]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/core/dev.c
net: cls_bpf: fix NULL deref on offload filter removal
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
1da177e4
LT
82#include <linux/string.h>
83#include <linux/mm.h>
84#include <linux/socket.h>
85#include <linux/sockios.h>
86#include <linux/errno.h>
87#include <linux/interrupt.h>
88#include <linux/if_ether.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
0187bdfb 91#include <linux/ethtool.h>
1da177e4 92#include <linux/skbuff.h>
a7862b45 93#include <linux/bpf.h>
b5cdae32 94#include <linux/bpf_trace.h>
457c4cbc 95#include <net/net_namespace.h>
1da177e4 96#include <net/sock.h>
02d62e86 97#include <net/busy_poll.h>
1da177e4 98#include <linux/rtnetlink.h>
1da177e4 99#include <linux/stat.h>
1da177e4 100#include <net/dst.h>
fc4099f1 101#include <net/dst_metadata.h>
1da177e4 102#include <net/pkt_sched.h>
87d83093 103#include <net/pkt_cls.h>
1da177e4 104#include <net/checksum.h>
44540960 105#include <net/xfrm.h>
1da177e4
LT
106#include <linux/highmem.h>
107#include <linux/init.h>
1da177e4 108#include <linux/module.h>
1da177e4
LT
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
1da177e4 112#include <net/iw_handler.h>
1da177e4 113#include <asm/current.h>
5bdb9886 114#include <linux/audit.h>
db217334 115#include <linux/dmaengine.h>
f6a78bfc 116#include <linux/err.h>
c7fa9d18 117#include <linux/ctype.h>
723e98b7 118#include <linux/if_arp.h>
6de329e2 119#include <linux/if_vlan.h>
8f0f2223 120#include <linux/ip.h>
ad55dcaf 121#include <net/ip.h>
25cd9ba0 122#include <net/mpls.h>
8f0f2223
DM
123#include <linux/ipv6.h>
124#include <linux/in.h>
b6b2fed1
DM
125#include <linux/jhash.h>
126#include <linux/random.h>
9cbc1cb8 127#include <trace/events/napi.h>
cf66ba58 128#include <trace/events/net.h>
07dc22e7 129#include <trace/events/skb.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
e687ad60 138#include <linux/netfilter_ingress.h>
40e4e713 139#include <linux/crash_dump.h>
b72b5bf6 140#include <linux/sctp.h>
ae847f40 141#include <net/udp_tunnel.h>
6621dd29 142#include <linux/net_namespace.h>
aaa5d90b 143#include <linux/indirect_call_wrapper.h>
af3836df 144#include <net/devlink.h>
1da177e4 145
342709ef
PE
146#include "net-sysfs.h"
147
d565b0a1 148#define MAX_GRO_SKBS 8
5343da4c 149#define MAX_NEST_DEV 8
d565b0a1 150
5d38a079
HX
151/* This should be increased if a protocol with a bigger head is added. */
152#define GRO_MAX_HEAD (MAX_HEADER + 128)
153
1da177e4 154static DEFINE_SPINLOCK(ptype_lock);
62532da9 155static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
156struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157struct list_head ptype_all __read_mostly; /* Taps */
62532da9 158static struct list_head offload_base __read_mostly;
1da177e4 159
ae78dbfa 160static int netif_rx_internal(struct sk_buff *skb);
54951194 161static int call_netdevice_notifiers_info(unsigned long val,
54951194 162 struct netdev_notifier_info *info);
26372605
PM
163static int call_netdevice_notifiers_extack(unsigned long val,
164 struct net_device *dev,
165 struct netlink_ext_ack *extack);
90b602f8 166static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 167
1da177e4 168/*
7562f876 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
170 * semaphore.
171 *
c6d14c84 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
173 *
174 * Writers must hold the rtnl semaphore while they loop through the
7562f876 175 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
178 *
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
182 *
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
186 */
1da177e4 187DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
188EXPORT_SYMBOL(dev_base_lock);
189
6c557001
FW
190static DEFINE_MUTEX(ifalias_mutex);
191
af12fa6e
ET
192/* protects napi_hash addition/deletion and napi_gen_id */
193static DEFINE_SPINLOCK(napi_hash_lock);
194
52bd2d62 195static unsigned int napi_gen_id = NR_CPUS;
6180d9de 196static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 197
18afa4b0 198static seqcount_t devnet_rename_seq;
c91f6df2 199
4e985ada
TG
200static inline void dev_base_seq_inc(struct net *net)
201{
643aa9cb 202 while (++net->dev_base_seq == 0)
203 ;
4e985ada
TG
204}
205
881d966b 206static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 207{
8387ff25 208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 209
08e9897d 210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
211}
212
881d966b 213static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 214{
7c28bd0b 215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
216}
217
e36fa2f7 218static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
219{
220#ifdef CONFIG_RPS
e36fa2f7 221 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
222#endif
223}
224
e36fa2f7 225static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
226{
227#ifdef CONFIG_RPS
e36fa2f7 228 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
229#endif
230}
231
ce286d32 232/* Device list insertion */
53759be9 233static void list_netdevice(struct net_device *dev)
ce286d32 234{
c346dca1 235 struct net *net = dev_net(dev);
ce286d32
EB
236
237 ASSERT_RTNL();
238
239 write_lock_bh(&dev_base_lock);
c6d14c84 240 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
242 hlist_add_head_rcu(&dev->index_hlist,
243 dev_index_hash(net, dev->ifindex));
ce286d32 244 write_unlock_bh(&dev_base_lock);
4e985ada
TG
245
246 dev_base_seq_inc(net);
ce286d32
EB
247}
248
fb699dfd
ED
249/* Device list removal
250 * caller must respect a RCU grace period before freeing/reusing dev
251 */
ce286d32
EB
252static void unlist_netdevice(struct net_device *dev)
253{
254 ASSERT_RTNL();
255
256 /* Unlink dev from the device chain */
257 write_lock_bh(&dev_base_lock);
c6d14c84 258 list_del_rcu(&dev->dev_list);
72c9528b 259 hlist_del_rcu(&dev->name_hlist);
fb699dfd 260 hlist_del_rcu(&dev->index_hlist);
ce286d32 261 write_unlock_bh(&dev_base_lock);
4e985ada
TG
262
263 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
264}
265
1da177e4
LT
266/*
267 * Our notifier list
268 */
269
f07d5b94 270static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
271
272/*
273 * Device drivers call our routines to queue packets here. We empty the
274 * queue in the local softnet handler.
275 */
bea3348e 276
9958da05 277DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 278EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 279
1da177e4 280/*******************************************************************************
eb13da1a 281 *
282 * Protocol management and registration routines
283 *
284 *******************************************************************************/
1da177e4 285
1da177e4 286
1da177e4
LT
287/*
288 * Add a protocol ID to the list. Now that the input handler is
289 * smarter we can dispense with all the messy stuff that used to be
290 * here.
291 *
292 * BEWARE!!! Protocol handlers, mangling input packets,
293 * MUST BE last in hash buckets and checking protocol handlers
294 * MUST start from promiscuous ptype_all chain in net_bh.
295 * It is true now, do not change it.
296 * Explanation follows: if protocol handler, mangling packet, will
297 * be the first on list, it is not able to sense, that packet
298 * is cloned and should be copied-on-write, so that it will
299 * change it and subsequent readers will get broken packet.
300 * --ANK (980803)
301 */
302
c07b68e8
ED
303static inline struct list_head *ptype_head(const struct packet_type *pt)
304{
305 if (pt->type == htons(ETH_P_ALL))
7866a621 306 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 307 else
7866a621
SN
308 return pt->dev ? &pt->dev->ptype_specific :
309 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
310}
311
1da177e4
LT
312/**
313 * dev_add_pack - add packet handler
314 * @pt: packet type declaration
315 *
316 * Add a protocol handler to the networking stack. The passed &packet_type
317 * is linked into kernel lists and may not be freed until it has been
318 * removed from the kernel lists.
319 *
4ec93edb 320 * This call does not sleep therefore it can not
1da177e4
LT
321 * guarantee all CPU's that are in middle of receiving packets
322 * will see the new packet type (until the next received packet).
323 */
324
325void dev_add_pack(struct packet_type *pt)
326{
c07b68e8 327 struct list_head *head = ptype_head(pt);
1da177e4 328
c07b68e8
ED
329 spin_lock(&ptype_lock);
330 list_add_rcu(&pt->list, head);
331 spin_unlock(&ptype_lock);
1da177e4 332}
d1b19dff 333EXPORT_SYMBOL(dev_add_pack);
1da177e4 334
1da177e4
LT
335/**
336 * __dev_remove_pack - remove packet handler
337 * @pt: packet type declaration
338 *
339 * Remove a protocol handler that was previously added to the kernel
340 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
341 * from the kernel lists and can be freed or reused once this function
4ec93edb 342 * returns.
1da177e4
LT
343 *
344 * The packet type might still be in use by receivers
345 * and must not be freed until after all the CPU's have gone
346 * through a quiescent state.
347 */
348void __dev_remove_pack(struct packet_type *pt)
349{
c07b68e8 350 struct list_head *head = ptype_head(pt);
1da177e4
LT
351 struct packet_type *pt1;
352
c07b68e8 353 spin_lock(&ptype_lock);
1da177e4
LT
354
355 list_for_each_entry(pt1, head, list) {
356 if (pt == pt1) {
357 list_del_rcu(&pt->list);
358 goto out;
359 }
360 }
361
7b6cd1ce 362 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 363out:
c07b68e8 364 spin_unlock(&ptype_lock);
1da177e4 365}
d1b19dff
ED
366EXPORT_SYMBOL(__dev_remove_pack);
367
1da177e4
LT
368/**
369 * dev_remove_pack - remove packet handler
370 * @pt: packet type declaration
371 *
372 * Remove a protocol handler that was previously added to the kernel
373 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
374 * from the kernel lists and can be freed or reused once this function
375 * returns.
376 *
377 * This call sleeps to guarantee that no CPU is looking at the packet
378 * type after return.
379 */
380void dev_remove_pack(struct packet_type *pt)
381{
382 __dev_remove_pack(pt);
4ec93edb 383
1da177e4
LT
384 synchronize_net();
385}
d1b19dff 386EXPORT_SYMBOL(dev_remove_pack);
1da177e4 387
62532da9
VY
388
389/**
390 * dev_add_offload - register offload handlers
391 * @po: protocol offload declaration
392 *
393 * Add protocol offload handlers to the networking stack. The passed
394 * &proto_offload is linked into kernel lists and may not be freed until
395 * it has been removed from the kernel lists.
396 *
397 * This call does not sleep therefore it can not
398 * guarantee all CPU's that are in middle of receiving packets
399 * will see the new offload handlers (until the next received packet).
400 */
401void dev_add_offload(struct packet_offload *po)
402{
bdef7de4 403 struct packet_offload *elem;
62532da9
VY
404
405 spin_lock(&offload_lock);
bdef7de4
DM
406 list_for_each_entry(elem, &offload_base, list) {
407 if (po->priority < elem->priority)
408 break;
409 }
410 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
411 spin_unlock(&offload_lock);
412}
413EXPORT_SYMBOL(dev_add_offload);
414
415/**
416 * __dev_remove_offload - remove offload handler
417 * @po: packet offload declaration
418 *
419 * Remove a protocol offload handler that was previously added to the
420 * kernel offload handlers by dev_add_offload(). The passed &offload_type
421 * is removed from the kernel lists and can be freed or reused once this
422 * function returns.
423 *
424 * The packet type might still be in use by receivers
425 * and must not be freed until after all the CPU's have gone
426 * through a quiescent state.
427 */
1d143d9f 428static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
429{
430 struct list_head *head = &offload_base;
431 struct packet_offload *po1;
432
c53aa505 433 spin_lock(&offload_lock);
62532da9
VY
434
435 list_for_each_entry(po1, head, list) {
436 if (po == po1) {
437 list_del_rcu(&po->list);
438 goto out;
439 }
440 }
441
442 pr_warn("dev_remove_offload: %p not found\n", po);
443out:
c53aa505 444 spin_unlock(&offload_lock);
62532da9 445}
62532da9
VY
446
447/**
448 * dev_remove_offload - remove packet offload handler
449 * @po: packet offload declaration
450 *
451 * Remove a packet offload handler that was previously added to the kernel
452 * offload handlers by dev_add_offload(). The passed &offload_type is
453 * removed from the kernel lists and can be freed or reused once this
454 * function returns.
455 *
456 * This call sleeps to guarantee that no CPU is looking at the packet
457 * type after return.
458 */
459void dev_remove_offload(struct packet_offload *po)
460{
461 __dev_remove_offload(po);
462
463 synchronize_net();
464}
465EXPORT_SYMBOL(dev_remove_offload);
466
1da177e4 467/******************************************************************************
eb13da1a 468 *
469 * Device Boot-time Settings Routines
470 *
471 ******************************************************************************/
1da177e4
LT
472
473/* Boot time configuration table */
474static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
475
476/**
477 * netdev_boot_setup_add - add new setup entry
478 * @name: name of the device
479 * @map: configured settings for the device
480 *
481 * Adds new setup entry to the dev_boot_setup list. The function
482 * returns 0 on error and 1 on success. This is a generic routine to
483 * all netdevices.
484 */
485static int netdev_boot_setup_add(char *name, struct ifmap *map)
486{
487 struct netdev_boot_setup *s;
488 int i;
489
490 s = dev_boot_setup;
491 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
492 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
493 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 494 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
495 memcpy(&s[i].map, map, sizeof(s[i].map));
496 break;
497 }
498 }
499
500 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
501}
502
503/**
722c9a0c 504 * netdev_boot_setup_check - check boot time settings
505 * @dev: the netdevice
1da177e4 506 *
722c9a0c 507 * Check boot time settings for the device.
508 * The found settings are set for the device to be used
509 * later in the device probing.
510 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
511 */
512int netdev_boot_setup_check(struct net_device *dev)
513{
514 struct netdev_boot_setup *s = dev_boot_setup;
515 int i;
516
517 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
518 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 519 !strcmp(dev->name, s[i].name)) {
722c9a0c 520 dev->irq = s[i].map.irq;
521 dev->base_addr = s[i].map.base_addr;
522 dev->mem_start = s[i].map.mem_start;
523 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
524 return 1;
525 }
526 }
527 return 0;
528}
d1b19dff 529EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
530
531
532/**
722c9a0c 533 * netdev_boot_base - get address from boot time settings
534 * @prefix: prefix for network device
535 * @unit: id for network device
536 *
537 * Check boot time settings for the base address of device.
538 * The found settings are set for the device to be used
539 * later in the device probing.
540 * Returns 0 if no settings found.
1da177e4
LT
541 */
542unsigned long netdev_boot_base(const char *prefix, int unit)
543{
544 const struct netdev_boot_setup *s = dev_boot_setup;
545 char name[IFNAMSIZ];
546 int i;
547
548 sprintf(name, "%s%d", prefix, unit);
549
550 /*
551 * If device already registered then return base of 1
552 * to indicate not to probe for this interface
553 */
881d966b 554 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
555 return 1;
556
557 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
558 if (!strcmp(name, s[i].name))
559 return s[i].map.base_addr;
560 return 0;
561}
562
563/*
564 * Saves at boot time configured settings for any netdevice.
565 */
566int __init netdev_boot_setup(char *str)
567{
568 int ints[5];
569 struct ifmap map;
570
571 str = get_options(str, ARRAY_SIZE(ints), ints);
572 if (!str || !*str)
573 return 0;
574
575 /* Save settings */
576 memset(&map, 0, sizeof(map));
577 if (ints[0] > 0)
578 map.irq = ints[1];
579 if (ints[0] > 1)
580 map.base_addr = ints[2];
581 if (ints[0] > 2)
582 map.mem_start = ints[3];
583 if (ints[0] > 3)
584 map.mem_end = ints[4];
585
586 /* Add new entry to the list */
587 return netdev_boot_setup_add(str, &map);
588}
589
590__setup("netdev=", netdev_boot_setup);
591
592/*******************************************************************************
eb13da1a 593 *
594 * Device Interface Subroutines
595 *
596 *******************************************************************************/
1da177e4 597
a54acb3a
ND
598/**
599 * dev_get_iflink - get 'iflink' value of a interface
600 * @dev: targeted interface
601 *
602 * Indicates the ifindex the interface is linked to.
603 * Physical interfaces have the same 'ifindex' and 'iflink' values.
604 */
605
606int dev_get_iflink(const struct net_device *dev)
607{
608 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
609 return dev->netdev_ops->ndo_get_iflink(dev);
610
7a66bbc9 611 return dev->ifindex;
a54acb3a
ND
612}
613EXPORT_SYMBOL(dev_get_iflink);
614
fc4099f1
PS
615/**
616 * dev_fill_metadata_dst - Retrieve tunnel egress information.
617 * @dev: targeted interface
618 * @skb: The packet.
619 *
620 * For better visibility of tunnel traffic OVS needs to retrieve
621 * egress tunnel information for a packet. Following API allows
622 * user to get this info.
623 */
624int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
625{
626 struct ip_tunnel_info *info;
627
628 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
629 return -EINVAL;
630
631 info = skb_tunnel_info_unclone(skb);
632 if (!info)
633 return -ENOMEM;
634 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
635 return -EINVAL;
636
637 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
638}
639EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
640
1da177e4
LT
641/**
642 * __dev_get_by_name - find a device by its name
c4ea43c5 643 * @net: the applicable net namespace
1da177e4
LT
644 * @name: name to find
645 *
646 * Find an interface by name. Must be called under RTNL semaphore
647 * or @dev_base_lock. If the name is found a pointer to the device
648 * is returned. If the name is not found then %NULL is returned. The
649 * reference counters are not incremented so the caller must be
650 * careful with locks.
651 */
652
881d966b 653struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 654{
0bd8d536
ED
655 struct net_device *dev;
656 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 657
b67bfe0d 658 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
659 if (!strncmp(dev->name, name, IFNAMSIZ))
660 return dev;
0bd8d536 661
1da177e4
LT
662 return NULL;
663}
d1b19dff 664EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 665
72c9528b 666/**
722c9a0c 667 * dev_get_by_name_rcu - find a device by its name
668 * @net: the applicable net namespace
669 * @name: name to find
670 *
671 * Find an interface by name.
672 * If the name is found a pointer to the device is returned.
673 * If the name is not found then %NULL is returned.
674 * The reference counters are not incremented so the caller must be
675 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
676 */
677
678struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
679{
72c9528b
ED
680 struct net_device *dev;
681 struct hlist_head *head = dev_name_hash(net, name);
682
b67bfe0d 683 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
684 if (!strncmp(dev->name, name, IFNAMSIZ))
685 return dev;
686
687 return NULL;
688}
689EXPORT_SYMBOL(dev_get_by_name_rcu);
690
1da177e4
LT
691/**
692 * dev_get_by_name - find a device by its name
c4ea43c5 693 * @net: the applicable net namespace
1da177e4
LT
694 * @name: name to find
695 *
696 * Find an interface by name. This can be called from any
697 * context and does its own locking. The returned handle has
698 * the usage count incremented and the caller must use dev_put() to
699 * release it when it is no longer needed. %NULL is returned if no
700 * matching device is found.
701 */
702
881d966b 703struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
704{
705 struct net_device *dev;
706
72c9528b
ED
707 rcu_read_lock();
708 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
709 if (dev)
710 dev_hold(dev);
72c9528b 711 rcu_read_unlock();
1da177e4
LT
712 return dev;
713}
d1b19dff 714EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
715
716/**
717 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 718 * @net: the applicable net namespace
1da177e4
LT
719 * @ifindex: index of device
720 *
721 * Search for an interface by index. Returns %NULL if the device
722 * is not found or a pointer to the device. The device has not
723 * had its reference counter increased so the caller must be careful
724 * about locking. The caller must hold either the RTNL semaphore
725 * or @dev_base_lock.
726 */
727
881d966b 728struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 729{
0bd8d536
ED
730 struct net_device *dev;
731 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 732
b67bfe0d 733 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
734 if (dev->ifindex == ifindex)
735 return dev;
0bd8d536 736
1da177e4
LT
737 return NULL;
738}
d1b19dff 739EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 740
fb699dfd
ED
741/**
742 * dev_get_by_index_rcu - find a device by its ifindex
743 * @net: the applicable net namespace
744 * @ifindex: index of device
745 *
746 * Search for an interface by index. Returns %NULL if the device
747 * is not found or a pointer to the device. The device has not
748 * had its reference counter increased so the caller must be careful
749 * about locking. The caller must hold RCU lock.
750 */
751
752struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
753{
fb699dfd
ED
754 struct net_device *dev;
755 struct hlist_head *head = dev_index_hash(net, ifindex);
756
b67bfe0d 757 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
758 if (dev->ifindex == ifindex)
759 return dev;
760
761 return NULL;
762}
763EXPORT_SYMBOL(dev_get_by_index_rcu);
764
1da177e4
LT
765
766/**
767 * dev_get_by_index - find a device by its ifindex
c4ea43c5 768 * @net: the applicable net namespace
1da177e4
LT
769 * @ifindex: index of device
770 *
771 * Search for an interface by index. Returns NULL if the device
772 * is not found or a pointer to the device. The device returned has
773 * had a reference added and the pointer is safe until the user calls
774 * dev_put to indicate they have finished with it.
775 */
776
881d966b 777struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
778{
779 struct net_device *dev;
780
fb699dfd
ED
781 rcu_read_lock();
782 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
783 if (dev)
784 dev_hold(dev);
fb699dfd 785 rcu_read_unlock();
1da177e4
LT
786 return dev;
787}
d1b19dff 788EXPORT_SYMBOL(dev_get_by_index);
1da177e4 789
90b602f8
ML
790/**
791 * dev_get_by_napi_id - find a device by napi_id
792 * @napi_id: ID of the NAPI struct
793 *
794 * Search for an interface by NAPI ID. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not had
796 * its reference counter increased so the caller must be careful
797 * about locking. The caller must hold RCU lock.
798 */
799
800struct net_device *dev_get_by_napi_id(unsigned int napi_id)
801{
802 struct napi_struct *napi;
803
804 WARN_ON_ONCE(!rcu_read_lock_held());
805
806 if (napi_id < MIN_NAPI_ID)
807 return NULL;
808
809 napi = napi_by_id(napi_id);
810
811 return napi ? napi->dev : NULL;
812}
813EXPORT_SYMBOL(dev_get_by_napi_id);
814
5dbe7c17
NS
815/**
816 * netdev_get_name - get a netdevice name, knowing its ifindex.
817 * @net: network namespace
818 * @name: a pointer to the buffer where the name will be stored.
819 * @ifindex: the ifindex of the interface to get the name from.
820 *
821 * The use of raw_seqcount_begin() and cond_resched() before
822 * retrying is required as we want to give the writers a chance
823 * to complete when CONFIG_PREEMPT is not set.
824 */
825int netdev_get_name(struct net *net, char *name, int ifindex)
826{
827 struct net_device *dev;
828 unsigned int seq;
829
830retry:
831 seq = raw_seqcount_begin(&devnet_rename_seq);
832 rcu_read_lock();
833 dev = dev_get_by_index_rcu(net, ifindex);
834 if (!dev) {
835 rcu_read_unlock();
836 return -ENODEV;
837 }
838
839 strcpy(name, dev->name);
840 rcu_read_unlock();
841 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
842 cond_resched();
843 goto retry;
844 }
845
846 return 0;
847}
848
1da177e4 849/**
941666c2 850 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 851 * @net: the applicable net namespace
1da177e4
LT
852 * @type: media type of device
853 * @ha: hardware address
854 *
855 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
856 * is not found or a pointer to the device.
857 * The caller must hold RCU or RTNL.
941666c2 858 * The returned device has not had its ref count increased
1da177e4
LT
859 * and the caller must therefore be careful about locking
860 *
1da177e4
LT
861 */
862
941666c2
ED
863struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
864 const char *ha)
1da177e4
LT
865{
866 struct net_device *dev;
867
941666c2 868 for_each_netdev_rcu(net, dev)
1da177e4
LT
869 if (dev->type == type &&
870 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
871 return dev;
872
873 return NULL;
1da177e4 874}
941666c2 875EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 876
881d966b 877struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
878{
879 struct net_device *dev;
880
4e9cac2b 881 ASSERT_RTNL();
881d966b 882 for_each_netdev(net, dev)
4e9cac2b 883 if (dev->type == type)
7562f876
PE
884 return dev;
885
886 return NULL;
4e9cac2b 887}
4e9cac2b
PM
888EXPORT_SYMBOL(__dev_getfirstbyhwtype);
889
881d966b 890struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 891{
99fe3c39 892 struct net_device *dev, *ret = NULL;
4e9cac2b 893
99fe3c39
ED
894 rcu_read_lock();
895 for_each_netdev_rcu(net, dev)
896 if (dev->type == type) {
897 dev_hold(dev);
898 ret = dev;
899 break;
900 }
901 rcu_read_unlock();
902 return ret;
1da177e4 903}
1da177e4
LT
904EXPORT_SYMBOL(dev_getfirstbyhwtype);
905
906/**
6c555490 907 * __dev_get_by_flags - find any device with given flags
c4ea43c5 908 * @net: the applicable net namespace
1da177e4
LT
909 * @if_flags: IFF_* values
910 * @mask: bitmask of bits in if_flags to check
911 *
912 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 913 * is not found or a pointer to the device. Must be called inside
6c555490 914 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
915 */
916
6c555490
WC
917struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
918 unsigned short mask)
1da177e4 919{
7562f876 920 struct net_device *dev, *ret;
1da177e4 921
6c555490
WC
922 ASSERT_RTNL();
923
7562f876 924 ret = NULL;
6c555490 925 for_each_netdev(net, dev) {
1da177e4 926 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 927 ret = dev;
1da177e4
LT
928 break;
929 }
930 }
7562f876 931 return ret;
1da177e4 932}
6c555490 933EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
934
935/**
936 * dev_valid_name - check if name is okay for network device
937 * @name: name string
938 *
939 * Network device names need to be valid file names to
c7fa9d18
DM
940 * to allow sysfs to work. We also disallow any kind of
941 * whitespace.
1da177e4 942 */
95f050bf 943bool dev_valid_name(const char *name)
1da177e4 944{
c7fa9d18 945 if (*name == '\0')
95f050bf 946 return false;
a9d48205 947 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 948 return false;
c7fa9d18 949 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 950 return false;
c7fa9d18
DM
951
952 while (*name) {
a4176a93 953 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 954 return false;
c7fa9d18
DM
955 name++;
956 }
95f050bf 957 return true;
1da177e4 958}
d1b19dff 959EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
960
961/**
b267b179
EB
962 * __dev_alloc_name - allocate a name for a device
963 * @net: network namespace to allocate the device name in
1da177e4 964 * @name: name format string
b267b179 965 * @buf: scratch buffer and result name string
1da177e4
LT
966 *
967 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
968 * id. It scans list of devices to build up a free map, then chooses
969 * the first empty slot. The caller must hold the dev_base or rtnl lock
970 * while allocating the name and adding the device in order to avoid
971 * duplicates.
972 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
973 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
974 */
975
b267b179 976static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
977{
978 int i = 0;
1da177e4
LT
979 const char *p;
980 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 981 unsigned long *inuse;
1da177e4
LT
982 struct net_device *d;
983
93809105
RV
984 if (!dev_valid_name(name))
985 return -EINVAL;
986
51f299dd 987 p = strchr(name, '%');
1da177e4
LT
988 if (p) {
989 /*
990 * Verify the string as this thing may have come from
991 * the user. There must be either one "%d" and no other "%"
992 * characters.
993 */
994 if (p[1] != 'd' || strchr(p + 2, '%'))
995 return -EINVAL;
996
997 /* Use one page as a bit array of possible slots */
cfcabdcc 998 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
999 if (!inuse)
1000 return -ENOMEM;
1001
881d966b 1002 for_each_netdev(net, d) {
1da177e4
LT
1003 if (!sscanf(d->name, name, &i))
1004 continue;
1005 if (i < 0 || i >= max_netdevices)
1006 continue;
1007
1008 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1009 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1010 if (!strncmp(buf, d->name, IFNAMSIZ))
1011 set_bit(i, inuse);
1012 }
1013
1014 i = find_first_zero_bit(inuse, max_netdevices);
1015 free_page((unsigned long) inuse);
1016 }
1017
6224abda 1018 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1019 if (!__dev_get_by_name(net, buf))
1da177e4 1020 return i;
1da177e4
LT
1021
1022 /* It is possible to run out of possible slots
1023 * when the name is long and there isn't enough space left
1024 * for the digits, or if all bits are used.
1025 */
029b6d14 1026 return -ENFILE;
1da177e4
LT
1027}
1028
2c88b855
RV
1029static int dev_alloc_name_ns(struct net *net,
1030 struct net_device *dev,
1031 const char *name)
1032{
1033 char buf[IFNAMSIZ];
1034 int ret;
1035
c46d7642 1036 BUG_ON(!net);
2c88b855
RV
1037 ret = __dev_alloc_name(net, name, buf);
1038 if (ret >= 0)
1039 strlcpy(dev->name, buf, IFNAMSIZ);
1040 return ret;
1da177e4
LT
1041}
1042
b267b179
EB
1043/**
1044 * dev_alloc_name - allocate a name for a device
1045 * @dev: device
1046 * @name: name format string
1047 *
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1052 * duplicates.
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1055 */
1056
1057int dev_alloc_name(struct net_device *dev, const char *name)
1058{
c46d7642 1059 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1060}
d1b19dff 1061EXPORT_SYMBOL(dev_alloc_name);
b267b179 1062
0ad646c8
CW
1063int dev_get_valid_name(struct net *net, struct net_device *dev,
1064 const char *name)
828de4f6 1065{
55a5ec9b
DM
1066 BUG_ON(!net);
1067
1068 if (!dev_valid_name(name))
1069 return -EINVAL;
1070
1071 if (strchr(name, '%'))
1072 return dev_alloc_name_ns(net, dev, name);
1073 else if (__dev_get_by_name(net, name))
1074 return -EEXIST;
1075 else if (dev->name != name)
1076 strlcpy(dev->name, name, IFNAMSIZ);
1077
1078 return 0;
d9031024 1079}
0ad646c8 1080EXPORT_SYMBOL(dev_get_valid_name);
1da177e4
LT
1081
1082/**
1083 * dev_change_name - change name of a device
1084 * @dev: device
1085 * @newname: name (or format string) must be at least IFNAMSIZ
1086 *
1087 * Change name of a device, can pass format strings "eth%d".
1088 * for wildcarding.
1089 */
cf04a4c7 1090int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1091{
238fa362 1092 unsigned char old_assign_type;
fcc5a03a 1093 char oldname[IFNAMSIZ];
1da177e4 1094 int err = 0;
fcc5a03a 1095 int ret;
881d966b 1096 struct net *net;
1da177e4
LT
1097
1098 ASSERT_RTNL();
c346dca1 1099 BUG_ON(!dev_net(dev));
1da177e4 1100
c346dca1 1101 net = dev_net(dev);
8065a779
SWL
1102
1103 /* Some auto-enslaved devices e.g. failover slaves are
1104 * special, as userspace might rename the device after
1105 * the interface had been brought up and running since
1106 * the point kernel initiated auto-enslavement. Allow
1107 * live name change even when these slave devices are
1108 * up and running.
1109 *
1110 * Typically, users of these auto-enslaving devices
1111 * don't actually care about slave name change, as
1112 * they are supposed to operate on master interface
1113 * directly.
1114 */
1115 if (dev->flags & IFF_UP &&
1116 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1117 return -EBUSY;
1118
30e6c9fa 1119 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1120
1121 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1122 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1123 return 0;
c91f6df2 1124 }
c8d90dca 1125
fcc5a03a
HX
1126 memcpy(oldname, dev->name, IFNAMSIZ);
1127
828de4f6 1128 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1129 if (err < 0) {
30e6c9fa 1130 write_seqcount_end(&devnet_rename_seq);
d9031024 1131 return err;
c91f6df2 1132 }
1da177e4 1133
6fe82a39
VF
1134 if (oldname[0] && !strchr(oldname, '%'))
1135 netdev_info(dev, "renamed from %s\n", oldname);
1136
238fa362
TG
1137 old_assign_type = dev->name_assign_type;
1138 dev->name_assign_type = NET_NAME_RENAMED;
1139
fcc5a03a 1140rollback:
a1b3f594
EB
1141 ret = device_rename(&dev->dev, dev->name);
1142 if (ret) {
1143 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1144 dev->name_assign_type = old_assign_type;
30e6c9fa 1145 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1146 return ret;
dcc99773 1147 }
7f988eab 1148
30e6c9fa 1149 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1150
5bb025fa
VF
1151 netdev_adjacent_rename_links(dev, oldname);
1152
7f988eab 1153 write_lock_bh(&dev_base_lock);
372b2312 1154 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1155 write_unlock_bh(&dev_base_lock);
1156
1157 synchronize_rcu();
1158
1159 write_lock_bh(&dev_base_lock);
1160 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1161 write_unlock_bh(&dev_base_lock);
1162
056925ab 1163 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1164 ret = notifier_to_errno(ret);
1165
1166 if (ret) {
91e9c07b
ED
1167 /* err >= 0 after dev_alloc_name() or stores the first errno */
1168 if (err >= 0) {
fcc5a03a 1169 err = ret;
30e6c9fa 1170 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1171 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1172 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1173 dev->name_assign_type = old_assign_type;
1174 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1175 goto rollback;
91e9c07b 1176 } else {
7b6cd1ce 1177 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1178 dev->name, ret);
fcc5a03a
HX
1179 }
1180 }
1da177e4
LT
1181
1182 return err;
1183}
1184
0b815a1a
SH
1185/**
1186 * dev_set_alias - change ifalias of a device
1187 * @dev: device
1188 * @alias: name up to IFALIASZ
f0db275a 1189 * @len: limit of bytes to copy from info
0b815a1a
SH
1190 *
1191 * Set ifalias for a device,
1192 */
1193int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1194{
6c557001 1195 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1196
1197 if (len >= IFALIASZ)
1198 return -EINVAL;
1199
6c557001
FW
1200 if (len) {
1201 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1202 if (!new_alias)
1203 return -ENOMEM;
1204
1205 memcpy(new_alias->ifalias, alias, len);
1206 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1207 }
1208
6c557001
FW
1209 mutex_lock(&ifalias_mutex);
1210 rcu_swap_protected(dev->ifalias, new_alias,
1211 mutex_is_locked(&ifalias_mutex));
1212 mutex_unlock(&ifalias_mutex);
1213
1214 if (new_alias)
1215 kfree_rcu(new_alias, rcuhead);
0b815a1a 1216
0b815a1a
SH
1217 return len;
1218}
0fe554a4 1219EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1220
6c557001
FW
1221/**
1222 * dev_get_alias - get ifalias of a device
1223 * @dev: device
20e88320 1224 * @name: buffer to store name of ifalias
6c557001
FW
1225 * @len: size of buffer
1226 *
1227 * get ifalias for a device. Caller must make sure dev cannot go
1228 * away, e.g. rcu read lock or own a reference count to device.
1229 */
1230int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1231{
1232 const struct dev_ifalias *alias;
1233 int ret = 0;
1234
1235 rcu_read_lock();
1236 alias = rcu_dereference(dev->ifalias);
1237 if (alias)
1238 ret = snprintf(name, len, "%s", alias->ifalias);
1239 rcu_read_unlock();
1240
1241 return ret;
1242}
0b815a1a 1243
d8a33ac4 1244/**
3041a069 1245 * netdev_features_change - device changes features
d8a33ac4
SH
1246 * @dev: device to cause notification
1247 *
1248 * Called to indicate a device has changed features.
1249 */
1250void netdev_features_change(struct net_device *dev)
1251{
056925ab 1252 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1253}
1254EXPORT_SYMBOL(netdev_features_change);
1255
1da177e4
LT
1256/**
1257 * netdev_state_change - device changes state
1258 * @dev: device to cause notification
1259 *
1260 * Called to indicate a device has changed state. This function calls
1261 * the notifier chains for netdev_chain and sends a NEWLINK message
1262 * to the routing socket.
1263 */
1264void netdev_state_change(struct net_device *dev)
1265{
1266 if (dev->flags & IFF_UP) {
51d0c047
DA
1267 struct netdev_notifier_change_info change_info = {
1268 .info.dev = dev,
1269 };
54951194 1270
51d0c047 1271 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1272 &change_info.info);
7f294054 1273 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1274 }
1275}
d1b19dff 1276EXPORT_SYMBOL(netdev_state_change);
1da177e4 1277
ee89bab1 1278/**
722c9a0c 1279 * netdev_notify_peers - notify network peers about existence of @dev
1280 * @dev: network device
ee89bab1
AW
1281 *
1282 * Generate traffic such that interested network peers are aware of
1283 * @dev, such as by generating a gratuitous ARP. This may be used when
1284 * a device wants to inform the rest of the network about some sort of
1285 * reconfiguration such as a failover event or virtual machine
1286 * migration.
1287 */
1288void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1289{
ee89bab1
AW
1290 rtnl_lock();
1291 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1292 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1293 rtnl_unlock();
c1da4ac7 1294}
ee89bab1 1295EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1296
40c900aa 1297static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1298{
d314774c 1299 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1300 int ret;
1da177e4 1301
e46b66bc
BH
1302 ASSERT_RTNL();
1303
1da177e4
LT
1304 if (!netif_device_present(dev))
1305 return -ENODEV;
1306
ca99ca14
NH
1307 /* Block netpoll from trying to do any rx path servicing.
1308 * If we don't do this there is a chance ndo_poll_controller
1309 * or ndo_poll may be running while we open the device
1310 */
66b5552f 1311 netpoll_poll_disable(dev);
ca99ca14 1312
40c900aa 1313 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1314 ret = notifier_to_errno(ret);
1315 if (ret)
1316 return ret;
1317
1da177e4 1318 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1319
d314774c
SH
1320 if (ops->ndo_validate_addr)
1321 ret = ops->ndo_validate_addr(dev);
bada339b 1322
d314774c
SH
1323 if (!ret && ops->ndo_open)
1324 ret = ops->ndo_open(dev);
1da177e4 1325
66b5552f 1326 netpoll_poll_enable(dev);
ca99ca14 1327
bada339b
JG
1328 if (ret)
1329 clear_bit(__LINK_STATE_START, &dev->state);
1330 else {
1da177e4 1331 dev->flags |= IFF_UP;
4417da66 1332 dev_set_rx_mode(dev);
1da177e4 1333 dev_activate(dev);
7bf23575 1334 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1335 }
bada339b 1336
1da177e4
LT
1337 return ret;
1338}
1339
1340/**
bd380811 1341 * dev_open - prepare an interface for use.
00f54e68
PM
1342 * @dev: device to open
1343 * @extack: netlink extended ack
1da177e4 1344 *
bd380811
PM
1345 * Takes a device from down to up state. The device's private open
1346 * function is invoked and then the multicast lists are loaded. Finally
1347 * the device is moved into the up state and a %NETDEV_UP message is
1348 * sent to the netdev notifier chain.
1349 *
1350 * Calling this function on an active interface is a nop. On a failure
1351 * a negative errno code is returned.
1da177e4 1352 */
00f54e68 1353int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1354{
1355 int ret;
1356
bd380811
PM
1357 if (dev->flags & IFF_UP)
1358 return 0;
1359
40c900aa 1360 ret = __dev_open(dev, extack);
bd380811
PM
1361 if (ret < 0)
1362 return ret;
1363
7f294054 1364 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1365 call_netdevice_notifiers(NETDEV_UP, dev);
1366
1367 return ret;
1368}
1369EXPORT_SYMBOL(dev_open);
1370
7051b88a 1371static void __dev_close_many(struct list_head *head)
1da177e4 1372{
44345724 1373 struct net_device *dev;
e46b66bc 1374
bd380811 1375 ASSERT_RTNL();
9d5010db
DM
1376 might_sleep();
1377
5cde2829 1378 list_for_each_entry(dev, head, close_list) {
3f4df206 1379 /* Temporarily disable netpoll until the interface is down */
66b5552f 1380 netpoll_poll_disable(dev);
3f4df206 1381
44345724 1382 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1383
44345724 1384 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1385
44345724
OP
1386 /* Synchronize to scheduled poll. We cannot touch poll list, it
1387 * can be even on different cpu. So just clear netif_running().
