]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/core/dev.c
ravb: RX checksum offload
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4
LT
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
a7862b45 98#include <linux/bpf.h>
b5cdae32 99#include <linux/bpf_trace.h>
457c4cbc 100#include <net/net_namespace.h>
1da177e4 101#include <net/sock.h>
02d62e86 102#include <net/busy_poll.h>
1da177e4 103#include <linux/rtnetlink.h>
1da177e4 104#include <linux/stat.h>
1da177e4 105#include <net/dst.h>
fc4099f1 106#include <net/dst_metadata.h>
1da177e4 107#include <net/pkt_sched.h>
87d83093 108#include <net/pkt_cls.h>
1da177e4 109#include <net/checksum.h>
44540960 110#include <net/xfrm.h>
1da177e4
LT
111#include <linux/highmem.h>
112#include <linux/init.h>
1da177e4 113#include <linux/module.h>
1da177e4
LT
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
25cd9ba0 127#include <net/mpls.h>
8f0f2223
DM
128#include <linux/ipv6.h>
129#include <linux/in.h>
b6b2fed1
DM
130#include <linux/jhash.h>
131#include <linux/random.h>
9cbc1cb8 132#include <trace/events/napi.h>
cf66ba58 133#include <trace/events/net.h>
07dc22e7 134#include <trace/events/skb.h>
5acbbd42 135#include <linux/pci.h>
caeda9b9 136#include <linux/inetdevice.h>
c445477d 137#include <linux/cpu_rmap.h>
c5905afb 138#include <linux/static_key.h>
af12fa6e 139#include <linux/hashtable.h>
60877a32 140#include <linux/vmalloc.h>
529d0489 141#include <linux/if_macvlan.h>
e7fd2885 142#include <linux/errqueue.h>
3b47d303 143#include <linux/hrtimer.h>
e687ad60 144#include <linux/netfilter_ingress.h>
40e4e713 145#include <linux/crash_dump.h>
b72b5bf6 146#include <linux/sctp.h>
ae847f40 147#include <net/udp_tunnel.h>
1da177e4 148
342709ef
PE
149#include "net-sysfs.h"
150
d565b0a1
HX
151/* Instead of increasing this, you should create a hash table. */
152#define MAX_GRO_SKBS 8
153
5d38a079
HX
154/* This should be increased if a protocol with a bigger head is added. */
155#define GRO_MAX_HEAD (MAX_HEADER + 128)
156
1da177e4 157static DEFINE_SPINLOCK(ptype_lock);
62532da9 158static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
62532da9 161static struct list_head offload_base __read_mostly;
1da177e4 162
ae78dbfa 163static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
164static int call_netdevice_notifiers_info(unsigned long val,
165 struct net_device *dev,
166 struct netdev_notifier_info *info);
90b602f8 167static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 168
1da177e4 169/*
7562f876 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
171 * semaphore.
172 *
c6d14c84 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
7562f876 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
1da177e4 188DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
189EXPORT_SYMBOL(dev_base_lock);
190
6c557001
FW
191static DEFINE_MUTEX(ifalias_mutex);
192
af12fa6e
ET
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
52bd2d62 196static unsigned int napi_gen_id = NR_CPUS;
6180d9de 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 198
18afa4b0 199static seqcount_t devnet_rename_seq;
c91f6df2 200
4e985ada
TG
201static inline void dev_base_seq_inc(struct net *net)
202{
643aa9cb 203 while (++net->dev_base_seq == 0)
204 ;
4e985ada
TG
205}
206
881d966b 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 208{
8387ff25 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 210
08e9897d 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
212}
213
881d966b 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 215{
7c28bd0b 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
217}
218
e36fa2f7 219static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
220{
221#ifdef CONFIG_RPS
e36fa2f7 222 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
223#endif
224}
225
e36fa2f7 226static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
227{
228#ifdef CONFIG_RPS
e36fa2f7 229 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
230#endif
231}
232
ce286d32 233/* Device list insertion */
53759be9 234static void list_netdevice(struct net_device *dev)
ce286d32 235{
c346dca1 236 struct net *net = dev_net(dev);
ce286d32
EB
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
c6d14c84 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
ce286d32 245 write_unlock_bh(&dev_base_lock);
4e985ada
TG
246
247 dev_base_seq_inc(net);
ce286d32
EB
248}
249
fb699dfd
ED
250/* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
ce286d32
EB
253static void unlist_netdevice(struct net_device *dev)
254{
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
c6d14c84 259 list_del_rcu(&dev->dev_list);
72c9528b 260 hlist_del_rcu(&dev->name_hlist);
fb699dfd 261 hlist_del_rcu(&dev->index_hlist);
ce286d32 262 write_unlock_bh(&dev_base_lock);
4e985ada
TG
263
264 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
265}
266
1da177e4
LT
267/*
268 * Our notifier list
269 */
270
f07d5b94 271static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
272
273/*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
bea3348e 277
9958da05 278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 279EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 280
cf508b12 281#ifdef CONFIG_LOCKDEP
723e98b7 282/*
c773e847 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
284 * according to dev->type
285 */
643aa9cb 286static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 302
643aa9cb 303static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
319
320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
322
323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324{
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332}
333
cf508b12
DM
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
723e98b7
JP
336{
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342}
cf508b12
DM
343
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352}
723e98b7 353#else
cf508b12
DM
354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356{
357}
358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
359{
360}
361#endif
1da177e4
LT
362
363/*******************************************************************************
eb13da1a 364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
1da177e4 368
1da177e4 369
1da177e4
LT
370/*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
c07b68e8
ED
386static inline struct list_head *ptype_head(const struct packet_type *pt)
387{
388 if (pt->type == htons(ETH_P_ALL))
7866a621 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 390 else
7866a621
SN
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
393}
394
1da177e4
LT
395/**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
4ec93edb 403 * This call does not sleep therefore it can not
1da177e4
LT
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408void dev_add_pack(struct packet_type *pt)
409{
c07b68e8 410 struct list_head *head = ptype_head(pt);
1da177e4 411
c07b68e8
ED
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
1da177e4 415}
d1b19dff 416EXPORT_SYMBOL(dev_add_pack);
1da177e4 417
1da177e4
LT
418/**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
4ec93edb 425 * returns.
1da177e4
LT
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431void __dev_remove_pack(struct packet_type *pt)
432{
c07b68e8 433 struct list_head *head = ptype_head(pt);
1da177e4
LT
434 struct packet_type *pt1;
435
c07b68e8 436 spin_lock(&ptype_lock);
1da177e4
LT
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
7b6cd1ce 445 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 446out:
c07b68e8 447 spin_unlock(&ptype_lock);
1da177e4 448}
d1b19dff
ED
449EXPORT_SYMBOL(__dev_remove_pack);
450
1da177e4
LT
451/**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463void dev_remove_pack(struct packet_type *pt)
464{
465 __dev_remove_pack(pt);
4ec93edb 466
1da177e4
LT
467 synchronize_net();
468}
d1b19dff 469EXPORT_SYMBOL(dev_remove_pack);
1da177e4 470
62532da9
VY
471
472/**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484void dev_add_offload(struct packet_offload *po)
485{
bdef7de4 486 struct packet_offload *elem;
62532da9
VY
487
488 spin_lock(&offload_lock);
bdef7de4
DM
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
494 spin_unlock(&offload_lock);
495}
496EXPORT_SYMBOL(dev_add_offload);
497
498/**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
1d143d9f 511static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
512{
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
c53aa505 516 spin_lock(&offload_lock);
62532da9
VY
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526out:
c53aa505 527 spin_unlock(&offload_lock);
62532da9 528}
62532da9
VY
529
530/**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542void dev_remove_offload(struct packet_offload *po)
543{
544 __dev_remove_offload(po);
545
546 synchronize_net();
547}
548EXPORT_SYMBOL(dev_remove_offload);
549
1da177e4 550/******************************************************************************
eb13da1a 551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
1da177e4
LT
555
556/* Boot time configuration table */
557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559/**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568static int netdev_boot_setup_add(char *name, struct ifmap *map)
569{
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 577 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584}
585
586/**
722c9a0c 587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
1da177e4 589 *
722c9a0c 590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
594 */
595int netdev_boot_setup_check(struct net_device *dev)
596{
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 602 !strcmp(dev->name, s[i].name)) {
722c9a0c 603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
607 return 1;
608 }
609 }
610 return 0;
611}
d1b19dff 612EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
613
614
615/**
722c9a0c 616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
1da177e4
LT
624 */
625unsigned long netdev_boot_base(const char *prefix, int unit)
626{
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
881d966b 637 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644}
645
646/*
647 * Saves at boot time configured settings for any netdevice.
648 */
649int __init netdev_boot_setup(char *str)
650{
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671}
672
673__setup("netdev=", netdev_boot_setup);
674
675/*******************************************************************************
eb13da1a 676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
1da177e4 680
a54acb3a
ND
681/**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689int dev_get_iflink(const struct net_device *dev)
690{
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
7a66bbc9 694 return dev->ifindex;
a54acb3a
ND
695}
696EXPORT_SYMBOL(dev_get_iflink);
697
fc4099f1
PS
698/**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708{
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721}
722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
1da177e4
LT
724/**
725 * __dev_get_by_name - find a device by its name
c4ea43c5 726 * @net: the applicable net namespace
1da177e4
LT
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
881d966b 736struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 737{
0bd8d536
ED
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 740
b67bfe0d 741 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
0bd8d536 744
1da177e4
LT
745 return NULL;
746}
d1b19dff 747EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 748
72c9528b 749/**
722c9a0c 750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
759 */
760
761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762{
72c9528b
ED
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
b67bfe0d 766 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_get_by_name_rcu);
773
1da177e4
LT
774/**
775 * dev_get_by_name - find a device by its name
c4ea43c5 776 * @net: the applicable net namespace
1da177e4
LT
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
881d966b 786struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
787{
788 struct net_device *dev;
789
72c9528b
ED
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
792 if (dev)
793 dev_hold(dev);
72c9528b 794 rcu_read_unlock();
1da177e4
LT
795 return dev;
796}
d1b19dff 797EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
798
799/**
800 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 801 * @net: the applicable net namespace
1da177e4
LT
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
881d966b 811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 812{
0bd8d536
ED
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 815
b67bfe0d 816 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
817 if (dev->ifindex == ifindex)
818 return dev;
0bd8d536 819
1da177e4
LT
820 return NULL;
821}
d1b19dff 822EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 823
fb699dfd
ED
824/**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836{
fb699dfd
ED
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
b67bfe0d 840 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845}
846EXPORT_SYMBOL(dev_get_by_index_rcu);
847
1da177e4
LT
848
849/**
850 * dev_get_by_index - find a device by its ifindex
c4ea43c5 851 * @net: the applicable net namespace
1da177e4
LT
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
881d966b 860struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
861{
862 struct net_device *dev;
863
fb699dfd
ED
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
866 if (dev)
867 dev_hold(dev);
fb699dfd 868 rcu_read_unlock();
1da177e4
LT
869 return dev;
870}
d1b19dff 871EXPORT_SYMBOL(dev_get_by_index);
1da177e4 872
90b602f8
ML
873/**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884{
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895}
896EXPORT_SYMBOL(dev_get_by_napi_id);
897
5dbe7c17
NS
898/**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908int netdev_get_name(struct net *net, char *name, int ifindex)
909{
910 struct net_device *dev;
911 unsigned int seq;
912
913retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930}
931
1da177e4 932/**
941666c2 933 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 934 * @net: the applicable net namespace
1da177e4
LT
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941666c2 941 * The returned device has not had its ref count increased
1da177e4
LT
942 * and the caller must therefore be careful about locking
943 *
1da177e4
LT
944 */
945
941666c2
ED
946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
1da177e4
LT
948{
949 struct net_device *dev;
950
941666c2 951 for_each_netdev_rcu(net, dev)
1da177e4
LT
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
954 return dev;
955
956 return NULL;
1da177e4 957}
941666c2 958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 959
881d966b 960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
961{
962 struct net_device *dev;
963
4e9cac2b 964 ASSERT_RTNL();
881d966b 965 for_each_netdev(net, dev)
4e9cac2b 966 if (dev->type == type)
7562f876
PE
967 return dev;
968
969 return NULL;
4e9cac2b 970}
4e9cac2b
PM
971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
881d966b 973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 974{
99fe3c39 975 struct net_device *dev, *ret = NULL;
4e9cac2b 976
99fe3c39
ED
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
1da177e4 986}
1da177e4
LT
987EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989/**
6c555490 990 * __dev_get_by_flags - find any device with given flags
c4ea43c5 991 * @net: the applicable net namespace
1da177e4
LT
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 996 * is not found or a pointer to the device. Must be called inside
6c555490 997 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
998 */
999
6c555490
WC
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1da177e4 1002{
7562f876 1003 struct net_device *dev, *ret;
1da177e4 1004
6c555490
WC
1005 ASSERT_RTNL();
1006
7562f876 1007 ret = NULL;
6c555490 1008 for_each_netdev(net, dev) {
1da177e4 1009 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1010 ret = dev;
1da177e4
LT
1011 break;
1012 }
1013 }
7562f876 1014 return ret;
1da177e4 1015}
6c555490 1016EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1017
1018/**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
c7fa9d18
DM
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1da177e4 1025 */
95f050bf 1026bool dev_valid_name(const char *name)
1da177e4 1027{
c7fa9d18 1028 if (*name == '\0')
95f050bf 1029 return false;
b6fe17d6 1030 if (strlen(name) >= IFNAMSIZ)
95f050bf 1031 return false;
c7fa9d18 1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1033 return false;
c7fa9d18
DM
1034
1035 while (*name) {
a4176a93 1036 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1037 return false;
c7fa9d18
DM
1038 name++;
1039 }
95f050bf 1040 return true;
1da177e4 1041}
d1b19dff 1042EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1043
1044/**
b267b179
EB
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1da177e4 1047 * @name: name format string
b267b179 1048 * @buf: scratch buffer and result name string
1da177e4
LT
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1057 */
1058
b267b179 1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1060{
1061 int i = 0;
1da177e4
LT
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1064 unsigned long *inuse;
1da177e4
LT
1065 struct net_device *d;
1066
1067 p = strnchr(name, IFNAMSIZ-1, '%');
1068 if (p) {
1069 /*
1070 * Verify the string as this thing may have come from
1071 * the user. There must be either one "%d" and no other "%"
1072 * characters.
1073 */
1074 if (p[1] != 'd' || strchr(p + 2, '%'))
1075 return -EINVAL;
1076
1077 /* Use one page as a bit array of possible slots */
cfcabdcc 1078 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1079 if (!inuse)
1080 return -ENOMEM;
1081
881d966b 1082 for_each_netdev(net, d) {
1da177e4
LT
1083 if (!sscanf(d->name, name, &i))
1084 continue;
1085 if (i < 0 || i >= max_netdevices)
1086 continue;
1087
1088 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1089 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1090 if (!strncmp(buf, d->name, IFNAMSIZ))
1091 set_bit(i, inuse);
1092 }
1093
1094 i = find_first_zero_bit(inuse, max_netdevices);
1095 free_page((unsigned long) inuse);
1096 }
1097
d9031024
OP
1098 if (buf != name)
1099 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1100 if (!__dev_get_by_name(net, buf))
1da177e4 1101 return i;
1da177e4
LT
1102
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1106 */
1107 return -ENFILE;
1108}
1109
b267b179
EB
1110/**
1111 * dev_alloc_name - allocate a name for a device
1112 * @dev: device
1113 * @name: name format string
1114 *
1115 * Passed a format string - eg "lt%d" it will try and find a suitable
1116 * id. It scans list of devices to build up a free map, then chooses
1117 * the first empty slot. The caller must hold the dev_base or rtnl lock
1118 * while allocating the name and adding the device in order to avoid
1119 * duplicates.
1120 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1121 * Returns the number of the unit assigned or a negative errno code.
1122 */
1123
1124int dev_alloc_name(struct net_device *dev, const char *name)
1125{
1126 char buf[IFNAMSIZ];
1127 struct net *net;
1128 int ret;
1129
c346dca1
YH
1130 BUG_ON(!dev_net(dev));
1131 net = dev_net(dev);
b267b179
EB
1132 ret = __dev_alloc_name(net, name, buf);
1133 if (ret >= 0)
1134 strlcpy(dev->name, buf, IFNAMSIZ);
1135 return ret;
1136}
d1b19dff 1137EXPORT_SYMBOL(dev_alloc_name);
b267b179 1138
828de4f6
G
1139static int dev_alloc_name_ns(struct net *net,
1140 struct net_device *dev,
1141 const char *name)
d9031024 1142{
828de4f6
G
1143 char buf[IFNAMSIZ];
1144 int ret;
8ce6cebc 1145
828de4f6
G
1146 ret = __dev_alloc_name(net, name, buf);
1147 if (ret >= 0)
1148 strlcpy(dev->name, buf, IFNAMSIZ);
1149 return ret;
1150}
1151
1152static int dev_get_valid_name(struct net *net,
1153 struct net_device *dev,
1154 const char *name)
1155{
1156 BUG_ON(!net);
8ce6cebc 1157
d9031024
OP
1158 if (!dev_valid_name(name))
1159 return -EINVAL;
1160
1c5cae81 1161 if (strchr(name, '%'))
828de4f6 1162 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1163 else if (__dev_get_by_name(net, name))
1164 return -EEXIST;
8ce6cebc
DL
1165 else if (dev->name != name)
1166 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1167
1168 return 0;
1169}
1da177e4
LT
1170
1171/**
1172 * dev_change_name - change name of a device
1173 * @dev: device
1174 * @newname: name (or format string) must be at least IFNAMSIZ
1175 *
1176 * Change name of a device, can pass format strings "eth%d".
1177 * for wildcarding.
1178 */
cf04a4c7 1179int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1180{
238fa362 1181 unsigned char old_assign_type;
fcc5a03a 1182 char oldname[IFNAMSIZ];
1da177e4 1183 int err = 0;
fcc5a03a 1184 int ret;
881d966b 1185 struct net *net;
1da177e4
LT
1186
1187 ASSERT_RTNL();
c346dca1 1188 BUG_ON(!dev_net(dev));
1da177e4 1189
c346dca1 1190 net = dev_net(dev);
1da177e4
LT
1191 if (dev->flags & IFF_UP)
1192 return -EBUSY;
1193
30e6c9fa 1194 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1195
1196 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1197 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1198 return 0;
c91f6df2 1199 }
c8d90dca 1200
fcc5a03a
HX
1201 memcpy(oldname, dev->name, IFNAMSIZ);
1202
828de4f6 1203 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1204 if (err < 0) {
30e6c9fa 1205 write_seqcount_end(&devnet_rename_seq);
d9031024 1206 return err;
c91f6df2 1207 }
1da177e4 1208
6fe82a39
VF
1209 if (oldname[0] && !strchr(oldname, '%'))
1210 netdev_info(dev, "renamed from %s\n", oldname);
1211
238fa362
TG
1212 old_assign_type = dev->name_assign_type;
1213 dev->name_assign_type = NET_NAME_RENAMED;
1214
fcc5a03a 1215rollback:
a1b3f594
EB
1216 ret = device_rename(&dev->dev, dev->name);
1217 if (ret) {
1218 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1219 dev->name_assign_type = old_assign_type;
30e6c9fa 1220 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1221 return ret;
dcc99773 1222 }
7f988eab 1223
30e6c9fa 1224 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1225
5bb025fa
VF
1226 netdev_adjacent_rename_links(dev, oldname);
1227
7f988eab 1228 write_lock_bh(&dev_base_lock);
372b2312 1229 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1230 write_unlock_bh(&dev_base_lock);
1231
1232 synchronize_rcu();
1233
1234 write_lock_bh(&dev_base_lock);
1235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1236 write_unlock_bh(&dev_base_lock);
1237
056925ab 1238 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1239 ret = notifier_to_errno(ret);
1240
1241 if (ret) {
91e9c07b
ED
1242 /* err >= 0 after dev_alloc_name() or stores the first errno */
1243 if (err >= 0) {
fcc5a03a 1244 err = ret;
30e6c9fa 1245 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1246 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1247 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1248 dev->name_assign_type = old_assign_type;
1249 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1250 goto rollback;
91e9c07b 1251 } else {
7b6cd1ce 1252 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1253 dev->name, ret);
fcc5a03a
HX
1254 }
1255 }
1da177e4
LT
1256
1257 return err;
1258}
1259
0b815a1a
SH
1260/**
1261 * dev_set_alias - change ifalias of a device
1262 * @dev: device
1263 * @alias: name up to IFALIASZ
f0db275a 1264 * @len: limit of bytes to copy from info
0b815a1a
SH
1265 *
1266 * Set ifalias for a device,
1267 */
1268int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1269{
6c557001 1270 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1271
1272 if (len >= IFALIASZ)
1273 return -EINVAL;
1274
6c557001
FW
1275 if (len) {
1276 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1277 if (!new_alias)
1278 return -ENOMEM;
1279
1280 memcpy(new_alias->ifalias, alias, len);
1281 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1282 }
1283
6c557001
FW
1284 mutex_lock(&ifalias_mutex);
1285 rcu_swap_protected(dev->ifalias, new_alias,
1286 mutex_is_locked(&ifalias_mutex));
1287 mutex_unlock(&ifalias_mutex);
1288
1289 if (new_alias)
1290 kfree_rcu(new_alias, rcuhead);
0b815a1a 1291
0b815a1a
SH
1292 return len;
1293}
1294
6c557001
FW
1295/**
1296 * dev_get_alias - get ifalias of a device
1297 * @dev: device
1298 * @alias: buffer to store name of ifalias
1299 * @len: size of buffer
1300 *
1301 * get ifalias for a device. Caller must make sure dev cannot go
1302 * away, e.g. rcu read lock or own a reference count to device.
1303 */
1304int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1305{
1306 const struct dev_ifalias *alias;
1307 int ret = 0;
1308
1309 rcu_read_lock();
1310 alias = rcu_dereference(dev->ifalias);
1311 if (alias)
1312 ret = snprintf(name, len, "%s", alias->ifalias);
1313 rcu_read_unlock();
1314
1315 return ret;
1316}
0b815a1a 1317
d8a33ac4 1318/**
3041a069 1319 * netdev_features_change - device changes features
d8a33ac4
SH
1320 * @dev: device to cause notification
1321 *
1322 * Called to indicate a device has changed features.
1323 */
1324void netdev_features_change(struct net_device *dev)
1325{
056925ab 1326 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1327}
1328EXPORT_SYMBOL(netdev_features_change);
1329
1da177e4
LT
1330/**
1331 * netdev_state_change - device changes state
1332 * @dev: device to cause notification
1333 *
1334 * Called to indicate a device has changed state. This function calls
1335 * the notifier chains for netdev_chain and sends a NEWLINK message
1336 * to the routing socket.
1337 */
1338void netdev_state_change(struct net_device *dev)
1339{
1340 if (dev->flags & IFF_UP) {
54951194
LP
1341 struct netdev_notifier_change_info change_info;
1342
1343 change_info.flags_changed = 0;
1344 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1345 &change_info.info);
7f294054 1346 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1347 }
1348}
d1b19dff 1349EXPORT_SYMBOL(netdev_state_change);
1da177e4 1350
ee89bab1 1351/**
722c9a0c 1352 * netdev_notify_peers - notify network peers about existence of @dev
1353 * @dev: network device
ee89bab1
AW
1354 *
1355 * Generate traffic such that interested network peers are aware of
1356 * @dev, such as by generating a gratuitous ARP. This may be used when
1357 * a device wants to inform the rest of the network about some sort of
1358 * reconfiguration such as a failover event or virtual machine
1359 * migration.
1360 */
1361void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1362{
ee89bab1
AW
1363 rtnl_lock();
1364 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1365 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1366 rtnl_unlock();
c1da4ac7 1367}
ee89bab1 1368EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1369
bd380811 1370static int __dev_open(struct net_device *dev)
1da177e4 1371{
d314774c 1372 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1373 int ret;
1da177e4 1374
e46b66bc
BH
1375 ASSERT_RTNL();
1376
1da177e4
LT
1377 if (!netif_device_present(dev))
1378 return -ENODEV;
1379
ca99ca14
NH
1380 /* Block netpoll from trying to do any rx path servicing.
1381 * If we don't do this there is a chance ndo_poll_controller
1382 * or ndo_poll may be running while we open the device
1383 */
66b5552f 1384 netpoll_poll_disable(dev);
ca99ca14 1385
3b8bcfd5
JB
1386 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1387 ret = notifier_to_errno(ret);
1388 if (ret)
1389 return ret;
1390
1da177e4 1391 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1392
d314774c
SH
1393 if (ops->ndo_validate_addr)
1394 ret = ops->ndo_validate_addr(dev);
bada339b 1395
d314774c
SH
1396 if (!ret && ops->ndo_open)
1397 ret = ops->ndo_open(dev);
1da177e4 1398
66b5552f 1399 netpoll_poll_enable(dev);
ca99ca14 1400
bada339b
JG
1401 if (ret)
1402 clear_bit(__LINK_STATE_START, &dev->state);
1403 else {
1da177e4 1404 dev->flags |= IFF_UP;
4417da66 1405 dev_set_rx_mode(dev);
1da177e4 1406 dev_activate(dev);
7bf23575 1407 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1408 }
bada339b 1409
1da177e4
LT
1410 return ret;
1411}
1412
1413/**
bd380811
PM
1414 * dev_open - prepare an interface for use.
1415 * @dev: device to open
1da177e4 1416 *
bd380811
PM
1417 * Takes a device from down to up state. The device's private open
1418 * function is invoked and then the multicast lists are loaded. Finally
1419 * the device is moved into the up state and a %NETDEV_UP message is
1420 * sent to the netdev notifier chain.
1421 *
1422 * Calling this function on an active interface is a nop. On a failure
1423 * a negative errno code is returned.
1da177e4 1424 */
bd380811
PM
1425int dev_open(struct net_device *dev)
1426{
1427 int ret;
1428
bd380811
PM
1429 if (dev->flags & IFF_UP)
1430 return 0;
1431
bd380811
PM
1432 ret = __dev_open(dev);
1433 if (ret < 0)
1434 return ret;
1435
7f294054 1436 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1437 call_netdevice_notifiers(NETDEV_UP, dev);
1438
1439 return ret;
1440}
1441EXPORT_SYMBOL(dev_open);
1442
7051b88a 1443static void __dev_close_many(struct list_head *head)
1da177e4 1444{
44345724 1445 struct net_device *dev;
e46b66bc 1446
bd380811 1447 ASSERT_RTNL();
9d5010db
DM
1448 might_sleep();
1449
5cde2829 1450 list_for_each_entry(dev, head, close_list) {
3f4df206 1451 /* Temporarily disable netpoll until the interface is down */
66b5552f 1452 netpoll_poll_disable(dev);
3f4df206 1453
44345724 1454 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1455
44345724 1456 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1457
44345724
OP
1458 /* Synchronize to scheduled poll. We cannot touch poll list, it
1459 * can be even on different cpu. So just clear netif_running().
1460 *
1461 * dev->stop() will invoke napi_disable() on all of it's
1462 * napi_struct instances on this device.
