
4190 type = skb->protocol;
4191
63d8ea7f 4192 /* deliver only exact match when indicated */
7866a621
SN
4193 if (likely(!deliver_exact)) {
4194 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195 &ptype_base[ntohs(type) &
4196 PTYPE_HASH_MASK]);
4197 }
1f3c8804 4198
7866a621
SN
4199 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200 &orig_dev->ptype_specific);
4201
4202 if (unlikely(skb->dev != orig_dev)) {
4203 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4204 &skb->dev->ptype_specific);
1da177e4
LT
4205 }
4206
4207 if (pt_prev) {
1080e512 4208 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4209 goto drop;
1080e512
MT
4210 else
4211 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4212 } else {
b4b9e355 4213drop:
6e7333d3
JW
4214 if (!deliver_exact)
4215 atomic_long_inc(&skb->dev->rx_dropped);
4216 else
4217 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4218 kfree_skb(skb);
4219 /* Jamal, now you will not able to escape explaining
4220 * me how you were going to use this. :-)
4221 */
4222 ret = NET_RX_DROP;
4223 }
4224
2c17d27c 4225out:
9754e293
DM
4226 return ret;
4227}
4228
4229static int __netif_receive_skb(struct sk_buff *skb)
4230{
4231 int ret;
4232
4233 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4234 unsigned long pflags = current->flags;
4235
4236 /*
4237 * PFMEMALLOC skbs are special, they should
4238 * - be delivered to SOCK_MEMALLOC sockets only
4239 * - stay away from userspace
4240 * - have bounded memory usage
4241 *
4242 * Use PF_MEMALLOC as this saves us from propagating the allocation
4243 * context down to all allocation sites.
4244 */
4245 current->flags |= PF_MEMALLOC;
4246 ret = __netif_receive_skb_core(skb, true);
4247 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4248 } else
4249 ret = __netif_receive_skb_core(skb, false);
4250
1da177e4
LT
4251 return ret;
4252}
0a9627f2 4253
ae78dbfa 4254static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4255{
2c17d27c
JA
4256 int ret;
4257
588f0330 4258 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4259
c1f19b51
RC
4260 if (skb_defer_rx_timestamp(skb))
4261 return NET_RX_SUCCESS;
4262
2c17d27c
JA
4263 rcu_read_lock();
4264
df334545 4265#ifdef CONFIG_RPS
c5905afb 4266 if (static_key_false(&rps_needed)) {
3b098e2d 4267 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4268 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4269
3b098e2d
ED
4270 if (cpu >= 0) {
4271 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4272 rcu_read_unlock();
adc9300e 4273 return ret;
3b098e2d 4274 }
fec5e652 4275 }
1e94d72f 4276#endif
2c17d27c
JA
4277 ret = __netif_receive_skb(skb);
4278 rcu_read_unlock();
4279 return ret;
0a9627f2 4280}
ae78dbfa
BH
4281
4282/**
4283 * netif_receive_skb - process receive buffer from network
4284 * @skb: buffer to process
4285 *
4286 * netif_receive_skb() is the main receive data processing function.
4287 * It always succeeds. The buffer may be dropped during processing
4288 * for congestion control or by the protocol layers.
4289 *
4290 * This function may only be called from softirq context and interrupts
4291 * should be enabled.
4292 *
4293 * Return values (usually ignored):
4294 * NET_RX_SUCCESS: no congestion
4295 * NET_RX_DROP: packet was dropped
4296 */
04eb4489 4297int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4298{
4299 trace_netif_receive_skb_entry(skb);
4300
4301 return netif_receive_skb_internal(skb);
4302}
04eb4489 4303EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4304
41852497 4305DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4306
4307/* Network device is going away, flush any packets still pending */
4308static void flush_backlog(struct work_struct *work)
6e583ce5 4309{
6e583ce5 4310 struct sk_buff *skb, *tmp;
145dd5f9
PA
4311 struct softnet_data *sd;
4312
4313 local_bh_disable();
4314 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4315
145dd5f9 4316 local_irq_disable();
e36fa2f7 4317 rps_lock(sd);
6e7676c1 4318 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4319 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4320 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4321 kfree_skb(skb);
76cc8b13 4322 input_queue_head_incr(sd);
6e583ce5 4323 }
6e7676c1 4324 }
e36fa2f7 4325 rps_unlock(sd);
145dd5f9 4326 local_irq_enable();
6e7676c1
CG
4327
4328 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4329 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4330 __skb_unlink(skb, &sd->process_queue);
4331 kfree_skb(skb);
76cc8b13 4332 input_queue_head_incr(sd);
6e7676c1
CG
4333 }
4334 }
145dd5f9
PA
4335 local_bh_enable();
4336}
4337
41852497 4338static void flush_all_backlogs(void)
145dd5f9
PA
4339{
4340 unsigned int cpu;
4341
4342 get_online_cpus();
4343
41852497
ED
4344 for_each_online_cpu(cpu)
4345 queue_work_on(cpu, system_highpri_wq,
4346 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4347
4348 for_each_online_cpu(cpu)
41852497 4349 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4350
4351 put_online_cpus();
6e583ce5
SH
4352}
4353
d565b0a1
HX
4354static int napi_gro_complete(struct sk_buff *skb)
4355{
22061d80 4356 struct packet_offload *ptype;
d565b0a1 4357 __be16 type = skb->protocol;
22061d80 4358 struct list_head *head = &offload_base;
d565b0a1
HX
4359 int err = -ENOENT;
4360
c3c7c254
ED
4361 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4362
fc59f9a3
HX
4363 if (NAPI_GRO_CB(skb)->count == 1) {
4364 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4365 goto out;
fc59f9a3 4366 }
d565b0a1
HX
4367
4368 rcu_read_lock();
4369 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4370 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4371 continue;
4372
299603e8 4373 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4374 break;
4375 }
4376 rcu_read_unlock();
4377
4378 if (err) {
4379 WARN_ON(&ptype->list == head);
4380 kfree_skb(skb);
4381 return NET_RX_SUCCESS;
4382 }
4383
4384out:
ae78dbfa 4385 return netif_receive_skb_internal(skb);
d565b0a1
HX
4386}
4387
2e71a6f8
ED
4388/* napi->gro_list contains packets ordered by age.
4389 * youngest packets at the head of it.
4390 * Complete skbs in reverse order to reduce latencies.
4391 */
4392void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4393{
2e71a6f8 4394 struct sk_buff *skb, *prev = NULL;
d565b0a1 4395
2e71a6f8
ED
4396 /* scan list and build reverse chain */
4397 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4398 skb->prev = prev;
4399 prev = skb;
4400 }
4401
4402 for (skb = prev; skb; skb = prev) {
d565b0a1 4403 skb->next = NULL;
2e71a6f8
ED
4404
4405 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4406 return;
4407
4408 prev = skb->prev;
d565b0a1 4409 napi_gro_complete(skb);
2e71a6f8 4410 napi->gro_count--;
d565b0a1
HX
4411 }
4412
4413 napi->gro_list = NULL;
4414}
86cac58b 4415EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4416
89c5fa33
ED
4417static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4418{
4419 struct sk_buff *p;
4420 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4421 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4422
4423 for (p = napi->gro_list; p; p = p->next) {
4424 unsigned long diffs;
4425
0b4cec8c
TH
4426 NAPI_GRO_CB(p)->flush = 0;
4427
4428 if (hash != skb_get_hash_raw(p)) {
4429 NAPI_GRO_CB(p)->same_flow = 0;
4430 continue;
4431 }
4432
89c5fa33
ED
4433 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4434 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4435 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4436 if (maclen == ETH_HLEN)
4437 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4438 skb_mac_header(skb));
89c5fa33
ED
4439 else if (!diffs)
4440 diffs = memcmp(skb_mac_header(p),
a50e233c 4441 skb_mac_header(skb),
89c5fa33
ED
4442 maclen);
4443 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4444 }
4445}
4446
299603e8
JC
4447static void skb_gro_reset_offset(struct sk_buff *skb)
4448{
4449 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4450 const skb_frag_t *frag0 = &pinfo->frags[0];
4451
4452 NAPI_GRO_CB(skb)->data_offset = 0;
4453 NAPI_GRO_CB(skb)->frag0 = NULL;
4454 NAPI_GRO_CB(skb)->frag0_len = 0;
4455
4456 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4457 pinfo->nr_frags &&
4458 !PageHighMem(skb_frag_page(frag0))) {
4459 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4460 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4461 skb_frag_size(frag0),
4462 skb->end - skb->tail);
89c5fa33
ED
4463 }
4464}
4465
a50e233c
ED
4466static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4467{
4468 struct skb_shared_info *pinfo = skb_shinfo(skb);
4469
4470 BUG_ON(skb->end - skb->tail < grow);
4471
4472 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4473
4474 skb->data_len -= grow;
4475 skb->tail += grow;
4476
4477 pinfo->frags[0].page_offset += grow;
4478 skb_frag_size_sub(&pinfo->frags[0], grow);
4479
4480 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4481 skb_frag_unref(skb, 0);
4482 memmove(pinfo->frags, pinfo->frags + 1,
4483 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4484 }
4485}
4486
bb728820 4487static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4488{
4489 struct sk_buff **pp = NULL;
22061d80 4490 struct packet_offload *ptype;
d565b0a1 4491 __be16 type = skb->protocol;
22061d80 4492 struct list_head *head = &offload_base;
0da2afd5 4493 int same_flow;
5b252f0c 4494 enum gro_result ret;
a50e233c 4495 int grow;
d565b0a1 4496
9c62a68d 4497 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4498 goto normal;
4499
d61d072e 4500 if (skb->csum_bad)
f17f5c91
HX
4501 goto normal;
4502
89c5fa33
ED
4503 gro_list_prepare(napi, skb);
4504
d565b0a1
HX
4505 rcu_read_lock();
4506 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4507 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4508 continue;
4509
86911732 4510 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4511 skb_reset_mac_len(skb);
d565b0a1 4512 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4513 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4514 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4515 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4516 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4517 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4518 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4519 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4520
662880f4
TH
4521 /* Setup for GRO checksum validation */
4522 switch (skb->ip_summed) {
4523 case CHECKSUM_COMPLETE:
4524 NAPI_GRO_CB(skb)->csum = skb->csum;
4525 NAPI_GRO_CB(skb)->csum_valid = 1;
4526 NAPI_GRO_CB(skb)->csum_cnt = 0;
4527 break;
4528 case CHECKSUM_UNNECESSARY:
4529 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4530 NAPI_GRO_CB(skb)->csum_valid = 0;
4531 break;
4532 default:
4533 NAPI_GRO_CB(skb)->csum_cnt = 0;
4534 NAPI_GRO_CB(skb)->csum_valid = 0;
4535 }
d565b0a1 4536
f191a1d1 4537 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4538 break;
4539 }
4540 rcu_read_unlock();
4541
4542 if (&ptype->list == head)
4543 goto normal;
4544
25393d3f
SK
4545 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4546 ret = GRO_CONSUMED;
4547 goto ok;
4548 }
4549
0da2afd5 4550 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4551 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4552
d565b0a1
HX
4553 if (pp) {
4554 struct sk_buff *nskb = *pp;
4555
4556 *pp = nskb->next;
4557 nskb->next = NULL;
4558 napi_gro_complete(nskb);
4ae5544f 4559 napi->gro_count--;
d565b0a1
HX
4560 }
4561
0da2afd5 4562 if (same_flow)
d565b0a1
HX
4563 goto ok;
4564
600adc18 4565 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4566 goto normal;
d565b0a1 4567
600adc18
ED
4568 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4569 struct sk_buff *nskb = napi->gro_list;
4570
4571 /* locate the end of the list to select the 'oldest' flow */
4572 while (nskb->next) {
4573 pp = &nskb->next;
4574 nskb = *pp;
4575 }
4576 *pp = NULL;
4577 nskb->next = NULL;
4578 napi_gro_complete(nskb);
4579 } else {
4580 napi->gro_count++;
4581 }
d565b0a1 4582 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4583 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4584 NAPI_GRO_CB(skb)->last = skb;
86911732 4585 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4586 skb->next = napi->gro_list;
4587 napi->gro_list = skb;
5d0d9be8 4588 ret = GRO_HELD;
d565b0a1 4589
ad0f9904 4590pull:
a50e233c
ED
4591 grow = skb_gro_offset(skb) - skb_headlen(skb);
4592 if (grow > 0)
4593 gro_pull_from_frag0(skb, grow);
d565b0a1 4594ok:
5d0d9be8 4595 return ret;
d565b0a1
HX
4596
4597normal:
ad0f9904
HX
4598 ret = GRO_NORMAL;
4599 goto pull;
5d38a079 4600}
96e93eab 4601
bf5a755f
JC
4602struct packet_offload *gro_find_receive_by_type(__be16 type)
4603{
4604 struct list_head *offload_head = &offload_base;
4605 struct packet_offload *ptype;
4606
4607 list_for_each_entry_rcu(ptype, offload_head, list) {
4608 if (ptype->type != type || !ptype->callbacks.gro_receive)
4609 continue;
4610 return ptype;
4611 }
4612 return NULL;
4613}
e27a2f83 4614EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4615
4616struct packet_offload *gro_find_complete_by_type(__be16 type)
4617{
4618 struct list_head *offload_head = &offload_base;
4619 struct packet_offload *ptype;
4620
4621 list_for_each_entry_rcu(ptype, offload_head, list) {
4622 if (ptype->type != type || !ptype->callbacks.gro_complete)
4623 continue;
4624 return ptype;
4625 }
4626 return NULL;
4627}
e27a2f83 4628EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4629
bb728820 4630static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4631{
5d0d9be8
HX
4632 switch (ret) {
4633 case GRO_NORMAL:
ae78dbfa 4634 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4635 ret = GRO_DROP;
4636 break;
5d38a079 4637
5d0d9be8 4638 case GRO_DROP:
5d38a079
HX
4639 kfree_skb(skb);
4640 break;
5b252f0c 4641
daa86548 4642 case GRO_MERGED_FREE:
ce87fc6c
JG
4643 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4644 skb_dst_drop(skb);
f991bb9d 4645 secpath_reset(skb);
d7e8883c 4646 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4647 } else {
d7e8883c 4648 __kfree_skb(skb);
ce87fc6c 4649 }
daa86548
ED
4650 break;
4651
5b252f0c
BH
4652 case GRO_HELD:
4653 case GRO_MERGED:
25393d3f 4654 case GRO_CONSUMED:
5b252f0c 4655 break;
5d38a079
HX
4656 }
4657
c7c4b3b6 4658 return ret;
5d0d9be8 4659}
5d0d9be8 4660
c7c4b3b6 4661gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4662{
93f93a44 4663 skb_mark_napi_id(skb, napi);
ae78dbfa 4664 trace_napi_gro_receive_entry(skb);
86911732 4665
a50e233c
ED
4666 skb_gro_reset_offset(skb);
4667
89c5fa33 4668 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4669}
4670EXPORT_SYMBOL(napi_gro_receive);
4671
d0c2b0d2 4672static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4673{
93a35f59
ED
4674 if (unlikely(skb->pfmemalloc)) {
4675 consume_skb(skb);
4676 return;
4677 }
96e93eab 4678 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4679 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4680 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4681 skb->vlan_tci = 0;
66c46d74 4682 skb->dev = napi->dev;
6d152e23 4683 skb->skb_iif = 0;
c3caf119
JC
4684 skb->encapsulation = 0;
4685 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4686 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 4687 secpath_reset(skb);
96e93eab
HX
4688
4689 napi->skb = skb;
4690}
96e93eab 4691
76620aaf 4692struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4693{
5d38a079 4694 struct sk_buff *skb = napi->skb;
5d38a079
HX
4695
4696 if (!skb) {
fd11a83d 4697 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4698 if (skb) {
4699 napi->skb = skb;
4700 skb_mark_napi_id(skb, napi);
4701 }
80595d59 4702 }
96e93eab
HX
4703 return skb;
4704}
76620aaf 4705EXPORT_SYMBOL(napi_get_frags);
96e93eab 4706
a50e233c
ED
4707static gro_result_t napi_frags_finish(struct napi_struct *napi,
4708 struct sk_buff *skb,
4709 gro_result_t ret)
96e93eab 4710{
5d0d9be8
HX
4711 switch (ret) {
4712 case GRO_NORMAL:
a50e233c
ED
4713 case GRO_HELD:
4714 __skb_push(skb, ETH_HLEN);
4715 skb->protocol = eth_type_trans(skb, skb->dev);
4716 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4717 ret = GRO_DROP;
86911732 4718 break;
5d38a079 4719
5d0d9be8 4720 case GRO_DROP:
5d0d9be8
HX
4721 case GRO_MERGED_FREE:
4722 napi_reuse_skb(napi, skb);
4723 break;
5b252f0c
BH
4724
4725 case GRO_MERGED:
25393d3f 4726 case GRO_CONSUMED:
5b252f0c 4727 break;
5d0d9be8 4728 }
5d38a079 4729
c7c4b3b6 4730 return ret;
5d38a079 4731}
5d0d9be8 4732
a50e233c
ED
4733/* Upper GRO stack assumes network header starts at gro_offset=0
4734 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4735 * We copy ethernet header into skb->data to have a common layout.
