]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/core/dev.c
qdisc: exit case fixes for skb list handling in qdisc layer
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4
LT
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
44540960 104#include <net/xfrm.h>
1da177e4
LT
105#include <linux/highmem.h>
106#include <linux/init.h>
1da177e4 107#include <linux/module.h>
1da177e4
LT
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
1da177e4 111#include <net/iw_handler.h>
1da177e4 112#include <asm/current.h>
5bdb9886 113#include <linux/audit.h>
db217334 114#include <linux/dmaengine.h>
f6a78bfc 115#include <linux/err.h>
c7fa9d18 116#include <linux/ctype.h>
723e98b7 117#include <linux/if_arp.h>
6de329e2 118#include <linux/if_vlan.h>
8f0f2223 119#include <linux/ip.h>
ad55dcaf 120#include <net/ip.h>
8f0f2223
DM
121#include <linux/ipv6.h>
122#include <linux/in.h>
b6b2fed1
DM
123#include <linux/jhash.h>
124#include <linux/random.h>
9cbc1cb8 125#include <trace/events/napi.h>
cf66ba58 126#include <trace/events/net.h>
07dc22e7 127#include <trace/events/skb.h>
5acbbd42 128#include <linux/pci.h>
caeda9b9 129#include <linux/inetdevice.h>
c445477d 130#include <linux/cpu_rmap.h>
c5905afb 131#include <linux/static_key.h>
af12fa6e 132#include <linux/hashtable.h>
60877a32 133#include <linux/vmalloc.h>
529d0489 134#include <linux/if_macvlan.h>
e7fd2885 135#include <linux/errqueue.h>
1da177e4 136
342709ef
PE
137#include "net-sysfs.h"
138
d565b0a1
HX
139/* Instead of increasing this, you should create a hash table. */
140#define MAX_GRO_SKBS 8
141
5d38a079
HX
142/* This should be increased if a protocol with a bigger head is added. */
143#define GRO_MAX_HEAD (MAX_HEADER + 128)
144
1da177e4 145static DEFINE_SPINLOCK(ptype_lock);
62532da9 146static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
147struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148struct list_head ptype_all __read_mostly; /* Taps */
62532da9 149static struct list_head offload_base __read_mostly;
1da177e4 150
ae78dbfa 151static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
152static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
ae78dbfa 155
1da177e4 156/*
7562f876 157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
158 * semaphore.
159 *
c6d14c84 160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
7562f876 163 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
1da177e4 175DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
176EXPORT_SYMBOL(dev_base_lock);
177
af12fa6e
ET
178/* protects napi_hash addition/deletion and napi_gen_id */
179static DEFINE_SPINLOCK(napi_hash_lock);
180
181static unsigned int napi_gen_id;
182static DEFINE_HASHTABLE(napi_hash, 8);
183
18afa4b0 184static seqcount_t devnet_rename_seq;
c91f6df2 185
4e985ada
TG
186static inline void dev_base_seq_inc(struct net *net)
187{
188 while (++net->dev_base_seq == 0);
189}
190
881d966b 191static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 192{
95c96174
ED
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
08e9897d 195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
196}
197
881d966b 198static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 199{
7c28bd0b 200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
201}
202
e36fa2f7 203static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
204{
205#ifdef CONFIG_RPS
e36fa2f7 206 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
207#endif
208}
209
e36fa2f7 210static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
ce286d32 217/* Device list insertion */
53759be9 218static void list_netdevice(struct net_device *dev)
ce286d32 219{
c346dca1 220 struct net *net = dev_net(dev);
ce286d32
EB
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
c6d14c84 225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
ce286d32 229 write_unlock_bh(&dev_base_lock);
4e985ada
TG
230
231 dev_base_seq_inc(net);
ce286d32
EB
232}
233
fb699dfd
ED
234/* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
ce286d32
EB
237static void unlist_netdevice(struct net_device *dev)
238{
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
c6d14c84 243 list_del_rcu(&dev->dev_list);
72c9528b 244 hlist_del_rcu(&dev->name_hlist);
fb699dfd 245 hlist_del_rcu(&dev->index_hlist);
ce286d32 246 write_unlock_bh(&dev_base_lock);
4e985ada
TG
247
248 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
249}
250
1da177e4
LT
251/*
252 * Our notifier list
253 */
254
f07d5b94 255static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
256
257/*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
bea3348e 261
9958da05 262DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 263EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 264
cf508b12 265#ifdef CONFIG_LOCKDEP
723e98b7 266/*
c773e847 267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
268 * according to dev->type
269 */
270static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 286
36cbd3dc 287static const char *const netdev_lock_name[] =
723e98b7
JP
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
303
304static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 305static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
306
307static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308{
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316}
317
cf508b12
DM
318static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
723e98b7
JP
320{
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326}
cf508b12
DM
327
328static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329{
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336}
723e98b7 337#else
cf508b12
DM
338static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340{
341}
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
343{
344}
345#endif
1da177e4
LT
346
347/*******************************************************************************
348
349 Protocol management and registration routines
350
351*******************************************************************************/
352
1da177e4
LT
353/*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
c07b68e8
ED
369static inline struct list_head *ptype_head(const struct packet_type *pt)
370{
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375}
376
1da177e4
LT
377/**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
4ec93edb 385 * This call does not sleep therefore it can not
1da177e4
LT
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390void dev_add_pack(struct packet_type *pt)
391{
c07b68e8 392 struct list_head *head = ptype_head(pt);
1da177e4 393
c07b68e8
ED
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
1da177e4 397}
d1b19dff 398EXPORT_SYMBOL(dev_add_pack);
1da177e4 399
1da177e4
LT
400/**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
4ec93edb 407 * returns.
1da177e4
LT
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413void __dev_remove_pack(struct packet_type *pt)
414{
c07b68e8 415 struct list_head *head = ptype_head(pt);
1da177e4
LT
416 struct packet_type *pt1;
417
c07b68e8 418 spin_lock(&ptype_lock);
1da177e4
LT
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
7b6cd1ce 427 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 428out:
c07b68e8 429 spin_unlock(&ptype_lock);
1da177e4 430}
d1b19dff
ED
431EXPORT_SYMBOL(__dev_remove_pack);
432
1da177e4
LT
433/**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445void dev_remove_pack(struct packet_type *pt)
446{
447 __dev_remove_pack(pt);
4ec93edb 448
1da177e4
LT
449 synchronize_net();
450}
d1b19dff 451EXPORT_SYMBOL(dev_remove_pack);
1da177e4 452
62532da9
VY
453
454/**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466void dev_add_offload(struct packet_offload *po)
467{
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473}
474EXPORT_SYMBOL(dev_add_offload);
475
476/**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
1d143d9f 489static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
490{
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
c53aa505 494 spin_lock(&offload_lock);
62532da9
VY
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504out:
c53aa505 505 spin_unlock(&offload_lock);
62532da9 506}
62532da9
VY
507
508/**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520void dev_remove_offload(struct packet_offload *po)
521{
522 __dev_remove_offload(po);
523
524 synchronize_net();
525}
526EXPORT_SYMBOL(dev_remove_offload);
527
1da177e4
LT
528/******************************************************************************
529
530 Device Boot-time Settings Routines
531
532*******************************************************************************/
533
534/* Boot time configuration table */
535static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537/**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546static int netdev_boot_setup_add(char *name, struct ifmap *map)
547{
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 555 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562}
563
564/**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573int netdev_boot_setup_check(struct net_device *dev)
574{
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 580 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589}
d1b19dff 590EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
591
592
593/**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603unsigned long netdev_boot_base(const char *prefix, int unit)
604{
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
881d966b 615 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622}
623
624/*
625 * Saves at boot time configured settings for any netdevice.
626 */
627int __init netdev_boot_setup(char *str)
628{
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649}
650
651__setup("netdev=", netdev_boot_setup);
652
653/*******************************************************************************
654
655 Device Interface Subroutines
656
657*******************************************************************************/
658
659/**
660 * __dev_get_by_name - find a device by its name
c4ea43c5 661 * @net: the applicable net namespace
1da177e4
LT
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
881d966b 671struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 672{
0bd8d536
ED
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 675
b67bfe0d 676 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
0bd8d536 679
1da177e4
LT
680 return NULL;
681}
d1b19dff 682EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 683
72c9528b
ED
684/**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697{
72c9528b
ED
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
b67bfe0d 701 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706}
707EXPORT_SYMBOL(dev_get_by_name_rcu);
708
1da177e4
LT
709/**
710 * dev_get_by_name - find a device by its name
c4ea43c5 711 * @net: the applicable net namespace
1da177e4
LT
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
881d966b 721struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
722{
723 struct net_device *dev;
724
72c9528b
ED
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
727 if (dev)
728 dev_hold(dev);
72c9528b 729 rcu_read_unlock();
1da177e4
LT
730 return dev;
731}
d1b19dff 732EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
733
734/**
735 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 736 * @net: the applicable net namespace
1da177e4
LT
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
881d966b 746struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 747{
0bd8d536
ED
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 750
b67bfe0d 751 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
752 if (dev->ifindex == ifindex)
753 return dev;
0bd8d536 754
1da177e4
LT
755 return NULL;
756}
d1b19dff 757EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 758
fb699dfd
ED
759/**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771{
fb699dfd
ED
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
b67bfe0d 775 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780}
781EXPORT_SYMBOL(dev_get_by_index_rcu);
782
1da177e4
LT
783
784/**
785 * dev_get_by_index - find a device by its ifindex
c4ea43c5 786 * @net: the applicable net namespace
1da177e4
LT
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
881d966b 795struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
796{
797 struct net_device *dev;
798
fb699dfd
ED
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
801 if (dev)
802 dev_hold(dev);
fb699dfd 803 rcu_read_unlock();
1da177e4
LT
804 return dev;
805}
d1b19dff 806EXPORT_SYMBOL(dev_get_by_index);
1da177e4 807
5dbe7c17
NS
808/**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818int netdev_get_name(struct net *net, char *name, int ifindex)
819{
820 struct net_device *dev;
821 unsigned int seq;
822
823retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840}
841
1da177e4 842/**
941666c2 843 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 844 * @net: the applicable net namespace
1da177e4
LT
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
941666c2 851 * The returned device has not had its ref count increased
1da177e4
LT
852 * and the caller must therefore be careful about locking
853 *
1da177e4
LT
854 */
855
941666c2
ED
856struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
1da177e4
LT
858{
859 struct net_device *dev;
860
941666c2 861 for_each_netdev_rcu(net, dev)
1da177e4
LT
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
864 return dev;
865
866 return NULL;
1da177e4 867}
941666c2 868EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 869
881d966b 870struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
871{
872 struct net_device *dev;
873
4e9cac2b 874 ASSERT_RTNL();
881d966b 875 for_each_netdev(net, dev)
4e9cac2b 876 if (dev->type == type)
7562f876
PE
877 return dev;
878
879 return NULL;
4e9cac2b 880}
4e9cac2b
PM
881EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
881d966b 883struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 884{
99fe3c39 885 struct net_device *dev, *ret = NULL;
4e9cac2b 886
99fe3c39
ED
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
1da177e4 896}
1da177e4
LT
897EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899/**
bb69ae04 900 * dev_get_by_flags_rcu - find any device with given flags
c4ea43c5 901 * @net: the applicable net namespace
1da177e4
LT
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04
ED
906 * is not found or a pointer to the device. Must be called inside
907 * rcu_read_lock(), and result refcount is unchanged.
1da177e4
LT
908 */
909
bb69ae04 910struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
d1b19dff 911 unsigned short mask)
1da177e4 912{
7562f876 913 struct net_device *dev, *ret;
1da177e4 914
7562f876 915 ret = NULL;
c6d14c84 916 for_each_netdev_rcu(net, dev) {
1da177e4 917 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 918 ret = dev;
1da177e4
LT
919 break;
920 }
921 }
7562f876 922 return ret;
1da177e4 923}
bb69ae04 924EXPORT_SYMBOL(dev_get_by_flags_rcu);
1da177e4
LT
925
926/**
927 * dev_valid_name - check if name is okay for network device
928 * @name: name string
929 *
930 * Network device names need to be valid file names to
c7fa9d18
DM
931 * to allow sysfs to work. We also disallow any kind of
932 * whitespace.
1da177e4 933 */
95f050bf 934bool dev_valid_name(const char *name)
1da177e4 935{
c7fa9d18 936 if (*name == '\0')
95f050bf 937 return false;
b6fe17d6 938 if (strlen(name) >= IFNAMSIZ)
95f050bf 939 return false;
c7fa9d18 940 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 941 return false;
c7fa9d18
DM
942
943 while (*name) {
944 if (*name == '/' || isspace(*name))
95f050bf 945 return false;
c7fa9d18
DM
946 name++;
947 }
95f050bf 948 return true;
1da177e4 949}
d1b19dff 950EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
951
952/**
b267b179
EB
953 * __dev_alloc_name - allocate a name for a device
954 * @net: network namespace to allocate the device name in
1da177e4 955 * @name: name format string
b267b179 956 * @buf: scratch buffer and result name string
1da177e4
LT
957 *
958 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
959 * id. It scans list of devices to build up a free map, then chooses
960 * the first empty slot. The caller must hold the dev_base or rtnl lock
961 * while allocating the name and adding the device in order to avoid
962 * duplicates.
963 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
964 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
965 */
966
b267b179 967static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
968{
969 int i = 0;
1da177e4
LT
970 const char *p;
971 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 972 unsigned long *inuse;
1da177e4
LT
973 struct net_device *d;
974
975 p = strnchr(name, IFNAMSIZ-1, '%');
976 if (p) {
977 /*
978 * Verify the string as this thing may have come from
979 * the user. There must be either one "%d" and no other "%"
980 * characters.
981 */
982 if (p[1] != 'd' || strchr(p + 2, '%'))
983 return -EINVAL;
984
985 /* Use one page as a bit array of possible slots */
cfcabdcc 986 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
987 if (!inuse)
988 return -ENOMEM;
989
881d966b 990 for_each_netdev(net, d) {
1da177e4
LT
991 if (!sscanf(d->name, name, &i))
992 continue;
993 if (i < 0 || i >= max_netdevices)
994 continue;
995
996 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 997 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
998 if (!strncmp(buf, d->name, IFNAMSIZ))
999 set_bit(i, inuse);
1000 }
1001
1002 i = find_first_zero_bit(inuse, max_netdevices);
1003 free_page((unsigned long) inuse);
1004 }
1005
d9031024
OP
1006 if (buf != name)
1007 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1008 if (!__dev_get_by_name(net, buf))
1da177e4 1009 return i;
1da177e4
LT
1010
1011 /* It is possible to run out of possible slots
1012 * when the name is long and there isn't enough space left
1013 * for the digits, or if all bits are used.
1014 */
1015 return -ENFILE;
1016}
1017
b267b179
EB
1018/**
1019 * dev_alloc_name - allocate a name for a device
1020 * @dev: device
1021 * @name: name format string
1022 *
1023 * Passed a format string - eg "lt%d" it will try and find a suitable
1024 * id. It scans list of devices to build up a free map, then chooses
1025 * the first empty slot. The caller must hold the dev_base or rtnl lock
1026 * while allocating the name and adding the device in order to avoid
1027 * duplicates.
1028 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1029 * Returns the number of the unit assigned or a negative errno code.
1030 */
1031
1032int dev_alloc_name(struct net_device *dev, const char *name)
1033{
1034 char buf[IFNAMSIZ];
1035 struct net *net;
1036 int ret;
1037
c346dca1
YH
1038 BUG_ON(!dev_net(dev));
1039 net = dev_net(dev);
b267b179
EB
1040 ret = __dev_alloc_name(net, name, buf);
1041 if (ret >= 0)
1042 strlcpy(dev->name, buf, IFNAMSIZ);
1043 return ret;
1044}
d1b19dff 1045EXPORT_SYMBOL(dev_alloc_name);
b267b179 1046
828de4f6
G
1047static int dev_alloc_name_ns(struct net *net,
1048 struct net_device *dev,
1049 const char *name)
d9031024 1050{
828de4f6
G
1051 char buf[IFNAMSIZ];
1052 int ret;
8ce6cebc 1053
828de4f6
G
1054 ret = __dev_alloc_name(net, name, buf);
1055 if (ret >= 0)
1056 strlcpy(dev->name, buf, IFNAMSIZ);
1057 return ret;
1058}
1059
1060static int dev_get_valid_name(struct net *net,
1061 struct net_device *dev,
1062 const char *name)
1063{
1064 BUG_ON(!net);
8ce6cebc 1065
d9031024
OP
1066 if (!dev_valid_name(name))
1067 return -EINVAL;
1068
1c5cae81 1069 if (strchr(name, '%'))
828de4f6 1070 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1071 else if (__dev_get_by_name(net, name))
1072 return -EEXIST;
8ce6cebc
DL
1073 else if (dev->name != name)
1074 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1075
1076 return 0;
1077}
1da177e4
LT
1078
1079/**
1080 * dev_change_name - change name of a device
1081 * @dev: device
1082 * @newname: name (or format string) must be at least IFNAMSIZ
1083 *
1084 * Change name of a device, can pass format strings "eth%d".
1085 * for wildcarding.
1086 */
cf04a4c7 1087int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1088{
238fa362 1089 unsigned char old_assign_type;
fcc5a03a 1090 char oldname[IFNAMSIZ];
1da177e4 1091 int err = 0;
fcc5a03a 1092 int ret;
881d966b 1093 struct net *net;
1da177e4
LT
1094
1095 ASSERT_RTNL();
c346dca1 1096 BUG_ON(!dev_net(dev));
1da177e4 1097
c346dca1 1098 net = dev_net(dev);
1da177e4
LT
1099 if (dev->flags & IFF_UP)
1100 return -EBUSY;
1101
30e6c9fa 1102 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1103
1104 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1105 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1106 return 0;
c91f6df2 1107 }
c8d90dca 1108
fcc5a03a
HX
1109 memcpy(oldname, dev->name, IFNAMSIZ);
1110
828de4f6 1111 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1112 if (err < 0) {
30e6c9fa 1113 write_seqcount_end(&devnet_rename_seq);
d9031024 1114 return err;
c91f6df2 1115 }
1da177e4 1116
6fe82a39
VF
1117 if (oldname[0] && !strchr(oldname, '%'))
1118 netdev_info(dev, "renamed from %s\n", oldname);
1119
238fa362
TG
1120 old_assign_type = dev->name_assign_type;
1121 dev->name_assign_type = NET_NAME_RENAMED;
1122
fcc5a03a 1123rollback:
a1b3f594
EB
1124 ret = device_rename(&dev->dev, dev->name);
1125 if (ret) {
1126 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1127 dev->name_assign_type = old_assign_type;
30e6c9fa 1128 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1129 return ret;
dcc99773 1130 }
7f988eab 1131
30e6c9fa 1132 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1133
5bb025fa
VF
1134 netdev_adjacent_rename_links(dev, oldname);
1135
7f988eab 1136 write_lock_bh(&dev_base_lock);
372b2312 1137 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1138 write_unlock_bh(&dev_base_lock);
1139
1140 synchronize_rcu();
1141
1142 write_lock_bh(&dev_base_lock);
1143 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1144 write_unlock_bh(&dev_base_lock);
1145
056925ab 1146 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1147 ret = notifier_to_errno(ret);
1148
1149 if (ret) {
91e9c07b
ED
1150 /* err >= 0 after dev_alloc_name() or stores the first errno */
1151 if (err >= 0) {
fcc5a03a 1152 err = ret;
30e6c9fa 1153 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1154 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1155 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1156 dev->name_assign_type = old_assign_type;
1157 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1158 goto rollback;
91e9c07b 1159 } else {
7b6cd1ce 1160 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1161 dev->name, ret);
fcc5a03a
HX
1162 }
1163 }
1da177e4
LT
1164
1165 return err;
1166}
1167
0b815a1a
SH
1168/**
1169 * dev_set_alias - change ifalias of a device
1170 * @dev: device
1171 * @alias: name up to IFALIASZ
f0db275a 1172 * @len: limit of bytes to copy from info
0b815a1a
SH
1173 *
1174 * Set ifalias for a device,
1175 */
1176int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1177{
7364e445
AK
1178 char *new_ifalias;
1179
0b815a1a
SH
1180 ASSERT_RTNL();
1181
1182 if (len >= IFALIASZ)
1183 return -EINVAL;
1184
96ca4a2c 1185 if (!len) {
388dfc2d
SK
1186 kfree(dev->ifalias);
1187 dev->ifalias = NULL;
96ca4a2c
OH
1188 return 0;
1189 }
1190
7364e445
AK
1191 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1192 if (!new_ifalias)
0b815a1a 1193 return -ENOMEM;
7364e445 1194 dev->ifalias = new_ifalias;
0b815a1a
SH
1195
1196 strlcpy(dev->ifalias, alias, len+1);
1197 return len;
1198}
1199
1200
d8a33ac4 1201/**
3041a069 1202 * netdev_features_change - device changes features
d8a33ac4
SH
1203 * @dev: device to cause notification
1204 *
1205 * Called to indicate a device has changed features.
1206 */
1207void netdev_features_change(struct net_device *dev)
1208{
056925ab 1209 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1210}
1211EXPORT_SYMBOL(netdev_features_change);
1212
1da177e4
LT
1213/**
1214 * netdev_state_change - device changes state
1215 * @dev: device to cause notification
1216 *
1217 * Called to indicate a device has changed state. This function calls
1218 * the notifier chains for netdev_chain and sends a NEWLINK message
1219 * to the routing socket.
1220 */
1221void netdev_state_change(struct net_device *dev)
1222{
1223 if (dev->flags & IFF_UP) {
54951194
LP
1224 struct netdev_notifier_change_info change_info;
1225
1226 change_info.flags_changed = 0;
1227 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1228 &change_info.info);
7f294054 1229 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1230 }
1231}
d1b19dff 1232EXPORT_SYMBOL(netdev_state_change);
1da177e4 1233
ee89bab1
AW
1234/**
1235 * netdev_notify_peers - notify network peers about existence of @dev
1236 * @dev: network device
1237 *
1238 * Generate traffic such that interested network peers are aware of
1239 * @dev, such as by generating a gratuitous ARP. This may be used when
1240 * a device wants to inform the rest of the network about some sort of
1241 * reconfiguration such as a failover event or virtual machine
1242 * migration.
1243 */
1244void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1245{
ee89bab1
AW
1246 rtnl_lock();
1247 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1248 rtnl_unlock();
c1da4ac7 1249}
ee89bab1 1250EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1251
bd380811 1252static int __dev_open(struct net_device *dev)
1da177e4 1253{
d314774c 1254 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1255 int ret;
1da177e4 1256
e46b66bc
BH
1257 ASSERT_RTNL();
1258
1da177e4
LT
1259 if (!netif_device_present(dev))
1260 return -ENODEV;
1261
ca99ca14
NH
1262 /* Block netpoll from trying to do any rx path servicing.
1263 * If we don't do this there is a chance ndo_poll_controller
1264 * or ndo_poll may be running while we open the device
1265 */
66b5552f 1266 netpoll_poll_disable(dev);
ca99ca14 1267
3b8bcfd5
JB
1268 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1269 ret = notifier_to_errno(ret);
1270 if (ret)
1271 return ret;
1272
1da177e4 1273 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1274
d314774c
SH
1275 if (ops->ndo_validate_addr)
1276 ret = ops->ndo_validate_addr(dev);
bada339b 1277
d314774c
SH
1278 if (!ret && ops->ndo_open)
1279 ret = ops->ndo_open(dev);
1da177e4 1280
66b5552f 1281 netpoll_poll_enable(dev);
ca99ca14 1282
bada339b
JG
1283 if (ret)
1284 clear_bit(__LINK_STATE_START, &dev->state);
1285 else {
1da177e4 1286 dev->flags |= IFF_UP;
b4bd07c2 1287 net_dmaengine_get();
4417da66 1288 dev_set_rx_mode(dev);
1da177e4 1289 dev_activate(dev);
7bf23575 1290 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1291 }
bada339b 1292
1da177e4
LT
1293 return ret;
1294}
1295
1296/**
bd380811
PM
1297 * dev_open - prepare an interface for use.
1298 * @dev: device to open
1da177e4 1299 *
bd380811
PM
1300 * Takes a device from down to up state. The device's private open
1301 * function is invoked and then the multicast lists are loaded. Finally
1302 * the device is moved into the up state and a %NETDEV_UP message is
1303 * sent to the netdev notifier chain.
1304 *
1305 * Calling this function on an active interface is a nop. On a failure
1306 * a negative errno code is returned.
1da177e4 1307 */
bd380811
PM
1308int dev_open(struct net_device *dev)
1309{
1310 int ret;
1311
bd380811
PM
1312 if (dev->flags & IFF_UP)
1313 return 0;
1314
bd380811
PM
1315 ret = __dev_open(dev);
1316 if (ret < 0)
1317 return ret;
1318
7f294054 1319 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1320 call_netdevice_notifiers(NETDEV_UP, dev);
1321
1322 return ret;
1323}
1324EXPORT_SYMBOL(dev_open);
1325
44345724 1326static int __dev_close_many(struct list_head *head)
1da177e4 1327{
44345724 1328 struct net_device *dev;
e46b66bc 1329
bd380811 1330 ASSERT_RTNL();
9d5010db
DM
1331 might_sleep();
1332
5cde2829 1333 list_for_each_entry(dev, head, close_list) {
3f4df206 1334 /* Temporarily disable netpoll until the interface is down */
66b5552f 1335 netpoll_poll_disable(dev);
3f4df206 1336
44345724 1337 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1338
44345724 1339 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1340
44345724
OP
1341 /* Synchronize to scheduled poll. We cannot touch poll list, it
1342 * can be even on different cpu. So just clear netif_running().
1343 *
1344 * dev->stop() will invoke napi_disable() on all of it's
1345 * napi_struct instances on this device.
1346 */
4e857c58 1347 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1348 }
1da177e4 1349
44345724 1350 dev_deactivate_many(head);
d8b2a4d2 1351
5cde2829 1352 list_for_each_entry(dev, head, close_list) {
44345724 1353 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1354
44345724
OP
1355 /*
1356 * Call the device specific close. This cannot fail.
1357 * Only if device is UP
1358 *
1359 * We allow it to be called even after a DETACH hot-plug
1360 * event.