1463 */
4e857c58 1464 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1465 }
1da177e4 1466
44345724 1467 dev_deactivate_many(head);
d8b2a4d2 1468
5cde2829 1469 list_for_each_entry(dev, head, close_list) {
44345724 1470 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1471
44345724
OP
1472 /*
1473 * Call the device specific close. This cannot fail.
1474 * Only if device is UP
1475 *
1476 * We allow it to be called even after a DETACH hot-plug
1477 * event.
1478 */
1479 if (ops->ndo_stop)
1480 ops->ndo_stop(dev);
1481
44345724 1482 dev->flags &= ~IFF_UP;
66b5552f 1483 netpoll_poll_enable(dev);
44345724 1484 }
44345724
OP
1485}
1486
7051b88a 1487static void __dev_close(struct net_device *dev)
44345724
OP
1488{
1489 LIST_HEAD(single);
1490
5cde2829 1491 list_add(&dev->close_list, &single);
7051b88a 1492 __dev_close_many(&single);
f87e6f47 1493 list_del(&single);
44345724
OP
1494}
1495
7051b88a 1496void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1497{
1498 struct net_device *dev, *tmp;
1da177e4 1499
5cde2829
EB
1500 /* Remove the devices that don't need to be closed */
1501 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1502 if (!(dev->flags & IFF_UP))
5cde2829 1503 list_del_init(&dev->close_list);
44345724
OP
1504
1505 __dev_close_many(head);
1da177e4 1506
5cde2829 1507 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1508 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1509 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1510 if (unlink)
1511 list_del_init(&dev->close_list);
44345724 1512 }
bd380811 1513}
99c4a26a 1514EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1515
1516/**
1517 * dev_close - shutdown an interface.
1518 * @dev: device to shutdown
1519 *
1520 * This function moves an active device into down state. A
1521 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1522 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1523 * chain.
1524 */
7051b88a 1525void dev_close(struct net_device *dev)
bd380811 1526{
e14a5993
ED
1527 if (dev->flags & IFF_UP) {
1528 LIST_HEAD(single);
1da177e4 1529
5cde2829 1530 list_add(&dev->close_list, &single);
99c4a26a 1531 dev_close_many(&single, true);
e14a5993
ED
1532 list_del(&single);
1533 }
1da177e4 1534}
d1b19dff 1535EXPORT_SYMBOL(dev_close);
1da177e4
LT
1536
1537
0187bdfb
BH
1538/**
1539 * dev_disable_lro - disable Large Receive Offload on a device
1540 * @dev: device
1541 *
1542 * Disable Large Receive Offload (LRO) on a net device. Must be
1543 * called under RTNL. This is needed if received packets may be
1544 * forwarded to another interface.
1545 */
1546void dev_disable_lro(struct net_device *dev)
1547{
fbe168ba
MK
1548 struct net_device *lower_dev;
1549 struct list_head *iter;
529d0489 1550
bc5787c6
MM
1551 dev->wanted_features &= ~NETIF_F_LRO;
1552 netdev_update_features(dev);
27660515 1553
22d5969f
MM
1554 if (unlikely(dev->features & NETIF_F_LRO))
1555 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1556
1557 netdev_for_each_lower_dev(dev, lower_dev, iter)
1558 dev_disable_lro(lower_dev);
0187bdfb
BH
1559}
1560EXPORT_SYMBOL(dev_disable_lro);
1561
351638e7
JP
1562static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1563 struct net_device *dev)
1564{
1565 struct netdev_notifier_info info;
1566
1567 netdev_notifier_info_init(&info, dev);
1568 return nb->notifier_call(nb, val, &info);
1569}
0187bdfb 1570
881d966b
EB
1571static int dev_boot_phase = 1;
1572
1da177e4 1573/**
722c9a0c 1574 * register_netdevice_notifier - register a network notifier block
1575 * @nb: notifier
1da177e4 1576 *
722c9a0c 1577 * Register a notifier to be called when network device events occur.
1578 * The notifier passed is linked into the kernel structures and must
1579 * not be reused until it has been unregistered. A negative errno code
1580 * is returned on a failure.
1da177e4 1581 *
722c9a0c 1582 * When registered all registration and up events are replayed
1583 * to the new notifier to allow device to have a race free
1584 * view of the network device list.
1da177e4
LT
1585 */
1586
1587int register_netdevice_notifier(struct notifier_block *nb)
1588{
1589 struct net_device *dev;
fcc5a03a 1590 struct net_device *last;
881d966b 1591 struct net *net;
1da177e4
LT
1592 int err;
1593
1594 rtnl_lock();
f07d5b94 1595 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1596 if (err)
1597 goto unlock;
881d966b
EB
1598 if (dev_boot_phase)
1599 goto unlock;
1600 for_each_net(net) {
1601 for_each_netdev(net, dev) {
351638e7 1602 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1603 err = notifier_to_errno(err);
1604 if (err)
1605 goto rollback;
1606
1607 if (!(dev->flags & IFF_UP))
1608 continue;
1da177e4 1609
351638e7 1610 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1611 }
1da177e4 1612 }
fcc5a03a
HX
1613
1614unlock:
1da177e4
LT
1615 rtnl_unlock();
1616 return err;
fcc5a03a
HX
1617
1618rollback:
1619 last = dev;
881d966b
EB
1620 for_each_net(net) {
1621 for_each_netdev(net, dev) {
1622 if (dev == last)
8f891489 1623 goto outroll;
fcc5a03a 1624
881d966b 1625 if (dev->flags & IFF_UP) {
351638e7
JP
1626 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1627 dev);
1628 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1629 }
351638e7 1630 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1631 }
fcc5a03a 1632 }
c67625a1 1633
8f891489 1634outroll:
c67625a1 1635 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1636 goto unlock;
1da177e4 1637}
d1b19dff 1638EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1639
1640/**
722c9a0c 1641 * unregister_netdevice_notifier - unregister a network notifier block
1642 * @nb: notifier
1da177e4 1643 *
722c9a0c 1644 * Unregister a notifier previously registered by
1645 * register_netdevice_notifier(). The notifier is unlinked into the
1646 * kernel structures and may then be reused. A negative errno code
1647 * is returned on a failure.
7d3d43da 1648 *
722c9a0c 1649 * After unregistering unregister and down device events are synthesized
1650 * for all devices on the device list to the removed notifier to remove
1651 * the need for special case cleanup code.
1da177e4
LT
1652 */
1653
1654int unregister_netdevice_notifier(struct notifier_block *nb)
1655{
7d3d43da
EB
1656 struct net_device *dev;
1657 struct net *net;
9f514950
HX
1658 int err;
1659
1660 rtnl_lock();
f07d5b94 1661 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1662 if (err)
1663 goto unlock;
1664
1665 for_each_net(net) {
1666 for_each_netdev(net, dev) {
1667 if (dev->flags & IFF_UP) {
351638e7
JP
1668 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669 dev);
1670 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1671 }
351638e7 1672 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1673 }
1674 }
1675unlock:
9f514950
HX
1676 rtnl_unlock();
1677 return err;
1da177e4 1678}
d1b19dff 1679EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1680
351638e7
JP
1681/**
1682 * call_netdevice_notifiers_info - call all network notifier blocks
1683 * @val: value passed unmodified to notifier function
1684 * @dev: net_device pointer passed unmodified to notifier function
1685 * @info: notifier information data
1686 *
1687 * Call all network notifier blocks. Parameters and return value
1688 * are as for raw_notifier_call_chain().
1689 */
1690
1d143d9f 1691static int call_netdevice_notifiers_info(unsigned long val,
1692 struct net_device *dev,
1693 struct netdev_notifier_info *info)
351638e7
JP
1694{
1695 ASSERT_RTNL();
1696 netdev_notifier_info_init(info, dev);
1697 return raw_notifier_call_chain(&netdev_chain, val, info);
1698}
351638e7 1699
1da177e4
LT
1700/**
1701 * call_netdevice_notifiers - call all network notifier blocks
1702 * @val: value passed unmodified to notifier function
c4ea43c5 1703 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1704 *
1705 * Call all network notifier blocks. Parameters and return value
f07d5b94 1706 * are as for raw_notifier_call_chain().
1da177e4
LT
1707 */
1708
ad7379d4 1709int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1710{
351638e7
JP
1711 struct netdev_notifier_info info;
1712
1713 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1714}
edf947f1 1715EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1716
1cf51900 1717#ifdef CONFIG_NET_INGRESS
4577139b
DB
1718static struct static_key ingress_needed __read_mostly;
1719
1720void net_inc_ingress_queue(void)
1721{
1722 static_key_slow_inc(&ingress_needed);
1723}
1724EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1725
1726void net_dec_ingress_queue(void)
1727{
1728 static_key_slow_dec(&ingress_needed);
1729}
1730EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1731#endif
1732
1f211a1b
DB
1733#ifdef CONFIG_NET_EGRESS
1734static struct static_key egress_needed __read_mostly;
1735
1736void net_inc_egress_queue(void)
1737{
1738 static_key_slow_inc(&egress_needed);
1739}
1740EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1741
1742void net_dec_egress_queue(void)
1743{
1744 static_key_slow_dec(&egress_needed);
1745}
1746EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1747#endif
1748
c5905afb 1749static struct static_key netstamp_needed __read_mostly;
b90e5794 1750#ifdef HAVE_JUMP_LABEL
b90e5794 1751static atomic_t netstamp_needed_deferred;
13baa00a 1752static atomic_t netstamp_wanted;
5fa8bbda 1753static void netstamp_clear(struct work_struct *work)
1da177e4 1754{
b90e5794 1755 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1756 int wanted;
b90e5794 1757
13baa00a
ED
1758 wanted = atomic_add_return(deferred, &netstamp_wanted);
1759 if (wanted > 0)
1760 static_key_enable(&netstamp_needed);
1761 else
1762 static_key_disable(&netstamp_needed);
5fa8bbda
ED
1763}
1764static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1765#endif
5fa8bbda
ED
1766
1767void net_enable_timestamp(void)
1768{
13baa00a
ED
1769#ifdef HAVE_JUMP_LABEL
1770 int wanted;
1771
1772 while (1) {
1773 wanted = atomic_read(&netstamp_wanted);
1774 if (wanted <= 0)
1775 break;
1776 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1777 return;
1778 }
1779 atomic_inc(&netstamp_needed_deferred);
1780 schedule_work(&netstamp_work);
1781#else
c5905afb 1782 static_key_slow_inc(&netstamp_needed);
13baa00a 1783#endif
1da177e4 1784}
d1b19dff 1785EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1786
1787void net_disable_timestamp(void)
1788{
b90e5794 1789#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1790 int wanted;
1791
1792 while (1) {
1793 wanted = atomic_read(&netstamp_wanted);
1794 if (wanted <= 1)
1795 break;
1796 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1797 return;
1798 }
1799 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1800 schedule_work(&netstamp_work);
1801#else
c5905afb 1802 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1803#endif
1da177e4 1804}
d1b19dff 1805EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1806
3b098e2d 1807static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1808{
2456e855 1809 skb->tstamp = 0;
c5905afb 1810 if (static_key_false(&netstamp_needed))
a61bbcf2 1811 __net_timestamp(skb);
1da177e4
LT
1812}
1813
588f0330 1814#define net_timestamp_check(COND, SKB) \
c5905afb 1815 if (static_key_false(&netstamp_needed)) { \
2456e855 1816 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1817 __net_timestamp(SKB); \
1818 } \
3b098e2d 1819
f4b05d27 1820bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1821{
1822 unsigned int len;
1823
1824 if (!(dev->flags & IFF_UP))
1825 return false;
1826
1827 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1828 if (skb->len <= len)
1829 return true;
1830
1831 /* if TSO is enabled, we don't care about the length as the packet
1832 * could be forwarded without being segmented before
1833 */
1834 if (skb_is_gso(skb))
1835 return true;
1836
1837 return false;
1838}
1ee481fb 1839EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1840
a0265d28
HX
1841int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1842{
4e3264d2 1843 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1844
4e3264d2
MKL
1845 if (likely(!ret)) {
1846 skb->protocol = eth_type_trans(skb, dev);
1847 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1848 }
a0265d28 1849
4e3264d2 1850 return ret;
a0265d28
HX
1851}
1852EXPORT_SYMBOL_GPL(__dev_forward_skb);
1853
44540960
AB
1854/**
1855 * dev_forward_skb - loopback an skb to another netif
1856 *
1857 * @dev: destination network device
1858 * @skb: buffer to forward
1859 *
1860 * return values:
1861 * NET_RX_SUCCESS (no congestion)
6ec82562 1862 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1863 *
1864 * dev_forward_skb can be used for injecting an skb from the
1865 * start_xmit function of one device into the receive queue
1866 * of another device.
1867 *
1868 * The receiving device may be in another namespace, so
1869 * we have to clear all information in the skb that could
1870 * impact namespace isolation.
1871 */
1872int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1873{
a0265d28 1874 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1875}
1876EXPORT_SYMBOL_GPL(dev_forward_skb);
1877
71d9dec2
CG
1878static inline int deliver_skb(struct sk_buff *skb,
1879 struct packet_type *pt_prev,
1880 struct net_device *orig_dev)
1881{
1f8b977a 1882 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1883 return -ENOMEM;
63354797 1884 refcount_inc(&skb->users);
71d9dec2
CG
1885 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1886}
1887
7866a621
SN
1888static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1889 struct packet_type **pt,
fbcb2170
JP
1890 struct net_device *orig_dev,
1891 __be16 type,
7866a621
SN
1892 struct list_head *ptype_list)
1893{
1894 struct packet_type *ptype, *pt_prev = *pt;
1895
1896 list_for_each_entry_rcu(ptype, ptype_list, list) {
1897 if (ptype->type != type)
1898 continue;
1899 if (pt_prev)
fbcb2170 1900 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1901 pt_prev = ptype;
1902 }
1903 *pt = pt_prev;
1904}
1905
c0de08d0
EL
1906static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1907{
a3d744e9 1908 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1909 return false;
1910
1911 if (ptype->id_match)
1912 return ptype->id_match(ptype, skb->sk);
1913 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1914 return true;
1915
1916 return false;
1917}
1918
1da177e4
LT
1919/*
1920 * Support routine. Sends outgoing frames to any network
1921 * taps currently in use.
1922 */
1923
74b20582 1924void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1925{
1926 struct packet_type *ptype;
71d9dec2
CG
1927 struct sk_buff *skb2 = NULL;
1928 struct packet_type *pt_prev = NULL;
7866a621 1929 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1930
1da177e4 1931 rcu_read_lock();
7866a621
SN
1932again:
1933 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1934 /* Never send packets back to the socket
1935 * they originated from - MvS (miquels@drinkel.ow.org)
1936 */
7866a621
SN
1937 if (skb_loop_sk(ptype, skb))
1938 continue;
71d9dec2 1939
7866a621
SN
1940 if (pt_prev) {
1941 deliver_skb(skb2, pt_prev, skb->dev);
1942 pt_prev = ptype;
1943 continue;
1944 }
1da177e4 1945
7866a621
SN
1946 /* need to clone skb, done only once */
1947 skb2 = skb_clone(skb, GFP_ATOMIC);
1948 if (!skb2)
1949 goto out_unlock;
70978182 1950
7866a621 1951 net_timestamp_set(skb2);
1da177e4 1952
7866a621
SN
1953 /* skb->nh should be correctly
1954 * set by sender, so that the second statement is
1955 * just protection against buggy protocols.
1956 */
1957 skb_reset_mac_header(skb2);
1958
1959 if (skb_network_header(skb2) < skb2->data ||
1960 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1961 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1962 ntohs(skb2->protocol),
1963 dev->name);
1964 skb_reset_network_header(skb2);
1da177e4 1965 }
7866a621
SN
1966
1967 skb2->transport_header = skb2->network_header;
1968 skb2->pkt_type = PACKET_OUTGOING;
1969 pt_prev = ptype;
1970 }
1971
1972 if (ptype_list == &ptype_all) {
1973 ptype_list = &dev->ptype_all;
1974 goto again;
1da177e4 1975 }
7866a621 1976out_unlock:
581fe0ea
WB
1977 if (pt_prev) {
1978 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1979 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1980 else
1981 kfree_skb(skb2);
1982 }
1da177e4
LT
1983 rcu_read_unlock();
1984}
74b20582 1985EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1986
2c53040f
BH
1987/**
1988 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1989 * @dev: Network device
1990 * @txq: number of queues available
1991 *
1992 * If real_num_tx_queues is changed the tc mappings may no longer be
1993 * valid. To resolve this verify the tc mapping remains valid and if
1994 * not NULL the mapping. With no priorities mapping to this
1995 * offset/count pair it will no longer be used. In the worst case TC0
1996 * is invalid nothing can be done so disable priority mappings. If is
1997 * expected that drivers will fix this mapping if they can before
1998 * calling netif_set_real_num_tx_queues.
1999 */
bb134d22 2000static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2001{
2002 int i;
2003 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2004
2005 /* If TC0 is invalidated disable TC mapping */
2006 if (tc->offset + tc->count > txq) {
7b6cd1ce 2007 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2008 dev->num_tc = 0;
2009 return;
2010 }
2011
2012 /* Invalidated prio to tc mappings set to TC0 */
2013 for (i = 1; i < TC_BITMASK + 1; i++) {
2014 int q = netdev_get_prio_tc_map(dev, i);
2015
2016 tc = &dev->tc_to_txq[q];
2017 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2018 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2019 i, q);
4f57c087
JF
2020 netdev_set_prio_tc_map(dev, i, 0);
2021 }
2022 }
2023}
2024
8d059b0f
AD
2025int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2026{
2027 if (dev->num_tc) {
2028 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2029 int i;
2030
2031 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2032 if ((txq - tc->offset) < tc->count)
2033 return i;
2034 }
2035
2036 return -1;
2037 }
2038
2039 return 0;
2040}
2041
537c00de
AD
2042#ifdef CONFIG_XPS
2043static DEFINE_MUTEX(xps_map_mutex);
2044#define xmap_dereference(P) \
2045 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2046
6234f874
AD
2047static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2048 int tci, u16 index)
537c00de 2049{
10cdc3f3
AD
2050 struct xps_map *map = NULL;
2051 int pos;
537c00de 2052
10cdc3f3 2053 if (dev_maps)
6234f874
AD
2054 map = xmap_dereference(dev_maps->cpu_map[tci]);
2055 if (!map)
2056 return false;
537c00de 2057
6234f874
AD
2058 for (pos = map->len; pos--;) {
2059 if (map->queues[pos] != index)
2060 continue;
2061
2062 if (map->len > 1) {
2063 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2064 break;
537c00de 2065 }
6234f874
AD
2066
2067 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2068 kfree_rcu(map, rcu);
2069 return false;
537c00de
AD
2070 }
2071
6234f874 2072 return true;
10cdc3f3
AD
2073}
2074
6234f874
AD
2075static bool remove_xps_queue_cpu(struct net_device *dev,
2076 struct xps_dev_maps *dev_maps,
2077 int cpu, u16 offset, u16 count)
2078{
184c449f
AD
2079 int num_tc = dev->num_tc ? : 1;
2080 bool active = false;
2081 int tci;
6234f874 2082
184c449f
AD
2083 for (tci = cpu * num_tc; num_tc--; tci++) {
2084 int i, j;
2085
2086 for (i = count, j = offset; i--; j++) {
2087 if (!remove_xps_queue(dev_maps, cpu, j))
2088 break;
2089 }
2090
2091 active |= i < 0;
6234f874
AD
2092 }
2093
184c449f 2094 return active;
6234f874
AD
2095}
2096
2097static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2098 u16 count)
10cdc3f3
AD
2099{
2100 struct xps_dev_maps *dev_maps;
024e9679 2101 int cpu, i;
10cdc3f3
AD
2102 bool active = false;
2103
2104 mutex_lock(&xps_map_mutex);
2105 dev_maps = xmap_dereference(dev->xps_maps);
2106
2107 if (!dev_maps)
2108 goto out_no_maps;
2109
6234f874
AD
2110 for_each_possible_cpu(cpu)
2111 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2112 offset, count);
10cdc3f3
AD
2113
2114 if (!active) {
537c00de
AD
2115 RCU_INIT_POINTER(dev->xps_maps, NULL);
2116 kfree_rcu(dev_maps, rcu);
2117 }
2118
6234f874 2119 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2120 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2121 NUMA_NO_NODE);
2122
537c00de
AD
2123out_no_maps:
2124 mutex_unlock(&xps_map_mutex);
2125}
2126
6234f874
AD
2127static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2128{
2129 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2130}
2131
01c5f864
AD
2132static struct xps_map *expand_xps_map(struct xps_map *map,
2133 int cpu, u16 index)
2134{
2135 struct xps_map *new_map;
2136 int alloc_len = XPS_MIN_MAP_ALLOC;
2137 int i, pos;
2138
2139 for (pos = 0; map && pos < map->len; pos++) {
2140 if (map->queues[pos] != index)
2141 continue;
2142 return map;
2143 }
2144
2145 /* Need to add queue to this CPU's existing map */
2146 if (map) {
2147 if (pos < map->alloc_len)
2148 return map;
2149
2150 alloc_len = map->alloc_len * 2;
2151 }
2152
2153 /* Need to allocate new map to store queue on this CPU's map */
2154 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2155 cpu_to_node(cpu));
2156 if (!new_map)
2157 return NULL;
2158
2159 for (i = 0; i < pos; i++)
2160 new_map->queues[i] = map->queues[i];
2161 new_map->alloc_len = alloc_len;
2162 new_map->len = pos;
2163
2164 return new_map;
2165}
2166
3573540c
MT
2167int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2168 u16 index)
537c00de 2169{
01c5f864 2170 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2171 int i, cpu, tci, numa_node_id = -2;
2172 int maps_sz, num_tc = 1, tc = 0;
537c00de 2173 struct xps_map *map, *new_map;
01c5f864 2174 bool active = false;
537c00de 2175
184c449f
AD
2176 if (dev->num_tc) {
2177 num_tc = dev->num_tc;
2178 tc = netdev_txq_to_tc(dev, index);
2179 if (tc < 0)
2180 return -EINVAL;
2181 }
2182
2183 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2184 if (maps_sz < L1_CACHE_BYTES)
2185 maps_sz = L1_CACHE_BYTES;
2186
537c00de
AD
2187 mutex_lock(&xps_map_mutex);
2188
2189 dev_maps = xmap_dereference(dev->xps_maps);
2190
01c5f864 2191 /* allocate memory for queue storage */
184c449f 2192 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2193 if (!new_dev_maps)
2194 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2195 if (!new_dev_maps) {
2196 mutex_unlock(&xps_map_mutex);
01c5f864 2197 return -ENOMEM;
2bb60cb9 2198 }
01c5f864 2199
184c449f
AD
2200 tci = cpu * num_tc + tc;
2201 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2202 NULL;
2203
2204 map = expand_xps_map(map, cpu, index);
2205 if (!map)
2206 goto error;
2207
184c449f 2208 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2209 }
2210
2211 if (!new_dev_maps)
2212 goto out_no_new_maps;
2213
537c00de 2214 for_each_possible_cpu(cpu) {
184c449f
AD
2215 /* copy maps belonging to foreign traffic classes */
2216 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2217 /* fill in the new device map from the old device map */
2218 map = xmap_dereference(dev_maps->cpu_map[tci]);
2219 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2220 }
2221
2222 /* We need to explicitly update tci as prevous loop
2223 * could break out early if dev_maps is NULL.
2224 */
2225 tci = cpu * num_tc + tc;
2226
01c5f864
AD
2227 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2228 /* add queue to CPU maps */
2229 int pos = 0;
2230
184c449f 2231 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2232 while ((pos < map->len) && (map->queues[pos] != index))
2233 pos++;
2234
2235 if (pos == map->len)
2236 map->queues[map->len++] = index;
537c00de 2237#ifdef CONFIG_NUMA
537c00de
AD
2238 if (numa_node_id == -2)
2239 numa_node_id = cpu_to_node(cpu);
2240 else if (numa_node_id != cpu_to_node(cpu))
2241 numa_node_id = -1;
537c00de 2242#endif
01c5f864
AD
2243 } else if (dev_maps) {
2244 /* fill in the new device map from the old device map */
184c449f
AD
2245 map = xmap_dereference(dev_maps->cpu_map[tci]);
2246 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2247 }
01c5f864 2248
184c449f
AD
2249 /* copy maps belonging to foreign traffic classes */
2250 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2251 /* fill in the new device map from the old device map */
2252 map = xmap_dereference(dev_maps->cpu_map[tci]);
2253 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2254 }
537c00de
AD
2255 }
2256
01c5f864
AD
2257 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2258
537c00de 2259 /* Cleanup old maps */
184c449f
AD
2260 if (!dev_maps)
2261 goto out_no_old_maps;
2262
2263 for_each_possible_cpu(cpu) {
2264 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2265 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2266 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2267 if (map && map != new_map)
2268 kfree_rcu(map, rcu);
2269 }
537c00de
AD
2270 }
2271
184c449f
AD
2272 kfree_rcu(dev_maps, rcu);
2273
2274out_no_old_maps:
01c5f864
AD
2275 dev_maps = new_dev_maps;
2276 active = true;
537c00de 2277
01c5f864
AD
2278out_no_new_maps:
2279 /* update Tx queue numa node */
537c00de
AD
2280 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2281 (numa_node_id >= 0) ? numa_node_id :
2282 NUMA_NO_NODE);
2283
01c5f864
AD
2284 if (!dev_maps)
2285 goto out_no_maps;
2286
2287 /* removes queue from unused CPUs */
2288 for_each_possible_cpu(cpu) {
184c449f
AD
2289 for (i = tc, tci = cpu * num_tc; i--; tci++)
2290 active |= remove_xps_queue(dev_maps, tci, index);
2291 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2292 active |= remove_xps_queue(dev_maps, tci, index);
2293 for (i = num_tc - tc, tci++; --i; tci++)
2294 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2295 }
2296
2297 /* free map if not active */
2298 if (!active) {
2299 RCU_INIT_POINTER(dev->xps_maps, NULL);
2300 kfree_rcu(dev_maps, rcu);
2301 }
2302
2303out_no_maps:
537c00de
AD
2304 mutex_unlock(&xps_map_mutex);
2305
2306 return 0;
2307error:
01c5f864
AD
2308 /* remove any maps that we added */
2309 for_each_possible_cpu(cpu) {
184c449f
AD
2310 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2311 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2312 map = dev_maps ?
