]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/core/dev.c
Merge tag 'asoc-v5.7' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
1da177e4
LT
82#include <linux/string.h>
83#include <linux/mm.h>
84#include <linux/socket.h>
85#include <linux/sockios.h>
86#include <linux/errno.h>
87#include <linux/interrupt.h>
88#include <linux/if_ether.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
0187bdfb 91#include <linux/ethtool.h>
1da177e4 92#include <linux/skbuff.h>
a7862b45 93#include <linux/bpf.h>
b5cdae32 94#include <linux/bpf_trace.h>
457c4cbc 95#include <net/net_namespace.h>
1da177e4 96#include <net/sock.h>
02d62e86 97#include <net/busy_poll.h>
1da177e4 98#include <linux/rtnetlink.h>
1da177e4 99#include <linux/stat.h>
1da177e4 100#include <net/dst.h>
fc4099f1 101#include <net/dst_metadata.h>
1da177e4 102#include <net/pkt_sched.h>
87d83093 103#include <net/pkt_cls.h>
1da177e4 104#include <net/checksum.h>
44540960 105#include <net/xfrm.h>
1da177e4
LT
106#include <linux/highmem.h>
107#include <linux/init.h>
1da177e4 108#include <linux/module.h>
1da177e4
LT
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
1da177e4 112#include <net/iw_handler.h>
1da177e4 113#include <asm/current.h>
5bdb9886 114#include <linux/audit.h>
db217334 115#include <linux/dmaengine.h>
f6a78bfc 116#include <linux/err.h>
c7fa9d18 117#include <linux/ctype.h>
723e98b7 118#include <linux/if_arp.h>
6de329e2 119#include <linux/if_vlan.h>
8f0f2223 120#include <linux/ip.h>
ad55dcaf 121#include <net/ip.h>
25cd9ba0 122#include <net/mpls.h>
8f0f2223
DM
123#include <linux/ipv6.h>
124#include <linux/in.h>
b6b2fed1
DM
125#include <linux/jhash.h>
126#include <linux/random.h>
9cbc1cb8 127#include <trace/events/napi.h>
cf66ba58 128#include <trace/events/net.h>
07dc22e7 129#include <trace/events/skb.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
e687ad60 138#include <linux/netfilter_ingress.h>
40e4e713 139#include <linux/crash_dump.h>
b72b5bf6 140#include <linux/sctp.h>
ae847f40 141#include <net/udp_tunnel.h>
6621dd29 142#include <linux/net_namespace.h>
aaa5d90b 143#include <linux/indirect_call_wrapper.h>
af3836df 144#include <net/devlink.h>
1da177e4 145
342709ef
PE
146#include "net-sysfs.h"
147
d565b0a1
HX
148#define MAX_GRO_SKBS 8
149
5d38a079
HX
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
1da177e4 153static DEFINE_SPINLOCK(ptype_lock);
62532da9 154static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
62532da9 157static struct list_head offload_base __read_mostly;
1da177e4 158
ae78dbfa 159static int netif_rx_internal(struct sk_buff *skb);
54951194 160static int call_netdevice_notifiers_info(unsigned long val,
54951194 161 struct netdev_notifier_info *info);
26372605
PM
162static int call_netdevice_notifiers_extack(unsigned long val,
163 struct net_device *dev,
164 struct netlink_ext_ack *extack);
90b602f8 165static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 166
1da177e4 167/*
7562f876 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
169 * semaphore.
170 *
c6d14c84 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
172 *
173 * Writers must hold the rtnl semaphore while they loop through the
7562f876 174 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
177 *
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
181 *
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
185 */
1da177e4 186DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
187EXPORT_SYMBOL(dev_base_lock);
188
6c557001
FW
189static DEFINE_MUTEX(ifalias_mutex);
190
af12fa6e
ET
191/* protects napi_hash addition/deletion and napi_gen_id */
192static DEFINE_SPINLOCK(napi_hash_lock);
193
52bd2d62 194static unsigned int napi_gen_id = NR_CPUS;
6180d9de 195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 196
18afa4b0 197static seqcount_t devnet_rename_seq;
c91f6df2 198
4e985ada
TG
199static inline void dev_base_seq_inc(struct net *net)
200{
643aa9cb 201 while (++net->dev_base_seq == 0)
202 ;
4e985ada
TG
203}
204
881d966b 205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 206{
8387ff25 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 208
08e9897d 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
210}
211
881d966b 212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 213{
7c28bd0b 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
215}
216
e36fa2f7 217static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
e36fa2f7 224static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
225{
226#ifdef CONFIG_RPS
e36fa2f7 227 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
228#endif
229}
230
ff927412
JP
231static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232 const char *name)
233{
234 struct netdev_name_node *name_node;
235
236 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237 if (!name_node)
238 return NULL;
239 INIT_HLIST_NODE(&name_node->hlist);
240 name_node->dev = dev;
241 name_node->name = name;
242 return name_node;
243}
244
245static struct netdev_name_node *
246netdev_name_node_head_alloc(struct net_device *dev)
247{
36fbf1e5
JP
248 struct netdev_name_node *name_node;
249
250 name_node = netdev_name_node_alloc(dev, dev->name);
251 if (!name_node)
252 return NULL;
253 INIT_LIST_HEAD(&name_node->list);
254 return name_node;
ff927412
JP
255}
256
257static void netdev_name_node_free(struct netdev_name_node *name_node)
258{
259 kfree(name_node);
260}
261
262static void netdev_name_node_add(struct net *net,
263 struct netdev_name_node *name_node)
264{
265 hlist_add_head_rcu(&name_node->hlist,
266 dev_name_hash(net, name_node->name));
267}
268
269static void netdev_name_node_del(struct netdev_name_node *name_node)
270{
271 hlist_del_rcu(&name_node->hlist);
272}
273
274static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275 const char *name)
276{
277 struct hlist_head *head = dev_name_hash(net, name);
278 struct netdev_name_node *name_node;
279
280 hlist_for_each_entry(name_node, head, hlist)
281 if (!strcmp(name_node->name, name))
282 return name_node;
283 return NULL;
284}
285
286static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287 const char *name)
288{
289 struct hlist_head *head = dev_name_hash(net, name);
290 struct netdev_name_node *name_node;
291
292 hlist_for_each_entry_rcu(name_node, head, hlist)
293 if (!strcmp(name_node->name, name))
294 return name_node;
295 return NULL;
296}
297
36fbf1e5
JP
298int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299{
300 struct netdev_name_node *name_node;
301 struct net *net = dev_net(dev);
302
303 name_node = netdev_name_node_lookup(net, name);
304 if (name_node)
305 return -EEXIST;
306 name_node = netdev_name_node_alloc(dev, name);
307 if (!name_node)
308 return -ENOMEM;
309 netdev_name_node_add(net, name_node);
310 /* The node that holds dev->name acts as a head of per-device list. */
311 list_add_tail(&name_node->list, &dev->name_node->list);
312
313 return 0;
314}
315EXPORT_SYMBOL(netdev_name_node_alt_create);
316
317static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318{
319 list_del(&name_node->list);
320 netdev_name_node_del(name_node);
321 kfree(name_node->name);
322 netdev_name_node_free(name_node);
323}
324
325int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326{
327 struct netdev_name_node *name_node;
328 struct net *net = dev_net(dev);
329
330 name_node = netdev_name_node_lookup(net, name);
331 if (!name_node)
332 return -ENOENT;
e08ad805
ED
333 /* lookup might have found our primary name or a name belonging
334 * to another device.
335 */
336 if (name_node == dev->name_node || name_node->dev != dev)
337 return -EINVAL;
338
36fbf1e5
JP
339 __netdev_name_node_alt_destroy(name_node);
340
341 return 0;
342}
343EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344
345static void netdev_name_node_alt_flush(struct net_device *dev)
346{
347 struct netdev_name_node *name_node, *tmp;
348
349 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350 __netdev_name_node_alt_destroy(name_node);
351}
352
ce286d32 353/* Device list insertion */
53759be9 354static void list_netdevice(struct net_device *dev)
ce286d32 355{
c346dca1 356 struct net *net = dev_net(dev);
ce286d32
EB
357
358 ASSERT_RTNL();
359
360 write_lock_bh(&dev_base_lock);
c6d14c84 361 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 362 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
363 hlist_add_head_rcu(&dev->index_hlist,
364 dev_index_hash(net, dev->ifindex));
ce286d32 365 write_unlock_bh(&dev_base_lock);
4e985ada
TG
366
367 dev_base_seq_inc(net);
ce286d32
EB
368}
369
fb699dfd
ED
370/* Device list removal
371 * caller must respect a RCU grace period before freeing/reusing dev
372 */
ce286d32
EB
373static void unlist_netdevice(struct net_device *dev)
374{
375 ASSERT_RTNL();
376
377 /* Unlink dev from the device chain */
378 write_lock_bh(&dev_base_lock);
c6d14c84 379 list_del_rcu(&dev->dev_list);
ff927412 380 netdev_name_node_del(dev->name_node);
fb699dfd 381 hlist_del_rcu(&dev->index_hlist);
ce286d32 382 write_unlock_bh(&dev_base_lock);
4e985ada
TG
383
384 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
385}
386
1da177e4
LT
387/*
388 * Our notifier list
389 */
390
f07d5b94 391static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
392
393/*
394 * Device drivers call our routines to queue packets here. We empty the
395 * queue in the local softnet handler.
396 */
bea3348e 397
9958da05 398DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 399EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 400
1da177e4 401/*******************************************************************************
eb13da1a 402 *
403 * Protocol management and registration routines
404 *
405 *******************************************************************************/
1da177e4 406
1da177e4 407
1da177e4
LT
408/*
409 * Add a protocol ID to the list. Now that the input handler is
410 * smarter we can dispense with all the messy stuff that used to be
411 * here.
412 *
413 * BEWARE!!! Protocol handlers, mangling input packets,
414 * MUST BE last in hash buckets and checking protocol handlers
415 * MUST start from promiscuous ptype_all chain in net_bh.
416 * It is true now, do not change it.
417 * Explanation follows: if protocol handler, mangling packet, will
418 * be the first on list, it is not able to sense, that packet
419 * is cloned and should be copied-on-write, so that it will
420 * change it and subsequent readers will get broken packet.
421 * --ANK (980803)
422 */
423
c07b68e8
ED
424static inline struct list_head *ptype_head(const struct packet_type *pt)
425{
426 if (pt->type == htons(ETH_P_ALL))
7866a621 427 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 428 else
7866a621
SN
429 return pt->dev ? &pt->dev->ptype_specific :
430 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
431}
432
1da177e4
LT
433/**
434 * dev_add_pack - add packet handler
435 * @pt: packet type declaration
436 *
437 * Add a protocol handler to the networking stack. The passed &packet_type
438 * is linked into kernel lists and may not be freed until it has been
439 * removed from the kernel lists.
440 *
4ec93edb 441 * This call does not sleep therefore it can not
1da177e4
LT
442 * guarantee all CPU's that are in middle of receiving packets
443 * will see the new packet type (until the next received packet).
444 */
445
446void dev_add_pack(struct packet_type *pt)
447{
c07b68e8 448 struct list_head *head = ptype_head(pt);
1da177e4 449
c07b68e8
ED
450 spin_lock(&ptype_lock);
451 list_add_rcu(&pt->list, head);
452 spin_unlock(&ptype_lock);
1da177e4 453}
d1b19dff 454EXPORT_SYMBOL(dev_add_pack);
1da177e4 455
1da177e4
LT
456/**
457 * __dev_remove_pack - remove packet handler
458 * @pt: packet type declaration
459 *
460 * Remove a protocol handler that was previously added to the kernel
461 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
462 * from the kernel lists and can be freed or reused once this function
4ec93edb 463 * returns.
1da177e4
LT
464 *
465 * The packet type might still be in use by receivers
466 * and must not be freed until after all the CPU's have gone
467 * through a quiescent state.
468 */
469void __dev_remove_pack(struct packet_type *pt)
470{
c07b68e8 471 struct list_head *head = ptype_head(pt);
1da177e4
LT
472 struct packet_type *pt1;
473
c07b68e8 474 spin_lock(&ptype_lock);
1da177e4
LT
475
476 list_for_each_entry(pt1, head, list) {
477 if (pt == pt1) {
478 list_del_rcu(&pt->list);
479 goto out;
480 }
481 }
482
7b6cd1ce 483 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 484out:
c07b68e8 485 spin_unlock(&ptype_lock);
1da177e4 486}
d1b19dff
ED
487EXPORT_SYMBOL(__dev_remove_pack);
488
1da177e4
LT
489/**
490 * dev_remove_pack - remove packet handler
491 * @pt: packet type declaration
492 *
493 * Remove a protocol handler that was previously added to the kernel
494 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
495 * from the kernel lists and can be freed or reused once this function
496 * returns.
497 *
498 * This call sleeps to guarantee that no CPU is looking at the packet
499 * type after return.
500 */
501void dev_remove_pack(struct packet_type *pt)
502{
503 __dev_remove_pack(pt);
4ec93edb 504
1da177e4
LT
505 synchronize_net();
506}
d1b19dff 507EXPORT_SYMBOL(dev_remove_pack);
1da177e4 508
62532da9
VY
509
510/**
511 * dev_add_offload - register offload handlers
512 * @po: protocol offload declaration
513 *
514 * Add protocol offload handlers to the networking stack. The passed
515 * &proto_offload is linked into kernel lists and may not be freed until
516 * it has been removed from the kernel lists.
517 *
518 * This call does not sleep therefore it can not
519 * guarantee all CPU's that are in middle of receiving packets
520 * will see the new offload handlers (until the next received packet).
521 */
522void dev_add_offload(struct packet_offload *po)
523{
bdef7de4 524 struct packet_offload *elem;
62532da9
VY
525
526 spin_lock(&offload_lock);
bdef7de4
DM
527 list_for_each_entry(elem, &offload_base, list) {
528 if (po->priority < elem->priority)
529 break;
530 }
531 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
532 spin_unlock(&offload_lock);
533}
534EXPORT_SYMBOL(dev_add_offload);
535
536/**
537 * __dev_remove_offload - remove offload handler
538 * @po: packet offload declaration
539 *
540 * Remove a protocol offload handler that was previously added to the
541 * kernel offload handlers by dev_add_offload(). The passed &offload_type
542 * is removed from the kernel lists and can be freed or reused once this
543 * function returns.
544 *
545 * The packet type might still be in use by receivers
546 * and must not be freed until after all the CPU's have gone
547 * through a quiescent state.
548 */
1d143d9f 549static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
550{
551 struct list_head *head = &offload_base;
552 struct packet_offload *po1;
553
c53aa505 554 spin_lock(&offload_lock);
62532da9
VY
555
556 list_for_each_entry(po1, head, list) {
557 if (po == po1) {
558 list_del_rcu(&po->list);
559 goto out;
560 }
561 }
562
563 pr_warn("dev_remove_offload: %p not found\n", po);
564out:
c53aa505 565 spin_unlock(&offload_lock);
62532da9 566}
62532da9
VY
567
568/**
569 * dev_remove_offload - remove packet offload handler
570 * @po: packet offload declaration
571 *
572 * Remove a packet offload handler that was previously added to the kernel
573 * offload handlers by dev_add_offload(). The passed &offload_type is
574 * removed from the kernel lists and can be freed or reused once this
575 * function returns.
576 *
577 * This call sleeps to guarantee that no CPU is looking at the packet
578 * type after return.
579 */
580void dev_remove_offload(struct packet_offload *po)
581{
582 __dev_remove_offload(po);
583
584 synchronize_net();
585}
586EXPORT_SYMBOL(dev_remove_offload);
587
1da177e4 588/******************************************************************************
eb13da1a 589 *
590 * Device Boot-time Settings Routines
591 *
592 ******************************************************************************/
1da177e4
LT
593
594/* Boot time configuration table */
595static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
596
597/**
598 * netdev_boot_setup_add - add new setup entry
599 * @name: name of the device
600 * @map: configured settings for the device
601 *
602 * Adds new setup entry to the dev_boot_setup list. The function
603 * returns 0 on error and 1 on success. This is a generic routine to
604 * all netdevices.
605 */
606static int netdev_boot_setup_add(char *name, struct ifmap *map)
607{
608 struct netdev_boot_setup *s;
609 int i;
610
611 s = dev_boot_setup;
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 615 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
616 memcpy(&s[i].map, map, sizeof(s[i].map));
617 break;
618 }
619 }
620
621 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
622}
623
624/**
722c9a0c 625 * netdev_boot_setup_check - check boot time settings
626 * @dev: the netdevice
1da177e4 627 *
722c9a0c 628 * Check boot time settings for the device.
629 * The found settings are set for the device to be used
630 * later in the device probing.
631 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
632 */
633int netdev_boot_setup_check(struct net_device *dev)
634{
635 struct netdev_boot_setup *s = dev_boot_setup;
636 int i;
637
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 640 !strcmp(dev->name, s[i].name)) {
722c9a0c 641 dev->irq = s[i].map.irq;
642 dev->base_addr = s[i].map.base_addr;
643 dev->mem_start = s[i].map.mem_start;
644 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
645 return 1;
646 }
647 }
648 return 0;
649}
d1b19dff 650EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
651
652
653/**
722c9a0c 654 * netdev_boot_base - get address from boot time settings
655 * @prefix: prefix for network device
656 * @unit: id for network device
657 *
658 * Check boot time settings for the base address of device.
659 * The found settings are set for the device to be used
660 * later in the device probing.
661 * Returns 0 if no settings found.
1da177e4
LT
662 */
663unsigned long netdev_boot_base(const char *prefix, int unit)
664{
665 const struct netdev_boot_setup *s = dev_boot_setup;
666 char name[IFNAMSIZ];
667 int i;
668
669 sprintf(name, "%s%d", prefix, unit);
670
671 /*
672 * If device already registered then return base of 1
673 * to indicate not to probe for this interface
674 */
881d966b 675 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
676 return 1;
677
678 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679 if (!strcmp(name, s[i].name))
680 return s[i].map.base_addr;
681 return 0;
682}
683
684/*
685 * Saves at boot time configured settings for any netdevice.
686 */
687int __init netdev_boot_setup(char *str)
688{
689 int ints[5];
690 struct ifmap map;
691
692 str = get_options(str, ARRAY_SIZE(ints), ints);
693 if (!str || !*str)
694 return 0;
695
696 /* Save settings */
697 memset(&map, 0, sizeof(map));
698 if (ints[0] > 0)
699 map.irq = ints[1];
700 if (ints[0] > 1)
701 map.base_addr = ints[2];
702 if (ints[0] > 2)
703 map.mem_start = ints[3];
704 if (ints[0] > 3)
705 map.mem_end = ints[4];
706
707 /* Add new entry to the list */
708 return netdev_boot_setup_add(str, &map);
709}
710
711__setup("netdev=", netdev_boot_setup);
712
713/*******************************************************************************
eb13da1a 714 *
715 * Device Interface Subroutines
716 *
717 *******************************************************************************/
1da177e4 718
a54acb3a
ND
719/**
720 * dev_get_iflink - get 'iflink' value of a interface
721 * @dev: targeted interface
722 *
723 * Indicates the ifindex the interface is linked to.
724 * Physical interfaces have the same 'ifindex' and 'iflink' values.
725 */
726
727int dev_get_iflink(const struct net_device *dev)
728{
729 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730 return dev->netdev_ops->ndo_get_iflink(dev);
731
7a66bbc9 732 return dev->ifindex;
a54acb3a
ND
733}
734EXPORT_SYMBOL(dev_get_iflink);
735
fc4099f1
PS
736/**
737 * dev_fill_metadata_dst - Retrieve tunnel egress information.
738 * @dev: targeted interface
739 * @skb: The packet.
740 *
741 * For better visibility of tunnel traffic OVS needs to retrieve
742 * egress tunnel information for a packet. Following API allows
743 * user to get this info.
744 */
745int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
746{
747 struct ip_tunnel_info *info;
748
749 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
750 return -EINVAL;
751
752 info = skb_tunnel_info_unclone(skb);
753 if (!info)
754 return -ENOMEM;
755 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
756 return -EINVAL;
757
758 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
759}
760EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
761
1da177e4
LT
762/**
763 * __dev_get_by_name - find a device by its name
c4ea43c5 764 * @net: the applicable net namespace
1da177e4
LT
765 * @name: name to find
766 *
767 * Find an interface by name. Must be called under RTNL semaphore
768 * or @dev_base_lock. If the name is found a pointer to the device
769 * is returned. If the name is not found then %NULL is returned. The
770 * reference counters are not incremented so the caller must be
771 * careful with locks.
772 */
773
881d966b 774struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 775{
ff927412 776 struct netdev_name_node *node_name;
1da177e4 777
ff927412
JP
778 node_name = netdev_name_node_lookup(net, name);
779 return node_name ? node_name->dev : NULL;
1da177e4 780}
d1b19dff 781EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 782
72c9528b 783/**
722c9a0c 784 * dev_get_by_name_rcu - find a device by its name
785 * @net: the applicable net namespace
786 * @name: name to find
787 *
788 * Find an interface by name.
789 * If the name is found a pointer to the device is returned.
790 * If the name is not found then %NULL is returned.
791 * The reference counters are not incremented so the caller must be
792 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
793 */
794
795struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
796{
ff927412 797 struct netdev_name_node *node_name;
72c9528b 798
ff927412
JP
799 node_name = netdev_name_node_lookup_rcu(net, name);
800 return node_name ? node_name->dev : NULL;
72c9528b
ED
801}
802EXPORT_SYMBOL(dev_get_by_name_rcu);
803
1da177e4
LT
804/**
805 * dev_get_by_name - find a device by its name
c4ea43c5 806 * @net: the applicable net namespace
1da177e4
LT
807 * @name: name to find
808 *
809 * Find an interface by name. This can be called from any
810 * context and does its own locking. The returned handle has
811 * the usage count incremented and the caller must use dev_put() to
812 * release it when it is no longer needed. %NULL is returned if no
813 * matching device is found.
814 */
815
881d966b 816struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
817{
818 struct net_device *dev;
819
72c9528b
ED
820 rcu_read_lock();
821 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
822 if (dev)
823 dev_hold(dev);
72c9528b 824 rcu_read_unlock();
1da177e4
LT
825 return dev;
826}
d1b19dff 827EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
828
829/**
830 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 831 * @net: the applicable net namespace
1da177e4
LT
832 * @ifindex: index of device
833 *
834 * Search for an interface by index. Returns %NULL if the device
835 * is not found or a pointer to the device. The device has not
836 * had its reference counter increased so the caller must be careful
837 * about locking. The caller must hold either the RTNL semaphore
838 * or @dev_base_lock.
839 */
840
881d966b 841struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 842{
0bd8d536
ED
843 struct net_device *dev;
844 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 845
b67bfe0d 846 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
847 if (dev->ifindex == ifindex)
848 return dev;
0bd8d536 849
1da177e4
LT
850 return NULL;
851}
d1b19dff 852EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 853
fb699dfd
ED
854/**
855 * dev_get_by_index_rcu - find a device by its ifindex
856 * @net: the applicable net namespace
857 * @ifindex: index of device
858 *
859 * Search for an interface by index. Returns %NULL if the device
860 * is not found or a pointer to the device. The device has not
861 * had its reference counter increased so the caller must be careful
862 * about locking. The caller must hold RCU lock.
863 */
864
865struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
866{
fb699dfd
ED
867 struct net_device *dev;
868 struct hlist_head *head = dev_index_hash(net, ifindex);
869
b67bfe0d 870 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
871 if (dev->ifindex == ifindex)
872 return dev;
873
874 return NULL;
875}
876EXPORT_SYMBOL(dev_get_by_index_rcu);
877
1da177e4
LT
878
879/**
880 * dev_get_by_index - find a device by its ifindex
c4ea43c5 881 * @net: the applicable net namespace
1da177e4
LT
882 * @ifindex: index of device
883 *
884 * Search for an interface by index. Returns NULL if the device
885 * is not found or a pointer to the device. The device returned has
886 * had a reference added and the pointer is safe until the user calls
887 * dev_put to indicate they have finished with it.
888 */
889
881d966b 890struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
891{
892 struct net_device *dev;
893
fb699dfd
ED
894 rcu_read_lock();
895 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
896 if (dev)
897 dev_hold(dev);
fb699dfd 898 rcu_read_unlock();
1da177e4
LT
899 return dev;
900}
d1b19dff 901EXPORT_SYMBOL(dev_get_by_index);
1da177e4 902
90b602f8
ML
903/**
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
906 *
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
911 */
912
913struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914{
915 struct napi_struct *napi;
916
917 WARN_ON_ONCE(!rcu_read_lock_held());
918
919 if (napi_id < MIN_NAPI_ID)
920 return NULL;
921
922 napi = napi_by_id(napi_id);
923
924 return napi ? napi->dev : NULL;
925}
926EXPORT_SYMBOL(dev_get_by_napi_id);
927
5dbe7c17
NS
928/**
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
933 *
934 * The use of raw_seqcount_begin() and cond_resched() before
935 * retrying is required as we want to give the writers a chance
2da2b32f 936 * to complete when CONFIG_PREEMPTION is not set.
5dbe7c17
NS
937 */
938int netdev_get_name(struct net *net, char *name, int ifindex)
939{
940 struct net_device *dev;
941 unsigned int seq;
942
943retry:
944 seq = raw_seqcount_begin(&devnet_rename_seq);
945 rcu_read_lock();
946 dev = dev_get_by_index_rcu(net, ifindex);
947 if (!dev) {
948 rcu_read_unlock();
949 return -ENODEV;
950 }
951
952 strcpy(name, dev->name);
953 rcu_read_unlock();
954 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
955 cond_resched();
956 goto retry;
957 }
958
959 return 0;
960}
961
1da177e4 962/**
941666c2 963 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 964 * @net: the applicable net namespace
1da177e4
LT
965 * @type: media type of device
966 * @ha: hardware address
967 *
968 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
969 * is not found or a pointer to the device.
970 * The caller must hold RCU or RTNL.
941666c2 971 * The returned device has not had its ref count increased
1da177e4
LT
972 * and the caller must therefore be careful about locking
973 *
1da177e4
LT
974 */
975
941666c2
ED
976struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
977 const char *ha)
1da177e4
LT
978{
979 struct net_device *dev;
980
941666c2 981 for_each_netdev_rcu(net, dev)
1da177e4
LT
982 if (dev->type == type &&
983 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
984 return dev;
985
986 return NULL;
1da177e4 987}
941666c2 988EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 989
881d966b 990struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
991{
992 struct net_device *dev;
993
4e9cac2b 994 ASSERT_RTNL();
881d966b 995 for_each_netdev(net, dev)
4e9cac2b 996 if (dev->type == type)
7562f876
PE
997 return dev;
998
999 return NULL;
4e9cac2b 1000}
4e9cac2b
PM
1001EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1002
881d966b 1003struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 1004{
99fe3c39 1005 struct net_device *dev, *ret = NULL;
4e9cac2b 1006
99fe3c39
ED
1007 rcu_read_lock();
1008 for_each_netdev_rcu(net, dev)
1009 if (dev->type == type) {
1010 dev_hold(dev);
1011 ret = dev;
1012 break;
1013 }
1014 rcu_read_unlock();
1015 return ret;
1da177e4 1016}
1da177e4
LT
1017EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018
1019/**
6c555490 1020 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1021 * @net: the applicable net namespace
1da177e4
LT
1022 * @if_flags: IFF_* values
1023 * @mask: bitmask of bits in if_flags to check
1024 *
1025 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1026 * is not found or a pointer to the device. Must be called inside
6c555490 1027 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1028 */
1029
6c555490
WC
1030struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031 unsigned short mask)
1da177e4 1032{
7562f876 1033 struct net_device *dev, *ret;
1da177e4 1034
6c555490
WC
1035 ASSERT_RTNL();
1036
7562f876 1037 ret = NULL;
6c555490 1038 for_each_netdev(net, dev) {
1da177e4 1039 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1040 ret = dev;
1da177e4
LT
1041 break;
1042 }
1043 }
7562f876 1044 return ret;
1da177e4 1045}
6c555490 1046EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1047
1048/**
1049 * dev_valid_name - check if name is okay for network device
1050 * @name: name string
1051 *
1052 * Network device names need to be valid file names to
c7fa9d18
DM
1053 * to allow sysfs to work. We also disallow any kind of
1054 * whitespace.
1da177e4 1055 */
95f050bf 1056bool dev_valid_name(const char *name)
1da177e4 1057{
c7fa9d18 1058 if (*name == '\0')
95f050bf 1059 return false;
a9d48205 1060 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1061 return false;
c7fa9d18 1062 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1063 return false;
c7fa9d18
DM
1064
1065 while (*name) {
a4176a93 1066 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1067 return false;
c7fa9d18
DM
1068 name++;
1069 }
95f050bf 1070 return true;
1da177e4 1071}
d1b19dff 1072EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1073
1074/**
b267b179
EB
1075 * __dev_alloc_name - allocate a name for a device
1076 * @net: network namespace to allocate the device name in
1da177e4 1077 * @name: name format string
b267b179 1078 * @buf: scratch buffer and result name string
1da177e4
LT
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1087 */
1088
b267b179 1089static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1090{
1091 int i = 0;
1da177e4
LT
1092 const char *p;
1093 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1094 unsigned long *inuse;
1da177e4
LT
1095 struct net_device *d;
1096
93809105
RV
1097 if (!dev_valid_name(name))
1098 return -EINVAL;
1099
51f299dd 1100 p = strchr(name, '%');
1da177e4
LT
1101 if (p) {
1102 /*
1103 * Verify the string as this thing may have come from
1104 * the user. There must be either one "%d" and no other "%"
1105 * characters.
1106 */
1107 if (p[1] != 'd' || strchr(p + 2, '%'))
1108 return -EINVAL;
1109
1110 /* Use one page as a bit array of possible slots */
cfcabdcc 1111 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1112 if (!inuse)
1113 return -ENOMEM;
1114
881d966b 1115 for_each_netdev(net, d) {
1da177e4
LT
1116 if (!sscanf(d->name, name, &i))
1117 continue;
1118 if (i < 0 || i >= max_netdevices)
1119 continue;
1120
1121 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1122 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1123 if (!strncmp(buf, d->name, IFNAMSIZ))
1124 set_bit(i, inuse);
1125 }
1126
1127 i = find_first_zero_bit(inuse, max_netdevices);
1128 free_page((unsigned long) inuse);
1129 }
1130
6224abda 1131 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1132 if (!__dev_get_by_name(net, buf))
1da177e4 1133 return i;
1da177e4
LT
1134
1135 /* It is possible to run out of possible slots
1136 * when the name is long and there isn't enough space left
1137 * for the digits, or if all bits are used.
1138 */
029b6d14 1139 return -ENFILE;
1da177e4
LT
1140}
1141
2c88b855
RV
1142static int dev_alloc_name_ns(struct net *net,
1143 struct net_device *dev,
1144 const char *name)
1145{
1146 char buf[IFNAMSIZ];
1147 int ret;
1148
c46d7642 1149 BUG_ON(!net);
2c88b855
RV
1150 ret = __dev_alloc_name(net, name, buf);
1151 if (ret >= 0)
1152 strlcpy(dev->name, buf, IFNAMSIZ);
1153 return ret;
1da177e4
LT
1154}
1155
b267b179
EB
1156/**
1157 * dev_alloc_name - allocate a name for a device
1158 * @dev: device
1159 * @name: name format string
1160 *
1161 * Passed a format string - eg "lt%d" it will try and find a suitable
1162 * id. It scans list of devices to build up a free map, then chooses
1163 * the first empty slot. The caller must hold the dev_base or rtnl lock
1164 * while allocating the name and adding the device in order to avoid
1165 * duplicates.
1166 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167 * Returns the number of the unit assigned or a negative errno code.
1168 */
1169
1170int dev_alloc_name(struct net_device *dev, const char *name)
1171{
c46d7642 1172 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1173}
d1b19dff 1174EXPORT_SYMBOL(dev_alloc_name);
b267b179 1175
bacb7e18
ED
1176static int dev_get_valid_name(struct net *net, struct net_device *dev,
1177 const char *name)
828de4f6 1178{
55a5ec9b
DM
1179 BUG_ON(!net);
1180
1181 if (!dev_valid_name(name))
1182 return -EINVAL;
1183
1184 if (strchr(name, '%'))
1185 return dev_alloc_name_ns(net, dev, name);
1186 else if (__dev_get_by_name(net, name))
1187 return -EEXIST;
1188 else if (dev->name != name)
1189 strlcpy(dev->name, name, IFNAMSIZ);
1190
1191 return 0;
d9031024 1192}
1da177e4
LT
1193
1194/**
1195 * dev_change_name - change name of a device
1196 * @dev: device
1197 * @newname: name (or format string) must be at least IFNAMSIZ
1198 *
1199 * Change name of a device, can pass format strings "eth%d".
1200 * for wildcarding.
1201 */
cf04a4c7 1202int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1203{
238fa362 1204 unsigned char old_assign_type;
fcc5a03a 1205 char oldname[IFNAMSIZ];
1da177e4 1206 int err = 0;
fcc5a03a 1207 int ret;
881d966b 1208 struct net *net;
1da177e4
LT
1209
1210 ASSERT_RTNL();
c346dca1 1211 BUG_ON(!dev_net(dev));
1da177e4 1212
c346dca1 1213 net = dev_net(dev);
8065a779
SWL
1214
1215 /* Some auto-enslaved devices e.g. failover slaves are
1216 * special, as userspace might rename the device after
1217 * the interface had been brought up and running since
1218 * the point kernel initiated auto-enslavement. Allow
1219 * live name change even when these slave devices are
1220 * up and running.
1221 *
1222 * Typically, users of these auto-enslaving devices
1223 * don't actually care about slave name change, as
1224 * they are supposed to operate on master interface
1225 * directly.
1226 */
1227 if (dev->flags & IFF_UP &&
1228 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1229 return -EBUSY;
1230
30e6c9fa 1231 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1232
1233 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1234 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1235 return 0;
c91f6df2 1236 }
c8d90dca 1237
fcc5a03a
HX
1238 memcpy(oldname, dev->name, IFNAMSIZ);
1239
828de4f6 1240 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1241 if (err < 0) {
30e6c9fa 1242 write_seqcount_end(&devnet_rename_seq);
d9031024 1243 return err;
c91f6df2 1244 }
1da177e4 1245
6fe82a39
VF
1246 if (oldname[0] && !strchr(oldname, '%'))
1247 netdev_info(dev, "renamed from %s\n", oldname);
1248
238fa362
TG
1249 old_assign_type = dev->name_assign_type;
1250 dev->name_assign_type = NET_NAME_RENAMED;
1251
fcc5a03a 1252rollback:
a1b3f594
EB
1253 ret = device_rename(&dev->dev, dev->name);
1254 if (ret) {
1255 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1256 dev->name_assign_type = old_assign_type;
30e6c9fa 1257 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1258 return ret;
dcc99773 1259 }
7f988eab 1260
30e6c9fa 1261 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1262
5bb025fa
VF
1263 netdev_adjacent_rename_links(dev, oldname);
1264
7f988eab 1265 write_lock_bh(&dev_base_lock);
ff927412 1266 netdev_name_node_del(dev->name_node);
72c9528b
ED
1267 write_unlock_bh(&dev_base_lock);
1268
1269 synchronize_rcu();
1270
1271 write_lock_bh(&dev_base_lock);
ff927412 1272 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1273 write_unlock_bh(&dev_base_lock);
1274
056925ab 1275 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1276 ret = notifier_to_errno(ret);
1277
1278 if (ret) {
91e9c07b
ED
1279 /* err >= 0 after dev_alloc_name() or stores the first errno */
1280 if (err >= 0) {
fcc5a03a 1281 err = ret;
30e6c9fa 1282 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1283 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1284 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1285 dev->name_assign_type = old_assign_type;
1286 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1287 goto rollback;
91e9c07b 1288 } else {
7b6cd1ce 1289 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1290 dev->name, ret);
fcc5a03a
HX
1291 }
1292 }
1da177e4
LT
1293
1294 return err;
1295}
1296
0b815a1a
SH
1297/**
1298 * dev_set_alias - change ifalias of a device
1299 * @dev: device
1300 * @alias: name up to IFALIASZ
f0db275a 1301 * @len: limit of bytes to copy from info
0b815a1a
SH
1302 *
1303 * Set ifalias for a device,
1304 */
1305int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1306{
6c557001 1307 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1308
1309 if (len >= IFALIASZ)
1310 return -EINVAL;
1311
6c557001
FW
1312 if (len) {
1313 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1314 if (!new_alias)
1315 return -ENOMEM;
1316
1317 memcpy(new_alias->ifalias, alias, len);
1318 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1319 }
1320
6c557001 1321 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1322 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1324 mutex_unlock(&ifalias_mutex);
1325
1326 if (new_alias)
1327 kfree_rcu(new_alias, rcuhead);
0b815a1a 1328
0b815a1a
SH
1329 return len;
1330}
0fe554a4 1331EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1332
6c557001
FW
1333/**
1334 * dev_get_alias - get ifalias of a device
1335 * @dev: device
20e88320 1336 * @name: buffer to store name of ifalias
6c557001
FW
1337 * @len: size of buffer
1338 *
1339 * get ifalias for a device. Caller must make sure dev cannot go
1340 * away, e.g. rcu read lock or own a reference count to device.
1341 */
1342int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1343{
1344 const struct dev_ifalias *alias;
1345 int ret = 0;
1346
1347 rcu_read_lock();
1348 alias = rcu_dereference(dev->ifalias);
1349 if (alias)
1350 ret = snprintf(name, len, "%s", alias->ifalias);
1351 rcu_read_unlock();
1352
1353 return ret;
1354}
0b815a1a 1355
d8a33ac4 1356/**
3041a069 1357 * netdev_features_change - device changes features
d8a33ac4
SH
1358 * @dev: device to cause notification
1359 *
1360 * Called to indicate a device has changed features.
1361 */
1362void netdev_features_change(struct net_device *dev)
1363{
056925ab 1364 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1365}
1366EXPORT_SYMBOL(netdev_features_change);
1367
1da177e4
LT
1368/**
1369 * netdev_state_change - device changes state
1370 * @dev: device to cause notification
1371 *
1372 * Called to indicate a device has changed state. This function calls
1373 * the notifier chains for netdev_chain and sends a NEWLINK message
1374 * to the routing socket.
1375 */
1376void netdev_state_change(struct net_device *dev)
1377{
1378 if (dev->flags & IFF_UP) {
51d0c047
DA
1379 struct netdev_notifier_change_info change_info = {
1380 .info.dev = dev,
1381 };
54951194 1382
51d0c047 1383 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1384 &change_info.info);
7f294054 1385 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1386 }
1387}
d1b19dff 1388EXPORT_SYMBOL(netdev_state_change);
1da177e4 1389
ee89bab1 1390/**
722c9a0c 1391 * netdev_notify_peers - notify network peers about existence of @dev
1392 * @dev: network device
ee89bab1
AW
1393 *
1394 * Generate traffic such that interested network peers are aware of
1395 * @dev, such as by generating a gratuitous ARP. This may be used when
1396 * a device wants to inform the rest of the network about some sort of
1397 * reconfiguration such as a failover event or virtual machine
1398 * migration.
1399 */
1400void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1401{
ee89bab1
AW
1402 rtnl_lock();
1403 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1404 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1405 rtnl_unlock();
c1da4ac7 1406}
ee89bab1 1407EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1408
40c900aa 1409static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1410{
d314774c 1411 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1412 int ret;
1da177e4 1413
e46b66bc
BH
1414 ASSERT_RTNL();
1415
1da177e4
LT
1416 if (!netif_device_present(dev))
1417 return -ENODEV;
1418
ca99ca14
NH
1419 /* Block netpoll from trying to do any rx path servicing.
1420 * If we don't do this there is a chance ndo_poll_controller
1421 * or ndo_poll may be running while we open the device
1422 */
66b5552f 1423 netpoll_poll_disable(dev);
ca99ca14 1424
40c900aa 1425 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1426 ret = notifier_to_errno(ret);
1427 if (ret)
1428 return ret;
1429
1da177e4 1430 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1431
d314774c
SH
1432 if (ops->ndo_validate_addr)
1433 ret = ops->ndo_validate_addr(dev);
bada339b 1434
d314774c
SH
1435 if (!ret && ops->ndo_open)
1436 ret = ops->ndo_open(dev);
1da177e4 1437
66b5552f 1438 netpoll_poll_enable(dev);
ca99ca14 1439
bada339b
JG
1440 if (ret)
1441 clear_bit(__LINK_STATE_START, &dev->state);
1442 else {
1da177e4 1443 dev->flags |= IFF_UP;
4417da66 1444 dev_set_rx_mode(dev);
1da177e4 1445 dev_activate(dev);
7bf23575 1446 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1447 }
bada339b 1448
1da177e4
LT
1449 return ret;
1450}
1451
1452/**
bd380811 1453 * dev_open - prepare an interface for use.
