]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/core/dev.c
net: Replace deprecated CPU-hotplug functions.
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
11d6011c 82#include <linux/rwsem.h>
1da177e4
LT
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
0187bdfb 92#include <linux/ethtool.h>
1da177e4 93#include <linux/skbuff.h>
29863d41 94#include <linux/kthread.h>
a7862b45 95#include <linux/bpf.h>
b5cdae32 96#include <linux/bpf_trace.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4 98#include <net/sock.h>
02d62e86 99#include <net/busy_poll.h>
1da177e4 100#include <linux/rtnetlink.h>
1da177e4 101#include <linux/stat.h>
b14a9fc4 102#include <net/dsa.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
04f00ab2 105#include <net/gro.h>
1da177e4 106#include <net/pkt_sched.h>
87d83093 107#include <net/pkt_cls.h>
1da177e4 108#include <net/checksum.h>
44540960 109#include <net/xfrm.h>
1da177e4
LT
110#include <linux/highmem.h>
111#include <linux/init.h>
1da177e4 112#include <linux/module.h>
1da177e4
LT
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
1da177e4 116#include <net/iw_handler.h>
1da177e4 117#include <asm/current.h>
5bdb9886 118#include <linux/audit.h>
db217334 119#include <linux/dmaengine.h>
f6a78bfc 120#include <linux/err.h>
c7fa9d18 121#include <linux/ctype.h>
723e98b7 122#include <linux/if_arp.h>
6de329e2 123#include <linux/if_vlan.h>
8f0f2223 124#include <linux/ip.h>
ad55dcaf 125#include <net/ip.h>
25cd9ba0 126#include <net/mpls.h>
8f0f2223
DM
127#include <linux/ipv6.h>
128#include <linux/in.h>
b6b2fed1
DM
129#include <linux/jhash.h>
130#include <linux/random.h>
9cbc1cb8 131#include <trace/events/napi.h>
cf66ba58 132#include <trace/events/net.h>
07dc22e7 133#include <trace/events/skb.h>
70713ddd 134#include <trace/events/qdisc.h>
caeda9b9 135#include <linux/inetdevice.h>
c445477d 136#include <linux/cpu_rmap.h>
c5905afb 137#include <linux/static_key.h>
af12fa6e 138#include <linux/hashtable.h>
60877a32 139#include <linux/vmalloc.h>
529d0489 140#include <linux/if_macvlan.h>
e7fd2885 141#include <linux/errqueue.h>
3b47d303 142#include <linux/hrtimer.h>
357b6cc5 143#include <linux/netfilter_ingress.h>
40e4e713 144#include <linux/crash_dump.h>
b72b5bf6 145#include <linux/sctp.h>
ae847f40 146#include <net/udp_tunnel.h>
6621dd29 147#include <linux/net_namespace.h>
aaa5d90b 148#include <linux/indirect_call_wrapper.h>
af3836df 149#include <net/devlink.h>
bd869245 150#include <linux/pm_runtime.h>
3744741a 151#include <linux/prandom.h>
127d7355 152#include <linux/once_lite.h>
1da177e4 153
342709ef
PE
154#include "net-sysfs.h"
155
d565b0a1
HX
156#define MAX_GRO_SKBS 8
157
5d38a079
HX
158/* This should be increased if a protocol with a bigger head is added. */
159#define GRO_MAX_HEAD (MAX_HEADER + 128)
160
1da177e4 161static DEFINE_SPINLOCK(ptype_lock);
62532da9 162static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
163struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164struct list_head ptype_all __read_mostly; /* Taps */
62532da9 165static struct list_head offload_base __read_mostly;
1da177e4 166
ae78dbfa 167static int netif_rx_internal(struct sk_buff *skb);
54951194 168static int call_netdevice_notifiers_info(unsigned long val,
54951194 169 struct netdev_notifier_info *info);
26372605
PM
170static int call_netdevice_notifiers_extack(unsigned long val,
171 struct net_device *dev,
172 struct netlink_ext_ack *extack);
90b602f8 173static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 174
1da177e4 175/*
7562f876 176 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
177 * semaphore.
178 *
c6d14c84 179 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
180 *
181 * Writers must hold the rtnl semaphore while they loop through the
7562f876 182 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
183 * actual updates. This allows pure readers to access the list even
184 * while a writer is preparing to update it.
185 *
186 * To put it another way, dev_base_lock is held for writing only to
187 * protect against pure readers; the rtnl semaphore provides the
188 * protection against other writers.
189 *
190 * See, for example usages, register_netdevice() and
191 * unregister_netdevice(), which must be called with the rtnl
192 * semaphore held.
193 */
1da177e4 194DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
195EXPORT_SYMBOL(dev_base_lock);
196
6c557001
FW
197static DEFINE_MUTEX(ifalias_mutex);
198
af12fa6e
ET
199/* protects napi_hash addition/deletion and napi_gen_id */
200static DEFINE_SPINLOCK(napi_hash_lock);
201
52bd2d62 202static unsigned int napi_gen_id = NR_CPUS;
6180d9de 203static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 204
11d6011c 205static DECLARE_RWSEM(devnet_rename_sem);
c91f6df2 206
4e985ada
TG
207static inline void dev_base_seq_inc(struct net *net)
208{
643aa9cb 209 while (++net->dev_base_seq == 0)
210 ;
4e985ada
TG
211}
212
881d966b 213static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 214{
8387ff25 215 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 216
08e9897d 217 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
218}
219
881d966b 220static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 221{
7c28bd0b 222 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
223}
224
e36fa2f7 225static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
226{
227#ifdef CONFIG_RPS
e36fa2f7 228 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
229#endif
230}
231
e36fa2f7 232static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
233{
234#ifdef CONFIG_RPS
e36fa2f7 235 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
236#endif
237}
238
ff927412
JP
239static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 const char *name)
241{
242 struct netdev_name_node *name_node;
243
244 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 if (!name_node)
246 return NULL;
247 INIT_HLIST_NODE(&name_node->hlist);
248 name_node->dev = dev;
249 name_node->name = name;
250 return name_node;
251}
252
253static struct netdev_name_node *
254netdev_name_node_head_alloc(struct net_device *dev)
255{
36fbf1e5
JP
256 struct netdev_name_node *name_node;
257
258 name_node = netdev_name_node_alloc(dev, dev->name);
259 if (!name_node)
260 return NULL;
261 INIT_LIST_HEAD(&name_node->list);
262 return name_node;
ff927412
JP
263}
264
265static void netdev_name_node_free(struct netdev_name_node *name_node)
266{
267 kfree(name_node);
268}
269
270static void netdev_name_node_add(struct net *net,
271 struct netdev_name_node *name_node)
272{
273 hlist_add_head_rcu(&name_node->hlist,
274 dev_name_hash(net, name_node->name));
275}
276
277static void netdev_name_node_del(struct netdev_name_node *name_node)
278{
279 hlist_del_rcu(&name_node->hlist);
280}
281
282static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 const char *name)
284{
285 struct hlist_head *head = dev_name_hash(net, name);
286 struct netdev_name_node *name_node;
287
288 hlist_for_each_entry(name_node, head, hlist)
289 if (!strcmp(name_node->name, name))
290 return name_node;
291 return NULL;
292}
293
294static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 const char *name)
296{
297 struct hlist_head *head = dev_name_hash(net, name);
298 struct netdev_name_node *name_node;
299
300 hlist_for_each_entry_rcu(name_node, head, hlist)
301 if (!strcmp(name_node->name, name))
302 return name_node;
303 return NULL;
304}
305
36fbf1e5
JP
306int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307{
308 struct netdev_name_node *name_node;
309 struct net *net = dev_net(dev);
310
311 name_node = netdev_name_node_lookup(net, name);
312 if (name_node)
313 return -EEXIST;
314 name_node = netdev_name_node_alloc(dev, name);
315 if (!name_node)
316 return -ENOMEM;
317 netdev_name_node_add(net, name_node);
318 /* The node that holds dev->name acts as a head of per-device list. */
319 list_add_tail(&name_node->list, &dev->name_node->list);
320
321 return 0;
322}
323EXPORT_SYMBOL(netdev_name_node_alt_create);
324
325static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326{
327 list_del(&name_node->list);
328 netdev_name_node_del(name_node);
329 kfree(name_node->name);
330 netdev_name_node_free(name_node);
331}
332
333int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334{
335 struct netdev_name_node *name_node;
336 struct net *net = dev_net(dev);
337
338 name_node = netdev_name_node_lookup(net, name);
339 if (!name_node)
340 return -ENOENT;
e08ad805
ED
341 /* lookup might have found our primary name or a name belonging
342 * to another device.
343 */
344 if (name_node == dev->name_node || name_node->dev != dev)
345 return -EINVAL;
346
36fbf1e5
JP
347 __netdev_name_node_alt_destroy(name_node);
348
349 return 0;
350}
351EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
353static void netdev_name_node_alt_flush(struct net_device *dev)
354{
355 struct netdev_name_node *name_node, *tmp;
356
357 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358 __netdev_name_node_alt_destroy(name_node);
359}
360
ce286d32 361/* Device list insertion */
53759be9 362static void list_netdevice(struct net_device *dev)
ce286d32 363{
c346dca1 364 struct net *net = dev_net(dev);
ce286d32
EB
365
366 ASSERT_RTNL();
367
368 write_lock_bh(&dev_base_lock);
c6d14c84 369 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 370 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
371 hlist_add_head_rcu(&dev->index_hlist,
372 dev_index_hash(net, dev->ifindex));
ce286d32 373 write_unlock_bh(&dev_base_lock);
4e985ada
TG
374
375 dev_base_seq_inc(net);
ce286d32
EB
376}
377
fb699dfd
ED
378/* Device list removal
379 * caller must respect a RCU grace period before freeing/reusing dev
380 */
ce286d32
EB
381static void unlist_netdevice(struct net_device *dev)
382{
383 ASSERT_RTNL();
384
385 /* Unlink dev from the device chain */
386 write_lock_bh(&dev_base_lock);
c6d14c84 387 list_del_rcu(&dev->dev_list);
ff927412 388 netdev_name_node_del(dev->name_node);
fb699dfd 389 hlist_del_rcu(&dev->index_hlist);
ce286d32 390 write_unlock_bh(&dev_base_lock);
4e985ada
TG
391
392 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
393}
394
1da177e4
LT
395/*
396 * Our notifier list
397 */
398
f07d5b94 399static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
400
401/*
402 * Device drivers call our routines to queue packets here. We empty the
403 * queue in the local softnet handler.
404 */
bea3348e 405
9958da05 406DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 407EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 408
1a33e10e
CW
409#ifdef CONFIG_LOCKDEP
410/*
411 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412 * according to dev->type
413 */
414static const unsigned short netdev_lock_type[] = {
415 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430
431static const char *const netdev_lock_name[] = {
432 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447
448static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
845e0ebb 449static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
1a33e10e
CW
450
451static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452{
453 int i;
454
455 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456 if (netdev_lock_type[i] == dev_type)
457 return i;
458 /* the last key is used by default */
459 return ARRAY_SIZE(netdev_lock_type) - 1;
460}
461
462static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463 unsigned short dev_type)
464{
465 int i;
466
467 i = netdev_lock_pos(dev_type);
468 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469 netdev_lock_name[i]);
470}
845e0ebb
CW
471
472static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473{
474 int i;
475
476 i = netdev_lock_pos(dev->type);
477 lockdep_set_class_and_name(&dev->addr_list_lock,
478 &netdev_addr_lock_key[i],
479 netdev_lock_name[i]);
480}
1a33e10e
CW
481#else
482static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483 unsigned short dev_type)
484{
485}
845e0ebb
CW
486
487static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488{
489}
1a33e10e
CW
490#endif
491
1da177e4 492/*******************************************************************************
eb13da1a 493 *
494 * Protocol management and registration routines
495 *
496 *******************************************************************************/
1da177e4 497
1da177e4 498
1da177e4
LT
499/*
500 * Add a protocol ID to the list. Now that the input handler is
501 * smarter we can dispense with all the messy stuff that used to be
502 * here.
503 *
504 * BEWARE!!! Protocol handlers, mangling input packets,
505 * MUST BE last in hash buckets and checking protocol handlers
506 * MUST start from promiscuous ptype_all chain in net_bh.
507 * It is true now, do not change it.
508 * Explanation follows: if protocol handler, mangling packet, will
509 * be the first on list, it is not able to sense, that packet
510 * is cloned and should be copied-on-write, so that it will
511 * change it and subsequent readers will get broken packet.
512 * --ANK (980803)
513 */
514
c07b68e8
ED
515static inline struct list_head *ptype_head(const struct packet_type *pt)
516{
517 if (pt->type == htons(ETH_P_ALL))
7866a621 518 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 519 else
7866a621
SN
520 return pt->dev ? &pt->dev->ptype_specific :
521 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
522}
523
1da177e4
LT
524/**
525 * dev_add_pack - add packet handler
526 * @pt: packet type declaration
527 *
528 * Add a protocol handler to the networking stack. The passed &packet_type
529 * is linked into kernel lists and may not be freed until it has been
530 * removed from the kernel lists.
531 *
4ec93edb 532 * This call does not sleep therefore it can not
1da177e4
LT
533 * guarantee all CPU's that are in middle of receiving packets
534 * will see the new packet type (until the next received packet).
535 */
536
537void dev_add_pack(struct packet_type *pt)
538{
c07b68e8 539 struct list_head *head = ptype_head(pt);
1da177e4 540
c07b68e8
ED
541 spin_lock(&ptype_lock);
542 list_add_rcu(&pt->list, head);
543 spin_unlock(&ptype_lock);
1da177e4 544}
d1b19dff 545EXPORT_SYMBOL(dev_add_pack);
1da177e4 546
1da177e4
LT
547/**
548 * __dev_remove_pack - remove packet handler
549 * @pt: packet type declaration
550 *
551 * Remove a protocol handler that was previously added to the kernel
552 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
553 * from the kernel lists and can be freed or reused once this function
4ec93edb 554 * returns.
1da177e4
LT
555 *
556 * The packet type might still be in use by receivers
557 * and must not be freed until after all the CPU's have gone
558 * through a quiescent state.
559 */
560void __dev_remove_pack(struct packet_type *pt)
561{
c07b68e8 562 struct list_head *head = ptype_head(pt);
1da177e4
LT
563 struct packet_type *pt1;
564
c07b68e8 565 spin_lock(&ptype_lock);
1da177e4
LT
566
567 list_for_each_entry(pt1, head, list) {
568 if (pt == pt1) {
569 list_del_rcu(&pt->list);
570 goto out;
571 }
572 }
573
7b6cd1ce 574 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 575out:
c07b68e8 576 spin_unlock(&ptype_lock);
1da177e4 577}
d1b19dff
ED
578EXPORT_SYMBOL(__dev_remove_pack);
579
1da177e4
LT
580/**
581 * dev_remove_pack - remove packet handler
582 * @pt: packet type declaration
583 *
584 * Remove a protocol handler that was previously added to the kernel
585 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
586 * from the kernel lists and can be freed or reused once this function
587 * returns.
588 *
589 * This call sleeps to guarantee that no CPU is looking at the packet
590 * type after return.
591 */
592void dev_remove_pack(struct packet_type *pt)
593{
594 __dev_remove_pack(pt);
4ec93edb 595
1da177e4
LT
596 synchronize_net();
597}
d1b19dff 598EXPORT_SYMBOL(dev_remove_pack);
1da177e4 599
62532da9
VY
600
601/**
602 * dev_add_offload - register offload handlers
603 * @po: protocol offload declaration
604 *
605 * Add protocol offload handlers to the networking stack. The passed
606 * &proto_offload is linked into kernel lists and may not be freed until
607 * it has been removed from the kernel lists.
608 *
609 * This call does not sleep therefore it can not
610 * guarantee all CPU's that are in middle of receiving packets
611 * will see the new offload handlers (until the next received packet).
612 */
613void dev_add_offload(struct packet_offload *po)
614{
bdef7de4 615 struct packet_offload *elem;
62532da9
VY
616
617 spin_lock(&offload_lock);
bdef7de4
DM
618 list_for_each_entry(elem, &offload_base, list) {
619 if (po->priority < elem->priority)
620 break;
621 }
622 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
623 spin_unlock(&offload_lock);
624}
625EXPORT_SYMBOL(dev_add_offload);
626
627/**
628 * __dev_remove_offload - remove offload handler
629 * @po: packet offload declaration
630 *
631 * Remove a protocol offload handler that was previously added to the
632 * kernel offload handlers by dev_add_offload(). The passed &offload_type
633 * is removed from the kernel lists and can be freed or reused once this
634 * function returns.
635 *
636 * The packet type might still be in use by receivers
637 * and must not be freed until after all the CPU's have gone
638 * through a quiescent state.
639 */
1d143d9f 640static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
641{
642 struct list_head *head = &offload_base;
643 struct packet_offload *po1;
644
c53aa505 645 spin_lock(&offload_lock);
62532da9
VY
646
647 list_for_each_entry(po1, head, list) {
648 if (po == po1) {
649 list_del_rcu(&po->list);
650 goto out;
651 }
652 }
653
654 pr_warn("dev_remove_offload: %p not found\n", po);
655out:
c53aa505 656 spin_unlock(&offload_lock);
62532da9 657}
62532da9
VY
658
659/**
660 * dev_remove_offload - remove packet offload handler
661 * @po: packet offload declaration
662 *
663 * Remove a packet offload handler that was previously added to the kernel
664 * offload handlers by dev_add_offload(). The passed &offload_type is
665 * removed from the kernel lists and can be freed or reused once this
666 * function returns.
667 *
668 * This call sleeps to guarantee that no CPU is looking at the packet
669 * type after return.
670 */
671void dev_remove_offload(struct packet_offload *po)
672{
673 __dev_remove_offload(po);
674
675 synchronize_net();
676}
677EXPORT_SYMBOL(dev_remove_offload);
678
1da177e4 679/*******************************************************************************
eb13da1a 680 *
681 * Device Interface Subroutines
682 *
683 *******************************************************************************/
1da177e4 684
a54acb3a
ND
685/**
686 * dev_get_iflink - get 'iflink' value of a interface
687 * @dev: targeted interface
688 *
689 * Indicates the ifindex the interface is linked to.
690 * Physical interfaces have the same 'ifindex' and 'iflink' values.
691 */
692
693int dev_get_iflink(const struct net_device *dev)
694{
695 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
696 return dev->netdev_ops->ndo_get_iflink(dev);
697
7a66bbc9 698 return dev->ifindex;
a54acb3a
ND
699}
700EXPORT_SYMBOL(dev_get_iflink);
701
fc4099f1
PS
702/**
703 * dev_fill_metadata_dst - Retrieve tunnel egress information.
704 * @dev: targeted interface
705 * @skb: The packet.
706 *
707 * For better visibility of tunnel traffic OVS needs to retrieve
708 * egress tunnel information for a packet. Following API allows
709 * user to get this info.
710 */
711int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
712{
713 struct ip_tunnel_info *info;
714
715 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
716 return -EINVAL;
717
718 info = skb_tunnel_info_unclone(skb);
719 if (!info)
720 return -ENOMEM;
721 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
722 return -EINVAL;
723
724 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
725}
726EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
727
ddb94eaf
PNA
728static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
729{
730 int k = stack->num_paths++;
731
732 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
733 return NULL;
734
735 return &stack->path[k];
736}
737
738int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
739 struct net_device_path_stack *stack)
740{
741 const struct net_device *last_dev;
742 struct net_device_path_ctx ctx = {
743 .dev = dev,
744 .daddr = daddr,
745 };
746 struct net_device_path *path;
747 int ret = 0;
748
749 stack->num_paths = 0;
750 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
751 last_dev = ctx.dev;
752 path = dev_fwd_path(stack);
753 if (!path)
754 return -1;
755
756 memset(path, 0, sizeof(struct net_device_path));
757 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
758 if (ret < 0)
759 return -1;
760
761 if (WARN_ON_ONCE(last_dev == ctx.dev))
762 return -1;
763 }
764 path = dev_fwd_path(stack);
765 if (!path)
766 return -1;
767 path->type = DEV_PATH_ETHERNET;
768 path->dev = ctx.dev;
769
770 return ret;
771}
772EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
1da177e4
LT
774/**
775 * __dev_get_by_name - find a device by its name
c4ea43c5 776 * @net: the applicable net namespace
1da177e4
LT
777 * @name: name to find
778 *
779 * Find an interface by name. Must be called under RTNL semaphore
780 * or @dev_base_lock. If the name is found a pointer to the device
781 * is returned. If the name is not found then %NULL is returned. The
782 * reference counters are not incremented so the caller must be
783 * careful with locks.
784 */
785
881d966b 786struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 787{
ff927412 788 struct netdev_name_node *node_name;
1da177e4 789
ff927412
JP
790 node_name = netdev_name_node_lookup(net, name);
791 return node_name ? node_name->dev : NULL;
1da177e4 792}
d1b19dff 793EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 794
72c9528b 795/**
722c9a0c 796 * dev_get_by_name_rcu - find a device by its name
797 * @net: the applicable net namespace
798 * @name: name to find
799 *
800 * Find an interface by name.
801 * If the name is found a pointer to the device is returned.
802 * If the name is not found then %NULL is returned.
803 * The reference counters are not incremented so the caller must be
804 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
805 */
806
807struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
808{
ff927412 809 struct netdev_name_node *node_name;
72c9528b 810
ff927412
JP
811 node_name = netdev_name_node_lookup_rcu(net, name);
812 return node_name ? node_name->dev : NULL;
72c9528b
ED
813}
814EXPORT_SYMBOL(dev_get_by_name_rcu);
815
1da177e4
LT
816/**
817 * dev_get_by_name - find a device by its name
c4ea43c5 818 * @net: the applicable net namespace
1da177e4
LT
819 * @name: name to find
820 *
821 * Find an interface by name. This can be called from any
822 * context and does its own locking. The returned handle has
823 * the usage count incremented and the caller must use dev_put() to
824 * release it when it is no longer needed. %NULL is returned if no
825 * matching device is found.
826 */
827
881d966b 828struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
829{
830 struct net_device *dev;
831
72c9528b
ED
832 rcu_read_lock();
833 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
834 if (dev)
835 dev_hold(dev);
72c9528b 836 rcu_read_unlock();
1da177e4
LT
837 return dev;
838}
d1b19dff 839EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
840
841/**
842 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 843 * @net: the applicable net namespace
1da177e4
LT
844 * @ifindex: index of device
845 *
846 * Search for an interface by index. Returns %NULL if the device
847 * is not found or a pointer to the device. The device has not
848 * had its reference counter increased so the caller must be careful
849 * about locking. The caller must hold either the RTNL semaphore
850 * or @dev_base_lock.
851 */
852
881d966b 853struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 854{
0bd8d536
ED
855 struct net_device *dev;
856 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 857
b67bfe0d 858 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
859 if (dev->ifindex == ifindex)
860 return dev;
0bd8d536 861
1da177e4
LT
862 return NULL;
863}
d1b19dff 864EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 865
fb699dfd
ED
866/**
867 * dev_get_by_index_rcu - find a device by its ifindex
868 * @net: the applicable net namespace
869 * @ifindex: index of device
870 *
871 * Search for an interface by index. Returns %NULL if the device
872 * is not found or a pointer to the device. The device has not
873 * had its reference counter increased so the caller must be careful
874 * about locking. The caller must hold RCU lock.
875 */
876
877struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
878{
fb699dfd
ED
879 struct net_device *dev;
880 struct hlist_head *head = dev_index_hash(net, ifindex);
881
b67bfe0d 882 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
883 if (dev->ifindex == ifindex)
884 return dev;
885
886 return NULL;
887}
888EXPORT_SYMBOL(dev_get_by_index_rcu);
889
1da177e4
LT
890
891/**
892 * dev_get_by_index - find a device by its ifindex
c4ea43c5 893 * @net: the applicable net namespace
1da177e4
LT
894 * @ifindex: index of device
895 *
896 * Search for an interface by index. Returns NULL if the device
897 * is not found or a pointer to the device. The device returned has
898 * had a reference added and the pointer is safe until the user calls
899 * dev_put to indicate they have finished with it.
900 */
901
881d966b 902struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
903{
904 struct net_device *dev;
905
fb699dfd
ED
906 rcu_read_lock();
907 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
908 if (dev)
909 dev_hold(dev);
fb699dfd 910 rcu_read_unlock();
1da177e4
LT
911 return dev;
912}
d1b19dff 913EXPORT_SYMBOL(dev_get_by_index);
1da177e4 914
90b602f8
ML
915/**
916 * dev_get_by_napi_id - find a device by napi_id
917 * @napi_id: ID of the NAPI struct
918 *
919 * Search for an interface by NAPI ID. Returns %NULL if the device
920 * is not found or a pointer to the device. The device has not had
921 * its reference counter increased so the caller must be careful
922 * about locking. The caller must hold RCU lock.
923 */
924
925struct net_device *dev_get_by_napi_id(unsigned int napi_id)
926{
927 struct napi_struct *napi;
928
929 WARN_ON_ONCE(!rcu_read_lock_held());
930
931 if (napi_id < MIN_NAPI_ID)
932 return NULL;
933
934 napi = napi_by_id(napi_id);
935
936 return napi ? napi->dev : NULL;
937}
938EXPORT_SYMBOL(dev_get_by_napi_id);
939
5dbe7c17
NS
940/**
941 * netdev_get_name - get a netdevice name, knowing its ifindex.
942 * @net: network namespace
943 * @name: a pointer to the buffer where the name will be stored.
944 * @ifindex: the ifindex of the interface to get the name from.
5dbe7c17
NS
945 */
946int netdev_get_name(struct net *net, char *name, int ifindex)
947{
948 struct net_device *dev;
11d6011c 949 int ret;
5dbe7c17 950
11d6011c 951 down_read(&devnet_rename_sem);
5dbe7c17 952 rcu_read_lock();
11d6011c 953
5dbe7c17
NS
954 dev = dev_get_by_index_rcu(net, ifindex);
955 if (!dev) {
11d6011c
AD
956 ret = -ENODEV;
957 goto out;
5dbe7c17
NS
958 }
959
960 strcpy(name, dev->name);
5dbe7c17 961
11d6011c
AD
962 ret = 0;
963out:
964 rcu_read_unlock();
965 up_read(&devnet_rename_sem);
966 return ret;
5dbe7c17
NS
967}
968
1da177e4 969/**
941666c2 970 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 971 * @net: the applicable net namespace
1da177e4
LT
972 * @type: media type of device
973 * @ha: hardware address
974 *
975 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
976 * is not found or a pointer to the device.
977 * The caller must hold RCU or RTNL.
941666c2 978 * The returned device has not had its ref count increased
1da177e4
LT
979 * and the caller must therefore be careful about locking
980 *
1da177e4
LT
981 */
982
941666c2
ED
983struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
984 const char *ha)
1da177e4
LT
985{
986 struct net_device *dev;
987
941666c2 988 for_each_netdev_rcu(net, dev)
1da177e4
LT
989 if (dev->type == type &&
990 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
991 return dev;
992
993 return NULL;
1da177e4 994}
941666c2 995EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 996
881d966b 997struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 998{
99fe3c39 999 struct net_device *dev, *ret = NULL;
4e9cac2b 1000
99fe3c39
ED
1001 rcu_read_lock();
1002 for_each_netdev_rcu(net, dev)
1003 if (dev->type == type) {
1004 dev_hold(dev);
1005 ret = dev;
1006 break;
1007 }
1008 rcu_read_unlock();
1009 return ret;
1da177e4 1010}
1da177e4
LT
1011EXPORT_SYMBOL(dev_getfirstbyhwtype);
1012
1013/**
6c555490 1014 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1015 * @net: the applicable net namespace
1da177e4
LT
1016 * @if_flags: IFF_* values
1017 * @mask: bitmask of bits in if_flags to check
1018 *
1019 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1020 * is not found or a pointer to the device. Must be called inside
6c555490 1021 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1022 */
1023
6c555490
WC
1024struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1025 unsigned short mask)
1da177e4 1026{
7562f876 1027 struct net_device *dev, *ret;
1da177e4 1028
6c555490
WC
1029 ASSERT_RTNL();
1030
7562f876 1031 ret = NULL;
6c555490 1032 for_each_netdev(net, dev) {
1da177e4 1033 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1034 ret = dev;
1da177e4
LT
1035 break;
1036 }
1037 }
7562f876 1038 return ret;
1da177e4 1039}
6c555490 1040EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1041
1042/**
1043 * dev_valid_name - check if name is okay for network device
1044 * @name: name string
1045 *
1046 * Network device names need to be valid file names to
4250b75b 1047 * allow sysfs to work. We also disallow any kind of
c7fa9d18 1048 * whitespace.
1da177e4 1049 */
95f050bf 1050bool dev_valid_name(const char *name)
1da177e4 1051{
c7fa9d18 1052 if (*name == '\0')
95f050bf 1053 return false;
a9d48205 1054 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1055 return false;
c7fa9d18 1056 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1057 return false;
c7fa9d18
DM
1058
1059 while (*name) {
a4176a93 1060 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1061 return false;
c7fa9d18
DM
1062 name++;
1063 }
95f050bf 1064 return true;
1da177e4 1065}
d1b19dff 1066EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1067
1068/**
b267b179
EB
1069 * __dev_alloc_name - allocate a name for a device
1070 * @net: network namespace to allocate the device name in
1da177e4 1071 * @name: name format string
b267b179 1072 * @buf: scratch buffer and result name string
1da177e4
LT
1073 *
1074 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1075 * id. It scans list of devices to build up a free map, then chooses
1076 * the first empty slot. The caller must hold the dev_base or rtnl lock
1077 * while allocating the name and adding the device in order to avoid
1078 * duplicates.
1079 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1080 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1081 */
1082
b267b179 1083static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1084{
1085 int i = 0;
1da177e4
LT
1086 const char *p;
1087 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1088 unsigned long *inuse;
1da177e4
LT
1089 struct net_device *d;
1090
93809105
RV
1091 if (!dev_valid_name(name))
1092 return -EINVAL;
1093
51f299dd 1094 p = strchr(name, '%');
1da177e4
LT
1095 if (p) {
1096 /*
1097 * Verify the string as this thing may have come from
1098 * the user. There must be either one "%d" and no other "%"
1099 * characters.
1100 */
1101 if (p[1] != 'd' || strchr(p + 2, '%'))
1102 return -EINVAL;
1103
1104 /* Use one page as a bit array of possible slots */
cfcabdcc 1105 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1106 if (!inuse)
1107 return -ENOMEM;
1108
881d966b 1109 for_each_netdev(net, d) {
6c015a22
JB
1110 struct netdev_name_node *name_node;
1111 list_for_each_entry(name_node, &d->name_node->list, list) {
1112 if (!sscanf(name_node->name, name, &i))
1113 continue;
1114 if (i < 0 || i >= max_netdevices)
1115 continue;
1116
1117 /* avoid cases where sscanf is not exact inverse of printf */
1118 snprintf(buf, IFNAMSIZ, name, i);
1119 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1120 set_bit(i, inuse);
1121 }
1da177e4
LT
1122 if (!sscanf(d->name, name, &i))
1123 continue;
1124 if (i < 0 || i >= max_netdevices)
1125 continue;
1126
1127 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1128 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1129 if (!strncmp(buf, d->name, IFNAMSIZ))
1130 set_bit(i, inuse);
1131 }
1132
1133 i = find_first_zero_bit(inuse, max_netdevices);
1134 free_page((unsigned long) inuse);
1135 }
1136
6224abda 1137 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1138 if (!__dev_get_by_name(net, buf))
1da177e4 1139 return i;
1da177e4
LT
1140
1141 /* It is possible to run out of possible slots
1142 * when the name is long and there isn't enough space left
1143 * for the digits, or if all bits are used.
1144 */
029b6d14 1145 return -ENFILE;
1da177e4
LT
1146}
1147
2c88b855
RV
1148static int dev_alloc_name_ns(struct net *net,
1149 struct net_device *dev,
1150 const char *name)
1151{
1152 char buf[IFNAMSIZ];
1153 int ret;
1154
c46d7642 1155 BUG_ON(!net);
2c88b855
RV
1156 ret = __dev_alloc_name(net, name, buf);
1157 if (ret >= 0)
1158 strlcpy(dev->name, buf, IFNAMSIZ);
1159 return ret;
1da177e4
LT
1160}
1161
b267b179
EB
1162/**
1163 * dev_alloc_name - allocate a name for a device
1164 * @dev: device
1165 * @name: name format string
1166 *
1167 * Passed a format string - eg "lt%d" it will try and find a suitable
1168 * id. It scans list of devices to build up a free map, then chooses
1169 * the first empty slot. The caller must hold the dev_base or rtnl lock
1170 * while allocating the name and adding the device in order to avoid
1171 * duplicates.
1172 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1173 * Returns the number of the unit assigned or a negative errno code.
1174 */
1175
1176int dev_alloc_name(struct net_device *dev, const char *name)
1177{
c46d7642 1178 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1179}
d1b19dff 1180EXPORT_SYMBOL(dev_alloc_name);
b267b179 1181
bacb7e18
ED
1182static int dev_get_valid_name(struct net *net, struct net_device *dev,
1183 const char *name)
828de4f6 1184{
55a5ec9b
DM
1185 BUG_ON(!net);
1186
1187 if (!dev_valid_name(name))
1188 return -EINVAL;
1189
1190 if (strchr(name, '%'))
1191 return dev_alloc_name_ns(net, dev, name);
1192 else if (__dev_get_by_name(net, name))
1193 return -EEXIST;
1194 else if (dev->name != name)
1195 strlcpy(dev->name, name, IFNAMSIZ);
1196
1197 return 0;
d9031024 1198}
1da177e4
LT
1199
1200/**
1201 * dev_change_name - change name of a device
1202 * @dev: device
1203 * @newname: name (or format string) must be at least IFNAMSIZ
1204 *
1205 * Change name of a device, can pass format strings "eth%d".
1206 * for wildcarding.
1207 */
cf04a4c7 1208int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1209{
238fa362 1210 unsigned char old_assign_type;
fcc5a03a 1211 char oldname[IFNAMSIZ];
1da177e4 1212 int err = 0;
fcc5a03a 1213 int ret;
881d966b 1214 struct net *net;
1da177e4
LT
1215
1216 ASSERT_RTNL();
c346dca1 1217 BUG_ON(!dev_net(dev));
1da177e4 1218
c346dca1 1219 net = dev_net(dev);
8065a779
SWL
1220
1221 /* Some auto-enslaved devices e.g. failover slaves are
1222 * special, as userspace might rename the device after
1223 * the interface had been brought up and running since
1224 * the point kernel initiated auto-enslavement. Allow
1225 * live name change even when these slave devices are
1226 * up and running.
1227 *
1228 * Typically, users of these auto-enslaving devices
1229 * don't actually care about slave name change, as
1230 * they are supposed to operate on master interface
1231 * directly.
1232 */
1233 if (dev->flags & IFF_UP &&
1234 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1235 return -EBUSY;
1236
11d6011c 1237 down_write(&devnet_rename_sem);
c91f6df2
BH
1238
1239 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
11d6011c 1240 up_write(&devnet_rename_sem);
c8d90dca 1241 return 0;
c91f6df2 1242 }
c8d90dca 1243
fcc5a03a
HX
1244 memcpy(oldname, dev->name, IFNAMSIZ);
1245
828de4f6 1246 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1247 if (err < 0) {
11d6011c 1248 up_write(&devnet_rename_sem);
d9031024 1249 return err;
c91f6df2 1250 }
1da177e4 1251
6fe82a39
VF
1252 if (oldname[0] && !strchr(oldname, '%'))
1253 netdev_info(dev, "renamed from %s\n", oldname);
1254
238fa362
TG
1255 old_assign_type = dev->name_assign_type;
1256 dev->name_assign_type = NET_NAME_RENAMED;
1257
fcc5a03a 1258rollback:
a1b3f594
EB
1259 ret = device_rename(&dev->dev, dev->name);
1260 if (ret) {
1261 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1262 dev->name_assign_type = old_assign_type;
11d6011c 1263 up_write(&devnet_rename_sem);
a1b3f594 1264 return ret;
dcc99773 1265 }
7f988eab 1266
11d6011c 1267 up_write(&devnet_rename_sem);
c91f6df2 1268
5bb025fa
VF
1269 netdev_adjacent_rename_links(dev, oldname);
1270
7f988eab 1271 write_lock_bh(&dev_base_lock);
ff927412 1272 netdev_name_node_del(dev->name_node);
72c9528b
ED
1273 write_unlock_bh(&dev_base_lock);
1274
1275 synchronize_rcu();
1276
1277 write_lock_bh(&dev_base_lock);
ff927412 1278 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1279 write_unlock_bh(&dev_base_lock);
1280
056925ab 1281 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1282 ret = notifier_to_errno(ret);
1283
1284 if (ret) {
91e9c07b
ED
1285 /* err >= 0 after dev_alloc_name() or stores the first errno */
1286 if (err >= 0) {
fcc5a03a 1287 err = ret;
11d6011c 1288 down_write(&devnet_rename_sem);
fcc5a03a 1289 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1290 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1291 dev->name_assign_type = old_assign_type;
1292 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1293 goto rollback;
91e9c07b 1294 } else {
7b6cd1ce 1295 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1296 dev->name, ret);
fcc5a03a
HX
1297 }
1298 }
1da177e4
LT
1299
1300 return err;
1301}
1302
0b815a1a
SH
1303/**
1304 * dev_set_alias - change ifalias of a device
1305 * @dev: device
1306 * @alias: name up to IFALIASZ
f0db275a 1307 * @len: limit of bytes to copy from info
0b815a1a
SH
1308 *
1309 * Set ifalias for a device,
1310 */
1311int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1312{
6c557001 1313 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1314
1315 if (len >= IFALIASZ)
1316 return -EINVAL;
1317
6c557001
FW
1318 if (len) {
1319 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1320 if (!new_alias)
1321 return -ENOMEM;
1322
1323 memcpy(new_alias->ifalias, alias, len);
1324 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1325 }
1326
6c557001 1327 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1328 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1329 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1330 mutex_unlock(&ifalias_mutex);
1331
1332 if (new_alias)
1333 kfree_rcu(new_alias, rcuhead);
0b815a1a 1334
0b815a1a
SH
1335 return len;
1336}
0fe554a4 1337EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1338
6c557001
FW
1339/**
1340 * dev_get_alias - get ifalias of a device
1341 * @dev: device
20e88320 1342 * @name: buffer to store name of ifalias
6c557001
FW
1343 * @len: size of buffer
1344 *
1345 * get ifalias for a device. Caller must make sure dev cannot go
1346 * away, e.g. rcu read lock or own a reference count to device.
1347 */
1348int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1349{
1350 const struct dev_ifalias *alias;
1351 int ret = 0;
1352
1353 rcu_read_lock();
1354 alias = rcu_dereference(dev->ifalias);
1355 if (alias)
1356 ret = snprintf(name, len, "%s", alias->ifalias);
1357 rcu_read_unlock();
1358
1359 return ret;
1360}
0b815a1a 1361
d8a33ac4 1362/**
3041a069 1363 * netdev_features_change - device changes features
d8a33ac4
SH
1364 * @dev: device to cause notification
1365 *
1366 * Called to indicate a device has changed features.
1367 */
1368void netdev_features_change(struct net_device *dev)
1369{
056925ab 1370 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1371}
1372EXPORT_SYMBOL(netdev_features_change);
1373
1da177e4
LT
1374/**
1375 * netdev_state_change - device changes state
1376 * @dev: device to cause notification
1377 *
1378 * Called to indicate a device has changed state. This function calls
1379 * the notifier chains for netdev_chain and sends a NEWLINK message
1380 * to the routing socket.
1381 */
1382void netdev_state_change(struct net_device *dev)
1383{
1384 if (dev->flags & IFF_UP) {
51d0c047
DA
1385 struct netdev_notifier_change_info change_info = {
1386 .info.dev = dev,
1387 };
54951194 1388
51d0c047 1389 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1390 &change_info.info);
7f294054 1391 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1392 }
1393}
d1b19dff 1394EXPORT_SYMBOL(netdev_state_change);
1da177e4 1395
7061eb8c
LP
1396/**
1397 * __netdev_notify_peers - notify network peers about existence of @dev,
1398 * to be called when rtnl lock is already held.
1399 * @dev: network device
1400 *
1401 * Generate traffic such that interested network peers are aware of
1402 * @dev, such as by generating a gratuitous ARP. This may be used when
1403 * a device wants to inform the rest of the network about some sort of
1404 * reconfiguration such as a failover event or virtual machine
1405 * migration.
1406 */
1407void __netdev_notify_peers(struct net_device *dev)
1408{
1409 ASSERT_RTNL();
1410 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1411 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1412}
1413EXPORT_SYMBOL(__netdev_notify_peers);
1414
ee89bab1 1415/**
722c9a0c 1416 * netdev_notify_peers - notify network peers about existence of @dev
1417 * @dev: network device
ee89bab1
AW
1418 *
1419 * Generate traffic such that interested network peers are aware of
1420 * @dev, such as by generating a gratuitous ARP. This may be used when
1421 * a device wants to inform the rest of the network about some sort of
1422 * reconfiguration such as a failover event or virtual machine
1423 * migration.
1424 */
1425void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1426{
ee89bab1 1427 rtnl_lock();
7061eb8c 1428 __netdev_notify_peers(dev);
ee89bab1 1429 rtnl_unlock();
c1da4ac7 1430}
ee89bab1 1431EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1432
29863d41
WW
1433static int napi_threaded_poll(void *data);
1434
1435static int napi_kthread_create(struct napi_struct *n)
1436{
1437 int err = 0;
1438
1439 /* Create and wake up the kthread once to put it in
1440 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1441 * warning and work with loadavg.
1442 */
1443 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1444 n->dev->name, n->napi_id);
1445 if (IS_ERR(n->thread)) {
1446 err = PTR_ERR(n->thread);
1447 pr_err("kthread_run failed with err %d\n", err);
1448 n->thread = NULL;
1449 }
1450
1451 return err;
1452}
1453
40c900aa 1454static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1455{
d314774c 1456 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1457 int ret;
1da177e4 1458
e46b66bc
BH
1459 ASSERT_RTNL();
1460
bd869245
HK
1461 if (!netif_device_present(dev)) {
1462 /* may be detached because parent is runtime-suspended */
1463 if (dev->dev.parent)
1464 pm_runtime_resume(dev->dev.parent);
1465 if (!netif_device_present(dev))
1466 return -ENODEV;
1467 }
1da177e4 1468
ca99ca14
NH
1469 /* Block netpoll from trying to do any rx path servicing.
1470 * If we don't do this there is a chance ndo_poll_controller
1471 * or ndo_poll may be running while we open the device
1472 */
66b5552f 1473 netpoll_poll_disable(dev);
ca99ca14 1474
40c900aa 1475 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1476 ret = notifier_to_errno(ret);
1477 if (ret)
1478 return ret;
1479
1da177e4 1480 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1481
d314774c
SH
1482 if (ops->ndo_validate_addr)
1483 ret = ops->ndo_validate_addr(dev);
bada339b 1484
d314774c
SH
1485 if (!ret && ops->ndo_open)
1486 ret = ops->ndo_open(dev);
1da177e4 1487
66b5552f 1488 netpoll_poll_enable(dev);
ca99ca14 1489
bada339b
JG
1490 if (ret)
1491 clear_bit(__LINK_STATE_START, &dev->state);
1492 else {
1da177e4 1493 dev->flags |= IFF_UP;
4417da66 1494 dev_set_rx_mode(dev);
1da177e4 1495 dev_activate(dev);
7bf23575 1496 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1497 }
bada339b 1498
1da177e4
LT
1499 return ret;
1500}
1501
1502/**
bd380811 1503 * dev_open - prepare an interface for use.
00f54e68
PM
1504 * @dev: device to open
1505 * @extack: netlink extended ack
1da177e4 1506 *
bd380811
PM
1507 * Takes a device from down to up state. The device's private open
1508 * function is invoked and then the multicast lists are loaded. Finally
1509 * the device is moved into the up state and a %NETDEV_UP message is
1510 * sent to the netdev notifier chain.
1511 *
1512 * Calling this function on an active interface is a nop. On a failure
1513 * a negative errno code is returned.
1da177e4 1514 */
00f54e68 1515int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1516{
1517 int ret;
1518
bd380811
PM
1519 if (dev->flags & IFF_UP)
1520 return 0;
1521
40c900aa 1522 ret = __dev_open(dev, extack);
bd380811
PM
1523 if (ret < 0)
1524 return ret;
1525
7f294054 1526 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1527 call_netdevice_notifiers(NETDEV_UP, dev);
1528
1529 return ret;
1530}
1531EXPORT_SYMBOL(dev_open);
1532
7051b88a 1533static void __dev_close_many(struct list_head *head)
1da177e4 1534{
44345724 1535 struct net_device *dev;
e46b66bc 1536
bd380811 1537 ASSERT_RTNL();
9d5010db
DM
1538 might_sleep();
1539
5cde2829 1540 list_for_each_entry(dev, head, close_list) {
3f4df206 1541 /* Temporarily disable netpoll until the interface is down */
66b5552f 1542 netpoll_poll_disable(dev);
3f4df206 1543
44345724 1544 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1545
44345724 1546 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1547
44345724
OP
1548 /* Synchronize to scheduled poll. We cannot touch poll list, it
1549 * can be even on different cpu. So just clear netif_running().
1550 *
1551 * dev->stop() will invoke napi_disable() on all of it's
1552 * napi_struct instances on this device.
1553 */
4e857c58 1554 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1555 }
1da177e4 1556
44345724 1557 dev_deactivate_many(head);
d8b2a4d2 1558
5cde2829 1559 list_for_each_entry(dev, head, close_list) {
44345724 1560 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1561
44345724
OP
1562 /*
1563 * Call the device specific close. This cannot fail.
1564 * Only if device is UP
1565 *
1566 * We allow it to be called even after a DETACH hot-plug
1567 * event.