2313 xmap_dereference(dev_maps->cpu_map[tci]) :
2314 NULL;
2315 if (new_map && new_map != map)
2316 kfree(new_map);
2317 }
01c5f864
AD
2318 }
2319
537c00de
AD
2320 mutex_unlock(&xps_map_mutex);
2321
537c00de
AD
2322 kfree(new_dev_maps);
2323 return -ENOMEM;
2324}
2325EXPORT_SYMBOL(netif_set_xps_queue);
2326
2327#endif
9cf1f6a8
AD
2328void netdev_reset_tc(struct net_device *dev)
2329{
6234f874
AD
2330#ifdef CONFIG_XPS
2331 netif_reset_xps_queues_gt(dev, 0);
2332#endif
9cf1f6a8
AD
2333 dev->num_tc = 0;
2334 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2335 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2336}
2337EXPORT_SYMBOL(netdev_reset_tc);
2338
2339int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2340{
2341 if (tc >= dev->num_tc)
2342 return -EINVAL;
2343
6234f874
AD
2344#ifdef CONFIG_XPS
2345 netif_reset_xps_queues(dev, offset, count);
2346#endif
9cf1f6a8
AD
2347 dev->tc_to_txq[tc].count = count;
2348 dev->tc_to_txq[tc].offset = offset;
2349 return 0;
2350}
2351EXPORT_SYMBOL(netdev_set_tc_queue);
2352
2353int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2354{
2355 if (num_tc > TC_MAX_QUEUE)
2356 return -EINVAL;
2357
6234f874
AD
2358#ifdef CONFIG_XPS
2359 netif_reset_xps_queues_gt(dev, 0);
2360#endif
9cf1f6a8
AD
2361 dev->num_tc = num_tc;
2362 return 0;
2363}
2364EXPORT_SYMBOL(netdev_set_num_tc);
2365
f0796d5c
JF
2366/*
2367 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2368 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2369 */
e6484930 2370int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2371{
1d24eb48
TH
2372 int rc;
2373
e6484930
TH
2374 if (txq < 1 || txq > dev->num_tx_queues)
2375 return -EINVAL;
f0796d5c 2376
5c56580b
BH
2377 if (dev->reg_state == NETREG_REGISTERED ||
2378 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2379 ASSERT_RTNL();
2380
1d24eb48
TH
2381 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2382 txq);
bf264145
TH
2383 if (rc)
2384 return rc;
2385
4f57c087
JF
2386 if (dev->num_tc)
2387 netif_setup_tc(dev, txq);
2388
024e9679 2389 if (txq < dev->real_num_tx_queues) {
e6484930 2390 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2391#ifdef CONFIG_XPS
2392 netif_reset_xps_queues_gt(dev, txq);
2393#endif
2394 }
f0796d5c 2395 }
e6484930
TH
2396
2397 dev->real_num_tx_queues = txq;
2398 return 0;
f0796d5c
JF
2399}
2400EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2401
a953be53 2402#ifdef CONFIG_SYSFS
62fe0b40
BH
2403/**
2404 * netif_set_real_num_rx_queues - set actual number of RX queues used
2405 * @dev: Network device
2406 * @rxq: Actual number of RX queues
2407 *
2408 * This must be called either with the rtnl_lock held or before
2409 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2410 * negative error code. If called before registration, it always
2411 * succeeds.
62fe0b40
BH
2412 */
2413int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2414{
2415 int rc;
2416
bd25fa7b
TH
2417 if (rxq < 1 || rxq > dev->num_rx_queues)
2418 return -EINVAL;
2419
62fe0b40
BH
2420 if (dev->reg_state == NETREG_REGISTERED) {
2421 ASSERT_RTNL();
2422
62fe0b40
BH
2423 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2424 rxq);
2425 if (rc)
2426 return rc;
62fe0b40
BH
2427 }
2428
2429 dev->real_num_rx_queues = rxq;
2430 return 0;
2431}
2432EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2433#endif
2434
2c53040f
BH
2435/**
2436 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2437 *
2438 * This routine should set an upper limit on the number of RSS queues
2439 * used by default by multiqueue devices.
2440 */
a55b138b 2441int netif_get_num_default_rss_queues(void)
16917b87 2442{
40e4e713
HS
2443 return is_kdump_kernel() ?
2444 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2445}
2446EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2447
3bcb846c 2448static void __netif_reschedule(struct Qdisc *q)
56079431 2449{
def82a1d
JP
2450 struct softnet_data *sd;
2451 unsigned long flags;
56079431 2452
def82a1d 2453 local_irq_save(flags);
903ceff7 2454 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2455 q->next_sched = NULL;
2456 *sd->output_queue_tailp = q;
2457 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2458 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2459 local_irq_restore(flags);
2460}
2461
2462void __netif_schedule(struct Qdisc *q)
2463{
2464 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2465 __netif_reschedule(q);
56079431
DV
2466}
2467EXPORT_SYMBOL(__netif_schedule);
2468
e6247027
ED
2469struct dev_kfree_skb_cb {
2470 enum skb_free_reason reason;
2471};
2472
2473static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2474{
e6247027
ED
2475 return (struct dev_kfree_skb_cb *)skb->cb;
2476}
2477
46e5da40
JF
2478void netif_schedule_queue(struct netdev_queue *txq)
2479{
2480 rcu_read_lock();
2481 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2482 struct Qdisc *q = rcu_dereference(txq->qdisc);
2483
2484 __netif_schedule(q);
2485 }
2486 rcu_read_unlock();
2487}
2488EXPORT_SYMBOL(netif_schedule_queue);
2489
46e5da40
JF
2490void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2491{
2492 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2493 struct Qdisc *q;
2494
2495 rcu_read_lock();
2496 q = rcu_dereference(dev_queue->qdisc);
2497 __netif_schedule(q);
2498 rcu_read_unlock();
2499 }
2500}
2501EXPORT_SYMBOL(netif_tx_wake_queue);
2502
e6247027 2503void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2504{
e6247027 2505 unsigned long flags;
56079431 2506
9899886d
MJ
2507 if (unlikely(!skb))
2508 return;
2509
63354797 2510 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2511 smp_rmb();
63354797
RE
2512 refcount_set(&skb->users, 0);
2513 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2514 return;
bea3348e 2515 }
e6247027
ED
2516 get_kfree_skb_cb(skb)->reason = reason;
2517 local_irq_save(flags);
2518 skb->next = __this_cpu_read(softnet_data.completion_queue);
2519 __this_cpu_write(softnet_data.completion_queue, skb);
2520 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2521 local_irq_restore(flags);
56079431 2522}
e6247027 2523EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2524
e6247027 2525void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2526{
2527 if (in_irq() || irqs_disabled())
e6247027 2528 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2529 else
2530 dev_kfree_skb(skb);
2531}
e6247027 2532EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2533
2534
bea3348e
SH
2535/**
2536 * netif_device_detach - mark device as removed
2537 * @dev: network device
2538 *
2539 * Mark device as removed from system and therefore no longer available.
2540 */
56079431
DV
2541void netif_device_detach(struct net_device *dev)
2542{
2543 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2544 netif_running(dev)) {
d543103a 2545 netif_tx_stop_all_queues(dev);
56079431
DV
2546 }
2547}
2548EXPORT_SYMBOL(netif_device_detach);
2549
bea3348e
SH
2550/**
2551 * netif_device_attach - mark device as attached
2552 * @dev: network device
2553 *
2554 * Mark device as attached from system and restart if needed.
2555 */
56079431
DV
2556void netif_device_attach(struct net_device *dev)
2557{
2558 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2559 netif_running(dev)) {
d543103a 2560 netif_tx_wake_all_queues(dev);
4ec93edb 2561 __netdev_watchdog_up(dev);
56079431
DV
2562 }
2563}
2564EXPORT_SYMBOL(netif_device_attach);
2565
5605c762
JP
2566/*
2567 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2568 * to be used as a distribution range.
2569 */
2570u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2571 unsigned int num_tx_queues)
2572{
2573 u32 hash;
2574 u16 qoffset = 0;
2575 u16 qcount = num_tx_queues;
2576
2577 if (skb_rx_queue_recorded(skb)) {
2578 hash = skb_get_rx_queue(skb);
2579 while (unlikely(hash >= num_tx_queues))
2580 hash -= num_tx_queues;
2581 return hash;
2582 }
2583
2584 if (dev->num_tc) {
2585 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
f4563a75 2586
5605c762
JP
2587 qoffset = dev->tc_to_txq[tc].offset;
2588 qcount = dev->tc_to_txq[tc].count;
2589 }
2590
2591 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2592}
2593EXPORT_SYMBOL(__skb_tx_hash);
2594
36c92474
BH
2595static void skb_warn_bad_offload(const struct sk_buff *skb)
2596{
84d15ae5 2597 static const netdev_features_t null_features;
36c92474 2598 struct net_device *dev = skb->dev;
88ad4175 2599 const char *name = "";
36c92474 2600
c846ad9b
BG
2601 if (!net_ratelimit())
2602 return;
2603
88ad4175
BM
2604 if (dev) {
2605 if (dev->dev.parent)
2606 name = dev_driver_string(dev->dev.parent);
2607 else
2608 name = netdev_name(dev);
2609 }
36c92474
BH
2610 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2611 "gso_type=%d ip_summed=%d\n",
88ad4175 2612 name, dev ? &dev->features : &null_features,
65e9d2fa 2613 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2614 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2615 skb_shinfo(skb)->gso_type, skb->ip_summed);
2616}
2617
1da177e4
LT
2618/*
2619 * Invalidate hardware checksum when packet is to be mangled, and
2620 * complete checksum manually on outgoing path.
2621 */
84fa7933 2622int skb_checksum_help(struct sk_buff *skb)
1da177e4 2623{
d3bc23e7 2624 __wsum csum;
663ead3b 2625 int ret = 0, offset;
1da177e4 2626
84fa7933 2627 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2628 goto out_set_summed;
2629
2630 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2631 skb_warn_bad_offload(skb);
2632 return -EINVAL;
1da177e4
LT
2633 }
2634
cef401de
ED
2635 /* Before computing a checksum, we should make sure no frag could
2636 * be modified by an external entity : checksum could be wrong.
2637 */
2638 if (skb_has_shared_frag(skb)) {
2639 ret = __skb_linearize(skb);
2640 if (ret)
2641 goto out;
2642 }
2643
55508d60 2644 offset = skb_checksum_start_offset(skb);
a030847e
HX
2645 BUG_ON(offset >= skb_headlen(skb));
2646 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2647
2648 offset += skb->csum_offset;
2649 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2650
2651 if (skb_cloned(skb) &&
2652 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2653 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2654 if (ret)
2655 goto out;
2656 }
2657
4f2e4ad5 2658 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2659out_set_summed:
1da177e4 2660 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2661out:
1da177e4
LT
2662 return ret;
2663}
d1b19dff 2664EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2665
b72b5bf6
DC
2666int skb_crc32c_csum_help(struct sk_buff *skb)
2667{
2668 __le32 crc32c_csum;
2669 int ret = 0, offset, start;
2670
2671 if (skb->ip_summed != CHECKSUM_PARTIAL)
2672 goto out;
2673
2674 if (unlikely(skb_is_gso(skb)))
2675 goto out;
2676
2677 /* Before computing a checksum, we should make sure no frag could
2678 * be modified by an external entity : checksum could be wrong.
2679 */
2680 if (unlikely(skb_has_shared_frag(skb))) {
2681 ret = __skb_linearize(skb);
2682 if (ret)
2683 goto out;
2684 }
2685 start = skb_checksum_start_offset(skb);
2686 offset = start + offsetof(struct sctphdr, checksum);
2687 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2688 ret = -EINVAL;
2689 goto out;
2690 }
2691 if (skb_cloned(skb) &&
2692 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2693 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2694 if (ret)
2695 goto out;
2696 }
2697 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2698 skb->len - start, ~(__u32)0,
2699 crc32c_csum_stub));
2700 *(__le32 *)(skb->data + offset) = crc32c_csum;
2701 skb->ip_summed = CHECKSUM_NONE;
dba00306 2702 skb->csum_not_inet = 0;
b72b5bf6
DC
2703out:
2704 return ret;
2705}
2706
53d6471c 2707__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2708{
252e3346 2709 __be16 type = skb->protocol;
f6a78bfc 2710
19acc327
PS
2711 /* Tunnel gso handlers can set protocol to ethernet. */
2712 if (type == htons(ETH_P_TEB)) {
2713 struct ethhdr *eth;
2714
2715 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2716 return 0;
2717
2718 eth = (struct ethhdr *)skb_mac_header(skb);
2719 type = eth->h_proto;
2720 }
2721
d4bcef3f 2722 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2723}
2724
2725/**
2726 * skb_mac_gso_segment - mac layer segmentation handler.
2727 * @skb: buffer to segment
2728 * @features: features for the output path (see dev->features)
2729 */
2730struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2731 netdev_features_t features)
2732{
2733 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2734 struct packet_offload *ptype;
53d6471c
VY
2735 int vlan_depth = skb->mac_len;
2736 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2737
2738 if (unlikely(!type))
2739 return ERR_PTR(-EINVAL);
2740
53d6471c 2741 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2742
2743 rcu_read_lock();
22061d80 2744 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2745 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2746 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2747 break;
2748 }
2749 }
2750 rcu_read_unlock();
2751
98e399f8 2752 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2753
f6a78bfc
HX
2754 return segs;
2755}
05e8ef4a
PS
2756EXPORT_SYMBOL(skb_mac_gso_segment);
2757
2758
2759/* openvswitch calls this on rx path, so we need a different check.
2760 */
2761static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2762{
2763 if (tx_path)
93991221 2764 return skb->ip_summed != CHECKSUM_PARTIAL;
6e7bc478
ED
2765
2766 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2767}
2768
2769/**
2770 * __skb_gso_segment - Perform segmentation on skb.
2771 * @skb: buffer to segment
2772 * @features: features for the output path (see dev->features)
2773 * @tx_path: whether it is called in TX path
2774 *
2775 * This function segments the given skb and returns a list of segments.
2776 *
2777 * It may return NULL if the skb requires no segmentation. This is
2778 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2779 *
2780 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2781 */
2782struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2783 netdev_features_t features, bool tx_path)
2784{
b2504a5d
ED
2785 struct sk_buff *segs;
2786
05e8ef4a
PS
2787 if (unlikely(skb_needs_check(skb, tx_path))) {
2788 int err;
2789
b2504a5d 2790 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2791 err = skb_cow_head(skb, 0);
2792 if (err < 0)
05e8ef4a
PS
2793 return ERR_PTR(err);
2794 }
2795
802ab55a
AD
2796 /* Only report GSO partial support if it will enable us to
2797 * support segmentation on this frame without needing additional
2798 * work.
2799 */
2800 if (features & NETIF_F_GSO_PARTIAL) {
2801 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2802 struct net_device *dev = skb->dev;
2803
2804 partial_features |= dev->features & dev->gso_partial_features;
2805 if (!skb_gso_ok(skb, features | partial_features))
2806 features &= ~NETIF_F_GSO_PARTIAL;
2807 }
2808
9207f9d4
KK
2809 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2810 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2811
68c33163 2812 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2813 SKB_GSO_CB(skb)->encap_level = 0;
2814
05e8ef4a
PS
2815 skb_reset_mac_header(skb);
2816 skb_reset_mac_len(skb);
2817
b2504a5d
ED
2818 segs = skb_mac_gso_segment(skb, features);
2819
2820 if (unlikely(skb_needs_check(skb, tx_path)))
2821 skb_warn_bad_offload(skb);
2822
2823 return segs;
05e8ef4a 2824}
12b0004d 2825EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2826
fb286bb2
HX
2827/* Take action when hardware reception checksum errors are detected. */
2828#ifdef CONFIG_BUG
2829void netdev_rx_csum_fault(struct net_device *dev)
2830{
2831 if (net_ratelimit()) {
7b6cd1ce 2832 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2833 dump_stack();
2834 }
2835}
2836EXPORT_SYMBOL(netdev_rx_csum_fault);
2837#endif
2838
1da177e4
LT
2839/* Actually, we should eliminate this check as soon as we know, that:
2840 * 1. IOMMU is present and allows to map all the memory.
2841 * 2. No high memory really exists on this machine.
2842 */
2843
c1e756bf 2844static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2845{
3d3a8533 2846#ifdef CONFIG_HIGHMEM
1da177e4 2847 int i;
f4563a75 2848
5acbbd42 2849 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2850 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2851 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 2852
ea2ab693 2853 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2854 return 1;
ea2ab693 2855 }
5acbbd42 2856 }
1da177e4 2857
5acbbd42
FT
2858 if (PCI_DMA_BUS_IS_PHYS) {
2859 struct device *pdev = dev->dev.parent;
1da177e4 2860
9092c658
ED
2861 if (!pdev)
2862 return 0;
5acbbd42 2863 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2864 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2865 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
f4563a75 2866
5acbbd42
FT
2867 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2868 return 1;
2869 }
2870 }
3d3a8533 2871#endif
1da177e4
LT
2872 return 0;
2873}
1da177e4 2874
3b392ddb
SH
2875/* If MPLS offload request, verify we are testing hardware MPLS features
2876 * instead of standard features for the netdev.
2877 */
d0edc7bf 2878#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2879static netdev_features_t net_mpls_features(struct sk_buff *skb,
2880 netdev_features_t features,
2881 __be16 type)
2882{
25cd9ba0 2883 if (eth_p_mpls(type))
3b392ddb
SH
2884 features &= skb->dev->mpls_features;
2885
2886 return features;
2887}
2888#else
2889static netdev_features_t net_mpls_features(struct sk_buff *skb,
2890 netdev_features_t features,
2891 __be16 type)
2892{
2893 return features;
2894}
2895#endif
2896
c8f44aff 2897static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2898 netdev_features_t features)
f01a5236 2899{
53d6471c 2900 int tmp;
3b392ddb
SH
2901 __be16 type;
2902
2903 type = skb_network_protocol(skb, &tmp);
2904 features = net_mpls_features(skb, features, type);
53d6471c 2905
c0d680e5 2906 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2907 !can_checksum_protocol(features, type)) {
996e8021 2908 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2909 }
7be2c82c
ED
2910 if (illegal_highdma(skb->dev, skb))
2911 features &= ~NETIF_F_SG;
f01a5236
JG
2912
2913 return features;
2914}
2915
e38f3025
TM
2916netdev_features_t passthru_features_check(struct sk_buff *skb,
2917 struct net_device *dev,
2918 netdev_features_t features)
2919{
2920 return features;
2921}
2922EXPORT_SYMBOL(passthru_features_check);
2923
8cb65d00
TM
2924static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2925 struct net_device *dev,
2926 netdev_features_t features)
2927{
2928 return vlan_features_check(skb, features);
2929}
2930
cbc53e08
AD
2931static netdev_features_t gso_features_check(const struct sk_buff *skb,
2932 struct net_device *dev,
2933 netdev_features_t features)
2934{
2935 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2936
2937 if (gso_segs > dev->gso_max_segs)
2938 return features & ~NETIF_F_GSO_MASK;
2939
802ab55a
AD
2940 /* Support for GSO partial features requires software
2941 * intervention before we can actually process the packets
2942 * so we need to strip support for any partial features now
2943 * and we can pull them back in after we have partially
2944 * segmented the frame.
2945 */
2946 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2947 features &= ~dev->gso_partial_features;
2948
2949 /* Make sure to clear the IPv4 ID mangling feature if the
2950 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2951 */
2952 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2953 struct iphdr *iph = skb->encapsulation ?
2954 inner_ip_hdr(skb) : ip_hdr(skb);
2955
2956 if (!(iph->frag_off & htons(IP_DF)))
2957 features &= ~NETIF_F_TSO_MANGLEID;
2958 }
2959
2960 return features;
2961}
2962
c1e756bf 2963netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2964{
5f35227e 2965 struct net_device *dev = skb->dev;
fcbeb976 2966 netdev_features_t features = dev->features;
58e998c6 2967
cbc53e08
AD
2968 if (skb_is_gso(skb))
2969 features = gso_features_check(skb, dev, features);
30b678d8 2970
5f35227e
JG
2971 /* If encapsulation offload request, verify we are testing
2972 * hardware encapsulation features instead of standard
2973 * features for the netdev
2974 */
2975 if (skb->encapsulation)
2976 features &= dev->hw_enc_features;
2977
f5a7fb88
TM
2978 if (skb_vlan_tagged(skb))
2979 features = netdev_intersect_features(features,
2980 dev->vlan_features |
2981 NETIF_F_HW_VLAN_CTAG_TX |
2982 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2983
5f35227e
JG
2984 if (dev->netdev_ops->ndo_features_check)
2985 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2986 features);
8cb65d00
TM
2987 else
2988 features &= dflt_features_check(skb, dev, features);
5f35227e 2989
c1e756bf 2990 return harmonize_features(skb, features);
58e998c6 2991}
c1e756bf 2992EXPORT_SYMBOL(netif_skb_features);
58e998c6 2993
2ea25513 2994static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2995 struct netdev_queue *txq, bool more)
f6a78bfc 2996{
2ea25513
DM
2997 unsigned int len;
2998 int rc;
00829823 2999
7866a621 3000 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 3001 dev_queue_xmit_nit(skb, dev);
fc741216 3002
2ea25513
DM
3003 len = skb->len;
3004 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3005 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3006 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3007
2ea25513
DM
3008 return rc;
3009}
7b9c6090 3010
8dcda22a
DM
3011struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3012 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3013{
3014 struct sk_buff *skb = first;
3015 int rc = NETDEV_TX_OK;
7b9c6090 3016
7f2e870f
DM
3017 while (skb) {
3018 struct sk_buff *next = skb->next;
fc70fb64 3019
7f2e870f 3020 skb->next = NULL;
95f6b3dd 3021 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3022 if (unlikely(!dev_xmit_complete(rc))) {
3023 skb->next = next;
3024 goto out;
3025 }
6afff0ca 3026
7f2e870f
DM
3027 skb = next;
3028 if (netif_xmit_stopped(txq) && skb) {
3029 rc = NETDEV_TX_BUSY;
3030 break;
9ccb8975 3031 }
7f2e870f 3032 }
9ccb8975 3033
7f2e870f
DM
3034out:
3035 *ret = rc;
3036 return skb;
3037}
b40863c6 3038
1ff0dc94
ED
3039static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3040 netdev_features_t features)
f6a78bfc 3041{
df8a39de 3042 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3043 !vlan_hw_offload_capable(features, skb->vlan_proto))
3044 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3045 return skb;
3046}
f6a78bfc 3047
43c26a1a
DC
3048int skb_csum_hwoffload_help(struct sk_buff *skb,
3049 const netdev_features_t features)
3050{
3051 if (unlikely(skb->csum_not_inet))
3052 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3053 skb_crc32c_csum_help(skb);
3054
3055 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3056}
3057EXPORT_SYMBOL(skb_csum_hwoffload_help);
3058
55a93b3e 3059static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
3060{
3061 netdev_features_t features;
f6a78bfc 3062
eae3f88e
DM
3063 features = netif_skb_features(skb);
3064 skb = validate_xmit_vlan(skb, features);
3065 if (unlikely(!skb))
3066 goto out_null;
7b9c6090 3067
8b86a61d 3068 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3069 struct sk_buff *segs;
3070
3071 segs = skb_gso_segment(skb, features);
cecda693 3072 if (IS_ERR(segs)) {
af6dabc9 3073 goto out_kfree_skb;
cecda693
JW
3074 } else if (segs) {
3075 consume_skb(skb);
3076 skb = segs;
f6a78bfc 3077 }
eae3f88e
DM
3078 } else {
3079 if (skb_needs_linearize(skb, features) &&
3080 __skb_linearize(skb))
3081 goto out_kfree_skb;
4ec93edb 3082
f6e27114
SK
3083 if (validate_xmit_xfrm(skb, features))
3084 goto out_kfree_skb;
3085
eae3f88e
DM
3086 /* If packet is not checksummed and device does not
3087 * support checksumming for this protocol, complete
3088 * checksumming here.
3089 */
3090 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3091 if (skb->encapsulation)
3092 skb_set_inner_transport_header(skb,
3093 skb_checksum_start_offset(skb));
3094 else
3095 skb_set_transport_header(skb,
3096 skb_checksum_start_offset(skb));
43c26a1a 3097 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3098 goto out_kfree_skb;
7b9c6090 3099 }
0c772159 3100 }
7b9c6090 3101
eae3f88e 3102 return skb;
fc70fb64 3103
f6a78bfc
HX
3104out_kfree_skb:
3105 kfree_skb(skb);
eae3f88e 3106out_null:
d21fd63e 3107 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3108 return NULL;
3109}
6afff0ca 3110
55a93b3e
ED
3111struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3112{
3113 struct sk_buff *next, *head = NULL, *tail;
3114
bec3cfdc 3115 for (; skb != NULL; skb = next) {
55a93b3e
ED
3116 next = skb->next;
3117 skb->next = NULL;
bec3cfdc
ED
3118
3119 /* in case skb wont be segmented, point to itself */
3120 skb->prev = skb;
3121
55a93b3e 3122 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3123 if (!skb)
3124 continue;
55a93b3e 3125
bec3cfdc
ED
3126 if (!head)
3127 head = skb;
3128 else
3129 tail->next = skb;
3130 /* If skb was segmented, skb->prev points to
3131 * the last segment. If not, it still contains skb.
3132 */
3133 tail = skb->prev;
55a93b3e
ED
3134 }
3135 return head;
f6a78bfc 3136}
104ba78c 3137EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3138
1def9238
ED
3139static void qdisc_pkt_len_init(struct sk_buff *skb)
3140{
3141 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3142
3143 qdisc_skb_cb(skb)->pkt_len = skb->len;
3144
3145 /* To get more precise estimation of bytes sent on wire,
3146 * we add to pkt_len the headers size of all segments
3147 */
3148 if (shinfo->gso_size) {
757b8b1d 3149 unsigned int hdr_len;
15e5a030 3150 u16 gso_segs = shinfo->gso_segs;
1def9238 3151
757b8b1d
ED
3152 /* mac layer + network layer */
3153 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3154
3155 /* + transport layer */
1def9238
ED
3156 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3157 hdr_len += tcp_hdrlen(skb);
3158 else
3159 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3160
3161 if (shinfo->gso_type & SKB_GSO_DODGY)
3162 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3163 shinfo->gso_size);
3164
3165 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3166 }
3167}
3168
bbd8a0d3
KK
3169static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3170 struct net_device *dev,
3171 struct netdev_queue *txq)
3172{
3173 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3174 struct sk_buff *to_free = NULL;
a2da570d 3175 bool contended;
bbd8a0d3
KK
3176 int rc;
3177
a2da570d 3178 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3179 /*
3180 * Heuristic to force contended enqueues to serialize on a
3181 * separate lock before trying to get qdisc main lock.
f9eb8aea 3182 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3183 * often and dequeue packets faster.
79640a4c 3184 */
a2da570d 3185 contended = qdisc_is_running(q);
79640a4c
ED
3186 if (unlikely(contended))
3187 spin_lock(&q->busylock);
3188
bbd8a0d3
KK
3189 spin_lock(root_lock);
3190 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3191 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3192 rc = NET_XMIT_DROP;
3193 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3194 qdisc_run_begin(q)) {
bbd8a0d3
KK
3195 /*
3196 * This is a work-conserving queue; there are no old skbs
3197 * waiting to be sent out; and the qdisc is not running -
3198 * xmit the skb directly.