1361 */
1362 if (ops->ndo_stop)
1363 ops->ndo_stop(dev);
1364
44345724 1365 dev->flags &= ~IFF_UP;
44345724 1366 net_dmaengine_put();
66b5552f 1367 netpoll_poll_enable(dev);
44345724
OP
1368 }
1369
1370 return 0;
1371}
1372
1373static int __dev_close(struct net_device *dev)
1374{
f87e6f47 1375 int retval;
44345724
OP
1376 LIST_HEAD(single);
1377
5cde2829 1378 list_add(&dev->close_list, &single);
f87e6f47
LT
1379 retval = __dev_close_many(&single);
1380 list_del(&single);
ca99ca14 1381
f87e6f47 1382 return retval;
44345724
OP
1383}
1384
3fbd8758 1385static int dev_close_many(struct list_head *head)
44345724
OP
1386{
1387 struct net_device *dev, *tmp;
1da177e4 1388
5cde2829
EB
1389 /* Remove the devices that don't need to be closed */
1390 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1391 if (!(dev->flags & IFF_UP))
5cde2829 1392 list_del_init(&dev->close_list);
44345724
OP
1393
1394 __dev_close_many(head);
1da177e4 1395
5cde2829 1396 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1397 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1398 call_netdevice_notifiers(NETDEV_DOWN, dev);
5cde2829 1399 list_del_init(&dev->close_list);
44345724 1400 }
bd380811
PM
1401
1402 return 0;
1403}
1404
1405/**
1406 * dev_close - shutdown an interface.
1407 * @dev: device to shutdown
1408 *
1409 * This function moves an active device into down state. A
1410 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412 * chain.
1413 */
1414int dev_close(struct net_device *dev)
1415{
e14a5993
ED
1416 if (dev->flags & IFF_UP) {
1417 LIST_HEAD(single);
1da177e4 1418
5cde2829 1419 list_add(&dev->close_list, &single);
e14a5993
ED
1420 dev_close_many(&single);
1421 list_del(&single);
1422 }
da6e378b 1423 return 0;
1da177e4 1424}
d1b19dff 1425EXPORT_SYMBOL(dev_close);
1da177e4
LT
1426
1427
0187bdfb
BH
1428/**
1429 * dev_disable_lro - disable Large Receive Offload on a device
1430 * @dev: device
1431 *
1432 * Disable Large Receive Offload (LRO) on a net device. Must be
1433 * called under RTNL. This is needed if received packets may be
1434 * forwarded to another interface.
1435 */
1436void dev_disable_lro(struct net_device *dev)
1437{
f11970e3
NH
1438 /*
1439 * If we're trying to disable lro on a vlan device
1440 * use the underlying physical device instead
1441 */
1442 if (is_vlan_dev(dev))
1443 dev = vlan_dev_real_dev(dev);
1444
529d0489
MK
1445 /* the same for macvlan devices */
1446 if (netif_is_macvlan(dev))
1447 dev = macvlan_dev_real_dev(dev);
1448
bc5787c6
MM
1449 dev->wanted_features &= ~NETIF_F_LRO;
1450 netdev_update_features(dev);
27660515 1451
22d5969f
MM
1452 if (unlikely(dev->features & NETIF_F_LRO))
1453 netdev_WARN(dev, "failed to disable LRO!\n");
0187bdfb
BH
1454}
1455EXPORT_SYMBOL(dev_disable_lro);
1456
351638e7
JP
1457static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 struct net_device *dev)
1459{
1460 struct netdev_notifier_info info;
1461
1462 netdev_notifier_info_init(&info, dev);
1463 return nb->notifier_call(nb, val, &info);
1464}
0187bdfb 1465
881d966b
EB
1466static int dev_boot_phase = 1;
1467
1da177e4
LT
1468/**
1469 * register_netdevice_notifier - register a network notifier block
1470 * @nb: notifier
1471 *
1472 * Register a notifier to be called when network device events occur.
1473 * The notifier passed is linked into the kernel structures and must
1474 * not be reused until it has been unregistered. A negative errno code
1475 * is returned on a failure.
1476 *
1477 * When registered all registration and up events are replayed
4ec93edb 1478 * to the new notifier to allow device to have a race free
1da177e4
LT
1479 * view of the network device list.
1480 */
1481
1482int register_netdevice_notifier(struct notifier_block *nb)
1483{
1484 struct net_device *dev;
fcc5a03a 1485 struct net_device *last;
881d966b 1486 struct net *net;
1da177e4
LT
1487 int err;
1488
1489 rtnl_lock();
f07d5b94 1490 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1491 if (err)
1492 goto unlock;
881d966b
EB
1493 if (dev_boot_phase)
1494 goto unlock;
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
351638e7 1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1498 err = notifier_to_errno(err);
1499 if (err)
1500 goto rollback;
1501
1502 if (!(dev->flags & IFF_UP))
1503 continue;
1da177e4 1504
351638e7 1505 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1506 }
1da177e4 1507 }
fcc5a03a
HX
1508
1509unlock:
1da177e4
LT
1510 rtnl_unlock();
1511 return err;
fcc5a03a
HX
1512
1513rollback:
1514 last = dev;
881d966b
EB
1515 for_each_net(net) {
1516 for_each_netdev(net, dev) {
1517 if (dev == last)
8f891489 1518 goto outroll;
fcc5a03a 1519
881d966b 1520 if (dev->flags & IFF_UP) {
351638e7
JP
1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 dev);
1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1524 }
351638e7 1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1526 }
fcc5a03a 1527 }
c67625a1 1528
8f891489 1529outroll:
c67625a1 1530 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1531 goto unlock;
1da177e4 1532}
d1b19dff 1533EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1534
1535/**
1536 * unregister_netdevice_notifier - unregister a network notifier block
1537 * @nb: notifier
1538 *
1539 * Unregister a notifier previously registered by
1540 * register_netdevice_notifier(). The notifier is unlinked into the
1541 * kernel structures and may then be reused. A negative errno code
1542 * is returned on a failure.
7d3d43da
EB
1543 *
1544 * After unregistering unregister and down device events are synthesized
1545 * for all devices on the device list to the removed notifier to remove
1546 * the need for special case cleanup code.
1da177e4
LT
1547 */
1548
1549int unregister_netdevice_notifier(struct notifier_block *nb)
1550{
7d3d43da
EB
1551 struct net_device *dev;
1552 struct net *net;
9f514950
HX
1553 int err;
1554
1555 rtnl_lock();
f07d5b94 1556 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1557 if (err)
1558 goto unlock;
1559
1560 for_each_net(net) {
1561 for_each_netdev(net, dev) {
1562 if (dev->flags & IFF_UP) {
351638e7
JP
1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 dev);
1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1566 }
351638e7 1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1568 }
1569 }
1570unlock:
9f514950
HX
1571 rtnl_unlock();
1572 return err;
1da177e4 1573}
d1b19dff 1574EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1575
351638e7
JP
1576/**
1577 * call_netdevice_notifiers_info - call all network notifier blocks
1578 * @val: value passed unmodified to notifier function
1579 * @dev: net_device pointer passed unmodified to notifier function
1580 * @info: notifier information data
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1d143d9f 1586static int call_netdevice_notifiers_info(unsigned long val,
1587 struct net_device *dev,
1588 struct netdev_notifier_info *info)
351638e7
JP
1589{
1590 ASSERT_RTNL();
1591 netdev_notifier_info_init(info, dev);
1592 return raw_notifier_call_chain(&netdev_chain, val, info);
1593}
351638e7 1594
1da177e4
LT
1595/**
1596 * call_netdevice_notifiers - call all network notifier blocks
1597 * @val: value passed unmodified to notifier function
c4ea43c5 1598 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1599 *
1600 * Call all network notifier blocks. Parameters and return value
f07d5b94 1601 * are as for raw_notifier_call_chain().
1da177e4
LT
1602 */
1603
ad7379d4 1604int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1605{
351638e7
JP
1606 struct netdev_notifier_info info;
1607
1608 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1609}
edf947f1 1610EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1611
c5905afb 1612static struct static_key netstamp_needed __read_mostly;
b90e5794 1613#ifdef HAVE_JUMP_LABEL
c5905afb 1614/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1615 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1616 * static_key_slow_dec() calls.
b90e5794
ED
1617 */
1618static atomic_t netstamp_needed_deferred;
1619#endif
1da177e4
LT
1620
1621void net_enable_timestamp(void)
1622{
b90e5794
ED
1623#ifdef HAVE_JUMP_LABEL
1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626 if (deferred) {
1627 while (--deferred)
c5905afb 1628 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1629 return;
1630 }
1631#endif
c5905afb 1632 static_key_slow_inc(&netstamp_needed);
1da177e4 1633}
d1b19dff 1634EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1635
1636void net_disable_timestamp(void)
1637{
b90e5794
ED
1638#ifdef HAVE_JUMP_LABEL
1639 if (in_interrupt()) {
1640 atomic_inc(&netstamp_needed_deferred);
1641 return;
1642 }
1643#endif
c5905afb 1644 static_key_slow_dec(&netstamp_needed);
1da177e4 1645}
d1b19dff 1646EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1647
3b098e2d 1648static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1649{
588f0330 1650 skb->tstamp.tv64 = 0;
c5905afb 1651 if (static_key_false(&netstamp_needed))
a61bbcf2 1652 __net_timestamp(skb);
1da177e4
LT
1653}
1654
588f0330 1655#define net_timestamp_check(COND, SKB) \
c5905afb 1656 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1657 if ((COND) && !(SKB)->tstamp.tv64) \
1658 __net_timestamp(SKB); \
1659 } \
3b098e2d 1660
1ee481fb 1661bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1662{
1663 unsigned int len;
1664
1665 if (!(dev->flags & IFF_UP))
1666 return false;
1667
1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 if (skb->len <= len)
1670 return true;
1671
1672 /* if TSO is enabled, we don't care about the length as the packet
1673 * could be forwarded without being segmented before
1674 */
1675 if (skb_is_gso(skb))
1676 return true;
1677
1678 return false;
1679}
1ee481fb 1680EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1681
a0265d28
HX
1682int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683{
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return 0;
1702}
1703EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704
44540960
AB
1705/**
1706 * dev_forward_skb - loopback an skb to another netif
1707 *
1708 * @dev: destination network device
1709 * @skb: buffer to forward
1710 *
1711 * return values:
1712 * NET_RX_SUCCESS (no congestion)
6ec82562 1713 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1714 *
1715 * dev_forward_skb can be used for injecting an skb from the
1716 * start_xmit function of one device into the receive queue
1717 * of another device.
1718 *
1719 * The receiving device may be in another namespace, so
1720 * we have to clear all information in the skb that could
1721 * impact namespace isolation.
1722 */
1723int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724{
a0265d28 1725 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1726}
1727EXPORT_SYMBOL_GPL(dev_forward_skb);
1728
71d9dec2
CG
1729static inline int deliver_skb(struct sk_buff *skb,
1730 struct packet_type *pt_prev,
1731 struct net_device *orig_dev)
1732{
1080e512
MT
1733 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734 return -ENOMEM;
71d9dec2
CG
1735 atomic_inc(&skb->users);
1736 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737}
1738
c0de08d0
EL
1739static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740{
a3d744e9 1741 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1742 return false;
1743
1744 if (ptype->id_match)
1745 return ptype->id_match(ptype, skb->sk);
1746 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747 return true;
1748
1749 return false;
1750}
1751
1da177e4
LT
1752/*
1753 * Support routine. Sends outgoing frames to any network
1754 * taps currently in use.
1755 */
1756
f6a78bfc 1757static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1758{
1759 struct packet_type *ptype;
71d9dec2
CG
1760 struct sk_buff *skb2 = NULL;
1761 struct packet_type *pt_prev = NULL;
a61bbcf2 1762
1da177e4
LT
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765 /* Never send packets back to the socket
1766 * they originated from - MvS (miquels@drinkel.ow.org)
1767 */
1768 if ((ptype->dev == dev || !ptype->dev) &&
c0de08d0 1769 (!skb_loop_sk(ptype, skb))) {
71d9dec2
CG
1770 if (pt_prev) {
1771 deliver_skb(skb2, pt_prev, skb->dev);
1772 pt_prev = ptype;
1773 continue;
1774 }
1775
1776 skb2 = skb_clone(skb, GFP_ATOMIC);
1da177e4
LT
1777 if (!skb2)
1778 break;
1779
70978182
ED
1780 net_timestamp_set(skb2);
1781
1da177e4
LT
1782 /* skb->nh should be correctly
1783 set by sender, so that the second statement is
1784 just protection against buggy protocols.
1785 */
459a98ed 1786 skb_reset_mac_header(skb2);
1da177e4 1787
d56f90a7 1788 if (skb_network_header(skb2) < skb2->data ||
ced14f68 1789 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
e87cc472
JP
1790 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791 ntohs(skb2->protocol),
1792 dev->name);
c1d2bbe1 1793 skb_reset_network_header(skb2);
1da177e4
LT
1794 }
1795
b0e380b1 1796 skb2->transport_header = skb2->network_header;
1da177e4 1797 skb2->pkt_type = PACKET_OUTGOING;
71d9dec2 1798 pt_prev = ptype;
1da177e4
LT
1799 }
1800 }
71d9dec2
CG
1801 if (pt_prev)
1802 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1803 rcu_read_unlock();
1804}
1805
2c53040f
BH
1806/**
1807 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1808 * @dev: Network device
1809 * @txq: number of queues available
1810 *
1811 * If real_num_tx_queues is changed the tc mappings may no longer be
1812 * valid. To resolve this verify the tc mapping remains valid and if
1813 * not NULL the mapping. With no priorities mapping to this
1814 * offset/count pair it will no longer be used. In the worst case TC0
1815 * is invalid nothing can be done so disable priority mappings. If is
1816 * expected that drivers will fix this mapping if they can before
1817 * calling netif_set_real_num_tx_queues.
1818 */
bb134d22 1819static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1820{
1821 int i;
1822 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823
1824 /* If TC0 is invalidated disable TC mapping */
1825 if (tc->offset + tc->count > txq) {
7b6cd1ce 1826 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1827 dev->num_tc = 0;
1828 return;
1829 }
1830
1831 /* Invalidated prio to tc mappings set to TC0 */
1832 for (i = 1; i < TC_BITMASK + 1; i++) {
1833 int q = netdev_get_prio_tc_map(dev, i);
1834
1835 tc = &dev->tc_to_txq[q];
1836 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1837 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838 i, q);
4f57c087
JF
1839 netdev_set_prio_tc_map(dev, i, 0);
1840 }
1841 }
1842}
1843
537c00de
AD
1844#ifdef CONFIG_XPS
1845static DEFINE_MUTEX(xps_map_mutex);
1846#define xmap_dereference(P) \
1847 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848
10cdc3f3
AD
1849static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 int cpu, u16 index)
537c00de 1851{
10cdc3f3
AD
1852 struct xps_map *map = NULL;
1853 int pos;
537c00de 1854
10cdc3f3
AD
1855 if (dev_maps)
1856 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1857
10cdc3f3
AD
1858 for (pos = 0; map && pos < map->len; pos++) {
1859 if (map->queues[pos] == index) {
537c00de
AD
1860 if (map->len > 1) {
1861 map->queues[pos] = map->queues[--map->len];
1862 } else {
10cdc3f3 1863 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1864 kfree_rcu(map, rcu);
1865 map = NULL;
1866 }
10cdc3f3 1867 break;
537c00de 1868 }
537c00de
AD
1869 }
1870
10cdc3f3
AD
1871 return map;
1872}
1873
024e9679 1874static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1875{
1876 struct xps_dev_maps *dev_maps;
024e9679 1877 int cpu, i;
10cdc3f3
AD
1878 bool active = false;
1879
1880 mutex_lock(&xps_map_mutex);
1881 dev_maps = xmap_dereference(dev->xps_maps);
1882
1883 if (!dev_maps)
1884 goto out_no_maps;
1885
1886 for_each_possible_cpu(cpu) {
024e9679
AD
1887 for (i = index; i < dev->num_tx_queues; i++) {
1888 if (!remove_xps_queue(dev_maps, cpu, i))
1889 break;
1890 }
1891 if (i == dev->num_tx_queues)
10cdc3f3
AD
1892 active = true;
1893 }
1894
1895 if (!active) {
537c00de
AD
1896 RCU_INIT_POINTER(dev->xps_maps, NULL);
1897 kfree_rcu(dev_maps, rcu);
1898 }
1899
024e9679
AD
1900 for (i = index; i < dev->num_tx_queues; i++)
1901 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902 NUMA_NO_NODE);
1903
537c00de
AD
1904out_no_maps:
1905 mutex_unlock(&xps_map_mutex);
1906}
1907
01c5f864
AD
1908static struct xps_map *expand_xps_map(struct xps_map *map,
1909 int cpu, u16 index)
1910{
1911 struct xps_map *new_map;
1912 int alloc_len = XPS_MIN_MAP_ALLOC;
1913 int i, pos;
1914
1915 for (pos = 0; map && pos < map->len; pos++) {
1916 if (map->queues[pos] != index)
1917 continue;
1918 return map;
1919 }
1920
1921 /* Need to add queue to this CPU's existing map */
1922 if (map) {
1923 if (pos < map->alloc_len)
1924 return map;
1925
1926 alloc_len = map->alloc_len * 2;
1927 }
1928
1929 /* Need to allocate new map to store queue on this CPU's map */
1930 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931 cpu_to_node(cpu));
1932 if (!new_map)
1933 return NULL;
1934
1935 for (i = 0; i < pos; i++)
1936 new_map->queues[i] = map->queues[i];
1937 new_map->alloc_len = alloc_len;
1938 new_map->len = pos;
1939
1940 return new_map;
1941}
1942
3573540c
MT
1943int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 u16 index)
537c00de 1945{
01c5f864 1946 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 1947 struct xps_map *map, *new_map;
537c00de 1948 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
1949 int cpu, numa_node_id = -2;
1950 bool active = false;
537c00de
AD
1951
1952 mutex_lock(&xps_map_mutex);
1953
1954 dev_maps = xmap_dereference(dev->xps_maps);
1955
01c5f864
AD
1956 /* allocate memory for queue storage */
1957 for_each_online_cpu(cpu) {
1958 if (!cpumask_test_cpu(cpu, mask))
1959 continue;
1960
1961 if (!new_dev_maps)
1962 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
1963 if (!new_dev_maps) {
1964 mutex_unlock(&xps_map_mutex);
01c5f864 1965 return -ENOMEM;
2bb60cb9 1966 }
01c5f864
AD
1967
1968 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 NULL;
1970
1971 map = expand_xps_map(map, cpu, index);
1972 if (!map)
1973 goto error;
1974
1975 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976 }
1977
1978 if (!new_dev_maps)
1979 goto out_no_new_maps;
1980
537c00de 1981 for_each_possible_cpu(cpu) {
01c5f864
AD
1982 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983 /* add queue to CPU maps */
1984 int pos = 0;
1985
1986 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987 while ((pos < map->len) && (map->queues[pos] != index))
1988 pos++;
1989
1990 if (pos == map->len)
1991 map->queues[map->len++] = index;
537c00de 1992#ifdef CONFIG_NUMA
537c00de
AD
1993 if (numa_node_id == -2)
1994 numa_node_id = cpu_to_node(cpu);
1995 else if (numa_node_id != cpu_to_node(cpu))
1996 numa_node_id = -1;
537c00de 1997#endif
01c5f864
AD
1998 } else if (dev_maps) {
1999 /* fill in the new device map from the old device map */
2000 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2002 }
01c5f864 2003
537c00de
AD
2004 }
2005
01c5f864
AD
2006 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007
537c00de 2008 /* Cleanup old maps */
01c5f864
AD
2009 if (dev_maps) {
2010 for_each_possible_cpu(cpu) {
2011 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 if (map && map != new_map)
2014 kfree_rcu(map, rcu);
2015 }
537c00de 2016
01c5f864 2017 kfree_rcu(dev_maps, rcu);
537c00de
AD
2018 }
2019
01c5f864
AD
2020 dev_maps = new_dev_maps;
2021 active = true;
537c00de 2022
01c5f864
AD
2023out_no_new_maps:
2024 /* update Tx queue numa node */
537c00de
AD
2025 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026 (numa_node_id >= 0) ? numa_node_id :
2027 NUMA_NO_NODE);
2028
01c5f864
AD
2029 if (!dev_maps)
2030 goto out_no_maps;
2031
2032 /* removes queue from unused CPUs */
2033 for_each_possible_cpu(cpu) {
2034 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 continue;
2036
2037 if (remove_xps_queue(dev_maps, cpu, index))
2038 active = true;
2039 }
2040
2041 /* free map if not active */
2042 if (!active) {
2043 RCU_INIT_POINTER(dev->xps_maps, NULL);
2044 kfree_rcu(dev_maps, rcu);
2045 }
2046
2047out_no_maps:
537c00de
AD
2048 mutex_unlock(&xps_map_mutex);
2049
2050 return 0;
2051error:
01c5f864
AD
2052 /* remove any maps that we added */
2053 for_each_possible_cpu(cpu) {
2054 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057 if (new_map && new_map != map)
2058 kfree(new_map);
2059 }
2060
537c00de
AD
2061 mutex_unlock(&xps_map_mutex);
2062
537c00de
AD
2063 kfree(new_dev_maps);
2064 return -ENOMEM;
2065}
2066EXPORT_SYMBOL(netif_set_xps_queue);
2067
2068#endif
f0796d5c
JF
2069/*
2070 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072 */
e6484930 2073int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2074{
1d24eb48
TH
2075 int rc;
2076
e6484930
TH
2077 if (txq < 1 || txq > dev->num_tx_queues)
2078 return -EINVAL;
f0796d5c 2079
5c56580b
BH
2080 if (dev->reg_state == NETREG_REGISTERED ||
2081 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2082 ASSERT_RTNL();
2083
1d24eb48
TH
2084 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085 txq);
bf264145
TH
2086 if (rc)
2087 return rc;
2088
4f57c087
JF
2089 if (dev->num_tc)
2090 netif_setup_tc(dev, txq);
2091
024e9679 2092 if (txq < dev->real_num_tx_queues) {
e6484930 2093 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2094#ifdef CONFIG_XPS
2095 netif_reset_xps_queues_gt(dev, txq);
2096#endif
2097 }
f0796d5c 2098 }
e6484930
TH
2099
2100 dev->real_num_tx_queues = txq;
2101 return 0;
f0796d5c
JF
2102}
2103EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2104
a953be53 2105#ifdef CONFIG_SYSFS
62fe0b40
BH
2106/**
2107 * netif_set_real_num_rx_queues - set actual number of RX queues used
2108 * @dev: Network device
2109 * @rxq: Actual number of RX queues
2110 *
2111 * This must be called either with the rtnl_lock held or before
2112 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2113 * negative error code. If called before registration, it always
2114 * succeeds.
62fe0b40
BH
2115 */
2116int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117{
2118 int rc;
2119
bd25fa7b
TH
2120 if (rxq < 1 || rxq > dev->num_rx_queues)
2121 return -EINVAL;
2122
62fe0b40
BH
2123 if (dev->reg_state == NETREG_REGISTERED) {
2124 ASSERT_RTNL();
2125
62fe0b40
BH
2126 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127 rxq);
2128 if (rc)
2129 return rc;
62fe0b40
BH
2130 }
2131
2132 dev->real_num_rx_queues = rxq;
2133 return 0;
2134}
2135EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136#endif
2137
2c53040f
BH
2138/**
2139 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2140 *
2141 * This routine should set an upper limit on the number of RSS queues
2142 * used by default by multiqueue devices.
2143 */
a55b138b 2144int netif_get_num_default_rss_queues(void)
16917b87
YM
2145{
2146 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147}
2148EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149
def82a1d 2150static inline void __netif_reschedule(struct Qdisc *q)
56079431 2151{
def82a1d
JP
2152 struct softnet_data *sd;
2153 unsigned long flags;
56079431 2154
def82a1d
JP
2155 local_irq_save(flags);
2156 sd = &__get_cpu_var(softnet_data);
a9cbd588
CG
2157 q->next_sched = NULL;
2158 *sd->output_queue_tailp = q;
2159 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2160 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161 local_irq_restore(flags);
2162}
2163
2164void __netif_schedule(struct Qdisc *q)
2165{
2166 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167 __netif_reschedule(q);
56079431
DV
2168}
2169EXPORT_SYMBOL(__netif_schedule);
2170
e6247027
ED
2171struct dev_kfree_skb_cb {
2172 enum skb_free_reason reason;
2173};
2174
2175static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2176{
e6247027
ED
2177 return (struct dev_kfree_skb_cb *)skb->cb;
2178}
2179
2180void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2181{
e6247027 2182 unsigned long flags;
56079431 2183
e6247027
ED
2184 if (likely(atomic_read(&skb->users) == 1)) {
2185 smp_rmb();
2186 atomic_set(&skb->users, 0);
2187 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2188 return;
bea3348e 2189 }
e6247027
ED
2190 get_kfree_skb_cb(skb)->reason = reason;
2191 local_irq_save(flags);
2192 skb->next = __this_cpu_read(softnet_data.completion_queue);
2193 __this_cpu_write(softnet_data.completion_queue, skb);
2194 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2195 local_irq_restore(flags);
56079431 2196}
e6247027 2197EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2198
e6247027 2199void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2200{
2201 if (in_irq() || irqs_disabled())
e6247027 2202 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2203 else
2204 dev_kfree_skb(skb);
2205}
e6247027 2206EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2207
2208
bea3348e
SH
2209/**
2210 * netif_device_detach - mark device as removed
2211 * @dev: network device
2212 *
2213 * Mark device as removed from system and therefore no longer available.
2214 */
56079431
DV
2215void netif_device_detach(struct net_device *dev)
2216{
2217 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2218 netif_running(dev)) {
d543103a 2219 netif_tx_stop_all_queues(dev);
56079431
DV
2220 }
2221}
2222EXPORT_SYMBOL(netif_device_detach);
2223
bea3348e
SH
2224/**
2225 * netif_device_attach - mark device as attached
2226 * @dev: network device
2227 *
2228 * Mark device as attached from system and restart if needed.
2229 */
56079431
DV
2230void netif_device_attach(struct net_device *dev)
2231{
2232 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2233 netif_running(dev)) {
d543103a 2234 netif_tx_wake_all_queues(dev);
4ec93edb 2235 __netdev_watchdog_up(dev);
56079431
DV
2236 }
2237}
2238EXPORT_SYMBOL(netif_device_attach);
2239
36c92474
BH
2240static void skb_warn_bad_offload(const struct sk_buff *skb)
2241{
65e9d2fa 2242 static const netdev_features_t null_features = 0;
36c92474
BH
2243 struct net_device *dev = skb->dev;
2244 const char *driver = "";
2245
c846ad9b
BG
2246 if (!net_ratelimit())
2247 return;
2248
36c92474
BH
2249 if (dev && dev->dev.parent)
2250 driver = dev_driver_string(dev->dev.parent);
2251
2252 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2253 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2254 driver, dev ? &dev->features : &null_features,
2255 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2256 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2257 skb_shinfo(skb)->gso_type, skb->ip_summed);
2258}
2259
1da177e4
LT
2260/*
2261 * Invalidate hardware checksum when packet is to be mangled, and
2262 * complete checksum manually on outgoing path.