1388 *
1389 * dev->stop() will invoke napi_disable() on all of it's
1390 * napi_struct instances on this device.
1391 */
4e857c58 1392 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1393 }
1da177e4 1394
44345724 1395 dev_deactivate_many(head);
d8b2a4d2 1396
5cde2829 1397 list_for_each_entry(dev, head, close_list) {
44345724 1398 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1399
44345724
OP
1400 /*
1401 * Call the device specific close. This cannot fail.
1402 * Only if device is UP
1403 *
1404 * We allow it to be called even after a DETACH hot-plug
1405 * event.
1406 */
1407 if (ops->ndo_stop)
1408 ops->ndo_stop(dev);
1409
44345724 1410 dev->flags &= ~IFF_UP;
66b5552f 1411 netpoll_poll_enable(dev);
44345724 1412 }
44345724
OP
1413}
1414
7051b88a 1415static void __dev_close(struct net_device *dev)
44345724
OP
1416{
1417 LIST_HEAD(single);
1418
5cde2829 1419 list_add(&dev->close_list, &single);
7051b88a 1420 __dev_close_many(&single);
f87e6f47 1421 list_del(&single);
44345724
OP
1422}
1423
7051b88a 1424void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1425{
1426 struct net_device *dev, *tmp;
1da177e4 1427
5cde2829
EB
1428 /* Remove the devices that don't need to be closed */
1429 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1430 if (!(dev->flags & IFF_UP))
5cde2829 1431 list_del_init(&dev->close_list);
44345724
OP
1432
1433 __dev_close_many(head);
1da177e4 1434
5cde2829 1435 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1436 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1437 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1438 if (unlink)
1439 list_del_init(&dev->close_list);
44345724 1440 }
bd380811 1441}
99c4a26a 1442EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1443
1444/**
1445 * dev_close - shutdown an interface.
1446 * @dev: device to shutdown
1447 *
1448 * This function moves an active device into down state. A
1449 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1450 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1451 * chain.
1452 */
7051b88a 1453void dev_close(struct net_device *dev)
bd380811 1454{
e14a5993
ED
1455 if (dev->flags & IFF_UP) {
1456 LIST_HEAD(single);
1da177e4 1457
5cde2829 1458 list_add(&dev->close_list, &single);
99c4a26a 1459 dev_close_many(&single, true);
e14a5993
ED
1460 list_del(&single);
1461 }
1da177e4 1462}
d1b19dff 1463EXPORT_SYMBOL(dev_close);
1da177e4
LT
1464
1465
0187bdfb
BH
1466/**
1467 * dev_disable_lro - disable Large Receive Offload on a device
1468 * @dev: device
1469 *
1470 * Disable Large Receive Offload (LRO) on a net device. Must be
1471 * called under RTNL. This is needed if received packets may be
1472 * forwarded to another interface.
1473 */
1474void dev_disable_lro(struct net_device *dev)
1475{
fbe168ba
MK
1476 struct net_device *lower_dev;
1477 struct list_head *iter;
529d0489 1478
bc5787c6
MM
1479 dev->wanted_features &= ~NETIF_F_LRO;
1480 netdev_update_features(dev);
27660515 1481
22d5969f
MM
1482 if (unlikely(dev->features & NETIF_F_LRO))
1483 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1484
1485 netdev_for_each_lower_dev(dev, lower_dev, iter)
1486 dev_disable_lro(lower_dev);
0187bdfb
BH
1487}
1488EXPORT_SYMBOL(dev_disable_lro);
1489
56f5aa77
MC
1490/**
1491 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1492 * @dev: device
1493 *
1494 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1495 * called under RTNL. This is needed if Generic XDP is installed on
1496 * the device.
1497 */
1498static void dev_disable_gro_hw(struct net_device *dev)
1499{
1500 dev->wanted_features &= ~NETIF_F_GRO_HW;
1501 netdev_update_features(dev);
1502
1503 if (unlikely(dev->features & NETIF_F_GRO_HW))
1504 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1505}
1506
ede2762d
KT
1507const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1508{
1509#define N(val) \
1510 case NETDEV_##val: \
1511 return "NETDEV_" __stringify(val);
1512 switch (cmd) {
1513 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1514 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1515 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1516 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1517 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1518 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1519 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1520 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1521 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1522 N(PRE_CHANGEADDR)
3f5ecd8a 1523 }
ede2762d
KT
1524#undef N
1525 return "UNKNOWN_NETDEV_EVENT";
1526}
1527EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1528
351638e7
JP
1529static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1530 struct net_device *dev)
1531{
51d0c047
DA
1532 struct netdev_notifier_info info = {
1533 .dev = dev,
1534 };
351638e7 1535
351638e7
JP
1536 return nb->notifier_call(nb, val, &info);
1537}
0187bdfb 1538
881d966b
EB
1539static int dev_boot_phase = 1;
1540
1da177e4 1541/**
722c9a0c 1542 * register_netdevice_notifier - register a network notifier block
1543 * @nb: notifier
1da177e4 1544 *
722c9a0c 1545 * Register a notifier to be called when network device events occur.
1546 * The notifier passed is linked into the kernel structures and must
1547 * not be reused until it has been unregistered. A negative errno code
1548 * is returned on a failure.
1da177e4 1549 *
722c9a0c 1550 * When registered all registration and up events are replayed
1551 * to the new notifier to allow device to have a race free
1552 * view of the network device list.
1da177e4
LT
1553 */
1554
1555int register_netdevice_notifier(struct notifier_block *nb)
1556{
1557 struct net_device *dev;
fcc5a03a 1558 struct net_device *last;
881d966b 1559 struct net *net;
1da177e4
LT
1560 int err;
1561
328fbe74
KT
1562 /* Close race with setup_net() and cleanup_net() */
1563 down_write(&pernet_ops_rwsem);
1da177e4 1564 rtnl_lock();
f07d5b94 1565 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1566 if (err)
1567 goto unlock;
881d966b
EB
1568 if (dev_boot_phase)
1569 goto unlock;
1570 for_each_net(net) {
1571 for_each_netdev(net, dev) {
351638e7 1572 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1573 err = notifier_to_errno(err);
1574 if (err)
1575 goto rollback;
1576
1577 if (!(dev->flags & IFF_UP))
1578 continue;
1da177e4 1579
351638e7 1580 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1581 }
1da177e4 1582 }
fcc5a03a
HX
1583
1584unlock:
1da177e4 1585 rtnl_unlock();
328fbe74 1586 up_write(&pernet_ops_rwsem);
1da177e4 1587 return err;
fcc5a03a
HX
1588
1589rollback:
1590 last = dev;
881d966b
EB
1591 for_each_net(net) {
1592 for_each_netdev(net, dev) {
1593 if (dev == last)
8f891489 1594 goto outroll;
fcc5a03a 1595
881d966b 1596 if (dev->flags & IFF_UP) {
351638e7
JP
1597 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1598 dev);
1599 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1600 }
351638e7 1601 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1602 }
fcc5a03a 1603 }
c67625a1 1604
8f891489 1605outroll:
c67625a1 1606 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1607 goto unlock;
1da177e4 1608}
d1b19dff 1609EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1610
1611/**
722c9a0c 1612 * unregister_netdevice_notifier - unregister a network notifier block
1613 * @nb: notifier
1da177e4 1614 *
722c9a0c 1615 * Unregister a notifier previously registered by
1616 * register_netdevice_notifier(). The notifier is unlinked into the
1617 * kernel structures and may then be reused. A negative errno code
1618 * is returned on a failure.
7d3d43da 1619 *
722c9a0c 1620 * After unregistering unregister and down device events are synthesized
1621 * for all devices on the device list to the removed notifier to remove
1622 * the need for special case cleanup code.
1da177e4
LT
1623 */
1624
1625int unregister_netdevice_notifier(struct notifier_block *nb)
1626{
7d3d43da
EB
1627 struct net_device *dev;
1628 struct net *net;
9f514950
HX
1629 int err;
1630
328fbe74
KT
1631 /* Close race with setup_net() and cleanup_net() */
1632 down_write(&pernet_ops_rwsem);
9f514950 1633 rtnl_lock();
f07d5b94 1634 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1635 if (err)
1636 goto unlock;
1637
1638 for_each_net(net) {
1639 for_each_netdev(net, dev) {
1640 if (dev->flags & IFF_UP) {
351638e7
JP
1641 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1642 dev);
1643 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1644 }
351638e7 1645 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1646 }
1647 }
1648unlock:
9f514950 1649 rtnl_unlock();
328fbe74 1650 up_write(&pernet_ops_rwsem);
9f514950 1651 return err;
1da177e4 1652}
d1b19dff 1653EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1654
351638e7
JP
1655/**
1656 * call_netdevice_notifiers_info - call all network notifier blocks
1657 * @val: value passed unmodified to notifier function
351638e7
JP
1658 * @info: notifier information data
1659 *
1660 * Call all network notifier blocks. Parameters and return value
1661 * are as for raw_notifier_call_chain().
1662 */
1663
1d143d9f 1664static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1665 struct netdev_notifier_info *info)
351638e7
JP
1666{
1667 ASSERT_RTNL();
351638e7
JP
1668 return raw_notifier_call_chain(&netdev_chain, val, info);
1669}
351638e7 1670
26372605
PM
1671static int call_netdevice_notifiers_extack(unsigned long val,
1672 struct net_device *dev,
1673 struct netlink_ext_ack *extack)
1674{
1675 struct netdev_notifier_info info = {
1676 .dev = dev,
1677 .extack = extack,
1678 };
1679
1680 return call_netdevice_notifiers_info(val, &info);
1681}
1682
1da177e4
LT
1683/**
1684 * call_netdevice_notifiers - call all network notifier blocks
1685 * @val: value passed unmodified to notifier function
c4ea43c5 1686 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1687 *
1688 * Call all network notifier blocks. Parameters and return value
f07d5b94 1689 * are as for raw_notifier_call_chain().
1da177e4
LT
1690 */
1691
ad7379d4 1692int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1693{
26372605 1694 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 1695}
edf947f1 1696EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1697
af7d6cce
SD
1698/**
1699 * call_netdevice_notifiers_mtu - call all network notifier blocks
1700 * @val: value passed unmodified to notifier function
1701 * @dev: net_device pointer passed unmodified to notifier function
1702 * @arg: additional u32 argument passed to the notifier function
1703 *
1704 * Call all network notifier blocks. Parameters and return value
1705 * are as for raw_notifier_call_chain().
1706 */
1707static int call_netdevice_notifiers_mtu(unsigned long val,
1708 struct net_device *dev, u32 arg)
1709{
1710 struct netdev_notifier_info_ext info = {
1711 .info.dev = dev,
1712 .ext.mtu = arg,
1713 };
1714
1715 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1716
1717 return call_netdevice_notifiers_info(val, &info.info);
1718}
1719
1cf51900 1720#ifdef CONFIG_NET_INGRESS
aabf6772 1721static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
1722
1723void net_inc_ingress_queue(void)
1724{
aabf6772 1725 static_branch_inc(&ingress_needed_key);
4577139b
DB
1726}
1727EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1728
1729void net_dec_ingress_queue(void)
1730{
aabf6772 1731 static_branch_dec(&ingress_needed_key);
4577139b
DB
1732}
1733EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1734#endif
1735
1f211a1b 1736#ifdef CONFIG_NET_EGRESS
aabf6772 1737static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
1738
1739void net_inc_egress_queue(void)
1740{
aabf6772 1741 static_branch_inc(&egress_needed_key);
1f211a1b
DB
1742}
1743EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1744
1745void net_dec_egress_queue(void)
1746{
aabf6772 1747 static_branch_dec(&egress_needed_key);
1f211a1b
DB
1748}
1749EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1750#endif
1751
39e83922 1752static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 1753#ifdef CONFIG_JUMP_LABEL
b90e5794 1754static atomic_t netstamp_needed_deferred;
13baa00a 1755static atomic_t netstamp_wanted;
5fa8bbda 1756static void netstamp_clear(struct work_struct *work)
1da177e4 1757{
b90e5794 1758 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1759 int wanted;
b90e5794 1760
13baa00a
ED
1761 wanted = atomic_add_return(deferred, &netstamp_wanted);
1762 if (wanted > 0)
39e83922 1763 static_branch_enable(&netstamp_needed_key);
13baa00a 1764 else
39e83922 1765 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
1766}
1767static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1768#endif
5fa8bbda
ED
1769
1770void net_enable_timestamp(void)
1771{
e9666d10 1772#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
1773 int wanted;
1774
1775 while (1) {
1776 wanted = atomic_read(&netstamp_wanted);
1777 if (wanted <= 0)
1778 break;
1779 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1780 return;
1781 }
1782 atomic_inc(&netstamp_needed_deferred);
1783 schedule_work(&netstamp_work);
1784#else
39e83922 1785 static_branch_inc(&netstamp_needed_key);
13baa00a 1786#endif
1da177e4 1787}
d1b19dff 1788EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1789
1790void net_disable_timestamp(void)
1791{
e9666d10 1792#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
1793 int wanted;
1794
1795 while (1) {
1796 wanted = atomic_read(&netstamp_wanted);
1797 if (wanted <= 1)
1798 break;
1799 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1800 return;
1801 }
1802 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1803 schedule_work(&netstamp_work);
1804#else
39e83922 1805 static_branch_dec(&netstamp_needed_key);
5fa8bbda 1806#endif
1da177e4 1807}
d1b19dff 1808EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1809
3b098e2d 1810static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1811{
2456e855 1812 skb->tstamp = 0;
39e83922 1813 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 1814 __net_timestamp(skb);
1da177e4
LT
1815}
1816
39e83922
DB
1817#define net_timestamp_check(COND, SKB) \
1818 if (static_branch_unlikely(&netstamp_needed_key)) { \
1819 if ((COND) && !(SKB)->tstamp) \
1820 __net_timestamp(SKB); \
1821 } \
3b098e2d 1822
f4b05d27 1823bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1824{
1825 unsigned int len;
1826
1827 if (!(dev->flags & IFF_UP))
1828 return false;
1829
1830 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1831 if (skb->len <= len)
1832 return true;
1833
1834 /* if TSO is enabled, we don't care about the length as the packet
1835 * could be forwarded without being segmented before
1836 */
1837 if (skb_is_gso(skb))
1838 return true;
1839
1840 return false;
1841}
1ee481fb 1842EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1843
a0265d28
HX
1844int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1845{
4e3264d2 1846 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1847
4e3264d2
MKL
1848 if (likely(!ret)) {
1849 skb->protocol = eth_type_trans(skb, dev);
1850 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1851 }
a0265d28 1852
4e3264d2 1853 return ret;
a0265d28
HX
1854}
1855EXPORT_SYMBOL_GPL(__dev_forward_skb);
1856
44540960
AB
1857/**
1858 * dev_forward_skb - loopback an skb to another netif
1859 *
1860 * @dev: destination network device
1861 * @skb: buffer to forward
1862 *
1863 * return values:
1864 * NET_RX_SUCCESS (no congestion)
6ec82562 1865 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1866 *
1867 * dev_forward_skb can be used for injecting an skb from the
1868 * start_xmit function of one device into the receive queue
1869 * of another device.
1870 *
1871 * The receiving device may be in another namespace, so
1872 * we have to clear all information in the skb that could
1873 * impact namespace isolation.
1874 */
1875int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1876{
a0265d28 1877 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1878}
1879EXPORT_SYMBOL_GPL(dev_forward_skb);
1880
71d9dec2
CG
1881static inline int deliver_skb(struct sk_buff *skb,
1882 struct packet_type *pt_prev,
1883 struct net_device *orig_dev)
1884{
1f8b977a 1885 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1886 return -ENOMEM;
63354797 1887 refcount_inc(&skb->users);
71d9dec2
CG
1888 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1889}
1890
7866a621
SN
1891static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1892 struct packet_type **pt,
fbcb2170
JP
1893 struct net_device *orig_dev,
1894 __be16 type,
7866a621
SN
1895 struct list_head *ptype_list)
1896{
1897 struct packet_type *ptype, *pt_prev = *pt;
1898
1899 list_for_each_entry_rcu(ptype, ptype_list, list) {
1900 if (ptype->type != type)
1901 continue;
1902 if (pt_prev)
fbcb2170 1903 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1904 pt_prev = ptype;
1905 }
1906 *pt = pt_prev;
1907}
1908
c0de08d0
EL
1909static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1910{
a3d744e9 1911 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1912 return false;
1913
1914 if (ptype->id_match)
1915 return ptype->id_match(ptype, skb->sk);
1916 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1917 return true;
1918
1919 return false;
1920}
1921
9f9a742d
MR
1922/**
1923 * dev_nit_active - return true if any network interface taps are in use
1924 *
1925 * @dev: network device to check for the presence of taps
1926 */
1927bool dev_nit_active(struct net_device *dev)
1928{
1929 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1930}
1931EXPORT_SYMBOL_GPL(dev_nit_active);
1932
1da177e4
LT
1933/*
1934 * Support routine. Sends outgoing frames to any network
1935 * taps currently in use.
1936 */
1937
74b20582 1938void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1939{
1940 struct packet_type *ptype;
71d9dec2
CG
1941 struct sk_buff *skb2 = NULL;
1942 struct packet_type *pt_prev = NULL;
7866a621 1943 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1944
1da177e4 1945 rcu_read_lock();
7866a621
SN
1946again:
1947 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
1948 if (ptype->ignore_outgoing)
1949 continue;
1950
1da177e4
LT
1951 /* Never send packets back to the socket
1952 * they originated from - MvS (miquels@drinkel.ow.org)
1953 */
7866a621
SN
1954 if (skb_loop_sk(ptype, skb))
1955 continue;
71d9dec2 1956
7866a621
SN
1957 if (pt_prev) {
1958 deliver_skb(skb2, pt_prev, skb->dev);
1959 pt_prev = ptype;
1960 continue;
1961 }
1da177e4 1962
7866a621
SN
1963 /* need to clone skb, done only once */
1964 skb2 = skb_clone(skb, GFP_ATOMIC);
1965 if (!skb2)
1966 goto out_unlock;
70978182 1967
7866a621 1968 net_timestamp_set(skb2);
1da177e4 1969
7866a621
SN
1970 /* skb->nh should be correctly
1971 * set by sender, so that the second statement is
1972 * just protection against buggy protocols.
1973 */
1974 skb_reset_mac_header(skb2);
1975
1976 if (skb_network_header(skb2) < skb2->data ||
1977 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1978 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1979 ntohs(skb2->protocol),
1980 dev->name);
1981 skb_reset_network_header(skb2);
1da177e4 1982 }
7866a621
SN
1983
1984 skb2->transport_header = skb2->network_header;
1985 skb2->pkt_type = PACKET_OUTGOING;
1986 pt_prev = ptype;
1987 }
1988
1989 if (ptype_list == &ptype_all) {
1990 ptype_list = &dev->ptype_all;
1991 goto again;
1da177e4 1992 }
7866a621 1993out_unlock:
581fe0ea
WB
1994 if (pt_prev) {
1995 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1996 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1997 else
1998 kfree_skb(skb2);
1999 }
1da177e4
LT
2000 rcu_read_unlock();
2001}
74b20582 2002EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2003
2c53040f
BH
2004/**
2005 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2006 * @dev: Network device
2007 * @txq: number of queues available
2008 *
2009 * If real_num_tx_queues is changed the tc mappings may no longer be
2010 * valid. To resolve this verify the tc mapping remains valid and if
2011 * not NULL the mapping. With no priorities mapping to this
2012 * offset/count pair it will no longer be used. In the worst case TC0
2013 * is invalid nothing can be done so disable priority mappings. If is
2014 * expected that drivers will fix this mapping if they can before
2015 * calling netif_set_real_num_tx_queues.
2016 */
bb134d22 2017static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2018{
2019 int i;
2020 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2021
2022 /* If TC0 is invalidated disable TC mapping */
2023 if (tc->offset + tc->count > txq) {
7b6cd1ce 2024 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2025 dev->num_tc = 0;
2026 return;
2027 }
2028
2029 /* Invalidated prio to tc mappings set to TC0 */
2030 for (i = 1; i < TC_BITMASK + 1; i++) {
2031 int q = netdev_get_prio_tc_map(dev, i);
2032
2033 tc = &dev->tc_to_txq[q];
2034 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2035 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2036 i, q);
4f57c087
JF
2037 netdev_set_prio_tc_map(dev, i, 0);
2038 }
2039 }
2040}
2041
8d059b0f
AD
2042int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2043{
2044 if (dev->num_tc) {
2045 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2046 int i;
2047
ffcfe25b 2048 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2049 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2050 if ((txq - tc->offset) < tc->count)
2051 return i;
2052 }
2053
ffcfe25b 2054 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2055 return -1;
2056 }
2057
2058 return 0;
2059}
8a5f2166 2060EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2061
537c00de 2062#ifdef CONFIG_XPS
04157469
AN
2063struct static_key xps_needed __read_mostly;
2064EXPORT_SYMBOL(xps_needed);
2065struct static_key xps_rxqs_needed __read_mostly;
2066EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2067static DEFINE_MUTEX(xps_map_mutex);
2068#define xmap_dereference(P) \
2069 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2070
6234f874
AD
2071static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2072 int tci, u16 index)
537c00de 2073{
10cdc3f3
AD
2074 struct xps_map *map = NULL;
2075 int pos;
537c00de 2076
10cdc3f3 2077 if (dev_maps)
80d19669 2078 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2079 if (!map)
2080 return false;
537c00de 2081
6234f874
AD
2082 for (pos = map->len; pos--;) {
2083 if (map->queues[pos] != index)
2084 continue;
2085
2086 if (map->len > 1) {
2087 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2088 break;
537c00de 2089 }
6234f874 2090
80d19669 2091 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2092 kfree_rcu(map, rcu);
2093 return false;
537c00de
AD
2094 }
2095
6234f874 2096 return true;
10cdc3f3
AD
2097}
2098
6234f874
AD
2099static bool remove_xps_queue_cpu(struct net_device *dev,
2100 struct xps_dev_maps *dev_maps,
2101 int cpu, u16 offset, u16 count)
2102{
184c449f
AD
2103 int num_tc = dev->num_tc ? : 1;
2104 bool active = false;
2105 int tci;
6234f874 2106
184c449f
AD
2107 for (tci = cpu * num_tc; num_tc--; tci++) {
2108 int i, j;
2109
2110 for (i = count, j = offset; i--; j++) {
6358d49a 2111 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2112 break;
2113 }
2114
2115 active |= i < 0;
6234f874
AD
2116 }
2117
184c449f 2118 return active;
6234f874
AD
2119}
2120
867d0ad4
SD
2121static void reset_xps_maps(struct net_device *dev,
2122 struct xps_dev_maps *dev_maps,
2123 bool is_rxqs_map)
2124{
2125 if (is_rxqs_map) {
2126 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2127 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2128 } else {
2129 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2130 }
2131 static_key_slow_dec_cpuslocked(&xps_needed);
2132 kfree_rcu(dev_maps, rcu);
2133}
2134
80d19669
AN
2135static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2136 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2137 u16 offset, u16 count, bool is_rxqs_map)
2138{
2139 bool active = false;
2140 int i, j;
2141
2142 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2143 j < nr_ids;)
2144 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2145 count);
867d0ad4
SD
2146 if (!active)
2147 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2148
f28c020f
SD
2149 if (!is_rxqs_map) {
2150 for (i = offset + (count - 1); count--; i--) {
2151 netdev_queue_numa_node_write(
2152 netdev_get_tx_queue(dev, i),
2153 NUMA_NO_NODE);
80d19669 2154 }
80d19669
AN
2155 }
2156}
2157
6234f874
AD
2158static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2159 u16 count)
10cdc3f3 2160{
80d19669 2161 const unsigned long *possible_mask = NULL;
10cdc3f3 2162 struct xps_dev_maps *dev_maps;
80d19669 2163 unsigned int nr_ids;
10cdc3f3 2164
04157469
AN
2165 if (!static_key_false(&xps_needed))
2166 return;
10cdc3f3 2167
4d99f660 2168 cpus_read_lock();
04157469 2169 mutex_lock(&xps_map_mutex);
10cdc3f3 2170
04157469
AN
2171 if (static_key_false(&xps_rxqs_needed)) {
2172 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2173 if (dev_maps) {
2174 nr_ids = dev->num_rx_queues;
2175 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2176 offset, count, true);
2177 }
537c00de
AD
2178 }
2179
80d19669
AN
2180 dev_maps = xmap_dereference(dev->xps_cpus_map);
2181 if (!dev_maps)
2182 goto out_no_maps;
2183
2184 if (num_possible_cpus() > 1)
2185 possible_mask = cpumask_bits(cpu_possible_mask);
2186 nr_ids = nr_cpu_ids;
2187 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2188 false);
024e9679 2189
537c00de
AD
2190out_no_maps:
2191 mutex_unlock(&xps_map_mutex);
4d99f660 2192 cpus_read_unlock();
537c00de
AD
2193}
2194
6234f874
AD
2195static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2196{
2197 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2198}
2199
80d19669
AN
2200static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2201 u16 index, bool is_rxqs_map)
01c5f864
AD
2202{
2203 struct xps_map *new_map;
2204 int alloc_len = XPS_MIN_MAP_ALLOC;
2205 int i, pos;
2206
2207 for (pos = 0; map && pos < map->len; pos++) {
2208 if (map->queues[pos] != index)
2209 continue;
2210 return map;
2211 }
2212
80d19669 2213 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2214 if (map) {
2215 if (pos < map->alloc_len)
2216 return map;
2217
2218 alloc_len = map->alloc_len * 2;
2219 }
2220
80d19669
AN
2221 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2222 * map
2223 */
2224 if (is_rxqs_map)
2225 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2226 else
2227 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2228 cpu_to_node(attr_index));
01c5f864
AD
2229 if (!new_map)
2230 return NULL;
2231
2232 for (i = 0; i < pos; i++)
2233 new_map->queues[i] = map->queues[i];
2234 new_map->alloc_len = alloc_len;
2235 new_map->len = pos;
2236
2237 return new_map;
2238}
2239
4d99f660 2240/* Must be called under cpus_read_lock */
80d19669
AN
2241int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2242 u16 index, bool is_rxqs_map)
537c00de 2243{
80d19669 2244 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2245 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2246 int i, j, tci, numa_node_id = -2;
184c449f 2247 int maps_sz, num_tc = 1, tc = 0;
537c00de 2248 struct xps_map *map, *new_map;
01c5f864 2249 bool active = false;
80d19669 2250 unsigned int nr_ids;
537c00de 2251
184c449f 2252 if (dev->num_tc) {
ffcfe25b 2253 /* Do not allow XPS on subordinate device directly */
184c449f 2254 num_tc = dev->num_tc;
ffcfe25b
AD
2255 if (num_tc < 0)
2256 return -EINVAL;
2257
2258 /* If queue belongs to subordinate dev use its map */
2259 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2260
184c449f
AD
2261 tc = netdev_txq_to_tc(dev, index);
2262 if (tc < 0)
2263 return -EINVAL;
2264 }
2265
537c00de 2266 mutex_lock(&xps_map_mutex);
80d19669
AN
2267 if (is_rxqs_map) {
2268 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2269 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2270 nr_ids = dev->num_rx_queues;
2271 } else {
2272 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2273 if (num_possible_cpus() > 1) {
2274 online_mask = cpumask_bits(cpu_online_mask);
2275 possible_mask = cpumask_bits(cpu_possible_mask);
2276 }
2277 dev_maps = xmap_dereference(dev->xps_cpus_map);
2278 nr_ids = nr_cpu_ids;
2279 }
537c00de 2280
80d19669
AN
2281 if (maps_sz < L1_CACHE_BYTES)
2282 maps_sz = L1_CACHE_BYTES;
537c00de 2283
01c5f864 2284 /* allocate memory for queue storage */
80d19669
AN
2285 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2286 j < nr_ids;) {
01c5f864
AD
2287 if (!new_dev_maps)
2288 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2289 if (!new_dev_maps) {
2290 mutex_unlock(&xps_map_mutex);
01c5f864 2291 return -ENOMEM;
2bb60cb9 2292 }
01c5f864 2293
80d19669
AN
2294 tci = j * num_tc + tc;
2295 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2296 NULL;
2297
80d19669 2298 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2299 if (!map)
2300 goto error;
2301
80d19669 2302 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2303 }
2304
2305 if (!new_dev_maps)
2306 goto out_no_new_maps;
2307
867d0ad4
SD
2308 if (!dev_maps) {
2309 /* Increment static keys at most once per type */
2310 static_key_slow_inc_cpuslocked(&xps_needed);
2311 if (is_rxqs_map)
2312 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2313 }
04157469 2314
80d19669
AN
2315 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2316 j < nr_ids;) {
184c449f 2317 /* copy maps belonging to foreign traffic classes */
80d19669 2318 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2319 /* fill in the new device map from the old device map */
80d19669
AN
2320 map = xmap_dereference(dev_maps->attr_map[tci]);
2321 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2322 }
2323
2324 /* We need to explicitly update tci as prevous loop
2325 * could break out early if dev_maps is NULL.
2326 */
80d19669 2327 tci = j * num_tc + tc;
184c449f 2328
80d19669
AN
2329 if (netif_attr_test_mask(j, mask, nr_ids) &&
2330 netif_attr_test_online(j, online_mask, nr_ids)) {
2331 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2332 int pos = 0;
2333
80d19669 2334 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2335 while ((pos < map->len) && (map->queues[pos] != index))
2336 pos++;
2337
2338 if (pos == map->len)
2339 map->queues[map->len++] = index;
537c00de 2340#ifdef CONFIG_NUMA
80d19669
AN
2341 if (!is_rxqs_map) {
2342 if (numa_node_id == -2)
2343 numa_node_id = cpu_to_node(j);
2344 else if (numa_node_id != cpu_to_node(j))
2345 numa_node_id = -1;
2346 }
537c00de 2347#endif
01c5f864
AD
2348 } else if (dev_maps) {
2349 /* fill in the new device map from the old device map */
80d19669
AN
2350 map = xmap_dereference(dev_maps->attr_map[tci]);
2351 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2352 }
01c5f864 2353
184c449f
AD
2354 /* copy maps belonging to foreign traffic classes */
2355 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2356 /* fill in the new device map from the old device map */
80d19669
AN
2357 map = xmap_dereference(dev_maps->attr_map[tci]);
2358 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2359 }
537c00de
AD
2360 }
2361
80d19669
AN
2362 if (is_rxqs_map)
2363 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2364 else
2365 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2366
537c00de 2367 /* Cleanup old maps */
184c449f
AD
2368 if (!dev_maps)
2369 goto out_no_old_maps;
2370
80d19669
AN
2371 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2372 j < nr_ids;) {
2373 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2374 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2375 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2376 if (map && map != new_map)
2377 kfree_rcu(map, rcu);
2378 }
537c00de
AD
2379 }
2380
184c449f
AD
2381 kfree_rcu(dev_maps, rcu);
2382
2383out_no_old_maps:
01c5f864
AD
2384 dev_maps = new_dev_maps;
2385 active = true;
537c00de 2386
01c5f864 2387out_no_new_maps:
80d19669
AN
2388 if (!is_rxqs_map) {
2389 /* update Tx queue numa node */
2390 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2391 (numa_node_id >= 0) ?
2392 numa_node_id : NUMA_NO_NODE);
2393 }
537c00de 2394
01c5f864
AD
2395 if (!dev_maps)
2396 goto out_no_maps;
2397
80d19669
AN
2398 /* removes tx-queue from unused CPUs/rx-queues */
2399 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2400 j < nr_ids;) {
2401 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2402 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2403 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2404 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2405 active |= remove_xps_queue(dev_maps, tci, index);
2406 for (i = num_tc - tc, tci++; --i; tci++)
2407 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2408 }
2409
2410 /* free map if not active */
867d0ad4
SD
2411 if (!active)
2412 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2413
2414out_no_maps:
537c00de
AD
2415 mutex_unlock(&xps_map_mutex);
2416
2417 return 0;
2418error:
01c5f864 2419 /* remove any maps that we added */
80d19669
AN
2420 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2421 j < nr_ids;) {
2422 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2423 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2424 map = dev_maps ?
80d19669 2425 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2426 NULL;
2427 if (new_map && new_map != map)
2428 kfree(new_map);
2429 }
01c5f864
AD
2430 }
2431
537c00de
AD
2432 mutex_unlock(&xps_map_mutex);
2433
537c00de
AD
2434 kfree(new_dev_maps);
2435 return -ENOMEM;
2436}
4d99f660 2437EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2438
2439int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2440 u16 index)
2441{
4d99f660
AV
2442 int ret;
2443
2444 cpus_read_lock();
2445 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2446 cpus_read_unlock();
2447
2448 return ret;
80d19669 2449}
537c00de
AD
2450EXPORT_SYMBOL(netif_set_xps_queue);
2451
2452#endif
ffcfe25b
AD
2453static void netdev_unbind_all_sb_channels(struct net_device *dev)
2454{
2455 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2456
2457 /* Unbind any subordinate channels */
2458 while (txq-- != &dev->_tx[0]) {
2459 if (txq->sb_dev)
2460 netdev_unbind_sb_channel(dev, txq->sb_dev);
2461 }
2462}
2463
9cf1f6a8
AD
2464void netdev_reset_tc(struct net_device *dev)
2465{
6234f874
AD
2466#ifdef CONFIG_XPS
2467 netif_reset_xps_queues_gt(dev, 0);
2468#endif
ffcfe25b
AD
2469 netdev_unbind_all_sb_channels(dev);
2470
2471 /* Reset TC configuration of device */
9cf1f6a8
AD
2472 dev->num_tc = 0;
2473 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2474 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2475}
2476EXPORT_SYMBOL(netdev_reset_tc);
2477
2478int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2479{
2480 if (tc >= dev->num_tc)
2481 return -EINVAL;
2482
6234f874
AD
2483#ifdef CONFIG_XPS
2484 netif_reset_xps_queues(dev, offset, count);
2485#endif
9cf1f6a8
AD
2486 dev->tc_to_txq[tc].count = count;
2487 dev->tc_to_txq[tc].offset = offset;
2488 return 0;
2489}
2490EXPORT_SYMBOL(netdev_set_tc_queue);
2491
2492int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2493{
2494 if (num_tc > TC_MAX_QUEUE)
2495 return -EINVAL;
2496
6234f874
AD
2497#ifdef CONFIG_XPS
2498 netif_reset_xps_queues_gt(dev, 0);
2499#endif
ffcfe25b
AD
2500 netdev_unbind_all_sb_channels(dev);
2501
9cf1f6a8
AD
2502 dev->num_tc = num_tc;
2503 return 0;
2504}
2505EXPORT_SYMBOL(netdev_set_num_tc);
2506
ffcfe25b
AD
2507void netdev_unbind_sb_channel(struct net_device *dev,
2508 struct net_device *sb_dev)
2509{
2510 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2511
2512#ifdef CONFIG_XPS
2513 netif_reset_xps_queues_gt(sb_dev, 0);
2514#endif
2515 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2516 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2517
2518 while (txq-- != &dev->_tx[0]) {
2519 if (txq->sb_dev == sb_dev)
2520 txq->sb_dev = NULL;
2521 }
2522}
2523EXPORT_SYMBOL(netdev_unbind_sb_channel);
2524
2525int netdev_bind_sb_channel_queue(struct net_device *dev,
2526 struct net_device *sb_dev,
2527 u8 tc, u16 count, u16 offset)
2528{
2529 /* Make certain the sb_dev and dev are already configured */
2530 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2531 return -EINVAL;
2532
2533 /* We cannot hand out queues we don't have */
2534 if ((offset + count) > dev->real_num_tx_queues)
2535 return -EINVAL;
2536
2537 /* Record the mapping */
2538 sb_dev->tc_to_txq[tc].count = count;
2539 sb_dev->tc_to_txq[tc].offset = offset;
2540
2541 /* Provide a way for Tx queue to find the tc_to_txq map or
2542 * XPS map for itself.
2543 */
2544 while (count--)
2545 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2546
2547 return 0;
2548}
2549EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2550
2551int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2552{
2553 /* Do not use a multiqueue device to represent a subordinate channel */
2554 if (netif_is_multiqueue(dev))
2555 return -ENODEV;
2556
2557 /* We allow channels 1 - 32767 to be used for subordinate channels.
2558 * Channel 0 is meant to be "native" mode and used only to represent
2559 * the main root device. We allow writing 0 to reset the device back
2560 * to normal mode after being used as a subordinate channel.
2561 */
2562 if (channel > S16_MAX)
2563 return -EINVAL;
2564
2565 dev->num_tc = -channel;
2566
2567 return 0;
2568}
2569EXPORT_SYMBOL(netdev_set_sb_channel);
2570
f0796d5c
JF
2571/*
2572 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2573 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2574 */
e6484930 2575int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2576{
ac5b7019 2577 bool disabling;
1d24eb48
TH
2578 int rc;
2579
ac5b7019
JK
2580 disabling = txq < dev->real_num_tx_queues;
2581
e6484930
TH
2582 if (txq < 1 || txq > dev->num_tx_queues)
2583 return -EINVAL;
f0796d5c 2584
5c56580b
BH
2585 if (dev->reg_state == NETREG_REGISTERED ||
2586 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2587 ASSERT_RTNL();
2588
1d24eb48
TH
2589 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2590 txq);
bf264145
TH
2591 if (rc)
2592 return rc;
2593
4f57c087
JF
2594 if (dev->num_tc)
2595 netif_setup_tc(dev, txq);
2596
ac5b7019
JK
2597 dev->real_num_tx_queues = txq;
2598
2599 if (disabling) {
2600 synchronize_net();
e6484930 2601 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2602#ifdef CONFIG_XPS
2603 netif_reset_xps_queues_gt(dev, txq);
2604#endif
2605 }
ac5b7019
JK
2606 } else {
2607 dev->real_num_tx_queues = txq;
f0796d5c 2608 }
e6484930 2609
e6484930 2610 return 0;
f0796d5c
JF
2611}
2612EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2613
a953be53 2614#ifdef CONFIG_SYSFS
62fe0b40
BH
2615/**
2616 * netif_set_real_num_rx_queues - set actual number of RX queues used
2617 * @dev: Network device
2618 * @rxq: Actual number of RX queues
2619 *
2620 * This must be called either with the rtnl_lock held or before
2621 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2622 * negative error code. If called before registration, it always
2623 * succeeds.
62fe0b40
BH
2624 */
2625int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2626{
2627 int rc;
2628
bd25fa7b
TH
2629 if (rxq < 1 || rxq > dev->num_rx_queues)
2630 return -EINVAL;
2631
62fe0b40
BH
2632 if (dev->reg_state == NETREG_REGISTERED) {
2633 ASSERT_RTNL();
2634
62fe0b40
BH
2635 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2636 rxq);
2637 if (rc)
2638 return rc;
62fe0b40
BH
2639 }
2640
2641 dev->real_num_rx_queues = rxq;
2642 return 0;
2643}
2644EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2645#endif
2646
2c53040f
BH
2647/**
2648 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2649 *
2650 * This routine should set an upper limit on the number of RSS queues
2651 * used by default by multiqueue devices.
2652 */
a55b138b 2653int netif_get_num_default_rss_queues(void)
16917b87 2654{
40e4e713
HS
2655 return is_kdump_kernel() ?