3199 */
bfe0d029 3200
bfe0d029
ED
3201 qdisc_bstats_update(q, skb);
3202
55a93b3e 3203 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3204 if (unlikely(contended)) {
3205 spin_unlock(&q->busylock);
3206 contended = false;
3207 }
bbd8a0d3 3208 __qdisc_run(q);
79640a4c 3209 } else
bc135b23 3210 qdisc_run_end(q);
bbd8a0d3
KK
3211
3212 rc = NET_XMIT_SUCCESS;
3213 } else {
520ac30f 3214 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3215 if (qdisc_run_begin(q)) {
3216 if (unlikely(contended)) {
3217 spin_unlock(&q->busylock);
3218 contended = false;
3219 }
3220 __qdisc_run(q);
3221 }
bbd8a0d3
KK
3222 }
3223 spin_unlock(root_lock);
520ac30f
ED
3224 if (unlikely(to_free))
3225 kfree_skb_list(to_free);
79640a4c
ED
3226 if (unlikely(contended))
3227 spin_unlock(&q->busylock);
bbd8a0d3
KK
3228 return rc;
3229}
3230
86f8515f 3231#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3232static void skb_update_prio(struct sk_buff *skb)
3233{
6977a79d 3234 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3235
91c68ce2 3236 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3237 unsigned int prioidx =
3238 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3239
3240 if (prioidx < map->priomap_len)
3241 skb->priority = map->priomap[prioidx];
3242 }
5bc1421e
NH
3243}
3244#else
3245#define skb_update_prio(skb)
3246#endif
3247
f60e5990 3248DEFINE_PER_CPU(int, xmit_recursion);
3249EXPORT_SYMBOL(xmit_recursion);
3250
95603e22
MM
3251/**
3252 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3253 * @net: network namespace this loopback is happening in
3254 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3255 * @skb: buffer to transmit
3256 */
0c4b51f0 3257int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3258{
3259 skb_reset_mac_header(skb);
3260 __skb_pull(skb, skb_network_offset(skb));
3261 skb->pkt_type = PACKET_LOOPBACK;
3262 skb->ip_summed = CHECKSUM_UNNECESSARY;
3263 WARN_ON(!skb_dst(skb));
3264 skb_dst_force(skb);
3265 netif_rx_ni(skb);
3266 return 0;
3267}
3268EXPORT_SYMBOL(dev_loopback_xmit);
3269
1f211a1b
DB
3270#ifdef CONFIG_NET_EGRESS
3271static struct sk_buff *
3272sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3273{
3274 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3275 struct tcf_result cl_res;
3276
3277 if (!cl)
3278 return skb;
3279
8dc07fdb 3280 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
1f211a1b
DB
3281 qdisc_bstats_cpu_update(cl->q, skb);
3282
87d83093 3283 switch (tcf_classify(skb, cl, &cl_res, false)) {
1f211a1b
DB
3284 case TC_ACT_OK:
3285 case TC_ACT_RECLASSIFY:
3286 skb->tc_index = TC_H_MIN(cl_res.classid);
3287 break;
3288 case TC_ACT_SHOT:
3289 qdisc_qstats_cpu_drop(cl->q);
3290 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3291 kfree_skb(skb);
3292 return NULL;
1f211a1b
DB
3293 case TC_ACT_STOLEN:
3294 case TC_ACT_QUEUED:
e25ea21f 3295 case TC_ACT_TRAP:
1f211a1b 3296 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3297 consume_skb(skb);
1f211a1b
DB
3298 return NULL;
3299 case TC_ACT_REDIRECT:
3300 /* No need to push/pop skb's mac_header here on egress! */
3301 skb_do_redirect(skb);
3302 *ret = NET_XMIT_SUCCESS;
3303 return NULL;
3304 default:
3305 break;
3306 }
3307
3308 return skb;
3309}
3310#endif /* CONFIG_NET_EGRESS */
3311
638b2a69
JP
3312static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3313{
3314#ifdef CONFIG_XPS
3315 struct xps_dev_maps *dev_maps;
3316 struct xps_map *map;
3317 int queue_index = -1;
3318
3319 rcu_read_lock();
3320 dev_maps = rcu_dereference(dev->xps_maps);
3321 if (dev_maps) {
184c449f
AD
3322 unsigned int tci = skb->sender_cpu - 1;
3323
3324 if (dev->num_tc) {
3325 tci *= dev->num_tc;
3326 tci += netdev_get_prio_tc_map(dev, skb->priority);
3327 }
3328
3329 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3330 if (map) {
3331 if (map->len == 1)
3332 queue_index = map->queues[0];
3333 else
3334 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3335 map->len)];
3336 if (unlikely(queue_index >= dev->real_num_tx_queues))
3337 queue_index = -1;
3338 }
3339 }
3340 rcu_read_unlock();
3341
3342 return queue_index;
3343#else
3344 return -1;
3345#endif
3346}
3347
3348static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3349{
3350 struct sock *sk = skb->sk;
3351 int queue_index = sk_tx_queue_get(sk);
3352
3353 if (queue_index < 0 || skb->ooo_okay ||
3354 queue_index >= dev->real_num_tx_queues) {
3355 int new_index = get_xps_queue(dev, skb);
f4563a75 3356
638b2a69
JP
3357 if (new_index < 0)
3358 new_index = skb_tx_hash(dev, skb);
3359
3360 if (queue_index != new_index && sk &&
004a5d01 3361 sk_fullsock(sk) &&
638b2a69
JP
3362 rcu_access_pointer(sk->sk_dst_cache))
3363 sk_tx_queue_set(sk, new_index);
3364
3365 queue_index = new_index;
3366 }
3367
3368 return queue_index;
3369}
3370
3371struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3372 struct sk_buff *skb,
3373 void *accel_priv)
3374{
3375 int queue_index = 0;
3376
3377#ifdef CONFIG_XPS
52bd2d62
ED
3378 u32 sender_cpu = skb->sender_cpu - 1;
3379
3380 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3381 skb->sender_cpu = raw_smp_processor_id() + 1;
3382#endif
3383
3384 if (dev->real_num_tx_queues != 1) {
3385 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3386
638b2a69
JP
3387 if (ops->ndo_select_queue)
3388 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3389 __netdev_pick_tx);
3390 else
3391 queue_index = __netdev_pick_tx(dev, skb);
3392
3393 if (!accel_priv)
3394 queue_index = netdev_cap_txqueue(dev, queue_index);
3395 }
3396
3397 skb_set_queue_mapping(skb, queue_index);
3398 return netdev_get_tx_queue(dev, queue_index);
3399}
3400
d29f749e 3401/**
9d08dd3d 3402 * __dev_queue_xmit - transmit a buffer
d29f749e 3403 * @skb: buffer to transmit
9d08dd3d 3404 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3405 *
3406 * Queue a buffer for transmission to a network device. The caller must
3407 * have set the device and priority and built the buffer before calling
3408 * this function. The function can be called from an interrupt.
3409 *
3410 * A negative errno code is returned on a failure. A success does not
3411 * guarantee the frame will be transmitted as it may be dropped due
3412 * to congestion or traffic shaping.
3413 *
3414 * -----------------------------------------------------------------------------------
3415 * I notice this method can also return errors from the queue disciplines,
3416 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3417 * be positive.
3418 *
3419 * Regardless of the return value, the skb is consumed, so it is currently
3420 * difficult to retry a send to this method. (You can bump the ref count
3421 * before sending to hold a reference for retry if you are careful.)
3422 *
3423 * When calling this method, interrupts MUST be enabled. This is because
3424 * the BH enable code must have IRQs enabled so that it will not deadlock.
3425 * --BLG
3426 */
0a59f3a9 3427static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3428{
3429 struct net_device *dev = skb->dev;
dc2b4847 3430 struct netdev_queue *txq;
1da177e4
LT
3431 struct Qdisc *q;
3432 int rc = -ENOMEM;
3433
6d1ccff6
ED
3434 skb_reset_mac_header(skb);
3435
e7fd2885
WB
3436 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3437 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3438
4ec93edb
YH
3439 /* Disable soft irqs for various locks below. Also
3440 * stops preemption for RCU.
1da177e4 3441 */
4ec93edb 3442 rcu_read_lock_bh();
1da177e4 3443
5bc1421e
NH
3444 skb_update_prio(skb);
3445
1f211a1b
DB
3446 qdisc_pkt_len_init(skb);
3447#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3448 skb->tc_at_ingress = 0;
1f211a1b
DB
3449# ifdef CONFIG_NET_EGRESS
3450 if (static_key_false(&egress_needed)) {
3451 skb = sch_handle_egress(skb, &rc, dev);
3452 if (!skb)
3453 goto out;
3454 }
3455# endif
3456#endif
02875878
ED
3457 /* If device/qdisc don't need skb->dst, release it right now while
3458 * its hot in this cpu cache.
3459 */
3460 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3461 skb_dst_drop(skb);
3462 else
3463 skb_dst_force(skb);
3464
f663dd9a 3465 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3466 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3467
cf66ba58 3468 trace_net_dev_queue(skb);
1da177e4 3469 if (q->enqueue) {
bbd8a0d3 3470 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3471 goto out;
1da177e4
LT
3472 }
3473
3474 /* The device has no queue. Common case for software devices:
eb13da1a 3475 * loopback, all the sorts of tunnels...
1da177e4 3476
eb13da1a 3477 * Really, it is unlikely that netif_tx_lock protection is necessary
3478 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3479 * counters.)
3480 * However, it is possible, that they rely on protection
3481 * made by us here.
1da177e4 3482
eb13da1a 3483 * Check this and shot the lock. It is not prone from deadlocks.
3484 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3485 */
3486 if (dev->flags & IFF_UP) {
3487 int cpu = smp_processor_id(); /* ok because BHs are off */
3488
c773e847 3489 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3490 if (unlikely(__this_cpu_read(xmit_recursion) >
3491 XMIT_RECURSION_LIMIT))
745e20f1
ED
3492 goto recursion_alert;
3493
1f59533f
JDB
3494 skb = validate_xmit_skb(skb, dev);
3495 if (!skb)
d21fd63e 3496 goto out;
1f59533f 3497
c773e847 3498 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3499
73466498 3500 if (!netif_xmit_stopped(txq)) {
745e20f1 3501 __this_cpu_inc(xmit_recursion);
ce93718f 3502 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3503 __this_cpu_dec(xmit_recursion);
572a9d7b 3504 if (dev_xmit_complete(rc)) {
c773e847 3505 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3506 goto out;
3507 }
3508 }
c773e847 3509 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3510 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3511 dev->name);
1da177e4
LT
3512 } else {
3513 /* Recursion is detected! It is possible,
745e20f1
ED
3514 * unfortunately
3515 */
3516recursion_alert:
e87cc472
JP
3517 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3518 dev->name);
1da177e4
LT
3519 }
3520 }
3521
3522 rc = -ENETDOWN;
d4828d85 3523 rcu_read_unlock_bh();
1da177e4 3524
015f0688 3525 atomic_long_inc(&dev->tx_dropped);
1f59533f 3526 kfree_skb_list(skb);
1da177e4
LT
3527 return rc;
3528out:
d4828d85 3529 rcu_read_unlock_bh();
1da177e4
LT
3530 return rc;
3531}
f663dd9a 3532
2b4aa3ce 3533int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3534{
3535 return __dev_queue_xmit(skb, NULL);
3536}
2b4aa3ce 3537EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3538
f663dd9a
JW
3539int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3540{
3541 return __dev_queue_xmit(skb, accel_priv);
3542}
3543EXPORT_SYMBOL(dev_queue_xmit_accel);
3544
1da177e4 3545
eb13da1a 3546/*************************************************************************
3547 * Receiver routines
3548 *************************************************************************/
1da177e4 3549
6b2bedc3 3550int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3551EXPORT_SYMBOL(netdev_max_backlog);
3552
3b098e2d 3553int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3554int netdev_budget __read_mostly = 300;
7acf8a1e 3555unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3556int weight_p __read_mostly = 64; /* old backlog weight */
3557int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3558int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3559int dev_rx_weight __read_mostly = 64;
3560int dev_tx_weight __read_mostly = 64;
1da177e4 3561
eecfd7c4
ED
3562/* Called with irq disabled */
3563static inline void ____napi_schedule(struct softnet_data *sd,
3564 struct napi_struct *napi)
3565{
3566 list_add_tail(&napi->poll_list, &sd->poll_list);
3567 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3568}
3569
bfb564e7
KK
3570#ifdef CONFIG_RPS
3571
3572/* One global table that all flow-based protocols share. */
6e3f7faf 3573struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3574EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3575u32 rps_cpu_mask __read_mostly;
3576EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3577
c5905afb 3578struct static_key rps_needed __read_mostly;
3df97ba8 3579EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3580struct static_key rfs_needed __read_mostly;
3581EXPORT_SYMBOL(rfs_needed);
adc9300e 3582
c445477d
BH
3583static struct rps_dev_flow *
3584set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3585 struct rps_dev_flow *rflow, u16 next_cpu)
3586{
a31196b0 3587 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3588#ifdef CONFIG_RFS_ACCEL
3589 struct netdev_rx_queue *rxqueue;
3590 struct rps_dev_flow_table *flow_table;
3591 struct rps_dev_flow *old_rflow;
3592 u32 flow_id;
3593 u16 rxq_index;
3594 int rc;
3595
3596 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3597 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3598 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3599 goto out;
3600 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3601 if (rxq_index == skb_get_rx_queue(skb))
3602 goto out;
3603
3604 rxqueue = dev->_rx + rxq_index;
3605 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3606 if (!flow_table)
3607 goto out;
61b905da 3608 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3609 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3610 rxq_index, flow_id);
3611 if (rc < 0)
3612 goto out;
3613 old_rflow = rflow;
3614 rflow = &flow_table->flows[flow_id];
c445477d
BH
3615 rflow->filter = rc;
3616 if (old_rflow->filter == rflow->filter)
3617 old_rflow->filter = RPS_NO_FILTER;
3618 out:
3619#endif
3620 rflow->last_qtail =
09994d1b 3621 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3622 }
3623
09994d1b 3624 rflow->cpu = next_cpu;
c445477d
BH
3625 return rflow;
3626}
3627
bfb564e7
KK
3628/*
3629 * get_rps_cpu is called from netif_receive_skb and returns the target
3630 * CPU from the RPS map of the receiving queue for a given skb.
3631 * rcu_read_lock must be held on entry.
3632 */
3633static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3634 struct rps_dev_flow **rflowp)
3635{
567e4b79
ED
3636 const struct rps_sock_flow_table *sock_flow_table;
3637 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3638 struct rps_dev_flow_table *flow_table;
567e4b79 3639 struct rps_map *map;
bfb564e7 3640 int cpu = -1;
567e4b79 3641 u32 tcpu;
61b905da 3642 u32 hash;
bfb564e7
KK
3643
3644 if (skb_rx_queue_recorded(skb)) {
3645 u16 index = skb_get_rx_queue(skb);
567e4b79 3646
62fe0b40
BH
3647 if (unlikely(index >= dev->real_num_rx_queues)) {
3648 WARN_ONCE(dev->real_num_rx_queues > 1,
3649 "%s received packet on queue %u, but number "
3650 "of RX queues is %u\n",
3651 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3652 goto done;
3653 }
567e4b79
ED
3654 rxqueue += index;
3655 }
bfb564e7 3656
567e4b79
ED
3657 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3658
3659 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3660 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3661 if (!flow_table && !map)
bfb564e7
KK
3662 goto done;
3663
2d47b459 3664 skb_reset_network_header(skb);
61b905da
TH
3665 hash = skb_get_hash(skb);
3666 if (!hash)
bfb564e7
KK
3667 goto done;
3668
fec5e652
TH
3669 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3670 if (flow_table && sock_flow_table) {
fec5e652 3671 struct rps_dev_flow *rflow;
567e4b79
ED
3672 u32 next_cpu;
3673 u32 ident;
3674
3675 /* First check into global flow table if there is a match */
3676 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3677 if ((ident ^ hash) & ~rps_cpu_mask)
3678 goto try_rps;
fec5e652 3679
567e4b79
ED
3680 next_cpu = ident & rps_cpu_mask;
3681
3682 /* OK, now we know there is a match,
3683 * we can look at the local (per receive queue) flow table
3684 */
61b905da 3685 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3686 tcpu = rflow->cpu;
3687
fec5e652
TH
3688 /*
3689 * If the desired CPU (where last recvmsg was done) is
3690 * different from current CPU (one in the rx-queue flow
3691 * table entry), switch if one of the following holds:
a31196b0 3692 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3693 * - Current CPU is offline.
3694 * - The current CPU's queue tail has advanced beyond the
3695 * last packet that was enqueued using this table entry.
3696 * This guarantees that all previous packets for the flow
3697 * have been dequeued, thus preserving in order delivery.
3698 */
3699 if (unlikely(tcpu != next_cpu) &&
a31196b0 3700 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3701 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3702 rflow->last_qtail)) >= 0)) {
3703 tcpu = next_cpu;
c445477d 3704 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3705 }
c445477d 3706
a31196b0 3707 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3708 *rflowp = rflow;
3709 cpu = tcpu;
3710 goto done;
3711 }
3712 }
3713
567e4b79
ED
3714try_rps:
3715
0a9627f2 3716 if (map) {
8fc54f68 3717 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3718 if (cpu_online(tcpu)) {
3719 cpu = tcpu;
3720 goto done;
3721 }
3722 }
3723
3724done:
0a9627f2
TH
3725 return cpu;
3726}
3727
c445477d
BH
3728#ifdef CONFIG_RFS_ACCEL
3729
3730/**
3731 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3732 * @dev: Device on which the filter was set
3733 * @rxq_index: RX queue index
3734 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3735 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3736 *
3737 * Drivers that implement ndo_rx_flow_steer() should periodically call
3738 * this function for each installed filter and remove the filters for
3739 * which it returns %true.
3740 */
3741bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3742 u32 flow_id, u16 filter_id)
3743{
3744 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3745 struct rps_dev_flow_table *flow_table;
3746 struct rps_dev_flow *rflow;
3747 bool expire = true;
a31196b0 3748 unsigned int cpu;
c445477d
BH
3749
3750 rcu_read_lock();
3751 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3752 if (flow_table && flow_id <= flow_table->mask) {
3753 rflow = &flow_table->flows[flow_id];
3754 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3755 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3756 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3757 rflow->last_qtail) <
3758 (int)(10 * flow_table->mask)))
3759 expire = false;
3760 }
3761 rcu_read_unlock();
3762 return expire;
3763}
3764EXPORT_SYMBOL(rps_may_expire_flow);
3765
3766#endif /* CONFIG_RFS_ACCEL */
3767
0a9627f2 3768/* Called from hardirq (IPI) context */
e36fa2f7 3769static void rps_trigger_softirq(void *data)
0a9627f2 3770{
e36fa2f7
ED
3771 struct softnet_data *sd = data;
3772
eecfd7c4 3773 ____napi_schedule(sd, &sd->backlog);
dee42870 3774 sd->received_rps++;
0a9627f2 3775}
e36fa2f7 3776
fec5e652 3777#endif /* CONFIG_RPS */
0a9627f2 3778
e36fa2f7
ED
3779/*
3780 * Check if this softnet_data structure is another cpu one
3781 * If yes, queue it to our IPI list and return 1
3782 * If no, return 0
3783 */
3784static int rps_ipi_queued(struct softnet_data *sd)
3785{
3786#ifdef CONFIG_RPS
903ceff7 3787 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3788
3789 if (sd != mysd) {
3790 sd->rps_ipi_next = mysd->rps_ipi_list;
3791 mysd->rps_ipi_list = sd;
3792
3793 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3794 return 1;
3795 }
3796#endif /* CONFIG_RPS */
3797 return 0;
3798}
3799
99bbc707
WB
3800#ifdef CONFIG_NET_FLOW_LIMIT
3801int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3802#endif
3803
3804static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3805{
3806#ifdef CONFIG_NET_FLOW_LIMIT
3807 struct sd_flow_limit *fl;
3808 struct softnet_data *sd;
3809 unsigned int old_flow, new_flow;
3810
3811 if (qlen < (netdev_max_backlog >> 1))
3812 return false;
3813
903ceff7 3814 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3815
3816 rcu_read_lock();
3817 fl = rcu_dereference(sd->flow_limit);
3818 if (fl) {
3958afa1 3819 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3820 old_flow = fl->history[fl->history_head];
3821 fl->history[fl->history_head] = new_flow;
3822
3823 fl->history_head++;
3824 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3825
3826 if (likely(fl->buckets[old_flow]))
3827 fl->buckets[old_flow]--;
3828
3829 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3830 fl->count++;
3831 rcu_read_unlock();
3832 return true;
3833 }
3834 }
3835 rcu_read_unlock();
3836#endif
3837 return false;
3838}
3839
0a9627f2
TH
3840/*
3841 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3842 * queue (may be a remote CPU queue).
3843 */
fec5e652
TH
3844static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3845 unsigned int *qtail)
0a9627f2 3846{
e36fa2f7 3847 struct softnet_data *sd;
0a9627f2 3848 unsigned long flags;
99bbc707 3849 unsigned int qlen;
0a9627f2 3850
e36fa2f7 3851 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3852
3853 local_irq_save(flags);
0a9627f2 3854
e36fa2f7 3855 rps_lock(sd);
e9e4dd32
JA
3856 if (!netif_running(skb->dev))
3857 goto drop;
99bbc707
WB
3858 qlen = skb_queue_len(&sd->input_pkt_queue);
3859 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3860 if (qlen) {
0a9627f2 3861enqueue:
e36fa2f7 3862 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3863 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3864 rps_unlock(sd);
152102c7 3865 local_irq_restore(flags);
0a9627f2
TH
3866 return NET_RX_SUCCESS;
3867 }
3868
ebda37c2
ED
3869 /* Schedule NAPI for backlog device
3870 * We can use non atomic operation since we own the queue lock
3871 */
3872 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3873 if (!rps_ipi_queued(sd))
eecfd7c4 3874 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3875 }
3876 goto enqueue;
3877 }
3878
e9e4dd32 3879drop:
dee42870 3880 sd->dropped++;
e36fa2f7 3881 rps_unlock(sd);
0a9627f2 3882
0a9627f2
TH
3883 local_irq_restore(flags);
3884
caf586e5 3885 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3886 kfree_skb(skb);
3887 return NET_RX_DROP;
3888}
1da177e4 3889
d4455169
JF
3890static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3891 struct bpf_prog *xdp_prog)
3892{
de8f3a83 3893 u32 metalen, act = XDP_DROP;
d4455169 3894 struct xdp_buff xdp;
d4455169
JF
3895 void *orig_data;
3896 int hlen, off;
3897 u32 mac_len;
3898
3899 /* Reinjected packets coming from act_mirred or similar should
3900 * not get XDP generic processing.
3901 */
3902 if (skb_cloned(skb))
3903 return XDP_PASS;
3904
de8f3a83
DB
3905 /* XDP packets must be linear and must have sufficient headroom
3906 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3907 * native XDP provides, thus we need to do it here as well.
3908 */
3909 if (skb_is_nonlinear(skb) ||
3910 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3911 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3912 int troom = skb->tail + skb->data_len - skb->end;
3913
3914 /* In case we have to go down the path and also linearize,
3915 * then lets do the pskb_expand_head() work just once here.
3916 */
3917 if (pskb_expand_head(skb,
3918 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3919 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3920 goto do_drop;
3921 if (troom > 0 && __skb_linearize(skb))
3922 goto do_drop;
3923 }
d4455169
JF
3924
3925 /* The XDP program wants to see the packet starting at the MAC
3926 * header.
3927 */
3928 mac_len = skb->data - skb_mac_header(skb);
3929 hlen = skb_headlen(skb) + mac_len;
3930 xdp.data = skb->data - mac_len;
de8f3a83 3931 xdp.data_meta = xdp.data;
d4455169
JF
3932 xdp.data_end = xdp.data + hlen;
3933 xdp.data_hard_start = skb->data - skb_headroom(skb);
3934 orig_data = xdp.data;
3935
3936 act = bpf_prog_run_xdp(xdp_prog, &xdp);
3937
3938 off = xdp.data - orig_data;
3939 if (off > 0)
3940 __skb_pull(skb, off);
3941 else if (off < 0)
3942 __skb_push(skb, -off);
92dd5452 3943 skb->mac_header += off;
d4455169
JF
3944
3945 switch (act) {
6103aa96 3946 case XDP_REDIRECT:
d4455169
JF
3947 case XDP_TX:
3948 __skb_push(skb, mac_len);
de8f3a83 3949 break;
d4455169 3950 case XDP_PASS:
de8f3a83
DB
3951 metalen = xdp.data - xdp.data_meta;
3952 if (metalen)
3953 skb_metadata_set(skb, metalen);
d4455169 3954 break;
d4455169
JF
3955 default:
3956 bpf_warn_invalid_xdp_action(act);
3957 /* fall through */
3958 case XDP_ABORTED:
3959 trace_xdp_exception(skb->dev, xdp_prog, act);
3960 /* fall through */
3961 case XDP_DROP:
3962 do_drop:
3963 kfree_skb(skb);
3964 break;
3965 }
3966
3967 return act;
3968}
3969
3970/* When doing generic XDP we have to bypass the qdisc layer and the
3971 * network taps in order to match in-driver-XDP behavior.
3972 */
7c497478 3973void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
3974{
3975 struct net_device *dev = skb->dev;
3976 struct netdev_queue *txq;
3977 bool free_skb = true;
3978 int cpu, rc;
3979
3980 txq = netdev_pick_tx(dev, skb, NULL);
3981 cpu = smp_processor_id();
3982 HARD_TX_LOCK(dev, txq, cpu);
3983 if (!netif_xmit_stopped(txq)) {
3984 rc = netdev_start_xmit(skb, dev, txq, 0);
3985 if (dev_xmit_complete(rc))
3986 free_skb = false;
3987 }
3988 HARD_TX_UNLOCK(dev, txq);
3989 if (free_skb) {
3990 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3991 kfree_skb(skb);
3992 }
3993}
7c497478 3994EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169
JF
3995
3996static struct static_key generic_xdp_needed __read_mostly;
3997
7c497478 3998int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 3999{
d4455169
JF
4000 if (xdp_prog) {
4001 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
6103aa96 4002 int err;
d4455169
JF
4003
4004 if (act != XDP_PASS) {
6103aa96
JF
4005 switch (act) {
4006 case XDP_REDIRECT:
2facaad6
JDB
4007 err = xdp_do_generic_redirect(skb->dev, skb,
4008 xdp_prog);
6103aa96
JF
4009 if (err)
4010 goto out_redir;
4011 /* fallthru to submit skb */
4012 case XDP_TX:
d4455169 4013 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4014 break;
4015 }
d4455169
JF
4016 return XDP_DROP;
4017 }
4018 }
4019 return XDP_PASS;
6103aa96 4020out_redir:
6103aa96
JF
4021 kfree_skb(skb);
4022 return XDP_DROP;
d4455169 4023}
7c497478 4024EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4025
ae78dbfa 4026static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4027{
b0e28f1e 4028 int ret;
1da177e4 4029
588f0330 4030 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4031
cf66ba58 4032 trace_netif_rx(skb);
d4455169
JF
4033
4034 if (static_key_false(&generic_xdp_needed)) {
bbbe211c
JF
4035 int ret;
4036
4037 preempt_disable();
4038 rcu_read_lock();
4039 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4040 rcu_read_unlock();
4041 preempt_enable();
d4455169 4042
6103aa96
JF
4043 /* Consider XDP consuming the packet a success from
4044 * the netdev point of view we do not want to count
4045 * this as an error.