4736 */
4adb9c4a 4737static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4738{
4739 struct sk_buff *skb = napi->skb;
a50e233c
ED
4740 const struct ethhdr *eth;
4741 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4742
4743 napi->skb = NULL;
4744
a50e233c
ED
4745 skb_reset_mac_header(skb);
4746 skb_gro_reset_offset(skb);
4747
4748 eth = skb_gro_header_fast(skb, 0);
4749 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4750 eth = skb_gro_header_slow(skb, hlen, 0);
4751 if (unlikely(!eth)) {
4da46ceb
AC
4752 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4753 __func__, napi->dev->name);
a50e233c
ED
4754 napi_reuse_skb(napi, skb);
4755 return NULL;
4756 }
4757 } else {
4758 gro_pull_from_frag0(skb, hlen);
4759 NAPI_GRO_CB(skb)->frag0 += hlen;
4760 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4761 }
a50e233c
ED
4762 __skb_pull(skb, hlen);
4763
4764 /*
4765 * This works because the only protocols we care about don't require
4766 * special handling.
4767 * We'll fix it up properly in napi_frags_finish()
4768 */
4769 skb->protocol = eth->h_proto;
76620aaf 4770
76620aaf
HX
4771 return skb;
4772}
76620aaf 4773
c7c4b3b6 4774gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4775{
76620aaf 4776 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4777
4778 if (!skb)
c7c4b3b6 4779 return GRO_DROP;
5d0d9be8 4780
ae78dbfa
BH
4781 trace_napi_gro_frags_entry(skb);
4782
89c5fa33 4783 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4784}
5d38a079
HX
4785EXPORT_SYMBOL(napi_gro_frags);
4786
573e8fca
TH
4787/* Compute the checksum from gro_offset and return the folded value
4788 * after adding in any pseudo checksum.
4789 */
4790__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4791{
4792 __wsum wsum;
4793 __sum16 sum;
4794
4795 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4796
4797 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4798 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4799 if (likely(!sum)) {
4800 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4801 !skb->csum_complete_sw)
4802 netdev_rx_csum_fault(skb->dev);
4803 }
4804
4805 NAPI_GRO_CB(skb)->csum = wsum;
4806 NAPI_GRO_CB(skb)->csum_valid = 1;
4807
4808 return sum;
4809}
4810EXPORT_SYMBOL(__skb_gro_checksum_complete);
4811
e326bed2 4812/*
855abcf0 4813 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4814 * Note: called with local irq disabled, but exits with local irq enabled.
4815 */
4816static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4817{
4818#ifdef CONFIG_RPS
4819 struct softnet_data *remsd = sd->rps_ipi_list;
4820
4821 if (remsd) {
4822 sd->rps_ipi_list = NULL;
4823
4824 local_irq_enable();
4825
4826 /* Send pending IPI's to kick RPS processing on remote cpus. */
4827 while (remsd) {
4828 struct softnet_data *next = remsd->rps_ipi_next;
4829
4830 if (cpu_online(remsd->cpu))
c46fff2a 4831 smp_call_function_single_async(remsd->cpu,
fce8ad15 4832 &remsd->csd);
e326bed2
ED
4833 remsd = next;
4834 }
4835 } else
4836#endif
4837 local_irq_enable();
4838}
4839
d75b1ade
ED
4840static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4841{
4842#ifdef CONFIG_RPS
4843 return sd->rps_ipi_list != NULL;
4844#else
4845 return false;
4846#endif
4847}
4848
bea3348e 4849static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4850{
eecfd7c4 4851 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4852 bool again = true;
4853 int work = 0;
1da177e4 4854
e326bed2
ED
4855 /* Check if we have pending ipi, its better to send them now,
4856 * not waiting net_rx_action() end.
4857 */
d75b1ade 4858 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4859 local_irq_disable();
4860 net_rps_action_and_irq_enable(sd);
4861 }
d75b1ade 4862
3d48b53f 4863 napi->weight = dev_rx_weight;
145dd5f9 4864 while (again) {
1da177e4 4865 struct sk_buff *skb;
6e7676c1
CG
4866
4867 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4868 rcu_read_lock();
6e7676c1 4869 __netif_receive_skb(skb);
2c17d27c 4870 rcu_read_unlock();
76cc8b13 4871 input_queue_head_incr(sd);
145dd5f9 4872 if (++work >= quota)
76cc8b13 4873 return work;
145dd5f9 4874
6e7676c1 4875 }
1da177e4 4876
145dd5f9 4877 local_irq_disable();
e36fa2f7 4878 rps_lock(sd);
11ef7a89 4879 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4880 /*
4881 * Inline a custom version of __napi_complete().
4882 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4883 * and NAPI_STATE_SCHED is the only possible flag set
4884 * on backlog.
4885 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4886 * and we dont need an smp_mb() memory barrier.
4887 */
eecfd7c4 4888 napi->state = 0;
145dd5f9
PA
4889 again = false;
4890 } else {
4891 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4892 &sd->process_queue);
bea3348e 4893 }
e36fa2f7 4894 rps_unlock(sd);
145dd5f9 4895 local_irq_enable();
6e7676c1 4896 }
1da177e4 4897
bea3348e
SH
4898 return work;
4899}
1da177e4 4900
bea3348e
SH
4901/**
4902 * __napi_schedule - schedule for receive
c4ea43c5 4903 * @n: entry to schedule
bea3348e 4904 *
bc9ad166
ED
4905 * The entry's receive function will be scheduled to run.
4906 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4907 */
b5606c2d 4908void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4909{
4910 unsigned long flags;
1da177e4 4911
bea3348e 4912 local_irq_save(flags);
903ceff7 4913 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4914 local_irq_restore(flags);
1da177e4 4915}
bea3348e
SH
4916EXPORT_SYMBOL(__napi_schedule);
4917
39e6c820
ED
4918/**
4919 * napi_schedule_prep - check if napi can be scheduled
4920 * @n: napi context
4921 *
4922 * Test if NAPI routine is already running, and if not mark
4923 * it as running. This is used as a condition variable
4924 * insure only one NAPI poll instance runs. We also make
4925 * sure there is no pending NAPI disable.
4926 */
4927bool napi_schedule_prep(struct napi_struct *n)
4928{
4929 unsigned long val, new;
4930
4931 do {
4932 val = READ_ONCE(n->state);
4933 if (unlikely(val & NAPIF_STATE_DISABLE))
4934 return false;
4935 new = val | NAPIF_STATE_SCHED;
4936
4937 /* Sets STATE_MISSED bit if STATE_SCHED was already set
4938 * This was suggested by Alexander Duyck, as compiler
4939 * emits better code than :
4940 * if (val & NAPIF_STATE_SCHED)
4941 * new |= NAPIF_STATE_MISSED;
4942 */
4943 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
4944 NAPIF_STATE_MISSED;
4945 } while (cmpxchg(&n->state, val, new) != val);
4946
4947 return !(val & NAPIF_STATE_SCHED);
4948}
4949EXPORT_SYMBOL(napi_schedule_prep);
4950
bc9ad166
ED
4951/**
4952 * __napi_schedule_irqoff - schedule for receive
4953 * @n: entry to schedule
4954 *
4955 * Variant of __napi_schedule() assuming hard irqs are masked
4956 */
4957void __napi_schedule_irqoff(struct napi_struct *n)
4958{
4959 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4960}
4961EXPORT_SYMBOL(__napi_schedule_irqoff);
4962
364b6055 4963bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 4964{
39e6c820 4965 unsigned long flags, val, new;
d565b0a1
HX
4966
4967 /*
217f6974
ED
4968 * 1) Don't let napi dequeue from the cpu poll list
4969 * just in case its running on a different cpu.
4970 * 2) If we are busy polling, do nothing here, we have
4971 * the guarantee we will be called later.
d565b0a1 4972 */
217f6974
ED
4973 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4974 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 4975 return false;
d565b0a1 4976
3b47d303
ED
4977 if (n->gro_list) {
4978 unsigned long timeout = 0;
d75b1ade 4979
3b47d303
ED
4980 if (work_done)
4981 timeout = n->dev->gro_flush_timeout;
4982
4983 if (timeout)
4984 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4985 HRTIMER_MODE_REL_PINNED);
4986 else
4987 napi_gro_flush(n, false);
4988 }
02c1602e 4989 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
4990 /* If n->poll_list is not empty, we need to mask irqs */
4991 local_irq_save(flags);
02c1602e 4992 list_del_init(&n->poll_list);
d75b1ade
ED
4993 local_irq_restore(flags);
4994 }
39e6c820
ED
4995
4996 do {
4997 val = READ_ONCE(n->state);
4998
4999 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5000
5001 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5002
5003 /* If STATE_MISSED was set, leave STATE_SCHED set,
5004 * because we will call napi->poll() one more time.
5005 * This C code was suggested by Alexander Duyck to help gcc.
5006 */
5007 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5008 NAPIF_STATE_SCHED;
5009 } while (cmpxchg(&n->state, val, new) != val);
5010
5011 if (unlikely(val & NAPIF_STATE_MISSED)) {
5012 __napi_schedule(n);
5013 return false;
5014 }
5015
364b6055 5016 return true;
d565b0a1 5017}
3b47d303 5018EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5019
af12fa6e 5020/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5021static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5022{
5023 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5024 struct napi_struct *napi;
5025
5026 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5027 if (napi->napi_id == napi_id)
5028 return napi;
5029
5030 return NULL;
5031}
02d62e86
ED
5032
5033#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5034
ce6aea93 5035#define BUSY_POLL_BUDGET 8
217f6974
ED
5036
5037static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5038{
5039 int rc;
5040
39e6c820
ED
5041 /* Busy polling means there is a high chance device driver hard irq
5042 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5043 * set in napi_schedule_prep().
5044 * Since we are about to call napi->poll() once more, we can safely
5045 * clear NAPI_STATE_MISSED.
5046 *
5047 * Note: x86 could use a single "lock and ..." instruction
5048 * to perform these two clear_bit()
5049 */
5050 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5051 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5052
5053 local_bh_disable();
5054
5055 /* All we really want here is to re-enable device interrupts.
5056 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5057 */
5058 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5059 netpoll_poll_unlock(have_poll_lock);
5060 if (rc == BUSY_POLL_BUDGET)
5061 __napi_schedule(napi);
5062 local_bh_enable();
5063 if (local_softirq_pending())
5064 do_softirq();
5065}
5066
7db6b048
SS
5067void napi_busy_loop(unsigned int napi_id,
5068 bool (*loop_end)(void *, unsigned long),
5069 void *loop_end_arg)
02d62e86 5070{
7db6b048 5071 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 5072 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 5073 void *have_poll_lock = NULL;
02d62e86 5074 struct napi_struct *napi;
217f6974
ED
5075
5076restart:
217f6974 5077 napi_poll = NULL;
02d62e86 5078
2a028ecb 5079 rcu_read_lock();
02d62e86 5080
545cd5e5 5081 napi = napi_by_id(napi_id);
02d62e86
ED
5082 if (!napi)
5083 goto out;
5084
217f6974
ED
5085 preempt_disable();
5086 for (;;) {
2b5cd0df
AD
5087 int work = 0;
5088
2a028ecb 5089 local_bh_disable();
217f6974
ED
5090 if (!napi_poll) {
5091 unsigned long val = READ_ONCE(napi->state);
5092
5093 /* If multiple threads are competing for this napi,
5094 * we avoid dirtying napi->state as much as we can.
5095 */
5096 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5097 NAPIF_STATE_IN_BUSY_POLL))
5098 goto count;
5099 if (cmpxchg(&napi->state, val,
5100 val | NAPIF_STATE_IN_BUSY_POLL |
5101 NAPIF_STATE_SCHED) != val)
5102 goto count;
5103 have_poll_lock = netpoll_poll_lock(napi);
5104 napi_poll = napi->poll;
5105 }
2b5cd0df
AD
5106 work = napi_poll(napi, BUSY_POLL_BUDGET);
5107 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 5108count:
2b5cd0df 5109 if (work > 0)
7db6b048 5110 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 5111 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 5112 local_bh_enable();
02d62e86 5113
7db6b048 5114 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 5115 break;
02d62e86 5116
217f6974
ED
5117 if (unlikely(need_resched())) {
5118 if (napi_poll)
5119 busy_poll_stop(napi, have_poll_lock);
5120 preempt_enable();
5121 rcu_read_unlock();
5122 cond_resched();
7db6b048 5123 if (loop_end(loop_end_arg, start_time))
2b5cd0df 5124 return;
217f6974
ED
5125 goto restart;
5126 }
6cdf89b1 5127 cpu_relax();
217f6974
ED
5128 }
5129 if (napi_poll)
5130 busy_poll_stop(napi, have_poll_lock);
5131 preempt_enable();
02d62e86 5132out:
2a028ecb 5133 rcu_read_unlock();
02d62e86 5134}
7db6b048 5135EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
5136
5137#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5138
149d6ad8 5139static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5140{
d64b5e85
ED
5141 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5142 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5143 return;
af12fa6e 5144
52bd2d62 5145 spin_lock(&napi_hash_lock);
af12fa6e 5146
545cd5e5 5147 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 5148 do {
545cd5e5
AD
5149 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5150 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
5151 } while (napi_by_id(napi_gen_id));
5152 napi->napi_id = napi_gen_id;
af12fa6e 5153
52bd2d62
ED
5154 hlist_add_head_rcu(&napi->napi_hash_node,
5155 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5156
52bd2d62 5157 spin_unlock(&napi_hash_lock);
af12fa6e 5158}
af12fa6e
ET
5159
5160/* Warning : caller is responsible to make sure rcu grace period
5161 * is respected before freeing memory containing @napi
5162 */
34cbe27e 5163bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5164{
34cbe27e
ED
5165 bool rcu_sync_needed = false;
5166
af12fa6e
ET
5167 spin_lock(&napi_hash_lock);
5168
34cbe27e
ED
5169 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5170 rcu_sync_needed = true;
af12fa6e 5171 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5172 }
af12fa6e 5173 spin_unlock(&napi_hash_lock);
34cbe27e 5174 return rcu_sync_needed;
af12fa6e
ET
5175}
5176EXPORT_SYMBOL_GPL(napi_hash_del);
5177
3b47d303
ED
5178static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5179{
5180 struct napi_struct *napi;
5181
5182 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
5183
5184 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5185 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5186 */
5187 if (napi->gro_list && !napi_disable_pending(napi) &&
5188 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5189 __napi_schedule_irqoff(napi);
3b47d303
ED
5190
5191 return HRTIMER_NORESTART;
5192}
5193
d565b0a1
HX
5194void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5195 int (*poll)(struct napi_struct *, int), int weight)
5196{
5197 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5198 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5199 napi->timer.function = napi_watchdog;
4ae5544f 5200 napi->gro_count = 0;
d565b0a1 5201 napi->gro_list = NULL;
5d38a079 5202 napi->skb = NULL;
d565b0a1 5203 napi->poll = poll;
82dc3c63
ED
5204 if (weight > NAPI_POLL_WEIGHT)
5205 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5206 weight, dev->name);
d565b0a1
HX
5207 napi->weight = weight;
5208 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5209 napi->dev = dev;
5d38a079 5210#ifdef CONFIG_NETPOLL
d565b0a1
HX
5211 napi->poll_owner = -1;
5212#endif
5213 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5214 napi_hash_add(napi);
d565b0a1
HX
5215}
5216EXPORT_SYMBOL(netif_napi_add);
5217
3b47d303
ED
5218void napi_disable(struct napi_struct *n)
5219{
5220 might_sleep();
5221 set_bit(NAPI_STATE_DISABLE, &n->state);
5222
5223 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5224 msleep(1);
2d8bff12
NH
5225 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5226 msleep(1);
3b47d303
ED
5227
5228 hrtimer_cancel(&n->timer);
5229
5230 clear_bit(NAPI_STATE_DISABLE, &n->state);
5231}
5232EXPORT_SYMBOL(napi_disable);
5233
93d05d4a 5234/* Must be called in process context */
d565b0a1
HX
5235void netif_napi_del(struct napi_struct *napi)
5236{
93d05d4a
ED
5237 might_sleep();
5238 if (napi_hash_del(napi))
5239 synchronize_net();
d7b06636 5240 list_del_init(&napi->dev_list);
76620aaf 5241 napi_free_frags(napi);
d565b0a1 5242
289dccbe 5243 kfree_skb_list(napi->gro_list);
d565b0a1 5244 napi->gro_list = NULL;
4ae5544f 5245 napi->gro_count = 0;
d565b0a1
HX
5246}
5247EXPORT_SYMBOL(netif_napi_del);
5248
726ce70e
HX
5249static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5250{
5251 void *have;
5252 int work, weight;
5253
5254 list_del_init(&n->poll_list);
5255
5256 have = netpoll_poll_lock(n);
5257
5258 weight = n->weight;
5259
5260 /* This NAPI_STATE_SCHED test is for avoiding a race
5261 * with netpoll's poll_napi(). Only the entity which
5262 * obtains the lock and sees NAPI_STATE_SCHED set will
5263 * actually make the ->poll() call. Therefore we avoid
5264 * accidentally calling ->poll() when NAPI is not scheduled.