2263 */
84fa7933 2264int skb_checksum_help(struct sk_buff *skb)
1da177e4 2265{
d3bc23e7 2266 __wsum csum;
663ead3b 2267 int ret = 0, offset;
1da177e4 2268
84fa7933 2269 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2270 goto out_set_summed;
2271
2272 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2273 skb_warn_bad_offload(skb);
2274 return -EINVAL;
1da177e4
LT
2275 }
2276
cef401de
ED
2277 /* Before computing a checksum, we should make sure no frag could
2278 * be modified by an external entity : checksum could be wrong.
2279 */
2280 if (skb_has_shared_frag(skb)) {
2281 ret = __skb_linearize(skb);
2282 if (ret)
2283 goto out;
2284 }
2285
55508d60 2286 offset = skb_checksum_start_offset(skb);
a030847e
HX
2287 BUG_ON(offset >= skb_headlen(skb));
2288 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2289
2290 offset += skb->csum_offset;
2291 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2292
2293 if (skb_cloned(skb) &&
2294 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2295 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2296 if (ret)
2297 goto out;
2298 }
2299
a030847e 2300 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2301out_set_summed:
1da177e4 2302 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2303out:
1da177e4
LT
2304 return ret;
2305}
d1b19dff 2306EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2307
53d6471c 2308__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2309{
4b9b1cdf 2310 unsigned int vlan_depth = skb->mac_len;
252e3346 2311 __be16 type = skb->protocol;
f6a78bfc 2312
19acc327
PS
2313 /* Tunnel gso handlers can set protocol to ethernet. */
2314 if (type == htons(ETH_P_TEB)) {
2315 struct ethhdr *eth;
2316
2317 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2318 return 0;
2319
2320 eth = (struct ethhdr *)skb_mac_header(skb);
2321 type = eth->h_proto;
2322 }
2323
4b9b1cdf
NA
2324 /* if skb->protocol is 802.1Q/AD then the header should already be
2325 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2326 * ETH_HLEN otherwise
2327 */
2328 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2329 if (vlan_depth) {
80019d31 2330 if (WARN_ON(vlan_depth < VLAN_HLEN))
4b9b1cdf
NA
2331 return 0;
2332 vlan_depth -= VLAN_HLEN;
2333 } else {
2334 vlan_depth = ETH_HLEN;
2335 }
2336 do {
2337 struct vlan_hdr *vh;
2338
2339 if (unlikely(!pskb_may_pull(skb,
2340 vlan_depth + VLAN_HLEN)))
2341 return 0;
2342
2343 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2344 type = vh->h_vlan_encapsulated_proto;
2345 vlan_depth += VLAN_HLEN;
2346 } while (type == htons(ETH_P_8021Q) ||
2347 type == htons(ETH_P_8021AD));
7b9c6090
JG
2348 }
2349
53d6471c
VY
2350 *depth = vlan_depth;
2351
ec5f0615
PS
2352 return type;
2353}
2354
2355/**
2356 * skb_mac_gso_segment - mac layer segmentation handler.
2357 * @skb: buffer to segment
2358 * @features: features for the output path (see dev->features)
2359 */
2360struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2361 netdev_features_t features)
2362{
2363 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2364 struct packet_offload *ptype;
53d6471c
VY
2365 int vlan_depth = skb->mac_len;
2366 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2367
2368 if (unlikely(!type))
2369 return ERR_PTR(-EINVAL);
2370
53d6471c 2371 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2372
2373 rcu_read_lock();
22061d80 2374 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2375 if (ptype->type == type && ptype->callbacks.gso_segment) {
84fa7933 2376 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
05e8ef4a
PS
2377 int err;
2378
f191a1d1 2379 err = ptype->callbacks.gso_send_check(skb);
a430a43d
HX
2380 segs = ERR_PTR(err);
2381 if (err || skb_gso_ok(skb, features))
2382 break;
d56f90a7
ACM
2383 __skb_push(skb, (skb->data -
2384 skb_network_header(skb)));
a430a43d 2385 }
f191a1d1 2386 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2387 break;
2388 }
2389 }
2390 rcu_read_unlock();
2391
98e399f8 2392 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2393
f6a78bfc
HX
2394 return segs;
2395}
05e8ef4a
PS
2396EXPORT_SYMBOL(skb_mac_gso_segment);
2397
2398
2399/* openvswitch calls this on rx path, so we need a different check.
2400 */
2401static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2402{
2403 if (tx_path)
2404 return skb->ip_summed != CHECKSUM_PARTIAL;
2405 else
2406 return skb->ip_summed == CHECKSUM_NONE;
2407}
2408
2409/**
2410 * __skb_gso_segment - Perform segmentation on skb.
2411 * @skb: buffer to segment
2412 * @features: features for the output path (see dev->features)
2413 * @tx_path: whether it is called in TX path
2414 *
2415 * This function segments the given skb and returns a list of segments.
2416 *
2417 * It may return NULL if the skb requires no segmentation. This is
2418 * only possible when GSO is used for verifying header integrity.
2419 */
2420struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2421 netdev_features_t features, bool tx_path)
2422{
2423 if (unlikely(skb_needs_check(skb, tx_path))) {
2424 int err;
2425
2426 skb_warn_bad_offload(skb);
2427
a40e0a66 2428 err = skb_cow_head(skb, 0);
2429 if (err < 0)
05e8ef4a
PS
2430 return ERR_PTR(err);
2431 }
2432
68c33163 2433 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2434 SKB_GSO_CB(skb)->encap_level = 0;
2435
05e8ef4a
PS
2436 skb_reset_mac_header(skb);
2437 skb_reset_mac_len(skb);
2438
2439 return skb_mac_gso_segment(skb, features);
2440}
12b0004d 2441EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2442
fb286bb2
HX
2443/* Take action when hardware reception checksum errors are detected. */
2444#ifdef CONFIG_BUG
2445void netdev_rx_csum_fault(struct net_device *dev)
2446{
2447 if (net_ratelimit()) {
7b6cd1ce 2448 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2449 dump_stack();
2450 }
2451}
2452EXPORT_SYMBOL(netdev_rx_csum_fault);
2453#endif
2454
1da177e4
LT
2455/* Actually, we should eliminate this check as soon as we know, that:
2456 * 1. IOMMU is present and allows to map all the memory.
2457 * 2. No high memory really exists on this machine.
2458 */
2459
c1e756bf 2460static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2461{
3d3a8533 2462#ifdef CONFIG_HIGHMEM
1da177e4 2463 int i;
5acbbd42 2464 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2465 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2466 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2467 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2468 return 1;
ea2ab693 2469 }
5acbbd42 2470 }
1da177e4 2471
5acbbd42
FT
2472 if (PCI_DMA_BUS_IS_PHYS) {
2473 struct device *pdev = dev->dev.parent;
1da177e4 2474
9092c658
ED
2475 if (!pdev)
2476 return 0;
5acbbd42 2477 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2480 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2481 return 1;
2482 }
2483 }
3d3a8533 2484#endif
1da177e4
LT
2485 return 0;
2486}
1da177e4 2487
3b392ddb
SH
2488/* If MPLS offload request, verify we are testing hardware MPLS features
2489 * instead of standard features for the netdev.
2490 */
2491#ifdef CONFIG_NET_MPLS_GSO
2492static netdev_features_t net_mpls_features(struct sk_buff *skb,
2493 netdev_features_t features,
2494 __be16 type)
2495{
2496 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2497 features &= skb->dev->mpls_features;
2498
2499 return features;
2500}
2501#else
2502static netdev_features_t net_mpls_features(struct sk_buff *skb,
2503 netdev_features_t features,
2504 __be16 type)
2505{
2506 return features;
2507}
2508#endif
2509
c8f44aff 2510static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2511 netdev_features_t features)
f01a5236 2512{
53d6471c 2513 int tmp;
3b392ddb
SH
2514 __be16 type;
2515
2516 type = skb_network_protocol(skb, &tmp);
2517 features = net_mpls_features(skb, features, type);
53d6471c 2518
c0d680e5 2519 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2520 !can_checksum_protocol(features, type)) {
f01a5236 2521 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2522 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2523 features &= ~NETIF_F_SG;
2524 }
2525
2526 return features;
2527}
2528
c1e756bf 2529netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6
JG
2530{
2531 __be16 protocol = skb->protocol;
c1e756bf 2532 netdev_features_t features = skb->dev->features;
58e998c6 2533
c1e756bf 2534 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
30b678d8
BH
2535 features &= ~NETIF_F_GSO_MASK;
2536
8ad227ff 2537 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
58e998c6
JG
2538 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2539 protocol = veh->h_vlan_encapsulated_proto;
f01a5236 2540 } else if (!vlan_tx_tag_present(skb)) {
c1e756bf 2541 return harmonize_features(skb, features);
f01a5236 2542 }
58e998c6 2543
c1e756bf 2544 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
8ad227ff 2545 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2546
cdbaa0bb 2547 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
f01a5236 2548 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
8ad227ff
PM
2549 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2550 NETIF_F_HW_VLAN_STAG_TX;
cdbaa0bb 2551
c1e756bf 2552 return harmonize_features(skb, features);
58e998c6 2553}
c1e756bf 2554EXPORT_SYMBOL(netif_skb_features);
58e998c6 2555
2ea25513 2556static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2557 struct netdev_queue *txq, bool more)
2ea25513
DM
2558{
2559 unsigned int len;
2560 int rc;
2561
2562 if (!list_empty(&ptype_all))
2563 dev_queue_xmit_nit(skb, dev);
2564
2565 len = skb->len;
2566 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2567 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513
DM
2568 trace_net_dev_xmit(skb, rc, dev, len);
2569
2570 return rc;
2571}
2572
8dcda22a
DM
2573struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2574 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2575{
2576 struct sk_buff *skb = first;
2577 int rc = NETDEV_TX_OK;
2578
2579 while (skb) {
2580 struct sk_buff *next = skb->next;
2581
2582 skb->next = NULL;
95f6b3dd 2583 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2584 if (unlikely(!dev_xmit_complete(rc))) {
2585 skb->next = next;
2586 goto out;
2587 }
2588
2589 skb = next;
2590 if (netif_xmit_stopped(txq) && skb) {
2591 rc = NETDEV_TX_BUSY;
2592 break;
2593 }
2594 }
2595
2596out:
2597 *ret = rc;
2598 return skb;
2599}
2600
eae3f88e 2601struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, netdev_features_t features)
f6a78bfc 2602{
eae3f88e
DM
2603 if (vlan_tx_tag_present(skb) &&
2604 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2605 skb = __vlan_put_tag(skb, skb->vlan_proto,
2606 vlan_tx_tag_get(skb));
2607 if (skb)
2608 skb->vlan_tci = 0;
2609 }
2610 return skb;
2611}
00829823 2612
50cbe9ab 2613struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2614{
2615 netdev_features_t features;
fc741216 2616
eae3f88e
DM
2617 if (skb->next)
2618 return skb;
adf30907 2619
eae3f88e
DM
2620 /* If device doesn't need skb->dst, release it right now while
2621 * its hot in this cpu cache
2622 */
2623 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2624 skb_dst_drop(skb);
fc741216 2625
eae3f88e
DM
2626 features = netif_skb_features(skb);
2627 skb = validate_xmit_vlan(skb, features);
2628 if (unlikely(!skb))
2629 goto out_null;
7b9c6090 2630
eae3f88e
DM
2631 /* If encapsulation offload request, verify we are testing
2632 * hardware encapsulation features instead of standard
2633 * features for the netdev
2634 */
2635 if (skb->encapsulation)
2636 features &= dev->hw_enc_features;
2637
2638 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2639 struct sk_buff *segs;
2640
2641 segs = skb_gso_segment(skb, features);
2642 kfree_skb(skb);
2643 if (IS_ERR(segs))
2644 segs = NULL;
2645 skb = segs;
eae3f88e
DM
2646 } else {
2647 if (skb_needs_linearize(skb, features) &&
2648 __skb_linearize(skb))
2649 goto out_kfree_skb;
2650
2651 /* If packet is not checksummed and device does not
2652 * support checksumming for this protocol, complete
2653 * checksumming here.
2654 */
2655 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2656 if (skb->encapsulation)
2657 skb_set_inner_transport_header(skb,
2658 skb_checksum_start_offset(skb));
2659 else
2660 skb_set_transport_header(skb,
2661 skb_checksum_start_offset(skb));
2662 if (!(features & NETIF_F_ALL_CSUM) &&
2663 skb_checksum_help(skb))
2664 goto out_kfree_skb;
7b9c6090 2665 }
eae3f88e 2666 }
7b9c6090 2667
eae3f88e 2668 return skb;
fc70fb64 2669
eae3f88e
DM
2670out_kfree_skb:
2671 kfree_skb(skb);
2672out_null:
2673 return NULL;
2674}
6afff0ca 2675
1def9238
ED
2676static void qdisc_pkt_len_init(struct sk_buff *skb)
2677{
2678 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2679
2680 qdisc_skb_cb(skb)->pkt_len = skb->len;
2681
2682 /* To get more precise estimation of bytes sent on wire,
2683 * we add to pkt_len the headers size of all segments
2684 */
2685 if (shinfo->gso_size) {
757b8b1d 2686 unsigned int hdr_len;
15e5a030 2687 u16 gso_segs = shinfo->gso_segs;
1def9238 2688
757b8b1d
ED
2689 /* mac layer + network layer */
2690 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2691
2692 /* + transport layer */
1def9238
ED
2693 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2694 hdr_len += tcp_hdrlen(skb);
2695 else
2696 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2697
2698 if (shinfo->gso_type & SKB_GSO_DODGY)
2699 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2700 shinfo->gso_size);
2701
2702 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2703 }
2704}
2705
bbd8a0d3
KK
2706static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2707 struct net_device *dev,
2708 struct netdev_queue *txq)
2709{
2710 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2711 bool contended;
bbd8a0d3
KK
2712 int rc;
2713
1def9238 2714 qdisc_pkt_len_init(skb);
a2da570d 2715 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2716 /*
2717 * Heuristic to force contended enqueues to serialize on a
2718 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2719 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2720 * often and dequeue packets faster.
79640a4c 2721 */
a2da570d 2722 contended = qdisc_is_running(q);
79640a4c
ED
2723 if (unlikely(contended))
2724 spin_lock(&q->busylock);
2725
bbd8a0d3
KK
2726 spin_lock(root_lock);
2727 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2728 kfree_skb(skb);
2729 rc = NET_XMIT_DROP;
2730 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2731 qdisc_run_begin(q)) {
bbd8a0d3
KK
2732 /*
2733 * This is a work-conserving queue; there are no old skbs
2734 * waiting to be sent out; and the qdisc is not running -
2735 * xmit the skb directly.
2736 */
7fee226a
ED
2737 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2738 skb_dst_force(skb);
bfe0d029 2739
bfe0d029
ED
2740 qdisc_bstats_update(q, skb);
2741
79640a4c
ED
2742 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2743 if (unlikely(contended)) {
2744 spin_unlock(&q->busylock);
2745 contended = false;
2746 }
bbd8a0d3 2747 __qdisc_run(q);
79640a4c 2748 } else
bc135b23 2749 qdisc_run_end(q);
bbd8a0d3
KK
2750
2751 rc = NET_XMIT_SUCCESS;
2752 } else {
7fee226a 2753 skb_dst_force(skb);
a2da570d 2754 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2755 if (qdisc_run_begin(q)) {
2756 if (unlikely(contended)) {
2757 spin_unlock(&q->busylock);
2758 contended = false;
2759 }
2760 __qdisc_run(q);
2761 }
bbd8a0d3
KK
2762 }
2763 spin_unlock(root_lock);
79640a4c
ED
2764 if (unlikely(contended))
2765 spin_unlock(&q->busylock);
bbd8a0d3
KK
2766 return rc;
2767}
2768
86f8515f 2769#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2770static void skb_update_prio(struct sk_buff *skb)
2771{
6977a79d 2772 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2773
91c68ce2
ED
2774 if (!skb->priority && skb->sk && map) {
2775 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2776
2777 if (prioidx < map->priomap_len)
2778 skb->priority = map->priomap[prioidx];
2779 }
5bc1421e
NH
2780}
2781#else
2782#define skb_update_prio(skb)
2783#endif
2784
745e20f1 2785static DEFINE_PER_CPU(int, xmit_recursion);
11a766ce 2786#define RECURSION_LIMIT 10
745e20f1 2787
95603e22
MM
2788/**
2789 * dev_loopback_xmit - loop back @skb
2790 * @skb: buffer to transmit
2791 */
2792int dev_loopback_xmit(struct sk_buff *skb)
2793{
2794 skb_reset_mac_header(skb);
2795 __skb_pull(skb, skb_network_offset(skb));
2796 skb->pkt_type = PACKET_LOOPBACK;
2797 skb->ip_summed = CHECKSUM_UNNECESSARY;
2798 WARN_ON(!skb_dst(skb));
2799 skb_dst_force(skb);
2800 netif_rx_ni(skb);
2801 return 0;
2802}
2803EXPORT_SYMBOL(dev_loopback_xmit);
2804
d29f749e 2805/**
9d08dd3d 2806 * __dev_queue_xmit - transmit a buffer
d29f749e 2807 * @skb: buffer to transmit
9d08dd3d 2808 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
2809 *
2810 * Queue a buffer for transmission to a network device. The caller must
2811 * have set the device and priority and built the buffer before calling
2812 * this function. The function can be called from an interrupt.
2813 *
2814 * A negative errno code is returned on a failure. A success does not
2815 * guarantee the frame will be transmitted as it may be dropped due
2816 * to congestion or traffic shaping.
2817 *
2818 * -----------------------------------------------------------------------------------
2819 * I notice this method can also return errors from the queue disciplines,
2820 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2821 * be positive.
2822 *
2823 * Regardless of the return value, the skb is consumed, so it is currently
2824 * difficult to retry a send to this method. (You can bump the ref count
2825 * before sending to hold a reference for retry if you are careful.)
2826 *
2827 * When calling this method, interrupts MUST be enabled. This is because
2828 * the BH enable code must have IRQs enabled so that it will not deadlock.
2829 * --BLG
2830 */
0a59f3a9 2831static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
2832{
2833 struct net_device *dev = skb->dev;
dc2b4847 2834 struct netdev_queue *txq;
1da177e4
LT
2835 struct Qdisc *q;
2836 int rc = -ENOMEM;
2837
6d1ccff6
ED
2838 skb_reset_mac_header(skb);
2839
e7fd2885
WB
2840 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2841 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2842
4ec93edb
YH
2843 /* Disable soft irqs for various locks below. Also
2844 * stops preemption for RCU.
1da177e4 2845 */
4ec93edb 2846 rcu_read_lock_bh();
1da177e4 2847
5bc1421e
NH
2848 skb_update_prio(skb);
2849
f663dd9a 2850 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 2851 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2852
1da177e4 2853#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2854 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 2855#endif
cf66ba58 2856 trace_net_dev_queue(skb);
1da177e4 2857 if (q->enqueue) {
bbd8a0d3 2858 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2859 goto out;
1da177e4
LT
2860 }
2861
2862 /* The device has no queue. Common case for software devices:
2863 loopback, all the sorts of tunnels...
2864
932ff279
HX
2865 Really, it is unlikely that netif_tx_lock protection is necessary
2866 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2867 counters.)
2868 However, it is possible, that they rely on protection
2869 made by us here.
2870
2871 Check this and shot the lock. It is not prone from deadlocks.
2872 Either shot noqueue qdisc, it is even simpler 8)
2873 */
2874 if (dev->flags & IFF_UP) {
2875 int cpu = smp_processor_id(); /* ok because BHs are off */
2876
c773e847 2877 if (txq->xmit_lock_owner != cpu) {
1da177e4 2878
745e20f1
ED
2879 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2880 goto recursion_alert;
2881
c773e847 2882 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2883
73466498 2884 if (!netif_xmit_stopped(txq)) {
745e20f1 2885 __this_cpu_inc(xmit_recursion);
ce93718f 2886 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 2887 __this_cpu_dec(xmit_recursion);
572a9d7b 2888 if (dev_xmit_complete(rc)) {
c773e847 2889 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2890 goto out;
2891 }
2892 }
c773e847 2893 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
2894 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2895 dev->name);
1da177e4
LT
2896 } else {
2897 /* Recursion is detected! It is possible,
745e20f1
ED
2898 * unfortunately
2899 */
2900recursion_alert:
e87cc472
JP
2901 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2902 dev->name);
1da177e4
LT
2903 }
2904 }
2905
2906 rc = -ENETDOWN;
d4828d85 2907 rcu_read_unlock_bh();
1da177e4 2908
015f0688 2909 atomic_long_inc(&dev->tx_dropped);
1da177e4
LT
2910 kfree_skb(skb);
2911 return rc;
2912out:
d4828d85 2913 rcu_read_unlock_bh();
1da177e4
LT
2914 return rc;
2915}
f663dd9a
JW
2916
2917int dev_queue_xmit(struct sk_buff *skb)
2918{
2919 return __dev_queue_xmit(skb, NULL);
2920}
d1b19dff 2921EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 2922
f663dd9a
JW
2923int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2924{
2925 return __dev_queue_xmit(skb, accel_priv);
2926}
2927EXPORT_SYMBOL(dev_queue_xmit_accel);
2928
1da177e4
LT
2929
2930/*=======================================================================
2931 Receiver routines
2932 =======================================================================*/
2933
6b2bedc3 2934int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
2935EXPORT_SYMBOL(netdev_max_backlog);
2936
3b098e2d 2937int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
2938int netdev_budget __read_mostly = 300;
2939int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 2940
eecfd7c4
ED
2941/* Called with irq disabled */
2942static inline void ____napi_schedule(struct softnet_data *sd,
2943 struct napi_struct *napi)
2944{
2945 list_add_tail(&napi->poll_list, &sd->poll_list);
2946 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2947}
2948
bfb564e7
KK
2949#ifdef CONFIG_RPS
2950
2951/* One global table that all flow-based protocols share. */
6e3f7faf 2952struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7
KK
2953EXPORT_SYMBOL(rps_sock_flow_table);
2954
c5905afb 2955struct static_key rps_needed __read_mostly;
adc9300e 2956
c445477d
BH
2957static struct rps_dev_flow *
2958set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2959 struct rps_dev_flow *rflow, u16 next_cpu)
2960{
09994d1b 2961 if (next_cpu != RPS_NO_CPU) {
c445477d
BH
2962#ifdef CONFIG_RFS_ACCEL
2963 struct netdev_rx_queue *rxqueue;
2964 struct rps_dev_flow_table *flow_table;
2965 struct rps_dev_flow *old_rflow;
2966 u32 flow_id;
2967 u16 rxq_index;
2968 int rc;
2969
2970 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
2971 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2972 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
2973 goto out;
2974 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2975 if (rxq_index == skb_get_rx_queue(skb))
2976 goto out;
2977
2978 rxqueue = dev->_rx + rxq_index;
2979 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2980 if (!flow_table)
2981 goto out;
61b905da 2982 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
2983 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2984 rxq_index, flow_id);
2985 if (rc < 0)
2986 goto out;
2987 old_rflow = rflow;
2988 rflow = &flow_table->flows[flow_id];
c445477d
BH
2989 rflow->filter = rc;
2990 if (old_rflow->filter == rflow->filter)
2991 old_rflow->filter = RPS_NO_FILTER;
2992 out:
2993#endif
2994 rflow->last_qtail =
09994d1b 2995 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
2996 }
2997
09994d1b 2998 rflow->cpu = next_cpu;
c445477d
BH
2999 return rflow;
3000}
3001
bfb564e7
KK
3002/*
3003 * get_rps_cpu is called from netif_receive_skb and returns the target
3004 * CPU from the RPS map of the receiving queue for a given skb.
3005 * rcu_read_lock must be held on entry.
3006 */
3007static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3008 struct rps_dev_flow **rflowp)
3009{
3010 struct netdev_rx_queue *rxqueue;
6e3f7faf 3011 struct rps_map *map;
bfb564e7
KK
3012 struct rps_dev_flow_table *flow_table;
3013 struct rps_sock_flow_table *sock_flow_table;
3014 int cpu = -1;
3015 u16 tcpu;
61b905da 3016 u32 hash;
bfb564e7
KK
3017
3018 if (skb_rx_queue_recorded(skb)) {
3019 u16 index = skb_get_rx_queue(skb);
62fe0b40
BH
3020 if (unlikely(index >= dev->real_num_rx_queues)) {
3021 WARN_ONCE(dev->real_num_rx_queues > 1,
3022 "%s received packet on queue %u, but number "
3023 "of RX queues is %u\n",
3024 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3025 goto done;
3026 }
3027 rxqueue = dev->_rx + index;
3028 } else
3029 rxqueue = dev->_rx;
3030
6e3f7faf
ED
3031 map = rcu_dereference(rxqueue->rps_map);
3032 if (map) {
85875236 3033 if (map->len == 1 &&
33d480ce 3034 !rcu_access_pointer(rxqueue->rps_flow_table)) {
6febfca9
CG
3035 tcpu = map->cpus[0];
3036 if (cpu_online(tcpu))
3037 cpu = tcpu;
3038 goto done;
3039 }
33d480ce 3040 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
bfb564e7 3041 goto done;
6febfca9 3042 }
bfb564e7 3043
2d47b459 3044 skb_reset_network_header(skb);
61b905da
TH
3045 hash = skb_get_hash(skb);
3046 if (!hash)
bfb564e7
KK
3047 goto done;
3048
fec5e652
TH
3049 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3050 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3051 if (flow_table && sock_flow_table) {
3052 u16 next_cpu;
3053 struct rps_dev_flow *rflow;
3054
61b905da 3055 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3056 tcpu = rflow->cpu;
3057
61b905da 3058 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
fec5e652
TH
3059
3060 /*
3061 * If the desired CPU (where last recvmsg was done) is
3062 * different from current CPU (one in the rx-queue flow
3063 * table entry), switch if one of the following holds:
3064 * - Current CPU is unset (equal to RPS_NO_CPU).
3065 * - Current CPU is offline.
3066 * - The current CPU's queue tail has advanced beyond the
3067 * last packet that was enqueued using this table entry.
3068 * This guarantees that all previous packets for the flow
3069 * have been dequeued, thus preserving in order delivery.
3070 */
3071 if (unlikely(tcpu != next_cpu) &&
3072 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3073 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3074 rflow->last_qtail)) >= 0)) {
3075 tcpu = next_cpu;
c445477d 3076 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3077 }
c445477d 3078
fec5e652
TH
3079 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3080 *rflowp = rflow;
3081 cpu = tcpu;
3082 goto done;
3083 }
3084 }
3085
0a9627f2 3086 if (map) {
8fc54f68 3087 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3088 if (cpu_online(tcpu)) {
3089 cpu = tcpu;
3090 goto done;
3091 }
3092 }
3093
3094done:
0a9627f2
TH
3095 return cpu;
3096}
3097
c445477d
BH
3098#ifdef CONFIG_RFS_ACCEL
3099
3100/**
3101 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3102 * @dev: Device on which the filter was set
3103 * @rxq_index: RX queue index
3104 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3105 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3106 *
3107 * Drivers that implement ndo_rx_flow_steer() should periodically call
3108 * this function for each installed filter and remove the filters for
3109 * which it returns %true.