4046 */
d4455169 4047 if (ret != XDP_PASS)
6103aa96 4048 return NET_RX_SUCCESS;
d4455169
JF
4049 }
4050
df334545 4051#ifdef CONFIG_RPS
c5905afb 4052 if (static_key_false(&rps_needed)) {
fec5e652 4053 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4054 int cpu;
4055
cece1945 4056 preempt_disable();
b0e28f1e 4057 rcu_read_lock();
fec5e652
TH
4058
4059 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4060 if (cpu < 0)
4061 cpu = smp_processor_id();
fec5e652
TH
4062
4063 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4064
b0e28f1e 4065 rcu_read_unlock();
cece1945 4066 preempt_enable();
adc9300e
ED
4067 } else
4068#endif
fec5e652
TH
4069 {
4070 unsigned int qtail;
f4563a75 4071
fec5e652
TH
4072 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4073 put_cpu();
4074 }
b0e28f1e 4075 return ret;
1da177e4 4076}
ae78dbfa
BH
4077
4078/**
4079 * netif_rx - post buffer to the network code
4080 * @skb: buffer to post
4081 *
4082 * This function receives a packet from a device driver and queues it for
4083 * the upper (protocol) levels to process. It always succeeds. The buffer
4084 * may be dropped during processing for congestion control or by the
4085 * protocol layers.
4086 *
4087 * return values:
4088 * NET_RX_SUCCESS (no congestion)
4089 * NET_RX_DROP (packet was dropped)
4090 *
4091 */
4092
4093int netif_rx(struct sk_buff *skb)
4094{
4095 trace_netif_rx_entry(skb);
4096
4097 return netif_rx_internal(skb);
4098}
d1b19dff 4099EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4100
4101int netif_rx_ni(struct sk_buff *skb)
4102{
4103 int err;
4104
ae78dbfa
BH
4105 trace_netif_rx_ni_entry(skb);
4106
1da177e4 4107 preempt_disable();
ae78dbfa 4108 err = netif_rx_internal(skb);
1da177e4
LT
4109 if (local_softirq_pending())
4110 do_softirq();
4111 preempt_enable();
4112
4113 return err;
4114}
1da177e4
LT
4115EXPORT_SYMBOL(netif_rx_ni);
4116
0766f788 4117static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4118{
903ceff7 4119 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4120
4121 if (sd->completion_queue) {
4122 struct sk_buff *clist;
4123
4124 local_irq_disable();
4125 clist = sd->completion_queue;
4126 sd->completion_queue = NULL;
4127 local_irq_enable();
4128
4129 while (clist) {
4130 struct sk_buff *skb = clist;
f4563a75 4131
1da177e4
LT
4132 clist = clist->next;
4133
63354797 4134 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4135 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4136 trace_consume_skb(skb);
4137 else
4138 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4139
4140 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4141 __kfree_skb(skb);
4142 else
4143 __kfree_skb_defer(skb);
1da177e4 4144 }
15fad714
JDB
4145
4146 __kfree_skb_flush();
1da177e4
LT
4147 }
4148
4149 if (sd->output_queue) {
37437bb2 4150 struct Qdisc *head;
1da177e4
LT
4151
4152 local_irq_disable();
4153 head = sd->output_queue;
4154 sd->output_queue = NULL;
a9cbd588 4155 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4156 local_irq_enable();
4157
4158 while (head) {
37437bb2
DM
4159 struct Qdisc *q = head;
4160 spinlock_t *root_lock;
4161
1da177e4
LT
4162 head = head->next_sched;
4163
5fb66229 4164 root_lock = qdisc_lock(q);
3bcb846c
ED
4165 spin_lock(root_lock);
4166 /* We need to make sure head->next_sched is read
4167 * before clearing __QDISC_STATE_SCHED
4168 */
4169 smp_mb__before_atomic();
4170 clear_bit(__QDISC_STATE_SCHED, &q->state);
4171 qdisc_run(q);
4172 spin_unlock(root_lock);
1da177e4
LT
4173 }
4174 }
4175}
4176
181402a5 4177#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4178/* This hook is defined here for ATM LANE */
4179int (*br_fdb_test_addr_hook)(struct net_device *dev,
4180 unsigned char *addr) __read_mostly;
4fb019a0 4181EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4182#endif
1da177e4 4183
1f211a1b
DB
4184static inline struct sk_buff *
4185sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4186 struct net_device *orig_dev)
f697c3e8 4187{
e7582bab 4188#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
4189 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4190 struct tcf_result cl_res;
24824a09 4191
c9e99fd0
DB
4192 /* If there's at least one ingress present somewhere (so
4193 * we get here via enabled static key), remaining devices
4194 * that are not configured with an ingress qdisc will bail
d2788d34 4195 * out here.
c9e99fd0 4196 */
d2788d34 4197 if (!cl)
4577139b 4198 return skb;
f697c3e8
HX
4199 if (*pt_prev) {
4200 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4201 *pt_prev = NULL;
1da177e4
LT
4202 }
4203
3365495c 4204 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4205 skb->tc_at_ingress = 1;
24ea591d 4206 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 4207
87d83093 4208 switch (tcf_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
4209 case TC_ACT_OK:
4210 case TC_ACT_RECLASSIFY:
4211 skb->tc_index = TC_H_MIN(cl_res.classid);
4212 break;
4213 case TC_ACT_SHOT:
24ea591d 4214 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
4215 kfree_skb(skb);
4216 return NULL;
d2788d34
DB
4217 case TC_ACT_STOLEN:
4218 case TC_ACT_QUEUED:
e25ea21f 4219 case TC_ACT_TRAP:
8a3a4c6e 4220 consume_skb(skb);
d2788d34 4221 return NULL;
27b29f63
AS
4222 case TC_ACT_REDIRECT:
4223 /* skb_mac_header check was done by cls/act_bpf, so
4224 * we can safely push the L2 header back before
4225 * redirecting to another netdev
4226 */
4227 __skb_push(skb, skb->mac_len);
4228 skb_do_redirect(skb);
4229 return NULL;
d2788d34
DB
4230 default:
4231 break;
f697c3e8 4232 }
e7582bab 4233#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4234 return skb;
4235}
1da177e4 4236
24b27fc4
MB
4237/**
4238 * netdev_is_rx_handler_busy - check if receive handler is registered
4239 * @dev: device to check
4240 *
4241 * Check if a receive handler is already registered for a given device.
4242 * Return true if there one.
4243 *
4244 * The caller must hold the rtnl_mutex.
4245 */
4246bool netdev_is_rx_handler_busy(struct net_device *dev)
4247{
4248 ASSERT_RTNL();
4249 return dev && rtnl_dereference(dev->rx_handler);
4250}
4251EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4252
ab95bfe0
JP
4253/**
4254 * netdev_rx_handler_register - register receive handler
4255 * @dev: device to register a handler for
4256 * @rx_handler: receive handler to register
93e2c32b 4257 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4258 *
e227867f 4259 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4260 * called from __netif_receive_skb. A negative errno code is returned
4261 * on a failure.
4262 *
4263 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4264 *
4265 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4266 */
4267int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4268 rx_handler_func_t *rx_handler,
4269 void *rx_handler_data)
ab95bfe0 4270{
1b7cd004 4271 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4272 return -EBUSY;
4273
00cfec37 4274 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4275 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4276 rcu_assign_pointer(dev->rx_handler, rx_handler);
4277
4278 return 0;
4279}
4280EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4281
4282/**
4283 * netdev_rx_handler_unregister - unregister receive handler
4284 * @dev: device to unregister a handler from
4285 *
166ec369 4286 * Unregister a receive handler from a device.
ab95bfe0
JP
4287 *
4288 * The caller must hold the rtnl_mutex.
4289 */
4290void netdev_rx_handler_unregister(struct net_device *dev)
4291{
4292
4293 ASSERT_RTNL();
a9b3cd7f 4294 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4295 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4296 * section has a guarantee to see a non NULL rx_handler_data
4297 * as well.
4298 */
4299 synchronize_net();
a9b3cd7f 4300 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4301}
4302EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4303
b4b9e355
MG
4304/*
4305 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4306 * the special handling of PFMEMALLOC skbs.
4307 */
4308static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4309{
4310 switch (skb->protocol) {
2b8837ae
JP
4311 case htons(ETH_P_ARP):
4312 case htons(ETH_P_IP):
4313 case htons(ETH_P_IPV6):
4314 case htons(ETH_P_8021Q):
4315 case htons(ETH_P_8021AD):
b4b9e355
MG
4316 return true;
4317 default:
4318 return false;
4319 }
4320}
4321
e687ad60
PN
4322static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4323 int *ret, struct net_device *orig_dev)
4324{
e7582bab 4325#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4326 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4327 int ingress_retval;
4328
e687ad60
PN
4329 if (*pt_prev) {
4330 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4331 *pt_prev = NULL;
4332 }
4333
2c1e2703
AC
4334 rcu_read_lock();
4335 ingress_retval = nf_hook_ingress(skb);
4336 rcu_read_unlock();
4337 return ingress_retval;
e687ad60 4338 }
e7582bab 4339#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4340 return 0;
4341}
e687ad60 4342
9754e293 4343static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4344{
4345 struct packet_type *ptype, *pt_prev;
ab95bfe0 4346 rx_handler_func_t *rx_handler;
f2ccd8fa 4347 struct net_device *orig_dev;
8a4eb573 4348 bool deliver_exact = false;
1da177e4 4349 int ret = NET_RX_DROP;
252e3346 4350 __be16 type;
1da177e4 4351
588f0330 4352 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4353
cf66ba58 4354 trace_netif_receive_skb(skb);
9b22ea56 4355
cc9bd5ce 4356 orig_dev = skb->dev;
8f903c70 4357
c1d2bbe1 4358 skb_reset_network_header(skb);
fda55eca
ED
4359 if (!skb_transport_header_was_set(skb))
4360 skb_reset_transport_header(skb);
0b5c9db1 4361 skb_reset_mac_len(skb);
1da177e4
LT
4362
4363 pt_prev = NULL;
4364
63d8ea7f 4365another_round:
b6858177 4366 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4367
4368 __this_cpu_inc(softnet_data.processed);
4369
8ad227ff
PM
4370 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4371 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4372 skb = skb_vlan_untag(skb);
bcc6d479 4373 if (unlikely(!skb))
2c17d27c 4374 goto out;
bcc6d479
JP
4375 }
4376
e7246e12
WB
4377 if (skb_skip_tc_classify(skb))
4378 goto skip_classify;
1da177e4 4379
9754e293 4380 if (pfmemalloc)
b4b9e355
MG
4381 goto skip_taps;
4382
1da177e4 4383 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4384 if (pt_prev)
4385 ret = deliver_skb(skb, pt_prev, orig_dev);
4386 pt_prev = ptype;
4387 }
4388
4389 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4390 if (pt_prev)
4391 ret = deliver_skb(skb, pt_prev, orig_dev);
4392 pt_prev = ptype;
1da177e4
LT
4393 }
4394
b4b9e355 4395skip_taps:
1cf51900 4396#ifdef CONFIG_NET_INGRESS
4577139b 4397 if (static_key_false(&ingress_needed)) {
1f211a1b 4398 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4399 if (!skb)
2c17d27c 4400 goto out;
e687ad60
PN
4401
4402 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4403 goto out;
4577139b 4404 }
1cf51900 4405#endif
a5135bcf 4406 skb_reset_tc(skb);
e7246e12 4407skip_classify:
9754e293 4408 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4409 goto drop;
4410
df8a39de 4411 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4412 if (pt_prev) {
4413 ret = deliver_skb(skb, pt_prev, orig_dev);
4414 pt_prev = NULL;
4415 }
48cc32d3 4416 if (vlan_do_receive(&skb))
2425717b
JF
4417 goto another_round;
4418 else if (unlikely(!skb))
2c17d27c 4419 goto out;
2425717b
JF
4420 }
4421
48cc32d3 4422 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4423 if (rx_handler) {
4424 if (pt_prev) {
4425 ret = deliver_skb(skb, pt_prev, orig_dev);
4426 pt_prev = NULL;
4427 }
8a4eb573
JP
4428 switch (rx_handler(&skb)) {
4429 case RX_HANDLER_CONSUMED:
3bc1b1ad 4430 ret = NET_RX_SUCCESS;
2c17d27c 4431 goto out;
8a4eb573 4432 case RX_HANDLER_ANOTHER:
63d8ea7f 4433 goto another_round;
8a4eb573
JP
4434 case RX_HANDLER_EXACT:
4435 deliver_exact = true;
4436 case RX_HANDLER_PASS:
4437 break;
4438 default:
4439 BUG();
4440 }
ab95bfe0 4441 }
1da177e4 4442
df8a39de
JP
4443 if (unlikely(skb_vlan_tag_present(skb))) {
4444 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4445 skb->pkt_type = PACKET_OTHERHOST;
4446 /* Note: we might in the future use prio bits
4447 * and set skb->priority like in vlan_do_receive()
4448 * For the time being, just ignore Priority Code Point
4449 */
4450 skb->vlan_tci = 0;
4451 }
48cc32d3 4452
7866a621
SN
4453 type = skb->protocol;
4454
63d8ea7f 4455 /* deliver only exact match when indicated */
7866a621
SN
4456 if (likely(!deliver_exact)) {
4457 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4458 &ptype_base[ntohs(type) &
4459 PTYPE_HASH_MASK]);
4460 }
1f3c8804 4461
7866a621
SN
4462 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4463 &orig_dev->ptype_specific);
4464
4465 if (unlikely(skb->dev != orig_dev)) {
4466 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4467 &skb->dev->ptype_specific);
1da177e4
LT
4468 }
4469
4470 if (pt_prev) {
1f8b977a 4471 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4472 goto drop;
1080e512
MT
4473 else
4474 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4475 } else {
b4b9e355 4476drop:
6e7333d3
JW
4477 if (!deliver_exact)
4478 atomic_long_inc(&skb->dev->rx_dropped);
4479 else
4480 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4481 kfree_skb(skb);
4482 /* Jamal, now you will not able to escape explaining
4483 * me how you were going to use this. :-)
4484 */
4485 ret = NET_RX_DROP;
4486 }
4487
2c17d27c 4488out:
9754e293
DM
4489 return ret;
4490}
4491
4492static int __netif_receive_skb(struct sk_buff *skb)
4493{
4494 int ret;
4495
4496 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 4497 unsigned int noreclaim_flag;
9754e293
DM
4498
4499 /*
4500 * PFMEMALLOC skbs are special, they should
4501 * - be delivered to SOCK_MEMALLOC sockets only
4502 * - stay away from userspace
4503 * - have bounded memory usage
4504 *
4505 * Use PF_MEMALLOC as this saves us from propagating the allocation
4506 * context down to all allocation sites.
4507 */
f1083048 4508 noreclaim_flag = memalloc_noreclaim_save();
9754e293 4509 ret = __netif_receive_skb_core(skb, true);
f1083048 4510 memalloc_noreclaim_restore(noreclaim_flag);
9754e293
DM
4511 } else
4512 ret = __netif_receive_skb_core(skb, false);
4513
1da177e4
LT
4514 return ret;
4515}
0a9627f2 4516
b5cdae32
DM
4517static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4518{
58038695 4519 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
4520 struct bpf_prog *new = xdp->prog;
4521 int ret = 0;
4522
4523 switch (xdp->command) {
58038695 4524 case XDP_SETUP_PROG:
b5cdae32
DM
4525 rcu_assign_pointer(dev->xdp_prog, new);
4526 if (old)
4527 bpf_prog_put(old);
4528
4529 if (old && !new) {
4530 static_key_slow_dec(&generic_xdp_needed);
4531 } else if (new && !old) {
4532 static_key_slow_inc(&generic_xdp_needed);
4533 dev_disable_lro(dev);
4534 }
4535 break;
b5cdae32
DM
4536
4537 case XDP_QUERY_PROG:
58038695
MKL
4538 xdp->prog_attached = !!old;
4539 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
4540 break;
4541
4542 default:
4543 ret = -EINVAL;
4544 break;
4545 }
4546
4547 return ret;
4548}
4549
ae78dbfa 4550static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4551{
2c17d27c
JA
4552 int ret;
4553
588f0330 4554 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4555
c1f19b51
RC
4556 if (skb_defer_rx_timestamp(skb))
4557 return NET_RX_SUCCESS;
4558
b5cdae32 4559 if (static_key_false(&generic_xdp_needed)) {
bbbe211c 4560 int ret;
b5cdae32 4561
bbbe211c
JF
4562 preempt_disable();
4563 rcu_read_lock();
4564 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4565 rcu_read_unlock();
4566 preempt_enable();
4567
4568 if (ret != XDP_PASS)
d4455169 4569 return NET_RX_DROP;
b5cdae32
DM
4570 }
4571
bbbe211c 4572 rcu_read_lock();
df334545 4573#ifdef CONFIG_RPS
c5905afb 4574 if (static_key_false(&rps_needed)) {
3b098e2d 4575 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4576 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4577
3b098e2d
ED
4578 if (cpu >= 0) {
4579 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4580 rcu_read_unlock();
adc9300e 4581 return ret;
3b098e2d 4582 }
fec5e652 4583 }
1e94d72f 4584#endif
2c17d27c
JA
4585 ret = __netif_receive_skb(skb);
4586 rcu_read_unlock();
4587 return ret;
0a9627f2 4588}
ae78dbfa
BH
4589
4590/**
4591 * netif_receive_skb - process receive buffer from network
4592 * @skb: buffer to process
4593 *
4594 * netif_receive_skb() is the main receive data processing function.
4595 * It always succeeds. The buffer may be dropped during processing
4596 * for congestion control or by the protocol layers.
4597 *
4598 * This function may only be called from softirq context and interrupts
4599 * should be enabled.
4600 *
4601 * Return values (usually ignored):
4602 * NET_RX_SUCCESS: no congestion
4603 * NET_RX_DROP: packet was dropped
4604 */
04eb4489 4605int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4606{
4607 trace_netif_receive_skb_entry(skb);
4608
4609 return netif_receive_skb_internal(skb);
4610}
04eb4489 4611EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4612
41852497 4613DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4614
4615/* Network device is going away, flush any packets still pending */
4616static void flush_backlog(struct work_struct *work)
6e583ce5 4617{
6e583ce5 4618 struct sk_buff *skb, *tmp;
145dd5f9
PA
4619 struct softnet_data *sd;
4620
4621 local_bh_disable();
4622 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4623
145dd5f9 4624 local_irq_disable();
e36fa2f7 4625 rps_lock(sd);
6e7676c1 4626 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4627 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4628 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4629 kfree_skb(skb);
76cc8b13 4630 input_queue_head_incr(sd);
6e583ce5 4631 }
6e7676c1 4632 }
e36fa2f7 4633 rps_unlock(sd);
145dd5f9 4634 local_irq_enable();
6e7676c1
CG
4635
4636 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4637 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4638 __skb_unlink(skb, &sd->process_queue);
4639 kfree_skb(skb);
76cc8b13 4640 input_queue_head_incr(sd);
6e7676c1
CG
4641 }
4642 }
145dd5f9
PA
4643 local_bh_enable();
4644}
4645
41852497 4646static void flush_all_backlogs(void)
145dd5f9
PA
4647{
4648 unsigned int cpu;
4649
4650 get_online_cpus();
4651
41852497
ED
4652 for_each_online_cpu(cpu)
4653 queue_work_on(cpu, system_highpri_wq,
4654 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4655
4656 for_each_online_cpu(cpu)
41852497 4657 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4658
4659 put_online_cpus();
6e583ce5
SH
4660}
4661
d565b0a1
HX
4662static int napi_gro_complete(struct sk_buff *skb)
4663{
22061d80 4664 struct packet_offload *ptype;
d565b0a1 4665 __be16 type = skb->protocol;
22061d80 4666 struct list_head *head = &offload_base;
d565b0a1
HX
4667 int err = -ENOENT;
4668
c3c7c254
ED
4669 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4670
fc59f9a3
HX
4671 if (NAPI_GRO_CB(skb)->count == 1) {
4672 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4673 goto out;
fc59f9a3 4674 }
d565b0a1
HX
4675
4676 rcu_read_lock();
4677 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4678 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4679 continue;
4680
299603e8 4681 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4682 break;
4683 }
4684 rcu_read_unlock();
4685
4686 if (err) {
4687 WARN_ON(&ptype->list == head);
4688 kfree_skb(skb);
4689 return NET_RX_SUCCESS;
4690 }
4691
4692out:
ae78dbfa 4693 return netif_receive_skb_internal(skb);
d565b0a1
HX
4694}
4695
2e71a6f8
ED
4696/* napi->gro_list contains packets ordered by age.
4697 * youngest packets at the head of it.
4698 * Complete skbs in reverse order to reduce latencies.
4699 */
4700void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4701{
2e71a6f8 4702 struct sk_buff *skb, *prev = NULL;
d565b0a1 4703
2e71a6f8
ED
4704 /* scan list and build reverse chain */
4705 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4706 skb->prev = prev;
4707 prev = skb;
4708 }
4709
4710 for (skb = prev; skb; skb = prev) {
d565b0a1 4711 skb->next = NULL;
2e71a6f8
ED
4712
4713 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4714 return;
4715
4716 prev = skb->prev;
d565b0a1 4717 napi_gro_complete(skb);
2e71a6f8 4718 napi->gro_count--;
d565b0a1
HX
4719 }
4720
4721 napi->gro_list = NULL;
4722}
86cac58b 4723EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4724
89c5fa33
ED
4725static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4726{
4727 struct sk_buff *p;
4728 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4729 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4730
4731 for (p = napi->gro_list; p; p = p->next) {
4732 unsigned long diffs;
4733
0b4cec8c
TH
4734 NAPI_GRO_CB(p)->flush = 0;
4735
4736 if (hash != skb_get_hash_raw(p)) {
4737 NAPI_GRO_CB(p)->same_flow = 0;
4738 continue;
4739 }
4740
89c5fa33
ED
4741 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4742 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4743 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 4744 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
4745 if (maclen == ETH_HLEN)
4746 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4747 skb_mac_header(skb));
89c5fa33
ED
4748 else if (!diffs)
4749 diffs = memcmp(skb_mac_header(p),
a50e233c 4750 skb_mac_header(skb),
89c5fa33
ED
4751 maclen);
4752 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4753 }
4754}
4755
299603e8
JC
4756static void skb_gro_reset_offset(struct sk_buff *skb)
4757{
4758 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4759 const skb_frag_t *frag0 = &pinfo->frags[0];
4760
4761 NAPI_GRO_CB(skb)->data_offset = 0;
4762 NAPI_GRO_CB(skb)->frag0 = NULL;
4763 NAPI_GRO_CB(skb)->frag0_len = 0;
4764
4765 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4766 pinfo->nr_frags &&
4767 !PageHighMem(skb_frag_page(frag0))) {
4768 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4769 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4770 skb_frag_size(frag0),
4771 skb->end - skb->tail);
89c5fa33
ED
4772 }
4773}
4774
a50e233c
ED
4775static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4776{
4777 struct skb_shared_info *pinfo = skb_shinfo(skb);
4778
4779 BUG_ON(skb->end - skb->tail < grow);
4780
4781 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4782
4783 skb->data_len -= grow;
4784 skb->tail += grow;
4785
4786 pinfo->frags[0].page_offset += grow;
4787 skb_frag_size_sub(&pinfo->frags[0], grow);
4788
4789 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4790 skb_frag_unref(skb, 0);
4791 memmove(pinfo->frags, pinfo->frags + 1,
4792 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4793 }
4794}
4795
bb728820 4796static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4797{
4798 struct sk_buff **pp = NULL;
22061d80 4799 struct packet_offload *ptype;
d565b0a1 4800 __be16 type = skb->protocol;
22061d80 4801 struct list_head *head = &offload_base;
0da2afd5 4802 int same_flow;
5b252f0c 4803 enum gro_result ret;
a50e233c 4804 int grow;
d565b0a1 4805
b5cdae32 4806 if (netif_elide_gro(skb->dev))
d565b0a1
HX
4807 goto normal;
4808
89c5fa33
ED
4809 gro_list_prepare(napi, skb);
4810
d565b0a1
HX
4811 rcu_read_lock();
4812 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4813 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4814 continue;
4815
86911732 4816 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4817 skb_reset_mac_len(skb);
d565b0a1 4818 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4819 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4820 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4821 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4822 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4823 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4824 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4825 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4826
662880f4
TH
4827 /* Setup for GRO checksum validation */
4828 switch (skb->ip_summed) {
4829 case CHECKSUM_COMPLETE:
4830 NAPI_GRO_CB(skb)->csum = skb->csum;
4831 NAPI_GRO_CB(skb)->csum_valid = 1;
4832 NAPI_GRO_CB(skb)->csum_cnt = 0;
4833 break;
4834 case CHECKSUM_UNNECESSARY:
4835 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4836 NAPI_GRO_CB(skb)->csum_valid = 0;
4837 break;
4838 default:
4839 NAPI_GRO_CB(skb)->csum_cnt = 0;
4840 NAPI_GRO_CB(skb)->csum_valid = 0;
4841 }
d565b0a1 4842
f191a1d1 4843 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4844 break;
4845 }
4846 rcu_read_unlock();
4847
4848 if (&ptype->list == head)
4849 goto normal;
4850
25393d3f
SK
4851 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4852 ret = GRO_CONSUMED;
4853 goto ok;
4854 }
4855
0da2afd5 4856 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4857 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4858
d565b0a1
HX
4859 if (pp) {
4860 struct sk_buff *nskb = *pp;
4861
4862 *pp = nskb->next;
4863 nskb->next = NULL;
4864 napi_gro_complete(nskb);
4ae5544f 4865 napi->gro_count--;
d565b0a1
HX
4866 }
4867
0da2afd5 4868 if (same_flow)
d565b0a1
HX
4869 goto ok;
4870
600adc18 4871 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4872 goto normal;
d565b0a1 4873
600adc18
ED
4874 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4875 struct sk_buff *nskb = napi->gro_list;
4876
4877 /* locate the end of the list to select the 'oldest' flow */
4878 while (nskb->next) {
4879 pp = &nskb->next;
4880 nskb = *pp;
4881 }
4882 *pp = NULL;
4883 nskb->next = NULL;
4884 napi_gro_complete(nskb);
4885 } else {
4886 napi->gro_count++;
4887 }
d565b0a1 4888 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4889 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4890 NAPI_GRO_CB(skb)->last = skb;
86911732 4891 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4892 skb->next = napi->gro_list;
4893 napi->gro_list = skb;
5d0d9be8 4894 ret = GRO_HELD;
d565b0a1 4895
ad0f9904 4896pull:
a50e233c
ED
4897 grow = skb_gro_offset(skb) - skb_headlen(skb);
4898 if (grow > 0)
4899 gro_pull_from_frag0(skb, grow);
d565b0a1 4900ok:
5d0d9be8 4901 return ret;
d565b0a1
HX
4902
4903normal:
ad0f9904
HX
4904 ret = GRO_NORMAL;
4905 goto pull;
5d38a079 4906}
96e93eab 4907
bf5a755f
JC
4908struct packet_offload *gro_find_receive_by_type(__be16 type)
4909{
4910 struct list_head *offload_head = &offload_base;
4911 struct packet_offload *ptype;
4912
4913 list_for_each_entry_rcu(ptype, offload_head, list) {
4914 if (ptype->type != type || !ptype->callbacks.gro_receive)
4915 continue;
4916 return ptype;
4917 }
4918 return NULL;
4919}
e27a2f83 4920EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4921
4922struct packet_offload *gro_find_complete_by_type(__be16 type)
4923{
4924 struct list_head *offload_head = &offload_base;
4925 struct packet_offload *ptype;
4926
4927 list_for_each_entry_rcu(ptype, offload_head, list) {
4928 if (ptype->type != type || !ptype->callbacks.gro_complete)
4929 continue;
4930 return ptype;
4931 }
4932 return NULL;
4933}
e27a2f83 4934EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4935
e44699d2
MK
4936static void napi_skb_free_stolen_head(struct sk_buff *skb)
4937{
4938 skb_dst_drop(skb);
4939 secpath_reset(skb);
4940 kmem_cache_free(skbuff_head_cache, skb);
4941}
4942
bb728820 4943static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4944{
5d0d9be8
HX
4945 switch (ret) {
4946 case GRO_NORMAL:
ae78dbfa 4947 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4948 ret = GRO_DROP;
4949 break;
5d38a079 4950
5d0d9be8 4951 case GRO_DROP:
5d38a079
HX
4952 kfree_skb(skb);
4953 break;
5b252f0c 4954
daa86548 4955 case GRO_MERGED_FREE:
e44699d2
MK
4956 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4957 napi_skb_free_stolen_head(skb);
4958 else
d7e8883c 4959 __kfree_skb(skb);
daa86548
ED
4960 break;
4961
5b252f0c
BH
4962 case GRO_HELD:
4963 case GRO_MERGED:
25393d3f 4964 case GRO_CONSUMED:
5b252f0c 4965 break;
5d38a079
HX
4966 }
4967
c7c4b3b6 4968 return ret;
5d0d9be8 4969}
5d0d9be8 4970
c7c4b3b6 4971gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4972{
93f93a44 4973 skb_mark_napi_id(skb, napi);
ae78dbfa 4974 trace_napi_gro_receive_entry(skb);
86911732 4975
a50e233c
ED
4976 skb_gro_reset_offset(skb);
4977
89c5fa33 4978 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4979}
4980EXPORT_SYMBOL(napi_gro_receive);
4981
d0c2b0d2 4982static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4983{
93a35f59
ED
4984 if (unlikely(skb->pfmemalloc)) {
4985 consume_skb(skb);
4986 return;
4987 }
96e93eab 4988 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4989 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4990 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4991 skb->vlan_tci = 0;
66c46d74 4992 skb->dev = napi->dev;
6d152e23 4993 skb->skb_iif = 0;
c3caf119
JC
4994 skb->encapsulation = 0;
4995 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4996 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 4997 secpath_reset(skb);
96e93eab
HX
4998
4999 napi->skb = skb;
5000}
96e93eab 5001
76620aaf 5002struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5003{
5d38a079 5004 struct sk_buff *skb = napi->skb;
5d38a079
HX
5005
5006 if (!skb) {
fd11a83d 5007 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5008 if (skb) {
5009 napi->skb = skb;
5010 skb_mark_napi_id(skb, napi);
5011 }
80595d59 5012 }
96e93eab
HX
5013 return skb;
5014}
76620aaf 5015EXPORT_SYMBOL(napi_get_frags);
96e93eab 5016
a50e233c
ED
5017static gro_result_t napi_frags_finish(struct napi_struct *napi,
5018 struct sk_buff *skb,
5019 gro_result_t ret)
96e93eab 5020{
5d0d9be8
HX
5021 switch (ret) {
5022 case GRO_NORMAL:
a50e233c
ED
5023 case GRO_HELD:
5024 __skb_push(skb, ETH_HLEN);
5025 skb->protocol = eth_type_trans(skb, skb->dev);
5026 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 5027 ret = GRO_DROP;
86911732 5028 break;
5d38a079 5029
5d0d9be8 5030 case GRO_DROP:
5d0d9be8
HX
5031 napi_reuse_skb(napi, skb);
5032 break;
5b252f0c 5033
e44699d2
MK
5034 case GRO_MERGED_FREE:
5035 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5036 napi_skb_free_stolen_head(skb);
5037 else
5038 napi_reuse_skb(napi, skb);
5039 break;
5040
5b252f0c 5041 case GRO_MERGED:
25393d3f 5042 case GRO_CONSUMED:
5b252f0c 5043 break;
5d0d9be8 5044 }
5d38a079 5045
c7c4b3b6 5046 return ret;
5d38a079 5047}
5d0d9be8 5048
a50e233c
ED
5049/* Upper GRO stack assumes network header starts at gro_offset=0
5050 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5051 * We copy ethernet header into skb->data to have a common layout.