2656 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2657}
2658EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2659
3bcb846c 2660static void __netif_reschedule(struct Qdisc *q)
56079431 2661{
def82a1d
JP
2662 struct softnet_data *sd;
2663 unsigned long flags;
56079431 2664
def82a1d 2665 local_irq_save(flags);
903ceff7 2666 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2667 q->next_sched = NULL;
2668 *sd->output_queue_tailp = q;
2669 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2670 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2671 local_irq_restore(flags);
2672}
2673
2674void __netif_schedule(struct Qdisc *q)
2675{
2676 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2677 __netif_reschedule(q);
56079431
DV
2678}
2679EXPORT_SYMBOL(__netif_schedule);
2680
e6247027
ED
2681struct dev_kfree_skb_cb {
2682 enum skb_free_reason reason;
2683};
2684
2685static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2686{
e6247027
ED
2687 return (struct dev_kfree_skb_cb *)skb->cb;
2688}
2689
46e5da40
JF
2690void netif_schedule_queue(struct netdev_queue *txq)
2691{
2692 rcu_read_lock();
2693 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2694 struct Qdisc *q = rcu_dereference(txq->qdisc);
2695
2696 __netif_schedule(q);
2697 }
2698 rcu_read_unlock();
2699}
2700EXPORT_SYMBOL(netif_schedule_queue);
2701
46e5da40
JF
2702void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2703{
2704 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2705 struct Qdisc *q;
2706
2707 rcu_read_lock();
2708 q = rcu_dereference(dev_queue->qdisc);
2709 __netif_schedule(q);
2710 rcu_read_unlock();
2711 }
2712}
2713EXPORT_SYMBOL(netif_tx_wake_queue);
2714
e6247027 2715void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2716{
e6247027 2717 unsigned long flags;
56079431 2718
9899886d
MJ
2719 if (unlikely(!skb))
2720 return;
2721
63354797 2722 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2723 smp_rmb();
63354797
RE
2724 refcount_set(&skb->users, 0);
2725 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2726 return;
bea3348e 2727 }
e6247027
ED
2728 get_kfree_skb_cb(skb)->reason = reason;
2729 local_irq_save(flags);
2730 skb->next = __this_cpu_read(softnet_data.completion_queue);
2731 __this_cpu_write(softnet_data.completion_queue, skb);
2732 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2733 local_irq_restore(flags);
56079431 2734}
e6247027 2735EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2736
e6247027 2737void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2738{
2739 if (in_irq() || irqs_disabled())
e6247027 2740 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2741 else
2742 dev_kfree_skb(skb);
2743}
e6247027 2744EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2745
2746
bea3348e
SH
2747/**
2748 * netif_device_detach - mark device as removed
2749 * @dev: network device
2750 *
2751 * Mark device as removed from system and therefore no longer available.
2752 */
56079431
DV
2753void netif_device_detach(struct net_device *dev)
2754{
2755 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2756 netif_running(dev)) {
d543103a 2757 netif_tx_stop_all_queues(dev);
56079431
DV
2758 }
2759}
2760EXPORT_SYMBOL(netif_device_detach);
2761
bea3348e
SH
2762/**
2763 * netif_device_attach - mark device as attached
2764 * @dev: network device
2765 *
2766 * Mark device as attached from system and restart if needed.
2767 */
56079431
DV
2768void netif_device_attach(struct net_device *dev)
2769{
2770 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2771 netif_running(dev)) {
d543103a 2772 netif_tx_wake_all_queues(dev);
4ec93edb 2773 __netdev_watchdog_up(dev);
56079431
DV
2774 }
2775}
2776EXPORT_SYMBOL(netif_device_attach);
2777
5605c762
JP
2778/*
2779 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2780 * to be used as a distribution range.
2781 */
eadec877
AD
2782static u16 skb_tx_hash(const struct net_device *dev,
2783 const struct net_device *sb_dev,
2784 struct sk_buff *skb)
5605c762
JP
2785{
2786 u32 hash;
2787 u16 qoffset = 0;
1b837d48 2788 u16 qcount = dev->real_num_tx_queues;
5605c762 2789
eadec877
AD
2790 if (dev->num_tc) {
2791 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2792
2793 qoffset = sb_dev->tc_to_txq[tc].offset;
2794 qcount = sb_dev->tc_to_txq[tc].count;
2795 }
2796
5605c762
JP
2797 if (skb_rx_queue_recorded(skb)) {
2798 hash = skb_get_rx_queue(skb);
1b837d48
AD
2799 while (unlikely(hash >= qcount))
2800 hash -= qcount;
eadec877 2801 return hash + qoffset;
5605c762
JP
2802 }
2803
2804 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2805}
5605c762 2806
36c92474
BH
2807static void skb_warn_bad_offload(const struct sk_buff *skb)
2808{
84d15ae5 2809 static const netdev_features_t null_features;
36c92474 2810 struct net_device *dev = skb->dev;
88ad4175 2811 const char *name = "";
36c92474 2812
c846ad9b
BG
2813 if (!net_ratelimit())
2814 return;
2815
88ad4175
BM
2816 if (dev) {
2817 if (dev->dev.parent)
2818 name = dev_driver_string(dev->dev.parent);
2819 else
2820 name = netdev_name(dev);
2821 }
6413139d
WB
2822 skb_dump(KERN_WARNING, skb, false);
2823 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 2824 name, dev ? &dev->features : &null_features,
6413139d 2825 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
2826}
2827
1da177e4
LT
2828/*
2829 * Invalidate hardware checksum when packet is to be mangled, and
2830 * complete checksum manually on outgoing path.
2831 */
84fa7933 2832int skb_checksum_help(struct sk_buff *skb)
1da177e4 2833{
d3bc23e7 2834 __wsum csum;
663ead3b 2835 int ret = 0, offset;
1da177e4 2836
84fa7933 2837 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2838 goto out_set_summed;
2839
2840 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2841 skb_warn_bad_offload(skb);
2842 return -EINVAL;
1da177e4
LT
2843 }
2844
cef401de
ED
2845 /* Before computing a checksum, we should make sure no frag could
2846 * be modified by an external entity : checksum could be wrong.
2847 */
2848 if (skb_has_shared_frag(skb)) {
2849 ret = __skb_linearize(skb);
2850 if (ret)
2851 goto out;
2852 }
2853
55508d60 2854 offset = skb_checksum_start_offset(skb);
a030847e
HX
2855 BUG_ON(offset >= skb_headlen(skb));
2856 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2857
2858 offset += skb->csum_offset;
2859 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2860
2861 if (skb_cloned(skb) &&
2862 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2863 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2864 if (ret)
2865 goto out;
2866 }
2867
4f2e4ad5 2868 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2869out_set_summed:
1da177e4 2870 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2871out:
1da177e4
LT
2872 return ret;
2873}
d1b19dff 2874EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2875
b72b5bf6
DC
2876int skb_crc32c_csum_help(struct sk_buff *skb)
2877{
2878 __le32 crc32c_csum;
2879 int ret = 0, offset, start;
2880
2881 if (skb->ip_summed != CHECKSUM_PARTIAL)
2882 goto out;
2883
2884 if (unlikely(skb_is_gso(skb)))
2885 goto out;
2886
2887 /* Before computing a checksum, we should make sure no frag could
2888 * be modified by an external entity : checksum could be wrong.
2889 */
2890 if (unlikely(skb_has_shared_frag(skb))) {
2891 ret = __skb_linearize(skb);
2892 if (ret)
2893 goto out;
2894 }
2895 start = skb_checksum_start_offset(skb);
2896 offset = start + offsetof(struct sctphdr, checksum);
2897 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2898 ret = -EINVAL;
2899 goto out;
2900 }
2901 if (skb_cloned(skb) &&
2902 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2903 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2904 if (ret)
2905 goto out;
2906 }
2907 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2908 skb->len - start, ~(__u32)0,
2909 crc32c_csum_stub));
2910 *(__le32 *)(skb->data + offset) = crc32c_csum;
2911 skb->ip_summed = CHECKSUM_NONE;
dba00306 2912 skb->csum_not_inet = 0;
b72b5bf6
DC
2913out:
2914 return ret;
2915}
2916
53d6471c 2917__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2918{
252e3346 2919 __be16 type = skb->protocol;
f6a78bfc 2920
19acc327
PS
2921 /* Tunnel gso handlers can set protocol to ethernet. */
2922 if (type == htons(ETH_P_TEB)) {
2923 struct ethhdr *eth;
2924
2925 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2926 return 0;
2927
1dfe82eb 2928 eth = (struct ethhdr *)skb->data;
19acc327
PS
2929 type = eth->h_proto;
2930 }
2931
d4bcef3f 2932 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2933}
2934
2935/**
2936 * skb_mac_gso_segment - mac layer segmentation handler.
2937 * @skb: buffer to segment
2938 * @features: features for the output path (see dev->features)
2939 */
2940struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2941 netdev_features_t features)
2942{
2943 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2944 struct packet_offload *ptype;
53d6471c
VY
2945 int vlan_depth = skb->mac_len;
2946 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2947
2948 if (unlikely(!type))
2949 return ERR_PTR(-EINVAL);
2950
53d6471c 2951 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2952
2953 rcu_read_lock();
22061d80 2954 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2955 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2956 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2957 break;
2958 }
2959 }
2960 rcu_read_unlock();
2961
98e399f8 2962 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2963
f6a78bfc
HX
2964 return segs;
2965}
05e8ef4a
PS
2966EXPORT_SYMBOL(skb_mac_gso_segment);
2967
2968
2969/* openvswitch calls this on rx path, so we need a different check.
2970 */
2971static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2972{
2973 if (tx_path)
0c19f846
WB
2974 return skb->ip_summed != CHECKSUM_PARTIAL &&
2975 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
2976
2977 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2978}
2979
2980/**
2981 * __skb_gso_segment - Perform segmentation on skb.
2982 * @skb: buffer to segment
2983 * @features: features for the output path (see dev->features)
2984 * @tx_path: whether it is called in TX path
2985 *
2986 * This function segments the given skb and returns a list of segments.
2987 *
2988 * It may return NULL if the skb requires no segmentation. This is
2989 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2990 *
2991 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2992 */
2993struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2994 netdev_features_t features, bool tx_path)
2995{
b2504a5d
ED
2996 struct sk_buff *segs;
2997
05e8ef4a
PS
2998 if (unlikely(skb_needs_check(skb, tx_path))) {
2999 int err;
3000
b2504a5d 3001 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3002 err = skb_cow_head(skb, 0);
3003 if (err < 0)
05e8ef4a
PS
3004 return ERR_PTR(err);
3005 }
3006
802ab55a
AD
3007 /* Only report GSO partial support if it will enable us to
3008 * support segmentation on this frame without needing additional
3009 * work.
3010 */
3011 if (features & NETIF_F_GSO_PARTIAL) {
3012 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3013 struct net_device *dev = skb->dev;
3014
3015 partial_features |= dev->features & dev->gso_partial_features;
3016 if (!skb_gso_ok(skb, features | partial_features))
3017 features &= ~NETIF_F_GSO_PARTIAL;
3018 }
3019
9207f9d4
KK
3020 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3021 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3022
68c33163 3023 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3024 SKB_GSO_CB(skb)->encap_level = 0;
3025
05e8ef4a
PS
3026 skb_reset_mac_header(skb);
3027 skb_reset_mac_len(skb);
3028
b2504a5d
ED
3029 segs = skb_mac_gso_segment(skb, features);
3030
8d74e9f8 3031 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3032 skb_warn_bad_offload(skb);
3033
3034 return segs;
05e8ef4a 3035}
12b0004d 3036EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3037
fb286bb2
HX
3038/* Take action when hardware reception checksum errors are detected. */
3039#ifdef CONFIG_BUG
7fe50ac8 3040void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3041{
3042 if (net_ratelimit()) {
7b6cd1ce 3043 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3044 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3045 dump_stack();
3046 }
3047}
3048EXPORT_SYMBOL(netdev_rx_csum_fault);
3049#endif
3050
ab74cfeb 3051/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3052static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3053{
3d3a8533 3054#ifdef CONFIG_HIGHMEM
1da177e4 3055 int i;
f4563a75 3056
5acbbd42 3057 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3058 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3059 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3060
ea2ab693 3061 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3062 return 1;
ea2ab693 3063 }
5acbbd42 3064 }
3d3a8533 3065#endif
1da177e4
LT
3066 return 0;
3067}
1da177e4 3068
3b392ddb
SH
3069/* If MPLS offload request, verify we are testing hardware MPLS features
3070 * instead of standard features for the netdev.
3071 */
d0edc7bf 3072#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3073static netdev_features_t net_mpls_features(struct sk_buff *skb,
3074 netdev_features_t features,
3075 __be16 type)
3076{
25cd9ba0 3077 if (eth_p_mpls(type))
3b392ddb
SH
3078 features &= skb->dev->mpls_features;
3079
3080 return features;
3081}
3082#else
3083static netdev_features_t net_mpls_features(struct sk_buff *skb,
3084 netdev_features_t features,
3085 __be16 type)
3086{
3087 return features;
3088}
3089#endif
3090
c8f44aff 3091static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3092 netdev_features_t features)
f01a5236 3093{
53d6471c 3094 int tmp;
3b392ddb
SH
3095 __be16 type;
3096
3097 type = skb_network_protocol(skb, &tmp);
3098 features = net_mpls_features(skb, features, type);
53d6471c 3099
c0d680e5 3100 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3101 !can_checksum_protocol(features, type)) {
996e8021 3102 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3103 }
7be2c82c
ED
3104 if (illegal_highdma(skb->dev, skb))
3105 features &= ~NETIF_F_SG;
f01a5236
JG
3106
3107 return features;
3108}
3109
e38f3025
TM
3110netdev_features_t passthru_features_check(struct sk_buff *skb,
3111 struct net_device *dev,
3112 netdev_features_t features)
3113{
3114 return features;
3115}
3116EXPORT_SYMBOL(passthru_features_check);
3117
7ce23672 3118static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3119 struct net_device *dev,
3120 netdev_features_t features)
3121{
3122 return vlan_features_check(skb, features);
3123}
3124
cbc53e08
AD
3125static netdev_features_t gso_features_check(const struct sk_buff *skb,
3126 struct net_device *dev,
3127 netdev_features_t features)
3128{
3129 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3130
3131 if (gso_segs > dev->gso_max_segs)
3132 return features & ~NETIF_F_GSO_MASK;
3133
802ab55a
AD
3134 /* Support for GSO partial features requires software
3135 * intervention before we can actually process the packets
3136 * so we need to strip support for any partial features now
3137 * and we can pull them back in after we have partially
3138 * segmented the frame.
3139 */
3140 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3141 features &= ~dev->gso_partial_features;
3142
3143 /* Make sure to clear the IPv4 ID mangling feature if the
3144 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3145 */
3146 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3147 struct iphdr *iph = skb->encapsulation ?
3148 inner_ip_hdr(skb) : ip_hdr(skb);
3149
3150 if (!(iph->frag_off & htons(IP_DF)))
3151 features &= ~NETIF_F_TSO_MANGLEID;
3152 }
3153
3154 return features;
3155}
3156
c1e756bf 3157netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3158{
5f35227e 3159 struct net_device *dev = skb->dev;
fcbeb976 3160 netdev_features_t features = dev->features;
58e998c6 3161
cbc53e08
AD
3162 if (skb_is_gso(skb))
3163 features = gso_features_check(skb, dev, features);
30b678d8 3164
5f35227e
JG
3165 /* If encapsulation offload request, verify we are testing
3166 * hardware encapsulation features instead of standard
3167 * features for the netdev
3168 */
3169 if (skb->encapsulation)
3170 features &= dev->hw_enc_features;
3171
f5a7fb88
TM
3172 if (skb_vlan_tagged(skb))
3173 features = netdev_intersect_features(features,
3174 dev->vlan_features |
3175 NETIF_F_HW_VLAN_CTAG_TX |
3176 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3177
5f35227e
JG
3178 if (dev->netdev_ops->ndo_features_check)
3179 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3180 features);
8cb65d00
TM
3181 else
3182 features &= dflt_features_check(skb, dev, features);
5f35227e 3183
c1e756bf 3184 return harmonize_features(skb, features);
58e998c6 3185}
c1e756bf 3186EXPORT_SYMBOL(netif_skb_features);
58e998c6 3187
2ea25513 3188static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3189 struct netdev_queue *txq, bool more)
f6a78bfc 3190{
2ea25513
DM
3191 unsigned int len;
3192 int rc;
00829823 3193
9f9a742d 3194 if (dev_nit_active(dev))
2ea25513 3195 dev_queue_xmit_nit(skb, dev);
fc741216 3196
2ea25513
DM
3197 len = skb->len;
3198 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3199 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3200 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3201
2ea25513
DM
3202 return rc;
3203}
7b9c6090 3204
8dcda22a
DM
3205struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3206 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3207{
3208 struct sk_buff *skb = first;
3209 int rc = NETDEV_TX_OK;
7b9c6090 3210
7f2e870f
DM
3211 while (skb) {
3212 struct sk_buff *next = skb->next;
fc70fb64 3213
a8305bff 3214 skb_mark_not_on_list(skb);
95f6b3dd 3215 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3216 if (unlikely(!dev_xmit_complete(rc))) {
3217 skb->next = next;
3218 goto out;
3219 }
6afff0ca 3220
7f2e870f 3221 skb = next;
fe60faa5 3222 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3223 rc = NETDEV_TX_BUSY;
3224 break;
9ccb8975 3225 }
7f2e870f 3226 }
9ccb8975 3227
7f2e870f
DM
3228out:
3229 *ret = rc;
3230 return skb;
3231}
b40863c6 3232
1ff0dc94
ED
3233static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3234 netdev_features_t features)
f6a78bfc 3235{
df8a39de 3236 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3237 !vlan_hw_offload_capable(features, skb->vlan_proto))
3238 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3239 return skb;
3240}
f6a78bfc 3241
43c26a1a
DC
3242int skb_csum_hwoffload_help(struct sk_buff *skb,
3243 const netdev_features_t features)
3244{
3245 if (unlikely(skb->csum_not_inet))
3246 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3247 skb_crc32c_csum_help(skb);
3248
3249 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3250}
3251EXPORT_SYMBOL(skb_csum_hwoffload_help);
3252
f53c7239 3253static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3254{
3255 netdev_features_t features;
f6a78bfc 3256
eae3f88e
DM
3257 features = netif_skb_features(skb);
3258 skb = validate_xmit_vlan(skb, features);
3259 if (unlikely(!skb))
3260 goto out_null;
7b9c6090 3261
ebf4e808
IL
3262 skb = sk_validate_xmit_skb(skb, dev);
3263 if (unlikely(!skb))
3264 goto out_null;
3265
8b86a61d 3266 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3267 struct sk_buff *segs;
3268
3269 segs = skb_gso_segment(skb, features);
cecda693 3270 if (IS_ERR(segs)) {
af6dabc9 3271 goto out_kfree_skb;
cecda693
JW
3272 } else if (segs) {
3273 consume_skb(skb);
3274 skb = segs;
f6a78bfc 3275 }
eae3f88e
DM
3276 } else {
3277 if (skb_needs_linearize(skb, features) &&
3278 __skb_linearize(skb))
3279 goto out_kfree_skb;
4ec93edb 3280
eae3f88e
DM
3281 /* If packet is not checksummed and device does not
3282 * support checksumming for this protocol, complete
3283 * checksumming here.
3284 */
3285 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3286 if (skb->encapsulation)
3287 skb_set_inner_transport_header(skb,
3288 skb_checksum_start_offset(skb));
3289 else
3290 skb_set_transport_header(skb,
3291 skb_checksum_start_offset(skb));
43c26a1a 3292 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3293 goto out_kfree_skb;
7b9c6090 3294 }
0c772159 3295 }
7b9c6090 3296
f53c7239 3297 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3298
eae3f88e 3299 return skb;
fc70fb64 3300
f6a78bfc
HX
3301out_kfree_skb:
3302 kfree_skb(skb);
eae3f88e 3303out_null:
d21fd63e 3304 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3305 return NULL;
3306}
6afff0ca 3307
f53c7239 3308struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3309{
3310 struct sk_buff *next, *head = NULL, *tail;
3311
bec3cfdc 3312 for (; skb != NULL; skb = next) {
55a93b3e 3313 next = skb->next;
a8305bff 3314 skb_mark_not_on_list(skb);
bec3cfdc
ED
3315
3316 /* in case skb wont be segmented, point to itself */
3317 skb->prev = skb;
3318
f53c7239 3319 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3320 if (!skb)
3321 continue;
55a93b3e 3322
bec3cfdc
ED
3323 if (!head)
3324 head = skb;
3325 else
3326 tail->next = skb;
3327 /* If skb was segmented, skb->prev points to
3328 * the last segment. If not, it still contains skb.
3329 */
3330 tail = skb->prev;
55a93b3e
ED
3331 }
3332 return head;
f6a78bfc 3333}
104ba78c 3334EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3335
1def9238
ED
3336static void qdisc_pkt_len_init(struct sk_buff *skb)
3337{
3338 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3339
3340 qdisc_skb_cb(skb)->pkt_len = skb->len;
3341
3342 /* To get more precise estimation of bytes sent on wire,
3343 * we add to pkt_len the headers size of all segments
3344 */
a0dce875 3345 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3346 unsigned int hdr_len;
15e5a030 3347 u16 gso_segs = shinfo->gso_segs;
1def9238 3348
757b8b1d
ED
3349 /* mac layer + network layer */
3350 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3351
3352 /* + transport layer */
7c68d1a6
ED
3353 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3354 const struct tcphdr *th;
3355 struct tcphdr _tcphdr;
3356
3357 th = skb_header_pointer(skb, skb_transport_offset(skb),
3358 sizeof(_tcphdr), &_tcphdr);
3359 if (likely(th))
3360 hdr_len += __tcp_hdrlen(th);
3361 } else {
3362 struct udphdr _udphdr;
3363
3364 if (skb_header_pointer(skb, skb_transport_offset(skb),
3365 sizeof(_udphdr), &_udphdr))
3366 hdr_len += sizeof(struct udphdr);
3367 }
15e5a030
JW
3368
3369 if (shinfo->gso_type & SKB_GSO_DODGY)
3370 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3371 shinfo->gso_size);
3372
3373 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3374 }
3375}
3376
bbd8a0d3
KK
3377static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3378 struct net_device *dev,
3379 struct netdev_queue *txq)
3380{
3381 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3382 struct sk_buff *to_free = NULL;
a2da570d 3383 bool contended;
bbd8a0d3
KK
3384 int rc;
3385
a2da570d 3386 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3387
3388 if (q->flags & TCQ_F_NOLOCK) {
d518d2ed
PA
3389 if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3390 qdisc_run_begin(q)) {
3391 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3392 &q->state))) {
3393 __qdisc_drop(skb, &to_free);
3394 rc = NET_XMIT_DROP;
3395 goto end_run;
3396 }
ba27b4cd
PA
3397 qdisc_bstats_cpu_update(q, skb);
3398
d518d2ed 3399 rc = NET_XMIT_SUCCESS;
ba27b4cd
PA
3400 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3401 __qdisc_run(q);
3402
d518d2ed 3403end_run:
ba27b4cd 3404 qdisc_run_end(q);
6b3ba914
JF
3405 } else {
3406 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
32f7b44d 3407 qdisc_run(q);
6b3ba914
JF
3408 }
3409
3410 if (unlikely(to_free))
3411 kfree_skb_list(to_free);
3412 return rc;
3413 }
3414
79640a4c
ED
3415 /*
3416 * Heuristic to force contended enqueues to serialize on a
3417 * separate lock before trying to get qdisc main lock.
f9eb8aea 3418 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3419 * often and dequeue packets faster.
79640a4c 3420 */
a2da570d 3421 contended = qdisc_is_running(q);
79640a4c
ED
3422 if (unlikely(contended))
3423 spin_lock(&q->busylock);
3424
bbd8a0d3
KK
3425 spin_lock(root_lock);
3426 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3427 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3428 rc = NET_XMIT_DROP;
3429 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3430 qdisc_run_begin(q)) {
bbd8a0d3
KK
3431 /*
3432 * This is a work-conserving queue; there are no old skbs
3433 * waiting to be sent out; and the qdisc is not running -
3434 * xmit the skb directly.
3435 */
bfe0d029 3436
bfe0d029
ED
3437 qdisc_bstats_update(q, skb);
3438
55a93b3e 3439 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3440 if (unlikely(contended)) {
3441 spin_unlock(&q->busylock);
3442 contended = false;
3443 }
bbd8a0d3 3444 __qdisc_run(q);
6c148184 3445 }
bbd8a0d3 3446
6c148184 3447 qdisc_run_end(q);
bbd8a0d3
KK
3448 rc = NET_XMIT_SUCCESS;
3449 } else {
520ac30f 3450 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3451 if (qdisc_run_begin(q)) {
3452 if (unlikely(contended)) {
3453 spin_unlock(&q->busylock);
3454 contended = false;
3455 }
3456 __qdisc_run(q);
6c148184 3457 qdisc_run_end(q);
79640a4c 3458 }
bbd8a0d3
KK
3459 }
3460 spin_unlock(root_lock);
520ac30f
ED
3461 if (unlikely(to_free))
3462 kfree_skb_list(to_free);
79640a4c
ED
3463 if (unlikely(contended))
3464 spin_unlock(&q->busylock);
bbd8a0d3
KK
3465 return rc;
3466}
3467
86f8515f 3468#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3469static void skb_update_prio(struct sk_buff *skb)
3470{
4dcb31d4
ED
3471 const struct netprio_map *map;
3472 const struct sock *sk;
3473 unsigned int prioidx;
5bc1421e 3474
4dcb31d4
ED
3475 if (skb->priority)
3476 return;
3477 map = rcu_dereference_bh(skb->dev->priomap);
3478 if (!map)
3479 return;
3480 sk = skb_to_full_sk(skb);
3481 if (!sk)
3482 return;
91c68ce2 3483
4dcb31d4
ED
3484 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3485
3486 if (prioidx < map->priomap_len)
3487 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3488}
3489#else
3490#define skb_update_prio(skb)
3491#endif
3492
95603e22
MM
3493/**
3494 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3495 * @net: network namespace this loopback is happening in
3496 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3497 * @skb: buffer to transmit
3498 */
0c4b51f0 3499int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3500{
3501 skb_reset_mac_header(skb);
3502 __skb_pull(skb, skb_network_offset(skb));
3503 skb->pkt_type = PACKET_LOOPBACK;
3504 skb->ip_summed = CHECKSUM_UNNECESSARY;
3505 WARN_ON(!skb_dst(skb));
3506 skb_dst_force(skb);
3507 netif_rx_ni(skb);
3508 return 0;
3509}
3510EXPORT_SYMBOL(dev_loopback_xmit);
3511
1f211a1b
DB
3512#ifdef CONFIG_NET_EGRESS
3513static struct sk_buff *
3514sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3515{
46209401 3516 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3517 struct tcf_result cl_res;
3518
46209401 3519 if (!miniq)
1f211a1b
DB
3520 return skb;
3521
8dc07fdb 3522 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3523 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3524
46209401 3525 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3526 case TC_ACT_OK:
3527 case TC_ACT_RECLASSIFY:
3528 skb->tc_index = TC_H_MIN(cl_res.classid);
3529 break;
3530 case TC_ACT_SHOT:
46209401 3531 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3532 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3533 kfree_skb(skb);
3534 return NULL;
1f211a1b
DB
3535 case TC_ACT_STOLEN:
3536 case TC_ACT_QUEUED:
e25ea21f 3537 case TC_ACT_TRAP:
1f211a1b 3538 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3539 consume_skb(skb);
1f211a1b
DB
3540 return NULL;
3541 case TC_ACT_REDIRECT:
3542 /* No need to push/pop skb's mac_header here on egress! */
3543 skb_do_redirect(skb);
3544 *ret = NET_XMIT_SUCCESS;
3545 return NULL;
3546 default:
3547 break;
3548 }
3549
3550 return skb;
3551}
3552#endif /* CONFIG_NET_EGRESS */
3553
fc9bab24
AN
3554#ifdef CONFIG_XPS
3555static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3556 struct xps_dev_maps *dev_maps, unsigned int tci)
3557{
3558 struct xps_map *map;
3559 int queue_index = -1;
3560
3561 if (dev->num_tc) {
3562 tci *= dev->num_tc;
3563 tci += netdev_get_prio_tc_map(dev, skb->priority);
3564 }
3565
3566 map = rcu_dereference(dev_maps->attr_map[tci]);
3567 if (map) {
3568 if (map->len == 1)
3569 queue_index = map->queues[0];
3570 else
3571 queue_index = map->queues[reciprocal_scale(
3572 skb_get_hash(skb), map->len)];
3573 if (unlikely(queue_index >= dev->real_num_tx_queues))
3574 queue_index = -1;
3575 }
3576 return queue_index;
3577}
3578#endif
3579
eadec877
AD
3580static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3581 struct sk_buff *skb)
638b2a69
JP
3582{
3583#ifdef CONFIG_XPS
3584 struct xps_dev_maps *dev_maps;
fc9bab24 3585 struct sock *sk = skb->sk;
638b2a69
JP
3586 int queue_index = -1;
3587
04157469
AN
3588 if (!static_key_false(&xps_needed))
3589 return -1;
3590
638b2a69 3591 rcu_read_lock();
fc9bab24
AN
3592 if (!static_key_false(&xps_rxqs_needed))
3593 goto get_cpus_map;
3594
eadec877 3595 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3596 if (dev_maps) {
fc9bab24 3597 int tci = sk_rx_queue_get(sk);
184c449f 3598
fc9bab24
AN
3599 if (tci >= 0 && tci < dev->num_rx_queues)
3600 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3601 tci);
3602 }
184c449f 3603
fc9bab24
AN
3604get_cpus_map:
3605 if (queue_index < 0) {
eadec877 3606 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3607 if (dev_maps) {
3608 unsigned int tci = skb->sender_cpu - 1;
3609
3610 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3611 tci);
638b2a69
JP
3612 }
3613 }
3614 rcu_read_unlock();
3615
3616 return queue_index;
3617#else
3618 return -1;
3619#endif
3620}
3621
a4ea8a3d 3622u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3623 struct net_device *sb_dev)
a4ea8a3d
AD
3624{
3625 return 0;
3626}
3627EXPORT_SYMBOL(dev_pick_tx_zero);
3628
3629u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3630 struct net_device *sb_dev)
a4ea8a3d
AD
3631{
3632 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3633}
3634EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3635
b71b5837
PA
3636u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3637 struct net_device *sb_dev)
638b2a69
JP
3638{
3639 struct sock *sk = skb->sk;
3640 int queue_index = sk_tx_queue_get(sk);
3641
eadec877
AD
3642 sb_dev = sb_dev ? : dev;
3643
638b2a69
JP
3644 if (queue_index < 0 || skb->ooo_okay ||
3645 queue_index >= dev->real_num_tx_queues) {
eadec877 3646 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3647
638b2a69 3648 if (new_index < 0)
eadec877 3649 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3650
3651 if (queue_index != new_index && sk &&
004a5d01 3652 sk_fullsock(sk) &&
638b2a69
JP
3653 rcu_access_pointer(sk->sk_dst_cache))
3654 sk_tx_queue_set(sk, new_index);
3655
3656 queue_index = new_index;
3657 }
3658
3659 return queue_index;
3660}
b71b5837 3661EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 3662
4bd97d51
PA
3663struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3664 struct sk_buff *skb,
3665 struct net_device *sb_dev)
638b2a69
JP
3666{
3667 int queue_index = 0;
3668
3669#ifdef CONFIG_XPS
52bd2d62
ED
3670 u32 sender_cpu = skb->sender_cpu - 1;
3671
3672 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3673 skb->sender_cpu = raw_smp_processor_id() + 1;
3674#endif
3675
3676 if (dev->real_num_tx_queues != 1) {
3677 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3678
638b2a69 3679 if (ops->ndo_select_queue)
a350ecce 3680 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 3681 else
4bd97d51 3682 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 3683
d584527c 3684 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
3685 }
3686
3687 skb_set_queue_mapping(skb, queue_index);
3688 return netdev_get_tx_queue(dev, queue_index);
3689}
3690
d29f749e 3691/**
9d08dd3d 3692 * __dev_queue_xmit - transmit a buffer
d29f749e 3693 * @skb: buffer to transmit
eadec877 3694 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
3695 *
3696 * Queue a buffer for transmission to a network device. The caller must
3697 * have set the device and priority and built the buffer before calling
3698 * this function. The function can be called from an interrupt.
3699 *
3700 * A negative errno code is returned on a failure. A success does not
3701 * guarantee the frame will be transmitted as it may be dropped due
3702 * to congestion or traffic shaping.
3703 *
3704 * -----------------------------------------------------------------------------------
3705 * I notice this method can also return errors from the queue disciplines,
3706 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3707 * be positive.
3708 *
3709 * Regardless of the return value, the skb is consumed, so it is currently
3710 * difficult to retry a send to this method. (You can bump the ref count
3711 * before sending to hold a reference for retry if you are careful.)
3712 *
3713 * When calling this method, interrupts MUST be enabled. This is because
3714 * the BH enable code must have IRQs enabled so that it will not deadlock.
3715 * --BLG
3716 */
eadec877 3717static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
3718{
3719 struct net_device *dev = skb->dev;
dc2b4847 3720 struct netdev_queue *txq;
1da177e4
LT
3721 struct Qdisc *q;
3722 int rc = -ENOMEM;
f53c7239 3723 bool again = false;
1da177e4 3724
6d1ccff6
ED
3725 skb_reset_mac_header(skb);
3726
e7fd2885
WB
3727 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3728 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3729
4ec93edb
YH
3730 /* Disable soft irqs for various locks below. Also
3731 * stops preemption for RCU.
1da177e4 3732 */
4ec93edb 3733 rcu_read_lock_bh();
1da177e4 3734
5bc1421e
NH
3735 skb_update_prio(skb);
3736
1f211a1b
DB
3737 qdisc_pkt_len_init(skb);
3738#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3739 skb->tc_at_ingress = 0;
1f211a1b 3740# ifdef CONFIG_NET_EGRESS
aabf6772 3741 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
3742 skb = sch_handle_egress(skb, &rc, dev);
3743 if (!skb)
3744 goto out;
3745 }
3746# endif
3747#endif
02875878
ED
3748 /* If device/qdisc don't need skb->dst, release it right now while
3749 * its hot in this cpu cache.
3750 */
3751 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3752 skb_dst_drop(skb);
3753 else
3754 skb_dst_force(skb);
3755
4bd97d51 3756 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 3757 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3758
cf66ba58 3759 trace_net_dev_queue(skb);
1da177e4 3760 if (q->enqueue) {
bbd8a0d3 3761 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3762 goto out;
1da177e4
LT
3763 }
3764
3765 /* The device has no queue. Common case for software devices:
eb13da1a 3766 * loopback, all the sorts of tunnels...
1da177e4 3767
eb13da1a 3768 * Really, it is unlikely that netif_tx_lock protection is necessary
3769 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3770 * counters.)
3771 * However, it is possible, that they rely on protection
3772 * made by us here.
1da177e4 3773
eb13da1a 3774 * Check this and shot the lock. It is not prone from deadlocks.
3775 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3776 */
3777 if (dev->flags & IFF_UP) {
3778 int cpu = smp_processor_id(); /* ok because BHs are off */
3779
c773e847 3780 if (txq->xmit_lock_owner != cpu) {
97cdcf37 3781 if (dev_xmit_recursion())
745e20f1
ED
3782 goto recursion_alert;
3783
f53c7239 3784 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 3785 if (!skb)
d21fd63e 3786 goto out;
1f59533f 3787
c773e847 3788 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3789
73466498 3790 if (!netif_xmit_stopped(txq)) {
97cdcf37 3791 dev_xmit_recursion_inc();
ce93718f 3792 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 3793 dev_xmit_recursion_dec();
572a9d7b 3794 if (dev_xmit_complete(rc)) {
c773e847 3795 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3796 goto out;
3797 }
3798 }
c773e847 3799 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3800 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3801 dev->name);
1da177e4
LT
3802 } else {
3803 /* Recursion is detected! It is possible,
745e20f1
ED
3804 * unfortunately
3805 */
3806recursion_alert:
e87cc472
JP
3807 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3808 dev->name);
1da177e4
LT
3809 }
3810 }
3811
3812 rc = -ENETDOWN;
d4828d85 3813 rcu_read_unlock_bh();
1da177e4 3814
015f0688 3815 atomic_long_inc(&dev->tx_dropped);
1f59533f 3816 kfree_skb_list(skb);
1da177e4
LT
3817 return rc;
3818out:
d4828d85 3819 rcu_read_unlock_bh();
1da177e4
LT
3820 return rc;
3821}
f663dd9a 3822
2b4aa3ce 3823int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3824{
3825 return __dev_queue_xmit(skb, NULL);
3826}
2b4aa3ce 3827EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3828
eadec877 3829int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 3830{
eadec877 3831 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
3832}
3833EXPORT_SYMBOL(dev_queue_xmit_accel);
3834
865b03f2
MK
3835int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3836{
3837 struct net_device *dev = skb->dev;
3838 struct sk_buff *orig_skb = skb;
3839 struct netdev_queue *txq;
3840 int ret = NETDEV_TX_BUSY;
3841 bool again = false;
3842
3843 if (unlikely(!netif_running(dev) ||
3844 !netif_carrier_ok(dev)))
3845 goto drop;
3846
3847 skb = validate_xmit_skb_list(skb, dev, &again);
3848 if (skb != orig_skb)
3849 goto drop;
3850
3851 skb_set_queue_mapping(skb, queue_id);
3852 txq = skb_get_tx_queue(dev, skb);
3853
3854 local_bh_disable();
3855
3856 HARD_TX_LOCK(dev, txq, smp_processor_id());
3857 if (!netif_xmit_frozen_or_drv_stopped(txq))
3858 ret = netdev_start_xmit(skb, dev, txq, false);
3859 HARD_TX_UNLOCK(dev, txq);
3860
3861 local_bh_enable();
3862
3863 if (!dev_xmit_complete(ret))
3864 kfree_skb(skb);
3865
3866 return ret;
3867drop:
3868 atomic_long_inc(&dev->tx_dropped);
3869 kfree_skb_list(skb);
3870 return NET_XMIT_DROP;
3871}
3872EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 3873
eb13da1a 3874/*************************************************************************
3875 * Receiver routines
3876 *************************************************************************/
1da177e4 3877
6b2bedc3 3878int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3879EXPORT_SYMBOL(netdev_max_backlog);
3880
3b098e2d 3881int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3882int netdev_budget __read_mostly = 300;
7acf8a1e 3883unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3884int weight_p __read_mostly = 64; /* old backlog weight */
3885int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3886int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3887int dev_rx_weight __read_mostly = 64;
3888int dev_tx_weight __read_mostly = 64;
323ebb61
EC
3889/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3890int gro_normal_batch __read_mostly = 8;
1da177e4 3891
eecfd7c4
ED
3892/* Called with irq disabled */
3893static inline void ____napi_schedule(struct softnet_data *sd,
3894 struct napi_struct *napi)
3895{
3896 list_add_tail(&napi->poll_list, &sd->poll_list);
3897 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3898}
3899
bfb564e7
KK
3900#ifdef CONFIG_RPS
3901
3902/* One global table that all flow-based protocols share. */
6e3f7faf 3903struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3904EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3905u32 rps_cpu_mask __read_mostly;
3906EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3907
dc05360f 3908struct static_key_false rps_needed __read_mostly;
3df97ba8 3909EXPORT_SYMBOL(rps_needed);
dc05360f 3910struct static_key_false rfs_needed __read_mostly;
13bfff25 3911EXPORT_SYMBOL(rfs_needed);
adc9300e 3912
c445477d
BH
3913static struct rps_dev_flow *
3914set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3915 struct rps_dev_flow *rflow, u16 next_cpu)
3916{
a31196b0 3917 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3918#ifdef CONFIG_RFS_ACCEL
3919 struct netdev_rx_queue *rxqueue;
3920 struct rps_dev_flow_table *flow_table;
3921 struct rps_dev_flow *old_rflow;
3922 u32 flow_id;
3923 u16 rxq_index;
3924 int rc;
3925
3926 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3927 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3928 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3929 goto out;
3930 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3931 if (rxq_index == skb_get_rx_queue(skb))
3932 goto out;
3933
3934 rxqueue = dev->_rx + rxq_index;
3935 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3936 if (!flow_table)
3937 goto out;
61b905da 3938 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3939 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3940 rxq_index, flow_id);
3941 if (rc < 0)
3942 goto out;
3943 old_rflow = rflow;
3944 rflow = &flow_table->flows[flow_id];
c445477d
BH
3945 rflow->filter = rc;
3946 if (old_rflow->filter == rflow->filter)
3947 old_rflow->filter = RPS_NO_FILTER;
3948 out:
3949#endif
3950 rflow->last_qtail =
09994d1b 3951 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3952 }
3953
09994d1b 3954 rflow->cpu = next_cpu;
c445477d
BH
3955 return rflow;
3956}
3957
bfb564e7
KK
3958/*
3959 * get_rps_cpu is called from netif_receive_skb and returns the target
3960 * CPU from the RPS map of the receiving queue for a given skb.