3110 */
3111bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3112 u32 flow_id, u16 filter_id)
3113{
3114 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3115 struct rps_dev_flow_table *flow_table;
3116 struct rps_dev_flow *rflow;
3117 bool expire = true;
3118 int cpu;
3119
3120 rcu_read_lock();
3121 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3122 if (flow_table && flow_id <= flow_table->mask) {
3123 rflow = &flow_table->flows[flow_id];
3124 cpu = ACCESS_ONCE(rflow->cpu);
3125 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3126 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3127 rflow->last_qtail) <
3128 (int)(10 * flow_table->mask)))
3129 expire = false;
3130 }
3131 rcu_read_unlock();
3132 return expire;
3133}
3134EXPORT_SYMBOL(rps_may_expire_flow);
3135
3136#endif /* CONFIG_RFS_ACCEL */
3137
0a9627f2 3138/* Called from hardirq (IPI) context */
e36fa2f7 3139static void rps_trigger_softirq(void *data)
0a9627f2 3140{
e36fa2f7
ED
3141 struct softnet_data *sd = data;
3142
eecfd7c4 3143 ____napi_schedule(sd, &sd->backlog);
dee42870 3144 sd->received_rps++;
0a9627f2 3145}
e36fa2f7 3146
fec5e652 3147#endif /* CONFIG_RPS */
0a9627f2 3148
e36fa2f7
ED
3149/*
3150 * Check if this softnet_data structure is another cpu one
3151 * If yes, queue it to our IPI list and return 1
3152 * If no, return 0
3153 */
3154static int rps_ipi_queued(struct softnet_data *sd)
3155{
3156#ifdef CONFIG_RPS
3157 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3158
3159 if (sd != mysd) {
3160 sd->rps_ipi_next = mysd->rps_ipi_list;
3161 mysd->rps_ipi_list = sd;
3162
3163 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3164 return 1;
3165 }
3166#endif /* CONFIG_RPS */
3167 return 0;
3168}
3169
99bbc707
WB
3170#ifdef CONFIG_NET_FLOW_LIMIT
3171int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3172#endif
3173
3174static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3175{
3176#ifdef CONFIG_NET_FLOW_LIMIT
3177 struct sd_flow_limit *fl;
3178 struct softnet_data *sd;
3179 unsigned int old_flow, new_flow;
3180
3181 if (qlen < (netdev_max_backlog >> 1))
3182 return false;
3183
3184 sd = &__get_cpu_var(softnet_data);
3185
3186 rcu_read_lock();
3187 fl = rcu_dereference(sd->flow_limit);
3188 if (fl) {
3958afa1 3189 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3190 old_flow = fl->history[fl->history_head];
3191 fl->history[fl->history_head] = new_flow;
3192
3193 fl->history_head++;
3194 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3195
3196 if (likely(fl->buckets[old_flow]))
3197 fl->buckets[old_flow]--;
3198
3199 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3200 fl->count++;
3201 rcu_read_unlock();
3202 return true;
3203 }
3204 }
3205 rcu_read_unlock();
3206#endif
3207 return false;
3208}
3209
0a9627f2
TH
3210/*
3211 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3212 * queue (may be a remote CPU queue).
3213 */
fec5e652
TH
3214static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3215 unsigned int *qtail)
0a9627f2 3216{
e36fa2f7 3217 struct softnet_data *sd;
0a9627f2 3218 unsigned long flags;
99bbc707 3219 unsigned int qlen;
0a9627f2 3220
e36fa2f7 3221 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3222
3223 local_irq_save(flags);
0a9627f2 3224
e36fa2f7 3225 rps_lock(sd);
99bbc707
WB
3226 qlen = skb_queue_len(&sd->input_pkt_queue);
3227 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
6e7676c1 3228 if (skb_queue_len(&sd->input_pkt_queue)) {
0a9627f2 3229enqueue:
e36fa2f7 3230 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3231 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3232 rps_unlock(sd);
152102c7 3233 local_irq_restore(flags);
0a9627f2
TH
3234 return NET_RX_SUCCESS;
3235 }
3236
ebda37c2
ED
3237 /* Schedule NAPI for backlog device
3238 * We can use non atomic operation since we own the queue lock
3239 */
3240 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3241 if (!rps_ipi_queued(sd))
eecfd7c4 3242 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3243 }
3244 goto enqueue;
3245 }
3246
dee42870 3247 sd->dropped++;
e36fa2f7 3248 rps_unlock(sd);
0a9627f2 3249
0a9627f2
TH
3250 local_irq_restore(flags);
3251
caf586e5 3252 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3253 kfree_skb(skb);
3254 return NET_RX_DROP;
3255}
1da177e4 3256
ae78dbfa 3257static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3258{
b0e28f1e 3259 int ret;
1da177e4 3260
588f0330 3261 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3262
cf66ba58 3263 trace_netif_rx(skb);
df334545 3264#ifdef CONFIG_RPS
c5905afb 3265 if (static_key_false(&rps_needed)) {
fec5e652 3266 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3267 int cpu;
3268
cece1945 3269 preempt_disable();
b0e28f1e 3270 rcu_read_lock();
fec5e652
TH
3271
3272 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3273 if (cpu < 0)
3274 cpu = smp_processor_id();
fec5e652
TH
3275
3276 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3277
b0e28f1e 3278 rcu_read_unlock();
cece1945 3279 preempt_enable();
adc9300e
ED
3280 } else
3281#endif
fec5e652
TH
3282 {
3283 unsigned int qtail;
3284 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3285 put_cpu();
3286 }
b0e28f1e 3287 return ret;
1da177e4 3288}
ae78dbfa
BH
3289
3290/**
3291 * netif_rx - post buffer to the network code
3292 * @skb: buffer to post
3293 *
3294 * This function receives a packet from a device driver and queues it for
3295 * the upper (protocol) levels to process. It always succeeds. The buffer
3296 * may be dropped during processing for congestion control or by the
3297 * protocol layers.
3298 *
3299 * return values:
3300 * NET_RX_SUCCESS (no congestion)
3301 * NET_RX_DROP (packet was dropped)
3302 *
3303 */
3304
3305int netif_rx(struct sk_buff *skb)
3306{
3307 trace_netif_rx_entry(skb);
3308
3309 return netif_rx_internal(skb);
3310}
d1b19dff 3311EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3312
3313int netif_rx_ni(struct sk_buff *skb)
3314{
3315 int err;
3316
ae78dbfa
BH
3317 trace_netif_rx_ni_entry(skb);
3318
1da177e4 3319 preempt_disable();
ae78dbfa 3320 err = netif_rx_internal(skb);
1da177e4
LT
3321 if (local_softirq_pending())
3322 do_softirq();
3323 preempt_enable();
3324
3325 return err;
3326}
1da177e4
LT
3327EXPORT_SYMBOL(netif_rx_ni);
3328
1da177e4
LT
3329static void net_tx_action(struct softirq_action *h)
3330{
3331 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3332
3333 if (sd->completion_queue) {
3334 struct sk_buff *clist;
3335
3336 local_irq_disable();
3337 clist = sd->completion_queue;
3338 sd->completion_queue = NULL;
3339 local_irq_enable();
3340
3341 while (clist) {
3342 struct sk_buff *skb = clist;
3343 clist = clist->next;
3344
547b792c 3345 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3346 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3347 trace_consume_skb(skb);
3348 else
3349 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3350 __kfree_skb(skb);
3351 }
3352 }
3353
3354 if (sd->output_queue) {
37437bb2 3355 struct Qdisc *head;
1da177e4
LT
3356
3357 local_irq_disable();
3358 head = sd->output_queue;
3359 sd->output_queue = NULL;
a9cbd588 3360 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3361 local_irq_enable();
3362
3363 while (head) {
37437bb2
DM
3364 struct Qdisc *q = head;
3365 spinlock_t *root_lock;
3366
1da177e4
LT
3367 head = head->next_sched;
3368
5fb66229 3369 root_lock = qdisc_lock(q);
37437bb2 3370 if (spin_trylock(root_lock)) {
4e857c58 3371 smp_mb__before_atomic();
def82a1d
JP
3372 clear_bit(__QDISC_STATE_SCHED,
3373 &q->state);
37437bb2
DM
3374 qdisc_run(q);
3375 spin_unlock(root_lock);
1da177e4 3376 } else {
195648bb 3377 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3378 &q->state)) {
195648bb 3379 __netif_reschedule(q);
e8a83e10 3380 } else {
4e857c58 3381 smp_mb__before_atomic();
e8a83e10
JP
3382 clear_bit(__QDISC_STATE_SCHED,
3383 &q->state);
3384 }
1da177e4
LT
3385 }
3386 }
3387 }
3388}
3389
ab95bfe0
JP
3390#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3391 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3392/* This hook is defined here for ATM LANE */
3393int (*br_fdb_test_addr_hook)(struct net_device *dev,
3394 unsigned char *addr) __read_mostly;
4fb019a0 3395EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3396#endif
1da177e4 3397
1da177e4
LT
3398#ifdef CONFIG_NET_CLS_ACT
3399/* TODO: Maybe we should just force sch_ingress to be compiled in
3400 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3401 * a compare and 2 stores extra right now if we dont have it on
3402 * but have CONFIG_NET_CLS_ACT
25985edc
LDM
3403 * NOTE: This doesn't stop any functionality; if you dont have
3404 * the ingress scheduler, you just can't add policies on ingress.
1da177e4
LT
3405 *
3406 */
24824a09 3407static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
1da177e4 3408{
1da177e4 3409 struct net_device *dev = skb->dev;
f697c3e8 3410 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
3411 int result = TC_ACT_OK;
3412 struct Qdisc *q;
4ec93edb 3413
de384830 3414 if (unlikely(MAX_RED_LOOP < ttl++)) {
e87cc472
JP
3415 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3416 skb->skb_iif, dev->ifindex);
f697c3e8
HX
3417 return TC_ACT_SHOT;
3418 }
1da177e4 3419
f697c3e8
HX
3420 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3421 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 3422
83874000 3423 q = rxq->qdisc;
8d50b53d 3424 if (q != &noop_qdisc) {
83874000 3425 spin_lock(qdisc_lock(q));
a9312ae8
DM
3426 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3427 result = qdisc_enqueue_root(skb, q);
83874000
DM
3428 spin_unlock(qdisc_lock(q));
3429 }
f697c3e8
HX
3430
3431 return result;
3432}
86e65da9 3433
f697c3e8
HX
3434static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3435 struct packet_type **pt_prev,
3436 int *ret, struct net_device *orig_dev)
3437{
24824a09
ED
3438 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3439
3440 if (!rxq || rxq->qdisc == &noop_qdisc)
f697c3e8 3441 goto out;
1da177e4 3442
f697c3e8
HX
3443 if (*pt_prev) {
3444 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3445 *pt_prev = NULL;
1da177e4
LT
3446 }
3447
24824a09 3448 switch (ing_filter(skb, rxq)) {
f697c3e8
HX
3449 case TC_ACT_SHOT:
3450 case TC_ACT_STOLEN:
3451 kfree_skb(skb);
3452 return NULL;
3453 }
3454
3455out:
3456 skb->tc_verd = 0;
3457 return skb;
1da177e4
LT
3458}
3459#endif
3460
ab95bfe0
JP
3461/**
3462 * netdev_rx_handler_register - register receive handler
3463 * @dev: device to register a handler for
3464 * @rx_handler: receive handler to register
93e2c32b 3465 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3466 *
e227867f 3467 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3468 * called from __netif_receive_skb. A negative errno code is returned
3469 * on a failure.
3470 *
3471 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3472 *
3473 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3474 */
3475int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3476 rx_handler_func_t *rx_handler,
3477 void *rx_handler_data)
ab95bfe0
JP
3478{
3479 ASSERT_RTNL();
3480
3481 if (dev->rx_handler)
3482 return -EBUSY;
3483
00cfec37 3484 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3485 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3486 rcu_assign_pointer(dev->rx_handler, rx_handler);
3487
3488 return 0;
3489}
3490EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3491
3492/**
3493 * netdev_rx_handler_unregister - unregister receive handler
3494 * @dev: device to unregister a handler from
3495 *
166ec369 3496 * Unregister a receive handler from a device.
ab95bfe0
JP
3497 *
3498 * The caller must hold the rtnl_mutex.
3499 */
3500void netdev_rx_handler_unregister(struct net_device *dev)
3501{
3502
3503 ASSERT_RTNL();
a9b3cd7f 3504 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3505 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3506 * section has a guarantee to see a non NULL rx_handler_data
3507 * as well.
3508 */
3509 synchronize_net();
a9b3cd7f 3510 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3511}
3512EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3513
b4b9e355
MG
3514/*
3515 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3516 * the special handling of PFMEMALLOC skbs.
3517 */
3518static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3519{
3520 switch (skb->protocol) {
2b8837ae
JP
3521 case htons(ETH_P_ARP):
3522 case htons(ETH_P_IP):
3523 case htons(ETH_P_IPV6):
3524 case htons(ETH_P_8021Q):
3525 case htons(ETH_P_8021AD):
b4b9e355
MG
3526 return true;
3527 default:
3528 return false;
3529 }
3530}
3531
9754e293 3532static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3533{
3534 struct packet_type *ptype, *pt_prev;
ab95bfe0 3535 rx_handler_func_t *rx_handler;
f2ccd8fa 3536 struct net_device *orig_dev;
63d8ea7f 3537 struct net_device *null_or_dev;
8a4eb573 3538 bool deliver_exact = false;
1da177e4 3539 int ret = NET_RX_DROP;
252e3346 3540 __be16 type;
1da177e4 3541
588f0330 3542 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3543
cf66ba58 3544 trace_netif_receive_skb(skb);
9b22ea56 3545
cc9bd5ce 3546 orig_dev = skb->dev;
8f903c70 3547
c1d2bbe1 3548 skb_reset_network_header(skb);
fda55eca
ED
3549 if (!skb_transport_header_was_set(skb))
3550 skb_reset_transport_header(skb);
0b5c9db1 3551 skb_reset_mac_len(skb);
1da177e4
LT
3552
3553 pt_prev = NULL;
3554
3555 rcu_read_lock();
3556
63d8ea7f 3557another_round:
b6858177 3558 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3559
3560 __this_cpu_inc(softnet_data.processed);
3561
8ad227ff
PM
3562 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3563 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3564 skb = skb_vlan_untag(skb);
bcc6d479 3565 if (unlikely(!skb))
b4b9e355 3566 goto unlock;
bcc6d479
JP
3567 }
3568
1da177e4
LT
3569#ifdef CONFIG_NET_CLS_ACT
3570 if (skb->tc_verd & TC_NCLS) {
3571 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3572 goto ncls;
3573 }
3574#endif
3575
9754e293 3576 if (pfmemalloc)
b4b9e355
MG
3577 goto skip_taps;
3578
1da177e4 3579 list_for_each_entry_rcu(ptype, &ptype_all, list) {
63d8ea7f 3580 if (!ptype->dev || ptype->dev == skb->dev) {
4ec93edb 3581 if (pt_prev)
f2ccd8fa 3582 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
3583 pt_prev = ptype;
3584 }
3585 }
3586
b4b9e355 3587skip_taps:
1da177e4 3588#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
3589 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3590 if (!skb)
b4b9e355 3591 goto unlock;
1da177e4
LT
3592ncls:
3593#endif
3594
9754e293 3595 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3596 goto drop;
3597
2425717b
JF
3598 if (vlan_tx_tag_present(skb)) {
3599 if (pt_prev) {
3600 ret = deliver_skb(skb, pt_prev, orig_dev);
3601 pt_prev = NULL;
3602 }
48cc32d3 3603 if (vlan_do_receive(&skb))
2425717b
JF
3604 goto another_round;
3605 else if (unlikely(!skb))
b4b9e355 3606 goto unlock;
2425717b
JF
3607 }
3608
48cc32d3 3609 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3610 if (rx_handler) {
3611 if (pt_prev) {
3612 ret = deliver_skb(skb, pt_prev, orig_dev);
3613 pt_prev = NULL;
3614 }
8a4eb573
JP
3615 switch (rx_handler(&skb)) {
3616 case RX_HANDLER_CONSUMED:
3bc1b1ad 3617 ret = NET_RX_SUCCESS;
b4b9e355 3618 goto unlock;
8a4eb573 3619 case RX_HANDLER_ANOTHER:
63d8ea7f 3620 goto another_round;
8a4eb573
JP
3621 case RX_HANDLER_EXACT:
3622 deliver_exact = true;
3623 case RX_HANDLER_PASS:
3624 break;
3625 default:
3626 BUG();
3627 }
ab95bfe0 3628 }
1da177e4 3629
d4b812de
ED
3630 if (unlikely(vlan_tx_tag_present(skb))) {
3631 if (vlan_tx_tag_get_id(skb))
3632 skb->pkt_type = PACKET_OTHERHOST;
3633 /* Note: we might in the future use prio bits
3634 * and set skb->priority like in vlan_do_receive()
3635 * For the time being, just ignore Priority Code Point
3636 */
3637 skb->vlan_tci = 0;
3638 }
48cc32d3 3639
63d8ea7f 3640 /* deliver only exact match when indicated */
8a4eb573 3641 null_or_dev = deliver_exact ? skb->dev : NULL;
1f3c8804 3642
1da177e4 3643 type = skb->protocol;
82d8a867
PE
3644 list_for_each_entry_rcu(ptype,
3645 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
63d8ea7f 3646 if (ptype->type == type &&
e3f48d37
JP
3647 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3648 ptype->dev == orig_dev)) {
4ec93edb 3649 if (pt_prev)
f2ccd8fa 3650 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
3651 pt_prev = ptype;
3652 }
3653 }
3654
3655 if (pt_prev) {
1080e512 3656 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3657 goto drop;
1080e512
MT
3658 else
3659 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3660 } else {
b4b9e355 3661drop:
caf586e5 3662 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3663 kfree_skb(skb);
3664 /* Jamal, now you will not able to escape explaining
3665 * me how you were going to use this. :-)
3666 */
3667 ret = NET_RX_DROP;
3668 }
3669
b4b9e355 3670unlock:
1da177e4 3671 rcu_read_unlock();
9754e293
DM
3672 return ret;
3673}
3674
3675static int __netif_receive_skb(struct sk_buff *skb)
3676{
3677 int ret;
3678
3679 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3680 unsigned long pflags = current->flags;
3681
3682 /*
3683 * PFMEMALLOC skbs are special, they should
3684 * - be delivered to SOCK_MEMALLOC sockets only
3685 * - stay away from userspace
3686 * - have bounded memory usage
3687 *
3688 * Use PF_MEMALLOC as this saves us from propagating the allocation
3689 * context down to all allocation sites.
3690 */
3691 current->flags |= PF_MEMALLOC;
3692 ret = __netif_receive_skb_core(skb, true);
3693 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3694 } else
3695 ret = __netif_receive_skb_core(skb, false);
3696
1da177e4
LT
3697 return ret;
3698}
0a9627f2 3699
ae78dbfa 3700static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3701{
588f0330 3702 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3703
c1f19b51
RC
3704 if (skb_defer_rx_timestamp(skb))
3705 return NET_RX_SUCCESS;
3706
df334545 3707#ifdef CONFIG_RPS
c5905afb 3708 if (static_key_false(&rps_needed)) {
3b098e2d
ED
3709 struct rps_dev_flow voidflow, *rflow = &voidflow;
3710 int cpu, ret;
fec5e652 3711
3b098e2d
ED
3712 rcu_read_lock();
3713
3714 cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3715
3b098e2d
ED
3716 if (cpu >= 0) {
3717 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3718 rcu_read_unlock();
adc9300e 3719 return ret;
3b098e2d 3720 }
adc9300e 3721 rcu_read_unlock();
fec5e652 3722 }
1e94d72f 3723#endif
adc9300e 3724 return __netif_receive_skb(skb);
0a9627f2 3725}
ae78dbfa
BH
3726
3727/**
3728 * netif_receive_skb - process receive buffer from network
3729 * @skb: buffer to process
3730 *
3731 * netif_receive_skb() is the main receive data processing function.
3732 * It always succeeds. The buffer may be dropped during processing
3733 * for congestion control or by the protocol layers.
3734 *
3735 * This function may only be called from softirq context and interrupts
3736 * should be enabled.
3737 *
3738 * Return values (usually ignored):
3739 * NET_RX_SUCCESS: no congestion
3740 * NET_RX_DROP: packet was dropped
3741 */
3742int netif_receive_skb(struct sk_buff *skb)
3743{
3744 trace_netif_receive_skb_entry(skb);
3745
3746 return netif_receive_skb_internal(skb);
3747}
d1b19dff 3748EXPORT_SYMBOL(netif_receive_skb);
1da177e4 3749
88751275
ED
3750/* Network device is going away, flush any packets still pending
3751 * Called with irqs disabled.
3752 */
152102c7 3753static void flush_backlog(void *arg)
6e583ce5 3754{
152102c7 3755 struct net_device *dev = arg;
e36fa2f7 3756 struct softnet_data *sd = &__get_cpu_var(softnet_data);
6e583ce5
SH
3757 struct sk_buff *skb, *tmp;
3758
e36fa2f7 3759 rps_lock(sd);
6e7676c1 3760 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 3761 if (skb->dev == dev) {
e36fa2f7 3762 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 3763 kfree_skb(skb);
76cc8b13 3764 input_queue_head_incr(sd);
6e583ce5 3765 }
6e7676c1 3766 }
e36fa2f7 3767 rps_unlock(sd);
6e7676c1
CG
3768
3769 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3770 if (skb->dev == dev) {
3771 __skb_unlink(skb, &sd->process_queue);
3772 kfree_skb(skb);
76cc8b13 3773 input_queue_head_incr(sd);
6e7676c1
CG
3774 }
3775 }
6e583ce5
SH
3776}
3777
d565b0a1
HX
3778static int napi_gro_complete(struct sk_buff *skb)
3779{
22061d80 3780 struct packet_offload *ptype;
d565b0a1 3781 __be16 type = skb->protocol;
22061d80 3782 struct list_head *head = &offload_base;
d565b0a1
HX
3783 int err = -ENOENT;
3784
c3c7c254
ED
3785 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3786
fc59f9a3
HX
3787 if (NAPI_GRO_CB(skb)->count == 1) {
3788 skb_shinfo(skb)->gso_size = 0;
d565b0a1 3789 goto out;
fc59f9a3 3790 }
d565b0a1
HX
3791
3792 rcu_read_lock();
3793 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3794 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
3795 continue;
3796
299603e8 3797 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
3798 break;
3799 }
3800 rcu_read_unlock();
3801
3802 if (err) {
3803 WARN_ON(&ptype->list == head);
3804 kfree_skb(skb);
3805 return NET_RX_SUCCESS;
3806 }
3807
3808out:
ae78dbfa 3809 return netif_receive_skb_internal(skb);
d565b0a1
HX
3810}
3811
2e71a6f8
ED
3812/* napi->gro_list contains packets ordered by age.
3813 * youngest packets at the head of it.
3814 * Complete skbs in reverse order to reduce latencies.