5265 */
5266 work = 0;
5267 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5268 work = n->poll(n, weight);
1db19db7 5269 trace_napi_poll(n, work, weight);
726ce70e
HX
5270 }
5271
5272 WARN_ON_ONCE(work > weight);
5273
5274 if (likely(work < weight))
5275 goto out_unlock;
5276
5277 /* Drivers must not modify the NAPI state if they
5278 * consume the entire weight. In such cases this code
5279 * still "owns" the NAPI instance and therefore can
5280 * move the instance around on the list at-will.
5281 */
5282 if (unlikely(napi_disable_pending(n))) {
5283 napi_complete(n);
5284 goto out_unlock;
5285 }
5286
5287 if (n->gro_list) {
5288 /* flush too old packets
5289 * If HZ < 1000, flush all packets.
5290 */
5291 napi_gro_flush(n, HZ >= 1000);
5292 }
5293
001ce546
HX
5294 /* Some drivers may have called napi_schedule
5295 * prior to exhausting their budget.
5296 */
5297 if (unlikely(!list_empty(&n->poll_list))) {
5298 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5299 n->dev ? n->dev->name : "backlog");
5300 goto out_unlock;
5301 }
5302
726ce70e
HX
5303 list_add_tail(&n->poll_list, repoll);
5304
5305out_unlock:
5306 netpoll_poll_unlock(have);
5307
5308 return work;
5309}
5310
0766f788 5311static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5312{
903ceff7 5313 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
5314 unsigned long time_limit = jiffies +
5315 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 5316 int budget = netdev_budget;
d75b1ade
ED
5317 LIST_HEAD(list);
5318 LIST_HEAD(repoll);
53fb95d3 5319
1da177e4 5320 local_irq_disable();
d75b1ade
ED
5321 list_splice_init(&sd->poll_list, &list);
5322 local_irq_enable();
1da177e4 5323
ceb8d5bf 5324 for (;;) {
bea3348e 5325 struct napi_struct *n;
1da177e4 5326
ceb8d5bf
HX
5327 if (list_empty(&list)) {
5328 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5329 goto out;
ceb8d5bf
HX
5330 break;
5331 }
5332
6bd373eb
HX
5333 n = list_first_entry(&list, struct napi_struct, poll_list);
5334 budget -= napi_poll(n, &repoll);
5335
d75b1ade 5336 /* If softirq window is exhausted then punt.
24f8b238
SH
5337 * Allow this to run for 2 jiffies since which will allow
5338 * an average latency of 1.5/HZ.
bea3348e 5339 */
ceb8d5bf
HX
5340 if (unlikely(budget <= 0 ||
5341 time_after_eq(jiffies, time_limit))) {
5342 sd->time_squeeze++;
5343 break;
5344 }
1da177e4 5345 }
d75b1ade 5346
d75b1ade
ED
5347 local_irq_disable();
5348
5349 list_splice_tail_init(&sd->poll_list, &list);
5350 list_splice_tail(&repoll, &list);
5351 list_splice(&list, &sd->poll_list);
5352 if (!list_empty(&sd->poll_list))
5353 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5354
e326bed2 5355 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5356out:
5357 __kfree_skb_flush();
1da177e4
LT
5358}
5359
aa9d8560 5360struct netdev_adjacent {
9ff162a8 5361 struct net_device *dev;
5d261913
VF
5362
5363 /* upper master flag, there can only be one master device per list */
9ff162a8 5364 bool master;
5d261913 5365
5d261913
VF
5366 /* counter for the number of times this device was added to us */
5367 u16 ref_nr;
5368
402dae96
VF
5369 /* private field for the users */
5370 void *private;
5371
9ff162a8
JP
5372 struct list_head list;
5373 struct rcu_head rcu;
9ff162a8
JP
5374};
5375
6ea29da1 5376static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5377 struct list_head *adj_list)
9ff162a8 5378{
5d261913 5379 struct netdev_adjacent *adj;
5d261913 5380
2f268f12 5381 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5382 if (adj->dev == adj_dev)
5383 return adj;
9ff162a8
JP
5384 }
5385 return NULL;
5386}
5387
f1170fd4
DA
5388static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5389{
5390 struct net_device *dev = data;
5391
5392 return upper_dev == dev;
5393}
5394
9ff162a8
JP
5395/**
5396 * netdev_has_upper_dev - Check if device is linked to an upper device
5397 * @dev: device
5398 * @upper_dev: upper device to check
5399 *
5400 * Find out if a device is linked to specified upper device and return true
5401 * in case it is. Note that this checks only immediate upper device,
5402 * not through a complete stack of devices. The caller must hold the RTNL lock.
5403 */
5404bool netdev_has_upper_dev(struct net_device *dev,
5405 struct net_device *upper_dev)
5406{
5407 ASSERT_RTNL();
5408
f1170fd4
DA
5409 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5410 upper_dev);
9ff162a8
JP
5411}
5412EXPORT_SYMBOL(netdev_has_upper_dev);
5413
1a3f060c
DA
5414/**
5415 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5416 * @dev: device
5417 * @upper_dev: upper device to check
5418 *
5419 * Find out if a device is linked to specified upper device and return true
5420 * in case it is. Note that this checks the entire upper device chain.
5421 * The caller must hold rcu lock.
5422 */
5423
1a3f060c
DA
5424bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5425 struct net_device *upper_dev)
5426{
5427 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5428 upper_dev);
5429}
5430EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5431
9ff162a8
JP
5432/**
5433 * netdev_has_any_upper_dev - Check if device is linked to some device
5434 * @dev: device
5435 *
5436 * Find out if a device is linked to an upper device and return true in case
5437 * it is. The caller must hold the RTNL lock.
5438 */
1d143d9f 5439static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5440{
5441 ASSERT_RTNL();
5442
f1170fd4 5443 return !list_empty(&dev->adj_list.upper);
9ff162a8 5444}
9ff162a8
JP
5445
5446/**
5447 * netdev_master_upper_dev_get - Get master upper device
5448 * @dev: device
5449 *
5450 * Find a master upper device and return pointer to it or NULL in case
5451 * it's not there. The caller must hold the RTNL lock.
5452 */
5453struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5454{
aa9d8560 5455 struct netdev_adjacent *upper;
9ff162a8
JP
5456
5457 ASSERT_RTNL();
5458
2f268f12 5459 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5460 return NULL;
5461
2f268f12 5462 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5463 struct netdev_adjacent, list);
9ff162a8
JP
5464 if (likely(upper->master))
5465 return upper->dev;
5466 return NULL;
5467}
5468EXPORT_SYMBOL(netdev_master_upper_dev_get);
5469
0f524a80
DA
5470/**
5471 * netdev_has_any_lower_dev - Check if device is linked to some device
5472 * @dev: device
5473 *
5474 * Find out if a device is linked to a lower device and return true in case
5475 * it is. The caller must hold the RTNL lock.
5476 */
5477static bool netdev_has_any_lower_dev(struct net_device *dev)
5478{
5479 ASSERT_RTNL();
5480
5481 return !list_empty(&dev->adj_list.lower);
5482}
5483
b6ccba4c
VF
5484void *netdev_adjacent_get_private(struct list_head *adj_list)
5485{
5486 struct netdev_adjacent *adj;
5487
5488 adj = list_entry(adj_list, struct netdev_adjacent, list);
5489
5490 return adj->private;
5491}
5492EXPORT_SYMBOL(netdev_adjacent_get_private);
5493
44a40855
VY
5494/**
5495 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5496 * @dev: device
5497 * @iter: list_head ** of the current position
5498 *
5499 * Gets the next device from the dev's upper list, starting from iter
5500 * position. The caller must hold RCU read lock.
5501 */
5502struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5503 struct list_head **iter)
5504{
5505 struct netdev_adjacent *upper;
5506
5507 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5508
5509 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5510
5511 if (&upper->list == &dev->adj_list.upper)
5512 return NULL;
5513
5514 *iter = &upper->list;
5515
5516 return upper->dev;
5517}
5518EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5519
1a3f060c
DA
5520static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5521 struct list_head **iter)
5522{
5523 struct netdev_adjacent *upper;
5524
5525 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5526
5527 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5528
5529 if (&upper->list == &dev->adj_list.upper)
5530 return NULL;
5531
5532 *iter = &upper->list;
5533
5534 return upper->dev;
5535}
5536
5537int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5538 int (*fn)(struct net_device *dev,
5539 void *data),
5540 void *data)
5541{
5542 struct net_device *udev;
5543 struct list_head *iter;
5544 int ret;
5545
5546 for (iter = &dev->adj_list.upper,
5547 udev = netdev_next_upper_dev_rcu(dev, &iter);
5548 udev;
5549 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5550 /* first is the upper device itself */
5551 ret = fn(udev, data);
5552 if (ret)
5553 return ret;
5554
5555 /* then look at all of its upper devices */
5556 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5557 if (ret)
5558 return ret;
5559 }
5560
5561 return 0;
5562}
5563EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5564
31088a11
VF
5565/**
5566 * netdev_lower_get_next_private - Get the next ->private from the
5567 * lower neighbour list
5568 * @dev: device
5569 * @iter: list_head ** of the current position
5570 *
5571 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5572 * list, starting from iter position. The caller must hold either hold the
5573 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5574 * list will remain unchanged.
31088a11
VF
5575 */
5576void *netdev_lower_get_next_private(struct net_device *dev,
5577 struct list_head **iter)
5578{
5579 struct netdev_adjacent *lower;
5580
5581 lower = list_entry(*iter, struct netdev_adjacent, list);
5582
5583 if (&lower->list == &dev->adj_list.lower)
5584 return NULL;
5585
6859e7df 5586 *iter = lower->list.next;
31088a11
VF
5587
5588 return lower->private;
5589}
5590EXPORT_SYMBOL(netdev_lower_get_next_private);
5591
5592/**
5593 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5594 * lower neighbour list, RCU
5595 * variant
5596 * @dev: device
5597 * @iter: list_head ** of the current position
5598 *
5599 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5600 * list, starting from iter position. The caller must hold RCU read lock.
5601 */
5602void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5603 struct list_head **iter)
5604{
5605 struct netdev_adjacent *lower;
5606
5607 WARN_ON_ONCE(!rcu_read_lock_held());
5608
5609 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5610
5611 if (&lower->list == &dev->adj_list.lower)
5612 return NULL;
5613
6859e7df 5614 *iter = &lower->list;
31088a11
VF
5615
5616 return lower->private;
5617}
5618EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5619
4085ebe8
VY
5620/**
5621 * netdev_lower_get_next - Get the next device from the lower neighbour
5622 * list
5623 * @dev: device
5624 * @iter: list_head ** of the current position
5625 *
5626 * Gets the next netdev_adjacent from the dev's lower neighbour
5627 * list, starting from iter position. The caller must hold RTNL lock or
5628 * its own locking that guarantees that the neighbour lower
b469139e 5629 * list will remain unchanged.
4085ebe8
VY
5630 */
5631void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5632{
5633 struct netdev_adjacent *lower;
5634
cfdd28be 5635 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5636
5637 if (&lower->list == &dev->adj_list.lower)
5638 return NULL;
5639
cfdd28be 5640 *iter = lower->list.next;
4085ebe8
VY
5641
5642 return lower->dev;
5643}
5644EXPORT_SYMBOL(netdev_lower_get_next);
5645
1a3f060c
DA
5646static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5647 struct list_head **iter)
5648{
5649 struct netdev_adjacent *lower;
5650
46b5ab1a 5651 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5652
5653 if (&lower->list == &dev->adj_list.lower)
5654 return NULL;
5655
46b5ab1a 5656 *iter = &lower->list;
1a3f060c
DA
5657
5658 return lower->dev;
5659}
5660
5661int netdev_walk_all_lower_dev(struct net_device *dev,
5662 int (*fn)(struct net_device *dev,
5663 void *data),
5664 void *data)
5665{
5666 struct net_device *ldev;
5667 struct list_head *iter;
5668 int ret;
5669
5670 for (iter = &dev->adj_list.lower,
5671 ldev = netdev_next_lower_dev(dev, &iter);
5672 ldev;
5673 ldev = netdev_next_lower_dev(dev, &iter)) {
5674 /* first is the lower device itself */
5675 ret = fn(ldev, data);
5676 if (ret)
5677 return ret;
5678
5679 /* then look at all of its lower devices */
5680 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5681 if (ret)
5682 return ret;
5683 }
5684
5685 return 0;
5686}
5687EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5688
1a3f060c
DA
5689static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5690 struct list_head **iter)
5691{
5692 struct netdev_adjacent *lower;
5693
5694 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5695 if (&lower->list == &dev->adj_list.lower)
5696 return NULL;
5697
5698 *iter = &lower->list;
5699
5700 return lower->dev;
5701}
5702
5703int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5704 int (*fn)(struct net_device *dev,
5705 void *data),
5706 void *data)
5707{
5708 struct net_device *ldev;
5709 struct list_head *iter;
5710 int ret;
5711
5712 for (iter = &dev->adj_list.lower,
5713 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5714 ldev;
5715 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5716 /* first is the lower device itself */
5717 ret = fn(ldev, data);
5718 if (ret)
5719 return ret;
5720
5721 /* then look at all of its lower devices */
5722 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5723 if (ret)
5724 return ret;
5725 }
5726
5727 return 0;
5728}
5729EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5730
e001bfad 5731/**
5732 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5733 * lower neighbour list, RCU
5734 * variant
5735 * @dev: device
5736 *
5737 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5738 * list. The caller must hold RCU read lock.
5739 */
5740void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5741{
5742 struct netdev_adjacent *lower;
5743
5744 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5745 struct netdev_adjacent, list);
5746 if (lower)
5747 return lower->private;
5748 return NULL;
5749}
5750EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5751
9ff162a8
JP
5752/**
5753 * netdev_master_upper_dev_get_rcu - Get master upper device
5754 * @dev: device
5755 *
5756 * Find a master upper device and return pointer to it or NULL in case
5757 * it's not there. The caller must hold the RCU read lock.