1568 */
1569 if (ops->ndo_stop)
1570 ops->ndo_stop(dev);
1571
44345724 1572 dev->flags &= ~IFF_UP;
66b5552f 1573 netpoll_poll_enable(dev);
44345724 1574 }
44345724
OP
1575}
1576
7051b88a 1577static void __dev_close(struct net_device *dev)
44345724
OP
1578{
1579 LIST_HEAD(single);
1580
5cde2829 1581 list_add(&dev->close_list, &single);
7051b88a 1582 __dev_close_many(&single);
f87e6f47 1583 list_del(&single);
44345724
OP
1584}
1585
7051b88a 1586void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1587{
1588 struct net_device *dev, *tmp;
1da177e4 1589
5cde2829
EB
1590 /* Remove the devices that don't need to be closed */
1591 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1592 if (!(dev->flags & IFF_UP))
5cde2829 1593 list_del_init(&dev->close_list);
44345724
OP
1594
1595 __dev_close_many(head);
1da177e4 1596
5cde2829 1597 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1598 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1599 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1600 if (unlink)
1601 list_del_init(&dev->close_list);
44345724 1602 }
bd380811 1603}
99c4a26a 1604EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1605
1606/**
1607 * dev_close - shutdown an interface.
1608 * @dev: device to shutdown
1609 *
1610 * This function moves an active device into down state. A
1611 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1612 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1613 * chain.
1614 */
7051b88a 1615void dev_close(struct net_device *dev)
bd380811 1616{
e14a5993
ED
1617 if (dev->flags & IFF_UP) {
1618 LIST_HEAD(single);
1da177e4 1619
5cde2829 1620 list_add(&dev->close_list, &single);
99c4a26a 1621 dev_close_many(&single, true);
e14a5993
ED
1622 list_del(&single);
1623 }
1da177e4 1624}
d1b19dff 1625EXPORT_SYMBOL(dev_close);
1da177e4
LT
1626
1627
0187bdfb
BH
1628/**
1629 * dev_disable_lro - disable Large Receive Offload on a device
1630 * @dev: device
1631 *
1632 * Disable Large Receive Offload (LRO) on a net device. Must be
1633 * called under RTNL. This is needed if received packets may be
1634 * forwarded to another interface.
1635 */
1636void dev_disable_lro(struct net_device *dev)
1637{
fbe168ba
MK
1638 struct net_device *lower_dev;
1639 struct list_head *iter;
529d0489 1640
bc5787c6
MM
1641 dev->wanted_features &= ~NETIF_F_LRO;
1642 netdev_update_features(dev);
27660515 1643
22d5969f
MM
1644 if (unlikely(dev->features & NETIF_F_LRO))
1645 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1646
1647 netdev_for_each_lower_dev(dev, lower_dev, iter)
1648 dev_disable_lro(lower_dev);
0187bdfb
BH
1649}
1650EXPORT_SYMBOL(dev_disable_lro);
1651
56f5aa77
MC
1652/**
1653 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1654 * @dev: device
1655 *
1656 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1657 * called under RTNL. This is needed if Generic XDP is installed on
1658 * the device.
1659 */
1660static void dev_disable_gro_hw(struct net_device *dev)
1661{
1662 dev->wanted_features &= ~NETIF_F_GRO_HW;
1663 netdev_update_features(dev);
1664
1665 if (unlikely(dev->features & NETIF_F_GRO_HW))
1666 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1667}
1668
ede2762d
KT
1669const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1670{
1671#define N(val) \
1672 case NETDEV_##val: \
1673 return "NETDEV_" __stringify(val);
1674 switch (cmd) {
1675 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1676 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1677 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1678 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1679 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1680 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1681 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1682 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1683 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1684 N(PRE_CHANGEADDR)
3f5ecd8a 1685 }
ede2762d
KT
1686#undef N
1687 return "UNKNOWN_NETDEV_EVENT";
1688}
1689EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1690
351638e7
JP
1691static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1692 struct net_device *dev)
1693{
51d0c047
DA
1694 struct netdev_notifier_info info = {
1695 .dev = dev,
1696 };
351638e7 1697
351638e7
JP
1698 return nb->notifier_call(nb, val, &info);
1699}
0187bdfb 1700
afa0df59
JP
1701static int call_netdevice_register_notifiers(struct notifier_block *nb,
1702 struct net_device *dev)
1703{
1704 int err;
1705
1706 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1707 err = notifier_to_errno(err);
1708 if (err)
1709 return err;
1710
1711 if (!(dev->flags & IFF_UP))
1712 return 0;
1713
1714 call_netdevice_notifier(nb, NETDEV_UP, dev);
1715 return 0;
1716}
1717
1718static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1719 struct net_device *dev)
1720{
1721 if (dev->flags & IFF_UP) {
1722 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723 dev);
1724 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725 }
1726 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727}
1728
1729static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1730 struct net *net)
1731{
1732 struct net_device *dev;
1733 int err;
1734
1735 for_each_netdev(net, dev) {
1736 err = call_netdevice_register_notifiers(nb, dev);
1737 if (err)
1738 goto rollback;
1739 }
1740 return 0;
1741
1742rollback:
1743 for_each_netdev_continue_reverse(net, dev)
1744 call_netdevice_unregister_notifiers(nb, dev);
1745 return err;
1746}
1747
1748static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1749 struct net *net)
1750{
1751 struct net_device *dev;
1752
1753 for_each_netdev(net, dev)
1754 call_netdevice_unregister_notifiers(nb, dev);
1755}
1756
881d966b
EB
1757static int dev_boot_phase = 1;
1758
1da177e4 1759/**
722c9a0c 1760 * register_netdevice_notifier - register a network notifier block
1761 * @nb: notifier
1da177e4 1762 *
722c9a0c 1763 * Register a notifier to be called when network device events occur.
1764 * The notifier passed is linked into the kernel structures and must
1765 * not be reused until it has been unregistered. A negative errno code
1766 * is returned on a failure.
1da177e4 1767 *
722c9a0c 1768 * When registered all registration and up events are replayed
1769 * to the new notifier to allow device to have a race free
1770 * view of the network device list.
1da177e4
LT
1771 */
1772
1773int register_netdevice_notifier(struct notifier_block *nb)
1774{
881d966b 1775 struct net *net;
1da177e4
LT
1776 int err;
1777
328fbe74
KT
1778 /* Close race with setup_net() and cleanup_net() */
1779 down_write(&pernet_ops_rwsem);
1da177e4 1780 rtnl_lock();
f07d5b94 1781 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1782 if (err)
1783 goto unlock;
881d966b
EB
1784 if (dev_boot_phase)
1785 goto unlock;
1786 for_each_net(net) {
afa0df59
JP
1787 err = call_netdevice_register_net_notifiers(nb, net);
1788 if (err)
1789 goto rollback;
1da177e4 1790 }
fcc5a03a
HX
1791
1792unlock:
1da177e4 1793 rtnl_unlock();
328fbe74 1794 up_write(&pernet_ops_rwsem);
1da177e4 1795 return err;
fcc5a03a
HX
1796
1797rollback:
afa0df59
JP
1798 for_each_net_continue_reverse(net)
1799 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1800
1801 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1802 goto unlock;
1da177e4 1803}
d1b19dff 1804EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1805
1806/**
722c9a0c 1807 * unregister_netdevice_notifier - unregister a network notifier block
1808 * @nb: notifier
1da177e4 1809 *
722c9a0c 1810 * Unregister a notifier previously registered by
1811 * register_netdevice_notifier(). The notifier is unlinked into the
1812 * kernel structures and may then be reused. A negative errno code
1813 * is returned on a failure.
7d3d43da 1814 *
722c9a0c 1815 * After unregistering unregister and down device events are synthesized
1816 * for all devices on the device list to the removed notifier to remove
1817 * the need for special case cleanup code.
1da177e4
LT
1818 */
1819
1820int unregister_netdevice_notifier(struct notifier_block *nb)
1821{
7d3d43da 1822 struct net *net;
9f514950
HX
1823 int err;
1824
328fbe74
KT
1825 /* Close race with setup_net() and cleanup_net() */
1826 down_write(&pernet_ops_rwsem);
9f514950 1827 rtnl_lock();
f07d5b94 1828 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1829 if (err)
1830 goto unlock;
1831
48b3a137
JP
1832 for_each_net(net)
1833 call_netdevice_unregister_net_notifiers(nb, net);
1834
7d3d43da 1835unlock:
9f514950 1836 rtnl_unlock();
328fbe74 1837 up_write(&pernet_ops_rwsem);
9f514950 1838 return err;
1da177e4 1839}
d1b19dff 1840EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1841
1f637703
JP
1842static int __register_netdevice_notifier_net(struct net *net,
1843 struct notifier_block *nb,
1844 bool ignore_call_fail)
1845{
1846 int err;
1847
1848 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1849 if (err)
1850 return err;
1851 if (dev_boot_phase)
1852 return 0;
1853
1854 err = call_netdevice_register_net_notifiers(nb, net);
1855 if (err && !ignore_call_fail)
1856 goto chain_unregister;
1857
1858 return 0;
1859
1860chain_unregister:
1861 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862 return err;
1863}
1864
1865static int __unregister_netdevice_notifier_net(struct net *net,
1866 struct notifier_block *nb)
1867{
1868 int err;
1869
1870 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1871 if (err)
1872 return err;
1873
1874 call_netdevice_unregister_net_notifiers(nb, net);
1875 return 0;
1876}
1877
a30c7b42
JP
1878/**
1879 * register_netdevice_notifier_net - register a per-netns network notifier block
1880 * @net: network namespace
1881 * @nb: notifier
1882 *
1883 * Register a notifier to be called when network device events occur.
1884 * The notifier passed is linked into the kernel structures and must
1885 * not be reused until it has been unregistered. A negative errno code
1886 * is returned on a failure.
1887 *
1888 * When registered all registration and up events are replayed
1889 * to the new notifier to allow device to have a race free
1890 * view of the network device list.
1891 */
1892
1893int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1894{
1895 int err;
1896
1897 rtnl_lock();
1f637703 1898 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1899 rtnl_unlock();
1900 return err;
a30c7b42
JP
1901}
1902EXPORT_SYMBOL(register_netdevice_notifier_net);
1903
1904/**
1905 * unregister_netdevice_notifier_net - unregister a per-netns
1906 * network notifier block
1907 * @net: network namespace
1908 * @nb: notifier
1909 *
1910 * Unregister a notifier previously registered by
1911 * register_netdevice_notifier(). The notifier is unlinked into the
1912 * kernel structures and may then be reused. A negative errno code
1913 * is returned on a failure.
1914 *
1915 * After unregistering unregister and down device events are synthesized
1916 * for all devices on the device list to the removed notifier to remove
1917 * the need for special case cleanup code.
1918 */
1919
1920int unregister_netdevice_notifier_net(struct net *net,
1921 struct notifier_block *nb)
1922{
1923 int err;
1924
1925 rtnl_lock();
1f637703 1926 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1927 rtnl_unlock();
1928 return err;
1929}
1930EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1931
93642e14
JP
1932int register_netdevice_notifier_dev_net(struct net_device *dev,
1933 struct notifier_block *nb,
1934 struct netdev_net_notifier *nn)
1935{
1936 int err;
a30c7b42 1937
93642e14
JP
1938 rtnl_lock();
1939 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940 if (!err) {
1941 nn->nb = nb;
1942 list_add(&nn->list, &dev->net_notifier_list);
1943 }
a30c7b42
JP
1944 rtnl_unlock();
1945 return err;
1946}
93642e14
JP
1947EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948
1949int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950 struct notifier_block *nb,
1951 struct netdev_net_notifier *nn)
1952{
1953 int err;
1954
1955 rtnl_lock();
1956 list_del(&nn->list);
1957 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958 rtnl_unlock();
1959 return err;
1960}
1961EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962
1963static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964 struct net *net)
1965{
1966 struct netdev_net_notifier *nn;
1967
1968 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1969 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1970 __register_netdevice_notifier_net(net, nn->nb, true);
1971 }
1972}
a30c7b42 1973
351638e7
JP
1974/**
1975 * call_netdevice_notifiers_info - call all network notifier blocks
1976 * @val: value passed unmodified to notifier function
351638e7
JP
1977 * @info: notifier information data
1978 *
1979 * Call all network notifier blocks. Parameters and return value
1980 * are as for raw_notifier_call_chain().
1981 */
1982
1d143d9f 1983static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1984 struct netdev_notifier_info *info)
351638e7 1985{
a30c7b42
JP
1986 struct net *net = dev_net(info->dev);
1987 int ret;
1988
351638e7 1989 ASSERT_RTNL();
a30c7b42
JP
1990
1991 /* Run per-netns notifier block chain first, then run the global one.
1992 * Hopefully, one day, the global one is going to be removed after
1993 * all notifier block registrators get converted to be per-netns.
1994 */
1995 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1996 if (ret & NOTIFY_STOP_MASK)
1997 return ret;
351638e7
JP
1998 return raw_notifier_call_chain(&netdev_chain, val, info);
1999}
351638e7 2000
26372605
PM
2001static int call_netdevice_notifiers_extack(unsigned long val,
2002 struct net_device *dev,
2003 struct netlink_ext_ack *extack)
2004{
2005 struct netdev_notifier_info info = {
2006 .dev = dev,
2007 .extack = extack,
2008 };
2009
2010 return call_netdevice_notifiers_info(val, &info);
2011}
2012
1da177e4
LT
2013/**
2014 * call_netdevice_notifiers - call all network notifier blocks
2015 * @val: value passed unmodified to notifier function
c4ea43c5 2016 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
2017 *
2018 * Call all network notifier blocks. Parameters and return value
f07d5b94 2019 * are as for raw_notifier_call_chain().
1da177e4
LT
2020 */
2021
ad7379d4 2022int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 2023{
26372605 2024 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 2025}
edf947f1 2026EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 2027
af7d6cce
SD
2028/**
2029 * call_netdevice_notifiers_mtu - call all network notifier blocks
2030 * @val: value passed unmodified to notifier function
2031 * @dev: net_device pointer passed unmodified to notifier function
2032 * @arg: additional u32 argument passed to the notifier function
2033 *
2034 * Call all network notifier blocks. Parameters and return value
2035 * are as for raw_notifier_call_chain().
2036 */
2037static int call_netdevice_notifiers_mtu(unsigned long val,
2038 struct net_device *dev, u32 arg)
2039{
2040 struct netdev_notifier_info_ext info = {
2041 .info.dev = dev,
2042 .ext.mtu = arg,
2043 };
2044
2045 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2046
2047 return call_netdevice_notifiers_info(val, &info.info);
2048}
2049
1cf51900 2050#ifdef CONFIG_NET_INGRESS
aabf6772 2051static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2052
2053void net_inc_ingress_queue(void)
2054{
aabf6772 2055 static_branch_inc(&ingress_needed_key);
4577139b
DB
2056}
2057EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2058
2059void net_dec_ingress_queue(void)
2060{
aabf6772 2061 static_branch_dec(&ingress_needed_key);
4577139b
DB
2062}
2063EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2064#endif
2065
1f211a1b 2066#ifdef CONFIG_NET_EGRESS
aabf6772 2067static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2068
2069void net_inc_egress_queue(void)
2070{
aabf6772 2071 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2072}
2073EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2074
2075void net_dec_egress_queue(void)
2076{
aabf6772 2077 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2078}
2079EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2080#endif
2081
39e83922 2082static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2083#ifdef CONFIG_JUMP_LABEL
b90e5794 2084static atomic_t netstamp_needed_deferred;
13baa00a 2085static atomic_t netstamp_wanted;
5fa8bbda 2086static void netstamp_clear(struct work_struct *work)
1da177e4 2087{
b90e5794 2088 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2089 int wanted;
b90e5794 2090
13baa00a
ED
2091 wanted = atomic_add_return(deferred, &netstamp_wanted);
2092 if (wanted > 0)
39e83922 2093 static_branch_enable(&netstamp_needed_key);
13baa00a 2094 else
39e83922 2095 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2096}
2097static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2098#endif
5fa8bbda
ED
2099
2100void net_enable_timestamp(void)
2101{
e9666d10 2102#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2103 int wanted;
2104
2105 while (1) {
2106 wanted = atomic_read(&netstamp_wanted);
2107 if (wanted <= 0)
2108 break;
2109 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2110 return;
2111 }
2112 atomic_inc(&netstamp_needed_deferred);
2113 schedule_work(&netstamp_work);
2114#else
39e83922 2115 static_branch_inc(&netstamp_needed_key);
13baa00a 2116#endif
1da177e4 2117}
d1b19dff 2118EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2119
2120void net_disable_timestamp(void)
2121{
e9666d10 2122#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2123 int wanted;
2124
2125 while (1) {
2126 wanted = atomic_read(&netstamp_wanted);
2127 if (wanted <= 1)
2128 break;
2129 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2130 return;
2131 }
2132 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2133 schedule_work(&netstamp_work);
2134#else
39e83922 2135 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2136#endif
1da177e4 2137}
d1b19dff 2138EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2139
3b098e2d 2140static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2141{
2456e855 2142 skb->tstamp = 0;
39e83922 2143 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2144 __net_timestamp(skb);
1da177e4
LT
2145}
2146
39e83922
DB
2147#define net_timestamp_check(COND, SKB) \
2148 if (static_branch_unlikely(&netstamp_needed_key)) { \
2149 if ((COND) && !(SKB)->tstamp) \
2150 __net_timestamp(SKB); \
2151 } \
3b098e2d 2152
f4b05d27 2153bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0 2154{
5f7d5728 2155 return __is_skb_forwardable(dev, skb, true);
79b569f0 2156}
1ee481fb 2157EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2158
5f7d5728
JDB
2159static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2160 bool check_mtu)
a0265d28 2161{
5f7d5728 2162 int ret = ____dev_forward_skb(dev, skb, check_mtu);
a0265d28 2163
4e3264d2
MKL
2164 if (likely(!ret)) {
2165 skb->protocol = eth_type_trans(skb, dev);
2166 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2167 }
a0265d28 2168
4e3264d2 2169 return ret;
a0265d28 2170}
5f7d5728
JDB
2171
2172int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2173{
2174 return __dev_forward_skb2(dev, skb, true);
2175}
a0265d28
HX
2176EXPORT_SYMBOL_GPL(__dev_forward_skb);
2177
44540960
AB
2178/**
2179 * dev_forward_skb - loopback an skb to another netif
2180 *
2181 * @dev: destination network device
2182 * @skb: buffer to forward
2183 *
2184 * return values:
2185 * NET_RX_SUCCESS (no congestion)
6ec82562 2186 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2187 *
2188 * dev_forward_skb can be used for injecting an skb from the
2189 * start_xmit function of one device into the receive queue
2190 * of another device.
2191 *
2192 * The receiving device may be in another namespace, so
2193 * we have to clear all information in the skb that could
2194 * impact namespace isolation.
2195 */
2196int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2197{
a0265d28 2198 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2199}
2200EXPORT_SYMBOL_GPL(dev_forward_skb);
2201
5f7d5728
JDB
2202int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2203{
2204 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2205}
2206
71d9dec2
CG
2207static inline int deliver_skb(struct sk_buff *skb,
2208 struct packet_type *pt_prev,
2209 struct net_device *orig_dev)
2210{
1f8b977a 2211 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2212 return -ENOMEM;
63354797 2213 refcount_inc(&skb->users);
71d9dec2
CG
2214 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2215}
2216
7866a621
SN
2217static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2218 struct packet_type **pt,
fbcb2170
JP
2219 struct net_device *orig_dev,
2220 __be16 type,
7866a621
SN
2221 struct list_head *ptype_list)
2222{
2223 struct packet_type *ptype, *pt_prev = *pt;
2224
2225 list_for_each_entry_rcu(ptype, ptype_list, list) {
2226 if (ptype->type != type)
2227 continue;
2228 if (pt_prev)
fbcb2170 2229 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2230 pt_prev = ptype;
2231 }
2232 *pt = pt_prev;
2233}
2234
c0de08d0
EL
2235static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2236{
a3d744e9 2237 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2238 return false;
2239
2240 if (ptype->id_match)
2241 return ptype->id_match(ptype, skb->sk);
2242 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2243 return true;
2244
2245 return false;
2246}
2247
9f9a742d
MR
2248/**
2249 * dev_nit_active - return true if any network interface taps are in use
2250 *
2251 * @dev: network device to check for the presence of taps
2252 */
2253bool dev_nit_active(struct net_device *dev)
2254{
2255 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2256}
2257EXPORT_SYMBOL_GPL(dev_nit_active);
2258
1da177e4
LT
2259/*
2260 * Support routine. Sends outgoing frames to any network
2261 * taps currently in use.
2262 */
2263
74b20582 2264void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2265{
2266 struct packet_type *ptype;
71d9dec2
CG
2267 struct sk_buff *skb2 = NULL;
2268 struct packet_type *pt_prev = NULL;
7866a621 2269 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2270
1da177e4 2271 rcu_read_lock();
7866a621
SN
2272again:
2273 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2274 if (ptype->ignore_outgoing)
2275 continue;
2276
1da177e4
LT
2277 /* Never send packets back to the socket
2278 * they originated from - MvS (miquels@drinkel.ow.org)
2279 */
7866a621
SN
2280 if (skb_loop_sk(ptype, skb))
2281 continue;
71d9dec2 2282
7866a621
SN
2283 if (pt_prev) {
2284 deliver_skb(skb2, pt_prev, skb->dev);
2285 pt_prev = ptype;
2286 continue;
2287 }
1da177e4 2288
7866a621
SN
2289 /* need to clone skb, done only once */
2290 skb2 = skb_clone(skb, GFP_ATOMIC);
2291 if (!skb2)
2292 goto out_unlock;
70978182 2293
7866a621 2294 net_timestamp_set(skb2);
1da177e4 2295
7866a621
SN
2296 /* skb->nh should be correctly
2297 * set by sender, so that the second statement is
2298 * just protection against buggy protocols.
2299 */
2300 skb_reset_mac_header(skb2);
2301
2302 if (skb_network_header(skb2) < skb2->data ||
2303 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2304 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2305 ntohs(skb2->protocol),
2306 dev->name);
2307 skb_reset_network_header(skb2);
1da177e4 2308 }
7866a621
SN
2309
2310 skb2->transport_header = skb2->network_header;
2311 skb2->pkt_type = PACKET_OUTGOING;
2312 pt_prev = ptype;
2313 }
2314
2315 if (ptype_list == &ptype_all) {
2316 ptype_list = &dev->ptype_all;
2317 goto again;
1da177e4 2318 }
7866a621 2319out_unlock:
581fe0ea
WB
2320 if (pt_prev) {
2321 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2322 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2323 else
2324 kfree_skb(skb2);
2325 }
1da177e4
LT
2326 rcu_read_unlock();
2327}
74b20582 2328EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2329
2c53040f
BH
2330/**
2331 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2332 * @dev: Network device
2333 * @txq: number of queues available
2334 *
2335 * If real_num_tx_queues is changed the tc mappings may no longer be
2336 * valid. To resolve this verify the tc mapping remains valid and if
2337 * not NULL the mapping. With no priorities mapping to this
2338 * offset/count pair it will no longer be used. In the worst case TC0
2339 * is invalid nothing can be done so disable priority mappings. If is
2340 * expected that drivers will fix this mapping if they can before
2341 * calling netif_set_real_num_tx_queues.
2342 */
bb134d22 2343static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2344{
2345 int i;
2346 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347
2348 /* If TC0 is invalidated disable TC mapping */
2349 if (tc->offset + tc->count > txq) {
7b6cd1ce 2350 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2351 dev->num_tc = 0;
2352 return;
2353 }
2354
2355 /* Invalidated prio to tc mappings set to TC0 */
2356 for (i = 1; i < TC_BITMASK + 1; i++) {
2357 int q = netdev_get_prio_tc_map(dev, i);
2358
2359 tc = &dev->tc_to_txq[q];
2360 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2361 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2362 i, q);
4f57c087
JF
2363 netdev_set_prio_tc_map(dev, i, 0);
2364 }
2365 }
2366}
2367
8d059b0f
AD
2368int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2369{
2370 if (dev->num_tc) {
2371 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372 int i;
2373
ffcfe25b 2374 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2375 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2376 if ((txq - tc->offset) < tc->count)
2377 return i;
2378 }
2379
ffcfe25b 2380 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2381 return -1;
2382 }
2383
2384 return 0;
2385}
8a5f2166 2386EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2387
537c00de 2388#ifdef CONFIG_XPS
5da9ace3
VO
2389static struct static_key xps_needed __read_mostly;
2390static struct static_key xps_rxqs_needed __read_mostly;
537c00de
AD
2391static DEFINE_MUTEX(xps_map_mutex);
2392#define xmap_dereference(P) \
2393 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2394
6234f874 2395static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2d05bf01 2396 struct xps_dev_maps *old_maps, int tci, u16 index)
537c00de 2397{
10cdc3f3
AD
2398 struct xps_map *map = NULL;
2399 int pos;
537c00de 2400
10cdc3f3 2401 if (dev_maps)
80d19669 2402 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2403 if (!map)
2404 return false;
537c00de 2405
6234f874
AD
2406 for (pos = map->len; pos--;) {
2407 if (map->queues[pos] != index)
2408 continue;
2409
2410 if (map->len > 1) {
2411 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2412 break;
537c00de 2413 }
6234f874 2414
2d05bf01
AT
2415 if (old_maps)
2416 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
80d19669 2417 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2418 kfree_rcu(map, rcu);
2419 return false;
537c00de
AD
2420 }
2421
6234f874 2422 return true;
10cdc3f3
AD
2423}
2424
6234f874
AD
2425static bool remove_xps_queue_cpu(struct net_device *dev,
2426 struct xps_dev_maps *dev_maps,
2427 int cpu, u16 offset, u16 count)
2428{
255c04a8 2429 int num_tc = dev_maps->num_tc;
184c449f
AD
2430 bool active = false;
2431 int tci;
6234f874 2432
184c449f
AD
2433 for (tci = cpu * num_tc; num_tc--; tci++) {
2434 int i, j;
2435
2436 for (i = count, j = offset; i--; j++) {
2d05bf01 2437 if (!remove_xps_queue(dev_maps, NULL, tci, j))
184c449f
AD
2438 break;
2439 }
2440
2441 active |= i < 0;
6234f874
AD
2442 }
2443
184c449f 2444 return active;
6234f874
AD
2445}
2446
867d0ad4
SD
2447static void reset_xps_maps(struct net_device *dev,
2448 struct xps_dev_maps *dev_maps,
044ab86d 2449 enum xps_map_type type)
867d0ad4 2450{
867d0ad4 2451 static_key_slow_dec_cpuslocked(&xps_needed);
044ab86d
AT
2452 if (type == XPS_RXQS)
2453 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2454
2455 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2456
867d0ad4
SD
2457 kfree_rcu(dev_maps, rcu);
2458}
2459
044ab86d
AT
2460static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2461 u16 offset, u16 count)
80d19669 2462{
044ab86d 2463 struct xps_dev_maps *dev_maps;
80d19669
AN
2464 bool active = false;
2465 int i, j;
2466
044ab86d
AT
2467 dev_maps = xmap_dereference(dev->xps_maps[type]);
2468 if (!dev_maps)
2469 return;
2470
6f36158e
AT
2471 for (j = 0; j < dev_maps->nr_ids; j++)
2472 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
867d0ad4 2473 if (!active)
044ab86d 2474 reset_xps_maps(dev, dev_maps, type);
80d19669 2475
044ab86d 2476 if (type == XPS_CPUS) {
6f36158e 2477 for (i = offset + (count - 1); count--; i--)
f28c020f 2478 netdev_queue_numa_node_write(
6f36158e 2479 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
80d19669
AN
2480 }
2481}
2482
6234f874
AD
2483static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2484 u16 count)
10cdc3f3 2485{
04157469
AN
2486 if (!static_key_false(&xps_needed))
2487 return;
10cdc3f3 2488
4d99f660 2489 cpus_read_lock();
04157469 2490 mutex_lock(&xps_map_mutex);
10cdc3f3 2491
044ab86d
AT
2492 if (static_key_false(&xps_rxqs_needed))
2493 clean_xps_maps(dev, XPS_RXQS, offset, count);
80d19669 2494
044ab86d 2495 clean_xps_maps(dev, XPS_CPUS, offset, count);
024e9679 2496
537c00de 2497 mutex_unlock(&xps_map_mutex);
4d99f660 2498 cpus_read_unlock();
537c00de
AD
2499}
2500
6234f874
AD
2501static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2502{
2503 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2504}
2505
80d19669
AN
2506static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2507 u16 index, bool is_rxqs_map)
01c5f864
AD
2508{
2509 struct xps_map *new_map;
2510 int alloc_len = XPS_MIN_MAP_ALLOC;
2511 int i, pos;
2512
2513 for (pos = 0; map && pos < map->len; pos++) {
2514 if (map->queues[pos] != index)
2515 continue;
2516 return map;
2517 }
2518
80d19669 2519 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2520 if (map) {
2521 if (pos < map->alloc_len)
2522 return map;
2523
2524 alloc_len = map->alloc_len * 2;
2525 }
2526
80d19669
AN
2527 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2528 * map
2529 */
2530 if (is_rxqs_map)
2531 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2532 else
2533 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2534 cpu_to_node(attr_index));
01c5f864
AD
2535 if (!new_map)
2536 return NULL;
2537
2538 for (i = 0; i < pos; i++)
2539 new_map->queues[i] = map->queues[i];
2540 new_map->alloc_len = alloc_len;
2541 new_map->len = pos;
2542
2543 return new_map;
2544}
2545
402fbb99
AT
2546/* Copy xps maps at a given index */
2547static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2548 struct xps_dev_maps *new_dev_maps, int index,
2549 int tc, bool skip_tc)
2550{
2551 int i, tci = index * dev_maps->num_tc;
2552 struct xps_map *map;
2553
2554 /* copy maps belonging to foreign traffic classes */
2555 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2556 if (i == tc && skip_tc)
2557 continue;
2558
2559 /* fill in the new device map from the old device map */
2560 map = xmap_dereference(dev_maps->attr_map[tci]);
2561 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2562 }
2563}
2564
4d99f660 2565/* Must be called under cpus_read_lock */
80d19669 2566int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
044ab86d 2567 u16 index, enum xps_map_type type)
537c00de 2568{
2d05bf01 2569 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
6f36158e 2570 const unsigned long *online_mask = NULL;
255c04a8 2571 bool active = false, copy = false;
80d19669 2572 int i, j, tci, numa_node_id = -2;
184c449f 2573 int maps_sz, num_tc = 1, tc = 0;
537c00de 2574 struct xps_map *map, *new_map;
80d19669 2575 unsigned int nr_ids;
537c00de 2576
184c449f 2577 if (dev->num_tc) {
ffcfe25b 2578 /* Do not allow XPS on subordinate device directly */
184c449f 2579 num_tc = dev->num_tc;
ffcfe25b
AD
2580 if (num_tc < 0)
2581 return -EINVAL;
2582
2583 /* If queue belongs to subordinate dev use its map */
2584 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2585
184c449f
AD
2586 tc = netdev_txq_to_tc(dev, index);
2587 if (tc < 0)
2588 return -EINVAL;
2589 }
2590
537c00de 2591 mutex_lock(&xps_map_mutex);
044ab86d
AT
2592
2593 dev_maps = xmap_dereference(dev->xps_maps[type]);
2594 if (type == XPS_RXQS) {
80d19669 2595 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
80d19669
AN
2596 nr_ids = dev->num_rx_queues;
2597 } else {
2598 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
6f36158e 2599 if (num_possible_cpus() > 1)
80d19669 2600 online_mask = cpumask_bits(cpu_online_mask);
80d19669
AN
2601 nr_ids = nr_cpu_ids;
2602 }
537c00de 2603
80d19669
AN
2604 if (maps_sz < L1_CACHE_BYTES)
2605 maps_sz = L1_CACHE_BYTES;
537c00de 2606
255c04a8 2607 /* The old dev_maps could be larger or smaller than the one we're
5478fcd0
AT
2608 * setting up now, as dev->num_tc or nr_ids could have been updated in
2609 * between. We could try to be smart, but let's be safe instead and only
2610 * copy foreign traffic classes if the two map sizes match.
255c04a8 2611 */
5478fcd0
AT
2612 if (dev_maps &&
2613 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
255c04a8
AT
2614 copy = true;
2615
01c5f864 2616 /* allocate memory for queue storage */
80d19669
AN
2617 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2618 j < nr_ids;) {
2bb60cb9 2619 if (!new_dev_maps) {
255c04a8
AT
2620 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2621 if (!new_dev_maps) {
2622 mutex_unlock(&xps_map_mutex);
2623 return -ENOMEM;
2624 }
2625
5478fcd0 2626 new_dev_maps->nr_ids = nr_ids;
255c04a8 2627 new_dev_maps->num_tc = num_tc;
2bb60cb9 2628 }
01c5f864 2629
80d19669 2630 tci = j * num_tc + tc;
255c04a8 2631 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
01c5f864 2632
044ab86d 2633 map = expand_xps_map(map, j, index, type == XPS_RXQS);
01c5f864
AD
2634 if (!map)
2635 goto error;
2636
80d19669 2637 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2638 }
2639
2640 if (!new_dev_maps)
2641 goto out_no_new_maps;
2642
867d0ad4
SD
2643 if (!dev_maps) {
2644 /* Increment static keys at most once per type */
2645 static_key_slow_inc_cpuslocked(&xps_needed);
044ab86d 2646 if (type == XPS_RXQS)
867d0ad4
SD
2647 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2648 }
04157469 2649
6f36158e 2650 for (j = 0; j < nr_ids; j++) {
402fbb99 2651 bool skip_tc = false;
184c449f 2652
80d19669 2653 tci = j * num_tc + tc;
80d19669
AN
2654 if (netif_attr_test_mask(j, mask, nr_ids) &&
2655 netif_attr_test_online(j, online_mask, nr_ids)) {
2656 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2657 int pos = 0;
2658
402fbb99
AT
2659 skip_tc = true;
2660
80d19669 2661 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2662 while ((pos < map->len) && (map->queues[pos] != index))
2663 pos++;
2664
2665 if (pos == map->len)
2666 map->queues[map->len++] = index;
537c00de 2667#ifdef CONFIG_NUMA
044ab86d 2668 if (type == XPS_CPUS) {
80d19669
AN
2669 if (numa_node_id == -2)
2670 numa_node_id = cpu_to_node(j);
2671 else if (numa_node_id != cpu_to_node(j))
2672 numa_node_id = -1;
2673 }
537c00de 2674#endif
537c00de 2675 }
01c5f864 2676
402fbb99
AT
2677 if (copy)
2678 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2679 skip_tc);
537c00de
AD
2680 }
2681
044ab86d 2682 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
01c5f864 2683
537c00de 2684 /* Cleanup old maps */
184c449f
AD
2685 if (!dev_maps)
2686 goto out_no_old_maps;
2687
6f36158e 2688 for (j = 0; j < dev_maps->nr_ids; j++) {
255c04a8 2689 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
80d19669 2690 map = xmap_dereference(dev_maps->attr_map[tci]);
255c04a8
AT
2691 if (!map)
2692 continue;
2693
2694 if (copy) {
2695 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2696 if (map == new_map)
2697 continue;
2698 }
2699
75b2758a 2700 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
255c04a8 2701 kfree_rcu(map, rcu);
01c5f864 2702 }
537c00de
AD
2703 }
2704
2d05bf01 2705 old_dev_maps = dev_maps;
184c449f
AD
2706
2707out_no_old_maps:
01c5f864
AD
2708 dev_maps = new_dev_maps;
2709 active = true;
537c00de 2710
01c5f864 2711out_no_new_maps:
044ab86d 2712 if (type == XPS_CPUS)
80d19669
AN
2713 /* update Tx queue numa node */
2714 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2715 (numa_node_id >= 0) ?
2716 numa_node_id : NUMA_NO_NODE);
537c00de 2717
01c5f864
AD
2718 if (!dev_maps)
2719 goto out_no_maps;
2720
80d19669 2721 /* removes tx-queue from unused CPUs/rx-queues */
6f36158e 2722 for (j = 0; j < dev_maps->nr_ids; j++) {
132f743b
AT
2723 tci = j * dev_maps->num_tc;
2724
2725 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2726 if (i == tc &&
2727 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2728 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2729 continue;
2730
2d05bf01
AT
2731 active |= remove_xps_queue(dev_maps,
2732 copy ? old_dev_maps : NULL,
2733 tci, index);
132f743b 2734 }
01c5f864
AD
2735 }
2736
2d05bf01
AT
2737 if (old_dev_maps)
2738 kfree_rcu(old_dev_maps, rcu);
2739
01c5f864 2740 /* free map if not active */
867d0ad4 2741 if (!active)
044ab86d 2742 reset_xps_maps(dev, dev_maps, type);
01c5f864
AD
2743
2744out_no_maps:
537c00de
AD
2745 mutex_unlock(&xps_map_mutex);
2746
2747 return 0;
2748error:
01c5f864 2749 /* remove any maps that we added */
6f36158e 2750 for (j = 0; j < nr_ids; j++) {
80d19669
AN
2751 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2752 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
255c04a8 2753 map = copy ?
80d19669 2754 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2755 NULL;
2756 if (new_map && new_map != map)
2757 kfree(new_map);
2758 }
01c5f864
AD
2759 }
2760
537c00de
AD
2761 mutex_unlock(&xps_map_mutex);
2762
537c00de
AD
2763 kfree(new_dev_maps);
2764 return -ENOMEM;
2765}
4d99f660 2766EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2767
2768int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2769 u16 index)
2770{
4d99f660
AV
2771 int ret;
2772
2773 cpus_read_lock();
044ab86d 2774 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
4d99f660
AV
2775 cpus_read_unlock();
2776
2777 return ret;
80d19669 2778}
537c00de
AD
2779EXPORT_SYMBOL(netif_set_xps_queue);
2780
2781#endif
ffcfe25b
AD
2782static void netdev_unbind_all_sb_channels(struct net_device *dev)
2783{
2784 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2785
2786 /* Unbind any subordinate channels */
2787 while (txq-- != &dev->_tx[0]) {
2788 if (txq->sb_dev)
2789 netdev_unbind_sb_channel(dev, txq->sb_dev);
2790 }
2791}
2792
9cf1f6a8
AD
2793void netdev_reset_tc(struct net_device *dev)
2794{
6234f874
AD
2795#ifdef CONFIG_XPS
2796 netif_reset_xps_queues_gt(dev, 0);
2797#endif
ffcfe25b
AD
2798 netdev_unbind_all_sb_channels(dev);
2799
2800 /* Reset TC configuration of device */
9cf1f6a8
AD
2801 dev->num_tc = 0;
2802 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2803 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2804}
2805EXPORT_SYMBOL(netdev_reset_tc);
2806
2807int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2808{
2809 if (tc >= dev->num_tc)
2810 return -EINVAL;
2811
6234f874
AD
2812#ifdef CONFIG_XPS
2813 netif_reset_xps_queues(dev, offset, count);
2814#endif
9cf1f6a8
AD
2815 dev->tc_to_txq[tc].count = count;
2816 dev->tc_to_txq[tc].offset = offset;
2817 return 0;
2818}
2819EXPORT_SYMBOL(netdev_set_tc_queue);
2820
2821int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2822{
2823 if (num_tc > TC_MAX_QUEUE)
2824 return -EINVAL;
2825
6234f874
AD
2826#ifdef CONFIG_XPS
2827 netif_reset_xps_queues_gt(dev, 0);
2828#endif
ffcfe25b
AD
2829 netdev_unbind_all_sb_channels(dev);
2830
9cf1f6a8
AD
2831 dev->num_tc = num_tc;
2832 return 0;
2833}
2834EXPORT_SYMBOL(netdev_set_num_tc);
2835
ffcfe25b
AD
2836void netdev_unbind_sb_channel(struct net_device *dev,
2837 struct net_device *sb_dev)
2838{
2839 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2840
2841#ifdef CONFIG_XPS
2842 netif_reset_xps_queues_gt(sb_dev, 0);
2843#endif
2844 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2845 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2846
2847 while (txq-- != &dev->_tx[0]) {
2848 if (txq->sb_dev == sb_dev)
2849 txq->sb_dev = NULL;
2850 }
2851}
2852EXPORT_SYMBOL(netdev_unbind_sb_channel);
2853
2854int netdev_bind_sb_channel_queue(struct net_device *dev,
2855 struct net_device *sb_dev,
2856 u8 tc, u16 count, u16 offset)
2857{
2858 /* Make certain the sb_dev and dev are already configured */
2859 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2860 return -EINVAL;
2861
2862 /* We cannot hand out queues we don't have */
2863 if ((offset + count) > dev->real_num_tx_queues)
2864 return -EINVAL;
2865
2866 /* Record the mapping */
2867 sb_dev->tc_to_txq[tc].count = count;
2868 sb_dev->tc_to_txq[tc].offset = offset;
2869
2870 /* Provide a way for Tx queue to find the tc_to_txq map or
2871 * XPS map for itself.
2872 */
2873 while (count--)
2874 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2875
2876 return 0;
2877}
2878EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2879
2880int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2881{
2882 /* Do not use a multiqueue device to represent a subordinate channel */
2883 if (netif_is_multiqueue(dev))
2884 return -ENODEV;
2885
2886 /* We allow channels 1 - 32767 to be used for subordinate channels.
2887 * Channel 0 is meant to be "native" mode and used only to represent
2888 * the main root device. We allow writing 0 to reset the device back
2889 * to normal mode after being used as a subordinate channel.
2890 */
2891 if (channel > S16_MAX)
2892 return -EINVAL;
2893
2894 dev->num_tc = -channel;
2895
2896 return 0;
2897}
2898EXPORT_SYMBOL(netdev_set_sb_channel);
2899
f0796d5c
JF
2900/*
2901 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2902 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2903 */
e6484930 2904int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2905{
ac5b7019 2906 bool disabling;
1d24eb48
TH
2907 int rc;
2908
ac5b7019
JK
2909 disabling = txq < dev->real_num_tx_queues;
2910
e6484930
TH
2911 if (txq < 1 || txq > dev->num_tx_queues)
2912 return -EINVAL;
f0796d5c 2913
5c56580b
BH
2914 if (dev->reg_state == NETREG_REGISTERED ||
2915 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2916 ASSERT_RTNL();
2917
1d24eb48
TH
2918 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2919 txq);
bf264145
TH
2920 if (rc)
2921 return rc;
2922
4f57c087
JF
2923 if (dev->num_tc)
2924 netif_setup_tc(dev, txq);
2925
ac5b7019
JK
2926 dev->real_num_tx_queues = txq;
2927
2928 if (disabling) {
2929 synchronize_net();
e6484930 2930 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2931#ifdef CONFIG_XPS
2932 netif_reset_xps_queues_gt(dev, txq);
2933#endif
2934 }
ac5b7019
JK
2935 } else {
2936 dev->real_num_tx_queues = txq;
f0796d5c 2937 }
e6484930 2938
e6484930 2939 return 0;
f0796d5c
JF
2940}
2941EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2942
a953be53 2943#ifdef CONFIG_SYSFS
62fe0b40
BH
2944/**
2945 * netif_set_real_num_rx_queues - set actual number of RX queues used
2946 * @dev: Network device
2947 * @rxq: Actual number of RX queues
2948 *
2949 * This must be called either with the rtnl_lock held or before
2950 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2951 * negative error code. If called before registration, it always
2952 * succeeds.
62fe0b40
BH
2953 */
2954int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2955{
2956 int rc;
2957
bd25fa7b
TH
2958 if (rxq < 1 || rxq > dev->num_rx_queues)
2959 return -EINVAL;
2960
62fe0b40
BH
2961 if (dev->reg_state == NETREG_REGISTERED) {
2962 ASSERT_RTNL();
2963
62fe0b40
BH
2964 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2965 rxq);
2966 if (rc)
2967 return rc;
62fe0b40
BH
2968 }
2969
2970 dev->real_num_rx_queues = rxq;
2971 return 0;
2972}
2973EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2974#endif
2975
271e5b7d
JK
2976/**
2977 * netif_set_real_num_queues - set actual number of RX and TX queues used
2978 * @dev: Network device
2979 * @txq: Actual number of TX queues
2980 * @rxq: Actual number of RX queues
2981 *
2982 * Set the real number of both TX and RX queues.
2983 * Does nothing if the number of queues is already correct.
2984 */
2985int netif_set_real_num_queues(struct net_device *dev,
2986 unsigned int txq, unsigned int rxq)
2987{
2988 unsigned int old_rxq = dev->real_num_rx_queues;
2989 int err;
2990
2991 if (txq < 1 || txq > dev->num_tx_queues ||
2992 rxq < 1 || rxq > dev->num_rx_queues)
2993 return -EINVAL;
2994
2995 /* Start from increases, so the error path only does decreases -
2996 * decreases can't fail.
2997 */
2998 if (rxq > dev->real_num_rx_queues) {
2999 err = netif_set_real_num_rx_queues(dev, rxq);
3000 if (err)
3001 return err;
3002 }
3003 if (txq > dev->real_num_tx_queues) {
3004 err = netif_set_real_num_tx_queues(dev, txq);
3005 if (err)
3006 goto undo_rx;
3007 }
3008 if (rxq < dev->real_num_rx_queues)
3009 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3010 if (txq < dev->real_num_tx_queues)
3011 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3012
3013 return 0;
3014undo_rx:
3015 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3016 return err;
3017}
3018EXPORT_SYMBOL(netif_set_real_num_queues);
3019
2c53040f
BH
3020/**
3021 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
3022 *
3023 * This routine should set an upper limit on the number of RSS queues
3024 * used by default by multiqueue devices.
3025 */
a55b138b 3026int netif_get_num_default_rss_queues(void)
16917b87 3027{
40e4e713
HS
3028 return is_kdump_kernel() ?