3815 */
3816void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 3817{
2e71a6f8 3818 struct sk_buff *skb, *prev = NULL;
d565b0a1 3819
2e71a6f8
ED
3820 /* scan list and build reverse chain */
3821 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3822 skb->prev = prev;
3823 prev = skb;
3824 }
3825
3826 for (skb = prev; skb; skb = prev) {
d565b0a1 3827 skb->next = NULL;
2e71a6f8
ED
3828
3829 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3830 return;
3831
3832 prev = skb->prev;
d565b0a1 3833 napi_gro_complete(skb);
2e71a6f8 3834 napi->gro_count--;
d565b0a1
HX
3835 }
3836
3837 napi->gro_list = NULL;
3838}
86cac58b 3839EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 3840
89c5fa33
ED
3841static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3842{
3843 struct sk_buff *p;
3844 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 3845 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
3846
3847 for (p = napi->gro_list; p; p = p->next) {
3848 unsigned long diffs;
3849
0b4cec8c
TH
3850 NAPI_GRO_CB(p)->flush = 0;
3851
3852 if (hash != skb_get_hash_raw(p)) {
3853 NAPI_GRO_CB(p)->same_flow = 0;
3854 continue;
3855 }
3856
89c5fa33
ED
3857 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3858 diffs |= p->vlan_tci ^ skb->vlan_tci;
3859 if (maclen == ETH_HLEN)
3860 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 3861 skb_mac_header(skb));
89c5fa33
ED
3862 else if (!diffs)
3863 diffs = memcmp(skb_mac_header(p),
a50e233c 3864 skb_mac_header(skb),
89c5fa33
ED
3865 maclen);
3866 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
3867 }
3868}
3869
299603e8
JC
3870static void skb_gro_reset_offset(struct sk_buff *skb)
3871{
3872 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3873 const skb_frag_t *frag0 = &pinfo->frags[0];
3874
3875 NAPI_GRO_CB(skb)->data_offset = 0;
3876 NAPI_GRO_CB(skb)->frag0 = NULL;
3877 NAPI_GRO_CB(skb)->frag0_len = 0;
3878
3879 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3880 pinfo->nr_frags &&
3881 !PageHighMem(skb_frag_page(frag0))) {
3882 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3883 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
3884 }
3885}
3886
a50e233c
ED
3887static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3888{
3889 struct skb_shared_info *pinfo = skb_shinfo(skb);
3890
3891 BUG_ON(skb->end - skb->tail < grow);
3892
3893 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3894
3895 skb->data_len -= grow;
3896 skb->tail += grow;
3897
3898 pinfo->frags[0].page_offset += grow;
3899 skb_frag_size_sub(&pinfo->frags[0], grow);
3900
3901 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3902 skb_frag_unref(skb, 0);
3903 memmove(pinfo->frags, pinfo->frags + 1,
3904 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3905 }
3906}
3907
bb728820 3908static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
3909{
3910 struct sk_buff **pp = NULL;
22061d80 3911 struct packet_offload *ptype;
d565b0a1 3912 __be16 type = skb->protocol;
22061d80 3913 struct list_head *head = &offload_base;
0da2afd5 3914 int same_flow;
5b252f0c 3915 enum gro_result ret;
a50e233c 3916 int grow;
d565b0a1 3917
9c62a68d 3918 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
3919 goto normal;
3920
5a212329 3921 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
3922 goto normal;
3923
89c5fa33 3924 gro_list_prepare(napi, skb);
573e8fca 3925
d565b0a1
HX
3926 rcu_read_lock();
3927 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3928 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
3929 continue;
3930
86911732 3931 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 3932 skb_reset_mac_len(skb);
d565b0a1
HX
3933 NAPI_GRO_CB(skb)->same_flow = 0;
3934 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 3935 NAPI_GRO_CB(skb)->free = 0;
b582ef09 3936 NAPI_GRO_CB(skb)->udp_mark = 0;
662880f4
TH
3937
3938 /* Setup for GRO checksum validation */
3939 switch (skb->ip_summed) {
3940 case CHECKSUM_COMPLETE:
3941 NAPI_GRO_CB(skb)->csum = skb->csum;
3942 NAPI_GRO_CB(skb)->csum_valid = 1;
3943 NAPI_GRO_CB(skb)->csum_cnt = 0;
3944 break;
3945 case CHECKSUM_UNNECESSARY:
3946 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
3947 NAPI_GRO_CB(skb)->csum_valid = 0;
3948 break;
3949 default:
3950 NAPI_GRO_CB(skb)->csum_cnt = 0;
3951 NAPI_GRO_CB(skb)->csum_valid = 0;
3952 }
d565b0a1 3953
f191a1d1 3954 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
3955 break;
3956 }
3957 rcu_read_unlock();
3958
3959 if (&ptype->list == head)
3960 goto normal;
3961
0da2afd5 3962 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 3963 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 3964
d565b0a1
HX
3965 if (pp) {
3966 struct sk_buff *nskb = *pp;
3967
3968 *pp = nskb->next;
3969 nskb->next = NULL;
3970 napi_gro_complete(nskb);
4ae5544f 3971 napi->gro_count--;
d565b0a1
HX
3972 }
3973
0da2afd5 3974 if (same_flow)
d565b0a1
HX
3975 goto ok;
3976
600adc18 3977 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 3978 goto normal;
d565b0a1 3979
600adc18
ED
3980 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3981 struct sk_buff *nskb = napi->gro_list;
3982
3983 /* locate the end of the list to select the 'oldest' flow */
3984 while (nskb->next) {
3985 pp = &nskb->next;
3986 nskb = *pp;
3987 }
3988 *pp = NULL;
3989 nskb->next = NULL;
3990 napi_gro_complete(nskb);
3991 } else {
3992 napi->gro_count++;
3993 }
d565b0a1 3994 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 3995 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 3996 NAPI_GRO_CB(skb)->last = skb;
86911732 3997 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
3998 skb->next = napi->gro_list;
3999 napi->gro_list = skb;
5d0d9be8 4000 ret = GRO_HELD;
d565b0a1 4001
ad0f9904 4002pull:
a50e233c
ED
4003 grow = skb_gro_offset(skb) - skb_headlen(skb);
4004 if (grow > 0)
4005 gro_pull_from_frag0(skb, grow);
d565b0a1 4006ok:
5d0d9be8 4007 return ret;
d565b0a1
HX
4008
4009normal:
ad0f9904
HX
4010 ret = GRO_NORMAL;
4011 goto pull;
5d38a079 4012}
96e93eab 4013
bf5a755f
JC
4014struct packet_offload *gro_find_receive_by_type(__be16 type)
4015{
4016 struct list_head *offload_head = &offload_base;
4017 struct packet_offload *ptype;
4018
4019 list_for_each_entry_rcu(ptype, offload_head, list) {
4020 if (ptype->type != type || !ptype->callbacks.gro_receive)
4021 continue;
4022 return ptype;
4023 }
4024 return NULL;
4025}
e27a2f83 4026EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4027
4028struct packet_offload *gro_find_complete_by_type(__be16 type)
4029{
4030 struct list_head *offload_head = &offload_base;
4031 struct packet_offload *ptype;
4032
4033 list_for_each_entry_rcu(ptype, offload_head, list) {
4034 if (ptype->type != type || !ptype->callbacks.gro_complete)
4035 continue;
4036 return ptype;
4037 }
4038 return NULL;
4039}
e27a2f83 4040EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4041
bb728820 4042static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4043{
5d0d9be8
HX
4044 switch (ret) {
4045 case GRO_NORMAL:
ae78dbfa 4046 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4047 ret = GRO_DROP;
4048 break;
5d38a079 4049
5d0d9be8 4050 case GRO_DROP:
5d38a079
HX
4051 kfree_skb(skb);
4052 break;
5b252f0c 4053
daa86548 4054 case GRO_MERGED_FREE:
d7e8883c
ED
4055 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4056 kmem_cache_free(skbuff_head_cache, skb);
4057 else
4058 __kfree_skb(skb);
daa86548
ED
4059 break;
4060
5b252f0c
BH
4061 case GRO_HELD:
4062 case GRO_MERGED:
4063 break;
5d38a079
HX
4064 }
4065
c7c4b3b6 4066 return ret;
5d0d9be8 4067}
5d0d9be8 4068
c7c4b3b6 4069gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4070{
ae78dbfa 4071 trace_napi_gro_receive_entry(skb);
86911732 4072
a50e233c
ED
4073 skb_gro_reset_offset(skb);
4074
89c5fa33 4075 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4076}
4077EXPORT_SYMBOL(napi_gro_receive);
4078
d0c2b0d2 4079static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4080{
96e93eab 4081 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4082 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4083 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4084 skb->vlan_tci = 0;
66c46d74 4085 skb->dev = napi->dev;
6d152e23 4086 skb->skb_iif = 0;
c3caf119
JC
4087 skb->encapsulation = 0;
4088 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4089 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4090
4091 napi->skb = skb;
4092}
96e93eab 4093
76620aaf 4094struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4095{
5d38a079 4096 struct sk_buff *skb = napi->skb;
5d38a079
HX
4097
4098 if (!skb) {
89d71a66 4099 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
84b9cd63 4100 napi->skb = skb;
80595d59 4101 }
96e93eab
HX
4102 return skb;
4103}
76620aaf 4104EXPORT_SYMBOL(napi_get_frags);
96e93eab 4105
a50e233c
ED
4106static gro_result_t napi_frags_finish(struct napi_struct *napi,
4107 struct sk_buff *skb,
4108 gro_result_t ret)
96e93eab 4109{
5d0d9be8
HX
4110 switch (ret) {
4111 case GRO_NORMAL:
a50e233c
ED
4112 case GRO_HELD:
4113 __skb_push(skb, ETH_HLEN);
4114 skb->protocol = eth_type_trans(skb, skb->dev);
4115 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4116 ret = GRO_DROP;
86911732 4117 break;
5d38a079 4118
5d0d9be8 4119 case GRO_DROP:
5d0d9be8
HX
4120 case GRO_MERGED_FREE:
4121 napi_reuse_skb(napi, skb);
4122 break;
5b252f0c
BH
4123
4124 case GRO_MERGED:
4125 break;
5d0d9be8 4126 }
5d38a079 4127
c7c4b3b6 4128 return ret;
5d38a079 4129}
5d0d9be8 4130
a50e233c
ED
4131/* Upper GRO stack assumes network header starts at gro_offset=0
4132 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4133 * We copy ethernet header into skb->data to have a common layout.
4134 */
4adb9c4a 4135static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4136{
4137 struct sk_buff *skb = napi->skb;
a50e233c
ED
4138 const struct ethhdr *eth;
4139 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4140
4141 napi->skb = NULL;
4142
a50e233c
ED
4143 skb_reset_mac_header(skb);
4144 skb_gro_reset_offset(skb);
4145
4146 eth = skb_gro_header_fast(skb, 0);
4147 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4148 eth = skb_gro_header_slow(skb, hlen, 0);
4149 if (unlikely(!eth)) {
4150 napi_reuse_skb(napi, skb);
4151 return NULL;
4152 }
4153 } else {
4154 gro_pull_from_frag0(skb, hlen);
4155 NAPI_GRO_CB(skb)->frag0 += hlen;
4156 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4157 }
a50e233c
ED
4158 __skb_pull(skb, hlen);
4159
4160 /*
4161 * This works because the only protocols we care about don't require
4162 * special handling.
4163 * We'll fix it up properly in napi_frags_finish()
4164 */
4165 skb->protocol = eth->h_proto;
76620aaf 4166
76620aaf
HX
4167 return skb;
4168}
76620aaf 4169
c7c4b3b6 4170gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4171{
76620aaf 4172 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4173
4174 if (!skb)
c7c4b3b6 4175 return GRO_DROP;
5d0d9be8 4176
ae78dbfa
BH
4177 trace_napi_gro_frags_entry(skb);
4178
89c5fa33 4179 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4180}
5d38a079
HX
4181EXPORT_SYMBOL(napi_gro_frags);
4182
573e8fca
TH
4183/* Compute the checksum from gro_offset and return the folded value
4184 * after adding in any pseudo checksum.
4185 */
4186__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4187{
4188 __wsum wsum;
4189 __sum16 sum;
4190
4191 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4192
4193 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4194 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4195 if (likely(!sum)) {
4196 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4197 !skb->csum_complete_sw)
4198 netdev_rx_csum_fault(skb->dev);
4199 }
4200
4201 NAPI_GRO_CB(skb)->csum = wsum;
4202 NAPI_GRO_CB(skb)->csum_valid = 1;
4203
4204 return sum;
4205}
4206EXPORT_SYMBOL(__skb_gro_checksum_complete);
4207
e326bed2 4208/*
855abcf0 4209 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4210 * Note: called with local irq disabled, but exits with local irq enabled.
4211 */
4212static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4213{
4214#ifdef CONFIG_RPS
4215 struct softnet_data *remsd = sd->rps_ipi_list;
4216
4217 if (remsd) {
4218 sd->rps_ipi_list = NULL;
4219
4220 local_irq_enable();
4221
4222 /* Send pending IPI's to kick RPS processing on remote cpus. */
4223 while (remsd) {
4224 struct softnet_data *next = remsd->rps_ipi_next;
4225
4226 if (cpu_online(remsd->cpu))
c46fff2a 4227 smp_call_function_single_async(remsd->cpu,
fce8ad15 4228 &remsd->csd);
e326bed2
ED
4229 remsd = next;
4230 }
4231 } else
4232#endif
4233 local_irq_enable();
4234}
4235
bea3348e 4236static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4237{
4238 int work = 0;
eecfd7c4 4239 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4240
e326bed2
ED
4241#ifdef CONFIG_RPS
4242 /* Check if we have pending ipi, its better to send them now,
4243 * not waiting net_rx_action() end.
4244 */
4245 if (sd->rps_ipi_list) {
4246 local_irq_disable();
4247 net_rps_action_and_irq_enable(sd);
4248 }
4249#endif
bea3348e 4250 napi->weight = weight_p;
6e7676c1 4251 local_irq_disable();
11ef7a89 4252 while (1) {
1da177e4 4253 struct sk_buff *skb;
6e7676c1
CG
4254
4255 while ((skb = __skb_dequeue(&sd->process_queue))) {
4256 local_irq_enable();
4257 __netif_receive_skb(skb);
6e7676c1 4258 local_irq_disable();
76cc8b13
TH
4259 input_queue_head_incr(sd);
4260 if (++work >= quota) {
4261 local_irq_enable();
4262 return work;
4263 }
6e7676c1 4264 }
1da177e4 4265
e36fa2f7 4266 rps_lock(sd);
11ef7a89 4267 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4268 /*
4269 * Inline a custom version of __napi_complete().
4270 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4271 * and NAPI_STATE_SCHED is the only possible flag set
4272 * on backlog.
4273 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4274 * and we dont need an smp_mb() memory barrier.
4275 */
4276 list_del(&napi->poll_list);
4277 napi->state = 0;
11ef7a89 4278 rps_unlock(sd);
eecfd7c4 4279
11ef7a89 4280 break;
bea3348e 4281 }
11ef7a89
TH
4282
4283 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4284 &sd->process_queue);
e36fa2f7 4285 rps_unlock(sd);
6e7676c1
CG
4286 }
4287 local_irq_enable();
1da177e4 4288
bea3348e
SH
4289 return work;
4290}
1da177e4 4291
bea3348e
SH
4292/**
4293 * __napi_schedule - schedule for receive
c4ea43c5 4294 * @n: entry to schedule
bea3348e
SH
4295 *
4296 * The entry's receive function will be scheduled to run
4297 */
b5606c2d 4298void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4299{
4300 unsigned long flags;
1da177e4 4301
bea3348e 4302 local_irq_save(flags);
eecfd7c4 4303 ____napi_schedule(&__get_cpu_var(softnet_data), n);
bea3348e 4304 local_irq_restore(flags);
1da177e4 4305}
bea3348e
SH
4306EXPORT_SYMBOL(__napi_schedule);
4307
d565b0a1
HX
4308void __napi_complete(struct napi_struct *n)
4309{
4310 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4311 BUG_ON(n->gro_list);
4312
4313 list_del(&n->poll_list);
4e857c58 4314 smp_mb__before_atomic();
d565b0a1
HX
4315 clear_bit(NAPI_STATE_SCHED, &n->state);
4316}
4317EXPORT_SYMBOL(__napi_complete);
4318
4319void napi_complete(struct napi_struct *n)
4320{
4321 unsigned long flags;
4322
4323 /*
4324 * don't let napi dequeue from the cpu poll list
4325 * just in case its running on a different cpu
4326 */
4327 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4328 return;
4329
2e71a6f8 4330 napi_gro_flush(n, false);
d565b0a1
HX
4331 local_irq_save(flags);
4332 __napi_complete(n);
4333 local_irq_restore(flags);
4334}
4335EXPORT_SYMBOL(napi_complete);
4336
af12fa6e
ET
4337/* must be called under rcu_read_lock(), as we dont take a reference */
4338struct napi_struct *napi_by_id(unsigned int napi_id)
4339{
4340 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4341 struct napi_struct *napi;
4342
4343 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4344 if (napi->napi_id == napi_id)
4345 return napi;
4346
4347 return NULL;
4348}
4349EXPORT_SYMBOL_GPL(napi_by_id);
4350
4351void napi_hash_add(struct napi_struct *napi)
4352{
4353 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4354
4355 spin_lock(&napi_hash_lock);
4356
4357 /* 0 is not a valid id, we also skip an id that is taken
4358 * we expect both events to be extremely rare
4359 */
4360 napi->napi_id = 0;
4361 while (!napi->napi_id) {
4362 napi->napi_id = ++napi_gen_id;
4363 if (napi_by_id(napi->napi_id))
4364 napi->napi_id = 0;
4365 }
4366
4367 hlist_add_head_rcu(&napi->napi_hash_node,
4368 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4369
4370 spin_unlock(&napi_hash_lock);
4371 }
4372}
4373EXPORT_SYMBOL_GPL(napi_hash_add);
4374
4375/* Warning : caller is responsible to make sure rcu grace period
4376 * is respected before freeing memory containing @napi
4377 */
4378void napi_hash_del(struct napi_struct *napi)
4379{
4380 spin_lock(&napi_hash_lock);
4381
4382 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4383 hlist_del_rcu(&napi->napi_hash_node);
4384
4385 spin_unlock(&napi_hash_lock);
4386}
4387EXPORT_SYMBOL_GPL(napi_hash_del);
4388
d565b0a1
HX
4389void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4390 int (*poll)(struct napi_struct *, int), int weight)
4391{
4392 INIT_LIST_HEAD(&napi->poll_list);
4ae5544f 4393 napi->gro_count = 0;
d565b0a1 4394 napi->gro_list = NULL;
5d38a079 4395 napi->skb = NULL;
d565b0a1 4396 napi->poll = poll;
82dc3c63
ED
4397 if (weight > NAPI_POLL_WEIGHT)
4398 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4399 weight, dev->name);
d565b0a1
HX
4400 napi->weight = weight;
4401 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4402 napi->dev = dev;
5d38a079 4403#ifdef CONFIG_NETPOLL
d565b0a1
HX
4404 spin_lock_init(&napi->poll_lock);
4405 napi->poll_owner = -1;
4406#endif
4407 set_bit(NAPI_STATE_SCHED, &napi->state);
4408}
4409EXPORT_SYMBOL(netif_napi_add);
4410
4411void netif_napi_del(struct napi_struct *napi)
4412{
d7b06636 4413 list_del_init(&napi->dev_list);
76620aaf 4414 napi_free_frags(napi);
d565b0a1 4415
289dccbe 4416 kfree_skb_list(napi->gro_list);
d565b0a1 4417 napi->gro_list = NULL;
4ae5544f 4418 napi->gro_count = 0;
d565b0a1
HX
4419}
4420EXPORT_SYMBOL(netif_napi_del);
4421
1da177e4
LT
4422static void net_rx_action(struct softirq_action *h)
4423{
e326bed2 4424 struct softnet_data *sd = &__get_cpu_var(softnet_data);
24f8b238 4425 unsigned long time_limit = jiffies + 2;
51b0bded 4426 int budget = netdev_budget;
53fb95d3
MM
4427 void *have;
4428
1da177e4
LT
4429 local_irq_disable();
4430
e326bed2 4431 while (!list_empty(&sd->poll_list)) {
bea3348e
SH
4432 struct napi_struct *n;
4433 int work, weight;
1da177e4 4434
bea3348e 4435 /* If softirq window is exhuasted then punt.
24f8b238
SH
4436 * Allow this to run for 2 jiffies since which will allow
4437 * an average latency of 1.5/HZ.
bea3348e 4438 */
d1f41b67 4439 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
1da177e4
LT
4440 goto softnet_break;
4441
4442 local_irq_enable();
4443
bea3348e
SH
4444 /* Even though interrupts have been re-enabled, this
4445 * access is safe because interrupts can only add new
4446 * entries to the tail of this list, and only ->poll()
4447 * calls can remove this head entry from the list.
4448 */
e326bed2 4449 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
1da177e4 4450
bea3348e
SH
4451 have = netpoll_poll_lock(n);
4452
4453 weight = n->weight;
4454
0a7606c1
DM
4455 /* This NAPI_STATE_SCHED test is for avoiding a race
4456 * with netpoll's poll_napi(). Only the entity which
4457 * obtains the lock and sees NAPI_STATE_SCHED set will
4458 * actually make the ->poll() call. Therefore we avoid
25985edc 4459 * accidentally calling ->poll() when NAPI is not scheduled.
0a7606c1
DM
4460 */
4461 work = 0;
4ea7e386 4462 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
0a7606c1 4463 work = n->poll(n, weight);
4ea7e386
NH
4464 trace_napi_poll(n);
4465 }
bea3348e
SH
4466
4467 WARN_ON_ONCE(work > weight);
4468
4469 budget -= work;
4470
4471 local_irq_disable();
4472
4473 /* Drivers must not modify the NAPI state if they
4474 * consume the entire weight. In such cases this code
4475 * still "owns" the NAPI instance and therefore can
4476 * move the instance around on the list at-will.
4477 */
fed17f30 4478 if (unlikely(work == weight)) {
ff780cd8
HX
4479 if (unlikely(napi_disable_pending(n))) {
4480 local_irq_enable();
4481 napi_complete(n);
4482 local_irq_disable();
2e71a6f8
ED
4483 } else {
4484 if (n->gro_list) {
4485 /* flush too old packets
4486 * If HZ < 1000, flush all packets.
4487 */
4488 local_irq_enable();
4489 napi_gro_flush(n, HZ >= 1000);
4490 local_irq_disable();
4491 }
e326bed2 4492 list_move_tail(&n->poll_list, &sd->poll_list);
2e71a6f8 4493 }
fed17f30 4494 }
bea3348e
SH
4495
4496 netpoll_poll_unlock(have);
1da177e4
LT
4497 }
4498out:
e326bed2 4499 net_rps_action_and_irq_enable(sd);
0a9627f2 4500
db217334
CL
4501#ifdef CONFIG_NET_DMA
4502 /*
4503 * There may not be any more sk_buffs coming right now, so push
4504 * any pending DMA copies to hardware
4505 */
2ba05622 4506 dma_issue_pending_all();
db217334 4507#endif
bea3348e 4508
1da177e4
LT
4509 return;
4510
4511softnet_break:
dee42870 4512 sd->time_squeeze++;
1da177e4
LT
4513 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4514 goto out;
4515}
4516
aa9d8560 4517struct netdev_adjacent {
9ff162a8 4518 struct net_device *dev;
5d261913
VF
4519
4520 /* upper master flag, there can only be one master device per list */
9ff162a8 4521 bool master;
5d261913 4522
5d261913
VF
4523 /* counter for the number of times this device was added to us */
4524 u16 ref_nr;
4525
402dae96
VF
4526 /* private field for the users */
4527 void *private;
4528
9ff162a8
JP
4529 struct list_head list;
4530 struct rcu_head rcu;
9ff162a8
JP
4531};
4532
5d261913
VF
4533static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4534 struct net_device *adj_dev,
2f268f12 4535 struct list_head *adj_list)
9ff162a8 4536{
5d261913 4537 struct netdev_adjacent *adj;
5d261913 4538
2f268f12 4539 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4540 if (adj->dev == adj_dev)
4541 return adj;
9ff162a8
JP
4542 }
4543 return NULL;
4544}
4545
4546/**
4547 * netdev_has_upper_dev - Check if device is linked to an upper device
4548 * @dev: device
4549 * @upper_dev: upper device to check
4550 *
4551 * Find out if a device is linked to specified upper device and return true
4552 * in case it is. Note that this checks only immediate upper device,
4553 * not through a complete stack of devices. The caller must hold the RTNL lock.
4554 */
4555bool netdev_has_upper_dev(struct net_device *dev,
4556 struct net_device *upper_dev)
4557{
4558 ASSERT_RTNL();
4559
2f268f12 4560 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4561}
4562EXPORT_SYMBOL(netdev_has_upper_dev);
4563
4564/**
4565 * netdev_has_any_upper_dev - Check if device is linked to some device
4566 * @dev: device
4567 *
4568 * Find out if a device is linked to an upper device and return true in case
4569 * it is. The caller must hold the RTNL lock.
4570 */
1d143d9f 4571static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4572{
4573 ASSERT_RTNL();
4574
2f268f12 4575 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4576}
9ff162a8
JP
4577
4578/**
4579 * netdev_master_upper_dev_get - Get master upper device
4580 * @dev: device
4581 *
4582 * Find a master upper device and return pointer to it or NULL in case
4583 * it's not there. The caller must hold the RTNL lock.
4584 */
4585struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4586{
aa9d8560 4587 struct netdev_adjacent *upper;
9ff162a8
JP
4588
4589 ASSERT_RTNL();
4590
2f268f12 4591 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4592 return NULL;
4593
2f268f12 4594 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4595 struct netdev_adjacent, list);
9ff162a8
JP
4596 if (likely(upper->master))
4597 return upper->dev;
4598 return NULL;
4599}
4600EXPORT_SYMBOL(netdev_master_upper_dev_get);
4601
b6ccba4c
VF
4602void *netdev_adjacent_get_private(struct list_head *adj_list)
4603{
4604 struct netdev_adjacent *adj;
4605
4606 adj = list_entry(adj_list, struct netdev_adjacent, list);
4607
4608 return adj->private;
4609}
4610EXPORT_SYMBOL(netdev_adjacent_get_private);
4611
44a40855
VY
4612/**
4613 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4614 * @dev: device
4615 * @iter: list_head ** of the current position
4616 *
4617 * Gets the next device from the dev's upper list, starting from iter
4618 * position. The caller must hold RCU read lock.
4619 */
4620struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4621 struct list_head **iter)
4622{
4623 struct netdev_adjacent *upper;
4624
4625 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4626
4627 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4628
4629 if (&upper->list == &dev->adj_list.upper)
4630 return NULL;
4631
4632 *iter = &upper->list;
4633
4634 return upper->dev;
4635}
4636EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4637
31088a11
VF
4638/**
4639 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4640 * @dev: device
4641 * @iter: list_head ** of the current position
4642 *
4643 * Gets the next device from the dev's upper list, starting from iter
4644 * position. The caller must hold RCU read lock.
4645 */
2f268f12
VF
4646struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4647 struct list_head **iter)
48311f46
VF
4648{
4649 struct netdev_adjacent *upper;
4650
85328240 4651 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
4652
4653 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4654
2f268f12 4655 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
4656 return NULL;
4657
4658 *iter = &upper->list;
4659
4660 return upper->dev;
4661}
2f268f12 4662EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 4663
31088a11
VF
4664/**
4665 * netdev_lower_get_next_private - Get the next ->private from the
4666 * lower neighbour list
4667 * @dev: device
4668 * @iter: list_head ** of the current position
4669 *
4670 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4671 * list, starting from iter position. The caller must hold either hold the
4672 * RTNL lock or its own locking that guarantees that the neighbour lower
4673 * list will remain unchainged.
4674 */
4675void *netdev_lower_get_next_private(struct net_device *dev,
4676 struct list_head **iter)
4677{
4678 struct netdev_adjacent *lower;
4679
4680 lower = list_entry(*iter, struct netdev_adjacent, list);
4681
4682 if (&lower->list == &dev->adj_list.lower)
4683 return NULL;
4684
6859e7df 4685 *iter = lower->list.next;
31088a11
VF
4686
4687 return lower->private;
4688}
4689EXPORT_SYMBOL(netdev_lower_get_next_private);
4690
4691/**
4692 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4693 * lower neighbour list, RCU
4694 * variant
4695 * @dev: device
4696 * @iter: list_head ** of the current position
4697 *
4698 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4699 * list, starting from iter position. The caller must hold RCU read lock.
4700 */
4701void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4702 struct list_head **iter)
4703{
4704 struct netdev_adjacent *lower;
4705
4706 WARN_ON_ONCE(!rcu_read_lock_held());
4707
4708 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4709
4710 if (&lower->list == &dev->adj_list.lower)
4711 return NULL;
4712
6859e7df 4713 *iter = &lower->list;
31088a11
VF
4714
4715 return lower->private;
4716}
4717EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4718
4085ebe8
VY
4719/**
4720 * netdev_lower_get_next - Get the next device from the lower neighbour
4721 * list
4722 * @dev: device
4723 * @iter: list_head ** of the current position
4724 *
4725 * Gets the next netdev_adjacent from the dev's lower neighbour
4726 * list, starting from iter position. The caller must hold RTNL lock or
4727 * its own locking that guarantees that the neighbour lower
4728 * list will remain unchainged.
4729 */
4730void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4731{
4732 struct netdev_adjacent *lower;
4733
4734 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4735
4736 if (&lower->list == &dev->adj_list.lower)
4737 return NULL;
4738
4739 *iter = &lower->list;
4740
4741 return lower->dev;
4742}
4743EXPORT_SYMBOL(netdev_lower_get_next);
4744
e001bfad 4745/**
4746 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4747 * lower neighbour list, RCU
4748 * variant
4749 * @dev: device
4750 *
4751 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4752 * list. The caller must hold RCU read lock.