5758 */
5759struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5760{
aa9d8560 5761 struct netdev_adjacent *upper;
9ff162a8 5762
2f268f12 5763 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5764 struct netdev_adjacent, list);
9ff162a8
JP
5765 if (upper && likely(upper->master))
5766 return upper->dev;
5767 return NULL;
5768}
5769EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5770
0a59f3a9 5771static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5772 struct net_device *adj_dev,
5773 struct list_head *dev_list)
5774{
5775 char linkname[IFNAMSIZ+7];
f4563a75 5776
3ee32707
VF
5777 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5778 "upper_%s" : "lower_%s", adj_dev->name);
5779 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5780 linkname);
5781}
0a59f3a9 5782static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5783 char *name,
5784 struct list_head *dev_list)
5785{
5786 char linkname[IFNAMSIZ+7];
f4563a75 5787
3ee32707
VF
5788 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5789 "upper_%s" : "lower_%s", name);
5790 sysfs_remove_link(&(dev->dev.kobj), linkname);
5791}
5792
7ce64c79
AF
5793static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5794 struct net_device *adj_dev,
5795 struct list_head *dev_list)
5796{
5797 return (dev_list == &dev->adj_list.upper ||
5798 dev_list == &dev->adj_list.lower) &&
5799 net_eq(dev_net(dev), dev_net(adj_dev));
5800}
3ee32707 5801
5d261913
VF
5802static int __netdev_adjacent_dev_insert(struct net_device *dev,
5803 struct net_device *adj_dev,
7863c054 5804 struct list_head *dev_list,
402dae96 5805 void *private, bool master)
5d261913
VF
5806{
5807 struct netdev_adjacent *adj;
842d67a7 5808 int ret;
5d261913 5809
6ea29da1 5810 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5811
5812 if (adj) {
790510d9 5813 adj->ref_nr += 1;
67b62f98
DA
5814 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5815 dev->name, adj_dev->name, adj->ref_nr);
5816
5d261913
VF
5817 return 0;
5818 }
5819
5820 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5821 if (!adj)
5822 return -ENOMEM;
5823
5824 adj->dev = adj_dev;
5825 adj->master = master;
790510d9 5826 adj->ref_nr = 1;
402dae96 5827 adj->private = private;
5d261913 5828 dev_hold(adj_dev);
2f268f12 5829
67b62f98
DA
5830 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5831 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 5832
7ce64c79 5833 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5834 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5835 if (ret)
5836 goto free_adj;
5837 }
5838
7863c054 5839 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5840 if (master) {
5841 ret = sysfs_create_link(&(dev->dev.kobj),
5842 &(adj_dev->dev.kobj), "master");
5843 if (ret)
5831d66e 5844 goto remove_symlinks;
842d67a7 5845
7863c054 5846 list_add_rcu(&adj->list, dev_list);
842d67a7 5847 } else {
7863c054 5848 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5849 }
5d261913
VF
5850
5851 return 0;
842d67a7 5852
5831d66e 5853remove_symlinks:
7ce64c79 5854 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5855 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5856free_adj:
5857 kfree(adj);
974daef7 5858 dev_put(adj_dev);
842d67a7
VF
5859
5860 return ret;
5d261913
VF
5861}
5862
1d143d9f 5863static void __netdev_adjacent_dev_remove(struct net_device *dev,
5864 struct net_device *adj_dev,
93409033 5865 u16 ref_nr,
1d143d9f 5866 struct list_head *dev_list)
5d261913
VF
5867{
5868 struct netdev_adjacent *adj;
5869
67b62f98
DA
5870 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5871 dev->name, adj_dev->name, ref_nr);
5872
6ea29da1 5873 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5874
2f268f12 5875 if (!adj) {
67b62f98 5876 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 5877 dev->name, adj_dev->name);
67b62f98
DA
5878 WARN_ON(1);
5879 return;
2f268f12 5880 }
5d261913 5881
93409033 5882 if (adj->ref_nr > ref_nr) {
67b62f98
DA
5883 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5884 dev->name, adj_dev->name, ref_nr,
5885 adj->ref_nr - ref_nr);
93409033 5886 adj->ref_nr -= ref_nr;
5d261913
VF
5887 return;
5888 }
5889
842d67a7
VF
5890 if (adj->master)
5891 sysfs_remove_link(&(dev->dev.kobj), "master");
5892
7ce64c79 5893 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5894 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5895
5d261913 5896 list_del_rcu(&adj->list);
67b62f98 5897 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 5898 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5899 dev_put(adj_dev);
5900 kfree_rcu(adj, rcu);
5901}
5902
1d143d9f 5903static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5904 struct net_device *upper_dev,
5905 struct list_head *up_list,
5906 struct list_head *down_list,
5907 void *private, bool master)
5d261913
VF
5908{
5909 int ret;
5910
790510d9 5911 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 5912 private, master);
5d261913
VF
5913 if (ret)
5914 return ret;
5915
790510d9 5916 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 5917 private, false);
5d261913 5918 if (ret) {
790510d9 5919 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
5920 return ret;
5921 }
5922
5923 return 0;
5924}
5925
1d143d9f 5926static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5927 struct net_device *upper_dev,
93409033 5928 u16 ref_nr,
1d143d9f 5929 struct list_head *up_list,
5930 struct list_head *down_list)
5d261913 5931{
93409033
AC
5932 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5933 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5934}
5935
1d143d9f 5936static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5937 struct net_device *upper_dev,
5938 void *private, bool master)
2f268f12 5939{
f1170fd4
DA
5940 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5941 &dev->adj_list.upper,
5942 &upper_dev->adj_list.lower,
5943 private, master);
5d261913
VF
5944}
5945
1d143d9f 5946static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5947 struct net_device *upper_dev)
2f268f12 5948{
93409033 5949 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5950 &dev->adj_list.upper,
5951 &upper_dev->adj_list.lower);
5952}
5d261913 5953
9ff162a8 5954static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5955 struct net_device *upper_dev, bool master,
29bf24af 5956 void *upper_priv, void *upper_info)
9ff162a8 5957{
0e4ead9d 5958 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5959 int ret = 0;
9ff162a8
JP
5960
5961 ASSERT_RTNL();
5962
5963 if (dev == upper_dev)
5964 return -EBUSY;
5965
5966 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 5967 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
5968 return -EBUSY;
5969
f1170fd4 5970 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
5971 return -EEXIST;
5972
5973 if (master && netdev_master_upper_dev_get(dev))
5974 return -EBUSY;
5975
0e4ead9d
JP
5976 changeupper_info.upper_dev = upper_dev;
5977 changeupper_info.master = master;
5978 changeupper_info.linking = true;
29bf24af 5979 changeupper_info.upper_info = upper_info;
0e4ead9d 5980
573c7ba0
JP
5981 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5982 &changeupper_info.info);
5983 ret = notifier_to_errno(ret);
5984 if (ret)
5985 return ret;
5986
6dffb044 5987 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5988 master);
5d261913
VF
5989 if (ret)
5990 return ret;
9ff162a8 5991
b03804e7
IS
5992 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5993 &changeupper_info.info);
5994 ret = notifier_to_errno(ret);
5995 if (ret)
f1170fd4 5996 goto rollback;
b03804e7 5997
9ff162a8 5998 return 0;
5d261913 5999
f1170fd4 6000rollback:
2f268f12 6001 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
6002
6003 return ret;
9ff162a8
JP
6004}
6005
6006/**
6007 * netdev_upper_dev_link - Add a link to the upper device
6008 * @dev: device
6009 * @upper_dev: new upper device
6010 *
6011 * Adds a link to device which is upper to this one. The caller must hold
6012 * the RTNL lock. On a failure a negative errno code is returned.
6013 * On success the reference counts are adjusted and the function
6014 * returns zero.
6015 */
6016int netdev_upper_dev_link(struct net_device *dev,
6017 struct net_device *upper_dev)
6018{
29bf24af 6019 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
6020}
6021EXPORT_SYMBOL(netdev_upper_dev_link);
6022
6023/**
6024 * netdev_master_upper_dev_link - Add a master link to the upper device
6025 * @dev: device
6026 * @upper_dev: new upper device
6dffb044 6027 * @upper_priv: upper device private
29bf24af 6028 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
6029 *
6030 * Adds a link to device which is upper to this one. In this case, only
6031 * one master upper device can be linked, although other non-master devices
6032 * might be linked as well. The caller must hold the RTNL lock.
6033 * On a failure a negative errno code is returned. On success the reference
6034 * counts are adjusted and the function returns zero.
6035 */
6036int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 6037 struct net_device *upper_dev,
29bf24af 6038 void *upper_priv, void *upper_info)
9ff162a8 6039{
29bf24af
JP
6040 return __netdev_upper_dev_link(dev, upper_dev, true,
6041 upper_priv, upper_info);
9ff162a8
JP
6042}
6043EXPORT_SYMBOL(netdev_master_upper_dev_link);
6044
6045/**
6046 * netdev_upper_dev_unlink - Removes a link to upper device
6047 * @dev: device
6048 * @upper_dev: new upper device
6049 *
6050 * Removes a link to device which is upper to this one. The caller must hold
6051 * the RTNL lock.
6052 */
6053void netdev_upper_dev_unlink(struct net_device *dev,
6054 struct net_device *upper_dev)
6055{
0e4ead9d 6056 struct netdev_notifier_changeupper_info changeupper_info;
f4563a75 6057
9ff162a8
JP
6058 ASSERT_RTNL();
6059
0e4ead9d
JP
6060 changeupper_info.upper_dev = upper_dev;
6061 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6062 changeupper_info.linking = false;
6063
573c7ba0
JP
6064 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6065 &changeupper_info.info);
6066
2f268f12 6067 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6068
0e4ead9d
JP
6069 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6070 &changeupper_info.info);
9ff162a8
JP
6071}
6072EXPORT_SYMBOL(netdev_upper_dev_unlink);
6073
61bd3857
MS
6074/**
6075 * netdev_bonding_info_change - Dispatch event about slave change
6076 * @dev: device
4a26e453 6077 * @bonding_info: info to dispatch
61bd3857
MS
6078 *
6079 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6080 * The caller must hold the RTNL lock.
6081 */
6082void netdev_bonding_info_change(struct net_device *dev,
6083 struct netdev_bonding_info *bonding_info)
6084{
6085 struct netdev_notifier_bonding_info info;
6086
6087 memcpy(&info.bonding_info, bonding_info,
6088 sizeof(struct netdev_bonding_info));
6089 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6090 &info.info);
6091}
6092EXPORT_SYMBOL(netdev_bonding_info_change);
6093
2ce1ee17 6094static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6095{
6096 struct netdev_adjacent *iter;
6097
6098 struct net *net = dev_net(dev);
6099
6100 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6101 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6102 continue;
6103 netdev_adjacent_sysfs_add(iter->dev, dev,
6104 &iter->dev->adj_list.lower);
6105 netdev_adjacent_sysfs_add(dev, iter->dev,
6106 &dev->adj_list.upper);
6107 }
6108
6109 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6110 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6111 continue;
6112 netdev_adjacent_sysfs_add(iter->dev, dev,
6113 &iter->dev->adj_list.upper);
6114 netdev_adjacent_sysfs_add(dev, iter->dev,
6115 &dev->adj_list.lower);
6116 }
6117}
6118
2ce1ee17 6119static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6120{
6121 struct netdev_adjacent *iter;
6122
6123 struct net *net = dev_net(dev);
6124
6125 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6126 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6127 continue;
6128 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6129 &iter->dev->adj_list.lower);
6130 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6131 &dev->adj_list.upper);
6132 }
6133
6134 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6135 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6136 continue;
6137 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6138 &iter->dev->adj_list.upper);
6139 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6140 &dev->adj_list.lower);
6141 }
6142}
6143
5bb025fa 6144void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6145{
5bb025fa 6146 struct netdev_adjacent *iter;
402dae96 6147
4c75431a
AF
6148 struct net *net = dev_net(dev);
6149
5bb025fa 6150 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6151 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6152 continue;
5bb025fa
VF
6153 netdev_adjacent_sysfs_del(iter->dev, oldname,
6154 &iter->dev->adj_list.lower);
6155 netdev_adjacent_sysfs_add(iter->dev, dev,
6156 &iter->dev->adj_list.lower);
6157 }
402dae96 6158
5bb025fa 6159 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6160 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6161 continue;
5bb025fa
VF
6162 netdev_adjacent_sysfs_del(iter->dev, oldname,
6163 &iter->dev->adj_list.upper);
6164 netdev_adjacent_sysfs_add(iter->dev, dev,
6165 &iter->dev->adj_list.upper);
6166 }
402dae96 6167}
402dae96
VF
6168
6169void *netdev_lower_dev_get_private(struct net_device *dev,
6170 struct net_device *lower_dev)
6171{
6172 struct netdev_adjacent *lower;
6173
6174 if (!lower_dev)
6175 return NULL;
6ea29da1 6176 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6177 if (!lower)
6178 return NULL;
6179
6180 return lower->private;
6181}
6182EXPORT_SYMBOL(netdev_lower_dev_get_private);
6183
4085ebe8 6184
952fcfd0 6185int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6186{
6187 struct net_device *lower = NULL;
6188 struct list_head *iter;
6189 int max_nest = -1;
6190 int nest;
6191
6192 ASSERT_RTNL();
6193
6194 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6195 nest = dev_get_nest_level(lower);
4085ebe8
VY
6196 if (max_nest < nest)
6197 max_nest = nest;
6198 }
6199
952fcfd0 6200 return max_nest + 1;
4085ebe8
VY
6201}
6202EXPORT_SYMBOL(dev_get_nest_level);
6203
04d48266
JP
6204/**
6205 * netdev_lower_change - Dispatch event about lower device state change
6206 * @lower_dev: device
6207 * @lower_state_info: state to dispatch
6208 *
6209 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6210 * The caller must hold the RTNL lock.
6211 */
6212void netdev_lower_state_changed(struct net_device *lower_dev,
6213 void *lower_state_info)
6214{
6215 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6216
6217 ASSERT_RTNL();
6218 changelowerstate_info.lower_state_info = lower_state_info;
6219 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6220 &changelowerstate_info.info);
6221}
6222EXPORT_SYMBOL(netdev_lower_state_changed);
6223
b6c40d68
PM
6224static void dev_change_rx_flags(struct net_device *dev, int flags)
6225{
d314774c
SH
6226 const struct net_device_ops *ops = dev->netdev_ops;
6227
d2615bf4 6228 if (ops->ndo_change_rx_flags)
d314774c 6229 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6230}
6231
991fb3f7 6232static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6233{
b536db93 6234 unsigned int old_flags = dev->flags;
d04a48b0
EB
6235 kuid_t uid;
6236 kgid_t gid;
1da177e4 6237
24023451
PM
6238 ASSERT_RTNL();
6239
dad9b335
WC
6240 dev->flags |= IFF_PROMISC;
6241 dev->promiscuity += inc;
6242 if (dev->promiscuity == 0) {
6243 /*
6244 * Avoid overflow.
6245 * If inc causes overflow, untouch promisc and return error.
6246 */
6247 if (inc < 0)
6248 dev->flags &= ~IFF_PROMISC;
6249 else {
6250 dev->promiscuity -= inc;
7b6cd1ce
JP
6251 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6252 dev->name);
dad9b335
WC
6253 return -EOVERFLOW;
6254 }
6255 }
52609c0b 6256 if (dev->flags != old_flags) {
7b6cd1ce
JP
6257 pr_info("device %s %s promiscuous mode\n",
6258 dev->name,
6259 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6260 if (audit_enabled) {
6261 current_uid_gid(&uid, &gid);
7759db82
KHK
6262 audit_log(current->audit_context, GFP_ATOMIC,
6263 AUDIT_ANOM_PROMISCUOUS,
6264 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6265 dev->name, (dev->flags & IFF_PROMISC),
6266 (old_flags & IFF_PROMISC),
e1760bd5 6267 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6268 from_kuid(&init_user_ns, uid),
6269 from_kgid(&init_user_ns, gid),
7759db82 6270 audit_get_sessionid(current));
8192b0c4 6271 }
24023451 6272
b6c40d68 6273 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6274 }
991fb3f7
ND
6275 if (notify)
6276 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6277 return 0;
1da177e4
LT
6278}
6279
4417da66
PM
6280/**
6281 * dev_set_promiscuity - update promiscuity count on a device
6282 * @dev: device
6283 * @inc: modifier
6284 *
6285 * Add or remove promiscuity from a device. While the count in the device
6286 * remains above zero the interface remains promiscuous. Once it hits zero
6287 * the device reverts back to normal filtering operation. A negative inc
6288 * value is used to drop promiscuity on the device.
dad9b335 6289 * Return 0 if successful or a negative errno code on error.
4417da66 6290 */
dad9b335 6291int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6292{
b536db93 6293 unsigned int old_flags = dev->flags;
dad9b335 6294 int err;
4417da66 6295
991fb3f7 6296 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6297 if (err < 0)
dad9b335 6298 return err;
4417da66
PM
6299 if (dev->flags != old_flags)
6300 dev_set_rx_mode(dev);
dad9b335 6301 return err;
4417da66 6302}
d1b19dff 6303EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6304
991fb3f7 6305static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6306{
991fb3f7 6307 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6308
24023451
PM
6309 ASSERT_RTNL();
6310
1da177e4 6311 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6312 dev->allmulti += inc;
6313 if (dev->allmulti == 0) {
6314 /*
6315 * Avoid overflow.
6316 * If inc causes overflow, untouch allmulti and return error.
6317 */
6318 if (inc < 0)
6319 dev->flags &= ~IFF_ALLMULTI;
6320 else {
6321 dev->allmulti -= inc;
7b6cd1ce
JP
6322 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6323 dev->name);
dad9b335
WC
6324 return -EOVERFLOW;
6325 }
6326 }
24023451 6327 if (dev->flags ^ old_flags) {
b6c40d68 6328 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6329 dev_set_rx_mode(dev);
991fb3f7
ND
6330 if (notify)
6331 __dev_notify_flags(dev, old_flags,
6332 dev->gflags ^ old_gflags);
24023451 6333 }
dad9b335 6334 return 0;
4417da66 6335}
991fb3f7
ND
6336
6337/**
6338 * dev_set_allmulti - update allmulti count on a device
6339 * @dev: device
6340 * @inc: modifier
6341 *
6342 * Add or remove reception of all multicast frames to a device. While the
6343 * count in the device remains above zero the interface remains listening
6344 * to all interfaces. Once it hits zero the device reverts back to normal
6345 * filtering operation. A negative @inc value is used to drop the counter
6346 * when releasing a resource needing all multicasts.
6347 * Return 0 if successful or a negative errno code on error.
6348 */
6349
6350int dev_set_allmulti(struct net_device *dev, int inc)
6351{
6352 return __dev_set_allmulti(dev, inc, true);
6353}
d1b19dff 6354EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6355
6356/*
6357 * Upload unicast and multicast address lists to device and
6358 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6359 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6360 * are present.
6361 */
6362void __dev_set_rx_mode(struct net_device *dev)
6363{
d314774c
SH
6364 const struct net_device_ops *ops = dev->netdev_ops;
6365
4417da66
PM
6366 /* dev_open will call this function so the list will stay sane. */
6367 if (!(dev->flags&IFF_UP))
6368 return;
6369
6370 if (!netif_device_present(dev))
40b77c94 6371 return;
4417da66 6372
01789349 6373 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6374 /* Unicast addresses changes may only happen under the rtnl,
6375 * therefore calling __dev_set_promiscuity here is safe.