3029 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
3030}
3031EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3032
3bcb846c 3033static void __netif_reschedule(struct Qdisc *q)
56079431 3034{
def82a1d
JP
3035 struct softnet_data *sd;
3036 unsigned long flags;
56079431 3037
def82a1d 3038 local_irq_save(flags);
903ceff7 3039 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
3040 q->next_sched = NULL;
3041 *sd->output_queue_tailp = q;
3042 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
3043 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3044 local_irq_restore(flags);
3045}
3046
3047void __netif_schedule(struct Qdisc *q)
3048{
3049 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3050 __netif_reschedule(q);
56079431
DV
3051}
3052EXPORT_SYMBOL(__netif_schedule);
3053
e6247027
ED
3054struct dev_kfree_skb_cb {
3055 enum skb_free_reason reason;
3056};
3057
3058static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 3059{
e6247027
ED
3060 return (struct dev_kfree_skb_cb *)skb->cb;
3061}
3062
46e5da40
JF
3063void netif_schedule_queue(struct netdev_queue *txq)
3064{
3065 rcu_read_lock();
5be5515a 3066 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
3067 struct Qdisc *q = rcu_dereference(txq->qdisc);
3068
3069 __netif_schedule(q);
3070 }
3071 rcu_read_unlock();
3072}
3073EXPORT_SYMBOL(netif_schedule_queue);
3074
46e5da40
JF
3075void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3076{
3077 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3078 struct Qdisc *q;
3079
3080 rcu_read_lock();
3081 q = rcu_dereference(dev_queue->qdisc);
3082 __netif_schedule(q);
3083 rcu_read_unlock();
3084 }
3085}
3086EXPORT_SYMBOL(netif_tx_wake_queue);
3087
e6247027 3088void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3089{
e6247027 3090 unsigned long flags;
56079431 3091
9899886d
MJ
3092 if (unlikely(!skb))
3093 return;
3094
63354797 3095 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3096 smp_rmb();
63354797
RE
3097 refcount_set(&skb->users, 0);
3098 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3099 return;
bea3348e 3100 }
e6247027
ED
3101 get_kfree_skb_cb(skb)->reason = reason;
3102 local_irq_save(flags);
3103 skb->next = __this_cpu_read(softnet_data.completion_queue);
3104 __this_cpu_write(softnet_data.completion_queue, skb);
3105 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3106 local_irq_restore(flags);
56079431 3107}
e6247027 3108EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3109
e6247027 3110void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3111{
3112 if (in_irq() || irqs_disabled())
e6247027 3113 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3114 else
3115 dev_kfree_skb(skb);
3116}
e6247027 3117EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3118
3119
bea3348e
SH
3120/**
3121 * netif_device_detach - mark device as removed
3122 * @dev: network device
3123 *
3124 * Mark device as removed from system and therefore no longer available.
3125 */
56079431
DV
3126void netif_device_detach(struct net_device *dev)
3127{
3128 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3129 netif_running(dev)) {
d543103a 3130 netif_tx_stop_all_queues(dev);
56079431
DV
3131 }
3132}
3133EXPORT_SYMBOL(netif_device_detach);
3134
bea3348e
SH
3135/**
3136 * netif_device_attach - mark device as attached
3137 * @dev: network device
3138 *
3139 * Mark device as attached from system and restart if needed.
3140 */
56079431
DV
3141void netif_device_attach(struct net_device *dev)
3142{
3143 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3144 netif_running(dev)) {
d543103a 3145 netif_tx_wake_all_queues(dev);
4ec93edb 3146 __netdev_watchdog_up(dev);
56079431
DV
3147 }
3148}
3149EXPORT_SYMBOL(netif_device_attach);
3150
5605c762
JP
3151/*
3152 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3153 * to be used as a distribution range.
3154 */
eadec877
AD
3155static u16 skb_tx_hash(const struct net_device *dev,
3156 const struct net_device *sb_dev,
3157 struct sk_buff *skb)
5605c762
JP
3158{
3159 u32 hash;
3160 u16 qoffset = 0;
1b837d48 3161 u16 qcount = dev->real_num_tx_queues;
5605c762 3162
eadec877
AD
3163 if (dev->num_tc) {
3164 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3165
3166 qoffset = sb_dev->tc_to_txq[tc].offset;
3167 qcount = sb_dev->tc_to_txq[tc].count;
3168 }
3169
5605c762
JP
3170 if (skb_rx_queue_recorded(skb)) {
3171 hash = skb_get_rx_queue(skb);
6e11d157
AN
3172 if (hash >= qoffset)
3173 hash -= qoffset;
1b837d48
AD
3174 while (unlikely(hash >= qcount))
3175 hash -= qcount;
eadec877 3176 return hash + qoffset;
5605c762
JP
3177 }
3178
3179 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3180}
5605c762 3181
36c92474
BH
3182static void skb_warn_bad_offload(const struct sk_buff *skb)
3183{
84d15ae5 3184 static const netdev_features_t null_features;
36c92474 3185 struct net_device *dev = skb->dev;
88ad4175 3186 const char *name = "";
36c92474 3187
c846ad9b
BG
3188 if (!net_ratelimit())
3189 return;
3190
88ad4175
BM
3191 if (dev) {
3192 if (dev->dev.parent)
3193 name = dev_driver_string(dev->dev.parent);
3194 else
3195 name = netdev_name(dev);
3196 }
6413139d
WB
3197 skb_dump(KERN_WARNING, skb, false);
3198 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3199 name, dev ? &dev->features : &null_features,
6413139d 3200 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3201}
3202
1da177e4
LT
3203/*
3204 * Invalidate hardware checksum when packet is to be mangled, and
3205 * complete checksum manually on outgoing path.
3206 */
84fa7933 3207int skb_checksum_help(struct sk_buff *skb)
1da177e4 3208{
d3bc23e7 3209 __wsum csum;
663ead3b 3210 int ret = 0, offset;
1da177e4 3211
84fa7933 3212 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3213 goto out_set_summed;
3214
3aefd7d6 3215 if (unlikely(skb_is_gso(skb))) {
36c92474
BH
3216 skb_warn_bad_offload(skb);
3217 return -EINVAL;
1da177e4
LT
3218 }
3219
cef401de
ED
3220 /* Before computing a checksum, we should make sure no frag could
3221 * be modified by an external entity : checksum could be wrong.
3222 */
3223 if (skb_has_shared_frag(skb)) {
3224 ret = __skb_linearize(skb);
3225 if (ret)
3226 goto out;
3227 }
3228
55508d60 3229 offset = skb_checksum_start_offset(skb);
a030847e
HX
3230 BUG_ON(offset >= skb_headlen(skb));
3231 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3232
3233 offset += skb->csum_offset;
3234 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3235
8211fbfa
HK
3236 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3237 if (ret)
3238 goto out;
1da177e4 3239
4f2e4ad5 3240 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3241out_set_summed:
1da177e4 3242 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3243out:
1da177e4
LT
3244 return ret;
3245}
d1b19dff 3246EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3247
b72b5bf6
DC
3248int skb_crc32c_csum_help(struct sk_buff *skb)
3249{
3250 __le32 crc32c_csum;
3251 int ret = 0, offset, start;
3252
3253 if (skb->ip_summed != CHECKSUM_PARTIAL)
3254 goto out;
3255
3256 if (unlikely(skb_is_gso(skb)))
3257 goto out;
3258
3259 /* Before computing a checksum, we should make sure no frag could
3260 * be modified by an external entity : checksum could be wrong.
3261 */
3262 if (unlikely(skb_has_shared_frag(skb))) {
3263 ret = __skb_linearize(skb);
3264 if (ret)
3265 goto out;
3266 }
3267 start = skb_checksum_start_offset(skb);
3268 offset = start + offsetof(struct sctphdr, checksum);
3269 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3270 ret = -EINVAL;
3271 goto out;
3272 }
8211fbfa
HK
3273
3274 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3275 if (ret)
3276 goto out;
3277
b72b5bf6
DC
3278 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3279 skb->len - start, ~(__u32)0,
3280 crc32c_csum_stub));
3281 *(__le32 *)(skb->data + offset) = crc32c_csum;
3282 skb->ip_summed = CHECKSUM_NONE;
dba00306 3283 skb->csum_not_inet = 0;
b72b5bf6
DC
3284out:
3285 return ret;
3286}
3287
53d6471c 3288__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3289{
252e3346 3290 __be16 type = skb->protocol;
f6a78bfc 3291
19acc327
PS
3292 /* Tunnel gso handlers can set protocol to ethernet. */
3293 if (type == htons(ETH_P_TEB)) {
3294 struct ethhdr *eth;
3295
3296 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3297 return 0;
3298
1dfe82eb 3299 eth = (struct ethhdr *)skb->data;
19acc327
PS
3300 type = eth->h_proto;
3301 }
3302
d4bcef3f 3303 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3304}
3305
3306/**
3307 * skb_mac_gso_segment - mac layer segmentation handler.
3308 * @skb: buffer to segment
3309 * @features: features for the output path (see dev->features)
3310 */
3311struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3312 netdev_features_t features)
3313{
3314 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3315 struct packet_offload *ptype;
53d6471c
VY
3316 int vlan_depth = skb->mac_len;
3317 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3318
3319 if (unlikely(!type))
3320 return ERR_PTR(-EINVAL);
3321
53d6471c 3322 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3323
3324 rcu_read_lock();
22061d80 3325 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3326 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3327 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3328 break;
3329 }
3330 }
3331 rcu_read_unlock();
3332
98e399f8 3333 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3334
f6a78bfc
HX
3335 return segs;
3336}
05e8ef4a
PS
3337EXPORT_SYMBOL(skb_mac_gso_segment);
3338
3339
3340/* openvswitch calls this on rx path, so we need a different check.
3341 */
3342static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3343{
3344 if (tx_path)
0c19f846
WB
3345 return skb->ip_summed != CHECKSUM_PARTIAL &&
3346 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3347
3348 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3349}
3350
3351/**
3352 * __skb_gso_segment - Perform segmentation on skb.
3353 * @skb: buffer to segment
3354 * @features: features for the output path (see dev->features)
3355 * @tx_path: whether it is called in TX path
3356 *
3357 * This function segments the given skb and returns a list of segments.
3358 *
3359 * It may return NULL if the skb requires no segmentation. This is
3360 * only possible when GSO is used for verifying header integrity.
9207f9d4 3361 *
a08e7fd9 3362 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3363 */
3364struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3365 netdev_features_t features, bool tx_path)
3366{
b2504a5d
ED
3367 struct sk_buff *segs;
3368
05e8ef4a
PS
3369 if (unlikely(skb_needs_check(skb, tx_path))) {
3370 int err;
3371
b2504a5d 3372 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3373 err = skb_cow_head(skb, 0);
3374 if (err < 0)
05e8ef4a
PS
3375 return ERR_PTR(err);
3376 }
3377
802ab55a
AD
3378 /* Only report GSO partial support if it will enable us to
3379 * support segmentation on this frame without needing additional
3380 * work.
3381 */
3382 if (features & NETIF_F_GSO_PARTIAL) {
3383 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3384 struct net_device *dev = skb->dev;
3385
3386 partial_features |= dev->features & dev->gso_partial_features;
3387 if (!skb_gso_ok(skb, features | partial_features))
3388 features &= ~NETIF_F_GSO_PARTIAL;
3389 }
3390
a08e7fd9 3391 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3392 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3393
68c33163 3394 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3395 SKB_GSO_CB(skb)->encap_level = 0;
3396
05e8ef4a
PS
3397 skb_reset_mac_header(skb);
3398 skb_reset_mac_len(skb);
3399
b2504a5d
ED
3400 segs = skb_mac_gso_segment(skb, features);
3401
3a1296a3 3402 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3403 skb_warn_bad_offload(skb);
3404
3405 return segs;
05e8ef4a 3406}
12b0004d 3407EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3408
fb286bb2
HX
3409/* Take action when hardware reception checksum errors are detected. */
3410#ifdef CONFIG_BUG
127d7355
TL
3411static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3412{
3413 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3414 skb_dump(KERN_ERR, skb, true);
3415 dump_stack();
3416}
3417
7fe50ac8 3418void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2 3419{
127d7355 3420 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
fb286bb2
HX
3421}
3422EXPORT_SYMBOL(netdev_rx_csum_fault);
3423#endif
3424
ab74cfeb 3425/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3426static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3427{
3d3a8533 3428#ifdef CONFIG_HIGHMEM
1da177e4 3429 int i;
f4563a75 3430
5acbbd42 3431 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3432 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3433 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3434
ea2ab693 3435 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3436 return 1;
ea2ab693 3437 }
5acbbd42 3438 }
3d3a8533 3439#endif
1da177e4
LT
3440 return 0;
3441}
1da177e4 3442
3b392ddb
SH
3443/* If MPLS offload request, verify we are testing hardware MPLS features
3444 * instead of standard features for the netdev.
3445 */
d0edc7bf 3446#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3447static netdev_features_t net_mpls_features(struct sk_buff *skb,
3448 netdev_features_t features,
3449 __be16 type)
3450{
25cd9ba0 3451 if (eth_p_mpls(type))
3b392ddb
SH
3452 features &= skb->dev->mpls_features;
3453
3454 return features;
3455}
3456#else
3457static netdev_features_t net_mpls_features(struct sk_buff *skb,
3458 netdev_features_t features,
3459 __be16 type)
3460{
3461 return features;
3462}
3463#endif
3464
c8f44aff 3465static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3466 netdev_features_t features)
f01a5236 3467{
3b392ddb
SH
3468 __be16 type;
3469
9fc95f50 3470 type = skb_network_protocol(skb, NULL);
3b392ddb 3471 features = net_mpls_features(skb, features, type);
53d6471c 3472
c0d680e5 3473 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3474 !can_checksum_protocol(features, type)) {
996e8021 3475 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3476 }
7be2c82c
ED
3477 if (illegal_highdma(skb->dev, skb))
3478 features &= ~NETIF_F_SG;
f01a5236
JG
3479
3480 return features;
3481}
3482
e38f3025
TM
3483netdev_features_t passthru_features_check(struct sk_buff *skb,
3484 struct net_device *dev,
3485 netdev_features_t features)
3486{
3487 return features;
3488}
3489EXPORT_SYMBOL(passthru_features_check);
3490
7ce23672 3491static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3492 struct net_device *dev,
3493 netdev_features_t features)
3494{
3495 return vlan_features_check(skb, features);
3496}
3497
cbc53e08
AD
3498static netdev_features_t gso_features_check(const struct sk_buff *skb,
3499 struct net_device *dev,
3500 netdev_features_t features)
3501{
3502 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3503
3504 if (gso_segs > dev->gso_max_segs)
3505 return features & ~NETIF_F_GSO_MASK;
3506
1d155dfd
HK
3507 if (!skb_shinfo(skb)->gso_type) {
3508 skb_warn_bad_offload(skb);
3509 return features & ~NETIF_F_GSO_MASK;
3510 }
3511
802ab55a
AD
3512 /* Support for GSO partial features requires software
3513 * intervention before we can actually process the packets
3514 * so we need to strip support for any partial features now
3515 * and we can pull them back in after we have partially
3516 * segmented the frame.
3517 */
3518 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3519 features &= ~dev->gso_partial_features;
3520
3521 /* Make sure to clear the IPv4 ID mangling feature if the
3522 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3523 */
3524 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3525 struct iphdr *iph = skb->encapsulation ?
3526 inner_ip_hdr(skb) : ip_hdr(skb);
3527
3528 if (!(iph->frag_off & htons(IP_DF)))
3529 features &= ~NETIF_F_TSO_MANGLEID;
3530 }
3531
3532 return features;
3533}
3534
c1e756bf 3535netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3536{
5f35227e 3537 struct net_device *dev = skb->dev;
fcbeb976 3538 netdev_features_t features = dev->features;
58e998c6 3539
cbc53e08
AD
3540 if (skb_is_gso(skb))
3541 features = gso_features_check(skb, dev, features);
30b678d8 3542
5f35227e
JG
3543 /* If encapsulation offload request, verify we are testing
3544 * hardware encapsulation features instead of standard
3545 * features for the netdev
3546 */
3547 if (skb->encapsulation)
3548 features &= dev->hw_enc_features;
3549
f5a7fb88
TM
3550 if (skb_vlan_tagged(skb))
3551 features = netdev_intersect_features(features,
3552 dev->vlan_features |
3553 NETIF_F_HW_VLAN_CTAG_TX |
3554 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3555
5f35227e
JG
3556 if (dev->netdev_ops->ndo_features_check)
3557 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3558 features);
8cb65d00
TM
3559 else
3560 features &= dflt_features_check(skb, dev, features);
5f35227e 3561
c1e756bf 3562 return harmonize_features(skb, features);
58e998c6 3563}
c1e756bf 3564EXPORT_SYMBOL(netif_skb_features);
58e998c6 3565
2ea25513 3566static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3567 struct netdev_queue *txq, bool more)
f6a78bfc 3568{
2ea25513
DM
3569 unsigned int len;
3570 int rc;
00829823 3571
9f9a742d 3572 if (dev_nit_active(dev))
2ea25513 3573 dev_queue_xmit_nit(skb, dev);
fc741216 3574
2ea25513 3575 len = skb->len;
3744741a 3576 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
2ea25513 3577 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3578 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3579 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3580
2ea25513
DM
3581 return rc;
3582}
7b9c6090 3583
8dcda22a
DM
3584struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3585 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3586{
3587 struct sk_buff *skb = first;
3588 int rc = NETDEV_TX_OK;
7b9c6090 3589
7f2e870f
DM
3590 while (skb) {
3591 struct sk_buff *next = skb->next;
fc70fb64 3592
a8305bff 3593 skb_mark_not_on_list(skb);
95f6b3dd 3594 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3595 if (unlikely(!dev_xmit_complete(rc))) {
3596 skb->next = next;
3597 goto out;
3598 }
6afff0ca 3599
7f2e870f 3600 skb = next;
fe60faa5 3601 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3602 rc = NETDEV_TX_BUSY;
3603 break;
9ccb8975 3604 }
7f2e870f 3605 }
9ccb8975 3606
7f2e870f
DM
3607out:
3608 *ret = rc;
3609 return skb;
3610}
b40863c6 3611
1ff0dc94
ED
3612static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3613 netdev_features_t features)
f6a78bfc 3614{
df8a39de 3615 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3616 !vlan_hw_offload_capable(features, skb->vlan_proto))
3617 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3618 return skb;
3619}
f6a78bfc 3620
43c26a1a
DC
3621int skb_csum_hwoffload_help(struct sk_buff *skb,
3622 const netdev_features_t features)
3623{
fa821170 3624 if (unlikely(skb_csum_is_sctp(skb)))
43c26a1a
DC
3625 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3626 skb_crc32c_csum_help(skb);
3627
62fafcd6
XL
3628 if (features & NETIF_F_HW_CSUM)
3629 return 0;
3630
3631 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3632 switch (skb->csum_offset) {
3633 case offsetof(struct tcphdr, check):
3634 case offsetof(struct udphdr, check):
3635 return 0;
3636 }
3637 }
3638
3639 return skb_checksum_help(skb);
43c26a1a
DC
3640}
3641EXPORT_SYMBOL(skb_csum_hwoffload_help);
3642
f53c7239 3643static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3644{
3645 netdev_features_t features;
f6a78bfc 3646
eae3f88e
DM
3647 features = netif_skb_features(skb);
3648 skb = validate_xmit_vlan(skb, features);
3649 if (unlikely(!skb))
3650 goto out_null;
7b9c6090 3651
ebf4e808
IL
3652 skb = sk_validate_xmit_skb(skb, dev);
3653 if (unlikely(!skb))
3654 goto out_null;
3655
8b86a61d 3656 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3657 struct sk_buff *segs;
3658
3659 segs = skb_gso_segment(skb, features);
cecda693 3660 if (IS_ERR(segs)) {
af6dabc9 3661 goto out_kfree_skb;
cecda693
JW
3662 } else if (segs) {
3663 consume_skb(skb);
3664 skb = segs;
f6a78bfc 3665 }
eae3f88e
DM
3666 } else {
3667 if (skb_needs_linearize(skb, features) &&
3668 __skb_linearize(skb))
3669 goto out_kfree_skb;
4ec93edb 3670
eae3f88e
DM
3671 /* If packet is not checksummed and device does not
3672 * support checksumming for this protocol, complete
3673 * checksumming here.
3674 */
3675 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3676 if (skb->encapsulation)
3677 skb_set_inner_transport_header(skb,
3678 skb_checksum_start_offset(skb));
3679 else
3680 skb_set_transport_header(skb,
3681 skb_checksum_start_offset(skb));
43c26a1a 3682 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3683 goto out_kfree_skb;
7b9c6090 3684 }
0c772159 3685 }
7b9c6090 3686
f53c7239 3687 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3688
eae3f88e 3689 return skb;
fc70fb64 3690
f6a78bfc
HX
3691out_kfree_skb:
3692 kfree_skb(skb);
eae3f88e 3693out_null:
d21fd63e 3694 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3695 return NULL;
3696}
6afff0ca 3697
f53c7239 3698struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3699{
3700 struct sk_buff *next, *head = NULL, *tail;
3701
bec3cfdc 3702 for (; skb != NULL; skb = next) {
55a93b3e 3703 next = skb->next;
a8305bff 3704 skb_mark_not_on_list(skb);
bec3cfdc
ED
3705
3706 /* in case skb wont be segmented, point to itself */
3707 skb->prev = skb;
3708
f53c7239 3709 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3710 if (!skb)
3711 continue;
55a93b3e 3712
bec3cfdc
ED
3713 if (!head)
3714 head = skb;
3715 else
3716 tail->next = skb;
3717 /* If skb was segmented, skb->prev points to
3718 * the last segment. If not, it still contains skb.
3719 */
3720 tail = skb->prev;
55a93b3e
ED
3721 }
3722 return head;
f6a78bfc 3723}
104ba78c 3724EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3725
1def9238
ED
3726static void qdisc_pkt_len_init(struct sk_buff *skb)
3727{
3728 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3729
3730 qdisc_skb_cb(skb)->pkt_len = skb->len;
3731
3732 /* To get more precise estimation of bytes sent on wire,
3733 * we add to pkt_len the headers size of all segments
3734 */
a0dce875 3735 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3736 unsigned int hdr_len;
15e5a030 3737 u16 gso_segs = shinfo->gso_segs;
1def9238 3738
757b8b1d
ED
3739 /* mac layer + network layer */
3740 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3741
3742 /* + transport layer */
7c68d1a6
ED
3743 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3744 const struct tcphdr *th;
3745 struct tcphdr _tcphdr;
3746
3747 th = skb_header_pointer(skb, skb_transport_offset(skb),
3748 sizeof(_tcphdr), &_tcphdr);
3749 if (likely(th))
3750 hdr_len += __tcp_hdrlen(th);
3751 } else {
3752 struct udphdr _udphdr;
3753
3754 if (skb_header_pointer(skb, skb_transport_offset(skb),
3755 sizeof(_udphdr), &_udphdr))
3756 hdr_len += sizeof(struct udphdr);
3757 }
15e5a030
JW
3758
3759 if (shinfo->gso_type & SKB_GSO_DODGY)
3760 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3761 shinfo->gso_size);
3762
3763 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3764 }
3765}
3766
70713ddd
QX
3767static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3768 struct sk_buff **to_free,
3769 struct netdev_queue *txq)
3770{
3771 int rc;
3772
3773 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3774 if (rc == NET_XMIT_SUCCESS)
3775 trace_qdisc_enqueue(q, txq, skb);
3776 return rc;
3777}
3778
bbd8a0d3
KK
3779static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3780 struct net_device *dev,
3781 struct netdev_queue *txq)
3782{
3783 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3784 struct sk_buff *to_free = NULL;
a2da570d 3785 bool contended;
bbd8a0d3
KK
3786 int rc;
3787
a2da570d 3788 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3789
3790 if (q->flags & TCQ_F_NOLOCK) {
c4fef01b
YL
3791 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3792 qdisc_run_begin(q)) {
3793 /* Retest nolock_qdisc_is_empty() within the protection
3794 * of q->seqlock to protect from racing with requeuing.
3795 */
3796 if (unlikely(!nolock_qdisc_is_empty(q))) {
70713ddd 3797 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
c4fef01b
YL
3798 __qdisc_run(q);
3799 qdisc_run_end(q);
3800
3801 goto no_lock_out;
3802 }
3803
3804 qdisc_bstats_cpu_update(q, skb);
3805 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3806 !nolock_qdisc_is_empty(q))
3807 __qdisc_run(q);
3808
3809 qdisc_run_end(q);
3810 return NET_XMIT_SUCCESS;
3811 }
3812
70713ddd 3813 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
c4fef01b 3814 qdisc_run(q);
6b3ba914 3815
c4fef01b 3816no_lock_out:
6b3ba914
JF
3817 if (unlikely(to_free))
3818 kfree_skb_list(to_free);
3819 return rc;
3820 }
3821
79640a4c
ED
3822 /*
3823 * Heuristic to force contended enqueues to serialize on a
3824 * separate lock before trying to get qdisc main lock.
f9eb8aea 3825 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3826 * often and dequeue packets faster.
79640a4c 3827 */
a2da570d 3828 contended = qdisc_is_running(q);
79640a4c
ED
3829 if (unlikely(contended))
3830 spin_lock(&q->busylock);
3831
bbd8a0d3
KK
3832 spin_lock(root_lock);
3833 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3834 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3835 rc = NET_XMIT_DROP;
3836 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3837 qdisc_run_begin(q)) {
bbd8a0d3
KK
3838 /*
3839 * This is a work-conserving queue; there are no old skbs
3840 * waiting to be sent out; and the qdisc is not running -
3841 * xmit the skb directly.
3842 */
bfe0d029 3843
bfe0d029
ED
3844 qdisc_bstats_update(q, skb);
3845
55a93b3e 3846 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3847 if (unlikely(contended)) {
3848 spin_unlock(&q->busylock);
3849 contended = false;
3850 }
bbd8a0d3 3851 __qdisc_run(q);
6c148184 3852 }
bbd8a0d3 3853
6c148184 3854 qdisc_run_end(q);
bbd8a0d3
KK
3855 rc = NET_XMIT_SUCCESS;
3856 } else {
70713ddd 3857 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
79640a4c
ED
3858 if (qdisc_run_begin(q)) {
3859 if (unlikely(contended)) {
3860 spin_unlock(&q->busylock);
3861 contended = false;
3862 }
3863 __qdisc_run(q);
6c148184 3864 qdisc_run_end(q);
79640a4c 3865 }
bbd8a0d3
KK
3866 }
3867 spin_unlock(root_lock);
520ac30f
ED
3868 if (unlikely(to_free))
3869 kfree_skb_list(to_free);
79640a4c
ED
3870 if (unlikely(contended))
3871 spin_unlock(&q->busylock);
bbd8a0d3
KK
3872 return rc;
3873}
3874
86f8515f 3875#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3876static void skb_update_prio(struct sk_buff *skb)
3877{
4dcb31d4
ED
3878 const struct netprio_map *map;
3879 const struct sock *sk;
3880 unsigned int prioidx;
5bc1421e 3881
4dcb31d4
ED
3882 if (skb->priority)
3883 return;
3884 map = rcu_dereference_bh(skb->dev->priomap);
3885 if (!map)
3886 return;
3887 sk = skb_to_full_sk(skb);
3888 if (!sk)
3889 return;
91c68ce2 3890
4dcb31d4
ED
3891 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3892
3893 if (prioidx < map->priomap_len)
3894 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3895}
3896#else
3897#define skb_update_prio(skb)
3898#endif
3899
95603e22
MM
3900/**
3901 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3902 * @net: network namespace this loopback is happening in
3903 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3904 * @skb: buffer to transmit
3905 */
0c4b51f0 3906int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3907{
3908 skb_reset_mac_header(skb);
3909 __skb_pull(skb, skb_network_offset(skb));
3910 skb->pkt_type = PACKET_LOOPBACK;
3911 skb->ip_summed = CHECKSUM_UNNECESSARY;
3912 WARN_ON(!skb_dst(skb));
3913 skb_dst_force(skb);
3914 netif_rx_ni(skb);
3915 return 0;
3916}
3917EXPORT_SYMBOL(dev_loopback_xmit);
3918
1f211a1b
DB
3919#ifdef CONFIG_NET_EGRESS
3920static struct sk_buff *
3921sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3922{
46209401 3923 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3924 struct tcf_result cl_res;
3925
46209401 3926 if (!miniq)
1f211a1b
DB
3927 return skb;
3928
8dc07fdb 3929 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
aadaca9e 3930 qdisc_skb_cb(skb)->mru = 0;
7baf2429 3931 qdisc_skb_cb(skb)->post_ct = false;
46209401 3932 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3933
3aa26055 3934 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3935 case TC_ACT_OK:
3936 case TC_ACT_RECLASSIFY:
3937 skb->tc_index = TC_H_MIN(cl_res.classid);
3938 break;
3939 case TC_ACT_SHOT:
46209401 3940 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3941 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3942 kfree_skb(skb);
3943 return NULL;
1f211a1b
DB
3944 case TC_ACT_STOLEN:
3945 case TC_ACT_QUEUED:
e25ea21f 3946 case TC_ACT_TRAP:
1f211a1b 3947 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3948 consume_skb(skb);
1f211a1b
DB
3949 return NULL;
3950 case TC_ACT_REDIRECT:
3951 /* No need to push/pop skb's mac_header here on egress! */
3952 skb_do_redirect(skb);
3953 *ret = NET_XMIT_SUCCESS;
3954 return NULL;
3955 default:
3956 break;
3957 }
357b6cc5 3958
1f211a1b
DB
3959 return skb;
3960}
3961#endif /* CONFIG_NET_EGRESS */
3962
fc9bab24
AN
3963#ifdef CONFIG_XPS
3964static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3965 struct xps_dev_maps *dev_maps, unsigned int tci)
3966{
255c04a8 3967 int tc = netdev_get_prio_tc_map(dev, skb->priority);
fc9bab24
AN
3968 struct xps_map *map;
3969 int queue_index = -1;
3970
5478fcd0 3971 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
255c04a8
AT
3972 return queue_index;
3973
3974 tci *= dev_maps->num_tc;
3975 tci += tc;
fc9bab24
AN
3976
3977 map = rcu_dereference(dev_maps->attr_map[tci]);
3978 if (map) {
3979 if (map->len == 1)
3980 queue_index = map->queues[0];
3981 else
3982 queue_index = map->queues[reciprocal_scale(
3983 skb_get_hash(skb), map->len)];
3984 if (unlikely(queue_index >= dev->real_num_tx_queues))
3985 queue_index = -1;
3986 }
3987 return queue_index;
3988}
3989#endif
3990
eadec877
AD
3991static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3992 struct sk_buff *skb)
638b2a69
JP
3993{
3994#ifdef CONFIG_XPS
3995 struct xps_dev_maps *dev_maps;
fc9bab24 3996 struct sock *sk = skb->sk;
638b2a69
JP
3997 int queue_index = -1;
3998
04157469
AN
3999 if (!static_key_false(&xps_needed))
4000 return -1;
4001
638b2a69 4002 rcu_read_lock();
fc9bab24
AN
4003 if (!static_key_false(&xps_rxqs_needed))
4004 goto get_cpus_map;
4005
044ab86d 4006 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
638b2a69 4007 if (dev_maps) {
fc9bab24 4008 int tci = sk_rx_queue_get(sk);
184c449f 4009
5478fcd0 4010 if (tci >= 0)
fc9bab24
AN
4011 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4012 tci);
4013 }
184c449f 4014
fc9bab24
AN
4015get_cpus_map:
4016 if (queue_index < 0) {
044ab86d 4017 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
fc9bab24
AN
4018 if (dev_maps) {
4019 unsigned int tci = skb->sender_cpu - 1;
4020
4021 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4022 tci);
638b2a69
JP
4023 }
4024 }
4025 rcu_read_unlock();
4026
4027 return queue_index;
4028#else
4029 return -1;
4030#endif
4031}
4032
a4ea8a3d 4033u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 4034 struct net_device *sb_dev)
a4ea8a3d
AD
4035{
4036 return 0;
4037}
4038EXPORT_SYMBOL(dev_pick_tx_zero);
4039
4040u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 4041 struct net_device *sb_dev)
a4ea8a3d
AD
4042{
4043 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4044}
4045EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4046
b71b5837
PA
4047u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4048 struct net_device *sb_dev)
638b2a69
JP
4049{
4050 struct sock *sk = skb->sk;
4051 int queue_index = sk_tx_queue_get(sk);
4052
eadec877
AD
4053 sb_dev = sb_dev ? : dev;
4054
638b2a69
JP
4055 if (queue_index < 0 || skb->ooo_okay ||
4056 queue_index >= dev->real_num_tx_queues) {
eadec877 4057 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 4058
638b2a69 4059 if (new_index < 0)
eadec877 4060 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
4061
4062 if (queue_index != new_index && sk &&
004a5d01 4063 sk_fullsock(sk) &&
638b2a69
JP
4064 rcu_access_pointer(sk->sk_dst_cache))
4065 sk_tx_queue_set(sk, new_index);
4066
4067 queue_index = new_index;
4068 }
4069
4070 return queue_index;
4071}
b71b5837 4072EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 4073
4bd97d51
PA
4074struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4075 struct sk_buff *skb,
4076 struct net_device *sb_dev)
638b2a69
JP
4077{
4078 int queue_index = 0;
4079
4080#ifdef CONFIG_XPS
52bd2d62
ED
4081 u32 sender_cpu = skb->sender_cpu - 1;
4082
4083 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
4084 skb->sender_cpu = raw_smp_processor_id() + 1;
4085#endif
4086
4087 if (dev->real_num_tx_queues != 1) {
4088 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 4089
638b2a69 4090 if (ops->ndo_select_queue)
a350ecce 4091 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 4092 else
4bd97d51 4093 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 4094
d584527c 4095 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
4096 }
4097
4098 skb_set_queue_mapping(skb, queue_index);
4099 return netdev_get_tx_queue(dev, queue_index);
4100}
4101
d29f749e 4102/**
9d08dd3d 4103 * __dev_queue_xmit - transmit a buffer
d29f749e 4104 * @skb: buffer to transmit
eadec877 4105 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
4106 *
4107 * Queue a buffer for transmission to a network device. The caller must
4108 * have set the device and priority and built the buffer before calling
4109 * this function. The function can be called from an interrupt.
4110 *
4111 * A negative errno code is returned on a failure. A success does not
4112 * guarantee the frame will be transmitted as it may be dropped due
4113 * to congestion or traffic shaping.
4114 *
4115 * -----------------------------------------------------------------------------------
4116 * I notice this method can also return errors from the queue disciplines,
4117 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4118 * be positive.
4119 *
4120 * Regardless of the return value, the skb is consumed, so it is currently
4121 * difficult to retry a send to this method. (You can bump the ref count
4122 * before sending to hold a reference for retry if you are careful.)
4123 *
4124 * When calling this method, interrupts MUST be enabled. This is because
4125 * the BH enable code must have IRQs enabled so that it will not deadlock.
4126 * --BLG
4127 */
eadec877 4128static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
4129{
4130 struct net_device *dev = skb->dev;
dc2b4847 4131 struct netdev_queue *txq;
1da177e4
LT
4132 struct Qdisc *q;
4133 int rc = -ENOMEM;
f53c7239 4134 bool again = false;
1da177e4 4135
6d1ccff6
ED
4136 skb_reset_mac_header(skb);
4137
e7fd2885 4138 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
e7ed11ee 4139 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
e7fd2885 4140
4ec93edb
YH
4141 /* Disable soft irqs for various locks below. Also
4142 * stops preemption for RCU.
1da177e4 4143 */
4ec93edb 4144 rcu_read_lock_bh();
1da177e4 4145
5bc1421e
NH
4146 skb_update_prio(skb);
4147
1f211a1b
DB
4148 qdisc_pkt_len_init(skb);
4149#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4150 skb->tc_at_ingress = 0;
357b6cc5 4151# ifdef CONFIG_NET_EGRESS
aabf6772 4152 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4153 skb = sch_handle_egress(skb, &rc, dev);
4154 if (!skb)
4155 goto out;
4156 }
357b6cc5 4157# endif
1f211a1b 4158#endif
02875878
ED
4159 /* If device/qdisc don't need skb->dst, release it right now while
4160 * its hot in this cpu cache.
4161 */
4162 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4163 skb_dst_drop(skb);
4164 else
4165 skb_dst_force(skb);
4166
4bd97d51 4167 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4168 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4169
cf66ba58 4170 trace_net_dev_queue(skb);
1da177e4 4171 if (q->enqueue) {
bbd8a0d3 4172 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4173 goto out;
1da177e4
LT
4174 }
4175
4176 /* The device has no queue. Common case for software devices:
eb13da1a 4177 * loopback, all the sorts of tunnels...
1da177e4 4178
eb13da1a 4179 * Really, it is unlikely that netif_tx_lock protection is necessary
4180 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4181 * counters.)
4182 * However, it is possible, that they rely on protection
4183 * made by us here.
1da177e4 4184
eb13da1a 4185 * Check this and shot the lock. It is not prone from deadlocks.
4186 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4187 */
4188 if (dev->flags & IFF_UP) {
4189 int cpu = smp_processor_id(); /* ok because BHs are off */
4190
c773e847 4191 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4192 if (dev_xmit_recursion())
745e20f1
ED
4193 goto recursion_alert;
4194
f53c7239 4195 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4196 if (!skb)
d21fd63e 4197 goto out;
1f59533f 4198
3744741a 4199 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
c773e847 4200 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4201
73466498 4202 if (!netif_xmit_stopped(txq)) {
97cdcf37 4203 dev_xmit_recursion_inc();
ce93718f 4204 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4205 dev_xmit_recursion_dec();
572a9d7b 4206 if (dev_xmit_complete(rc)) {
c773e847 4207 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4208 goto out;
4209 }
4210 }
c773e847 4211 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4212 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4213 dev->name);
1da177e4
LT
4214 } else {
4215 /* Recursion is detected! It is possible,
745e20f1
ED
4216 * unfortunately
4217 */
4218recursion_alert:
e87cc472
JP
4219 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4220 dev->name);
1da177e4
LT
4221 }
4222 }
4223
4224 rc = -ENETDOWN;
d4828d85 4225 rcu_read_unlock_bh();
1da177e4 4226
015f0688 4227 atomic_long_inc(&dev->tx_dropped);
1f59533f 4228 kfree_skb_list(skb);
1da177e4
LT
4229 return rc;
4230out:
d4828d85 4231 rcu_read_unlock_bh();
1da177e4
LT
4232 return rc;
4233}
f663dd9a 4234
2b4aa3ce 4235int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4236{
4237 return __dev_queue_xmit(skb, NULL);
4238}
2b4aa3ce 4239EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4240
eadec877 4241int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4242{
eadec877 4243 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4244}
4245EXPORT_SYMBOL(dev_queue_xmit_accel);
4246
36ccdf85 4247int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
865b03f2
MK
4248{
4249 struct net_device *dev = skb->dev;
4250 struct sk_buff *orig_skb = skb;
4251 struct netdev_queue *txq;
4252 int ret = NETDEV_TX_BUSY;
4253 bool again = false;
4254
4255 if (unlikely(!netif_running(dev) ||
4256 !netif_carrier_ok(dev)))
4257 goto drop;
4258
4259 skb = validate_xmit_skb_list(skb, dev, &again);
4260 if (skb != orig_skb)
4261 goto drop;
4262
4263 skb_set_queue_mapping(skb, queue_id);
4264 txq = skb_get_tx_queue(dev, skb);
3744741a 4265 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
865b03f2
MK
4266
4267 local_bh_disable();
4268
0ad6f6e7 4269 dev_xmit_recursion_inc();
865b03f2
MK
4270 HARD_TX_LOCK(dev, txq, smp_processor_id());
4271 if (!netif_xmit_frozen_or_drv_stopped(txq))
4272 ret = netdev_start_xmit(skb, dev, txq, false);
4273 HARD_TX_UNLOCK(dev, txq);
0ad6f6e7 4274 dev_xmit_recursion_dec();
865b03f2
MK
4275
4276 local_bh_enable();
865b03f2
MK
4277 return ret;
4278drop:
4279 atomic_long_inc(&dev->tx_dropped);
4280 kfree_skb_list(skb);
4281 return NET_XMIT_DROP;
4282}
36ccdf85 4283EXPORT_SYMBOL(__dev_direct_xmit);
1da177e4 4284
eb13da1a 4285/*************************************************************************
4286 * Receiver routines
4287 *************************************************************************/
1da177e4 4288
6b2bedc3 4289int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4290EXPORT_SYMBOL(netdev_max_backlog);
4291
3b098e2d 4292int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4293int netdev_budget __read_mostly = 300;
a4837980
KK
4294/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4295unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4296int weight_p __read_mostly = 64; /* old backlog weight */
4297int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4298int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4299int dev_rx_weight __read_mostly = 64;
4300int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4301/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4302int gro_normal_batch __read_mostly = 8;
1da177e4 4303
eecfd7c4
ED
4304/* Called with irq disabled */
4305static inline void ____napi_schedule(struct softnet_data *sd,
4306 struct napi_struct *napi)
4307{
29863d41
WW
4308 struct task_struct *thread;
4309
4310 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4311 /* Paired with smp_mb__before_atomic() in
5fdd2f0e
WW
4312 * napi_enable()/dev_set_threaded().
4313 * Use READ_ONCE() to guarantee a complete
4314 * read on napi->thread. Only call
29863d41
WW
4315 * wake_up_process() when it's not NULL.
4316 */
4317 thread = READ_ONCE(napi->thread);
4318 if (thread) {
cb038357
WW
4319 /* Avoid doing set_bit() if the thread is in
4320 * INTERRUPTIBLE state, cause napi_thread_wait()
4321 * makes sure to proceed with napi polling
4322 * if the thread is explicitly woken from here.
4323 */
2f064a59 4324 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
cb038357 4325 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
29863d41
WW
4326 wake_up_process(thread);
4327 return;
4328 }
4329 }
4330
eecfd7c4
ED
4331 list_add_tail(&napi->poll_list, &sd->poll_list);
4332 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4333}
4334
bfb564e7
KK
4335#ifdef CONFIG_RPS
4336
4337/* One global table that all flow-based protocols share. */
6e3f7faf 4338struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4339EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4340u32 rps_cpu_mask __read_mostly;
4341EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4342
dc05360f 4343struct static_key_false rps_needed __read_mostly;
3df97ba8 4344EXPORT_SYMBOL(rps_needed);
dc05360f 4345struct static_key_false rfs_needed __read_mostly;
13bfff25 4346EXPORT_SYMBOL(rfs_needed);
adc9300e 4347
c445477d
BH
4348static struct rps_dev_flow *
4349set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4350 struct rps_dev_flow *rflow, u16 next_cpu)
4351{
a31196b0 4352 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4353#ifdef CONFIG_RFS_ACCEL
4354 struct netdev_rx_queue *rxqueue;
4355 struct rps_dev_flow_table *flow_table;
4356 struct rps_dev_flow *old_rflow;
4357 u32 flow_id;
4358 u16 rxq_index;
4359 int rc;
4360
4361 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4362 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4363 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4364 goto out;
4365 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4366 if (rxq_index == skb_get_rx_queue(skb))
4367 goto out;
4368
4369 rxqueue = dev->_rx + rxq_index;
4370 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4371 if (!flow_table)
4372 goto out;
61b905da 4373 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4374 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4375 rxq_index, flow_id);
4376 if (rc < 0)
4377 goto out;
4378 old_rflow = rflow;
4379 rflow = &flow_table->flows[flow_id];
c445477d
BH
4380 rflow->filter = rc;
4381 if (old_rflow->filter == rflow->filter)
4382 old_rflow->filter = RPS_NO_FILTER;
4383 out:
4384#endif
4385 rflow->last_qtail =
09994d1b 4386 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4387 }
4388
09994d1b 4389 rflow->cpu = next_cpu;
c445477d
BH
4390 return rflow;
4391}
4392
bfb564e7
KK
4393/*
4394 * get_rps_cpu is called from netif_receive_skb and returns the target
4395 * CPU from the RPS map of the receiving queue for a given skb.
4396 * rcu_read_lock must be held on entry.
4397 */
4398static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4399 struct rps_dev_flow **rflowp)
4400{
567e4b79
ED
4401 const struct rps_sock_flow_table *sock_flow_table;
4402 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4403 struct rps_dev_flow_table *flow_table;
567e4b79 4404 struct rps_map *map;
bfb564e7 4405 int cpu = -1;
567e4b79 4406 u32 tcpu;
61b905da 4407 u32 hash;
bfb564e7
KK
4408
4409 if (skb_rx_queue_recorded(skb)) {
4410 u16 index = skb_get_rx_queue(skb);
567e4b79 4411
62fe0b40
BH
4412 if (unlikely(index >= dev->real_num_rx_queues)) {
4413 WARN_ONCE(dev->real_num_rx_queues > 1,
4414 "%s received packet on queue %u, but number "
4415 "of RX queues is %u\n",
4416 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4417 goto done;
4418 }
567e4b79
ED
4419 rxqueue += index;
4420 }
bfb564e7 4421
567e4b79
ED
4422 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4423
4424 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4425 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4426 if (!flow_table && !map)
bfb564e7
KK
4427 goto done;
4428
2d47b459 4429 skb_reset_network_header(skb);
61b905da
TH
4430 hash = skb_get_hash(skb);
4431 if (!hash)
bfb564e7
KK
4432 goto done;
4433
fec5e652
TH
4434 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4435 if (flow_table && sock_flow_table) {
fec5e652 4436 struct rps_dev_flow *rflow;
567e4b79
ED
4437 u32 next_cpu;
4438 u32 ident;
4439
4440 /* First check into global flow table if there is a match */
4441 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4442 if ((ident ^ hash) & ~rps_cpu_mask)
4443 goto try_rps;
fec5e652 4444
567e4b79
ED
4445 next_cpu = ident & rps_cpu_mask;
4446
4447 /* OK, now we know there is a match,
4448 * we can look at the local (per receive queue) flow table
4449 */
61b905da 4450 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4451 tcpu = rflow->cpu;
4452
fec5e652
TH
4453 /*
4454 * If the desired CPU (where last recvmsg was done) is
4455 * different from current CPU (one in the rx-queue flow
4456 * table entry), switch if one of the following holds:
a31196b0 4457 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4458 * - Current CPU is offline.
4459 * - The current CPU's queue tail has advanced beyond the
4460 * last packet that was enqueued using this table entry.
4461 * This guarantees that all previous packets for the flow
4462 * have been dequeued, thus preserving in order delivery.
4463 */
4464 if (unlikely(tcpu != next_cpu) &&
a31196b0 4465 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4466 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4467 rflow->last_qtail)) >= 0)) {
4468 tcpu = next_cpu;
c445477d 4469 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4470 }
c445477d 4471
a31196b0 4472 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4473 *rflowp = rflow;
4474 cpu = tcpu;
4475 goto done;
4476 }
4477 }
4478
567e4b79
ED
4479try_rps:
4480
0a9627f2 4481 if (map) {
8fc54f68 4482 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4483 if (cpu_online(tcpu)) {
4484 cpu = tcpu;
4485 goto done;
4486 }
4487 }
4488
4489done:
0a9627f2
TH
4490 return cpu;
4491}
4492
c445477d
BH
4493#ifdef CONFIG_RFS_ACCEL
4494
4495/**
4496 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4497 * @dev: Device on which the filter was set
4498 * @rxq_index: RX queue index
4499 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4500 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4501 *
4502 * Drivers that implement ndo_rx_flow_steer() should periodically call
4503 * this function for each installed filter and remove the filters for
4504 * which it returns %true.