3961 * rcu_read_lock must be held on entry.
3962 */
3963static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3964 struct rps_dev_flow **rflowp)
3965{
567e4b79
ED
3966 const struct rps_sock_flow_table *sock_flow_table;
3967 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3968 struct rps_dev_flow_table *flow_table;
567e4b79 3969 struct rps_map *map;
bfb564e7 3970 int cpu = -1;
567e4b79 3971 u32 tcpu;
61b905da 3972 u32 hash;
bfb564e7
KK
3973
3974 if (skb_rx_queue_recorded(skb)) {
3975 u16 index = skb_get_rx_queue(skb);
567e4b79 3976
62fe0b40
BH
3977 if (unlikely(index >= dev->real_num_rx_queues)) {
3978 WARN_ONCE(dev->real_num_rx_queues > 1,
3979 "%s received packet on queue %u, but number "
3980 "of RX queues is %u\n",
3981 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3982 goto done;
3983 }
567e4b79
ED
3984 rxqueue += index;
3985 }
bfb564e7 3986
567e4b79
ED
3987 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3988
3989 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3990 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3991 if (!flow_table && !map)
bfb564e7
KK
3992 goto done;
3993
2d47b459 3994 skb_reset_network_header(skb);
61b905da
TH
3995 hash = skb_get_hash(skb);
3996 if (!hash)
bfb564e7
KK
3997 goto done;
3998
fec5e652
TH
3999 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4000 if (flow_table && sock_flow_table) {
fec5e652 4001 struct rps_dev_flow *rflow;
567e4b79
ED
4002 u32 next_cpu;
4003 u32 ident;
4004
4005 /* First check into global flow table if there is a match */
4006 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4007 if ((ident ^ hash) & ~rps_cpu_mask)
4008 goto try_rps;
fec5e652 4009
567e4b79
ED
4010 next_cpu = ident & rps_cpu_mask;
4011
4012 /* OK, now we know there is a match,
4013 * we can look at the local (per receive queue) flow table
4014 */
61b905da 4015 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4016 tcpu = rflow->cpu;
4017
fec5e652
TH
4018 /*
4019 * If the desired CPU (where last recvmsg was done) is
4020 * different from current CPU (one in the rx-queue flow
4021 * table entry), switch if one of the following holds:
a31196b0 4022 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4023 * - Current CPU is offline.
4024 * - The current CPU's queue tail has advanced beyond the
4025 * last packet that was enqueued using this table entry.
4026 * This guarantees that all previous packets for the flow
4027 * have been dequeued, thus preserving in order delivery.
4028 */
4029 if (unlikely(tcpu != next_cpu) &&
a31196b0 4030 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4031 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4032 rflow->last_qtail)) >= 0)) {
4033 tcpu = next_cpu;
c445477d 4034 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4035 }
c445477d 4036
a31196b0 4037 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4038 *rflowp = rflow;
4039 cpu = tcpu;
4040 goto done;
4041 }
4042 }
4043
567e4b79
ED
4044try_rps:
4045
0a9627f2 4046 if (map) {
8fc54f68 4047 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4048 if (cpu_online(tcpu)) {
4049 cpu = tcpu;
4050 goto done;
4051 }
4052 }
4053
4054done:
0a9627f2
TH
4055 return cpu;
4056}
4057
c445477d
BH
4058#ifdef CONFIG_RFS_ACCEL
4059
4060/**
4061 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4062 * @dev: Device on which the filter was set
4063 * @rxq_index: RX queue index
4064 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4065 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4066 *
4067 * Drivers that implement ndo_rx_flow_steer() should periodically call
4068 * this function for each installed filter and remove the filters for
4069 * which it returns %true.
4070 */
4071bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4072 u32 flow_id, u16 filter_id)
4073{
4074 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4075 struct rps_dev_flow_table *flow_table;
4076 struct rps_dev_flow *rflow;
4077 bool expire = true;
a31196b0 4078 unsigned int cpu;
c445477d
BH
4079
4080 rcu_read_lock();
4081 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4082 if (flow_table && flow_id <= flow_table->mask) {
4083 rflow = &flow_table->flows[flow_id];
6aa7de05 4084 cpu = READ_ONCE(rflow->cpu);
a31196b0 4085 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4086 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4087 rflow->last_qtail) <
4088 (int)(10 * flow_table->mask)))
4089 expire = false;
4090 }
4091 rcu_read_unlock();
4092 return expire;
4093}
4094EXPORT_SYMBOL(rps_may_expire_flow);
4095
4096#endif /* CONFIG_RFS_ACCEL */
4097
0a9627f2 4098/* Called from hardirq (IPI) context */
e36fa2f7 4099static void rps_trigger_softirq(void *data)
0a9627f2 4100{
e36fa2f7
ED
4101 struct softnet_data *sd = data;
4102
eecfd7c4 4103 ____napi_schedule(sd, &sd->backlog);
dee42870 4104 sd->received_rps++;
0a9627f2 4105}
e36fa2f7 4106
fec5e652 4107#endif /* CONFIG_RPS */
0a9627f2 4108
e36fa2f7
ED
4109/*
4110 * Check if this softnet_data structure is another cpu one
4111 * If yes, queue it to our IPI list and return 1
4112 * If no, return 0
4113 */
4114static int rps_ipi_queued(struct softnet_data *sd)
4115{
4116#ifdef CONFIG_RPS
903ceff7 4117 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4118
4119 if (sd != mysd) {
4120 sd->rps_ipi_next = mysd->rps_ipi_list;
4121 mysd->rps_ipi_list = sd;
4122
4123 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4124 return 1;
4125 }
4126#endif /* CONFIG_RPS */
4127 return 0;
4128}
4129
99bbc707
WB
4130#ifdef CONFIG_NET_FLOW_LIMIT
4131int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4132#endif
4133
4134static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4135{
4136#ifdef CONFIG_NET_FLOW_LIMIT
4137 struct sd_flow_limit *fl;
4138 struct softnet_data *sd;
4139 unsigned int old_flow, new_flow;
4140
4141 if (qlen < (netdev_max_backlog >> 1))
4142 return false;
4143
903ceff7 4144 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4145
4146 rcu_read_lock();
4147 fl = rcu_dereference(sd->flow_limit);
4148 if (fl) {
3958afa1 4149 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4150 old_flow = fl->history[fl->history_head];
4151 fl->history[fl->history_head] = new_flow;
4152
4153 fl->history_head++;
4154 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4155
4156 if (likely(fl->buckets[old_flow]))
4157 fl->buckets[old_flow]--;
4158
4159 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4160 fl->count++;
4161 rcu_read_unlock();
4162 return true;
4163 }
4164 }
4165 rcu_read_unlock();
4166#endif
4167 return false;
4168}
4169
0a9627f2
TH
4170/*
4171 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4172 * queue (may be a remote CPU queue).
4173 */
fec5e652
TH
4174static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4175 unsigned int *qtail)
0a9627f2 4176{
e36fa2f7 4177 struct softnet_data *sd;
0a9627f2 4178 unsigned long flags;
99bbc707 4179 unsigned int qlen;
0a9627f2 4180
e36fa2f7 4181 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4182
4183 local_irq_save(flags);
0a9627f2 4184
e36fa2f7 4185 rps_lock(sd);
e9e4dd32
JA
4186 if (!netif_running(skb->dev))
4187 goto drop;
99bbc707
WB
4188 qlen = skb_queue_len(&sd->input_pkt_queue);
4189 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4190 if (qlen) {
0a9627f2 4191enqueue:
e36fa2f7 4192 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4193 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4194 rps_unlock(sd);
152102c7 4195 local_irq_restore(flags);
0a9627f2
TH
4196 return NET_RX_SUCCESS;
4197 }
4198
ebda37c2
ED
4199 /* Schedule NAPI for backlog device
4200 * We can use non atomic operation since we own the queue lock
4201 */
4202 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4203 if (!rps_ipi_queued(sd))
eecfd7c4 4204 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4205 }
4206 goto enqueue;
4207 }
4208
e9e4dd32 4209drop:
dee42870 4210 sd->dropped++;
e36fa2f7 4211 rps_unlock(sd);
0a9627f2 4212
0a9627f2
TH
4213 local_irq_restore(flags);
4214
caf586e5 4215 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4216 kfree_skb(skb);
4217 return NET_RX_DROP;
4218}
1da177e4 4219
e817f856
JDB
4220static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4221{
4222 struct net_device *dev = skb->dev;
4223 struct netdev_rx_queue *rxqueue;
4224
4225 rxqueue = dev->_rx;
4226
4227 if (skb_rx_queue_recorded(skb)) {
4228 u16 index = skb_get_rx_queue(skb);
4229
4230 if (unlikely(index >= dev->real_num_rx_queues)) {
4231 WARN_ONCE(dev->real_num_rx_queues > 1,
4232 "%s received packet on queue %u, but number "
4233 "of RX queues is %u\n",
4234 dev->name, index, dev->real_num_rx_queues);
4235
4236 return rxqueue; /* Return first rxqueue */
4237 }
4238 rxqueue += index;
4239 }
4240 return rxqueue;
4241}
4242
d4455169 4243static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4244 struct xdp_buff *xdp,
d4455169
JF
4245 struct bpf_prog *xdp_prog)
4246{
e817f856 4247 struct netdev_rx_queue *rxqueue;
198d83bb 4248 void *orig_data, *orig_data_end;
de8f3a83 4249 u32 metalen, act = XDP_DROP;
29724956
JDB
4250 __be16 orig_eth_type;
4251 struct ethhdr *eth;
4252 bool orig_bcast;
d4455169
JF
4253 int hlen, off;
4254 u32 mac_len;
4255
4256 /* Reinjected packets coming from act_mirred or similar should
4257 * not get XDP generic processing.
4258 */
cd11b164 4259 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
d4455169
JF
4260 return XDP_PASS;
4261
de8f3a83
DB
4262 /* XDP packets must be linear and must have sufficient headroom
4263 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4264 * native XDP provides, thus we need to do it here as well.
4265 */
4266 if (skb_is_nonlinear(skb) ||
4267 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4268 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4269 int troom = skb->tail + skb->data_len - skb->end;
4270
4271 /* In case we have to go down the path and also linearize,
4272 * then lets do the pskb_expand_head() work just once here.
4273 */
4274 if (pskb_expand_head(skb,
4275 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4276 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4277 goto do_drop;
2d17d8d7 4278 if (skb_linearize(skb))
de8f3a83
DB
4279 goto do_drop;
4280 }
d4455169
JF
4281
4282 /* The XDP program wants to see the packet starting at the MAC
4283 * header.
4284 */
4285 mac_len = skb->data - skb_mac_header(skb);
4286 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4287 xdp->data = skb->data - mac_len;
4288 xdp->data_meta = xdp->data;
4289 xdp->data_end = xdp->data + hlen;
4290 xdp->data_hard_start = skb->data - skb_headroom(skb);
4291 orig_data_end = xdp->data_end;
4292 orig_data = xdp->data;
29724956
JDB
4293 eth = (struct ethhdr *)xdp->data;
4294 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4295 orig_eth_type = eth->h_proto;
d4455169 4296
e817f856 4297 rxqueue = netif_get_rxqueue(skb);
02671e23 4298 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4299
02671e23 4300 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4301
065af355 4302 /* check if bpf_xdp_adjust_head was used */
02671e23 4303 off = xdp->data - orig_data;
065af355
JDB
4304 if (off) {
4305 if (off > 0)
4306 __skb_pull(skb, off);
4307 else if (off < 0)
4308 __skb_push(skb, -off);
4309
4310 skb->mac_header += off;
4311 skb_reset_network_header(skb);
4312 }
d4455169 4313
198d83bb
NS
4314 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4315 * pckt.
4316 */
02671e23 4317 off = orig_data_end - xdp->data_end;
f7613120 4318 if (off != 0) {
02671e23 4319 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
f7613120 4320 skb->len -= off;
02671e23 4321
f7613120 4322 }
198d83bb 4323
29724956
JDB
4324 /* check if XDP changed eth hdr such SKB needs update */
4325 eth = (struct ethhdr *)xdp->data;
4326 if ((orig_eth_type != eth->h_proto) ||
4327 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4328 __skb_push(skb, ETH_HLEN);
4329 skb->protocol = eth_type_trans(skb, skb->dev);
4330 }
4331
d4455169 4332 switch (act) {
6103aa96 4333 case XDP_REDIRECT:
d4455169
JF
4334 case XDP_TX:
4335 __skb_push(skb, mac_len);
de8f3a83 4336 break;
d4455169 4337 case XDP_PASS:
02671e23 4338 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4339 if (metalen)
4340 skb_metadata_set(skb, metalen);
d4455169 4341 break;
d4455169
JF
4342 default:
4343 bpf_warn_invalid_xdp_action(act);
4344 /* fall through */
4345 case XDP_ABORTED:
4346 trace_xdp_exception(skb->dev, xdp_prog, act);
4347 /* fall through */
4348 case XDP_DROP:
4349 do_drop:
4350 kfree_skb(skb);
4351 break;
4352 }
4353
4354 return act;
4355}
4356
4357/* When doing generic XDP we have to bypass the qdisc layer and the
4358 * network taps in order to match in-driver-XDP behavior.
4359 */
7c497478 4360void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4361{
4362 struct net_device *dev = skb->dev;
4363 struct netdev_queue *txq;
4364 bool free_skb = true;
4365 int cpu, rc;
4366
4bd97d51 4367 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4368 cpu = smp_processor_id();
4369 HARD_TX_LOCK(dev, txq, cpu);
4370 if (!netif_xmit_stopped(txq)) {
4371 rc = netdev_start_xmit(skb, dev, txq, 0);
4372 if (dev_xmit_complete(rc))
4373 free_skb = false;
4374 }
4375 HARD_TX_UNLOCK(dev, txq);
4376 if (free_skb) {
4377 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4378 kfree_skb(skb);
4379 }
4380}
7c497478 4381EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169 4382
02786475 4383static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4384
7c497478 4385int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4386{
d4455169 4387 if (xdp_prog) {
02671e23
BT
4388 struct xdp_buff xdp;
4389 u32 act;
6103aa96 4390 int err;
d4455169 4391
02671e23 4392 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4393 if (act != XDP_PASS) {
6103aa96
JF
4394 switch (act) {
4395 case XDP_REDIRECT:
2facaad6 4396 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4397 &xdp, xdp_prog);
6103aa96
JF
4398 if (err)
4399 goto out_redir;
02671e23 4400 break;
6103aa96 4401 case XDP_TX:
d4455169 4402 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4403 break;
4404 }
d4455169
JF
4405 return XDP_DROP;
4406 }
4407 }
4408 return XDP_PASS;
6103aa96 4409out_redir:
6103aa96
JF
4410 kfree_skb(skb);
4411 return XDP_DROP;
d4455169 4412}
7c497478 4413EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4414
ae78dbfa 4415static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4416{
b0e28f1e 4417 int ret;
1da177e4 4418
588f0330 4419 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4420
cf66ba58 4421 trace_netif_rx(skb);
d4455169 4422
df334545 4423#ifdef CONFIG_RPS
dc05360f 4424 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4425 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4426 int cpu;
4427
cece1945 4428 preempt_disable();
b0e28f1e 4429 rcu_read_lock();
fec5e652
TH
4430
4431 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4432 if (cpu < 0)
4433 cpu = smp_processor_id();
fec5e652
TH
4434
4435 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4436
b0e28f1e 4437 rcu_read_unlock();
cece1945 4438 preempt_enable();
adc9300e
ED
4439 } else
4440#endif
fec5e652
TH
4441 {
4442 unsigned int qtail;
f4563a75 4443
fec5e652
TH
4444 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4445 put_cpu();
4446 }
b0e28f1e 4447 return ret;
1da177e4 4448}
ae78dbfa
BH
4449
4450/**
4451 * netif_rx - post buffer to the network code
4452 * @skb: buffer to post
4453 *
4454 * This function receives a packet from a device driver and queues it for
4455 * the upper (protocol) levels to process. It always succeeds. The buffer
4456 * may be dropped during processing for congestion control or by the
4457 * protocol layers.
4458 *
4459 * return values:
4460 * NET_RX_SUCCESS (no congestion)
4461 * NET_RX_DROP (packet was dropped)
4462 *
4463 */
4464
4465int netif_rx(struct sk_buff *skb)
4466{
b0e3f1bd
GB
4467 int ret;
4468
ae78dbfa
BH
4469 trace_netif_rx_entry(skb);
4470
b0e3f1bd
GB
4471 ret = netif_rx_internal(skb);
4472 trace_netif_rx_exit(ret);
4473
4474 return ret;
ae78dbfa 4475}
d1b19dff 4476EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4477
4478int netif_rx_ni(struct sk_buff *skb)
4479{
4480 int err;
4481
ae78dbfa
BH
4482 trace_netif_rx_ni_entry(skb);
4483
1da177e4 4484 preempt_disable();
ae78dbfa 4485 err = netif_rx_internal(skb);
1da177e4
LT
4486 if (local_softirq_pending())
4487 do_softirq();
4488 preempt_enable();
b0e3f1bd 4489 trace_netif_rx_ni_exit(err);
1da177e4
LT
4490
4491 return err;
4492}
1da177e4
LT
4493EXPORT_SYMBOL(netif_rx_ni);
4494
0766f788 4495static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4496{
903ceff7 4497 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4498
4499 if (sd->completion_queue) {
4500 struct sk_buff *clist;
4501
4502 local_irq_disable();
4503 clist = sd->completion_queue;
4504 sd->completion_queue = NULL;
4505 local_irq_enable();
4506
4507 while (clist) {
4508 struct sk_buff *skb = clist;
f4563a75 4509
1da177e4
LT
4510 clist = clist->next;
4511
63354797 4512 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4513 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4514 trace_consume_skb(skb);
4515 else
4516 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4517
4518 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4519 __kfree_skb(skb);
4520 else
4521 __kfree_skb_defer(skb);
1da177e4 4522 }
15fad714
JDB
4523
4524 __kfree_skb_flush();
1da177e4
LT
4525 }
4526
4527 if (sd->output_queue) {
37437bb2 4528 struct Qdisc *head;
1da177e4
LT
4529
4530 local_irq_disable();
4531 head = sd->output_queue;
4532 sd->output_queue = NULL;
a9cbd588 4533 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4534 local_irq_enable();
4535
4536 while (head) {
37437bb2 4537 struct Qdisc *q = head;
6b3ba914 4538 spinlock_t *root_lock = NULL;
37437bb2 4539
1da177e4
LT
4540 head = head->next_sched;
4541
6b3ba914
JF
4542 if (!(q->flags & TCQ_F_NOLOCK)) {
4543 root_lock = qdisc_lock(q);
4544 spin_lock(root_lock);
4545 }
3bcb846c
ED
4546 /* We need to make sure head->next_sched is read
4547 * before clearing __QDISC_STATE_SCHED
4548 */
4549 smp_mb__before_atomic();
4550 clear_bit(__QDISC_STATE_SCHED, &q->state);
4551 qdisc_run(q);
6b3ba914
JF
4552 if (root_lock)
4553 spin_unlock(root_lock);
1da177e4
LT
4554 }
4555 }
f53c7239
SK
4556
4557 xfrm_dev_backlog(sd);
1da177e4
LT
4558}
4559
181402a5 4560#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4561/* This hook is defined here for ATM LANE */
4562int (*br_fdb_test_addr_hook)(struct net_device *dev,
4563 unsigned char *addr) __read_mostly;
4fb019a0 4564EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4565#endif
1da177e4 4566
1f211a1b
DB
4567static inline struct sk_buff *
4568sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4569 struct net_device *orig_dev)
f697c3e8 4570{
e7582bab 4571#ifdef CONFIG_NET_CLS_ACT
46209401 4572 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4573 struct tcf_result cl_res;
24824a09 4574
c9e99fd0
DB
4575 /* If there's at least one ingress present somewhere (so
4576 * we get here via enabled static key), remaining devices
4577 * that are not configured with an ingress qdisc will bail
d2788d34 4578 * out here.
c9e99fd0 4579 */
46209401 4580 if (!miniq)
4577139b 4581 return skb;
46209401 4582
f697c3e8
HX
4583 if (*pt_prev) {
4584 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4585 *pt_prev = NULL;
1da177e4
LT
4586 }
4587
3365495c 4588 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4589 skb->tc_at_ingress = 1;
46209401 4590 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4591
46209401 4592 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
4593 case TC_ACT_OK:
4594 case TC_ACT_RECLASSIFY:
4595 skb->tc_index = TC_H_MIN(cl_res.classid);
4596 break;
4597 case TC_ACT_SHOT:
46209401 4598 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4599 kfree_skb(skb);
4600 return NULL;
d2788d34
DB
4601 case TC_ACT_STOLEN:
4602 case TC_ACT_QUEUED:
e25ea21f 4603 case TC_ACT_TRAP:
8a3a4c6e 4604 consume_skb(skb);
d2788d34 4605 return NULL;
27b29f63
AS
4606 case TC_ACT_REDIRECT:
4607 /* skb_mac_header check was done by cls/act_bpf, so
4608 * we can safely push the L2 header back before
4609 * redirecting to another netdev
4610 */
4611 __skb_push(skb, skb->mac_len);
4612 skb_do_redirect(skb);
4613 return NULL;
720f22fe 4614 case TC_ACT_CONSUMED:
cd11b164 4615 return NULL;
d2788d34
DB
4616 default:
4617 break;
f697c3e8 4618 }
e7582bab 4619#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4620 return skb;
4621}
1da177e4 4622
24b27fc4
MB
4623/**
4624 * netdev_is_rx_handler_busy - check if receive handler is registered
4625 * @dev: device to check
4626 *
4627 * Check if a receive handler is already registered for a given device.
4628 * Return true if there one.
4629 *
4630 * The caller must hold the rtnl_mutex.
4631 */
4632bool netdev_is_rx_handler_busy(struct net_device *dev)
4633{
4634 ASSERT_RTNL();
4635 return dev && rtnl_dereference(dev->rx_handler);
4636}
4637EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4638
ab95bfe0
JP
4639/**
4640 * netdev_rx_handler_register - register receive handler
4641 * @dev: device to register a handler for
4642 * @rx_handler: receive handler to register
93e2c32b 4643 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4644 *
e227867f 4645 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4646 * called from __netif_receive_skb. A negative errno code is returned
4647 * on a failure.
4648 *
4649 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4650 *
4651 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4652 */
4653int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4654 rx_handler_func_t *rx_handler,
4655 void *rx_handler_data)
ab95bfe0 4656{
1b7cd004 4657 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4658 return -EBUSY;
4659
f5426250
PA
4660 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4661 return -EINVAL;
4662
00cfec37 4663 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4664 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4665 rcu_assign_pointer(dev->rx_handler, rx_handler);
4666
4667 return 0;
4668}
4669EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4670
4671/**
4672 * netdev_rx_handler_unregister - unregister receive handler
4673 * @dev: device to unregister a handler from
4674 *
166ec369 4675 * Unregister a receive handler from a device.
ab95bfe0
JP
4676 *
4677 * The caller must hold the rtnl_mutex.
4678 */
4679void netdev_rx_handler_unregister(struct net_device *dev)
4680{
4681
4682 ASSERT_RTNL();
a9b3cd7f 4683 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4684 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4685 * section has a guarantee to see a non NULL rx_handler_data
4686 * as well.
4687 */
4688 synchronize_net();
a9b3cd7f 4689 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4690}
4691EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4692
b4b9e355
MG
4693/*
4694 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4695 * the special handling of PFMEMALLOC skbs.
4696 */
4697static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4698{
4699 switch (skb->protocol) {
2b8837ae
JP
4700 case htons(ETH_P_ARP):
4701 case htons(ETH_P_IP):
4702 case htons(ETH_P_IPV6):
4703 case htons(ETH_P_8021Q):
4704 case htons(ETH_P_8021AD):
b4b9e355
MG
4705 return true;
4706 default:
4707 return false;
4708 }
4709}
4710
e687ad60
PN
4711static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4712 int *ret, struct net_device *orig_dev)
4713{
e7582bab 4714#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4715 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4716 int ingress_retval;
4717
e687ad60
PN
4718 if (*pt_prev) {
4719 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4720 *pt_prev = NULL;
4721 }
4722
2c1e2703
AC
4723 rcu_read_lock();
4724 ingress_retval = nf_hook_ingress(skb);
4725 rcu_read_unlock();
4726 return ingress_retval;
e687ad60 4727 }
e7582bab 4728#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4729 return 0;
4730}
e687ad60 4731
88eb1944
EC
4732static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4733 struct packet_type **ppt_prev)
1da177e4
LT
4734{
4735 struct packet_type *ptype, *pt_prev;
ab95bfe0 4736 rx_handler_func_t *rx_handler;
f2ccd8fa 4737 struct net_device *orig_dev;
8a4eb573 4738 bool deliver_exact = false;
1da177e4 4739 int ret = NET_RX_DROP;
252e3346 4740 __be16 type;
1da177e4 4741
588f0330 4742 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4743
cf66ba58 4744 trace_netif_receive_skb(skb);
9b22ea56 4745
cc9bd5ce 4746 orig_dev = skb->dev;
8f903c70 4747
c1d2bbe1 4748 skb_reset_network_header(skb);
fda55eca
ED
4749 if (!skb_transport_header_was_set(skb))
4750 skb_reset_transport_header(skb);
0b5c9db1 4751 skb_reset_mac_len(skb);
1da177e4
LT
4752
4753 pt_prev = NULL;
4754
63d8ea7f 4755another_round:
b6858177 4756 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4757
4758 __this_cpu_inc(softnet_data.processed);
4759
458bf2f2
SH
4760 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4761 int ret2;
4762
4763 preempt_disable();
4764 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4765 preempt_enable();
4766
4767 if (ret2 != XDP_PASS)
4768 return NET_RX_DROP;
4769 skb_reset_mac_len(skb);
4770 }
4771
8ad227ff
PM
4772 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4773 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4774 skb = skb_vlan_untag(skb);
bcc6d479 4775 if (unlikely(!skb))
2c17d27c 4776 goto out;
bcc6d479
JP
4777 }
4778
e7246e12
WB
4779 if (skb_skip_tc_classify(skb))
4780 goto skip_classify;
1da177e4 4781
9754e293 4782 if (pfmemalloc)
b4b9e355
MG
4783 goto skip_taps;
4784
1da177e4 4785 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4786 if (pt_prev)
4787 ret = deliver_skb(skb, pt_prev, orig_dev);
4788 pt_prev = ptype;
4789 }
4790
4791 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4792 if (pt_prev)
4793 ret = deliver_skb(skb, pt_prev, orig_dev);
4794 pt_prev = ptype;
1da177e4
LT
4795 }
4796
b4b9e355 4797skip_taps:
1cf51900 4798#ifdef CONFIG_NET_INGRESS
aabf6772 4799 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 4800 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4801 if (!skb)
2c17d27c 4802 goto out;
e687ad60
PN
4803
4804 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4805 goto out;
4577139b 4806 }
1cf51900 4807#endif
a5135bcf 4808 skb_reset_tc(skb);
e7246e12 4809skip_classify:
9754e293 4810 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4811 goto drop;
4812
df8a39de 4813 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4814 if (pt_prev) {
4815 ret = deliver_skb(skb, pt_prev, orig_dev);
4816 pt_prev = NULL;
4817 }
48cc32d3 4818 if (vlan_do_receive(&skb))
2425717b
JF
4819 goto another_round;
4820 else if (unlikely(!skb))
2c17d27c 4821 goto out;
2425717b
JF
4822 }
4823
48cc32d3 4824 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4825 if (rx_handler) {
4826 if (pt_prev) {
4827 ret = deliver_skb(skb, pt_prev, orig_dev);
4828 pt_prev = NULL;
4829 }
8a4eb573
JP
4830 switch (rx_handler(&skb)) {
4831 case RX_HANDLER_CONSUMED:
3bc1b1ad 4832 ret = NET_RX_SUCCESS;
2c17d27c 4833 goto out;
8a4eb573 4834 case RX_HANDLER_ANOTHER:
63d8ea7f 4835 goto another_round;
8a4eb573
JP
4836 case RX_HANDLER_EXACT:
4837 deliver_exact = true;
4838 case RX_HANDLER_PASS:
4839 break;
4840 default:
4841 BUG();
4842 }
ab95bfe0 4843 }
1da177e4 4844
df8a39de 4845 if (unlikely(skb_vlan_tag_present(skb))) {
36b2f61a
GV
4846check_vlan_id:
4847 if (skb_vlan_tag_get_id(skb)) {
4848 /* Vlan id is non 0 and vlan_do_receive() above couldn't
4849 * find vlan device.
4850 */
d4b812de 4851 skb->pkt_type = PACKET_OTHERHOST;
36b2f61a
GV
4852 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4853 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4854 /* Outer header is 802.1P with vlan 0, inner header is
4855 * 802.1Q or 802.1AD and vlan_do_receive() above could
4856 * not find vlan dev for vlan id 0.
4857 */
4858 __vlan_hwaccel_clear_tag(skb);
4859 skb = skb_vlan_untag(skb);
4860 if (unlikely(!skb))
4861 goto out;
4862 if (vlan_do_receive(&skb))
4863 /* After stripping off 802.1P header with vlan 0
4864 * vlan dev is found for inner header.
4865 */
4866 goto another_round;
4867 else if (unlikely(!skb))
4868 goto out;
4869 else
4870 /* We have stripped outer 802.1P vlan 0 header.
4871 * But could not find vlan dev.
4872 * check again for vlan id to set OTHERHOST.
4873 */
4874 goto check_vlan_id;
4875 }
d4b812de
ED
4876 /* Note: we might in the future use prio bits
4877 * and set skb->priority like in vlan_do_receive()
4878 * For the time being, just ignore Priority Code Point
4879 */
b1817524 4880 __vlan_hwaccel_clear_tag(skb);
d4b812de 4881 }
48cc32d3 4882
7866a621
SN
4883 type = skb->protocol;
4884
63d8ea7f 4885 /* deliver only exact match when indicated */
7866a621
SN
4886 if (likely(!deliver_exact)) {
4887 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4888 &ptype_base[ntohs(type) &
4889 PTYPE_HASH_MASK]);
4890 }
1f3c8804 4891
7866a621
SN
4892 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4893 &orig_dev->ptype_specific);
4894
4895 if (unlikely(skb->dev != orig_dev)) {
4896 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4897 &skb->dev->ptype_specific);
1da177e4
LT
4898 }
4899
4900 if (pt_prev) {
1f8b977a 4901 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4902 goto drop;
88eb1944 4903 *ppt_prev = pt_prev;
1da177e4 4904 } else {
b4b9e355 4905drop:
6e7333d3
JW
4906 if (!deliver_exact)
4907 atomic_long_inc(&skb->dev->rx_dropped);
4908 else
4909 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4910 kfree_skb(skb);
4911 /* Jamal, now you will not able to escape explaining
4912 * me how you were going to use this. :-)
4913 */
4914 ret = NET_RX_DROP;
4915 }
4916
2c17d27c 4917out:
9754e293
DM
4918 return ret;
4919}
4920
88eb1944
EC
4921static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4922{
4923 struct net_device *orig_dev = skb->dev;
4924 struct packet_type *pt_prev = NULL;
4925 int ret;
4926
4927 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4928 if (pt_prev)
f5737cba
PA
4929 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4930 skb->dev, pt_prev, orig_dev);
88eb1944
EC
4931 return ret;
4932}
4933
1c601d82
JDB
4934/**
4935 * netif_receive_skb_core - special purpose version of netif_receive_skb
4936 * @skb: buffer to process
4937 *
4938 * More direct receive version of netif_receive_skb(). It should
4939 * only be used by callers that have a need to skip RPS and Generic XDP.
4940 * Caller must also take care of handling if (page_is_)pfmemalloc.
4941 *
4942 * This function may only be called from softirq context and interrupts
4943 * should be enabled.
4944 *
4945 * Return values (usually ignored):
4946 * NET_RX_SUCCESS: no congestion
4947 * NET_RX_DROP: packet was dropped
4948 */
4949int netif_receive_skb_core(struct sk_buff *skb)
4950{
4951 int ret;
4952
4953 rcu_read_lock();
88eb1944 4954 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
4955 rcu_read_unlock();
4956
4957 return ret;
4958}
4959EXPORT_SYMBOL(netif_receive_skb_core);
4960
88eb1944
EC
4961static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4962 struct packet_type *pt_prev,
4963 struct net_device *orig_dev)
4ce0017a
EC
4964{
4965 struct sk_buff *skb, *next;
4966
88eb1944
EC
4967 if (!pt_prev)
4968 return;
4969 if (list_empty(head))
4970 return;
17266ee9 4971 if (pt_prev->list_func != NULL)
fdf71426
PA
4972 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
4973 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 4974 else
9a5a90d1
AL
4975 list_for_each_entry_safe(skb, next, head, list) {
4976 skb_list_del_init(skb);
fdf71426 4977 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 4978 }
88eb1944
EC
4979}
4980
4981static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4982{
4983 /* Fast-path assumptions:
4984 * - There is no RX handler.
4985 * - Only one packet_type matches.
4986 * If either of these fails, we will end up doing some per-packet
4987 * processing in-line, then handling the 'last ptype' for the whole
4988 * sublist. This can't cause out-of-order delivery to any single ptype,
4989 * because the 'last ptype' must be constant across the sublist, and all
4990 * other ptypes are handled per-packet.
4991 */
4992 /* Current (common) ptype of sublist */
4993 struct packet_type *pt_curr = NULL;
4994 /* Current (common) orig_dev of sublist */
4995 struct net_device *od_curr = NULL;
4996 struct list_head sublist;
4997 struct sk_buff *skb, *next;
4998
9af86f93 4999 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5000 list_for_each_entry_safe(skb, next, head, list) {
5001 struct net_device *orig_dev = skb->dev;
5002 struct packet_type *pt_prev = NULL;
5003
22f6bbb7 5004 skb_list_del_init(skb);
88eb1944 5005 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
9af86f93
EC
5006 if (!pt_prev)
5007 continue;
88eb1944
EC
5008 if (pt_curr != pt_prev || od_curr != orig_dev) {
5009 /* dispatch old sublist */
88eb1944
EC
5010 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5011 /* start new sublist */
9af86f93 5012 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5013 pt_curr = pt_prev;
5014 od_curr = orig_dev;
5015 }
9af86f93 5016 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5017 }
5018
5019 /* dispatch final sublist */
9af86f93 5020 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5021}
5022
9754e293
DM
5023static int __netif_receive_skb(struct sk_buff *skb)
5024{
5025 int ret;
5026
5027 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5028 unsigned int noreclaim_flag;
9754e293
DM
5029
5030 /*
5031 * PFMEMALLOC skbs are special, they should
5032 * - be delivered to SOCK_MEMALLOC sockets only
5033 * - stay away from userspace
5034 * - have bounded memory usage
5035 *
5036 * Use PF_MEMALLOC as this saves us from propagating the allocation
5037 * context down to all allocation sites.
5038 */
f1083048 5039 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5040 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5041 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5042 } else
88eb1944 5043 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5044
1da177e4
LT
5045 return ret;
5046}
0a9627f2 5047
4ce0017a
EC
5048static void __netif_receive_skb_list(struct list_head *head)
5049{
5050 unsigned long noreclaim_flag = 0;
5051 struct sk_buff *skb, *next;
5052 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5053
5054 list_for_each_entry_safe(skb, next, head, list) {
5055 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5056 struct list_head sublist;
5057
5058 /* Handle the previous sublist */
5059 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5060 if (!list_empty(&sublist))
5061 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5062 pfmemalloc = !pfmemalloc;
5063 /* See comments in __netif_receive_skb */
5064 if (pfmemalloc)
5065 noreclaim_flag = memalloc_noreclaim_save();
5066 else
5067 memalloc_noreclaim_restore(noreclaim_flag);
5068 }
5069 }
5070 /* Handle the remaining sublist */
b9f463d6
EC
5071 if (!list_empty(head))
5072 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5073 /* Restore pflags */
5074 if (pfmemalloc)
5075 memalloc_noreclaim_restore(noreclaim_flag);
5076}
5077
f4e63525 5078static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5079{
58038695 5080 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5081 struct bpf_prog *new = xdp->prog;
5082 int ret = 0;
5083
5084 switch (xdp->command) {
58038695 5085 case XDP_SETUP_PROG:
b5cdae32
DM
5086 rcu_assign_pointer(dev->xdp_prog, new);
5087 if (old)
5088 bpf_prog_put(old);
5089
5090 if (old && !new) {
02786475 5091 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5092 } else if (new && !old) {
02786475 5093 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5094 dev_disable_lro(dev);
56f5aa77 5095 dev_disable_gro_hw(dev);
b5cdae32
DM
5096 }
5097 break;
b5cdae32
DM
5098
5099 case XDP_QUERY_PROG:
58038695 5100 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
5101 break;
5102
5103 default:
5104 ret = -EINVAL;
5105 break;
5106 }
5107
5108 return ret;
5109}
5110
ae78dbfa 5111static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5112{
2c17d27c
JA
5113 int ret;
5114
588f0330 5115 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5116
c1f19b51
RC
5117 if (skb_defer_rx_timestamp(skb))
5118 return NET_RX_SUCCESS;
5119
bbbe211c 5120 rcu_read_lock();
df334545 5121#ifdef CONFIG_RPS
dc05360f 5122 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5123 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5124 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5125
3b098e2d
ED
5126 if (cpu >= 0) {
5127 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5128 rcu_read_unlock();
adc9300e 5129 return ret;
3b098e2d 5130 }
fec5e652 5131 }
1e94d72f 5132#endif
2c17d27c
JA
5133 ret = __netif_receive_skb(skb);
5134 rcu_read_unlock();
5135 return ret;
0a9627f2 5136}
ae78dbfa 5137
7da517a3
EC
5138static void netif_receive_skb_list_internal(struct list_head *head)
5139{
7da517a3 5140 struct sk_buff *skb, *next;
8c057efa 5141 struct list_head sublist;
7da517a3 5142
8c057efa 5143 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5144 list_for_each_entry_safe(skb, next, head, list) {
5145 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5146 skb_list_del_init(skb);
8c057efa
EC
5147 if (!skb_defer_rx_timestamp(skb))
5148 list_add_tail(&skb->list, &sublist);
7da517a3 5149 }
8c057efa 5150 list_splice_init(&sublist, head);
7da517a3 5151
7da517a3
EC
5152 rcu_read_lock();
5153#ifdef CONFIG_RPS
dc05360f 5154 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5155 list_for_each_entry_safe(skb, next, head, list) {
5156 struct rps_dev_flow voidflow, *rflow = &voidflow;
5157 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5158
5159 if (cpu >= 0) {
8c057efa 5160 /* Will be handled, remove from list */
22f6bbb7 5161 skb_list_del_init(skb);
8c057efa 5162 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5163 }
5164 }
5165 }
5166#endif
5167 __netif_receive_skb_list(head);
5168 rcu_read_unlock();
5169}
5170
ae78dbfa
BH
5171/**
5172 * netif_receive_skb - process receive buffer from network
5173 * @skb: buffer to process
5174 *
5175 * netif_receive_skb() is the main receive data processing function.
5176 * It always succeeds. The buffer may be dropped during processing
5177 * for congestion control or by the protocol layers.
5178 *
5179 * This function may only be called from softirq context and interrupts
5180 * should be enabled.
5181 *
5182 * Return values (usually ignored):
5183 * NET_RX_SUCCESS: no congestion
5184 * NET_RX_DROP: packet was dropped
5185 */
04eb4489 5186int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5187{
b0e3f1bd
GB
5188 int ret;
5189
ae78dbfa
BH
5190 trace_netif_receive_skb_entry(skb);
5191
b0e3f1bd
GB
5192 ret = netif_receive_skb_internal(skb);
5193 trace_netif_receive_skb_exit(ret);
5194
5195 return ret;
ae78dbfa 5196}
04eb4489 5197EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5198
f6ad8c1b
EC
5199/**
5200 * netif_receive_skb_list - process many receive buffers from network
5201 * @head: list of skbs to process.