4753 */
4754void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4755{
4756 struct netdev_adjacent *lower;
4757
4758 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4759 struct netdev_adjacent, list);
4760 if (lower)
4761 return lower->private;
4762 return NULL;
4763}
4764EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4765
9ff162a8
JP
4766/**
4767 * netdev_master_upper_dev_get_rcu - Get master upper device
4768 * @dev: device
4769 *
4770 * Find a master upper device and return pointer to it or NULL in case
4771 * it's not there. The caller must hold the RCU read lock.
4772 */
4773struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4774{
aa9d8560 4775 struct netdev_adjacent *upper;
9ff162a8 4776
2f268f12 4777 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 4778 struct netdev_adjacent, list);
9ff162a8
JP
4779 if (upper && likely(upper->master))
4780 return upper->dev;
4781 return NULL;
4782}
4783EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4784
0a59f3a9 4785static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
4786 struct net_device *adj_dev,
4787 struct list_head *dev_list)
4788{
4789 char linkname[IFNAMSIZ+7];
4790 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4791 "upper_%s" : "lower_%s", adj_dev->name);
4792 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4793 linkname);
4794}
0a59f3a9 4795static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
4796 char *name,
4797 struct list_head *dev_list)
4798{
4799 char linkname[IFNAMSIZ+7];
4800 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4801 "upper_%s" : "lower_%s", name);
4802 sysfs_remove_link(&(dev->dev.kobj), linkname);
4803}
4804
4805#define netdev_adjacent_is_neigh_list(dev, dev_list) \
4806 (dev_list == &dev->adj_list.upper || \
4807 dev_list == &dev->adj_list.lower)
4808
5d261913
VF
4809static int __netdev_adjacent_dev_insert(struct net_device *dev,
4810 struct net_device *adj_dev,
7863c054 4811 struct list_head *dev_list,
402dae96 4812 void *private, bool master)
5d261913
VF
4813{
4814 struct netdev_adjacent *adj;
842d67a7 4815 int ret;
5d261913 4816
7863c054 4817 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913
VF
4818
4819 if (adj) {
5d261913
VF
4820 adj->ref_nr++;
4821 return 0;
4822 }
4823
4824 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4825 if (!adj)
4826 return -ENOMEM;
4827
4828 adj->dev = adj_dev;
4829 adj->master = master;
5d261913 4830 adj->ref_nr = 1;
402dae96 4831 adj->private = private;
5d261913 4832 dev_hold(adj_dev);
2f268f12
VF
4833
4834 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4835 adj_dev->name, dev->name, adj_dev->name);
5d261913 4836
3ee32707
VF
4837 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4838 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
4839 if (ret)
4840 goto free_adj;
4841 }
4842
7863c054 4843 /* Ensure that master link is always the first item in list. */
842d67a7
VF
4844 if (master) {
4845 ret = sysfs_create_link(&(dev->dev.kobj),
4846 &(adj_dev->dev.kobj), "master");
4847 if (ret)
5831d66e 4848 goto remove_symlinks;
842d67a7 4849
7863c054 4850 list_add_rcu(&adj->list, dev_list);
842d67a7 4851 } else {
7863c054 4852 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 4853 }
5d261913
VF
4854
4855 return 0;
842d67a7 4856
5831d66e 4857remove_symlinks:
3ee32707
VF
4858 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4859 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
4860free_adj:
4861 kfree(adj);
974daef7 4862 dev_put(adj_dev);
842d67a7
VF
4863
4864 return ret;
5d261913
VF
4865}
4866
1d143d9f 4867static void __netdev_adjacent_dev_remove(struct net_device *dev,
4868 struct net_device *adj_dev,
4869 struct list_head *dev_list)
5d261913
VF
4870{
4871 struct netdev_adjacent *adj;
4872
7863c054 4873 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913 4874
2f268f12
VF
4875 if (!adj) {
4876 pr_err("tried to remove device %s from %s\n",
4877 dev->name, adj_dev->name);
5d261913 4878 BUG();
2f268f12 4879 }
5d261913
VF
4880
4881 if (adj->ref_nr > 1) {
2f268f12
VF
4882 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4883 adj->ref_nr-1);
5d261913
VF
4884 adj->ref_nr--;
4885 return;
4886 }
4887
842d67a7
VF
4888 if (adj->master)
4889 sysfs_remove_link(&(dev->dev.kobj), "master");
4890
3ee32707
VF
4891 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4892 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 4893
5d261913 4894 list_del_rcu(&adj->list);
2f268f12
VF
4895 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4896 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
4897 dev_put(adj_dev);
4898 kfree_rcu(adj, rcu);
4899}
4900
1d143d9f 4901static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4902 struct net_device *upper_dev,
4903 struct list_head *up_list,
4904 struct list_head *down_list,
4905 void *private, bool master)
5d261913
VF
4906{
4907 int ret;
4908
402dae96
VF
4909 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4910 master);
5d261913
VF
4911 if (ret)
4912 return ret;
4913
402dae96
VF
4914 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4915 false);
5d261913 4916 if (ret) {
2f268f12 4917 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
4918 return ret;
4919 }
4920
4921 return 0;
4922}
4923
1d143d9f 4924static int __netdev_adjacent_dev_link(struct net_device *dev,
4925 struct net_device *upper_dev)
5d261913 4926{
2f268f12
VF
4927 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4928 &dev->all_adj_list.upper,
4929 &upper_dev->all_adj_list.lower,
402dae96 4930 NULL, false);
5d261913
VF
4931}
4932
1d143d9f 4933static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4934 struct net_device *upper_dev,
4935 struct list_head *up_list,
4936 struct list_head *down_list)
5d261913 4937{
2f268f12
VF
4938 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4939 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
4940}
4941
1d143d9f 4942static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4943 struct net_device *upper_dev)
5d261913 4944{
2f268f12
VF
4945 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4946 &dev->all_adj_list.upper,
4947 &upper_dev->all_adj_list.lower);
4948}
4949
1d143d9f 4950static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4951 struct net_device *upper_dev,
4952 void *private, bool master)
2f268f12
VF
4953{
4954 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4955
4956 if (ret)
4957 return ret;
4958
4959 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4960 &dev->adj_list.upper,
4961 &upper_dev->adj_list.lower,
402dae96 4962 private, master);
2f268f12
VF
4963 if (ret) {
4964 __netdev_adjacent_dev_unlink(dev, upper_dev);
4965 return ret;
4966 }
4967
4968 return 0;
5d261913
VF
4969}
4970
1d143d9f 4971static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4972 struct net_device *upper_dev)
2f268f12
VF
4973{
4974 __netdev_adjacent_dev_unlink(dev, upper_dev);
4975 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4976 &dev->adj_list.upper,
4977 &upper_dev->adj_list.lower);
4978}
5d261913 4979
9ff162a8 4980static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
4981 struct net_device *upper_dev, bool master,
4982 void *private)
9ff162a8 4983{
5d261913
VF
4984 struct netdev_adjacent *i, *j, *to_i, *to_j;
4985 int ret = 0;
9ff162a8
JP
4986
4987 ASSERT_RTNL();
4988
4989 if (dev == upper_dev)
4990 return -EBUSY;
4991
4992 /* To prevent loops, check if dev is not upper device to upper_dev. */
2f268f12 4993 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
4994 return -EBUSY;
4995
2f268f12 4996 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
9ff162a8
JP
4997 return -EEXIST;
4998
4999 if (master && netdev_master_upper_dev_get(dev))
5000 return -EBUSY;
5001
402dae96
VF
5002 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5003 master);
5d261913
VF
5004 if (ret)
5005 return ret;
9ff162a8 5006
5d261913 5007 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5008 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5009 * versa, and don't forget the devices itself. All of these
5010 * links are non-neighbours.
5011 */
2f268f12
VF
5012 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5013 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5014 pr_debug("Interlinking %s with %s, non-neighbour\n",
5015 i->dev->name, j->dev->name);
5d261913
VF
5016 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5017 if (ret)
5018 goto rollback_mesh;
5019 }
5020 }
5021
5022 /* add dev to every upper_dev's upper device */
2f268f12
VF
5023 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5024 pr_debug("linking %s's upper device %s with %s\n",
5025 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5026 ret = __netdev_adjacent_dev_link(dev, i->dev);
5027 if (ret)
5028 goto rollback_upper_mesh;
5029 }
5030
5031 /* add upper_dev to every dev's lower device */
2f268f12
VF
5032 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5033 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5034 i->dev->name, upper_dev->name);
5d261913
VF
5035 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5036 if (ret)
5037 goto rollback_lower_mesh;
5038 }
9ff162a8 5039
42e52bf9 5040 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8 5041 return 0;
5d261913
VF
5042
5043rollback_lower_mesh:
5044 to_i = i;
2f268f12 5045 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5046 if (i == to_i)
5047 break;
5048 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5049 }
5050
5051 i = NULL;
5052
5053rollback_upper_mesh:
5054 to_i = i;
2f268f12 5055 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5056 if (i == to_i)
5057 break;
5058 __netdev_adjacent_dev_unlink(dev, i->dev);
5059 }
5060
5061 i = j = NULL;
5062
5063rollback_mesh:
5064 to_i = i;
5065 to_j = j;
2f268f12
VF
5066 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5067 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5068 if (i == to_i && j == to_j)
5069 break;
5070 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5071 }
5072 if (i == to_i)
5073 break;
5074 }
5075
2f268f12 5076 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5077
5078 return ret;
9ff162a8
JP
5079}
5080
5081/**
5082 * netdev_upper_dev_link - Add a link to the upper device
5083 * @dev: device
5084 * @upper_dev: new upper device
5085 *
5086 * Adds a link to device which is upper to this one. The caller must hold
5087 * the RTNL lock. On a failure a negative errno code is returned.
5088 * On success the reference counts are adjusted and the function
5089 * returns zero.
5090 */
5091int netdev_upper_dev_link(struct net_device *dev,
5092 struct net_device *upper_dev)
5093{
402dae96 5094 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5095}
5096EXPORT_SYMBOL(netdev_upper_dev_link);
5097
5098/**
5099 * netdev_master_upper_dev_link - Add a master link to the upper device
5100 * @dev: device
5101 * @upper_dev: new upper device
5102 *
5103 * Adds a link to device which is upper to this one. In this case, only
5104 * one master upper device can be linked, although other non-master devices
5105 * might be linked as well. The caller must hold the RTNL lock.
5106 * On a failure a negative errno code is returned. On success the reference
5107 * counts are adjusted and the function returns zero.
5108 */
5109int netdev_master_upper_dev_link(struct net_device *dev,
5110 struct net_device *upper_dev)
5111{
402dae96 5112 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5113}
5114EXPORT_SYMBOL(netdev_master_upper_dev_link);
5115
402dae96
VF
5116int netdev_master_upper_dev_link_private(struct net_device *dev,
5117 struct net_device *upper_dev,
5118 void *private)
5119{
5120 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5121}
5122EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5123
9ff162a8
JP
5124/**
5125 * netdev_upper_dev_unlink - Removes a link to upper device
5126 * @dev: device
5127 * @upper_dev: new upper device
5128 *
5129 * Removes a link to device which is upper to this one. The caller must hold
5130 * the RTNL lock.
5131 */
5132void netdev_upper_dev_unlink(struct net_device *dev,
5133 struct net_device *upper_dev)
5134{
5d261913 5135 struct netdev_adjacent *i, *j;
9ff162a8
JP
5136 ASSERT_RTNL();
5137
2f268f12 5138 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5139
5140 /* Here is the tricky part. We must remove all dev's lower
5141 * devices from all upper_dev's upper devices and vice
5142 * versa, to maintain the graph relationship.
5143 */
2f268f12
VF
5144 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5145 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5146 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5147
5148 /* remove also the devices itself from lower/upper device
5149 * list
5150 */
2f268f12 5151 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5152 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5153
2f268f12 5154 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5155 __netdev_adjacent_dev_unlink(dev, i->dev);
5156
42e52bf9 5157 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8
JP
5158}
5159EXPORT_SYMBOL(netdev_upper_dev_unlink);
5160
5bb025fa 5161void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5162{
5bb025fa 5163 struct netdev_adjacent *iter;
402dae96 5164
5bb025fa
VF
5165 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5166 netdev_adjacent_sysfs_del(iter->dev, oldname,
5167 &iter->dev->adj_list.lower);
5168 netdev_adjacent_sysfs_add(iter->dev, dev,
5169 &iter->dev->adj_list.lower);
5170 }
402dae96 5171
5bb025fa
VF
5172 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5173 netdev_adjacent_sysfs_del(iter->dev, oldname,
5174 &iter->dev->adj_list.upper);
5175 netdev_adjacent_sysfs_add(iter->dev, dev,
5176 &iter->dev->adj_list.upper);
5177 }
402dae96 5178}
402dae96
VF
5179
5180void *netdev_lower_dev_get_private(struct net_device *dev,
5181 struct net_device *lower_dev)
5182{
5183 struct netdev_adjacent *lower;
5184
5185 if (!lower_dev)
5186 return NULL;
5187 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5188 if (!lower)
5189 return NULL;
5190
5191 return lower->private;
5192}
5193EXPORT_SYMBOL(netdev_lower_dev_get_private);
5194
4085ebe8
VY
5195
5196int dev_get_nest_level(struct net_device *dev,
5197 bool (*type_check)(struct net_device *dev))
5198{
5199 struct net_device *lower = NULL;
5200 struct list_head *iter;
5201 int max_nest = -1;
5202 int nest;
5203
5204 ASSERT_RTNL();
5205
5206 netdev_for_each_lower_dev(dev, lower, iter) {
5207 nest = dev_get_nest_level(lower, type_check);
5208 if (max_nest < nest)
5209 max_nest = nest;
5210 }
5211
5212 if (type_check(dev))
5213 max_nest++;
5214
5215 return max_nest;
5216}
5217EXPORT_SYMBOL(dev_get_nest_level);
5218
b6c40d68
PM
5219static void dev_change_rx_flags(struct net_device *dev, int flags)
5220{
d314774c
SH
5221 const struct net_device_ops *ops = dev->netdev_ops;
5222
d2615bf4 5223 if (ops->ndo_change_rx_flags)
d314774c 5224 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5225}
5226
991fb3f7 5227static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5228{
b536db93 5229 unsigned int old_flags = dev->flags;
d04a48b0
EB
5230 kuid_t uid;
5231 kgid_t gid;
1da177e4 5232
24023451
PM
5233 ASSERT_RTNL();
5234
dad9b335
WC
5235 dev->flags |= IFF_PROMISC;
5236 dev->promiscuity += inc;
5237 if (dev->promiscuity == 0) {
5238 /*
5239 * Avoid overflow.
5240 * If inc causes overflow, untouch promisc and return error.
5241 */
5242 if (inc < 0)
5243 dev->flags &= ~IFF_PROMISC;
5244 else {
5245 dev->promiscuity -= inc;
7b6cd1ce
JP
5246 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5247 dev->name);
dad9b335
WC
5248 return -EOVERFLOW;
5249 }
5250 }
52609c0b 5251 if (dev->flags != old_flags) {
7b6cd1ce
JP
5252 pr_info("device %s %s promiscuous mode\n",
5253 dev->name,
5254 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5255 if (audit_enabled) {
5256 current_uid_gid(&uid, &gid);
7759db82
KHK
5257 audit_log(current->audit_context, GFP_ATOMIC,
5258 AUDIT_ANOM_PROMISCUOUS,
5259 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5260 dev->name, (dev->flags & IFF_PROMISC),
5261 (old_flags & IFF_PROMISC),
e1760bd5 5262 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5263 from_kuid(&init_user_ns, uid),
5264 from_kgid(&init_user_ns, gid),
7759db82 5265 audit_get_sessionid(current));
8192b0c4 5266 }
24023451 5267
b6c40d68 5268 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5269 }
991fb3f7
ND
5270 if (notify)
5271 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5272 return 0;
1da177e4
LT
5273}
5274
4417da66
PM
5275/**
5276 * dev_set_promiscuity - update promiscuity count on a device
5277 * @dev: device
5278 * @inc: modifier
5279 *
5280 * Add or remove promiscuity from a device. While the count in the device
5281 * remains above zero the interface remains promiscuous. Once it hits zero
5282 * the device reverts back to normal filtering operation. A negative inc
5283 * value is used to drop promiscuity on the device.
dad9b335 5284 * Return 0 if successful or a negative errno code on error.
4417da66 5285 */
dad9b335 5286int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5287{
b536db93 5288 unsigned int old_flags = dev->flags;
dad9b335 5289 int err;
4417da66 5290
991fb3f7 5291 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5292 if (err < 0)
dad9b335 5293 return err;
4417da66
PM
5294 if (dev->flags != old_flags)
5295 dev_set_rx_mode(dev);
dad9b335 5296 return err;
4417da66 5297}
d1b19dff 5298EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5299
991fb3f7 5300static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5301{
991fb3f7 5302 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5303
24023451
PM
5304 ASSERT_RTNL();
5305
1da177e4 5306 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5307 dev->allmulti += inc;
5308 if (dev->allmulti == 0) {
5309 /*
5310 * Avoid overflow.
5311 * If inc causes overflow, untouch allmulti and return error.
5312 */
5313 if (inc < 0)
5314 dev->flags &= ~IFF_ALLMULTI;
5315 else {
5316 dev->allmulti -= inc;
7b6cd1ce
JP
5317 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5318 dev->name);
dad9b335
WC
5319 return -EOVERFLOW;
5320 }
5321 }
24023451 5322 if (dev->flags ^ old_flags) {
b6c40d68 5323 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5324 dev_set_rx_mode(dev);
991fb3f7
ND
5325 if (notify)
5326 __dev_notify_flags(dev, old_flags,
5327 dev->gflags ^ old_gflags);
24023451 5328 }
dad9b335 5329 return 0;
4417da66 5330}
991fb3f7
ND
5331
5332/**
5333 * dev_set_allmulti - update allmulti count on a device
5334 * @dev: device
5335 * @inc: modifier
5336 *
5337 * Add or remove reception of all multicast frames to a device. While the
5338 * count in the device remains above zero the interface remains listening
5339 * to all interfaces. Once it hits zero the device reverts back to normal
5340 * filtering operation. A negative @inc value is used to drop the counter
5341 * when releasing a resource needing all multicasts.
5342 * Return 0 if successful or a negative errno code on error.
5343 */
5344
5345int dev_set_allmulti(struct net_device *dev, int inc)
5346{
5347 return __dev_set_allmulti(dev, inc, true);
5348}
d1b19dff 5349EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5350
5351/*
5352 * Upload unicast and multicast address lists to device and
5353 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5354 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5355 * are present.
5356 */
5357void __dev_set_rx_mode(struct net_device *dev)
5358{
d314774c
SH
5359 const struct net_device_ops *ops = dev->netdev_ops;
5360
4417da66
PM
5361 /* dev_open will call this function so the list will stay sane. */
5362 if (!(dev->flags&IFF_UP))
5363 return;
5364
5365 if (!netif_device_present(dev))
40b77c94 5366 return;
4417da66 5367
01789349 5368 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5369 /* Unicast addresses changes may only happen under the rtnl,
5370 * therefore calling __dev_set_promiscuity here is safe.
5371 */
32e7bfc4 5372 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5373 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5374 dev->uc_promisc = true;
32e7bfc4 5375 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5376 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5377 dev->uc_promisc = false;
4417da66 5378 }
4417da66 5379 }
01789349
JP
5380
5381 if (ops->ndo_set_rx_mode)
5382 ops->ndo_set_rx_mode(dev);
4417da66
PM
5383}
5384
5385void dev_set_rx_mode(struct net_device *dev)
5386{
b9e40857 5387 netif_addr_lock_bh(dev);
4417da66 5388 __dev_set_rx_mode(dev);
b9e40857 5389 netif_addr_unlock_bh(dev);
1da177e4
LT
5390}
5391
f0db275a
SH
5392/**
5393 * dev_get_flags - get flags reported to userspace
5394 * @dev: device
5395 *
5396 * Get the combination of flag bits exported through APIs to userspace.
5397 */
95c96174 5398unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5399{
95c96174 5400 unsigned int flags;
1da177e4
LT
5401
5402 flags = (dev->flags & ~(IFF_PROMISC |
5403 IFF_ALLMULTI |
b00055aa
SR
5404 IFF_RUNNING |
5405 IFF_LOWER_UP |
5406 IFF_DORMANT)) |
1da177e4
LT
5407 (dev->gflags & (IFF_PROMISC |
5408 IFF_ALLMULTI));
5409
b00055aa
SR
5410 if (netif_running(dev)) {
5411 if (netif_oper_up(dev))
5412 flags |= IFF_RUNNING;
5413 if (netif_carrier_ok(dev))
5414 flags |= IFF_LOWER_UP;
5415 if (netif_dormant(dev))
5416 flags |= IFF_DORMANT;
5417 }
1da177e4
LT
5418
5419 return flags;
5420}
d1b19dff 5421EXPORT_SYMBOL(dev_get_flags);
1da177e4 5422
bd380811 5423int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5424{
b536db93 5425 unsigned int old_flags = dev->flags;
bd380811 5426 int ret;
1da177e4 5427
24023451
PM
5428 ASSERT_RTNL();
5429
1da177e4
LT
5430 /*
5431 * Set the flags on our device.
5432 */
5433
5434 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5435 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5436 IFF_AUTOMEDIA)) |
5437 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5438 IFF_ALLMULTI));
5439
5440 /*
5441 * Load in the correct multicast list now the flags have changed.
5442 */
5443
b6c40d68
PM
5444 if ((old_flags ^ flags) & IFF_MULTICAST)
5445 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5446
4417da66 5447 dev_set_rx_mode(dev);
1da177e4
LT
5448
5449 /*
5450 * Have we downed the interface. We handle IFF_UP ourselves
5451 * according to user attempts to set it, rather than blindly
5452 * setting it.
5453 */
5454
5455 ret = 0;
d215d10f 5456 if ((old_flags ^ flags) & IFF_UP)
bd380811 5457 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5458
1da177e4 5459 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5460 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5461 unsigned int old_flags = dev->flags;
d1b19dff 5462
1da177e4 5463 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5464
5465 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5466 if (dev->flags != old_flags)
5467 dev_set_rx_mode(dev);
1da177e4
LT
5468 }
5469
5470 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5471 is important. Some (broken) drivers set IFF_PROMISC, when
5472 IFF_ALLMULTI is requested not asking us and not reporting.
5473 */
5474 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5475 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5476
1da177e4 5477 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5478 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5479 }
5480
bd380811
PM
5481 return ret;
5482}
5483
a528c219
ND
5484void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5485 unsigned int gchanges)
bd380811
PM
5486{
5487 unsigned int changes = dev->flags ^ old_flags;
5488
a528c219 5489 if (gchanges)
7f294054 5490 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5491
bd380811
PM
5492 if (changes & IFF_UP) {
5493 if (dev->flags & IFF_UP)
5494 call_netdevice_notifiers(NETDEV_UP, dev);
5495 else
5496 call_netdevice_notifiers(NETDEV_DOWN, dev);
5497 }
5498
5499 if (dev->flags & IFF_UP &&
be9efd36
JP
5500 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5501 struct netdev_notifier_change_info change_info;
5502
5503 change_info.flags_changed = changes;
5504 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5505 &change_info.info);
5506 }
bd380811
PM
5507}
5508
5509/**
5510 * dev_change_flags - change device settings
5511 * @dev: device
5512 * @flags: device state flags
5513 *
5514 * Change settings on device based state flags. The flags are
5515 * in the userspace exported format.
5516 */
b536db93 5517int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5518{
b536db93 5519 int ret;
991fb3f7 5520 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5521
5522 ret = __dev_change_flags(dev, flags);
5523 if (ret < 0)
5524 return ret;
5525
991fb3f7 5526 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5527 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5528 return ret;
5529}
d1b19dff 5530EXPORT_SYMBOL(dev_change_flags);
1da177e4 5531
2315dc91
VF
5532static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5533{
5534 const struct net_device_ops *ops = dev->netdev_ops;
5535
5536 if (ops->ndo_change_mtu)
5537 return ops->ndo_change_mtu(dev, new_mtu);
5538
5539 dev->mtu = new_mtu;
5540 return 0;
5541}
5542
f0db275a
SH
5543/**
5544 * dev_set_mtu - Change maximum transfer unit
5545 * @dev: device
5546 * @new_mtu: new transfer unit
5547 *
5548 * Change the maximum transfer size of the network device.
5549 */
1da177e4
LT
5550int dev_set_mtu(struct net_device *dev, int new_mtu)
5551{
2315dc91 5552 int err, orig_mtu;
1da177e4
LT
5553
5554 if (new_mtu == dev->mtu)
5555 return 0;
5556
5557 /* MTU must be positive. */
5558 if (new_mtu < 0)
5559 return -EINVAL;
5560
5561 if (!netif_device_present(dev))
5562 return -ENODEV;
5563
1d486bfb
VF
5564 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5565 err = notifier_to_errno(err);
5566 if (err)
5567 return err;
d314774c 5568
2315dc91
VF
5569 orig_mtu = dev->mtu;
5570 err = __dev_set_mtu(dev, new_mtu);
d314774c 5571
2315dc91
VF
5572 if (!err) {
5573 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5574 err = notifier_to_errno(err);
5575 if (err) {
5576 /* setting mtu back and notifying everyone again,
5577 * so that they have a chance to revert changes.
5578 */
5579 __dev_set_mtu(dev, orig_mtu);
5580 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5581 }
5582 }
1da177e4
LT
5583 return err;
5584}
d1b19dff 5585EXPORT_SYMBOL(dev_set_mtu);
1da177e4 5586
cbda10fa
VD
5587/**
5588 * dev_set_group - Change group this device belongs to
5589 * @dev: device
5590 * @new_group: group this device should belong to
5591 */
5592void dev_set_group(struct net_device *dev, int new_group)
5593{
5594 dev->group = new_group;
5595}
5596EXPORT_SYMBOL(dev_set_group);
5597
f0db275a
SH
5598/**
5599 * dev_set_mac_address - Change Media Access Control Address
5600 * @dev: device
5601 * @sa: new address
5602 *
5603 * Change the hardware (MAC) address of the device
5604 */
1da177e4
LT
5605int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5606{
d314774c 5607 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
5608 int err;
5609
d314774c 5610 if (!ops->ndo_set_mac_address)
1da177e4
LT
5611 return -EOPNOTSUPP;
5612 if (sa->sa_family != dev->type)
5613 return -EINVAL;
5614 if (!netif_device_present(dev))
5615 return -ENODEV;
d314774c 5616 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
5617 if (err)
5618 return err;
fbdeca2d 5619 dev->addr_assign_type = NET_ADDR_SET;
f6521516 5620 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 5621 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 5622 return 0;
1da177e4 5623}
d1b19dff 5624EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 5625
4bf84c35
JP
5626/**
5627 * dev_change_carrier - Change device carrier
5628 * @dev: device
691b3b7e 5629 * @new_carrier: new value
4bf84c35
JP
5630 *
5631 * Change device carrier
5632 */
5633int dev_change_carrier(struct net_device *dev, bool new_carrier)
5634{
5635 const struct net_device_ops *ops = dev->netdev_ops;
5636
5637 if (!ops->ndo_change_carrier)
5638 return -EOPNOTSUPP;
5639 if (!netif_device_present(dev))
5640 return -ENODEV;
5641 return ops->ndo_change_carrier(dev, new_carrier);
5642}
5643EXPORT_SYMBOL(dev_change_carrier);
5644
66b52b0d
JP
5645/**
5646 * dev_get_phys_port_id - Get device physical port ID
5647 * @dev: device
5648 * @ppid: port ID
5649 *
5650 * Get device physical port ID
5651 */
5652int dev_get_phys_port_id(struct net_device *dev,
5653 struct netdev_phys_port_id *ppid)
5654{
5655 const struct net_device_ops *ops = dev->netdev_ops;
5656
5657 if (!ops->ndo_get_phys_port_id)
5658 return -EOPNOTSUPP;
5659 return ops->ndo_get_phys_port_id(dev, ppid);
5660}
5661EXPORT_SYMBOL(dev_get_phys_port_id);
5662
1da177e4
LT
5663/**
5664 * dev_new_index - allocate an ifindex
c4ea43c5 5665 * @net: the applicable net namespace
1da177e4
LT
5666 *
5667 * Returns a suitable unique value for a new device interface
5668 * number. The caller must hold the rtnl semaphore or the
5669 * dev_base_lock to be sure it remains unique.