00f54e68
PM
1454 * @dev: device to open
1455 * @extack: netlink extended ack
1da177e4 1456 *
bd380811
PM
1457 * Takes a device from down to up state. The device's private open
1458 * function is invoked and then the multicast lists are loaded. Finally
1459 * the device is moved into the up state and a %NETDEV_UP message is
1460 * sent to the netdev notifier chain.
1461 *
1462 * Calling this function on an active interface is a nop. On a failure
1463 * a negative errno code is returned.
1da177e4 1464 */
00f54e68 1465int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1466{
1467 int ret;
1468
bd380811
PM
1469 if (dev->flags & IFF_UP)
1470 return 0;
1471
40c900aa 1472 ret = __dev_open(dev, extack);
bd380811
PM
1473 if (ret < 0)
1474 return ret;
1475
7f294054 1476 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1477 call_netdevice_notifiers(NETDEV_UP, dev);
1478
1479 return ret;
1480}
1481EXPORT_SYMBOL(dev_open);
1482
7051b88a 1483static void __dev_close_many(struct list_head *head)
1da177e4 1484{
44345724 1485 struct net_device *dev;
e46b66bc 1486
bd380811 1487 ASSERT_RTNL();
9d5010db
DM
1488 might_sleep();
1489
5cde2829 1490 list_for_each_entry(dev, head, close_list) {
3f4df206 1491 /* Temporarily disable netpoll until the interface is down */
66b5552f 1492 netpoll_poll_disable(dev);
3f4df206 1493
44345724 1494 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1495
44345724 1496 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1497
44345724
OP
1498 /* Synchronize to scheduled poll. We cannot touch poll list, it
1499 * can be even on different cpu. So just clear netif_running().
1500 *
1501 * dev->stop() will invoke napi_disable() on all of it's
1502 * napi_struct instances on this device.
1503 */
4e857c58 1504 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1505 }
1da177e4 1506
44345724 1507 dev_deactivate_many(head);
d8b2a4d2 1508
5cde2829 1509 list_for_each_entry(dev, head, close_list) {
44345724 1510 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1511
44345724
OP
1512 /*
1513 * Call the device specific close. This cannot fail.
1514 * Only if device is UP
1515 *
1516 * We allow it to be called even after a DETACH hot-plug
1517 * event.
1518 */
1519 if (ops->ndo_stop)
1520 ops->ndo_stop(dev);
1521
44345724 1522 dev->flags &= ~IFF_UP;
66b5552f 1523 netpoll_poll_enable(dev);
44345724 1524 }
44345724
OP
1525}
1526
7051b88a 1527static void __dev_close(struct net_device *dev)
44345724
OP
1528{
1529 LIST_HEAD(single);
1530
5cde2829 1531 list_add(&dev->close_list, &single);
7051b88a 1532 __dev_close_many(&single);
f87e6f47 1533 list_del(&single);
44345724
OP
1534}
1535
7051b88a 1536void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1537{
1538 struct net_device *dev, *tmp;
1da177e4 1539
5cde2829
EB
1540 /* Remove the devices that don't need to be closed */
1541 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1542 if (!(dev->flags & IFF_UP))
5cde2829 1543 list_del_init(&dev->close_list);
44345724
OP
1544
1545 __dev_close_many(head);
1da177e4 1546
5cde2829 1547 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1548 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1549 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1550 if (unlink)
1551 list_del_init(&dev->close_list);
44345724 1552 }
bd380811 1553}
99c4a26a 1554EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1555
1556/**
1557 * dev_close - shutdown an interface.
1558 * @dev: device to shutdown
1559 *
1560 * This function moves an active device into down state. A
1561 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1563 * chain.
1564 */
7051b88a 1565void dev_close(struct net_device *dev)
bd380811 1566{
e14a5993
ED
1567 if (dev->flags & IFF_UP) {
1568 LIST_HEAD(single);
1da177e4 1569
5cde2829 1570 list_add(&dev->close_list, &single);
99c4a26a 1571 dev_close_many(&single, true);
e14a5993
ED
1572 list_del(&single);
1573 }
1da177e4 1574}
d1b19dff 1575EXPORT_SYMBOL(dev_close);
1da177e4
LT
1576
1577
0187bdfb
BH
1578/**
1579 * dev_disable_lro - disable Large Receive Offload on a device
1580 * @dev: device
1581 *
1582 * Disable Large Receive Offload (LRO) on a net device. Must be
1583 * called under RTNL. This is needed if received packets may be
1584 * forwarded to another interface.
1585 */
1586void dev_disable_lro(struct net_device *dev)
1587{
fbe168ba
MK
1588 struct net_device *lower_dev;
1589 struct list_head *iter;
529d0489 1590
bc5787c6
MM
1591 dev->wanted_features &= ~NETIF_F_LRO;
1592 netdev_update_features(dev);
27660515 1593
22d5969f
MM
1594 if (unlikely(dev->features & NETIF_F_LRO))
1595 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1596
1597 netdev_for_each_lower_dev(dev, lower_dev, iter)
1598 dev_disable_lro(lower_dev);
0187bdfb
BH
1599}
1600EXPORT_SYMBOL(dev_disable_lro);
1601
56f5aa77
MC
1602/**
1603 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1604 * @dev: device
1605 *
1606 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1607 * called under RTNL. This is needed if Generic XDP is installed on
1608 * the device.
1609 */
1610static void dev_disable_gro_hw(struct net_device *dev)
1611{
1612 dev->wanted_features &= ~NETIF_F_GRO_HW;
1613 netdev_update_features(dev);
1614
1615 if (unlikely(dev->features & NETIF_F_GRO_HW))
1616 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1617}
1618
ede2762d
KT
1619const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1620{
1621#define N(val) \
1622 case NETDEV_##val: \
1623 return "NETDEV_" __stringify(val);
1624 switch (cmd) {
1625 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1632 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1634 N(PRE_CHANGEADDR)
3f5ecd8a 1635 }
ede2762d
KT
1636#undef N
1637 return "UNKNOWN_NETDEV_EVENT";
1638}
1639EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1640
351638e7
JP
1641static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642 struct net_device *dev)
1643{
51d0c047
DA
1644 struct netdev_notifier_info info = {
1645 .dev = dev,
1646 };
351638e7 1647
351638e7
JP
1648 return nb->notifier_call(nb, val, &info);
1649}
0187bdfb 1650
afa0df59
JP
1651static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652 struct net_device *dev)
1653{
1654 int err;
1655
1656 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657 err = notifier_to_errno(err);
1658 if (err)
1659 return err;
1660
1661 if (!(dev->flags & IFF_UP))
1662 return 0;
1663
1664 call_netdevice_notifier(nb, NETDEV_UP, dev);
1665 return 0;
1666}
1667
1668static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669 struct net_device *dev)
1670{
1671 if (dev->flags & IFF_UP) {
1672 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1673 dev);
1674 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1675 }
1676 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1677}
1678
1679static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1680 struct net *net)
1681{
1682 struct net_device *dev;
1683 int err;
1684
1685 for_each_netdev(net, dev) {
1686 err = call_netdevice_register_notifiers(nb, dev);
1687 if (err)
1688 goto rollback;
1689 }
1690 return 0;
1691
1692rollback:
1693 for_each_netdev_continue_reverse(net, dev)
1694 call_netdevice_unregister_notifiers(nb, dev);
1695 return err;
1696}
1697
1698static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1699 struct net *net)
1700{
1701 struct net_device *dev;
1702
1703 for_each_netdev(net, dev)
1704 call_netdevice_unregister_notifiers(nb, dev);
1705}
1706
881d966b
EB
1707static int dev_boot_phase = 1;
1708
1da177e4 1709/**
722c9a0c 1710 * register_netdevice_notifier - register a network notifier block
1711 * @nb: notifier
1da177e4 1712 *
722c9a0c 1713 * Register a notifier to be called when network device events occur.
1714 * The notifier passed is linked into the kernel structures and must
1715 * not be reused until it has been unregistered. A negative errno code
1716 * is returned on a failure.
1da177e4 1717 *
722c9a0c 1718 * When registered all registration and up events are replayed
1719 * to the new notifier to allow device to have a race free
1720 * view of the network device list.
1da177e4
LT
1721 */
1722
1723int register_netdevice_notifier(struct notifier_block *nb)
1724{
881d966b 1725 struct net *net;
1da177e4
LT
1726 int err;
1727
328fbe74
KT
1728 /* Close race with setup_net() and cleanup_net() */
1729 down_write(&pernet_ops_rwsem);
1da177e4 1730 rtnl_lock();
f07d5b94 1731 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1732 if (err)
1733 goto unlock;
881d966b
EB
1734 if (dev_boot_phase)
1735 goto unlock;
1736 for_each_net(net) {
afa0df59
JP
1737 err = call_netdevice_register_net_notifiers(nb, net);
1738 if (err)
1739 goto rollback;
1da177e4 1740 }
fcc5a03a
HX
1741
1742unlock:
1da177e4 1743 rtnl_unlock();
328fbe74 1744 up_write(&pernet_ops_rwsem);
1da177e4 1745 return err;
fcc5a03a
HX
1746
1747rollback:
afa0df59
JP
1748 for_each_net_continue_reverse(net)
1749 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1750
1751 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1752 goto unlock;
1da177e4 1753}
d1b19dff 1754EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1755
1756/**
722c9a0c 1757 * unregister_netdevice_notifier - unregister a network notifier block
1758 * @nb: notifier
1da177e4 1759 *
722c9a0c 1760 * Unregister a notifier previously registered by
1761 * register_netdevice_notifier(). The notifier is unlinked into the
1762 * kernel structures and may then be reused. A negative errno code
1763 * is returned on a failure.
7d3d43da 1764 *
722c9a0c 1765 * After unregistering unregister and down device events are synthesized
1766 * for all devices on the device list to the removed notifier to remove
1767 * the need for special case cleanup code.
1da177e4
LT
1768 */
1769
1770int unregister_netdevice_notifier(struct notifier_block *nb)
1771{
7d3d43da 1772 struct net *net;
9f514950
HX
1773 int err;
1774
328fbe74
KT
1775 /* Close race with setup_net() and cleanup_net() */
1776 down_write(&pernet_ops_rwsem);
9f514950 1777 rtnl_lock();
f07d5b94 1778 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1779 if (err)
1780 goto unlock;
1781
48b3a137
JP
1782 for_each_net(net)
1783 call_netdevice_unregister_net_notifiers(nb, net);
1784
7d3d43da 1785unlock:
9f514950 1786 rtnl_unlock();
328fbe74 1787 up_write(&pernet_ops_rwsem);
9f514950 1788 return err;
1da177e4 1789}
d1b19dff 1790EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1791
1f637703
JP
1792static int __register_netdevice_notifier_net(struct net *net,
1793 struct notifier_block *nb,
1794 bool ignore_call_fail)
1795{
1796 int err;
1797
1798 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799 if (err)
1800 return err;
1801 if (dev_boot_phase)
1802 return 0;
1803
1804 err = call_netdevice_register_net_notifiers(nb, net);
1805 if (err && !ignore_call_fail)
1806 goto chain_unregister;
1807
1808 return 0;
1809
1810chain_unregister:
1811 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812 return err;
1813}
1814
1815static int __unregister_netdevice_notifier_net(struct net *net,
1816 struct notifier_block *nb)
1817{
1818 int err;
1819
1820 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1821 if (err)
1822 return err;
1823
1824 call_netdevice_unregister_net_notifiers(nb, net);
1825 return 0;
1826}
1827
a30c7b42
JP
1828/**
1829 * register_netdevice_notifier_net - register a per-netns network notifier block
1830 * @net: network namespace
1831 * @nb: notifier
1832 *
1833 * Register a notifier to be called when network device events occur.
1834 * The notifier passed is linked into the kernel structures and must
1835 * not be reused until it has been unregistered. A negative errno code
1836 * is returned on a failure.
1837 *
1838 * When registered all registration and up events are replayed
1839 * to the new notifier to allow device to have a race free
1840 * view of the network device list.
1841 */
1842
1843int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1844{
1845 int err;
1846
1847 rtnl_lock();
1f637703 1848 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1849 rtnl_unlock();
1850 return err;
a30c7b42
JP
1851}
1852EXPORT_SYMBOL(register_netdevice_notifier_net);
1853
1854/**
1855 * unregister_netdevice_notifier_net - unregister a per-netns
1856 * network notifier block
1857 * @net: network namespace
1858 * @nb: notifier
1859 *
1860 * Unregister a notifier previously registered by
1861 * register_netdevice_notifier(). The notifier is unlinked into the
1862 * kernel structures and may then be reused. A negative errno code
1863 * is returned on a failure.
1864 *
1865 * After unregistering unregister and down device events are synthesized
1866 * for all devices on the device list to the removed notifier to remove
1867 * the need for special case cleanup code.
1868 */
1869
1870int unregister_netdevice_notifier_net(struct net *net,
1871 struct notifier_block *nb)
1872{
1873 int err;
1874
1875 rtnl_lock();
1f637703 1876 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1877 rtnl_unlock();
1878 return err;
1879}
1880EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1881
93642e14
JP
1882int register_netdevice_notifier_dev_net(struct net_device *dev,
1883 struct notifier_block *nb,
1884 struct netdev_net_notifier *nn)
1885{
1886 int err;
a30c7b42 1887
93642e14
JP
1888 rtnl_lock();
1889 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890 if (!err) {
1891 nn->nb = nb;
1892 list_add(&nn->list, &dev->net_notifier_list);
1893 }
a30c7b42
JP
1894 rtnl_unlock();
1895 return err;
1896}
93642e14
JP
1897EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1898
1899int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900 struct notifier_block *nb,
1901 struct netdev_net_notifier *nn)
1902{
1903 int err;
1904
1905 rtnl_lock();
1906 list_del(&nn->list);
1907 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1908 rtnl_unlock();
1909 return err;
1910}
1911EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1912
1913static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914 struct net *net)
1915{
1916 struct netdev_net_notifier *nn;
1917
1918 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920 __register_netdevice_notifier_net(net, nn->nb, true);
1921 }
1922}
a30c7b42 1923
351638e7
JP
1924/**
1925 * call_netdevice_notifiers_info - call all network notifier blocks
1926 * @val: value passed unmodified to notifier function
351638e7
JP
1927 * @info: notifier information data
1928 *
1929 * Call all network notifier blocks. Parameters and return value
1930 * are as for raw_notifier_call_chain().
1931 */
1932
1d143d9f 1933static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1934 struct netdev_notifier_info *info)
351638e7 1935{
a30c7b42
JP
1936 struct net *net = dev_net(info->dev);
1937 int ret;
1938
351638e7 1939 ASSERT_RTNL();
a30c7b42
JP
1940
1941 /* Run per-netns notifier block chain first, then run the global one.
1942 * Hopefully, one day, the global one is going to be removed after
1943 * all notifier block registrators get converted to be per-netns.
1944 */
1945 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946 if (ret & NOTIFY_STOP_MASK)
1947 return ret;
351638e7
JP
1948 return raw_notifier_call_chain(&netdev_chain, val, info);
1949}
351638e7 1950
26372605
PM
1951static int call_netdevice_notifiers_extack(unsigned long val,
1952 struct net_device *dev,
1953 struct netlink_ext_ack *extack)
1954{
1955 struct netdev_notifier_info info = {
1956 .dev = dev,
1957 .extack = extack,
1958 };
1959
1960 return call_netdevice_notifiers_info(val, &info);
1961}
1962
1da177e4
LT
1963/**
1964 * call_netdevice_notifiers - call all network notifier blocks
1965 * @val: value passed unmodified to notifier function
c4ea43c5 1966 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1967 *
1968 * Call all network notifier blocks. Parameters and return value
f07d5b94 1969 * are as for raw_notifier_call_chain().
1da177e4
LT
1970 */
1971
ad7379d4 1972int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1973{
26372605 1974 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 1975}
edf947f1 1976EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1977
af7d6cce
SD
1978/**
1979 * call_netdevice_notifiers_mtu - call all network notifier blocks
1980 * @val: value passed unmodified to notifier function
1981 * @dev: net_device pointer passed unmodified to notifier function
1982 * @arg: additional u32 argument passed to the notifier function
1983 *
1984 * Call all network notifier blocks. Parameters and return value
1985 * are as for raw_notifier_call_chain().
1986 */
1987static int call_netdevice_notifiers_mtu(unsigned long val,
1988 struct net_device *dev, u32 arg)
1989{
1990 struct netdev_notifier_info_ext info = {
1991 .info.dev = dev,
1992 .ext.mtu = arg,
1993 };
1994
1995 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1996
1997 return call_netdevice_notifiers_info(val, &info.info);
1998}
1999
1cf51900 2000#ifdef CONFIG_NET_INGRESS
aabf6772 2001static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2002
2003void net_inc_ingress_queue(void)
2004{
aabf6772 2005 static_branch_inc(&ingress_needed_key);
4577139b
DB
2006}
2007EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2008
2009void net_dec_ingress_queue(void)
2010{
aabf6772 2011 static_branch_dec(&ingress_needed_key);
4577139b
DB
2012}
2013EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2014#endif
2015
1f211a1b 2016#ifdef CONFIG_NET_EGRESS
aabf6772 2017static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2018
2019void net_inc_egress_queue(void)
2020{
aabf6772 2021 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2022}
2023EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2024
2025void net_dec_egress_queue(void)
2026{
aabf6772 2027 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2028}
2029EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2030#endif
2031
39e83922 2032static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2033#ifdef CONFIG_JUMP_LABEL
b90e5794 2034static atomic_t netstamp_needed_deferred;
13baa00a 2035static atomic_t netstamp_wanted;
5fa8bbda 2036static void netstamp_clear(struct work_struct *work)
1da177e4 2037{
b90e5794 2038 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2039 int wanted;
b90e5794 2040
13baa00a
ED
2041 wanted = atomic_add_return(deferred, &netstamp_wanted);
2042 if (wanted > 0)
39e83922 2043 static_branch_enable(&netstamp_needed_key);
13baa00a 2044 else
39e83922 2045 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2046}
2047static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2048#endif
5fa8bbda
ED
2049
2050void net_enable_timestamp(void)
2051{
e9666d10 2052#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2053 int wanted;
2054
2055 while (1) {
2056 wanted = atomic_read(&netstamp_wanted);
2057 if (wanted <= 0)
2058 break;
2059 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2060 return;
2061 }
2062 atomic_inc(&netstamp_needed_deferred);
2063 schedule_work(&netstamp_work);
2064#else
39e83922 2065 static_branch_inc(&netstamp_needed_key);
13baa00a 2066#endif
1da177e4 2067}
d1b19dff 2068EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2069
2070void net_disable_timestamp(void)
2071{
e9666d10 2072#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2073 int wanted;
2074
2075 while (1) {
2076 wanted = atomic_read(&netstamp_wanted);
2077 if (wanted <= 1)
2078 break;
2079 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2080 return;
2081 }
2082 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2083 schedule_work(&netstamp_work);
2084#else
39e83922 2085 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2086#endif
1da177e4 2087}
d1b19dff 2088EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2089
3b098e2d 2090static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2091{
2456e855 2092 skb->tstamp = 0;
39e83922 2093 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2094 __net_timestamp(skb);
1da177e4
LT
2095}
2096
39e83922
DB
2097#define net_timestamp_check(COND, SKB) \
2098 if (static_branch_unlikely(&netstamp_needed_key)) { \
2099 if ((COND) && !(SKB)->tstamp) \
2100 __net_timestamp(SKB); \
2101 } \
3b098e2d 2102
f4b05d27 2103bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
2104{
2105 unsigned int len;
2106
2107 if (!(dev->flags & IFF_UP))
2108 return false;
2109
2110 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111 if (skb->len <= len)
2112 return true;
2113
2114 /* if TSO is enabled, we don't care about the length as the packet
2115 * could be forwarded without being segmented before
2116 */
2117 if (skb_is_gso(skb))
2118 return true;
2119
2120 return false;
2121}
1ee481fb 2122EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2123
a0265d28
HX
2124int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2125{
4e3264d2 2126 int ret = ____dev_forward_skb(dev, skb);
a0265d28 2127
4e3264d2
MKL
2128 if (likely(!ret)) {
2129 skb->protocol = eth_type_trans(skb, dev);
2130 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2131 }
a0265d28 2132
4e3264d2 2133 return ret;
a0265d28
HX
2134}
2135EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136
44540960
AB
2137/**
2138 * dev_forward_skb - loopback an skb to another netif
2139 *
2140 * @dev: destination network device
2141 * @skb: buffer to forward
2142 *
2143 * return values:
2144 * NET_RX_SUCCESS (no congestion)
6ec82562 2145 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2146 *
2147 * dev_forward_skb can be used for injecting an skb from the
2148 * start_xmit function of one device into the receive queue
2149 * of another device.
2150 *
2151 * The receiving device may be in another namespace, so
2152 * we have to clear all information in the skb that could
2153 * impact namespace isolation.
2154 */
2155int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156{
a0265d28 2157 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2158}
2159EXPORT_SYMBOL_GPL(dev_forward_skb);
2160
71d9dec2
CG
2161static inline int deliver_skb(struct sk_buff *skb,
2162 struct packet_type *pt_prev,
2163 struct net_device *orig_dev)
2164{
1f8b977a 2165 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2166 return -ENOMEM;
63354797 2167 refcount_inc(&skb->users);
71d9dec2
CG
2168 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2169}
2170
7866a621
SN
2171static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172 struct packet_type **pt,
fbcb2170
JP
2173 struct net_device *orig_dev,
2174 __be16 type,
7866a621
SN
2175 struct list_head *ptype_list)
2176{
2177 struct packet_type *ptype, *pt_prev = *pt;
2178
2179 list_for_each_entry_rcu(ptype, ptype_list, list) {
2180 if (ptype->type != type)
2181 continue;
2182 if (pt_prev)
fbcb2170 2183 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2184 pt_prev = ptype;
2185 }
2186 *pt = pt_prev;
2187}
2188
c0de08d0
EL
2189static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2190{
a3d744e9 2191 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2192 return false;
2193
2194 if (ptype->id_match)
2195 return ptype->id_match(ptype, skb->sk);
2196 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2197 return true;
2198
2199 return false;
2200}
2201
9f9a742d
MR
2202/**
2203 * dev_nit_active - return true if any network interface taps are in use
2204 *
2205 * @dev: network device to check for the presence of taps
2206 */
2207bool dev_nit_active(struct net_device *dev)
2208{
2209 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2210}
2211EXPORT_SYMBOL_GPL(dev_nit_active);
2212
1da177e4
LT
2213/*
2214 * Support routine. Sends outgoing frames to any network
2215 * taps currently in use.
2216 */
2217
74b20582 2218void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2219{
2220 struct packet_type *ptype;
71d9dec2
CG
2221 struct sk_buff *skb2 = NULL;
2222 struct packet_type *pt_prev = NULL;
7866a621 2223 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2224
1da177e4 2225 rcu_read_lock();
7866a621
SN
2226again:
2227 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2228 if (ptype->ignore_outgoing)
2229 continue;
2230
1da177e4
LT
2231 /* Never send packets back to the socket
2232 * they originated from - MvS (miquels@drinkel.ow.org)
2233 */
7866a621
SN
2234 if (skb_loop_sk(ptype, skb))
2235 continue;
71d9dec2 2236
7866a621
SN
2237 if (pt_prev) {
2238 deliver_skb(skb2, pt_prev, skb->dev);
2239 pt_prev = ptype;
2240 continue;
2241 }
1da177e4 2242
7866a621
SN
2243 /* need to clone skb, done only once */
2244 skb2 = skb_clone(skb, GFP_ATOMIC);
2245 if (!skb2)
2246 goto out_unlock;
70978182 2247
7866a621 2248 net_timestamp_set(skb2);
1da177e4 2249
7866a621
SN
2250 /* skb->nh should be correctly
2251 * set by sender, so that the second statement is
2252 * just protection against buggy protocols.
2253 */
2254 skb_reset_mac_header(skb2);
2255
2256 if (skb_network_header(skb2) < skb2->data ||
2257 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259 ntohs(skb2->protocol),
2260 dev->name);
2261 skb_reset_network_header(skb2);
1da177e4 2262 }
7866a621
SN
2263
2264 skb2->transport_header = skb2->network_header;
2265 skb2->pkt_type = PACKET_OUTGOING;
2266 pt_prev = ptype;
2267 }
2268
2269 if (ptype_list == &ptype_all) {
2270 ptype_list = &dev->ptype_all;
2271 goto again;
1da177e4 2272 }
7866a621 2273out_unlock:
581fe0ea
WB
2274 if (pt_prev) {
2275 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2277 else
2278 kfree_skb(skb2);
2279 }
1da177e4
LT
2280 rcu_read_unlock();
2281}
74b20582 2282EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2283
2c53040f
BH
2284/**
2285 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2286 * @dev: Network device
2287 * @txq: number of queues available
2288 *
2289 * If real_num_tx_queues is changed the tc mappings may no longer be
2290 * valid. To resolve this verify the tc mapping remains valid and if
2291 * not NULL the mapping. With no priorities mapping to this
2292 * offset/count pair it will no longer be used. In the worst case TC0
2293 * is invalid nothing can be done so disable priority mappings. If is
2294 * expected that drivers will fix this mapping if they can before
2295 * calling netif_set_real_num_tx_queues.
2296 */
bb134d22 2297static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2298{
2299 int i;
2300 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2301
2302 /* If TC0 is invalidated disable TC mapping */
2303 if (tc->offset + tc->count > txq) {
7b6cd1ce 2304 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2305 dev->num_tc = 0;
2306 return;
2307 }
2308
2309 /* Invalidated prio to tc mappings set to TC0 */
2310 for (i = 1; i < TC_BITMASK + 1; i++) {
2311 int q = netdev_get_prio_tc_map(dev, i);
2312
2313 tc = &dev->tc_to_txq[q];
2314 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2315 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2316 i, q);
4f57c087
JF
2317 netdev_set_prio_tc_map(dev, i, 0);
2318 }
2319 }
2320}
2321
8d059b0f
AD
2322int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2323{
2324 if (dev->num_tc) {
2325 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2326 int i;
2327
ffcfe25b 2328 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2329 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330 if ((txq - tc->offset) < tc->count)
2331 return i;
2332 }
2333
ffcfe25b 2334 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2335 return -1;
2336 }
2337
2338 return 0;
2339}
8a5f2166 2340EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2341
537c00de 2342#ifdef CONFIG_XPS
04157469
AN
2343struct static_key xps_needed __read_mostly;
2344EXPORT_SYMBOL(xps_needed);
2345struct static_key xps_rxqs_needed __read_mostly;
2346EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2347static DEFINE_MUTEX(xps_map_mutex);
2348#define xmap_dereference(P) \
2349 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2350
6234f874
AD
2351static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2352 int tci, u16 index)
537c00de 2353{
10cdc3f3
AD
2354 struct xps_map *map = NULL;
2355 int pos;
537c00de 2356
10cdc3f3 2357 if (dev_maps)
80d19669 2358 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2359 if (!map)
2360 return false;
537c00de 2361
6234f874
AD
2362 for (pos = map->len; pos--;) {
2363 if (map->queues[pos] != index)
2364 continue;
2365
2366 if (map->len > 1) {
2367 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2368 break;
537c00de 2369 }
6234f874 2370
80d19669 2371 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2372 kfree_rcu(map, rcu);
2373 return false;
537c00de
AD
2374 }
2375
6234f874 2376 return true;
10cdc3f3
AD
2377}
2378
6234f874
AD
2379static bool remove_xps_queue_cpu(struct net_device *dev,
2380 struct xps_dev_maps *dev_maps,
2381 int cpu, u16 offset, u16 count)
2382{
184c449f
AD
2383 int num_tc = dev->num_tc ? : 1;
2384 bool active = false;
2385 int tci;
6234f874 2386
184c449f
AD
2387 for (tci = cpu * num_tc; num_tc--; tci++) {
2388 int i, j;
2389
2390 for (i = count, j = offset; i--; j++) {
6358d49a 2391 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2392 break;
2393 }
2394
2395 active |= i < 0;
6234f874
AD
2396 }
2397
184c449f 2398 return active;
6234f874
AD
2399}
2400
867d0ad4
SD
2401static void reset_xps_maps(struct net_device *dev,
2402 struct xps_dev_maps *dev_maps,
2403 bool is_rxqs_map)
2404{
2405 if (is_rxqs_map) {
2406 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2408 } else {
2409 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2410 }
2411 static_key_slow_dec_cpuslocked(&xps_needed);
2412 kfree_rcu(dev_maps, rcu);
2413}
2414
80d19669
AN
2415static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417 u16 offset, u16 count, bool is_rxqs_map)
2418{
2419 bool active = false;
2420 int i, j;
2421
2422 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2423 j < nr_ids;)
2424 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2425 count);
867d0ad4
SD
2426 if (!active)
2427 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2428
f28c020f
SD
2429 if (!is_rxqs_map) {
2430 for (i = offset + (count - 1); count--; i--) {
2431 netdev_queue_numa_node_write(
2432 netdev_get_tx_queue(dev, i),
2433 NUMA_NO_NODE);
80d19669 2434 }
80d19669
AN
2435 }
2436}
2437
6234f874
AD
2438static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2439 u16 count)
10cdc3f3 2440{
80d19669 2441 const unsigned long *possible_mask = NULL;
10cdc3f3 2442 struct xps_dev_maps *dev_maps;
80d19669 2443 unsigned int nr_ids;
10cdc3f3 2444
04157469
AN
2445 if (!static_key_false(&xps_needed))
2446 return;
10cdc3f3 2447
4d99f660 2448 cpus_read_lock();
04157469 2449 mutex_lock(&xps_map_mutex);
10cdc3f3 2450
04157469
AN
2451 if (static_key_false(&xps_rxqs_needed)) {
2452 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2453 if (dev_maps) {
2454 nr_ids = dev->num_rx_queues;
2455 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456 offset, count, true);
2457 }
537c00de
AD
2458 }
2459
80d19669
AN
2460 dev_maps = xmap_dereference(dev->xps_cpus_map);
2461 if (!dev_maps)
2462 goto out_no_maps;
2463
2464 if (num_possible_cpus() > 1)
2465 possible_mask = cpumask_bits(cpu_possible_mask);
2466 nr_ids = nr_cpu_ids;
2467 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2468 false);
024e9679 2469
537c00de
AD
2470out_no_maps:
2471 mutex_unlock(&xps_map_mutex);
4d99f660 2472 cpus_read_unlock();
537c00de
AD
2473}
2474
6234f874
AD
2475static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476{
2477 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2478}
2479
80d19669
AN
2480static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481 u16 index, bool is_rxqs_map)
01c5f864
AD
2482{
2483 struct xps_map *new_map;
2484 int alloc_len = XPS_MIN_MAP_ALLOC;
2485 int i, pos;
2486
2487 for (pos = 0; map && pos < map->len; pos++) {
2488 if (map->queues[pos] != index)
2489 continue;
2490 return map;
2491 }
2492
80d19669 2493 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2494 if (map) {
2495 if (pos < map->alloc_len)
2496 return map;
2497
2498 alloc_len = map->alloc_len * 2;
2499 }
2500
80d19669
AN
2501 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2502 * map
2503 */
2504 if (is_rxqs_map)
2505 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506 else
2507 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508 cpu_to_node(attr_index));
01c5f864
AD
2509 if (!new_map)
2510 return NULL;
2511
2512 for (i = 0; i < pos; i++)
2513 new_map->queues[i] = map->queues[i];
2514 new_map->alloc_len = alloc_len;
2515 new_map->len = pos;
2516
2517 return new_map;
2518}
2519
4d99f660 2520/* Must be called under cpus_read_lock */
80d19669
AN
2521int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522 u16 index, bool is_rxqs_map)
537c00de 2523{
80d19669 2524 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2525 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2526 int i, j, tci, numa_node_id = -2;
184c449f 2527 int maps_sz, num_tc = 1, tc = 0;
537c00de 2528 struct xps_map *map, *new_map;
01c5f864 2529 bool active = false;
80d19669 2530 unsigned int nr_ids;
537c00de 2531
184c449f 2532 if (dev->num_tc) {
ffcfe25b 2533 /* Do not allow XPS on subordinate device directly */
184c449f 2534 num_tc = dev->num_tc;
ffcfe25b
AD
2535 if (num_tc < 0)
2536 return -EINVAL;
2537
2538 /* If queue belongs to subordinate dev use its map */
2539 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2540
184c449f
AD
2541 tc = netdev_txq_to_tc(dev, index);
2542 if (tc < 0)
2543 return -EINVAL;
2544 }
2545
537c00de 2546 mutex_lock(&xps_map_mutex);
80d19669
AN
2547 if (is_rxqs_map) {
2548 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550 nr_ids = dev->num_rx_queues;
2551 } else {
2552 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553 if (num_possible_cpus() > 1) {
2554 online_mask = cpumask_bits(cpu_online_mask);
2555 possible_mask = cpumask_bits(cpu_possible_mask);
2556 }
2557 dev_maps = xmap_dereference(dev->xps_cpus_map);
2558 nr_ids = nr_cpu_ids;
2559 }
537c00de 2560
80d19669
AN
2561 if (maps_sz < L1_CACHE_BYTES)
2562 maps_sz = L1_CACHE_BYTES;
537c00de 2563
01c5f864 2564 /* allocate memory for queue storage */
80d19669
AN
2565 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2566 j < nr_ids;) {
01c5f864
AD
2567 if (!new_dev_maps)
2568 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2569 if (!new_dev_maps) {
2570 mutex_unlock(&xps_map_mutex);
01c5f864 2571 return -ENOMEM;
2bb60cb9 2572 }
01c5f864 2573
80d19669
AN
2574 tci = j * num_tc + tc;
2575 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2576 NULL;
2577
80d19669 2578 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2579 if (!map)
2580 goto error;
2581
80d19669 2582 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2583 }
2584
2585 if (!new_dev_maps)
2586 goto out_no_new_maps;
2587
867d0ad4
SD
2588 if (!dev_maps) {
2589 /* Increment static keys at most once per type */
2590 static_key_slow_inc_cpuslocked(&xps_needed);
2591 if (is_rxqs_map)
2592 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2593 }
04157469 2594
80d19669
AN
2595 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2596 j < nr_ids;) {
184c449f 2597 /* copy maps belonging to foreign traffic classes */
80d19669 2598 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2599 /* fill in the new device map from the old device map */
80d19669
AN
2600 map = xmap_dereference(dev_maps->attr_map[tci]);
2601 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2602 }
2603
2604 /* We need to explicitly update tci as prevous loop
2605 * could break out early if dev_maps is NULL.
2606 */
80d19669 2607 tci = j * num_tc + tc;
184c449f 2608
80d19669
AN
2609 if (netif_attr_test_mask(j, mask, nr_ids) &&
2610 netif_attr_test_online(j, online_mask, nr_ids)) {
2611 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2612 int pos = 0;
2613
80d19669 2614 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2615 while ((pos < map->len) && (map->queues[pos] != index))
2616 pos++;
2617
2618 if (pos == map->len)
2619 map->queues[map->len++] = index;
537c00de 2620#ifdef CONFIG_NUMA
80d19669
AN
2621 if (!is_rxqs_map) {
2622 if (numa_node_id == -2)
2623 numa_node_id = cpu_to_node(j);
2624 else if (numa_node_id != cpu_to_node(j))
2625 numa_node_id = -1;
2626 }
537c00de 2627#endif
01c5f864
AD
2628 } else if (dev_maps) {
2629 /* fill in the new device map from the old device map */
80d19669
AN
2630 map = xmap_dereference(dev_maps->attr_map[tci]);
2631 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2632 }
01c5f864 2633
184c449f
AD
2634 /* copy maps belonging to foreign traffic classes */
2635 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636 /* fill in the new device map from the old device map */
80d19669
AN
2637 map = xmap_dereference(dev_maps->attr_map[tci]);
2638 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2639 }
537c00de
AD
2640 }
2641
80d19669
AN
2642 if (is_rxqs_map)
2643 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2644 else
2645 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2646
537c00de 2647 /* Cleanup old maps */
184c449f
AD
2648 if (!dev_maps)
2649 goto out_no_old_maps;
2650
80d19669
AN
2651 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2652 j < nr_ids;) {
2653 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2656 if (map && map != new_map)
2657 kfree_rcu(map, rcu);
2658 }
537c00de
AD
2659 }
2660
184c449f
AD
2661 kfree_rcu(dev_maps, rcu);
2662
2663out_no_old_maps:
01c5f864
AD
2664 dev_maps = new_dev_maps;
2665 active = true;
537c00de 2666
01c5f864 2667out_no_new_maps:
80d19669
AN
2668 if (!is_rxqs_map) {
2669 /* update Tx queue numa node */
2670 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671 (numa_node_id >= 0) ?
2672 numa_node_id : NUMA_NO_NODE);
2673 }
537c00de 2674
01c5f864
AD
2675 if (!dev_maps)
2676 goto out_no_maps;
2677
80d19669
AN
2678 /* removes tx-queue from unused CPUs/rx-queues */
2679 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2680 j < nr_ids;) {
2681 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2682 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2683 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2685 active |= remove_xps_queue(dev_maps, tci, index);
2686 for (i = num_tc - tc, tci++; --i; tci++)
2687 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2688 }
2689
2690 /* free map if not active */
867d0ad4
SD
2691 if (!active)
2692 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2693
2694out_no_maps:
537c00de
AD
2695 mutex_unlock(&xps_map_mutex);
2696
2697 return 0;
2698error:
01c5f864 2699 /* remove any maps that we added */
80d19669
AN
2700 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2701 j < nr_ids;) {
2702 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2704 map = dev_maps ?
80d19669 2705 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2706 NULL;
2707 if (new_map && new_map != map)
2708 kfree(new_map);
2709 }
01c5f864
AD
2710 }
2711
537c00de
AD
2712 mutex_unlock(&xps_map_mutex);
2713
537c00de
AD
2714 kfree(new_dev_maps);
2715 return -ENOMEM;
2716}
4d99f660 2717EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2718
2719int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2720 u16 index)
2721{
4d99f660
AV
2722 int ret;
2723
2724 cpus_read_lock();
2725 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2726 cpus_read_unlock();
2727
2728 return ret;
80d19669 2729}
537c00de
AD
2730EXPORT_SYMBOL(netif_set_xps_queue);
2731
2732#endif
ffcfe25b
AD
2733static void netdev_unbind_all_sb_channels(struct net_device *dev)
2734{
2735 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736
2737 /* Unbind any subordinate channels */
2738 while (txq-- != &dev->_tx[0]) {
2739 if (txq->sb_dev)
2740 netdev_unbind_sb_channel(dev, txq->sb_dev);
2741 }
2742}
2743
9cf1f6a8
AD
2744void netdev_reset_tc(struct net_device *dev)
2745{
6234f874
AD
2746#ifdef CONFIG_XPS
2747 netif_reset_xps_queues_gt(dev, 0);
2748#endif
ffcfe25b
AD
2749 netdev_unbind_all_sb_channels(dev);
2750
2751 /* Reset TC configuration of device */
9cf1f6a8
AD
2752 dev->num_tc = 0;
2753 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2755}
2756EXPORT_SYMBOL(netdev_reset_tc);
2757
2758int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2759{
2760 if (tc >= dev->num_tc)
2761 return -EINVAL;
2762
6234f874
AD
2763#ifdef CONFIG_XPS
2764 netif_reset_xps_queues(dev, offset, count);
2765#endif
9cf1f6a8
AD
2766 dev->tc_to_txq[tc].count = count;
2767 dev->tc_to_txq[tc].offset = offset;
2768 return 0;
2769}
2770EXPORT_SYMBOL(netdev_set_tc_queue);
2771
2772int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2773{
2774 if (num_tc > TC_MAX_QUEUE)
2775 return -EINVAL;
2776
6234f874
AD
2777#ifdef CONFIG_XPS
2778 netif_reset_xps_queues_gt(dev, 0);
2779#endif
ffcfe25b
AD
2780 netdev_unbind_all_sb_channels(dev);
2781
9cf1f6a8
AD
2782 dev->num_tc = num_tc;
2783 return 0;
2784}
2785EXPORT_SYMBOL(netdev_set_num_tc);
2786
ffcfe25b
AD
2787void netdev_unbind_sb_channel(struct net_device *dev,
2788 struct net_device *sb_dev)
2789{
2790 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791
2792#ifdef CONFIG_XPS
2793 netif_reset_xps_queues_gt(sb_dev, 0);
2794#endif
2795 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2797
2798 while (txq-- != &dev->_tx[0]) {
2799 if (txq->sb_dev == sb_dev)
2800 txq->sb_dev = NULL;
2801 }
2802}
2803EXPORT_SYMBOL(netdev_unbind_sb_channel);
2804
2805int netdev_bind_sb_channel_queue(struct net_device *dev,
2806 struct net_device *sb_dev,
2807 u8 tc, u16 count, u16 offset)
2808{
2809 /* Make certain the sb_dev and dev are already configured */
2810 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2811 return -EINVAL;
2812
2813 /* We cannot hand out queues we don't have */
2814 if ((offset + count) > dev->real_num_tx_queues)
2815 return -EINVAL;
2816
2817 /* Record the mapping */
2818 sb_dev->tc_to_txq[tc].count = count;
2819 sb_dev->tc_to_txq[tc].offset = offset;
2820
2821 /* Provide a way for Tx queue to find the tc_to_txq map or
2822 * XPS map for itself.