4505 */
4506bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4507 u32 flow_id, u16 filter_id)
4508{
4509 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4510 struct rps_dev_flow_table *flow_table;
4511 struct rps_dev_flow *rflow;
4512 bool expire = true;
a31196b0 4513 unsigned int cpu;
c445477d
BH
4514
4515 rcu_read_lock();
4516 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4517 if (flow_table && flow_id <= flow_table->mask) {
4518 rflow = &flow_table->flows[flow_id];
6aa7de05 4519 cpu = READ_ONCE(rflow->cpu);
a31196b0 4520 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4521 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4522 rflow->last_qtail) <
4523 (int)(10 * flow_table->mask)))
4524 expire = false;
4525 }
4526 rcu_read_unlock();
4527 return expire;
4528}
4529EXPORT_SYMBOL(rps_may_expire_flow);
4530
4531#endif /* CONFIG_RFS_ACCEL */
4532
0a9627f2 4533/* Called from hardirq (IPI) context */
e36fa2f7 4534static void rps_trigger_softirq(void *data)
0a9627f2 4535{
e36fa2f7
ED
4536 struct softnet_data *sd = data;
4537
eecfd7c4 4538 ____napi_schedule(sd, &sd->backlog);
dee42870 4539 sd->received_rps++;
0a9627f2 4540}
e36fa2f7 4541
fec5e652 4542#endif /* CONFIG_RPS */
0a9627f2 4543
e36fa2f7
ED
4544/*
4545 * Check if this softnet_data structure is another cpu one
4546 * If yes, queue it to our IPI list and return 1
4547 * If no, return 0
4548 */
4549static int rps_ipi_queued(struct softnet_data *sd)
4550{
4551#ifdef CONFIG_RPS
903ceff7 4552 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4553
4554 if (sd != mysd) {
4555 sd->rps_ipi_next = mysd->rps_ipi_list;
4556 mysd->rps_ipi_list = sd;
4557
4558 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4559 return 1;
4560 }
4561#endif /* CONFIG_RPS */
4562 return 0;
4563}
4564
99bbc707
WB
4565#ifdef CONFIG_NET_FLOW_LIMIT
4566int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4567#endif
4568
4569static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4570{
4571#ifdef CONFIG_NET_FLOW_LIMIT
4572 struct sd_flow_limit *fl;
4573 struct softnet_data *sd;
4574 unsigned int old_flow, new_flow;
4575
4576 if (qlen < (netdev_max_backlog >> 1))
4577 return false;
4578
903ceff7 4579 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4580
4581 rcu_read_lock();
4582 fl = rcu_dereference(sd->flow_limit);
4583 if (fl) {
3958afa1 4584 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4585 old_flow = fl->history[fl->history_head];
4586 fl->history[fl->history_head] = new_flow;
4587
4588 fl->history_head++;
4589 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4590
4591 if (likely(fl->buckets[old_flow]))
4592 fl->buckets[old_flow]--;
4593
4594 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4595 fl->count++;
4596 rcu_read_unlock();
4597 return true;
4598 }
4599 }
4600 rcu_read_unlock();
4601#endif
4602 return false;
4603}
4604
0a9627f2
TH
4605/*
4606 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4607 * queue (may be a remote CPU queue).
4608 */
fec5e652
TH
4609static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4610 unsigned int *qtail)
0a9627f2 4611{
e36fa2f7 4612 struct softnet_data *sd;
0a9627f2 4613 unsigned long flags;
99bbc707 4614 unsigned int qlen;
0a9627f2 4615
e36fa2f7 4616 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4617
4618 local_irq_save(flags);
0a9627f2 4619
e36fa2f7 4620 rps_lock(sd);
e9e4dd32
JA
4621 if (!netif_running(skb->dev))
4622 goto drop;
99bbc707
WB
4623 qlen = skb_queue_len(&sd->input_pkt_queue);
4624 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4625 if (qlen) {
0a9627f2 4626enqueue:
e36fa2f7 4627 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4628 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4629 rps_unlock(sd);
152102c7 4630 local_irq_restore(flags);
0a9627f2
TH
4631 return NET_RX_SUCCESS;
4632 }
4633
ebda37c2
ED
4634 /* Schedule NAPI for backlog device
4635 * We can use non atomic operation since we own the queue lock
4636 */
4637 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4638 if (!rps_ipi_queued(sd))
eecfd7c4 4639 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4640 }
4641 goto enqueue;
4642 }
4643
e9e4dd32 4644drop:
dee42870 4645 sd->dropped++;
e36fa2f7 4646 rps_unlock(sd);
0a9627f2 4647
0a9627f2
TH
4648 local_irq_restore(flags);
4649
caf586e5 4650 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4651 kfree_skb(skb);
4652 return NET_RX_DROP;
4653}
1da177e4 4654
e817f856
JDB
4655static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4656{
4657 struct net_device *dev = skb->dev;
4658 struct netdev_rx_queue *rxqueue;
4659
4660 rxqueue = dev->_rx;
4661
4662 if (skb_rx_queue_recorded(skb)) {
4663 u16 index = skb_get_rx_queue(skb);
4664
4665 if (unlikely(index >= dev->real_num_rx_queues)) {
4666 WARN_ONCE(dev->real_num_rx_queues > 1,
4667 "%s received packet on queue %u, but number "
4668 "of RX queues is %u\n",
4669 dev->name, index, dev->real_num_rx_queues);
4670
4671 return rxqueue; /* Return first rxqueue */
4672 }
4673 rxqueue += index;
4674 }
4675 return rxqueue;
4676}
4677
fe21cb91
KKD
4678u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4679 struct bpf_prog *xdp_prog)
d4455169 4680{
be9df4af 4681 void *orig_data, *orig_data_end, *hard_start;
e817f856 4682 struct netdev_rx_queue *rxqueue;
22b60343 4683 bool orig_bcast, orig_host;
43b5169d 4684 u32 mac_len, frame_sz;
29724956
JDB
4685 __be16 orig_eth_type;
4686 struct ethhdr *eth;
fe21cb91 4687 u32 metalen, act;
be9df4af 4688 int off;
d4455169 4689
d4455169
JF
4690 /* The XDP program wants to see the packet starting at the MAC
4691 * header.
4692 */
4693 mac_len = skb->data - skb_mac_header(skb);
be9df4af 4694 hard_start = skb->data - skb_headroom(skb);
a075767b
JDB
4695
4696 /* SKB "head" area always have tailroom for skb_shared_info */
be9df4af 4697 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
43b5169d 4698 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
a075767b 4699
be9df4af
LB
4700 rxqueue = netif_get_rxqueue(skb);
4701 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4702 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4703 skb_headlen(skb) + mac_len, true);
a075767b 4704
02671e23
BT
4705 orig_data_end = xdp->data_end;
4706 orig_data = xdp->data;
29724956 4707 eth = (struct ethhdr *)xdp->data;
22b60343 4708 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
29724956
JDB
4709 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4710 orig_eth_type = eth->h_proto;
d4455169 4711
02671e23 4712 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4713
065af355 4714 /* check if bpf_xdp_adjust_head was used */
02671e23 4715 off = xdp->data - orig_data;
065af355
JDB
4716 if (off) {
4717 if (off > 0)
4718 __skb_pull(skb, off);
4719 else if (off < 0)
4720 __skb_push(skb, -off);
4721
4722 skb->mac_header += off;
4723 skb_reset_network_header(skb);
4724 }
d4455169 4725
a075767b
JDB
4726 /* check if bpf_xdp_adjust_tail was used */
4727 off = xdp->data_end - orig_data_end;
f7613120 4728 if (off != 0) {
02671e23 4729 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
a075767b 4730 skb->len += off; /* positive on grow, negative on shrink */
f7613120 4731 }
198d83bb 4732
29724956
JDB
4733 /* check if XDP changed eth hdr such SKB needs update */
4734 eth = (struct ethhdr *)xdp->data;
4735 if ((orig_eth_type != eth->h_proto) ||
22b60343
MW
4736 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4737 skb->dev->dev_addr)) ||
29724956
JDB
4738 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4739 __skb_push(skb, ETH_HLEN);
22b60343 4740 skb->pkt_type = PACKET_HOST;
29724956
JDB
4741 skb->protocol = eth_type_trans(skb, skb->dev);
4742 }
4743
fe21cb91
KKD
4744 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4745 * before calling us again on redirect path. We do not call do_redirect
4746 * as we leave that up to the caller.
4747 *
4748 * Caller is responsible for managing lifetime of skb (i.e. calling
4749 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4750 */
d4455169 4751 switch (act) {
6103aa96 4752 case XDP_REDIRECT:
d4455169
JF
4753 case XDP_TX:
4754 __skb_push(skb, mac_len);
de8f3a83 4755 break;
d4455169 4756 case XDP_PASS:
02671e23 4757 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4758 if (metalen)
4759 skb_metadata_set(skb, metalen);
d4455169 4760 break;
fe21cb91
KKD
4761 }
4762
4763 return act;
4764}
4765
4766static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4767 struct xdp_buff *xdp,
4768 struct bpf_prog *xdp_prog)
4769{
4770 u32 act = XDP_DROP;
4771
4772 /* Reinjected packets coming from act_mirred or similar should
4773 * not get XDP generic processing.
4774 */
4775 if (skb_is_redirected(skb))
4776 return XDP_PASS;
4777
4778 /* XDP packets must be linear and must have sufficient headroom
4779 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4780 * native XDP provides, thus we need to do it here as well.
4781 */
4782 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4783 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4784 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4785 int troom = skb->tail + skb->data_len - skb->end;
4786
4787 /* In case we have to go down the path and also linearize,
4788 * then lets do the pskb_expand_head() work just once here.
4789 */
4790 if (pskb_expand_head(skb,
4791 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4792 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4793 goto do_drop;
4794 if (skb_linearize(skb))
4795 goto do_drop;
4796 }
4797
4798 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4799 switch (act) {
4800 case XDP_REDIRECT:
4801 case XDP_TX:
4802 case XDP_PASS:
4803 break;
d4455169
JF
4804 default:
4805 bpf_warn_invalid_xdp_action(act);
df561f66 4806 fallthrough;
d4455169
JF
4807 case XDP_ABORTED:
4808 trace_xdp_exception(skb->dev, xdp_prog, act);
df561f66 4809 fallthrough;
d4455169
JF
4810 case XDP_DROP:
4811 do_drop:
4812 kfree_skb(skb);
4813 break;
4814 }
4815
4816 return act;
4817}
4818
4819/* When doing generic XDP we have to bypass the qdisc layer and the
4820 * network taps in order to match in-driver-XDP behavior.
4821 */
7c497478 4822void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4823{
4824 struct net_device *dev = skb->dev;
4825 struct netdev_queue *txq;
4826 bool free_skb = true;
4827 int cpu, rc;
4828
4bd97d51 4829 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4830 cpu = smp_processor_id();
4831 HARD_TX_LOCK(dev, txq, cpu);
4832 if (!netif_xmit_stopped(txq)) {
4833 rc = netdev_start_xmit(skb, dev, txq, 0);
4834 if (dev_xmit_complete(rc))
4835 free_skb = false;
4836 }
4837 HARD_TX_UNLOCK(dev, txq);
4838 if (free_skb) {
4839 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4840 kfree_skb(skb);
4841 }
4842}
4843
02786475 4844static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4845
7c497478 4846int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4847{
d4455169 4848 if (xdp_prog) {
02671e23
BT
4849 struct xdp_buff xdp;
4850 u32 act;
6103aa96 4851 int err;
d4455169 4852
02671e23 4853 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4854 if (act != XDP_PASS) {
6103aa96
JF
4855 switch (act) {
4856 case XDP_REDIRECT:
2facaad6 4857 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4858 &xdp, xdp_prog);
6103aa96
JF
4859 if (err)
4860 goto out_redir;
02671e23 4861 break;
6103aa96 4862 case XDP_TX:
d4455169 4863 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4864 break;
4865 }
d4455169
JF
4866 return XDP_DROP;
4867 }
4868 }
4869 return XDP_PASS;
6103aa96 4870out_redir:
6103aa96
JF
4871 kfree_skb(skb);
4872 return XDP_DROP;
d4455169 4873}
7c497478 4874EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4875
ae78dbfa 4876static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4877{
b0e28f1e 4878 int ret;
1da177e4 4879
588f0330 4880 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4881
cf66ba58 4882 trace_netif_rx(skb);
d4455169 4883
df334545 4884#ifdef CONFIG_RPS
dc05360f 4885 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4886 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4887 int cpu;
4888
cece1945 4889 preempt_disable();
b0e28f1e 4890 rcu_read_lock();
fec5e652
TH
4891
4892 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4893 if (cpu < 0)
4894 cpu = smp_processor_id();
fec5e652
TH
4895
4896 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4897
b0e28f1e 4898 rcu_read_unlock();
cece1945 4899 preempt_enable();
adc9300e
ED
4900 } else
4901#endif
fec5e652
TH
4902 {
4903 unsigned int qtail;
f4563a75 4904
fec5e652
TH
4905 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4906 put_cpu();
4907 }
b0e28f1e 4908 return ret;
1da177e4 4909}
ae78dbfa
BH
4910
4911/**
4912 * netif_rx - post buffer to the network code
4913 * @skb: buffer to post
4914 *
4915 * This function receives a packet from a device driver and queues it for
4916 * the upper (protocol) levels to process. It always succeeds. The buffer
4917 * may be dropped during processing for congestion control or by the
4918 * protocol layers.
4919 *
4920 * return values:
4921 * NET_RX_SUCCESS (no congestion)
4922 * NET_RX_DROP (packet was dropped)
4923 *
4924 */
4925
4926int netif_rx(struct sk_buff *skb)
4927{
b0e3f1bd
GB
4928 int ret;
4929
ae78dbfa
BH
4930 trace_netif_rx_entry(skb);
4931
b0e3f1bd
GB
4932 ret = netif_rx_internal(skb);
4933 trace_netif_rx_exit(ret);
4934
4935 return ret;
ae78dbfa 4936}
d1b19dff 4937EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4938
4939int netif_rx_ni(struct sk_buff *skb)
4940{
4941 int err;
4942
ae78dbfa
BH
4943 trace_netif_rx_ni_entry(skb);
4944
1da177e4 4945 preempt_disable();
ae78dbfa 4946 err = netif_rx_internal(skb);
1da177e4
LT
4947 if (local_softirq_pending())
4948 do_softirq();
4949 preempt_enable();
b0e3f1bd 4950 trace_netif_rx_ni_exit(err);
1da177e4
LT
4951
4952 return err;
4953}
1da177e4
LT
4954EXPORT_SYMBOL(netif_rx_ni);
4955
c11171a4
SAS
4956int netif_rx_any_context(struct sk_buff *skb)
4957{
4958 /*
4959 * If invoked from contexts which do not invoke bottom half
4960 * processing either at return from interrupt or when softrqs are
4961 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4962 * directly.
4963 */
4964 if (in_interrupt())
4965 return netif_rx(skb);
4966 else
4967 return netif_rx_ni(skb);
4968}
4969EXPORT_SYMBOL(netif_rx_any_context);
4970
0766f788 4971static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4972{
903ceff7 4973 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4974
4975 if (sd->completion_queue) {
4976 struct sk_buff *clist;
4977
4978 local_irq_disable();
4979 clist = sd->completion_queue;
4980 sd->completion_queue = NULL;
4981 local_irq_enable();
4982
4983 while (clist) {
4984 struct sk_buff *skb = clist;
f4563a75 4985
1da177e4
LT
4986 clist = clist->next;
4987
63354797 4988 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4989 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4990 trace_consume_skb(skb);
4991 else
4992 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4993
4994 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4995 __kfree_skb(skb);
4996 else
4997 __kfree_skb_defer(skb);
1da177e4
LT
4998 }
4999 }
5000
5001 if (sd->output_queue) {
37437bb2 5002 struct Qdisc *head;
1da177e4
LT
5003
5004 local_irq_disable();
5005 head = sd->output_queue;
5006 sd->output_queue = NULL;
a9cbd588 5007 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
5008 local_irq_enable();
5009
102b55ee
YL
5010 rcu_read_lock();
5011
1da177e4 5012 while (head) {
37437bb2 5013 struct Qdisc *q = head;
6b3ba914 5014 spinlock_t *root_lock = NULL;
37437bb2 5015
1da177e4
LT
5016 head = head->next_sched;
5017
3bcb846c
ED
5018 /* We need to make sure head->next_sched is read
5019 * before clearing __QDISC_STATE_SCHED
5020 */
5021 smp_mb__before_atomic();
102b55ee
YL
5022
5023 if (!(q->flags & TCQ_F_NOLOCK)) {
5024 root_lock = qdisc_lock(q);
5025 spin_lock(root_lock);
5026 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5027 &q->state))) {
5028 /* There is a synchronize_net() between
5029 * STATE_DEACTIVATED flag being set and
5030 * qdisc_reset()/some_qdisc_is_busy() in
5031 * dev_deactivate(), so we can safely bail out
5032 * early here to avoid data race between
5033 * qdisc_deactivate() and some_qdisc_is_busy()
5034 * for lockless qdisc.
5035 */
5036 clear_bit(__QDISC_STATE_SCHED, &q->state);
5037 continue;
5038 }
5039
3bcb846c
ED
5040 clear_bit(__QDISC_STATE_SCHED, &q->state);
5041 qdisc_run(q);
6b3ba914
JF
5042 if (root_lock)
5043 spin_unlock(root_lock);
1da177e4 5044 }
102b55ee
YL
5045
5046 rcu_read_unlock();
1da177e4 5047 }
f53c7239
SK
5048
5049 xfrm_dev_backlog(sd);
1da177e4
LT
5050}
5051
181402a5 5052#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
5053/* This hook is defined here for ATM LANE */
5054int (*br_fdb_test_addr_hook)(struct net_device *dev,
5055 unsigned char *addr) __read_mostly;
4fb019a0 5056EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 5057#endif
1da177e4 5058
1f211a1b
DB
5059static inline struct sk_buff *
5060sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
9aa1206e 5061 struct net_device *orig_dev, bool *another)
f697c3e8 5062{
e7582bab 5063#ifdef CONFIG_NET_CLS_ACT
46209401 5064 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 5065 struct tcf_result cl_res;
24824a09 5066
c9e99fd0
DB
5067 /* If there's at least one ingress present somewhere (so
5068 * we get here via enabled static key), remaining devices
5069 * that are not configured with an ingress qdisc will bail
d2788d34 5070 * out here.
c9e99fd0 5071 */
46209401 5072 if (!miniq)
4577139b 5073 return skb;
46209401 5074
f697c3e8
HX
5075 if (*pt_prev) {
5076 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5077 *pt_prev = NULL;
1da177e4
LT
5078 }
5079
3365495c 5080 qdisc_skb_cb(skb)->pkt_len = skb->len;
aadaca9e 5081 qdisc_skb_cb(skb)->mru = 0;
7baf2429 5082 qdisc_skb_cb(skb)->post_ct = false;
8dc07fdb 5083 skb->tc_at_ingress = 1;
46209401 5084 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 5085
3aa26055 5086 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
5087 case TC_ACT_OK:
5088 case TC_ACT_RECLASSIFY:
5089 skb->tc_index = TC_H_MIN(cl_res.classid);
5090 break;
5091 case TC_ACT_SHOT:
46209401 5092 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
5093 kfree_skb(skb);
5094 return NULL;
d2788d34
DB
5095 case TC_ACT_STOLEN:
5096 case TC_ACT_QUEUED:
e25ea21f 5097 case TC_ACT_TRAP:
8a3a4c6e 5098 consume_skb(skb);
d2788d34 5099 return NULL;
27b29f63
AS
5100 case TC_ACT_REDIRECT:
5101 /* skb_mac_header check was done by cls/act_bpf, so
5102 * we can safely push the L2 header back before
5103 * redirecting to another netdev
5104 */
5105 __skb_push(skb, skb->mac_len);
9aa1206e
DB
5106 if (skb_do_redirect(skb) == -EAGAIN) {
5107 __skb_pull(skb, skb->mac_len);
5108 *another = true;
5109 break;
5110 }
27b29f63 5111 return NULL;
720f22fe 5112 case TC_ACT_CONSUMED:
cd11b164 5113 return NULL;
d2788d34
DB
5114 default:
5115 break;
f697c3e8 5116 }
e7582bab 5117#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
5118 return skb;
5119}
1da177e4 5120
24b27fc4
MB
5121/**
5122 * netdev_is_rx_handler_busy - check if receive handler is registered
5123 * @dev: device to check
5124 *
5125 * Check if a receive handler is already registered for a given device.
5126 * Return true if there one.
5127 *
5128 * The caller must hold the rtnl_mutex.
5129 */
5130bool netdev_is_rx_handler_busy(struct net_device *dev)
5131{
5132 ASSERT_RTNL();
5133 return dev && rtnl_dereference(dev->rx_handler);
5134}
5135EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5136
ab95bfe0
JP
5137/**
5138 * netdev_rx_handler_register - register receive handler
5139 * @dev: device to register a handler for
5140 * @rx_handler: receive handler to register
93e2c32b 5141 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 5142 *
e227867f 5143 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
5144 * called from __netif_receive_skb. A negative errno code is returned
5145 * on a failure.
5146 *
5147 * The caller must hold the rtnl_mutex.
8a4eb573
JP
5148 *
5149 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
5150 */
5151int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
5152 rx_handler_func_t *rx_handler,
5153 void *rx_handler_data)
ab95bfe0 5154{
1b7cd004 5155 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
5156 return -EBUSY;
5157
f5426250
PA
5158 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5159 return -EINVAL;
5160
00cfec37 5161 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 5162 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
5163 rcu_assign_pointer(dev->rx_handler, rx_handler);
5164
5165 return 0;
5166}
5167EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5168
5169/**
5170 * netdev_rx_handler_unregister - unregister receive handler
5171 * @dev: device to unregister a handler from
5172 *
166ec369 5173 * Unregister a receive handler from a device.
ab95bfe0
JP
5174 *
5175 * The caller must hold the rtnl_mutex.
5176 */
5177void netdev_rx_handler_unregister(struct net_device *dev)
5178{
5179
5180 ASSERT_RTNL();
a9b3cd7f 5181 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
5182 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5183 * section has a guarantee to see a non NULL rx_handler_data
5184 * as well.
5185 */
5186 synchronize_net();
a9b3cd7f 5187 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
5188}
5189EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5190
b4b9e355
MG
5191/*
5192 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5193 * the special handling of PFMEMALLOC skbs.
5194 */
5195static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5196{
5197 switch (skb->protocol) {
2b8837ae
JP
5198 case htons(ETH_P_ARP):
5199 case htons(ETH_P_IP):
5200 case htons(ETH_P_IPV6):
5201 case htons(ETH_P_8021Q):
5202 case htons(ETH_P_8021AD):
b4b9e355
MG
5203 return true;
5204 default:
5205 return false;
5206 }
5207}
5208
e687ad60
PN
5209static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5210 int *ret, struct net_device *orig_dev)
5211{
5212 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
5213 int ingress_retval;
5214
e687ad60
PN
5215 if (*pt_prev) {
5216 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5217 *pt_prev = NULL;
5218 }
5219
2c1e2703
AC
5220 rcu_read_lock();
5221 ingress_retval = nf_hook_ingress(skb);
5222 rcu_read_unlock();
5223 return ingress_retval;
e687ad60
PN
5224 }
5225 return 0;
5226}
e687ad60 5227
c0bbbdc3 5228static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
88eb1944 5229 struct packet_type **ppt_prev)
1da177e4
LT
5230{
5231 struct packet_type *ptype, *pt_prev;
ab95bfe0 5232 rx_handler_func_t *rx_handler;
c0bbbdc3 5233 struct sk_buff *skb = *pskb;
f2ccd8fa 5234 struct net_device *orig_dev;
8a4eb573 5235 bool deliver_exact = false;
1da177e4 5236 int ret = NET_RX_DROP;
252e3346 5237 __be16 type;
1da177e4 5238
588f0330 5239 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5240
cf66ba58 5241 trace_netif_receive_skb(skb);
9b22ea56 5242
cc9bd5ce 5243 orig_dev = skb->dev;
8f903c70 5244
c1d2bbe1 5245 skb_reset_network_header(skb);
fda55eca
ED
5246 if (!skb_transport_header_was_set(skb))
5247 skb_reset_transport_header(skb);
0b5c9db1 5248 skb_reset_mac_len(skb);
1da177e4
LT
5249
5250 pt_prev = NULL;
5251
63d8ea7f 5252another_round:
b6858177 5253 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5254
5255 __this_cpu_inc(softnet_data.processed);
5256
458bf2f2
SH
5257 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5258 int ret2;
5259
2b4cd14f 5260 migrate_disable();
458bf2f2 5261 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
2b4cd14f 5262 migrate_enable();
458bf2f2 5263
c0bbbdc3
BS
5264 if (ret2 != XDP_PASS) {
5265 ret = NET_RX_DROP;
5266 goto out;
5267 }
458bf2f2
SH
5268 }
5269
324cefaf 5270 if (eth_type_vlan(skb->protocol)) {
0d5501c1 5271 skb = skb_vlan_untag(skb);
bcc6d479 5272 if (unlikely(!skb))
2c17d27c 5273 goto out;
bcc6d479
JP
5274 }
5275
e7246e12
WB
5276 if (skb_skip_tc_classify(skb))
5277 goto skip_classify;
1da177e4 5278
9754e293 5279 if (pfmemalloc)
b4b9e355
MG
5280 goto skip_taps;
5281
1da177e4 5282 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5283 if (pt_prev)
5284 ret = deliver_skb(skb, pt_prev, orig_dev);
5285 pt_prev = ptype;
5286 }
5287
5288 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5289 if (pt_prev)
5290 ret = deliver_skb(skb, pt_prev, orig_dev);
5291 pt_prev = ptype;
1da177e4
LT
5292 }
5293
b4b9e355 5294skip_taps:
1cf51900 5295#ifdef CONFIG_NET_INGRESS
aabf6772 5296 if (static_branch_unlikely(&ingress_needed_key)) {
9aa1206e
DB
5297 bool another = false;
5298
5299 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5300 &another);
5301 if (another)
5302 goto another_round;
4577139b 5303 if (!skb)
2c17d27c 5304 goto out;
e687ad60
PN
5305
5306 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5307 goto out;
4577139b 5308 }
1cf51900 5309#endif
2c64605b 5310 skb_reset_redirect(skb);
e7246e12 5311skip_classify:
9754e293 5312 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5313 goto drop;
5314
df8a39de 5315 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5316 if (pt_prev) {
5317 ret = deliver_skb(skb, pt_prev, orig_dev);
5318 pt_prev = NULL;
5319 }
48cc32d3 5320 if (vlan_do_receive(&skb))
2425717b
JF
5321 goto another_round;
5322 else if (unlikely(!skb))
2c17d27c 5323 goto out;
2425717b
JF
5324 }
5325
48cc32d3 5326 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5327 if (rx_handler) {
5328 if (pt_prev) {
5329 ret = deliver_skb(skb, pt_prev, orig_dev);
5330 pt_prev = NULL;
5331 }
8a4eb573
JP
5332 switch (rx_handler(&skb)) {
5333 case RX_HANDLER_CONSUMED:
3bc1b1ad 5334 ret = NET_RX_SUCCESS;
2c17d27c 5335 goto out;
8a4eb573 5336 case RX_HANDLER_ANOTHER:
63d8ea7f 5337 goto another_round;
8a4eb573
JP
5338 case RX_HANDLER_EXACT:
5339 deliver_exact = true;
b1866bff 5340 break;
8a4eb573
JP
5341 case RX_HANDLER_PASS:
5342 break;
5343 default:
5344 BUG();
5345 }
ab95bfe0 5346 }
1da177e4 5347
b14a9fc4 5348 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
36b2f61a
GV
5349check_vlan_id:
5350 if (skb_vlan_tag_get_id(skb)) {
5351 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5352 * find vlan device.
5353 */
d4b812de 5354 skb->pkt_type = PACKET_OTHERHOST;
324cefaf 5355 } else if (eth_type_vlan(skb->protocol)) {
36b2f61a
GV
5356 /* Outer header is 802.1P with vlan 0, inner header is
5357 * 802.1Q or 802.1AD and vlan_do_receive() above could
5358 * not find vlan dev for vlan id 0.
5359 */
5360 __vlan_hwaccel_clear_tag(skb);
5361 skb = skb_vlan_untag(skb);
5362 if (unlikely(!skb))
5363 goto out;
5364 if (vlan_do_receive(&skb))
5365 /* After stripping off 802.1P header with vlan 0
5366 * vlan dev is found for inner header.
5367 */
5368 goto another_round;
5369 else if (unlikely(!skb))
5370 goto out;
5371 else
5372 /* We have stripped outer 802.1P vlan 0 header.
5373 * But could not find vlan dev.
5374 * check again for vlan id to set OTHERHOST.
5375 */
5376 goto check_vlan_id;
5377 }
d4b812de
ED
5378 /* Note: we might in the future use prio bits
5379 * and set skb->priority like in vlan_do_receive()
5380 * For the time being, just ignore Priority Code Point
5381 */
b1817524 5382 __vlan_hwaccel_clear_tag(skb);
d4b812de 5383 }
48cc32d3 5384
7866a621
SN
5385 type = skb->protocol;
5386
63d8ea7f 5387 /* deliver only exact match when indicated */
7866a621
SN
5388 if (likely(!deliver_exact)) {
5389 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5390 &ptype_base[ntohs(type) &
5391 PTYPE_HASH_MASK]);
5392 }
1f3c8804 5393
7866a621
SN
5394 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5395 &orig_dev->ptype_specific);
5396
5397 if (unlikely(skb->dev != orig_dev)) {
5398 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5399 &skb->dev->ptype_specific);
1da177e4
LT
5400 }
5401
5402 if (pt_prev) {
1f8b977a 5403 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5404 goto drop;
88eb1944 5405 *ppt_prev = pt_prev;
1da177e4 5406 } else {
b4b9e355 5407drop:
6e7333d3
JW
5408 if (!deliver_exact)
5409 atomic_long_inc(&skb->dev->rx_dropped);
5410 else
5411 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5412 kfree_skb(skb);
5413 /* Jamal, now you will not able to escape explaining
5414 * me how you were going to use this. :-)
5415 */
5416 ret = NET_RX_DROP;
5417 }
5418
2c17d27c 5419out:
c0bbbdc3
BS
5420 /* The invariant here is that if *ppt_prev is not NULL
5421 * then skb should also be non-NULL.
5422 *
5423 * Apparently *ppt_prev assignment above holds this invariant due to
5424 * skb dereferencing near it.
5425 */
5426 *pskb = skb;
9754e293
DM
5427 return ret;
5428}
5429
88eb1944
EC
5430static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5431{
5432 struct net_device *orig_dev = skb->dev;
5433 struct packet_type *pt_prev = NULL;
5434 int ret;
5435
c0bbbdc3 5436 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
88eb1944 5437 if (pt_prev)
f5737cba
PA
5438 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5439 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5440 return ret;
5441}
5442
1c601d82
JDB
5443/**
5444 * netif_receive_skb_core - special purpose version of netif_receive_skb
5445 * @skb: buffer to process
5446 *
5447 * More direct receive version of netif_receive_skb(). It should
5448 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5449 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5450 *
5451 * This function may only be called from softirq context and interrupts
5452 * should be enabled.
5453 *
5454 * Return values (usually ignored):
5455 * NET_RX_SUCCESS: no congestion
5456 * NET_RX_DROP: packet was dropped
5457 */
5458int netif_receive_skb_core(struct sk_buff *skb)
5459{
5460 int ret;
5461
5462 rcu_read_lock();
88eb1944 5463 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5464 rcu_read_unlock();
5465
5466 return ret;
5467}
5468EXPORT_SYMBOL(netif_receive_skb_core);
5469
88eb1944
EC
5470static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5471 struct packet_type *pt_prev,
5472 struct net_device *orig_dev)
4ce0017a
EC
5473{
5474 struct sk_buff *skb, *next;
5475
88eb1944
EC
5476 if (!pt_prev)
5477 return;
5478 if (list_empty(head))
5479 return;
17266ee9 5480 if (pt_prev->list_func != NULL)
fdf71426
PA
5481 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5482 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5483 else
9a5a90d1
AL
5484 list_for_each_entry_safe(skb, next, head, list) {
5485 skb_list_del_init(skb);
fdf71426 5486 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5487 }
88eb1944
EC
5488}
5489
5490static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5491{
5492 /* Fast-path assumptions:
5493 * - There is no RX handler.
5494 * - Only one packet_type matches.
5495 * If either of these fails, we will end up doing some per-packet
5496 * processing in-line, then handling the 'last ptype' for the whole
5497 * sublist. This can't cause out-of-order delivery to any single ptype,
5498 * because the 'last ptype' must be constant across the sublist, and all
5499 * other ptypes are handled per-packet.
5500 */
5501 /* Current (common) ptype of sublist */
5502 struct packet_type *pt_curr = NULL;
5503 /* Current (common) orig_dev of sublist */
5504 struct net_device *od_curr = NULL;
5505 struct list_head sublist;
5506 struct sk_buff *skb, *next;
5507
9af86f93 5508 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5509 list_for_each_entry_safe(skb, next, head, list) {
5510 struct net_device *orig_dev = skb->dev;
5511 struct packet_type *pt_prev = NULL;
5512
22f6bbb7 5513 skb_list_del_init(skb);
c0bbbdc3 5514 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
9af86f93
EC
5515 if (!pt_prev)
5516 continue;
88eb1944
EC
5517 if (pt_curr != pt_prev || od_curr != orig_dev) {
5518 /* dispatch old sublist */
88eb1944
EC
5519 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5520 /* start new sublist */
9af86f93 5521 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5522 pt_curr = pt_prev;
5523 od_curr = orig_dev;
5524 }
9af86f93 5525 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5526 }
5527
5528 /* dispatch final sublist */
9af86f93 5529 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5530}
5531
9754e293
DM
5532static int __netif_receive_skb(struct sk_buff *skb)
5533{
5534 int ret;
5535
5536 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5537 unsigned int noreclaim_flag;
9754e293
DM
5538
5539 /*
5540 * PFMEMALLOC skbs are special, they should
5541 * - be delivered to SOCK_MEMALLOC sockets only
5542 * - stay away from userspace
5543 * - have bounded memory usage
5544 *
5545 * Use PF_MEMALLOC as this saves us from propagating the allocation
5546 * context down to all allocation sites.
5547 */
f1083048 5548 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5549 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5550 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5551 } else
88eb1944 5552 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5553
1da177e4
LT
5554 return ret;
5555}
0a9627f2 5556
4ce0017a
EC
5557static void __netif_receive_skb_list(struct list_head *head)
5558{
5559 unsigned long noreclaim_flag = 0;
5560 struct sk_buff *skb, *next;
5561 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5562
5563 list_for_each_entry_safe(skb, next, head, list) {
5564 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5565 struct list_head sublist;
5566
5567 /* Handle the previous sublist */
5568 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5569 if (!list_empty(&sublist))
5570 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5571 pfmemalloc = !pfmemalloc;
5572 /* See comments in __netif_receive_skb */
5573 if (pfmemalloc)
5574 noreclaim_flag = memalloc_noreclaim_save();
5575 else
5576 memalloc_noreclaim_restore(noreclaim_flag);
5577 }
5578 }
5579 /* Handle the remaining sublist */
b9f463d6
EC
5580 if (!list_empty(head))
5581 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5582 /* Restore pflags */
5583 if (pfmemalloc)
5584 memalloc_noreclaim_restore(noreclaim_flag);
5585}
5586
f4e63525 5587static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5588{
58038695 5589 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5590 struct bpf_prog *new = xdp->prog;
5591 int ret = 0;
5592
5593 switch (xdp->command) {
58038695 5594 case XDP_SETUP_PROG:
b5cdae32
DM
5595 rcu_assign_pointer(dev->xdp_prog, new);
5596 if (old)
5597 bpf_prog_put(old);
5598
5599 if (old && !new) {
02786475 5600 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5601 } else if (new && !old) {
02786475 5602 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5603 dev_disable_lro(dev);
56f5aa77 5604 dev_disable_gro_hw(dev);
b5cdae32
DM
5605 }
5606 break;
b5cdae32 5607
b5cdae32
DM
5608 default:
5609 ret = -EINVAL;
5610 break;
5611 }
5612
5613 return ret;
5614}
5615
ae78dbfa 5616static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5617{
2c17d27c
JA
5618 int ret;
5619
588f0330 5620 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5621
c1f19b51
RC
5622 if (skb_defer_rx_timestamp(skb))
5623 return NET_RX_SUCCESS;
5624
bbbe211c 5625 rcu_read_lock();
df334545 5626#ifdef CONFIG_RPS
dc05360f 5627 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5628 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5629 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5630
3b098e2d
ED
5631 if (cpu >= 0) {
5632 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5633 rcu_read_unlock();
adc9300e 5634 return ret;
3b098e2d 5635 }
fec5e652 5636 }
1e94d72f 5637#endif
2c17d27c
JA
5638 ret = __netif_receive_skb(skb);
5639 rcu_read_unlock();
5640 return ret;
0a9627f2 5641}
ae78dbfa 5642
7da517a3
EC
5643static void netif_receive_skb_list_internal(struct list_head *head)
5644{
7da517a3 5645 struct sk_buff *skb, *next;
8c057efa 5646 struct list_head sublist;
7da517a3 5647
8c057efa 5648 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5649 list_for_each_entry_safe(skb, next, head, list) {
5650 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5651 skb_list_del_init(skb);
8c057efa
EC
5652 if (!skb_defer_rx_timestamp(skb))
5653 list_add_tail(&skb->list, &sublist);
7da517a3 5654 }
8c057efa 5655 list_splice_init(&sublist, head);
7da517a3 5656
7da517a3
EC
5657 rcu_read_lock();
5658#ifdef CONFIG_RPS
dc05360f 5659 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5660 list_for_each_entry_safe(skb, next, head, list) {
5661 struct rps_dev_flow voidflow, *rflow = &voidflow;
5662 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5663
5664 if (cpu >= 0) {
8c057efa 5665 /* Will be handled, remove from list */
22f6bbb7 5666 skb_list_del_init(skb);
8c057efa 5667 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5668 }
5669 }
5670 }
5671#endif
5672 __netif_receive_skb_list(head);
5673 rcu_read_unlock();
5674}
5675
ae78dbfa
BH
5676/**
5677 * netif_receive_skb - process receive buffer from network
5678 * @skb: buffer to process
5679 *
5680 * netif_receive_skb() is the main receive data processing function.
5681 * It always succeeds. The buffer may be dropped during processing
5682 * for congestion control or by the protocol layers.
5683 *
5684 * This function may only be called from softirq context and interrupts
5685 * should be enabled.
5686 *
5687 * Return values (usually ignored):
5688 * NET_RX_SUCCESS: no congestion
5689 * NET_RX_DROP: packet was dropped
5690 */
04eb4489 5691int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5692{
b0e3f1bd
GB
5693 int ret;
5694
ae78dbfa
BH
5695 trace_netif_receive_skb_entry(skb);
5696
b0e3f1bd
GB
5697 ret = netif_receive_skb_internal(skb);
5698 trace_netif_receive_skb_exit(ret);
5699
5700 return ret;
ae78dbfa 5701}
04eb4489 5702EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5703
f6ad8c1b
EC
5704/**
5705 * netif_receive_skb_list - process many receive buffers from network
5706 * @head: list of skbs to process.
5707 *
7da517a3
EC
5708 * Since return value of netif_receive_skb() is normally ignored, and
5709 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5710 *
5711 * This function may only be called from softirq context and interrupts
5712 * should be enabled.
5713 */
5714void netif_receive_skb_list(struct list_head *head)
5715{
7da517a3 5716 struct sk_buff *skb;
f6ad8c1b 5717
b9f463d6
EC
5718 if (list_empty(head))
5719 return;
b0e3f1bd
GB
5720 if (trace_netif_receive_skb_list_entry_enabled()) {
5721 list_for_each_entry(skb, head, list)
5722 trace_netif_receive_skb_list_entry(skb);
5723 }
7da517a3 5724 netif_receive_skb_list_internal(head);
b0e3f1bd 5725 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5726}
5727EXPORT_SYMBOL(netif_receive_skb_list);
5728
ce1e2a77 5729static DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5730
5731/* Network device is going away, flush any packets still pending */
5732static void flush_backlog(struct work_struct *work)
6e583ce5 5733{
6e583ce5 5734 struct sk_buff *skb, *tmp;
145dd5f9
PA
5735 struct softnet_data *sd;
5736
5737 local_bh_disable();
5738 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5739
145dd5f9 5740 local_irq_disable();
e36fa2f7 5741 rps_lock(sd);
6e7676c1 5742 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5743 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5744 __skb_unlink(skb, &sd->input_pkt_queue);
7df5cb75 5745 dev_kfree_skb_irq(skb);
76cc8b13 5746 input_queue_head_incr(sd);
6e583ce5 5747 }
6e7676c1 5748 }
e36fa2f7 5749 rps_unlock(sd);
145dd5f9 5750 local_irq_enable();
6e7676c1
CG
5751
5752 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5753 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5754 __skb_unlink(skb, &sd->process_queue);
5755 kfree_skb(skb);
76cc8b13 5756 input_queue_head_incr(sd);
6e7676c1
CG
5757 }
5758 }
145dd5f9
PA
5759 local_bh_enable();
5760}
5761
2de79ee2
PA
5762static bool flush_required(int cpu)
5763{
5764#if IS_ENABLED(CONFIG_RPS)
5765 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5766 bool do_flush;
5767
5768 local_irq_disable();
5769 rps_lock(sd);
5770
5771 /* as insertion into process_queue happens with the rps lock held,
5772 * process_queue access may race only with dequeue
5773 */
5774 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5775 !skb_queue_empty_lockless(&sd->process_queue);
5776 rps_unlock(sd);
5777 local_irq_enable();
5778
5779 return do_flush;
5780#endif
5781 /* without RPS we can't safely check input_pkt_queue: during a
5782 * concurrent remote skb_queue_splice() we can detect as empty both
5783 * input_pkt_queue and process_queue even if the latter could end-up
5784 * containing a lot of packets.
5785 */
5786 return true;
5787}
5788
41852497 5789static void flush_all_backlogs(void)
145dd5f9 5790{
2de79ee2 5791 static cpumask_t flush_cpus;
145dd5f9
PA
5792 unsigned int cpu;
5793
2de79ee2
PA
5794 /* since we are under rtnl lock protection we can use static data
5795 * for the cpumask and avoid allocating on stack the possibly
5796 * large mask
5797 */
5798 ASSERT_RTNL();
5799
372bbdd5 5800 cpus_read_lock();
145dd5f9 5801
2de79ee2
PA
5802 cpumask_clear(&flush_cpus);
5803 for_each_online_cpu(cpu) {
5804 if (flush_required(cpu)) {
5805 queue_work_on(cpu, system_highpri_wq,
5806 per_cpu_ptr(&flush_works, cpu));
5807 cpumask_set_cpu(cpu, &flush_cpus);
5808 }
5809 }
145dd5f9 5810
2de79ee2 5811 /* we can have in flight packet[s] on the cpus we are not flushing,
0cbe1e57 5812 * synchronize_net() in unregister_netdevice_many() will take care of
2de79ee2
PA
5813 * them
5814 */
5815 for_each_cpu(cpu, &flush_cpus)
41852497 5816 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9 5817
372bbdd5 5818 cpus_read_unlock();
6e583ce5
SH
5819}
5820
c8079432
MM
5821/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5822static void gro_normal_list(struct napi_struct *napi)
5823{
5824 if (!napi->rx_count)
5825 return;
5826 netif_receive_skb_list_internal(&napi->rx_list);
5827 INIT_LIST_HEAD(&napi->rx_list);
5828 napi->rx_count = 0;
5829}
5830
5831/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5832 * pass the whole batch up to the stack.
5833 */
8dc1c444 5834static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
c8079432
MM
5835{
5836 list_add_tail(&skb->list, &napi->rx_list);
8dc1c444
ED
5837 napi->rx_count += segs;
5838 if (napi->rx_count >= gro_normal_batch)
c8079432
MM
5839 gro_normal_list(napi);
5840}
5841
c8079432 5842static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5843{
22061d80 5844 struct packet_offload *ptype;
d565b0a1 5845 __be16 type = skb->protocol;
22061d80 5846 struct list_head *head = &offload_base;
d565b0a1
HX
5847 int err = -ENOENT;
5848
c3c7c254
ED
5849 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5850
fc59f9a3
HX
5851 if (NAPI_GRO_CB(skb)->count == 1) {
5852 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5853 goto out;
fc59f9a3 5854 }
d565b0a1
HX
5855
5856 rcu_read_lock();
5857 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5858 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5859 continue;
5860
aaa5d90b
PA
5861 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5862 ipv6_gro_complete, inet_gro_complete,
5863 skb, 0);
d565b0a1
HX
5864 break;
5865 }
5866 rcu_read_unlock();
5867
5868 if (err) {
5869 WARN_ON(&ptype->list == head);
5870 kfree_skb(skb);
5871 return NET_RX_SUCCESS;
5872 }
5873
5874out:
8dc1c444 5875 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
c8079432 5876 return NET_RX_SUCCESS;
d565b0a1
HX
5877}
5878
6312fe77 5879static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5880 bool flush_old)
d565b0a1 5881{
6312fe77 5882 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5883 struct sk_buff *skb, *p;
2e71a6f8 5884
07d78363 5885 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5886 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5887 return;
992cba7e 5888 skb_list_del_init(skb);
c8079432 5889 napi_gro_complete(napi, skb);
6312fe77 5890 napi->gro_hash[index].count--;
d565b0a1 5891 }
d9f37d01
LR
5892
5893 if (!napi->gro_hash[index].count)
5894 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5895}
07d78363 5896
6312fe77 5897/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5898 * youngest packets at the head of it.
5899 * Complete skbs in reverse order to reduce latencies.