5670 */
881d966b 5671static int dev_new_index(struct net *net)
1da177e4 5672{
aa79e66e 5673 int ifindex = net->ifindex;
1da177e4
LT
5674 for (;;) {
5675 if (++ifindex <= 0)
5676 ifindex = 1;
881d966b 5677 if (!__dev_get_by_index(net, ifindex))
aa79e66e 5678 return net->ifindex = ifindex;
1da177e4
LT
5679 }
5680}
5681
1da177e4 5682/* Delayed registration/unregisteration */
3b5b34fd 5683static LIST_HEAD(net_todo_list);
200b916f 5684DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 5685
6f05f629 5686static void net_set_todo(struct net_device *dev)
1da177e4 5687{
1da177e4 5688 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 5689 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
5690}
5691
9b5e383c 5692static void rollback_registered_many(struct list_head *head)
93ee31f1 5693{
e93737b0 5694 struct net_device *dev, *tmp;
5cde2829 5695 LIST_HEAD(close_head);
9b5e383c 5696
93ee31f1
DL
5697 BUG_ON(dev_boot_phase);
5698 ASSERT_RTNL();
5699
e93737b0 5700 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5701 /* Some devices call without registering
e93737b0
KK
5702 * for initialization unwind. Remove those
5703 * devices and proceed with the remaining.
9b5e383c
ED
5704 */
5705 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
5706 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5707 dev->name, dev);
93ee31f1 5708
9b5e383c 5709 WARN_ON(1);
e93737b0
KK
5710 list_del(&dev->unreg_list);
5711 continue;
9b5e383c 5712 }
449f4544 5713 dev->dismantle = true;
9b5e383c 5714 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 5715 }
93ee31f1 5716
44345724 5717 /* If device is running, close it first. */
5cde2829
EB
5718 list_for_each_entry(dev, head, unreg_list)
5719 list_add_tail(&dev->close_list, &close_head);
5720 dev_close_many(&close_head);
93ee31f1 5721
44345724 5722 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
5723 /* And unlink it from device chain. */
5724 unlist_netdevice(dev);
93ee31f1 5725
9b5e383c
ED
5726 dev->reg_state = NETREG_UNREGISTERING;
5727 }
93ee31f1
DL
5728
5729 synchronize_net();
5730
9b5e383c
ED
5731 list_for_each_entry(dev, head, unreg_list) {
5732 /* Shutdown queueing discipline. */
5733 dev_shutdown(dev);
93ee31f1
DL
5734
5735
9b5e383c
ED
5736 /* Notify protocols, that we are about to destroy
5737 this device. They should clean all the things.
5738 */
5739 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 5740
9b5e383c
ED
5741 /*
5742 * Flush the unicast and multicast chains
5743 */
a748ee24 5744 dev_uc_flush(dev);
22bedad3 5745 dev_mc_flush(dev);
93ee31f1 5746
9b5e383c
ED
5747 if (dev->netdev_ops->ndo_uninit)
5748 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 5749
56bfa7ee
RP
5750 if (!dev->rtnl_link_ops ||
5751 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5752 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5753
9ff162a8
JP
5754 /* Notifier chain MUST detach us all upper devices. */
5755 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 5756
9b5e383c
ED
5757 /* Remove entries from kobject tree */
5758 netdev_unregister_kobject(dev);
024e9679
AD
5759#ifdef CONFIG_XPS
5760 /* Remove XPS queueing entries */
5761 netif_reset_xps_queues_gt(dev, 0);
5762#endif
9b5e383c 5763 }
93ee31f1 5764
850a545b 5765 synchronize_net();
395264d5 5766
a5ee1551 5767 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
5768 dev_put(dev);
5769}
5770
5771static void rollback_registered(struct net_device *dev)
5772{
5773 LIST_HEAD(single);
5774
5775 list_add(&dev->unreg_list, &single);
5776 rollback_registered_many(&single);
ceaaec98 5777 list_del(&single);
93ee31f1
DL
5778}
5779
c8f44aff
MM
5780static netdev_features_t netdev_fix_features(struct net_device *dev,
5781 netdev_features_t features)
b63365a2 5782{
57422dc5
MM
5783 /* Fix illegal checksum combinations */
5784 if ((features & NETIF_F_HW_CSUM) &&
5785 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 5786 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
5787 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5788 }
5789
b63365a2 5790 /* TSO requires that SG is present as well. */
ea2d3688 5791 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 5792 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 5793 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
5794 }
5795
ec5f0615
PS
5796 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5797 !(features & NETIF_F_IP_CSUM)) {
5798 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5799 features &= ~NETIF_F_TSO;
5800 features &= ~NETIF_F_TSO_ECN;
5801 }
5802
5803 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5804 !(features & NETIF_F_IPV6_CSUM)) {
5805 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5806 features &= ~NETIF_F_TSO6;
5807 }
5808
31d8b9e0
BH
5809 /* TSO ECN requires that TSO is present as well. */
5810 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5811 features &= ~NETIF_F_TSO_ECN;
5812
212b573f
MM
5813 /* Software GSO depends on SG. */
5814 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 5815 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
5816 features &= ~NETIF_F_GSO;
5817 }
5818
acd1130e 5819 /* UFO needs SG and checksumming */
b63365a2 5820 if (features & NETIF_F_UFO) {
79032644
MM
5821 /* maybe split UFO into V4 and V6? */
5822 if (!((features & NETIF_F_GEN_CSUM) ||
5823 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5824 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 5825 netdev_dbg(dev,
acd1130e 5826 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
5827 features &= ~NETIF_F_UFO;
5828 }
5829
5830 if (!(features & NETIF_F_SG)) {
6f404e44 5831 netdev_dbg(dev,
acd1130e 5832 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
5833 features &= ~NETIF_F_UFO;
5834 }
5835 }
5836
d0290214
JP
5837#ifdef CONFIG_NET_RX_BUSY_POLL
5838 if (dev->netdev_ops->ndo_busy_poll)
5839 features |= NETIF_F_BUSY_POLL;
5840 else
5841#endif
5842 features &= ~NETIF_F_BUSY_POLL;
5843
b63365a2
HX
5844 return features;
5845}
b63365a2 5846
6cb6a27c 5847int __netdev_update_features(struct net_device *dev)
5455c699 5848{
c8f44aff 5849 netdev_features_t features;
5455c699
MM
5850 int err = 0;
5851
87267485
MM
5852 ASSERT_RTNL();
5853
5455c699
MM
5854 features = netdev_get_wanted_features(dev);
5855
5856 if (dev->netdev_ops->ndo_fix_features)
5857 features = dev->netdev_ops->ndo_fix_features(dev, features);
5858
5859 /* driver might be less strict about feature dependencies */
5860 features = netdev_fix_features(dev, features);
5861
5862 if (dev->features == features)
6cb6a27c 5863 return 0;
5455c699 5864
c8f44aff
MM
5865 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5866 &dev->features, &features);
5455c699
MM
5867
5868 if (dev->netdev_ops->ndo_set_features)
5869 err = dev->netdev_ops->ndo_set_features(dev, features);
5870
6cb6a27c 5871 if (unlikely(err < 0)) {
5455c699 5872 netdev_err(dev,
c8f44aff
MM
5873 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5874 err, &features, &dev->features);
6cb6a27c
MM
5875 return -1;
5876 }
5877
5878 if (!err)
5879 dev->features = features;
5880
5881 return 1;
5882}
5883
afe12cc8
MM
5884/**
5885 * netdev_update_features - recalculate device features
5886 * @dev: the device to check
5887 *
5888 * Recalculate dev->features set and send notifications if it
5889 * has changed. Should be called after driver or hardware dependent
5890 * conditions might have changed that influence the features.
5891 */
6cb6a27c
MM
5892void netdev_update_features(struct net_device *dev)
5893{
5894 if (__netdev_update_features(dev))
5895 netdev_features_change(dev);
5455c699
MM
5896}
5897EXPORT_SYMBOL(netdev_update_features);
5898
afe12cc8
MM
5899/**
5900 * netdev_change_features - recalculate device features
5901 * @dev: the device to check
5902 *
5903 * Recalculate dev->features set and send notifications even
5904 * if they have not changed. Should be called instead of
5905 * netdev_update_features() if also dev->vlan_features might
5906 * have changed to allow the changes to be propagated to stacked
5907 * VLAN devices.
5908 */
5909void netdev_change_features(struct net_device *dev)
5910{
5911 __netdev_update_features(dev);
5912 netdev_features_change(dev);
5913}
5914EXPORT_SYMBOL(netdev_change_features);
5915
fc4a7489
PM
5916/**
5917 * netif_stacked_transfer_operstate - transfer operstate
5918 * @rootdev: the root or lower level device to transfer state from
5919 * @dev: the device to transfer operstate to
5920 *
5921 * Transfer operational state from root to device. This is normally
5922 * called when a stacking relationship exists between the root
5923 * device and the device(a leaf device).
5924 */
5925void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5926 struct net_device *dev)
5927{
5928 if (rootdev->operstate == IF_OPER_DORMANT)
5929 netif_dormant_on(dev);
5930 else
5931 netif_dormant_off(dev);
5932
5933 if (netif_carrier_ok(rootdev)) {
5934 if (!netif_carrier_ok(dev))
5935 netif_carrier_on(dev);
5936 } else {
5937 if (netif_carrier_ok(dev))
5938 netif_carrier_off(dev);
5939 }
5940}
5941EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5942
a953be53 5943#ifdef CONFIG_SYSFS
1b4bf461
ED
5944static int netif_alloc_rx_queues(struct net_device *dev)
5945{
1b4bf461 5946 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 5947 struct netdev_rx_queue *rx;
1b4bf461 5948
bd25fa7b 5949 BUG_ON(count < 1);
1b4bf461 5950
bd25fa7b 5951 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
62b5942a 5952 if (!rx)
bd25fa7b 5953 return -ENOMEM;
62b5942a 5954
bd25fa7b
TH
5955 dev->_rx = rx;
5956
bd25fa7b 5957 for (i = 0; i < count; i++)
fe822240 5958 rx[i].dev = dev;
1b4bf461
ED
5959 return 0;
5960}
bf264145 5961#endif
1b4bf461 5962
aa942104
CG
5963static void netdev_init_one_queue(struct net_device *dev,
5964 struct netdev_queue *queue, void *_unused)
5965{
5966 /* Initialize queue lock */
5967 spin_lock_init(&queue->_xmit_lock);
5968 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5969 queue->xmit_lock_owner = -1;
b236da69 5970 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 5971 queue->dev = dev;
114cf580
TH
5972#ifdef CONFIG_BQL
5973 dql_init(&queue->dql, HZ);
5974#endif
aa942104
CG
5975}
5976
60877a32
ED
5977static void netif_free_tx_queues(struct net_device *dev)
5978{
4cb28970 5979 kvfree(dev->_tx);
60877a32
ED
5980}
5981
e6484930
TH
5982static int netif_alloc_netdev_queues(struct net_device *dev)
5983{
5984 unsigned int count = dev->num_tx_queues;
5985 struct netdev_queue *tx;
60877a32 5986 size_t sz = count * sizeof(*tx);
e6484930 5987
60877a32 5988 BUG_ON(count < 1 || count > 0xffff);
62b5942a 5989
60877a32
ED
5990 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5991 if (!tx) {
5992 tx = vzalloc(sz);
5993 if (!tx)
5994 return -ENOMEM;
5995 }
e6484930 5996 dev->_tx = tx;
1d24eb48 5997
e6484930
TH
5998 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5999 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6000
6001 return 0;
e6484930
TH
6002}
6003
1da177e4
LT
6004/**
6005 * register_netdevice - register a network device
6006 * @dev: device to register
6007 *
6008 * Take a completed network device structure and add it to the kernel
6009 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6010 * chain. 0 is returned on success. A negative errno code is returned
6011 * on a failure to set up the device, or if the name is a duplicate.
6012 *
6013 * Callers must hold the rtnl semaphore. You may want
6014 * register_netdev() instead of this.
6015 *
6016 * BUGS:
6017 * The locking appears insufficient to guarantee two parallel registers
6018 * will not get the same name.
6019 */
6020
6021int register_netdevice(struct net_device *dev)
6022{
1da177e4 6023 int ret;
d314774c 6024 struct net *net = dev_net(dev);
1da177e4
LT
6025
6026 BUG_ON(dev_boot_phase);
6027 ASSERT_RTNL();
6028
b17a7c17
SH
6029 might_sleep();
6030
1da177e4
LT
6031 /* When net_device's are persistent, this will be fatal. */
6032 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6033 BUG_ON(!net);
1da177e4 6034
f1f28aa3 6035 spin_lock_init(&dev->addr_list_lock);
cf508b12 6036 netdev_set_addr_lockdep_class(dev);
1da177e4 6037
1da177e4
LT
6038 dev->iflink = -1;
6039
828de4f6 6040 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6041 if (ret < 0)
6042 goto out;
6043
1da177e4 6044 /* Init, if this function is available */
d314774c
SH
6045 if (dev->netdev_ops->ndo_init) {
6046 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6047 if (ret) {
6048 if (ret > 0)
6049 ret = -EIO;
90833aa4 6050 goto out;
1da177e4
LT
6051 }
6052 }
4ec93edb 6053
f646968f
PM
6054 if (((dev->hw_features | dev->features) &
6055 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6056 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6057 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6058 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6059 ret = -EINVAL;
6060 goto err_uninit;
6061 }
6062
9c7dafbf
PE
6063 ret = -EBUSY;
6064 if (!dev->ifindex)
6065 dev->ifindex = dev_new_index(net);
6066 else if (__dev_get_by_index(net, dev->ifindex))
6067 goto err_uninit;
6068
1da177e4
LT
6069 if (dev->iflink == -1)
6070 dev->iflink = dev->ifindex;
6071
5455c699
MM
6072 /* Transfer changeable features to wanted_features and enable
6073 * software offloads (GSO and GRO).
6074 */
6075 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6076 dev->features |= NETIF_F_SOFT_FEATURES;
6077 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6078
34324dc2
MM
6079 if (!(dev->flags & IFF_LOOPBACK)) {
6080 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6081 }
6082
1180e7d6 6083 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6084 */
1180e7d6 6085 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6086
ee579677
PS
6087 /* Make NETIF_F_SG inheritable to tunnel devices.
6088 */
6089 dev->hw_enc_features |= NETIF_F_SG;
6090
0d89d203
SH
6091 /* Make NETIF_F_SG inheritable to MPLS.
6092 */
6093 dev->mpls_features |= NETIF_F_SG;
6094
7ffbe3fd
JB
6095 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6096 ret = notifier_to_errno(ret);
6097 if (ret)
6098 goto err_uninit;
6099
8b41d188 6100 ret = netdev_register_kobject(dev);
b17a7c17 6101 if (ret)
7ce1b0ed 6102 goto err_uninit;
b17a7c17
SH
6103 dev->reg_state = NETREG_REGISTERED;
6104
6cb6a27c 6105 __netdev_update_features(dev);
8e9b59b2 6106
1da177e4
LT
6107 /*
6108 * Default initial state at registry is that the
6109 * device is present.
6110 */
6111
6112 set_bit(__LINK_STATE_PRESENT, &dev->state);
6113
8f4cccbb
BH
6114 linkwatch_init_dev(dev);
6115
1da177e4 6116 dev_init_scheduler(dev);
1da177e4 6117 dev_hold(dev);
ce286d32 6118 list_netdevice(dev);
7bf23575 6119 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6120
948b337e
JP
6121 /* If the device has permanent device address, driver should
6122 * set dev_addr and also addr_assign_type should be set to
6123 * NET_ADDR_PERM (default value).
6124 */
6125 if (dev->addr_assign_type == NET_ADDR_PERM)
6126 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6127
1da177e4 6128 /* Notify protocols, that a new device appeared. */
056925ab 6129 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6130 ret = notifier_to_errno(ret);
93ee31f1
DL
6131 if (ret) {
6132 rollback_registered(dev);
6133 dev->reg_state = NETREG_UNREGISTERED;
6134 }
d90a909e
EB
6135 /*
6136 * Prevent userspace races by waiting until the network
6137 * device is fully setup before sending notifications.
6138 */
a2835763
PM
6139 if (!dev->rtnl_link_ops ||
6140 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6141 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6142
6143out:
6144 return ret;
7ce1b0ed
HX
6145
6146err_uninit:
d314774c
SH
6147 if (dev->netdev_ops->ndo_uninit)
6148 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6149 goto out;
1da177e4 6150}
d1b19dff 6151EXPORT_SYMBOL(register_netdevice);
1da177e4 6152
937f1ba5
BH
6153/**
6154 * init_dummy_netdev - init a dummy network device for NAPI
6155 * @dev: device to init
6156 *
6157 * This takes a network device structure and initialize the minimum
6158 * amount of fields so it can be used to schedule NAPI polls without
6159 * registering a full blown interface. This is to be used by drivers
6160 * that need to tie several hardware interfaces to a single NAPI
6161 * poll scheduler due to HW limitations.
6162 */
6163int init_dummy_netdev(struct net_device *dev)
6164{
6165 /* Clear everything. Note we don't initialize spinlocks
6166 * are they aren't supposed to be taken by any of the
6167 * NAPI code and this dummy netdev is supposed to be
6168 * only ever used for NAPI polls
6169 */
6170 memset(dev, 0, sizeof(struct net_device));
6171
6172 /* make sure we BUG if trying to hit standard
6173 * register/unregister code path
6174 */
6175 dev->reg_state = NETREG_DUMMY;
6176
937f1ba5
BH
6177 /* NAPI wants this */
6178 INIT_LIST_HEAD(&dev->napi_list);
6179
6180 /* a dummy interface is started by default */
6181 set_bit(__LINK_STATE_PRESENT, &dev->state);
6182 set_bit(__LINK_STATE_START, &dev->state);
6183
29b4433d
ED
6184 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6185 * because users of this 'device' dont need to change
6186 * its refcount.
6187 */
6188
937f1ba5
BH
6189 return 0;
6190}
6191EXPORT_SYMBOL_GPL(init_dummy_netdev);
6192
6193
1da177e4
LT
6194/**
6195 * register_netdev - register a network device
6196 * @dev: device to register
6197 *
6198 * Take a completed network device structure and add it to the kernel
6199 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6200 * chain. 0 is returned on success. A negative errno code is returned
6201 * on a failure to set up the device, or if the name is a duplicate.
6202 *
38b4da38 6203 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6204 * and expands the device name if you passed a format string to
6205 * alloc_netdev.
6206 */
6207int register_netdev(struct net_device *dev)
6208{
6209 int err;
6210
6211 rtnl_lock();
1da177e4 6212 err = register_netdevice(dev);
1da177e4
LT
6213 rtnl_unlock();
6214 return err;
6215}
6216EXPORT_SYMBOL(register_netdev);
6217
29b4433d
ED
6218int netdev_refcnt_read(const struct net_device *dev)
6219{
6220 int i, refcnt = 0;
6221
6222 for_each_possible_cpu(i)
6223 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6224 return refcnt;
6225}
6226EXPORT_SYMBOL(netdev_refcnt_read);
6227
2c53040f 6228/**
1da177e4 6229 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6230 * @dev: target net_device
1da177e4
LT
6231 *
6232 * This is called when unregistering network devices.
6233 *
6234 * Any protocol or device that holds a reference should register
6235 * for netdevice notification, and cleanup and put back the
6236 * reference if they receive an UNREGISTER event.
6237 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6238 * call dev_put.
1da177e4
LT
6239 */
6240static void netdev_wait_allrefs(struct net_device *dev)
6241{
6242 unsigned long rebroadcast_time, warning_time;
29b4433d 6243 int refcnt;
1da177e4 6244
e014debe
ED
6245 linkwatch_forget_dev(dev);
6246
1da177e4 6247 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6248 refcnt = netdev_refcnt_read(dev);
6249
6250 while (refcnt != 0) {
1da177e4 6251 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6252 rtnl_lock();
1da177e4
LT
6253
6254 /* Rebroadcast unregister notification */
056925ab 6255 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6256
748e2d93 6257 __rtnl_unlock();
0115e8e3 6258 rcu_barrier();
748e2d93
ED
6259 rtnl_lock();
6260
0115e8e3 6261 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6262 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6263 &dev->state)) {
6264 /* We must not have linkwatch events
6265 * pending on unregister. If this
6266 * happens, we simply run the queue
6267 * unscheduled, resulting in a noop
6268 * for this device.
6269 */
6270 linkwatch_run_queue();
6271 }
6272
6756ae4b 6273 __rtnl_unlock();
1da177e4
LT
6274
6275 rebroadcast_time = jiffies;
6276 }
6277
6278 msleep(250);
6279
29b4433d
ED
6280 refcnt = netdev_refcnt_read(dev);
6281
1da177e4 6282 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6283 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6284 dev->name, refcnt);
1da177e4
LT
6285 warning_time = jiffies;
6286 }
6287 }
6288}
6289
6290/* The sequence is:
6291 *
6292 * rtnl_lock();
6293 * ...
6294 * register_netdevice(x1);
6295 * register_netdevice(x2);
6296 * ...
6297 * unregister_netdevice(y1);
6298 * unregister_netdevice(y2);
6299 * ...
6300 * rtnl_unlock();
6301 * free_netdev(y1);
6302 * free_netdev(y2);
6303 *
58ec3b4d 6304 * We are invoked by rtnl_unlock().
1da177e4 6305 * This allows us to deal with problems:
b17a7c17 6306 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6307 * without deadlocking with linkwatch via keventd.
6308 * 2) Since we run with the RTNL semaphore not held, we can sleep
6309 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6310 *
6311 * We must not return until all unregister events added during
6312 * the interval the lock was held have been completed.
1da177e4 6313 */
1da177e4
LT
6314void netdev_run_todo(void)
6315{
626ab0e6 6316 struct list_head list;
1da177e4 6317
1da177e4 6318 /* Snapshot list, allow later requests */
626ab0e6 6319 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6320
6321 __rtnl_unlock();
626ab0e6 6322
0115e8e3
ED
6323
6324 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6325 if (!list_empty(&list))
6326 rcu_barrier();
6327
1da177e4
LT
6328 while (!list_empty(&list)) {
6329 struct net_device *dev
e5e26d75 6330 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6331 list_del(&dev->todo_list);
6332
748e2d93 6333 rtnl_lock();
0115e8e3 6334 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6335 __rtnl_unlock();
0115e8e3 6336
b17a7c17 6337 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6338 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6339 dev->name, dev->reg_state);
6340 dump_stack();
6341 continue;
6342 }
1da177e4 6343
b17a7c17 6344 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6345
152102c7 6346 on_each_cpu(flush_backlog, dev, 1);
6e583ce5 6347
b17a7c17 6348 netdev_wait_allrefs(dev);
1da177e4 6349
b17a7c17 6350 /* paranoia */
29b4433d 6351 BUG_ON(netdev_refcnt_read(dev));
33d480ce
ED
6352 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6353 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6354 WARN_ON(dev->dn_ptr);
1da177e4 6355
b17a7c17
SH
6356 if (dev->destructor)
6357 dev->destructor(dev);
9093bbb2 6358
50624c93
EB
6359 /* Report a network device has been unregistered */
6360 rtnl_lock();
6361 dev_net(dev)->dev_unreg_count--;
6362 __rtnl_unlock();
6363 wake_up(&netdev_unregistering_wq);
6364
9093bbb2
SH
6365 /* Free network device */
6366 kobject_put(&dev->dev.kobj);
1da177e4 6367 }
1da177e4
LT
6368}
6369
3cfde79c
BH
6370/* Convert net_device_stats to rtnl_link_stats64. They have the same
6371 * fields in the same order, with only the type differing.
6372 */
77a1abf5
ED
6373void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6374 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6375{
6376#if BITS_PER_LONG == 64
77a1abf5
ED
6377 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6378 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6379#else
6380 size_t i, n = sizeof(*stats64) / sizeof(u64);
6381 const unsigned long *src = (const unsigned long *)netdev_stats;
6382 u64 *dst = (u64 *)stats64;
6383
6384 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6385 sizeof(*stats64) / sizeof(u64));
6386 for (i = 0; i < n; i++)
6387 dst[i] = src[i];
6388#endif
6389}
77a1abf5 6390EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6391
eeda3fd6
SH
6392/**
6393 * dev_get_stats - get network device statistics
6394 * @dev: device to get statistics from
28172739 6395 * @storage: place to store stats
eeda3fd6 6396 *
d7753516
BH
6397 * Get network statistics from device. Return @storage.