5202 *
7da517a3
EC
5203 * Since return value of netif_receive_skb() is normally ignored, and
5204 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5205 *
5206 * This function may only be called from softirq context and interrupts
5207 * should be enabled.
5208 */
5209void netif_receive_skb_list(struct list_head *head)
5210{
7da517a3 5211 struct sk_buff *skb;
f6ad8c1b 5212
b9f463d6
EC
5213 if (list_empty(head))
5214 return;
b0e3f1bd
GB
5215 if (trace_netif_receive_skb_list_entry_enabled()) {
5216 list_for_each_entry(skb, head, list)
5217 trace_netif_receive_skb_list_entry(skb);
5218 }
7da517a3 5219 netif_receive_skb_list_internal(head);
b0e3f1bd 5220 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5221}
5222EXPORT_SYMBOL(netif_receive_skb_list);
5223
41852497 5224DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5225
5226/* Network device is going away, flush any packets still pending */
5227static void flush_backlog(struct work_struct *work)
6e583ce5 5228{
6e583ce5 5229 struct sk_buff *skb, *tmp;
145dd5f9
PA
5230 struct softnet_data *sd;
5231
5232 local_bh_disable();
5233 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5234
145dd5f9 5235 local_irq_disable();
e36fa2f7 5236 rps_lock(sd);
6e7676c1 5237 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5238 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5239 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 5240 kfree_skb(skb);
76cc8b13 5241 input_queue_head_incr(sd);
6e583ce5 5242 }
6e7676c1 5243 }
e36fa2f7 5244 rps_unlock(sd);
145dd5f9 5245 local_irq_enable();
6e7676c1
CG
5246
5247 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5248 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5249 __skb_unlink(skb, &sd->process_queue);
5250 kfree_skb(skb);
76cc8b13 5251 input_queue_head_incr(sd);
6e7676c1
CG
5252 }
5253 }
145dd5f9
PA
5254 local_bh_enable();
5255}
5256
41852497 5257static void flush_all_backlogs(void)
145dd5f9
PA
5258{
5259 unsigned int cpu;
5260
5261 get_online_cpus();
5262
41852497
ED
5263 for_each_online_cpu(cpu)
5264 queue_work_on(cpu, system_highpri_wq,
5265 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5266
5267 for_each_online_cpu(cpu)
41852497 5268 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5269
5270 put_online_cpus();
6e583ce5
SH
5271}
5272
aaa5d90b
PA
5273INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5274INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
d565b0a1
HX
5275static int napi_gro_complete(struct sk_buff *skb)
5276{
22061d80 5277 struct packet_offload *ptype;
d565b0a1 5278 __be16 type = skb->protocol;
22061d80 5279 struct list_head *head = &offload_base;
d565b0a1
HX
5280 int err = -ENOENT;
5281
c3c7c254
ED
5282 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5283
fc59f9a3
HX
5284 if (NAPI_GRO_CB(skb)->count == 1) {
5285 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5286 goto out;
fc59f9a3 5287 }
d565b0a1
HX
5288
5289 rcu_read_lock();
5290 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5291 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5292 continue;
5293
aaa5d90b
PA
5294 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5295 ipv6_gro_complete, inet_gro_complete,
5296 skb, 0);
d565b0a1
HX
5297 break;
5298 }
5299 rcu_read_unlock();
5300
5301 if (err) {
5302 WARN_ON(&ptype->list == head);
5303 kfree_skb(skb);
5304 return NET_RX_SUCCESS;
5305 }
5306
5307out:
ae78dbfa 5308 return netif_receive_skb_internal(skb);
d565b0a1
HX
5309}
5310
6312fe77 5311static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5312 bool flush_old)
d565b0a1 5313{
6312fe77 5314 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5315 struct sk_buff *skb, *p;
2e71a6f8 5316
07d78363 5317 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5318 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5319 return;
992cba7e 5320 skb_list_del_init(skb);
d565b0a1 5321 napi_gro_complete(skb);
6312fe77 5322 napi->gro_hash[index].count--;
d565b0a1 5323 }
d9f37d01
LR
5324
5325 if (!napi->gro_hash[index].count)
5326 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5327}
07d78363 5328
6312fe77 5329/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5330 * youngest packets at the head of it.
5331 * Complete skbs in reverse order to reduce latencies.
5332 */
5333void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5334{
42519ede
ED
5335 unsigned long bitmask = napi->gro_bitmask;
5336 unsigned int i, base = ~0U;
07d78363 5337
42519ede
ED
5338 while ((i = ffs(bitmask)) != 0) {
5339 bitmask >>= i;
5340 base += i;
5341 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5342 }
07d78363 5343}
86cac58b 5344EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5345
07d78363
DM
5346static struct list_head *gro_list_prepare(struct napi_struct *napi,
5347 struct sk_buff *skb)
89c5fa33 5348{
89c5fa33 5349 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5350 u32 hash = skb_get_hash_raw(skb);
07d78363 5351 struct list_head *head;
d4546c25 5352 struct sk_buff *p;
89c5fa33 5353
6312fe77 5354 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5355 list_for_each_entry(p, head, list) {
89c5fa33
ED
5356 unsigned long diffs;
5357
0b4cec8c
TH
5358 NAPI_GRO_CB(p)->flush = 0;
5359
5360 if (hash != skb_get_hash_raw(p)) {
5361 NAPI_GRO_CB(p)->same_flow = 0;
5362 continue;
5363 }
5364
89c5fa33 5365 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5366 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5367 if (skb_vlan_tag_present(p))
5368 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 5369 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5370 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5371 if (maclen == ETH_HLEN)
5372 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5373 skb_mac_header(skb));
89c5fa33
ED
5374 else if (!diffs)
5375 diffs = memcmp(skb_mac_header(p),
a50e233c 5376 skb_mac_header(skb),
89c5fa33
ED
5377 maclen);
5378 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5379 }
07d78363
DM
5380
5381 return head;
89c5fa33
ED
5382}
5383
299603e8
JC
5384static void skb_gro_reset_offset(struct sk_buff *skb)
5385{
5386 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5387 const skb_frag_t *frag0 = &pinfo->frags[0];
5388
5389 NAPI_GRO_CB(skb)->data_offset = 0;
5390 NAPI_GRO_CB(skb)->frag0 = NULL;
5391 NAPI_GRO_CB(skb)->frag0_len = 0;
5392
5393 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5394 pinfo->nr_frags &&
5395 !PageHighMem(skb_frag_page(frag0))) {
5396 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5397 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5398 skb_frag_size(frag0),
5399 skb->end - skb->tail);
89c5fa33
ED
5400 }
5401}
5402
a50e233c
ED
5403static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5404{
5405 struct skb_shared_info *pinfo = skb_shinfo(skb);
5406
5407 BUG_ON(skb->end - skb->tail < grow);
5408
5409 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5410
5411 skb->data_len -= grow;
5412 skb->tail += grow;
5413
b54c9d5b 5414 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5415 skb_frag_size_sub(&pinfo->frags[0], grow);
5416
5417 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5418 skb_frag_unref(skb, 0);
5419 memmove(pinfo->frags, pinfo->frags + 1,
5420 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5421 }
5422}
5423
6312fe77 5424static void gro_flush_oldest(struct list_head *head)
07d78363 5425{
6312fe77 5426 struct sk_buff *oldest;
07d78363 5427
6312fe77 5428 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5429
6312fe77 5430 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5431 * impossible.
5432 */
5433 if (WARN_ON_ONCE(!oldest))
5434 return;
5435
d9f37d01
LR
5436 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5437 * SKB to the chain.
07d78363 5438 */
ece23711 5439 skb_list_del_init(oldest);
07d78363
DM
5440 napi_gro_complete(oldest);
5441}
5442
aaa5d90b
PA
5443INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5444 struct sk_buff *));
5445INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5446 struct sk_buff *));
bb728820 5447static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5448{
6312fe77 5449 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5450 struct list_head *head = &offload_base;
22061d80 5451 struct packet_offload *ptype;
d565b0a1 5452 __be16 type = skb->protocol;
07d78363 5453 struct list_head *gro_head;
d4546c25 5454 struct sk_buff *pp = NULL;
5b252f0c 5455 enum gro_result ret;
d4546c25 5456 int same_flow;
a50e233c 5457 int grow;
d565b0a1 5458
b5cdae32 5459 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5460 goto normal;
5461
07d78363 5462 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5463
d565b0a1
HX
5464 rcu_read_lock();
5465 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5466 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5467 continue;
5468
86911732 5469 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5470 skb_reset_mac_len(skb);
d565b0a1 5471 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5472 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5473 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5474 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5475 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5476 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5477 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5478 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5479
662880f4
TH
5480 /* Setup for GRO checksum validation */
5481 switch (skb->ip_summed) {
5482 case CHECKSUM_COMPLETE:
5483 NAPI_GRO_CB(skb)->csum = skb->csum;
5484 NAPI_GRO_CB(skb)->csum_valid = 1;
5485 NAPI_GRO_CB(skb)->csum_cnt = 0;
5486 break;
5487 case CHECKSUM_UNNECESSARY:
5488 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5489 NAPI_GRO_CB(skb)->csum_valid = 0;
5490 break;
5491 default:
5492 NAPI_GRO_CB(skb)->csum_cnt = 0;
5493 NAPI_GRO_CB(skb)->csum_valid = 0;
5494 }
d565b0a1 5495
aaa5d90b
PA
5496 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5497 ipv6_gro_receive, inet_gro_receive,
5498 gro_head, skb);
d565b0a1
HX
5499 break;
5500 }
5501 rcu_read_unlock();
5502
5503 if (&ptype->list == head)
5504 goto normal;
5505
25393d3f
SK
5506 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5507 ret = GRO_CONSUMED;
5508 goto ok;
5509 }
5510
0da2afd5 5511 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5512 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5513
d565b0a1 5514 if (pp) {
992cba7e 5515 skb_list_del_init(pp);
d4546c25 5516 napi_gro_complete(pp);
6312fe77 5517 napi->gro_hash[hash].count--;
d565b0a1
HX
5518 }
5519
0da2afd5 5520 if (same_flow)
d565b0a1
HX
5521 goto ok;
5522
600adc18 5523 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5524 goto normal;
d565b0a1 5525
6312fe77
LR
5526 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5527 gro_flush_oldest(gro_head);
600adc18 5528 } else {
6312fe77 5529 napi->gro_hash[hash].count++;
600adc18 5530 }
d565b0a1 5531 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5532 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5533 NAPI_GRO_CB(skb)->last = skb;
86911732 5534 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5535 list_add(&skb->list, gro_head);
5d0d9be8 5536 ret = GRO_HELD;
d565b0a1 5537
ad0f9904 5538pull:
a50e233c
ED
5539 grow = skb_gro_offset(skb) - skb_headlen(skb);
5540 if (grow > 0)
5541 gro_pull_from_frag0(skb, grow);
d565b0a1 5542ok:
d9f37d01
LR
5543 if (napi->gro_hash[hash].count) {
5544 if (!test_bit(hash, &napi->gro_bitmask))
5545 __set_bit(hash, &napi->gro_bitmask);
5546 } else if (test_bit(hash, &napi->gro_bitmask)) {
5547 __clear_bit(hash, &napi->gro_bitmask);
5548 }
5549
5d0d9be8 5550 return ret;
d565b0a1
HX
5551
5552normal:
ad0f9904
HX
5553 ret = GRO_NORMAL;
5554 goto pull;
5d38a079 5555}
96e93eab 5556
bf5a755f
JC
5557struct packet_offload *gro_find_receive_by_type(__be16 type)
5558{
5559 struct list_head *offload_head = &offload_base;
5560 struct packet_offload *ptype;
5561
5562 list_for_each_entry_rcu(ptype, offload_head, list) {
5563 if (ptype->type != type || !ptype->callbacks.gro_receive)
5564 continue;
5565 return ptype;
5566 }
5567 return NULL;
5568}
e27a2f83 5569EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
5570
5571struct packet_offload *gro_find_complete_by_type(__be16 type)
5572{
5573 struct list_head *offload_head = &offload_base;
5574 struct packet_offload *ptype;
5575
5576 list_for_each_entry_rcu(ptype, offload_head, list) {
5577 if (ptype->type != type || !ptype->callbacks.gro_complete)
5578 continue;
5579 return ptype;
5580 }
5581 return NULL;
5582}
e27a2f83 5583EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5584
e44699d2
MK
5585static void napi_skb_free_stolen_head(struct sk_buff *skb)
5586{
5587 skb_dst_drop(skb);
174e2381 5588 skb_ext_put(skb);
e44699d2
MK
5589 kmem_cache_free(skbuff_head_cache, skb);
5590}
5591
bb728820 5592static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 5593{
5d0d9be8
HX
5594 switch (ret) {
5595 case GRO_NORMAL:
ae78dbfa 5596 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
5597 ret = GRO_DROP;
5598 break;
5d38a079 5599
5d0d9be8 5600 case GRO_DROP:
5d38a079
HX
5601 kfree_skb(skb);
5602 break;
5b252f0c 5603
daa86548 5604 case GRO_MERGED_FREE:
e44699d2
MK
5605 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5606 napi_skb_free_stolen_head(skb);
5607 else
d7e8883c 5608 __kfree_skb(skb);
daa86548
ED
5609 break;
5610
5b252f0c
BH
5611 case GRO_HELD:
5612 case GRO_MERGED:
25393d3f 5613 case GRO_CONSUMED:
5b252f0c 5614 break;
5d38a079
HX
5615 }
5616
c7c4b3b6 5617 return ret;
5d0d9be8 5618}
5d0d9be8 5619
c7c4b3b6 5620gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 5621{
b0e3f1bd
GB
5622 gro_result_t ret;
5623
93f93a44 5624 skb_mark_napi_id(skb, napi);
ae78dbfa 5625 trace_napi_gro_receive_entry(skb);
86911732 5626
a50e233c
ED
5627 skb_gro_reset_offset(skb);
5628
b0e3f1bd
GB
5629 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5630 trace_napi_gro_receive_exit(ret);
5631
5632 return ret;
d565b0a1
HX
5633}
5634EXPORT_SYMBOL(napi_gro_receive);
5635
d0c2b0d2 5636static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5637{
93a35f59
ED
5638 if (unlikely(skb->pfmemalloc)) {
5639 consume_skb(skb);
5640 return;
5641 }
96e93eab 5642 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5643 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5644 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 5645 __vlan_hwaccel_clear_tag(skb);
66c46d74 5646 skb->dev = napi->dev;
6d152e23 5647 skb->skb_iif = 0;
33d9a2c7
ED
5648
5649 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5650 skb->pkt_type = PACKET_HOST;
5651
c3caf119
JC
5652 skb->encapsulation = 0;
5653 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5654 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 5655 skb_ext_reset(skb);
96e93eab
HX
5656
5657 napi->skb = skb;
5658}
96e93eab 5659
76620aaf 5660struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5661{
5d38a079 5662 struct sk_buff *skb = napi->skb;
5d38a079
HX
5663
5664 if (!skb) {
fd11a83d 5665 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5666 if (skb) {
5667 napi->skb = skb;
5668 skb_mark_napi_id(skb, napi);
5669 }
80595d59 5670 }
96e93eab
HX
5671 return skb;
5672}
76620aaf 5673EXPORT_SYMBOL(napi_get_frags);
96e93eab 5674
323ebb61
EC
5675/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5676static void gro_normal_list(struct napi_struct *napi)
5677{
5678 if (!napi->rx_count)
5679 return;
5680 netif_receive_skb_list_internal(&napi->rx_list);
5681 INIT_LIST_HEAD(&napi->rx_list);
5682 napi->rx_count = 0;
5683}
5684
5685/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5686 * pass the whole batch up to the stack.
5687 */
5688static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5689{
5690 list_add_tail(&skb->list, &napi->rx_list);
5691 if (++napi->rx_count >= gro_normal_batch)
5692 gro_normal_list(napi);
5693}
5694
a50e233c
ED
5695static gro_result_t napi_frags_finish(struct napi_struct *napi,
5696 struct sk_buff *skb,
5697 gro_result_t ret)
96e93eab 5698{
5d0d9be8
HX
5699 switch (ret) {
5700 case GRO_NORMAL:
a50e233c
ED
5701 case GRO_HELD:
5702 __skb_push(skb, ETH_HLEN);
5703 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61
EC
5704 if (ret == GRO_NORMAL)
5705 gro_normal_one(napi, skb);
86911732 5706 break;
5d38a079 5707
5d0d9be8 5708 case GRO_DROP:
5d0d9be8
HX
5709 napi_reuse_skb(napi, skb);
5710 break;
5b252f0c 5711
e44699d2
MK
5712 case GRO_MERGED_FREE:
5713 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5714 napi_skb_free_stolen_head(skb);
5715 else
5716 napi_reuse_skb(napi, skb);
5717 break;
5718
5b252f0c 5719 case GRO_MERGED:
25393d3f 5720 case GRO_CONSUMED:
5b252f0c 5721 break;
5d0d9be8 5722 }
5d38a079 5723
c7c4b3b6 5724 return ret;
5d38a079 5725}
5d0d9be8 5726
a50e233c
ED
5727/* Upper GRO stack assumes network header starts at gro_offset=0
5728 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5729 * We copy ethernet header into skb->data to have a common layout.
5730 */
4adb9c4a 5731static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5732{
5733 struct sk_buff *skb = napi->skb;
a50e233c
ED
5734 const struct ethhdr *eth;
5735 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5736
5737 napi->skb = NULL;
5738
a50e233c
ED
5739 skb_reset_mac_header(skb);
5740 skb_gro_reset_offset(skb);
5741
a50e233c
ED
5742 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5743 eth = skb_gro_header_slow(skb, hlen, 0);
5744 if (unlikely(!eth)) {
4da46ceb
AC
5745 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5746 __func__, napi->dev->name);
a50e233c
ED
5747 napi_reuse_skb(napi, skb);
5748 return NULL;
5749 }
5750 } else {
a4270d67 5751 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
5752 gro_pull_from_frag0(skb, hlen);
5753 NAPI_GRO_CB(skb)->frag0 += hlen;
5754 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5755 }
a50e233c
ED
5756 __skb_pull(skb, hlen);
5757
5758 /*
5759 * This works because the only protocols we care about don't require
5760 * special handling.
5761 * We'll fix it up properly in napi_frags_finish()
5762 */
5763 skb->protocol = eth->h_proto;
76620aaf 5764
76620aaf
HX
5765 return skb;
5766}
76620aaf 5767
c7c4b3b6 5768gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5769{
b0e3f1bd 5770 gro_result_t ret;
76620aaf 5771 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5772
5773 if (!skb)
c7c4b3b6 5774 return GRO_DROP;
5d0d9be8 5775
ae78dbfa
BH
5776 trace_napi_gro_frags_entry(skb);
5777
b0e3f1bd
GB
5778 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5779 trace_napi_gro_frags_exit(ret);
5780
5781 return ret;
5d0d9be8 5782}
5d38a079
HX
5783EXPORT_SYMBOL(napi_gro_frags);
5784
573e8fca
TH
5785/* Compute the checksum from gro_offset and return the folded value
5786 * after adding in any pseudo checksum.
5787 */
5788__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5789{
5790 __wsum wsum;
5791 __sum16 sum;
5792
5793 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5794
5795 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5796 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 5797 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
5798 if (likely(!sum)) {
5799 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5800 !skb->csum_complete_sw)
7fe50ac8 5801 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
5802 }
5803
5804 NAPI_GRO_CB(skb)->csum = wsum;
5805 NAPI_GRO_CB(skb)->csum_valid = 1;
5806
5807 return sum;
5808}
5809EXPORT_SYMBOL(__skb_gro_checksum_complete);
5810
773fc8f6 5811static void net_rps_send_ipi(struct softnet_data *remsd)
5812{
5813#ifdef CONFIG_RPS
5814 while (remsd) {
5815 struct softnet_data *next = remsd->rps_ipi_next;
5816
5817 if (cpu_online(remsd->cpu))
5818 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5819 remsd = next;
5820 }
5821#endif
5822}
5823
e326bed2 5824/*
855abcf0 5825 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5826 * Note: called with local irq disabled, but exits with local irq enabled.
5827 */
5828static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5829{
5830#ifdef CONFIG_RPS
5831 struct softnet_data *remsd = sd->rps_ipi_list;
5832
5833 if (remsd) {
5834 sd->rps_ipi_list = NULL;
5835
5836 local_irq_enable();
5837
5838 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5839 net_rps_send_ipi(remsd);
e326bed2
ED
5840 } else
5841#endif
5842 local_irq_enable();
5843}
5844
d75b1ade
ED
5845static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5846{
5847#ifdef CONFIG_RPS
5848 return sd->rps_ipi_list != NULL;
5849#else
5850 return false;
5851#endif
5852}
5853
bea3348e 5854static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5855{
eecfd7c4 5856 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5857 bool again = true;
5858 int work = 0;
1da177e4 5859
e326bed2
ED
5860 /* Check if we have pending ipi, its better to send them now,
5861 * not waiting net_rx_action() end.
5862 */
d75b1ade 5863 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5864 local_irq_disable();
5865 net_rps_action_and_irq_enable(sd);
5866 }
d75b1ade 5867
3d48b53f 5868 napi->weight = dev_rx_weight;
145dd5f9 5869 while (again) {
1da177e4 5870 struct sk_buff *skb;
6e7676c1
CG
5871
5872 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5873 rcu_read_lock();
6e7676c1 5874 __netif_receive_skb(skb);
2c17d27c 5875 rcu_read_unlock();
76cc8b13 5876 input_queue_head_incr(sd);
145dd5f9 5877 if (++work >= quota)
76cc8b13 5878 return work;
145dd5f9 5879
6e7676c1 5880 }
1da177e4 5881
145dd5f9 5882 local_irq_disable();
e36fa2f7 5883 rps_lock(sd);
11ef7a89 5884 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5885 /*
5886 * Inline a custom version of __napi_complete().
5887 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5888 * and NAPI_STATE_SCHED is the only possible flag set
5889 * on backlog.
5890 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5891 * and we dont need an smp_mb() memory barrier.
5892 */
eecfd7c4 5893 napi->state = 0;
145dd5f9
PA
5894 again = false;
5895 } else {
5896 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5897 &sd->process_queue);
bea3348e 5898 }
e36fa2f7 5899 rps_unlock(sd);
145dd5f9 5900 local_irq_enable();
6e7676c1 5901 }
1da177e4 5902
bea3348e
SH
5903 return work;
5904}
1da177e4 5905
bea3348e
SH
5906/**
5907 * __napi_schedule - schedule for receive
c4ea43c5 5908 * @n: entry to schedule
bea3348e 5909 *
bc9ad166
ED
5910 * The entry's receive function will be scheduled to run.
5911 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5912 */
b5606c2d 5913void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5914{
5915 unsigned long flags;
1da177e4 5916
bea3348e 5917 local_irq_save(flags);
903ceff7 5918 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5919 local_irq_restore(flags);
1da177e4 5920}
bea3348e
SH
5921EXPORT_SYMBOL(__napi_schedule);
5922
39e6c820
ED
5923/**
5924 * napi_schedule_prep - check if napi can be scheduled
5925 * @n: napi context
5926 *
5927 * Test if NAPI routine is already running, and if not mark
5928 * it as running. This is used as a condition variable
5929 * insure only one NAPI poll instance runs. We also make
5930 * sure there is no pending NAPI disable.
5931 */
5932bool napi_schedule_prep(struct napi_struct *n)
5933{
5934 unsigned long val, new;
5935
5936 do {
5937 val = READ_ONCE(n->state);
5938 if (unlikely(val & NAPIF_STATE_DISABLE))
5939 return false;
5940 new = val | NAPIF_STATE_SCHED;
5941
5942 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5943 * This was suggested by Alexander Duyck, as compiler
5944 * emits better code than :
5945 * if (val & NAPIF_STATE_SCHED)
5946 * new |= NAPIF_STATE_MISSED;
5947 */
5948 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5949 NAPIF_STATE_MISSED;
5950 } while (cmpxchg(&n->state, val, new) != val);
5951
5952 return !(val & NAPIF_STATE_SCHED);
5953}
5954EXPORT_SYMBOL(napi_schedule_prep);
5955
bc9ad166
ED
5956/**
5957 * __napi_schedule_irqoff - schedule for receive
5958 * @n: entry to schedule
5959 *
5960 * Variant of __napi_schedule() assuming hard irqs are masked
5961 */
5962void __napi_schedule_irqoff(struct napi_struct *n)
5963{
5964 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5965}
5966EXPORT_SYMBOL(__napi_schedule_irqoff);
5967
364b6055 5968bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5969{
39e6c820 5970 unsigned long flags, val, new;
d565b0a1
HX
5971
5972 /*
217f6974
ED
5973 * 1) Don't let napi dequeue from the cpu poll list
5974 * just in case its running on a different cpu.
5975 * 2) If we are busy polling, do nothing here, we have
5976 * the guarantee we will be called later.
d565b0a1 5977 */
217f6974
ED
5978 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5979 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5980 return false;
d565b0a1 5981
323ebb61
EC
5982 gro_normal_list(n);
5983
d9f37d01 5984 if (n->gro_bitmask) {
3b47d303 5985 unsigned long timeout = 0;
d75b1ade 5986
3b47d303
ED
5987 if (work_done)
5988 timeout = n->dev->gro_flush_timeout;
5989
605108ac
PA
5990 /* When the NAPI instance uses a timeout and keeps postponing
5991 * it, we need to bound somehow the time packets are kept in
5992 * the GRO layer
5993 */
5994 napi_gro_flush(n, !!timeout);
3b47d303
ED
5995 if (timeout)
5996 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5997 HRTIMER_MODE_REL_PINNED);
3b47d303 5998 }
02c1602e 5999 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6000 /* If n->poll_list is not empty, we need to mask irqs */
6001 local_irq_save(flags);
02c1602e 6002 list_del_init(&n->poll_list);
d75b1ade
ED
6003 local_irq_restore(flags);
6004 }
39e6c820
ED
6005
6006 do {
6007 val = READ_ONCE(n->state);
6008
6009 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6010
6011 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6012
6013 /* If STATE_MISSED was set, leave STATE_SCHED set,
6014 * because we will call napi->poll() one more time.
6015 * This C code was suggested by Alexander Duyck to help gcc.
6016 */
6017 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6018 NAPIF_STATE_SCHED;
6019 } while (cmpxchg(&n->state, val, new) != val);
6020
6021 if (unlikely(val & NAPIF_STATE_MISSED)) {
6022 __napi_schedule(n);
6023 return false;
6024 }
6025
364b6055 6026 return true;
d565b0a1 6027}
3b47d303 6028EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6029
af12fa6e 6030/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6031static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6032{
6033 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6034 struct napi_struct *napi;
6035
6036 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6037 if (napi->napi_id == napi_id)
6038 return napi;
6039
6040 return NULL;
6041}
02d62e86
ED
6042
6043#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6044
ce6aea93 6045#define BUSY_POLL_BUDGET 8
217f6974
ED
6046
6047static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6048{
6049 int rc;
6050
39e6c820
ED
6051 /* Busy polling means there is a high chance device driver hard irq
6052 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6053 * set in napi_schedule_prep().
6054 * Since we are about to call napi->poll() once more, we can safely
6055 * clear NAPI_STATE_MISSED.
6056 *
6057 * Note: x86 could use a single "lock and ..." instruction
6058 * to perform these two clear_bit()
6059 */
6060 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6061 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6062
6063 local_bh_disable();
6064
6065 /* All we really want here is to re-enable device interrupts.
6066 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6067 */
6068 rc = napi->poll(napi, BUSY_POLL_BUDGET);
323ebb61
EC
6069 /* We can't gro_normal_list() here, because napi->poll() might have
6070 * rearmed the napi (napi_complete_done()) in which case it could
6071 * already be running on another CPU.
6072 */
1e22391e 6073 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974 6074 netpoll_poll_unlock(have_poll_lock);
323ebb61
EC
6075 if (rc == BUSY_POLL_BUDGET) {
6076 /* As the whole budget was spent, we still own the napi so can
6077 * safely handle the rx_list.
6078 */
6079 gro_normal_list(napi);
217f6974 6080 __napi_schedule(napi);
323ebb61 6081 }
217f6974 6082 local_bh_enable();
217f6974
ED
6083}
6084
7db6b048
SS
6085void napi_busy_loop(unsigned int napi_id,
6086 bool (*loop_end)(void *, unsigned long),
6087 void *loop_end_arg)
02d62e86 6088{
7db6b048 6089 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6090 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6091 void *have_poll_lock = NULL;
02d62e86 6092 struct napi_struct *napi;
217f6974
ED
6093
6094restart:
217f6974 6095 napi_poll = NULL;
02d62e86 6096
2a028ecb 6097 rcu_read_lock();
02d62e86 6098
545cd5e5 6099 napi = napi_by_id(napi_id);
02d62e86
ED
6100 if (!napi)
6101 goto out;
6102
217f6974
ED
6103 preempt_disable();
6104 for (;;) {
2b5cd0df
AD
6105 int work = 0;
6106
2a028ecb 6107 local_bh_disable();
217f6974
ED
6108 if (!napi_poll) {
6109 unsigned long val = READ_ONCE(napi->state);
6110
6111 /* If multiple threads are competing for this napi,
6112 * we avoid dirtying napi->state as much as we can.
6113 */
6114 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6115 NAPIF_STATE_IN_BUSY_POLL))
6116 goto count;
6117 if (cmpxchg(&napi->state, val,
6118 val | NAPIF_STATE_IN_BUSY_POLL |
6119 NAPIF_STATE_SCHED) != val)
6120 goto count;
6121 have_poll_lock = netpoll_poll_lock(napi);
6122 napi_poll = napi->poll;
6123 }
2b5cd0df
AD
6124 work = napi_poll(napi, BUSY_POLL_BUDGET);
6125 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
323ebb61 6126 gro_normal_list(napi);
217f6974 6127count:
2b5cd0df 6128 if (work > 0)
7db6b048 6129 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6130 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6131 local_bh_enable();
02d62e86 6132
7db6b048 6133 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6134 break;
02d62e86 6135
217f6974
ED
6136 if (unlikely(need_resched())) {
6137 if (napi_poll)
6138 busy_poll_stop(napi, have_poll_lock);
6139 preempt_enable();
6140 rcu_read_unlock();
6141 cond_resched();
7db6b048 6142 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6143 return;
217f6974
ED
6144 goto restart;
6145 }
6cdf89b1 6146 cpu_relax();
217f6974
ED
6147 }
6148 if (napi_poll)
6149 busy_poll_stop(napi, have_poll_lock);
6150 preempt_enable();
02d62e86 6151out:
2a028ecb 6152 rcu_read_unlock();
02d62e86 6153}
7db6b048 6154EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6155
6156#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6157
149d6ad8 6158static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6159{
d64b5e85
ED
6160 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6161 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 6162 return;
af12fa6e 6163
52bd2d62 6164 spin_lock(&napi_hash_lock);
af12fa6e 6165
545cd5e5 6166 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6167 do {
545cd5e5
AD
6168 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6169 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6170 } while (napi_by_id(napi_gen_id));
6171 napi->napi_id = napi_gen_id;
af12fa6e 6172
52bd2d62
ED
6173 hlist_add_head_rcu(&napi->napi_hash_node,
6174 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6175
52bd2d62 6176 spin_unlock(&napi_hash_lock);
af12fa6e 6177}
af12fa6e
ET
6178
6179/* Warning : caller is responsible to make sure rcu grace period
6180 * is respected before freeing memory containing @napi
6181 */
34cbe27e 6182bool napi_hash_del(struct napi_struct *napi)
af12fa6e 6183{
34cbe27e
ED
6184 bool rcu_sync_needed = false;
6185
af12fa6e
ET
6186 spin_lock(&napi_hash_lock);
6187
34cbe27e
ED
6188 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6189 rcu_sync_needed = true;
af12fa6e 6190 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 6191 }
af12fa6e 6192 spin_unlock(&napi_hash_lock);
34cbe27e 6193 return rcu_sync_needed;
af12fa6e
ET
6194}
6195EXPORT_SYMBOL_GPL(napi_hash_del);
6196
3b47d303
ED
6197static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6198{
6199 struct napi_struct *napi;
6200
6201 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6202
6203 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6204 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6205 */
d9f37d01 6206 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
39e6c820
ED
6207 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6208 __napi_schedule_irqoff(napi);
3b47d303
ED
6209
6210 return HRTIMER_NORESTART;
6211}
6212
7c4ec749 6213static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6214{
07d78363
DM
6215 int i;
6216
6312fe77
LR
6217 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6218 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6219 napi->gro_hash[i].count = 0;
6220 }
7c4ec749
DM
6221 napi->gro_bitmask = 0;
6222}
6223
6224void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6225 int (*poll)(struct napi_struct *, int), int weight)
6226{
6227 INIT_LIST_HEAD(&napi->poll_list);
6228 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6229 napi->timer.function = napi_watchdog;
6230 init_gro_hash(napi);
5d38a079 6231 napi->skb = NULL;
323ebb61
EC
6232 INIT_LIST_HEAD(&napi->rx_list);
6233 napi->rx_count = 0;
d565b0a1 6234 napi->poll = poll;
82dc3c63 6235 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6236 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6237 weight);
d565b0a1
HX
6238 napi->weight = weight;
6239 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 6240 napi->dev = dev;
5d38a079 6241#ifdef CONFIG_NETPOLL
d565b0a1
HX
6242 napi->poll_owner = -1;
6243#endif
6244 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 6245 napi_hash_add(napi);
d565b0a1
HX
6246}
6247EXPORT_SYMBOL(netif_napi_add);
6248
3b47d303
ED
6249void napi_disable(struct napi_struct *n)
6250{
6251 might_sleep();
6252 set_bit(NAPI_STATE_DISABLE, &n->state);
6253
6254 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6255 msleep(1);
2d8bff12
NH
6256 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6257 msleep(1);
3b47d303
ED
6258
6259 hrtimer_cancel(&n->timer);
6260
6261 clear_bit(NAPI_STATE_DISABLE, &n->state);
6262}
6263EXPORT_SYMBOL(napi_disable);
6264
07d78363 6265static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6266{
07d78363 6267 int i;
d4546c25 6268
07d78363
DM
6269 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6270 struct sk_buff *skb, *n;
6271
6312fe77 6272 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6273 kfree_skb(skb);
6312fe77 6274 napi->gro_hash[i].count = 0;
07d78363 6275 }
d4546c25
DM
6276}
6277
93d05d4a 6278/* Must be called in process context */
d565b0a1
HX
6279void netif_napi_del(struct napi_struct *napi)
6280{
93d05d4a
ED
6281 might_sleep();
6282 if (napi_hash_del(napi))
6283 synchronize_net();
d7b06636 6284 list_del_init(&napi->dev_list);
76620aaf 6285 napi_free_frags(napi);
d565b0a1 6286
07d78363 6287 flush_gro_hash(napi);
d9f37d01 6288 napi->gro_bitmask = 0;
d565b0a1
HX
6289}
6290EXPORT_SYMBOL(netif_napi_del);
6291
726ce70e
HX
6292static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6293{
6294 void *have;
6295 int work, weight;
6296
6297 list_del_init(&n->poll_list);
6298
6299 have = netpoll_poll_lock(n);
6300
6301 weight = n->weight;
6302
6303 /* This NAPI_STATE_SCHED test is for avoiding a race
6304 * with netpoll's poll_napi(). Only the entity which
6305 * obtains the lock and sees NAPI_STATE_SCHED set will
6306 * actually make the ->poll() call. Therefore we avoid
6307 * accidentally calling ->poll() when NAPI is not scheduled.
6308 */
6309 work = 0;
6310 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6311 work = n->poll(n, weight);
1db19db7 6312 trace_napi_poll(n, work, weight);
726ce70e
HX
6313 }
6314
6315 WARN_ON_ONCE(work > weight);
6316
6317 if (likely(work < weight))
6318 goto out_unlock;
6319
6320 /* Drivers must not modify the NAPI state if they
6321 * consume the entire weight. In such cases this code
6322 * still "owns" the NAPI instance and therefore can
6323 * move the instance around on the list at-will.
6324 */
6325 if (unlikely(napi_disable_pending(n))) {
6326 napi_complete(n);
6327 goto out_unlock;
6328 }
6329
323ebb61
EC
6330 gro_normal_list(n);
6331
d9f37d01 6332 if (n->gro_bitmask) {
726ce70e
HX
6333 /* flush too old packets
6334 * If HZ < 1000, flush all packets.
6335 */
6336 napi_gro_flush(n, HZ >= 1000);
6337 }
6338
001ce546
HX
6339 /* Some drivers may have called napi_schedule
6340 * prior to exhausting their budget.
6341 */
6342 if (unlikely(!list_empty(&n->poll_list))) {
6343 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6344 n->dev ? n->dev->name : "backlog");
6345 goto out_unlock;
6346 }
6347
726ce70e
HX
6348 list_add_tail(&n->poll_list, repoll);
6349
6350out_unlock:
6351 netpoll_poll_unlock(have);
6352
6353 return work;
6354}
6355
0766f788 6356static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6357{
903ceff7 6358 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6359 unsigned long time_limit = jiffies +
6360 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6361 int budget = netdev_budget;
d75b1ade
ED
6362 LIST_HEAD(list);
6363 LIST_HEAD(repoll);
53fb95d3 6364
1da177e4 6365 local_irq_disable();
d75b1ade
ED
6366 list_splice_init(&sd->poll_list, &list);
6367 local_irq_enable();
1da177e4 6368
ceb8d5bf 6369 for (;;) {
bea3348e 6370 struct napi_struct *n;
1da177e4 6371
ceb8d5bf
HX
6372 if (list_empty(&list)) {
6373 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6374 goto out;
ceb8d5bf
HX
6375 break;
6376 }
6377
6bd373eb
HX
6378 n = list_first_entry(&list, struct napi_struct, poll_list);
6379 budget -= napi_poll(n, &repoll);
6380
d75b1ade 6381 /* If softirq window is exhausted then punt.
24f8b238
SH
6382 * Allow this to run for 2 jiffies since which will allow
6383 * an average latency of 1.5/HZ.
bea3348e 6384 */
ceb8d5bf
HX
6385 if (unlikely(budget <= 0 ||
6386 time_after_eq(jiffies, time_limit))) {
6387 sd->time_squeeze++;
6388 break;
6389 }
1da177e4 6390 }
d75b1ade 6391
d75b1ade
ED
6392 local_irq_disable();
6393
6394 list_splice_tail_init(&sd->poll_list, &list);
6395 list_splice_tail(&repoll, &list);
6396 list_splice(&list, &sd->poll_list);
6397 if (!list_empty(&sd->poll_list))
6398 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6399
e326bed2 6400 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6401out:
6402 __kfree_skb_flush();
1da177e4
LT
6403}
6404
aa9d8560 6405struct netdev_adjacent {
9ff162a8 6406 struct net_device *dev;
5d261913
VF
6407
6408 /* upper master flag, there can only be one master device per list */
9ff162a8 6409 bool master;
5d261913 6410
32b6d34f
TY
6411 /* lookup ignore flag */
6412 bool ignore;
6413
5d261913
VF
6414 /* counter for the number of times this device was added to us */
6415 u16 ref_nr;
6416
402dae96
VF
6417 /* private field for the users */
6418 void *private;
6419
9ff162a8
JP
6420 struct list_head list;
6421 struct rcu_head rcu;
9ff162a8
JP
6422};
6423
6ea29da1 6424static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6425 struct list_head *adj_list)
9ff162a8 6426{
5d261913 6427 struct netdev_adjacent *adj;
5d261913 6428
2f268f12 6429 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6430 if (adj->dev == adj_dev)
6431 return adj;
9ff162a8
JP
6432 }
6433 return NULL;
6434}
6435
32b6d34f 6436static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
f1170fd4
DA
6437{
6438 struct net_device *dev = data;
6439
6440 return upper_dev == dev;
6441}
6442
9ff162a8
JP
6443/**
6444 * netdev_has_upper_dev - Check if device is linked to an upper device
6445 * @dev: device
6446 * @upper_dev: upper device to check
6447 *
6448 * Find out if a device is linked to specified upper device and return true
6449 * in case it is. Note that this checks only immediate upper device,
6450 * not through a complete stack of devices. The caller must hold the RTNL lock.