5900 */
5901void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5902{
42519ede
ED
5903 unsigned long bitmask = napi->gro_bitmask;
5904 unsigned int i, base = ~0U;
07d78363 5905
42519ede
ED
5906 while ((i = ffs(bitmask)) != 0) {
5907 bitmask >>= i;
5908 base += i;
5909 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5910 }
07d78363 5911}
86cac58b 5912EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5913
0ccf4d50
AL
5914static void gro_list_prepare(const struct list_head *head,
5915 const struct sk_buff *skb)
89c5fa33 5916{
89c5fa33 5917 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5918 u32 hash = skb_get_hash_raw(skb);
d4546c25 5919 struct sk_buff *p;
89c5fa33 5920
07d78363 5921 list_for_each_entry(p, head, list) {
89c5fa33
ED
5922 unsigned long diffs;
5923
0b4cec8c
TH
5924 NAPI_GRO_CB(p)->flush = 0;
5925
5926 if (hash != skb_get_hash_raw(p)) {
5927 NAPI_GRO_CB(p)->same_flow = 0;
5928 continue;
5929 }
5930
89c5fa33 5931 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5932 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5933 if (skb_vlan_tag_present(p))
fc5141cb 5934 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
de8f3a83 5935 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5936 if (maclen == ETH_HLEN)
5937 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5938 skb_mac_header(skb));
89c5fa33
ED
5939 else if (!diffs)
5940 diffs = memcmp(skb_mac_header(p),
a50e233c 5941 skb_mac_header(skb),
89c5fa33 5942 maclen);
8550ff8d 5943
a432934a 5944 /* in most common scenarions 'slow_gro' is 0
9efb4b5b
PA
5945 * otherwise we are already on some slower paths
5946 * either skip all the infrequent tests altogether or
5947 * avoid trying too hard to skip each of them individually
5948 */
5949 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5950#if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5951 struct tc_skb_ext *skb_ext;
5952 struct tc_skb_ext *p_ext;
5953#endif
5954
5e10da53 5955 diffs |= p->sk != skb->sk;
9efb4b5b
PA
5956 diffs |= skb_metadata_dst_cmp(p, skb);
5957 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5958
9615fe36 5959#if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
9efb4b5b
PA
5960 skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5961 p_ext = skb_ext_find(p, TC_SKB_EXT);
8550ff8d
PB
5962
5963 diffs |= (!!p_ext) ^ (!!skb_ext);
5964 if (!diffs && unlikely(skb_ext))
5965 diffs |= p_ext->chain ^ skb_ext->chain;
9615fe36 5966#endif
9efb4b5b 5967 }
8550ff8d 5968
89c5fa33 5969 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
5970 }
5971}
5972
7ad18ff6 5973static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
299603e8
JC
5974{
5975 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5976 const skb_frag_t *frag0 = &pinfo->frags[0];
5977
5978 NAPI_GRO_CB(skb)->data_offset = 0;
5979 NAPI_GRO_CB(skb)->frag0 = NULL;
5980 NAPI_GRO_CB(skb)->frag0_len = 0;
5981
8aef998d 5982 if (!skb_headlen(skb) && pinfo->nr_frags &&
38ec4944 5983 !PageHighMem(skb_frag_page(frag0)) &&
7ad18ff6 5984 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
299603e8 5985 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5986 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5987 skb_frag_size(frag0),
5988 skb->end - skb->tail);
89c5fa33
ED
5989 }
5990}
5991
a50e233c
ED
5992static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5993{
5994 struct skb_shared_info *pinfo = skb_shinfo(skb);
5995
5996 BUG_ON(skb->end - skb->tail < grow);
5997
5998 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5999
6000 skb->data_len -= grow;
6001 skb->tail += grow;
6002
b54c9d5b 6003 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
6004 skb_frag_size_sub(&pinfo->frags[0], grow);
6005
6006 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6007 skb_frag_unref(skb, 0);
6008 memmove(pinfo->frags, pinfo->frags + 1,
6009 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6010 }
6011}
6012
c8079432 6013static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 6014{
6312fe77 6015 struct sk_buff *oldest;
07d78363 6016
6312fe77 6017 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 6018
6312fe77 6019 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
6020 * impossible.
6021 */
6022 if (WARN_ON_ONCE(!oldest))
6023 return;
6024
d9f37d01
LR
6025 /* Do not adjust napi->gro_hash[].count, caller is adding a new
6026 * SKB to the chain.
07d78363 6027 */
ece23711 6028 skb_list_del_init(oldest);
c8079432 6029 napi_gro_complete(napi, oldest);
07d78363
DM
6030}
6031
bb728820 6032static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 6033{
d0eed5c3
AL
6034 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6035 struct gro_list *gro_list = &napi->gro_hash[bucket];
d4546c25 6036 struct list_head *head = &offload_base;
22061d80 6037 struct packet_offload *ptype;
d565b0a1 6038 __be16 type = skb->protocol;
d4546c25 6039 struct sk_buff *pp = NULL;
5b252f0c 6040 enum gro_result ret;
d4546c25 6041 int same_flow;
a50e233c 6042 int grow;
d565b0a1 6043
b5cdae32 6044 if (netif_elide_gro(skb->dev))
d565b0a1
HX
6045 goto normal;
6046
9dc2c313 6047 gro_list_prepare(&gro_list->list, skb);
89c5fa33 6048
d565b0a1
HX
6049 rcu_read_lock();
6050 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 6051 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
6052 continue;
6053
86911732 6054 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 6055 skb_reset_mac_len(skb);
d565b0a1 6056 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 6057 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 6058 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 6059 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 6060 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 6061 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 6062 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 6063 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 6064
662880f4
TH
6065 /* Setup for GRO checksum validation */
6066 switch (skb->ip_summed) {
6067 case CHECKSUM_COMPLETE:
6068 NAPI_GRO_CB(skb)->csum = skb->csum;
6069 NAPI_GRO_CB(skb)->csum_valid = 1;
6070 NAPI_GRO_CB(skb)->csum_cnt = 0;
6071 break;
6072 case CHECKSUM_UNNECESSARY:
6073 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6074 NAPI_GRO_CB(skb)->csum_valid = 0;
6075 break;
6076 default:
6077 NAPI_GRO_CB(skb)->csum_cnt = 0;
6078 NAPI_GRO_CB(skb)->csum_valid = 0;
6079 }
d565b0a1 6080
aaa5d90b
PA
6081 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6082 ipv6_gro_receive, inet_gro_receive,
9dc2c313 6083 &gro_list->list, skb);
d565b0a1
HX
6084 break;
6085 }
6086 rcu_read_unlock();
6087
6088 if (&ptype->list == head)
6089 goto normal;
6090
45586c70 6091 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
6092 ret = GRO_CONSUMED;
6093 goto ok;
6094 }
6095
0da2afd5 6096 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 6097 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 6098
d565b0a1 6099 if (pp) {
992cba7e 6100 skb_list_del_init(pp);
c8079432 6101 napi_gro_complete(napi, pp);
9dc2c313 6102 gro_list->count--;
d565b0a1
HX
6103 }
6104
0da2afd5 6105 if (same_flow)
d565b0a1
HX
6106 goto ok;
6107
600adc18 6108 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 6109 goto normal;
d565b0a1 6110
9dc2c313
AL
6111 if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6112 gro_flush_oldest(napi, &gro_list->list);
6113 else
6114 gro_list->count++;
6115
d565b0a1 6116 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 6117 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 6118 NAPI_GRO_CB(skb)->last = skb;
86911732 6119 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
9dc2c313 6120 list_add(&skb->list, &gro_list->list);
5d0d9be8 6121 ret = GRO_HELD;
d565b0a1 6122
ad0f9904 6123pull:
a50e233c
ED
6124 grow = skb_gro_offset(skb) - skb_headlen(skb);
6125 if (grow > 0)
6126 gro_pull_from_frag0(skb, grow);
d565b0a1 6127ok:
9dc2c313 6128 if (gro_list->count) {
d0eed5c3
AL
6129 if (!test_bit(bucket, &napi->gro_bitmask))
6130 __set_bit(bucket, &napi->gro_bitmask);
6131 } else if (test_bit(bucket, &napi->gro_bitmask)) {
6132 __clear_bit(bucket, &napi->gro_bitmask);
d9f37d01
LR
6133 }
6134
5d0d9be8 6135 return ret;
d565b0a1
HX
6136
6137normal:
ad0f9904
HX
6138 ret = GRO_NORMAL;
6139 goto pull;
5d38a079 6140}
96e93eab 6141
bf5a755f
JC
6142struct packet_offload *gro_find_receive_by_type(__be16 type)
6143{
6144 struct list_head *offload_head = &offload_base;
6145 struct packet_offload *ptype;
6146
6147 list_for_each_entry_rcu(ptype, offload_head, list) {
6148 if (ptype->type != type || !ptype->callbacks.gro_receive)
6149 continue;
6150 return ptype;
6151 }
6152 return NULL;
6153}
e27a2f83 6154EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
6155
6156struct packet_offload *gro_find_complete_by_type(__be16 type)
6157{
6158 struct list_head *offload_head = &offload_base;
6159 struct packet_offload *ptype;
6160
6161 list_for_each_entry_rcu(ptype, offload_head, list) {
6162 if (ptype->type != type || !ptype->callbacks.gro_complete)
6163 continue;
6164 return ptype;
6165 }
6166 return NULL;
6167}
e27a2f83 6168EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 6169
6570bc79
AL
6170static gro_result_t napi_skb_finish(struct napi_struct *napi,
6171 struct sk_buff *skb,
6172 gro_result_t ret)
5d38a079 6173{
5d0d9be8
HX
6174 switch (ret) {
6175 case GRO_NORMAL:
8dc1c444 6176 gro_normal_one(napi, skb, 1);
c7c4b3b6 6177 break;
5d38a079 6178
daa86548 6179 case GRO_MERGED_FREE:
e44699d2
MK
6180 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6181 napi_skb_free_stolen_head(skb);
28b34f01
AT
6182 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6183 __kfree_skb(skb);
e44699d2 6184 else
9243adfc 6185 __kfree_skb_defer(skb);
daa86548
ED
6186 break;
6187
5b252f0c
BH
6188 case GRO_HELD:
6189 case GRO_MERGED:
25393d3f 6190 case GRO_CONSUMED:
5b252f0c 6191 break;
5d38a079
HX
6192 }
6193
c7c4b3b6 6194 return ret;
5d0d9be8 6195}
5d0d9be8 6196
c7c4b3b6 6197gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 6198{
b0e3f1bd
GB
6199 gro_result_t ret;
6200
93f93a44 6201 skb_mark_napi_id(skb, napi);
ae78dbfa 6202 trace_napi_gro_receive_entry(skb);
86911732 6203
7ad18ff6 6204 skb_gro_reset_offset(skb, 0);
a50e233c 6205
6570bc79 6206 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
6207 trace_napi_gro_receive_exit(ret);
6208
6209 return ret;
d565b0a1
HX
6210}
6211EXPORT_SYMBOL(napi_gro_receive);
6212
d0c2b0d2 6213static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 6214{
93a35f59
ED
6215 if (unlikely(skb->pfmemalloc)) {
6216 consume_skb(skb);
6217 return;
6218 }
96e93eab 6219 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
6220 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6221 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 6222 __vlan_hwaccel_clear_tag(skb);
66c46d74 6223 skb->dev = napi->dev;
6d152e23 6224 skb->skb_iif = 0;
33d9a2c7
ED
6225
6226 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6227 skb->pkt_type = PACKET_HOST;
6228
c3caf119
JC
6229 skb->encapsulation = 0;
6230 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 6231 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
9efb4b5b 6232 if (unlikely(skb->slow_gro)) {
5e10da53 6233 skb_orphan(skb);
9efb4b5b
PA
6234 skb_ext_reset(skb);
6235 nf_reset_ct(skb);
6236 skb->slow_gro = 0;
6237 }
96e93eab
HX
6238
6239 napi->skb = skb;
6240}
96e93eab 6241
76620aaf 6242struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 6243{
5d38a079 6244 struct sk_buff *skb = napi->skb;
5d38a079
HX
6245
6246 if (!skb) {
fd11a83d 6247 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
6248 if (skb) {
6249 napi->skb = skb;
6250 skb_mark_napi_id(skb, napi);
6251 }
80595d59 6252 }
96e93eab
HX
6253 return skb;
6254}
76620aaf 6255EXPORT_SYMBOL(napi_get_frags);
96e93eab 6256
a50e233c
ED
6257static gro_result_t napi_frags_finish(struct napi_struct *napi,
6258 struct sk_buff *skb,
6259 gro_result_t ret)
96e93eab 6260{
5d0d9be8
HX
6261 switch (ret) {
6262 case GRO_NORMAL:
a50e233c
ED
6263 case GRO_HELD:
6264 __skb_push(skb, ETH_HLEN);
6265 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61 6266 if (ret == GRO_NORMAL)
8dc1c444 6267 gro_normal_one(napi, skb, 1);
86911732 6268 break;
5d38a079 6269
e44699d2
MK
6270 case GRO_MERGED_FREE:
6271 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6272 napi_skb_free_stolen_head(skb);
6273 else
6274 napi_reuse_skb(napi, skb);
6275 break;
6276
5b252f0c 6277 case GRO_MERGED:
25393d3f 6278 case GRO_CONSUMED:
5b252f0c 6279 break;
5d0d9be8 6280 }
5d38a079 6281
c7c4b3b6 6282 return ret;
5d38a079 6283}
5d0d9be8 6284
a50e233c
ED
6285/* Upper GRO stack assumes network header starts at gro_offset=0
6286 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6287 * We copy ethernet header into skb->data to have a common layout.
6288 */
4adb9c4a 6289static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
6290{
6291 struct sk_buff *skb = napi->skb;
a50e233c
ED
6292 const struct ethhdr *eth;
6293 unsigned int hlen = sizeof(*eth);
76620aaf
HX
6294
6295 napi->skb = NULL;
6296
a50e233c 6297 skb_reset_mac_header(skb);
7ad18ff6 6298 skb_gro_reset_offset(skb, hlen);
a50e233c 6299
a50e233c
ED
6300 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6301 eth = skb_gro_header_slow(skb, hlen, 0);
6302 if (unlikely(!eth)) {
4da46ceb
AC
6303 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6304 __func__, napi->dev->name);
a50e233c
ED
6305 napi_reuse_skb(napi, skb);
6306 return NULL;
6307 }
6308 } else {
a4270d67 6309 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6310 gro_pull_from_frag0(skb, hlen);
6311 NAPI_GRO_CB(skb)->frag0 += hlen;
6312 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6313 }
a50e233c
ED
6314 __skb_pull(skb, hlen);
6315
6316 /*
6317 * This works because the only protocols we care about don't require
6318 * special handling.
6319 * We'll fix it up properly in napi_frags_finish()
6320 */
6321 skb->protocol = eth->h_proto;
76620aaf 6322
76620aaf
HX
6323 return skb;
6324}
76620aaf 6325
c7c4b3b6 6326gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6327{
b0e3f1bd 6328 gro_result_t ret;
76620aaf 6329 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8 6330
ae78dbfa
BH
6331 trace_napi_gro_frags_entry(skb);
6332
b0e3f1bd
GB
6333 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6334 trace_napi_gro_frags_exit(ret);
6335
6336 return ret;
5d0d9be8 6337}
5d38a079
HX
6338EXPORT_SYMBOL(napi_gro_frags);
6339
573e8fca
TH
6340/* Compute the checksum from gro_offset and return the folded value
6341 * after adding in any pseudo checksum.
6342 */
6343__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6344{
6345 __wsum wsum;
6346 __sum16 sum;
6347
6348 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6349
6350 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6351 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6352 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6353 if (likely(!sum)) {
6354 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6355 !skb->csum_complete_sw)
7fe50ac8 6356 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6357 }
6358
6359 NAPI_GRO_CB(skb)->csum = wsum;
6360 NAPI_GRO_CB(skb)->csum_valid = 1;
6361
6362 return sum;
6363}
6364EXPORT_SYMBOL(__skb_gro_checksum_complete);
6365
773fc8f6 6366static void net_rps_send_ipi(struct softnet_data *remsd)
6367{
6368#ifdef CONFIG_RPS
6369 while (remsd) {
6370 struct softnet_data *next = remsd->rps_ipi_next;
6371
6372 if (cpu_online(remsd->cpu))
6373 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6374 remsd = next;
6375 }
6376#endif
6377}
6378
e326bed2 6379/*
855abcf0 6380 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6381 * Note: called with local irq disabled, but exits with local irq enabled.
6382 */
6383static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6384{
6385#ifdef CONFIG_RPS
6386 struct softnet_data *remsd = sd->rps_ipi_list;
6387
6388 if (remsd) {
6389 sd->rps_ipi_list = NULL;
6390
6391 local_irq_enable();
6392
6393 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6394 net_rps_send_ipi(remsd);
e326bed2
ED
6395 } else
6396#endif
6397 local_irq_enable();
6398}
6399
d75b1ade
ED
6400static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6401{
6402#ifdef CONFIG_RPS
6403 return sd->rps_ipi_list != NULL;
6404#else
6405 return false;
6406#endif
6407}
6408
bea3348e 6409static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6410{
eecfd7c4 6411 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6412 bool again = true;
6413 int work = 0;
1da177e4 6414
e326bed2
ED
6415 /* Check if we have pending ipi, its better to send them now,
6416 * not waiting net_rx_action() end.
6417 */
d75b1ade 6418 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6419 local_irq_disable();
6420 net_rps_action_and_irq_enable(sd);
6421 }
d75b1ade 6422
3d48b53f 6423 napi->weight = dev_rx_weight;
145dd5f9 6424 while (again) {
1da177e4 6425 struct sk_buff *skb;
6e7676c1
CG
6426
6427 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6428 rcu_read_lock();
6e7676c1 6429 __netif_receive_skb(skb);
2c17d27c 6430 rcu_read_unlock();
76cc8b13 6431 input_queue_head_incr(sd);
145dd5f9 6432 if (++work >= quota)
76cc8b13 6433 return work;
145dd5f9 6434
6e7676c1 6435 }
1da177e4 6436
145dd5f9 6437 local_irq_disable();
e36fa2f7 6438 rps_lock(sd);
11ef7a89 6439 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6440 /*
6441 * Inline a custom version of __napi_complete().
6442 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6443 * and NAPI_STATE_SCHED is the only possible flag set
6444 * on backlog.
6445 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6446 * and we dont need an smp_mb() memory barrier.
6447 */
eecfd7c4 6448 napi->state = 0;
145dd5f9
PA
6449 again = false;
6450 } else {
6451 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6452 &sd->process_queue);
bea3348e 6453 }
e36fa2f7 6454 rps_unlock(sd);
145dd5f9 6455 local_irq_enable();
6e7676c1 6456 }
1da177e4 6457
bea3348e
SH
6458 return work;
6459}
1da177e4 6460
bea3348e
SH
6461/**
6462 * __napi_schedule - schedule for receive
c4ea43c5 6463 * @n: entry to schedule
bea3348e 6464 *
bc9ad166
ED
6465 * The entry's receive function will be scheduled to run.
6466 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6467 */
b5606c2d 6468void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6469{
6470 unsigned long flags;
1da177e4 6471
bea3348e 6472 local_irq_save(flags);
903ceff7 6473 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6474 local_irq_restore(flags);
1da177e4 6475}
bea3348e
SH
6476EXPORT_SYMBOL(__napi_schedule);
6477
39e6c820
ED
6478/**
6479 * napi_schedule_prep - check if napi can be scheduled
6480 * @n: napi context
6481 *
6482 * Test if NAPI routine is already running, and if not mark
ee1a4c84 6483 * it as running. This is used as a condition variable to
39e6c820
ED
6484 * insure only one NAPI poll instance runs. We also make
6485 * sure there is no pending NAPI disable.
6486 */
6487bool napi_schedule_prep(struct napi_struct *n)
6488{
6489 unsigned long val, new;
6490
6491 do {
6492 val = READ_ONCE(n->state);
6493 if (unlikely(val & NAPIF_STATE_DISABLE))
6494 return false;
6495 new = val | NAPIF_STATE_SCHED;
6496
6497 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6498 * This was suggested by Alexander Duyck, as compiler
6499 * emits better code than :
6500 * if (val & NAPIF_STATE_SCHED)
6501 * new |= NAPIF_STATE_MISSED;
6502 */
6503 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6504 NAPIF_STATE_MISSED;
6505 } while (cmpxchg(&n->state, val, new) != val);
6506
6507 return !(val & NAPIF_STATE_SCHED);
6508}
6509EXPORT_SYMBOL(napi_schedule_prep);
6510
bc9ad166
ED
6511/**
6512 * __napi_schedule_irqoff - schedule for receive
6513 * @n: entry to schedule
6514 *
8380c81d
SAS
6515 * Variant of __napi_schedule() assuming hard irqs are masked.
6516 *
6517 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6518 * because the interrupt disabled assumption might not be true
6519 * due to force-threaded interrupts and spinlock substitution.
bc9ad166
ED
6520 */
6521void __napi_schedule_irqoff(struct napi_struct *n)
6522{
8380c81d
SAS
6523 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6524 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6525 else
6526 __napi_schedule(n);
bc9ad166
ED
6527}
6528EXPORT_SYMBOL(__napi_schedule_irqoff);
6529
364b6055 6530bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6531{
6f8b12d6
ED
6532 unsigned long flags, val, new, timeout = 0;
6533 bool ret = true;
d565b0a1
HX
6534
6535 /*
217f6974
ED
6536 * 1) Don't let napi dequeue from the cpu poll list
6537 * just in case its running on a different cpu.
6538 * 2) If we are busy polling, do nothing here, we have
6539 * the guarantee we will be called later.
d565b0a1 6540 */
217f6974
ED
6541 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6542 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6543 return false;
d565b0a1 6544
6f8b12d6
ED
6545 if (work_done) {
6546 if (n->gro_bitmask)
7e417a66
ED
6547 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6548 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
6549 }
6550 if (n->defer_hard_irqs_count > 0) {
6551 n->defer_hard_irqs_count--;
7e417a66 6552 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
6553 if (timeout)
6554 ret = false;
6555 }
6556 if (n->gro_bitmask) {
605108ac
PA
6557 /* When the NAPI instance uses a timeout and keeps postponing
6558 * it, we need to bound somehow the time packets are kept in
6559 * the GRO layer
6560 */
6561 napi_gro_flush(n, !!timeout);
3b47d303 6562 }
c8079432
MM
6563
6564 gro_normal_list(n);
6565
02c1602e 6566 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6567 /* If n->poll_list is not empty, we need to mask irqs */
6568 local_irq_save(flags);
02c1602e 6569 list_del_init(&n->poll_list);
d75b1ade
ED
6570 local_irq_restore(flags);
6571 }
39e6c820
ED
6572
6573 do {
6574 val = READ_ONCE(n->state);
6575
6576 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6577
7fd3253a 6578 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
cb038357 6579 NAPIF_STATE_SCHED_THREADED |
7fd3253a 6580 NAPIF_STATE_PREFER_BUSY_POLL);
39e6c820
ED
6581
6582 /* If STATE_MISSED was set, leave STATE_SCHED set,
6583 * because we will call napi->poll() one more time.
6584 * This C code was suggested by Alexander Duyck to help gcc.
6585 */
6586 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6587 NAPIF_STATE_SCHED;
6588 } while (cmpxchg(&n->state, val, new) != val);
6589
6590 if (unlikely(val & NAPIF_STATE_MISSED)) {
6591 __napi_schedule(n);
6592 return false;
6593 }
6594
6f8b12d6
ED
6595 if (timeout)
6596 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6597 HRTIMER_MODE_REL_PINNED);
6598 return ret;
d565b0a1 6599}
3b47d303 6600EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6601
af12fa6e 6602/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6603static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6604{
6605 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6606 struct napi_struct *napi;
6607
6608 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6609 if (napi->napi_id == napi_id)
6610 return napi;
6611
6612 return NULL;
6613}
02d62e86
ED
6614
6615#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6616
7fd3253a 6617static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
217f6974 6618{
7fd3253a
BT
6619 if (!skip_schedule) {
6620 gro_normal_list(napi);
6621 __napi_schedule(napi);
6622 return;
6623 }
217f6974 6624
7fd3253a
BT
6625 if (napi->gro_bitmask) {
6626 /* flush too old packets
6627 * If HZ < 1000, flush all packets.
6628 */
6629 napi_gro_flush(napi, HZ >= 1000);
6630 }
217f6974 6631
7fd3253a
BT
6632 gro_normal_list(napi);
6633 clear_bit(NAPI_STATE_SCHED, &napi->state);
6634}
6635
7c951caf
BT
6636static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6637 u16 budget)
217f6974 6638{
7fd3253a
BT
6639 bool skip_schedule = false;
6640 unsigned long timeout;
217f6974
ED
6641 int rc;
6642
39e6c820
ED
6643 /* Busy polling means there is a high chance device driver hard irq
6644 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6645 * set in napi_schedule_prep().
6646 * Since we are about to call napi->poll() once more, we can safely
6647 * clear NAPI_STATE_MISSED.
6648 *
6649 * Note: x86 could use a single "lock and ..." instruction
6650 * to perform these two clear_bit()
6651 */
6652 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6653 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6654
6655 local_bh_disable();
6656
7fd3253a
BT
6657 if (prefer_busy_poll) {
6658 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6659 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6660 if (napi->defer_hard_irqs_count && timeout) {
6661 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6662 skip_schedule = true;
6663 }
6664 }
6665
217f6974
ED
6666 /* All we really want here is to re-enable device interrupts.
6667 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6668 */
7c951caf 6669 rc = napi->poll(napi, budget);
323ebb61
EC
6670 /* We can't gro_normal_list() here, because napi->poll() might have
6671 * rearmed the napi (napi_complete_done()) in which case it could
6672 * already be running on another CPU.
6673 */
7c951caf 6674 trace_napi_poll(napi, rc, budget);
217f6974 6675 netpoll_poll_unlock(have_poll_lock);
7c951caf 6676 if (rc == budget)
7fd3253a 6677 __busy_poll_stop(napi, skip_schedule);
217f6974 6678 local_bh_enable();
217f6974
ED
6679}
6680
7db6b048
SS
6681void napi_busy_loop(unsigned int napi_id,
6682 bool (*loop_end)(void *, unsigned long),
7c951caf 6683 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
02d62e86 6684{
7db6b048 6685 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6686 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6687 void *have_poll_lock = NULL;
02d62e86 6688 struct napi_struct *napi;
217f6974
ED
6689
6690restart:
217f6974 6691 napi_poll = NULL;
02d62e86 6692
2a028ecb 6693 rcu_read_lock();
02d62e86 6694
545cd5e5 6695 napi = napi_by_id(napi_id);
02d62e86
ED
6696 if (!napi)
6697 goto out;
6698
217f6974
ED
6699 preempt_disable();
6700 for (;;) {
2b5cd0df
AD
6701 int work = 0;
6702
2a028ecb 6703 local_bh_disable();
217f6974
ED
6704 if (!napi_poll) {
6705 unsigned long val = READ_ONCE(napi->state);
6706
6707 /* If multiple threads are competing for this napi,
6708 * we avoid dirtying napi->state as much as we can.
6709 */
6710 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
7fd3253a
BT
6711 NAPIF_STATE_IN_BUSY_POLL)) {
6712 if (prefer_busy_poll)
6713 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6714 goto count;
7fd3253a 6715 }
217f6974
ED
6716 if (cmpxchg(&napi->state, val,
6717 val | NAPIF_STATE_IN_BUSY_POLL |
7fd3253a
BT
6718 NAPIF_STATE_SCHED) != val) {
6719 if (prefer_busy_poll)
6720 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6721 goto count;
7fd3253a 6722 }
217f6974
ED
6723 have_poll_lock = netpoll_poll_lock(napi);
6724 napi_poll = napi->poll;
6725 }
7c951caf
BT
6726 work = napi_poll(napi, budget);
6727 trace_napi_poll(napi, work, budget);
323ebb61 6728 gro_normal_list(napi);
217f6974 6729count:
2b5cd0df 6730 if (work > 0)
7db6b048 6731 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6732 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6733 local_bh_enable();
02d62e86 6734
7db6b048 6735 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6736 break;
02d62e86 6737
217f6974
ED
6738 if (unlikely(need_resched())) {
6739 if (napi_poll)
7c951caf 6740 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974
ED
6741 preempt_enable();
6742 rcu_read_unlock();
6743 cond_resched();
7db6b048 6744 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6745 return;
217f6974
ED
6746 goto restart;
6747 }
6cdf89b1 6748 cpu_relax();
217f6974
ED
6749 }
6750 if (napi_poll)
7c951caf 6751 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974 6752 preempt_enable();
02d62e86 6753out:
2a028ecb 6754 rcu_read_unlock();
02d62e86 6755}
7db6b048 6756EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6757
6758#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6759
149d6ad8 6760static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6761{
4d092dd2 6762 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
52bd2d62 6763 return;
af12fa6e 6764
52bd2d62 6765 spin_lock(&napi_hash_lock);
af12fa6e 6766
545cd5e5 6767 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6768 do {
545cd5e5
AD
6769 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6770 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6771 } while (napi_by_id(napi_gen_id));
6772 napi->napi_id = napi_gen_id;
af12fa6e 6773
52bd2d62
ED
6774 hlist_add_head_rcu(&napi->napi_hash_node,
6775 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6776
52bd2d62 6777 spin_unlock(&napi_hash_lock);
af12fa6e 6778}
af12fa6e
ET
6779
6780/* Warning : caller is responsible to make sure rcu grace period
6781 * is respected before freeing memory containing @napi
6782 */
5198d545 6783static void napi_hash_del(struct napi_struct *napi)
af12fa6e
ET
6784{
6785 spin_lock(&napi_hash_lock);
6786
4d092dd2 6787 hlist_del_init_rcu(&napi->napi_hash_node);
5198d545 6788
af12fa6e
ET
6789 spin_unlock(&napi_hash_lock);
6790}
af12fa6e 6791
3b47d303
ED
6792static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6793{
6794 struct napi_struct *napi;
6795
6796 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6797
6798 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6799 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6800 */
6f8b12d6 6801 if (!napi_disable_pending(napi) &&
7fd3253a
BT
6802 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6803 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
39e6c820 6804 __napi_schedule_irqoff(napi);
7fd3253a 6805 }
3b47d303
ED
6806
6807 return HRTIMER_NORESTART;
6808}
6809
7c4ec749 6810static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6811{
07d78363
DM
6812 int i;
6813
6312fe77
LR
6814 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6815 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6816 napi->gro_hash[i].count = 0;
6817 }
7c4ec749
DM
6818 napi->gro_bitmask = 0;
6819}
6820
5fdd2f0e
WW
6821int dev_set_threaded(struct net_device *dev, bool threaded)
6822{
6823 struct napi_struct *napi;
6824 int err = 0;
6825
6826 if (dev->threaded == threaded)
6827 return 0;
6828
6829 if (threaded) {
6830 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6831 if (!napi->thread) {
6832 err = napi_kthread_create(napi);
6833 if (err) {
6834 threaded = false;
6835 break;
6836 }
6837 }
6838 }
6839 }
6840
6841 dev->threaded = threaded;
6842
6843 /* Make sure kthread is created before THREADED bit
6844 * is set.
6845 */
6846 smp_mb__before_atomic();
6847
6848 /* Setting/unsetting threaded mode on a napi might not immediately
6849 * take effect, if the current napi instance is actively being
6850 * polled. In this case, the switch between threaded mode and
6851 * softirq mode will happen in the next round of napi_schedule().
6852 * This should not cause hiccups/stalls to the live traffic.
6853 */
6854 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6855 if (threaded)
6856 set_bit(NAPI_STATE_THREADED, &napi->state);
6857 else
6858 clear_bit(NAPI_STATE_THREADED, &napi->state);
6859 }
6860
6861 return err;
6862}
8f64860f 6863EXPORT_SYMBOL(dev_set_threaded);
5fdd2f0e 6864
7c4ec749
DM
6865void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6866 int (*poll)(struct napi_struct *, int), int weight)
6867{
4d092dd2
JK
6868 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6869 return;
6870
7c4ec749 6871 INIT_LIST_HEAD(&napi->poll_list);
4d092dd2 6872 INIT_HLIST_NODE(&napi->napi_hash_node);
7c4ec749
DM
6873 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6874 napi->timer.function = napi_watchdog;
6875 init_gro_hash(napi);
5d38a079 6876 napi->skb = NULL;
323ebb61
EC
6877 INIT_LIST_HEAD(&napi->rx_list);
6878 napi->rx_count = 0;
d565b0a1 6879 napi->poll = poll;
82dc3c63 6880 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6881 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6882 weight);
d565b0a1 6883 napi->weight = weight;
d565b0a1 6884 napi->dev = dev;
5d38a079 6885#ifdef CONFIG_NETPOLL
d565b0a1
HX
6886 napi->poll_owner = -1;
6887#endif
6888 set_bit(NAPI_STATE_SCHED, &napi->state);
96e97bc0
JK
6889 set_bit(NAPI_STATE_NPSVC, &napi->state);
6890 list_add_rcu(&napi->dev_list, &dev->napi_list);
93d05d4a 6891 napi_hash_add(napi);
29863d41
WW
6892 /* Create kthread for this napi if dev->threaded is set.
6893 * Clear dev->threaded if kthread creation failed so that
6894 * threaded mode will not be enabled in napi_enable().
6895 */
6896 if (dev->threaded && napi_kthread_create(napi))
6897 dev->threaded = 0;
d565b0a1
HX
6898}
6899EXPORT_SYMBOL(netif_napi_add);
6900
3b47d303
ED
6901void napi_disable(struct napi_struct *n)
6902{
6903 might_sleep();
6904 set_bit(NAPI_STATE_DISABLE, &n->state);
6905
6906 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6907 msleep(1);
2d8bff12
NH
6908 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6909 msleep(1);
3b47d303
ED
6910
6911 hrtimer_cancel(&n->timer);
6912
7fd3253a 6913 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
3b47d303 6914 clear_bit(NAPI_STATE_DISABLE, &n->state);
29863d41 6915 clear_bit(NAPI_STATE_THREADED, &n->state);
3b47d303
ED
6916}
6917EXPORT_SYMBOL(napi_disable);
6918
29863d41
WW
6919/**
6920 * napi_enable - enable NAPI scheduling
6921 * @n: NAPI context
6922 *
6923 * Resume NAPI from being scheduled on this context.
6924 * Must be paired with napi_disable.
6925 */
6926void napi_enable(struct napi_struct *n)
6927{
6928 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6929 smp_mb__before_atomic();
6930 clear_bit(NAPI_STATE_SCHED, &n->state);
6931 clear_bit(NAPI_STATE_NPSVC, &n->state);
6932 if (n->dev->threaded && n->thread)
6933 set_bit(NAPI_STATE_THREADED, &n->state);
6934}
6935EXPORT_SYMBOL(napi_enable);
6936
07d78363 6937static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6938{
07d78363 6939 int i;
d4546c25 6940
07d78363
DM
6941 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6942 struct sk_buff *skb, *n;
6943
6312fe77 6944 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6945 kfree_skb(skb);
6312fe77 6946 napi->gro_hash[i].count = 0;
07d78363 6947 }
d4546c25
DM
6948}
6949
93d05d4a 6950/* Must be called in process context */
5198d545 6951void __netif_napi_del(struct napi_struct *napi)
d565b0a1 6952{
4d092dd2
JK
6953 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6954 return;
6955
5198d545 6956 napi_hash_del(napi);
5251ef82 6957 list_del_rcu(&napi->dev_list);
76620aaf 6958 napi_free_frags(napi);
d565b0a1 6959
07d78363 6960 flush_gro_hash(napi);
d9f37d01 6961 napi->gro_bitmask = 0;
29863d41
WW
6962
6963 if (napi->thread) {
6964 kthread_stop(napi->thread);
6965 napi->thread = NULL;
6966 }
d565b0a1 6967}
5198d545 6968EXPORT_SYMBOL(__netif_napi_del);
d565b0a1 6969
898f8015 6970static int __napi_poll(struct napi_struct *n, bool *repoll)
726ce70e 6971{
726ce70e
HX
6972 int work, weight;
6973
726ce70e
HX
6974 weight = n->weight;
6975
6976 /* This NAPI_STATE_SCHED test is for avoiding a race
6977 * with netpoll's poll_napi(). Only the entity which
6978 * obtains the lock and sees NAPI_STATE_SCHED set will
6979 * actually make the ->poll() call. Therefore we avoid
6980 * accidentally calling ->poll() when NAPI is not scheduled.
6981 */
6982 work = 0;
6983 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6984 work = n->poll(n, weight);
1db19db7 6985 trace_napi_poll(n, work, weight);
726ce70e
HX
6986 }
6987
427d5838
ED
6988 if (unlikely(work > weight))
6989 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6990 n->poll, work, weight);
726ce70e
HX
6991
6992 if (likely(work < weight))
898f8015 6993 return work;
726ce70e
HX
6994
6995 /* Drivers must not modify the NAPI state if they
6996 * consume the entire weight. In such cases this code
6997 * still "owns" the NAPI instance and therefore can
6998 * move the instance around on the list at-will.
6999 */
7000 if (unlikely(napi_disable_pending(n))) {
7001 napi_complete(n);
898f8015 7002 return work;
726ce70e
HX
7003 }
7004
7fd3253a
BT
7005 /* The NAPI context has more processing work, but busy-polling
7006 * is preferred. Exit early.
7007 */
7008 if (napi_prefer_busy_poll(n)) {
7009 if (napi_complete_done(n, work)) {
7010 /* If timeout is not set, we need to make sure
7011 * that the NAPI is re-scheduled.
7012 */
7013 napi_schedule(n);
7014 }
898f8015 7015 return work;
7fd3253a
BT
7016 }
7017
d9f37d01 7018 if (n->gro_bitmask) {
726ce70e
HX
7019 /* flush too old packets
7020 * If HZ < 1000, flush all packets.
7021 */
7022 napi_gro_flush(n, HZ >= 1000);
7023 }
7024
c8079432
MM
7025 gro_normal_list(n);
7026
001ce546
HX
7027 /* Some drivers may have called napi_schedule
7028 * prior to exhausting their budget.
7029 */
7030 if (unlikely(!list_empty(&n->poll_list))) {
7031 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7032 n->dev ? n->dev->name : "backlog");
898f8015 7033 return work;
001ce546
HX
7034 }
7035
898f8015
FF
7036 *repoll = true;
7037
7038 return work;
7039}
7040
7041static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7042{
7043 bool do_repoll = false;
7044 void *have;
7045 int work;
7046
7047 list_del_init(&n->poll_list);
7048
7049 have = netpoll_poll_lock(n);
7050
7051 work = __napi_poll(n, &do_repoll);
7052
7053 if (do_repoll)
7054 list_add_tail(&n->poll_list, repoll);
726ce70e 7055
726ce70e
HX
7056 netpoll_poll_unlock(have);
7057
7058 return work;
7059}
7060
29863d41
WW
7061static int napi_thread_wait(struct napi_struct *napi)
7062{
cb038357
WW
7063 bool woken = false;
7064
29863d41
WW
7065 set_current_state(TASK_INTERRUPTIBLE);
7066
27f0ad71 7067 while (!kthread_should_stop()) {
cb038357
WW
7068 /* Testing SCHED_THREADED bit here to make sure the current
7069 * kthread owns this napi and could poll on this napi.
7070 * Testing SCHED bit is not enough because SCHED bit might be
7071 * set by some other busy poll thread or by napi_disable().
7072 */
7073 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
29863d41
WW
7074 WARN_ON(!list_empty(&napi->poll_list));
7075 __set_current_state(TASK_RUNNING);
7076 return 0;
7077 }
7078
7079 schedule();
cb038357
WW
7080 /* woken being true indicates this thread owns this napi. */
7081 woken = true;
29863d41
WW
7082 set_current_state(TASK_INTERRUPTIBLE);
7083 }
7084 __set_current_state(TASK_RUNNING);
27f0ad71 7085
29863d41
WW
7086 return -1;
7087}
7088
7089static int napi_threaded_poll(void *data)
7090{
7091 struct napi_struct *napi = data;
7092 void *have;
7093
7094 while (!napi_thread_wait(napi)) {
7095 for (;;) {
7096 bool repoll = false;
7097
7098 local_bh_disable();
7099
7100 have = netpoll_poll_lock(napi);
7101 __napi_poll(napi, &repoll);
7102 netpoll_poll_unlock(have);
7103
29863d41
WW
7104 local_bh_enable();
7105
7106 if (!repoll)
7107 break;
7108
7109 cond_resched();
7110 }
7111 }
7112 return 0;
7113}
7114
0766f788 7115static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 7116{
903ceff7 7117 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
7118 unsigned long time_limit = jiffies +
7119 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 7120 int budget = netdev_budget;
d75b1ade
ED
7121 LIST_HEAD(list);
7122 LIST_HEAD(repoll);
53fb95d3 7123
1da177e4 7124 local_irq_disable();
d75b1ade
ED
7125 list_splice_init(&sd->poll_list, &list);
7126 local_irq_enable();
1da177e4 7127
ceb8d5bf 7128 for (;;) {
bea3348e 7129 struct napi_struct *n;
1da177e4 7130
ceb8d5bf
HX
7131 if (list_empty(&list)) {
7132 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
fec6e49b 7133 return;
ceb8d5bf
HX
7134 break;
7135 }
7136
6bd373eb
HX
7137 n = list_first_entry(&list, struct napi_struct, poll_list);
7138 budget -= napi_poll(n, &repoll);
7139
d75b1ade 7140 /* If softirq window is exhausted then punt.
24f8b238
SH
7141 * Allow this to run for 2 jiffies since which will allow
7142 * an average latency of 1.5/HZ.
bea3348e 7143 */
ceb8d5bf
HX
7144 if (unlikely(budget <= 0 ||
7145 time_after_eq(jiffies, time_limit))) {
7146 sd->time_squeeze++;
7147 break;
7148 }
1da177e4 7149 }
d75b1ade 7150
d75b1ade
ED
7151 local_irq_disable();
7152
7153 list_splice_tail_init(&sd->poll_list, &list);
7154 list_splice_tail(&repoll, &list);
7155 list_splice(&list, &sd->poll_list);
7156 if (!list_empty(&sd->poll_list))
7157 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7158
e326bed2 7159 net_rps_action_and_irq_enable(sd);
1da177e4
LT
7160}
7161
aa9d8560 7162struct netdev_adjacent {
9ff162a8 7163 struct net_device *dev;
5d261913
VF
7164
7165 /* upper master flag, there can only be one master device per list */
9ff162a8 7166 bool master;
5d261913 7167
32b6d34f
TY
7168 /* lookup ignore flag */
7169 bool ignore;
7170
5d261913
VF
7171 /* counter for the number of times this device was added to us */
7172 u16 ref_nr;
7173
402dae96
VF
7174 /* private field for the users */
7175 void *private;
7176
9ff162a8
JP
7177 struct list_head list;
7178 struct rcu_head rcu;
9ff162a8
JP
7179};
7180
6ea29da1 7181static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 7182 struct list_head *adj_list)
9ff162a8 7183{
5d261913 7184 struct netdev_adjacent *adj;
5d261913 7185
2f268f12 7186 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
7187 if (adj->dev == adj_dev)
7188 return adj;
9ff162a8
JP
7189 }
7190 return NULL;
7191}
7192
eff74233
TY
7193static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7194 struct netdev_nested_priv *priv)
f1170fd4 7195{
eff74233 7196 struct net_device *dev = (struct net_device *)priv->data;
f1170fd4
DA
7197
7198 return upper_dev == dev;
7199}
7200
9ff162a8
JP
7201/**
7202 * netdev_has_upper_dev - Check if device is linked to an upper device
7203 * @dev: device
7204 * @upper_dev: upper device to check
7205 *
7206 * Find out if a device is linked to specified upper device and return true
7207 * in case it is. Note that this checks only immediate upper device,
7208 * not through a complete stack of devices. The caller must hold the RTNL lock.
7209 */
7210bool netdev_has_upper_dev(struct net_device *dev,
7211 struct net_device *upper_dev)
7212{
eff74233
TY
7213 struct netdev_nested_priv priv = {
7214 .data = (void *)upper_dev,
7215 };
7216
9ff162a8
JP
7217 ASSERT_RTNL();
7218
32b6d34f 7219 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 7220 &priv);
9ff162a8
JP
7221}
7222EXPORT_SYMBOL(netdev_has_upper_dev);
7223
1a3f060c 7224/**
c1639be9 7225 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
1a3f060c
DA
7226 * @dev: device
7227 * @upper_dev: upper device to check
7228 *
7229 * Find out if a device is linked to specified upper device and return true
7230 * in case it is. Note that this checks the entire upper device chain.
7231 * The caller must hold rcu lock.
7232 */
7233
1a3f060c
DA
7234bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7235 struct net_device *upper_dev)
7236{
eff74233
TY
7237 struct netdev_nested_priv priv = {
7238 .data = (void *)upper_dev,
7239 };
7240
32b6d34f 7241 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 7242 &priv);
1a3f060c
DA
7243}
7244EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7245
9ff162a8
JP
7246/**
7247 * netdev_has_any_upper_dev - Check if device is linked to some device
7248 * @dev: device
7249 *
7250 * Find out if a device is linked to an upper device and return true in case
7251 * it is. The caller must hold the RTNL lock.
7252 */
25cc72a3 7253bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
7254{
7255 ASSERT_RTNL();
7256
f1170fd4 7257 return !list_empty(&dev->adj_list.upper);
9ff162a8 7258}
25cc72a3 7259EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
7260
7261/**
7262 * netdev_master_upper_dev_get - Get master upper device
7263 * @dev: device
7264 *
7265 * Find a master upper device and return pointer to it or NULL in case
7266 * it's not there. The caller must hold the RTNL lock.
7267 */
7268struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7269{
aa9d8560 7270 struct netdev_adjacent *upper;
9ff162a8
JP
7271
7272 ASSERT_RTNL();
7273
2f268f12 7274 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
7275 return NULL;
7276
2f268f12 7277 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 7278 struct netdev_adjacent, list);
9ff162a8
JP
7279 if (likely(upper->master))
7280 return upper->dev;
7281 return NULL;
7282}
7283EXPORT_SYMBOL(netdev_master_upper_dev_get);
7284
32b6d34f
TY
7285static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7286{
7287 struct netdev_adjacent *upper;
7288
7289 ASSERT_RTNL();
7290
7291 if (list_empty(&dev->adj_list.upper))
7292 return NULL;
7293
7294 upper = list_first_entry(&dev->adj_list.upper,
7295 struct netdev_adjacent, list);
7296 if (likely(upper->master) && !upper->ignore)
7297 return upper->dev;
7298 return NULL;
7299}
7300
0f524a80
DA
7301/**
7302 * netdev_has_any_lower_dev - Check if device is linked to some device
7303 * @dev: device
7304 *
7305 * Find out if a device is linked to a lower device and return true in case
7306 * it is. The caller must hold the RTNL lock.