2823 */
2824 while (count--)
2825 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2826
2827 return 0;
2828}
2829EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2830
2831int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2832{
2833 /* Do not use a multiqueue device to represent a subordinate channel */
2834 if (netif_is_multiqueue(dev))
2835 return -ENODEV;
2836
2837 /* We allow channels 1 - 32767 to be used for subordinate channels.
2838 * Channel 0 is meant to be "native" mode and used only to represent
2839 * the main root device. We allow writing 0 to reset the device back
2840 * to normal mode after being used as a subordinate channel.
2841 */
2842 if (channel > S16_MAX)
2843 return -EINVAL;
2844
2845 dev->num_tc = -channel;
2846
2847 return 0;
2848}
2849EXPORT_SYMBOL(netdev_set_sb_channel);
2850
f0796d5c
JF
2851/*
2852 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2853 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2854 */
e6484930 2855int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2856{
ac5b7019 2857 bool disabling;
1d24eb48
TH
2858 int rc;
2859
ac5b7019
JK
2860 disabling = txq < dev->real_num_tx_queues;
2861
e6484930
TH
2862 if (txq < 1 || txq > dev->num_tx_queues)
2863 return -EINVAL;
f0796d5c 2864
5c56580b
BH
2865 if (dev->reg_state == NETREG_REGISTERED ||
2866 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2867 ASSERT_RTNL();
2868
1d24eb48
TH
2869 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2870 txq);
bf264145
TH
2871 if (rc)
2872 return rc;
2873
4f57c087
JF
2874 if (dev->num_tc)
2875 netif_setup_tc(dev, txq);
2876
ac5b7019
JK
2877 dev->real_num_tx_queues = txq;
2878
2879 if (disabling) {
2880 synchronize_net();
e6484930 2881 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2882#ifdef CONFIG_XPS
2883 netif_reset_xps_queues_gt(dev, txq);
2884#endif
2885 }
ac5b7019
JK
2886 } else {
2887 dev->real_num_tx_queues = txq;
f0796d5c 2888 }
e6484930 2889
e6484930 2890 return 0;
f0796d5c
JF
2891}
2892EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2893
a953be53 2894#ifdef CONFIG_SYSFS
62fe0b40
BH
2895/**
2896 * netif_set_real_num_rx_queues - set actual number of RX queues used
2897 * @dev: Network device
2898 * @rxq: Actual number of RX queues
2899 *
2900 * This must be called either with the rtnl_lock held or before
2901 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2902 * negative error code. If called before registration, it always
2903 * succeeds.
62fe0b40
BH
2904 */
2905int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2906{
2907 int rc;
2908
bd25fa7b
TH
2909 if (rxq < 1 || rxq > dev->num_rx_queues)
2910 return -EINVAL;
2911
62fe0b40
BH
2912 if (dev->reg_state == NETREG_REGISTERED) {
2913 ASSERT_RTNL();
2914
62fe0b40
BH
2915 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2916 rxq);
2917 if (rc)
2918 return rc;
62fe0b40
BH
2919 }
2920
2921 dev->real_num_rx_queues = rxq;
2922 return 0;
2923}
2924EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2925#endif
2926
2c53040f
BH
2927/**
2928 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2929 *
2930 * This routine should set an upper limit on the number of RSS queues
2931 * used by default by multiqueue devices.
2932 */
a55b138b 2933int netif_get_num_default_rss_queues(void)
16917b87 2934{
40e4e713
HS
2935 return is_kdump_kernel() ?
2936 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2937}
2938EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2939
3bcb846c 2940static void __netif_reschedule(struct Qdisc *q)
56079431 2941{
def82a1d
JP
2942 struct softnet_data *sd;
2943 unsigned long flags;
56079431 2944
def82a1d 2945 local_irq_save(flags);
903ceff7 2946 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2947 q->next_sched = NULL;
2948 *sd->output_queue_tailp = q;
2949 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2950 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951 local_irq_restore(flags);
2952}
2953
2954void __netif_schedule(struct Qdisc *q)
2955{
2956 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957 __netif_reschedule(q);
56079431
DV
2958}
2959EXPORT_SYMBOL(__netif_schedule);
2960
e6247027
ED
2961struct dev_kfree_skb_cb {
2962 enum skb_free_reason reason;
2963};
2964
2965static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2966{
e6247027
ED
2967 return (struct dev_kfree_skb_cb *)skb->cb;
2968}
2969
46e5da40
JF
2970void netif_schedule_queue(struct netdev_queue *txq)
2971{
2972 rcu_read_lock();
5be5515a 2973 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
2974 struct Qdisc *q = rcu_dereference(txq->qdisc);
2975
2976 __netif_schedule(q);
2977 }
2978 rcu_read_unlock();
2979}
2980EXPORT_SYMBOL(netif_schedule_queue);
2981
46e5da40
JF
2982void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2983{
2984 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2985 struct Qdisc *q;
2986
2987 rcu_read_lock();
2988 q = rcu_dereference(dev_queue->qdisc);
2989 __netif_schedule(q);
2990 rcu_read_unlock();
2991 }
2992}
2993EXPORT_SYMBOL(netif_tx_wake_queue);
2994
e6247027 2995void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2996{
e6247027 2997 unsigned long flags;
56079431 2998
9899886d
MJ
2999 if (unlikely(!skb))
3000 return;
3001
63354797 3002 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3003 smp_rmb();
63354797
RE
3004 refcount_set(&skb->users, 0);
3005 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3006 return;
bea3348e 3007 }
e6247027
ED
3008 get_kfree_skb_cb(skb)->reason = reason;
3009 local_irq_save(flags);
3010 skb->next = __this_cpu_read(softnet_data.completion_queue);
3011 __this_cpu_write(softnet_data.completion_queue, skb);
3012 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013 local_irq_restore(flags);
56079431 3014}
e6247027 3015EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3016
e6247027 3017void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3018{
3019 if (in_irq() || irqs_disabled())
e6247027 3020 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3021 else
3022 dev_kfree_skb(skb);
3023}
e6247027 3024EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3025
3026
bea3348e
SH
3027/**
3028 * netif_device_detach - mark device as removed
3029 * @dev: network device
3030 *
3031 * Mark device as removed from system and therefore no longer available.
3032 */
56079431
DV
3033void netif_device_detach(struct net_device *dev)
3034{
3035 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036 netif_running(dev)) {
d543103a 3037 netif_tx_stop_all_queues(dev);
56079431
DV
3038 }
3039}
3040EXPORT_SYMBOL(netif_device_detach);
3041
bea3348e
SH
3042/**
3043 * netif_device_attach - mark device as attached
3044 * @dev: network device
3045 *
3046 * Mark device as attached from system and restart if needed.
3047 */
56079431
DV
3048void netif_device_attach(struct net_device *dev)
3049{
3050 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051 netif_running(dev)) {
d543103a 3052 netif_tx_wake_all_queues(dev);
4ec93edb 3053 __netdev_watchdog_up(dev);
56079431
DV
3054 }
3055}
3056EXPORT_SYMBOL(netif_device_attach);
3057
5605c762
JP
3058/*
3059 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060 * to be used as a distribution range.
3061 */
eadec877
AD
3062static u16 skb_tx_hash(const struct net_device *dev,
3063 const struct net_device *sb_dev,
3064 struct sk_buff *skb)
5605c762
JP
3065{
3066 u32 hash;
3067 u16 qoffset = 0;
1b837d48 3068 u16 qcount = dev->real_num_tx_queues;
5605c762 3069
eadec877
AD
3070 if (dev->num_tc) {
3071 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3072
3073 qoffset = sb_dev->tc_to_txq[tc].offset;
3074 qcount = sb_dev->tc_to_txq[tc].count;
3075 }
3076
5605c762
JP
3077 if (skb_rx_queue_recorded(skb)) {
3078 hash = skb_get_rx_queue(skb);
6e11d157
AN
3079 if (hash >= qoffset)
3080 hash -= qoffset;
1b837d48
AD
3081 while (unlikely(hash >= qcount))
3082 hash -= qcount;
eadec877 3083 return hash + qoffset;
5605c762
JP
3084 }
3085
3086 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3087}
5605c762 3088
36c92474
BH
3089static void skb_warn_bad_offload(const struct sk_buff *skb)
3090{
84d15ae5 3091 static const netdev_features_t null_features;
36c92474 3092 struct net_device *dev = skb->dev;
88ad4175 3093 const char *name = "";
36c92474 3094
c846ad9b
BG
3095 if (!net_ratelimit())
3096 return;
3097
88ad4175
BM
3098 if (dev) {
3099 if (dev->dev.parent)
3100 name = dev_driver_string(dev->dev.parent);
3101 else
3102 name = netdev_name(dev);
3103 }
6413139d
WB
3104 skb_dump(KERN_WARNING, skb, false);
3105 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3106 name, dev ? &dev->features : &null_features,
6413139d 3107 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3108}
3109
1da177e4
LT
3110/*
3111 * Invalidate hardware checksum when packet is to be mangled, and
3112 * complete checksum manually on outgoing path.
3113 */
84fa7933 3114int skb_checksum_help(struct sk_buff *skb)
1da177e4 3115{
d3bc23e7 3116 __wsum csum;
663ead3b 3117 int ret = 0, offset;
1da177e4 3118
84fa7933 3119 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3120 goto out_set_summed;
3121
3122 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
3123 skb_warn_bad_offload(skb);
3124 return -EINVAL;
1da177e4
LT
3125 }
3126
cef401de
ED
3127 /* Before computing a checksum, we should make sure no frag could
3128 * be modified by an external entity : checksum could be wrong.
3129 */
3130 if (skb_has_shared_frag(skb)) {
3131 ret = __skb_linearize(skb);
3132 if (ret)
3133 goto out;
3134 }
3135
55508d60 3136 offset = skb_checksum_start_offset(skb);
a030847e
HX
3137 BUG_ON(offset >= skb_headlen(skb));
3138 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3139
3140 offset += skb->csum_offset;
3141 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3142
8211fbfa
HK
3143 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3144 if (ret)
3145 goto out;
1da177e4 3146
4f2e4ad5 3147 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3148out_set_summed:
1da177e4 3149 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3150out:
1da177e4
LT
3151 return ret;
3152}
d1b19dff 3153EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3154
b72b5bf6
DC
3155int skb_crc32c_csum_help(struct sk_buff *skb)
3156{
3157 __le32 crc32c_csum;
3158 int ret = 0, offset, start;
3159
3160 if (skb->ip_summed != CHECKSUM_PARTIAL)
3161 goto out;
3162
3163 if (unlikely(skb_is_gso(skb)))
3164 goto out;
3165
3166 /* Before computing a checksum, we should make sure no frag could
3167 * be modified by an external entity : checksum could be wrong.
3168 */
3169 if (unlikely(skb_has_shared_frag(skb))) {
3170 ret = __skb_linearize(skb);
3171 if (ret)
3172 goto out;
3173 }
3174 start = skb_checksum_start_offset(skb);
3175 offset = start + offsetof(struct sctphdr, checksum);
3176 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3177 ret = -EINVAL;
3178 goto out;
3179 }
8211fbfa
HK
3180
3181 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3182 if (ret)
3183 goto out;
3184
b72b5bf6
DC
3185 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3186 skb->len - start, ~(__u32)0,
3187 crc32c_csum_stub));
3188 *(__le32 *)(skb->data + offset) = crc32c_csum;
3189 skb->ip_summed = CHECKSUM_NONE;
dba00306 3190 skb->csum_not_inet = 0;
b72b5bf6
DC
3191out:
3192 return ret;
3193}
3194
53d6471c 3195__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3196{
252e3346 3197 __be16 type = skb->protocol;
f6a78bfc 3198
19acc327
PS
3199 /* Tunnel gso handlers can set protocol to ethernet. */
3200 if (type == htons(ETH_P_TEB)) {
3201 struct ethhdr *eth;
3202
3203 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3204 return 0;
3205
1dfe82eb 3206 eth = (struct ethhdr *)skb->data;
19acc327
PS
3207 type = eth->h_proto;
3208 }
3209
d4bcef3f 3210 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3211}
3212
3213/**
3214 * skb_mac_gso_segment - mac layer segmentation handler.
3215 * @skb: buffer to segment
3216 * @features: features for the output path (see dev->features)
3217 */
3218struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3219 netdev_features_t features)
3220{
3221 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3222 struct packet_offload *ptype;
53d6471c
VY
3223 int vlan_depth = skb->mac_len;
3224 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3225
3226 if (unlikely(!type))
3227 return ERR_PTR(-EINVAL);
3228
53d6471c 3229 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3230
3231 rcu_read_lock();
22061d80 3232 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3233 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3234 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3235 break;
3236 }
3237 }
3238 rcu_read_unlock();
3239
98e399f8 3240 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3241
f6a78bfc
HX
3242 return segs;
3243}
05e8ef4a
PS
3244EXPORT_SYMBOL(skb_mac_gso_segment);
3245
3246
3247/* openvswitch calls this on rx path, so we need a different check.
3248 */
3249static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3250{
3251 if (tx_path)
0c19f846
WB
3252 return skb->ip_summed != CHECKSUM_PARTIAL &&
3253 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3254
3255 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3256}
3257
3258/**
3259 * __skb_gso_segment - Perform segmentation on skb.
3260 * @skb: buffer to segment
3261 * @features: features for the output path (see dev->features)
3262 * @tx_path: whether it is called in TX path
3263 *
3264 * This function segments the given skb and returns a list of segments.
3265 *
3266 * It may return NULL if the skb requires no segmentation. This is
3267 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
3268 *
3269 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3270 */
3271struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3272 netdev_features_t features, bool tx_path)
3273{
b2504a5d
ED
3274 struct sk_buff *segs;
3275
05e8ef4a
PS
3276 if (unlikely(skb_needs_check(skb, tx_path))) {
3277 int err;
3278
b2504a5d 3279 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3280 err = skb_cow_head(skb, 0);
3281 if (err < 0)
05e8ef4a
PS
3282 return ERR_PTR(err);
3283 }
3284
802ab55a
AD
3285 /* Only report GSO partial support if it will enable us to
3286 * support segmentation on this frame without needing additional
3287 * work.
3288 */
3289 if (features & NETIF_F_GSO_PARTIAL) {
3290 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3291 struct net_device *dev = skb->dev;
3292
3293 partial_features |= dev->features & dev->gso_partial_features;
3294 if (!skb_gso_ok(skb, features | partial_features))
3295 features &= ~NETIF_F_GSO_PARTIAL;
3296 }
3297
9207f9d4
KK
3298 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3299 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3300
68c33163 3301 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3302 SKB_GSO_CB(skb)->encap_level = 0;
3303
05e8ef4a
PS
3304 skb_reset_mac_header(skb);
3305 skb_reset_mac_len(skb);
3306
b2504a5d
ED
3307 segs = skb_mac_gso_segment(skb, features);
3308
3a1296a3 3309 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3310 skb_warn_bad_offload(skb);
3311
3312 return segs;
05e8ef4a 3313}
12b0004d 3314EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3315
fb286bb2
HX
3316/* Take action when hardware reception checksum errors are detected. */
3317#ifdef CONFIG_BUG
7fe50ac8 3318void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3319{
3320 if (net_ratelimit()) {
7b6cd1ce 3321 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3322 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3323 dump_stack();
3324 }
3325}
3326EXPORT_SYMBOL(netdev_rx_csum_fault);
3327#endif
3328
ab74cfeb 3329/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3330static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3331{
3d3a8533 3332#ifdef CONFIG_HIGHMEM
1da177e4 3333 int i;
f4563a75 3334
5acbbd42 3335 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3336 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3337 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3338
ea2ab693 3339 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3340 return 1;
ea2ab693 3341 }
5acbbd42 3342 }
3d3a8533 3343#endif
1da177e4
LT
3344 return 0;
3345}
1da177e4 3346
3b392ddb
SH
3347/* If MPLS offload request, verify we are testing hardware MPLS features
3348 * instead of standard features for the netdev.
3349 */
d0edc7bf 3350#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3351static netdev_features_t net_mpls_features(struct sk_buff *skb,
3352 netdev_features_t features,
3353 __be16 type)
3354{
25cd9ba0 3355 if (eth_p_mpls(type))
3b392ddb
SH
3356 features &= skb->dev->mpls_features;
3357
3358 return features;
3359}
3360#else
3361static netdev_features_t net_mpls_features(struct sk_buff *skb,
3362 netdev_features_t features,
3363 __be16 type)
3364{
3365 return features;
3366}
3367#endif
3368
c8f44aff 3369static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3370 netdev_features_t features)
f01a5236 3371{
53d6471c 3372 int tmp;
3b392ddb
SH
3373 __be16 type;
3374
3375 type = skb_network_protocol(skb, &tmp);
3376 features = net_mpls_features(skb, features, type);
53d6471c 3377
c0d680e5 3378 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3379 !can_checksum_protocol(features, type)) {
996e8021 3380 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3381 }
7be2c82c
ED
3382 if (illegal_highdma(skb->dev, skb))
3383 features &= ~NETIF_F_SG;
f01a5236
JG
3384
3385 return features;
3386}
3387
e38f3025
TM
3388netdev_features_t passthru_features_check(struct sk_buff *skb,
3389 struct net_device *dev,
3390 netdev_features_t features)
3391{
3392 return features;
3393}
3394EXPORT_SYMBOL(passthru_features_check);
3395
7ce23672 3396static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3397 struct net_device *dev,
3398 netdev_features_t features)
3399{
3400 return vlan_features_check(skb, features);
3401}
3402
cbc53e08
AD
3403static netdev_features_t gso_features_check(const struct sk_buff *skb,
3404 struct net_device *dev,
3405 netdev_features_t features)
3406{
3407 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3408
3409 if (gso_segs > dev->gso_max_segs)
3410 return features & ~NETIF_F_GSO_MASK;
3411
802ab55a
AD
3412 /* Support for GSO partial features requires software
3413 * intervention before we can actually process the packets
3414 * so we need to strip support for any partial features now
3415 * and we can pull them back in after we have partially
3416 * segmented the frame.
3417 */
3418 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3419 features &= ~dev->gso_partial_features;
3420
3421 /* Make sure to clear the IPv4 ID mangling feature if the
3422 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3423 */
3424 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3425 struct iphdr *iph = skb->encapsulation ?
3426 inner_ip_hdr(skb) : ip_hdr(skb);
3427
3428 if (!(iph->frag_off & htons(IP_DF)))
3429 features &= ~NETIF_F_TSO_MANGLEID;
3430 }
3431
3432 return features;
3433}
3434
c1e756bf 3435netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3436{
5f35227e 3437 struct net_device *dev = skb->dev;
fcbeb976 3438 netdev_features_t features = dev->features;
58e998c6 3439
cbc53e08
AD
3440 if (skb_is_gso(skb))
3441 features = gso_features_check(skb, dev, features);
30b678d8 3442
5f35227e
JG
3443 /* If encapsulation offload request, verify we are testing
3444 * hardware encapsulation features instead of standard
3445 * features for the netdev
3446 */
3447 if (skb->encapsulation)
3448 features &= dev->hw_enc_features;
3449
f5a7fb88
TM
3450 if (skb_vlan_tagged(skb))
3451 features = netdev_intersect_features(features,
3452 dev->vlan_features |
3453 NETIF_F_HW_VLAN_CTAG_TX |
3454 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3455
5f35227e
JG
3456 if (dev->netdev_ops->ndo_features_check)
3457 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3458 features);
8cb65d00
TM
3459 else
3460 features &= dflt_features_check(skb, dev, features);
5f35227e 3461
c1e756bf 3462 return harmonize_features(skb, features);
58e998c6 3463}
c1e756bf 3464EXPORT_SYMBOL(netif_skb_features);
58e998c6 3465
2ea25513 3466static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3467 struct netdev_queue *txq, bool more)
f6a78bfc 3468{
2ea25513
DM
3469 unsigned int len;
3470 int rc;
00829823 3471
9f9a742d 3472 if (dev_nit_active(dev))
2ea25513 3473 dev_queue_xmit_nit(skb, dev);
fc741216 3474
2ea25513
DM
3475 len = skb->len;
3476 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3477 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3478 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3479
2ea25513
DM
3480 return rc;
3481}
7b9c6090 3482
8dcda22a
DM
3483struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3484 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3485{
3486 struct sk_buff *skb = first;
3487 int rc = NETDEV_TX_OK;
7b9c6090 3488
7f2e870f
DM
3489 while (skb) {
3490 struct sk_buff *next = skb->next;
fc70fb64 3491
a8305bff 3492 skb_mark_not_on_list(skb);
95f6b3dd 3493 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3494 if (unlikely(!dev_xmit_complete(rc))) {
3495 skb->next = next;
3496 goto out;
3497 }
6afff0ca 3498
7f2e870f 3499 skb = next;
fe60faa5 3500 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3501 rc = NETDEV_TX_BUSY;
3502 break;
9ccb8975 3503 }
7f2e870f 3504 }
9ccb8975 3505
7f2e870f
DM
3506out:
3507 *ret = rc;
3508 return skb;
3509}
b40863c6 3510
1ff0dc94
ED
3511static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3512 netdev_features_t features)
f6a78bfc 3513{
df8a39de 3514 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3515 !vlan_hw_offload_capable(features, skb->vlan_proto))
3516 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3517 return skb;
3518}
f6a78bfc 3519
43c26a1a
DC
3520int skb_csum_hwoffload_help(struct sk_buff *skb,
3521 const netdev_features_t features)
3522{
3523 if (unlikely(skb->csum_not_inet))
3524 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3525 skb_crc32c_csum_help(skb);
3526
3527 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3528}
3529EXPORT_SYMBOL(skb_csum_hwoffload_help);
3530
f53c7239 3531static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3532{
3533 netdev_features_t features;
f6a78bfc 3534
eae3f88e
DM
3535 features = netif_skb_features(skb);
3536 skb = validate_xmit_vlan(skb, features);
3537 if (unlikely(!skb))
3538 goto out_null;
7b9c6090 3539
ebf4e808
IL
3540 skb = sk_validate_xmit_skb(skb, dev);
3541 if (unlikely(!skb))
3542 goto out_null;
3543
8b86a61d 3544 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3545 struct sk_buff *segs;
3546
3547 segs = skb_gso_segment(skb, features);
cecda693 3548 if (IS_ERR(segs)) {
af6dabc9 3549 goto out_kfree_skb;
cecda693
JW
3550 } else if (segs) {
3551 consume_skb(skb);
3552 skb = segs;
f6a78bfc 3553 }
eae3f88e
DM
3554 } else {
3555 if (skb_needs_linearize(skb, features) &&
3556 __skb_linearize(skb))
3557 goto out_kfree_skb;
4ec93edb 3558
eae3f88e
DM
3559 /* If packet is not checksummed and device does not
3560 * support checksumming for this protocol, complete
3561 * checksumming here.
3562 */
3563 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3564 if (skb->encapsulation)
3565 skb_set_inner_transport_header(skb,
3566 skb_checksum_start_offset(skb));
3567 else
3568 skb_set_transport_header(skb,
3569 skb_checksum_start_offset(skb));
43c26a1a 3570 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3571 goto out_kfree_skb;
7b9c6090 3572 }
0c772159 3573 }
7b9c6090 3574
f53c7239 3575 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3576
eae3f88e 3577 return skb;
fc70fb64 3578
f6a78bfc
HX
3579out_kfree_skb:
3580 kfree_skb(skb);
eae3f88e 3581out_null:
d21fd63e 3582 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3583 return NULL;
3584}
6afff0ca 3585
f53c7239 3586struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3587{
3588 struct sk_buff *next, *head = NULL, *tail;
3589
bec3cfdc 3590 for (; skb != NULL; skb = next) {
55a93b3e 3591 next = skb->next;
a8305bff 3592 skb_mark_not_on_list(skb);
bec3cfdc
ED
3593
3594 /* in case skb wont be segmented, point to itself */
3595 skb->prev = skb;
3596
f53c7239 3597 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3598 if (!skb)
3599 continue;
55a93b3e 3600
bec3cfdc
ED
3601 if (!head)
3602 head = skb;
3603 else
3604 tail->next = skb;
3605 /* If skb was segmented, skb->prev points to
3606 * the last segment. If not, it still contains skb.
3607 */
3608 tail = skb->prev;
55a93b3e
ED
3609 }
3610 return head;
f6a78bfc 3611}
104ba78c 3612EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3613
1def9238
ED
3614static void qdisc_pkt_len_init(struct sk_buff *skb)
3615{
3616 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3617
3618 qdisc_skb_cb(skb)->pkt_len = skb->len;
3619
3620 /* To get more precise estimation of bytes sent on wire,
3621 * we add to pkt_len the headers size of all segments
3622 */
a0dce875 3623 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3624 unsigned int hdr_len;
15e5a030 3625 u16 gso_segs = shinfo->gso_segs;
1def9238 3626
757b8b1d
ED
3627 /* mac layer + network layer */
3628 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3629
3630 /* + transport layer */
7c68d1a6
ED
3631 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3632 const struct tcphdr *th;
3633 struct tcphdr _tcphdr;
3634
3635 th = skb_header_pointer(skb, skb_transport_offset(skb),
3636 sizeof(_tcphdr), &_tcphdr);
3637 if (likely(th))
3638 hdr_len += __tcp_hdrlen(th);
3639 } else {
3640 struct udphdr _udphdr;
3641
3642 if (skb_header_pointer(skb, skb_transport_offset(skb),
3643 sizeof(_udphdr), &_udphdr))
3644 hdr_len += sizeof(struct udphdr);
3645 }
15e5a030
JW
3646
3647 if (shinfo->gso_type & SKB_GSO_DODGY)
3648 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3649 shinfo->gso_size);
3650
3651 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3652 }
3653}
3654
bbd8a0d3
KK
3655static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3656 struct net_device *dev,
3657 struct netdev_queue *txq)
3658{
3659 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3660 struct sk_buff *to_free = NULL;
a2da570d 3661 bool contended;
bbd8a0d3
KK
3662 int rc;
3663
a2da570d 3664 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3665
3666 if (q->flags & TCQ_F_NOLOCK) {
379349e9
PA
3667 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3668 qdisc_run(q);
6b3ba914
JF
3669
3670 if (unlikely(to_free))
3671 kfree_skb_list(to_free);
3672 return rc;
3673 }
3674
79640a4c
ED
3675 /*
3676 * Heuristic to force contended enqueues to serialize on a
3677 * separate lock before trying to get qdisc main lock.
f9eb8aea 3678 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3679 * often and dequeue packets faster.
79640a4c 3680 */
a2da570d 3681 contended = qdisc_is_running(q);
79640a4c
ED
3682 if (unlikely(contended))
3683 spin_lock(&q->busylock);
3684
bbd8a0d3
KK
3685 spin_lock(root_lock);
3686 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3687 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3688 rc = NET_XMIT_DROP;
3689 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3690 qdisc_run_begin(q)) {
bbd8a0d3
KK
3691 /*
3692 * This is a work-conserving queue; there are no old skbs
3693 * waiting to be sent out; and the qdisc is not running -
3694 * xmit the skb directly.
3695 */
bfe0d029 3696
bfe0d029
ED
3697 qdisc_bstats_update(q, skb);
3698
55a93b3e 3699 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3700 if (unlikely(contended)) {
3701 spin_unlock(&q->busylock);
3702 contended = false;
3703 }
bbd8a0d3 3704 __qdisc_run(q);
6c148184 3705 }
bbd8a0d3 3706
6c148184 3707 qdisc_run_end(q);
bbd8a0d3
KK
3708 rc = NET_XMIT_SUCCESS;
3709 } else {
520ac30f 3710 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3711 if (qdisc_run_begin(q)) {
3712 if (unlikely(contended)) {
3713 spin_unlock(&q->busylock);
3714 contended = false;
3715 }
3716 __qdisc_run(q);
6c148184 3717 qdisc_run_end(q);
79640a4c 3718 }
bbd8a0d3
KK
3719 }
3720 spin_unlock(root_lock);
520ac30f
ED
3721 if (unlikely(to_free))
3722 kfree_skb_list(to_free);
79640a4c
ED
3723 if (unlikely(contended))
3724 spin_unlock(&q->busylock);
bbd8a0d3
KK
3725 return rc;
3726}
3727
86f8515f 3728#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3729static void skb_update_prio(struct sk_buff *skb)
3730{
4dcb31d4
ED
3731 const struct netprio_map *map;
3732 const struct sock *sk;
3733 unsigned int prioidx;
5bc1421e 3734
4dcb31d4
ED
3735 if (skb->priority)
3736 return;
3737 map = rcu_dereference_bh(skb->dev->priomap);
3738 if (!map)
3739 return;
3740 sk = skb_to_full_sk(skb);
3741 if (!sk)
3742 return;
91c68ce2 3743
4dcb31d4
ED
3744 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3745
3746 if (prioidx < map->priomap_len)
3747 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3748}
3749#else
3750#define skb_update_prio(skb)
3751#endif
3752
95603e22
MM
3753/**
3754 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3755 * @net: network namespace this loopback is happening in
3756 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3757 * @skb: buffer to transmit
3758 */
0c4b51f0 3759int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3760{
3761 skb_reset_mac_header(skb);
3762 __skb_pull(skb, skb_network_offset(skb));
3763 skb->pkt_type = PACKET_LOOPBACK;
3764 skb->ip_summed = CHECKSUM_UNNECESSARY;
3765 WARN_ON(!skb_dst(skb));
3766 skb_dst_force(skb);
3767 netif_rx_ni(skb);
3768 return 0;
3769}
3770EXPORT_SYMBOL(dev_loopback_xmit);
3771
1f211a1b
DB
3772#ifdef CONFIG_NET_EGRESS
3773static struct sk_buff *
3774sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3775{
46209401 3776 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3777 struct tcf_result cl_res;
3778
46209401 3779 if (!miniq)
1f211a1b
DB
3780 return skb;
3781
8dc07fdb 3782 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3783 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3784
46209401 3785 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3786 case TC_ACT_OK:
3787 case TC_ACT_RECLASSIFY:
3788 skb->tc_index = TC_H_MIN(cl_res.classid);
3789 break;
3790 case TC_ACT_SHOT:
46209401 3791 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3792 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3793 kfree_skb(skb);
3794 return NULL;
1f211a1b
DB
3795 case TC_ACT_STOLEN:
3796 case TC_ACT_QUEUED:
e25ea21f 3797 case TC_ACT_TRAP:
1f211a1b 3798 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3799 consume_skb(skb);
1f211a1b
DB
3800 return NULL;
3801 case TC_ACT_REDIRECT:
3802 /* No need to push/pop skb's mac_header here on egress! */
3803 skb_do_redirect(skb);
3804 *ret = NET_XMIT_SUCCESS;
3805 return NULL;
3806 default:
3807 break;
3808 }
3809
3810 return skb;
3811}
3812#endif /* CONFIG_NET_EGRESS */
3813
fc9bab24
AN
3814#ifdef CONFIG_XPS
3815static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3816 struct xps_dev_maps *dev_maps, unsigned int tci)
3817{
3818 struct xps_map *map;
3819 int queue_index = -1;
3820
3821 if (dev->num_tc) {
3822 tci *= dev->num_tc;
3823 tci += netdev_get_prio_tc_map(dev, skb->priority);
3824 }
3825
3826 map = rcu_dereference(dev_maps->attr_map[tci]);
3827 if (map) {
3828 if (map->len == 1)
3829 queue_index = map->queues[0];
3830 else
3831 queue_index = map->queues[reciprocal_scale(
3832 skb_get_hash(skb), map->len)];
3833 if (unlikely(queue_index >= dev->real_num_tx_queues))
3834 queue_index = -1;
3835 }
3836 return queue_index;
3837}
3838#endif
3839
eadec877
AD
3840static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3841 struct sk_buff *skb)
638b2a69
JP
3842{
3843#ifdef CONFIG_XPS
3844 struct xps_dev_maps *dev_maps;
fc9bab24 3845 struct sock *sk = skb->sk;
638b2a69
JP
3846 int queue_index = -1;
3847
04157469
AN
3848 if (!static_key_false(&xps_needed))
3849 return -1;
3850
638b2a69 3851 rcu_read_lock();
fc9bab24
AN
3852 if (!static_key_false(&xps_rxqs_needed))
3853 goto get_cpus_map;
3854
eadec877 3855 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3856 if (dev_maps) {
fc9bab24 3857 int tci = sk_rx_queue_get(sk);
184c449f 3858
fc9bab24
AN
3859 if (tci >= 0 && tci < dev->num_rx_queues)
3860 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3861 tci);
3862 }
184c449f 3863
fc9bab24
AN
3864get_cpus_map:
3865 if (queue_index < 0) {
eadec877 3866 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3867 if (dev_maps) {
3868 unsigned int tci = skb->sender_cpu - 1;
3869
3870 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3871 tci);
638b2a69
JP
3872 }
3873 }
3874 rcu_read_unlock();
3875
3876 return queue_index;
3877#else
3878 return -1;
3879#endif
3880}
3881
a4ea8a3d 3882u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3883 struct net_device *sb_dev)
a4ea8a3d
AD
3884{
3885 return 0;
3886}
3887EXPORT_SYMBOL(dev_pick_tx_zero);
3888
3889u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3890 struct net_device *sb_dev)
a4ea8a3d
AD
3891{
3892 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3893}
3894EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3895
b71b5837
PA
3896u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3897 struct net_device *sb_dev)
638b2a69
JP
3898{
3899 struct sock *sk = skb->sk;
3900 int queue_index = sk_tx_queue_get(sk);
3901
eadec877
AD
3902 sb_dev = sb_dev ? : dev;
3903
638b2a69
JP
3904 if (queue_index < 0 || skb->ooo_okay ||
3905 queue_index >= dev->real_num_tx_queues) {
eadec877 3906 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3907
638b2a69 3908 if (new_index < 0)
eadec877 3909 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3910
3911 if (queue_index != new_index && sk &&
004a5d01 3912 sk_fullsock(sk) &&
638b2a69
JP
3913 rcu_access_pointer(sk->sk_dst_cache))
3914 sk_tx_queue_set(sk, new_index);
3915
3916 queue_index = new_index;
3917 }
3918
3919 return queue_index;
3920}
b71b5837 3921EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 3922
4bd97d51
PA
3923struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3924 struct sk_buff *skb,
3925 struct net_device *sb_dev)
638b2a69
JP
3926{
3927 int queue_index = 0;
3928
3929#ifdef CONFIG_XPS
52bd2d62
ED
3930 u32 sender_cpu = skb->sender_cpu - 1;
3931
3932 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3933 skb->sender_cpu = raw_smp_processor_id() + 1;
3934#endif
3935
3936 if (dev->real_num_tx_queues != 1) {
3937 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3938
638b2a69 3939 if (ops->ndo_select_queue)
a350ecce 3940 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 3941 else
4bd97d51 3942 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 3943
d584527c 3944 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
3945 }
3946
3947 skb_set_queue_mapping(skb, queue_index);
3948 return netdev_get_tx_queue(dev, queue_index);
3949}
3950
d29f749e 3951/**
9d08dd3d 3952 * __dev_queue_xmit - transmit a buffer
d29f749e 3953 * @skb: buffer to transmit
eadec877 3954 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
3955 *
3956 * Queue a buffer for transmission to a network device. The caller must
3957 * have set the device and priority and built the buffer before calling
3958 * this function. The function can be called from an interrupt.
3959 *
3960 * A negative errno code is returned on a failure. A success does not
3961 * guarantee the frame will be transmitted as it may be dropped due
3962 * to congestion or traffic shaping.
3963 *
3964 * -----------------------------------------------------------------------------------
3965 * I notice this method can also return errors from the queue disciplines,
3966 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3967 * be positive.
3968 *
3969 * Regardless of the return value, the skb is consumed, so it is currently
3970 * difficult to retry a send to this method. (You can bump the ref count
3971 * before sending to hold a reference for retry if you are careful.)
3972 *
3973 * When calling this method, interrupts MUST be enabled. This is because
3974 * the BH enable code must have IRQs enabled so that it will not deadlock.
3975 * --BLG
3976 */
eadec877 3977static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
3978{
3979 struct net_device *dev = skb->dev;
dc2b4847 3980 struct netdev_queue *txq;
1da177e4
LT
3981 struct Qdisc *q;
3982 int rc = -ENOMEM;
f53c7239 3983 bool again = false;
1da177e4 3984
6d1ccff6
ED
3985 skb_reset_mac_header(skb);
3986
e7fd2885
WB
3987 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3988 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3989
4ec93edb
YH
3990 /* Disable soft irqs for various locks below. Also
3991 * stops preemption for RCU.
1da177e4 3992 */
4ec93edb 3993 rcu_read_lock_bh();
1da177e4 3994
5bc1421e
NH
3995 skb_update_prio(skb);
3996
1f211a1b
DB
3997 qdisc_pkt_len_init(skb);
3998#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3999 skb->tc_at_ingress = 0;
1f211a1b 4000# ifdef CONFIG_NET_EGRESS
aabf6772 4001 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4002 skb = sch_handle_egress(skb, &rc, dev);
4003 if (!skb)
4004 goto out;
4005 }
4006# endif
4007#endif
02875878
ED
4008 /* If device/qdisc don't need skb->dst, release it right now while
4009 * its hot in this cpu cache.
4010 */
4011 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4012 skb_dst_drop(skb);
4013 else
4014 skb_dst_force(skb);
4015
4bd97d51 4016 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4017 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4018
cf66ba58 4019 trace_net_dev_queue(skb);
1da177e4 4020 if (q->enqueue) {
bbd8a0d3 4021 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4022 goto out;
1da177e4
LT
4023 }
4024
4025 /* The device has no queue. Common case for software devices:
eb13da1a 4026 * loopback, all the sorts of tunnels...
1da177e4 4027
eb13da1a 4028 * Really, it is unlikely that netif_tx_lock protection is necessary
4029 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4030 * counters.)
4031 * However, it is possible, that they rely on protection
4032 * made by us here.
1da177e4 4033
eb13da1a 4034 * Check this and shot the lock. It is not prone from deadlocks.