5052 */
4adb9c4a 5053static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5054{
5055 struct sk_buff *skb = napi->skb;
a50e233c
ED
5056 const struct ethhdr *eth;
5057 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5058
5059 napi->skb = NULL;
5060
a50e233c
ED
5061 skb_reset_mac_header(skb);
5062 skb_gro_reset_offset(skb);
5063
5064 eth = skb_gro_header_fast(skb, 0);
5065 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5066 eth = skb_gro_header_slow(skb, hlen, 0);
5067 if (unlikely(!eth)) {
4da46ceb
AC
5068 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5069 __func__, napi->dev->name);
a50e233c
ED
5070 napi_reuse_skb(napi, skb);
5071 return NULL;
5072 }
5073 } else {
5074 gro_pull_from_frag0(skb, hlen);
5075 NAPI_GRO_CB(skb)->frag0 += hlen;
5076 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5077 }
a50e233c
ED
5078 __skb_pull(skb, hlen);
5079
5080 /*
5081 * This works because the only protocols we care about don't require
5082 * special handling.
5083 * We'll fix it up properly in napi_frags_finish()
5084 */
5085 skb->protocol = eth->h_proto;
76620aaf 5086
76620aaf
HX
5087 return skb;
5088}
76620aaf 5089
c7c4b3b6 5090gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5091{
76620aaf 5092 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5093
5094 if (!skb)
c7c4b3b6 5095 return GRO_DROP;
5d0d9be8 5096
ae78dbfa
BH
5097 trace_napi_gro_frags_entry(skb);
5098
89c5fa33 5099 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 5100}
5d38a079
HX
5101EXPORT_SYMBOL(napi_gro_frags);
5102
573e8fca
TH
5103/* Compute the checksum from gro_offset and return the folded value
5104 * after adding in any pseudo checksum.
5105 */
5106__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5107{
5108 __wsum wsum;
5109 __sum16 sum;
5110
5111 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5112
5113 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5114 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5115 if (likely(!sum)) {
5116 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5117 !skb->csum_complete_sw)
5118 netdev_rx_csum_fault(skb->dev);
5119 }
5120
5121 NAPI_GRO_CB(skb)->csum = wsum;
5122 NAPI_GRO_CB(skb)->csum_valid = 1;
5123
5124 return sum;
5125}
5126EXPORT_SYMBOL(__skb_gro_checksum_complete);
5127
773fc8f6 5128static void net_rps_send_ipi(struct softnet_data *remsd)
5129{
5130#ifdef CONFIG_RPS
5131 while (remsd) {
5132 struct softnet_data *next = remsd->rps_ipi_next;
5133
5134 if (cpu_online(remsd->cpu))
5135 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5136 remsd = next;
5137 }
5138#endif
5139}
5140
e326bed2 5141/*
855abcf0 5142 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5143 * Note: called with local irq disabled, but exits with local irq enabled.
5144 */
5145static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5146{
5147#ifdef CONFIG_RPS
5148 struct softnet_data *remsd = sd->rps_ipi_list;
5149
5150 if (remsd) {
5151 sd->rps_ipi_list = NULL;
5152
5153 local_irq_enable();
5154
5155 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5156 net_rps_send_ipi(remsd);
e326bed2
ED
5157 } else
5158#endif
5159 local_irq_enable();
5160}
5161
d75b1ade
ED
5162static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5163{
5164#ifdef CONFIG_RPS
5165 return sd->rps_ipi_list != NULL;
5166#else
5167 return false;
5168#endif
5169}
5170
bea3348e 5171static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5172{
eecfd7c4 5173 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5174 bool again = true;
5175 int work = 0;
1da177e4 5176
e326bed2
ED
5177 /* Check if we have pending ipi, its better to send them now,
5178 * not waiting net_rx_action() end.
5179 */
d75b1ade 5180 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5181 local_irq_disable();
5182 net_rps_action_and_irq_enable(sd);
5183 }
d75b1ade 5184
3d48b53f 5185 napi->weight = dev_rx_weight;
145dd5f9 5186 while (again) {
1da177e4 5187 struct sk_buff *skb;
6e7676c1
CG
5188
5189 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5190 rcu_read_lock();
6e7676c1 5191 __netif_receive_skb(skb);
2c17d27c 5192 rcu_read_unlock();
76cc8b13 5193 input_queue_head_incr(sd);
145dd5f9 5194 if (++work >= quota)
76cc8b13 5195 return work;
145dd5f9 5196
6e7676c1 5197 }
1da177e4 5198
145dd5f9 5199 local_irq_disable();
e36fa2f7 5200 rps_lock(sd);
11ef7a89 5201 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5202 /*
5203 * Inline a custom version of __napi_complete().
5204 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5205 * and NAPI_STATE_SCHED is the only possible flag set
5206 * on backlog.
5207 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5208 * and we dont need an smp_mb() memory barrier.
5209 */
eecfd7c4 5210 napi->state = 0;
145dd5f9
PA
5211 again = false;
5212 } else {
5213 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5214 &sd->process_queue);
bea3348e 5215 }
e36fa2f7 5216 rps_unlock(sd);
145dd5f9 5217 local_irq_enable();
6e7676c1 5218 }
1da177e4 5219
bea3348e
SH
5220 return work;
5221}
1da177e4 5222
bea3348e
SH
5223/**
5224 * __napi_schedule - schedule for receive
c4ea43c5 5225 * @n: entry to schedule
bea3348e 5226 *
bc9ad166
ED
5227 * The entry's receive function will be scheduled to run.
5228 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5229 */
b5606c2d 5230void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5231{
5232 unsigned long flags;
1da177e4 5233
bea3348e 5234 local_irq_save(flags);
903ceff7 5235 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5236 local_irq_restore(flags);
1da177e4 5237}
bea3348e
SH
5238EXPORT_SYMBOL(__napi_schedule);
5239
39e6c820
ED
5240/**
5241 * napi_schedule_prep - check if napi can be scheduled
5242 * @n: napi context
5243 *
5244 * Test if NAPI routine is already running, and if not mark
5245 * it as running. This is used as a condition variable
5246 * insure only one NAPI poll instance runs. We also make
5247 * sure there is no pending NAPI disable.
5248 */
5249bool napi_schedule_prep(struct napi_struct *n)
5250{
5251 unsigned long val, new;
5252
5253 do {
5254 val = READ_ONCE(n->state);
5255 if (unlikely(val & NAPIF_STATE_DISABLE))
5256 return false;
5257 new = val | NAPIF_STATE_SCHED;
5258
5259 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5260 * This was suggested by Alexander Duyck, as compiler
5261 * emits better code than :
5262 * if (val & NAPIF_STATE_SCHED)
5263 * new |= NAPIF_STATE_MISSED;
5264 */
5265 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5266 NAPIF_STATE_MISSED;
5267 } while (cmpxchg(&n->state, val, new) != val);
5268
5269 return !(val & NAPIF_STATE_SCHED);
5270}
5271EXPORT_SYMBOL(napi_schedule_prep);
5272
bc9ad166
ED
5273/**
5274 * __napi_schedule_irqoff - schedule for receive
5275 * @n: entry to schedule
5276 *
5277 * Variant of __napi_schedule() assuming hard irqs are masked
5278 */
5279void __napi_schedule_irqoff(struct napi_struct *n)
5280{
5281 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5282}
5283EXPORT_SYMBOL(__napi_schedule_irqoff);
5284
364b6055 5285bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5286{
39e6c820 5287 unsigned long flags, val, new;
d565b0a1
HX
5288
5289 /*
217f6974
ED
5290 * 1) Don't let napi dequeue from the cpu poll list
5291 * just in case its running on a different cpu.
5292 * 2) If we are busy polling, do nothing here, we have
5293 * the guarantee we will be called later.
d565b0a1 5294 */
217f6974
ED
5295 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5296 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5297 return false;
d565b0a1 5298
3b47d303
ED
5299 if (n->gro_list) {
5300 unsigned long timeout = 0;
d75b1ade 5301
3b47d303
ED
5302 if (work_done)
5303 timeout = n->dev->gro_flush_timeout;
5304
5305 if (timeout)
5306 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5307 HRTIMER_MODE_REL_PINNED);
5308 else
5309 napi_gro_flush(n, false);
5310 }
02c1602e 5311 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5312 /* If n->poll_list is not empty, we need to mask irqs */
5313 local_irq_save(flags);
02c1602e 5314 list_del_init(&n->poll_list);
d75b1ade
ED
5315 local_irq_restore(flags);
5316 }
39e6c820
ED
5317
5318 do {
5319 val = READ_ONCE(n->state);
5320
5321 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5322
5323 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5324
5325 /* If STATE_MISSED was set, leave STATE_SCHED set,
5326 * because we will call napi->poll() one more time.
5327 * This C code was suggested by Alexander Duyck to help gcc.
5328 */
5329 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5330 NAPIF_STATE_SCHED;
5331 } while (cmpxchg(&n->state, val, new) != val);
5332
5333 if (unlikely(val & NAPIF_STATE_MISSED)) {
5334 __napi_schedule(n);
5335 return false;
5336 }
5337
364b6055 5338 return true;
d565b0a1 5339}
3b47d303 5340EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5341
af12fa6e 5342/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5343static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5344{
5345 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5346 struct napi_struct *napi;
5347
5348 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5349 if (napi->napi_id == napi_id)
5350 return napi;
5351
5352 return NULL;
5353}
02d62e86
ED
5354
5355#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5356
ce6aea93 5357#define BUSY_POLL_BUDGET 8
217f6974
ED
5358
5359static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5360{
5361 int rc;
5362
39e6c820
ED
5363 /* Busy polling means there is a high chance device driver hard irq
5364 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5365 * set in napi_schedule_prep().
5366 * Since we are about to call napi->poll() once more, we can safely
5367 * clear NAPI_STATE_MISSED.
5368 *
5369 * Note: x86 could use a single "lock and ..." instruction
5370 * to perform these two clear_bit()
5371 */
5372 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5373 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5374
5375 local_bh_disable();
5376
5377 /* All we really want here is to re-enable device interrupts.
5378 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5379 */
5380 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1e22391e 5381 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974
ED
5382 netpoll_poll_unlock(have_poll_lock);
5383 if (rc == BUSY_POLL_BUDGET)
5384 __napi_schedule(napi);
5385 local_bh_enable();
217f6974
ED
5386}
5387
7db6b048
SS
5388void napi_busy_loop(unsigned int napi_id,
5389 bool (*loop_end)(void *, unsigned long),
5390 void *loop_end_arg)
02d62e86 5391{
7db6b048 5392 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 5393 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 5394 void *have_poll_lock = NULL;
02d62e86 5395 struct napi_struct *napi;
217f6974
ED
5396
5397restart:
217f6974 5398 napi_poll = NULL;
02d62e86 5399
2a028ecb 5400 rcu_read_lock();
02d62e86 5401
545cd5e5 5402 napi = napi_by_id(napi_id);
02d62e86
ED
5403 if (!napi)
5404 goto out;
5405
217f6974
ED
5406 preempt_disable();
5407 for (;;) {
2b5cd0df
AD
5408 int work = 0;
5409
2a028ecb 5410 local_bh_disable();
217f6974
ED
5411 if (!napi_poll) {
5412 unsigned long val = READ_ONCE(napi->state);
5413
5414 /* If multiple threads are competing for this napi,
5415 * we avoid dirtying napi->state as much as we can.
5416 */
5417 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5418 NAPIF_STATE_IN_BUSY_POLL))
5419 goto count;
5420 if (cmpxchg(&napi->state, val,
5421 val | NAPIF_STATE_IN_BUSY_POLL |
5422 NAPIF_STATE_SCHED) != val)
5423 goto count;
5424 have_poll_lock = netpoll_poll_lock(napi);
5425 napi_poll = napi->poll;
5426 }
2b5cd0df
AD
5427 work = napi_poll(napi, BUSY_POLL_BUDGET);
5428 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 5429count:
2b5cd0df 5430 if (work > 0)
7db6b048 5431 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 5432 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 5433 local_bh_enable();
02d62e86 5434
7db6b048 5435 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 5436 break;
02d62e86 5437
217f6974
ED
5438 if (unlikely(need_resched())) {
5439 if (napi_poll)
5440 busy_poll_stop(napi, have_poll_lock);
5441 preempt_enable();
5442 rcu_read_unlock();
5443 cond_resched();
7db6b048 5444 if (loop_end(loop_end_arg, start_time))
2b5cd0df 5445 return;
217f6974
ED
5446 goto restart;
5447 }
6cdf89b1 5448 cpu_relax();
217f6974
ED
5449 }
5450 if (napi_poll)
5451 busy_poll_stop(napi, have_poll_lock);
5452 preempt_enable();
02d62e86 5453out:
2a028ecb 5454 rcu_read_unlock();
02d62e86 5455}
7db6b048 5456EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
5457
5458#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5459
149d6ad8 5460static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5461{
d64b5e85
ED
5462 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5463 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5464 return;
af12fa6e 5465
52bd2d62 5466 spin_lock(&napi_hash_lock);
af12fa6e 5467
545cd5e5 5468 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 5469 do {
545cd5e5
AD
5470 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5471 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
5472 } while (napi_by_id(napi_gen_id));
5473 napi->napi_id = napi_gen_id;
af12fa6e 5474
52bd2d62
ED
5475 hlist_add_head_rcu(&napi->napi_hash_node,
5476 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5477
52bd2d62 5478 spin_unlock(&napi_hash_lock);
af12fa6e 5479}
af12fa6e
ET
5480
5481/* Warning : caller is responsible to make sure rcu grace period
5482 * is respected before freeing memory containing @napi
5483 */
34cbe27e 5484bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5485{
34cbe27e
ED
5486 bool rcu_sync_needed = false;
5487
af12fa6e
ET
5488 spin_lock(&napi_hash_lock);
5489
34cbe27e
ED
5490 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5491 rcu_sync_needed = true;
af12fa6e 5492 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5493 }
af12fa6e 5494 spin_unlock(&napi_hash_lock);
34cbe27e 5495 return rcu_sync_needed;
af12fa6e
ET
5496}
5497EXPORT_SYMBOL_GPL(napi_hash_del);
5498
3b47d303
ED
5499static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5500{
5501 struct napi_struct *napi;
5502
5503 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
5504
5505 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5506 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5507 */
5508 if (napi->gro_list && !napi_disable_pending(napi) &&
5509 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5510 __napi_schedule_irqoff(napi);
3b47d303
ED
5511
5512 return HRTIMER_NORESTART;
5513}
5514
d565b0a1
HX
5515void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5516 int (*poll)(struct napi_struct *, int), int weight)
5517{
5518 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5519 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5520 napi->timer.function = napi_watchdog;
4ae5544f 5521 napi->gro_count = 0;
d565b0a1 5522 napi->gro_list = NULL;
5d38a079 5523 napi->skb = NULL;
d565b0a1 5524 napi->poll = poll;
82dc3c63
ED
5525 if (weight > NAPI_POLL_WEIGHT)
5526 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5527 weight, dev->name);
d565b0a1
HX
5528 napi->weight = weight;
5529 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5530 napi->dev = dev;
5d38a079 5531#ifdef CONFIG_NETPOLL
d565b0a1
HX
5532 napi->poll_owner = -1;
5533#endif
5534 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5535 napi_hash_add(napi);
d565b0a1
HX
5536}
5537EXPORT_SYMBOL(netif_napi_add);
5538
3b47d303
ED
5539void napi_disable(struct napi_struct *n)
5540{
5541 might_sleep();
5542 set_bit(NAPI_STATE_DISABLE, &n->state);
5543
5544 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5545 msleep(1);
2d8bff12
NH
5546 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5547 msleep(1);
3b47d303
ED
5548
5549 hrtimer_cancel(&n->timer);
5550
5551 clear_bit(NAPI_STATE_DISABLE, &n->state);
5552}
5553EXPORT_SYMBOL(napi_disable);
5554
93d05d4a 5555/* Must be called in process context */
d565b0a1
HX
5556void netif_napi_del(struct napi_struct *napi)
5557{
93d05d4a
ED
5558 might_sleep();
5559 if (napi_hash_del(napi))
5560 synchronize_net();
d7b06636 5561 list_del_init(&napi->dev_list);
76620aaf 5562 napi_free_frags(napi);
d565b0a1 5563
289dccbe 5564 kfree_skb_list(napi->gro_list);
d565b0a1 5565 napi->gro_list = NULL;
4ae5544f 5566 napi->gro_count = 0;
d565b0a1
HX
5567}
5568EXPORT_SYMBOL(netif_napi_del);
5569
726ce70e
HX
5570static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5571{
5572 void *have;
5573 int work, weight;
5574
5575 list_del_init(&n->poll_list);
5576
5577 have = netpoll_poll_lock(n);
5578
5579 weight = n->weight;
5580
5581 /* This NAPI_STATE_SCHED test is for avoiding a race
5582 * with netpoll's poll_napi(). Only the entity which
5583 * obtains the lock and sees NAPI_STATE_SCHED set will
5584 * actually make the ->poll() call. Therefore we avoid
5585 * accidentally calling ->poll() when NAPI is not scheduled.
5586 */
5587 work = 0;
5588 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5589 work = n->poll(n, weight);
1db19db7 5590 trace_napi_poll(n, work, weight);
726ce70e
HX
5591 }
5592
5593 WARN_ON_ONCE(work > weight);
5594
5595 if (likely(work < weight))
5596 goto out_unlock;
5597
5598 /* Drivers must not modify the NAPI state if they
5599 * consume the entire weight. In such cases this code
5600 * still "owns" the NAPI instance and therefore can
5601 * move the instance around on the list at-will.
5602 */
5603 if (unlikely(napi_disable_pending(n))) {
5604 napi_complete(n);
5605 goto out_unlock;
5606 }
5607
5608 if (n->gro_list) {
5609 /* flush too old packets
5610 * If HZ < 1000, flush all packets.
5611 */
5612 napi_gro_flush(n, HZ >= 1000);
5613 }
5614
001ce546
HX
5615 /* Some drivers may have called napi_schedule
5616 * prior to exhausting their budget.
5617 */
5618 if (unlikely(!list_empty(&n->poll_list))) {
5619 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5620 n->dev ? n->dev->name : "backlog");
5621 goto out_unlock;
5622 }
5623
726ce70e
HX
5624 list_add_tail(&n->poll_list, repoll);
5625
5626out_unlock:
5627 netpoll_poll_unlock(have);
5628
5629 return work;
5630}
5631
0766f788 5632static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5633{
903ceff7 5634 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
5635 unsigned long time_limit = jiffies +
5636 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 5637 int budget = netdev_budget;
d75b1ade
ED
5638 LIST_HEAD(list);
5639 LIST_HEAD(repoll);
53fb95d3 5640
1da177e4 5641 local_irq_disable();
d75b1ade
ED
5642 list_splice_init(&sd->poll_list, &list);
5643 local_irq_enable();
1da177e4 5644
ceb8d5bf 5645 for (;;) {
bea3348e 5646 struct napi_struct *n;
1da177e4 5647
ceb8d5bf
HX
5648 if (list_empty(&list)) {
5649 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5650 goto out;
ceb8d5bf
HX
5651 break;
5652 }
5653
6bd373eb
HX
5654 n = list_first_entry(&list, struct napi_struct, poll_list);
5655 budget -= napi_poll(n, &repoll);
5656
d75b1ade 5657 /* If softirq window is exhausted then punt.
24f8b238
SH
5658 * Allow this to run for 2 jiffies since which will allow
5659 * an average latency of 1.5/HZ.
bea3348e 5660 */
ceb8d5bf
HX
5661 if (unlikely(budget <= 0 ||
5662 time_after_eq(jiffies, time_limit))) {
5663 sd->time_squeeze++;
5664 break;
5665 }
1da177e4 5666 }
d75b1ade 5667
d75b1ade
ED
5668 local_irq_disable();
5669
5670 list_splice_tail_init(&sd->poll_list, &list);
5671 list_splice_tail(&repoll, &list);
5672 list_splice(&list, &sd->poll_list);
5673 if (!list_empty(&sd->poll_list))
5674 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5675
e326bed2 5676 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5677out:
5678 __kfree_skb_flush();
1da177e4
LT
5679}
5680
aa9d8560 5681struct netdev_adjacent {
9ff162a8 5682 struct net_device *dev;
5d261913
VF
5683
5684 /* upper master flag, there can only be one master device per list */
9ff162a8 5685 bool master;
5d261913 5686
5d261913
VF
5687 /* counter for the number of times this device was added to us */
5688 u16 ref_nr;
5689
402dae96
VF
5690 /* private field for the users */
5691 void *private;
5692
9ff162a8
JP
5693 struct list_head list;
5694 struct rcu_head rcu;
9ff162a8
JP
5695};
5696
6ea29da1 5697static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5698 struct list_head *adj_list)
9ff162a8 5699{
5d261913 5700 struct netdev_adjacent *adj;
5d261913 5701
2f268f12 5702 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5703 if (adj->dev == adj_dev)
5704 return adj;
9ff162a8
JP
5705 }
5706 return NULL;
5707}
5708
f1170fd4
DA
5709static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5710{
5711 struct net_device *dev = data;
5712
5713 return upper_dev == dev;
5714}
5715
9ff162a8
JP
5716/**
5717 * netdev_has_upper_dev - Check if device is linked to an upper device
5718 * @dev: device
5719 * @upper_dev: upper device to check
5720 *
5721 * Find out if a device is linked to specified upper device and return true
5722 * in case it is. Note that this checks only immediate upper device,
5723 * not through a complete stack of devices. The caller must hold the RTNL lock.
5724 */
5725bool netdev_has_upper_dev(struct net_device *dev,
5726 struct net_device *upper_dev)
5727{
5728 ASSERT_RTNL();
5729
f1170fd4
DA
5730 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5731 upper_dev);
9ff162a8
JP
5732}
5733EXPORT_SYMBOL(netdev_has_upper_dev);
5734
1a3f060c
DA
5735/**
5736 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5737 * @dev: device
5738 * @upper_dev: upper device to check
5739 *
5740 * Find out if a device is linked to specified upper device and return true
5741 * in case it is. Note that this checks the entire upper device chain.
5742 * The caller must hold rcu lock.
5743 */
5744
1a3f060c
DA
5745bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5746 struct net_device *upper_dev)
5747{
5748 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5749 upper_dev);
5750}
5751EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5752
9ff162a8
JP
5753/**
5754 * netdev_has_any_upper_dev - Check if device is linked to some device
5755 * @dev: device
5756 *
5757 * Find out if a device is linked to an upper device and return true in case
5758 * it is. The caller must hold the RTNL lock.
5759 */
25cc72a3 5760bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5761{
5762 ASSERT_RTNL();
5763
f1170fd4 5764 return !list_empty(&dev->adj_list.upper);
9ff162a8 5765}
25cc72a3 5766EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
5767
5768/**
5769 * netdev_master_upper_dev_get - Get master upper device
5770 * @dev: device
5771 *
5772 * Find a master upper device and return pointer to it or NULL in case
5773 * it's not there. The caller must hold the RTNL lock.