7307 */
7308static bool netdev_has_any_lower_dev(struct net_device *dev)
7309{
7310 ASSERT_RTNL();
7311
7312 return !list_empty(&dev->adj_list.lower);
7313}
7314
b6ccba4c
VF
7315void *netdev_adjacent_get_private(struct list_head *adj_list)
7316{
7317 struct netdev_adjacent *adj;
7318
7319 adj = list_entry(adj_list, struct netdev_adjacent, list);
7320
7321 return adj->private;
7322}
7323EXPORT_SYMBOL(netdev_adjacent_get_private);
7324
44a40855
VY
7325/**
7326 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7327 * @dev: device
7328 * @iter: list_head ** of the current position
7329 *
7330 * Gets the next device from the dev's upper list, starting from iter
7331 * position. The caller must hold RCU read lock.
7332 */
7333struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7334 struct list_head **iter)
7335{
7336 struct netdev_adjacent *upper;
7337
7338 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7339
7340 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7341
7342 if (&upper->list == &dev->adj_list.upper)
7343 return NULL;
7344
7345 *iter = &upper->list;
7346
7347 return upper->dev;
7348}
7349EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7350
32b6d34f
TY
7351static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7352 struct list_head **iter,
7353 bool *ignore)
5343da4c
TY
7354{
7355 struct netdev_adjacent *upper;
7356
7357 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7358
7359 if (&upper->list == &dev->adj_list.upper)
7360 return NULL;
7361
7362 *iter = &upper->list;
32b6d34f 7363 *ignore = upper->ignore;
5343da4c
TY
7364
7365 return upper->dev;
7366}
7367
1a3f060c
DA
7368static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7369 struct list_head **iter)
7370{
7371 struct netdev_adjacent *upper;
7372
7373 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7374
7375 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7376
7377 if (&upper->list == &dev->adj_list.upper)
7378 return NULL;
7379
7380 *iter = &upper->list;
7381
7382 return upper->dev;
7383}
7384
32b6d34f
TY
7385static int __netdev_walk_all_upper_dev(struct net_device *dev,
7386 int (*fn)(struct net_device *dev,
eff74233
TY
7387 struct netdev_nested_priv *priv),
7388 struct netdev_nested_priv *priv)
5343da4c
TY
7389{
7390 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7391 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7392 int ret, cur = 0;
32b6d34f 7393 bool ignore;
5343da4c
TY
7394
7395 now = dev;
7396 iter = &dev->adj_list.upper;
7397
7398 while (1) {
7399 if (now != dev) {
eff74233 7400 ret = fn(now, priv);
5343da4c
TY
7401 if (ret)
7402 return ret;
7403 }
7404
7405 next = NULL;
7406 while (1) {
32b6d34f 7407 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
7408 if (!udev)
7409 break;
32b6d34f
TY
7410 if (ignore)
7411 continue;
5343da4c
TY
7412
7413 next = udev;
7414 niter = &udev->adj_list.upper;
7415 dev_stack[cur] = now;
7416 iter_stack[cur++] = iter;
7417 break;
7418 }
7419
7420 if (!next) {
7421 if (!cur)
7422 return 0;
7423 next = dev_stack[--cur];
7424 niter = iter_stack[cur];
7425 }
7426
7427 now = next;
7428 iter = niter;
7429 }
7430
7431 return 0;
7432}
7433
1a3f060c
DA
7434int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7435 int (*fn)(struct net_device *dev,
eff74233
TY
7436 struct netdev_nested_priv *priv),
7437 struct netdev_nested_priv *priv)
1a3f060c 7438{
5343da4c
TY
7439 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7440 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7441 int ret, cur = 0;
1a3f060c 7442
5343da4c
TY
7443 now = dev;
7444 iter = &dev->adj_list.upper;
1a3f060c 7445
5343da4c
TY
7446 while (1) {
7447 if (now != dev) {
eff74233 7448 ret = fn(now, priv);
5343da4c
TY
7449 if (ret)
7450 return ret;
7451 }
7452
7453 next = NULL;
7454 while (1) {
7455 udev = netdev_next_upper_dev_rcu(now, &iter);
7456 if (!udev)
7457 break;
7458
7459 next = udev;
7460 niter = &udev->adj_list.upper;
7461 dev_stack[cur] = now;
7462 iter_stack[cur++] = iter;
7463 break;
7464 }
7465
7466 if (!next) {
7467 if (!cur)
7468 return 0;
7469 next = dev_stack[--cur];
7470 niter = iter_stack[cur];
7471 }
7472
7473 now = next;
7474 iter = niter;
1a3f060c
DA
7475 }
7476
7477 return 0;
7478}
7479EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7480
32b6d34f
TY
7481static bool __netdev_has_upper_dev(struct net_device *dev,
7482 struct net_device *upper_dev)
7483{
eff74233 7484 struct netdev_nested_priv priv = {
1fc70edb 7485 .flags = 0,
eff74233
TY
7486 .data = (void *)upper_dev,
7487 };
7488
32b6d34f
TY
7489 ASSERT_RTNL();
7490
7491 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
eff74233 7492 &priv);
32b6d34f
TY
7493}
7494
31088a11
VF
7495/**
7496 * netdev_lower_get_next_private - Get the next ->private from the
7497 * lower neighbour list
7498 * @dev: device
7499 * @iter: list_head ** of the current position
7500 *
7501 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7502 * list, starting from iter position. The caller must hold either hold the
7503 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 7504 * list will remain unchanged.
31088a11
VF
7505 */
7506void *netdev_lower_get_next_private(struct net_device *dev,
7507 struct list_head **iter)
7508{
7509 struct netdev_adjacent *lower;
7510
7511 lower = list_entry(*iter, struct netdev_adjacent, list);
7512
7513 if (&lower->list == &dev->adj_list.lower)
7514 return NULL;
7515
6859e7df 7516 *iter = lower->list.next;
31088a11
VF
7517
7518 return lower->private;
7519}
7520EXPORT_SYMBOL(netdev_lower_get_next_private);
7521
7522/**
7523 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7524 * lower neighbour list, RCU
7525 * variant
7526 * @dev: device
7527 * @iter: list_head ** of the current position
7528 *
7529 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7530 * list, starting from iter position. The caller must hold RCU read lock.
7531 */
7532void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7533 struct list_head **iter)
7534{
7535 struct netdev_adjacent *lower;
7536
7537 WARN_ON_ONCE(!rcu_read_lock_held());
7538
7539 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7540
7541 if (&lower->list == &dev->adj_list.lower)
7542 return NULL;
7543
6859e7df 7544 *iter = &lower->list;
31088a11
VF
7545
7546 return lower->private;
7547}
7548EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7549
4085ebe8
VY
7550/**
7551 * netdev_lower_get_next - Get the next device from the lower neighbour
7552 * list
7553 * @dev: device
7554 * @iter: list_head ** of the current position
7555 *
7556 * Gets the next netdev_adjacent from the dev's lower neighbour
7557 * list, starting from iter position. The caller must hold RTNL lock or
7558 * its own locking that guarantees that the neighbour lower
b469139e 7559 * list will remain unchanged.
4085ebe8
VY
7560 */
7561void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7562{
7563 struct netdev_adjacent *lower;
7564
cfdd28be 7565 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7566
7567 if (&lower->list == &dev->adj_list.lower)
7568 return NULL;
7569
cfdd28be 7570 *iter = lower->list.next;
4085ebe8
VY
7571
7572 return lower->dev;
7573}
7574EXPORT_SYMBOL(netdev_lower_get_next);
7575
1a3f060c
DA
7576static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7577 struct list_head **iter)
7578{
7579 struct netdev_adjacent *lower;
7580
46b5ab1a 7581 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7582
7583 if (&lower->list == &dev->adj_list.lower)
7584 return NULL;
7585
46b5ab1a 7586 *iter = &lower->list;
1a3f060c
DA
7587
7588 return lower->dev;
7589}
7590
32b6d34f
TY
7591static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7592 struct list_head **iter,
7593 bool *ignore)
7594{
7595 struct netdev_adjacent *lower;
7596
7597 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7598
7599 if (&lower->list == &dev->adj_list.lower)
7600 return NULL;
7601
7602 *iter = &lower->list;
7603 *ignore = lower->ignore;
7604
7605 return lower->dev;
7606}
7607
1a3f060c
DA
7608int netdev_walk_all_lower_dev(struct net_device *dev,
7609 int (*fn)(struct net_device *dev,
eff74233
TY
7610 struct netdev_nested_priv *priv),
7611 struct netdev_nested_priv *priv)
1a3f060c 7612{
5343da4c
TY
7613 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7614 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7615 int ret, cur = 0;
1a3f060c 7616
5343da4c
TY
7617 now = dev;
7618 iter = &dev->adj_list.lower;
1a3f060c 7619
5343da4c
TY
7620 while (1) {
7621 if (now != dev) {
eff74233 7622 ret = fn(now, priv);
5343da4c
TY
7623 if (ret)
7624 return ret;
7625 }
7626
7627 next = NULL;
7628 while (1) {
7629 ldev = netdev_next_lower_dev(now, &iter);
7630 if (!ldev)
7631 break;
7632
7633 next = ldev;
7634 niter = &ldev->adj_list.lower;
7635 dev_stack[cur] = now;
7636 iter_stack[cur++] = iter;
7637 break;
7638 }
7639
7640 if (!next) {
7641 if (!cur)
7642 return 0;
7643 next = dev_stack[--cur];
7644 niter = iter_stack[cur];
7645 }
7646
7647 now = next;
7648 iter = niter;
1a3f060c
DA
7649 }
7650
7651 return 0;
7652}
7653EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7654
32b6d34f
TY
7655static int __netdev_walk_all_lower_dev(struct net_device *dev,
7656 int (*fn)(struct net_device *dev,
eff74233
TY
7657 struct netdev_nested_priv *priv),
7658 struct netdev_nested_priv *priv)
32b6d34f
TY
7659{
7660 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7661 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7662 int ret, cur = 0;
7663 bool ignore;
7664
7665 now = dev;
7666 iter = &dev->adj_list.lower;
7667
7668 while (1) {
7669 if (now != dev) {
eff74233 7670 ret = fn(now, priv);
32b6d34f
TY
7671 if (ret)
7672 return ret;
7673 }
7674
7675 next = NULL;
7676 while (1) {
7677 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7678 if (!ldev)
7679 break;
7680 if (ignore)
7681 continue;
7682
7683 next = ldev;
7684 niter = &ldev->adj_list.lower;
7685 dev_stack[cur] = now;
7686 iter_stack[cur++] = iter;
7687 break;
7688 }
7689
7690 if (!next) {
7691 if (!cur)
7692 return 0;
7693 next = dev_stack[--cur];
7694 niter = iter_stack[cur];
7695 }
7696
7697 now = next;
7698 iter = niter;
7699 }
7700
7701 return 0;
7702}
7703
7151affe
TY
7704struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7705 struct list_head **iter)
1a3f060c
DA
7706{
7707 struct netdev_adjacent *lower;
7708
7709 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7710 if (&lower->list == &dev->adj_list.lower)
7711 return NULL;
7712
7713 *iter = &lower->list;
7714
7715 return lower->dev;
7716}
7151affe 7717EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7718
5343da4c
TY
7719static u8 __netdev_upper_depth(struct net_device *dev)
7720{
7721 struct net_device *udev;
7722 struct list_head *iter;
7723 u8 max_depth = 0;
32b6d34f 7724 bool ignore;
5343da4c
TY
7725
7726 for (iter = &dev->adj_list.upper,
32b6d34f 7727 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7728 udev;
32b6d34f
TY
7729 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7730 if (ignore)
7731 continue;
5343da4c
TY
7732 if (max_depth < udev->upper_level)
7733 max_depth = udev->upper_level;
7734 }
7735
7736 return max_depth;
7737}
7738
7739static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7740{
7741 struct net_device *ldev;
7742 struct list_head *iter;
5343da4c 7743 u8 max_depth = 0;
32b6d34f 7744 bool ignore;
1a3f060c
DA
7745
7746 for (iter = &dev->adj_list.lower,
32b6d34f 7747 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7748 ldev;
32b6d34f
TY
7749 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7750 if (ignore)
7751 continue;
5343da4c
TY
7752 if (max_depth < ldev->lower_level)
7753 max_depth = ldev->lower_level;
7754 }
1a3f060c 7755
5343da4c
TY
7756 return max_depth;
7757}
7758
eff74233
TY
7759static int __netdev_update_upper_level(struct net_device *dev,
7760 struct netdev_nested_priv *__unused)
5343da4c
TY
7761{
7762 dev->upper_level = __netdev_upper_depth(dev) + 1;
7763 return 0;
7764}
7765
eff74233 7766static int __netdev_update_lower_level(struct net_device *dev,
1fc70edb 7767 struct netdev_nested_priv *priv)
5343da4c
TY
7768{
7769 dev->lower_level = __netdev_lower_depth(dev) + 1;
1fc70edb
TY
7770
7771#ifdef CONFIG_LOCKDEP
7772 if (!priv)
7773 return 0;
7774
7775 if (priv->flags & NESTED_SYNC_IMM)
7776 dev->nested_level = dev->lower_level - 1;
7777 if (priv->flags & NESTED_SYNC_TODO)
7778 net_unlink_todo(dev);
7779#endif
5343da4c
TY
7780 return 0;
7781}
7782
7783int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7784 int (*fn)(struct net_device *dev,
eff74233
TY
7785 struct netdev_nested_priv *priv),
7786 struct netdev_nested_priv *priv)
5343da4c
TY
7787{
7788 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7789 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7790 int ret, cur = 0;
7791
7792 now = dev;
7793 iter = &dev->adj_list.lower;
7794
7795 while (1) {
7796 if (now != dev) {
eff74233 7797 ret = fn(now, priv);
5343da4c
TY
7798 if (ret)
7799 return ret;
7800 }
7801
7802 next = NULL;
7803 while (1) {
7804 ldev = netdev_next_lower_dev_rcu(now, &iter);
7805 if (!ldev)
7806 break;
7807
7808 next = ldev;
7809 niter = &ldev->adj_list.lower;
7810 dev_stack[cur] = now;
7811 iter_stack[cur++] = iter;
7812 break;
7813 }
7814
7815 if (!next) {
7816 if (!cur)
7817 return 0;
7818 next = dev_stack[--cur];
7819 niter = iter_stack[cur];
7820 }
7821
7822 now = next;
7823 iter = niter;
1a3f060c
DA
7824 }
7825
7826 return 0;
7827}
7828EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7829
e001bfad 7830/**
7831 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7832 * lower neighbour list, RCU
7833 * variant
7834 * @dev: device
7835 *
7836 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7837 * list. The caller must hold RCU read lock.
7838 */
7839void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7840{
7841 struct netdev_adjacent *lower;
7842
7843 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7844 struct netdev_adjacent, list);
7845 if (lower)
7846 return lower->private;
7847 return NULL;
7848}
7849EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7850
9ff162a8
JP
7851/**
7852 * netdev_master_upper_dev_get_rcu - Get master upper device
7853 * @dev: device
7854 *
7855 * Find a master upper device and return pointer to it or NULL in case
7856 * it's not there. The caller must hold the RCU read lock.
7857 */
7858struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7859{
aa9d8560 7860 struct netdev_adjacent *upper;
9ff162a8 7861
2f268f12 7862 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7863 struct netdev_adjacent, list);
9ff162a8
JP
7864 if (upper && likely(upper->master))
7865 return upper->dev;
7866 return NULL;
7867}
7868EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7869
0a59f3a9 7870static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7871 struct net_device *adj_dev,
7872 struct list_head *dev_list)
7873{
7874 char linkname[IFNAMSIZ+7];
f4563a75 7875
3ee32707
VF
7876 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7877 "upper_%s" : "lower_%s", adj_dev->name);
7878 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7879 linkname);
7880}
0a59f3a9 7881static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7882 char *name,
7883 struct list_head *dev_list)
7884{
7885 char linkname[IFNAMSIZ+7];
f4563a75 7886
3ee32707
VF
7887 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7888 "upper_%s" : "lower_%s", name);
7889 sysfs_remove_link(&(dev->dev.kobj), linkname);
7890}
7891
7ce64c79
AF
7892static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7893 struct net_device *adj_dev,
7894 struct list_head *dev_list)
7895{
7896 return (dev_list == &dev->adj_list.upper ||
7897 dev_list == &dev->adj_list.lower) &&
7898 net_eq(dev_net(dev), dev_net(adj_dev));
7899}
3ee32707 7900
5d261913
VF
7901static int __netdev_adjacent_dev_insert(struct net_device *dev,
7902 struct net_device *adj_dev,
7863c054 7903 struct list_head *dev_list,
402dae96 7904 void *private, bool master)
5d261913
VF
7905{
7906 struct netdev_adjacent *adj;
842d67a7 7907 int ret;
5d261913 7908
6ea29da1 7909 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7910
7911 if (adj) {
790510d9 7912 adj->ref_nr += 1;
67b62f98
DA
7913 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7914 dev->name, adj_dev->name, adj->ref_nr);
7915
5d261913
VF
7916 return 0;
7917 }
7918
7919 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7920 if (!adj)
7921 return -ENOMEM;
7922
7923 adj->dev = adj_dev;
7924 adj->master = master;
790510d9 7925 adj->ref_nr = 1;
402dae96 7926 adj->private = private;
32b6d34f 7927 adj->ignore = false;
5d261913 7928 dev_hold(adj_dev);
2f268f12 7929
67b62f98
DA
7930 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7931 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7932
7ce64c79 7933 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7934 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7935 if (ret)
7936 goto free_adj;
7937 }
7938
7863c054 7939 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7940 if (master) {
7941 ret = sysfs_create_link(&(dev->dev.kobj),
7942 &(adj_dev->dev.kobj), "master");
7943 if (ret)
5831d66e 7944 goto remove_symlinks;
842d67a7 7945
7863c054 7946 list_add_rcu(&adj->list, dev_list);
842d67a7 7947 } else {
7863c054 7948 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7949 }
5d261913
VF
7950
7951 return 0;
842d67a7 7952
5831d66e 7953remove_symlinks:
7ce64c79 7954 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7955 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7956free_adj:
7957 kfree(adj);
974daef7 7958 dev_put(adj_dev);
842d67a7
VF
7959
7960 return ret;
5d261913
VF
7961}
7962
1d143d9f 7963static void __netdev_adjacent_dev_remove(struct net_device *dev,
7964 struct net_device *adj_dev,
93409033 7965 u16 ref_nr,
1d143d9f 7966 struct list_head *dev_list)
5d261913
VF
7967{
7968 struct netdev_adjacent *adj;
7969
67b62f98
DA
7970 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7971 dev->name, adj_dev->name, ref_nr);
7972
6ea29da1 7973 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7974
2f268f12 7975 if (!adj) {
67b62f98 7976 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7977 dev->name, adj_dev->name);
67b62f98
DA
7978 WARN_ON(1);
7979 return;
2f268f12 7980 }
5d261913 7981
93409033 7982 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7983 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7984 dev->name, adj_dev->name, ref_nr,
7985 adj->ref_nr - ref_nr);
93409033 7986 adj->ref_nr -= ref_nr;
5d261913
VF
7987 return;
7988 }
7989
842d67a7
VF
7990 if (adj->master)
7991 sysfs_remove_link(&(dev->dev.kobj), "master");
7992
7ce64c79 7993 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7994 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7995
5d261913 7996 list_del_rcu(&adj->list);
67b62f98 7997 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7998 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7999 dev_put(adj_dev);
8000 kfree_rcu(adj, rcu);
8001}
8002
1d143d9f 8003static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8004 struct net_device *upper_dev,
8005 struct list_head *up_list,
8006 struct list_head *down_list,
8007 void *private, bool master)
5d261913
VF
8008{
8009 int ret;
8010
790510d9 8011 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 8012 private, master);
5d261913
VF
8013 if (ret)
8014 return ret;
8015
790510d9 8016 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 8017 private, false);
5d261913 8018 if (ret) {
790510d9 8019 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
8020 return ret;
8021 }
8022
8023 return 0;
8024}
8025
1d143d9f 8026static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8027 struct net_device *upper_dev,
93409033 8028 u16 ref_nr,
1d143d9f 8029 struct list_head *up_list,
8030 struct list_head *down_list)
5d261913 8031{
93409033
AC
8032 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8033 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
8034}
8035
1d143d9f 8036static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8037 struct net_device *upper_dev,
8038 void *private, bool master)
2f268f12 8039{
f1170fd4
DA
8040 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8041 &dev->adj_list.upper,
8042 &upper_dev->adj_list.lower,
8043 private, master);
5d261913
VF
8044}
8045
1d143d9f 8046static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8047 struct net_device *upper_dev)
2f268f12 8048{
93409033 8049 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
8050 &dev->adj_list.upper,
8051 &upper_dev->adj_list.lower);
8052}
5d261913 8053
9ff162a8 8054static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 8055 struct net_device *upper_dev, bool master,
42ab19ee 8056 void *upper_priv, void *upper_info,
1fc70edb 8057 struct netdev_nested_priv *priv,
42ab19ee 8058 struct netlink_ext_ack *extack)
9ff162a8 8059{
51d0c047
DA
8060 struct netdev_notifier_changeupper_info changeupper_info = {
8061 .info = {
8062 .dev = dev,
42ab19ee 8063 .extack = extack,
51d0c047
DA
8064 },
8065 .upper_dev = upper_dev,
8066 .master = master,
8067 .linking = true,
8068 .upper_info = upper_info,
8069 };
50d629e7 8070 struct net_device *master_dev;
5d261913 8071 int ret = 0;
9ff162a8
JP
8072
8073 ASSERT_RTNL();
8074
8075 if (dev == upper_dev)
8076 return -EBUSY;
8077
8078 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 8079 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
8080 return -EBUSY;
8081
5343da4c
TY
8082 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8083 return -EMLINK;
8084
50d629e7 8085 if (!master) {
32b6d34f 8086 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
8087 return -EEXIST;
8088 } else {
32b6d34f 8089 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
8090 if (master_dev)
8091 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8092 }
9ff162a8 8093
51d0c047 8094 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
8095 &changeupper_info.info);
8096 ret = notifier_to_errno(ret);
8097 if (ret)
8098 return ret;
8099
6dffb044 8100 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 8101 master);
5d261913
VF
8102 if (ret)
8103 return ret;
9ff162a8 8104
51d0c047 8105 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
8106 &changeupper_info.info);
8107 ret = notifier_to_errno(ret);
8108 if (ret)
f1170fd4 8109 goto rollback;
b03804e7 8110
5343da4c 8111 __netdev_update_upper_level(dev, NULL);
32b6d34f 8112 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 8113
1fc70edb 8114 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 8115 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 8116 priv);
5343da4c 8117
9ff162a8 8118 return 0;
5d261913 8119
f1170fd4 8120rollback:
2f268f12 8121 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
8122
8123 return ret;
9ff162a8
JP
8124}
8125
8126/**
8127 * netdev_upper_dev_link - Add a link to the upper device
8128 * @dev: device
8129 * @upper_dev: new upper device
7a006d59 8130 * @extack: netlink extended ack
9ff162a8
JP
8131 *
8132 * Adds a link to device which is upper to this one. The caller must hold
8133 * the RTNL lock. On a failure a negative errno code is returned.
8134 * On success the reference counts are adjusted and the function
8135 * returns zero.
8136 */
8137int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
8138 struct net_device *upper_dev,
8139 struct netlink_ext_ack *extack)
9ff162a8 8140{
1fc70edb
TY
8141 struct netdev_nested_priv priv = {
8142 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8143 .data = NULL,
8144 };
8145
42ab19ee 8146 return __netdev_upper_dev_link(dev, upper_dev, false,
1fc70edb 8147 NULL, NULL, &priv, extack);
9ff162a8
JP
8148}
8149EXPORT_SYMBOL(netdev_upper_dev_link);
8150
8151/**
8152 * netdev_master_upper_dev_link - Add a master link to the upper device
8153 * @dev: device
8154 * @upper_dev: new upper device
6dffb044 8155 * @upper_priv: upper device private
29bf24af 8156 * @upper_info: upper info to be passed down via notifier
7a006d59 8157 * @extack: netlink extended ack
9ff162a8
JP
8158 *
8159 * Adds a link to device which is upper to this one. In this case, only
8160 * one master upper device can be linked, although other non-master devices
8161 * might be linked as well. The caller must hold the RTNL lock.
8162 * On a failure a negative errno code is returned. On success the reference
8163 * counts are adjusted and the function returns zero.
8164 */
8165int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 8166 struct net_device *upper_dev,
42ab19ee
DA
8167 void *upper_priv, void *upper_info,
8168 struct netlink_ext_ack *extack)
9ff162a8 8169{
1fc70edb
TY
8170 struct netdev_nested_priv priv = {
8171 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8172 .data = NULL,
8173 };
8174
29bf24af 8175 return __netdev_upper_dev_link(dev, upper_dev, true,
1fc70edb 8176 upper_priv, upper_info, &priv, extack);
9ff162a8
JP
8177}
8178EXPORT_SYMBOL(netdev_master_upper_dev_link);
8179
fe8300fd 8180static void __netdev_upper_dev_unlink(struct net_device *dev,
1fc70edb
TY
8181 struct net_device *upper_dev,
8182 struct netdev_nested_priv *priv)
9ff162a8 8183{
51d0c047
DA
8184 struct netdev_notifier_changeupper_info changeupper_info = {
8185 .info = {
8186 .dev = dev,
8187 },
8188 .upper_dev = upper_dev,
8189 .linking = false,
8190 };
f4563a75 8191
9ff162a8
JP
8192 ASSERT_RTNL();
8193
0e4ead9d 8194 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 8195
51d0c047 8196 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
8197 &changeupper_info.info);
8198
2f268f12 8199 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 8200
51d0c047 8201 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 8202 &changeupper_info.info);
5343da4c
TY
8203
8204 __netdev_update_upper_level(dev, NULL);
32b6d34f 8205 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 8206
1fc70edb 8207 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 8208 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 8209 priv);
9ff162a8 8210}
fe8300fd
TY
8211
8212/**
8213 * netdev_upper_dev_unlink - Removes a link to upper device
8214 * @dev: device
8215 * @upper_dev: new upper device
8216 *
8217 * Removes a link to device which is upper to this one. The caller must hold
8218 * the RTNL lock.
8219 */
8220void netdev_upper_dev_unlink(struct net_device *dev,
8221 struct net_device *upper_dev)
8222{
1fc70edb
TY
8223 struct netdev_nested_priv priv = {
8224 .flags = NESTED_SYNC_TODO,
8225 .data = NULL,
8226 };
8227
8228 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
9ff162a8
JP
8229}
8230EXPORT_SYMBOL(netdev_upper_dev_unlink);
8231
32b6d34f
TY
8232static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8233 struct net_device *lower_dev,
8234 bool val)
8235{
8236 struct netdev_adjacent *adj;
8237
8238 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8239 if (adj)
8240 adj->ignore = val;
8241
8242 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8243 if (adj)
8244 adj->ignore = val;
8245}
8246
8247static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8248 struct net_device *lower_dev)
8249{
8250 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8251}
8252
8253static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8254 struct net_device *lower_dev)
8255{
8256 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8257}
8258
8259int netdev_adjacent_change_prepare(struct net_device *old_dev,
8260 struct net_device *new_dev,
8261 struct net_device *dev,
8262 struct netlink_ext_ack *extack)
8263{
1fc70edb
TY
8264 struct netdev_nested_priv priv = {
8265 .flags = 0,
8266 .data = NULL,
8267 };
32b6d34f
TY
8268 int err;
8269
8270 if (!new_dev)
8271 return 0;
8272
8273 if (old_dev && new_dev != old_dev)
8274 netdev_adjacent_dev_disable(dev, old_dev);
1fc70edb
TY
8275 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8276 extack);
32b6d34f
TY
8277 if (err) {
8278 if (old_dev && new_dev != old_dev)
8279 netdev_adjacent_dev_enable(dev, old_dev);
8280 return err;
8281 }
8282
8283 return 0;
8284}
8285EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8286
8287void netdev_adjacent_change_commit(struct net_device *old_dev,
8288 struct net_device *new_dev,
8289 struct net_device *dev)
8290{
1fc70edb
TY
8291 struct netdev_nested_priv priv = {
8292 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8293 .data = NULL,
8294 };
8295
32b6d34f
TY
8296 if (!new_dev || !old_dev)
8297 return;
8298
8299 if (new_dev == old_dev)
8300 return;
8301
8302 netdev_adjacent_dev_enable(dev, old_dev);
1fc70edb 8303 __netdev_upper_dev_unlink(old_dev, dev, &priv);
32b6d34f
TY
8304}
8305EXPORT_SYMBOL(netdev_adjacent_change_commit);
8306
8307void netdev_adjacent_change_abort(struct net_device *old_dev,
8308 struct net_device *new_dev,
8309 struct net_device *dev)
8310{
1fc70edb
TY
8311 struct netdev_nested_priv priv = {
8312 .flags = 0,
8313 .data = NULL,
8314 };
8315
32b6d34f
TY
8316 if (!new_dev)
8317 return;
8318
8319 if (old_dev && new_dev != old_dev)
8320 netdev_adjacent_dev_enable(dev, old_dev);
8321
1fc70edb 8322 __netdev_upper_dev_unlink(new_dev, dev, &priv);
32b6d34f
TY
8323}
8324EXPORT_SYMBOL(netdev_adjacent_change_abort);
8325
61bd3857
MS
8326/**
8327 * netdev_bonding_info_change - Dispatch event about slave change
8328 * @dev: device
4a26e453 8329 * @bonding_info: info to dispatch
61bd3857
MS
8330 *
8331 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8332 * The caller must hold the RTNL lock.
8333 */
8334void netdev_bonding_info_change(struct net_device *dev,
8335 struct netdev_bonding_info *bonding_info)
8336{
51d0c047
DA
8337 struct netdev_notifier_bonding_info info = {
8338 .info.dev = dev,
8339 };
61bd3857
MS
8340
8341 memcpy(&info.bonding_info, bonding_info,
8342 sizeof(struct netdev_bonding_info));
51d0c047 8343 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
8344 &info.info);
8345}
8346EXPORT_SYMBOL(netdev_bonding_info_change);
8347
cff9f12b
MG
8348/**
8349 * netdev_get_xmit_slave - Get the xmit slave of master device
8842500d 8350 * @dev: device
cff9f12b
MG
8351 * @skb: The packet
8352 * @all_slaves: assume all the slaves are active
8353 *
8354 * The reference counters are not incremented so the caller must be
8355 * careful with locks. The caller must hold RCU lock.
8356 * %NULL is returned if no slave is found.
8357 */
8358
8359struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8360 struct sk_buff *skb,
8361 bool all_slaves)
8362{
8363 const struct net_device_ops *ops = dev->netdev_ops;
8364
8365 if (!ops->ndo_get_xmit_slave)
8366 return NULL;
8367 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8368}
8369EXPORT_SYMBOL(netdev_get_xmit_slave);
8370
719a402c
TT
8371static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8372 struct sock *sk)
8373{
8374 const struct net_device_ops *ops = dev->netdev_ops;
8375
8376 if (!ops->ndo_sk_get_lower_dev)
8377 return NULL;
8378 return ops->ndo_sk_get_lower_dev(dev, sk);
8379}
8380
8381/**
8382 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8383 * @dev: device
8384 * @sk: the socket
8385 *
8386 * %NULL is returned if no lower device is found.
8387 */
8388
8389struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8390 struct sock *sk)
8391{
8392 struct net_device *lower;
8393
8394 lower = netdev_sk_get_lower_dev(dev, sk);
8395 while (lower) {
8396 dev = lower;
8397 lower = netdev_sk_get_lower_dev(dev, sk);
8398 }
8399
8400 return dev;
8401}
8402EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8403
2ce1ee17 8404static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
8405{
8406 struct netdev_adjacent *iter;
8407
8408 struct net *net = dev_net(dev);
8409
8410 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8411 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8412 continue;
8413 netdev_adjacent_sysfs_add(iter->dev, dev,
8414 &iter->dev->adj_list.lower);
8415 netdev_adjacent_sysfs_add(dev, iter->dev,
8416 &dev->adj_list.upper);
8417 }
8418
8419 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8420 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8421 continue;
8422 netdev_adjacent_sysfs_add(iter->dev, dev,
8423 &iter->dev->adj_list.upper);
8424 netdev_adjacent_sysfs_add(dev, iter->dev,
8425 &dev->adj_list.lower);
8426 }
8427}
8428
2ce1ee17 8429static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
8430{
8431 struct netdev_adjacent *iter;
8432
8433 struct net *net = dev_net(dev);
8434
8435 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8436 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8437 continue;
8438 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8439 &iter->dev->adj_list.lower);
8440 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8441 &dev->adj_list.upper);
8442 }
8443
8444 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8445 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8446 continue;
8447 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8448 &iter->dev->adj_list.upper);
8449 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8450 &dev->adj_list.lower);
8451 }
8452}
8453
5bb025fa 8454void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 8455{
5bb025fa 8456 struct netdev_adjacent *iter;
402dae96 8457
4c75431a
AF
8458 struct net *net = dev_net(dev);
8459
5bb025fa 8460 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8461 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8462 continue;
5bb025fa
VF
8463 netdev_adjacent_sysfs_del(iter->dev, oldname,
8464 &iter->dev->adj_list.lower);
8465 netdev_adjacent_sysfs_add(iter->dev, dev,
8466 &iter->dev->adj_list.lower);
8467 }
402dae96 8468
5bb025fa 8469 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8470 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8471 continue;
5bb025fa
VF
8472 netdev_adjacent_sysfs_del(iter->dev, oldname,
8473 &iter->dev->adj_list.upper);
8474 netdev_adjacent_sysfs_add(iter->dev, dev,
8475 &iter->dev->adj_list.upper);
8476 }
402dae96 8477}
402dae96
VF
8478
8479void *netdev_lower_dev_get_private(struct net_device *dev,
8480 struct net_device *lower_dev)
8481{
8482 struct netdev_adjacent *lower;
8483
8484 if (!lower_dev)
8485 return NULL;
6ea29da1 8486 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
8487 if (!lower)
8488 return NULL;
8489
8490 return lower->private;
8491}
8492EXPORT_SYMBOL(netdev_lower_dev_get_private);
8493
4085ebe8 8494
04d48266 8495/**
c1639be9 8496 * netdev_lower_state_changed - Dispatch event about lower device state change
04d48266
JP
8497 * @lower_dev: device
8498 * @lower_state_info: state to dispatch
8499 *
8500 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8501 * The caller must hold the RTNL lock.
8502 */
8503void netdev_lower_state_changed(struct net_device *lower_dev,
8504 void *lower_state_info)
8505{
51d0c047
DA
8506 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8507 .info.dev = lower_dev,
8508 };
04d48266
JP
8509
8510 ASSERT_RTNL();
8511 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 8512 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
8513 &changelowerstate_info.info);
8514}
8515EXPORT_SYMBOL(netdev_lower_state_changed);
8516
b6c40d68
PM
8517static void dev_change_rx_flags(struct net_device *dev, int flags)
8518{
d314774c
SH
8519 const struct net_device_ops *ops = dev->netdev_ops;
8520
d2615bf4 8521 if (ops->ndo_change_rx_flags)
d314774c 8522 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
8523}
8524
991fb3f7 8525static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 8526{
b536db93 8527 unsigned int old_flags = dev->flags;
d04a48b0
EB
8528 kuid_t uid;
8529 kgid_t gid;
1da177e4 8530
24023451
PM
8531 ASSERT_RTNL();
8532
dad9b335
WC
8533 dev->flags |= IFF_PROMISC;
8534 dev->promiscuity += inc;
8535 if (dev->promiscuity == 0) {
8536 /*
8537 * Avoid overflow.
8538 * If inc causes overflow, untouch promisc and return error.
8539 */
8540 if (inc < 0)
8541 dev->flags &= ~IFF_PROMISC;
8542 else {
8543 dev->promiscuity -= inc;
7b6cd1ce
JP
8544 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8545 dev->name);
dad9b335
WC
8546 return -EOVERFLOW;
8547 }
8548 }
52609c0b 8549 if (dev->flags != old_flags) {
7b6cd1ce
JP
8550 pr_info("device %s %s promiscuous mode\n",
8551 dev->name,
8552 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
8553 if (audit_enabled) {
8554 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
8555 audit_log(audit_context(), GFP_ATOMIC,
8556 AUDIT_ANOM_PROMISCUOUS,
8557 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8558 dev->name, (dev->flags & IFF_PROMISC),
8559 (old_flags & IFF_PROMISC),
8560 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8561 from_kuid(&init_user_ns, uid),
8562 from_kgid(&init_user_ns, gid),
8563 audit_get_sessionid(current));
8192b0c4 8564 }
24023451 8565
b6c40d68 8566 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 8567 }
991fb3f7
ND
8568 if (notify)
8569 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 8570 return 0;
1da177e4
LT
8571}
8572
4417da66
PM
8573/**
8574 * dev_set_promiscuity - update promiscuity count on a device
8575 * @dev: device
8576 * @inc: modifier
8577 *
8578 * Add or remove promiscuity from a device. While the count in the device
8579 * remains above zero the interface remains promiscuous. Once it hits zero
8580 * the device reverts back to normal filtering operation. A negative inc
8581 * value is used to drop promiscuity on the device.
dad9b335 8582 * Return 0 if successful or a negative errno code on error.
4417da66 8583 */
dad9b335 8584int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 8585{
b536db93 8586 unsigned int old_flags = dev->flags;
dad9b335 8587 int err;
4417da66 8588
991fb3f7 8589 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 8590 if (err < 0)
dad9b335 8591 return err;
4417da66
PM
8592 if (dev->flags != old_flags)
8593 dev_set_rx_mode(dev);
dad9b335 8594 return err;
4417da66 8595}
d1b19dff 8596EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 8597
991fb3f7 8598static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 8599{
991fb3f7 8600 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 8601
24023451
PM
8602 ASSERT_RTNL();
8603
1da177e4 8604 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8605 dev->allmulti += inc;
8606 if (dev->allmulti == 0) {
8607 /*
8608 * Avoid overflow.
8609 * If inc causes overflow, untouch allmulti and return error.
8610 */
8611 if (inc < 0)
8612 dev->flags &= ~IFF_ALLMULTI;
8613 else {
8614 dev->allmulti -= inc;
7b6cd1ce
JP
8615 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8616 dev->name);
dad9b335
WC
8617 return -EOVERFLOW;
8618 }
8619 }
24023451 8620 if (dev->flags ^ old_flags) {
b6c40d68 8621 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8622 dev_set_rx_mode(dev);
991fb3f7
ND
8623 if (notify)
8624 __dev_notify_flags(dev, old_flags,
8625 dev->gflags ^ old_gflags);
24023451 8626 }
dad9b335 8627 return 0;
4417da66 8628}
991fb3f7
ND
8629
8630/**
8631 * dev_set_allmulti - update allmulti count on a device
8632 * @dev: device
8633 * @inc: modifier
8634 *
8635 * Add or remove reception of all multicast frames to a device. While the
8636 * count in the device remains above zero the interface remains listening
8637 * to all interfaces. Once it hits zero the device reverts back to normal
8638 * filtering operation. A negative @inc value is used to drop the counter
8639 * when releasing a resource needing all multicasts.
8640 * Return 0 if successful or a negative errno code on error.
8641 */
8642
8643int dev_set_allmulti(struct net_device *dev, int inc)
8644{
8645 return __dev_set_allmulti(dev, inc, true);
8646}
d1b19dff 8647EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8648
8649/*
8650 * Upload unicast and multicast address lists to device and
8651 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8652 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8653 * are present.
8654 */
8655void __dev_set_rx_mode(struct net_device *dev)
8656{
d314774c
SH
8657 const struct net_device_ops *ops = dev->netdev_ops;
8658
4417da66
PM
8659 /* dev_open will call this function so the list will stay sane. */
8660 if (!(dev->flags&IFF_UP))
8661 return;
8662
8663 if (!netif_device_present(dev))
40b77c94 8664 return;
4417da66 8665
01789349 8666 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8667 /* Unicast addresses changes may only happen under the rtnl,
8668 * therefore calling __dev_set_promiscuity here is safe.
8669 */
32e7bfc4 8670 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8671 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8672 dev->uc_promisc = true;
32e7bfc4 8673 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8674 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8675 dev->uc_promisc = false;
4417da66 8676 }
4417da66 8677 }
01789349
JP
8678
8679 if (ops->ndo_set_rx_mode)
8680 ops->ndo_set_rx_mode(dev);
4417da66
PM
8681}
8682
8683void dev_set_rx_mode(struct net_device *dev)
8684{
b9e40857 8685 netif_addr_lock_bh(dev);
4417da66 8686 __dev_set_rx_mode(dev);
b9e40857 8687 netif_addr_unlock_bh(dev);
1da177e4
LT
8688}
8689
f0db275a
SH
8690/**
8691 * dev_get_flags - get flags reported to userspace
8692 * @dev: device
8693 *
8694 * Get the combination of flag bits exported through APIs to userspace.
8695 */
95c96174 8696unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8697{
95c96174 8698 unsigned int flags;
1da177e4
LT
8699
8700 flags = (dev->flags & ~(IFF_PROMISC |
8701 IFF_ALLMULTI |
b00055aa
SR
8702 IFF_RUNNING |
8703 IFF_LOWER_UP |
8704 IFF_DORMANT)) |
1da177e4
LT
8705 (dev->gflags & (IFF_PROMISC |
8706 IFF_ALLMULTI));
8707
b00055aa
SR
8708 if (netif_running(dev)) {
8709 if (netif_oper_up(dev))
8710 flags |= IFF_RUNNING;
8711 if (netif_carrier_ok(dev))
8712 flags |= IFF_LOWER_UP;
8713 if (netif_dormant(dev))
8714 flags |= IFF_DORMANT;
8715 }
1da177e4
LT
8716
8717 return flags;
8718}
d1b19dff 8719EXPORT_SYMBOL(dev_get_flags);
1da177e4 8720
6d040321
PM
8721int __dev_change_flags(struct net_device *dev, unsigned int flags,
8722 struct netlink_ext_ack *extack)
1da177e4 8723{
b536db93 8724 unsigned int old_flags = dev->flags;
bd380811 8725 int ret;
1da177e4 8726
24023451
PM
8727 ASSERT_RTNL();
8728
1da177e4
LT
8729 /*
8730 * Set the flags on our device.
8731 */
8732
8733 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8734 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8735 IFF_AUTOMEDIA)) |
8736 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8737 IFF_ALLMULTI));
8738
8739 /*
8740 * Load in the correct multicast list now the flags have changed.
8741 */
8742
b6c40d68
PM
8743 if ((old_flags ^ flags) & IFF_MULTICAST)
8744 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8745
4417da66 8746 dev_set_rx_mode(dev);
1da177e4
LT
8747
8748 /*
8749 * Have we downed the interface. We handle IFF_UP ourselves
8750 * according to user attempts to set it, rather than blindly
8751 * setting it.
8752 */
8753
8754 ret = 0;
7051b88a 8755 if ((old_flags ^ flags) & IFF_UP) {
8756 if (old_flags & IFF_UP)
8757 __dev_close(dev);
8758 else
40c900aa 8759 ret = __dev_open(dev, extack);
7051b88a 8760 }
1da177e4 8761
1da177e4 8762 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8763 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8764 unsigned int old_flags = dev->flags;
d1b19dff 8765
1da177e4 8766 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8767
8768 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8769 if (dev->flags != old_flags)
8770 dev_set_rx_mode(dev);
1da177e4
LT
8771 }
8772
8773 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8774 * is important. Some (broken) drivers set IFF_PROMISC, when
8775 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8776 */
8777 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8778 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8779
1da177e4 8780 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8781 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8782 }
8783
bd380811
PM
8784 return ret;
8785}
8786
a528c219
ND
8787void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8788 unsigned int gchanges)
bd380811
PM
8789{
8790 unsigned int changes = dev->flags ^ old_flags;
8791
a528c219 8792 if (gchanges)
7f294054 8793 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8794
bd380811
PM
8795 if (changes & IFF_UP) {
8796 if (dev->flags & IFF_UP)
8797 call_netdevice_notifiers(NETDEV_UP, dev);
8798 else
8799 call_netdevice_notifiers(NETDEV_DOWN, dev);
8800 }
8801
8802 if (dev->flags & IFF_UP &&
be9efd36 8803 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8804 struct netdev_notifier_change_info change_info = {
8805 .info = {
8806 .dev = dev,
8807 },
8808 .flags_changed = changes,
8809 };
be9efd36 8810
51d0c047 8811 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8812 }
bd380811
PM
8813}
8814
8815/**
8816 * dev_change_flags - change device settings
8817 * @dev: device
8818 * @flags: device state flags
567c5e13 8819 * @extack: netlink extended ack
bd380811
PM
8820 *
8821 * Change settings on device based state flags. The flags are
8822 * in the userspace exported format.
8823 */
567c5e13
PM
8824int dev_change_flags(struct net_device *dev, unsigned int flags,
8825 struct netlink_ext_ack *extack)
bd380811 8826{
b536db93 8827 int ret;
991fb3f7 8828 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8829
6d040321 8830 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8831 if (ret < 0)
8832 return ret;
8833
991fb3f7 8834 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8835 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8836 return ret;
8837}
d1b19dff 8838EXPORT_SYMBOL(dev_change_flags);
1da177e4 8839
f51048c3 8840int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8841{
8842 const struct net_device_ops *ops = dev->netdev_ops;
8843
8844 if (ops->ndo_change_mtu)
8845 return ops->ndo_change_mtu(dev, new_mtu);
8846
501a90c9
ED
8847 /* Pairs with all the lockless reads of dev->mtu in the stack */
8848 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8849 return 0;
8850}
f51048c3 8851EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8852
d836f5c6
ED
8853int dev_validate_mtu(struct net_device *dev, int new_mtu,
8854 struct netlink_ext_ack *extack)
8855{
8856 /* MTU must be positive, and in range */
8857 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8858 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8859 return -EINVAL;
8860 }
8861
8862 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8863 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8864 return -EINVAL;
8865 }
8866 return 0;
8867}
8868
f0db275a 8869/**
7a4c53be 8870 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8871 * @dev: device
8872 * @new_mtu: new transfer unit
7a4c53be 8873 * @extack: netlink extended ack
f0db275a
SH
8874 *
8875 * Change the maximum transfer size of the network device.