6451 */
6452bool netdev_has_upper_dev(struct net_device *dev,
6453 struct net_device *upper_dev)
6454{
6455 ASSERT_RTNL();
6456
32b6d34f 6457 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
f1170fd4 6458 upper_dev);
9ff162a8
JP
6459}
6460EXPORT_SYMBOL(netdev_has_upper_dev);
6461
1a3f060c
DA
6462/**
6463 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6464 * @dev: device
6465 * @upper_dev: upper device to check
6466 *
6467 * Find out if a device is linked to specified upper device and return true
6468 * in case it is. Note that this checks the entire upper device chain.
6469 * The caller must hold rcu lock.
6470 */
6471
1a3f060c
DA
6472bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6473 struct net_device *upper_dev)
6474{
32b6d34f 6475 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
1a3f060c
DA
6476 upper_dev);
6477}
6478EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6479
9ff162a8
JP
6480/**
6481 * netdev_has_any_upper_dev - Check if device is linked to some device
6482 * @dev: device
6483 *
6484 * Find out if a device is linked to an upper device and return true in case
6485 * it is. The caller must hold the RTNL lock.
6486 */
25cc72a3 6487bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6488{
6489 ASSERT_RTNL();
6490
f1170fd4 6491 return !list_empty(&dev->adj_list.upper);
9ff162a8 6492}
25cc72a3 6493EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6494
6495/**
6496 * netdev_master_upper_dev_get - Get master upper device
6497 * @dev: device
6498 *
6499 * Find a master upper device and return pointer to it or NULL in case
6500 * it's not there. The caller must hold the RTNL lock.
6501 */
6502struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6503{
aa9d8560 6504 struct netdev_adjacent *upper;
9ff162a8
JP
6505
6506 ASSERT_RTNL();
6507
2f268f12 6508 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6509 return NULL;
6510
2f268f12 6511 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6512 struct netdev_adjacent, list);
9ff162a8
JP
6513 if (likely(upper->master))
6514 return upper->dev;
6515 return NULL;
6516}
6517EXPORT_SYMBOL(netdev_master_upper_dev_get);
6518
32b6d34f
TY
6519static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6520{
6521 struct netdev_adjacent *upper;
6522
6523 ASSERT_RTNL();
6524
6525 if (list_empty(&dev->adj_list.upper))
6526 return NULL;
6527
6528 upper = list_first_entry(&dev->adj_list.upper,
6529 struct netdev_adjacent, list);
6530 if (likely(upper->master) && !upper->ignore)
6531 return upper->dev;
6532 return NULL;
6533}
6534
0f524a80
DA
6535/**
6536 * netdev_has_any_lower_dev - Check if device is linked to some device
6537 * @dev: device
6538 *
6539 * Find out if a device is linked to a lower device and return true in case
6540 * it is. The caller must hold the RTNL lock.
6541 */
6542static bool netdev_has_any_lower_dev(struct net_device *dev)
6543{
6544 ASSERT_RTNL();
6545
6546 return !list_empty(&dev->adj_list.lower);
6547}
6548
b6ccba4c
VF
6549void *netdev_adjacent_get_private(struct list_head *adj_list)
6550{
6551 struct netdev_adjacent *adj;
6552
6553 adj = list_entry(adj_list, struct netdev_adjacent, list);
6554
6555 return adj->private;
6556}
6557EXPORT_SYMBOL(netdev_adjacent_get_private);
6558
44a40855
VY
6559/**
6560 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6561 * @dev: device
6562 * @iter: list_head ** of the current position
6563 *
6564 * Gets the next device from the dev's upper list, starting from iter
6565 * position. The caller must hold RCU read lock.
6566 */
6567struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6568 struct list_head **iter)
6569{
6570 struct netdev_adjacent *upper;
6571
6572 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6573
6574 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6575
6576 if (&upper->list == &dev->adj_list.upper)
6577 return NULL;
6578
6579 *iter = &upper->list;
6580
6581 return upper->dev;
6582}
6583EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6584
32b6d34f
TY
6585static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6586 struct list_head **iter,
6587 bool *ignore)
5343da4c
TY
6588{
6589 struct netdev_adjacent *upper;
6590
6591 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6592
6593 if (&upper->list == &dev->adj_list.upper)
6594 return NULL;
6595
6596 *iter = &upper->list;
32b6d34f 6597 *ignore = upper->ignore;
5343da4c
TY
6598
6599 return upper->dev;
6600}
6601
1a3f060c
DA
6602static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6603 struct list_head **iter)
6604{
6605 struct netdev_adjacent *upper;
6606
6607 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6608
6609 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6610
6611 if (&upper->list == &dev->adj_list.upper)
6612 return NULL;
6613
6614 *iter = &upper->list;
6615
6616 return upper->dev;
6617}
6618
32b6d34f
TY
6619static int __netdev_walk_all_upper_dev(struct net_device *dev,
6620 int (*fn)(struct net_device *dev,
6621 void *data),
6622 void *data)
5343da4c
TY
6623{
6624 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6625 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6626 int ret, cur = 0;
32b6d34f 6627 bool ignore;
5343da4c
TY
6628
6629 now = dev;
6630 iter = &dev->adj_list.upper;
6631
6632 while (1) {
6633 if (now != dev) {
6634 ret = fn(now, data);
6635 if (ret)
6636 return ret;
6637 }
6638
6639 next = NULL;
6640 while (1) {
32b6d34f 6641 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
6642 if (!udev)
6643 break;
32b6d34f
TY
6644 if (ignore)
6645 continue;
5343da4c
TY
6646
6647 next = udev;
6648 niter = &udev->adj_list.upper;
6649 dev_stack[cur] = now;
6650 iter_stack[cur++] = iter;
6651 break;
6652 }
6653
6654 if (!next) {
6655 if (!cur)
6656 return 0;
6657 next = dev_stack[--cur];
6658 niter = iter_stack[cur];
6659 }
6660
6661 now = next;
6662 iter = niter;
6663 }
6664
6665 return 0;
6666}
6667
1a3f060c
DA
6668int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6669 int (*fn)(struct net_device *dev,
6670 void *data),
6671 void *data)
6672{
5343da4c
TY
6673 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6674 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6675 int ret, cur = 0;
1a3f060c 6676
5343da4c
TY
6677 now = dev;
6678 iter = &dev->adj_list.upper;
1a3f060c 6679
5343da4c
TY
6680 while (1) {
6681 if (now != dev) {
6682 ret = fn(now, data);
6683 if (ret)
6684 return ret;
6685 }
6686
6687 next = NULL;
6688 while (1) {
6689 udev = netdev_next_upper_dev_rcu(now, &iter);
6690 if (!udev)
6691 break;
6692
6693 next = udev;
6694 niter = &udev->adj_list.upper;
6695 dev_stack[cur] = now;
6696 iter_stack[cur++] = iter;
6697 break;
6698 }
6699
6700 if (!next) {
6701 if (!cur)
6702 return 0;
6703 next = dev_stack[--cur];
6704 niter = iter_stack[cur];
6705 }
6706
6707 now = next;
6708 iter = niter;
1a3f060c
DA
6709 }
6710
6711 return 0;
6712}
6713EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6714
32b6d34f
TY
6715static bool __netdev_has_upper_dev(struct net_device *dev,
6716 struct net_device *upper_dev)
6717{
6718 ASSERT_RTNL();
6719
6720 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6721 upper_dev);
6722}
6723
31088a11
VF
6724/**
6725 * netdev_lower_get_next_private - Get the next ->private from the
6726 * lower neighbour list
6727 * @dev: device
6728 * @iter: list_head ** of the current position
6729 *
6730 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6731 * list, starting from iter position. The caller must hold either hold the
6732 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 6733 * list will remain unchanged.
31088a11
VF
6734 */
6735void *netdev_lower_get_next_private(struct net_device *dev,
6736 struct list_head **iter)
6737{
6738 struct netdev_adjacent *lower;
6739
6740 lower = list_entry(*iter, struct netdev_adjacent, list);
6741
6742 if (&lower->list == &dev->adj_list.lower)
6743 return NULL;
6744
6859e7df 6745 *iter = lower->list.next;
31088a11
VF
6746
6747 return lower->private;
6748}
6749EXPORT_SYMBOL(netdev_lower_get_next_private);
6750
6751/**
6752 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6753 * lower neighbour list, RCU
6754 * variant
6755 * @dev: device
6756 * @iter: list_head ** of the current position
6757 *
6758 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6759 * list, starting from iter position. The caller must hold RCU read lock.
6760 */
6761void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6762 struct list_head **iter)
6763{
6764 struct netdev_adjacent *lower;
6765
6766 WARN_ON_ONCE(!rcu_read_lock_held());
6767
6768 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6769
6770 if (&lower->list == &dev->adj_list.lower)
6771 return NULL;
6772
6859e7df 6773 *iter = &lower->list;
31088a11
VF
6774
6775 return lower->private;
6776}
6777EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6778
4085ebe8
VY
6779/**
6780 * netdev_lower_get_next - Get the next device from the lower neighbour
6781 * list
6782 * @dev: device
6783 * @iter: list_head ** of the current position
6784 *
6785 * Gets the next netdev_adjacent from the dev's lower neighbour
6786 * list, starting from iter position. The caller must hold RTNL lock or
6787 * its own locking that guarantees that the neighbour lower
b469139e 6788 * list will remain unchanged.
4085ebe8
VY
6789 */
6790void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6791{
6792 struct netdev_adjacent *lower;
6793
cfdd28be 6794 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
6795
6796 if (&lower->list == &dev->adj_list.lower)
6797 return NULL;
6798
cfdd28be 6799 *iter = lower->list.next;
4085ebe8
VY
6800
6801 return lower->dev;
6802}
6803EXPORT_SYMBOL(netdev_lower_get_next);
6804
1a3f060c
DA
6805static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6806 struct list_head **iter)
6807{
6808 struct netdev_adjacent *lower;
6809
46b5ab1a 6810 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
6811
6812 if (&lower->list == &dev->adj_list.lower)
6813 return NULL;
6814
46b5ab1a 6815 *iter = &lower->list;
1a3f060c
DA
6816
6817 return lower->dev;
6818}
6819
32b6d34f
TY
6820static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
6821 struct list_head **iter,
6822 bool *ignore)
6823{
6824 struct netdev_adjacent *lower;
6825
6826 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6827
6828 if (&lower->list == &dev->adj_list.lower)
6829 return NULL;
6830
6831 *iter = &lower->list;
6832 *ignore = lower->ignore;
6833
6834 return lower->dev;
6835}
6836
1a3f060c
DA
6837int netdev_walk_all_lower_dev(struct net_device *dev,
6838 int (*fn)(struct net_device *dev,
6839 void *data),
6840 void *data)
6841{
5343da4c
TY
6842 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6843 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6844 int ret, cur = 0;
1a3f060c 6845
5343da4c
TY
6846 now = dev;
6847 iter = &dev->adj_list.lower;
1a3f060c 6848
5343da4c
TY
6849 while (1) {
6850 if (now != dev) {
6851 ret = fn(now, data);
6852 if (ret)
6853 return ret;
6854 }
6855
6856 next = NULL;
6857 while (1) {
6858 ldev = netdev_next_lower_dev(now, &iter);
6859 if (!ldev)
6860 break;
6861
6862 next = ldev;
6863 niter = &ldev->adj_list.lower;
6864 dev_stack[cur] = now;
6865 iter_stack[cur++] = iter;
6866 break;
6867 }
6868
6869 if (!next) {
6870 if (!cur)
6871 return 0;
6872 next = dev_stack[--cur];
6873 niter = iter_stack[cur];
6874 }
6875
6876 now = next;
6877 iter = niter;
1a3f060c
DA
6878 }
6879
6880 return 0;
6881}
6882EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6883
32b6d34f
TY
6884static int __netdev_walk_all_lower_dev(struct net_device *dev,
6885 int (*fn)(struct net_device *dev,
6886 void *data),
6887 void *data)
6888{
6889 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6890 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6891 int ret, cur = 0;
6892 bool ignore;
6893
6894 now = dev;
6895 iter = &dev->adj_list.lower;
6896
6897 while (1) {
6898 if (now != dev) {
6899 ret = fn(now, data);
6900 if (ret)
6901 return ret;
6902 }
6903
6904 next = NULL;
6905 while (1) {
6906 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
6907 if (!ldev)
6908 break;
6909 if (ignore)
6910 continue;
6911
6912 next = ldev;
6913 niter = &ldev->adj_list.lower;
6914 dev_stack[cur] = now;
6915 iter_stack[cur++] = iter;
6916 break;
6917 }
6918
6919 if (!next) {
6920 if (!cur)
6921 return 0;
6922 next = dev_stack[--cur];
6923 niter = iter_stack[cur];
6924 }
6925
6926 now = next;
6927 iter = niter;
6928 }
6929
6930 return 0;
6931}
6932
1a3f060c
DA
6933static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6934 struct list_head **iter)
6935{
6936 struct netdev_adjacent *lower;
6937
6938 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6939 if (&lower->list == &dev->adj_list.lower)
6940 return NULL;
6941
6942 *iter = &lower->list;
6943
6944 return lower->dev;
6945}
6946
5343da4c
TY
6947static u8 __netdev_upper_depth(struct net_device *dev)
6948{
6949 struct net_device *udev;
6950 struct list_head *iter;
6951 u8 max_depth = 0;
32b6d34f 6952 bool ignore;
5343da4c
TY
6953
6954 for (iter = &dev->adj_list.upper,
32b6d34f 6955 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 6956 udev;
32b6d34f
TY
6957 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
6958 if (ignore)
6959 continue;
5343da4c
TY
6960 if (max_depth < udev->upper_level)
6961 max_depth = udev->upper_level;
6962 }
6963
6964 return max_depth;
6965}
6966
6967static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
6968{
6969 struct net_device *ldev;
6970 struct list_head *iter;
5343da4c 6971 u8 max_depth = 0;
32b6d34f 6972 bool ignore;
1a3f060c
DA
6973
6974 for (iter = &dev->adj_list.lower,
32b6d34f 6975 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 6976 ldev;
32b6d34f
TY
6977 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
6978 if (ignore)
6979 continue;
5343da4c
TY
6980 if (max_depth < ldev->lower_level)
6981 max_depth = ldev->lower_level;
6982 }
1a3f060c 6983
5343da4c
TY
6984 return max_depth;
6985}
6986
6987static int __netdev_update_upper_level(struct net_device *dev, void *data)
6988{
6989 dev->upper_level = __netdev_upper_depth(dev) + 1;
6990 return 0;
6991}
6992
6993static int __netdev_update_lower_level(struct net_device *dev, void *data)
6994{
6995 dev->lower_level = __netdev_lower_depth(dev) + 1;
6996 return 0;
6997}
6998
6999int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7000 int (*fn)(struct net_device *dev,
7001 void *data),
7002 void *data)
7003{
7004 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7005 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7006 int ret, cur = 0;
7007
7008 now = dev;
7009 iter = &dev->adj_list.lower;
7010
7011 while (1) {
7012 if (now != dev) {
7013 ret = fn(now, data);
7014 if (ret)
7015 return ret;
7016 }
7017
7018 next = NULL;
7019 while (1) {
7020 ldev = netdev_next_lower_dev_rcu(now, &iter);
7021 if (!ldev)
7022 break;
7023
7024 next = ldev;
7025 niter = &ldev->adj_list.lower;
7026 dev_stack[cur] = now;
7027 iter_stack[cur++] = iter;
7028 break;
7029 }
7030
7031 if (!next) {
7032 if (!cur)
7033 return 0;
7034 next = dev_stack[--cur];
7035 niter = iter_stack[cur];
7036 }
7037
7038 now = next;
7039 iter = niter;
1a3f060c
DA
7040 }
7041
7042 return 0;
7043}
7044EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7045
e001bfad 7046/**
7047 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7048 * lower neighbour list, RCU
7049 * variant
7050 * @dev: device
7051 *
7052 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7053 * list. The caller must hold RCU read lock.
7054 */
7055void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7056{
7057 struct netdev_adjacent *lower;
7058
7059 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7060 struct netdev_adjacent, list);
7061 if (lower)
7062 return lower->private;
7063 return NULL;
7064}
7065EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7066
9ff162a8
JP
7067/**
7068 * netdev_master_upper_dev_get_rcu - Get master upper device
7069 * @dev: device
7070 *
7071 * Find a master upper device and return pointer to it or NULL in case
7072 * it's not there. The caller must hold the RCU read lock.
7073 */
7074struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7075{
aa9d8560 7076 struct netdev_adjacent *upper;
9ff162a8 7077
2f268f12 7078 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7079 struct netdev_adjacent, list);
9ff162a8
JP
7080 if (upper && likely(upper->master))
7081 return upper->dev;
7082 return NULL;
7083}
7084EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7085
0a59f3a9 7086static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7087 struct net_device *adj_dev,
7088 struct list_head *dev_list)
7089{
7090 char linkname[IFNAMSIZ+7];
f4563a75 7091
3ee32707
VF
7092 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7093 "upper_%s" : "lower_%s", adj_dev->name);
7094 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7095 linkname);
7096}
0a59f3a9 7097static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7098 char *name,
7099 struct list_head *dev_list)
7100{
7101 char linkname[IFNAMSIZ+7];
f4563a75 7102
3ee32707
VF
7103 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7104 "upper_%s" : "lower_%s", name);
7105 sysfs_remove_link(&(dev->dev.kobj), linkname);
7106}
7107
7ce64c79
AF
7108static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7109 struct net_device *adj_dev,
7110 struct list_head *dev_list)
7111{
7112 return (dev_list == &dev->adj_list.upper ||
7113 dev_list == &dev->adj_list.lower) &&
7114 net_eq(dev_net(dev), dev_net(adj_dev));
7115}
3ee32707 7116
5d261913
VF
7117static int __netdev_adjacent_dev_insert(struct net_device *dev,
7118 struct net_device *adj_dev,
7863c054 7119 struct list_head *dev_list,
402dae96 7120 void *private, bool master)
5d261913
VF
7121{
7122 struct netdev_adjacent *adj;
842d67a7 7123 int ret;
5d261913 7124
6ea29da1 7125 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7126
7127 if (adj) {
790510d9 7128 adj->ref_nr += 1;
67b62f98
DA
7129 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7130 dev->name, adj_dev->name, adj->ref_nr);
7131
5d261913
VF
7132 return 0;
7133 }
7134
7135 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7136 if (!adj)
7137 return -ENOMEM;
7138
7139 adj->dev = adj_dev;
7140 adj->master = master;
790510d9 7141 adj->ref_nr = 1;
402dae96 7142 adj->private = private;
32b6d34f 7143 adj->ignore = false;
5d261913 7144 dev_hold(adj_dev);
2f268f12 7145
67b62f98
DA
7146 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7147 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7148
7ce64c79 7149 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7150 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7151 if (ret)
7152 goto free_adj;
7153 }
7154
7863c054 7155 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7156 if (master) {
7157 ret = sysfs_create_link(&(dev->dev.kobj),
7158 &(adj_dev->dev.kobj), "master");
7159 if (ret)
5831d66e 7160 goto remove_symlinks;
842d67a7 7161
7863c054 7162 list_add_rcu(&adj->list, dev_list);
842d67a7 7163 } else {
7863c054 7164 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7165 }
5d261913
VF
7166
7167 return 0;
842d67a7 7168
5831d66e 7169remove_symlinks:
7ce64c79 7170 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7171 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7172free_adj:
7173 kfree(adj);
974daef7 7174 dev_put(adj_dev);
842d67a7
VF
7175
7176 return ret;
5d261913
VF
7177}
7178
1d143d9f 7179static void __netdev_adjacent_dev_remove(struct net_device *dev,
7180 struct net_device *adj_dev,
93409033 7181 u16 ref_nr,
1d143d9f 7182 struct list_head *dev_list)
5d261913
VF
7183{
7184 struct netdev_adjacent *adj;
7185
67b62f98
DA
7186 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7187 dev->name, adj_dev->name, ref_nr);
7188
6ea29da1 7189 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7190
2f268f12 7191 if (!adj) {
67b62f98 7192 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7193 dev->name, adj_dev->name);
67b62f98
DA
7194 WARN_ON(1);
7195 return;
2f268f12 7196 }
5d261913 7197
93409033 7198 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7199 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7200 dev->name, adj_dev->name, ref_nr,
7201 adj->ref_nr - ref_nr);
93409033 7202 adj->ref_nr -= ref_nr;
5d261913
VF
7203 return;
7204 }
7205
842d67a7
VF
7206 if (adj->master)
7207 sysfs_remove_link(&(dev->dev.kobj), "master");
7208
7ce64c79 7209 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7210 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7211
5d261913 7212 list_del_rcu(&adj->list);
67b62f98 7213 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7214 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7215 dev_put(adj_dev);
7216 kfree_rcu(adj, rcu);
7217}
7218
1d143d9f 7219static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7220 struct net_device *upper_dev,
7221 struct list_head *up_list,
7222 struct list_head *down_list,
7223 void *private, bool master)
5d261913
VF
7224{
7225 int ret;
7226
790510d9 7227 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7228 private, master);
5d261913
VF
7229 if (ret)
7230 return ret;
7231
790510d9 7232 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7233 private, false);
5d261913 7234 if (ret) {
790510d9 7235 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7236 return ret;
7237 }
7238
7239 return 0;
7240}
7241
1d143d9f 7242static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7243 struct net_device *upper_dev,
93409033 7244 u16 ref_nr,
1d143d9f 7245 struct list_head *up_list,
7246 struct list_head *down_list)
5d261913 7247{
93409033
AC
7248 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7249 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7250}
7251
1d143d9f 7252static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7253 struct net_device *upper_dev,
7254 void *private, bool master)
2f268f12 7255{
f1170fd4
DA
7256 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7257 &dev->adj_list.upper,
7258 &upper_dev->adj_list.lower,
7259 private, master);
5d261913
VF
7260}
7261
1d143d9f 7262static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7263 struct net_device *upper_dev)
2f268f12 7264{
93409033 7265 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7266 &dev->adj_list.upper,
7267 &upper_dev->adj_list.lower);
7268}
5d261913 7269
9ff162a8 7270static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7271 struct net_device *upper_dev, bool master,
42ab19ee
DA
7272 void *upper_priv, void *upper_info,
7273 struct netlink_ext_ack *extack)
9ff162a8 7274{
51d0c047
DA
7275 struct netdev_notifier_changeupper_info changeupper_info = {
7276 .info = {
7277 .dev = dev,
42ab19ee 7278 .extack = extack,
51d0c047
DA
7279 },
7280 .upper_dev = upper_dev,
7281 .master = master,
7282 .linking = true,
7283 .upper_info = upper_info,
7284 };
50d629e7 7285 struct net_device *master_dev;
5d261913 7286 int ret = 0;
9ff162a8
JP
7287
7288 ASSERT_RTNL();
7289
7290 if (dev == upper_dev)
7291 return -EBUSY;
7292
7293 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7294 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7295 return -EBUSY;
7296
5343da4c
TY
7297 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7298 return -EMLINK;
7299
50d629e7 7300 if (!master) {
32b6d34f 7301 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7302 return -EEXIST;
7303 } else {
32b6d34f 7304 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7305 if (master_dev)
7306 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7307 }
9ff162a8 7308
51d0c047 7309 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7310 &changeupper_info.info);
7311 ret = notifier_to_errno(ret);
7312 if (ret)
7313 return ret;
7314
6dffb044 7315 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7316 master);
5d261913
VF
7317 if (ret)
7318 return ret;
9ff162a8 7319
51d0c047 7320 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7321 &changeupper_info.info);
7322 ret = notifier_to_errno(ret);
7323 if (ret)
f1170fd4 7324 goto rollback;
b03804e7 7325
5343da4c 7326 __netdev_update_upper_level(dev, NULL);
32b6d34f 7327 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7328
7329 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7330 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7331 NULL);
5343da4c 7332
9ff162a8 7333 return 0;
5d261913 7334
f1170fd4 7335rollback:
2f268f12 7336 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7337
7338 return ret;
9ff162a8
JP
7339}
7340
7341/**
7342 * netdev_upper_dev_link - Add a link to the upper device
7343 * @dev: device
7344 * @upper_dev: new upper device
7a006d59 7345 * @extack: netlink extended ack
9ff162a8
JP
7346 *
7347 * Adds a link to device which is upper to this one. The caller must hold
7348 * the RTNL lock. On a failure a negative errno code is returned.
7349 * On success the reference counts are adjusted and the function
7350 * returns zero.
7351 */
7352int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7353 struct net_device *upper_dev,
7354 struct netlink_ext_ack *extack)
9ff162a8 7355{
42ab19ee
DA
7356 return __netdev_upper_dev_link(dev, upper_dev, false,
7357 NULL, NULL, extack);
9ff162a8
JP
7358}
7359EXPORT_SYMBOL(netdev_upper_dev_link);
7360
7361/**
7362 * netdev_master_upper_dev_link - Add a master link to the upper device
7363 * @dev: device
7364 * @upper_dev: new upper device
6dffb044 7365 * @upper_priv: upper device private
29bf24af 7366 * @upper_info: upper info to be passed down via notifier
7a006d59 7367 * @extack: netlink extended ack
9ff162a8
JP
7368 *
7369 * Adds a link to device which is upper to this one. In this case, only
7370 * one master upper device can be linked, although other non-master devices
7371 * might be linked as well. The caller must hold the RTNL lock.
7372 * On a failure a negative errno code is returned. On success the reference
7373 * counts are adjusted and the function returns zero.
7374 */
7375int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7376 struct net_device *upper_dev,
42ab19ee
DA
7377 void *upper_priv, void *upper_info,
7378 struct netlink_ext_ack *extack)
9ff162a8 7379{
29bf24af 7380 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7381 upper_priv, upper_info, extack);
9ff162a8
JP
7382}
7383EXPORT_SYMBOL(netdev_master_upper_dev_link);
7384
7385/**
7386 * netdev_upper_dev_unlink - Removes a link to upper device
7387 * @dev: device
7388 * @upper_dev: new upper device
7389 *
7390 * Removes a link to device which is upper to this one. The caller must hold
7391 * the RTNL lock.
7392 */
7393void netdev_upper_dev_unlink(struct net_device *dev,
7394 struct net_device *upper_dev)
7395{
51d0c047
DA
7396 struct netdev_notifier_changeupper_info changeupper_info = {
7397 .info = {
7398 .dev = dev,
7399 },
7400 .upper_dev = upper_dev,
7401 .linking = false,
7402 };
f4563a75 7403
9ff162a8
JP
7404 ASSERT_RTNL();
7405
0e4ead9d 7406 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7407
51d0c047 7408 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7409 &changeupper_info.info);
7410
2f268f12 7411 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7412
51d0c047 7413 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7414 &changeupper_info.info);
5343da4c
TY
7415
7416 __netdev_update_upper_level(dev, NULL);
32b6d34f 7417 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7418
7419 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7420 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7421 NULL);
9ff162a8
JP
7422}
7423EXPORT_SYMBOL(netdev_upper_dev_unlink);
7424
32b6d34f
TY
7425static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7426 struct net_device *lower_dev,
7427 bool val)
7428{
7429 struct netdev_adjacent *adj;
7430
7431 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7432 if (adj)
7433 adj->ignore = val;
7434
7435 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7436 if (adj)
7437 adj->ignore = val;
7438}
7439
7440static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7441 struct net_device *lower_dev)
7442{
7443 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7444}
7445
7446static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7447 struct net_device *lower_dev)
7448{
7449 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7450}
7451
7452int netdev_adjacent_change_prepare(struct net_device *old_dev,
7453 struct net_device *new_dev,
7454 struct net_device *dev,
7455 struct netlink_ext_ack *extack)
7456{
7457 int err;
7458
7459 if (!new_dev)
7460 return 0;
7461
7462 if (old_dev && new_dev != old_dev)
7463 netdev_adjacent_dev_disable(dev, old_dev);
7464
7465 err = netdev_upper_dev_link(new_dev, dev, extack);
7466 if (err) {
7467 if (old_dev && new_dev != old_dev)
7468 netdev_adjacent_dev_enable(dev, old_dev);
7469 return err;
7470 }
7471
7472 return 0;
7473}
7474EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7475
7476void netdev_adjacent_change_commit(struct net_device *old_dev,
7477 struct net_device *new_dev,
7478 struct net_device *dev)
7479{
7480 if (!new_dev || !old_dev)
7481 return;
7482
7483 if (new_dev == old_dev)
7484 return;
7485
7486 netdev_adjacent_dev_enable(dev, old_dev);
7487 netdev_upper_dev_unlink(old_dev, dev);
7488}
7489EXPORT_SYMBOL(netdev_adjacent_change_commit);
7490
7491void netdev_adjacent_change_abort(struct net_device *old_dev,
7492 struct net_device *new_dev,
7493 struct net_device *dev)
7494{
7495 if (!new_dev)
7496 return;
7497
7498 if (old_dev && new_dev != old_dev)
7499 netdev_adjacent_dev_enable(dev, old_dev);
7500
7501 netdev_upper_dev_unlink(new_dev, dev);
7502}
7503EXPORT_SYMBOL(netdev_adjacent_change_abort);
7504
61bd3857
MS
7505/**
7506 * netdev_bonding_info_change - Dispatch event about slave change
7507 * @dev: device
4a26e453 7508 * @bonding_info: info to dispatch
61bd3857
MS
7509 *
7510 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7511 * The caller must hold the RTNL lock.
7512 */
7513void netdev_bonding_info_change(struct net_device *dev,
7514 struct netdev_bonding_info *bonding_info)
7515{
51d0c047
DA
7516 struct netdev_notifier_bonding_info info = {
7517 .info.dev = dev,
7518 };
61bd3857
MS
7519
7520 memcpy(&info.bonding_info, bonding_info,
7521 sizeof(struct netdev_bonding_info));
51d0c047 7522 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7523 &info.info);
7524}
7525EXPORT_SYMBOL(netdev_bonding_info_change);
7526
2ce1ee17 7527static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7528{
7529 struct netdev_adjacent *iter;
7530
7531 struct net *net = dev_net(dev);
7532
7533 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7534 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7535 continue;
7536 netdev_adjacent_sysfs_add(iter->dev, dev,
7537 &iter->dev->adj_list.lower);
7538 netdev_adjacent_sysfs_add(dev, iter->dev,
7539 &dev->adj_list.upper);
7540 }
7541
7542 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7543 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7544 continue;
7545 netdev_adjacent_sysfs_add(iter->dev, dev,
7546 &iter->dev->adj_list.upper);
7547 netdev_adjacent_sysfs_add(dev, iter->dev,
7548 &dev->adj_list.lower);
7549 }
7550}
7551
2ce1ee17 7552static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
7553{
7554 struct netdev_adjacent *iter;
7555
7556 struct net *net = dev_net(dev);
7557
7558 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7559 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7560 continue;
7561 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7562 &iter->dev->adj_list.lower);
7563 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7564 &dev->adj_list.upper);
7565 }
7566
7567 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7568 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7569 continue;
7570 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7571 &iter->dev->adj_list.upper);
7572 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7573 &dev->adj_list.lower);
7574 }
7575}
7576
5bb025fa 7577void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 7578{
5bb025fa 7579 struct netdev_adjacent *iter;
402dae96 7580
4c75431a
AF
7581 struct net *net = dev_net(dev);
7582
5bb025fa 7583 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7584 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7585 continue;
5bb025fa
VF
7586 netdev_adjacent_sysfs_del(iter->dev, oldname,
7587 &iter->dev->adj_list.lower);
7588 netdev_adjacent_sysfs_add(iter->dev, dev,
7589 &iter->dev->adj_list.lower);
7590 }
402dae96 7591
5bb025fa 7592 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7593 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7594 continue;
5bb025fa
VF
7595 netdev_adjacent_sysfs_del(iter->dev, oldname,
7596 &iter->dev->adj_list.upper);
7597 netdev_adjacent_sysfs_add(iter->dev, dev,
7598 &iter->dev->adj_list.upper);
7599 }
402dae96 7600}
402dae96
VF
7601
7602void *netdev_lower_dev_get_private(struct net_device *dev,
7603 struct net_device *lower_dev)
7604{
7605 struct netdev_adjacent *lower;
7606
7607 if (!lower_dev)
7608 return NULL;
6ea29da1 7609 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
7610 if (!lower)
7611 return NULL;
7612
7613 return lower->private;
7614}
7615EXPORT_SYMBOL(netdev_lower_dev_get_private);
7616
4085ebe8 7617
04d48266
JP
7618/**
7619 * netdev_lower_change - Dispatch event about lower device state change
7620 * @lower_dev: device
7621 * @lower_state_info: state to dispatch
7622 *
7623 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7624 * The caller must hold the RTNL lock.
7625 */
7626void netdev_lower_state_changed(struct net_device *lower_dev,
7627 void *lower_state_info)
7628{
51d0c047
DA
7629 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7630 .info.dev = lower_dev,
7631 };
04d48266
JP
7632
7633 ASSERT_RTNL();
7634 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 7635 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
7636 &changelowerstate_info.info);
7637}
7638EXPORT_SYMBOL(netdev_lower_state_changed);
7639
b6c40d68
PM
7640static void dev_change_rx_flags(struct net_device *dev, int flags)
7641{
d314774c
SH
7642 const struct net_device_ops *ops = dev->netdev_ops;
7643
d2615bf4 7644 if (ops->ndo_change_rx_flags)
d314774c 7645 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
7646}
7647
991fb3f7 7648static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 7649{
b536db93 7650 unsigned int old_flags = dev->flags;
d04a48b0
EB
7651 kuid_t uid;
7652 kgid_t gid;
1da177e4 7653
24023451
PM
7654 ASSERT_RTNL();
7655
dad9b335
WC
7656 dev->flags |= IFF_PROMISC;
7657 dev->promiscuity += inc;
7658 if (dev->promiscuity == 0) {
7659 /*
7660 * Avoid overflow.
7661 * If inc causes overflow, untouch promisc and return error.
7662 */
7663 if (inc < 0)
7664 dev->flags &= ~IFF_PROMISC;
7665 else {
7666 dev->promiscuity -= inc;
7b6cd1ce
JP
7667 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7668 dev->name);
dad9b335
WC
7669 return -EOVERFLOW;
7670 }
7671 }
52609c0b 7672 if (dev->flags != old_flags) {
7b6cd1ce
JP
7673 pr_info("device %s %s promiscuous mode\n",
7674 dev->name,
7675 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
7676 if (audit_enabled) {
7677 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
7678 audit_log(audit_context(), GFP_ATOMIC,
7679 AUDIT_ANOM_PROMISCUOUS,
7680 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7681 dev->name, (dev->flags & IFF_PROMISC),
7682 (old_flags & IFF_PROMISC),
7683 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7684 from_kuid(&init_user_ns, uid),
7685 from_kgid(&init_user_ns, gid),
7686 audit_get_sessionid(current));
8192b0c4 7687 }
24023451 7688
b6c40d68 7689 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 7690 }
991fb3f7
ND
7691 if (notify)
7692 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 7693 return 0;
1da177e4
LT
7694}
7695
4417da66
PM
7696/**
7697 * dev_set_promiscuity - update promiscuity count on a device
7698 * @dev: device
7699 * @inc: modifier
7700 *
7701 * Add or remove promiscuity from a device. While the count in the device
7702 * remains above zero the interface remains promiscuous. Once it hits zero
7703 * the device reverts back to normal filtering operation. A negative inc
7704 * value is used to drop promiscuity on the device.
dad9b335 7705 * Return 0 if successful or a negative errno code on error.
4417da66 7706 */
dad9b335 7707int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 7708{
b536db93 7709 unsigned int old_flags = dev->flags;
dad9b335 7710 int err;
4417da66 7711
991fb3f7 7712 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 7713 if (err < 0)
dad9b335 7714 return err;
4417da66
PM
7715 if (dev->flags != old_flags)
7716 dev_set_rx_mode(dev);
dad9b335 7717 return err;
4417da66 7718}
d1b19dff 7719EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 7720
991fb3f7 7721static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 7722{
991fb3f7 7723 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 7724
24023451
PM
7725 ASSERT_RTNL();
7726
1da177e4 7727 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
7728 dev->allmulti += inc;
7729 if (dev->allmulti == 0) {
7730 /*
7731 * Avoid overflow.
7732 * If inc causes overflow, untouch allmulti and return error.
7733 */
7734 if (inc < 0)
7735 dev->flags &= ~IFF_ALLMULTI;
7736 else {
7737 dev->allmulti -= inc;
7b6cd1ce
JP
7738 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7739 dev->name);
dad9b335
WC
7740 return -EOVERFLOW;
7741 }
7742 }
24023451 7743 if (dev->flags ^ old_flags) {
b6c40d68 7744 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 7745 dev_set_rx_mode(dev);
991fb3f7
ND
7746 if (notify)
7747 __dev_notify_flags(dev, old_flags,
7748 dev->gflags ^ old_gflags);
24023451 7749 }
dad9b335 7750 return 0;
4417da66 7751}
991fb3f7
ND
7752
7753/**
7754 * dev_set_allmulti - update allmulti count on a device
7755 * @dev: device
7756 * @inc: modifier
7757 *
7758 * Add or remove reception of all multicast frames to a device. While the
7759 * count in the device remains above zero the interface remains listening
7760 * to all interfaces. Once it hits zero the device reverts back to normal
7761 * filtering operation. A negative @inc value is used to drop the counter
7762 * when releasing a resource needing all multicasts.
7763 * Return 0 if successful or a negative errno code on error.
7764 */
7765
7766int dev_set_allmulti(struct net_device *dev, int inc)
7767{
7768 return __dev_set_allmulti(dev, inc, true);
7769}
d1b19dff 7770EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
7771
7772/*
7773 * Upload unicast and multicast address lists to device and
7774 * configure RX filtering. When the device doesn't support unicast
53ccaae1 7775 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
7776 * are present.
7777 */
7778void __dev_set_rx_mode(struct net_device *dev)
7779{
d314774c
SH
7780 const struct net_device_ops *ops = dev->netdev_ops;
7781
4417da66
PM
7782 /* dev_open will call this function so the list will stay sane. */
7783 if (!(dev->flags&IFF_UP))
7784 return;
7785
7786 if (!netif_device_present(dev))
40b77c94 7787 return;
4417da66 7788
01789349 7789 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
7790 /* Unicast addresses changes may only happen under the rtnl,
7791 * therefore calling __dev_set_promiscuity here is safe.
7792 */
32e7bfc4 7793 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 7794 __dev_set_promiscuity(dev, 1, false);
2d348d1f 7795 dev->uc_promisc = true;
32e7bfc4 7796 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 7797 __dev_set_promiscuity(dev, -1, false);
2d348d1f 7798 dev->uc_promisc = false;
4417da66 7799 }
4417da66 7800 }
01789349
JP
7801
7802 if (ops->ndo_set_rx_mode)
7803 ops->ndo_set_rx_mode(dev);
4417da66
PM
7804}
7805
7806void dev_set_rx_mode(struct net_device *dev)
7807{
b9e40857 7808 netif_addr_lock_bh(dev);
4417da66 7809 __dev_set_rx_mode(dev);
b9e40857 7810 netif_addr_unlock_bh(dev);
1da177e4
LT
7811}
7812
f0db275a
SH
7813/**
7814 * dev_get_flags - get flags reported to userspace
7815 * @dev: device
7816 *
7817 * Get the combination of flag bits exported through APIs to userspace.