5774 */
5775struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5776{
aa9d8560 5777 struct netdev_adjacent *upper;
9ff162a8
JP
5778
5779 ASSERT_RTNL();
5780
2f268f12 5781 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5782 return NULL;
5783
2f268f12 5784 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5785 struct netdev_adjacent, list);
9ff162a8
JP
5786 if (likely(upper->master))
5787 return upper->dev;
5788 return NULL;
5789}
5790EXPORT_SYMBOL(netdev_master_upper_dev_get);
5791
0f524a80
DA
5792/**
5793 * netdev_has_any_lower_dev - Check if device is linked to some device
5794 * @dev: device
5795 *
5796 * Find out if a device is linked to a lower device and return true in case
5797 * it is. The caller must hold the RTNL lock.
5798 */
5799static bool netdev_has_any_lower_dev(struct net_device *dev)
5800{
5801 ASSERT_RTNL();
5802
5803 return !list_empty(&dev->adj_list.lower);
5804}
5805
b6ccba4c
VF
5806void *netdev_adjacent_get_private(struct list_head *adj_list)
5807{
5808 struct netdev_adjacent *adj;
5809
5810 adj = list_entry(adj_list, struct netdev_adjacent, list);
5811
5812 return adj->private;
5813}
5814EXPORT_SYMBOL(netdev_adjacent_get_private);
5815
44a40855
VY
5816/**
5817 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5818 * @dev: device
5819 * @iter: list_head ** of the current position
5820 *
5821 * Gets the next device from the dev's upper list, starting from iter
5822 * position. The caller must hold RCU read lock.
5823 */
5824struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5825 struct list_head **iter)
5826{
5827 struct netdev_adjacent *upper;
5828
5829 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5830
5831 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5832
5833 if (&upper->list == &dev->adj_list.upper)
5834 return NULL;
5835
5836 *iter = &upper->list;
5837
5838 return upper->dev;
5839}
5840EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5841
1a3f060c
DA
5842static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5843 struct list_head **iter)
5844{
5845 struct netdev_adjacent *upper;
5846
5847 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5848
5849 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5850
5851 if (&upper->list == &dev->adj_list.upper)
5852 return NULL;
5853
5854 *iter = &upper->list;
5855
5856 return upper->dev;
5857}
5858
5859int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5860 int (*fn)(struct net_device *dev,
5861 void *data),
5862 void *data)
5863{
5864 struct net_device *udev;
5865 struct list_head *iter;
5866 int ret;
5867
5868 for (iter = &dev->adj_list.upper,
5869 udev = netdev_next_upper_dev_rcu(dev, &iter);
5870 udev;
5871 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5872 /* first is the upper device itself */
5873 ret = fn(udev, data);
5874 if (ret)
5875 return ret;
5876
5877 /* then look at all of its upper devices */
5878 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5879 if (ret)
5880 return ret;
5881 }
5882
5883 return 0;
5884}
5885EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5886
31088a11
VF
5887/**
5888 * netdev_lower_get_next_private - Get the next ->private from the
5889 * lower neighbour list
5890 * @dev: device
5891 * @iter: list_head ** of the current position
5892 *
5893 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5894 * list, starting from iter position. The caller must hold either hold the
5895 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5896 * list will remain unchanged.
31088a11
VF
5897 */
5898void *netdev_lower_get_next_private(struct net_device *dev,
5899 struct list_head **iter)
5900{
5901 struct netdev_adjacent *lower;
5902
5903 lower = list_entry(*iter, struct netdev_adjacent, list);
5904
5905 if (&lower->list == &dev->adj_list.lower)
5906 return NULL;
5907
6859e7df 5908 *iter = lower->list.next;
31088a11
VF
5909
5910 return lower->private;
5911}
5912EXPORT_SYMBOL(netdev_lower_get_next_private);
5913
5914/**
5915 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5916 * lower neighbour list, RCU
5917 * variant
5918 * @dev: device
5919 * @iter: list_head ** of the current position
5920 *
5921 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5922 * list, starting from iter position. The caller must hold RCU read lock.
5923 */
5924void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5925 struct list_head **iter)
5926{
5927 struct netdev_adjacent *lower;
5928
5929 WARN_ON_ONCE(!rcu_read_lock_held());
5930
5931 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5932
5933 if (&lower->list == &dev->adj_list.lower)
5934 return NULL;
5935
6859e7df 5936 *iter = &lower->list;
31088a11
VF
5937
5938 return lower->private;
5939}
5940EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5941
4085ebe8
VY
5942/**
5943 * netdev_lower_get_next - Get the next device from the lower neighbour
5944 * list
5945 * @dev: device
5946 * @iter: list_head ** of the current position
5947 *
5948 * Gets the next netdev_adjacent from the dev's lower neighbour
5949 * list, starting from iter position. The caller must hold RTNL lock or
5950 * its own locking that guarantees that the neighbour lower
b469139e 5951 * list will remain unchanged.
4085ebe8
VY
5952 */
5953void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5954{
5955 struct netdev_adjacent *lower;
5956
cfdd28be 5957 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5958
5959 if (&lower->list == &dev->adj_list.lower)
5960 return NULL;
5961
cfdd28be 5962 *iter = lower->list.next;
4085ebe8
VY
5963
5964 return lower->dev;
5965}
5966EXPORT_SYMBOL(netdev_lower_get_next);
5967
1a3f060c
DA
5968static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5969 struct list_head **iter)
5970{
5971 struct netdev_adjacent *lower;
5972
46b5ab1a 5973 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5974
5975 if (&lower->list == &dev->adj_list.lower)
5976 return NULL;
5977
46b5ab1a 5978 *iter = &lower->list;
1a3f060c
DA
5979
5980 return lower->dev;
5981}
5982
5983int netdev_walk_all_lower_dev(struct net_device *dev,
5984 int (*fn)(struct net_device *dev,
5985 void *data),
5986 void *data)
5987{
5988 struct net_device *ldev;
5989 struct list_head *iter;
5990 int ret;
5991
5992 for (iter = &dev->adj_list.lower,
5993 ldev = netdev_next_lower_dev(dev, &iter);
5994 ldev;
5995 ldev = netdev_next_lower_dev(dev, &iter)) {
5996 /* first is the lower device itself */
5997 ret = fn(ldev, data);
5998 if (ret)
5999 return ret;
6000
6001 /* then look at all of its lower devices */
6002 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6003 if (ret)
6004 return ret;
6005 }
6006
6007 return 0;
6008}
6009EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6010
1a3f060c
DA
6011static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6012 struct list_head **iter)
6013{
6014 struct netdev_adjacent *lower;
6015
6016 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6017 if (&lower->list == &dev->adj_list.lower)
6018 return NULL;
6019
6020 *iter = &lower->list;
6021
6022 return lower->dev;
6023}
6024
6025int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6026 int (*fn)(struct net_device *dev,
6027 void *data),
6028 void *data)
6029{
6030 struct net_device *ldev;
6031 struct list_head *iter;
6032 int ret;
6033
6034 for (iter = &dev->adj_list.lower,
6035 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6036 ldev;
6037 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6038 /* first is the lower device itself */
6039 ret = fn(ldev, data);
6040 if (ret)
6041 return ret;
6042
6043 /* then look at all of its lower devices */
6044 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6045 if (ret)
6046 return ret;
6047 }
6048
6049 return 0;
6050}
6051EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6052
e001bfad 6053/**
6054 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6055 * lower neighbour list, RCU
6056 * variant
6057 * @dev: device
6058 *
6059 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6060 * list. The caller must hold RCU read lock.
6061 */
6062void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6063{
6064 struct netdev_adjacent *lower;
6065
6066 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6067 struct netdev_adjacent, list);
6068 if (lower)
6069 return lower->private;
6070 return NULL;
6071}
6072EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6073
9ff162a8
JP
6074/**
6075 * netdev_master_upper_dev_get_rcu - Get master upper device
6076 * @dev: device
6077 *
6078 * Find a master upper device and return pointer to it or NULL in case
6079 * it's not there. The caller must hold the RCU read lock.
6080 */
6081struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6082{
aa9d8560 6083 struct netdev_adjacent *upper;
9ff162a8 6084
2f268f12 6085 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6086 struct netdev_adjacent, list);
9ff162a8
JP
6087 if (upper && likely(upper->master))
6088 return upper->dev;
6089 return NULL;
6090}
6091EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6092
0a59f3a9 6093static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6094 struct net_device *adj_dev,
6095 struct list_head *dev_list)
6096{
6097 char linkname[IFNAMSIZ+7];
f4563a75 6098
3ee32707
VF
6099 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6100 "upper_%s" : "lower_%s", adj_dev->name);
6101 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6102 linkname);
6103}
0a59f3a9 6104static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6105 char *name,
6106 struct list_head *dev_list)
6107{
6108 char linkname[IFNAMSIZ+7];
f4563a75 6109
3ee32707
VF
6110 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6111 "upper_%s" : "lower_%s", name);
6112 sysfs_remove_link(&(dev->dev.kobj), linkname);
6113}
6114
7ce64c79
AF
6115static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6116 struct net_device *adj_dev,
6117 struct list_head *dev_list)
6118{
6119 return (dev_list == &dev->adj_list.upper ||
6120 dev_list == &dev->adj_list.lower) &&
6121 net_eq(dev_net(dev), dev_net(adj_dev));
6122}
3ee32707 6123
5d261913
VF
6124static int __netdev_adjacent_dev_insert(struct net_device *dev,
6125 struct net_device *adj_dev,
7863c054 6126 struct list_head *dev_list,
402dae96 6127 void *private, bool master)
5d261913
VF
6128{
6129 struct netdev_adjacent *adj;
842d67a7 6130 int ret;
5d261913 6131
6ea29da1 6132 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6133
6134 if (adj) {
790510d9 6135 adj->ref_nr += 1;
67b62f98
DA
6136 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6137 dev->name, adj_dev->name, adj->ref_nr);
6138
5d261913
VF
6139 return 0;
6140 }
6141
6142 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6143 if (!adj)
6144 return -ENOMEM;
6145
6146 adj->dev = adj_dev;
6147 adj->master = master;
790510d9 6148 adj->ref_nr = 1;
402dae96 6149 adj->private = private;
5d261913 6150 dev_hold(adj_dev);
2f268f12 6151
67b62f98
DA
6152 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6153 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6154
7ce64c79 6155 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6156 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6157 if (ret)
6158 goto free_adj;
6159 }
6160
7863c054 6161 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6162 if (master) {
6163 ret = sysfs_create_link(&(dev->dev.kobj),
6164 &(adj_dev->dev.kobj), "master");
6165 if (ret)
5831d66e 6166 goto remove_symlinks;
842d67a7 6167
7863c054 6168 list_add_rcu(&adj->list, dev_list);
842d67a7 6169 } else {
7863c054 6170 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6171 }
5d261913
VF
6172
6173 return 0;
842d67a7 6174
5831d66e 6175remove_symlinks:
7ce64c79 6176 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6177 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6178free_adj:
6179 kfree(adj);
974daef7 6180 dev_put(adj_dev);
842d67a7
VF
6181
6182 return ret;
5d261913
VF
6183}
6184
1d143d9f 6185static void __netdev_adjacent_dev_remove(struct net_device *dev,
6186 struct net_device *adj_dev,
93409033 6187 u16 ref_nr,
1d143d9f 6188 struct list_head *dev_list)
5d261913
VF
6189{
6190 struct netdev_adjacent *adj;
6191
67b62f98
DA
6192 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6193 dev->name, adj_dev->name, ref_nr);
6194
6ea29da1 6195 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6196
2f268f12 6197 if (!adj) {
67b62f98 6198 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6199 dev->name, adj_dev->name);
67b62f98
DA
6200 WARN_ON(1);
6201 return;
2f268f12 6202 }
5d261913 6203
93409033 6204 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6205 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6206 dev->name, adj_dev->name, ref_nr,
6207 adj->ref_nr - ref_nr);
93409033 6208 adj->ref_nr -= ref_nr;
5d261913
VF
6209 return;
6210 }
6211
842d67a7
VF
6212 if (adj->master)
6213 sysfs_remove_link(&(dev->dev.kobj), "master");
6214
7ce64c79 6215 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6216 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6217
5d261913 6218 list_del_rcu(&adj->list);
67b62f98 6219 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6220 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6221 dev_put(adj_dev);
6222 kfree_rcu(adj, rcu);
6223}
6224
1d143d9f 6225static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6226 struct net_device *upper_dev,
6227 struct list_head *up_list,
6228 struct list_head *down_list,
6229 void *private, bool master)
5d261913
VF
6230{
6231 int ret;
6232
790510d9 6233 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6234 private, master);
5d261913
VF
6235 if (ret)
6236 return ret;
6237
790510d9 6238 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 6239 private, false);
5d261913 6240 if (ret) {
790510d9 6241 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
6242 return ret;
6243 }
6244
6245 return 0;
6246}
6247
1d143d9f 6248static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6249 struct net_device *upper_dev,
93409033 6250 u16 ref_nr,
1d143d9f 6251 struct list_head *up_list,
6252 struct list_head *down_list)
5d261913 6253{
93409033
AC
6254 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6255 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
6256}
6257
1d143d9f 6258static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6259 struct net_device *upper_dev,
6260 void *private, bool master)
2f268f12 6261{
f1170fd4
DA
6262 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6263 &dev->adj_list.upper,
6264 &upper_dev->adj_list.lower,
6265 private, master);
5d261913
VF
6266}
6267
1d143d9f 6268static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6269 struct net_device *upper_dev)
2f268f12 6270{
93409033 6271 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
6272 &dev->adj_list.upper,
6273 &upper_dev->adj_list.lower);
6274}
5d261913 6275
9ff162a8 6276static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 6277 struct net_device *upper_dev, bool master,
29bf24af 6278 void *upper_priv, void *upper_info)
9ff162a8 6279{
0e4ead9d 6280 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 6281 int ret = 0;
9ff162a8
JP
6282
6283 ASSERT_RTNL();
6284
6285 if (dev == upper_dev)
6286 return -EBUSY;
6287
6288 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 6289 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
6290 return -EBUSY;
6291
f1170fd4 6292 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
6293 return -EEXIST;
6294
6295 if (master && netdev_master_upper_dev_get(dev))
6296 return -EBUSY;
6297
0e4ead9d
JP
6298 changeupper_info.upper_dev = upper_dev;
6299 changeupper_info.master = master;
6300 changeupper_info.linking = true;
29bf24af 6301 changeupper_info.upper_info = upper_info;
0e4ead9d 6302
573c7ba0
JP
6303 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6304 &changeupper_info.info);
6305 ret = notifier_to_errno(ret);
6306 if (ret)
6307 return ret;
6308
6dffb044 6309 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 6310 master);
5d261913
VF
6311 if (ret)
6312 return ret;
9ff162a8 6313
b03804e7
IS
6314 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6315 &changeupper_info.info);
6316 ret = notifier_to_errno(ret);
6317 if (ret)
f1170fd4 6318 goto rollback;
b03804e7 6319
9ff162a8 6320 return 0;
5d261913 6321
f1170fd4 6322rollback:
2f268f12 6323 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
6324
6325 return ret;
9ff162a8
JP
6326}
6327
6328/**
6329 * netdev_upper_dev_link - Add a link to the upper device
6330 * @dev: device
6331 * @upper_dev: new upper device
6332 *
6333 * Adds a link to device which is upper to this one. The caller must hold
6334 * the RTNL lock. On a failure a negative errno code is returned.
6335 * On success the reference counts are adjusted and the function
6336 * returns zero.
6337 */
6338int netdev_upper_dev_link(struct net_device *dev,
6339 struct net_device *upper_dev)
6340{
29bf24af 6341 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
6342}
6343EXPORT_SYMBOL(netdev_upper_dev_link);
6344
6345/**
6346 * netdev_master_upper_dev_link - Add a master link to the upper device
6347 * @dev: device
6348 * @upper_dev: new upper device
6dffb044 6349 * @upper_priv: upper device private
29bf24af 6350 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
6351 *
6352 * Adds a link to device which is upper to this one. In this case, only
6353 * one master upper device can be linked, although other non-master devices
6354 * might be linked as well. The caller must hold the RTNL lock.
6355 * On a failure a negative errno code is returned. On success the reference
6356 * counts are adjusted and the function returns zero.
6357 */
6358int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 6359 struct net_device *upper_dev,
29bf24af 6360 void *upper_priv, void *upper_info)
9ff162a8 6361{
29bf24af
JP
6362 return __netdev_upper_dev_link(dev, upper_dev, true,
6363 upper_priv, upper_info);
9ff162a8
JP
6364}
6365EXPORT_SYMBOL(netdev_master_upper_dev_link);
6366
6367/**
6368 * netdev_upper_dev_unlink - Removes a link to upper device
6369 * @dev: device
6370 * @upper_dev: new upper device
6371 *
6372 * Removes a link to device which is upper to this one. The caller must hold
6373 * the RTNL lock.
6374 */
6375void netdev_upper_dev_unlink(struct net_device *dev,
6376 struct net_device *upper_dev)
6377{
0e4ead9d 6378 struct netdev_notifier_changeupper_info changeupper_info;
f4563a75 6379
9ff162a8
JP
6380 ASSERT_RTNL();
6381
0e4ead9d
JP
6382 changeupper_info.upper_dev = upper_dev;
6383 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6384 changeupper_info.linking = false;
6385
573c7ba0
JP
6386 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6387 &changeupper_info.info);
6388
2f268f12 6389 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6390
0e4ead9d
JP
6391 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6392 &changeupper_info.info);
9ff162a8
JP
6393}
6394EXPORT_SYMBOL(netdev_upper_dev_unlink);
6395
61bd3857
MS
6396/**
6397 * netdev_bonding_info_change - Dispatch event about slave change
6398 * @dev: device
4a26e453 6399 * @bonding_info: info to dispatch
61bd3857
MS
6400 *
6401 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6402 * The caller must hold the RTNL lock.
6403 */
6404void netdev_bonding_info_change(struct net_device *dev,
6405 struct netdev_bonding_info *bonding_info)
6406{
6407 struct netdev_notifier_bonding_info info;
6408
6409 memcpy(&info.bonding_info, bonding_info,
6410 sizeof(struct netdev_bonding_info));
6411 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6412 &info.info);
6413}
6414EXPORT_SYMBOL(netdev_bonding_info_change);
6415
2ce1ee17 6416static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6417{
6418 struct netdev_adjacent *iter;
6419
6420 struct net *net = dev_net(dev);
6421
6422 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6423 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6424 continue;
6425 netdev_adjacent_sysfs_add(iter->dev, dev,
6426 &iter->dev->adj_list.lower);
6427 netdev_adjacent_sysfs_add(dev, iter->dev,
6428 &dev->adj_list.upper);
6429 }
6430
6431 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6432 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6433 continue;
6434 netdev_adjacent_sysfs_add(iter->dev, dev,
6435 &iter->dev->adj_list.upper);
6436 netdev_adjacent_sysfs_add(dev, iter->dev,
6437 &dev->adj_list.lower);
6438 }
6439}
6440
2ce1ee17 6441static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6442{
6443 struct netdev_adjacent *iter;
6444
6445 struct net *net = dev_net(dev);
6446
6447 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6448 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6449 continue;
6450 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6451 &iter->dev->adj_list.lower);
6452 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6453 &dev->adj_list.upper);
6454 }
6455
6456 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6457 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6458 continue;
6459 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6460 &iter->dev->adj_list.upper);
6461 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6462 &dev->adj_list.lower);
6463 }
6464}
6465
5bb025fa 6466void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6467{
5bb025fa 6468 struct netdev_adjacent *iter;
402dae96 6469
4c75431a
AF
6470 struct net *net = dev_net(dev);
6471
5bb025fa 6472 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6473 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6474 continue;
5bb025fa
VF
6475 netdev_adjacent_sysfs_del(iter->dev, oldname,
6476 &iter->dev->adj_list.lower);
6477 netdev_adjacent_sysfs_add(iter->dev, dev,
6478 &iter->dev->adj_list.lower);
6479 }
402dae96 6480
5bb025fa 6481 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6482 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6483 continue;
5bb025fa
VF
6484 netdev_adjacent_sysfs_del(iter->dev, oldname,
6485 &iter->dev->adj_list.upper);
6486 netdev_adjacent_sysfs_add(iter->dev, dev,
6487 &iter->dev->adj_list.upper);
6488 }
402dae96 6489}
402dae96
VF
6490
6491void *netdev_lower_dev_get_private(struct net_device *dev,
6492 struct net_device *lower_dev)
6493{
6494 struct netdev_adjacent *lower;
6495
6496 if (!lower_dev)
6497 return NULL;
6ea29da1 6498 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6499 if (!lower)
6500 return NULL;
6501
6502 return lower->private;
6503}
6504EXPORT_SYMBOL(netdev_lower_dev_get_private);
6505
4085ebe8 6506
952fcfd0 6507int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6508{
6509 struct net_device *lower = NULL;
6510 struct list_head *iter;
6511 int max_nest = -1;
6512 int nest;
6513
6514 ASSERT_RTNL();
6515
6516 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6517 nest = dev_get_nest_level(lower);
4085ebe8
VY
6518 if (max_nest < nest)
6519 max_nest = nest;
6520 }
6521
952fcfd0 6522 return max_nest + 1;
4085ebe8
VY
6523}
6524EXPORT_SYMBOL(dev_get_nest_level);
6525
04d48266
JP
6526/**
6527 * netdev_lower_change - Dispatch event about lower device state change
6528 * @lower_dev: device
6529 * @lower_state_info: state to dispatch
6530 *
6531 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6532 * The caller must hold the RTNL lock.
6533 */
6534void netdev_lower_state_changed(struct net_device *lower_dev,
6535 void *lower_state_info)
6536{
6537 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6538
6539 ASSERT_RTNL();
6540 changelowerstate_info.lower_state_info = lower_state_info;
6541 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6542 &changelowerstate_info.info);
6543}
6544EXPORT_SYMBOL(netdev_lower_state_changed);
6545
b6c40d68
PM
6546static void dev_change_rx_flags(struct net_device *dev, int flags)
6547{
d314774c
SH
6548 const struct net_device_ops *ops = dev->netdev_ops;
6549
d2615bf4 6550 if (ops->ndo_change_rx_flags)
d314774c 6551 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6552}
6553
991fb3f7 6554static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6555{
b536db93 6556 unsigned int old_flags = dev->flags;
d04a48b0
EB
6557 kuid_t uid;
6558 kgid_t gid;
1da177e4 6559
24023451
PM
6560 ASSERT_RTNL();
6561
dad9b335
WC
6562 dev->flags |= IFF_PROMISC;
6563 dev->promiscuity += inc;
6564 if (dev->promiscuity == 0) {
6565 /*
6566 * Avoid overflow.
6567 * If inc causes overflow, untouch promisc and return error.
6568 */
6569 if (inc < 0)
6570 dev->flags &= ~IFF_PROMISC;
6571 else {
6572 dev->promiscuity -= inc;
7b6cd1ce
JP
6573 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6574 dev->name);
dad9b335
WC
6575 return -EOVERFLOW;
6576 }
6577 }
52609c0b 6578 if (dev->flags != old_flags) {
7b6cd1ce
JP
6579 pr_info("device %s %s promiscuous mode\n",
6580 dev->name,
6581 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6582 if (audit_enabled) {
6583 current_uid_gid(&uid, &gid);
7759db82
KHK
6584 audit_log(current->audit_context, GFP_ATOMIC,
6585 AUDIT_ANOM_PROMISCUOUS,
6586 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6587 dev->name, (dev->flags & IFF_PROMISC),
6588 (old_flags & IFF_PROMISC),
e1760bd5 6589 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6590 from_kuid(&init_user_ns, uid),
6591 from_kgid(&init_user_ns, gid),
7759db82 6592 audit_get_sessionid(current));
8192b0c4 6593 }
24023451 6594
b6c40d68 6595 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6596 }
991fb3f7
ND
6597 if (notify)
6598 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6599 return 0;
1da177e4
LT
6600}
6601
4417da66
PM
6602/**
6603 * dev_set_promiscuity - update promiscuity count on a device
6604 * @dev: device
6605 * @inc: modifier
6606 *
6607 * Add or remove promiscuity from a device. While the count in the device
6608 * remains above zero the interface remains promiscuous. Once it hits zero
6609 * the device reverts back to normal filtering operation. A negative inc
6610 * value is used to drop promiscuity on the device.
dad9b335 6611 * Return 0 if successful or a negative errno code on error.
4417da66 6612 */
dad9b335 6613int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6614{
b536db93 6615 unsigned int old_flags = dev->flags;
dad9b335 6616 int err;
4417da66 6617
991fb3f7 6618 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6619 if (err < 0)
dad9b335 6620 return err;
4417da66
PM
6621 if (dev->flags != old_flags)
6622 dev_set_rx_mode(dev);
dad9b335 6623 return err;
4417da66 6624}
d1b19dff 6625EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6626
991fb3f7 6627static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6628{
991fb3f7 6629 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6630
24023451
PM
6631 ASSERT_RTNL();
6632
1da177e4 6633 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6634 dev->allmulti += inc;
6635 if (dev->allmulti == 0) {
6636 /*
6637 * Avoid overflow.
6638 * If inc causes overflow, untouch allmulti and return error.
6639 */
6640 if (inc < 0)
6641 dev->flags &= ~IFF_ALLMULTI;
6642 else {
6643 dev->allmulti -= inc;
7b6cd1ce
JP
6644 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6645 dev->name);
dad9b335
WC
6646 return -EOVERFLOW;
6647 }
6648 }
24023451 6649 if (dev->flags ^ old_flags) {
b6c40d68 6650 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6651 dev_set_rx_mode(dev);
991fb3f7
ND
6652 if (notify)
6653 __dev_notify_flags(dev, old_flags,
6654 dev->gflags ^ old_gflags);
24023451 6655 }
dad9b335 6656 return 0;
4417da66 6657}
991fb3f7
ND
6658
6659/**
6660 * dev_set_allmulti - update allmulti count on a device
6661 * @dev: device
6662 * @inc: modifier
6663 *
6664 * Add or remove reception of all multicast frames to a device. While the
6665 * count in the device remains above zero the interface remains listening
6666 * to all interfaces. Once it hits zero the device reverts back to normal
6667 * filtering operation. A negative @inc value is used to drop the counter
6668 * when releasing a resource needing all multicasts.
6669 * Return 0 if successful or a negative errno code on error.
6670 */
6671
6672int dev_set_allmulti(struct net_device *dev, int inc)
6673{
6674 return __dev_set_allmulti(dev, inc, true);
6675}
d1b19dff 6676EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6677
6678/*
6679 * Upload unicast and multicast address lists to device and
6680 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6681 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6682 * are present.
6683 */
6684void __dev_set_rx_mode(struct net_device *dev)
6685{
d314774c
SH
6686 const struct net_device_ops *ops = dev->netdev_ops;
6687
4417da66
PM
6688 /* dev_open will call this function so the list will stay sane. */
6689 if (!(dev->flags&IFF_UP))
6690 return;
6691
6692 if (!netif_device_present(dev))
40b77c94 6693 return;
4417da66 6694
01789349 6695 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6696 /* Unicast addresses changes may only happen under the rtnl,
6697 * therefore calling __dev_set_promiscuity here is safe.