4035 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4036 */
4037 if (dev->flags & IFF_UP) {
4038 int cpu = smp_processor_id(); /* ok because BHs are off */
4039
c773e847 4040 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4041 if (dev_xmit_recursion())
745e20f1
ED
4042 goto recursion_alert;
4043
f53c7239 4044 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4045 if (!skb)
d21fd63e 4046 goto out;
1f59533f 4047
c773e847 4048 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4049
73466498 4050 if (!netif_xmit_stopped(txq)) {
97cdcf37 4051 dev_xmit_recursion_inc();
ce93718f 4052 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4053 dev_xmit_recursion_dec();
572a9d7b 4054 if (dev_xmit_complete(rc)) {
c773e847 4055 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4056 goto out;
4057 }
4058 }
c773e847 4059 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4060 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4061 dev->name);
1da177e4
LT
4062 } else {
4063 /* Recursion is detected! It is possible,
745e20f1
ED
4064 * unfortunately
4065 */
4066recursion_alert:
e87cc472
JP
4067 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4068 dev->name);
1da177e4
LT
4069 }
4070 }
4071
4072 rc = -ENETDOWN;
d4828d85 4073 rcu_read_unlock_bh();
1da177e4 4074
015f0688 4075 atomic_long_inc(&dev->tx_dropped);
1f59533f 4076 kfree_skb_list(skb);
1da177e4
LT
4077 return rc;
4078out:
d4828d85 4079 rcu_read_unlock_bh();
1da177e4
LT
4080 return rc;
4081}
f663dd9a 4082
2b4aa3ce 4083int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4084{
4085 return __dev_queue_xmit(skb, NULL);
4086}
2b4aa3ce 4087EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4088
eadec877 4089int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4090{
eadec877 4091 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4092}
4093EXPORT_SYMBOL(dev_queue_xmit_accel);
4094
865b03f2
MK
4095int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4096{
4097 struct net_device *dev = skb->dev;
4098 struct sk_buff *orig_skb = skb;
4099 struct netdev_queue *txq;
4100 int ret = NETDEV_TX_BUSY;
4101 bool again = false;
4102
4103 if (unlikely(!netif_running(dev) ||
4104 !netif_carrier_ok(dev)))
4105 goto drop;
4106
4107 skb = validate_xmit_skb_list(skb, dev, &again);
4108 if (skb != orig_skb)
4109 goto drop;
4110
4111 skb_set_queue_mapping(skb, queue_id);
4112 txq = skb_get_tx_queue(dev, skb);
4113
4114 local_bh_disable();
4115
4116 HARD_TX_LOCK(dev, txq, smp_processor_id());
4117 if (!netif_xmit_frozen_or_drv_stopped(txq))
4118 ret = netdev_start_xmit(skb, dev, txq, false);
4119 HARD_TX_UNLOCK(dev, txq);
4120
4121 local_bh_enable();
4122
4123 if (!dev_xmit_complete(ret))
4124 kfree_skb(skb);
4125
4126 return ret;
4127drop:
4128 atomic_long_inc(&dev->tx_dropped);
4129 kfree_skb_list(skb);
4130 return NET_XMIT_DROP;
4131}
4132EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 4133
eb13da1a 4134/*************************************************************************
4135 * Receiver routines
4136 *************************************************************************/
1da177e4 4137
6b2bedc3 4138int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4139EXPORT_SYMBOL(netdev_max_backlog);
4140
3b098e2d 4141int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4142int netdev_budget __read_mostly = 300;
7acf8a1e 4143unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
4144int weight_p __read_mostly = 64; /* old backlog weight */
4145int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4146int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4147int dev_rx_weight __read_mostly = 64;
4148int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4149/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4150int gro_normal_batch __read_mostly = 8;
1da177e4 4151
eecfd7c4
ED
4152/* Called with irq disabled */
4153static inline void ____napi_schedule(struct softnet_data *sd,
4154 struct napi_struct *napi)
4155{
4156 list_add_tail(&napi->poll_list, &sd->poll_list);
4157 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4158}
4159
bfb564e7
KK
4160#ifdef CONFIG_RPS
4161
4162/* One global table that all flow-based protocols share. */
6e3f7faf 4163struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4164EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4165u32 rps_cpu_mask __read_mostly;
4166EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4167
dc05360f 4168struct static_key_false rps_needed __read_mostly;
3df97ba8 4169EXPORT_SYMBOL(rps_needed);
dc05360f 4170struct static_key_false rfs_needed __read_mostly;
13bfff25 4171EXPORT_SYMBOL(rfs_needed);
adc9300e 4172
c445477d
BH
4173static struct rps_dev_flow *
4174set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4175 struct rps_dev_flow *rflow, u16 next_cpu)
4176{
a31196b0 4177 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4178#ifdef CONFIG_RFS_ACCEL
4179 struct netdev_rx_queue *rxqueue;
4180 struct rps_dev_flow_table *flow_table;
4181 struct rps_dev_flow *old_rflow;
4182 u32 flow_id;
4183 u16 rxq_index;
4184 int rc;
4185
4186 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4187 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4188 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4189 goto out;
4190 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4191 if (rxq_index == skb_get_rx_queue(skb))
4192 goto out;
4193
4194 rxqueue = dev->_rx + rxq_index;
4195 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4196 if (!flow_table)
4197 goto out;
61b905da 4198 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4199 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4200 rxq_index, flow_id);
4201 if (rc < 0)
4202 goto out;
4203 old_rflow = rflow;
4204 rflow = &flow_table->flows[flow_id];
c445477d
BH
4205 rflow->filter = rc;
4206 if (old_rflow->filter == rflow->filter)
4207 old_rflow->filter = RPS_NO_FILTER;
4208 out:
4209#endif
4210 rflow->last_qtail =
09994d1b 4211 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4212 }
4213
09994d1b 4214 rflow->cpu = next_cpu;
c445477d
BH
4215 return rflow;
4216}
4217
bfb564e7
KK
4218/*
4219 * get_rps_cpu is called from netif_receive_skb and returns the target
4220 * CPU from the RPS map of the receiving queue for a given skb.
4221 * rcu_read_lock must be held on entry.
4222 */
4223static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4224 struct rps_dev_flow **rflowp)
4225{
567e4b79
ED
4226 const struct rps_sock_flow_table *sock_flow_table;
4227 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4228 struct rps_dev_flow_table *flow_table;
567e4b79 4229 struct rps_map *map;
bfb564e7 4230 int cpu = -1;
567e4b79 4231 u32 tcpu;
61b905da 4232 u32 hash;
bfb564e7
KK
4233
4234 if (skb_rx_queue_recorded(skb)) {
4235 u16 index = skb_get_rx_queue(skb);
567e4b79 4236
62fe0b40
BH
4237 if (unlikely(index >= dev->real_num_rx_queues)) {
4238 WARN_ONCE(dev->real_num_rx_queues > 1,
4239 "%s received packet on queue %u, but number "
4240 "of RX queues is %u\n",
4241 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4242 goto done;
4243 }
567e4b79
ED
4244 rxqueue += index;
4245 }
bfb564e7 4246
567e4b79
ED
4247 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4248
4249 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4250 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4251 if (!flow_table && !map)
bfb564e7
KK
4252 goto done;
4253
2d47b459 4254 skb_reset_network_header(skb);
61b905da
TH
4255 hash = skb_get_hash(skb);
4256 if (!hash)
bfb564e7
KK
4257 goto done;
4258
fec5e652
TH
4259 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4260 if (flow_table && sock_flow_table) {
fec5e652 4261 struct rps_dev_flow *rflow;
567e4b79
ED
4262 u32 next_cpu;
4263 u32 ident;
4264
4265 /* First check into global flow table if there is a match */
4266 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4267 if ((ident ^ hash) & ~rps_cpu_mask)
4268 goto try_rps;
fec5e652 4269
567e4b79
ED
4270 next_cpu = ident & rps_cpu_mask;
4271
4272 /* OK, now we know there is a match,
4273 * we can look at the local (per receive queue) flow table
4274 */
61b905da 4275 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4276 tcpu = rflow->cpu;
4277
fec5e652
TH
4278 /*
4279 * If the desired CPU (where last recvmsg was done) is
4280 * different from current CPU (one in the rx-queue flow
4281 * table entry), switch if one of the following holds:
a31196b0 4282 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4283 * - Current CPU is offline.
4284 * - The current CPU's queue tail has advanced beyond the
4285 * last packet that was enqueued using this table entry.
4286 * This guarantees that all previous packets for the flow
4287 * have been dequeued, thus preserving in order delivery.
4288 */
4289 if (unlikely(tcpu != next_cpu) &&
a31196b0 4290 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4291 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4292 rflow->last_qtail)) >= 0)) {
4293 tcpu = next_cpu;
c445477d 4294 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4295 }
c445477d 4296
a31196b0 4297 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4298 *rflowp = rflow;
4299 cpu = tcpu;
4300 goto done;
4301 }
4302 }
4303
567e4b79
ED
4304try_rps:
4305
0a9627f2 4306 if (map) {
8fc54f68 4307 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4308 if (cpu_online(tcpu)) {
4309 cpu = tcpu;
4310 goto done;
4311 }
4312 }
4313
4314done:
0a9627f2
TH
4315 return cpu;
4316}
4317
c445477d
BH
4318#ifdef CONFIG_RFS_ACCEL
4319
4320/**
4321 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4322 * @dev: Device on which the filter was set
4323 * @rxq_index: RX queue index
4324 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4325 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4326 *
4327 * Drivers that implement ndo_rx_flow_steer() should periodically call
4328 * this function for each installed filter and remove the filters for
4329 * which it returns %true.
4330 */
4331bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4332 u32 flow_id, u16 filter_id)
4333{
4334 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4335 struct rps_dev_flow_table *flow_table;
4336 struct rps_dev_flow *rflow;
4337 bool expire = true;
a31196b0 4338 unsigned int cpu;
c445477d
BH
4339
4340 rcu_read_lock();
4341 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4342 if (flow_table && flow_id <= flow_table->mask) {
4343 rflow = &flow_table->flows[flow_id];
6aa7de05 4344 cpu = READ_ONCE(rflow->cpu);
a31196b0 4345 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4346 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4347 rflow->last_qtail) <
4348 (int)(10 * flow_table->mask)))
4349 expire = false;
4350 }
4351 rcu_read_unlock();
4352 return expire;
4353}
4354EXPORT_SYMBOL(rps_may_expire_flow);
4355
4356#endif /* CONFIG_RFS_ACCEL */
4357
0a9627f2 4358/* Called from hardirq (IPI) context */
e36fa2f7 4359static void rps_trigger_softirq(void *data)
0a9627f2 4360{
e36fa2f7
ED
4361 struct softnet_data *sd = data;
4362
eecfd7c4 4363 ____napi_schedule(sd, &sd->backlog);
dee42870 4364 sd->received_rps++;
0a9627f2 4365}
e36fa2f7 4366
fec5e652 4367#endif /* CONFIG_RPS */
0a9627f2 4368
e36fa2f7
ED
4369/*
4370 * Check if this softnet_data structure is another cpu one
4371 * If yes, queue it to our IPI list and return 1
4372 * If no, return 0
4373 */
4374static int rps_ipi_queued(struct softnet_data *sd)
4375{
4376#ifdef CONFIG_RPS
903ceff7 4377 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4378
4379 if (sd != mysd) {
4380 sd->rps_ipi_next = mysd->rps_ipi_list;
4381 mysd->rps_ipi_list = sd;
4382
4383 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4384 return 1;
4385 }
4386#endif /* CONFIG_RPS */
4387 return 0;
4388}
4389
99bbc707
WB
4390#ifdef CONFIG_NET_FLOW_LIMIT
4391int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4392#endif
4393
4394static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4395{
4396#ifdef CONFIG_NET_FLOW_LIMIT
4397 struct sd_flow_limit *fl;
4398 struct softnet_data *sd;
4399 unsigned int old_flow, new_flow;
4400
4401 if (qlen < (netdev_max_backlog >> 1))
4402 return false;
4403
903ceff7 4404 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4405
4406 rcu_read_lock();
4407 fl = rcu_dereference(sd->flow_limit);
4408 if (fl) {
3958afa1 4409 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4410 old_flow = fl->history[fl->history_head];
4411 fl->history[fl->history_head] = new_flow;
4412
4413 fl->history_head++;
4414 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4415
4416 if (likely(fl->buckets[old_flow]))
4417 fl->buckets[old_flow]--;
4418
4419 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4420 fl->count++;
4421 rcu_read_unlock();
4422 return true;
4423 }
4424 }
4425 rcu_read_unlock();
4426#endif
4427 return false;
4428}
4429
0a9627f2
TH
4430/*
4431 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4432 * queue (may be a remote CPU queue).
4433 */
fec5e652
TH
4434static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4435 unsigned int *qtail)
0a9627f2 4436{
e36fa2f7 4437 struct softnet_data *sd;
0a9627f2 4438 unsigned long flags;
99bbc707 4439 unsigned int qlen;
0a9627f2 4440
e36fa2f7 4441 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4442
4443 local_irq_save(flags);
0a9627f2 4444
e36fa2f7 4445 rps_lock(sd);
e9e4dd32
JA
4446 if (!netif_running(skb->dev))
4447 goto drop;
99bbc707
WB
4448 qlen = skb_queue_len(&sd->input_pkt_queue);
4449 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4450 if (qlen) {
0a9627f2 4451enqueue:
e36fa2f7 4452 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4453 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4454 rps_unlock(sd);
152102c7 4455 local_irq_restore(flags);
0a9627f2
TH
4456 return NET_RX_SUCCESS;
4457 }
4458
ebda37c2
ED
4459 /* Schedule NAPI for backlog device
4460 * We can use non atomic operation since we own the queue lock
4461 */
4462 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4463 if (!rps_ipi_queued(sd))
eecfd7c4 4464 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4465 }
4466 goto enqueue;
4467 }
4468
e9e4dd32 4469drop:
dee42870 4470 sd->dropped++;
e36fa2f7 4471 rps_unlock(sd);
0a9627f2 4472
0a9627f2
TH
4473 local_irq_restore(flags);
4474
caf586e5 4475 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4476 kfree_skb(skb);
4477 return NET_RX_DROP;
4478}
1da177e4 4479
e817f856
JDB
4480static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4481{
4482 struct net_device *dev = skb->dev;
4483 struct netdev_rx_queue *rxqueue;
4484
4485 rxqueue = dev->_rx;
4486
4487 if (skb_rx_queue_recorded(skb)) {
4488 u16 index = skb_get_rx_queue(skb);
4489
4490 if (unlikely(index >= dev->real_num_rx_queues)) {
4491 WARN_ONCE(dev->real_num_rx_queues > 1,
4492 "%s received packet on queue %u, but number "
4493 "of RX queues is %u\n",
4494 dev->name, index, dev->real_num_rx_queues);
4495
4496 return rxqueue; /* Return first rxqueue */
4497 }
4498 rxqueue += index;
4499 }
4500 return rxqueue;
4501}
4502
d4455169 4503static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4504 struct xdp_buff *xdp,
d4455169
JF
4505 struct bpf_prog *xdp_prog)
4506{
e817f856 4507 struct netdev_rx_queue *rxqueue;
198d83bb 4508 void *orig_data, *orig_data_end;
de8f3a83 4509 u32 metalen, act = XDP_DROP;
29724956
JDB
4510 __be16 orig_eth_type;
4511 struct ethhdr *eth;
4512 bool orig_bcast;
d4455169
JF
4513 int hlen, off;
4514 u32 mac_len;
4515
4516 /* Reinjected packets coming from act_mirred or similar should
4517 * not get XDP generic processing.
4518 */
ad1e03b2 4519 if (skb_is_tc_redirected(skb))
d4455169
JF
4520 return XDP_PASS;
4521
de8f3a83
DB
4522 /* XDP packets must be linear and must have sufficient headroom
4523 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4524 * native XDP provides, thus we need to do it here as well.
4525 */
ad1e03b2 4526 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
de8f3a83
DB
4527 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4528 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4529 int troom = skb->tail + skb->data_len - skb->end;
4530
4531 /* In case we have to go down the path and also linearize,
4532 * then lets do the pskb_expand_head() work just once here.
4533 */
4534 if (pskb_expand_head(skb,
4535 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4536 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4537 goto do_drop;
2d17d8d7 4538 if (skb_linearize(skb))
de8f3a83
DB
4539 goto do_drop;
4540 }
d4455169
JF
4541
4542 /* The XDP program wants to see the packet starting at the MAC
4543 * header.
4544 */
4545 mac_len = skb->data - skb_mac_header(skb);
4546 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4547 xdp->data = skb->data - mac_len;
4548 xdp->data_meta = xdp->data;
4549 xdp->data_end = xdp->data + hlen;
4550 xdp->data_hard_start = skb->data - skb_headroom(skb);
4551 orig_data_end = xdp->data_end;
4552 orig_data = xdp->data;
29724956
JDB
4553 eth = (struct ethhdr *)xdp->data;
4554 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4555 orig_eth_type = eth->h_proto;
d4455169 4556
e817f856 4557 rxqueue = netif_get_rxqueue(skb);
02671e23 4558 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4559
02671e23 4560 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4561
065af355 4562 /* check if bpf_xdp_adjust_head was used */
02671e23 4563 off = xdp->data - orig_data;
065af355
JDB
4564 if (off) {
4565 if (off > 0)
4566 __skb_pull(skb, off);
4567 else if (off < 0)
4568 __skb_push(skb, -off);
4569
4570 skb->mac_header += off;
4571 skb_reset_network_header(skb);
4572 }
d4455169 4573
198d83bb
NS
4574 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4575 * pckt.
4576 */
02671e23 4577 off = orig_data_end - xdp->data_end;
f7613120 4578 if (off != 0) {
02671e23 4579 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
f7613120 4580 skb->len -= off;
02671e23 4581
f7613120 4582 }
198d83bb 4583
29724956
JDB
4584 /* check if XDP changed eth hdr such SKB needs update */
4585 eth = (struct ethhdr *)xdp->data;
4586 if ((orig_eth_type != eth->h_proto) ||
4587 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4588 __skb_push(skb, ETH_HLEN);
4589 skb->protocol = eth_type_trans(skb, skb->dev);
4590 }
4591
d4455169 4592 switch (act) {
6103aa96 4593 case XDP_REDIRECT:
d4455169
JF
4594 case XDP_TX:
4595 __skb_push(skb, mac_len);
de8f3a83 4596 break;
d4455169 4597 case XDP_PASS:
02671e23 4598 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4599 if (metalen)
4600 skb_metadata_set(skb, metalen);
d4455169 4601 break;
d4455169
JF
4602 default:
4603 bpf_warn_invalid_xdp_action(act);
4604 /* fall through */
4605 case XDP_ABORTED:
4606 trace_xdp_exception(skb->dev, xdp_prog, act);
4607 /* fall through */
4608 case XDP_DROP:
4609 do_drop:
4610 kfree_skb(skb);
4611 break;
4612 }
4613
4614 return act;
4615}
4616
4617/* When doing generic XDP we have to bypass the qdisc layer and the
4618 * network taps in order to match in-driver-XDP behavior.
4619 */
7c497478 4620void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4621{
4622 struct net_device *dev = skb->dev;
4623 struct netdev_queue *txq;
4624 bool free_skb = true;
4625 int cpu, rc;
4626
4bd97d51 4627 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4628 cpu = smp_processor_id();
4629 HARD_TX_LOCK(dev, txq, cpu);
4630 if (!netif_xmit_stopped(txq)) {
4631 rc = netdev_start_xmit(skb, dev, txq, 0);
4632 if (dev_xmit_complete(rc))
4633 free_skb = false;
4634 }
4635 HARD_TX_UNLOCK(dev, txq);
4636 if (free_skb) {
4637 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4638 kfree_skb(skb);
4639 }
4640}
7c497478 4641EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169 4642
02786475 4643static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4644
7c497478 4645int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4646{
d4455169 4647 if (xdp_prog) {
02671e23
BT
4648 struct xdp_buff xdp;
4649 u32 act;
6103aa96 4650 int err;
d4455169 4651
02671e23 4652 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4653 if (act != XDP_PASS) {
6103aa96
JF
4654 switch (act) {
4655 case XDP_REDIRECT:
2facaad6 4656 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4657 &xdp, xdp_prog);
6103aa96
JF
4658 if (err)
4659 goto out_redir;
02671e23 4660 break;
6103aa96 4661 case XDP_TX:
d4455169 4662 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4663 break;
4664 }
d4455169
JF
4665 return XDP_DROP;
4666 }
4667 }
4668 return XDP_PASS;
6103aa96 4669out_redir:
6103aa96
JF
4670 kfree_skb(skb);
4671 return XDP_DROP;
d4455169 4672}
7c497478 4673EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4674
ae78dbfa 4675static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4676{
b0e28f1e 4677 int ret;
1da177e4 4678
588f0330 4679 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4680
cf66ba58 4681 trace_netif_rx(skb);
d4455169 4682
df334545 4683#ifdef CONFIG_RPS
dc05360f 4684 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4685 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4686 int cpu;
4687
cece1945 4688 preempt_disable();
b0e28f1e 4689 rcu_read_lock();
fec5e652
TH
4690
4691 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4692 if (cpu < 0)
4693 cpu = smp_processor_id();
fec5e652
TH
4694
4695 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4696
b0e28f1e 4697 rcu_read_unlock();
cece1945 4698 preempt_enable();
adc9300e
ED
4699 } else
4700#endif
fec5e652
TH
4701 {
4702 unsigned int qtail;
f4563a75 4703
fec5e652
TH
4704 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4705 put_cpu();
4706 }
b0e28f1e 4707 return ret;
1da177e4 4708}
ae78dbfa
BH
4709
4710/**
4711 * netif_rx - post buffer to the network code
4712 * @skb: buffer to post
4713 *
4714 * This function receives a packet from a device driver and queues it for
4715 * the upper (protocol) levels to process. It always succeeds. The buffer
4716 * may be dropped during processing for congestion control or by the
4717 * protocol layers.
4718 *
4719 * return values:
4720 * NET_RX_SUCCESS (no congestion)
4721 * NET_RX_DROP (packet was dropped)
4722 *
4723 */
4724
4725int netif_rx(struct sk_buff *skb)
4726{
b0e3f1bd
GB
4727 int ret;
4728
ae78dbfa
BH
4729 trace_netif_rx_entry(skb);
4730
b0e3f1bd
GB
4731 ret = netif_rx_internal(skb);
4732 trace_netif_rx_exit(ret);
4733
4734 return ret;
ae78dbfa 4735}
d1b19dff 4736EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4737
4738int netif_rx_ni(struct sk_buff *skb)
4739{
4740 int err;
4741
ae78dbfa
BH
4742 trace_netif_rx_ni_entry(skb);
4743
1da177e4 4744 preempt_disable();
ae78dbfa 4745 err = netif_rx_internal(skb);
1da177e4
LT
4746 if (local_softirq_pending())
4747 do_softirq();
4748 preempt_enable();
b0e3f1bd 4749 trace_netif_rx_ni_exit(err);
1da177e4
LT
4750
4751 return err;
4752}
1da177e4
LT
4753EXPORT_SYMBOL(netif_rx_ni);
4754
0766f788 4755static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4756{
903ceff7 4757 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4758
4759 if (sd->completion_queue) {
4760 struct sk_buff *clist;
4761
4762 local_irq_disable();
4763 clist = sd->completion_queue;
4764 sd->completion_queue = NULL;
4765 local_irq_enable();
4766
4767 while (clist) {
4768 struct sk_buff *skb = clist;
f4563a75 4769
1da177e4
LT
4770 clist = clist->next;
4771
63354797 4772 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4773 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4774 trace_consume_skb(skb);
4775 else
4776 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4777
4778 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4779 __kfree_skb(skb);
4780 else
4781 __kfree_skb_defer(skb);
1da177e4 4782 }
15fad714
JDB
4783
4784 __kfree_skb_flush();
1da177e4
LT
4785 }
4786
4787 if (sd->output_queue) {
37437bb2 4788 struct Qdisc *head;
1da177e4
LT
4789
4790 local_irq_disable();
4791 head = sd->output_queue;
4792 sd->output_queue = NULL;
a9cbd588 4793 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4794 local_irq_enable();
4795
4796 while (head) {
37437bb2 4797 struct Qdisc *q = head;
6b3ba914 4798 spinlock_t *root_lock = NULL;
37437bb2 4799
1da177e4
LT
4800 head = head->next_sched;
4801
6b3ba914
JF
4802 if (!(q->flags & TCQ_F_NOLOCK)) {
4803 root_lock = qdisc_lock(q);
4804 spin_lock(root_lock);
4805 }
3bcb846c
ED
4806 /* We need to make sure head->next_sched is read
4807 * before clearing __QDISC_STATE_SCHED
4808 */
4809 smp_mb__before_atomic();
4810 clear_bit(__QDISC_STATE_SCHED, &q->state);
4811 qdisc_run(q);
6b3ba914
JF
4812 if (root_lock)
4813 spin_unlock(root_lock);
1da177e4
LT
4814 }
4815 }
f53c7239
SK
4816
4817 xfrm_dev_backlog(sd);
1da177e4
LT
4818}
4819
181402a5 4820#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4821/* This hook is defined here for ATM LANE */
4822int (*br_fdb_test_addr_hook)(struct net_device *dev,
4823 unsigned char *addr) __read_mostly;
4fb019a0 4824EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4825#endif
1da177e4 4826
1f211a1b
DB
4827static inline struct sk_buff *
4828sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4829 struct net_device *orig_dev)
f697c3e8 4830{
e7582bab 4831#ifdef CONFIG_NET_CLS_ACT
46209401 4832 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4833 struct tcf_result cl_res;
24824a09 4834
c9e99fd0
DB
4835 /* If there's at least one ingress present somewhere (so
4836 * we get here via enabled static key), remaining devices
4837 * that are not configured with an ingress qdisc will bail
d2788d34 4838 * out here.
c9e99fd0 4839 */
46209401 4840 if (!miniq)
4577139b 4841 return skb;
46209401 4842
f697c3e8
HX
4843 if (*pt_prev) {
4844 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4845 *pt_prev = NULL;
1da177e4
LT
4846 }
4847
3365495c 4848 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4849 skb->tc_at_ingress = 1;
46209401 4850 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4851
46209401 4852 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
4853 case TC_ACT_OK:
4854 case TC_ACT_RECLASSIFY:
4855 skb->tc_index = TC_H_MIN(cl_res.classid);
4856 break;
4857 case TC_ACT_SHOT:
46209401 4858 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4859 kfree_skb(skb);
4860 return NULL;
d2788d34
DB
4861 case TC_ACT_STOLEN:
4862 case TC_ACT_QUEUED:
e25ea21f 4863 case TC_ACT_TRAP:
8a3a4c6e 4864 consume_skb(skb);
d2788d34 4865 return NULL;
27b29f63
AS
4866 case TC_ACT_REDIRECT:
4867 /* skb_mac_header check was done by cls/act_bpf, so
4868 * we can safely push the L2 header back before
4869 * redirecting to another netdev
4870 */
4871 __skb_push(skb, skb->mac_len);
4872 skb_do_redirect(skb);
4873 return NULL;
720f22fe 4874 case TC_ACT_CONSUMED:
cd11b164 4875 return NULL;
d2788d34
DB
4876 default:
4877 break;
f697c3e8 4878 }
e7582bab 4879#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4880 return skb;
4881}
1da177e4 4882
24b27fc4
MB
4883/**
4884 * netdev_is_rx_handler_busy - check if receive handler is registered
4885 * @dev: device to check
4886 *
4887 * Check if a receive handler is already registered for a given device.
4888 * Return true if there one.
4889 *
4890 * The caller must hold the rtnl_mutex.
4891 */
4892bool netdev_is_rx_handler_busy(struct net_device *dev)
4893{
4894 ASSERT_RTNL();
4895 return dev && rtnl_dereference(dev->rx_handler);
4896}
4897EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4898
ab95bfe0
JP
4899/**
4900 * netdev_rx_handler_register - register receive handler
4901 * @dev: device to register a handler for
4902 * @rx_handler: receive handler to register
93e2c32b 4903 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4904 *
e227867f 4905 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4906 * called from __netif_receive_skb. A negative errno code is returned
4907 * on a failure.
4908 *
4909 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4910 *
4911 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4912 */
4913int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4914 rx_handler_func_t *rx_handler,
4915 void *rx_handler_data)
ab95bfe0 4916{
1b7cd004 4917 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4918 return -EBUSY;
4919
f5426250
PA
4920 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4921 return -EINVAL;
4922
00cfec37 4923 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4924 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4925 rcu_assign_pointer(dev->rx_handler, rx_handler);
4926
4927 return 0;
4928}
4929EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4930
4931/**
4932 * netdev_rx_handler_unregister - unregister receive handler
4933 * @dev: device to unregister a handler from
4934 *
166ec369 4935 * Unregister a receive handler from a device.
ab95bfe0
JP
4936 *
4937 * The caller must hold the rtnl_mutex.
4938 */
4939void netdev_rx_handler_unregister(struct net_device *dev)
4940{
4941
4942 ASSERT_RTNL();
a9b3cd7f 4943 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4944 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4945 * section has a guarantee to see a non NULL rx_handler_data
4946 * as well.
4947 */
4948 synchronize_net();
a9b3cd7f 4949 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4950}
4951EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4952
b4b9e355
MG
4953/*
4954 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4955 * the special handling of PFMEMALLOC skbs.
4956 */
4957static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4958{
4959 switch (skb->protocol) {
2b8837ae
JP
4960 case htons(ETH_P_ARP):
4961 case htons(ETH_P_IP):
4962 case htons(ETH_P_IPV6):
4963 case htons(ETH_P_8021Q):
4964 case htons(ETH_P_8021AD):
b4b9e355
MG
4965 return true;
4966 default:
4967 return false;
4968 }
4969}
4970
e687ad60
PN
4971static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4972 int *ret, struct net_device *orig_dev)
4973{
4974 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4975 int ingress_retval;
4976
e687ad60
PN
4977 if (*pt_prev) {
4978 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4979 *pt_prev = NULL;
4980 }
4981
2c1e2703
AC
4982 rcu_read_lock();
4983 ingress_retval = nf_hook_ingress(skb);
4984 rcu_read_unlock();
4985 return ingress_retval;
e687ad60
PN
4986 }
4987 return 0;
4988}
e687ad60 4989
88eb1944
EC
4990static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4991 struct packet_type **ppt_prev)
1da177e4
LT
4992{
4993 struct packet_type *ptype, *pt_prev;
ab95bfe0 4994 rx_handler_func_t *rx_handler;
f2ccd8fa 4995 struct net_device *orig_dev;
8a4eb573 4996 bool deliver_exact = false;
1da177e4 4997 int ret = NET_RX_DROP;
252e3346 4998 __be16 type;
1da177e4 4999
588f0330 5000 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5001
cf66ba58 5002 trace_netif_receive_skb(skb);
9b22ea56 5003
cc9bd5ce 5004 orig_dev = skb->dev;
8f903c70 5005
c1d2bbe1 5006 skb_reset_network_header(skb);
fda55eca
ED
5007 if (!skb_transport_header_was_set(skb))
5008 skb_reset_transport_header(skb);
0b5c9db1 5009 skb_reset_mac_len(skb);
1da177e4
LT
5010
5011 pt_prev = NULL;
5012
63d8ea7f 5013another_round:
b6858177 5014 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5015
5016 __this_cpu_inc(softnet_data.processed);
5017
458bf2f2
SH
5018 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5019 int ret2;
5020
5021 preempt_disable();
5022 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5023 preempt_enable();
5024
5025 if (ret2 != XDP_PASS)
5026 return NET_RX_DROP;
5027 skb_reset_mac_len(skb);
5028 }
5029
8ad227ff
PM
5030 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5031 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 5032 skb = skb_vlan_untag(skb);
bcc6d479 5033 if (unlikely(!skb))
2c17d27c 5034 goto out;
bcc6d479
JP
5035 }
5036
e7246e12
WB
5037 if (skb_skip_tc_classify(skb))
5038 goto skip_classify;
1da177e4 5039
9754e293 5040 if (pfmemalloc)
b4b9e355
MG
5041 goto skip_taps;
5042
1da177e4 5043 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5044 if (pt_prev)
5045 ret = deliver_skb(skb, pt_prev, orig_dev);
5046 pt_prev = ptype;
5047 }
5048
5049 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5050 if (pt_prev)
5051 ret = deliver_skb(skb, pt_prev, orig_dev);
5052 pt_prev = ptype;
1da177e4
LT
5053 }
5054
b4b9e355 5055skip_taps:
1cf51900 5056#ifdef CONFIG_NET_INGRESS
aabf6772 5057 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 5058 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 5059 if (!skb)
2c17d27c 5060 goto out;
e687ad60
PN
5061
5062 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5063 goto out;
4577139b 5064 }
1cf51900 5065#endif
a5135bcf 5066 skb_reset_tc(skb);
e7246e12 5067skip_classify:
9754e293 5068 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5069 goto drop;
5070
df8a39de 5071 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5072 if (pt_prev) {
5073 ret = deliver_skb(skb, pt_prev, orig_dev);
5074 pt_prev = NULL;
5075 }
48cc32d3 5076 if (vlan_do_receive(&skb))
2425717b
JF
5077 goto another_round;
5078 else if (unlikely(!skb))
2c17d27c 5079 goto out;
2425717b
JF
5080 }
5081
48cc32d3 5082 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5083 if (rx_handler) {
5084 if (pt_prev) {
5085 ret = deliver_skb(skb, pt_prev, orig_dev);
5086 pt_prev = NULL;
5087 }
8a4eb573
JP
5088 switch (rx_handler(&skb)) {
5089 case RX_HANDLER_CONSUMED:
3bc1b1ad 5090 ret = NET_RX_SUCCESS;
2c17d27c 5091 goto out;
8a4eb573 5092 case RX_HANDLER_ANOTHER:
63d8ea7f 5093 goto another_round;
8a4eb573
JP
5094 case RX_HANDLER_EXACT:
5095 deliver_exact = true;
5096 case RX_HANDLER_PASS:
5097 break;
5098 default:
5099 BUG();
5100 }
ab95bfe0 5101 }
1da177e4 5102
df8a39de 5103 if (unlikely(skb_vlan_tag_present(skb))) {
36b2f61a
GV
5104check_vlan_id:
5105 if (skb_vlan_tag_get_id(skb)) {
5106 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5107 * find vlan device.
5108 */
d4b812de 5109 skb->pkt_type = PACKET_OTHERHOST;
36b2f61a
GV
5110 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5111 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5112 /* Outer header is 802.1P with vlan 0, inner header is
5113 * 802.1Q or 802.1AD and vlan_do_receive() above could
5114 * not find vlan dev for vlan id 0.
5115 */
5116 __vlan_hwaccel_clear_tag(skb);
5117 skb = skb_vlan_untag(skb);
5118 if (unlikely(!skb))
5119 goto out;
5120 if (vlan_do_receive(&skb))
5121 /* After stripping off 802.1P header with vlan 0
5122 * vlan dev is found for inner header.
5123 */
5124 goto another_round;
5125 else if (unlikely(!skb))
5126 goto out;
5127 else
5128 /* We have stripped outer 802.1P vlan 0 header.
5129 * But could not find vlan dev.
5130 * check again for vlan id to set OTHERHOST.
5131 */
5132 goto check_vlan_id;
5133 }
d4b812de
ED
5134 /* Note: we might in the future use prio bits
5135 * and set skb->priority like in vlan_do_receive()
5136 * For the time being, just ignore Priority Code Point
5137 */
b1817524 5138 __vlan_hwaccel_clear_tag(skb);
d4b812de 5139 }
48cc32d3 5140
7866a621
SN
5141 type = skb->protocol;
5142
63d8ea7f 5143 /* deliver only exact match when indicated */
7866a621
SN
5144 if (likely(!deliver_exact)) {
5145 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5146 &ptype_base[ntohs(type) &
5147 PTYPE_HASH_MASK]);
5148 }
1f3c8804 5149
7866a621
SN
5150 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5151 &orig_dev->ptype_specific);
5152
5153 if (unlikely(skb->dev != orig_dev)) {
5154 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5155 &skb->dev->ptype_specific);
1da177e4
LT
5156 }
5157
5158 if (pt_prev) {
1f8b977a 5159 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5160 goto drop;
88eb1944 5161 *ppt_prev = pt_prev;
1da177e4 5162 } else {
b4b9e355 5163drop:
6e7333d3
JW
5164 if (!deliver_exact)
5165 atomic_long_inc(&skb->dev->rx_dropped);
5166 else
5167 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5168 kfree_skb(skb);
5169 /* Jamal, now you will not able to escape explaining
5170 * me how you were going to use this. :-)
5171 */
5172 ret = NET_RX_DROP;
5173 }
5174
2c17d27c 5175out:
9754e293
DM
5176 return ret;
5177}
5178
88eb1944
EC
5179static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5180{
5181 struct net_device *orig_dev = skb->dev;
5182 struct packet_type *pt_prev = NULL;
5183 int ret;
5184
5185 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5186 if (pt_prev)
f5737cba
PA
5187 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5188 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5189 return ret;
5190}
5191
1c601d82
JDB
5192/**
5193 * netif_receive_skb_core - special purpose version of netif_receive_skb
5194 * @skb: buffer to process
5195 *
5196 * More direct receive version of netif_receive_skb(). It should
5197 * only be used by callers that have a need to skip RPS and Generic XDP.
5198 * Caller must also take care of handling if (page_is_)pfmemalloc.
5199 *
5200 * This function may only be called from softirq context and interrupts
5201 * should be enabled.
5202 *
5203 * Return values (usually ignored):
5204 * NET_RX_SUCCESS: no congestion
5205 * NET_RX_DROP: packet was dropped
5206 */
5207int netif_receive_skb_core(struct sk_buff *skb)
5208{
5209 int ret;
5210
5211 rcu_read_lock();
88eb1944 5212 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5213 rcu_read_unlock();
5214
5215 return ret;
5216}
5217EXPORT_SYMBOL(netif_receive_skb_core);
5218
88eb1944
EC
5219static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5220 struct packet_type *pt_prev,
5221 struct net_device *orig_dev)
4ce0017a
EC
5222{
5223 struct sk_buff *skb, *next;
5224
88eb1944
EC
5225 if (!pt_prev)
5226 return;
5227 if (list_empty(head))
5228 return;
17266ee9 5229 if (pt_prev->list_func != NULL)
fdf71426
PA
5230 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5231 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5232 else
9a5a90d1
AL
5233 list_for_each_entry_safe(skb, next, head, list) {
5234 skb_list_del_init(skb);
fdf71426 5235 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5236 }
88eb1944
EC
5237}
5238
5239static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5240{
5241 /* Fast-path assumptions:
5242 * - There is no RX handler.
5243 * - Only one packet_type matches.
5244 * If either of these fails, we will end up doing some per-packet
5245 * processing in-line, then handling the 'last ptype' for the whole
5246 * sublist. This can't cause out-of-order delivery to any single ptype,
5247 * because the 'last ptype' must be constant across the sublist, and all
5248 * other ptypes are handled per-packet.
5249 */
5250 /* Current (common) ptype of sublist */
5251 struct packet_type *pt_curr = NULL;
5252 /* Current (common) orig_dev of sublist */
5253 struct net_device *od_curr = NULL;
5254 struct list_head sublist;
5255 struct sk_buff *skb, *next;
5256
9af86f93 5257 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5258 list_for_each_entry_safe(skb, next, head, list) {
5259 struct net_device *orig_dev = skb->dev;
5260 struct packet_type *pt_prev = NULL;
5261
22f6bbb7 5262 skb_list_del_init(skb);
88eb1944 5263 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
9af86f93
EC
5264 if (!pt_prev)
5265 continue;
88eb1944
EC
5266 if (pt_curr != pt_prev || od_curr != orig_dev) {
5267 /* dispatch old sublist */
88eb1944
EC
5268 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5269 /* start new sublist */
9af86f93 5270 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5271 pt_curr = pt_prev;
5272 od_curr = orig_dev;
5273 }
9af86f93 5274 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5275 }
5276
5277 /* dispatch final sublist */
9af86f93 5278 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5279}
5280
9754e293
DM
5281static int __netif_receive_skb(struct sk_buff *skb)
5282{
5283 int ret;
5284
5285 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5286 unsigned int noreclaim_flag;
9754e293
DM
5287
5288 /*
5289 * PFMEMALLOC skbs are special, they should
5290 * - be delivered to SOCK_MEMALLOC sockets only
5291 * - stay away from userspace
5292 * - have bounded memory usage
5293 *
5294 * Use PF_MEMALLOC as this saves us from propagating the allocation
5295 * context down to all allocation sites.
5296 */
f1083048 5297 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5298 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5299 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5300 } else
88eb1944 5301 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5302
1da177e4
LT
5303 return ret;
5304}
0a9627f2 5305
4ce0017a
EC
5306static void __netif_receive_skb_list(struct list_head *head)
5307{
5308 unsigned long noreclaim_flag = 0;
5309 struct sk_buff *skb, *next;
5310 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5311
5312 list_for_each_entry_safe(skb, next, head, list) {
5313 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5314 struct list_head sublist;
5315
5316 /* Handle the previous sublist */
5317 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5318 if (!list_empty(&sublist))
5319 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5320 pfmemalloc = !pfmemalloc;
5321 /* See comments in __netif_receive_skb */
5322 if (pfmemalloc)
5323 noreclaim_flag = memalloc_noreclaim_save();
5324 else
5325 memalloc_noreclaim_restore(noreclaim_flag);
5326 }
5327 }
5328 /* Handle the remaining sublist */
b9f463d6
EC
5329 if (!list_empty(head))
5330 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5331 /* Restore pflags */
5332 if (pfmemalloc)
5333 memalloc_noreclaim_restore(noreclaim_flag);
5334}
5335
f4e63525 5336static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5337{
58038695 5338 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5339 struct bpf_prog *new = xdp->prog;
5340 int ret = 0;
5341
5342 switch (xdp->command) {
58038695 5343 case XDP_SETUP_PROG:
b5cdae32
DM
5344 rcu_assign_pointer(dev->xdp_prog, new);
5345 if (old)
5346 bpf_prog_put(old);
5347
5348 if (old && !new) {
02786475 5349 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5350 } else if (new && !old) {
02786475 5351 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5352 dev_disable_lro(dev);
56f5aa77 5353 dev_disable_gro_hw(dev);
b5cdae32
DM
5354 }
5355 break;
b5cdae32
DM
5356
5357 case XDP_QUERY_PROG:
58038695 5358 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
5359 break;
5360
5361 default:
5362 ret = -EINVAL;
5363 break;
5364 }
5365
5366 return ret;
5367}
5368
ae78dbfa 5369static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5370{
2c17d27c
JA
5371 int ret;
5372
588f0330 5373 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5374
c1f19b51
RC
5375 if (skb_defer_rx_timestamp(skb))
5376 return NET_RX_SUCCESS;
5377
bbbe211c 5378 rcu_read_lock();
df334545 5379#ifdef CONFIG_RPS
dc05360f 5380 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5381 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5382 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5383
3b098e2d
ED
5384 if (cpu >= 0) {
5385 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5386 rcu_read_unlock();
adc9300e 5387 return ret;
3b098e2d 5388 }
fec5e652 5389 }
1e94d72f 5390#endif
2c17d27c
JA
5391 ret = __netif_receive_skb(skb);
5392 rcu_read_unlock();
5393 return ret;
0a9627f2 5394}
ae78dbfa 5395
7da517a3
EC
5396static void netif_receive_skb_list_internal(struct list_head *head)
5397{
7da517a3 5398 struct sk_buff *skb, *next;
8c057efa 5399 struct list_head sublist;
7da517a3 5400
8c057efa 5401 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5402 list_for_each_entry_safe(skb, next, head, list) {
5403 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5404 skb_list_del_init(skb);
8c057efa
EC
5405 if (!skb_defer_rx_timestamp(skb))
5406 list_add_tail(&skb->list, &sublist);
7da517a3 5407 }
8c057efa 5408 list_splice_init(&sublist, head);
7da517a3 5409
7da517a3
EC
5410 rcu_read_lock();
5411#ifdef CONFIG_RPS
dc05360f 5412 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5413 list_for_each_entry_safe(skb, next, head, list) {
5414 struct rps_dev_flow voidflow, *rflow = &voidflow;
5415 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5416
5417 if (cpu >= 0) {
8c057efa 5418 /* Will be handled, remove from list */
22f6bbb7 5419 skb_list_del_init(skb);
8c057efa 5420 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5421 }
5422 }
5423 }
5424#endif
5425 __netif_receive_skb_list(head);
5426 rcu_read_unlock();
5427}
5428
ae78dbfa
BH
5429/**
5430 * netif_receive_skb - process receive buffer from network
5431 * @skb: buffer to process
5432 *
5433 * netif_receive_skb() is the main receive data processing function.