8876 */
7a4c53be
SH
8877int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8878 struct netlink_ext_ack *extack)
1da177e4 8879{
2315dc91 8880 int err, orig_mtu;
1da177e4
LT
8881
8882 if (new_mtu == dev->mtu)
8883 return 0;
8884
d836f5c6
ED
8885 err = dev_validate_mtu(dev, new_mtu, extack);
8886 if (err)
8887 return err;
1da177e4
LT
8888
8889 if (!netif_device_present(dev))
8890 return -ENODEV;
8891
1d486bfb
VF
8892 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8893 err = notifier_to_errno(err);
8894 if (err)
8895 return err;
d314774c 8896
2315dc91
VF
8897 orig_mtu = dev->mtu;
8898 err = __dev_set_mtu(dev, new_mtu);
d314774c 8899
2315dc91 8900 if (!err) {
af7d6cce
SD
8901 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8902 orig_mtu);
2315dc91
VF
8903 err = notifier_to_errno(err);
8904 if (err) {
8905 /* setting mtu back and notifying everyone again,
8906 * so that they have a chance to revert changes.
8907 */
8908 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8909 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8910 new_mtu);
2315dc91
VF
8911 }
8912 }
1da177e4
LT
8913 return err;
8914}
7a4c53be
SH
8915
8916int dev_set_mtu(struct net_device *dev, int new_mtu)
8917{
8918 struct netlink_ext_ack extack;
8919 int err;
8920
a6bcfc89 8921 memset(&extack, 0, sizeof(extack));
7a4c53be 8922 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8923 if (err && extack._msg)
7a4c53be
SH
8924 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8925 return err;
8926}
d1b19dff 8927EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8928
6a643ddb
CW
8929/**
8930 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8931 * @dev: device
8932 * @new_len: new tx queue length
8933 */
8934int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8935{
8936 unsigned int orig_len = dev->tx_queue_len;
8937 int res;
8938
8939 if (new_len != (unsigned int)new_len)
8940 return -ERANGE;
8941
8942 if (new_len != orig_len) {
8943 dev->tx_queue_len = new_len;
8944 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8945 res = notifier_to_errno(res);
7effaf06
TT
8946 if (res)
8947 goto err_rollback;
8948 res = dev_qdisc_change_tx_queue_len(dev);
8949 if (res)
8950 goto err_rollback;
6a643ddb
CW
8951 }
8952
8953 return 0;
7effaf06
TT
8954
8955err_rollback:
8956 netdev_err(dev, "refused to change device tx_queue_len\n");
8957 dev->tx_queue_len = orig_len;
8958 return res;
6a643ddb
CW
8959}
8960
cbda10fa
VD
8961/**
8962 * dev_set_group - Change group this device belongs to
8963 * @dev: device
8964 * @new_group: group this device should belong to
8965 */
8966void dev_set_group(struct net_device *dev, int new_group)
8967{
8968 dev->group = new_group;
8969}
8970EXPORT_SYMBOL(dev_set_group);
8971
d59cdf94
PM
8972/**
8973 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8974 * @dev: device
8975 * @addr: new address
8976 * @extack: netlink extended ack
8977 */
8978int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8979 struct netlink_ext_ack *extack)
8980{
8981 struct netdev_notifier_pre_changeaddr_info info = {
8982 .info.dev = dev,
8983 .info.extack = extack,
8984 .dev_addr = addr,
8985 };
8986 int rc;
8987
8988 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8989 return notifier_to_errno(rc);
8990}
8991EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8992
f0db275a
SH
8993/**
8994 * dev_set_mac_address - Change Media Access Control Address
8995 * @dev: device
8996 * @sa: new address
3a37a963 8997 * @extack: netlink extended ack
f0db275a
SH
8998 *
8999 * Change the hardware (MAC) address of the device
9000 */
3a37a963
PM
9001int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9002 struct netlink_ext_ack *extack)
1da177e4 9003{
d314774c 9004 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
9005 int err;
9006
d314774c 9007 if (!ops->ndo_set_mac_address)
1da177e4
LT
9008 return -EOPNOTSUPP;
9009 if (sa->sa_family != dev->type)
9010 return -EINVAL;
9011 if (!netif_device_present(dev))
9012 return -ENODEV;
d59cdf94
PM
9013 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9014 if (err)
9015 return err;
d314774c 9016 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
9017 if (err)
9018 return err;
fbdeca2d 9019 dev->addr_assign_type = NET_ADDR_SET;
f6521516 9020 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 9021 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 9022 return 0;
1da177e4 9023}
d1b19dff 9024EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 9025
3b23a32a
CW
9026static DECLARE_RWSEM(dev_addr_sem);
9027
9028int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9029 struct netlink_ext_ack *extack)
9030{
9031 int ret;
9032
9033 down_write(&dev_addr_sem);
9034 ret = dev_set_mac_address(dev, sa, extack);
9035 up_write(&dev_addr_sem);
9036 return ret;
9037}
9038EXPORT_SYMBOL(dev_set_mac_address_user);
9039
9040int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9041{
9042 size_t size = sizeof(sa->sa_data);
9043 struct net_device *dev;
9044 int ret = 0;
9045
9046 down_read(&dev_addr_sem);
9047 rcu_read_lock();
9048
9049 dev = dev_get_by_name_rcu(net, dev_name);
9050 if (!dev) {
9051 ret = -ENODEV;
9052 goto unlock;
9053 }
9054 if (!dev->addr_len)
9055 memset(sa->sa_data, 0, size);
9056 else
9057 memcpy(sa->sa_data, dev->dev_addr,
9058 min_t(size_t, size, dev->addr_len));
9059 sa->sa_family = dev->type;
9060
9061unlock:
9062 rcu_read_unlock();
9063 up_read(&dev_addr_sem);
9064 return ret;
9065}
9066EXPORT_SYMBOL(dev_get_mac_address);
9067
4bf84c35
JP
9068/**
9069 * dev_change_carrier - Change device carrier
9070 * @dev: device
691b3b7e 9071 * @new_carrier: new value
4bf84c35
JP
9072 *
9073 * Change device carrier
9074 */
9075int dev_change_carrier(struct net_device *dev, bool new_carrier)
9076{
9077 const struct net_device_ops *ops = dev->netdev_ops;
9078
9079 if (!ops->ndo_change_carrier)
9080 return -EOPNOTSUPP;
9081 if (!netif_device_present(dev))
9082 return -ENODEV;
9083 return ops->ndo_change_carrier(dev, new_carrier);
9084}
9085EXPORT_SYMBOL(dev_change_carrier);
9086
66b52b0d
JP
9087/**
9088 * dev_get_phys_port_id - Get device physical port ID
9089 * @dev: device
9090 * @ppid: port ID
9091 *
9092 * Get device physical port ID
9093 */
9094int dev_get_phys_port_id(struct net_device *dev,
02637fce 9095 struct netdev_phys_item_id *ppid)
66b52b0d
JP
9096{
9097 const struct net_device_ops *ops = dev->netdev_ops;
9098
9099 if (!ops->ndo_get_phys_port_id)
9100 return -EOPNOTSUPP;
9101 return ops->ndo_get_phys_port_id(dev, ppid);
9102}
9103EXPORT_SYMBOL(dev_get_phys_port_id);
9104
db24a904
DA
9105/**
9106 * dev_get_phys_port_name - Get device physical port name
9107 * @dev: device
9108 * @name: port name
ed49e650 9109 * @len: limit of bytes to copy to name
db24a904
DA
9110 *
9111 * Get device physical port name
9112 */
9113int dev_get_phys_port_name(struct net_device *dev,
9114 char *name, size_t len)
9115{
9116 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 9117 int err;
db24a904 9118
af3836df
JP
9119 if (ops->ndo_get_phys_port_name) {
9120 err = ops->ndo_get_phys_port_name(dev, name, len);
9121 if (err != -EOPNOTSUPP)
9122 return err;
9123 }
9124 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
9125}
9126EXPORT_SYMBOL(dev_get_phys_port_name);
9127
d6abc596
FF
9128/**
9129 * dev_get_port_parent_id - Get the device's port parent identifier
9130 * @dev: network device
9131 * @ppid: pointer to a storage for the port's parent identifier
9132 * @recurse: allow/disallow recursion to lower devices
9133 *
9134 * Get the devices's port parent identifier
9135 */
9136int dev_get_port_parent_id(struct net_device *dev,
9137 struct netdev_phys_item_id *ppid,
9138 bool recurse)
9139{
9140 const struct net_device_ops *ops = dev->netdev_ops;
9141 struct netdev_phys_item_id first = { };
9142 struct net_device *lower_dev;
9143 struct list_head *iter;
7e1146e8
JP
9144 int err;
9145
9146 if (ops->ndo_get_port_parent_id) {
9147 err = ops->ndo_get_port_parent_id(dev, ppid);
9148 if (err != -EOPNOTSUPP)
9149 return err;
9150 }
d6abc596 9151
7e1146e8
JP
9152 err = devlink_compat_switch_id_get(dev, ppid);
9153 if (!err || err != -EOPNOTSUPP)
9154 return err;
d6abc596
FF
9155
9156 if (!recurse)
7e1146e8 9157 return -EOPNOTSUPP;
d6abc596
FF
9158
9159 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9160 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9161 if (err)
9162 break;
9163 if (!first.id_len)
9164 first = *ppid;
9165 else if (memcmp(&first, ppid, sizeof(*ppid)))
e1b9efe6 9166 return -EOPNOTSUPP;
d6abc596
FF
9167 }
9168
9169 return err;
9170}
9171EXPORT_SYMBOL(dev_get_port_parent_id);
9172
9173/**
9174 * netdev_port_same_parent_id - Indicate if two network devices have
9175 * the same port parent identifier
9176 * @a: first network device
9177 * @b: second network device
9178 */
9179bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9180{
9181 struct netdev_phys_item_id a_id = { };
9182 struct netdev_phys_item_id b_id = { };
9183
9184 if (dev_get_port_parent_id(a, &a_id, true) ||
9185 dev_get_port_parent_id(b, &b_id, true))
9186 return false;
9187
9188 return netdev_phys_item_id_same(&a_id, &b_id);
9189}
9190EXPORT_SYMBOL(netdev_port_same_parent_id);
9191
d746d707
AK
9192/**
9193 * dev_change_proto_down - update protocol port state information
9194 * @dev: device
9195 * @proto_down: new value
9196 *
9197 * This info can be used by switch drivers to set the phys state of the
9198 * port.
9199 */
9200int dev_change_proto_down(struct net_device *dev, bool proto_down)
9201{
9202 const struct net_device_ops *ops = dev->netdev_ops;
9203
9204 if (!ops->ndo_change_proto_down)
9205 return -EOPNOTSUPP;
9206 if (!netif_device_present(dev))
9207 return -ENODEV;
9208 return ops->ndo_change_proto_down(dev, proto_down);
9209}
9210EXPORT_SYMBOL(dev_change_proto_down);
9211
b5899679
AR
9212/**
9213 * dev_change_proto_down_generic - generic implementation for
9214 * ndo_change_proto_down that sets carrier according to
9215 * proto_down.
9216 *
9217 * @dev: device
9218 * @proto_down: new value
9219 */
9220int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9221{
9222 if (proto_down)
9223 netif_carrier_off(dev);
9224 else
9225 netif_carrier_on(dev);
9226 dev->proto_down = proto_down;
9227 return 0;
9228}
9229EXPORT_SYMBOL(dev_change_proto_down_generic);
9230
829eb208
RP
9231/**
9232 * dev_change_proto_down_reason - proto down reason
9233 *
9234 * @dev: device
9235 * @mask: proto down mask
9236 * @value: proto down value
9237 */
9238void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9239 u32 value)
9240{
9241 int b;
9242
9243 if (!mask) {
9244 dev->proto_down_reason = value;
9245 } else {
9246 for_each_set_bit(b, &mask, 32) {
9247 if (value & (1 << b))
9248 dev->proto_down_reason |= BIT(b);
9249 else
9250 dev->proto_down_reason &= ~BIT(b);
9251 }
9252 }
9253}
9254EXPORT_SYMBOL(dev_change_proto_down_reason);
9255
aa8d3a71
AN
9256struct bpf_xdp_link {
9257 struct bpf_link link;
9258 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9259 int flags;
9260};
9261
c8a36f19 9262static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
d67b9cd2 9263{
7f0a8382
AN
9264 if (flags & XDP_FLAGS_HW_MODE)
9265 return XDP_MODE_HW;
9266 if (flags & XDP_FLAGS_DRV_MODE)
9267 return XDP_MODE_DRV;
c8a36f19
AN
9268 if (flags & XDP_FLAGS_SKB_MODE)
9269 return XDP_MODE_SKB;
9270 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
7f0a8382 9271}
d67b9cd2 9272
7f0a8382
AN
9273static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9274{
9275 switch (mode) {
9276 case XDP_MODE_SKB:
9277 return generic_xdp_install;
9278 case XDP_MODE_DRV:
9279 case XDP_MODE_HW:
9280 return dev->netdev_ops->ndo_bpf;
9281 default:
9282 return NULL;
5d867245 9283 }
7f0a8382 9284}
118b4aa2 9285
aa8d3a71
AN
9286static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9287 enum bpf_xdp_mode mode)
9288{
9289 return dev->xdp_state[mode].link;
9290}
9291
7f0a8382
AN
9292static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9293 enum bpf_xdp_mode mode)
9294{
aa8d3a71
AN
9295 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9296
9297 if (link)
9298 return link->link.prog;
7f0a8382
AN
9299 return dev->xdp_state[mode].prog;
9300}
9301
998f1729
THJ
9302static u8 dev_xdp_prog_count(struct net_device *dev)
9303{
9304 u8 count = 0;
9305 int i;
9306
9307 for (i = 0; i < __MAX_XDP_MODE; i++)
9308 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9309 count++;
9310 return count;
9311}
9312
7f0a8382
AN
9313u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9314{
9315 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
118b4aa2 9316
7f0a8382
AN
9317 return prog ? prog->aux->id : 0;
9318}
58038695 9319
aa8d3a71
AN
9320static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9321 struct bpf_xdp_link *link)
9322{
9323 dev->xdp_state[mode].link = link;
9324 dev->xdp_state[mode].prog = NULL;
d67b9cd2
DB
9325}
9326
7f0a8382
AN
9327static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9328 struct bpf_prog *prog)
9329{
aa8d3a71 9330 dev->xdp_state[mode].link = NULL;
7f0a8382 9331 dev->xdp_state[mode].prog = prog;
d67b9cd2
DB
9332}
9333
7f0a8382
AN
9334static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9335 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9336 u32 flags, struct bpf_prog *prog)
d67b9cd2 9337{
f4e63525 9338 struct netdev_bpf xdp;
7e6897f9
BT
9339 int err;
9340
d67b9cd2 9341 memset(&xdp, 0, sizeof(xdp));
7f0a8382 9342 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
d67b9cd2 9343 xdp.extack = extack;
32d60277 9344 xdp.flags = flags;
d67b9cd2
DB
9345 xdp.prog = prog;
9346
7f0a8382
AN
9347 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9348 * "moved" into driver), so they don't increment it on their own, but
9349 * they do decrement refcnt when program is detached or replaced.
9350 * Given net_device also owns link/prog, we need to bump refcnt here
9351 * to prevent drivers from underflowing it.
9352 */
9353 if (prog)
9354 bpf_prog_inc(prog);
7e6897f9 9355 err = bpf_op(dev, &xdp);
7f0a8382
AN
9356 if (err) {
9357 if (prog)
9358 bpf_prog_put(prog);
9359 return err;
9360 }
7e6897f9 9361
7f0a8382
AN
9362 if (mode != XDP_MODE_HW)
9363 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
7e6897f9 9364
7f0a8382 9365 return 0;
d67b9cd2
DB
9366}
9367
bd0b2e7f
JK
9368static void dev_xdp_uninstall(struct net_device *dev)
9369{
aa8d3a71 9370 struct bpf_xdp_link *link;
7f0a8382
AN
9371 struct bpf_prog *prog;
9372 enum bpf_xdp_mode mode;
9373 bpf_op_t bpf_op;
bd0b2e7f 9374
7f0a8382 9375 ASSERT_RTNL();
bd0b2e7f 9376
7f0a8382
AN
9377 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9378 prog = dev_xdp_prog(dev, mode);
9379 if (!prog)
9380 continue;
bd0b2e7f 9381
7f0a8382
AN
9382 bpf_op = dev_xdp_bpf_op(dev, mode);
9383 if (!bpf_op)
9384 continue;
bd0b2e7f 9385
7f0a8382
AN
9386 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9387
aa8d3a71
AN
9388 /* auto-detach link from net device */
9389 link = dev_xdp_link(dev, mode);
9390 if (link)
9391 link->dev = NULL;
9392 else
9393 bpf_prog_put(prog);
9394
9395 dev_xdp_set_link(dev, mode, NULL);
7f0a8382 9396 }
bd0b2e7f
JK
9397}
9398
d4baa936 9399static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
aa8d3a71
AN
9400 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9401 struct bpf_prog *old_prog, u32 flags)
a7862b45 9402{
998f1729 9403 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
d4baa936
AN
9404 struct bpf_prog *cur_prog;
9405 enum bpf_xdp_mode mode;
7f0a8382 9406 bpf_op_t bpf_op;
a7862b45
BB
9407 int err;
9408
85de8576
DB
9409 ASSERT_RTNL();
9410
aa8d3a71
AN
9411 /* either link or prog attachment, never both */
9412 if (link && (new_prog || old_prog))
9413 return -EINVAL;
9414 /* link supports only XDP mode flags */
9415 if (link && (flags & ~XDP_FLAGS_MODES)) {
9416 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9417 return -EINVAL;
9418 }
998f1729
THJ
9419 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9420 if (num_modes > 1) {
d4baa936
AN
9421 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9422 return -EINVAL;
9423 }
998f1729
THJ
9424 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9425 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9426 NL_SET_ERR_MSG(extack,
9427 "More than one program loaded, unset mode is ambiguous");
9428 return -EINVAL;
9429 }
d4baa936
AN
9430 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9431 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9432 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9433 return -EINVAL;
01dde20c 9434 }
a25717d2 9435
c8a36f19 9436 mode = dev_xdp_mode(dev, flags);
aa8d3a71
AN
9437 /* can't replace attached link */
9438 if (dev_xdp_link(dev, mode)) {
9439 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9440 return -EBUSY;
01dde20c 9441 }
c14a9f63 9442
d4baa936 9443 cur_prog = dev_xdp_prog(dev, mode);
aa8d3a71
AN
9444 /* can't replace attached prog with link */
9445 if (link && cur_prog) {
9446 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9447 return -EBUSY;
9448 }
d4baa936
AN
9449 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9450 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9451 return -EEXIST;
92234c8f 9452 }
c14a9f63 9453
aa8d3a71
AN
9454 /* put effective new program into new_prog */
9455 if (link)
9456 new_prog = link->link.prog;
85de8576 9457
d4baa936
AN
9458 if (new_prog) {
9459 bool offload = mode == XDP_MODE_HW;
7f0a8382
AN
9460 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9461 ? XDP_MODE_DRV : XDP_MODE_SKB;
441a3303 9462
068d9d1e
AN
9463 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9464 NL_SET_ERR_MSG(extack, "XDP program already attached");
9465 return -EBUSY;
9466 }
d4baa936 9467 if (!offload && dev_xdp_prog(dev, other_mode)) {
7f0a8382 9468 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
d67b9cd2 9469 return -EEXIST;
01dde20c 9470 }
d4baa936 9471 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
7f0a8382 9472 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
441a3303
JK
9473 return -EINVAL;
9474 }
d4baa936 9475 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
fbee97fe 9476 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
fbee97fe
DA
9477 return -EINVAL;
9478 }
d4baa936
AN
9479 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9480 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
92164774
LB
9481 return -EINVAL;
9482 }
d4baa936 9483 }
92164774 9484
d4baa936
AN
9485 /* don't call drivers if the effective program didn't change */
9486 if (new_prog != cur_prog) {
9487 bpf_op = dev_xdp_bpf_op(dev, mode);
9488 if (!bpf_op) {
9489 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9490 return -EOPNOTSUPP;
c14a9f63 9491 }
a7862b45 9492
d4baa936
AN
9493 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9494 if (err)
9495 return err;
7f0a8382 9496 }
d4baa936 9497
aa8d3a71
AN
9498 if (link)
9499 dev_xdp_set_link(dev, mode, link);
9500 else
9501 dev_xdp_set_prog(dev, mode, new_prog);
d4baa936
AN
9502 if (cur_prog)
9503 bpf_prog_put(cur_prog);
a7862b45 9504
7f0a8382 9505 return 0;
a7862b45 9506}
a7862b45 9507
aa8d3a71
AN
9508static int dev_xdp_attach_link(struct net_device *dev,
9509 struct netlink_ext_ack *extack,
9510 struct bpf_xdp_link *link)
9511{
9512 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9513}
9514
9515static int dev_xdp_detach_link(struct net_device *dev,
9516 struct netlink_ext_ack *extack,
9517 struct bpf_xdp_link *link)
9518{
9519 enum bpf_xdp_mode mode;
9520 bpf_op_t bpf_op;
9521
9522 ASSERT_RTNL();
9523
c8a36f19 9524 mode = dev_xdp_mode(dev, link->flags);
aa8d3a71
AN
9525 if (dev_xdp_link(dev, mode) != link)
9526 return -EINVAL;
9527
9528 bpf_op = dev_xdp_bpf_op(dev, mode);
9529 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9530 dev_xdp_set_link(dev, mode, NULL);
9531 return 0;
9532}
9533
9534static void bpf_xdp_link_release(struct bpf_link *link)
9535{
9536 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9537
9538 rtnl_lock();
9539
9540 /* if racing with net_device's tear down, xdp_link->dev might be
9541 * already NULL, in which case link was already auto-detached
9542 */
73b11c2a 9543 if (xdp_link->dev) {
aa8d3a71 9544 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
73b11c2a
AN
9545 xdp_link->dev = NULL;
9546 }
aa8d3a71
AN
9547
9548 rtnl_unlock();
9549}
9550
73b11c2a
AN
9551static int bpf_xdp_link_detach(struct bpf_link *link)
9552{
9553 bpf_xdp_link_release(link);
9554 return 0;
9555}
9556
aa8d3a71
AN
9557static void bpf_xdp_link_dealloc(struct bpf_link *link)
9558{
9559 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9560
9561 kfree(xdp_link);
9562}
9563
c1931c97
AN
9564static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9565 struct seq_file *seq)
9566{
9567 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9568 u32 ifindex = 0;
9569
9570 rtnl_lock();
9571 if (xdp_link->dev)
9572 ifindex = xdp_link->dev->ifindex;
9573 rtnl_unlock();
9574
9575 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9576}
9577
9578static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9579 struct bpf_link_info *info)
9580{
9581 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9582 u32 ifindex = 0;
9583
9584 rtnl_lock();
9585 if (xdp_link->dev)
9586 ifindex = xdp_link->dev->ifindex;
9587 rtnl_unlock();
9588
9589 info->xdp.ifindex = ifindex;
9590 return 0;
9591}
9592
026a4c28
AN
9593static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9594 struct bpf_prog *old_prog)
9595{
9596 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9597 enum bpf_xdp_mode mode;
9598 bpf_op_t bpf_op;
9599 int err = 0;
9600
9601 rtnl_lock();
9602
9603 /* link might have been auto-released already, so fail */
9604 if (!xdp_link->dev) {
9605 err = -ENOLINK;
9606 goto out_unlock;
9607 }
9608
9609 if (old_prog && link->prog != old_prog) {
9610 err = -EPERM;
9611 goto out_unlock;
9612 }
9613 old_prog = link->prog;
9614 if (old_prog == new_prog) {
9615 /* no-op, don't disturb drivers */
9616 bpf_prog_put(new_prog);
9617 goto out_unlock;
9618 }
9619
c8a36f19 9620 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
026a4c28
AN
9621 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9622 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9623 xdp_link->flags, new_prog);
9624 if (err)
9625 goto out_unlock;
9626
9627 old_prog = xchg(&link->prog, new_prog);
9628 bpf_prog_put(old_prog);
9629
9630out_unlock:
9631 rtnl_unlock();
9632 return err;
9633}
9634
aa8d3a71
AN
9635static const struct bpf_link_ops bpf_xdp_link_lops = {
9636 .release = bpf_xdp_link_release,
9637 .dealloc = bpf_xdp_link_dealloc,
73b11c2a 9638 .detach = bpf_xdp_link_detach,
c1931c97
AN
9639 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9640 .fill_link_info = bpf_xdp_link_fill_link_info,
026a4c28 9641 .update_prog = bpf_xdp_link_update,
aa8d3a71
AN
9642};
9643
9644int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9645{
9646 struct net *net = current->nsproxy->net_ns;
9647 struct bpf_link_primer link_primer;
9648 struct bpf_xdp_link *link;
9649 struct net_device *dev;
9650 int err, fd;
9651
5acc7d3e 9652 rtnl_lock();
aa8d3a71 9653 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
5acc7d3e
XZ
9654 if (!dev) {
9655 rtnl_unlock();
aa8d3a71 9656 return -EINVAL;
5acc7d3e 9657 }
aa8d3a71
AN
9658
9659 link = kzalloc(sizeof(*link), GFP_USER);
9660 if (!link) {
9661 err = -ENOMEM;
5acc7d3e 9662 goto unlock;
aa8d3a71
AN
9663 }
9664
9665 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9666 link->dev = dev;
9667 link->flags = attr->link_create.flags;
9668
9669 err = bpf_link_prime(&link->link, &link_primer);
9670 if (err) {
9671 kfree(link);
5acc7d3e 9672 goto unlock;
aa8d3a71
AN
9673 }
9674
aa8d3a71
AN
9675 err = dev_xdp_attach_link(dev, NULL, link);
9676 rtnl_unlock();
9677
9678 if (err) {
5acc7d3e 9679 link->dev = NULL;
aa8d3a71
AN
9680 bpf_link_cleanup(&link_primer);
9681 goto out_put_dev;
9682 }
9683
9684 fd = bpf_link_settle(&link_primer);
9685 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9686 dev_put(dev);
9687 return fd;
9688
5acc7d3e
XZ
9689unlock:
9690 rtnl_unlock();
9691
aa8d3a71
AN
9692out_put_dev:
9693 dev_put(dev);
9694 return err;
9695}
9696
d4baa936
AN
9697/**
9698 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9699 * @dev: device
9700 * @extack: netlink extended ack
9701 * @fd: new program fd or negative value to clear
9702 * @expected_fd: old program fd that userspace expects to replace or clear
9703 * @flags: xdp-related flags
9704 *
9705 * Set or clear a bpf program for a device
9706 */
9707int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9708 int fd, int expected_fd, u32 flags)
9709{
c8a36f19 9710 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
d4baa936
AN
9711 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9712 int err;
9713
9714 ASSERT_RTNL();
9715
9716 if (fd >= 0) {
9717 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9718 mode != XDP_MODE_SKB);
9719 if (IS_ERR(new_prog))
9720 return PTR_ERR(new_prog);
9721 }
9722
9723 if (expected_fd >= 0) {
9724 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9725 mode != XDP_MODE_SKB);
9726 if (IS_ERR(old_prog)) {
9727 err = PTR_ERR(old_prog);
9728 old_prog = NULL;
9729 goto err_out;
c14a9f63 9730 }
a7862b45
BB
9731 }
9732
aa8d3a71 9733 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
a7862b45 9734
d4baa936
AN
9735err_out:
9736 if (err && new_prog)
9737 bpf_prog_put(new_prog);
9738 if (old_prog)
9739 bpf_prog_put(old_prog);
a7862b45
BB
9740 return err;
9741}
a7862b45 9742
1da177e4
LT
9743/**
9744 * dev_new_index - allocate an ifindex
c4ea43c5 9745 * @net: the applicable net namespace
1da177e4
LT
9746 *
9747 * Returns a suitable unique value for a new device interface
9748 * number. The caller must hold the rtnl semaphore or the
9749 * dev_base_lock to be sure it remains unique.
9750 */
881d966b 9751static int dev_new_index(struct net *net)
1da177e4 9752{
aa79e66e 9753 int ifindex = net->ifindex;
f4563a75 9754
1da177e4
LT
9755 for (;;) {
9756 if (++ifindex <= 0)
9757 ifindex = 1;
881d966b 9758 if (!__dev_get_by_index(net, ifindex))
aa79e66e 9759 return net->ifindex = ifindex;
1da177e4
LT
9760 }
9761}
9762
1da177e4 9763/* Delayed registration/unregisteration */
3b5b34fd 9764static LIST_HEAD(net_todo_list);
200b916f 9765DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 9766
6f05f629 9767static void net_set_todo(struct net_device *dev)
1da177e4 9768{
1da177e4 9769 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 9770 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
9771}
9772
fd867d51
JW
9773static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9774 struct net_device *upper, netdev_features_t features)
9775{
9776 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9777 netdev_features_t feature;
5ba3f7d6 9778 int feature_bit;
fd867d51 9779
3b89ea9c 9780 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9781 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9782 if (!(upper->wanted_features & feature)
9783 && (features & feature)) {
9784 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9785 &feature, upper->name);
9786 features &= ~feature;
9787 }
9788 }
9789
9790 return features;
9791}
9792
9793static void netdev_sync_lower_features(struct net_device *upper,
9794 struct net_device *lower, netdev_features_t features)
9795{
9796 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9797 netdev_features_t feature;
5ba3f7d6 9798 int feature_bit;
fd867d51 9799
3b89ea9c 9800 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9801 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9802 if (!(features & feature) && (lower->features & feature)) {
9803 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9804 &feature, lower->name);
9805 lower->wanted_features &= ~feature;
dd912306 9806 __netdev_update_features(lower);
fd867d51
JW
9807
9808 if (unlikely(lower->features & feature))
9809 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9810 &feature, lower->name);
dd912306
CW
9811 else
9812 netdev_features_change(lower);
fd867d51
JW
9813 }
9814 }
9815}
9816
c8f44aff
MM
9817static netdev_features_t netdev_fix_features(struct net_device *dev,
9818 netdev_features_t features)
b63365a2 9819{
57422dc5
MM
9820 /* Fix illegal checksum combinations */
9821 if ((features & NETIF_F_HW_CSUM) &&
9822 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 9823 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
9824 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9825 }
9826
b63365a2 9827 /* TSO requires that SG is present as well. */
ea2d3688 9828 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 9829 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 9830 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
9831 }
9832
ec5f0615
PS
9833 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9834 !(features & NETIF_F_IP_CSUM)) {
9835 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9836 features &= ~NETIF_F_TSO;
9837 features &= ~NETIF_F_TSO_ECN;
9838 }
9839
9840 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9841 !(features & NETIF_F_IPV6_CSUM)) {
9842 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9843 features &= ~NETIF_F_TSO6;
9844 }
9845
b1dc497b
AD
9846 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9847 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9848 features &= ~NETIF_F_TSO_MANGLEID;
9849
31d8b9e0
BH
9850 /* TSO ECN requires that TSO is present as well. */
9851 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9852 features &= ~NETIF_F_TSO_ECN;
9853
212b573f
MM
9854 /* Software GSO depends on SG. */
9855 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 9856 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
9857 features &= ~NETIF_F_GSO;
9858 }
9859
802ab55a
AD
9860 /* GSO partial features require GSO partial be set */
9861 if ((features & dev->gso_partial_features) &&
9862 !(features & NETIF_F_GSO_PARTIAL)) {
9863 netdev_dbg(dev,
9864 "Dropping partially supported GSO features since no GSO partial.\n");
9865 features &= ~dev->gso_partial_features;
9866 }
9867
fb1f5f79
MC
9868 if (!(features & NETIF_F_RXCSUM)) {
9869 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9870 * successfully merged by hardware must also have the
9871 * checksum verified by hardware. If the user does not
9872 * want to enable RXCSUM, logically, we should disable GRO_HW.
9873 */
9874 if (features & NETIF_F_GRO_HW) {
9875 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9876 features &= ~NETIF_F_GRO_HW;
9877 }
9878 }
9879
de8d5ab2
GP
9880 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9881 if (features & NETIF_F_RXFCS) {
9882 if (features & NETIF_F_LRO) {
9883 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9884 features &= ~NETIF_F_LRO;
9885 }
9886
9887 if (features & NETIF_F_GRO_HW) {
9888 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9889 features &= ~NETIF_F_GRO_HW;
9890 }
e6c6a929
GP
9891 }
9892
25537d71
TT
9893 if (features & NETIF_F_HW_TLS_TX) {
9894 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9895 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9896 bool hw_csum = features & NETIF_F_HW_CSUM;
9897
9898 if (!ip_csum && !hw_csum) {
9899 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9900 features &= ~NETIF_F_HW_TLS_TX;
9901 }
ae0b04b2
TT
9902 }
9903
a3eb4e9d
TT
9904 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9905 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9906 features &= ~NETIF_F_HW_TLS_RX;
9907 }
9908
b63365a2
HX
9909 return features;
9910}
b63365a2 9911
6cb6a27c 9912int __netdev_update_features(struct net_device *dev)
5455c699 9913{
fd867d51 9914 struct net_device *upper, *lower;
c8f44aff 9915 netdev_features_t features;
fd867d51 9916 struct list_head *iter;
e7868a85 9917 int err = -1;
5455c699 9918
87267485
MM
9919 ASSERT_RTNL();
9920
5455c699
MM
9921 features = netdev_get_wanted_features(dev);
9922
9923 if (dev->netdev_ops->ndo_fix_features)
9924 features = dev->netdev_ops->ndo_fix_features(dev, features);
9925
9926 /* driver might be less strict about feature dependencies */
9927 features = netdev_fix_features(dev, features);
9928
4250b75b 9929 /* some features can't be enabled if they're off on an upper device */
fd867d51
JW
9930 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9931 features = netdev_sync_upper_features(dev, upper, features);
9932
5455c699 9933 if (dev->features == features)
e7868a85 9934 goto sync_lower;
5455c699 9935
c8f44aff
MM
9936 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9937 &dev->features, &features);
5455c699
MM
9938
9939 if (dev->netdev_ops->ndo_set_features)
9940 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9941 else
9942 err = 0;
5455c699 9943
6cb6a27c 9944 if (unlikely(err < 0)) {
5455c699 9945 netdev_err(dev,
c8f44aff
MM
9946 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9947 err, &features, &dev->features);
17b85d29
NA
9948 /* return non-0 since some features might have changed and
9949 * it's better to fire a spurious notification than miss it
9950 */
9951 return -1;
6cb6a27c
MM
9952 }
9953
e7868a85 9954sync_lower:
fd867d51
JW
9955 /* some features must be disabled on lower devices when disabled
9956 * on an upper device (think: bonding master or bridge)
9957 */
9958 netdev_for_each_lower_dev(dev, lower, iter)
9959 netdev_sync_lower_features(dev, lower, features);
9960
ae847f40
SD
9961 if (!err) {
9962 netdev_features_t diff = features ^ dev->features;
9963
9964 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9965 /* udp_tunnel_{get,drop}_rx_info both need
9966 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9967 * device, or they won't do anything.
9968 * Thus we need to update dev->features
9969 * *before* calling udp_tunnel_get_rx_info,
9970 * but *after* calling udp_tunnel_drop_rx_info.
9971 */
9972 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9973 dev->features = features;
9974 udp_tunnel_get_rx_info(dev);
9975 } else {
9976 udp_tunnel_drop_rx_info(dev);
9977 }
9978 }
9979
9daae9bd
GP
9980 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9981 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9982 dev->features = features;
9983 err |= vlan_get_rx_ctag_filter_info(dev);
9984 } else {
9985 vlan_drop_rx_ctag_filter_info(dev);
9986 }
9987 }
9988
9989 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9990 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9991 dev->features = features;
9992 err |= vlan_get_rx_stag_filter_info(dev);
9993 } else {
9994 vlan_drop_rx_stag_filter_info(dev);
9995 }
9996 }
9997
6cb6a27c 9998 dev->features = features;
ae847f40 9999 }
6cb6a27c 10000
e7868a85 10001 return err < 0 ? 0 : 1;
6cb6a27c
MM
10002}
10003
afe12cc8
MM
10004/**
10005 * netdev_update_features - recalculate device features
10006 * @dev: the device to check
10007 *
10008 * Recalculate dev->features set and send notifications if it
10009 * has changed. Should be called after driver or hardware dependent
10010 * conditions might have changed that influence the features.
10011 */
6cb6a27c
MM
10012void netdev_update_features(struct net_device *dev)
10013{
10014 if (__netdev_update_features(dev))
10015 netdev_features_change(dev);
5455c699
MM
10016}
10017EXPORT_SYMBOL(netdev_update_features);
10018
afe12cc8
MM
10019/**
10020 * netdev_change_features - recalculate device features
10021 * @dev: the device to check
10022 *
10023 * Recalculate dev->features set and send notifications even
10024 * if they have not changed. Should be called instead of
10025 * netdev_update_features() if also dev->vlan_features might
10026 * have changed to allow the changes to be propagated to stacked
10027 * VLAN devices.
10028 */
10029void netdev_change_features(struct net_device *dev)
10030{
10031 __netdev_update_features(dev);
10032 netdev_features_change(dev);
10033}
10034EXPORT_SYMBOL(netdev_change_features);
10035
fc4a7489
PM
10036/**
10037 * netif_stacked_transfer_operstate - transfer operstate
10038 * @rootdev: the root or lower level device to transfer state from
10039 * @dev: the device to transfer operstate to
10040 *
10041 * Transfer operational state from root to device. This is normally
10042 * called when a stacking relationship exists between the root
10043 * device and the device(a leaf device).
10044 */
10045void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10046 struct net_device *dev)
10047{
10048 if (rootdev->operstate == IF_OPER_DORMANT)
10049 netif_dormant_on(dev);
10050 else
10051 netif_dormant_off(dev);
10052
eec517cd
AL
10053 if (rootdev->operstate == IF_OPER_TESTING)
10054 netif_testing_on(dev);
10055 else
10056 netif_testing_off(dev);
10057
0575c86b
ZS
10058 if (netif_carrier_ok(rootdev))
10059 netif_carrier_on(dev);
10060 else
10061 netif_carrier_off(dev);
fc4a7489
PM
10062}
10063EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10064
1b4bf461
ED
10065static int netif_alloc_rx_queues(struct net_device *dev)
10066{
1b4bf461 10067 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 10068 struct netdev_rx_queue *rx;
10595902 10069 size_t sz = count * sizeof(*rx);
e817f856 10070 int err = 0;
1b4bf461 10071
bd25fa7b 10072 BUG_ON(count < 1);
1b4bf461 10073
c948f51c 10074 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
10075 if (!rx)
10076 return -ENOMEM;
10077
bd25fa7b
TH
10078 dev->_rx = rx;
10079
e817f856 10080 for (i = 0; i < count; i++) {
fe822240 10081 rx[i].dev = dev;
e817f856
JDB
10082
10083 /* XDP RX-queue setup */
b02e5a0e 10084 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
e817f856
JDB
10085 if (err < 0)
10086 goto err_rxq_info;
10087 }
1b4bf461 10088 return 0;
e817f856
JDB
10089
10090err_rxq_info:
10091 /* Rollback successful reg's and free other resources */
10092 while (i--)
10093 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 10094 kvfree(dev->_rx);
e817f856
JDB
10095 dev->_rx = NULL;
10096 return err;
10097}
10098
10099static void netif_free_rx_queues(struct net_device *dev)
10100{
10101 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
10102
10103 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10104 if (!dev->_rx)
10105 return;
10106
e817f856 10107 for (i = 0; i < count; i++)
82aaff2f
JK
10108 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10109
10110 kvfree(dev->_rx);
1b4bf461
ED
10111}
10112
aa942104
CG
10113static void netdev_init_one_queue(struct net_device *dev,
10114 struct netdev_queue *queue, void *_unused)
10115{
10116 /* Initialize queue lock */
10117 spin_lock_init(&queue->_xmit_lock);
1a33e10e 10118 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
aa942104 10119 queue->xmit_lock_owner = -1;
b236da69 10120 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 10121 queue->dev = dev;
114cf580
TH
10122#ifdef CONFIG_BQL
10123 dql_init(&queue->dql, HZ);
10124#endif
aa942104
CG
10125}
10126
60877a32
ED
10127static void netif_free_tx_queues(struct net_device *dev)
10128{
4cb28970 10129 kvfree(dev->_tx);
60877a32
ED
10130}
10131
e6484930
TH
10132static int netif_alloc_netdev_queues(struct net_device *dev)
10133{
10134 unsigned int count = dev->num_tx_queues;
10135 struct netdev_queue *tx;
60877a32 10136 size_t sz = count * sizeof(*tx);
e6484930 10137
d339727c
ED
10138 if (count < 1 || count > 0xffff)
10139 return -EINVAL;
62b5942a 10140
c948f51c 10141 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
10142 if (!tx)
10143 return -ENOMEM;
10144
e6484930 10145 dev->_tx = tx;
1d24eb48 10146
e6484930
TH
10147 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10148 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
10149
10150 return 0;
e6484930
TH
10151}
10152
a2029240
DV
10153void netif_tx_stop_all_queues(struct net_device *dev)
10154{
10155 unsigned int i;
10156
10157 for (i = 0; i < dev->num_tx_queues; i++) {
10158 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 10159
a2029240
DV
10160 netif_tx_stop_queue(txq);
10161 }
10162}
10163EXPORT_SYMBOL(netif_tx_stop_all_queues);
10164
1da177e4
LT
10165/**
10166 * register_netdevice - register a network device
10167 * @dev: device to register
10168 *
10169 * Take a completed network device structure and add it to the kernel
10170 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10171 * chain. 0 is returned on success. A negative errno code is returned
10172 * on a failure to set up the device, or if the name is a duplicate.
10173 *
10174 * Callers must hold the rtnl semaphore. You may want
10175 * register_netdev() instead of this.
10176 *
10177 * BUGS:
10178 * The locking appears insufficient to guarantee two parallel registers
10179 * will not get the same name.
10180 */
10181
10182int register_netdevice(struct net_device *dev)
10183{
1da177e4 10184 int ret;
d314774c 10185 struct net *net = dev_net(dev);
1da177e4 10186
e283de3a
FF
10187 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10188 NETDEV_FEATURE_COUNT);
1da177e4
LT
10189 BUG_ON(dev_boot_phase);
10190 ASSERT_RTNL();
10191
b17a7c17
SH
10192 might_sleep();
10193
1da177e4
LT
10194 /* When net_device's are persistent, this will be fatal. */
10195 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 10196 BUG_ON(!net);
1da177e4 10197
9000edb7
JK
10198 ret = ethtool_check_ops(dev->ethtool_ops);
10199 if (ret)
10200 return ret;
10201
f1f28aa3 10202 spin_lock_init(&dev->addr_list_lock);
845e0ebb 10203 netdev_set_addr_lockdep_class(dev);
1da177e4 10204
828de4f6 10205 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
10206 if (ret < 0)
10207 goto out;
10208
9077f052 10209 ret = -ENOMEM;
ff927412
JP
10210 dev->name_node = netdev_name_node_head_alloc(dev);
10211 if (!dev->name_node)
10212 goto out;
10213
1da177e4 10214 /* Init, if this function is available */
d314774c
SH
10215 if (dev->netdev_ops->ndo_init) {
10216 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
10217 if (ret) {
10218 if (ret > 0)
10219 ret = -EIO;
42c17fa6 10220 goto err_free_name;
1da177e4
LT
10221 }
10222 }
4ec93edb 10223
f646968f
PM
10224 if (((dev->hw_features | dev->features) &
10225 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
10226 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10227 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10228 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10229 ret = -EINVAL;
10230 goto err_uninit;
10231 }
10232
9c7dafbf
PE
10233 ret = -EBUSY;
10234 if (!dev->ifindex)
10235 dev->ifindex = dev_new_index(net);
10236 else if (__dev_get_by_index(net, dev->ifindex))
10237 goto err_uninit;
10238
5455c699
MM
10239 /* Transfer changeable features to wanted_features and enable
10240 * software offloads (GSO and GRO).
10241 */
1a3c998f 10242 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 10243 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122 10244
876c4384 10245 if (dev->udp_tunnel_nic_info) {
d764a122
SD
10246 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10247 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10248 }
10249
14d1232f 10250 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 10251
cbc53e08 10252 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 10253 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 10254
7f348a60
AD
10255 /* If IPv4 TCP segmentation offload is supported we should also
10256 * allow the device to enable segmenting the frame with the option
10257 * of ignoring a static IP ID value. This doesn't enable the
10258 * feature itself but allows the user to enable it later.
10259 */
cbc53e08
AD
10260 if (dev->hw_features & NETIF_F_TSO)
10261 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
10262 if (dev->vlan_features & NETIF_F_TSO)
10263 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10264 if (dev->mpls_features & NETIF_F_TSO)
10265 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10266 if (dev->hw_enc_features & NETIF_F_TSO)
10267 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 10268
1180e7d6 10269 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 10270 */
1180e7d6 10271 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 10272
ee579677
PS
10273 /* Make NETIF_F_SG inheritable to tunnel devices.
10274 */
802ab55a 10275 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 10276
0d89d203
SH
10277 /* Make NETIF_F_SG inheritable to MPLS.
10278 */
10279 dev->mpls_features |= NETIF_F_SG;
10280
7ffbe3fd
JB
10281 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10282 ret = notifier_to_errno(ret);
10283 if (ret)
10284 goto err_uninit;
10285
8b41d188 10286 ret = netdev_register_kobject(dev);
cb626bf5
JH
10287 if (ret) {
10288 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 10289 goto err_uninit;
cb626bf5 10290 }
b17a7c17
SH
10291 dev->reg_state = NETREG_REGISTERED;
10292
6cb6a27c 10293 __netdev_update_features(dev);
8e9b59b2 10294
1da177e4
LT
10295 /*
10296 * Default initial state at registry is that the
10297 * device is present.
10298 */
10299
10300 set_bit(__LINK_STATE_PRESENT, &dev->state);
10301
8f4cccbb
BH
10302 linkwatch_init_dev(dev);
10303
1da177e4 10304 dev_init_scheduler(dev);
1da177e4 10305 dev_hold(dev);
ce286d32 10306 list_netdevice(dev);
7bf23575 10307 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 10308
948b337e
JP
10309 /* If the device has permanent device address, driver should
10310 * set dev_addr and also addr_assign_type should be set to
10311 * NET_ADDR_PERM (default value).