6376 */
32e7bfc4 6377 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6378 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6379 dev->uc_promisc = true;
32e7bfc4 6380 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6381 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6382 dev->uc_promisc = false;
4417da66 6383 }
4417da66 6384 }
01789349
JP
6385
6386 if (ops->ndo_set_rx_mode)
6387 ops->ndo_set_rx_mode(dev);
4417da66
PM
6388}
6389
6390void dev_set_rx_mode(struct net_device *dev)
6391{
b9e40857 6392 netif_addr_lock_bh(dev);
4417da66 6393 __dev_set_rx_mode(dev);
b9e40857 6394 netif_addr_unlock_bh(dev);
1da177e4
LT
6395}
6396
f0db275a
SH
6397/**
6398 * dev_get_flags - get flags reported to userspace
6399 * @dev: device
6400 *
6401 * Get the combination of flag bits exported through APIs to userspace.
6402 */
95c96174 6403unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6404{
95c96174 6405 unsigned int flags;
1da177e4
LT
6406
6407 flags = (dev->flags & ~(IFF_PROMISC |
6408 IFF_ALLMULTI |
b00055aa
SR
6409 IFF_RUNNING |
6410 IFF_LOWER_UP |
6411 IFF_DORMANT)) |
1da177e4
LT
6412 (dev->gflags & (IFF_PROMISC |
6413 IFF_ALLMULTI));
6414
b00055aa
SR
6415 if (netif_running(dev)) {
6416 if (netif_oper_up(dev))
6417 flags |= IFF_RUNNING;
6418 if (netif_carrier_ok(dev))
6419 flags |= IFF_LOWER_UP;
6420 if (netif_dormant(dev))
6421 flags |= IFF_DORMANT;
6422 }
1da177e4
LT
6423
6424 return flags;
6425}
d1b19dff 6426EXPORT_SYMBOL(dev_get_flags);
1da177e4 6427
bd380811 6428int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6429{
b536db93 6430 unsigned int old_flags = dev->flags;
bd380811 6431 int ret;
1da177e4 6432
24023451
PM
6433 ASSERT_RTNL();
6434
1da177e4
LT
6435 /*
6436 * Set the flags on our device.
6437 */
6438
6439 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6440 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6441 IFF_AUTOMEDIA)) |
6442 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6443 IFF_ALLMULTI));
6444
6445 /*
6446 * Load in the correct multicast list now the flags have changed.
6447 */
6448
b6c40d68
PM
6449 if ((old_flags ^ flags) & IFF_MULTICAST)
6450 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6451
4417da66 6452 dev_set_rx_mode(dev);
1da177e4
LT
6453
6454 /*
6455 * Have we downed the interface. We handle IFF_UP ourselves
6456 * according to user attempts to set it, rather than blindly
6457 * setting it.
6458 */
6459
6460 ret = 0;
d215d10f 6461 if ((old_flags ^ flags) & IFF_UP)
bd380811 6462 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6463
1da177e4 6464 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6465 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6466 unsigned int old_flags = dev->flags;
d1b19dff 6467
1da177e4 6468 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6469
6470 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6471 if (dev->flags != old_flags)
6472 dev_set_rx_mode(dev);
1da177e4
LT
6473 }
6474
6475 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 6476 * is important. Some (broken) drivers set IFF_PROMISC, when
6477 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
6478 */
6479 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6480 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6481
1da177e4 6482 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6483 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6484 }
6485
bd380811
PM
6486 return ret;
6487}
6488
a528c219
ND
6489void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6490 unsigned int gchanges)
bd380811
PM
6491{
6492 unsigned int changes = dev->flags ^ old_flags;
6493
a528c219 6494 if (gchanges)
7f294054 6495 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6496
bd380811
PM
6497 if (changes & IFF_UP) {
6498 if (dev->flags & IFF_UP)
6499 call_netdevice_notifiers(NETDEV_UP, dev);
6500 else
6501 call_netdevice_notifiers(NETDEV_DOWN, dev);
6502 }
6503
6504 if (dev->flags & IFF_UP &&
be9efd36
JP
6505 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6506 struct netdev_notifier_change_info change_info;
6507
6508 change_info.flags_changed = changes;
6509 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6510 &change_info.info);
6511 }
bd380811
PM
6512}
6513
6514/**
6515 * dev_change_flags - change device settings
6516 * @dev: device
6517 * @flags: device state flags
6518 *
6519 * Change settings on device based state flags. The flags are
6520 * in the userspace exported format.
6521 */
b536db93 6522int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6523{
b536db93 6524 int ret;
991fb3f7 6525 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6526
6527 ret = __dev_change_flags(dev, flags);
6528 if (ret < 0)
6529 return ret;
6530
991fb3f7 6531 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6532 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6533 return ret;
6534}
d1b19dff 6535EXPORT_SYMBOL(dev_change_flags);
1da177e4 6536
2315dc91
VF
6537static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6538{
6539 const struct net_device_ops *ops = dev->netdev_ops;
6540
6541 if (ops->ndo_change_mtu)
6542 return ops->ndo_change_mtu(dev, new_mtu);
6543
6544 dev->mtu = new_mtu;
6545 return 0;
6546}
6547
f0db275a
SH
6548/**
6549 * dev_set_mtu - Change maximum transfer unit
6550 * @dev: device
6551 * @new_mtu: new transfer unit
6552 *
6553 * Change the maximum transfer size of the network device.
6554 */
1da177e4
LT
6555int dev_set_mtu(struct net_device *dev, int new_mtu)
6556{
2315dc91 6557 int err, orig_mtu;
1da177e4
LT
6558
6559 if (new_mtu == dev->mtu)
6560 return 0;
6561
61e84623
JW
6562 /* MTU must be positive, and in range */
6563 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6564 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6565 dev->name, new_mtu, dev->min_mtu);
1da177e4 6566 return -EINVAL;
61e84623
JW
6567 }
6568
6569 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6570 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6571 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6572 return -EINVAL;
6573 }
1da177e4
LT
6574
6575 if (!netif_device_present(dev))
6576 return -ENODEV;
6577
1d486bfb
VF
6578 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6579 err = notifier_to_errno(err);
6580 if (err)
6581 return err;
d314774c 6582
2315dc91
VF
6583 orig_mtu = dev->mtu;
6584 err = __dev_set_mtu(dev, new_mtu);
d314774c 6585
2315dc91
VF
6586 if (!err) {
6587 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6588 err = notifier_to_errno(err);
6589 if (err) {
6590 /* setting mtu back and notifying everyone again,
6591 * so that they have a chance to revert changes.
6592 */
6593 __dev_set_mtu(dev, orig_mtu);
6594 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6595 }
6596 }
1da177e4
LT
6597 return err;
6598}
d1b19dff 6599EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6600
cbda10fa
VD
6601/**
6602 * dev_set_group - Change group this device belongs to
6603 * @dev: device
6604 * @new_group: group this device should belong to
6605 */
6606void dev_set_group(struct net_device *dev, int new_group)
6607{
6608 dev->group = new_group;
6609}
6610EXPORT_SYMBOL(dev_set_group);
6611
f0db275a
SH
6612/**
6613 * dev_set_mac_address - Change Media Access Control Address
6614 * @dev: device
6615 * @sa: new address
6616 *
6617 * Change the hardware (MAC) address of the device
6618 */
1da177e4
LT
6619int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6620{
d314774c 6621 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6622 int err;
6623
d314774c 6624 if (!ops->ndo_set_mac_address)
1da177e4
LT
6625 return -EOPNOTSUPP;
6626 if (sa->sa_family != dev->type)
6627 return -EINVAL;
6628 if (!netif_device_present(dev))
6629 return -ENODEV;
d314774c 6630 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6631 if (err)
6632 return err;
fbdeca2d 6633 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6634 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6635 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6636 return 0;
1da177e4 6637}
d1b19dff 6638EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6639
4bf84c35
JP
6640/**
6641 * dev_change_carrier - Change device carrier
6642 * @dev: device
691b3b7e 6643 * @new_carrier: new value
4bf84c35
JP
6644 *
6645 * Change device carrier
6646 */
6647int dev_change_carrier(struct net_device *dev, bool new_carrier)
6648{
6649 const struct net_device_ops *ops = dev->netdev_ops;
6650
6651 if (!ops->ndo_change_carrier)
6652 return -EOPNOTSUPP;
6653 if (!netif_device_present(dev))
6654 return -ENODEV;
6655 return ops->ndo_change_carrier(dev, new_carrier);
6656}
6657EXPORT_SYMBOL(dev_change_carrier);
6658
66b52b0d
JP
6659/**
6660 * dev_get_phys_port_id - Get device physical port ID
6661 * @dev: device
6662 * @ppid: port ID
6663 *
6664 * Get device physical port ID
6665 */
6666int dev_get_phys_port_id(struct net_device *dev,
02637fce 6667 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6668{
6669 const struct net_device_ops *ops = dev->netdev_ops;
6670
6671 if (!ops->ndo_get_phys_port_id)
6672 return -EOPNOTSUPP;
6673 return ops->ndo_get_phys_port_id(dev, ppid);
6674}
6675EXPORT_SYMBOL(dev_get_phys_port_id);
6676
db24a904
DA
6677/**
6678 * dev_get_phys_port_name - Get device physical port name
6679 * @dev: device
6680 * @name: port name
ed49e650 6681 * @len: limit of bytes to copy to name
db24a904
DA
6682 *
6683 * Get device physical port name
6684 */
6685int dev_get_phys_port_name(struct net_device *dev,
6686 char *name, size_t len)
6687{
6688 const struct net_device_ops *ops = dev->netdev_ops;
6689
6690 if (!ops->ndo_get_phys_port_name)
6691 return -EOPNOTSUPP;
6692 return ops->ndo_get_phys_port_name(dev, name, len);
6693}
6694EXPORT_SYMBOL(dev_get_phys_port_name);
6695
d746d707
AK
6696/**
6697 * dev_change_proto_down - update protocol port state information
6698 * @dev: device
6699 * @proto_down: new value
6700 *
6701 * This info can be used by switch drivers to set the phys state of the
6702 * port.
6703 */
6704int dev_change_proto_down(struct net_device *dev, bool proto_down)
6705{
6706 const struct net_device_ops *ops = dev->netdev_ops;
6707
6708 if (!ops->ndo_change_proto_down)
6709 return -EOPNOTSUPP;
6710 if (!netif_device_present(dev))
6711 return -ENODEV;
6712 return ops->ndo_change_proto_down(dev, proto_down);
6713}
6714EXPORT_SYMBOL(dev_change_proto_down);
6715
a7862b45
BB
6716/**
6717 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6718 * @dev: device
6719 * @fd: new program fd or negative value to clear
85de8576 6720 * @flags: xdp-related flags
a7862b45
BB
6721 *
6722 * Set or clear a bpf program for a device
6723 */
85de8576 6724int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
a7862b45
BB
6725{
6726 const struct net_device_ops *ops = dev->netdev_ops;
6727 struct bpf_prog *prog = NULL;
85de8576 6728 struct netdev_xdp xdp;
a7862b45
BB
6729 int err;
6730
85de8576
DB
6731 ASSERT_RTNL();
6732
a7862b45
BB
6733 if (!ops->ndo_xdp)
6734 return -EOPNOTSUPP;
6735 if (fd >= 0) {
85de8576
DB
6736 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6737 memset(&xdp, 0, sizeof(xdp));
6738 xdp.command = XDP_QUERY_PROG;
6739
6740 err = ops->ndo_xdp(dev, &xdp);
6741 if (err < 0)
6742 return err;
6743 if (xdp.prog_attached)
6744 return -EBUSY;
6745 }
6746
a7862b45
BB
6747 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6748 if (IS_ERR(prog))
6749 return PTR_ERR(prog);
6750 }
6751
85de8576 6752 memset(&xdp, 0, sizeof(xdp));
a7862b45
BB
6753 xdp.command = XDP_SETUP_PROG;
6754 xdp.prog = prog;
85de8576 6755
a7862b45
BB
6756 err = ops->ndo_xdp(dev, &xdp);
6757 if (err < 0 && prog)
6758 bpf_prog_put(prog);
6759
6760 return err;
6761}
a7862b45 6762
1da177e4
LT
6763/**
6764 * dev_new_index - allocate an ifindex
c4ea43c5 6765 * @net: the applicable net namespace
1da177e4
LT
6766 *
6767 * Returns a suitable unique value for a new device interface
6768 * number. The caller must hold the rtnl semaphore or the
6769 * dev_base_lock to be sure it remains unique.
6770 */
881d966b 6771static int dev_new_index(struct net *net)
1da177e4 6772{
aa79e66e 6773 int ifindex = net->ifindex;
f4563a75 6774
1da177e4
LT
6775 for (;;) {
6776 if (++ifindex <= 0)
6777 ifindex = 1;
881d966b 6778 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6779 return net->ifindex = ifindex;
1da177e4
LT
6780 }
6781}
6782
1da177e4 6783/* Delayed registration/unregisteration */
3b5b34fd 6784static LIST_HEAD(net_todo_list);
200b916f 6785DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6786
6f05f629 6787static void net_set_todo(struct net_device *dev)
1da177e4 6788{
1da177e4 6789 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6790 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6791}
6792
9b5e383c 6793static void rollback_registered_many(struct list_head *head)
93ee31f1 6794{
e93737b0 6795 struct net_device *dev, *tmp;
5cde2829 6796 LIST_HEAD(close_head);
9b5e383c 6797
93ee31f1
DL
6798 BUG_ON(dev_boot_phase);
6799 ASSERT_RTNL();
6800
e93737b0 6801 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6802 /* Some devices call without registering
e93737b0
KK
6803 * for initialization unwind. Remove those
6804 * devices and proceed with the remaining.
9b5e383c
ED
6805 */
6806 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6807 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6808 dev->name, dev);
93ee31f1 6809
9b5e383c 6810 WARN_ON(1);
e93737b0
KK
6811 list_del(&dev->unreg_list);
6812 continue;
9b5e383c 6813 }
449f4544 6814 dev->dismantle = true;
9b5e383c 6815 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6816 }
93ee31f1 6817
44345724 6818 /* If device is running, close it first. */
5cde2829
EB
6819 list_for_each_entry(dev, head, unreg_list)
6820 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6821 dev_close_many(&close_head, true);
93ee31f1 6822
44345724 6823 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6824 /* And unlink it from device chain. */
6825 unlist_netdevice(dev);
93ee31f1 6826
9b5e383c
ED
6827 dev->reg_state = NETREG_UNREGISTERING;
6828 }
41852497 6829 flush_all_backlogs();
93ee31f1
DL
6830
6831 synchronize_net();
6832
9b5e383c 6833 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6834 struct sk_buff *skb = NULL;
6835
9b5e383c
ED
6836 /* Shutdown queueing discipline. */
6837 dev_shutdown(dev);
93ee31f1
DL
6838
6839
9b5e383c 6840 /* Notify protocols, that we are about to destroy
eb13da1a 6841 * this device. They should clean all the things.