6398 * The device driver may provide its own method by setting
6399 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6400 * otherwise the internal statistics structure is used.
eeda3fd6 6401 */
d7753516
BH
6402struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6403 struct rtnl_link_stats64 *storage)
7004bf25 6404{
eeda3fd6
SH
6405 const struct net_device_ops *ops = dev->netdev_ops;
6406
28172739
ED
6407 if (ops->ndo_get_stats64) {
6408 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6409 ops->ndo_get_stats64(dev, storage);
6410 } else if (ops->ndo_get_stats) {
3cfde79c 6411 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6412 } else {
6413 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6414 }
caf586e5 6415 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6416 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6417 return storage;
c45d286e 6418}
eeda3fd6 6419EXPORT_SYMBOL(dev_get_stats);
c45d286e 6420
24824a09 6421struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6422{
24824a09 6423 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6424
24824a09
ED
6425#ifdef CONFIG_NET_CLS_ACT
6426 if (queue)
6427 return queue;
6428 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6429 if (!queue)
6430 return NULL;
6431 netdev_init_one_queue(dev, queue, NULL);
24824a09
ED
6432 queue->qdisc = &noop_qdisc;
6433 queue->qdisc_sleeping = &noop_qdisc;
6434 rcu_assign_pointer(dev->ingress_queue, queue);
6435#endif
6436 return queue;
bb949fbd
DM
6437}
6438
2c60db03
ED
6439static const struct ethtool_ops default_ethtool_ops;
6440
d07d7507
SG
6441void netdev_set_default_ethtool_ops(struct net_device *dev,
6442 const struct ethtool_ops *ops)
6443{
6444 if (dev->ethtool_ops == &default_ethtool_ops)
6445 dev->ethtool_ops = ops;
6446}
6447EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6448
74d332c1
ED
6449void netdev_freemem(struct net_device *dev)
6450{
6451 char *addr = (char *)dev - dev->padded;
6452
4cb28970 6453 kvfree(addr);
74d332c1
ED
6454}
6455
1da177e4 6456/**
36909ea4 6457 * alloc_netdev_mqs - allocate network device
c835a677
TG
6458 * @sizeof_priv: size of private data to allocate space for
6459 * @name: device name format string
6460 * @name_assign_type: origin of device name
6461 * @setup: callback to initialize device
6462 * @txqs: the number of TX subqueues to allocate
6463 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6464 *
6465 * Allocates a struct net_device with private data area for driver use
90e51adf 6466 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6467 * for each queue on the device.
1da177e4 6468 */
36909ea4 6469struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6470 unsigned char name_assign_type,
36909ea4
TH
6471 void (*setup)(struct net_device *),
6472 unsigned int txqs, unsigned int rxqs)
1da177e4 6473{
1da177e4 6474 struct net_device *dev;
7943986c 6475 size_t alloc_size;
1ce8e7b5 6476 struct net_device *p;
1da177e4 6477
b6fe17d6
SH
6478 BUG_ON(strlen(name) >= sizeof(dev->name));
6479
36909ea4 6480 if (txqs < 1) {
7b6cd1ce 6481 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6482 return NULL;
6483 }
6484
a953be53 6485#ifdef CONFIG_SYSFS
36909ea4 6486 if (rxqs < 1) {
7b6cd1ce 6487 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6488 return NULL;
6489 }
6490#endif
6491
fd2ea0a7 6492 alloc_size = sizeof(struct net_device);
d1643d24
AD
6493 if (sizeof_priv) {
6494 /* ensure 32-byte alignment of private area */
1ce8e7b5 6495 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6496 alloc_size += sizeof_priv;
6497 }
6498 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 6499 alloc_size += NETDEV_ALIGN - 1;
1da177e4 6500
74d332c1
ED
6501 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6502 if (!p)
6503 p = vzalloc(alloc_size);
62b5942a 6504 if (!p)
1da177e4 6505 return NULL;
1da177e4 6506
1ce8e7b5 6507 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 6508 dev->padded = (char *)dev - (char *)p;
ab9c73cc 6509
29b4433d
ED
6510 dev->pcpu_refcnt = alloc_percpu(int);
6511 if (!dev->pcpu_refcnt)
74d332c1 6512 goto free_dev;
ab9c73cc 6513
ab9c73cc 6514 if (dev_addr_init(dev))
29b4433d 6515 goto free_pcpu;
ab9c73cc 6516
22bedad3 6517 dev_mc_init(dev);
a748ee24 6518 dev_uc_init(dev);
ccffad25 6519
c346dca1 6520 dev_net_set(dev, &init_net);
1da177e4 6521
8d3bdbd5 6522 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 6523 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 6524
8d3bdbd5
DM
6525 INIT_LIST_HEAD(&dev->napi_list);
6526 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 6527 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 6528 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
6529 INIT_LIST_HEAD(&dev->adj_list.upper);
6530 INIT_LIST_HEAD(&dev->adj_list.lower);
6531 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6532 INIT_LIST_HEAD(&dev->all_adj_list.lower);
8d3bdbd5
DM
6533 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6534 setup(dev);
6535
36909ea4
TH
6536 dev->num_tx_queues = txqs;
6537 dev->real_num_tx_queues = txqs;
ed9af2e8 6538 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 6539 goto free_all;
e8a0464c 6540
a953be53 6541#ifdef CONFIG_SYSFS
36909ea4
TH
6542 dev->num_rx_queues = rxqs;
6543 dev->real_num_rx_queues = rxqs;
fe822240 6544 if (netif_alloc_rx_queues(dev))
8d3bdbd5 6545 goto free_all;
df334545 6546#endif
0a9627f2 6547
1da177e4 6548 strcpy(dev->name, name);
c835a677 6549 dev->name_assign_type = name_assign_type;
cbda10fa 6550 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
6551 if (!dev->ethtool_ops)
6552 dev->ethtool_ops = &default_ethtool_ops;
1da177e4 6553 return dev;
ab9c73cc 6554
8d3bdbd5
DM
6555free_all:
6556 free_netdev(dev);
6557 return NULL;
6558
29b4433d
ED
6559free_pcpu:
6560 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
6561free_dev:
6562 netdev_freemem(dev);
ab9c73cc 6563 return NULL;
1da177e4 6564}
36909ea4 6565EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
6566
6567/**
6568 * free_netdev - free network device
6569 * @dev: device
6570 *
4ec93edb
YH
6571 * This function does the last stage of destroying an allocated device
6572 * interface. The reference to the device object is released.
1da177e4
LT
6573 * If this is the last reference then it will be freed.
6574 */
6575void free_netdev(struct net_device *dev)
6576{
d565b0a1
HX
6577 struct napi_struct *p, *n;
6578
f3005d7f
DL
6579 release_net(dev_net(dev));
6580
60877a32 6581 netif_free_tx_queues(dev);
a953be53 6582#ifdef CONFIG_SYSFS
fe822240
TH
6583 kfree(dev->_rx);
6584#endif
e8a0464c 6585
33d480ce 6586 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 6587
f001fde5
JP
6588 /* Flush device addresses */
6589 dev_addr_flush(dev);
6590
d565b0a1
HX
6591 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6592 netif_napi_del(p);
6593
29b4433d
ED
6594 free_percpu(dev->pcpu_refcnt);
6595 dev->pcpu_refcnt = NULL;
6596
3041a069 6597 /* Compatibility with error handling in drivers */
1da177e4 6598 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 6599 netdev_freemem(dev);
1da177e4
LT
6600 return;
6601 }
6602
6603 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6604 dev->reg_state = NETREG_RELEASED;
6605
43cb76d9
GKH
6606 /* will free via device release */
6607 put_device(&dev->dev);
1da177e4 6608}
d1b19dff 6609EXPORT_SYMBOL(free_netdev);
4ec93edb 6610
f0db275a
SH
6611/**
6612 * synchronize_net - Synchronize with packet receive processing
6613 *
6614 * Wait for packets currently being received to be done.
6615 * Does not block later packets from starting.
6616 */
4ec93edb 6617void synchronize_net(void)
1da177e4
LT
6618{
6619 might_sleep();
be3fc413
ED
6620 if (rtnl_is_locked())
6621 synchronize_rcu_expedited();
6622 else
6623 synchronize_rcu();
1da177e4 6624}
d1b19dff 6625EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
6626
6627/**
44a0873d 6628 * unregister_netdevice_queue - remove device from the kernel
1da177e4 6629 * @dev: device
44a0873d 6630 * @head: list
6ebfbc06 6631 *
1da177e4 6632 * This function shuts down a device interface and removes it
d59b54b1 6633 * from the kernel tables.
44a0873d 6634 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
6635 *
6636 * Callers must hold the rtnl semaphore. You may want
6637 * unregister_netdev() instead of this.
6638 */
6639
44a0873d 6640void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 6641{
a6620712
HX
6642 ASSERT_RTNL();
6643
44a0873d 6644 if (head) {
9fdce099 6645 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
6646 } else {
6647 rollback_registered(dev);
6648 /* Finish processing unregister after unlock */
6649 net_set_todo(dev);
6650 }
1da177e4 6651}
44a0873d 6652EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 6653
9b5e383c
ED
6654/**
6655 * unregister_netdevice_many - unregister many devices
6656 * @head: list of devices
87757a91
ED
6657 *
6658 * Note: As most callers use a stack allocated list_head,
6659 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
6660 */
6661void unregister_netdevice_many(struct list_head *head)
6662{
6663 struct net_device *dev;
6664
6665 if (!list_empty(head)) {
6666 rollback_registered_many(head);
6667 list_for_each_entry(dev, head, unreg_list)
6668 net_set_todo(dev);
87757a91 6669 list_del(head);
9b5e383c
ED
6670 }
6671}
63c8099d 6672EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 6673
1da177e4
LT
6674/**
6675 * unregister_netdev - remove device from the kernel
6676 * @dev: device
6677 *
6678 * This function shuts down a device interface and removes it
d59b54b1 6679 * from the kernel tables.
1da177e4
LT
6680 *
6681 * This is just a wrapper for unregister_netdevice that takes
6682 * the rtnl semaphore. In general you want to use this and not
6683 * unregister_netdevice.
6684 */
6685void unregister_netdev(struct net_device *dev)
6686{
6687 rtnl_lock();
6688 unregister_netdevice(dev);
6689 rtnl_unlock();
6690}
1da177e4
LT
6691EXPORT_SYMBOL(unregister_netdev);
6692
ce286d32
EB
6693/**
6694 * dev_change_net_namespace - move device to different nethost namespace
6695 * @dev: device
6696 * @net: network namespace
6697 * @pat: If not NULL name pattern to try if the current device name
6698 * is already taken in the destination network namespace.
6699 *
6700 * This function shuts down a device interface and moves it
6701 * to a new network namespace. On success 0 is returned, on
6702 * a failure a netagive errno code is returned.
6703 *
6704 * Callers must hold the rtnl semaphore.
6705 */
6706
6707int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6708{
ce286d32
EB
6709 int err;
6710
6711 ASSERT_RTNL();
6712
6713 /* Don't allow namespace local devices to be moved. */
6714 err = -EINVAL;
6715 if (dev->features & NETIF_F_NETNS_LOCAL)
6716 goto out;
6717
6718 /* Ensure the device has been registrered */
ce286d32
EB
6719 if (dev->reg_state != NETREG_REGISTERED)
6720 goto out;
6721
6722 /* Get out if there is nothing todo */
6723 err = 0;
878628fb 6724 if (net_eq(dev_net(dev), net))
ce286d32
EB
6725 goto out;
6726
6727 /* Pick the destination device name, and ensure
6728 * we can use it in the destination network namespace.
6729 */
6730 err = -EEXIST;
d9031024 6731 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
6732 /* We get here if we can't use the current device name */
6733 if (!pat)
6734 goto out;
828de4f6 6735 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
6736 goto out;
6737 }
6738
6739 /*
6740 * And now a mini version of register_netdevice unregister_netdevice.
6741 */
6742
6743 /* If device is running close it first. */
9b772652 6744 dev_close(dev);
ce286d32
EB
6745
6746 /* And unlink it from device chain */
6747 err = -ENODEV;
6748 unlist_netdevice(dev);
6749
6750 synchronize_net();
6751
6752 /* Shutdown queueing discipline. */
6753 dev_shutdown(dev);
6754
6755 /* Notify protocols, that we are about to destroy
6756 this device. They should clean all the things.
3b27e105
DL
6757
6758 Note that dev->reg_state stays at NETREG_REGISTERED.
6759 This is wanted because this way 8021q and macvlan know
6760 the device is just moving and can keep their slaves up.
ce286d32
EB
6761 */
6762 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
6763 rcu_barrier();
6764 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 6765 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
6766
6767 /*
6768 * Flush the unicast and multicast chains
6769 */
a748ee24 6770 dev_uc_flush(dev);
22bedad3 6771 dev_mc_flush(dev);
ce286d32 6772
4e66ae2e
SH
6773 /* Send a netdev-removed uevent to the old namespace */
6774 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6775
ce286d32 6776 /* Actually switch the network namespace */
c346dca1 6777 dev_net_set(dev, net);
ce286d32 6778
ce286d32
EB
6779 /* If there is an ifindex conflict assign a new one */
6780 if (__dev_get_by_index(net, dev->ifindex)) {
6781 int iflink = (dev->iflink == dev->ifindex);
6782 dev->ifindex = dev_new_index(net);
6783 if (iflink)
6784 dev->iflink = dev->ifindex;
6785 }
6786
4e66ae2e
SH
6787 /* Send a netdev-add uevent to the new namespace */
6788 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6789
8b41d188 6790 /* Fixup kobjects */
a1b3f594 6791 err = device_rename(&dev->dev, dev->name);
8b41d188 6792 WARN_ON(err);
ce286d32
EB
6793
6794 /* Add the device back in the hashes */
6795 list_netdevice(dev);
6796
6797 /* Notify protocols, that a new device appeared. */
6798 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6799
d90a909e
EB
6800 /*
6801 * Prevent userspace races by waiting until the network
6802 * device is fully setup before sending notifications.
6803 */
7f294054 6804 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 6805
ce286d32
EB
6806 synchronize_net();
6807 err = 0;
6808out:
6809 return err;
6810}
463d0183 6811EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 6812
1da177e4
LT
6813static int dev_cpu_callback(struct notifier_block *nfb,
6814 unsigned long action,
6815 void *ocpu)
6816{
6817 struct sk_buff **list_skb;
1da177e4
LT
6818 struct sk_buff *skb;
6819 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6820 struct softnet_data *sd, *oldsd;
6821
8bb78442 6822 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
6823 return NOTIFY_OK;
6824
6825 local_irq_disable();
6826 cpu = smp_processor_id();
6827 sd = &per_cpu(softnet_data, cpu);
6828 oldsd = &per_cpu(softnet_data, oldcpu);
6829
6830 /* Find end of our completion_queue. */
6831 list_skb = &sd->completion_queue;
6832 while (*list_skb)
6833 list_skb = &(*list_skb)->next;
6834 /* Append completion queue from offline CPU. */
6835 *list_skb = oldsd->completion_queue;
6836 oldsd->completion_queue = NULL;
6837
1da177e4 6838 /* Append output queue from offline CPU. */
a9cbd588
CG
6839 if (oldsd->output_queue) {
6840 *sd->output_queue_tailp = oldsd->output_queue;
6841 sd->output_queue_tailp = oldsd->output_queue_tailp;
6842 oldsd->output_queue = NULL;
6843 oldsd->output_queue_tailp = &oldsd->output_queue;
6844 }
264524d5
HC
6845 /* Append NAPI poll list from offline CPU. */
6846 if (!list_empty(&oldsd->poll_list)) {
6847 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6848 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6849 }
1da177e4
LT
6850
6851 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6852 local_irq_enable();
6853
6854 /* Process offline CPU's input_pkt_queue */
76cc8b13 6855 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
ae78dbfa 6856 netif_rx_internal(skb);
76cc8b13 6857 input_queue_head_incr(oldsd);
fec5e652 6858 }
76cc8b13 6859 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
ae78dbfa 6860 netif_rx_internal(skb);
76cc8b13
TH
6861 input_queue_head_incr(oldsd);
6862 }
1da177e4
LT
6863
6864 return NOTIFY_OK;
6865}
1da177e4
LT
6866
6867
7f353bf2 6868/**
b63365a2
HX
6869 * netdev_increment_features - increment feature set by one
6870 * @all: current feature set
6871 * @one: new feature set
6872 * @mask: mask feature set
7f353bf2
HX
6873 *
6874 * Computes a new feature set after adding a device with feature set
b63365a2
HX
6875 * @one to the master device with current feature set @all. Will not
6876 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 6877 */
c8f44aff
MM
6878netdev_features_t netdev_increment_features(netdev_features_t all,
6879 netdev_features_t one, netdev_features_t mask)
b63365a2 6880{
1742f183
MM
6881 if (mask & NETIF_F_GEN_CSUM)
6882 mask |= NETIF_F_ALL_CSUM;
6883 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 6884
1742f183
MM
6885 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6886 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 6887
1742f183
MM
6888 /* If one device supports hw checksumming, set for all. */
6889 if (all & NETIF_F_GEN_CSUM)
6890 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
6891
6892 return all;
6893}
b63365a2 6894EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 6895
430f03cd 6896static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
6897{
6898 int i;
6899 struct hlist_head *hash;
6900
6901 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6902 if (hash != NULL)
6903 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6904 INIT_HLIST_HEAD(&hash[i]);
6905
6906 return hash;
6907}
6908
881d966b 6909/* Initialize per network namespace state */
4665079c 6910static int __net_init netdev_init(struct net *net)
881d966b 6911{
734b6541
RM
6912 if (net != &init_net)
6913 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 6914
30d97d35
PE
6915 net->dev_name_head = netdev_create_hash();
6916 if (net->dev_name_head == NULL)
6917 goto err_name;
881d966b 6918
30d97d35
PE
6919 net->dev_index_head = netdev_create_hash();
6920 if (net->dev_index_head == NULL)
6921 goto err_idx;
881d966b
EB
6922
6923 return 0;
30d97d35
PE
6924
6925err_idx:
6926 kfree(net->dev_name_head);
6927err_name:
6928 return -ENOMEM;
881d966b
EB
6929}
6930
f0db275a
SH
6931/**
6932 * netdev_drivername - network driver for the device
6933 * @dev: network device
f0db275a
SH
6934 *
6935 * Determine network driver for device.
6936 */
3019de12 6937const char *netdev_drivername(const struct net_device *dev)
6579e57b 6938{
cf04a4c7
SH
6939 const struct device_driver *driver;
6940 const struct device *parent;
3019de12 6941 const char *empty = "";
6579e57b
AV
6942
6943 parent = dev->dev.parent;
6579e57b 6944 if (!parent)
3019de12 6945 return empty;
6579e57b
AV
6946
6947 driver = parent->driver;
6948 if (driver && driver->name)
3019de12
DM
6949 return driver->name;
6950 return empty;
6579e57b
AV
6951}
6952
b004ff49 6953static int __netdev_printk(const char *level, const struct net_device *dev,
256df2f3
JP
6954 struct va_format *vaf)
6955{
6956 int r;
6957
b004ff49 6958 if (dev && dev->dev.parent) {
666f355f
JP
6959 r = dev_printk_emit(level[1] - '0',
6960 dev->dev.parent,
ccc7f496 6961 "%s %s %s%s: %pV",
666f355f
JP
6962 dev_driver_string(dev->dev.parent),
6963 dev_name(dev->dev.parent),
ccc7f496
VF
6964 netdev_name(dev), netdev_reg_state(dev),
6965 vaf);
b004ff49 6966 } else if (dev) {
ccc7f496
VF
6967 r = printk("%s%s%s: %pV", level, netdev_name(dev),
6968 netdev_reg_state(dev), vaf);
b004ff49 6969 } else {
256df2f3 6970 r = printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 6971 }
256df2f3
JP
6972
6973 return r;
6974}
6975
6976int netdev_printk(const char *level, const struct net_device *dev,
6977 const char *format, ...)
6978{
6979 struct va_format vaf;
6980 va_list args;
6981 int r;
6982
6983 va_start(args, format);
6984
6985 vaf.fmt = format;
6986 vaf.va = &args;
6987
6988 r = __netdev_printk(level, dev, &vaf);
b004ff49 6989
256df2f3
JP
6990 va_end(args);
6991
6992 return r;
6993}
6994EXPORT_SYMBOL(netdev_printk);
6995
6996#define define_netdev_printk_level(func, level) \
6997int func(const struct net_device *dev, const char *fmt, ...) \
6998{ \
6999 int r; \
7000 struct va_format vaf; \
7001 va_list args; \
7002 \
7003 va_start(args, fmt); \
7004 \
7005 vaf.fmt = fmt; \
7006 vaf.va = &args; \
7007 \
7008 r = __netdev_printk(level, dev, &vaf); \
b004ff49 7009 \
256df2f3
JP
7010 va_end(args); \
7011 \
7012 return r; \
7013} \
7014EXPORT_SYMBOL(func);
7015
7016define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7017define_netdev_printk_level(netdev_alert, KERN_ALERT);
7018define_netdev_printk_level(netdev_crit, KERN_CRIT);
7019define_netdev_printk_level(netdev_err, KERN_ERR);
7020define_netdev_printk_level(netdev_warn, KERN_WARNING);
7021define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7022define_netdev_printk_level(netdev_info, KERN_INFO);
7023
4665079c 7024static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7025{
7026 kfree(net->dev_name_head);
7027 kfree(net->dev_index_head);
7028}
7029
022cbae6 7030static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7031 .init = netdev_init,
7032 .exit = netdev_exit,
7033};
7034
4665079c 7035static void __net_exit default_device_exit(struct net *net)
ce286d32 7036{
e008b5fc 7037 struct net_device *dev, *aux;
ce286d32 7038 /*
e008b5fc 7039 * Push all migratable network devices back to the
ce286d32
EB
7040 * initial network namespace
7041 */
7042 rtnl_lock();
e008b5fc 7043 for_each_netdev_safe(net, dev, aux) {
ce286d32 7044 int err;
aca51397 7045 char fb_name[IFNAMSIZ];
ce286d32
EB
7046
7047 /* Ignore unmoveable devices (i.e. loopback) */
7048 if (dev->features & NETIF_F_NETNS_LOCAL)
7049 continue;
7050
e008b5fc
EB
7051 /* Leave virtual devices for the generic cleanup */
7052 if (dev->rtnl_link_ops)
7053 continue;
d0c082ce 7054
25985edc 7055 /* Push remaining network devices to init_net */
aca51397
PE
7056 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7057 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7058 if (err) {
7b6cd1ce
JP
7059 pr_emerg("%s: failed to move %s to init_net: %d\n",
7060 __func__, dev->name, err);
aca51397 7061 BUG();
ce286d32
EB
7062 }
7063 }
7064 rtnl_unlock();
7065}
7066
50624c93
EB
7067static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7068{
7069 /* Return with the rtnl_lock held when there are no network
7070 * devices unregistering in any network namespace in net_list.
7071 */
7072 struct net *net;
7073 bool unregistering;
7074 DEFINE_WAIT(wait);
7075
7076 for (;;) {
7077 prepare_to_wait(&netdev_unregistering_wq, &wait,
7078 TASK_UNINTERRUPTIBLE);
7079 unregistering = false;
7080 rtnl_lock();
7081 list_for_each_entry(net, net_list, exit_list) {
7082 if (net->dev_unreg_count > 0) {
7083 unregistering = true;
7084 break;
7085 }
7086 }
7087 if (!unregistering)
7088 break;
7089 __rtnl_unlock();
7090 schedule();
7091 }
7092 finish_wait(&netdev_unregistering_wq, &wait);
7093}
7094
04dc7f6b
EB
7095static void __net_exit default_device_exit_batch(struct list_head *net_list)
7096{
7097 /* At exit all network devices most be removed from a network
b595076a 7098 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7099 * Do this across as many network namespaces as possible to
7100 * improve batching efficiency.
7101 */
7102 struct net_device *dev;
7103 struct net *net;
7104 LIST_HEAD(dev_kill_list);
7105
50624c93
EB
7106 /* To prevent network device cleanup code from dereferencing
7107 * loopback devices or network devices that have been freed
7108 * wait here for all pending unregistrations to complete,
7109 * before unregistring the loopback device and allowing the
7110 * network namespace be freed.
7111 *
7112 * The netdev todo list containing all network devices
7113 * unregistrations that happen in default_device_exit_batch
7114 * will run in the rtnl_unlock() at the end of
7115 * default_device_exit_batch.
7116 */
7117 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7118 list_for_each_entry(net, net_list, exit_list) {
7119 for_each_netdev_reverse(net, dev) {
b0ab2fab 7120 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7121 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7122 else
7123 unregister_netdevice_queue(dev, &dev_kill_list);
7124 }
7125 }
7126 unregister_netdevice_many(&dev_kill_list);
7127 rtnl_unlock();
7128}
7129
022cbae6 7130static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7131 .exit = default_device_exit,
04dc7f6b 7132 .exit_batch = default_device_exit_batch,
ce286d32
EB
7133};
7134
1da177e4
LT
7135/*
7136 * Initialize the DEV module. At boot time this walks the device list and
7137 * unhooks any devices that fail to initialise (normally hardware not
7138 * present) and leaves us with a valid list of present and active devices.
7139 *
7140 */
7141
7142/*
7143 * This is called single threaded during boot, so no need
7144 * to take the rtnl semaphore.
7145 */
7146static int __init net_dev_init(void)
7147{
7148 int i, rc = -ENOMEM;
7149
7150 BUG_ON(!dev_boot_phase);
7151
1da177e4
LT
7152 if (dev_proc_init())
7153 goto out;
7154
8b41d188 7155 if (netdev_kobject_init())
1da177e4
LT
7156 goto out;
7157
7158 INIT_LIST_HEAD(&ptype_all);
82d8a867 7159 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7160 INIT_LIST_HEAD(&ptype_base[i]);
7161
62532da9
VY
7162 INIT_LIST_HEAD(&offload_base);
7163
881d966b
EB
7164 if (register_pernet_subsys(&netdev_net_ops))
7165 goto out;
1da177e4
LT
7166
7167 /*
7168 * Initialise the packet receive queues.
7169 */
7170
6f912042 7171 for_each_possible_cpu(i) {
e36fa2f7 7172 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7173
e36fa2f7 7174 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7175 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7176 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7177 sd->output_queue_tailp = &sd->output_queue;
df334545 7178#ifdef CONFIG_RPS
e36fa2f7
ED
7179 sd->csd.func = rps_trigger_softirq;
7180 sd->csd.info = sd;
e36fa2f7 7181 sd->cpu = i;
1e94d72f 7182#endif
0a9627f2 7183
e36fa2f7
ED
7184 sd->backlog.poll = process_backlog;
7185 sd->backlog.weight = weight_p;
1da177e4
LT
7186 }
7187
1da177e4
LT
7188 dev_boot_phase = 0;
7189
505d4f73
EB
7190 /* The loopback device is special if any other network devices
7191 * is present in a network namespace the loopback device must
7192 * be present. Since we now dynamically allocate and free the
7193 * loopback device ensure this invariant is maintained by
7194 * keeping the loopback device as the first device on the
7195 * list of network devices. Ensuring the loopback devices
7196 * is the first device that appears and the last network device
7197 * that disappears.
7198 */
7199 if (register_pernet_device(&loopback_net_ops))
7200 goto out;
7201
7202 if (register_pernet_device(&default_device_ops))
7203 goto out;
7204
962cf36c
CM
7205 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7206 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7207
7208 hotcpu_notifier(dev_cpu_callback, 0);
7209 dst_init();
1da177e4
LT
7210 rc = 0;
7211out:
7212 return rc;
7213}
7214
7215subsys_initcall(net_dev_init);