5434 * It always succeeds. The buffer may be dropped during processing
5435 * for congestion control or by the protocol layers.
5436 *
5437 * This function may only be called from softirq context and interrupts
5438 * should be enabled.
5439 *
5440 * Return values (usually ignored):
5441 * NET_RX_SUCCESS: no congestion
5442 * NET_RX_DROP: packet was dropped
5443 */
04eb4489 5444int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5445{
b0e3f1bd
GB
5446 int ret;
5447
ae78dbfa
BH
5448 trace_netif_receive_skb_entry(skb);
5449
b0e3f1bd
GB
5450 ret = netif_receive_skb_internal(skb);
5451 trace_netif_receive_skb_exit(ret);
5452
5453 return ret;
ae78dbfa 5454}
04eb4489 5455EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5456
f6ad8c1b
EC
5457/**
5458 * netif_receive_skb_list - process many receive buffers from network
5459 * @head: list of skbs to process.
5460 *
7da517a3
EC
5461 * Since return value of netif_receive_skb() is normally ignored, and
5462 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5463 *
5464 * This function may only be called from softirq context and interrupts
5465 * should be enabled.
5466 */
5467void netif_receive_skb_list(struct list_head *head)
5468{
7da517a3 5469 struct sk_buff *skb;
f6ad8c1b 5470
b9f463d6
EC
5471 if (list_empty(head))
5472 return;
b0e3f1bd
GB
5473 if (trace_netif_receive_skb_list_entry_enabled()) {
5474 list_for_each_entry(skb, head, list)
5475 trace_netif_receive_skb_list_entry(skb);
5476 }
7da517a3 5477 netif_receive_skb_list_internal(head);
b0e3f1bd 5478 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5479}
5480EXPORT_SYMBOL(netif_receive_skb_list);
5481
41852497 5482DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5483
5484/* Network device is going away, flush any packets still pending */
5485static void flush_backlog(struct work_struct *work)
6e583ce5 5486{
6e583ce5 5487 struct sk_buff *skb, *tmp;
145dd5f9
PA
5488 struct softnet_data *sd;
5489
5490 local_bh_disable();
5491 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5492
145dd5f9 5493 local_irq_disable();
e36fa2f7 5494 rps_lock(sd);
6e7676c1 5495 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5496 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5497 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 5498 kfree_skb(skb);
76cc8b13 5499 input_queue_head_incr(sd);
6e583ce5 5500 }
6e7676c1 5501 }
e36fa2f7 5502 rps_unlock(sd);
145dd5f9 5503 local_irq_enable();
6e7676c1
CG
5504
5505 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5506 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5507 __skb_unlink(skb, &sd->process_queue);
5508 kfree_skb(skb);
76cc8b13 5509 input_queue_head_incr(sd);
6e7676c1
CG
5510 }
5511 }
145dd5f9
PA
5512 local_bh_enable();
5513}
5514
41852497 5515static void flush_all_backlogs(void)
145dd5f9
PA
5516{
5517 unsigned int cpu;
5518
5519 get_online_cpus();
5520
41852497
ED
5521 for_each_online_cpu(cpu)
5522 queue_work_on(cpu, system_highpri_wq,
5523 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5524
5525 for_each_online_cpu(cpu)
41852497 5526 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5527
5528 put_online_cpus();
6e583ce5
SH
5529}
5530
c8079432
MM
5531/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5532static void gro_normal_list(struct napi_struct *napi)
5533{
5534 if (!napi->rx_count)
5535 return;
5536 netif_receive_skb_list_internal(&napi->rx_list);
5537 INIT_LIST_HEAD(&napi->rx_list);
5538 napi->rx_count = 0;
5539}
5540
5541/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5542 * pass the whole batch up to the stack.
5543 */
5544static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5545{
5546 list_add_tail(&skb->list, &napi->rx_list);
5547 if (++napi->rx_count >= gro_normal_batch)
5548 gro_normal_list(napi);
5549}
5550
aaa5d90b
PA
5551INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5552INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
c8079432 5553static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5554{
22061d80 5555 struct packet_offload *ptype;
d565b0a1 5556 __be16 type = skb->protocol;
22061d80 5557 struct list_head *head = &offload_base;
d565b0a1
HX
5558 int err = -ENOENT;
5559
c3c7c254
ED
5560 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5561
fc59f9a3
HX
5562 if (NAPI_GRO_CB(skb)->count == 1) {
5563 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5564 goto out;
fc59f9a3 5565 }
d565b0a1
HX
5566
5567 rcu_read_lock();
5568 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5569 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5570 continue;
5571
aaa5d90b
PA
5572 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5573 ipv6_gro_complete, inet_gro_complete,
5574 skb, 0);
d565b0a1
HX
5575 break;
5576 }
5577 rcu_read_unlock();
5578
5579 if (err) {
5580 WARN_ON(&ptype->list == head);
5581 kfree_skb(skb);
5582 return NET_RX_SUCCESS;
5583 }
5584
5585out:
c8079432
MM
5586 gro_normal_one(napi, skb);
5587 return NET_RX_SUCCESS;
d565b0a1
HX
5588}
5589
6312fe77 5590static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5591 bool flush_old)
d565b0a1 5592{
6312fe77 5593 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5594 struct sk_buff *skb, *p;
2e71a6f8 5595
07d78363 5596 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5597 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5598 return;
992cba7e 5599 skb_list_del_init(skb);
c8079432 5600 napi_gro_complete(napi, skb);
6312fe77 5601 napi->gro_hash[index].count--;
d565b0a1 5602 }
d9f37d01
LR
5603
5604 if (!napi->gro_hash[index].count)
5605 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5606}
07d78363 5607
6312fe77 5608/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5609 * youngest packets at the head of it.
5610 * Complete skbs in reverse order to reduce latencies.
5611 */
5612void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5613{
42519ede
ED
5614 unsigned long bitmask = napi->gro_bitmask;
5615 unsigned int i, base = ~0U;
07d78363 5616
42519ede
ED
5617 while ((i = ffs(bitmask)) != 0) {
5618 bitmask >>= i;
5619 base += i;
5620 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5621 }
07d78363 5622}
86cac58b 5623EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5624
07d78363
DM
5625static struct list_head *gro_list_prepare(struct napi_struct *napi,
5626 struct sk_buff *skb)
89c5fa33 5627{
89c5fa33 5628 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5629 u32 hash = skb_get_hash_raw(skb);
07d78363 5630 struct list_head *head;
d4546c25 5631 struct sk_buff *p;
89c5fa33 5632
6312fe77 5633 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5634 list_for_each_entry(p, head, list) {
89c5fa33
ED
5635 unsigned long diffs;
5636
0b4cec8c
TH
5637 NAPI_GRO_CB(p)->flush = 0;
5638
5639 if (hash != skb_get_hash_raw(p)) {
5640 NAPI_GRO_CB(p)->same_flow = 0;
5641 continue;
5642 }
5643
89c5fa33 5644 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5645 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5646 if (skb_vlan_tag_present(p))
fc5141cb 5647 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
ce87fc6c 5648 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5649 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5650 if (maclen == ETH_HLEN)
5651 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5652 skb_mac_header(skb));
89c5fa33
ED
5653 else if (!diffs)
5654 diffs = memcmp(skb_mac_header(p),
a50e233c 5655 skb_mac_header(skb),
89c5fa33
ED
5656 maclen);
5657 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5658 }
07d78363
DM
5659
5660 return head;
89c5fa33
ED
5661}
5662
299603e8
JC
5663static void skb_gro_reset_offset(struct sk_buff *skb)
5664{
5665 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5666 const skb_frag_t *frag0 = &pinfo->frags[0];
5667
5668 NAPI_GRO_CB(skb)->data_offset = 0;
5669 NAPI_GRO_CB(skb)->frag0 = NULL;
5670 NAPI_GRO_CB(skb)->frag0_len = 0;
5671
8aef998d 5672 if (!skb_headlen(skb) && pinfo->nr_frags &&
299603e8
JC
5673 !PageHighMem(skb_frag_page(frag0))) {
5674 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5675 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5676 skb_frag_size(frag0),
5677 skb->end - skb->tail);
89c5fa33
ED
5678 }
5679}
5680
a50e233c
ED
5681static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5682{
5683 struct skb_shared_info *pinfo = skb_shinfo(skb);
5684
5685 BUG_ON(skb->end - skb->tail < grow);
5686
5687 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5688
5689 skb->data_len -= grow;
5690 skb->tail += grow;
5691
b54c9d5b 5692 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5693 skb_frag_size_sub(&pinfo->frags[0], grow);
5694
5695 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5696 skb_frag_unref(skb, 0);
5697 memmove(pinfo->frags, pinfo->frags + 1,
5698 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5699 }
5700}
5701
c8079432 5702static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 5703{
6312fe77 5704 struct sk_buff *oldest;
07d78363 5705
6312fe77 5706 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5707
6312fe77 5708 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5709 * impossible.
5710 */
5711 if (WARN_ON_ONCE(!oldest))
5712 return;
5713
d9f37d01
LR
5714 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5715 * SKB to the chain.
07d78363 5716 */
ece23711 5717 skb_list_del_init(oldest);
c8079432 5718 napi_gro_complete(napi, oldest);
07d78363
DM
5719}
5720
aaa5d90b
PA
5721INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5722 struct sk_buff *));
5723INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5724 struct sk_buff *));
bb728820 5725static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5726{
6312fe77 5727 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5728 struct list_head *head = &offload_base;
22061d80 5729 struct packet_offload *ptype;
d565b0a1 5730 __be16 type = skb->protocol;
07d78363 5731 struct list_head *gro_head;
d4546c25 5732 struct sk_buff *pp = NULL;
5b252f0c 5733 enum gro_result ret;
d4546c25 5734 int same_flow;
a50e233c 5735 int grow;
d565b0a1 5736
b5cdae32 5737 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5738 goto normal;
5739
07d78363 5740 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5741
d565b0a1
HX
5742 rcu_read_lock();
5743 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5744 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5745 continue;
5746
86911732 5747 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5748 skb_reset_mac_len(skb);
d565b0a1 5749 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5750 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5751 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5752 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5753 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5754 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5755 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5756 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5757
662880f4
TH
5758 /* Setup for GRO checksum validation */
5759 switch (skb->ip_summed) {
5760 case CHECKSUM_COMPLETE:
5761 NAPI_GRO_CB(skb)->csum = skb->csum;
5762 NAPI_GRO_CB(skb)->csum_valid = 1;
5763 NAPI_GRO_CB(skb)->csum_cnt = 0;
5764 break;
5765 case CHECKSUM_UNNECESSARY:
5766 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5767 NAPI_GRO_CB(skb)->csum_valid = 0;
5768 break;
5769 default:
5770 NAPI_GRO_CB(skb)->csum_cnt = 0;
5771 NAPI_GRO_CB(skb)->csum_valid = 0;
5772 }
d565b0a1 5773
aaa5d90b
PA
5774 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5775 ipv6_gro_receive, inet_gro_receive,
5776 gro_head, skb);
d565b0a1
HX
5777 break;
5778 }
5779 rcu_read_unlock();
5780
5781 if (&ptype->list == head)
5782 goto normal;
5783
45586c70 5784 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
5785 ret = GRO_CONSUMED;
5786 goto ok;
5787 }
5788
0da2afd5 5789 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5790 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5791
d565b0a1 5792 if (pp) {
992cba7e 5793 skb_list_del_init(pp);
c8079432 5794 napi_gro_complete(napi, pp);
6312fe77 5795 napi->gro_hash[hash].count--;
d565b0a1
HX
5796 }
5797
0da2afd5 5798 if (same_flow)
d565b0a1
HX
5799 goto ok;
5800
600adc18 5801 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5802 goto normal;
d565b0a1 5803
6312fe77 5804 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
c8079432 5805 gro_flush_oldest(napi, gro_head);
600adc18 5806 } else {
6312fe77 5807 napi->gro_hash[hash].count++;
600adc18 5808 }
d565b0a1 5809 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5810 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5811 NAPI_GRO_CB(skb)->last = skb;
86911732 5812 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5813 list_add(&skb->list, gro_head);
5d0d9be8 5814 ret = GRO_HELD;
d565b0a1 5815
ad0f9904 5816pull:
a50e233c
ED
5817 grow = skb_gro_offset(skb) - skb_headlen(skb);
5818 if (grow > 0)
5819 gro_pull_from_frag0(skb, grow);
d565b0a1 5820ok:
d9f37d01
LR
5821 if (napi->gro_hash[hash].count) {
5822 if (!test_bit(hash, &napi->gro_bitmask))
5823 __set_bit(hash, &napi->gro_bitmask);
5824 } else if (test_bit(hash, &napi->gro_bitmask)) {
5825 __clear_bit(hash, &napi->gro_bitmask);
5826 }
5827
5d0d9be8 5828 return ret;
d565b0a1
HX
5829
5830normal:
ad0f9904
HX
5831 ret = GRO_NORMAL;
5832 goto pull;
5d38a079 5833}
96e93eab 5834
bf5a755f
JC
5835struct packet_offload *gro_find_receive_by_type(__be16 type)
5836{
5837 struct list_head *offload_head = &offload_base;
5838 struct packet_offload *ptype;
5839
5840 list_for_each_entry_rcu(ptype, offload_head, list) {
5841 if (ptype->type != type || !ptype->callbacks.gro_receive)
5842 continue;
5843 return ptype;
5844 }
5845 return NULL;
5846}
e27a2f83 5847EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
5848
5849struct packet_offload *gro_find_complete_by_type(__be16 type)
5850{
5851 struct list_head *offload_head = &offload_base;
5852 struct packet_offload *ptype;
5853
5854 list_for_each_entry_rcu(ptype, offload_head, list) {
5855 if (ptype->type != type || !ptype->callbacks.gro_complete)
5856 continue;
5857 return ptype;
5858 }
5859 return NULL;
5860}
e27a2f83 5861EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5862
e44699d2
MK
5863static void napi_skb_free_stolen_head(struct sk_buff *skb)
5864{
5865 skb_dst_drop(skb);
174e2381 5866 skb_ext_put(skb);
e44699d2
MK
5867 kmem_cache_free(skbuff_head_cache, skb);
5868}
5869
6570bc79
AL
5870static gro_result_t napi_skb_finish(struct napi_struct *napi,
5871 struct sk_buff *skb,
5872 gro_result_t ret)
5d38a079 5873{
5d0d9be8
HX
5874 switch (ret) {
5875 case GRO_NORMAL:
6570bc79 5876 gro_normal_one(napi, skb);
c7c4b3b6 5877 break;
5d38a079 5878
5d0d9be8 5879 case GRO_DROP:
5d38a079
HX
5880 kfree_skb(skb);
5881 break;
5b252f0c 5882
daa86548 5883 case GRO_MERGED_FREE:
e44699d2
MK
5884 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5885 napi_skb_free_stolen_head(skb);
5886 else
d7e8883c 5887 __kfree_skb(skb);
daa86548
ED
5888 break;
5889
5b252f0c
BH
5890 case GRO_HELD:
5891 case GRO_MERGED:
25393d3f 5892 case GRO_CONSUMED:
5b252f0c 5893 break;
5d38a079
HX
5894 }
5895
c7c4b3b6 5896 return ret;
5d0d9be8 5897}
5d0d9be8 5898
c7c4b3b6 5899gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 5900{
b0e3f1bd
GB
5901 gro_result_t ret;
5902
93f93a44 5903 skb_mark_napi_id(skb, napi);
ae78dbfa 5904 trace_napi_gro_receive_entry(skb);
86911732 5905
a50e233c
ED
5906 skb_gro_reset_offset(skb);
5907
6570bc79 5908 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
5909 trace_napi_gro_receive_exit(ret);
5910
5911 return ret;
d565b0a1
HX
5912}
5913EXPORT_SYMBOL(napi_gro_receive);
5914
d0c2b0d2 5915static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5916{
93a35f59
ED
5917 if (unlikely(skb->pfmemalloc)) {
5918 consume_skb(skb);
5919 return;
5920 }
96e93eab 5921 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5922 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5923 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 5924 __vlan_hwaccel_clear_tag(skb);
66c46d74 5925 skb->dev = napi->dev;
6d152e23 5926 skb->skb_iif = 0;
33d9a2c7
ED
5927
5928 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5929 skb->pkt_type = PACKET_HOST;
5930
c3caf119
JC
5931 skb->encapsulation = 0;
5932 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5933 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 5934 skb_ext_reset(skb);
96e93eab
HX
5935
5936 napi->skb = skb;
5937}
96e93eab 5938
76620aaf 5939struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5940{
5d38a079 5941 struct sk_buff *skb = napi->skb;
5d38a079
HX
5942
5943 if (!skb) {
fd11a83d 5944 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5945 if (skb) {
5946 napi->skb = skb;
5947 skb_mark_napi_id(skb, napi);
5948 }
80595d59 5949 }
96e93eab
HX
5950 return skb;
5951}
76620aaf 5952EXPORT_SYMBOL(napi_get_frags);
96e93eab 5953
a50e233c
ED
5954static gro_result_t napi_frags_finish(struct napi_struct *napi,
5955 struct sk_buff *skb,
5956 gro_result_t ret)
96e93eab 5957{
5d0d9be8
HX
5958 switch (ret) {
5959 case GRO_NORMAL:
a50e233c
ED
5960 case GRO_HELD:
5961 __skb_push(skb, ETH_HLEN);
5962 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61
EC
5963 if (ret == GRO_NORMAL)
5964 gro_normal_one(napi, skb);
86911732 5965 break;
5d38a079 5966
5d0d9be8 5967 case GRO_DROP:
5d0d9be8
HX
5968 napi_reuse_skb(napi, skb);
5969 break;
5b252f0c 5970
e44699d2
MK
5971 case GRO_MERGED_FREE:
5972 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5973 napi_skb_free_stolen_head(skb);
5974 else
5975 napi_reuse_skb(napi, skb);
5976 break;
5977
5b252f0c 5978 case GRO_MERGED:
25393d3f 5979 case GRO_CONSUMED:
5b252f0c 5980 break;
5d0d9be8 5981 }
5d38a079 5982
c7c4b3b6 5983 return ret;
5d38a079 5984}
5d0d9be8 5985
a50e233c
ED
5986/* Upper GRO stack assumes network header starts at gro_offset=0
5987 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5988 * We copy ethernet header into skb->data to have a common layout.
5989 */
4adb9c4a 5990static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5991{
5992 struct sk_buff *skb = napi->skb;
a50e233c
ED
5993 const struct ethhdr *eth;
5994 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5995
5996 napi->skb = NULL;
5997
a50e233c
ED
5998 skb_reset_mac_header(skb);
5999 skb_gro_reset_offset(skb);
6000
a50e233c
ED
6001 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6002 eth = skb_gro_header_slow(skb, hlen, 0);
6003 if (unlikely(!eth)) {
4da46ceb
AC
6004 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6005 __func__, napi->dev->name);
a50e233c
ED
6006 napi_reuse_skb(napi, skb);
6007 return NULL;
6008 }
6009 } else {
a4270d67 6010 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6011 gro_pull_from_frag0(skb, hlen);
6012 NAPI_GRO_CB(skb)->frag0 += hlen;
6013 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6014 }
a50e233c
ED
6015 __skb_pull(skb, hlen);
6016
6017 /*
6018 * This works because the only protocols we care about don't require
6019 * special handling.
6020 * We'll fix it up properly in napi_frags_finish()
6021 */
6022 skb->protocol = eth->h_proto;
76620aaf 6023
76620aaf
HX
6024 return skb;
6025}
76620aaf 6026
c7c4b3b6 6027gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6028{
b0e3f1bd 6029 gro_result_t ret;
76620aaf 6030 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
6031
6032 if (!skb)
c7c4b3b6 6033 return GRO_DROP;
5d0d9be8 6034
ae78dbfa
BH
6035 trace_napi_gro_frags_entry(skb);
6036
b0e3f1bd
GB
6037 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6038 trace_napi_gro_frags_exit(ret);
6039
6040 return ret;
5d0d9be8 6041}
5d38a079
HX
6042EXPORT_SYMBOL(napi_gro_frags);
6043
573e8fca
TH
6044/* Compute the checksum from gro_offset and return the folded value
6045 * after adding in any pseudo checksum.
6046 */
6047__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6048{
6049 __wsum wsum;
6050 __sum16 sum;
6051
6052 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6053
6054 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6055 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6056 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6057 if (likely(!sum)) {
6058 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6059 !skb->csum_complete_sw)
7fe50ac8 6060 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6061 }
6062
6063 NAPI_GRO_CB(skb)->csum = wsum;
6064 NAPI_GRO_CB(skb)->csum_valid = 1;
6065
6066 return sum;
6067}
6068EXPORT_SYMBOL(__skb_gro_checksum_complete);
6069
773fc8f6 6070static void net_rps_send_ipi(struct softnet_data *remsd)
6071{
6072#ifdef CONFIG_RPS
6073 while (remsd) {
6074 struct softnet_data *next = remsd->rps_ipi_next;
6075
6076 if (cpu_online(remsd->cpu))
6077 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6078 remsd = next;
6079 }
6080#endif
6081}
6082
e326bed2 6083/*
855abcf0 6084 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6085 * Note: called with local irq disabled, but exits with local irq enabled.
6086 */
6087static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6088{
6089#ifdef CONFIG_RPS
6090 struct softnet_data *remsd = sd->rps_ipi_list;
6091
6092 if (remsd) {
6093 sd->rps_ipi_list = NULL;
6094
6095 local_irq_enable();
6096
6097 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6098 net_rps_send_ipi(remsd);
e326bed2
ED
6099 } else
6100#endif
6101 local_irq_enable();
6102}
6103
d75b1ade
ED
6104static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6105{
6106#ifdef CONFIG_RPS
6107 return sd->rps_ipi_list != NULL;
6108#else
6109 return false;
6110#endif
6111}
6112
bea3348e 6113static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6114{
eecfd7c4 6115 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6116 bool again = true;
6117 int work = 0;
1da177e4 6118
e326bed2
ED
6119 /* Check if we have pending ipi, its better to send them now,
6120 * not waiting net_rx_action() end.
6121 */
d75b1ade 6122 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6123 local_irq_disable();
6124 net_rps_action_and_irq_enable(sd);
6125 }
d75b1ade 6126
3d48b53f 6127 napi->weight = dev_rx_weight;
145dd5f9 6128 while (again) {
1da177e4 6129 struct sk_buff *skb;
6e7676c1
CG
6130
6131 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6132 rcu_read_lock();
6e7676c1 6133 __netif_receive_skb(skb);
2c17d27c 6134 rcu_read_unlock();
76cc8b13 6135 input_queue_head_incr(sd);
145dd5f9 6136 if (++work >= quota)
76cc8b13 6137 return work;
145dd5f9 6138
6e7676c1 6139 }
1da177e4 6140
145dd5f9 6141 local_irq_disable();
e36fa2f7 6142 rps_lock(sd);
11ef7a89 6143 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6144 /*
6145 * Inline a custom version of __napi_complete().
6146 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6147 * and NAPI_STATE_SCHED is the only possible flag set
6148 * on backlog.
6149 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6150 * and we dont need an smp_mb() memory barrier.
6151 */
eecfd7c4 6152 napi->state = 0;
145dd5f9
PA
6153 again = false;
6154 } else {
6155 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6156 &sd->process_queue);
bea3348e 6157 }
e36fa2f7 6158 rps_unlock(sd);
145dd5f9 6159 local_irq_enable();
6e7676c1 6160 }
1da177e4 6161
bea3348e
SH
6162 return work;
6163}
1da177e4 6164
bea3348e
SH
6165/**
6166 * __napi_schedule - schedule for receive
c4ea43c5 6167 * @n: entry to schedule
bea3348e 6168 *
bc9ad166
ED
6169 * The entry's receive function will be scheduled to run.
6170 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6171 */
b5606c2d 6172void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6173{
6174 unsigned long flags;
1da177e4 6175
bea3348e 6176 local_irq_save(flags);
903ceff7 6177 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6178 local_irq_restore(flags);
1da177e4 6179}
bea3348e
SH
6180EXPORT_SYMBOL(__napi_schedule);
6181
39e6c820
ED
6182/**
6183 * napi_schedule_prep - check if napi can be scheduled
6184 * @n: napi context
6185 *
6186 * Test if NAPI routine is already running, and if not mark
6187 * it as running. This is used as a condition variable
6188 * insure only one NAPI poll instance runs. We also make
6189 * sure there is no pending NAPI disable.
6190 */
6191bool napi_schedule_prep(struct napi_struct *n)
6192{
6193 unsigned long val, new;
6194
6195 do {
6196 val = READ_ONCE(n->state);
6197 if (unlikely(val & NAPIF_STATE_DISABLE))
6198 return false;
6199 new = val | NAPIF_STATE_SCHED;
6200
6201 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6202 * This was suggested by Alexander Duyck, as compiler
6203 * emits better code than :
6204 * if (val & NAPIF_STATE_SCHED)
6205 * new |= NAPIF_STATE_MISSED;
6206 */
6207 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6208 NAPIF_STATE_MISSED;
6209 } while (cmpxchg(&n->state, val, new) != val);
6210
6211 return !(val & NAPIF_STATE_SCHED);
6212}
6213EXPORT_SYMBOL(napi_schedule_prep);
6214
bc9ad166
ED
6215/**
6216 * __napi_schedule_irqoff - schedule for receive
6217 * @n: entry to schedule
6218 *
6219 * Variant of __napi_schedule() assuming hard irqs are masked
6220 */
6221void __napi_schedule_irqoff(struct napi_struct *n)
6222{
6223 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6224}
6225EXPORT_SYMBOL(__napi_schedule_irqoff);
6226
364b6055 6227bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6228{
39e6c820 6229 unsigned long flags, val, new;
d565b0a1
HX
6230
6231 /*
217f6974
ED
6232 * 1) Don't let napi dequeue from the cpu poll list
6233 * just in case its running on a different cpu.
6234 * 2) If we are busy polling, do nothing here, we have
6235 * the guarantee we will be called later.
d565b0a1 6236 */
217f6974
ED
6237 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6238 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6239 return false;
d565b0a1 6240
d9f37d01 6241 if (n->gro_bitmask) {
3b47d303 6242 unsigned long timeout = 0;
d75b1ade 6243
3b47d303
ED
6244 if (work_done)
6245 timeout = n->dev->gro_flush_timeout;
6246
605108ac
PA
6247 /* When the NAPI instance uses a timeout and keeps postponing
6248 * it, we need to bound somehow the time packets are kept in
6249 * the GRO layer
6250 */
6251 napi_gro_flush(n, !!timeout);
3b47d303
ED
6252 if (timeout)
6253 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6254 HRTIMER_MODE_REL_PINNED);
3b47d303 6255 }
c8079432
MM
6256
6257 gro_normal_list(n);
6258
02c1602e 6259 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6260 /* If n->poll_list is not empty, we need to mask irqs */
6261 local_irq_save(flags);
02c1602e 6262 list_del_init(&n->poll_list);
d75b1ade
ED
6263 local_irq_restore(flags);
6264 }
39e6c820
ED
6265
6266 do {
6267 val = READ_ONCE(n->state);
6268
6269 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6270
6271 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6272
6273 /* If STATE_MISSED was set, leave STATE_SCHED set,
6274 * because we will call napi->poll() one more time.
6275 * This C code was suggested by Alexander Duyck to help gcc.
6276 */
6277 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6278 NAPIF_STATE_SCHED;
6279 } while (cmpxchg(&n->state, val, new) != val);
6280
6281 if (unlikely(val & NAPIF_STATE_MISSED)) {
6282 __napi_schedule(n);
6283 return false;
6284 }
6285
364b6055 6286 return true;
d565b0a1 6287}
3b47d303 6288EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6289
af12fa6e 6290/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6291static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6292{
6293 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6294 struct napi_struct *napi;
6295
6296 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6297 if (napi->napi_id == napi_id)
6298 return napi;
6299
6300 return NULL;
6301}
02d62e86
ED
6302
6303#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6304
ce6aea93 6305#define BUSY_POLL_BUDGET 8
217f6974
ED
6306
6307static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6308{
6309 int rc;
6310
39e6c820
ED
6311 /* Busy polling means there is a high chance device driver hard irq
6312 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6313 * set in napi_schedule_prep().
6314 * Since we are about to call napi->poll() once more, we can safely
6315 * clear NAPI_STATE_MISSED.
6316 *
6317 * Note: x86 could use a single "lock and ..." instruction
6318 * to perform these two clear_bit()
6319 */
6320 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6321 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6322
6323 local_bh_disable();
6324
6325 /* All we really want here is to re-enable device interrupts.
6326 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6327 */
6328 rc = napi->poll(napi, BUSY_POLL_BUDGET);
323ebb61
EC
6329 /* We can't gro_normal_list() here, because napi->poll() might have
6330 * rearmed the napi (napi_complete_done()) in which case it could
6331 * already be running on another CPU.
6332 */
1e22391e 6333 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974 6334 netpoll_poll_unlock(have_poll_lock);
323ebb61
EC
6335 if (rc == BUSY_POLL_BUDGET) {
6336 /* As the whole budget was spent, we still own the napi so can
6337 * safely handle the rx_list.
6338 */
6339 gro_normal_list(napi);
217f6974 6340 __napi_schedule(napi);
323ebb61 6341 }
217f6974 6342 local_bh_enable();
217f6974
ED
6343}
6344
7db6b048
SS
6345void napi_busy_loop(unsigned int napi_id,
6346 bool (*loop_end)(void *, unsigned long),
6347 void *loop_end_arg)
02d62e86 6348{
7db6b048 6349 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6350 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6351 void *have_poll_lock = NULL;
02d62e86 6352 struct napi_struct *napi;
217f6974
ED
6353
6354restart:
217f6974 6355 napi_poll = NULL;
02d62e86 6356
2a028ecb 6357 rcu_read_lock();
02d62e86 6358
545cd5e5 6359 napi = napi_by_id(napi_id);
02d62e86
ED
6360 if (!napi)
6361 goto out;
6362
217f6974
ED
6363 preempt_disable();
6364 for (;;) {
2b5cd0df
AD
6365 int work = 0;
6366
2a028ecb 6367 local_bh_disable();
217f6974
ED
6368 if (!napi_poll) {
6369 unsigned long val = READ_ONCE(napi->state);
6370
6371 /* If multiple threads are competing for this napi,
6372 * we avoid dirtying napi->state as much as we can.
6373 */
6374 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6375 NAPIF_STATE_IN_BUSY_POLL))
6376 goto count;
6377 if (cmpxchg(&napi->state, val,
6378 val | NAPIF_STATE_IN_BUSY_POLL |
6379 NAPIF_STATE_SCHED) != val)
6380 goto count;
6381 have_poll_lock = netpoll_poll_lock(napi);
6382 napi_poll = napi->poll;
6383 }
2b5cd0df
AD
6384 work = napi_poll(napi, BUSY_POLL_BUDGET);
6385 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
323ebb61 6386 gro_normal_list(napi);
217f6974 6387count:
2b5cd0df 6388 if (work > 0)
7db6b048 6389 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6390 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6391 local_bh_enable();
02d62e86 6392
7db6b048 6393 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6394 break;
02d62e86 6395
217f6974
ED
6396 if (unlikely(need_resched())) {
6397 if (napi_poll)
6398 busy_poll_stop(napi, have_poll_lock);
6399 preempt_enable();
6400 rcu_read_unlock();
6401 cond_resched();
7db6b048 6402 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6403 return;
217f6974
ED
6404 goto restart;
6405 }
6cdf89b1 6406 cpu_relax();
217f6974
ED
6407 }
6408 if (napi_poll)
6409 busy_poll_stop(napi, have_poll_lock);
6410 preempt_enable();
02d62e86 6411out:
2a028ecb 6412 rcu_read_unlock();
02d62e86 6413}
7db6b048 6414EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6415
6416#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6417
149d6ad8 6418static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6419{
d64b5e85
ED
6420 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6421 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 6422 return;
af12fa6e 6423
52bd2d62 6424 spin_lock(&napi_hash_lock);
af12fa6e 6425
545cd5e5 6426 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6427 do {
545cd5e5
AD
6428 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6429 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6430 } while (napi_by_id(napi_gen_id));
6431 napi->napi_id = napi_gen_id;
af12fa6e 6432
52bd2d62
ED
6433 hlist_add_head_rcu(&napi->napi_hash_node,
6434 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6435
52bd2d62 6436 spin_unlock(&napi_hash_lock);
af12fa6e 6437}
af12fa6e
ET
6438
6439/* Warning : caller is responsible to make sure rcu grace period
6440 * is respected before freeing memory containing @napi
6441 */
34cbe27e 6442bool napi_hash_del(struct napi_struct *napi)
af12fa6e 6443{
34cbe27e
ED
6444 bool rcu_sync_needed = false;
6445
af12fa6e
ET
6446 spin_lock(&napi_hash_lock);
6447
34cbe27e
ED
6448 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6449 rcu_sync_needed = true;
af12fa6e 6450 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 6451 }
af12fa6e 6452 spin_unlock(&napi_hash_lock);
34cbe27e 6453 return rcu_sync_needed;
af12fa6e
ET
6454}
6455EXPORT_SYMBOL_GPL(napi_hash_del);
6456
3b47d303
ED
6457static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6458{
6459 struct napi_struct *napi;
6460
6461 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6462
6463 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6464 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6465 */
d9f37d01 6466 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
39e6c820
ED
6467 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6468 __napi_schedule_irqoff(napi);
3b47d303
ED
6469
6470 return HRTIMER_NORESTART;
6471}
6472
7c4ec749 6473static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6474{
07d78363
DM
6475 int i;
6476
6312fe77
LR
6477 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6478 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6479 napi->gro_hash[i].count = 0;
6480 }
7c4ec749
DM
6481 napi->gro_bitmask = 0;
6482}
6483
6484void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6485 int (*poll)(struct napi_struct *, int), int weight)
6486{
6487 INIT_LIST_HEAD(&napi->poll_list);
6488 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6489 napi->timer.function = napi_watchdog;
6490 init_gro_hash(napi);
5d38a079 6491 napi->skb = NULL;
323ebb61
EC
6492 INIT_LIST_HEAD(&napi->rx_list);
6493 napi->rx_count = 0;
d565b0a1 6494 napi->poll = poll;
82dc3c63 6495 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6496 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6497 weight);
d565b0a1
HX
6498 napi->weight = weight;
6499 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 6500 napi->dev = dev;
5d38a079 6501#ifdef CONFIG_NETPOLL
d565b0a1
HX
6502 napi->poll_owner = -1;
6503#endif
6504 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 6505 napi_hash_add(napi);
d565b0a1
HX
6506}
6507EXPORT_SYMBOL(netif_napi_add);
6508
3b47d303
ED
6509void napi_disable(struct napi_struct *n)
6510{
6511 might_sleep();
6512 set_bit(NAPI_STATE_DISABLE, &n->state);
6513
6514 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6515 msleep(1);
2d8bff12
NH
6516 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6517 msleep(1);
3b47d303
ED
6518
6519 hrtimer_cancel(&n->timer);
6520
6521 clear_bit(NAPI_STATE_DISABLE, &n->state);
6522}
6523EXPORT_SYMBOL(napi_disable);
6524
07d78363 6525static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6526{
07d78363 6527 int i;
d4546c25 6528
07d78363
DM
6529 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6530 struct sk_buff *skb, *n;
6531
6312fe77 6532 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6533 kfree_skb(skb);
6312fe77 6534 napi->gro_hash[i].count = 0;
07d78363 6535 }
d4546c25
DM
6536}
6537
93d05d4a 6538/* Must be called in process context */
d565b0a1
HX
6539void netif_napi_del(struct napi_struct *napi)
6540{
93d05d4a
ED
6541 might_sleep();
6542 if (napi_hash_del(napi))
6543 synchronize_net();
d7b06636 6544 list_del_init(&napi->dev_list);
76620aaf 6545 napi_free_frags(napi);
d565b0a1 6546
07d78363 6547 flush_gro_hash(napi);
d9f37d01 6548 napi->gro_bitmask = 0;
d565b0a1
HX
6549}
6550EXPORT_SYMBOL(netif_napi_del);
6551
726ce70e
HX
6552static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6553{
6554 void *have;
6555 int work, weight;
6556
6557 list_del_init(&n->poll_list);
6558
6559 have = netpoll_poll_lock(n);
6560
6561 weight = n->weight;
6562
6563 /* This NAPI_STATE_SCHED test is for avoiding a race
6564 * with netpoll's poll_napi(). Only the entity which
6565 * obtains the lock and sees NAPI_STATE_SCHED set will
6566 * actually make the ->poll() call. Therefore we avoid
6567 * accidentally calling ->poll() when NAPI is not scheduled.
6568 */
6569 work = 0;
6570 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6571 work = n->poll(n, weight);
1db19db7 6572 trace_napi_poll(n, work, weight);
726ce70e
HX
6573 }
6574
6575 WARN_ON_ONCE(work > weight);
6576
6577 if (likely(work < weight))
6578 goto out_unlock;
6579
6580 /* Drivers must not modify the NAPI state if they
6581 * consume the entire weight. In such cases this code
6582 * still "owns" the NAPI instance and therefore can
6583 * move the instance around on the list at-will.
6584 */
6585 if (unlikely(napi_disable_pending(n))) {
6586 napi_complete(n);
6587 goto out_unlock;
6588 }
6589
d9f37d01 6590 if (n->gro_bitmask) {
726ce70e
HX
6591 /* flush too old packets
6592 * If HZ < 1000, flush all packets.
6593 */
6594 napi_gro_flush(n, HZ >= 1000);
6595 }
6596
c8079432
MM
6597 gro_normal_list(n);
6598
001ce546
HX
6599 /* Some drivers may have called napi_schedule
6600 * prior to exhausting their budget.
6601 */
6602 if (unlikely(!list_empty(&n->poll_list))) {
6603 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6604 n->dev ? n->dev->name : "backlog");
6605 goto out_unlock;
6606 }
6607
726ce70e
HX
6608 list_add_tail(&n->poll_list, repoll);
6609
6610out_unlock:
6611 netpoll_poll_unlock(have);
6612
6613 return work;
6614}
6615
0766f788 6616static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6617{
903ceff7 6618 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6619 unsigned long time_limit = jiffies +
6620 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6621 int budget = netdev_budget;
d75b1ade
ED
6622 LIST_HEAD(list);
6623 LIST_HEAD(repoll);
53fb95d3 6624
1da177e4 6625 local_irq_disable();
d75b1ade
ED
6626 list_splice_init(&sd->poll_list, &list);
6627 local_irq_enable();
1da177e4 6628
ceb8d5bf 6629 for (;;) {
bea3348e 6630 struct napi_struct *n;
1da177e4 6631
ceb8d5bf
HX
6632 if (list_empty(&list)) {
6633 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6634 goto out;
ceb8d5bf
HX
6635 break;
6636 }
6637
6bd373eb
HX
6638 n = list_first_entry(&list, struct napi_struct, poll_list);
6639 budget -= napi_poll(n, &repoll);
6640
d75b1ade 6641 /* If softirq window is exhausted then punt.