6842 */
9b5e383c 6843 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6844
395eea6c
MB
6845 if (!dev->rtnl_link_ops ||
6846 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
bf74b20d 6847 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
395eea6c
MB
6848 GFP_KERNEL);
6849
9b5e383c
ED
6850 /*
6851 * Flush the unicast and multicast chains
6852 */
a748ee24 6853 dev_uc_flush(dev);
22bedad3 6854 dev_mc_flush(dev);
93ee31f1 6855
9b5e383c
ED
6856 if (dev->netdev_ops->ndo_uninit)
6857 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6858
395eea6c
MB
6859 if (skb)
6860 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6861
9ff162a8
JP
6862 /* Notifier chain MUST detach us all upper devices. */
6863 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 6864 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 6865
9b5e383c
ED
6866 /* Remove entries from kobject tree */
6867 netdev_unregister_kobject(dev);
024e9679
AD
6868#ifdef CONFIG_XPS
6869 /* Remove XPS queueing entries */
6870 netif_reset_xps_queues_gt(dev, 0);
6871#endif
9b5e383c 6872 }
93ee31f1 6873
850a545b 6874 synchronize_net();
395264d5 6875
a5ee1551 6876 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6877 dev_put(dev);
6878}
6879
6880static void rollback_registered(struct net_device *dev)
6881{
6882 LIST_HEAD(single);
6883
6884 list_add(&dev->unreg_list, &single);
6885 rollback_registered_many(&single);
ceaaec98 6886 list_del(&single);
93ee31f1
DL
6887}
6888
fd867d51
JW
6889static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6890 struct net_device *upper, netdev_features_t features)
6891{
6892 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6893 netdev_features_t feature;
5ba3f7d6 6894 int feature_bit;
fd867d51 6895
5ba3f7d6
JW
6896 for_each_netdev_feature(&upper_disables, feature_bit) {
6897 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6898 if (!(upper->wanted_features & feature)
6899 && (features & feature)) {
6900 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6901 &feature, upper->name);
6902 features &= ~feature;
6903 }
6904 }
6905
6906 return features;
6907}
6908
6909static void netdev_sync_lower_features(struct net_device *upper,
6910 struct net_device *lower, netdev_features_t features)
6911{
6912 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6913 netdev_features_t feature;
5ba3f7d6 6914 int feature_bit;
fd867d51 6915
5ba3f7d6
JW
6916 for_each_netdev_feature(&upper_disables, feature_bit) {
6917 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6918 if (!(features & feature) && (lower->features & feature)) {
6919 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6920 &feature, lower->name);
6921 lower->wanted_features &= ~feature;
6922 netdev_update_features(lower);
6923
6924 if (unlikely(lower->features & feature))
6925 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6926 &feature, lower->name);
6927 }
6928 }
6929}
6930
c8f44aff
MM
6931static netdev_features_t netdev_fix_features(struct net_device *dev,
6932 netdev_features_t features)
b63365a2 6933{
57422dc5
MM
6934 /* Fix illegal checksum combinations */
6935 if ((features & NETIF_F_HW_CSUM) &&
6936 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6937 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6938 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6939 }
6940
b63365a2 6941 /* TSO requires that SG is present as well. */
ea2d3688 6942 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6943 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6944 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6945 }
6946
ec5f0615
PS
6947 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6948 !(features & NETIF_F_IP_CSUM)) {
6949 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6950 features &= ~NETIF_F_TSO;
6951 features &= ~NETIF_F_TSO_ECN;
6952 }
6953
6954 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6955 !(features & NETIF_F_IPV6_CSUM)) {
6956 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6957 features &= ~NETIF_F_TSO6;
6958 }
6959
b1dc497b
AD
6960 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6961 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6962 features &= ~NETIF_F_TSO_MANGLEID;
6963
31d8b9e0
BH
6964 /* TSO ECN requires that TSO is present as well. */
6965 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6966 features &= ~NETIF_F_TSO_ECN;
6967
212b573f
MM
6968 /* Software GSO depends on SG. */
6969 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6970 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6971 features &= ~NETIF_F_GSO;
6972 }
6973
acd1130e 6974 /* UFO needs SG and checksumming */
b63365a2 6975 if (features & NETIF_F_UFO) {
79032644 6976 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6977 if (!(features & NETIF_F_HW_CSUM) &&
6978 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6979 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6980 netdev_dbg(dev,
acd1130e 6981 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6982 features &= ~NETIF_F_UFO;
6983 }
6984
6985 if (!(features & NETIF_F_SG)) {
6f404e44 6986 netdev_dbg(dev,
acd1130e 6987 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6988 features &= ~NETIF_F_UFO;
6989 }
6990 }
6991
802ab55a
AD
6992 /* GSO partial features require GSO partial be set */
6993 if ((features & dev->gso_partial_features) &&
6994 !(features & NETIF_F_GSO_PARTIAL)) {
6995 netdev_dbg(dev,
6996 "Dropping partially supported GSO features since no GSO partial.\n");
6997 features &= ~dev->gso_partial_features;
6998 }
6999
b63365a2
HX
7000 return features;
7001}
b63365a2 7002
6cb6a27c 7003int __netdev_update_features(struct net_device *dev)
5455c699 7004{
fd867d51 7005 struct net_device *upper, *lower;
c8f44aff 7006 netdev_features_t features;
fd867d51 7007 struct list_head *iter;
e7868a85 7008 int err = -1;
5455c699 7009
87267485
MM
7010 ASSERT_RTNL();
7011
5455c699
MM
7012 features = netdev_get_wanted_features(dev);
7013
7014 if (dev->netdev_ops->ndo_fix_features)
7015 features = dev->netdev_ops->ndo_fix_features(dev, features);
7016
7017 /* driver might be less strict about feature dependencies */
7018 features = netdev_fix_features(dev, features);
7019
fd867d51
JW
7020 /* some features can't be enabled if they're off an an upper device */
7021 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7022 features = netdev_sync_upper_features(dev, upper, features);
7023
5455c699 7024 if (dev->features == features)
e7868a85 7025 goto sync_lower;
5455c699 7026
c8f44aff
MM
7027 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7028 &dev->features, &features);
5455c699
MM
7029
7030 if (dev->netdev_ops->ndo_set_features)
7031 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7032 else
7033 err = 0;
5455c699 7034
6cb6a27c 7035 if (unlikely(err < 0)) {
5455c699 7036 netdev_err(dev,
c8f44aff
MM
7037 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7038 err, &features, &dev->features);
17b85d29
NA
7039 /* return non-0 since some features might have changed and
7040 * it's better to fire a spurious notification than miss it
7041 */
7042 return -1;
6cb6a27c
MM
7043 }
7044
e7868a85 7045sync_lower:
fd867d51
JW
7046 /* some features must be disabled on lower devices when disabled
7047 * on an upper device (think: bonding master or bridge)
7048 */
7049 netdev_for_each_lower_dev(dev, lower, iter)
7050 netdev_sync_lower_features(dev, lower, features);
7051
6cb6a27c
MM
7052 if (!err)
7053 dev->features = features;
7054
e7868a85 7055 return err < 0 ? 0 : 1;
6cb6a27c
MM
7056}
7057
afe12cc8
MM
7058/**
7059 * netdev_update_features - recalculate device features
7060 * @dev: the device to check
7061 *
7062 * Recalculate dev->features set and send notifications if it
7063 * has changed. Should be called after driver or hardware dependent
7064 * conditions might have changed that influence the features.
7065 */
6cb6a27c
MM
7066void netdev_update_features(struct net_device *dev)
7067{
7068 if (__netdev_update_features(dev))
7069 netdev_features_change(dev);
5455c699
MM
7070}
7071EXPORT_SYMBOL(netdev_update_features);
7072
afe12cc8
MM
7073/**
7074 * netdev_change_features - recalculate device features
7075 * @dev: the device to check
7076 *
7077 * Recalculate dev->features set and send notifications even
7078 * if they have not changed. Should be called instead of
7079 * netdev_update_features() if also dev->vlan_features might
7080 * have changed to allow the changes to be propagated to stacked
7081 * VLAN devices.
7082 */
7083void netdev_change_features(struct net_device *dev)
7084{
7085 __netdev_update_features(dev);
7086 netdev_features_change(dev);
7087}
7088EXPORT_SYMBOL(netdev_change_features);
7089
fc4a7489
PM
7090/**
7091 * netif_stacked_transfer_operstate - transfer operstate
7092 * @rootdev: the root or lower level device to transfer state from
7093 * @dev: the device to transfer operstate to
7094 *
7095 * Transfer operational state from root to device. This is normally
7096 * called when a stacking relationship exists between the root
7097 * device and the device(a leaf device).
7098 */
7099void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7100 struct net_device *dev)
7101{
7102 if (rootdev->operstate == IF_OPER_DORMANT)
7103 netif_dormant_on(dev);
7104 else
7105 netif_dormant_off(dev);
7106
7107 if (netif_carrier_ok(rootdev)) {
7108 if (!netif_carrier_ok(dev))
7109 netif_carrier_on(dev);
7110 } else {
7111 if (netif_carrier_ok(dev))
7112 netif_carrier_off(dev);
7113 }
7114}
7115EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7116
a953be53 7117#ifdef CONFIG_SYSFS
1b4bf461
ED
7118static int netif_alloc_rx_queues(struct net_device *dev)
7119{
1b4bf461 7120 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7121 struct netdev_rx_queue *rx;
10595902 7122 size_t sz = count * sizeof(*rx);
1b4bf461 7123
bd25fa7b 7124 BUG_ON(count < 1);
1b4bf461 7125
10595902
PG
7126 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7127 if (!rx) {
7128 rx = vzalloc(sz);
7129 if (!rx)
7130 return -ENOMEM;
7131 }
bd25fa7b
TH
7132 dev->_rx = rx;
7133
bd25fa7b 7134 for (i = 0; i < count; i++)
fe822240 7135 rx[i].dev = dev;
1b4bf461
ED
7136 return 0;
7137}
bf264145 7138#endif
1b4bf461 7139
aa942104
CG
7140static void netdev_init_one_queue(struct net_device *dev,
7141 struct netdev_queue *queue, void *_unused)
7142{
7143 /* Initialize queue lock */
7144 spin_lock_init(&queue->_xmit_lock);
7145 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7146 queue->xmit_lock_owner = -1;
b236da69 7147 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7148 queue->dev = dev;
114cf580
TH
7149#ifdef CONFIG_BQL
7150 dql_init(&queue->dql, HZ);
7151#endif
aa942104
CG
7152}
7153
60877a32
ED
7154static void netif_free_tx_queues(struct net_device *dev)
7155{
4cb28970 7156 kvfree(dev->_tx);
60877a32
ED
7157}
7158
e6484930
TH
7159static int netif_alloc_netdev_queues(struct net_device *dev)
7160{
7161 unsigned int count = dev->num_tx_queues;
7162 struct netdev_queue *tx;
60877a32 7163 size_t sz = count * sizeof(*tx);
e6484930 7164
d339727c
ED
7165 if (count < 1 || count > 0xffff)
7166 return -EINVAL;
62b5942a 7167
60877a32
ED
7168 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7169 if (!tx) {
7170 tx = vzalloc(sz);
7171 if (!tx)
7172 return -ENOMEM;
7173 }
e6484930 7174 dev->_tx = tx;
1d24eb48 7175
e6484930
TH
7176 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7177 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7178
7179 return 0;
e6484930
TH
7180}
7181
a2029240
DV
7182void netif_tx_stop_all_queues(struct net_device *dev)
7183{
7184 unsigned int i;
7185
7186 for (i = 0; i < dev->num_tx_queues; i++) {
7187 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 7188
a2029240
DV
7189 netif_tx_stop_queue(txq);
7190 }
7191}
7192EXPORT_SYMBOL(netif_tx_stop_all_queues);
7193
1da177e4
LT
7194/**
7195 * register_netdevice - register a network device
7196 * @dev: device to register
7197 *
7198 * Take a completed network device structure and add it to the kernel
7199 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7200 * chain. 0 is returned on success. A negative errno code is returned
7201 * on a failure to set up the device, or if the name is a duplicate.
7202 *
7203 * Callers must hold the rtnl semaphore. You may want
7204 * register_netdev() instead of this.
7205 *
7206 * BUGS:
7207 * The locking appears insufficient to guarantee two parallel registers
7208 * will not get the same name.
7209 */
7210
7211int register_netdevice(struct net_device *dev)
7212{
1da177e4 7213 int ret;
d314774c 7214 struct net *net = dev_net(dev);
1da177e4
LT
7215
7216 BUG_ON(dev_boot_phase);
7217 ASSERT_RTNL();
7218
b17a7c17
SH
7219 might_sleep();
7220
1da177e4
LT
7221 /* When net_device's are persistent, this will be fatal. */
7222 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7223 BUG_ON(!net);
1da177e4 7224
f1f28aa3 7225 spin_lock_init(&dev->addr_list_lock);
cf508b12 7226 netdev_set_addr_lockdep_class(dev);
1da177e4 7227
828de4f6 7228 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7229 if (ret < 0)
7230 goto out;
7231
1da177e4 7232 /* Init, if this function is available */
d314774c
SH
7233 if (dev->netdev_ops->ndo_init) {
7234 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7235 if (ret) {
7236 if (ret > 0)
7237 ret = -EIO;
90833aa4 7238 goto out;
1da177e4
LT
7239 }
7240 }
4ec93edb 7241
f646968f
PM
7242 if (((dev->hw_features | dev->features) &
7243 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7244 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7245 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7246 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7247 ret = -EINVAL;
7248 goto err_uninit;
7249 }
7250
9c7dafbf
PE
7251 ret = -EBUSY;
7252 if (!dev->ifindex)
7253 dev->ifindex = dev_new_index(net);
7254 else if (__dev_get_by_index(net, dev->ifindex))
7255 goto err_uninit;
7256
5455c699
MM
7257 /* Transfer changeable features to wanted_features and enable
7258 * software offloads (GSO and GRO).
7259 */
7260 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7261 dev->features |= NETIF_F_SOFT_FEATURES;
7262 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7263
cbc53e08 7264 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7265 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7266
7f348a60
AD
7267 /* If IPv4 TCP segmentation offload is supported we should also
7268 * allow the device to enable segmenting the frame with the option
7269 * of ignoring a static IP ID value. This doesn't enable the
7270 * feature itself but allows the user to enable it later.
7271 */
cbc53e08
AD
7272 if (dev->hw_features & NETIF_F_TSO)
7273 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7274 if (dev->vlan_features & NETIF_F_TSO)
7275 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7276 if (dev->mpls_features & NETIF_F_TSO)
7277 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7278 if (dev->hw_enc_features & NETIF_F_TSO)
7279 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7280
1180e7d6 7281 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7282 */
1180e7d6 7283 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7284
ee579677
PS
7285 /* Make NETIF_F_SG inheritable to tunnel devices.
7286 */
802ab55a 7287 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7288
0d89d203
SH
7289 /* Make NETIF_F_SG inheritable to MPLS.
7290 */
7291 dev->mpls_features |= NETIF_F_SG;
7292
7ffbe3fd
JB
7293 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7294 ret = notifier_to_errno(ret);
7295 if (ret)
7296 goto err_uninit;
7297
8b41d188 7298 ret = netdev_register_kobject(dev);
b17a7c17 7299 if (ret)
7ce1b0ed 7300 goto err_uninit;
b17a7c17
SH
7301 dev->reg_state = NETREG_REGISTERED;
7302
6cb6a27c 7303 __netdev_update_features(dev);
8e9b59b2 7304
1da177e4
LT
7305 /*
7306 * Default initial state at registry is that the
7307 * device is present.
7308 */
7309
7310 set_bit(__LINK_STATE_PRESENT, &dev->state);
7311
8f4cccbb
BH
7312 linkwatch_init_dev(dev);
7313
1da177e4 7314 dev_init_scheduler(dev);
1da177e4 7315 dev_hold(dev);
ce286d32 7316 list_netdevice(dev);
7bf23575 7317 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7318
948b337e
JP
7319 /* If the device has permanent device address, driver should
7320 * set dev_addr and also addr_assign_type should be set to
7321 * NET_ADDR_PERM (default value).
7322 */
7323 if (dev->addr_assign_type == NET_ADDR_PERM)
7324 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7325
1da177e4 7326 /* Notify protocols, that a new device appeared. */
056925ab 7327 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7328 ret = notifier_to_errno(ret);
93ee31f1
DL
7329 if (ret) {
7330 rollback_registered(dev);
7331 dev->reg_state = NETREG_UNREGISTERED;
7332 }
d90a909e
EB
7333 /*
7334 * Prevent userspace races by waiting until the network
7335 * device is fully setup before sending notifications.
7336 */
a2835763
PM
7337 if (!dev->rtnl_link_ops ||
7338 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7339 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7340
7341out:
7342 return ret;
7ce1b0ed
HX
7343
7344err_uninit:
d314774c
SH
7345 if (dev->netdev_ops->ndo_uninit)
7346 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7347 goto out;
1da177e4 7348}
d1b19dff 7349EXPORT_SYMBOL(register_netdevice);
1da177e4 7350
937f1ba5
BH
7351/**
7352 * init_dummy_netdev - init a dummy network device for NAPI
7353 * @dev: device to init
7354 *
7355 * This takes a network device structure and initialize the minimum
7356 * amount of fields so it can be used to schedule NAPI polls without
7357 * registering a full blown interface. This is to be used by drivers
7358 * that need to tie several hardware interfaces to a single NAPI
7359 * poll scheduler due to HW limitations.
7360 */
7361int init_dummy_netdev(struct net_device *dev)
7362{
7363 /* Clear everything. Note we don't initialize spinlocks
7364 * are they aren't supposed to be taken by any of the
7365 * NAPI code and this dummy netdev is supposed to be
7366 * only ever used for NAPI polls
7367 */
7368 memset(dev, 0, sizeof(struct net_device));
7369
7370 /* make sure we BUG if trying to hit standard
7371 * register/unregister code path
7372 */
7373 dev->reg_state = NETREG_DUMMY;
7374
937f1ba5
BH
7375 /* NAPI wants this */
7376 INIT_LIST_HEAD(&dev->napi_list);
7377
7378 /* a dummy interface is started by default */
7379 set_bit(__LINK_STATE_PRESENT, &dev->state);
7380 set_bit(__LINK_STATE_START, &dev->state);
7381
29b4433d
ED
7382 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7383 * because users of this 'device' dont need to change
7384 * its refcount.
7385 */
7386
937f1ba5
BH
7387 return 0;
7388}
7389EXPORT_SYMBOL_GPL(init_dummy_netdev);
7390
7391
1da177e4
LT
7392/**
7393 * register_netdev - register a network device
7394 * @dev: device to register
7395 *
7396 * Take a completed network device structure and add it to the kernel
7397 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7398 * chain. 0 is returned on success. A negative errno code is returned
7399 * on a failure to set up the device, or if the name is a duplicate.