7818 */
95c96174 7819unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 7820{
95c96174 7821 unsigned int flags;
1da177e4
LT
7822
7823 flags = (dev->flags & ~(IFF_PROMISC |
7824 IFF_ALLMULTI |
b00055aa
SR
7825 IFF_RUNNING |
7826 IFF_LOWER_UP |
7827 IFF_DORMANT)) |
1da177e4
LT
7828 (dev->gflags & (IFF_PROMISC |
7829 IFF_ALLMULTI));
7830
b00055aa
SR
7831 if (netif_running(dev)) {
7832 if (netif_oper_up(dev))
7833 flags |= IFF_RUNNING;
7834 if (netif_carrier_ok(dev))
7835 flags |= IFF_LOWER_UP;
7836 if (netif_dormant(dev))
7837 flags |= IFF_DORMANT;
7838 }
1da177e4
LT
7839
7840 return flags;
7841}
d1b19dff 7842EXPORT_SYMBOL(dev_get_flags);
1da177e4 7843
6d040321
PM
7844int __dev_change_flags(struct net_device *dev, unsigned int flags,
7845 struct netlink_ext_ack *extack)
1da177e4 7846{
b536db93 7847 unsigned int old_flags = dev->flags;
bd380811 7848 int ret;
1da177e4 7849
24023451
PM
7850 ASSERT_RTNL();
7851
1da177e4
LT
7852 /*
7853 * Set the flags on our device.
7854 */
7855
7856 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7857 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7858 IFF_AUTOMEDIA)) |
7859 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7860 IFF_ALLMULTI));
7861
7862 /*
7863 * Load in the correct multicast list now the flags have changed.
7864 */
7865
b6c40d68
PM
7866 if ((old_flags ^ flags) & IFF_MULTICAST)
7867 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 7868
4417da66 7869 dev_set_rx_mode(dev);
1da177e4
LT
7870
7871 /*
7872 * Have we downed the interface. We handle IFF_UP ourselves
7873 * according to user attempts to set it, rather than blindly
7874 * setting it.
7875 */
7876
7877 ret = 0;
7051b88a 7878 if ((old_flags ^ flags) & IFF_UP) {
7879 if (old_flags & IFF_UP)
7880 __dev_close(dev);
7881 else
40c900aa 7882 ret = __dev_open(dev, extack);
7051b88a 7883 }
1da177e4 7884
1da177e4 7885 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 7886 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 7887 unsigned int old_flags = dev->flags;
d1b19dff 7888
1da177e4 7889 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
7890
7891 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7892 if (dev->flags != old_flags)
7893 dev_set_rx_mode(dev);
1da177e4
LT
7894 }
7895
7896 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 7897 * is important. Some (broken) drivers set IFF_PROMISC, when
7898 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
7899 */
7900 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
7901 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7902
1da177e4 7903 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 7904 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
7905 }
7906
bd380811
PM
7907 return ret;
7908}
7909
a528c219
ND
7910void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7911 unsigned int gchanges)
bd380811
PM
7912{
7913 unsigned int changes = dev->flags ^ old_flags;
7914
a528c219 7915 if (gchanges)
7f294054 7916 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 7917
bd380811
PM
7918 if (changes & IFF_UP) {
7919 if (dev->flags & IFF_UP)
7920 call_netdevice_notifiers(NETDEV_UP, dev);
7921 else
7922 call_netdevice_notifiers(NETDEV_DOWN, dev);
7923 }
7924
7925 if (dev->flags & IFF_UP &&
be9efd36 7926 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
7927 struct netdev_notifier_change_info change_info = {
7928 .info = {
7929 .dev = dev,
7930 },
7931 .flags_changed = changes,
7932 };
be9efd36 7933
51d0c047 7934 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 7935 }
bd380811
PM
7936}
7937
7938/**
7939 * dev_change_flags - change device settings
7940 * @dev: device
7941 * @flags: device state flags
567c5e13 7942 * @extack: netlink extended ack
bd380811
PM
7943 *
7944 * Change settings on device based state flags. The flags are
7945 * in the userspace exported format.
7946 */
567c5e13
PM
7947int dev_change_flags(struct net_device *dev, unsigned int flags,
7948 struct netlink_ext_ack *extack)
bd380811 7949{
b536db93 7950 int ret;
991fb3f7 7951 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 7952
6d040321 7953 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
7954 if (ret < 0)
7955 return ret;
7956
991fb3f7 7957 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 7958 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
7959 return ret;
7960}
d1b19dff 7961EXPORT_SYMBOL(dev_change_flags);
1da177e4 7962
f51048c3 7963int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
7964{
7965 const struct net_device_ops *ops = dev->netdev_ops;
7966
7967 if (ops->ndo_change_mtu)
7968 return ops->ndo_change_mtu(dev, new_mtu);
7969
7970 dev->mtu = new_mtu;
7971 return 0;
7972}
f51048c3 7973EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 7974
f0db275a 7975/**
7a4c53be 7976 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
7977 * @dev: device
7978 * @new_mtu: new transfer unit
7a4c53be 7979 * @extack: netlink extended ack
f0db275a
SH
7980 *
7981 * Change the maximum transfer size of the network device.
7982 */
7a4c53be
SH
7983int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7984 struct netlink_ext_ack *extack)
1da177e4 7985{
2315dc91 7986 int err, orig_mtu;
1da177e4
LT
7987
7988 if (new_mtu == dev->mtu)
7989 return 0;
7990
61e84623
JW
7991 /* MTU must be positive, and in range */
7992 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7a4c53be 7993 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
1da177e4 7994 return -EINVAL;
61e84623
JW
7995 }
7996
7997 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7a4c53be 7998 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
61e84623
JW
7999 return -EINVAL;
8000 }
1da177e4
LT
8001
8002 if (!netif_device_present(dev))
8003 return -ENODEV;
8004
1d486bfb
VF
8005 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8006 err = notifier_to_errno(err);
8007 if (err)
8008 return err;
d314774c 8009
2315dc91
VF
8010 orig_mtu = dev->mtu;
8011 err = __dev_set_mtu(dev, new_mtu);
d314774c 8012
2315dc91 8013 if (!err) {
af7d6cce
SD
8014 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8015 orig_mtu);
2315dc91
VF
8016 err = notifier_to_errno(err);
8017 if (err) {
8018 /* setting mtu back and notifying everyone again,
8019 * so that they have a chance to revert changes.
8020 */
8021 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8022 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8023 new_mtu);
2315dc91
VF
8024 }
8025 }
1da177e4
LT
8026 return err;
8027}
7a4c53be
SH
8028
8029int dev_set_mtu(struct net_device *dev, int new_mtu)
8030{
8031 struct netlink_ext_ack extack;
8032 int err;
8033
a6bcfc89 8034 memset(&extack, 0, sizeof(extack));
7a4c53be 8035 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8036 if (err && extack._msg)
7a4c53be
SH
8037 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8038 return err;
8039}
d1b19dff 8040EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8041
6a643ddb
CW
8042/**
8043 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8044 * @dev: device
8045 * @new_len: new tx queue length
8046 */
8047int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8048{
8049 unsigned int orig_len = dev->tx_queue_len;
8050 int res;
8051
8052 if (new_len != (unsigned int)new_len)
8053 return -ERANGE;
8054
8055 if (new_len != orig_len) {
8056 dev->tx_queue_len = new_len;
8057 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8058 res = notifier_to_errno(res);
7effaf06
TT
8059 if (res)
8060 goto err_rollback;
8061 res = dev_qdisc_change_tx_queue_len(dev);
8062 if (res)
8063 goto err_rollback;
6a643ddb
CW
8064 }
8065
8066 return 0;
7effaf06
TT
8067
8068err_rollback:
8069 netdev_err(dev, "refused to change device tx_queue_len\n");
8070 dev->tx_queue_len = orig_len;
8071 return res;
6a643ddb
CW
8072}
8073
cbda10fa
VD
8074/**
8075 * dev_set_group - Change group this device belongs to
8076 * @dev: device
8077 * @new_group: group this device should belong to
8078 */
8079void dev_set_group(struct net_device *dev, int new_group)
8080{
8081 dev->group = new_group;
8082}
8083EXPORT_SYMBOL(dev_set_group);
8084
d59cdf94
PM
8085/**
8086 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8087 * @dev: device
8088 * @addr: new address
8089 * @extack: netlink extended ack
8090 */
8091int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8092 struct netlink_ext_ack *extack)
8093{
8094 struct netdev_notifier_pre_changeaddr_info info = {
8095 .info.dev = dev,
8096 .info.extack = extack,
8097 .dev_addr = addr,
8098 };
8099 int rc;
8100
8101 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8102 return notifier_to_errno(rc);
8103}
8104EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8105
f0db275a
SH
8106/**
8107 * dev_set_mac_address - Change Media Access Control Address
8108 * @dev: device
8109 * @sa: new address
3a37a963 8110 * @extack: netlink extended ack
f0db275a
SH
8111 *
8112 * Change the hardware (MAC) address of the device
8113 */
3a37a963
PM
8114int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8115 struct netlink_ext_ack *extack)
1da177e4 8116{
d314774c 8117 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8118 int err;
8119
d314774c 8120 if (!ops->ndo_set_mac_address)
1da177e4
LT
8121 return -EOPNOTSUPP;
8122 if (sa->sa_family != dev->type)
8123 return -EINVAL;
8124 if (!netif_device_present(dev))
8125 return -ENODEV;
d59cdf94
PM
8126 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8127 if (err)
8128 return err;
d314774c 8129 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8130 if (err)
8131 return err;
fbdeca2d 8132 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8133 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8134 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8135 return 0;
1da177e4 8136}
d1b19dff 8137EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8138
4bf84c35
JP
8139/**
8140 * dev_change_carrier - Change device carrier
8141 * @dev: device
691b3b7e 8142 * @new_carrier: new value
4bf84c35
JP
8143 *
8144 * Change device carrier
8145 */
8146int dev_change_carrier(struct net_device *dev, bool new_carrier)
8147{
8148 const struct net_device_ops *ops = dev->netdev_ops;
8149
8150 if (!ops->ndo_change_carrier)
8151 return -EOPNOTSUPP;
8152 if (!netif_device_present(dev))
8153 return -ENODEV;
8154 return ops->ndo_change_carrier(dev, new_carrier);
8155}
8156EXPORT_SYMBOL(dev_change_carrier);
8157
66b52b0d
JP
8158/**
8159 * dev_get_phys_port_id - Get device physical port ID
8160 * @dev: device
8161 * @ppid: port ID
8162 *
8163 * Get device physical port ID
8164 */
8165int dev_get_phys_port_id(struct net_device *dev,
02637fce 8166 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8167{
8168 const struct net_device_ops *ops = dev->netdev_ops;
8169
8170 if (!ops->ndo_get_phys_port_id)
8171 return -EOPNOTSUPP;
8172 return ops->ndo_get_phys_port_id(dev, ppid);
8173}
8174EXPORT_SYMBOL(dev_get_phys_port_id);
8175
db24a904
DA
8176/**
8177 * dev_get_phys_port_name - Get device physical port name
8178 * @dev: device
8179 * @name: port name
ed49e650 8180 * @len: limit of bytes to copy to name
db24a904
DA
8181 *
8182 * Get device physical port name
8183 */
8184int dev_get_phys_port_name(struct net_device *dev,
8185 char *name, size_t len)
8186{
8187 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8188 int err;
db24a904 8189
af3836df
JP
8190 if (ops->ndo_get_phys_port_name) {
8191 err = ops->ndo_get_phys_port_name(dev, name, len);
8192 if (err != -EOPNOTSUPP)
8193 return err;
8194 }
8195 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
8196}
8197EXPORT_SYMBOL(dev_get_phys_port_name);
8198
d6abc596
FF
8199/**
8200 * dev_get_port_parent_id - Get the device's port parent identifier
8201 * @dev: network device
8202 * @ppid: pointer to a storage for the port's parent identifier
8203 * @recurse: allow/disallow recursion to lower devices
8204 *
8205 * Get the devices's port parent identifier
8206 */
8207int dev_get_port_parent_id(struct net_device *dev,
8208 struct netdev_phys_item_id *ppid,
8209 bool recurse)
8210{
8211 const struct net_device_ops *ops = dev->netdev_ops;
8212 struct netdev_phys_item_id first = { };
8213 struct net_device *lower_dev;
8214 struct list_head *iter;
7e1146e8
JP
8215 int err;
8216
8217 if (ops->ndo_get_port_parent_id) {
8218 err = ops->ndo_get_port_parent_id(dev, ppid);
8219 if (err != -EOPNOTSUPP)
8220 return err;
8221 }
d6abc596 8222
7e1146e8
JP
8223 err = devlink_compat_switch_id_get(dev, ppid);
8224 if (!err || err != -EOPNOTSUPP)
8225 return err;
d6abc596
FF
8226
8227 if (!recurse)
7e1146e8 8228 return -EOPNOTSUPP;
d6abc596
FF
8229
8230 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8231 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8232 if (err)
8233 break;
8234 if (!first.id_len)
8235 first = *ppid;
8236 else if (memcmp(&first, ppid, sizeof(*ppid)))
8237 return -ENODATA;
8238 }
8239
8240 return err;
8241}
8242EXPORT_SYMBOL(dev_get_port_parent_id);
8243
8244/**
8245 * netdev_port_same_parent_id - Indicate if two network devices have
8246 * the same port parent identifier
8247 * @a: first network device
8248 * @b: second network device
8249 */
8250bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8251{
8252 struct netdev_phys_item_id a_id = { };
8253 struct netdev_phys_item_id b_id = { };
8254
8255 if (dev_get_port_parent_id(a, &a_id, true) ||
8256 dev_get_port_parent_id(b, &b_id, true))
8257 return false;
8258
8259 return netdev_phys_item_id_same(&a_id, &b_id);
8260}
8261EXPORT_SYMBOL(netdev_port_same_parent_id);
8262
d746d707
AK
8263/**
8264 * dev_change_proto_down - update protocol port state information
8265 * @dev: device
8266 * @proto_down: new value
8267 *
8268 * This info can be used by switch drivers to set the phys state of the
8269 * port.
8270 */
8271int dev_change_proto_down(struct net_device *dev, bool proto_down)
8272{
8273 const struct net_device_ops *ops = dev->netdev_ops;
8274
8275 if (!ops->ndo_change_proto_down)
8276 return -EOPNOTSUPP;
8277 if (!netif_device_present(dev))
8278 return -ENODEV;
8279 return ops->ndo_change_proto_down(dev, proto_down);
8280}
8281EXPORT_SYMBOL(dev_change_proto_down);
8282
b5899679
AR
8283/**
8284 * dev_change_proto_down_generic - generic implementation for
8285 * ndo_change_proto_down that sets carrier according to
8286 * proto_down.
8287 *
8288 * @dev: device
8289 * @proto_down: new value
8290 */
8291int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8292{
8293 if (proto_down)
8294 netif_carrier_off(dev);
8295 else
8296 netif_carrier_on(dev);
8297 dev->proto_down = proto_down;
8298 return 0;
8299}
8300EXPORT_SYMBOL(dev_change_proto_down_generic);
8301
a25717d2
JK
8302u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8303 enum bpf_netdev_command cmd)
d67b9cd2 8304{
a25717d2 8305 struct netdev_bpf xdp;
d67b9cd2 8306
a25717d2
JK
8307 if (!bpf_op)
8308 return 0;
118b4aa2 8309
a25717d2
JK
8310 memset(&xdp, 0, sizeof(xdp));
8311 xdp.command = cmd;
118b4aa2 8312
a25717d2
JK
8313 /* Query must always succeed. */
8314 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
58038695 8315
6b867589 8316 return xdp.prog_id;
d67b9cd2
DB
8317}
8318
f4e63525 8319static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 8320 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
8321 struct bpf_prog *prog)
8322{
f4e63525 8323 struct netdev_bpf xdp;
d67b9cd2
DB
8324
8325 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
8326 if (flags & XDP_FLAGS_HW_MODE)
8327 xdp.command = XDP_SETUP_PROG_HW;
8328 else
8329 xdp.command = XDP_SETUP_PROG;
d67b9cd2 8330 xdp.extack = extack;
32d60277 8331 xdp.flags = flags;
d67b9cd2
DB
8332 xdp.prog = prog;
8333
f4e63525 8334 return bpf_op(dev, &xdp);
d67b9cd2
DB
8335}
8336
bd0b2e7f
JK
8337static void dev_xdp_uninstall(struct net_device *dev)
8338{
8339 struct netdev_bpf xdp;
8340 bpf_op_t ndo_bpf;
8341
8342 /* Remove generic XDP */
8343 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8344
8345 /* Remove from the driver */
8346 ndo_bpf = dev->netdev_ops->ndo_bpf;
8347 if (!ndo_bpf)
8348 return;
8349
a25717d2
JK
8350 memset(&xdp, 0, sizeof(xdp));
8351 xdp.command = XDP_QUERY_PROG;
8352 WARN_ON(ndo_bpf(dev, &xdp));
8353 if (xdp.prog_id)
8354 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8355 NULL));
bd0b2e7f 8356
a25717d2
JK
8357 /* Remove HW offload */
8358 memset(&xdp, 0, sizeof(xdp));
8359 xdp.command = XDP_QUERY_PROG_HW;
8360 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8361 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8362 NULL));
bd0b2e7f
JK
8363}
8364
a7862b45
BB
8365/**
8366 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8367 * @dev: device
b5d60989 8368 * @extack: netlink extended ack
a7862b45 8369 * @fd: new program fd or negative value to clear
85de8576 8370 * @flags: xdp-related flags
a7862b45
BB
8371 *
8372 * Set or clear a bpf program for a device
8373 */
ddf9f970
JK
8374int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8375 int fd, u32 flags)
a7862b45
BB
8376{
8377 const struct net_device_ops *ops = dev->netdev_ops;
a25717d2 8378 enum bpf_netdev_command query;
a7862b45 8379 struct bpf_prog *prog = NULL;
f4e63525 8380 bpf_op_t bpf_op, bpf_chk;
9ee963d6 8381 bool offload;
a7862b45
BB
8382 int err;
8383
85de8576
DB
8384 ASSERT_RTNL();
8385
9ee963d6
JK
8386 offload = flags & XDP_FLAGS_HW_MODE;
8387 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
a25717d2 8388
f4e63525 8389 bpf_op = bpf_chk = ops->ndo_bpf;
01dde20c
MF
8390 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8391 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
0489df9a 8392 return -EOPNOTSUPP;
01dde20c 8393 }
f4e63525
JK
8394 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8395 bpf_op = generic_xdp_install;
8396 if (bpf_op == bpf_chk)
8397 bpf_chk = generic_xdp_install;
b5cdae32 8398
a7862b45 8399 if (fd >= 0) {
c14a9f63
MM
8400 u32 prog_id;
8401
9ee963d6 8402 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
01dde20c 8403 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
d67b9cd2 8404 return -EEXIST;
01dde20c 8405 }
c14a9f63
MM
8406
8407 prog_id = __dev_xdp_query(dev, bpf_op, query);
8408 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
01dde20c 8409 NL_SET_ERR_MSG(extack, "XDP program already attached");
d67b9cd2 8410 return -EBUSY;
01dde20c 8411 }
85de8576 8412
288b3de5
JK
8413 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8414 bpf_op == ops->ndo_bpf);
a7862b45
BB
8415 if (IS_ERR(prog))
8416 return PTR_ERR(prog);
441a3303 8417
9ee963d6 8418 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
441a3303
JK
8419 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8420 bpf_prog_put(prog);
8421 return -EINVAL;
8422 }
c14a9f63
MM
8423
8424 if (prog->aux->id == prog_id) {
8425 bpf_prog_put(prog);
8426 return 0;
8427 }
8428 } else {
8429 if (!__dev_xdp_query(dev, bpf_op, query))
8430 return 0;
a7862b45
BB
8431 }
8432
f4e63525 8433 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
8434 if (err < 0 && prog)
8435 bpf_prog_put(prog);
8436
8437 return err;
8438}
a7862b45 8439
1da177e4
LT
8440/**
8441 * dev_new_index - allocate an ifindex
c4ea43c5 8442 * @net: the applicable net namespace
1da177e4
LT
8443 *
8444 * Returns a suitable unique value for a new device interface
8445 * number. The caller must hold the rtnl semaphore or the
8446 * dev_base_lock to be sure it remains unique.
8447 */
881d966b 8448static int dev_new_index(struct net *net)
1da177e4 8449{
aa79e66e 8450 int ifindex = net->ifindex;
f4563a75 8451
1da177e4
LT
8452 for (;;) {
8453 if (++ifindex <= 0)
8454 ifindex = 1;
881d966b 8455 if (!__dev_get_by_index(net, ifindex))
aa79e66e 8456 return net->ifindex = ifindex;
1da177e4
LT
8457 }
8458}
8459
1da177e4 8460/* Delayed registration/unregisteration */
3b5b34fd 8461static LIST_HEAD(net_todo_list);
200b916f 8462DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 8463
6f05f629 8464static void net_set_todo(struct net_device *dev)
1da177e4 8465{
1da177e4 8466 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 8467 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
8468}
8469
9b5e383c 8470static void rollback_registered_many(struct list_head *head)
93ee31f1 8471{
e93737b0 8472 struct net_device *dev, *tmp;
5cde2829 8473 LIST_HEAD(close_head);
9b5e383c 8474
93ee31f1
DL
8475 BUG_ON(dev_boot_phase);
8476 ASSERT_RTNL();
8477
e93737b0 8478 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 8479 /* Some devices call without registering
e93737b0
KK
8480 * for initialization unwind. Remove those
8481 * devices and proceed with the remaining.
9b5e383c
ED
8482 */
8483 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
8484 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8485 dev->name, dev);
93ee31f1 8486
9b5e383c 8487 WARN_ON(1);
e93737b0
KK
8488 list_del(&dev->unreg_list);
8489 continue;
9b5e383c 8490 }
449f4544 8491 dev->dismantle = true;
9b5e383c 8492 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 8493 }
93ee31f1 8494
44345724 8495 /* If device is running, close it first. */
5cde2829
EB
8496 list_for_each_entry(dev, head, unreg_list)
8497 list_add_tail(&dev->close_list, &close_head);
99c4a26a 8498 dev_close_many(&close_head, true);
93ee31f1 8499
44345724 8500 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
8501 /* And unlink it from device chain. */
8502 unlist_netdevice(dev);
93ee31f1 8503
9b5e383c
ED
8504 dev->reg_state = NETREG_UNREGISTERING;
8505 }
41852497 8506 flush_all_backlogs();
93ee31f1
DL
8507
8508 synchronize_net();
8509
9b5e383c 8510 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
8511 struct sk_buff *skb = NULL;
8512
9b5e383c
ED
8513 /* Shutdown queueing discipline. */
8514 dev_shutdown(dev);
93ee31f1 8515
bd0b2e7f 8516 dev_xdp_uninstall(dev);
93ee31f1 8517
9b5e383c 8518 /* Notify protocols, that we are about to destroy
eb13da1a 8519 * this device. They should clean all the things.
8520 */
9b5e383c 8521 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 8522
395eea6c
MB
8523 if (!dev->rtnl_link_ops ||
8524 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 8525 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 8526 GFP_KERNEL, NULL, 0);
395eea6c 8527
9b5e383c
ED
8528 /*
8529 * Flush the unicast and multicast chains
8530 */
a748ee24 8531 dev_uc_flush(dev);
22bedad3 8532 dev_mc_flush(dev);
93ee31f1 8533
9b5e383c
ED
8534 if (dev->netdev_ops->ndo_uninit)
8535 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 8536
395eea6c
MB
8537 if (skb)
8538 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 8539
9ff162a8
JP
8540 /* Notifier chain MUST detach us all upper devices. */
8541 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 8542 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 8543
9b5e383c
ED
8544 /* Remove entries from kobject tree */
8545 netdev_unregister_kobject(dev);
024e9679
AD
8546#ifdef CONFIG_XPS
8547 /* Remove XPS queueing entries */
8548 netif_reset_xps_queues_gt(dev, 0);
8549#endif
9b5e383c 8550 }
93ee31f1 8551
850a545b 8552 synchronize_net();
395264d5 8553
a5ee1551 8554 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
8555 dev_put(dev);
8556}
8557
8558static void rollback_registered(struct net_device *dev)
8559{
8560 LIST_HEAD(single);
8561
8562 list_add(&dev->unreg_list, &single);
8563 rollback_registered_many(&single);
ceaaec98 8564 list_del(&single);
93ee31f1
DL
8565}
8566
fd867d51
JW
8567static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8568 struct net_device *upper, netdev_features_t features)
8569{
8570 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8571 netdev_features_t feature;
5ba3f7d6 8572 int feature_bit;
fd867d51 8573
3b89ea9c 8574 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8575 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8576 if (!(upper->wanted_features & feature)
8577 && (features & feature)) {
8578 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8579 &feature, upper->name);
8580 features &= ~feature;
8581 }
8582 }
8583
8584 return features;
8585}
8586
8587static void netdev_sync_lower_features(struct net_device *upper,
8588 struct net_device *lower, netdev_features_t features)
8589{
8590 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8591 netdev_features_t feature;
5ba3f7d6 8592 int feature_bit;
fd867d51 8593
3b89ea9c 8594 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8595 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8596 if (!(features & feature) && (lower->features & feature)) {
8597 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8598 &feature, lower->name);
8599 lower->wanted_features &= ~feature;
8600 netdev_update_features(lower);
8601
8602 if (unlikely(lower->features & feature))
8603 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8604 &feature, lower->name);
8605 }
8606 }
8607}
8608
c8f44aff
MM
8609static netdev_features_t netdev_fix_features(struct net_device *dev,
8610 netdev_features_t features)
b63365a2 8611{
57422dc5
MM
8612 /* Fix illegal checksum combinations */
8613 if ((features & NETIF_F_HW_CSUM) &&
8614 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 8615 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
8616 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8617 }
8618
b63365a2 8619 /* TSO requires that SG is present as well. */
ea2d3688 8620 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 8621 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 8622 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
8623 }
8624
ec5f0615
PS
8625 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8626 !(features & NETIF_F_IP_CSUM)) {
8627 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8628 features &= ~NETIF_F_TSO;
8629 features &= ~NETIF_F_TSO_ECN;
8630 }
8631
8632 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8633 !(features & NETIF_F_IPV6_CSUM)) {
8634 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8635 features &= ~NETIF_F_TSO6;
8636 }
8637
b1dc497b
AD
8638 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8639 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8640 features &= ~NETIF_F_TSO_MANGLEID;
8641
31d8b9e0
BH
8642 /* TSO ECN requires that TSO is present as well. */
8643 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8644 features &= ~NETIF_F_TSO_ECN;
8645
212b573f
MM
8646 /* Software GSO depends on SG. */
8647 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 8648 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
8649 features &= ~NETIF_F_GSO;
8650 }
8651
802ab55a
AD
8652 /* GSO partial features require GSO partial be set */
8653 if ((features & dev->gso_partial_features) &&
8654 !(features & NETIF_F_GSO_PARTIAL)) {
8655 netdev_dbg(dev,
8656 "Dropping partially supported GSO features since no GSO partial.\n");
8657 features &= ~dev->gso_partial_features;
8658 }
8659
fb1f5f79
MC
8660 if (!(features & NETIF_F_RXCSUM)) {
8661 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8662 * successfully merged by hardware must also have the
8663 * checksum verified by hardware. If the user does not
8664 * want to enable RXCSUM, logically, we should disable GRO_HW.
8665 */
8666 if (features & NETIF_F_GRO_HW) {
8667 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8668 features &= ~NETIF_F_GRO_HW;
8669 }
8670 }
8671
de8d5ab2
GP
8672 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8673 if (features & NETIF_F_RXFCS) {
8674 if (features & NETIF_F_LRO) {
8675 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8676 features &= ~NETIF_F_LRO;
8677 }
8678
8679 if (features & NETIF_F_GRO_HW) {
8680 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8681 features &= ~NETIF_F_GRO_HW;
8682 }
e6c6a929
GP
8683 }
8684
b63365a2
HX
8685 return features;
8686}
b63365a2 8687
6cb6a27c 8688int __netdev_update_features(struct net_device *dev)
5455c699 8689{
fd867d51 8690 struct net_device *upper, *lower;
c8f44aff 8691 netdev_features_t features;
fd867d51 8692 struct list_head *iter;
e7868a85 8693 int err = -1;
5455c699 8694
87267485
MM
8695 ASSERT_RTNL();
8696
5455c699
MM
8697 features = netdev_get_wanted_features(dev);
8698
8699 if (dev->netdev_ops->ndo_fix_features)
8700 features = dev->netdev_ops->ndo_fix_features(dev, features);
8701
8702 /* driver might be less strict about feature dependencies */
8703 features = netdev_fix_features(dev, features);
8704
fd867d51
JW
8705 /* some features can't be enabled if they're off an an upper device */
8706 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8707 features = netdev_sync_upper_features(dev, upper, features);
8708
5455c699 8709 if (dev->features == features)
e7868a85 8710 goto sync_lower;
5455c699 8711
c8f44aff
MM
8712 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8713 &dev->features, &features);
5455c699
MM
8714
8715 if (dev->netdev_ops->ndo_set_features)
8716 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
8717 else
8718 err = 0;
5455c699 8719
6cb6a27c 8720 if (unlikely(err < 0)) {
5455c699 8721 netdev_err(dev,
c8f44aff
MM
8722 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8723 err, &features, &dev->features);
17b85d29
NA
8724 /* return non-0 since some features might have changed and
8725 * it's better to fire a spurious notification than miss it
8726 */
8727 return -1;
6cb6a27c
MM
8728 }
8729
e7868a85 8730sync_lower:
fd867d51
JW
8731 /* some features must be disabled on lower devices when disabled
8732 * on an upper device (think: bonding master or bridge)
8733 */
8734 netdev_for_each_lower_dev(dev, lower, iter)
8735 netdev_sync_lower_features(dev, lower, features);
8736
ae847f40
SD
8737 if (!err) {
8738 netdev_features_t diff = features ^ dev->features;
8739
8740 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8741 /* udp_tunnel_{get,drop}_rx_info both need
8742 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8743 * device, or they won't do anything.
8744 * Thus we need to update dev->features
8745 * *before* calling udp_tunnel_get_rx_info,
8746 * but *after* calling udp_tunnel_drop_rx_info.
8747 */
8748 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8749 dev->features = features;
8750 udp_tunnel_get_rx_info(dev);
8751 } else {
8752 udp_tunnel_drop_rx_info(dev);
8753 }
8754 }
8755
9daae9bd
GP
8756 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8757 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8758 dev->features = features;
8759 err |= vlan_get_rx_ctag_filter_info(dev);
8760 } else {
8761 vlan_drop_rx_ctag_filter_info(dev);
8762 }
8763 }
8764
8765 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8766 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8767 dev->features = features;
8768 err |= vlan_get_rx_stag_filter_info(dev);
8769 } else {
8770 vlan_drop_rx_stag_filter_info(dev);
8771 }
8772 }
8773
6cb6a27c 8774 dev->features = features;
ae847f40 8775 }
6cb6a27c 8776
e7868a85 8777 return err < 0 ? 0 : 1;
6cb6a27c
MM
8778}
8779
afe12cc8
MM
8780/**
8781 * netdev_update_features - recalculate device features
8782 * @dev: the device to check
8783 *
8784 * Recalculate dev->features set and send notifications if it
8785 * has changed. Should be called after driver or hardware dependent
8786 * conditions might have changed that influence the features.
8787 */
6cb6a27c
MM
8788void netdev_update_features(struct net_device *dev)
8789{
8790 if (__netdev_update_features(dev))
8791 netdev_features_change(dev);
5455c699
MM
8792}
8793EXPORT_SYMBOL(netdev_update_features);
8794
afe12cc8
MM
8795/**
8796 * netdev_change_features - recalculate device features
8797 * @dev: the device to check
8798 *
8799 * Recalculate dev->features set and send notifications even
8800 * if they have not changed. Should be called instead of
8801 * netdev_update_features() if also dev->vlan_features might
8802 * have changed to allow the changes to be propagated to stacked
8803 * VLAN devices.
8804 */
8805void netdev_change_features(struct net_device *dev)
8806{
8807 __netdev_update_features(dev);
8808 netdev_features_change(dev);
8809}
8810EXPORT_SYMBOL(netdev_change_features);
8811
fc4a7489
PM
8812/**
8813 * netif_stacked_transfer_operstate - transfer operstate
8814 * @rootdev: the root or lower level device to transfer state from
8815 * @dev: the device to transfer operstate to
8816 *
8817 * Transfer operational state from root to device. This is normally
8818 * called when a stacking relationship exists between the root
8819 * device and the device(a leaf device).
8820 */
8821void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8822 struct net_device *dev)
8823{
8824 if (rootdev->operstate == IF_OPER_DORMANT)
8825 netif_dormant_on(dev);
8826 else
8827 netif_dormant_off(dev);
8828
0575c86b
ZS
8829 if (netif_carrier_ok(rootdev))
8830 netif_carrier_on(dev);
8831 else
8832 netif_carrier_off(dev);
fc4a7489
PM
8833}
8834EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8835
1b4bf461
ED
8836static int netif_alloc_rx_queues(struct net_device *dev)
8837{
1b4bf461 8838 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 8839 struct netdev_rx_queue *rx;
10595902 8840 size_t sz = count * sizeof(*rx);
e817f856 8841 int err = 0;
1b4bf461 8842
bd25fa7b 8843 BUG_ON(count < 1);
1b4bf461 8844
dcda9b04 8845 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8846 if (!rx)
8847 return -ENOMEM;
8848
bd25fa7b
TH
8849 dev->_rx = rx;
8850
e817f856 8851 for (i = 0; i < count; i++) {
fe822240 8852 rx[i].dev = dev;
e817f856
JDB
8853
8854 /* XDP RX-queue setup */
8855 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8856 if (err < 0)
8857 goto err_rxq_info;
8858 }
1b4bf461 8859 return 0;
e817f856
JDB
8860
8861err_rxq_info:
8862 /* Rollback successful reg's and free other resources */
8863 while (i--)
8864 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 8865 kvfree(dev->_rx);
e817f856
JDB
8866 dev->_rx = NULL;
8867 return err;
8868}
8869
8870static void netif_free_rx_queues(struct net_device *dev)
8871{
8872 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
8873
8874 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8875 if (!dev->_rx)
8876 return;
8877
e817f856 8878 for (i = 0; i < count; i++)
82aaff2f
JK
8879 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8880
8881 kvfree(dev->_rx);
1b4bf461
ED
8882}
8883
aa942104
CG
8884static void netdev_init_one_queue(struct net_device *dev,
8885 struct netdev_queue *queue, void *_unused)
8886{
8887 /* Initialize queue lock */
8888 spin_lock_init(&queue->_xmit_lock);
ab92d68f 8889 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
aa942104 8890 queue->xmit_lock_owner = -1;
b236da69 8891 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 8892 queue->dev = dev;
114cf580
TH
8893#ifdef CONFIG_BQL
8894 dql_init(&queue->dql, HZ);
8895#endif
aa942104
CG
8896}
8897
60877a32
ED
8898static void netif_free_tx_queues(struct net_device *dev)
8899{
4cb28970 8900 kvfree(dev->_tx);
60877a32
ED
8901}
8902
e6484930
TH
8903static int netif_alloc_netdev_queues(struct net_device *dev)
8904{
8905 unsigned int count = dev->num_tx_queues;
8906 struct netdev_queue *tx;
60877a32 8907 size_t sz = count * sizeof(*tx);
e6484930 8908
d339727c
ED
8909 if (count < 1 || count > 0xffff)
8910 return -EINVAL;
62b5942a 8911
dcda9b04 8912 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8913 if (!tx)
8914 return -ENOMEM;
8915
e6484930 8916 dev->_tx = tx;
1d24eb48 8917
e6484930
TH
8918 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8919 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
8920
8921 return 0;
e6484930
TH
8922}
8923
a2029240
DV
8924void netif_tx_stop_all_queues(struct net_device *dev)
8925{
8926 unsigned int i;
8927
8928 for (i = 0; i < dev->num_tx_queues; i++) {
8929 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 8930
a2029240
DV
8931 netif_tx_stop_queue(txq);
8932 }
8933}
8934EXPORT_SYMBOL(netif_tx_stop_all_queues);
8935
ab92d68f
TY
8936static void netdev_register_lockdep_key(struct net_device *dev)
8937{
8938 lockdep_register_key(&dev->qdisc_tx_busylock_key);
8939 lockdep_register_key(&dev->qdisc_running_key);
8940 lockdep_register_key(&dev->qdisc_xmit_lock_key);
8941 lockdep_register_key(&dev->addr_list_lock_key);
8942}
8943
8944static void netdev_unregister_lockdep_key(struct net_device *dev)
8945{
8946 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
8947 lockdep_unregister_key(&dev->qdisc_running_key);
8948 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
8949 lockdep_unregister_key(&dev->addr_list_lock_key);
8950}
8951
8952void netdev_update_lockdep_key(struct net_device *dev)
8953{
8954 struct netdev_queue *queue;
8955 int i;
8956
8957 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
8958 lockdep_unregister_key(&dev->addr_list_lock_key);
8959
8960 lockdep_register_key(&dev->qdisc_xmit_lock_key);
8961 lockdep_register_key(&dev->addr_list_lock_key);
8962
8963 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
8964 for (i = 0; i < dev->num_tx_queues; i++) {
8965 queue = netdev_get_tx_queue(dev, i);
8966
8967 lockdep_set_class(&queue->_xmit_lock,
8968 &dev->qdisc_xmit_lock_key);
8969 }
8970}
8971EXPORT_SYMBOL(netdev_update_lockdep_key);
8972
1da177e4
LT
8973/**
8974 * register_netdevice - register a network device
8975 * @dev: device to register
8976 *
8977 * Take a completed network device structure and add it to the kernel
8978 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8979 * chain. 0 is returned on success. A negative errno code is returned
8980 * on a failure to set up the device, or if the name is a duplicate.
8981 *
8982 * Callers must hold the rtnl semaphore. You may want
8983 * register_netdev() instead of this.
8984 *
8985 * BUGS:
8986 * The locking appears insufficient to guarantee two parallel registers
8987 * will not get the same name.
8988 */
8989
8990int register_netdevice(struct net_device *dev)
8991{
1da177e4 8992 int ret;
d314774c 8993 struct net *net = dev_net(dev);
1da177e4 8994
e283de3a
FF
8995 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8996 NETDEV_FEATURE_COUNT);
1da177e4
LT
8997 BUG_ON(dev_boot_phase);
8998 ASSERT_RTNL();
8999
b17a7c17
SH
9000 might_sleep();
9001
1da177e4
LT
9002 /* When net_device's are persistent, this will be fatal. */
9003 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 9004 BUG_ON(!net);
1da177e4 9005
f1f28aa3 9006 spin_lock_init(&dev->addr_list_lock);
ab92d68f 9007 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
1da177e4 9008
828de4f6 9009 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
9010 if (ret < 0)
9011 goto out;
9012
1da177e4 9013 /* Init, if this function is available */
d314774c
SH
9014 if (dev->netdev_ops->ndo_init) {
9015 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
9016 if (ret) {
9017 if (ret > 0)
9018 ret = -EIO;
90833aa4 9019 goto out;
1da177e4
LT
9020 }
9021 }
4ec93edb 9022
f646968f
PM
9023 if (((dev->hw_features | dev->features) &
9024 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
9025 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9026 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9027 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9028 ret = -EINVAL;
9029 goto err_uninit;
9030 }
9031
9c7dafbf
PE
9032 ret = -EBUSY;
9033 if (!dev->ifindex)
9034 dev->ifindex = dev_new_index(net);
9035 else if (__dev_get_by_index(net, dev->ifindex))
9036 goto err_uninit;
9037
5455c699
MM
9038 /* Transfer changeable features to wanted_features and enable
9039 * software offloads (GSO and GRO).
9040 */
9041 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 9042 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
9043
9044 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9045 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9046 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9047 }
9048
14d1232f 9049 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 9050
cbc53e08 9051 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 9052 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 9053
7f348a60
AD
9054 /* If IPv4 TCP segmentation offload is supported we should also
9055 * allow the device to enable segmenting the frame with the option
9056 * of ignoring a static IP ID value. This doesn't enable the
9057 * feature itself but allows the user to enable it later.
9058 */
cbc53e08
AD
9059 if (dev->hw_features & NETIF_F_TSO)
9060 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
9061 if (dev->vlan_features & NETIF_F_TSO)
9062 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9063 if (dev->mpls_features & NETIF_F_TSO)
9064 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9065 if (dev->hw_enc_features & NETIF_F_TSO)
9066 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 9067
1180e7d6 9068 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 9069 */
1180e7d6 9070 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 9071
ee579677
PS
9072 /* Make NETIF_F_SG inheritable to tunnel devices.