10312 */
10313 if (dev->addr_assign_type == NET_ADDR_PERM)
10314 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10315
1da177e4 10316 /* Notify protocols, that a new device appeared. */
056925ab 10317 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 10318 ret = notifier_to_errno(ret);
93ee31f1 10319 if (ret) {
766b0515
JK
10320 /* Expect explicit free_netdev() on failure */
10321 dev->needs_free_netdev = false;
037e56bd 10322 unregister_netdevice_queue(dev, NULL);
766b0515 10323 goto out;
93ee31f1 10324 }
d90a909e
EB
10325 /*
10326 * Prevent userspace races by waiting until the network
10327 * device is fully setup before sending notifications.
10328 */
a2835763
PM
10329 if (!dev->rtnl_link_ops ||
10330 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 10331 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
10332
10333out:
10334 return ret;
7ce1b0ed
HX
10335
10336err_uninit:
d314774c
SH
10337 if (dev->netdev_ops->ndo_uninit)
10338 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
10339 if (dev->priv_destructor)
10340 dev->priv_destructor(dev);
42c17fa6
DC
10341err_free_name:
10342 netdev_name_node_free(dev->name_node);
7ce1b0ed 10343 goto out;
1da177e4 10344}
d1b19dff 10345EXPORT_SYMBOL(register_netdevice);
1da177e4 10346
937f1ba5
BH
10347/**
10348 * init_dummy_netdev - init a dummy network device for NAPI
10349 * @dev: device to init
10350 *
10351 * This takes a network device structure and initialize the minimum
10352 * amount of fields so it can be used to schedule NAPI polls without
10353 * registering a full blown interface. This is to be used by drivers
10354 * that need to tie several hardware interfaces to a single NAPI
10355 * poll scheduler due to HW limitations.
10356 */
10357int init_dummy_netdev(struct net_device *dev)
10358{
10359 /* Clear everything. Note we don't initialize spinlocks
10360 * are they aren't supposed to be taken by any of the
10361 * NAPI code and this dummy netdev is supposed to be
10362 * only ever used for NAPI polls
10363 */
10364 memset(dev, 0, sizeof(struct net_device));
10365
10366 /* make sure we BUG if trying to hit standard
10367 * register/unregister code path
10368 */
10369 dev->reg_state = NETREG_DUMMY;
10370
937f1ba5
BH
10371 /* NAPI wants this */
10372 INIT_LIST_HEAD(&dev->napi_list);
10373
10374 /* a dummy interface is started by default */
10375 set_bit(__LINK_STATE_PRESENT, &dev->state);
10376 set_bit(__LINK_STATE_START, &dev->state);
10377
35edfdc7
JE
10378 /* napi_busy_loop stats accounting wants this */
10379 dev_net_set(dev, &init_net);
10380
29b4433d
ED
10381 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10382 * because users of this 'device' dont need to change
10383 * its refcount.
10384 */
10385
937f1ba5
BH
10386 return 0;
10387}
10388EXPORT_SYMBOL_GPL(init_dummy_netdev);
10389
10390
1da177e4
LT
10391/**
10392 * register_netdev - register a network device
10393 * @dev: device to register
10394 *
10395 * Take a completed network device structure and add it to the kernel
10396 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10397 * chain. 0 is returned on success. A negative errno code is returned
10398 * on a failure to set up the device, or if the name is a duplicate.
10399 *
38b4da38 10400 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
10401 * and expands the device name if you passed a format string to
10402 * alloc_netdev.
10403 */
10404int register_netdev(struct net_device *dev)
10405{
10406 int err;
10407
b0f3debc
KT
10408 if (rtnl_lock_killable())
10409 return -EINTR;
1da177e4 10410 err = register_netdevice(dev);
1da177e4
LT
10411 rtnl_unlock();
10412 return err;
10413}
10414EXPORT_SYMBOL(register_netdev);
10415
29b4433d
ED
10416int netdev_refcnt_read(const struct net_device *dev)
10417{
919067cc 10418#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10419 int i, refcnt = 0;
10420
10421 for_each_possible_cpu(i)
10422 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10423 return refcnt;
919067cc
ED
10424#else
10425 return refcount_read(&dev->dev_refcnt);
10426#endif
29b4433d
ED
10427}
10428EXPORT_SYMBOL(netdev_refcnt_read);
10429
5aa3afe1
DV
10430int netdev_unregister_timeout_secs __read_mostly = 10;
10431
de2b541b
MCC
10432#define WAIT_REFS_MIN_MSECS 1
10433#define WAIT_REFS_MAX_MSECS 250
2c53040f 10434/**
1da177e4 10435 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 10436 * @dev: target net_device
1da177e4
LT
10437 *
10438 * This is called when unregistering network devices.
10439 *
10440 * Any protocol or device that holds a reference should register
10441 * for netdevice notification, and cleanup and put back the
10442 * reference if they receive an UNREGISTER event.
10443 * We can get stuck here if buggy protocols don't correctly
4ec93edb 10444 * call dev_put.
1da177e4
LT
10445 */
10446static void netdev_wait_allrefs(struct net_device *dev)
10447{
10448 unsigned long rebroadcast_time, warning_time;
0e4be9e5 10449 int wait = 0, refcnt;
1da177e4 10450
e014debe
ED
10451 linkwatch_forget_dev(dev);
10452
1da177e4 10453 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
10454 refcnt = netdev_refcnt_read(dev);
10455
add2d736 10456 while (refcnt != 1) {
1da177e4 10457 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 10458 rtnl_lock();
1da177e4
LT
10459
10460 /* Rebroadcast unregister notification */
056925ab 10461 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 10462
748e2d93 10463 __rtnl_unlock();
0115e8e3 10464 rcu_barrier();
748e2d93
ED
10465 rtnl_lock();
10466
1da177e4
LT
10467 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10468 &dev->state)) {
10469 /* We must not have linkwatch events
10470 * pending on unregister. If this
10471 * happens, we simply run the queue
10472 * unscheduled, resulting in a noop
10473 * for this device.
10474 */
10475 linkwatch_run_queue();
10476 }
10477
6756ae4b 10478 __rtnl_unlock();
1da177e4
LT
10479
10480 rebroadcast_time = jiffies;
10481 }
10482
0e4be9e5
FR
10483 if (!wait) {
10484 rcu_barrier();
10485 wait = WAIT_REFS_MIN_MSECS;
10486 } else {
10487 msleep(wait);
10488 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10489 }
1da177e4 10490
29b4433d
ED
10491 refcnt = netdev_refcnt_read(dev);
10492
6c996e19 10493 if (refcnt != 1 &&
5aa3afe1
DV
10494 time_after(jiffies, warning_time +
10495 netdev_unregister_timeout_secs * HZ)) {
7b6cd1ce
JP
10496 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10497 dev->name, refcnt);
1da177e4
LT
10498 warning_time = jiffies;
10499 }
10500 }
10501}
10502
10503/* The sequence is:
10504 *
10505 * rtnl_lock();
10506 * ...
10507 * register_netdevice(x1);
10508 * register_netdevice(x2);
10509 * ...
10510 * unregister_netdevice(y1);
10511 * unregister_netdevice(y2);
10512 * ...
10513 * rtnl_unlock();
10514 * free_netdev(y1);
10515 * free_netdev(y2);
10516 *
58ec3b4d 10517 * We are invoked by rtnl_unlock().
1da177e4 10518 * This allows us to deal with problems:
b17a7c17 10519 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
10520 * without deadlocking with linkwatch via keventd.
10521 * 2) Since we run with the RTNL semaphore not held, we can sleep
10522 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
10523 *
10524 * We must not return until all unregister events added during
10525 * the interval the lock was held have been completed.
1da177e4 10526 */
1da177e4
LT
10527void netdev_run_todo(void)
10528{
626ab0e6 10529 struct list_head list;
1fc70edb
TY
10530#ifdef CONFIG_LOCKDEP
10531 struct list_head unlink_list;
10532
10533 list_replace_init(&net_unlink_list, &unlink_list);
10534
10535 while (!list_empty(&unlink_list)) {
10536 struct net_device *dev = list_first_entry(&unlink_list,
10537 struct net_device,
10538 unlink_list);
0e8b8d6a 10539 list_del_init(&dev->unlink_list);
1fc70edb
TY
10540 dev->nested_level = dev->lower_level - 1;
10541 }
10542#endif
1da177e4 10543
1da177e4 10544 /* Snapshot list, allow later requests */
626ab0e6 10545 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
10546
10547 __rtnl_unlock();
626ab0e6 10548
0115e8e3
ED
10549
10550 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
10551 if (!list_empty(&list))
10552 rcu_barrier();
10553
1da177e4
LT
10554 while (!list_empty(&list)) {
10555 struct net_device *dev
e5e26d75 10556 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
10557 list_del(&dev->todo_list);
10558
b17a7c17 10559 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 10560 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
10561 dev->name, dev->reg_state);
10562 dump_stack();
10563 continue;
10564 }
1da177e4 10565
b17a7c17 10566 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 10567
b17a7c17 10568 netdev_wait_allrefs(dev);
1da177e4 10569
b17a7c17 10570 /* paranoia */
add2d736 10571 BUG_ON(netdev_refcnt_read(dev) != 1);
7866a621
SN
10572 BUG_ON(!list_empty(&dev->ptype_all));
10573 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
10574 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10575 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 10576#if IS_ENABLED(CONFIG_DECNET)
547b792c 10577 WARN_ON(dev->dn_ptr);
330c7272 10578#endif
cf124db5
DM
10579 if (dev->priv_destructor)
10580 dev->priv_destructor(dev);
10581 if (dev->needs_free_netdev)
10582 free_netdev(dev);
9093bbb2 10583
50624c93
EB
10584 /* Report a network device has been unregistered */
10585 rtnl_lock();
10586 dev_net(dev)->dev_unreg_count--;
10587 __rtnl_unlock();
10588 wake_up(&netdev_unregistering_wq);
10589
9093bbb2
SH
10590 /* Free network device */
10591 kobject_put(&dev->dev.kobj);
1da177e4 10592 }
1da177e4
LT
10593}
10594
9256645a
JW
10595/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10596 * all the same fields in the same order as net_device_stats, with only
10597 * the type differing, but rtnl_link_stats64 may have additional fields
10598 * at the end for newer counters.
3cfde79c 10599 */
77a1abf5
ED
10600void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10601 const struct net_device_stats *netdev_stats)
3cfde79c
BH
10602{
10603#if BITS_PER_LONG == 64
9256645a 10604 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 10605 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
10606 /* zero out counters that only exist in rtnl_link_stats64 */
10607 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10608 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 10609#else
9256645a 10610 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
10611 const unsigned long *src = (const unsigned long *)netdev_stats;
10612 u64 *dst = (u64 *)stats64;
10613
9256645a 10614 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
10615 for (i = 0; i < n; i++)
10616 dst[i] = src[i];
9256645a
JW
10617 /* zero out counters that only exist in rtnl_link_stats64 */
10618 memset((char *)stats64 + n * sizeof(u64), 0,
10619 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
10620#endif
10621}
77a1abf5 10622EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 10623
eeda3fd6
SH
10624/**
10625 * dev_get_stats - get network device statistics
10626 * @dev: device to get statistics from
28172739 10627 * @storage: place to store stats
eeda3fd6 10628 *
d7753516
BH
10629 * Get network statistics from device. Return @storage.
10630 * The device driver may provide its own method by setting
10631 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10632 * otherwise the internal statistics structure is used.
eeda3fd6 10633 */
d7753516
BH
10634struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10635 struct rtnl_link_stats64 *storage)
7004bf25 10636{
eeda3fd6
SH
10637 const struct net_device_ops *ops = dev->netdev_ops;
10638
28172739
ED
10639 if (ops->ndo_get_stats64) {
10640 memset(storage, 0, sizeof(*storage));
caf586e5
ED
10641 ops->ndo_get_stats64(dev, storage);
10642 } else if (ops->ndo_get_stats) {
3cfde79c 10643 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
10644 } else {
10645 netdev_stats_to_stats64(storage, &dev->stats);
28172739 10646 }
6f64ec74
ED
10647 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10648 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10649 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 10650 return storage;
c45d286e 10651}
eeda3fd6 10652EXPORT_SYMBOL(dev_get_stats);
c45d286e 10653
44fa32f0
HK
10654/**
10655 * dev_fetch_sw_netstats - get per-cpu network device statistics
10656 * @s: place to store stats
10657 * @netstats: per-cpu network stats to read from
10658 *
10659 * Read per-cpu network statistics and populate the related fields in @s.
10660 */
10661void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10662 const struct pcpu_sw_netstats __percpu *netstats)
10663{
10664 int cpu;
10665
10666 for_each_possible_cpu(cpu) {
10667 const struct pcpu_sw_netstats *stats;
10668 struct pcpu_sw_netstats tmp;
10669 unsigned int start;
10670
10671 stats = per_cpu_ptr(netstats, cpu);
10672 do {
10673 start = u64_stats_fetch_begin_irq(&stats->syncp);
10674 tmp.rx_packets = stats->rx_packets;
10675 tmp.rx_bytes = stats->rx_bytes;
10676 tmp.tx_packets = stats->tx_packets;
10677 tmp.tx_bytes = stats->tx_bytes;
10678 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10679
10680 s->rx_packets += tmp.rx_packets;
10681 s->rx_bytes += tmp.rx_bytes;
10682 s->tx_packets += tmp.tx_packets;
10683 s->tx_bytes += tmp.tx_bytes;
10684 }
10685}
10686EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10687
a1839426
HK
10688/**
10689 * dev_get_tstats64 - ndo_get_stats64 implementation
10690 * @dev: device to get statistics from
10691 * @s: place to store stats
10692 *
10693 * Populate @s from dev->stats and dev->tstats. Can be used as
10694 * ndo_get_stats64() callback.
10695 */
10696void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10697{
10698 netdev_stats_to_stats64(s, &dev->stats);
10699 dev_fetch_sw_netstats(s, dev->tstats);
10700}
10701EXPORT_SYMBOL_GPL(dev_get_tstats64);
10702
24824a09 10703struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 10704{
24824a09 10705 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 10706
24824a09
ED
10707#ifdef CONFIG_NET_CLS_ACT
10708 if (queue)
10709 return queue;
10710 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10711 if (!queue)
10712 return NULL;
10713 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 10714 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
10715 queue->qdisc_sleeping = &noop_qdisc;
10716 rcu_assign_pointer(dev->ingress_queue, queue);
10717#endif
10718 return queue;
bb949fbd
DM
10719}
10720
2c60db03
ED
10721static const struct ethtool_ops default_ethtool_ops;
10722
d07d7507
SG
10723void netdev_set_default_ethtool_ops(struct net_device *dev,
10724 const struct ethtool_ops *ops)
10725{
10726 if (dev->ethtool_ops == &default_ethtool_ops)
10727 dev->ethtool_ops = ops;
10728}
10729EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10730
74d332c1
ED
10731void netdev_freemem(struct net_device *dev)
10732{
10733 char *addr = (char *)dev - dev->padded;
10734
4cb28970 10735 kvfree(addr);
74d332c1
ED
10736}
10737
1da177e4 10738/**
722c9a0c 10739 * alloc_netdev_mqs - allocate network device
10740 * @sizeof_priv: size of private data to allocate space for
10741 * @name: device name format string
10742 * @name_assign_type: origin of device name
10743 * @setup: callback to initialize device
10744 * @txqs: the number of TX subqueues to allocate
10745 * @rxqs: the number of RX subqueues to allocate
10746 *
10747 * Allocates a struct net_device with private data area for driver use
10748 * and performs basic initialization. Also allocates subqueue structs
10749 * for each queue on the device.
1da177e4 10750 */
36909ea4 10751struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 10752 unsigned char name_assign_type,
36909ea4
TH
10753 void (*setup)(struct net_device *),
10754 unsigned int txqs, unsigned int rxqs)
1da177e4 10755{
1da177e4 10756 struct net_device *dev;
52a59bd5 10757 unsigned int alloc_size;
1ce8e7b5 10758 struct net_device *p;
1da177e4 10759
b6fe17d6
SH
10760 BUG_ON(strlen(name) >= sizeof(dev->name));
10761
36909ea4 10762 if (txqs < 1) {
7b6cd1ce 10763 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
10764 return NULL;
10765 }
10766
36909ea4 10767 if (rxqs < 1) {
7b6cd1ce 10768 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
10769 return NULL;
10770 }
36909ea4 10771
fd2ea0a7 10772 alloc_size = sizeof(struct net_device);
d1643d24
AD
10773 if (sizeof_priv) {
10774 /* ensure 32-byte alignment of private area */
1ce8e7b5 10775 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
10776 alloc_size += sizeof_priv;
10777 }
10778 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 10779 alloc_size += NETDEV_ALIGN - 1;
1da177e4 10780
c948f51c 10781 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
62b5942a 10782 if (!p)
1da177e4 10783 return NULL;
1da177e4 10784
1ce8e7b5 10785 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 10786 dev->padded = (char *)dev - (char *)p;
ab9c73cc 10787
919067cc 10788#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10789 dev->pcpu_refcnt = alloc_percpu(int);
10790 if (!dev->pcpu_refcnt)
74d332c1 10791 goto free_dev;
add2d736
ED
10792 dev_hold(dev);
10793#else
10794 refcount_set(&dev->dev_refcnt, 1);
919067cc 10795#endif
ab9c73cc 10796
ab9c73cc 10797 if (dev_addr_init(dev))
29b4433d 10798 goto free_pcpu;
ab9c73cc 10799
22bedad3 10800 dev_mc_init(dev);
a748ee24 10801 dev_uc_init(dev);
ccffad25 10802
c346dca1 10803 dev_net_set(dev, &init_net);
1da177e4 10804
8d3bdbd5 10805 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 10806 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
10807 dev->upper_level = 1;
10808 dev->lower_level = 1;
1fc70edb
TY
10809#ifdef CONFIG_LOCKDEP
10810 dev->nested_level = 0;
10811 INIT_LIST_HEAD(&dev->unlink_list);
10812#endif
8d3bdbd5 10813
8d3bdbd5
DM
10814 INIT_LIST_HEAD(&dev->napi_list);
10815 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 10816 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 10817 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
10818 INIT_LIST_HEAD(&dev->adj_list.upper);
10819 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
10820 INIT_LIST_HEAD(&dev->ptype_all);
10821 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 10822 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
10823#ifdef CONFIG_NET_SCHED
10824 hash_init(dev->qdisc_hash);
10825#endif
02875878 10826 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
10827 setup(dev);
10828
a813104d 10829 if (!dev->tx_queue_len) {
f84bb1ea 10830 dev->priv_flags |= IFF_NO_QUEUE;
11597084 10831 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 10832 }
906470c1 10833
36909ea4
TH
10834 dev->num_tx_queues = txqs;
10835 dev->real_num_tx_queues = txqs;
ed9af2e8 10836 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 10837 goto free_all;
e8a0464c 10838
36909ea4
TH
10839 dev->num_rx_queues = rxqs;
10840 dev->real_num_rx_queues = rxqs;
fe822240 10841 if (netif_alloc_rx_queues(dev))
8d3bdbd5 10842 goto free_all;
0a9627f2 10843
1da177e4 10844 strcpy(dev->name, name);
c835a677 10845 dev->name_assign_type = name_assign_type;
cbda10fa 10846 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
10847 if (!dev->ethtool_ops)
10848 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 10849
357b6cc5 10850 nf_hook_ingress_init(dev);
e687ad60 10851
1da177e4 10852 return dev;
ab9c73cc 10853
8d3bdbd5
DM
10854free_all:
10855 free_netdev(dev);
10856 return NULL;
10857
29b4433d 10858free_pcpu:
919067cc 10859#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d 10860 free_percpu(dev->pcpu_refcnt);
74d332c1 10861free_dev:
919067cc 10862#endif
74d332c1 10863 netdev_freemem(dev);
ab9c73cc 10864 return NULL;
1da177e4 10865}
36909ea4 10866EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
10867
10868/**
722c9a0c 10869 * free_netdev - free network device
10870 * @dev: device
1da177e4 10871 *
722c9a0c 10872 * This function does the last stage of destroying an allocated device
10873 * interface. The reference to the device object is released. If this
10874 * is the last reference then it will be freed.Must be called in process
10875 * context.
1da177e4
LT
10876 */
10877void free_netdev(struct net_device *dev)
10878{
d565b0a1
HX
10879 struct napi_struct *p, *n;
10880
93d05d4a 10881 might_sleep();
c269a24c
JK
10882
10883 /* When called immediately after register_netdevice() failed the unwind
10884 * handling may still be dismantling the device. Handle that case by
10885 * deferring the free.
10886 */
10887 if (dev->reg_state == NETREG_UNREGISTERING) {
10888 ASSERT_RTNL();
10889 dev->needs_free_netdev = true;
10890 return;
10891 }
10892
60877a32 10893 netif_free_tx_queues(dev);
e817f856 10894 netif_free_rx_queues(dev);
e8a0464c 10895
33d480ce 10896 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 10897
f001fde5
JP
10898 /* Flush device addresses */
10899 dev_addr_flush(dev);
10900
d565b0a1
HX
10901 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10902 netif_napi_del(p);
10903
919067cc 10904#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10905 free_percpu(dev->pcpu_refcnt);
10906 dev->pcpu_refcnt = NULL;
919067cc 10907#endif
75ccae62
THJ
10908 free_percpu(dev->xdp_bulkq);
10909 dev->xdp_bulkq = NULL;
29b4433d 10910
3041a069 10911 /* Compatibility with error handling in drivers */
1da177e4 10912 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 10913 netdev_freemem(dev);
1da177e4
LT
10914 return;
10915 }
10916
10917 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10918 dev->reg_state = NETREG_RELEASED;
10919
43cb76d9
GKH
10920 /* will free via device release */
10921 put_device(&dev->dev);
1da177e4 10922}
d1b19dff 10923EXPORT_SYMBOL(free_netdev);
4ec93edb 10924
f0db275a
SH
10925/**
10926 * synchronize_net - Synchronize with packet receive processing
10927 *
10928 * Wait for packets currently being received to be done.
10929 * Does not block later packets from starting.
10930 */
4ec93edb 10931void synchronize_net(void)
1da177e4
LT
10932{
10933 might_sleep();
be3fc413
ED
10934 if (rtnl_is_locked())
10935 synchronize_rcu_expedited();
10936 else
10937 synchronize_rcu();
1da177e4 10938}
d1b19dff 10939EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
10940
10941/**
44a0873d 10942 * unregister_netdevice_queue - remove device from the kernel
1da177e4 10943 * @dev: device
44a0873d 10944 * @head: list
6ebfbc06 10945 *
1da177e4 10946 * This function shuts down a device interface and removes it
d59b54b1 10947 * from the kernel tables.
44a0873d 10948 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
10949 *
10950 * Callers must hold the rtnl semaphore. You may want
10951 * unregister_netdev() instead of this.
10952 */
10953
44a0873d 10954void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 10955{
a6620712
HX
10956 ASSERT_RTNL();
10957
44a0873d 10958 if (head) {
9fdce099 10959 list_move_tail(&dev->unreg_list, head);
44a0873d 10960 } else {
037e56bd
JK
10961 LIST_HEAD(single);
10962
10963 list_add(&dev->unreg_list, &single);
0cbe1e57 10964 unregister_netdevice_many(&single);
44a0873d 10965 }
1da177e4 10966}
44a0873d 10967EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 10968
9b5e383c
ED
10969/**
10970 * unregister_netdevice_many - unregister many devices
10971 * @head: list of devices
87757a91
ED
10972 *
10973 * Note: As most callers use a stack allocated list_head,
10974 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
10975 */
10976void unregister_netdevice_many(struct list_head *head)
bcfe2f1a
JK
10977{
10978 struct net_device *dev, *tmp;
10979 LIST_HEAD(close_head);
10980
10981 BUG_ON(dev_boot_phase);
10982 ASSERT_RTNL();
10983
0cbe1e57
JK
10984 if (list_empty(head))
10985 return;
10986
bcfe2f1a
JK
10987 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10988 /* Some devices call without registering
10989 * for initialization unwind. Remove those
10990 * devices and proceed with the remaining.
10991 */
10992 if (dev->reg_state == NETREG_UNINITIALIZED) {
10993 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10994 dev->name, dev);
10995
10996 WARN_ON(1);
10997 list_del(&dev->unreg_list);
10998 continue;
10999 }
11000 dev->dismantle = true;
11001 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11002 }
11003
11004 /* If device is running, close it first. */
11005 list_for_each_entry(dev, head, unreg_list)
11006 list_add_tail(&dev->close_list, &close_head);
11007 dev_close_many(&close_head, true);
11008
11009 list_for_each_entry(dev, head, unreg_list) {
11010 /* And unlink it from device chain. */
11011 unlist_netdevice(dev);
11012
11013 dev->reg_state = NETREG_UNREGISTERING;
11014 }
11015 flush_all_backlogs();
11016
11017 synchronize_net();
11018
11019 list_for_each_entry(dev, head, unreg_list) {
11020 struct sk_buff *skb = NULL;
11021
11022 /* Shutdown queueing discipline. */
11023 dev_shutdown(dev);
11024
11025 dev_xdp_uninstall(dev);
11026
11027 /* Notify protocols, that we are about to destroy
11028 * this device. They should clean all the things.
11029 */
11030 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11031
11032 if (!dev->rtnl_link_ops ||
11033 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11034 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11035 GFP_KERNEL, NULL, 0);
11036
11037 /*
11038 * Flush the unicast and multicast chains
11039 */
11040 dev_uc_flush(dev);
11041 dev_mc_flush(dev);
11042
11043 netdev_name_node_alt_flush(dev);
11044 netdev_name_node_free(dev->name_node);
11045
11046 if (dev->netdev_ops->ndo_uninit)
11047 dev->netdev_ops->ndo_uninit(dev);
11048
11049 if (skb)
11050 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11051
11052 /* Notifier chain MUST detach us all upper devices. */
11053 WARN_ON(netdev_has_any_upper_dev(dev));
11054 WARN_ON(netdev_has_any_lower_dev(dev));
11055
11056 /* Remove entries from kobject tree */
11057 netdev_unregister_kobject(dev);
11058#ifdef CONFIG_XPS
11059 /* Remove XPS queueing entries */
11060 netif_reset_xps_queues_gt(dev, 0);
11061#endif
11062 }
11063
11064 synchronize_net();
11065
11066 list_for_each_entry(dev, head, unreg_list) {
11067 dev_put(dev);
11068 net_set_todo(dev);
11069 }
0cbe1e57
JK
11070
11071 list_del(head);
bcfe2f1a 11072}
0cbe1e57 11073EXPORT_SYMBOL(unregister_netdevice_many);
bcfe2f1a 11074
1da177e4
LT
11075/**
11076 * unregister_netdev - remove device from the kernel
11077 * @dev: device
11078 *
11079 * This function shuts down a device interface and removes it
d59b54b1 11080 * from the kernel tables.
1da177e4
LT
11081 *
11082 * This is just a wrapper for unregister_netdevice that takes
11083 * the rtnl semaphore. In general you want to use this and not
11084 * unregister_netdevice.
11085 */
11086void unregister_netdev(struct net_device *dev)
11087{
11088 rtnl_lock();
11089 unregister_netdevice(dev);
11090 rtnl_unlock();
11091}
1da177e4
LT
11092EXPORT_SYMBOL(unregister_netdev);
11093
ce286d32 11094/**
0854fa82 11095 * __dev_change_net_namespace - move device to different nethost namespace
ce286d32
EB
11096 * @dev: device
11097 * @net: network namespace
11098 * @pat: If not NULL name pattern to try if the current device name
11099 * is already taken in the destination network namespace.
eeb85a14
AV
11100 * @new_ifindex: If not zero, specifies device index in the target
11101 * namespace.
ce286d32
EB
11102 *
11103 * This function shuts down a device interface and moves it
11104 * to a new network namespace. On success 0 is returned, on
11105 * a failure a netagive errno code is returned.
11106 *
11107 * Callers must hold the rtnl semaphore.
11108 */
11109
0854fa82
AV
11110int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11111 const char *pat, int new_ifindex)
ce286d32 11112{
ef6a4c88 11113 struct net *net_old = dev_net(dev);
eeb85a14 11114 int err, new_nsid;
ce286d32
EB
11115
11116 ASSERT_RTNL();
11117
11118 /* Don't allow namespace local devices to be moved. */
11119 err = -EINVAL;
11120 if (dev->features & NETIF_F_NETNS_LOCAL)
11121 goto out;
11122
11123 /* Ensure the device has been registrered */
ce286d32
EB
11124 if (dev->reg_state != NETREG_REGISTERED)
11125 goto out;
11126
11127 /* Get out if there is nothing todo */
11128 err = 0;
ef6a4c88 11129 if (net_eq(net_old, net))
ce286d32
EB
11130 goto out;
11131
11132 /* Pick the destination device name, and ensure
11133 * we can use it in the destination network namespace.
11134 */
11135 err = -EEXIST;
d9031024 11136 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
11137 /* We get here if we can't use the current device name */
11138 if (!pat)
11139 goto out;
7892bd08
LR
11140 err = dev_get_valid_name(net, dev, pat);
11141 if (err < 0)
ce286d32
EB
11142 goto out;
11143 }
11144
eeb85a14
AV
11145 /* Check that new_ifindex isn't used yet. */
11146 err = -EBUSY;
11147 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11148 goto out;
11149
ce286d32
EB
11150 /*
11151 * And now a mini version of register_netdevice unregister_netdevice.
11152 */
11153
11154 /* If device is running close it first. */
9b772652 11155 dev_close(dev);
ce286d32
EB
11156
11157 /* And unlink it from device chain */
ce286d32
EB
11158 unlist_netdevice(dev);
11159
11160 synchronize_net();
11161
11162 /* Shutdown queueing discipline. */
11163 dev_shutdown(dev);
11164
11165 /* Notify protocols, that we are about to destroy
eb13da1a 11166 * this device. They should clean all the things.
11167 *
11168 * Note that dev->reg_state stays at NETREG_REGISTERED.
11169 * This is wanted because this way 8021q and macvlan know
11170 * the device is just moving and can keep their slaves up.
11171 */
ce286d32 11172 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 11173 rcu_barrier();
38e01b30 11174
d4e4fdf9 11175 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30 11176 /* If there is an ifindex conflict assign a new one */
eeb85a14
AV
11177 if (!new_ifindex) {
11178 if (__dev_get_by_index(net, dev->ifindex))
11179 new_ifindex = dev_new_index(net);
11180 else
11181 new_ifindex = dev->ifindex;
11182 }
38e01b30
ND
11183
11184 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11185 new_ifindex);
ce286d32
EB
11186
11187 /*
11188 * Flush the unicast and multicast chains
11189 */
a748ee24 11190 dev_uc_flush(dev);
22bedad3 11191 dev_mc_flush(dev);
ce286d32 11192
4e66ae2e
SH
11193 /* Send a netdev-removed uevent to the old namespace */
11194 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 11195 netdev_adjacent_del_links(dev);
4e66ae2e 11196
93642e14
JP
11197 /* Move per-net netdevice notifiers that are following the netdevice */
11198 move_netdevice_notifiers_dev_net(dev, net);
11199
ce286d32 11200 /* Actually switch the network namespace */
c346dca1 11201 dev_net_set(dev, net);
38e01b30 11202 dev->ifindex = new_ifindex;
ce286d32 11203
4e66ae2e
SH
11204 /* Send a netdev-add uevent to the new namespace */
11205 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 11206 netdev_adjacent_add_links(dev);
4e66ae2e 11207
8b41d188 11208 /* Fixup kobjects */
a1b3f594 11209 err = device_rename(&dev->dev, dev->name);
8b41d188 11210 WARN_ON(err);
ce286d32 11211
ef6a4c88
CB
11212 /* Adapt owner in case owning user namespace of target network
11213 * namespace is different from the original one.
11214 */
11215 err = netdev_change_owner(dev, net_old, net);
11216 WARN_ON(err);
11217
ce286d32
EB
11218 /* Add the device back in the hashes */
11219 list_netdevice(dev);
11220
11221 /* Notify protocols, that a new device appeared. */
11222 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11223
d90a909e
EB
11224 /*
11225 * Prevent userspace races by waiting until the network
11226 * device is fully setup before sending notifications.
11227 */
7f294054 11228 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 11229
ce286d32
EB
11230 synchronize_net();
11231 err = 0;
11232out:
11233 return err;
11234}
0854fa82 11235EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
ce286d32 11236
f0bf90de 11237static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
11238{
11239 struct sk_buff **list_skb;
1da177e4 11240 struct sk_buff *skb;
f0bf90de 11241 unsigned int cpu;
97d8b6e3 11242 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 11243
1da177e4
LT
11244 local_irq_disable();
11245 cpu = smp_processor_id();
11246 sd = &per_cpu(softnet_data, cpu);
11247 oldsd = &per_cpu(softnet_data, oldcpu);
11248
11249 /* Find end of our completion_queue. */
11250 list_skb = &sd->completion_queue;
11251 while (*list_skb)
11252 list_skb = &(*list_skb)->next;
11253 /* Append completion queue from offline CPU. */
11254 *list_skb = oldsd->completion_queue;
11255 oldsd->completion_queue = NULL;
11256
1da177e4 11257 /* Append output queue from offline CPU. */
a9cbd588
CG
11258 if (oldsd->output_queue) {
11259 *sd->output_queue_tailp = oldsd->output_queue;
11260 sd->output_queue_tailp = oldsd->output_queue_tailp;
11261 oldsd->output_queue = NULL;
11262 oldsd->output_queue_tailp = &oldsd->output_queue;
11263 }
ac64da0b
ED
11264 /* Append NAPI poll list from offline CPU, with one exception :
11265 * process_backlog() must be called by cpu owning percpu backlog.
11266 * We properly handle process_queue & input_pkt_queue later.
11267 */
11268 while (!list_empty(&oldsd->poll_list)) {
11269 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11270 struct napi_struct,
11271 poll_list);
11272
11273 list_del_init(&napi->poll_list);
11274 if (napi->poll == process_backlog)
11275 napi->state = 0;
11276 else
11277 ____napi_schedule(sd, napi);
264524d5 11278 }
1da177e4
LT
11279
11280 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11281 local_irq_enable();
11282
773fc8f6 11283#ifdef CONFIG_RPS
11284 remsd = oldsd->rps_ipi_list;
11285 oldsd->rps_ipi_list = NULL;
11286#endif
11287 /* send out pending IPI's on offline CPU */
11288 net_rps_send_ipi(remsd);
11289
1da177e4 11290 /* Process offline CPU's input_pkt_queue */
76cc8b13 11291 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 11292 netif_rx_ni(skb);
76cc8b13 11293 input_queue_head_incr(oldsd);
fec5e652 11294 }
ac64da0b 11295 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 11296 netif_rx_ni(skb);
76cc8b13
TH
11297 input_queue_head_incr(oldsd);
11298 }
1da177e4 11299
f0bf90de 11300 return 0;
1da177e4 11301}
1da177e4 11302
7f353bf2 11303/**
b63365a2
HX
11304 * netdev_increment_features - increment feature set by one
11305 * @all: current feature set
11306 * @one: new feature set
11307 * @mask: mask feature set
7f353bf2
HX
11308 *
11309 * Computes a new feature set after adding a device with feature set
b63365a2
HX
11310 * @one to the master device with current feature set @all. Will not
11311 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 11312 */
c8f44aff
MM
11313netdev_features_t netdev_increment_features(netdev_features_t all,
11314 netdev_features_t one, netdev_features_t mask)
b63365a2 11315{
c8cd0989 11316 if (mask & NETIF_F_HW_CSUM)
a188222b 11317 mask |= NETIF_F_CSUM_MASK;
1742f183 11318 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 11319
a188222b 11320 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 11321 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 11322
1742f183 11323 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
11324 if (all & NETIF_F_HW_CSUM)
11325 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
11326
11327 return all;
11328}
b63365a2 11329EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 11330
430f03cd 11331static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
11332{
11333 int i;
11334 struct hlist_head *hash;
11335
6da2ec56 11336 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
11337 if (hash != NULL)
11338 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11339 INIT_HLIST_HEAD(&hash[i]);
11340
11341 return hash;
11342}
11343
881d966b 11344/* Initialize per network namespace state */
4665079c 11345static int __net_init netdev_init(struct net *net)
881d966b 11346{
d9f37d01 11347 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 11348 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 11349
734b6541
RM
11350 if (net != &init_net)
11351 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 11352
30d97d35
PE
11353 net->dev_name_head = netdev_create_hash();
11354 if (net->dev_name_head == NULL)
11355 goto err_name;
881d966b 11356
30d97d35
PE
11357 net->dev_index_head = netdev_create_hash();
11358 if (net->dev_index_head == NULL)
11359 goto err_idx;
881d966b 11360
a30c7b42
JP
11361 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11362
881d966b 11363 return 0;
30d97d35
PE
11364
11365err_idx:
11366 kfree(net->dev_name_head);
11367err_name:
11368 return -ENOMEM;
881d966b
EB
11369}
11370
f0db275a
SH
11371/**
11372 * netdev_drivername - network driver for the device
11373 * @dev: network device
f0db275a
SH
11374 *
11375 * Determine network driver for device.
11376 */
3019de12 11377const char *netdev_drivername(const struct net_device *dev)
6579e57b 11378{
cf04a4c7
SH
11379 const struct device_driver *driver;
11380 const struct device *parent;
3019de12 11381 const char *empty = "";
6579e57b
AV
11382
11383 parent = dev->dev.parent;
6579e57b 11384 if (!parent)
3019de12 11385 return empty;
6579e57b
AV
11386
11387 driver = parent->driver;
11388 if (driver && driver->name)
3019de12
DM
11389 return driver->name;
11390 return empty;
6579e57b
AV
11391}
11392
6ea754eb
JP
11393static void __netdev_printk(const char *level, const struct net_device *dev,
11394 struct va_format *vaf)
256df2f3 11395{
b004ff49 11396 if (dev && dev->dev.parent) {
6ea754eb
JP
11397 dev_printk_emit(level[1] - '0',
11398 dev->dev.parent,
11399 "%s %s %s%s: %pV",
11400 dev_driver_string(dev->dev.parent),
11401 dev_name(dev->dev.parent),
11402 netdev_name(dev), netdev_reg_state(dev),
11403 vaf);
b004ff49 11404 } else if (dev) {
6ea754eb
JP
11405 printk("%s%s%s: %pV",
11406 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 11407 } else {
6ea754eb 11408 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 11409 }
256df2f3
JP
11410}
11411
6ea754eb
JP
11412void netdev_printk(const char *level, const struct net_device *dev,
11413 const char *format, ...)
256df2f3
JP
11414{
11415 struct va_format vaf;
11416 va_list args;
256df2f3
JP
11417
11418 va_start(args, format);
11419
11420 vaf.fmt = format;
11421 vaf.va = &args;
11422
6ea754eb 11423 __netdev_printk(level, dev, &vaf);
b004ff49 11424
256df2f3 11425 va_end(args);
256df2f3
JP
11426}
11427EXPORT_SYMBOL(netdev_printk);
11428
11429#define define_netdev_printk_level(func, level) \
6ea754eb 11430void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 11431{ \
256df2f3
JP
11432 struct va_format vaf; \
11433 va_list args; \
11434 \
11435 va_start(args, fmt); \
11436 \
11437 vaf.fmt = fmt; \
11438 vaf.va = &args; \
11439 \
6ea754eb 11440 __netdev_printk(level, dev, &vaf); \
b004ff49 11441 \
256df2f3 11442 va_end(args); \
256df2f3
JP
11443} \
11444EXPORT_SYMBOL(func);
11445
11446define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11447define_netdev_printk_level(netdev_alert, KERN_ALERT);
11448define_netdev_printk_level(netdev_crit, KERN_CRIT);
11449define_netdev_printk_level(netdev_err, KERN_ERR);
11450define_netdev_printk_level(netdev_warn, KERN_WARNING);
11451define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11452define_netdev_printk_level(netdev_info, KERN_INFO);
11453
4665079c 11454static void __net_exit netdev_exit(struct net *net)
881d966b
EB
11455{
11456 kfree(net->dev_name_head);
11457 kfree(net->dev_index_head);
ee21b18b
VA
11458 if (net != &init_net)
11459 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
11460}
11461
022cbae6 11462static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
11463 .init = netdev_init,
11464 .exit = netdev_exit,
11465};
11466
4665079c 11467static void __net_exit default_device_exit(struct net *net)
ce286d32 11468{
e008b5fc 11469 struct net_device *dev, *aux;
ce286d32 11470 /*
e008b5fc 11471 * Push all migratable network devices back to the
ce286d32
EB
11472 * initial network namespace
11473 */
11474 rtnl_lock();
e008b5fc 11475 for_each_netdev_safe(net, dev, aux) {
ce286d32 11476 int err;
aca51397 11477 char fb_name[IFNAMSIZ];
ce286d32
EB
11478
11479 /* Ignore unmoveable devices (i.e. loopback) */
11480 if (dev->features & NETIF_F_NETNS_LOCAL)
11481 continue;
11482
e008b5fc 11483 /* Leave virtual devices for the generic cleanup */
3a5ca857 11484 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
e008b5fc 11485 continue;
d0c082ce 11486
25985edc 11487 /* Push remaining network devices to init_net */
aca51397 11488 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
11489 if (__dev_get_by_name(&init_net, fb_name))
11490 snprintf(fb_name, IFNAMSIZ, "dev%%d");
0854fa82 11491 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 11492 if (err) {
7b6cd1ce
JP
11493 pr_emerg("%s: failed to move %s to init_net: %d\n",
11494 __func__, dev->name, err);
aca51397 11495 BUG();
ce286d32
EB
11496 }
11497 }
11498 rtnl_unlock();
11499}
11500
50624c93
EB
11501static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11502{
11503 /* Return with the rtnl_lock held when there are no network
11504 * devices unregistering in any network namespace in net_list.
11505 */
11506 struct net *net;
11507 bool unregistering;
ff960a73 11508 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 11509
ff960a73 11510 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 11511 for (;;) {
50624c93
EB
11512 unregistering = false;
11513 rtnl_lock();
11514 list_for_each_entry(net, net_list, exit_list) {
11515 if (net->dev_unreg_count > 0) {
11516 unregistering = true;
11517 break;
11518 }
11519 }
11520 if (!unregistering)
11521 break;
11522 __rtnl_unlock();
ff960a73
PZ
11523
11524 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 11525 }
ff960a73 11526 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
11527}
11528
04dc7f6b
EB
11529static void __net_exit default_device_exit_batch(struct list_head *net_list)
11530{
11531 /* At exit all network devices most be removed from a network
b595076a 11532 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
11533 * Do this across as many network namespaces as possible to
11534 * improve batching efficiency.
11535 */
11536 struct net_device *dev;
11537 struct net *net;
11538 LIST_HEAD(dev_kill_list);
11539
50624c93
EB
11540 /* To prevent network device cleanup code from dereferencing
11541 * loopback devices or network devices that have been freed
11542 * wait here for all pending unregistrations to complete,
11543 * before unregistring the loopback device and allowing the
11544 * network namespace be freed.
11545 *
11546 * The netdev todo list containing all network devices
11547 * unregistrations that happen in default_device_exit_batch
11548 * will run in the rtnl_unlock() at the end of
11549 * default_device_exit_batch.
11550 */
11551 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
11552 list_for_each_entry(net, net_list, exit_list) {
11553 for_each_netdev_reverse(net, dev) {
b0ab2fab 11554 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
11555 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11556 else
11557 unregister_netdevice_queue(dev, &dev_kill_list);
11558 }
11559 }
11560 unregister_netdevice_many(&dev_kill_list);
11561 rtnl_unlock();
11562}
11563
022cbae6 11564static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 11565 .exit = default_device_exit,
04dc7f6b 11566 .exit_batch = default_device_exit_batch,
ce286d32
EB
11567};
11568
1da177e4
LT
11569/*
11570 * Initialize the DEV module. At boot time this walks the device list and
11571 * unhooks any devices that fail to initialise (normally hardware not
11572 * present) and leaves us with a valid list of present and active devices.
11573 *
11574 */
11575
11576/*
11577 * This is called single threaded during boot, so no need
11578 * to take the rtnl semaphore.
11579 */
11580static int __init net_dev_init(void)
11581{
11582 int i, rc = -ENOMEM;
11583
11584 BUG_ON(!dev_boot_phase);
11585
1da177e4
LT
11586 if (dev_proc_init())
11587 goto out;
11588
8b41d188 11589 if (netdev_kobject_init())
1da177e4
LT
11590 goto out;
11591
11592 INIT_LIST_HEAD(&ptype_all);
82d8a867 11593 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
11594 INIT_LIST_HEAD(&ptype_base[i]);
11595
62532da9
VY
11596 INIT_LIST_HEAD(&offload_base);
11597
881d966b
EB
11598 if (register_pernet_subsys(&netdev_net_ops))
11599 goto out;
1da177e4
LT
11600
11601 /*
11602 * Initialise the packet receive queues.
11603 */
11604
6f912042 11605 for_each_possible_cpu(i) {
41852497 11606 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 11607 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 11608
41852497
ED
11609 INIT_WORK(flush, flush_backlog);
11610
e36fa2f7 11611 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 11612 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
11613#ifdef CONFIG_XFRM_OFFLOAD
11614 skb_queue_head_init(&sd->xfrm_backlog);
11615#endif
e36fa2f7 11616 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 11617 sd->output_queue_tailp = &sd->output_queue;
df334545 11618#ifdef CONFIG_RPS
545b8c8d 11619 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
e36fa2f7 11620 sd->cpu = i;
1e94d72f 11621#endif
0a9627f2 11622
7c4ec749 11623 init_gro_hash(&sd->backlog);
e36fa2f7
ED
11624 sd->backlog.poll = process_backlog;
11625 sd->backlog.weight = weight_p;
1da177e4
LT
11626 }
11627
1da177e4
LT
11628 dev_boot_phase = 0;
11629
505d4f73
EB
11630 /* The loopback device is special if any other network devices
11631 * is present in a network namespace the loopback device must
11632 * be present. Since we now dynamically allocate and free the
11633 * loopback device ensure this invariant is maintained by
11634 * keeping the loopback device as the first device on the
11635 * list of network devices. Ensuring the loopback devices
11636 * is the first device that appears and the last network device
11637 * that disappears.
11638 */
11639 if (register_pernet_device(&loopback_net_ops))
11640 goto out;
11641
11642 if (register_pernet_device(&default_device_ops))
11643 goto out;
11644
962cf36c
CM
11645 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11646 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 11647
f0bf90de
SAS
11648 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11649 NULL, dev_cpu_dead);
11650 WARN_ON(rc < 0);
1da177e4
LT
11651 rc = 0;
11652out:
11653 return rc;
11654}
11655
11656subsys_initcall(net_dev_init);