24f8b238
SH
6642 * Allow this to run for 2 jiffies since which will allow
6643 * an average latency of 1.5/HZ.
bea3348e 6644 */
ceb8d5bf
HX
6645 if (unlikely(budget <= 0 ||
6646 time_after_eq(jiffies, time_limit))) {
6647 sd->time_squeeze++;
6648 break;
6649 }
1da177e4 6650 }
d75b1ade 6651
d75b1ade
ED
6652 local_irq_disable();
6653
6654 list_splice_tail_init(&sd->poll_list, &list);
6655 list_splice_tail(&repoll, &list);
6656 list_splice(&list, &sd->poll_list);
6657 if (!list_empty(&sd->poll_list))
6658 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6659
e326bed2 6660 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6661out:
6662 __kfree_skb_flush();
1da177e4
LT
6663}
6664
aa9d8560 6665struct netdev_adjacent {
9ff162a8 6666 struct net_device *dev;
5d261913
VF
6667
6668 /* upper master flag, there can only be one master device per list */
9ff162a8 6669 bool master;
5d261913 6670
32b6d34f
TY
6671 /* lookup ignore flag */
6672 bool ignore;
6673
5d261913
VF
6674 /* counter for the number of times this device was added to us */
6675 u16 ref_nr;
6676
402dae96
VF
6677 /* private field for the users */
6678 void *private;
6679
9ff162a8
JP
6680 struct list_head list;
6681 struct rcu_head rcu;
9ff162a8
JP
6682};
6683
6ea29da1 6684static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6685 struct list_head *adj_list)
9ff162a8 6686{
5d261913 6687 struct netdev_adjacent *adj;
5d261913 6688
2f268f12 6689 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6690 if (adj->dev == adj_dev)
6691 return adj;
9ff162a8
JP
6692 }
6693 return NULL;
6694}
6695
32b6d34f 6696static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
f1170fd4
DA
6697{
6698 struct net_device *dev = data;
6699
6700 return upper_dev == dev;
6701}
6702
9ff162a8
JP
6703/**
6704 * netdev_has_upper_dev - Check if device is linked to an upper device
6705 * @dev: device
6706 * @upper_dev: upper device to check
6707 *
6708 * Find out if a device is linked to specified upper device and return true
6709 * in case it is. Note that this checks only immediate upper device,
6710 * not through a complete stack of devices. The caller must hold the RTNL lock.
6711 */
6712bool netdev_has_upper_dev(struct net_device *dev,
6713 struct net_device *upper_dev)
6714{
6715 ASSERT_RTNL();
6716
32b6d34f 6717 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
f1170fd4 6718 upper_dev);
9ff162a8
JP
6719}
6720EXPORT_SYMBOL(netdev_has_upper_dev);
6721
1a3f060c
DA
6722/**
6723 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6724 * @dev: device
6725 * @upper_dev: upper device to check
6726 *
6727 * Find out if a device is linked to specified upper device and return true
6728 * in case it is. Note that this checks the entire upper device chain.
6729 * The caller must hold rcu lock.
6730 */
6731
1a3f060c
DA
6732bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6733 struct net_device *upper_dev)
6734{
32b6d34f 6735 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
1a3f060c
DA
6736 upper_dev);
6737}
6738EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6739
9ff162a8
JP
6740/**
6741 * netdev_has_any_upper_dev - Check if device is linked to some device
6742 * @dev: device
6743 *
6744 * Find out if a device is linked to an upper device and return true in case
6745 * it is. The caller must hold the RTNL lock.
6746 */
25cc72a3 6747bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6748{
6749 ASSERT_RTNL();
6750
f1170fd4 6751 return !list_empty(&dev->adj_list.upper);
9ff162a8 6752}
25cc72a3 6753EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6754
6755/**
6756 * netdev_master_upper_dev_get - Get master upper device
6757 * @dev: device
6758 *
6759 * Find a master upper device and return pointer to it or NULL in case
6760 * it's not there. The caller must hold the RTNL lock.
6761 */
6762struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6763{
aa9d8560 6764 struct netdev_adjacent *upper;
9ff162a8
JP
6765
6766 ASSERT_RTNL();
6767
2f268f12 6768 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6769 return NULL;
6770
2f268f12 6771 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6772 struct netdev_adjacent, list);
9ff162a8
JP
6773 if (likely(upper->master))
6774 return upper->dev;
6775 return NULL;
6776}
6777EXPORT_SYMBOL(netdev_master_upper_dev_get);
6778
32b6d34f
TY
6779static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6780{
6781 struct netdev_adjacent *upper;
6782
6783 ASSERT_RTNL();
6784
6785 if (list_empty(&dev->adj_list.upper))
6786 return NULL;
6787
6788 upper = list_first_entry(&dev->adj_list.upper,
6789 struct netdev_adjacent, list);
6790 if (likely(upper->master) && !upper->ignore)
6791 return upper->dev;
6792 return NULL;
6793}
6794
0f524a80
DA
6795/**
6796 * netdev_has_any_lower_dev - Check if device is linked to some device
6797 * @dev: device
6798 *
6799 * Find out if a device is linked to a lower device and return true in case
6800 * it is. The caller must hold the RTNL lock.
6801 */
6802static bool netdev_has_any_lower_dev(struct net_device *dev)
6803{
6804 ASSERT_RTNL();
6805
6806 return !list_empty(&dev->adj_list.lower);
6807}
6808
b6ccba4c
VF
6809void *netdev_adjacent_get_private(struct list_head *adj_list)
6810{
6811 struct netdev_adjacent *adj;
6812
6813 adj = list_entry(adj_list, struct netdev_adjacent, list);
6814
6815 return adj->private;
6816}
6817EXPORT_SYMBOL(netdev_adjacent_get_private);
6818
44a40855
VY
6819/**
6820 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6821 * @dev: device
6822 * @iter: list_head ** of the current position
6823 *
6824 * Gets the next device from the dev's upper list, starting from iter
6825 * position. The caller must hold RCU read lock.
6826 */
6827struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6828 struct list_head **iter)
6829{
6830 struct netdev_adjacent *upper;
6831
6832 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6833
6834 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6835
6836 if (&upper->list == &dev->adj_list.upper)
6837 return NULL;
6838
6839 *iter = &upper->list;
6840
6841 return upper->dev;
6842}
6843EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6844
32b6d34f
TY
6845static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6846 struct list_head **iter,
6847 bool *ignore)
5343da4c
TY
6848{
6849 struct netdev_adjacent *upper;
6850
6851 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6852
6853 if (&upper->list == &dev->adj_list.upper)
6854 return NULL;
6855
6856 *iter = &upper->list;
32b6d34f 6857 *ignore = upper->ignore;
5343da4c
TY
6858
6859 return upper->dev;
6860}
6861
1a3f060c
DA
6862static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6863 struct list_head **iter)
6864{
6865 struct netdev_adjacent *upper;
6866
6867 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6868
6869 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6870
6871 if (&upper->list == &dev->adj_list.upper)
6872 return NULL;
6873
6874 *iter = &upper->list;
6875
6876 return upper->dev;
6877}
6878
32b6d34f
TY
6879static int __netdev_walk_all_upper_dev(struct net_device *dev,
6880 int (*fn)(struct net_device *dev,
6881 void *data),
6882 void *data)
5343da4c
TY
6883{
6884 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6885 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6886 int ret, cur = 0;
32b6d34f 6887 bool ignore;
5343da4c
TY
6888
6889 now = dev;
6890 iter = &dev->adj_list.upper;
6891
6892 while (1) {
6893 if (now != dev) {
6894 ret = fn(now, data);
6895 if (ret)
6896 return ret;
6897 }
6898
6899 next = NULL;
6900 while (1) {
32b6d34f 6901 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
6902 if (!udev)
6903 break;
32b6d34f
TY
6904 if (ignore)
6905 continue;
5343da4c
TY
6906
6907 next = udev;
6908 niter = &udev->adj_list.upper;
6909 dev_stack[cur] = now;
6910 iter_stack[cur++] = iter;
6911 break;
6912 }
6913
6914 if (!next) {
6915 if (!cur)
6916 return 0;
6917 next = dev_stack[--cur];
6918 niter = iter_stack[cur];
6919 }
6920
6921 now = next;
6922 iter = niter;
6923 }
6924
6925 return 0;
6926}
6927
1a3f060c
DA
6928int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6929 int (*fn)(struct net_device *dev,
6930 void *data),
6931 void *data)
6932{
5343da4c
TY
6933 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6934 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6935 int ret, cur = 0;
1a3f060c 6936
5343da4c
TY
6937 now = dev;
6938 iter = &dev->adj_list.upper;
1a3f060c 6939
5343da4c
TY
6940 while (1) {
6941 if (now != dev) {
6942 ret = fn(now, data);
6943 if (ret)
6944 return ret;
6945 }
6946
6947 next = NULL;
6948 while (1) {
6949 udev = netdev_next_upper_dev_rcu(now, &iter);
6950 if (!udev)
6951 break;
6952
6953 next = udev;
6954 niter = &udev->adj_list.upper;
6955 dev_stack[cur] = now;
6956 iter_stack[cur++] = iter;
6957 break;
6958 }
6959
6960 if (!next) {
6961 if (!cur)
6962 return 0;
6963 next = dev_stack[--cur];
6964 niter = iter_stack[cur];
6965 }
6966
6967 now = next;
6968 iter = niter;
1a3f060c
DA
6969 }
6970
6971 return 0;
6972}
6973EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6974
32b6d34f
TY
6975static bool __netdev_has_upper_dev(struct net_device *dev,
6976 struct net_device *upper_dev)
6977{
6978 ASSERT_RTNL();
6979
6980 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6981 upper_dev);
6982}
6983
31088a11
VF
6984/**
6985 * netdev_lower_get_next_private - Get the next ->private from the
6986 * lower neighbour list
6987 * @dev: device
6988 * @iter: list_head ** of the current position
6989 *
6990 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6991 * list, starting from iter position. The caller must hold either hold the
6992 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 6993 * list will remain unchanged.
31088a11
VF
6994 */
6995void *netdev_lower_get_next_private(struct net_device *dev,
6996 struct list_head **iter)
6997{
6998 struct netdev_adjacent *lower;
6999
7000 lower = list_entry(*iter, struct netdev_adjacent, list);
7001
7002 if (&lower->list == &dev->adj_list.lower)
7003 return NULL;
7004
6859e7df 7005 *iter = lower->list.next;
31088a11
VF
7006
7007 return lower->private;
7008}
7009EXPORT_SYMBOL(netdev_lower_get_next_private);
7010
7011/**
7012 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7013 * lower neighbour list, RCU
7014 * variant
7015 * @dev: device
7016 * @iter: list_head ** of the current position
7017 *
7018 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7019 * list, starting from iter position. The caller must hold RCU read lock.
7020 */
7021void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7022 struct list_head **iter)
7023{
7024 struct netdev_adjacent *lower;
7025
7026 WARN_ON_ONCE(!rcu_read_lock_held());
7027
7028 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7029
7030 if (&lower->list == &dev->adj_list.lower)
7031 return NULL;
7032
6859e7df 7033 *iter = &lower->list;
31088a11
VF
7034
7035 return lower->private;
7036}
7037EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7038
4085ebe8
VY
7039/**
7040 * netdev_lower_get_next - Get the next device from the lower neighbour
7041 * list
7042 * @dev: device
7043 * @iter: list_head ** of the current position
7044 *
7045 * Gets the next netdev_adjacent from the dev's lower neighbour
7046 * list, starting from iter position. The caller must hold RTNL lock or
7047 * its own locking that guarantees that the neighbour lower
b469139e 7048 * list will remain unchanged.
4085ebe8
VY
7049 */
7050void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7051{
7052 struct netdev_adjacent *lower;
7053
cfdd28be 7054 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7055
7056 if (&lower->list == &dev->adj_list.lower)
7057 return NULL;
7058
cfdd28be 7059 *iter = lower->list.next;
4085ebe8
VY
7060
7061 return lower->dev;
7062}
7063EXPORT_SYMBOL(netdev_lower_get_next);
7064
1a3f060c
DA
7065static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7066 struct list_head **iter)
7067{
7068 struct netdev_adjacent *lower;
7069
46b5ab1a 7070 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7071
7072 if (&lower->list == &dev->adj_list.lower)
7073 return NULL;
7074
46b5ab1a 7075 *iter = &lower->list;
1a3f060c
DA
7076
7077 return lower->dev;
7078}
7079
32b6d34f
TY
7080static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7081 struct list_head **iter,
7082 bool *ignore)
7083{
7084 struct netdev_adjacent *lower;
7085
7086 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7087
7088 if (&lower->list == &dev->adj_list.lower)
7089 return NULL;
7090
7091 *iter = &lower->list;
7092 *ignore = lower->ignore;
7093
7094 return lower->dev;
7095}
7096
1a3f060c
DA
7097int netdev_walk_all_lower_dev(struct net_device *dev,
7098 int (*fn)(struct net_device *dev,
7099 void *data),
7100 void *data)
7101{
5343da4c
TY
7102 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7103 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7104 int ret, cur = 0;
1a3f060c 7105
5343da4c
TY
7106 now = dev;
7107 iter = &dev->adj_list.lower;
1a3f060c 7108
5343da4c
TY
7109 while (1) {
7110 if (now != dev) {
7111 ret = fn(now, data);
7112 if (ret)
7113 return ret;
7114 }
7115
7116 next = NULL;
7117 while (1) {
7118 ldev = netdev_next_lower_dev(now, &iter);
7119 if (!ldev)
7120 break;
7121
7122 next = ldev;
7123 niter = &ldev->adj_list.lower;
7124 dev_stack[cur] = now;
7125 iter_stack[cur++] = iter;
7126 break;
7127 }
7128
7129 if (!next) {
7130 if (!cur)
7131 return 0;
7132 next = dev_stack[--cur];
7133 niter = iter_stack[cur];
7134 }
7135
7136 now = next;
7137 iter = niter;
1a3f060c
DA
7138 }
7139
7140 return 0;
7141}
7142EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7143
32b6d34f
TY
7144static int __netdev_walk_all_lower_dev(struct net_device *dev,
7145 int (*fn)(struct net_device *dev,
7146 void *data),
7147 void *data)
7148{
7149 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7150 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7151 int ret, cur = 0;
7152 bool ignore;
7153
7154 now = dev;
7155 iter = &dev->adj_list.lower;
7156
7157 while (1) {
7158 if (now != dev) {
7159 ret = fn(now, data);
7160 if (ret)
7161 return ret;
7162 }
7163
7164 next = NULL;
7165 while (1) {
7166 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7167 if (!ldev)
7168 break;
7169 if (ignore)
7170 continue;
7171
7172 next = ldev;
7173 niter = &ldev->adj_list.lower;
7174 dev_stack[cur] = now;
7175 iter_stack[cur++] = iter;
7176 break;
7177 }
7178
7179 if (!next) {
7180 if (!cur)
7181 return 0;
7182 next = dev_stack[--cur];
7183 niter = iter_stack[cur];
7184 }
7185
7186 now = next;
7187 iter = niter;
7188 }
7189
7190 return 0;
7191}
7192
7151affe
TY
7193struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7194 struct list_head **iter)
1a3f060c
DA
7195{
7196 struct netdev_adjacent *lower;
7197
7198 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7199 if (&lower->list == &dev->adj_list.lower)
7200 return NULL;
7201
7202 *iter = &lower->list;
7203
7204 return lower->dev;
7205}
7151affe 7206EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7207
5343da4c
TY
7208static u8 __netdev_upper_depth(struct net_device *dev)
7209{
7210 struct net_device *udev;
7211 struct list_head *iter;
7212 u8 max_depth = 0;
32b6d34f 7213 bool ignore;
5343da4c
TY
7214
7215 for (iter = &dev->adj_list.upper,
32b6d34f 7216 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7217 udev;
32b6d34f
TY
7218 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7219 if (ignore)
7220 continue;
5343da4c
TY
7221 if (max_depth < udev->upper_level)
7222 max_depth = udev->upper_level;
7223 }
7224
7225 return max_depth;
7226}
7227
7228static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7229{
7230 struct net_device *ldev;
7231 struct list_head *iter;
5343da4c 7232 u8 max_depth = 0;
32b6d34f 7233 bool ignore;
1a3f060c
DA
7234
7235 for (iter = &dev->adj_list.lower,
32b6d34f 7236 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7237 ldev;
32b6d34f
TY
7238 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7239 if (ignore)
7240 continue;
5343da4c
TY
7241 if (max_depth < ldev->lower_level)
7242 max_depth = ldev->lower_level;
7243 }
1a3f060c 7244
5343da4c
TY
7245 return max_depth;
7246}
7247
7248static int __netdev_update_upper_level(struct net_device *dev, void *data)
7249{
7250 dev->upper_level = __netdev_upper_depth(dev) + 1;
7251 return 0;
7252}
7253
7254static int __netdev_update_lower_level(struct net_device *dev, void *data)
7255{
7256 dev->lower_level = __netdev_lower_depth(dev) + 1;
7257 return 0;
7258}
7259
7260int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7261 int (*fn)(struct net_device *dev,
7262 void *data),
7263 void *data)
7264{
7265 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7266 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7267 int ret, cur = 0;
7268
7269 now = dev;
7270 iter = &dev->adj_list.lower;
7271
7272 while (1) {
7273 if (now != dev) {
7274 ret = fn(now, data);
7275 if (ret)
7276 return ret;
7277 }
7278
7279 next = NULL;
7280 while (1) {
7281 ldev = netdev_next_lower_dev_rcu(now, &iter);
7282 if (!ldev)
7283 break;
7284
7285 next = ldev;
7286 niter = &ldev->adj_list.lower;
7287 dev_stack[cur] = now;
7288 iter_stack[cur++] = iter;
7289 break;
7290 }
7291
7292 if (!next) {
7293 if (!cur)
7294 return 0;
7295 next = dev_stack[--cur];
7296 niter = iter_stack[cur];
7297 }
7298
7299 now = next;
7300 iter = niter;
1a3f060c
DA
7301 }
7302
7303 return 0;
7304}
7305EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7306
e001bfad 7307/**
7308 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7309 * lower neighbour list, RCU
7310 * variant
7311 * @dev: device
7312 *
7313 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7314 * list. The caller must hold RCU read lock.
7315 */
7316void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7317{
7318 struct netdev_adjacent *lower;
7319
7320 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7321 struct netdev_adjacent, list);
7322 if (lower)
7323 return lower->private;
7324 return NULL;
7325}
7326EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7327
9ff162a8
JP
7328/**
7329 * netdev_master_upper_dev_get_rcu - Get master upper device
7330 * @dev: device
7331 *
7332 * Find a master upper device and return pointer to it or NULL in case
7333 * it's not there. The caller must hold the RCU read lock.
7334 */
7335struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7336{
aa9d8560 7337 struct netdev_adjacent *upper;
9ff162a8 7338
2f268f12 7339 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7340 struct netdev_adjacent, list);
9ff162a8
JP
7341 if (upper && likely(upper->master))
7342 return upper->dev;
7343 return NULL;
7344}
7345EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7346
0a59f3a9 7347static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7348 struct net_device *adj_dev,
7349 struct list_head *dev_list)
7350{
7351 char linkname[IFNAMSIZ+7];
f4563a75 7352
3ee32707
VF
7353 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7354 "upper_%s" : "lower_%s", adj_dev->name);
7355 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7356 linkname);
7357}
0a59f3a9 7358static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7359 char *name,
7360 struct list_head *dev_list)
7361{
7362 char linkname[IFNAMSIZ+7];
f4563a75 7363
3ee32707
VF
7364 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7365 "upper_%s" : "lower_%s", name);
7366 sysfs_remove_link(&(dev->dev.kobj), linkname);
7367}
7368
7ce64c79
AF
7369static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7370 struct net_device *adj_dev,
7371 struct list_head *dev_list)
7372{
7373 return (dev_list == &dev->adj_list.upper ||
7374 dev_list == &dev->adj_list.lower) &&
7375 net_eq(dev_net(dev), dev_net(adj_dev));
7376}
3ee32707 7377
5d261913
VF
7378static int __netdev_adjacent_dev_insert(struct net_device *dev,
7379 struct net_device *adj_dev,
7863c054 7380 struct list_head *dev_list,
402dae96 7381 void *private, bool master)
5d261913
VF
7382{
7383 struct netdev_adjacent *adj;
842d67a7 7384 int ret;
5d261913 7385
6ea29da1 7386 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7387
7388 if (adj) {
790510d9 7389 adj->ref_nr += 1;
67b62f98
DA
7390 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7391 dev->name, adj_dev->name, adj->ref_nr);
7392
5d261913
VF
7393 return 0;
7394 }
7395
7396 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7397 if (!adj)
7398 return -ENOMEM;
7399
7400 adj->dev = adj_dev;
7401 adj->master = master;
790510d9 7402 adj->ref_nr = 1;
402dae96 7403 adj->private = private;
32b6d34f 7404 adj->ignore = false;
5d261913 7405 dev_hold(adj_dev);
2f268f12 7406
67b62f98
DA
7407 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7408 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7409
7ce64c79 7410 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7411 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7412 if (ret)
7413 goto free_adj;
7414 }
7415
7863c054 7416 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7417 if (master) {
7418 ret = sysfs_create_link(&(dev->dev.kobj),
7419 &(adj_dev->dev.kobj), "master");
7420 if (ret)
5831d66e 7421 goto remove_symlinks;
842d67a7 7422
7863c054 7423 list_add_rcu(&adj->list, dev_list);
842d67a7 7424 } else {
7863c054 7425 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7426 }
5d261913
VF
7427
7428 return 0;
842d67a7 7429
5831d66e 7430remove_symlinks:
7ce64c79 7431 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7432 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7433free_adj:
7434 kfree(adj);
974daef7 7435 dev_put(adj_dev);
842d67a7
VF
7436
7437 return ret;
5d261913
VF
7438}
7439
1d143d9f 7440static void __netdev_adjacent_dev_remove(struct net_device *dev,
7441 struct net_device *adj_dev,
93409033 7442 u16 ref_nr,
1d143d9f 7443 struct list_head *dev_list)
5d261913
VF
7444{
7445 struct netdev_adjacent *adj;
7446
67b62f98
DA
7447 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7448 dev->name, adj_dev->name, ref_nr);
7449
6ea29da1 7450 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7451
2f268f12 7452 if (!adj) {
67b62f98 7453 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7454 dev->name, adj_dev->name);
67b62f98
DA
7455 WARN_ON(1);
7456 return;
2f268f12 7457 }
5d261913 7458
93409033 7459 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7460 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7461 dev->name, adj_dev->name, ref_nr,
7462 adj->ref_nr - ref_nr);
93409033 7463 adj->ref_nr -= ref_nr;
5d261913
VF
7464 return;
7465 }
7466
842d67a7
VF
7467 if (adj->master)
7468 sysfs_remove_link(&(dev->dev.kobj), "master");
7469
7ce64c79 7470 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7471 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7472
5d261913 7473 list_del_rcu(&adj->list);
67b62f98 7474 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7475 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7476 dev_put(adj_dev);
7477 kfree_rcu(adj, rcu);
7478}
7479
1d143d9f 7480static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7481 struct net_device *upper_dev,
7482 struct list_head *up_list,
7483 struct list_head *down_list,
7484 void *private, bool master)
5d261913
VF
7485{
7486 int ret;
7487
790510d9 7488 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7489 private, master);
5d261913
VF
7490 if (ret)
7491 return ret;
7492
790510d9 7493 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7494 private, false);
5d261913 7495 if (ret) {
790510d9 7496 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7497 return ret;
7498 }
7499
7500 return 0;
7501}
7502
1d143d9f 7503static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7504 struct net_device *upper_dev,
93409033 7505 u16 ref_nr,
1d143d9f 7506 struct list_head *up_list,
7507 struct list_head *down_list)
5d261913 7508{
93409033
AC
7509 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7510 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7511}
7512
1d143d9f 7513static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7514 struct net_device *upper_dev,
7515 void *private, bool master)
2f268f12 7516{
f1170fd4
DA
7517 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7518 &dev->adj_list.upper,
7519 &upper_dev->adj_list.lower,
7520 private, master);
5d261913
VF
7521}
7522
1d143d9f 7523static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7524 struct net_device *upper_dev)
2f268f12 7525{
93409033 7526 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7527 &dev->adj_list.upper,
7528 &upper_dev->adj_list.lower);
7529}
5d261913 7530
9ff162a8 7531static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7532 struct net_device *upper_dev, bool master,
42ab19ee
DA
7533 void *upper_priv, void *upper_info,
7534 struct netlink_ext_ack *extack)
9ff162a8 7535{
51d0c047
DA
7536 struct netdev_notifier_changeupper_info changeupper_info = {
7537 .info = {
7538 .dev = dev,
42ab19ee 7539 .extack = extack,
51d0c047
DA
7540 },
7541 .upper_dev = upper_dev,
7542 .master = master,
7543 .linking = true,
7544 .upper_info = upper_info,
7545 };
50d629e7 7546 struct net_device *master_dev;
5d261913 7547 int ret = 0;
9ff162a8
JP
7548
7549 ASSERT_RTNL();
7550
7551 if (dev == upper_dev)
7552 return -EBUSY;
7553
7554 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7555 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7556 return -EBUSY;
7557
5343da4c
TY
7558 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7559 return -EMLINK;
7560
50d629e7 7561 if (!master) {
32b6d34f 7562 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7563 return -EEXIST;
7564 } else {
32b6d34f 7565 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7566 if (master_dev)
7567 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7568 }
9ff162a8 7569
51d0c047 7570 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7571 &changeupper_info.info);
7572 ret = notifier_to_errno(ret);
7573 if (ret)
7574 return ret;
7575
6dffb044 7576 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7577 master);
5d261913
VF
7578 if (ret)
7579 return ret;
9ff162a8 7580
51d0c047 7581 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7582 &changeupper_info.info);
7583 ret = notifier_to_errno(ret);
7584 if (ret)
f1170fd4 7585 goto rollback;
b03804e7 7586
5343da4c 7587 __netdev_update_upper_level(dev, NULL);
32b6d34f 7588 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7589
7590 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7591 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7592 NULL);
5343da4c 7593
9ff162a8 7594 return 0;
5d261913 7595
f1170fd4 7596rollback:
2f268f12 7597 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7598
7599 return ret;
9ff162a8
JP
7600}
7601
7602/**
7603 * netdev_upper_dev_link - Add a link to the upper device
7604 * @dev: device
7605 * @upper_dev: new upper device
7a006d59 7606 * @extack: netlink extended ack
9ff162a8
JP
7607 *
7608 * Adds a link to device which is upper to this one. The caller must hold
7609 * the RTNL lock. On a failure a negative errno code is returned.
7610 * On success the reference counts are adjusted and the function
7611 * returns zero.
7612 */
7613int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7614 struct net_device *upper_dev,
7615 struct netlink_ext_ack *extack)
9ff162a8 7616{
42ab19ee
DA
7617 return __netdev_upper_dev_link(dev, upper_dev, false,
7618 NULL, NULL, extack);
9ff162a8
JP
7619}
7620EXPORT_SYMBOL(netdev_upper_dev_link);
7621
7622/**
7623 * netdev_master_upper_dev_link - Add a master link to the upper device
7624 * @dev: device
7625 * @upper_dev: new upper device
6dffb044 7626 * @upper_priv: upper device private
29bf24af 7627 * @upper_info: upper info to be passed down via notifier
7a006d59 7628 * @extack: netlink extended ack
9ff162a8
JP
7629 *
7630 * Adds a link to device which is upper to this one. In this case, only
7631 * one master upper device can be linked, although other non-master devices
7632 * might be linked as well. The caller must hold the RTNL lock.
7633 * On a failure a negative errno code is returned. On success the reference
7634 * counts are adjusted and the function returns zero.
7635 */
7636int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7637 struct net_device *upper_dev,
42ab19ee
DA
7638 void *upper_priv, void *upper_info,
7639 struct netlink_ext_ack *extack)
9ff162a8 7640{
29bf24af 7641 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7642 upper_priv, upper_info, extack);
9ff162a8
JP
7643}
7644EXPORT_SYMBOL(netdev_master_upper_dev_link);
7645
7646/**
7647 * netdev_upper_dev_unlink - Removes a link to upper device
7648 * @dev: device
7649 * @upper_dev: new upper device
7650 *
7651 * Removes a link to device which is upper to this one. The caller must hold
7652 * the RTNL lock.
7653 */
7654void netdev_upper_dev_unlink(struct net_device *dev,
7655 struct net_device *upper_dev)
7656{
51d0c047
DA
7657 struct netdev_notifier_changeupper_info changeupper_info = {
7658 .info = {
7659 .dev = dev,
7660 },
7661 .upper_dev = upper_dev,
7662 .linking = false,
7663 };
f4563a75 7664
9ff162a8
JP
7665 ASSERT_RTNL();
7666
0e4ead9d 7667 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7668
51d0c047 7669 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7670 &changeupper_info.info);
7671
2f268f12 7672 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7673
51d0c047 7674 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7675 &changeupper_info.info);
5343da4c
TY
7676
7677 __netdev_update_upper_level(dev, NULL);
32b6d34f 7678 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7679
7680 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7681 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7682 NULL);
9ff162a8
JP
7683}
7684EXPORT_SYMBOL(netdev_upper_dev_unlink);
7685
32b6d34f
TY
7686static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7687 struct net_device *lower_dev,
7688 bool val)
7689{
7690 struct netdev_adjacent *adj;
7691
7692 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7693 if (adj)
7694 adj->ignore = val;
7695
7696 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7697 if (adj)
7698 adj->ignore = val;
7699}
7700
7701static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7702 struct net_device *lower_dev)
7703{
7704 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7705}
7706
7707static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7708 struct net_device *lower_dev)
7709{
7710 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7711}
7712
7713int netdev_adjacent_change_prepare(struct net_device *old_dev,
7714 struct net_device *new_dev,
7715 struct net_device *dev,
7716 struct netlink_ext_ack *extack)
7717{
7718 int err;
7719
7720 if (!new_dev)
7721 return 0;
7722
7723 if (old_dev && new_dev != old_dev)
7724 netdev_adjacent_dev_disable(dev, old_dev);
7725
7726 err = netdev_upper_dev_link(new_dev, dev, extack);
7727 if (err) {
7728 if (old_dev && new_dev != old_dev)
7729 netdev_adjacent_dev_enable(dev, old_dev);
7730 return err;
7731 }
7732
7733 return 0;
7734}
7735EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7736
7737void netdev_adjacent_change_commit(struct net_device *old_dev,
7738 struct net_device *new_dev,
7739 struct net_device *dev)
7740{
7741 if (!new_dev || !old_dev)
7742 return;
7743
7744 if (new_dev == old_dev)
7745 return;
7746
7747 netdev_adjacent_dev_enable(dev, old_dev);
7748 netdev_upper_dev_unlink(old_dev, dev);
7749}
7750EXPORT_SYMBOL(netdev_adjacent_change_commit);
7751
7752void netdev_adjacent_change_abort(struct net_device *old_dev,
7753 struct net_device *new_dev,
7754 struct net_device *dev)
7755{
7756 if (!new_dev)
7757 return;
7758
7759 if (old_dev && new_dev != old_dev)
7760 netdev_adjacent_dev_enable(dev, old_dev);
7761
7762 netdev_upper_dev_unlink(new_dev, dev);
7763}
7764EXPORT_SYMBOL(netdev_adjacent_change_abort);
7765
61bd3857
MS
7766/**
7767 * netdev_bonding_info_change - Dispatch event about slave change
7768 * @dev: device
4a26e453 7769 * @bonding_info: info to dispatch
61bd3857
MS
7770 *
7771 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7772 * The caller must hold the RTNL lock.
7773 */
7774void netdev_bonding_info_change(struct net_device *dev,
7775 struct netdev_bonding_info *bonding_info)
7776{
51d0c047
DA
7777 struct netdev_notifier_bonding_info info = {
7778 .info.dev = dev,
7779 };
61bd3857
MS
7780
7781 memcpy(&info.bonding_info, bonding_info,
7782 sizeof(struct netdev_bonding_info));
51d0c047 7783 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7784 &info.info);
7785}
7786EXPORT_SYMBOL(netdev_bonding_info_change);
7787
2ce1ee17 7788static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7789{
7790 struct netdev_adjacent *iter;
7791
7792 struct net *net = dev_net(dev);
7793
7794 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7795 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7796 continue;
7797 netdev_adjacent_sysfs_add(iter->dev, dev,
7798 &iter->dev->adj_list.lower);
7799 netdev_adjacent_sysfs_add(dev, iter->dev,
7800 &dev->adj_list.upper);
7801 }
7802
7803 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7804 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7805 continue;
7806 netdev_adjacent_sysfs_add(iter->dev, dev,
7807 &iter->dev->adj_list.upper);
7808 netdev_adjacent_sysfs_add(dev, iter->dev,
7809 &dev->adj_list.lower);
7810 }
7811}
7812
2ce1ee17 7813static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
7814{
7815 struct netdev_adjacent *iter;
7816
7817 struct net *net = dev_net(dev);
7818
7819 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7820 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7821 continue;
7822 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7823 &iter->dev->adj_list.lower);
7824 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7825 &dev->adj_list.upper);
7826 }
7827
7828 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7829 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7830 continue;
7831 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7832 &iter->dev->adj_list.upper);
7833 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7834 &dev->adj_list.lower);
7835 }
7836}
7837
5bb025fa 7838void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 7839{
5bb025fa 7840 struct netdev_adjacent *iter;
402dae96 7841
4c75431a
AF
7842 struct net *net = dev_net(dev);
7843
5bb025fa 7844 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7845 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7846 continue;
5bb025fa
VF
7847 netdev_adjacent_sysfs_del(iter->dev, oldname,
7848 &iter->dev->adj_list.lower);
7849 netdev_adjacent_sysfs_add(iter->dev, dev,
7850 &iter->dev->adj_list.lower);
7851 }
402dae96 7852
5bb025fa 7853 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7854 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7855 continue;
5bb025fa
VF
7856 netdev_adjacent_sysfs_del(iter->dev, oldname,
7857 &iter->dev->adj_list.upper);
7858 netdev_adjacent_sysfs_add(iter->dev, dev,
7859 &iter->dev->adj_list.upper);
7860 }
402dae96 7861}
402dae96
VF
7862
7863void *netdev_lower_dev_get_private(struct net_device *dev,
7864 struct net_device *lower_dev)
7865{
7866 struct netdev_adjacent *lower;
7867
7868 if (!lower_dev)
7869 return NULL;
6ea29da1 7870 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
7871 if (!lower)
7872 return NULL;
7873
7874 return lower->private;
7875}
7876EXPORT_SYMBOL(netdev_lower_dev_get_private);
7877
4085ebe8 7878
04d48266
JP
7879/**
7880 * netdev_lower_change - Dispatch event about lower device state change
7881 * @lower_dev: device
7882 * @lower_state_info: state to dispatch
7883 *
7884 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7885 * The caller must hold the RTNL lock.
7886 */
7887void netdev_lower_state_changed(struct net_device *lower_dev,
7888 void *lower_state_info)
7889{
51d0c047
DA
7890 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7891 .info.dev = lower_dev,
7892 };
04d48266
JP
7893
7894 ASSERT_RTNL();
7895 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 7896 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
7897 &changelowerstate_info.info);
7898}
7899EXPORT_SYMBOL(netdev_lower_state_changed);
7900
b6c40d68
PM
7901static void dev_change_rx_flags(struct net_device *dev, int flags)
7902{
d314774c
SH
7903 const struct net_device_ops *ops = dev->netdev_ops;
7904
d2615bf4 7905 if (ops->ndo_change_rx_flags)
d314774c 7906 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
7907}
7908
991fb3f7 7909static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 7910{
b536db93 7911 unsigned int old_flags = dev->flags;
d04a48b0
EB
7912 kuid_t uid;
7913 kgid_t gid;
1da177e4 7914
24023451
PM
7915 ASSERT_RTNL();
7916
dad9b335
WC
7917 dev->flags |= IFF_PROMISC;
7918 dev->promiscuity += inc;
7919 if (dev->promiscuity == 0) {
7920 /*
7921 * Avoid overflow.
7922 * If inc causes overflow, untouch promisc and return error.
7923 */
7924 if (inc < 0)
7925 dev->flags &= ~IFF_PROMISC;
7926 else {
7927 dev->promiscuity -= inc;
7b6cd1ce
JP
7928 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7929 dev->name);
dad9b335
WC
7930 return -EOVERFLOW;
7931 }
7932 }
52609c0b 7933 if (dev->flags != old_flags) {
7b6cd1ce
JP
7934 pr_info("device %s %s promiscuous mode\n",
7935 dev->name,
7936 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
7937 if (audit_enabled) {
7938 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
7939 audit_log(audit_context(), GFP_ATOMIC,
7940 AUDIT_ANOM_PROMISCUOUS,
7941 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7942 dev->name, (dev->flags & IFF_PROMISC),
7943 (old_flags & IFF_PROMISC),
7944 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7945 from_kuid(&init_user_ns, uid),
7946 from_kgid(&init_user_ns, gid),
7947 audit_get_sessionid(current));
8192b0c4 7948 }
24023451 7949
b6c40d68 7950 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 7951 }
991fb3f7
ND
7952 if (notify)
7953 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 7954 return 0;
1da177e4
LT
7955}
7956
4417da66
PM
7957/**
7958 * dev_set_promiscuity - update promiscuity count on a device
7959 * @dev: device
7960 * @inc: modifier
7961 *
7962 * Add or remove promiscuity from a device. While the count in the device
7963 * remains above zero the interface remains promiscuous. Once it hits zero
7964 * the device reverts back to normal filtering operation. A negative inc
7965 * value is used to drop promiscuity on the device.
dad9b335 7966 * Return 0 if successful or a negative errno code on error.
4417da66 7967 */
dad9b335 7968int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 7969{
b536db93 7970 unsigned int old_flags = dev->flags;
dad9b335 7971 int err;
4417da66 7972
991fb3f7 7973 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 7974 if (err < 0)
dad9b335 7975 return err;
4417da66
PM
7976 if (dev->flags != old_flags)
7977 dev_set_rx_mode(dev);
dad9b335 7978 return err;
4417da66 7979}
d1b19dff 7980EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 7981
991fb3f7 7982static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 7983{
991fb3f7 7984 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 7985
24023451
PM
7986 ASSERT_RTNL();
7987
1da177e4 7988 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
7989 dev->allmulti += inc;
7990 if (dev->allmulti == 0) {
7991 /*
7992 * Avoid overflow.
7993 * If inc causes overflow, untouch allmulti and return error.
7994 */
7995 if (inc < 0)
7996 dev->flags &= ~IFF_ALLMULTI;
7997 else {
7998 dev->allmulti -= inc;
7b6cd1ce
JP
7999 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8000 dev->name);
dad9b335
WC
8001 return -EOVERFLOW;
8002 }
8003 }
24023451 8004 if (dev->flags ^ old_flags) {
b6c40d68 8005 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8006 dev_set_rx_mode(dev);
991fb3f7
ND
8007 if (notify)
8008 __dev_notify_flags(dev, old_flags,
8009 dev->gflags ^ old_gflags);
24023451 8010 }
dad9b335 8011 return 0;
4417da66 8012}
991fb3f7
ND
8013
8014/**
8015 * dev_set_allmulti - update allmulti count on a device
8016 * @dev: device
8017 * @inc: modifier
8018 *
8019 * Add or remove reception of all multicast frames to a device. While the
8020 * count in the device remains above zero the interface remains listening
8021 * to all interfaces. Once it hits zero the device reverts back to normal
8022 * filtering operation. A negative @inc value is used to drop the counter
8023 * when releasing a resource needing all multicasts.
8024 * Return 0 if successful or a negative errno code on error.
8025 */
8026
8027int dev_set_allmulti(struct net_device *dev, int inc)
8028{
8029 return __dev_set_allmulti(dev, inc, true);
8030}
d1b19dff 8031EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8032
8033/*
8034 * Upload unicast and multicast address lists to device and
8035 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8036 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8037 * are present.
8038 */
8039void __dev_set_rx_mode(struct net_device *dev)
8040{
d314774c
SH
8041 const struct net_device_ops *ops = dev->netdev_ops;
8042
4417da66
PM
8043 /* dev_open will call this function so the list will stay sane. */
8044 if (!(dev->flags&IFF_UP))
8045 return;
8046
8047 if (!netif_device_present(dev))
40b77c94 8048 return;
4417da66 8049
01789349 8050 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8051 /* Unicast addresses changes may only happen under the rtnl,
8052 * therefore calling __dev_set_promiscuity here is safe.
8053 */
32e7bfc4 8054 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8055 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8056 dev->uc_promisc = true;
32e7bfc4 8057 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8058 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8059 dev->uc_promisc = false;
4417da66 8060 }
4417da66 8061 }
01789349
JP
8062
8063 if (ops->ndo_set_rx_mode)
8064 ops->ndo_set_rx_mode(dev);
4417da66
PM
8065}
8066
8067void dev_set_rx_mode(struct net_device *dev)
8068{
b9e40857 8069 netif_addr_lock_bh(dev);
4417da66 8070 __dev_set_rx_mode(dev);
b9e40857 8071 netif_addr_unlock_bh(dev);
1da177e4
LT
8072}
8073
f0db275a
SH
8074/**
8075 * dev_get_flags - get flags reported to userspace
8076 * @dev: device
8077 *
8078 * Get the combination of flag bits exported through APIs to userspace.