7400 *
38b4da38 7401 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7402 * and expands the device name if you passed a format string to
7403 * alloc_netdev.
7404 */
7405int register_netdev(struct net_device *dev)
7406{
7407 int err;
7408
7409 rtnl_lock();
1da177e4 7410 err = register_netdevice(dev);
1da177e4
LT
7411 rtnl_unlock();
7412 return err;
7413}
7414EXPORT_SYMBOL(register_netdev);
7415
29b4433d
ED
7416int netdev_refcnt_read(const struct net_device *dev)
7417{
7418 int i, refcnt = 0;
7419
7420 for_each_possible_cpu(i)
7421 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7422 return refcnt;
7423}
7424EXPORT_SYMBOL(netdev_refcnt_read);
7425
2c53040f 7426/**
1da177e4 7427 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7428 * @dev: target net_device
1da177e4
LT
7429 *
7430 * This is called when unregistering network devices.
7431 *
7432 * Any protocol or device that holds a reference should register
7433 * for netdevice notification, and cleanup and put back the
7434 * reference if they receive an UNREGISTER event.
7435 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7436 * call dev_put.
1da177e4
LT
7437 */
7438static void netdev_wait_allrefs(struct net_device *dev)
7439{
7440 unsigned long rebroadcast_time, warning_time;
29b4433d 7441 int refcnt;
1da177e4 7442
e014debe
ED
7443 linkwatch_forget_dev(dev);
7444
1da177e4 7445 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7446 refcnt = netdev_refcnt_read(dev);
7447
7448 while (refcnt != 0) {
1da177e4 7449 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7450 rtnl_lock();
1da177e4
LT
7451
7452 /* Rebroadcast unregister notification */
056925ab 7453 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7454
748e2d93 7455 __rtnl_unlock();
0115e8e3 7456 rcu_barrier();
748e2d93
ED
7457 rtnl_lock();
7458
0115e8e3 7459 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7460 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7461 &dev->state)) {
7462 /* We must not have linkwatch events
7463 * pending on unregister. If this
7464 * happens, we simply run the queue
7465 * unscheduled, resulting in a noop
7466 * for this device.
7467 */
7468 linkwatch_run_queue();
7469 }
7470
6756ae4b 7471 __rtnl_unlock();
1da177e4
LT
7472
7473 rebroadcast_time = jiffies;
7474 }
7475
7476 msleep(250);
7477
29b4433d
ED
7478 refcnt = netdev_refcnt_read(dev);
7479
1da177e4 7480 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7481 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7482 dev->name, refcnt);
1da177e4
LT
7483 warning_time = jiffies;
7484 }
7485 }
7486}
7487
7488/* The sequence is:
7489 *
7490 * rtnl_lock();
7491 * ...
7492 * register_netdevice(x1);
7493 * register_netdevice(x2);
7494 * ...
7495 * unregister_netdevice(y1);
7496 * unregister_netdevice(y2);
7497 * ...
7498 * rtnl_unlock();
7499 * free_netdev(y1);
7500 * free_netdev(y2);
7501 *
58ec3b4d 7502 * We are invoked by rtnl_unlock().
1da177e4 7503 * This allows us to deal with problems:
b17a7c17 7504 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7505 * without deadlocking with linkwatch via keventd.
7506 * 2) Since we run with the RTNL semaphore not held, we can sleep
7507 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7508 *
7509 * We must not return until all unregister events added during
7510 * the interval the lock was held have been completed.
1da177e4 7511 */
1da177e4
LT
7512void netdev_run_todo(void)
7513{
626ab0e6 7514 struct list_head list;
1da177e4 7515
1da177e4 7516 /* Snapshot list, allow later requests */
626ab0e6 7517 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7518
7519 __rtnl_unlock();
626ab0e6 7520
0115e8e3
ED
7521
7522 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7523 if (!list_empty(&list))
7524 rcu_barrier();
7525
1da177e4
LT
7526 while (!list_empty(&list)) {
7527 struct net_device *dev
e5e26d75 7528 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7529 list_del(&dev->todo_list);
7530
748e2d93 7531 rtnl_lock();
0115e8e3 7532 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7533 __rtnl_unlock();
0115e8e3 7534
b17a7c17 7535 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7536 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7537 dev->name, dev->reg_state);
7538 dump_stack();
7539 continue;
7540 }
1da177e4 7541
b17a7c17 7542 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7543
b17a7c17 7544 netdev_wait_allrefs(dev);
1da177e4 7545
b17a7c17 7546 /* paranoia */
29b4433d 7547 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7548 BUG_ON(!list_empty(&dev->ptype_all));
7549 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7550 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7551 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7552 WARN_ON(dev->dn_ptr);
1da177e4 7553
b17a7c17
SH
7554 if (dev->destructor)
7555 dev->destructor(dev);
9093bbb2 7556
50624c93
EB
7557 /* Report a network device has been unregistered */
7558 rtnl_lock();
7559 dev_net(dev)->dev_unreg_count--;
7560 __rtnl_unlock();
7561 wake_up(&netdev_unregistering_wq);
7562
9093bbb2
SH
7563 /* Free network device */
7564 kobject_put(&dev->dev.kobj);
1da177e4 7565 }
1da177e4
LT
7566}
7567
9256645a
JW
7568/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7569 * all the same fields in the same order as net_device_stats, with only
7570 * the type differing, but rtnl_link_stats64 may have additional fields
7571 * at the end for newer counters.
3cfde79c 7572 */
77a1abf5
ED
7573void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7574 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7575{
7576#if BITS_PER_LONG == 64
9256645a 7577 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7578 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7579 /* zero out counters that only exist in rtnl_link_stats64 */
7580 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7581 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7582#else
9256645a 7583 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7584 const unsigned long *src = (const unsigned long *)netdev_stats;
7585 u64 *dst = (u64 *)stats64;
7586
9256645a 7587 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7588 for (i = 0; i < n; i++)
7589 dst[i] = src[i];
9256645a
JW
7590 /* zero out counters that only exist in rtnl_link_stats64 */
7591 memset((char *)stats64 + n * sizeof(u64), 0,
7592 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7593#endif
7594}
77a1abf5 7595EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7596
eeda3fd6
SH
7597/**
7598 * dev_get_stats - get network device statistics
7599 * @dev: device to get statistics from
28172739 7600 * @storage: place to store stats
eeda3fd6 7601 *
d7753516
BH
7602 * Get network statistics from device. Return @storage.
7603 * The device driver may provide its own method by setting
7604 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7605 * otherwise the internal statistics structure is used.
eeda3fd6 7606 */
d7753516
BH
7607struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7608 struct rtnl_link_stats64 *storage)
7004bf25 7609{
eeda3fd6
SH
7610 const struct net_device_ops *ops = dev->netdev_ops;
7611
28172739
ED
7612 if (ops->ndo_get_stats64) {
7613 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7614 ops->ndo_get_stats64(dev, storage);
7615 } else if (ops->ndo_get_stats) {
3cfde79c 7616 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7617 } else {
7618 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7619 }
caf586e5 7620 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7621 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7622 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7623 return storage;
c45d286e 7624}
eeda3fd6 7625EXPORT_SYMBOL(dev_get_stats);
c45d286e 7626
24824a09 7627struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7628{
24824a09 7629 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7630
24824a09
ED
7631#ifdef CONFIG_NET_CLS_ACT
7632 if (queue)
7633 return queue;
7634 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7635 if (!queue)
7636 return NULL;
7637 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7638 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7639 queue->qdisc_sleeping = &noop_qdisc;
7640 rcu_assign_pointer(dev->ingress_queue, queue);
7641#endif
7642 return queue;
bb949fbd
DM
7643}
7644
2c60db03
ED
7645static const struct ethtool_ops default_ethtool_ops;
7646
d07d7507
SG
7647void netdev_set_default_ethtool_ops(struct net_device *dev,
7648 const struct ethtool_ops *ops)
7649{
7650 if (dev->ethtool_ops == &default_ethtool_ops)
7651 dev->ethtool_ops = ops;
7652}
7653EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7654
74d332c1
ED
7655void netdev_freemem(struct net_device *dev)
7656{
7657 char *addr = (char *)dev - dev->padded;
7658
4cb28970 7659 kvfree(addr);
74d332c1
ED
7660}
7661
1da177e4 7662/**
722c9a0c 7663 * alloc_netdev_mqs - allocate network device
7664 * @sizeof_priv: size of private data to allocate space for
7665 * @name: device name format string
7666 * @name_assign_type: origin of device name
7667 * @setup: callback to initialize device
7668 * @txqs: the number of TX subqueues to allocate
7669 * @rxqs: the number of RX subqueues to allocate
7670 *
7671 * Allocates a struct net_device with private data area for driver use
7672 * and performs basic initialization. Also allocates subqueue structs
7673 * for each queue on the device.
1da177e4 7674 */
36909ea4 7675struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7676 unsigned char name_assign_type,
36909ea4
TH
7677 void (*setup)(struct net_device *),
7678 unsigned int txqs, unsigned int rxqs)
1da177e4 7679{
1da177e4 7680 struct net_device *dev;
7943986c 7681 size_t alloc_size;
1ce8e7b5 7682 struct net_device *p;
1da177e4 7683
b6fe17d6
SH
7684 BUG_ON(strlen(name) >= sizeof(dev->name));
7685
36909ea4 7686 if (txqs < 1) {
7b6cd1ce 7687 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7688 return NULL;
7689 }
7690
a953be53 7691#ifdef CONFIG_SYSFS
36909ea4 7692 if (rxqs < 1) {
7b6cd1ce 7693 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7694 return NULL;
7695 }
7696#endif
7697
fd2ea0a7 7698 alloc_size = sizeof(struct net_device);
d1643d24
AD
7699 if (sizeof_priv) {
7700 /* ensure 32-byte alignment of private area */
1ce8e7b5 7701 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7702 alloc_size += sizeof_priv;
7703 }
7704 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7705 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7706
74d332c1
ED
7707 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7708 if (!p)
7709 p = vzalloc(alloc_size);
62b5942a 7710 if (!p)
1da177e4 7711 return NULL;
1da177e4 7712
1ce8e7b5 7713 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7714 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7715
29b4433d
ED
7716 dev->pcpu_refcnt = alloc_percpu(int);
7717 if (!dev->pcpu_refcnt)
74d332c1 7718 goto free_dev;
ab9c73cc 7719
ab9c73cc 7720 if (dev_addr_init(dev))
29b4433d 7721 goto free_pcpu;
ab9c73cc 7722
22bedad3 7723 dev_mc_init(dev);
a748ee24 7724 dev_uc_init(dev);
ccffad25 7725
c346dca1 7726 dev_net_set(dev, &init_net);
1da177e4 7727
8d3bdbd5 7728 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7729 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7730
8d3bdbd5
DM
7731 INIT_LIST_HEAD(&dev->napi_list);
7732 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7733 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7734 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7735 INIT_LIST_HEAD(&dev->adj_list.upper);
7736 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
7737 INIT_LIST_HEAD(&dev->ptype_all);
7738 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7739#ifdef CONFIG_NET_SCHED
7740 hash_init(dev->qdisc_hash);
7741#endif
02875878 7742 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7743 setup(dev);
7744
a813104d 7745 if (!dev->tx_queue_len) {
f84bb1ea 7746 dev->priv_flags |= IFF_NO_QUEUE;
11597084 7747 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 7748 }
906470c1 7749
36909ea4
TH
7750 dev->num_tx_queues = txqs;
7751 dev->real_num_tx_queues = txqs;
ed9af2e8 7752 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7753 goto free_all;
e8a0464c 7754
a953be53 7755#ifdef CONFIG_SYSFS
36909ea4
TH
7756 dev->num_rx_queues = rxqs;
7757 dev->real_num_rx_queues = rxqs;
fe822240 7758 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7759 goto free_all;
df334545 7760#endif
0a9627f2 7761
1da177e4 7762 strcpy(dev->name, name);
c835a677 7763 dev->name_assign_type = name_assign_type;
cbda10fa 7764 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7765 if (!dev->ethtool_ops)
7766 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7767
7768 nf_hook_ingress_init(dev);
7769
1da177e4 7770 return dev;
ab9c73cc 7771
8d3bdbd5
DM
7772free_all:
7773 free_netdev(dev);
7774 return NULL;
7775
29b4433d
ED
7776free_pcpu:
7777 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7778free_dev:
7779 netdev_freemem(dev);
ab9c73cc 7780 return NULL;
1da177e4 7781}
36909ea4 7782EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7783
7784/**
722c9a0c 7785 * free_netdev - free network device
7786 * @dev: device
1da177e4 7787 *
722c9a0c 7788 * This function does the last stage of destroying an allocated device
7789 * interface. The reference to the device object is released. If this
7790 * is the last reference then it will be freed.Must be called in process
7791 * context.
1da177e4
LT
7792 */
7793void free_netdev(struct net_device *dev)
7794{
d565b0a1
HX
7795 struct napi_struct *p, *n;
7796
93d05d4a 7797 might_sleep();
60877a32 7798 netif_free_tx_queues(dev);
a953be53 7799#ifdef CONFIG_SYSFS
10595902 7800 kvfree(dev->_rx);
fe822240 7801#endif
e8a0464c 7802
33d480ce 7803 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7804
f001fde5
JP
7805 /* Flush device addresses */
7806 dev_addr_flush(dev);
7807
d565b0a1
HX
7808 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7809 netif_napi_del(p);
7810
29b4433d
ED
7811 free_percpu(dev->pcpu_refcnt);
7812 dev->pcpu_refcnt = NULL;
7813
3041a069 7814 /* Compatibility with error handling in drivers */
1da177e4 7815 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7816 netdev_freemem(dev);
1da177e4
LT
7817 return;
7818 }
7819
7820 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7821 dev->reg_state = NETREG_RELEASED;
7822
43cb76d9
GKH
7823 /* will free via device release */
7824 put_device(&dev->dev);
1da177e4 7825}
d1b19dff 7826EXPORT_SYMBOL(free_netdev);
4ec93edb 7827
f0db275a
SH
7828/**
7829 * synchronize_net - Synchronize with packet receive processing
7830 *
7831 * Wait for packets currently being received to be done.
7832 * Does not block later packets from starting.
7833 */
4ec93edb 7834void synchronize_net(void)
1da177e4
LT
7835{
7836 might_sleep();
be3fc413
ED
7837 if (rtnl_is_locked())
7838 synchronize_rcu_expedited();
7839 else
7840 synchronize_rcu();
1da177e4 7841}
d1b19dff 7842EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7843
7844/**
44a0873d 7845 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7846 * @dev: device
44a0873d 7847 * @head: list
6ebfbc06 7848 *
1da177e4 7849 * This function shuts down a device interface and removes it
d59b54b1 7850 * from the kernel tables.
44a0873d 7851 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7852 *
7853 * Callers must hold the rtnl semaphore. You may want
7854 * unregister_netdev() instead of this.
7855 */
7856
44a0873d 7857void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7858{
a6620712
HX
7859 ASSERT_RTNL();
7860
44a0873d 7861 if (head) {
9fdce099 7862 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7863 } else {
7864 rollback_registered(dev);
7865 /* Finish processing unregister after unlock */
7866 net_set_todo(dev);
7867 }
1da177e4 7868}
44a0873d 7869EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7870
9b5e383c
ED
7871/**
7872 * unregister_netdevice_many - unregister many devices
7873 * @head: list of devices
87757a91
ED
7874 *
7875 * Note: As most callers use a stack allocated list_head,
7876 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7877 */
7878void unregister_netdevice_many(struct list_head *head)
7879{
7880 struct net_device *dev;
7881
7882 if (!list_empty(head)) {
7883 rollback_registered_many(head);
7884 list_for_each_entry(dev, head, unreg_list)
7885 net_set_todo(dev);
87757a91 7886 list_del(head);
9b5e383c
ED
7887 }
7888}
63c8099d 7889EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7890
1da177e4
LT
7891/**
7892 * unregister_netdev - remove device from the kernel
7893 * @dev: device
7894 *
7895 * This function shuts down a device interface and removes it
d59b54b1 7896 * from the kernel tables.
1da177e4
LT
7897 *
7898 * This is just a wrapper for unregister_netdevice that takes
7899 * the rtnl semaphore. In general you want to use this and not
7900 * unregister_netdevice.
7901 */
7902void unregister_netdev(struct net_device *dev)
7903{
7904 rtnl_lock();
7905 unregister_netdevice(dev);
7906 rtnl_unlock();
7907}
1da177e4
LT
7908EXPORT_SYMBOL(unregister_netdev);
7909
ce286d32
EB
7910/**
7911 * dev_change_net_namespace - move device to different nethost namespace
7912 * @dev: device
7913 * @net: network namespace
7914 * @pat: If not NULL name pattern to try if the current device name
7915 * is already taken in the destination network namespace.
7916 *
7917 * This function shuts down a device interface and moves it
7918 * to a new network namespace. On success 0 is returned, on
7919 * a failure a netagive errno code is returned.
7920 *
7921 * Callers must hold the rtnl semaphore.