9073 */
802ab55a 9074 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 9075
0d89d203
SH
9076 /* Make NETIF_F_SG inheritable to MPLS.
9077 */
9078 dev->mpls_features |= NETIF_F_SG;
9079
7ffbe3fd
JB
9080 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9081 ret = notifier_to_errno(ret);
9082 if (ret)
9083 goto err_uninit;
9084
8b41d188 9085 ret = netdev_register_kobject(dev);
b17a7c17 9086 if (ret)
7ce1b0ed 9087 goto err_uninit;
b17a7c17
SH
9088 dev->reg_state = NETREG_REGISTERED;
9089
6cb6a27c 9090 __netdev_update_features(dev);
8e9b59b2 9091
1da177e4
LT
9092 /*
9093 * Default initial state at registry is that the
9094 * device is present.
9095 */
9096
9097 set_bit(__LINK_STATE_PRESENT, &dev->state);
9098
8f4cccbb
BH
9099 linkwatch_init_dev(dev);
9100
1da177e4 9101 dev_init_scheduler(dev);
1da177e4 9102 dev_hold(dev);
ce286d32 9103 list_netdevice(dev);
7bf23575 9104 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 9105
948b337e
JP
9106 /* If the device has permanent device address, driver should
9107 * set dev_addr and also addr_assign_type should be set to
9108 * NET_ADDR_PERM (default value).
9109 */
9110 if (dev->addr_assign_type == NET_ADDR_PERM)
9111 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9112
1da177e4 9113 /* Notify protocols, that a new device appeared. */
056925ab 9114 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 9115 ret = notifier_to_errno(ret);
93ee31f1
DL
9116 if (ret) {
9117 rollback_registered(dev);
10cc514f
SAK
9118 rcu_barrier();
9119
93ee31f1
DL
9120 dev->reg_state = NETREG_UNREGISTERED;
9121 }
d90a909e
EB
9122 /*
9123 * Prevent userspace races by waiting until the network
9124 * device is fully setup before sending notifications.
9125 */
a2835763
PM
9126 if (!dev->rtnl_link_ops ||
9127 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 9128 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
9129
9130out:
9131 return ret;
7ce1b0ed
HX
9132
9133err_uninit:
d314774c
SH
9134 if (dev->netdev_ops->ndo_uninit)
9135 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
9136 if (dev->priv_destructor)
9137 dev->priv_destructor(dev);
7ce1b0ed 9138 goto out;
1da177e4 9139}
d1b19dff 9140EXPORT_SYMBOL(register_netdevice);
1da177e4 9141
937f1ba5
BH
9142/**
9143 * init_dummy_netdev - init a dummy network device for NAPI
9144 * @dev: device to init
9145 *
9146 * This takes a network device structure and initialize the minimum
9147 * amount of fields so it can be used to schedule NAPI polls without
9148 * registering a full blown interface. This is to be used by drivers
9149 * that need to tie several hardware interfaces to a single NAPI
9150 * poll scheduler due to HW limitations.
9151 */
9152int init_dummy_netdev(struct net_device *dev)
9153{
9154 /* Clear everything. Note we don't initialize spinlocks
9155 * are they aren't supposed to be taken by any of the
9156 * NAPI code and this dummy netdev is supposed to be
9157 * only ever used for NAPI polls
9158 */
9159 memset(dev, 0, sizeof(struct net_device));
9160
9161 /* make sure we BUG if trying to hit standard
9162 * register/unregister code path
9163 */
9164 dev->reg_state = NETREG_DUMMY;
9165
937f1ba5
BH
9166 /* NAPI wants this */
9167 INIT_LIST_HEAD(&dev->napi_list);
9168
9169 /* a dummy interface is started by default */
9170 set_bit(__LINK_STATE_PRESENT, &dev->state);
9171 set_bit(__LINK_STATE_START, &dev->state);
9172
35edfdc7
JE
9173 /* napi_busy_loop stats accounting wants this */
9174 dev_net_set(dev, &init_net);
9175
29b4433d
ED
9176 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9177 * because users of this 'device' dont need to change
9178 * its refcount.
9179 */
9180
937f1ba5
BH
9181 return 0;
9182}
9183EXPORT_SYMBOL_GPL(init_dummy_netdev);
9184
9185
1da177e4
LT
9186/**
9187 * register_netdev - register a network device
9188 * @dev: device to register
9189 *
9190 * Take a completed network device structure and add it to the kernel
9191 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9192 * chain. 0 is returned on success. A negative errno code is returned
9193 * on a failure to set up the device, or if the name is a duplicate.
9194 *
38b4da38 9195 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
9196 * and expands the device name if you passed a format string to
9197 * alloc_netdev.
9198 */
9199int register_netdev(struct net_device *dev)
9200{
9201 int err;
9202
b0f3debc
KT
9203 if (rtnl_lock_killable())
9204 return -EINTR;
1da177e4 9205 err = register_netdevice(dev);
1da177e4
LT
9206 rtnl_unlock();
9207 return err;
9208}
9209EXPORT_SYMBOL(register_netdev);
9210
29b4433d
ED
9211int netdev_refcnt_read(const struct net_device *dev)
9212{
9213 int i, refcnt = 0;
9214
9215 for_each_possible_cpu(i)
9216 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9217 return refcnt;
9218}
9219EXPORT_SYMBOL(netdev_refcnt_read);
9220
2c53040f 9221/**
1da177e4 9222 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 9223 * @dev: target net_device
1da177e4
LT
9224 *
9225 * This is called when unregistering network devices.
9226 *
9227 * Any protocol or device that holds a reference should register
9228 * for netdevice notification, and cleanup and put back the
9229 * reference if they receive an UNREGISTER event.
9230 * We can get stuck here if buggy protocols don't correctly
4ec93edb 9231 * call dev_put.
1da177e4
LT
9232 */
9233static void netdev_wait_allrefs(struct net_device *dev)
9234{
9235 unsigned long rebroadcast_time, warning_time;
29b4433d 9236 int refcnt;
1da177e4 9237
e014debe
ED
9238 linkwatch_forget_dev(dev);
9239
1da177e4 9240 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
9241 refcnt = netdev_refcnt_read(dev);
9242
9243 while (refcnt != 0) {
1da177e4 9244 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 9245 rtnl_lock();
1da177e4
LT
9246
9247 /* Rebroadcast unregister notification */
056925ab 9248 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 9249
748e2d93 9250 __rtnl_unlock();
0115e8e3 9251 rcu_barrier();
748e2d93
ED
9252 rtnl_lock();
9253
1da177e4
LT
9254 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9255 &dev->state)) {
9256 /* We must not have linkwatch events
9257 * pending on unregister. If this
9258 * happens, we simply run the queue
9259 * unscheduled, resulting in a noop
9260 * for this device.
9261 */
9262 linkwatch_run_queue();
9263 }
9264
6756ae4b 9265 __rtnl_unlock();
1da177e4
LT
9266
9267 rebroadcast_time = jiffies;
9268 }
9269
9270 msleep(250);
9271
29b4433d
ED
9272 refcnt = netdev_refcnt_read(dev);
9273
d7c04b05 9274 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
9275 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9276 dev->name, refcnt);
1da177e4
LT
9277 warning_time = jiffies;
9278 }
9279 }
9280}
9281
9282/* The sequence is:
9283 *
9284 * rtnl_lock();
9285 * ...
9286 * register_netdevice(x1);
9287 * register_netdevice(x2);
9288 * ...
9289 * unregister_netdevice(y1);
9290 * unregister_netdevice(y2);
9291 * ...
9292 * rtnl_unlock();
9293 * free_netdev(y1);
9294 * free_netdev(y2);
9295 *
58ec3b4d 9296 * We are invoked by rtnl_unlock().
1da177e4 9297 * This allows us to deal with problems:
b17a7c17 9298 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
9299 * without deadlocking with linkwatch via keventd.
9300 * 2) Since we run with the RTNL semaphore not held, we can sleep
9301 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
9302 *
9303 * We must not return until all unregister events added during
9304 * the interval the lock was held have been completed.
1da177e4 9305 */
1da177e4
LT
9306void netdev_run_todo(void)
9307{
626ab0e6 9308 struct list_head list;
1da177e4 9309
1da177e4 9310 /* Snapshot list, allow later requests */
626ab0e6 9311 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
9312
9313 __rtnl_unlock();
626ab0e6 9314
0115e8e3
ED
9315
9316 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
9317 if (!list_empty(&list))
9318 rcu_barrier();
9319
1da177e4
LT
9320 while (!list_empty(&list)) {
9321 struct net_device *dev
e5e26d75 9322 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
9323 list_del(&dev->todo_list);
9324
b17a7c17 9325 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 9326 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
9327 dev->name, dev->reg_state);
9328 dump_stack();
9329 continue;
9330 }
1da177e4 9331
b17a7c17 9332 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 9333
b17a7c17 9334 netdev_wait_allrefs(dev);
1da177e4 9335
b17a7c17 9336 /* paranoia */
29b4433d 9337 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
9338 BUG_ON(!list_empty(&dev->ptype_all));
9339 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
9340 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9341 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 9342#if IS_ENABLED(CONFIG_DECNET)
547b792c 9343 WARN_ON(dev->dn_ptr);
330c7272 9344#endif
cf124db5
DM
9345 if (dev->priv_destructor)
9346 dev->priv_destructor(dev);
9347 if (dev->needs_free_netdev)
9348 free_netdev(dev);
9093bbb2 9349
50624c93
EB
9350 /* Report a network device has been unregistered */
9351 rtnl_lock();
9352 dev_net(dev)->dev_unreg_count--;
9353 __rtnl_unlock();
9354 wake_up(&netdev_unregistering_wq);
9355
9093bbb2
SH
9356 /* Free network device */
9357 kobject_put(&dev->dev.kobj);
1da177e4 9358 }
1da177e4
LT
9359}
9360
9256645a
JW
9361/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9362 * all the same fields in the same order as net_device_stats, with only
9363 * the type differing, but rtnl_link_stats64 may have additional fields
9364 * at the end for newer counters.
3cfde79c 9365 */
77a1abf5
ED
9366void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9367 const struct net_device_stats *netdev_stats)
3cfde79c
BH
9368{
9369#if BITS_PER_LONG == 64
9256645a 9370 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 9371 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
9372 /* zero out counters that only exist in rtnl_link_stats64 */
9373 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9374 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 9375#else
9256645a 9376 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
9377 const unsigned long *src = (const unsigned long *)netdev_stats;
9378 u64 *dst = (u64 *)stats64;
9379
9256645a 9380 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
9381 for (i = 0; i < n; i++)
9382 dst[i] = src[i];
9256645a
JW
9383 /* zero out counters that only exist in rtnl_link_stats64 */
9384 memset((char *)stats64 + n * sizeof(u64), 0,
9385 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
9386#endif
9387}
77a1abf5 9388EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 9389
eeda3fd6
SH
9390/**
9391 * dev_get_stats - get network device statistics
9392 * @dev: device to get statistics from
28172739 9393 * @storage: place to store stats
eeda3fd6 9394 *
d7753516
BH
9395 * Get network statistics from device. Return @storage.
9396 * The device driver may provide its own method by setting
9397 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9398 * otherwise the internal statistics structure is used.
eeda3fd6 9399 */
d7753516
BH
9400struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9401 struct rtnl_link_stats64 *storage)
7004bf25 9402{
eeda3fd6
SH
9403 const struct net_device_ops *ops = dev->netdev_ops;
9404
28172739
ED
9405 if (ops->ndo_get_stats64) {
9406 memset(storage, 0, sizeof(*storage));
caf586e5
ED
9407 ops->ndo_get_stats64(dev, storage);
9408 } else if (ops->ndo_get_stats) {
3cfde79c 9409 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
9410 } else {
9411 netdev_stats_to_stats64(storage, &dev->stats);
28172739 9412 }
6f64ec74
ED
9413 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9414 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9415 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 9416 return storage;
c45d286e 9417}
eeda3fd6 9418EXPORT_SYMBOL(dev_get_stats);
c45d286e 9419
24824a09 9420struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 9421{
24824a09 9422 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 9423
24824a09
ED
9424#ifdef CONFIG_NET_CLS_ACT
9425 if (queue)
9426 return queue;
9427 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9428 if (!queue)
9429 return NULL;
9430 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 9431 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
9432 queue->qdisc_sleeping = &noop_qdisc;
9433 rcu_assign_pointer(dev->ingress_queue, queue);
9434#endif
9435 return queue;
bb949fbd
DM
9436}
9437
2c60db03
ED
9438static const struct ethtool_ops default_ethtool_ops;
9439
d07d7507
SG
9440void netdev_set_default_ethtool_ops(struct net_device *dev,
9441 const struct ethtool_ops *ops)
9442{
9443 if (dev->ethtool_ops == &default_ethtool_ops)
9444 dev->ethtool_ops = ops;
9445}
9446EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9447
74d332c1
ED
9448void netdev_freemem(struct net_device *dev)
9449{
9450 char *addr = (char *)dev - dev->padded;
9451
4cb28970 9452 kvfree(addr);
74d332c1
ED
9453}
9454
1da177e4 9455/**
722c9a0c 9456 * alloc_netdev_mqs - allocate network device
9457 * @sizeof_priv: size of private data to allocate space for
9458 * @name: device name format string
9459 * @name_assign_type: origin of device name
9460 * @setup: callback to initialize device
9461 * @txqs: the number of TX subqueues to allocate
9462 * @rxqs: the number of RX subqueues to allocate
9463 *
9464 * Allocates a struct net_device with private data area for driver use
9465 * and performs basic initialization. Also allocates subqueue structs
9466 * for each queue on the device.
1da177e4 9467 */
36909ea4 9468struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 9469 unsigned char name_assign_type,
36909ea4
TH
9470 void (*setup)(struct net_device *),
9471 unsigned int txqs, unsigned int rxqs)
1da177e4 9472{
1da177e4 9473 struct net_device *dev;
52a59bd5 9474 unsigned int alloc_size;
1ce8e7b5 9475 struct net_device *p;
1da177e4 9476
b6fe17d6
SH
9477 BUG_ON(strlen(name) >= sizeof(dev->name));
9478
36909ea4 9479 if (txqs < 1) {
7b6cd1ce 9480 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
9481 return NULL;
9482 }
9483
36909ea4 9484 if (rxqs < 1) {
7b6cd1ce 9485 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
9486 return NULL;
9487 }
36909ea4 9488
fd2ea0a7 9489 alloc_size = sizeof(struct net_device);
d1643d24
AD
9490 if (sizeof_priv) {
9491 /* ensure 32-byte alignment of private area */
1ce8e7b5 9492 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
9493 alloc_size += sizeof_priv;
9494 }
9495 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 9496 alloc_size += NETDEV_ALIGN - 1;
1da177e4 9497
dcda9b04 9498 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 9499 if (!p)
1da177e4 9500 return NULL;
1da177e4 9501
1ce8e7b5 9502 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 9503 dev->padded = (char *)dev - (char *)p;
ab9c73cc 9504
29b4433d
ED
9505 dev->pcpu_refcnt = alloc_percpu(int);
9506 if (!dev->pcpu_refcnt)
74d332c1 9507 goto free_dev;
ab9c73cc 9508
ab9c73cc 9509 if (dev_addr_init(dev))
29b4433d 9510 goto free_pcpu;
ab9c73cc 9511
22bedad3 9512 dev_mc_init(dev);
a748ee24 9513 dev_uc_init(dev);
ccffad25 9514
c346dca1 9515 dev_net_set(dev, &init_net);
1da177e4 9516
ab92d68f
TY
9517 netdev_register_lockdep_key(dev);
9518
8d3bdbd5 9519 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 9520 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
9521 dev->upper_level = 1;
9522 dev->lower_level = 1;
8d3bdbd5 9523
8d3bdbd5
DM
9524 INIT_LIST_HEAD(&dev->napi_list);
9525 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 9526 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 9527 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
9528 INIT_LIST_HEAD(&dev->adj_list.upper);
9529 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
9530 INIT_LIST_HEAD(&dev->ptype_all);
9531 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
9532#ifdef CONFIG_NET_SCHED
9533 hash_init(dev->qdisc_hash);
9534#endif
02875878 9535 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
9536 setup(dev);
9537
a813104d 9538 if (!dev->tx_queue_len) {
f84bb1ea 9539 dev->priv_flags |= IFF_NO_QUEUE;
11597084 9540 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 9541 }
906470c1 9542
36909ea4
TH
9543 dev->num_tx_queues = txqs;
9544 dev->real_num_tx_queues = txqs;
ed9af2e8 9545 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 9546 goto free_all;
e8a0464c 9547
36909ea4
TH
9548 dev->num_rx_queues = rxqs;
9549 dev->real_num_rx_queues = rxqs;
fe822240 9550 if (netif_alloc_rx_queues(dev))
8d3bdbd5 9551 goto free_all;
0a9627f2 9552
1da177e4 9553 strcpy(dev->name, name);
c835a677 9554 dev->name_assign_type = name_assign_type;
cbda10fa 9555 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
9556 if (!dev->ethtool_ops)
9557 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
9558
9559 nf_hook_ingress_init(dev);
9560
1da177e4 9561 return dev;
ab9c73cc 9562
8d3bdbd5
DM
9563free_all:
9564 free_netdev(dev);
9565 return NULL;
9566
29b4433d
ED
9567free_pcpu:
9568 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
9569free_dev:
9570 netdev_freemem(dev);
ab9c73cc 9571 return NULL;
1da177e4 9572}
36909ea4 9573EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
9574
9575/**
722c9a0c 9576 * free_netdev - free network device
9577 * @dev: device
1da177e4 9578 *
722c9a0c 9579 * This function does the last stage of destroying an allocated device
9580 * interface. The reference to the device object is released. If this
9581 * is the last reference then it will be freed.Must be called in process
9582 * context.
1da177e4
LT
9583 */
9584void free_netdev(struct net_device *dev)
9585{
d565b0a1
HX
9586 struct napi_struct *p, *n;
9587
93d05d4a 9588 might_sleep();
60877a32 9589 netif_free_tx_queues(dev);
e817f856 9590 netif_free_rx_queues(dev);
e8a0464c 9591
33d480ce 9592 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 9593
f001fde5
JP
9594 /* Flush device addresses */
9595 dev_addr_flush(dev);
9596
d565b0a1
HX
9597 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9598 netif_napi_del(p);
9599
29b4433d
ED
9600 free_percpu(dev->pcpu_refcnt);
9601 dev->pcpu_refcnt = NULL;
9602
ab92d68f
TY
9603 netdev_unregister_lockdep_key(dev);
9604
3041a069 9605 /* Compatibility with error handling in drivers */
1da177e4 9606 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 9607 netdev_freemem(dev);
1da177e4
LT
9608 return;
9609 }
9610
9611 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9612 dev->reg_state = NETREG_RELEASED;
9613
43cb76d9
GKH
9614 /* will free via device release */
9615 put_device(&dev->dev);
1da177e4 9616}
d1b19dff 9617EXPORT_SYMBOL(free_netdev);
4ec93edb 9618
f0db275a
SH
9619/**
9620 * synchronize_net - Synchronize with packet receive processing
9621 *
9622 * Wait for packets currently being received to be done.
9623 * Does not block later packets from starting.
9624 */
4ec93edb 9625void synchronize_net(void)
1da177e4
LT
9626{
9627 might_sleep();
be3fc413
ED
9628 if (rtnl_is_locked())
9629 synchronize_rcu_expedited();
9630 else
9631 synchronize_rcu();
1da177e4 9632}
d1b19dff 9633EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
9634
9635/**
44a0873d 9636 * unregister_netdevice_queue - remove device from the kernel
1da177e4 9637 * @dev: device
44a0873d 9638 * @head: list
6ebfbc06 9639 *
1da177e4 9640 * This function shuts down a device interface and removes it
d59b54b1 9641 * from the kernel tables.
44a0873d 9642 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
9643 *
9644 * Callers must hold the rtnl semaphore. You may want
9645 * unregister_netdev() instead of this.
9646 */
9647
44a0873d 9648void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 9649{
a6620712
HX
9650 ASSERT_RTNL();
9651
44a0873d 9652 if (head) {
9fdce099 9653 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
9654 } else {
9655 rollback_registered(dev);
9656 /* Finish processing unregister after unlock */
9657 net_set_todo(dev);
9658 }
1da177e4 9659}
44a0873d 9660EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 9661
9b5e383c
ED
9662/**
9663 * unregister_netdevice_many - unregister many devices
9664 * @head: list of devices
87757a91
ED
9665 *
9666 * Note: As most callers use a stack allocated list_head,
9667 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
9668 */
9669void unregister_netdevice_many(struct list_head *head)
9670{
9671 struct net_device *dev;
9672
9673 if (!list_empty(head)) {
9674 rollback_registered_many(head);
9675 list_for_each_entry(dev, head, unreg_list)
9676 net_set_todo(dev);
87757a91 9677 list_del(head);
9b5e383c
ED
9678 }
9679}
63c8099d 9680EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 9681
1da177e4
LT
9682/**
9683 * unregister_netdev - remove device from the kernel
9684 * @dev: device
9685 *
9686 * This function shuts down a device interface and removes it
d59b54b1 9687 * from the kernel tables.
1da177e4
LT
9688 *
9689 * This is just a wrapper for unregister_netdevice that takes
9690 * the rtnl semaphore. In general you want to use this and not
9691 * unregister_netdevice.
9692 */
9693void unregister_netdev(struct net_device *dev)
9694{
9695 rtnl_lock();
9696 unregister_netdevice(dev);
9697 rtnl_unlock();
9698}
1da177e4
LT
9699EXPORT_SYMBOL(unregister_netdev);
9700
ce286d32
EB
9701/**
9702 * dev_change_net_namespace - move device to different nethost namespace
9703 * @dev: device
9704 * @net: network namespace
9705 * @pat: If not NULL name pattern to try if the current device name
9706 * is already taken in the destination network namespace.
9707 *
9708 * This function shuts down a device interface and moves it
9709 * to a new network namespace. On success 0 is returned, on
9710 * a failure a netagive errno code is returned.
9711 *
9712 * Callers must hold the rtnl semaphore.
9713 */
9714
9715int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9716{
38e01b30 9717 int err, new_nsid, new_ifindex;
ce286d32
EB
9718
9719 ASSERT_RTNL();
9720
9721 /* Don't allow namespace local devices to be moved. */
9722 err = -EINVAL;
9723 if (dev->features & NETIF_F_NETNS_LOCAL)
9724 goto out;
9725
9726 /* Ensure the device has been registrered */
ce286d32
EB
9727 if (dev->reg_state != NETREG_REGISTERED)
9728 goto out;
9729
9730 /* Get out if there is nothing todo */
9731 err = 0;
878628fb 9732 if (net_eq(dev_net(dev), net))
ce286d32
EB
9733 goto out;
9734
9735 /* Pick the destination device name, and ensure
9736 * we can use it in the destination network namespace.
9737 */
9738 err = -EEXIST;
d9031024 9739 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
9740 /* We get here if we can't use the current device name */
9741 if (!pat)
9742 goto out;
7892bd08
LR
9743 err = dev_get_valid_name(net, dev, pat);
9744 if (err < 0)
ce286d32
EB
9745 goto out;
9746 }
9747
9748 /*
9749 * And now a mini version of register_netdevice unregister_netdevice.
9750 */
9751
9752 /* If device is running close it first. */
9b772652 9753 dev_close(dev);
ce286d32
EB
9754
9755 /* And unlink it from device chain */
ce286d32
EB
9756 unlist_netdevice(dev);
9757
9758 synchronize_net();
9759
9760 /* Shutdown queueing discipline. */
9761 dev_shutdown(dev);
9762
9763 /* Notify protocols, that we are about to destroy
eb13da1a 9764 * this device. They should clean all the things.
9765 *
9766 * Note that dev->reg_state stays at NETREG_REGISTERED.
9767 * This is wanted because this way 8021q and macvlan know
9768 * the device is just moving and can keep their slaves up.
9769 */
ce286d32 9770 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 9771 rcu_barrier();
38e01b30 9772
d4e4fdf9 9773 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30
ND
9774 /* If there is an ifindex conflict assign a new one */
9775 if (__dev_get_by_index(net, dev->ifindex))
9776 new_ifindex = dev_new_index(net);
9777 else
9778 new_ifindex = dev->ifindex;
9779
9780 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9781 new_ifindex);
ce286d32
EB
9782
9783 /*
9784 * Flush the unicast and multicast chains
9785 */
a748ee24 9786 dev_uc_flush(dev);
22bedad3 9787 dev_mc_flush(dev);
ce286d32 9788
4e66ae2e
SH
9789 /* Send a netdev-removed uevent to the old namespace */
9790 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 9791 netdev_adjacent_del_links(dev);
4e66ae2e 9792
ce286d32 9793 /* Actually switch the network namespace */
c346dca1 9794 dev_net_set(dev, net);
38e01b30 9795 dev->ifindex = new_ifindex;
ce286d32 9796
4e66ae2e
SH
9797 /* Send a netdev-add uevent to the new namespace */
9798 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 9799 netdev_adjacent_add_links(dev);
4e66ae2e 9800
8b41d188 9801 /* Fixup kobjects */
a1b3f594 9802 err = device_rename(&dev->dev, dev->name);
8b41d188 9803 WARN_ON(err);
ce286d32
EB
9804
9805 /* Add the device back in the hashes */
9806 list_netdevice(dev);
9807
9808 /* Notify protocols, that a new device appeared. */
9809 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9810
d90a909e
EB
9811 /*
9812 * Prevent userspace races by waiting until the network
9813 * device is fully setup before sending notifications.
9814 */
7f294054 9815 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 9816
ce286d32
EB
9817 synchronize_net();
9818 err = 0;
9819out:
9820 return err;
9821}
463d0183 9822EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 9823
f0bf90de 9824static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
9825{
9826 struct sk_buff **list_skb;
1da177e4 9827 struct sk_buff *skb;
f0bf90de 9828 unsigned int cpu;
97d8b6e3 9829 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 9830
1da177e4
LT
9831 local_irq_disable();
9832 cpu = smp_processor_id();
9833 sd = &per_cpu(softnet_data, cpu);
9834 oldsd = &per_cpu(softnet_data, oldcpu);
9835
9836 /* Find end of our completion_queue. */
9837 list_skb = &sd->completion_queue;
9838 while (*list_skb)
9839 list_skb = &(*list_skb)->next;
9840 /* Append completion queue from offline CPU. */
9841 *list_skb = oldsd->completion_queue;
9842 oldsd->completion_queue = NULL;
9843
1da177e4 9844 /* Append output queue from offline CPU. */
a9cbd588
CG
9845 if (oldsd->output_queue) {
9846 *sd->output_queue_tailp = oldsd->output_queue;
9847 sd->output_queue_tailp = oldsd->output_queue_tailp;
9848 oldsd->output_queue = NULL;
9849 oldsd->output_queue_tailp = &oldsd->output_queue;
9850 }
ac64da0b
ED
9851 /* Append NAPI poll list from offline CPU, with one exception :
9852 * process_backlog() must be called by cpu owning percpu backlog.
9853 * We properly handle process_queue & input_pkt_queue later.
9854 */
9855 while (!list_empty(&oldsd->poll_list)) {
9856 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9857 struct napi_struct,
9858 poll_list);
9859
9860 list_del_init(&napi->poll_list);
9861 if (napi->poll == process_backlog)
9862 napi->state = 0;
9863 else
9864 ____napi_schedule(sd, napi);
264524d5 9865 }
1da177e4
LT
9866
9867 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9868 local_irq_enable();
9869
773fc8f6 9870#ifdef CONFIG_RPS
9871 remsd = oldsd->rps_ipi_list;
9872 oldsd->rps_ipi_list = NULL;
9873#endif
9874 /* send out pending IPI's on offline CPU */
9875 net_rps_send_ipi(remsd);
9876
1da177e4 9877 /* Process offline CPU's input_pkt_queue */
76cc8b13 9878 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 9879 netif_rx_ni(skb);
76cc8b13 9880 input_queue_head_incr(oldsd);
fec5e652 9881 }
ac64da0b 9882 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 9883 netif_rx_ni(skb);
76cc8b13
TH
9884 input_queue_head_incr(oldsd);
9885 }
1da177e4 9886
f0bf90de 9887 return 0;
1da177e4 9888}
1da177e4 9889
7f353bf2 9890/**
b63365a2
HX
9891 * netdev_increment_features - increment feature set by one
9892 * @all: current feature set
9893 * @one: new feature set
9894 * @mask: mask feature set
7f353bf2
HX
9895 *
9896 * Computes a new feature set after adding a device with feature set
b63365a2
HX
9897 * @one to the master device with current feature set @all. Will not
9898 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 9899 */
c8f44aff
MM
9900netdev_features_t netdev_increment_features(netdev_features_t all,
9901 netdev_features_t one, netdev_features_t mask)
b63365a2 9902{
c8cd0989 9903 if (mask & NETIF_F_HW_CSUM)
a188222b 9904 mask |= NETIF_F_CSUM_MASK;
1742f183 9905 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 9906
a188222b 9907 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 9908 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 9909
1742f183 9910 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
9911 if (all & NETIF_F_HW_CSUM)
9912 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
9913
9914 return all;
9915}
b63365a2 9916EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 9917
430f03cd 9918static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
9919{
9920 int i;
9921 struct hlist_head *hash;
9922
6da2ec56 9923 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
9924 if (hash != NULL)
9925 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9926 INIT_HLIST_HEAD(&hash[i]);
9927
9928 return hash;
9929}
9930
881d966b 9931/* Initialize per network namespace state */
4665079c 9932static int __net_init netdev_init(struct net *net)
881d966b 9933{
d9f37d01 9934 BUILD_BUG_ON(GRO_HASH_BUCKETS >
ccdb5171 9935 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
d9f37d01 9936
734b6541
RM
9937 if (net != &init_net)
9938 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 9939
30d97d35
PE
9940 net->dev_name_head = netdev_create_hash();
9941 if (net->dev_name_head == NULL)
9942 goto err_name;
881d966b 9943
30d97d35
PE
9944 net->dev_index_head = netdev_create_hash();
9945 if (net->dev_index_head == NULL)
9946 goto err_idx;
881d966b
EB
9947
9948 return 0;
30d97d35
PE
9949
9950err_idx:
9951 kfree(net->dev_name_head);
9952err_name:
9953 return -ENOMEM;
881d966b
EB
9954}
9955
f0db275a
SH
9956/**
9957 * netdev_drivername - network driver for the device
9958 * @dev: network device
f0db275a
SH
9959 *
9960 * Determine network driver for device.
9961 */
3019de12 9962const char *netdev_drivername(const struct net_device *dev)
6579e57b 9963{
cf04a4c7
SH
9964 const struct device_driver *driver;
9965 const struct device *parent;
3019de12 9966 const char *empty = "";
6579e57b
AV
9967
9968 parent = dev->dev.parent;
6579e57b 9969 if (!parent)
3019de12 9970 return empty;
6579e57b
AV
9971
9972 driver = parent->driver;
9973 if (driver && driver->name)
3019de12
DM
9974 return driver->name;
9975 return empty;
6579e57b
AV
9976}
9977
6ea754eb
JP
9978static void __netdev_printk(const char *level, const struct net_device *dev,
9979 struct va_format *vaf)
256df2f3 9980{
b004ff49 9981 if (dev && dev->dev.parent) {
6ea754eb
JP
9982 dev_printk_emit(level[1] - '0',
9983 dev->dev.parent,
9984 "%s %s %s%s: %pV",
9985 dev_driver_string(dev->dev.parent),
9986 dev_name(dev->dev.parent),
9987 netdev_name(dev), netdev_reg_state(dev),
9988 vaf);
b004ff49 9989 } else if (dev) {
6ea754eb
JP
9990 printk("%s%s%s: %pV",
9991 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 9992 } else {
6ea754eb 9993 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 9994 }
256df2f3
JP
9995}
9996
6ea754eb
JP
9997void netdev_printk(const char *level, const struct net_device *dev,
9998 const char *format, ...)
256df2f3
JP
9999{
10000 struct va_format vaf;
10001 va_list args;
256df2f3
JP
10002
10003 va_start(args, format);
10004
10005 vaf.fmt = format;
10006 vaf.va = &args;
10007
6ea754eb 10008 __netdev_printk(level, dev, &vaf);
b004ff49 10009
256df2f3 10010 va_end(args);
256df2f3
JP
10011}
10012EXPORT_SYMBOL(netdev_printk);
10013
10014#define define_netdev_printk_level(func, level) \
6ea754eb 10015void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 10016{ \
256df2f3
JP
10017 struct va_format vaf; \
10018 va_list args; \
10019 \
10020 va_start(args, fmt); \
10021 \
10022 vaf.fmt = fmt; \
10023 vaf.va = &args; \
10024 \
6ea754eb 10025 __netdev_printk(level, dev, &vaf); \
b004ff49 10026 \
256df2f3 10027 va_end(args); \
256df2f3
JP
10028} \
10029EXPORT_SYMBOL(func);
10030
10031define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10032define_netdev_printk_level(netdev_alert, KERN_ALERT);
10033define_netdev_printk_level(netdev_crit, KERN_CRIT);
10034define_netdev_printk_level(netdev_err, KERN_ERR);
10035define_netdev_printk_level(netdev_warn, KERN_WARNING);
10036define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10037define_netdev_printk_level(netdev_info, KERN_INFO);
10038
4665079c 10039static void __net_exit netdev_exit(struct net *net)
881d966b
EB
10040{
10041 kfree(net->dev_name_head);
10042 kfree(net->dev_index_head);
ee21b18b
VA
10043 if (net != &init_net)
10044 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
10045}
10046
022cbae6 10047static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
10048 .init = netdev_init,
10049 .exit = netdev_exit,
10050};
10051
4665079c 10052static void __net_exit default_device_exit(struct net *net)
ce286d32 10053{
e008b5fc 10054 struct net_device *dev, *aux;
ce286d32 10055 /*
e008b5fc 10056 * Push all migratable network devices back to the
ce286d32
EB
10057 * initial network namespace
10058 */
10059 rtnl_lock();
e008b5fc 10060 for_each_netdev_safe(net, dev, aux) {
ce286d32 10061 int err;
aca51397 10062 char fb_name[IFNAMSIZ];
ce286d32
EB
10063
10064 /* Ignore unmoveable devices (i.e. loopback) */
10065 if (dev->features & NETIF_F_NETNS_LOCAL)
10066 continue;
10067
e008b5fc
EB
10068 /* Leave virtual devices for the generic cleanup */
10069 if (dev->rtnl_link_ops)
10070 continue;
d0c082ce 10071
25985edc 10072 /* Push remaining network devices to init_net */
aca51397 10073 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
10074 if (__dev_get_by_name(&init_net, fb_name))
10075 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 10076 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 10077 if (err) {
7b6cd1ce
JP
10078 pr_emerg("%s: failed to move %s to init_net: %d\n",
10079 __func__, dev->name, err);
aca51397 10080 BUG();
ce286d32
EB
10081 }
10082 }
10083 rtnl_unlock();
10084}
10085
50624c93
EB
10086static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10087{
10088 /* Return with the rtnl_lock held when there are no network
10089 * devices unregistering in any network namespace in net_list.
10090 */
10091 struct net *net;
10092 bool unregistering;
ff960a73 10093 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 10094
ff960a73 10095 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 10096 for (;;) {
50624c93
EB
10097 unregistering = false;
10098 rtnl_lock();
10099 list_for_each_entry(net, net_list, exit_list) {
10100 if (net->dev_unreg_count > 0) {
10101 unregistering = true;
10102 break;
10103 }
10104 }
10105 if (!unregistering)
10106 break;
10107 __rtnl_unlock();
ff960a73
PZ
10108
10109 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 10110 }
ff960a73 10111 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
10112}
10113
04dc7f6b
EB
10114static void __net_exit default_device_exit_batch(struct list_head *net_list)
10115{
10116 /* At exit all network devices most be removed from a network
b595076a 10117 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
10118 * Do this across as many network namespaces as possible to
10119 * improve batching efficiency.
10120 */
10121 struct net_device *dev;
10122 struct net *net;
10123 LIST_HEAD(dev_kill_list);
10124
50624c93
EB
10125 /* To prevent network device cleanup code from dereferencing
10126 * loopback devices or network devices that have been freed
10127 * wait here for all pending unregistrations to complete,
10128 * before unregistring the loopback device and allowing the
10129 * network namespace be freed.
10130 *
10131 * The netdev todo list containing all network devices
10132 * unregistrations that happen in default_device_exit_batch
10133 * will run in the rtnl_unlock() at the end of
10134 * default_device_exit_batch.
10135 */
10136 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
10137 list_for_each_entry(net, net_list, exit_list) {
10138 for_each_netdev_reverse(net, dev) {
b0ab2fab 10139 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
10140 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10141 else
10142 unregister_netdevice_queue(dev, &dev_kill_list);
10143 }
10144 }
10145 unregister_netdevice_many(&dev_kill_list);
10146 rtnl_unlock();
10147}
10148
022cbae6 10149static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 10150 .exit = default_device_exit,
04dc7f6b 10151 .exit_batch = default_device_exit_batch,
ce286d32
EB
10152};
10153
1da177e4
LT
10154/*
10155 * Initialize the DEV module. At boot time this walks the device list and
10156 * unhooks any devices that fail to initialise (normally hardware not
10157 * present) and leaves us with a valid list of present and active devices.
10158 *
10159 */
10160
10161/*
10162 * This is called single threaded during boot, so no need
10163 * to take the rtnl semaphore.
10164 */
10165static int __init net_dev_init(void)
10166{
10167 int i, rc = -ENOMEM;
10168
10169 BUG_ON(!dev_boot_phase);
10170
1da177e4
LT
10171 if (dev_proc_init())
10172 goto out;
10173
8b41d188 10174 if (netdev_kobject_init())
1da177e4
LT
10175 goto out;
10176
10177 INIT_LIST_HEAD(&ptype_all);
82d8a867 10178 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
10179 INIT_LIST_HEAD(&ptype_base[i]);
10180
62532da9
VY
10181 INIT_LIST_HEAD(&offload_base);
10182
881d966b
EB
10183 if (register_pernet_subsys(&netdev_net_ops))
10184 goto out;
1da177e4
LT
10185
10186 /*
10187 * Initialise the packet receive queues.
10188 */
10189
6f912042 10190 for_each_possible_cpu(i) {
41852497 10191 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 10192 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 10193
41852497
ED
10194 INIT_WORK(flush, flush_backlog);
10195
e36fa2f7 10196 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 10197 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
10198#ifdef CONFIG_XFRM_OFFLOAD
10199 skb_queue_head_init(&sd->xfrm_backlog);
10200#endif
e36fa2f7 10201 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 10202 sd->output_queue_tailp = &sd->output_queue;
df334545 10203#ifdef CONFIG_RPS
e36fa2f7
ED
10204 sd->csd.func = rps_trigger_softirq;
10205 sd->csd.info = sd;
e36fa2f7 10206 sd->cpu = i;
1e94d72f 10207#endif
0a9627f2 10208
7c4ec749 10209 init_gro_hash(&sd->backlog);
e36fa2f7
ED
10210 sd->backlog.poll = process_backlog;
10211 sd->backlog.weight = weight_p;
1da177e4
LT
10212 }
10213
1da177e4
LT
10214 dev_boot_phase = 0;
10215
505d4f73
EB
10216 /* The loopback device is special if any other network devices
10217 * is present in a network namespace the loopback device must
10218 * be present. Since we now dynamically allocate and free the
10219 * loopback device ensure this invariant is maintained by
10220 * keeping the loopback device as the first device on the
10221 * list of network devices. Ensuring the loopback devices
10222 * is the first device that appears and the last network device
10223 * that disappears.
10224 */
10225 if (register_pernet_device(&loopback_net_ops))
10226 goto out;
10227
10228 if (register_pernet_device(&default_device_ops))
10229 goto out;
10230
962cf36c
CM
10231 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10232 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 10233
f0bf90de
SAS
10234 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10235 NULL, dev_cpu_dead);
10236 WARN_ON(rc < 0);
1da177e4
LT
10237 rc = 0;
10238out:
10239 return rc;
10240}
10241
10242subsys_initcall(net_dev_init);