8079 */
95c96174 8080unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8081{
95c96174 8082 unsigned int flags;
1da177e4
LT
8083
8084 flags = (dev->flags & ~(IFF_PROMISC |
8085 IFF_ALLMULTI |
b00055aa
SR
8086 IFF_RUNNING |
8087 IFF_LOWER_UP |
8088 IFF_DORMANT)) |
1da177e4
LT
8089 (dev->gflags & (IFF_PROMISC |
8090 IFF_ALLMULTI));
8091
b00055aa
SR
8092 if (netif_running(dev)) {
8093 if (netif_oper_up(dev))
8094 flags |= IFF_RUNNING;
8095 if (netif_carrier_ok(dev))
8096 flags |= IFF_LOWER_UP;
8097 if (netif_dormant(dev))
8098 flags |= IFF_DORMANT;
8099 }
1da177e4
LT
8100
8101 return flags;
8102}
d1b19dff 8103EXPORT_SYMBOL(dev_get_flags);
1da177e4 8104
6d040321
PM
8105int __dev_change_flags(struct net_device *dev, unsigned int flags,
8106 struct netlink_ext_ack *extack)
1da177e4 8107{
b536db93 8108 unsigned int old_flags = dev->flags;
bd380811 8109 int ret;
1da177e4 8110
24023451
PM
8111 ASSERT_RTNL();
8112
1da177e4
LT
8113 /*
8114 * Set the flags on our device.
8115 */
8116
8117 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8118 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8119 IFF_AUTOMEDIA)) |
8120 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8121 IFF_ALLMULTI));
8122
8123 /*
8124 * Load in the correct multicast list now the flags have changed.
8125 */
8126
b6c40d68
PM
8127 if ((old_flags ^ flags) & IFF_MULTICAST)
8128 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8129
4417da66 8130 dev_set_rx_mode(dev);
1da177e4
LT
8131
8132 /*
8133 * Have we downed the interface. We handle IFF_UP ourselves
8134 * according to user attempts to set it, rather than blindly
8135 * setting it.
8136 */
8137
8138 ret = 0;
7051b88a 8139 if ((old_flags ^ flags) & IFF_UP) {
8140 if (old_flags & IFF_UP)
8141 __dev_close(dev);
8142 else
40c900aa 8143 ret = __dev_open(dev, extack);
7051b88a 8144 }
1da177e4 8145
1da177e4 8146 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8147 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8148 unsigned int old_flags = dev->flags;
d1b19dff 8149
1da177e4 8150 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8151
8152 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8153 if (dev->flags != old_flags)
8154 dev_set_rx_mode(dev);
1da177e4
LT
8155 }
8156
8157 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8158 * is important. Some (broken) drivers set IFF_PROMISC, when
8159 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8160 */
8161 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8162 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8163
1da177e4 8164 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8165 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8166 }
8167
bd380811
PM
8168 return ret;
8169}
8170
a528c219
ND
8171void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8172 unsigned int gchanges)
bd380811
PM
8173{
8174 unsigned int changes = dev->flags ^ old_flags;
8175
a528c219 8176 if (gchanges)
7f294054 8177 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8178
bd380811
PM
8179 if (changes & IFF_UP) {
8180 if (dev->flags & IFF_UP)
8181 call_netdevice_notifiers(NETDEV_UP, dev);
8182 else
8183 call_netdevice_notifiers(NETDEV_DOWN, dev);
8184 }
8185
8186 if (dev->flags & IFF_UP &&
be9efd36 8187 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8188 struct netdev_notifier_change_info change_info = {
8189 .info = {
8190 .dev = dev,
8191 },
8192 .flags_changed = changes,
8193 };
be9efd36 8194
51d0c047 8195 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8196 }
bd380811
PM
8197}
8198
8199/**
8200 * dev_change_flags - change device settings
8201 * @dev: device
8202 * @flags: device state flags
567c5e13 8203 * @extack: netlink extended ack
bd380811
PM
8204 *
8205 * Change settings on device based state flags. The flags are
8206 * in the userspace exported format.
8207 */
567c5e13
PM
8208int dev_change_flags(struct net_device *dev, unsigned int flags,
8209 struct netlink_ext_ack *extack)
bd380811 8210{
b536db93 8211 int ret;
991fb3f7 8212 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8213
6d040321 8214 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8215 if (ret < 0)
8216 return ret;
8217
991fb3f7 8218 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8219 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8220 return ret;
8221}
d1b19dff 8222EXPORT_SYMBOL(dev_change_flags);
1da177e4 8223
f51048c3 8224int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8225{
8226 const struct net_device_ops *ops = dev->netdev_ops;
8227
8228 if (ops->ndo_change_mtu)
8229 return ops->ndo_change_mtu(dev, new_mtu);
8230
501a90c9
ED
8231 /* Pairs with all the lockless reads of dev->mtu in the stack */
8232 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8233 return 0;
8234}
f51048c3 8235EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8236
d836f5c6
ED
8237int dev_validate_mtu(struct net_device *dev, int new_mtu,
8238 struct netlink_ext_ack *extack)
8239{
8240 /* MTU must be positive, and in range */
8241 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8242 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8243 return -EINVAL;
8244 }
8245
8246 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8247 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8248 return -EINVAL;
8249 }
8250 return 0;
8251}
8252
f0db275a 8253/**
7a4c53be 8254 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8255 * @dev: device
8256 * @new_mtu: new transfer unit
7a4c53be 8257 * @extack: netlink extended ack
f0db275a
SH
8258 *
8259 * Change the maximum transfer size of the network device.
8260 */
7a4c53be
SH
8261int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8262 struct netlink_ext_ack *extack)
1da177e4 8263{
2315dc91 8264 int err, orig_mtu;
1da177e4
LT
8265
8266 if (new_mtu == dev->mtu)
8267 return 0;
8268
d836f5c6
ED
8269 err = dev_validate_mtu(dev, new_mtu, extack);
8270 if (err)
8271 return err;
1da177e4
LT
8272
8273 if (!netif_device_present(dev))
8274 return -ENODEV;
8275
1d486bfb
VF
8276 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8277 err = notifier_to_errno(err);
8278 if (err)
8279 return err;
d314774c 8280
2315dc91
VF
8281 orig_mtu = dev->mtu;
8282 err = __dev_set_mtu(dev, new_mtu);
d314774c 8283
2315dc91 8284 if (!err) {
af7d6cce
SD
8285 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8286 orig_mtu);
2315dc91
VF
8287 err = notifier_to_errno(err);
8288 if (err) {
8289 /* setting mtu back and notifying everyone again,
8290 * so that they have a chance to revert changes.
8291 */
8292 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8293 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8294 new_mtu);
2315dc91
VF
8295 }
8296 }
1da177e4
LT
8297 return err;
8298}
7a4c53be
SH
8299
8300int dev_set_mtu(struct net_device *dev, int new_mtu)
8301{
8302 struct netlink_ext_ack extack;
8303 int err;
8304
a6bcfc89 8305 memset(&extack, 0, sizeof(extack));
7a4c53be 8306 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8307 if (err && extack._msg)
7a4c53be
SH
8308 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8309 return err;
8310}
d1b19dff 8311EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8312
6a643ddb
CW
8313/**
8314 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8315 * @dev: device
8316 * @new_len: new tx queue length
8317 */
8318int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8319{
8320 unsigned int orig_len = dev->tx_queue_len;
8321 int res;
8322
8323 if (new_len != (unsigned int)new_len)
8324 return -ERANGE;
8325
8326 if (new_len != orig_len) {
8327 dev->tx_queue_len = new_len;
8328 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8329 res = notifier_to_errno(res);
7effaf06
TT
8330 if (res)
8331 goto err_rollback;
8332 res = dev_qdisc_change_tx_queue_len(dev);
8333 if (res)
8334 goto err_rollback;
6a643ddb
CW
8335 }
8336
8337 return 0;
7effaf06
TT
8338
8339err_rollback:
8340 netdev_err(dev, "refused to change device tx_queue_len\n");
8341 dev->tx_queue_len = orig_len;
8342 return res;
6a643ddb
CW
8343}
8344
cbda10fa
VD
8345/**
8346 * dev_set_group - Change group this device belongs to
8347 * @dev: device
8348 * @new_group: group this device should belong to
8349 */
8350void dev_set_group(struct net_device *dev, int new_group)
8351{
8352 dev->group = new_group;
8353}
8354EXPORT_SYMBOL(dev_set_group);
8355
d59cdf94
PM
8356/**
8357 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8358 * @dev: device
8359 * @addr: new address
8360 * @extack: netlink extended ack
8361 */
8362int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8363 struct netlink_ext_ack *extack)
8364{
8365 struct netdev_notifier_pre_changeaddr_info info = {
8366 .info.dev = dev,
8367 .info.extack = extack,
8368 .dev_addr = addr,
8369 };
8370 int rc;
8371
8372 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8373 return notifier_to_errno(rc);
8374}
8375EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8376
f0db275a
SH
8377/**
8378 * dev_set_mac_address - Change Media Access Control Address
8379 * @dev: device
8380 * @sa: new address
3a37a963 8381 * @extack: netlink extended ack
f0db275a
SH
8382 *
8383 * Change the hardware (MAC) address of the device
8384 */
3a37a963
PM
8385int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8386 struct netlink_ext_ack *extack)
1da177e4 8387{
d314774c 8388 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8389 int err;
8390
d314774c 8391 if (!ops->ndo_set_mac_address)
1da177e4
LT
8392 return -EOPNOTSUPP;
8393 if (sa->sa_family != dev->type)
8394 return -EINVAL;
8395 if (!netif_device_present(dev))
8396 return -ENODEV;
d59cdf94
PM
8397 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8398 if (err)
8399 return err;
d314774c 8400 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8401 if (err)
8402 return err;
fbdeca2d 8403 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8404 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8405 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8406 return 0;
1da177e4 8407}
d1b19dff 8408EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8409
4bf84c35
JP
8410/**
8411 * dev_change_carrier - Change device carrier
8412 * @dev: device
691b3b7e 8413 * @new_carrier: new value
4bf84c35
JP
8414 *
8415 * Change device carrier
8416 */
8417int dev_change_carrier(struct net_device *dev, bool new_carrier)
8418{
8419 const struct net_device_ops *ops = dev->netdev_ops;
8420
8421 if (!ops->ndo_change_carrier)
8422 return -EOPNOTSUPP;
8423 if (!netif_device_present(dev))
8424 return -ENODEV;
8425 return ops->ndo_change_carrier(dev, new_carrier);
8426}
8427EXPORT_SYMBOL(dev_change_carrier);
8428
66b52b0d
JP
8429/**
8430 * dev_get_phys_port_id - Get device physical port ID
8431 * @dev: device
8432 * @ppid: port ID
8433 *
8434 * Get device physical port ID
8435 */
8436int dev_get_phys_port_id(struct net_device *dev,
02637fce 8437 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8438{
8439 const struct net_device_ops *ops = dev->netdev_ops;
8440
8441 if (!ops->ndo_get_phys_port_id)
8442 return -EOPNOTSUPP;
8443 return ops->ndo_get_phys_port_id(dev, ppid);
8444}
8445EXPORT_SYMBOL(dev_get_phys_port_id);
8446
db24a904
DA
8447/**
8448 * dev_get_phys_port_name - Get device physical port name
8449 * @dev: device
8450 * @name: port name
ed49e650 8451 * @len: limit of bytes to copy to name
db24a904
DA
8452 *
8453 * Get device physical port name
8454 */
8455int dev_get_phys_port_name(struct net_device *dev,
8456 char *name, size_t len)
8457{
8458 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8459 int err;
db24a904 8460
af3836df
JP
8461 if (ops->ndo_get_phys_port_name) {
8462 err = ops->ndo_get_phys_port_name(dev, name, len);
8463 if (err != -EOPNOTSUPP)
8464 return err;
8465 }
8466 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
8467}
8468EXPORT_SYMBOL(dev_get_phys_port_name);
8469
d6abc596
FF
8470/**
8471 * dev_get_port_parent_id - Get the device's port parent identifier
8472 * @dev: network device
8473 * @ppid: pointer to a storage for the port's parent identifier
8474 * @recurse: allow/disallow recursion to lower devices
8475 *
8476 * Get the devices's port parent identifier
8477 */
8478int dev_get_port_parent_id(struct net_device *dev,
8479 struct netdev_phys_item_id *ppid,
8480 bool recurse)
8481{
8482 const struct net_device_ops *ops = dev->netdev_ops;
8483 struct netdev_phys_item_id first = { };
8484 struct net_device *lower_dev;
8485 struct list_head *iter;
7e1146e8
JP
8486 int err;
8487
8488 if (ops->ndo_get_port_parent_id) {
8489 err = ops->ndo_get_port_parent_id(dev, ppid);
8490 if (err != -EOPNOTSUPP)
8491 return err;
8492 }
d6abc596 8493
7e1146e8
JP
8494 err = devlink_compat_switch_id_get(dev, ppid);
8495 if (!err || err != -EOPNOTSUPP)
8496 return err;
d6abc596
FF
8497
8498 if (!recurse)
7e1146e8 8499 return -EOPNOTSUPP;
d6abc596
FF
8500
8501 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8502 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8503 if (err)
8504 break;
8505 if (!first.id_len)
8506 first = *ppid;
8507 else if (memcmp(&first, ppid, sizeof(*ppid)))
8508 return -ENODATA;
8509 }
8510
8511 return err;
8512}
8513EXPORT_SYMBOL(dev_get_port_parent_id);
8514
8515/**
8516 * netdev_port_same_parent_id - Indicate if two network devices have
8517 * the same port parent identifier
8518 * @a: first network device
8519 * @b: second network device
8520 */
8521bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8522{
8523 struct netdev_phys_item_id a_id = { };
8524 struct netdev_phys_item_id b_id = { };
8525
8526 if (dev_get_port_parent_id(a, &a_id, true) ||
8527 dev_get_port_parent_id(b, &b_id, true))
8528 return false;
8529
8530 return netdev_phys_item_id_same(&a_id, &b_id);
8531}
8532EXPORT_SYMBOL(netdev_port_same_parent_id);
8533
d746d707
AK
8534/**
8535 * dev_change_proto_down - update protocol port state information
8536 * @dev: device
8537 * @proto_down: new value
8538 *
8539 * This info can be used by switch drivers to set the phys state of the
8540 * port.
8541 */
8542int dev_change_proto_down(struct net_device *dev, bool proto_down)
8543{
8544 const struct net_device_ops *ops = dev->netdev_ops;
8545
8546 if (!ops->ndo_change_proto_down)
8547 return -EOPNOTSUPP;
8548 if (!netif_device_present(dev))
8549 return -ENODEV;
8550 return ops->ndo_change_proto_down(dev, proto_down);
8551}
8552EXPORT_SYMBOL(dev_change_proto_down);
8553
b5899679
AR
8554/**
8555 * dev_change_proto_down_generic - generic implementation for
8556 * ndo_change_proto_down that sets carrier according to
8557 * proto_down.
8558 *
8559 * @dev: device
8560 * @proto_down: new value
8561 */
8562int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8563{
8564 if (proto_down)
8565 netif_carrier_off(dev);
8566 else
8567 netif_carrier_on(dev);
8568 dev->proto_down = proto_down;
8569 return 0;
8570}
8571EXPORT_SYMBOL(dev_change_proto_down_generic);
8572
a25717d2
JK
8573u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8574 enum bpf_netdev_command cmd)
d67b9cd2 8575{
a25717d2 8576 struct netdev_bpf xdp;
d67b9cd2 8577
a25717d2
JK
8578 if (!bpf_op)
8579 return 0;
118b4aa2 8580
a25717d2
JK
8581 memset(&xdp, 0, sizeof(xdp));
8582 xdp.command = cmd;
118b4aa2 8583
a25717d2
JK
8584 /* Query must always succeed. */
8585 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
58038695 8586
6b867589 8587 return xdp.prog_id;
d67b9cd2
DB
8588}
8589
f4e63525 8590static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 8591 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
8592 struct bpf_prog *prog)
8593{
7e6897f9
BT
8594 bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8595 struct bpf_prog *prev_prog = NULL;
f4e63525 8596 struct netdev_bpf xdp;
7e6897f9
BT
8597 int err;
8598
8599 if (non_hw) {
8600 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8601 XDP_QUERY_PROG));
8602 if (IS_ERR(prev_prog))
8603 prev_prog = NULL;
8604 }
d67b9cd2
DB
8605
8606 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
8607 if (flags & XDP_FLAGS_HW_MODE)
8608 xdp.command = XDP_SETUP_PROG_HW;
8609 else
8610 xdp.command = XDP_SETUP_PROG;
d67b9cd2 8611 xdp.extack = extack;
32d60277 8612 xdp.flags = flags;
d67b9cd2
DB
8613 xdp.prog = prog;
8614
7e6897f9
BT
8615 err = bpf_op(dev, &xdp);
8616 if (!err && non_hw)
8617 bpf_prog_change_xdp(prev_prog, prog);
8618
8619 if (prev_prog)
8620 bpf_prog_put(prev_prog);
8621
8622 return err;
d67b9cd2
DB
8623}
8624
bd0b2e7f
JK
8625static void dev_xdp_uninstall(struct net_device *dev)
8626{
8627 struct netdev_bpf xdp;
8628 bpf_op_t ndo_bpf;
8629
8630 /* Remove generic XDP */
8631 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8632
8633 /* Remove from the driver */
8634 ndo_bpf = dev->netdev_ops->ndo_bpf;
8635 if (!ndo_bpf)
8636 return;
8637
a25717d2
JK
8638 memset(&xdp, 0, sizeof(xdp));
8639 xdp.command = XDP_QUERY_PROG;
8640 WARN_ON(ndo_bpf(dev, &xdp));
8641 if (xdp.prog_id)
8642 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8643 NULL));
bd0b2e7f 8644
a25717d2
JK
8645 /* Remove HW offload */
8646 memset(&xdp, 0, sizeof(xdp));
8647 xdp.command = XDP_QUERY_PROG_HW;
8648 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8649 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8650 NULL));
bd0b2e7f
JK
8651}
8652
a7862b45
BB
8653/**
8654 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8655 * @dev: device
b5d60989 8656 * @extack: netlink extended ack
a7862b45 8657 * @fd: new program fd or negative value to clear
85de8576 8658 * @flags: xdp-related flags
a7862b45
BB
8659 *
8660 * Set or clear a bpf program for a device
8661 */
ddf9f970
JK
8662int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8663 int fd, u32 flags)
a7862b45
BB
8664{
8665 const struct net_device_ops *ops = dev->netdev_ops;
a25717d2 8666 enum bpf_netdev_command query;
a7862b45 8667 struct bpf_prog *prog = NULL;
f4e63525 8668 bpf_op_t bpf_op, bpf_chk;
9ee963d6 8669 bool offload;
a7862b45
BB
8670 int err;
8671
85de8576
DB
8672 ASSERT_RTNL();
8673
9ee963d6
JK
8674 offload = flags & XDP_FLAGS_HW_MODE;
8675 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
a25717d2 8676
f4e63525 8677 bpf_op = bpf_chk = ops->ndo_bpf;
01dde20c
MF
8678 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8679 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
0489df9a 8680 return -EOPNOTSUPP;
01dde20c 8681 }
f4e63525
JK
8682 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8683 bpf_op = generic_xdp_install;
8684 if (bpf_op == bpf_chk)
8685 bpf_chk = generic_xdp_install;
b5cdae32 8686
a7862b45 8687 if (fd >= 0) {
c14a9f63
MM
8688 u32 prog_id;
8689
9ee963d6 8690 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
01dde20c 8691 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
d67b9cd2 8692 return -EEXIST;
01dde20c 8693 }
c14a9f63
MM
8694
8695 prog_id = __dev_xdp_query(dev, bpf_op, query);
8696 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
01dde20c 8697 NL_SET_ERR_MSG(extack, "XDP program already attached");
d67b9cd2 8698 return -EBUSY;
01dde20c 8699 }
85de8576 8700
288b3de5
JK
8701 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8702 bpf_op == ops->ndo_bpf);
a7862b45
BB
8703 if (IS_ERR(prog))
8704 return PTR_ERR(prog);
441a3303 8705
9ee963d6 8706 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
441a3303
JK
8707 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8708 bpf_prog_put(prog);
8709 return -EINVAL;
8710 }
c14a9f63 8711
aefc3e72
JK
8712 /* prog->aux->id may be 0 for orphaned device-bound progs */
8713 if (prog->aux->id && prog->aux->id == prog_id) {
c14a9f63
MM
8714 bpf_prog_put(prog);
8715 return 0;
8716 }
8717 } else {
8718 if (!__dev_xdp_query(dev, bpf_op, query))
8719 return 0;
a7862b45
BB
8720 }
8721
f4e63525 8722 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
8723 if (err < 0 && prog)
8724 bpf_prog_put(prog);
8725
8726 return err;
8727}
a7862b45 8728
1da177e4
LT
8729/**
8730 * dev_new_index - allocate an ifindex
c4ea43c5 8731 * @net: the applicable net namespace
1da177e4
LT
8732 *
8733 * Returns a suitable unique value for a new device interface
8734 * number. The caller must hold the rtnl semaphore or the
8735 * dev_base_lock to be sure it remains unique.
8736 */
881d966b 8737static int dev_new_index(struct net *net)
1da177e4 8738{
aa79e66e 8739 int ifindex = net->ifindex;
f4563a75 8740
1da177e4
LT
8741 for (;;) {
8742 if (++ifindex <= 0)
8743 ifindex = 1;
881d966b 8744 if (!__dev_get_by_index(net, ifindex))
aa79e66e 8745 return net->ifindex = ifindex;
1da177e4
LT
8746 }
8747}
8748
1da177e4 8749/* Delayed registration/unregisteration */
3b5b34fd 8750static LIST_HEAD(net_todo_list);
200b916f 8751DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 8752
6f05f629 8753static void net_set_todo(struct net_device *dev)
1da177e4 8754{
1da177e4 8755 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 8756 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
8757}
8758
9b5e383c 8759static void rollback_registered_many(struct list_head *head)
93ee31f1 8760{
e93737b0 8761 struct net_device *dev, *tmp;
5cde2829 8762 LIST_HEAD(close_head);
9b5e383c 8763
93ee31f1
DL
8764 BUG_ON(dev_boot_phase);
8765 ASSERT_RTNL();
8766
e93737b0 8767 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 8768 /* Some devices call without registering
e93737b0
KK
8769 * for initialization unwind. Remove those
8770 * devices and proceed with the remaining.
9b5e383c
ED
8771 */
8772 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
8773 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8774 dev->name, dev);
93ee31f1 8775
9b5e383c 8776 WARN_ON(1);
e93737b0
KK
8777 list_del(&dev->unreg_list);
8778 continue;
9b5e383c 8779 }
449f4544 8780 dev->dismantle = true;
9b5e383c 8781 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 8782 }
93ee31f1 8783
44345724 8784 /* If device is running, close it first. */
5cde2829
EB
8785 list_for_each_entry(dev, head, unreg_list)
8786 list_add_tail(&dev->close_list, &close_head);
99c4a26a 8787 dev_close_many(&close_head, true);
93ee31f1 8788
44345724 8789 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
8790 /* And unlink it from device chain. */
8791 unlist_netdevice(dev);
93ee31f1 8792
9b5e383c
ED
8793 dev->reg_state = NETREG_UNREGISTERING;
8794 }
41852497 8795 flush_all_backlogs();
93ee31f1
DL
8796
8797 synchronize_net();
8798
9b5e383c 8799 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
8800 struct sk_buff *skb = NULL;
8801
9b5e383c
ED
8802 /* Shutdown queueing discipline. */
8803 dev_shutdown(dev);
93ee31f1 8804
bd0b2e7f 8805 dev_xdp_uninstall(dev);
93ee31f1 8806
9b5e383c 8807 /* Notify protocols, that we are about to destroy
eb13da1a 8808 * this device. They should clean all the things.
8809 */
9b5e383c 8810 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 8811
395eea6c
MB
8812 if (!dev->rtnl_link_ops ||
8813 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 8814 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 8815 GFP_KERNEL, NULL, 0);
395eea6c 8816
9b5e383c
ED
8817 /*
8818 * Flush the unicast and multicast chains
8819 */
a748ee24 8820 dev_uc_flush(dev);
22bedad3 8821 dev_mc_flush(dev);
93ee31f1 8822
36fbf1e5 8823 netdev_name_node_alt_flush(dev);
ff927412
JP
8824 netdev_name_node_free(dev->name_node);
8825
9b5e383c
ED
8826 if (dev->netdev_ops->ndo_uninit)
8827 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 8828
395eea6c
MB
8829 if (skb)
8830 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 8831
9ff162a8
JP
8832 /* Notifier chain MUST detach us all upper devices. */
8833 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 8834 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 8835
9b5e383c
ED
8836 /* Remove entries from kobject tree */
8837 netdev_unregister_kobject(dev);
024e9679
AD
8838#ifdef CONFIG_XPS
8839 /* Remove XPS queueing entries */
8840 netif_reset_xps_queues_gt(dev, 0);
8841#endif
9b5e383c 8842 }
93ee31f1 8843
850a545b 8844 synchronize_net();
395264d5 8845
a5ee1551 8846 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
8847 dev_put(dev);
8848}
8849
8850static void rollback_registered(struct net_device *dev)
8851{
8852 LIST_HEAD(single);
8853
8854 list_add(&dev->unreg_list, &single);
8855 rollback_registered_many(&single);
ceaaec98 8856 list_del(&single);
93ee31f1
DL
8857}
8858
fd867d51
JW
8859static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8860 struct net_device *upper, netdev_features_t features)
8861{
8862 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8863 netdev_features_t feature;
5ba3f7d6 8864 int feature_bit;
fd867d51 8865
3b89ea9c 8866 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8867 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8868 if (!(upper->wanted_features & feature)
8869 && (features & feature)) {
8870 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8871 &feature, upper->name);
8872 features &= ~feature;
8873 }
8874 }
8875
8876 return features;
8877}
8878
8879static void netdev_sync_lower_features(struct net_device *upper,
8880 struct net_device *lower, netdev_features_t features)
8881{
8882 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8883 netdev_features_t feature;
5ba3f7d6 8884 int feature_bit;
fd867d51 8885
3b89ea9c 8886 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8887 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8888 if (!(features & feature) && (lower->features & feature)) {
8889 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8890 &feature, lower->name);
8891 lower->wanted_features &= ~feature;
8892 netdev_update_features(lower);
8893
8894 if (unlikely(lower->features & feature))
8895 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8896 &feature, lower->name);
8897 }
8898 }
8899}
8900
c8f44aff
MM
8901static netdev_features_t netdev_fix_features(struct net_device *dev,
8902 netdev_features_t features)
b63365a2 8903{
57422dc5
MM
8904 /* Fix illegal checksum combinations */
8905 if ((features & NETIF_F_HW_CSUM) &&
8906 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 8907 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
8908 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8909 }
8910
b63365a2 8911 /* TSO requires that SG is present as well. */
ea2d3688 8912 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 8913 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 8914 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
8915 }
8916
ec5f0615
PS
8917 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8918 !(features & NETIF_F_IP_CSUM)) {
8919 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8920 features &= ~NETIF_F_TSO;
8921 features &= ~NETIF_F_TSO_ECN;
8922 }
8923
8924 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8925 !(features & NETIF_F_IPV6_CSUM)) {
8926 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8927 features &= ~NETIF_F_TSO6;
8928 }
8929
b1dc497b
AD
8930 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8931 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8932 features &= ~NETIF_F_TSO_MANGLEID;
8933
31d8b9e0
BH
8934 /* TSO ECN requires that TSO is present as well. */
8935 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8936 features &= ~NETIF_F_TSO_ECN;
8937
212b573f
MM
8938 /* Software GSO depends on SG. */
8939 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 8940 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
8941 features &= ~NETIF_F_GSO;
8942 }
8943
802ab55a
AD
8944 /* GSO partial features require GSO partial be set */
8945 if ((features & dev->gso_partial_features) &&
8946 !(features & NETIF_F_GSO_PARTIAL)) {
8947 netdev_dbg(dev,
8948 "Dropping partially supported GSO features since no GSO partial.\n");
8949 features &= ~dev->gso_partial_features;
8950 }
8951
fb1f5f79
MC
8952 if (!(features & NETIF_F_RXCSUM)) {
8953 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8954 * successfully merged by hardware must also have the
8955 * checksum verified by hardware. If the user does not
8956 * want to enable RXCSUM, logically, we should disable GRO_HW.
8957 */
8958 if (features & NETIF_F_GRO_HW) {
8959 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8960 features &= ~NETIF_F_GRO_HW;
8961 }
8962 }
8963
de8d5ab2
GP
8964 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8965 if (features & NETIF_F_RXFCS) {
8966 if (features & NETIF_F_LRO) {
8967 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8968 features &= ~NETIF_F_LRO;
8969 }
8970
8971 if (features & NETIF_F_GRO_HW) {
8972 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8973 features &= ~NETIF_F_GRO_HW;
8974 }
e6c6a929
GP
8975 }
8976
b63365a2
HX
8977 return features;
8978}
b63365a2 8979
6cb6a27c 8980int __netdev_update_features(struct net_device *dev)
5455c699 8981{
fd867d51 8982 struct net_device *upper, *lower;
c8f44aff 8983 netdev_features_t features;
fd867d51 8984 struct list_head *iter;
e7868a85 8985 int err = -1;
5455c699 8986
87267485
MM
8987 ASSERT_RTNL();
8988
5455c699
MM
8989 features = netdev_get_wanted_features(dev);
8990
8991 if (dev->netdev_ops->ndo_fix_features)
8992 features = dev->netdev_ops->ndo_fix_features(dev, features);
8993
8994 /* driver might be less strict about feature dependencies */
8995 features = netdev_fix_features(dev, features);
8996
fd867d51
JW
8997 /* some features can't be enabled if they're off an an upper device */
8998 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8999 features = netdev_sync_upper_features(dev, upper, features);
9000
5455c699 9001 if (dev->features == features)
e7868a85 9002 goto sync_lower;
5455c699 9003
c8f44aff
MM
9004 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9005 &dev->features, &features);
5455c699
MM
9006
9007 if (dev->netdev_ops->ndo_set_features)
9008 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9009 else
9010 err = 0;
5455c699 9011
6cb6a27c 9012 if (unlikely(err < 0)) {
5455c699 9013 netdev_err(dev,
c8f44aff
MM
9014 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9015 err, &features, &dev->features);
17b85d29
NA
9016 /* return non-0 since some features might have changed and
9017 * it's better to fire a spurious notification than miss it
9018 */
9019 return -1;
6cb6a27c
MM
9020 }
9021
e7868a85 9022sync_lower:
fd867d51
JW
9023 /* some features must be disabled on lower devices when disabled
9024 * on an upper device (think: bonding master or bridge)
9025 */
9026 netdev_for_each_lower_dev(dev, lower, iter)
9027 netdev_sync_lower_features(dev, lower, features);
9028
ae847f40
SD
9029 if (!err) {
9030 netdev_features_t diff = features ^ dev->features;
9031
9032 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9033 /* udp_tunnel_{get,drop}_rx_info both need
9034 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9035 * device, or they won't do anything.
9036 * Thus we need to update dev->features
9037 * *before* calling udp_tunnel_get_rx_info,
9038 * but *after* calling udp_tunnel_drop_rx_info.
9039 */
9040 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9041 dev->features = features;
9042 udp_tunnel_get_rx_info(dev);
9043 } else {
9044 udp_tunnel_drop_rx_info(dev);
9045 }
9046 }
9047
9daae9bd
GP
9048 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9049 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9050 dev->features = features;
9051 err |= vlan_get_rx_ctag_filter_info(dev);
9052 } else {
9053 vlan_drop_rx_ctag_filter_info(dev);
9054 }
9055 }
9056
9057 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9058 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9059 dev->features = features;
9060 err |= vlan_get_rx_stag_filter_info(dev);
9061 } else {
9062 vlan_drop_rx_stag_filter_info(dev);
9063 }
9064 }
9065
6cb6a27c 9066 dev->features = features;
ae847f40 9067 }
6cb6a27c 9068
e7868a85 9069 return err < 0 ? 0 : 1;
6cb6a27c
MM
9070}
9071
afe12cc8
MM
9072/**
9073 * netdev_update_features - recalculate device features
9074 * @dev: the device to check
9075 *
9076 * Recalculate dev->features set and send notifications if it
9077 * has changed. Should be called after driver or hardware dependent
9078 * conditions might have changed that influence the features.
9079 */
6cb6a27c
MM
9080void netdev_update_features(struct net_device *dev)
9081{
9082 if (__netdev_update_features(dev))
9083 netdev_features_change(dev);
5455c699
MM
9084}
9085EXPORT_SYMBOL(netdev_update_features);
9086
afe12cc8
MM
9087/**
9088 * netdev_change_features - recalculate device features
9089 * @dev: the device to check
9090 *
9091 * Recalculate dev->features set and send notifications even
9092 * if they have not changed. Should be called instead of
9093 * netdev_update_features() if also dev->vlan_features might
9094 * have changed to allow the changes to be propagated to stacked
9095 * VLAN devices.
9096 */
9097void netdev_change_features(struct net_device *dev)
9098{
9099 __netdev_update_features(dev);
9100 netdev_features_change(dev);
9101}
9102EXPORT_SYMBOL(netdev_change_features);
9103
fc4a7489
PM
9104/**
9105 * netif_stacked_transfer_operstate - transfer operstate
9106 * @rootdev: the root or lower level device to transfer state from
9107 * @dev: the device to transfer operstate to
9108 *
9109 * Transfer operational state from root to device. This is normally
9110 * called when a stacking relationship exists between the root
9111 * device and the device(a leaf device).
9112 */
9113void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9114 struct net_device *dev)
9115{
9116 if (rootdev->operstate == IF_OPER_DORMANT)
9117 netif_dormant_on(dev);
9118 else
9119 netif_dormant_off(dev);
9120
0575c86b
ZS
9121 if (netif_carrier_ok(rootdev))
9122 netif_carrier_on(dev);
9123 else
9124 netif_carrier_off(dev);
fc4a7489
PM
9125}
9126EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9127
1b4bf461
ED
9128static int netif_alloc_rx_queues(struct net_device *dev)
9129{
1b4bf461 9130 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 9131 struct netdev_rx_queue *rx;
10595902 9132 size_t sz = count * sizeof(*rx);
e817f856 9133 int err = 0;
1b4bf461 9134
bd25fa7b 9135 BUG_ON(count < 1);
1b4bf461 9136
dcda9b04 9137 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9138 if (!rx)
9139 return -ENOMEM;
9140
bd25fa7b
TH
9141 dev->_rx = rx;
9142
e817f856 9143 for (i = 0; i < count; i++) {
fe822240 9144 rx[i].dev = dev;
e817f856
JDB
9145
9146 /* XDP RX-queue setup */
9147 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9148 if (err < 0)
9149 goto err_rxq_info;
9150 }
1b4bf461 9151 return 0;
e817f856
JDB
9152
9153err_rxq_info:
9154 /* Rollback successful reg's and free other resources */
9155 while (i--)
9156 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 9157 kvfree(dev->_rx);
e817f856
JDB
9158 dev->_rx = NULL;
9159 return err;
9160}
9161
9162static void netif_free_rx_queues(struct net_device *dev)
9163{
9164 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
9165
9166 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9167 if (!dev->_rx)
9168 return;
9169
e817f856 9170 for (i = 0; i < count; i++)
82aaff2f
JK
9171 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9172
9173 kvfree(dev->_rx);
1b4bf461
ED
9174}
9175
aa942104
CG
9176static void netdev_init_one_queue(struct net_device *dev,
9177 struct netdev_queue *queue, void *_unused)
9178{
9179 /* Initialize queue lock */
9180 spin_lock_init(&queue->_xmit_lock);
ab92d68f 9181 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
aa942104 9182 queue->xmit_lock_owner = -1;
b236da69 9183 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 9184 queue->dev = dev;
114cf580
TH
9185#ifdef CONFIG_BQL
9186 dql_init(&queue->dql, HZ);
9187#endif
aa942104
CG
9188}
9189
60877a32
ED
9190static void netif_free_tx_queues(struct net_device *dev)
9191{
4cb28970 9192 kvfree(dev->_tx);
60877a32
ED
9193}
9194
e6484930
TH
9195static int netif_alloc_netdev_queues(struct net_device *dev)
9196{
9197 unsigned int count = dev->num_tx_queues;
9198 struct netdev_queue *tx;
60877a32 9199 size_t sz = count * sizeof(*tx);
e6484930 9200
d339727c
ED
9201 if (count < 1 || count > 0xffff)
9202 return -EINVAL;
62b5942a 9203
dcda9b04 9204 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9205 if (!tx)
9206 return -ENOMEM;
9207
e6484930 9208 dev->_tx = tx;
1d24eb48 9209
e6484930
TH
9210 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9211 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
9212
9213 return 0;
e6484930
TH
9214}
9215
a2029240
DV
9216void netif_tx_stop_all_queues(struct net_device *dev)
9217{
9218 unsigned int i;
9219
9220 for (i = 0; i < dev->num_tx_queues; i++) {
9221 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 9222
a2029240
DV
9223 netif_tx_stop_queue(txq);
9224 }
9225}
9226EXPORT_SYMBOL(netif_tx_stop_all_queues);
9227
ab92d68f
TY
9228static void netdev_register_lockdep_key(struct net_device *dev)
9229{
9230 lockdep_register_key(&dev->qdisc_tx_busylock_key);
9231 lockdep_register_key(&dev->qdisc_running_key);
9232 lockdep_register_key(&dev->qdisc_xmit_lock_key);
9233 lockdep_register_key(&dev->addr_list_lock_key);
9234}
9235
9236static void netdev_unregister_lockdep_key(struct net_device *dev)
9237{
9238 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9239 lockdep_unregister_key(&dev->qdisc_running_key);
9240 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9241 lockdep_unregister_key(&dev->addr_list_lock_key);
9242}
9243
9244void netdev_update_lockdep_key(struct net_device *dev)
9245{
ab92d68f 9246 lockdep_unregister_key(&dev->addr_list_lock_key);
ab92d68f
TY
9247 lockdep_register_key(&dev->addr_list_lock_key);
9248
9249 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
ab92d68f
TY
9250}
9251EXPORT_SYMBOL(netdev_update_lockdep_key);
9252
1da177e4
LT
9253/**
9254 * register_netdevice - register a network device
9255 * @dev: device to register
9256 *
9257 * Take a completed network device structure and add it to the kernel
9258 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9259 * chain. 0 is returned on success. A negative errno code is returned
9260 * on a failure to set up the device, or if the name is a duplicate.
9261 *
9262 * Callers must hold the rtnl semaphore. You may want
9263 * register_netdev() instead of this.
9264 *
9265 * BUGS:
9266 * The locking appears insufficient to guarantee two parallel registers
9267 * will not get the same name.
9268 */
9269
9270int register_netdevice(struct net_device *dev)
9271{
1da177e4 9272 int ret;
d314774c 9273 struct net *net = dev_net(dev);
1da177e4 9274
e283de3a
FF
9275 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9276 NETDEV_FEATURE_COUNT);
1da177e4
LT
9277 BUG_ON(dev_boot_phase);
9278 ASSERT_RTNL();
9279
b17a7c17
SH
9280 might_sleep();
9281
1da177e4
LT
9282 /* When net_device's are persistent, this will be fatal. */
9283 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 9284 BUG_ON(!net);
1da177e4 9285
f1f28aa3 9286 spin_lock_init(&dev->addr_list_lock);
ab92d68f 9287 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
1da177e4 9288
828de4f6 9289 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
9290 if (ret < 0)
9291 goto out;
9292
9077f052 9293 ret = -ENOMEM;
ff927412
JP
9294 dev->name_node = netdev_name_node_head_alloc(dev);
9295 if (!dev->name_node)
9296 goto out;
9297
1da177e4 9298 /* Init, if this function is available */
d314774c
SH
9299 if (dev->netdev_ops->ndo_init) {
9300 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
9301 if (ret) {
9302 if (ret > 0)
9303 ret = -EIO;
42c17fa6 9304 goto err_free_name;
1da177e4
LT
9305 }
9306 }
4ec93edb 9307
f646968f
PM
9308 if (((dev->hw_features | dev->features) &
9309 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
9310 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9311 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9312 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9313 ret = -EINVAL;
9314 goto err_uninit;
9315 }
9316
9c7dafbf
PE
9317 ret = -EBUSY;
9318 if (!dev->ifindex)
9319 dev->ifindex = dev_new_index(net);
9320 else if (__dev_get_by_index(net, dev->ifindex))
9321 goto err_uninit;
9322
5455c699
MM
9323 /* Transfer changeable features to wanted_features and enable
9324 * software offloads (GSO and GRO).
9325 */
1a3c998f 9326 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 9327 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
9328
9329 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9330 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9331 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9332 }
9333
14d1232f 9334 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 9335
cbc53e08 9336 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 9337 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 9338
7f348a60
AD
9339 /* If IPv4 TCP segmentation offload is supported we should also
9340 * allow the device to enable segmenting the frame with the option
9341 * of ignoring a static IP ID value. This doesn't enable the
9342 * feature itself but allows the user to enable it later.