7922 */
7923
7924int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7925{
ce286d32
EB
7926 int err;
7927
7928 ASSERT_RTNL();
7929
7930 /* Don't allow namespace local devices to be moved. */
7931 err = -EINVAL;
7932 if (dev->features & NETIF_F_NETNS_LOCAL)
7933 goto out;
7934
7935 /* Ensure the device has been registrered */
ce286d32
EB
7936 if (dev->reg_state != NETREG_REGISTERED)
7937 goto out;
7938
7939 /* Get out if there is nothing todo */
7940 err = 0;
878628fb 7941 if (net_eq(dev_net(dev), net))
ce286d32
EB
7942 goto out;
7943
7944 /* Pick the destination device name, and ensure
7945 * we can use it in the destination network namespace.
7946 */
7947 err = -EEXIST;
d9031024 7948 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7949 /* We get here if we can't use the current device name */
7950 if (!pat)
7951 goto out;
828de4f6 7952 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7953 goto out;
7954 }
7955
7956 /*
7957 * And now a mini version of register_netdevice unregister_netdevice.
7958 */
7959
7960 /* If device is running close it first. */
9b772652 7961 dev_close(dev);
ce286d32
EB
7962
7963 /* And unlink it from device chain */
7964 err = -ENODEV;
7965 unlist_netdevice(dev);
7966
7967 synchronize_net();
7968
7969 /* Shutdown queueing discipline. */
7970 dev_shutdown(dev);
7971
7972 /* Notify protocols, that we are about to destroy
eb13da1a 7973 * this device. They should clean all the things.
7974 *
7975 * Note that dev->reg_state stays at NETREG_REGISTERED.
7976 * This is wanted because this way 8021q and macvlan know
7977 * the device is just moving and can keep their slaves up.
7978 */
ce286d32 7979 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7980 rcu_barrier();
7981 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7982 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7983
7984 /*
7985 * Flush the unicast and multicast chains
7986 */
a748ee24 7987 dev_uc_flush(dev);
22bedad3 7988 dev_mc_flush(dev);
ce286d32 7989
4e66ae2e
SH
7990 /* Send a netdev-removed uevent to the old namespace */
7991 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7992 netdev_adjacent_del_links(dev);
4e66ae2e 7993
ce286d32 7994 /* Actually switch the network namespace */
c346dca1 7995 dev_net_set(dev, net);
ce286d32 7996
ce286d32 7997 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7998 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7999 dev->ifindex = dev_new_index(net);
ce286d32 8000
4e66ae2e
SH
8001 /* Send a netdev-add uevent to the new namespace */
8002 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 8003 netdev_adjacent_add_links(dev);
4e66ae2e 8004
8b41d188 8005 /* Fixup kobjects */
a1b3f594 8006 err = device_rename(&dev->dev, dev->name);
8b41d188 8007 WARN_ON(err);
ce286d32
EB
8008
8009 /* Add the device back in the hashes */
8010 list_netdevice(dev);
8011
8012 /* Notify protocols, that a new device appeared. */
8013 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8014
d90a909e
EB
8015 /*
8016 * Prevent userspace races by waiting until the network
8017 * device is fully setup before sending notifications.
8018 */
7f294054 8019 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8020
ce286d32
EB
8021 synchronize_net();
8022 err = 0;
8023out:
8024 return err;
8025}
463d0183 8026EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8027
f0bf90de 8028static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8029{
8030 struct sk_buff **list_skb;
1da177e4 8031 struct sk_buff *skb;
f0bf90de 8032 unsigned int cpu;
1da177e4
LT
8033 struct softnet_data *sd, *oldsd;
8034
1da177e4
LT
8035 local_irq_disable();
8036 cpu = smp_processor_id();
8037 sd = &per_cpu(softnet_data, cpu);
8038 oldsd = &per_cpu(softnet_data, oldcpu);
8039
8040 /* Find end of our completion_queue. */
8041 list_skb = &sd->completion_queue;
8042 while (*list_skb)
8043 list_skb = &(*list_skb)->next;
8044 /* Append completion queue from offline CPU. */
8045 *list_skb = oldsd->completion_queue;
8046 oldsd->completion_queue = NULL;
8047
1da177e4 8048 /* Append output queue from offline CPU. */
a9cbd588
CG
8049 if (oldsd->output_queue) {
8050 *sd->output_queue_tailp = oldsd->output_queue;
8051 sd->output_queue_tailp = oldsd->output_queue_tailp;
8052 oldsd->output_queue = NULL;
8053 oldsd->output_queue_tailp = &oldsd->output_queue;
8054 }
ac64da0b
ED
8055 /* Append NAPI poll list from offline CPU, with one exception :
8056 * process_backlog() must be called by cpu owning percpu backlog.
8057 * We properly handle process_queue & input_pkt_queue later.
8058 */
8059 while (!list_empty(&oldsd->poll_list)) {
8060 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8061 struct napi_struct,
8062 poll_list);
8063
8064 list_del_init(&napi->poll_list);
8065 if (napi->poll == process_backlog)
8066 napi->state = 0;
8067 else
8068 ____napi_schedule(sd, napi);
264524d5 8069 }
1da177e4
LT
8070
8071 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8072 local_irq_enable();
8073
8074 /* Process offline CPU's input_pkt_queue */
76cc8b13 8075 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8076 netif_rx_ni(skb);
76cc8b13 8077 input_queue_head_incr(oldsd);
fec5e652 8078 }
ac64da0b 8079 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8080 netif_rx_ni(skb);
76cc8b13
TH
8081 input_queue_head_incr(oldsd);
8082 }
1da177e4 8083
f0bf90de 8084 return 0;
1da177e4 8085}
1da177e4 8086
7f353bf2 8087/**
b63365a2
HX
8088 * netdev_increment_features - increment feature set by one
8089 * @all: current feature set
8090 * @one: new feature set
8091 * @mask: mask feature set
7f353bf2
HX
8092 *
8093 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8094 * @one to the master device with current feature set @all. Will not
8095 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8096 */
c8f44aff
MM
8097netdev_features_t netdev_increment_features(netdev_features_t all,
8098 netdev_features_t one, netdev_features_t mask)
b63365a2 8099{
c8cd0989 8100 if (mask & NETIF_F_HW_CSUM)
a188222b 8101 mask |= NETIF_F_CSUM_MASK;
1742f183 8102 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8103
a188222b 8104 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8105 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8106
1742f183 8107 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8108 if (all & NETIF_F_HW_CSUM)
8109 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8110
8111 return all;
8112}
b63365a2 8113EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8114
430f03cd 8115static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8116{
8117 int i;
8118 struct hlist_head *hash;
8119
8120 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8121 if (hash != NULL)
8122 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8123 INIT_HLIST_HEAD(&hash[i]);
8124
8125 return hash;
8126}
8127
881d966b 8128/* Initialize per network namespace state */
4665079c 8129static int __net_init netdev_init(struct net *net)
881d966b 8130{
734b6541
RM
8131 if (net != &init_net)
8132 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8133
30d97d35
PE
8134 net->dev_name_head = netdev_create_hash();
8135 if (net->dev_name_head == NULL)
8136 goto err_name;
881d966b 8137
30d97d35
PE
8138 net->dev_index_head = netdev_create_hash();
8139 if (net->dev_index_head == NULL)
8140 goto err_idx;
881d966b
EB
8141
8142 return 0;
30d97d35
PE
8143
8144err_idx:
8145 kfree(net->dev_name_head);
8146err_name:
8147 return -ENOMEM;
881d966b
EB
8148}
8149
f0db275a
SH
8150/**
8151 * netdev_drivername - network driver for the device
8152 * @dev: network device
f0db275a
SH
8153 *
8154 * Determine network driver for device.
8155 */
3019de12 8156const char *netdev_drivername(const struct net_device *dev)
6579e57b 8157{
cf04a4c7
SH
8158 const struct device_driver *driver;
8159 const struct device *parent;
3019de12 8160 const char *empty = "";
6579e57b
AV
8161
8162 parent = dev->dev.parent;
6579e57b 8163 if (!parent)
3019de12 8164 return empty;
6579e57b
AV
8165
8166 driver = parent->driver;
8167 if (driver && driver->name)
3019de12
DM
8168 return driver->name;
8169 return empty;
6579e57b
AV
8170}
8171
6ea754eb
JP
8172static void __netdev_printk(const char *level, const struct net_device *dev,
8173 struct va_format *vaf)
256df2f3 8174{
b004ff49 8175 if (dev && dev->dev.parent) {
6ea754eb
JP
8176 dev_printk_emit(level[1] - '0',
8177 dev->dev.parent,
8178 "%s %s %s%s: %pV",
8179 dev_driver_string(dev->dev.parent),
8180 dev_name(dev->dev.parent),
8181 netdev_name(dev), netdev_reg_state(dev),
8182 vaf);
b004ff49 8183 } else if (dev) {
6ea754eb
JP
8184 printk("%s%s%s: %pV",
8185 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8186 } else {
6ea754eb 8187 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8188 }
256df2f3
JP
8189}
8190
6ea754eb
JP
8191void netdev_printk(const char *level, const struct net_device *dev,
8192 const char *format, ...)
256df2f3
JP
8193{
8194 struct va_format vaf;
8195 va_list args;
256df2f3
JP
8196
8197 va_start(args, format);
8198
8199 vaf.fmt = format;
8200 vaf.va = &args;
8201
6ea754eb 8202 __netdev_printk(level, dev, &vaf);
b004ff49 8203
256df2f3 8204 va_end(args);
256df2f3
JP
8205}
8206EXPORT_SYMBOL(netdev_printk);
8207
8208#define define_netdev_printk_level(func, level) \
6ea754eb 8209void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8210{ \
256df2f3
JP
8211 struct va_format vaf; \
8212 va_list args; \
8213 \
8214 va_start(args, fmt); \
8215 \
8216 vaf.fmt = fmt; \
8217 vaf.va = &args; \
8218 \
6ea754eb 8219 __netdev_printk(level, dev, &vaf); \
b004ff49 8220 \
256df2f3 8221 va_end(args); \
256df2f3
JP
8222} \
8223EXPORT_SYMBOL(func);
8224
8225define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8226define_netdev_printk_level(netdev_alert, KERN_ALERT);
8227define_netdev_printk_level(netdev_crit, KERN_CRIT);
8228define_netdev_printk_level(netdev_err, KERN_ERR);
8229define_netdev_printk_level(netdev_warn, KERN_WARNING);
8230define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8231define_netdev_printk_level(netdev_info, KERN_INFO);
8232
4665079c 8233static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8234{
8235 kfree(net->dev_name_head);
8236 kfree(net->dev_index_head);
8237}
8238
022cbae6 8239static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8240 .init = netdev_init,
8241 .exit = netdev_exit,
8242};
8243
4665079c 8244static void __net_exit default_device_exit(struct net *net)
ce286d32 8245{
e008b5fc 8246 struct net_device *dev, *aux;
ce286d32 8247 /*
e008b5fc 8248 * Push all migratable network devices back to the
ce286d32
EB
8249 * initial network namespace
8250 */
8251 rtnl_lock();
e008b5fc 8252 for_each_netdev_safe(net, dev, aux) {
ce286d32 8253 int err;
aca51397 8254 char fb_name[IFNAMSIZ];
ce286d32
EB
8255
8256 /* Ignore unmoveable devices (i.e. loopback) */
8257 if (dev->features & NETIF_F_NETNS_LOCAL)
8258 continue;
8259
e008b5fc
EB
8260 /* Leave virtual devices for the generic cleanup */
8261 if (dev->rtnl_link_ops)
8262 continue;
d0c082ce 8263
25985edc 8264 /* Push remaining network devices to init_net */
aca51397
PE
8265 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8266 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8267 if (err) {
7b6cd1ce
JP
8268 pr_emerg("%s: failed to move %s to init_net: %d\n",
8269 __func__, dev->name, err);
aca51397 8270 BUG();
ce286d32
EB
8271 }
8272 }
8273 rtnl_unlock();
8274}
8275
50624c93
EB
8276static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8277{
8278 /* Return with the rtnl_lock held when there are no network
8279 * devices unregistering in any network namespace in net_list.
8280 */
8281 struct net *net;
8282 bool unregistering;
ff960a73 8283 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8284
ff960a73 8285 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8286 for (;;) {
50624c93
EB
8287 unregistering = false;
8288 rtnl_lock();
8289 list_for_each_entry(net, net_list, exit_list) {
8290 if (net->dev_unreg_count > 0) {
8291 unregistering = true;
8292 break;
8293 }
8294 }
8295 if (!unregistering)
8296 break;
8297 __rtnl_unlock();
ff960a73
PZ
8298
8299 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8300 }
ff960a73 8301 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8302}
8303
04dc7f6b
EB
8304static void __net_exit default_device_exit_batch(struct list_head *net_list)
8305{
8306 /* At exit all network devices most be removed from a network
b595076a 8307 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8308 * Do this across as many network namespaces as possible to
8309 * improve batching efficiency.
8310 */
8311 struct net_device *dev;
8312 struct net *net;
8313 LIST_HEAD(dev_kill_list);
8314
50624c93
EB
8315 /* To prevent network device cleanup code from dereferencing
8316 * loopback devices or network devices that have been freed
8317 * wait here for all pending unregistrations to complete,
8318 * before unregistring the loopback device and allowing the
8319 * network namespace be freed.
8320 *
8321 * The netdev todo list containing all network devices
8322 * unregistrations that happen in default_device_exit_batch
8323 * will run in the rtnl_unlock() at the end of
8324 * default_device_exit_batch.
8325 */
8326 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8327 list_for_each_entry(net, net_list, exit_list) {
8328 for_each_netdev_reverse(net, dev) {
b0ab2fab 8329 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8330 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8331 else
8332 unregister_netdevice_queue(dev, &dev_kill_list);
8333 }
8334 }
8335 unregister_netdevice_many(&dev_kill_list);
8336 rtnl_unlock();
8337}
8338
022cbae6 8339static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8340 .exit = default_device_exit,
04dc7f6b 8341 .exit_batch = default_device_exit_batch,
ce286d32
EB
8342};
8343
1da177e4
LT
8344/*
8345 * Initialize the DEV module. At boot time this walks the device list and
8346 * unhooks any devices that fail to initialise (normally hardware not
8347 * present) and leaves us with a valid list of present and active devices.
8348 *
8349 */
8350
8351/*
8352 * This is called single threaded during boot, so no need
8353 * to take the rtnl semaphore.
8354 */
8355static int __init net_dev_init(void)
8356{
8357 int i, rc = -ENOMEM;
8358
8359 BUG_ON(!dev_boot_phase);
8360
1da177e4
LT
8361 if (dev_proc_init())
8362 goto out;
8363
8b41d188 8364 if (netdev_kobject_init())
1da177e4
LT
8365 goto out;
8366
8367 INIT_LIST_HEAD(&ptype_all);
82d8a867 8368 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8369 INIT_LIST_HEAD(&ptype_base[i]);
8370
62532da9
VY
8371 INIT_LIST_HEAD(&offload_base);
8372
881d966b
EB
8373 if (register_pernet_subsys(&netdev_net_ops))
8374 goto out;
1da177e4
LT
8375
8376 /*
8377 * Initialise the packet receive queues.
8378 */
8379
6f912042 8380 for_each_possible_cpu(i) {
41852497 8381 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8382 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8383
41852497
ED
8384 INIT_WORK(flush, flush_backlog);
8385
e36fa2f7 8386 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8387 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8388 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8389 sd->output_queue_tailp = &sd->output_queue;
df334545 8390#ifdef CONFIG_RPS
e36fa2f7
ED
8391 sd->csd.func = rps_trigger_softirq;
8392 sd->csd.info = sd;
e36fa2f7 8393 sd->cpu = i;
1e94d72f 8394#endif
0a9627f2 8395
e36fa2f7
ED
8396 sd->backlog.poll = process_backlog;
8397 sd->backlog.weight = weight_p;
1da177e4
LT
8398 }
8399
1da177e4
LT
8400 dev_boot_phase = 0;
8401
505d4f73
EB
8402 /* The loopback device is special if any other network devices
8403 * is present in a network namespace the loopback device must
8404 * be present. Since we now dynamically allocate and free the
8405 * loopback device ensure this invariant is maintained by
8406 * keeping the loopback device as the first device on the
8407 * list of network devices. Ensuring the loopback devices
8408 * is the first device that appears and the last network device
8409 * that disappears.
8410 */
8411 if (register_pernet_device(&loopback_net_ops))
8412 goto out;
8413
8414 if (register_pernet_device(&default_device_ops))
8415 goto out;
8416
962cf36c
CM
8417 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8418 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8419
f0bf90de
SAS
8420 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8421 NULL, dev_cpu_dead);
8422 WARN_ON(rc < 0);
f38a9eb1 8423 dst_subsys_init();
1da177e4
LT
8424 rc = 0;
8425out:
8426 return rc;
8427}
8428
8429subsys_initcall(net_dev_init);