9343 */
cbc53e08
AD
9344 if (dev->hw_features & NETIF_F_TSO)
9345 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
9346 if (dev->vlan_features & NETIF_F_TSO)
9347 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9348 if (dev->mpls_features & NETIF_F_TSO)
9349 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9350 if (dev->hw_enc_features & NETIF_F_TSO)
9351 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 9352
1180e7d6 9353 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 9354 */
1180e7d6 9355 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 9356
ee579677
PS
9357 /* Make NETIF_F_SG inheritable to tunnel devices.
9358 */
802ab55a 9359 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 9360
0d89d203
SH
9361 /* Make NETIF_F_SG inheritable to MPLS.
9362 */
9363 dev->mpls_features |= NETIF_F_SG;
9364
7ffbe3fd
JB
9365 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9366 ret = notifier_to_errno(ret);
9367 if (ret)
9368 goto err_uninit;
9369
8b41d188 9370 ret = netdev_register_kobject(dev);
cb626bf5
JH
9371 if (ret) {
9372 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 9373 goto err_uninit;
cb626bf5 9374 }
b17a7c17
SH
9375 dev->reg_state = NETREG_REGISTERED;
9376
6cb6a27c 9377 __netdev_update_features(dev);
8e9b59b2 9378
1da177e4
LT
9379 /*
9380 * Default initial state at registry is that the
9381 * device is present.
9382 */
9383
9384 set_bit(__LINK_STATE_PRESENT, &dev->state);
9385
8f4cccbb
BH
9386 linkwatch_init_dev(dev);
9387
1da177e4 9388 dev_init_scheduler(dev);
1da177e4 9389 dev_hold(dev);
ce286d32 9390 list_netdevice(dev);
7bf23575 9391 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 9392
948b337e
JP
9393 /* If the device has permanent device address, driver should
9394 * set dev_addr and also addr_assign_type should be set to
9395 * NET_ADDR_PERM (default value).
9396 */
9397 if (dev->addr_assign_type == NET_ADDR_PERM)
9398 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9399
1da177e4 9400 /* Notify protocols, that a new device appeared. */
056925ab 9401 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 9402 ret = notifier_to_errno(ret);
93ee31f1
DL
9403 if (ret) {
9404 rollback_registered(dev);
10cc514f
SAK
9405 rcu_barrier();
9406
93ee31f1
DL
9407 dev->reg_state = NETREG_UNREGISTERED;
9408 }
d90a909e
EB
9409 /*
9410 * Prevent userspace races by waiting until the network
9411 * device is fully setup before sending notifications.
9412 */
a2835763
PM
9413 if (!dev->rtnl_link_ops ||
9414 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 9415 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
9416
9417out:
9418 return ret;
7ce1b0ed
HX
9419
9420err_uninit:
d314774c
SH
9421 if (dev->netdev_ops->ndo_uninit)
9422 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
9423 if (dev->priv_destructor)
9424 dev->priv_destructor(dev);
42c17fa6
DC
9425err_free_name:
9426 netdev_name_node_free(dev->name_node);
7ce1b0ed 9427 goto out;
1da177e4 9428}
d1b19dff 9429EXPORT_SYMBOL(register_netdevice);
1da177e4 9430
937f1ba5
BH
9431/**
9432 * init_dummy_netdev - init a dummy network device for NAPI
9433 * @dev: device to init
9434 *
9435 * This takes a network device structure and initialize the minimum
9436 * amount of fields so it can be used to schedule NAPI polls without
9437 * registering a full blown interface. This is to be used by drivers
9438 * that need to tie several hardware interfaces to a single NAPI
9439 * poll scheduler due to HW limitations.
9440 */
9441int init_dummy_netdev(struct net_device *dev)
9442{
9443 /* Clear everything. Note we don't initialize spinlocks
9444 * are they aren't supposed to be taken by any of the
9445 * NAPI code and this dummy netdev is supposed to be
9446 * only ever used for NAPI polls
9447 */
9448 memset(dev, 0, sizeof(struct net_device));
9449
9450 /* make sure we BUG if trying to hit standard
9451 * register/unregister code path
9452 */
9453 dev->reg_state = NETREG_DUMMY;
9454
937f1ba5
BH
9455 /* NAPI wants this */
9456 INIT_LIST_HEAD(&dev->napi_list);
9457
9458 /* a dummy interface is started by default */
9459 set_bit(__LINK_STATE_PRESENT, &dev->state);
9460 set_bit(__LINK_STATE_START, &dev->state);
9461
35edfdc7
JE
9462 /* napi_busy_loop stats accounting wants this */
9463 dev_net_set(dev, &init_net);
9464
29b4433d
ED
9465 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9466 * because users of this 'device' dont need to change
9467 * its refcount.
9468 */
9469
937f1ba5
BH
9470 return 0;
9471}
9472EXPORT_SYMBOL_GPL(init_dummy_netdev);
9473
9474
1da177e4
LT
9475/**
9476 * register_netdev - register a network device
9477 * @dev: device to register
9478 *
9479 * Take a completed network device structure and add it to the kernel
9480 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9481 * chain. 0 is returned on success. A negative errno code is returned
9482 * on a failure to set up the device, or if the name is a duplicate.
9483 *
38b4da38 9484 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
9485 * and expands the device name if you passed a format string to
9486 * alloc_netdev.
9487 */
9488int register_netdev(struct net_device *dev)
9489{
9490 int err;
9491
b0f3debc
KT
9492 if (rtnl_lock_killable())
9493 return -EINTR;
1da177e4 9494 err = register_netdevice(dev);
1da177e4
LT
9495 rtnl_unlock();
9496 return err;
9497}
9498EXPORT_SYMBOL(register_netdev);
9499
29b4433d
ED
9500int netdev_refcnt_read(const struct net_device *dev)
9501{
9502 int i, refcnt = 0;
9503
9504 for_each_possible_cpu(i)
9505 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9506 return refcnt;
9507}
9508EXPORT_SYMBOL(netdev_refcnt_read);
9509
2c53040f 9510/**
1da177e4 9511 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 9512 * @dev: target net_device
1da177e4
LT
9513 *
9514 * This is called when unregistering network devices.
9515 *
9516 * Any protocol or device that holds a reference should register
9517 * for netdevice notification, and cleanup and put back the
9518 * reference if they receive an UNREGISTER event.
9519 * We can get stuck here if buggy protocols don't correctly
4ec93edb 9520 * call dev_put.
1da177e4
LT
9521 */
9522static void netdev_wait_allrefs(struct net_device *dev)
9523{
9524 unsigned long rebroadcast_time, warning_time;
29b4433d 9525 int refcnt;
1da177e4 9526
e014debe
ED
9527 linkwatch_forget_dev(dev);
9528
1da177e4 9529 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
9530 refcnt = netdev_refcnt_read(dev);
9531
9532 while (refcnt != 0) {
1da177e4 9533 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 9534 rtnl_lock();
1da177e4
LT
9535
9536 /* Rebroadcast unregister notification */
056925ab 9537 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 9538
748e2d93 9539 __rtnl_unlock();
0115e8e3 9540 rcu_barrier();
748e2d93
ED
9541 rtnl_lock();
9542
1da177e4
LT
9543 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9544 &dev->state)) {
9545 /* We must not have linkwatch events
9546 * pending on unregister. If this
9547 * happens, we simply run the queue
9548 * unscheduled, resulting in a noop
9549 * for this device.
9550 */
9551 linkwatch_run_queue();
9552 }
9553
6756ae4b 9554 __rtnl_unlock();
1da177e4
LT
9555
9556 rebroadcast_time = jiffies;
9557 }
9558
9559 msleep(250);
9560
29b4433d
ED
9561 refcnt = netdev_refcnt_read(dev);
9562
d7c04b05 9563 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
9564 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9565 dev->name, refcnt);
1da177e4
LT
9566 warning_time = jiffies;
9567 }
9568 }
9569}
9570
9571/* The sequence is:
9572 *
9573 * rtnl_lock();
9574 * ...
9575 * register_netdevice(x1);
9576 * register_netdevice(x2);
9577 * ...
9578 * unregister_netdevice(y1);
9579 * unregister_netdevice(y2);
9580 * ...
9581 * rtnl_unlock();
9582 * free_netdev(y1);
9583 * free_netdev(y2);
9584 *
58ec3b4d 9585 * We are invoked by rtnl_unlock().
1da177e4 9586 * This allows us to deal with problems:
b17a7c17 9587 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
9588 * without deadlocking with linkwatch via keventd.
9589 * 2) Since we run with the RTNL semaphore not held, we can sleep
9590 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
9591 *
9592 * We must not return until all unregister events added during
9593 * the interval the lock was held have been completed.
1da177e4 9594 */
1da177e4
LT
9595void netdev_run_todo(void)
9596{
626ab0e6 9597 struct list_head list;
1da177e4 9598
1da177e4 9599 /* Snapshot list, allow later requests */
626ab0e6 9600 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
9601
9602 __rtnl_unlock();
626ab0e6 9603
0115e8e3
ED
9604
9605 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
9606 if (!list_empty(&list))
9607 rcu_barrier();
9608
1da177e4
LT
9609 while (!list_empty(&list)) {
9610 struct net_device *dev
e5e26d75 9611 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
9612 list_del(&dev->todo_list);
9613
b17a7c17 9614 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 9615 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
9616 dev->name, dev->reg_state);
9617 dump_stack();
9618 continue;
9619 }
1da177e4 9620
b17a7c17 9621 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 9622
b17a7c17 9623 netdev_wait_allrefs(dev);
1da177e4 9624
b17a7c17 9625 /* paranoia */
29b4433d 9626 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
9627 BUG_ON(!list_empty(&dev->ptype_all));
9628 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
9629 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9630 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 9631#if IS_ENABLED(CONFIG_DECNET)
547b792c 9632 WARN_ON(dev->dn_ptr);
330c7272 9633#endif
cf124db5
DM
9634 if (dev->priv_destructor)
9635 dev->priv_destructor(dev);
9636 if (dev->needs_free_netdev)
9637 free_netdev(dev);
9093bbb2 9638
50624c93
EB
9639 /* Report a network device has been unregistered */
9640 rtnl_lock();
9641 dev_net(dev)->dev_unreg_count--;
9642 __rtnl_unlock();
9643 wake_up(&netdev_unregistering_wq);
9644
9093bbb2
SH
9645 /* Free network device */
9646 kobject_put(&dev->dev.kobj);
1da177e4 9647 }
1da177e4
LT
9648}
9649
9256645a
JW
9650/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9651 * all the same fields in the same order as net_device_stats, with only
9652 * the type differing, but rtnl_link_stats64 may have additional fields
9653 * at the end for newer counters.
3cfde79c 9654 */
77a1abf5
ED
9655void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9656 const struct net_device_stats *netdev_stats)
3cfde79c
BH
9657{
9658#if BITS_PER_LONG == 64
9256645a 9659 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 9660 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
9661 /* zero out counters that only exist in rtnl_link_stats64 */
9662 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9663 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 9664#else
9256645a 9665 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
9666 const unsigned long *src = (const unsigned long *)netdev_stats;
9667 u64 *dst = (u64 *)stats64;
9668
9256645a 9669 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
9670 for (i = 0; i < n; i++)
9671 dst[i] = src[i];
9256645a
JW
9672 /* zero out counters that only exist in rtnl_link_stats64 */
9673 memset((char *)stats64 + n * sizeof(u64), 0,
9674 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
9675#endif
9676}
77a1abf5 9677EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 9678
eeda3fd6
SH
9679/**
9680 * dev_get_stats - get network device statistics
9681 * @dev: device to get statistics from
28172739 9682 * @storage: place to store stats
eeda3fd6 9683 *
d7753516
BH
9684 * Get network statistics from device. Return @storage.
9685 * The device driver may provide its own method by setting
9686 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9687 * otherwise the internal statistics structure is used.
eeda3fd6 9688 */
d7753516
BH
9689struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9690 struct rtnl_link_stats64 *storage)
7004bf25 9691{
eeda3fd6
SH
9692 const struct net_device_ops *ops = dev->netdev_ops;
9693
28172739
ED
9694 if (ops->ndo_get_stats64) {
9695 memset(storage, 0, sizeof(*storage));
caf586e5
ED
9696 ops->ndo_get_stats64(dev, storage);
9697 } else if (ops->ndo_get_stats) {
3cfde79c 9698 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
9699 } else {
9700 netdev_stats_to_stats64(storage, &dev->stats);
28172739 9701 }
6f64ec74
ED
9702 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9703 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9704 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 9705 return storage;
c45d286e 9706}
eeda3fd6 9707EXPORT_SYMBOL(dev_get_stats);
c45d286e 9708
24824a09 9709struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 9710{
24824a09 9711 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 9712
24824a09
ED
9713#ifdef CONFIG_NET_CLS_ACT
9714 if (queue)
9715 return queue;
9716 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9717 if (!queue)
9718 return NULL;
9719 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 9720 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
9721 queue->qdisc_sleeping = &noop_qdisc;
9722 rcu_assign_pointer(dev->ingress_queue, queue);
9723#endif
9724 return queue;
bb949fbd
DM
9725}
9726
2c60db03
ED
9727static const struct ethtool_ops default_ethtool_ops;
9728
d07d7507
SG
9729void netdev_set_default_ethtool_ops(struct net_device *dev,
9730 const struct ethtool_ops *ops)
9731{
9732 if (dev->ethtool_ops == &default_ethtool_ops)
9733 dev->ethtool_ops = ops;
9734}
9735EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9736
74d332c1
ED
9737void netdev_freemem(struct net_device *dev)
9738{
9739 char *addr = (char *)dev - dev->padded;
9740
4cb28970 9741 kvfree(addr);
74d332c1
ED
9742}
9743
1da177e4 9744/**
722c9a0c 9745 * alloc_netdev_mqs - allocate network device
9746 * @sizeof_priv: size of private data to allocate space for
9747 * @name: device name format string
9748 * @name_assign_type: origin of device name
9749 * @setup: callback to initialize device
9750 * @txqs: the number of TX subqueues to allocate
9751 * @rxqs: the number of RX subqueues to allocate
9752 *
9753 * Allocates a struct net_device with private data area for driver use
9754 * and performs basic initialization. Also allocates subqueue structs
9755 * for each queue on the device.
1da177e4 9756 */
36909ea4 9757struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 9758 unsigned char name_assign_type,
36909ea4
TH
9759 void (*setup)(struct net_device *),
9760 unsigned int txqs, unsigned int rxqs)
1da177e4 9761{
1da177e4 9762 struct net_device *dev;
52a59bd5 9763 unsigned int alloc_size;
1ce8e7b5 9764 struct net_device *p;
1da177e4 9765
b6fe17d6
SH
9766 BUG_ON(strlen(name) >= sizeof(dev->name));
9767
36909ea4 9768 if (txqs < 1) {
7b6cd1ce 9769 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
9770 return NULL;
9771 }
9772
36909ea4 9773 if (rxqs < 1) {
7b6cd1ce 9774 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
9775 return NULL;
9776 }
36909ea4 9777
fd2ea0a7 9778 alloc_size = sizeof(struct net_device);
d1643d24
AD
9779 if (sizeof_priv) {
9780 /* ensure 32-byte alignment of private area */
1ce8e7b5 9781 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
9782 alloc_size += sizeof_priv;
9783 }
9784 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 9785 alloc_size += NETDEV_ALIGN - 1;
1da177e4 9786
dcda9b04 9787 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 9788 if (!p)
1da177e4 9789 return NULL;
1da177e4 9790
1ce8e7b5 9791 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 9792 dev->padded = (char *)dev - (char *)p;
ab9c73cc 9793
29b4433d
ED
9794 dev->pcpu_refcnt = alloc_percpu(int);
9795 if (!dev->pcpu_refcnt)
74d332c1 9796 goto free_dev;
ab9c73cc 9797
ab9c73cc 9798 if (dev_addr_init(dev))
29b4433d 9799 goto free_pcpu;
ab9c73cc 9800
22bedad3 9801 dev_mc_init(dev);
a748ee24 9802 dev_uc_init(dev);
ccffad25 9803
c346dca1 9804 dev_net_set(dev, &init_net);
1da177e4 9805
ab92d68f
TY
9806 netdev_register_lockdep_key(dev);
9807
8d3bdbd5 9808 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 9809 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
9810 dev->upper_level = 1;
9811 dev->lower_level = 1;
8d3bdbd5 9812
8d3bdbd5
DM
9813 INIT_LIST_HEAD(&dev->napi_list);
9814 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 9815 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 9816 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
9817 INIT_LIST_HEAD(&dev->adj_list.upper);
9818 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
9819 INIT_LIST_HEAD(&dev->ptype_all);
9820 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 9821 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
9822#ifdef CONFIG_NET_SCHED
9823 hash_init(dev->qdisc_hash);
9824#endif
02875878 9825 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
9826 setup(dev);
9827
a813104d 9828 if (!dev->tx_queue_len) {
f84bb1ea 9829 dev->priv_flags |= IFF_NO_QUEUE;
11597084 9830 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 9831 }
906470c1 9832
36909ea4
TH
9833 dev->num_tx_queues = txqs;
9834 dev->real_num_tx_queues = txqs;
ed9af2e8 9835 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 9836 goto free_all;
e8a0464c 9837
36909ea4
TH
9838 dev->num_rx_queues = rxqs;
9839 dev->real_num_rx_queues = rxqs;
fe822240 9840 if (netif_alloc_rx_queues(dev))
8d3bdbd5 9841 goto free_all;
0a9627f2 9842
1da177e4 9843 strcpy(dev->name, name);
c835a677 9844 dev->name_assign_type = name_assign_type;
cbda10fa 9845 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
9846 if (!dev->ethtool_ops)
9847 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
9848
9849 nf_hook_ingress_init(dev);
9850
1da177e4 9851 return dev;
ab9c73cc 9852
8d3bdbd5
DM
9853free_all:
9854 free_netdev(dev);
9855 return NULL;
9856
29b4433d
ED
9857free_pcpu:
9858 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
9859free_dev:
9860 netdev_freemem(dev);
ab9c73cc 9861 return NULL;
1da177e4 9862}
36909ea4 9863EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
9864
9865/**
722c9a0c 9866 * free_netdev - free network device
9867 * @dev: device
1da177e4 9868 *
722c9a0c 9869 * This function does the last stage of destroying an allocated device
9870 * interface. The reference to the device object is released. If this
9871 * is the last reference then it will be freed.Must be called in process
9872 * context.
1da177e4
LT
9873 */
9874void free_netdev(struct net_device *dev)
9875{
d565b0a1
HX
9876 struct napi_struct *p, *n;
9877
93d05d4a 9878 might_sleep();
60877a32 9879 netif_free_tx_queues(dev);
e817f856 9880 netif_free_rx_queues(dev);
e8a0464c 9881
33d480ce 9882 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 9883
f001fde5
JP
9884 /* Flush device addresses */
9885 dev_addr_flush(dev);
9886
d565b0a1
HX
9887 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9888 netif_napi_del(p);
9889
29b4433d
ED
9890 free_percpu(dev->pcpu_refcnt);
9891 dev->pcpu_refcnt = NULL;
75ccae62
THJ
9892 free_percpu(dev->xdp_bulkq);
9893 dev->xdp_bulkq = NULL;
29b4433d 9894
ab92d68f
TY
9895 netdev_unregister_lockdep_key(dev);
9896
3041a069 9897 /* Compatibility with error handling in drivers */
1da177e4 9898 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 9899 netdev_freemem(dev);
1da177e4
LT
9900 return;
9901 }
9902
9903 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9904 dev->reg_state = NETREG_RELEASED;
9905
43cb76d9
GKH
9906 /* will free via device release */
9907 put_device(&dev->dev);
1da177e4 9908}
d1b19dff 9909EXPORT_SYMBOL(free_netdev);
4ec93edb 9910
f0db275a
SH
9911/**
9912 * synchronize_net - Synchronize with packet receive processing
9913 *
9914 * Wait for packets currently being received to be done.
9915 * Does not block later packets from starting.
9916 */
4ec93edb 9917void synchronize_net(void)
1da177e4
LT
9918{
9919 might_sleep();
be3fc413
ED
9920 if (rtnl_is_locked())
9921 synchronize_rcu_expedited();
9922 else
9923 synchronize_rcu();
1da177e4 9924}
d1b19dff 9925EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
9926
9927/**
44a0873d 9928 * unregister_netdevice_queue - remove device from the kernel
1da177e4 9929 * @dev: device
44a0873d 9930 * @head: list
6ebfbc06 9931 *
1da177e4 9932 * This function shuts down a device interface and removes it
d59b54b1 9933 * from the kernel tables.
44a0873d 9934 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
9935 *
9936 * Callers must hold the rtnl semaphore. You may want
9937 * unregister_netdev() instead of this.
9938 */
9939
44a0873d 9940void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 9941{
a6620712
HX
9942 ASSERT_RTNL();
9943
44a0873d 9944 if (head) {
9fdce099 9945 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
9946 } else {
9947 rollback_registered(dev);
9948 /* Finish processing unregister after unlock */
9949 net_set_todo(dev);
9950 }
1da177e4 9951}
44a0873d 9952EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 9953
9b5e383c
ED
9954/**
9955 * unregister_netdevice_many - unregister many devices
9956 * @head: list of devices
87757a91
ED
9957 *
9958 * Note: As most callers use a stack allocated list_head,
9959 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
9960 */
9961void unregister_netdevice_many(struct list_head *head)
9962{
9963 struct net_device *dev;
9964
9965 if (!list_empty(head)) {
9966 rollback_registered_many(head);
9967 list_for_each_entry(dev, head, unreg_list)
9968 net_set_todo(dev);
87757a91 9969 list_del(head);
9b5e383c
ED
9970 }
9971}
63c8099d 9972EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 9973
1da177e4
LT
9974/**
9975 * unregister_netdev - remove device from the kernel
9976 * @dev: device
9977 *
9978 * This function shuts down a device interface and removes it
d59b54b1 9979 * from the kernel tables.
1da177e4
LT
9980 *
9981 * This is just a wrapper for unregister_netdevice that takes
9982 * the rtnl semaphore. In general you want to use this and not
9983 * unregister_netdevice.
9984 */
9985void unregister_netdev(struct net_device *dev)
9986{
9987 rtnl_lock();
9988 unregister_netdevice(dev);
9989 rtnl_unlock();
9990}
1da177e4
LT
9991EXPORT_SYMBOL(unregister_netdev);
9992
ce286d32
EB
9993/**
9994 * dev_change_net_namespace - move device to different nethost namespace
9995 * @dev: device
9996 * @net: network namespace
9997 * @pat: If not NULL name pattern to try if the current device name
9998 * is already taken in the destination network namespace.
9999 *
10000 * This function shuts down a device interface and moves it
10001 * to a new network namespace. On success 0 is returned, on
10002 * a failure a netagive errno code is returned.
10003 *
10004 * Callers must hold the rtnl semaphore.
10005 */
10006
10007int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10008{
38e01b30 10009 int err, new_nsid, new_ifindex;
ce286d32
EB
10010
10011 ASSERT_RTNL();
10012
10013 /* Don't allow namespace local devices to be moved. */
10014 err = -EINVAL;
10015 if (dev->features & NETIF_F_NETNS_LOCAL)
10016 goto out;
10017
10018 /* Ensure the device has been registrered */
ce286d32
EB
10019 if (dev->reg_state != NETREG_REGISTERED)
10020 goto out;
10021
10022 /* Get out if there is nothing todo */
10023 err = 0;
878628fb 10024 if (net_eq(dev_net(dev), net))
ce286d32
EB
10025 goto out;
10026
10027 /* Pick the destination device name, and ensure
10028 * we can use it in the destination network namespace.
10029 */
10030 err = -EEXIST;
d9031024 10031 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
10032 /* We get here if we can't use the current device name */
10033 if (!pat)
10034 goto out;
7892bd08
LR
10035 err = dev_get_valid_name(net, dev, pat);
10036 if (err < 0)
ce286d32
EB
10037 goto out;
10038 }
10039
10040 /*
10041 * And now a mini version of register_netdevice unregister_netdevice.
10042 */
10043
10044 /* If device is running close it first. */
9b772652 10045 dev_close(dev);
ce286d32
EB
10046
10047 /* And unlink it from device chain */
ce286d32
EB
10048 unlist_netdevice(dev);
10049
10050 synchronize_net();
10051
10052 /* Shutdown queueing discipline. */
10053 dev_shutdown(dev);
10054
10055 /* Notify protocols, that we are about to destroy
eb13da1a 10056 * this device. They should clean all the things.
10057 *
10058 * Note that dev->reg_state stays at NETREG_REGISTERED.
10059 * This is wanted because this way 8021q and macvlan know
10060 * the device is just moving and can keep their slaves up.
10061 */
ce286d32 10062 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 10063 rcu_barrier();
38e01b30 10064
d4e4fdf9 10065 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30
ND
10066 /* If there is an ifindex conflict assign a new one */
10067 if (__dev_get_by_index(net, dev->ifindex))
10068 new_ifindex = dev_new_index(net);
10069 else
10070 new_ifindex = dev->ifindex;
10071
10072 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10073 new_ifindex);
ce286d32
EB
10074
10075 /*
10076 * Flush the unicast and multicast chains
10077 */
a748ee24 10078 dev_uc_flush(dev);
22bedad3 10079 dev_mc_flush(dev);
ce286d32 10080
4e66ae2e
SH
10081 /* Send a netdev-removed uevent to the old namespace */
10082 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 10083 netdev_adjacent_del_links(dev);
4e66ae2e 10084
93642e14
JP
10085 /* Move per-net netdevice notifiers that are following the netdevice */
10086 move_netdevice_notifiers_dev_net(dev, net);
10087
ce286d32 10088 /* Actually switch the network namespace */
c346dca1 10089 dev_net_set(dev, net);
38e01b30 10090 dev->ifindex = new_ifindex;
ce286d32 10091
4e66ae2e
SH
10092 /* Send a netdev-add uevent to the new namespace */
10093 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 10094 netdev_adjacent_add_links(dev);
4e66ae2e 10095
8b41d188 10096 /* Fixup kobjects */
a1b3f594 10097 err = device_rename(&dev->dev, dev->name);
8b41d188 10098 WARN_ON(err);
ce286d32
EB
10099
10100 /* Add the device back in the hashes */
10101 list_netdevice(dev);
10102
10103 /* Notify protocols, that a new device appeared. */
10104 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10105
d90a909e
EB
10106 /*
10107 * Prevent userspace races by waiting until the network
10108 * device is fully setup before sending notifications.
10109 */
7f294054 10110 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 10111
ce286d32
EB
10112 synchronize_net();
10113 err = 0;
10114out:
10115 return err;
10116}
463d0183 10117EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 10118
f0bf90de 10119static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
10120{
10121 struct sk_buff **list_skb;
1da177e4 10122 struct sk_buff *skb;
f0bf90de 10123 unsigned int cpu;
97d8b6e3 10124 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 10125
1da177e4
LT
10126 local_irq_disable();
10127 cpu = smp_processor_id();
10128 sd = &per_cpu(softnet_data, cpu);
10129 oldsd = &per_cpu(softnet_data, oldcpu);
10130
10131 /* Find end of our completion_queue. */
10132 list_skb = &sd->completion_queue;
10133 while (*list_skb)
10134 list_skb = &(*list_skb)->next;
10135 /* Append completion queue from offline CPU. */
10136 *list_skb = oldsd->completion_queue;
10137 oldsd->completion_queue = NULL;
10138
1da177e4 10139 /* Append output queue from offline CPU. */
a9cbd588
CG
10140 if (oldsd->output_queue) {
10141 *sd->output_queue_tailp = oldsd->output_queue;
10142 sd->output_queue_tailp = oldsd->output_queue_tailp;
10143 oldsd->output_queue = NULL;
10144 oldsd->output_queue_tailp = &oldsd->output_queue;
10145 }
ac64da0b
ED
10146 /* Append NAPI poll list from offline CPU, with one exception :
10147 * process_backlog() must be called by cpu owning percpu backlog.
10148 * We properly handle process_queue & input_pkt_queue later.
10149 */
10150 while (!list_empty(&oldsd->poll_list)) {
10151 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10152 struct napi_struct,
10153 poll_list);
10154
10155 list_del_init(&napi->poll_list);
10156 if (napi->poll == process_backlog)
10157 napi->state = 0;
10158 else
10159 ____napi_schedule(sd, napi);
264524d5 10160 }
1da177e4
LT
10161
10162 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10163 local_irq_enable();
10164
773fc8f6 10165#ifdef CONFIG_RPS
10166 remsd = oldsd->rps_ipi_list;
10167 oldsd->rps_ipi_list = NULL;
10168#endif
10169 /* send out pending IPI's on offline CPU */
10170 net_rps_send_ipi(remsd);
10171
1da177e4 10172 /* Process offline CPU's input_pkt_queue */
76cc8b13 10173 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 10174 netif_rx_ni(skb);
76cc8b13 10175 input_queue_head_incr(oldsd);
fec5e652 10176 }
ac64da0b 10177 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 10178 netif_rx_ni(skb);
76cc8b13
TH
10179 input_queue_head_incr(oldsd);
10180 }
1da177e4 10181
f0bf90de 10182 return 0;
1da177e4 10183}
1da177e4 10184
7f353bf2 10185/**
b63365a2
HX
10186 * netdev_increment_features - increment feature set by one
10187 * @all: current feature set
10188 * @one: new feature set
10189 * @mask: mask feature set
7f353bf2
HX
10190 *
10191 * Computes a new feature set after adding a device with feature set
b63365a2
HX
10192 * @one to the master device with current feature set @all. Will not
10193 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 10194 */
c8f44aff
MM
10195netdev_features_t netdev_increment_features(netdev_features_t all,
10196 netdev_features_t one, netdev_features_t mask)
b63365a2 10197{
c8cd0989 10198 if (mask & NETIF_F_HW_CSUM)
a188222b 10199 mask |= NETIF_F_CSUM_MASK;
1742f183 10200 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 10201
a188222b 10202 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 10203 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 10204
1742f183 10205 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
10206 if (all & NETIF_F_HW_CSUM)
10207 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
10208
10209 return all;
10210}
b63365a2 10211EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 10212
430f03cd 10213static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
10214{
10215 int i;
10216 struct hlist_head *hash;
10217
6da2ec56 10218 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
10219 if (hash != NULL)
10220 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10221 INIT_HLIST_HEAD(&hash[i]);
10222
10223 return hash;
10224}
10225
881d966b 10226/* Initialize per network namespace state */
4665079c 10227static int __net_init netdev_init(struct net *net)
881d966b 10228{
d9f37d01 10229 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 10230 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 10231
734b6541
RM
10232 if (net != &init_net)
10233 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 10234
30d97d35
PE
10235 net->dev_name_head = netdev_create_hash();
10236 if (net->dev_name_head == NULL)
10237 goto err_name;
881d966b 10238
30d97d35
PE
10239 net->dev_index_head = netdev_create_hash();
10240 if (net->dev_index_head == NULL)
10241 goto err_idx;
881d966b 10242
a30c7b42
JP
10243 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10244
881d966b 10245 return 0;
30d97d35
PE
10246
10247err_idx:
10248 kfree(net->dev_name_head);
10249err_name:
10250 return -ENOMEM;
881d966b
EB
10251}
10252
f0db275a
SH
10253/**
10254 * netdev_drivername - network driver for the device
10255 * @dev: network device
f0db275a
SH
10256 *
10257 * Determine network driver for device.
10258 */
3019de12 10259const char *netdev_drivername(const struct net_device *dev)
6579e57b 10260{
cf04a4c7
SH
10261 const struct device_driver *driver;
10262 const struct device *parent;
3019de12 10263 const char *empty = "";
6579e57b
AV
10264
10265 parent = dev->dev.parent;
6579e57b 10266 if (!parent)
3019de12 10267 return empty;
6579e57b
AV
10268
10269 driver = parent->driver;
10270 if (driver && driver->name)
3019de12
DM
10271 return driver->name;
10272 return empty;
6579e57b
AV
10273}
10274
6ea754eb
JP
10275static void __netdev_printk(const char *level, const struct net_device *dev,
10276 struct va_format *vaf)
256df2f3 10277{
b004ff49 10278 if (dev && dev->dev.parent) {
6ea754eb
JP
10279 dev_printk_emit(level[1] - '0',
10280 dev->dev.parent,
10281 "%s %s %s%s: %pV",
10282 dev_driver_string(dev->dev.parent),
10283 dev_name(dev->dev.parent),
10284 netdev_name(dev), netdev_reg_state(dev),
10285 vaf);
b004ff49 10286 } else if (dev) {
6ea754eb
JP
10287 printk("%s%s%s: %pV",
10288 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 10289 } else {
6ea754eb 10290 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 10291 }
256df2f3
JP
10292}
10293
6ea754eb
JP
10294void netdev_printk(const char *level, const struct net_device *dev,
10295 const char *format, ...)
256df2f3
JP
10296{
10297 struct va_format vaf;
10298 va_list args;
256df2f3
JP
10299
10300 va_start(args, format);
10301
10302 vaf.fmt = format;
10303 vaf.va = &args;
10304
6ea754eb 10305 __netdev_printk(level, dev, &vaf);
b004ff49 10306
256df2f3 10307 va_end(args);
256df2f3
JP
10308}
10309EXPORT_SYMBOL(netdev_printk);
10310
10311#define define_netdev_printk_level(func, level) \
6ea754eb 10312void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 10313{ \
256df2f3
JP
10314 struct va_format vaf; \
10315 va_list args; \
10316 \
10317 va_start(args, fmt); \
10318 \
10319 vaf.fmt = fmt; \
10320 vaf.va = &args; \
10321 \
6ea754eb 10322 __netdev_printk(level, dev, &vaf); \
b004ff49 10323 \
256df2f3 10324 va_end(args); \
256df2f3
JP
10325} \
10326EXPORT_SYMBOL(func);
10327
10328define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10329define_netdev_printk_level(netdev_alert, KERN_ALERT);
10330define_netdev_printk_level(netdev_crit, KERN_CRIT);
10331define_netdev_printk_level(netdev_err, KERN_ERR);
10332define_netdev_printk_level(netdev_warn, KERN_WARNING);
10333define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10334define_netdev_printk_level(netdev_info, KERN_INFO);
10335
4665079c 10336static void __net_exit netdev_exit(struct net *net)
881d966b
EB
10337{
10338 kfree(net->dev_name_head);
10339 kfree(net->dev_index_head);
ee21b18b
VA
10340 if (net != &init_net)
10341 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
10342}
10343
022cbae6 10344static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
10345 .init = netdev_init,
10346 .exit = netdev_exit,
10347};
10348
4665079c 10349static void __net_exit default_device_exit(struct net *net)
ce286d32 10350{
e008b5fc 10351 struct net_device *dev, *aux;
ce286d32 10352 /*
e008b5fc 10353 * Push all migratable network devices back to the
ce286d32
EB
10354 * initial network namespace
10355 */
10356 rtnl_lock();
e008b5fc 10357 for_each_netdev_safe(net, dev, aux) {
ce286d32 10358 int err;
aca51397 10359 char fb_name[IFNAMSIZ];
ce286d32
EB
10360
10361 /* Ignore unmoveable devices (i.e. loopback) */
10362 if (dev->features & NETIF_F_NETNS_LOCAL)
10363 continue;
10364
e008b5fc
EB
10365 /* Leave virtual devices for the generic cleanup */
10366 if (dev->rtnl_link_ops)
10367 continue;
d0c082ce 10368
25985edc 10369 /* Push remaining network devices to init_net */
aca51397 10370 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
10371 if (__dev_get_by_name(&init_net, fb_name))
10372 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 10373 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 10374 if (err) {
7b6cd1ce
JP
10375 pr_emerg("%s: failed to move %s to init_net: %d\n",
10376 __func__, dev->name, err);
aca51397 10377 BUG();
ce286d32
EB
10378 }
10379 }
10380 rtnl_unlock();
10381}
10382
50624c93
EB
10383static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10384{
10385 /* Return with the rtnl_lock held when there are no network
10386 * devices unregistering in any network namespace in net_list.
10387 */
10388 struct net *net;
10389 bool unregistering;
ff960a73 10390 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 10391
ff960a73 10392 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 10393 for (;;) {
50624c93
EB
10394 unregistering = false;
10395 rtnl_lock();
10396 list_for_each_entry(net, net_list, exit_list) {
10397 if (net->dev_unreg_count > 0) {
10398 unregistering = true;
10399 break;
10400 }
10401 }
10402 if (!unregistering)
10403 break;
10404 __rtnl_unlock();
ff960a73
PZ
10405
10406 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 10407 }
ff960a73 10408 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
10409}
10410
04dc7f6b
EB
10411static void __net_exit default_device_exit_batch(struct list_head *net_list)
10412{
10413 /* At exit all network devices most be removed from a network
b595076a 10414 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
10415 * Do this across as many network namespaces as possible to
10416 * improve batching efficiency.
10417 */
10418 struct net_device *dev;
10419 struct net *net;
10420 LIST_HEAD(dev_kill_list);
10421
50624c93
EB
10422 /* To prevent network device cleanup code from dereferencing
10423 * loopback devices or network devices that have been freed
10424 * wait here for all pending unregistrations to complete,
10425 * before unregistring the loopback device and allowing the
10426 * network namespace be freed.
10427 *
10428 * The netdev todo list containing all network devices
10429 * unregistrations that happen in default_device_exit_batch
10430 * will run in the rtnl_unlock() at the end of
10431 * default_device_exit_batch.
10432 */
10433 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
10434 list_for_each_entry(net, net_list, exit_list) {
10435 for_each_netdev_reverse(net, dev) {
b0ab2fab 10436 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
10437 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10438 else
10439 unregister_netdevice_queue(dev, &dev_kill_list);
10440 }
10441 }
10442 unregister_netdevice_many(&dev_kill_list);
10443 rtnl_unlock();
10444}
10445
022cbae6 10446static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 10447 .exit = default_device_exit,
04dc7f6b 10448 .exit_batch = default_device_exit_batch,
ce286d32
EB
10449};
10450
1da177e4
LT
10451/*
10452 * Initialize the DEV module. At boot time this walks the device list and
10453 * unhooks any devices that fail to initialise (normally hardware not
10454 * present) and leaves us with a valid list of present and active devices.
10455 *
10456 */
10457
10458/*
10459 * This is called single threaded during boot, so no need
10460 * to take the rtnl semaphore.
10461 */
10462static int __init net_dev_init(void)
10463{
10464 int i, rc = -ENOMEM;
10465
10466 BUG_ON(!dev_boot_phase);
10467
1da177e4
LT
10468 if (dev_proc_init())
10469 goto out;
10470
8b41d188 10471 if (netdev_kobject_init())
1da177e4
LT
10472 goto out;
10473
10474 INIT_LIST_HEAD(&ptype_all);
82d8a867 10475 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
10476 INIT_LIST_HEAD(&ptype_base[i]);
10477
62532da9
VY
10478 INIT_LIST_HEAD(&offload_base);
10479
881d966b
EB
10480 if (register_pernet_subsys(&netdev_net_ops))
10481 goto out;
1da177e4
LT
10482
10483 /*
10484 * Initialise the packet receive queues.
10485 */
10486
6f912042 10487 for_each_possible_cpu(i) {
41852497 10488 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 10489 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 10490
41852497
ED
10491 INIT_WORK(flush, flush_backlog);
10492
e36fa2f7 10493 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 10494 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
10495#ifdef CONFIG_XFRM_OFFLOAD
10496 skb_queue_head_init(&sd->xfrm_backlog);
10497#endif
e36fa2f7 10498 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 10499 sd->output_queue_tailp = &sd->output_queue;
df334545 10500#ifdef CONFIG_RPS
e36fa2f7
ED
10501 sd->csd.func = rps_trigger_softirq;
10502 sd->csd.info = sd;
e36fa2f7 10503 sd->cpu = i;
1e94d72f 10504#endif
0a9627f2 10505
7c4ec749 10506 init_gro_hash(&sd->backlog);
e36fa2f7
ED
10507 sd->backlog.poll = process_backlog;
10508 sd->backlog.weight = weight_p;
1da177e4
LT
10509 }
10510
1da177e4
LT
10511 dev_boot_phase = 0;
10512
505d4f73
EB
10513 /* The loopback device is special if any other network devices
10514 * is present in a network namespace the loopback device must
10515 * be present. Since we now dynamically allocate and free the
10516 * loopback device ensure this invariant is maintained by
10517 * keeping the loopback device as the first device on the
10518 * list of network devices. Ensuring the loopback devices
10519 * is the first device that appears and the last network device
10520 * that disappears.
10521 */
10522 if (register_pernet_device(&loopback_net_ops))
10523 goto out;
10524
10525 if (register_pernet_device(&default_device_ops))
10526 goto out;
10527
962cf36c
CM
10528 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10529 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 10530
f0bf90de
SAS
10531 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10532 NULL, dev_cpu_dead);
10533 WARN_ON(rc < 0);
1da177e4
LT
10534 rc = 0;
10535out:
10536 return rc;
10537}
10538
10539subsys_initcall(net_dev_init);