6698 */
32e7bfc4 6699 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6700 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6701 dev->uc_promisc = true;
32e7bfc4 6702 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6703 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6704 dev->uc_promisc = false;
4417da66 6705 }
4417da66 6706 }
01789349
JP
6707
6708 if (ops->ndo_set_rx_mode)
6709 ops->ndo_set_rx_mode(dev);
4417da66
PM
6710}
6711
6712void dev_set_rx_mode(struct net_device *dev)
6713{
b9e40857 6714 netif_addr_lock_bh(dev);
4417da66 6715 __dev_set_rx_mode(dev);
b9e40857 6716 netif_addr_unlock_bh(dev);
1da177e4
LT
6717}
6718
f0db275a
SH
6719/**
6720 * dev_get_flags - get flags reported to userspace
6721 * @dev: device
6722 *
6723 * Get the combination of flag bits exported through APIs to userspace.
6724 */
95c96174 6725unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6726{
95c96174 6727 unsigned int flags;
1da177e4
LT
6728
6729 flags = (dev->flags & ~(IFF_PROMISC |
6730 IFF_ALLMULTI |
b00055aa
SR
6731 IFF_RUNNING |
6732 IFF_LOWER_UP |
6733 IFF_DORMANT)) |
1da177e4
LT
6734 (dev->gflags & (IFF_PROMISC |
6735 IFF_ALLMULTI));
6736
b00055aa
SR
6737 if (netif_running(dev)) {
6738 if (netif_oper_up(dev))
6739 flags |= IFF_RUNNING;
6740 if (netif_carrier_ok(dev))
6741 flags |= IFF_LOWER_UP;
6742 if (netif_dormant(dev))
6743 flags |= IFF_DORMANT;
6744 }
1da177e4
LT
6745
6746 return flags;
6747}
d1b19dff 6748EXPORT_SYMBOL(dev_get_flags);
1da177e4 6749
bd380811 6750int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6751{
b536db93 6752 unsigned int old_flags = dev->flags;
bd380811 6753 int ret;
1da177e4 6754
24023451
PM
6755 ASSERT_RTNL();
6756
1da177e4
LT
6757 /*
6758 * Set the flags on our device.
6759 */
6760
6761 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6762 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6763 IFF_AUTOMEDIA)) |
6764 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6765 IFF_ALLMULTI));
6766
6767 /*
6768 * Load in the correct multicast list now the flags have changed.
6769 */
6770
b6c40d68
PM
6771 if ((old_flags ^ flags) & IFF_MULTICAST)
6772 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6773
4417da66 6774 dev_set_rx_mode(dev);
1da177e4
LT
6775
6776 /*
6777 * Have we downed the interface. We handle IFF_UP ourselves
6778 * according to user attempts to set it, rather than blindly
6779 * setting it.
6780 */
6781
6782 ret = 0;
7051b88a 6783 if ((old_flags ^ flags) & IFF_UP) {
6784 if (old_flags & IFF_UP)
6785 __dev_close(dev);
6786 else
6787 ret = __dev_open(dev);
6788 }
1da177e4 6789
1da177e4 6790 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6791 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6792 unsigned int old_flags = dev->flags;
d1b19dff 6793
1da177e4 6794 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6795
6796 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6797 if (dev->flags != old_flags)
6798 dev_set_rx_mode(dev);
1da177e4
LT
6799 }
6800
6801 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 6802 * is important. Some (broken) drivers set IFF_PROMISC, when
6803 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
6804 */
6805 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6806 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6807
1da177e4 6808 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6809 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6810 }
6811
bd380811
PM
6812 return ret;
6813}
6814
a528c219
ND
6815void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6816 unsigned int gchanges)
bd380811
PM
6817{
6818 unsigned int changes = dev->flags ^ old_flags;
6819
a528c219 6820 if (gchanges)
7f294054 6821 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6822
bd380811
PM
6823 if (changes & IFF_UP) {
6824 if (dev->flags & IFF_UP)
6825 call_netdevice_notifiers(NETDEV_UP, dev);
6826 else
6827 call_netdevice_notifiers(NETDEV_DOWN, dev);
6828 }
6829
6830 if (dev->flags & IFF_UP &&
be9efd36
JP
6831 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6832 struct netdev_notifier_change_info change_info;
6833
6834 change_info.flags_changed = changes;
6835 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6836 &change_info.info);
6837 }
bd380811
PM
6838}
6839
6840/**
6841 * dev_change_flags - change device settings
6842 * @dev: device
6843 * @flags: device state flags
6844 *
6845 * Change settings on device based state flags. The flags are
6846 * in the userspace exported format.
6847 */
b536db93 6848int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6849{
b536db93 6850 int ret;
991fb3f7 6851 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6852
6853 ret = __dev_change_flags(dev, flags);
6854 if (ret < 0)
6855 return ret;
6856
991fb3f7 6857 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6858 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6859 return ret;
6860}
d1b19dff 6861EXPORT_SYMBOL(dev_change_flags);
1da177e4 6862
f51048c3 6863int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
6864{
6865 const struct net_device_ops *ops = dev->netdev_ops;
6866
6867 if (ops->ndo_change_mtu)
6868 return ops->ndo_change_mtu(dev, new_mtu);
6869
6870 dev->mtu = new_mtu;
6871 return 0;
6872}
f51048c3 6873EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 6874
f0db275a
SH
6875/**
6876 * dev_set_mtu - Change maximum transfer unit
6877 * @dev: device
6878 * @new_mtu: new transfer unit
6879 *
6880 * Change the maximum transfer size of the network device.
6881 */
1da177e4
LT
6882int dev_set_mtu(struct net_device *dev, int new_mtu)
6883{
2315dc91 6884 int err, orig_mtu;
1da177e4
LT
6885
6886 if (new_mtu == dev->mtu)
6887 return 0;
6888
61e84623
JW
6889 /* MTU must be positive, and in range */
6890 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6891 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6892 dev->name, new_mtu, dev->min_mtu);
1da177e4 6893 return -EINVAL;
61e84623
JW
6894 }
6895
6896 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6897 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6898 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6899 return -EINVAL;
6900 }
1da177e4
LT
6901
6902 if (!netif_device_present(dev))
6903 return -ENODEV;
6904
1d486bfb
VF
6905 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6906 err = notifier_to_errno(err);
6907 if (err)
6908 return err;
d314774c 6909
2315dc91
VF
6910 orig_mtu = dev->mtu;
6911 err = __dev_set_mtu(dev, new_mtu);
d314774c 6912
2315dc91
VF
6913 if (!err) {
6914 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6915 err = notifier_to_errno(err);
6916 if (err) {
6917 /* setting mtu back and notifying everyone again,
6918 * so that they have a chance to revert changes.
6919 */
6920 __dev_set_mtu(dev, orig_mtu);
6921 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6922 }
6923 }
1da177e4
LT
6924 return err;
6925}
d1b19dff 6926EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6927
cbda10fa
VD
6928/**
6929 * dev_set_group - Change group this device belongs to
6930 * @dev: device
6931 * @new_group: group this device should belong to
6932 */
6933void dev_set_group(struct net_device *dev, int new_group)
6934{
6935 dev->group = new_group;
6936}
6937EXPORT_SYMBOL(dev_set_group);
6938
f0db275a
SH
6939/**
6940 * dev_set_mac_address - Change Media Access Control Address
6941 * @dev: device
6942 * @sa: new address
6943 *
6944 * Change the hardware (MAC) address of the device
6945 */
1da177e4
LT
6946int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6947{
d314774c 6948 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6949 int err;
6950
d314774c 6951 if (!ops->ndo_set_mac_address)
1da177e4
LT
6952 return -EOPNOTSUPP;
6953 if (sa->sa_family != dev->type)
6954 return -EINVAL;
6955 if (!netif_device_present(dev))
6956 return -ENODEV;
d314774c 6957 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6958 if (err)
6959 return err;
fbdeca2d 6960 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6961 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6962 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6963 return 0;
1da177e4 6964}
d1b19dff 6965EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6966
4bf84c35
JP
6967/**
6968 * dev_change_carrier - Change device carrier
6969 * @dev: device
691b3b7e 6970 * @new_carrier: new value
4bf84c35
JP
6971 *
6972 * Change device carrier
6973 */
6974int dev_change_carrier(struct net_device *dev, bool new_carrier)
6975{
6976 const struct net_device_ops *ops = dev->netdev_ops;
6977
6978 if (!ops->ndo_change_carrier)
6979 return -EOPNOTSUPP;
6980 if (!netif_device_present(dev))
6981 return -ENODEV;
6982 return ops->ndo_change_carrier(dev, new_carrier);
6983}
6984EXPORT_SYMBOL(dev_change_carrier);
6985
66b52b0d
JP
6986/**
6987 * dev_get_phys_port_id - Get device physical port ID
6988 * @dev: device
6989 * @ppid: port ID
6990 *
6991 * Get device physical port ID
6992 */
6993int dev_get_phys_port_id(struct net_device *dev,
02637fce 6994 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6995{
6996 const struct net_device_ops *ops = dev->netdev_ops;
6997
6998 if (!ops->ndo_get_phys_port_id)
6999 return -EOPNOTSUPP;
7000 return ops->ndo_get_phys_port_id(dev, ppid);
7001}
7002EXPORT_SYMBOL(dev_get_phys_port_id);
7003
db24a904
DA
7004/**
7005 * dev_get_phys_port_name - Get device physical port name
7006 * @dev: device
7007 * @name: port name
ed49e650 7008 * @len: limit of bytes to copy to name
db24a904
DA
7009 *
7010 * Get device physical port name
7011 */
7012int dev_get_phys_port_name(struct net_device *dev,
7013 char *name, size_t len)
7014{
7015 const struct net_device_ops *ops = dev->netdev_ops;
7016
7017 if (!ops->ndo_get_phys_port_name)
7018 return -EOPNOTSUPP;
7019 return ops->ndo_get_phys_port_name(dev, name, len);
7020}
7021EXPORT_SYMBOL(dev_get_phys_port_name);
7022
d746d707
AK
7023/**
7024 * dev_change_proto_down - update protocol port state information
7025 * @dev: device
7026 * @proto_down: new value
7027 *
7028 * This info can be used by switch drivers to set the phys state of the
7029 * port.
7030 */
7031int dev_change_proto_down(struct net_device *dev, bool proto_down)
7032{
7033 const struct net_device_ops *ops = dev->netdev_ops;
7034
7035 if (!ops->ndo_change_proto_down)
7036 return -EOPNOTSUPP;
7037 if (!netif_device_present(dev))
7038 return -ENODEV;
7039 return ops->ndo_change_proto_down(dev, proto_down);
7040}
7041EXPORT_SYMBOL(dev_change_proto_down);
7042
ce158e58 7043u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
d67b9cd2
DB
7044{
7045 struct netdev_xdp xdp;
7046
7047 memset(&xdp, 0, sizeof(xdp));
7048 xdp.command = XDP_QUERY_PROG;
7049
7050 /* Query must always succeed. */
7051 WARN_ON(xdp_op(dev, &xdp) < 0);
58038695
MKL
7052 if (prog_id)
7053 *prog_id = xdp.prog_id;
7054
d67b9cd2
DB
7055 return xdp.prog_attached;
7056}
7057
7058static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
32d60277 7059 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
7060 struct bpf_prog *prog)
7061{
7062 struct netdev_xdp xdp;
7063
7064 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
7065 if (flags & XDP_FLAGS_HW_MODE)
7066 xdp.command = XDP_SETUP_PROG_HW;
7067 else
7068 xdp.command = XDP_SETUP_PROG;
d67b9cd2 7069 xdp.extack = extack;
32d60277 7070 xdp.flags = flags;
d67b9cd2
DB
7071 xdp.prog = prog;
7072
7073 return xdp_op(dev, &xdp);
7074}
7075
a7862b45
BB
7076/**
7077 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7078 * @dev: device
b5d60989 7079 * @extack: netlink extended ack
a7862b45 7080 * @fd: new program fd or negative value to clear
85de8576 7081 * @flags: xdp-related flags
a7862b45
BB
7082 *
7083 * Set or clear a bpf program for a device
7084 */
ddf9f970
JK
7085int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7086 int fd, u32 flags)
a7862b45
BB
7087{
7088 const struct net_device_ops *ops = dev->netdev_ops;
7089 struct bpf_prog *prog = NULL;
d67b9cd2 7090 xdp_op_t xdp_op, xdp_chk;
a7862b45
BB
7091 int err;
7092
85de8576
DB
7093 ASSERT_RTNL();
7094
d67b9cd2 7095 xdp_op = xdp_chk = ops->ndo_xdp;
ee5d032f 7096 if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
0489df9a 7097 return -EOPNOTSUPP;
b5cdae32
DM
7098 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7099 xdp_op = generic_xdp_install;
d67b9cd2
DB
7100 if (xdp_op == xdp_chk)
7101 xdp_chk = generic_xdp_install;
b5cdae32 7102
a7862b45 7103 if (fd >= 0) {
58038695 7104 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
d67b9cd2
DB
7105 return -EEXIST;
7106 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
58038695 7107 __dev_xdp_attached(dev, xdp_op, NULL))
d67b9cd2 7108 return -EBUSY;
85de8576 7109
a7862b45
BB
7110 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7111 if (IS_ERR(prog))
7112 return PTR_ERR(prog);
7113 }
7114
32d60277 7115 err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
a7862b45
BB
7116 if (err < 0 && prog)
7117 bpf_prog_put(prog);
7118
7119 return err;
7120}
a7862b45 7121
1da177e4
LT
7122/**
7123 * dev_new_index - allocate an ifindex
c4ea43c5 7124 * @net: the applicable net namespace
1da177e4
LT
7125 *
7126 * Returns a suitable unique value for a new device interface
7127 * number. The caller must hold the rtnl semaphore or the
7128 * dev_base_lock to be sure it remains unique.
7129 */
881d966b 7130static int dev_new_index(struct net *net)
1da177e4 7131{
aa79e66e 7132 int ifindex = net->ifindex;
f4563a75 7133
1da177e4
LT
7134 for (;;) {
7135 if (++ifindex <= 0)
7136 ifindex = 1;
881d966b 7137 if (!__dev_get_by_index(net, ifindex))
aa79e66e 7138 return net->ifindex = ifindex;
1da177e4
LT
7139 }
7140}
7141
1da177e4 7142/* Delayed registration/unregisteration */
3b5b34fd 7143static LIST_HEAD(net_todo_list);
200b916f 7144DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 7145
6f05f629 7146static void net_set_todo(struct net_device *dev)
1da177e4 7147{
1da177e4 7148 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 7149 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
7150}
7151
9b5e383c 7152static void rollback_registered_many(struct list_head *head)
93ee31f1 7153{
e93737b0 7154 struct net_device *dev, *tmp;
5cde2829 7155 LIST_HEAD(close_head);
9b5e383c 7156
93ee31f1
DL
7157 BUG_ON(dev_boot_phase);
7158 ASSERT_RTNL();
7159
e93737b0 7160 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 7161 /* Some devices call without registering
e93737b0
KK
7162 * for initialization unwind. Remove those
7163 * devices and proceed with the remaining.
9b5e383c
ED
7164 */
7165 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
7166 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7167 dev->name, dev);
93ee31f1 7168
9b5e383c 7169 WARN_ON(1);
e93737b0
KK
7170 list_del(&dev->unreg_list);
7171 continue;
9b5e383c 7172 }
449f4544 7173 dev->dismantle = true;
9b5e383c 7174 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 7175 }
93ee31f1 7176
44345724 7177 /* If device is running, close it first. */
5cde2829
EB
7178 list_for_each_entry(dev, head, unreg_list)
7179 list_add_tail(&dev->close_list, &close_head);
99c4a26a 7180 dev_close_many(&close_head, true);
93ee31f1 7181
44345724 7182 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
7183 /* And unlink it from device chain. */
7184 unlist_netdevice(dev);
93ee31f1 7185
9b5e383c
ED
7186 dev->reg_state = NETREG_UNREGISTERING;
7187 }
41852497 7188 flush_all_backlogs();
93ee31f1
DL
7189
7190 synchronize_net();
7191
9b5e383c 7192 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
7193 struct sk_buff *skb = NULL;
7194
9b5e383c
ED
7195 /* Shutdown queueing discipline. */
7196 dev_shutdown(dev);
93ee31f1
DL
7197
7198
9b5e383c 7199 /* Notify protocols, that we are about to destroy
eb13da1a 7200 * this device. They should clean all the things.
7201 */
9b5e383c 7202 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 7203
395eea6c
MB
7204 if (!dev->rtnl_link_ops ||
7205 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 7206 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
395eea6c
MB
7207 GFP_KERNEL);
7208
9b5e383c
ED
7209 /*
7210 * Flush the unicast and multicast chains
7211 */
a748ee24 7212 dev_uc_flush(dev);
22bedad3 7213 dev_mc_flush(dev);
93ee31f1 7214
9b5e383c
ED
7215 if (dev->netdev_ops->ndo_uninit)
7216 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 7217
395eea6c
MB
7218 if (skb)
7219 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 7220
9ff162a8
JP
7221 /* Notifier chain MUST detach us all upper devices. */
7222 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 7223 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 7224
9b5e383c
ED
7225 /* Remove entries from kobject tree */
7226 netdev_unregister_kobject(dev);
024e9679
AD
7227#ifdef CONFIG_XPS
7228 /* Remove XPS queueing entries */
7229 netif_reset_xps_queues_gt(dev, 0);
7230#endif
9b5e383c 7231 }
93ee31f1 7232
850a545b 7233 synchronize_net();
395264d5 7234
a5ee1551 7235 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
7236 dev_put(dev);
7237}
7238
7239static void rollback_registered(struct net_device *dev)
7240{
7241 LIST_HEAD(single);
7242
7243 list_add(&dev->unreg_list, &single);
7244 rollback_registered_many(&single);
ceaaec98 7245 list_del(&single);
93ee31f1
DL
7246}
7247
fd867d51
JW
7248static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7249 struct net_device *upper, netdev_features_t features)
7250{
7251 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7252 netdev_features_t feature;
5ba3f7d6 7253 int feature_bit;
fd867d51 7254
5ba3f7d6
JW
7255 for_each_netdev_feature(&upper_disables, feature_bit) {
7256 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7257 if (!(upper->wanted_features & feature)
7258 && (features & feature)) {
7259 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7260 &feature, upper->name);
7261 features &= ~feature;
7262 }
7263 }
7264
7265 return features;
7266}
7267
7268static void netdev_sync_lower_features(struct net_device *upper,
7269 struct net_device *lower, netdev_features_t features)
7270{
7271 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7272 netdev_features_t feature;
5ba3f7d6 7273 int feature_bit;
fd867d51 7274
5ba3f7d6
JW
7275 for_each_netdev_feature(&upper_disables, feature_bit) {
7276 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7277 if (!(features & feature) && (lower->features & feature)) {
7278 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7279 &feature, lower->name);
7280 lower->wanted_features &= ~feature;
7281 netdev_update_features(lower);
7282
7283 if (unlikely(lower->features & feature))
7284 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7285 &feature, lower->name);
7286 }
7287 }
7288}
7289
c8f44aff
MM
7290static netdev_features_t netdev_fix_features(struct net_device *dev,
7291 netdev_features_t features)
b63365a2 7292{
57422dc5
MM
7293 /* Fix illegal checksum combinations */
7294 if ((features & NETIF_F_HW_CSUM) &&
7295 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 7296 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
7297 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7298 }
7299
b63365a2 7300 /* TSO requires that SG is present as well. */
ea2d3688 7301 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 7302 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 7303 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
7304 }
7305
ec5f0615
PS
7306 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7307 !(features & NETIF_F_IP_CSUM)) {
7308 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7309 features &= ~NETIF_F_TSO;
7310 features &= ~NETIF_F_TSO_ECN;
7311 }
7312
7313 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7314 !(features & NETIF_F_IPV6_CSUM)) {
7315 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7316 features &= ~NETIF_F_TSO6;
7317 }
7318
b1dc497b
AD
7319 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7320 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7321 features &= ~NETIF_F_TSO_MANGLEID;
7322
31d8b9e0
BH
7323 /* TSO ECN requires that TSO is present as well. */
7324 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7325 features &= ~NETIF_F_TSO_ECN;
7326
212b573f
MM
7327 /* Software GSO depends on SG. */
7328 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 7329 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
7330 features &= ~NETIF_F_GSO;
7331 }
7332
802ab55a
AD
7333 /* GSO partial features require GSO partial be set */
7334 if ((features & dev->gso_partial_features) &&
7335 !(features & NETIF_F_GSO_PARTIAL)) {
7336 netdev_dbg(dev,
7337 "Dropping partially supported GSO features since no GSO partial.\n");
7338 features &= ~dev->gso_partial_features;
7339 }
7340
b63365a2
HX
7341 return features;
7342}
b63365a2 7343
6cb6a27c 7344int __netdev_update_features(struct net_device *dev)
5455c699 7345{
fd867d51 7346 struct net_device *upper, *lower;
c8f44aff 7347 netdev_features_t features;
fd867d51 7348 struct list_head *iter;
e7868a85 7349 int err = -1;
5455c699 7350
87267485
MM
7351 ASSERT_RTNL();
7352
5455c699
MM
7353 features = netdev_get_wanted_features(dev);
7354
7355 if (dev->netdev_ops->ndo_fix_features)
7356 features = dev->netdev_ops->ndo_fix_features(dev, features);
7357
7358 /* driver might be less strict about feature dependencies */
7359 features = netdev_fix_features(dev, features);
7360
fd867d51
JW
7361 /* some features can't be enabled if they're off an an upper device */
7362 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7363 features = netdev_sync_upper_features(dev, upper, features);
7364
5455c699 7365 if (dev->features == features)
e7868a85 7366 goto sync_lower;
5455c699 7367
c8f44aff
MM
7368 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7369 &dev->features, &features);
5455c699
MM
7370
7371 if (dev->netdev_ops->ndo_set_features)
7372 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7373 else
7374 err = 0;
5455c699 7375
6cb6a27c 7376 if (unlikely(err < 0)) {
5455c699 7377 netdev_err(dev,
c8f44aff
MM
7378 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7379 err, &features, &dev->features);
17b85d29
NA
7380 /* return non-0 since some features might have changed and
7381 * it's better to fire a spurious notification than miss it
7382 */
7383 return -1;
6cb6a27c
MM
7384 }
7385
e7868a85 7386sync_lower:
fd867d51
JW
7387 /* some features must be disabled on lower devices when disabled
7388 * on an upper device (think: bonding master or bridge)
7389 */
7390 netdev_for_each_lower_dev(dev, lower, iter)
7391 netdev_sync_lower_features(dev, lower, features);
7392
ae847f40
SD
7393 if (!err) {
7394 netdev_features_t diff = features ^ dev->features;
7395
7396 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7397 /* udp_tunnel_{get,drop}_rx_info both need
7398 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7399 * device, or they won't do anything.
7400 * Thus we need to update dev->features
7401 * *before* calling udp_tunnel_get_rx_info,
7402 * but *after* calling udp_tunnel_drop_rx_info.
7403 */
7404 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7405 dev->features = features;
7406 udp_tunnel_get_rx_info(dev);
7407 } else {
7408 udp_tunnel_drop_rx_info(dev);
7409 }
7410 }
7411
6cb6a27c 7412 dev->features = features;
ae847f40 7413 }
6cb6a27c 7414
e7868a85 7415 return err < 0 ? 0 : 1;
6cb6a27c
MM
7416}
7417
afe12cc8
MM
7418/**
7419 * netdev_update_features - recalculate device features
7420 * @dev: the device to check
7421 *
7422 * Recalculate dev->features set and send notifications if it
7423 * has changed. Should be called after driver or hardware dependent
7424 * conditions might have changed that influence the features.
7425 */
6cb6a27c
MM
7426void netdev_update_features(struct net_device *dev)
7427{
7428 if (__netdev_update_features(dev))
7429 netdev_features_change(dev);
5455c699
MM
7430}
7431EXPORT_SYMBOL(netdev_update_features);
7432
afe12cc8
MM
7433/**
7434 * netdev_change_features - recalculate device features
7435 * @dev: the device to check
7436 *
7437 * Recalculate dev->features set and send notifications even
7438 * if they have not changed. Should be called instead of
7439 * netdev_update_features() if also dev->vlan_features might
7440 * have changed to allow the changes to be propagated to stacked
7441 * VLAN devices.
7442 */
7443void netdev_change_features(struct net_device *dev)
7444{
7445 __netdev_update_features(dev);
7446 netdev_features_change(dev);
7447}
7448EXPORT_SYMBOL(netdev_change_features);
7449
fc4a7489
PM
7450/**
7451 * netif_stacked_transfer_operstate - transfer operstate
7452 * @rootdev: the root or lower level device to transfer state from
7453 * @dev: the device to transfer operstate to
7454 *
7455 * Transfer operational state from root to device. This is normally
7456 * called when a stacking relationship exists between the root
7457 * device and the device(a leaf device).
7458 */
7459void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7460 struct net_device *dev)
7461{
7462 if (rootdev->operstate == IF_OPER_DORMANT)
7463 netif_dormant_on(dev);
7464 else
7465 netif_dormant_off(dev);
7466
0575c86b
ZS
7467 if (netif_carrier_ok(rootdev))
7468 netif_carrier_on(dev);
7469 else
7470 netif_carrier_off(dev);
fc4a7489
PM
7471}
7472EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7473
a953be53 7474#ifdef CONFIG_SYSFS
1b4bf461
ED
7475static int netif_alloc_rx_queues(struct net_device *dev)
7476{
1b4bf461 7477 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7478 struct netdev_rx_queue *rx;
10595902 7479 size_t sz = count * sizeof(*rx);
1b4bf461 7480
bd25fa7b 7481 BUG_ON(count < 1);
1b4bf461 7482
dcda9b04 7483 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7484 if (!rx)
7485 return -ENOMEM;
7486
bd25fa7b
TH
7487 dev->_rx = rx;
7488
bd25fa7b 7489 for (i = 0; i < count; i++)
fe822240 7490 rx[i].dev = dev;
1b4bf461
ED
7491 return 0;
7492}
bf264145 7493#endif
1b4bf461 7494
aa942104
CG
7495static void netdev_init_one_queue(struct net_device *dev,
7496 struct netdev_queue *queue, void *_unused)
7497{
7498 /* Initialize queue lock */
7499 spin_lock_init(&queue->_xmit_lock);
7500 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7501 queue->xmit_lock_owner = -1;
b236da69 7502 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7503 queue->dev = dev;
114cf580
TH
7504#ifdef CONFIG_BQL
7505 dql_init(&queue->dql, HZ);
7506#endif
aa942104
CG
7507}
7508
60877a32
ED
7509static void netif_free_tx_queues(struct net_device *dev)
7510{
4cb28970 7511 kvfree(dev->_tx);
60877a32
ED
7512}
7513
e6484930
TH
7514static int netif_alloc_netdev_queues(struct net_device *dev)
7515{
7516 unsigned int count = dev->num_tx_queues;
7517 struct netdev_queue *tx;
60877a32 7518 size_t sz = count * sizeof(*tx);
e6484930 7519
d339727c
ED
7520 if (count < 1 || count > 0xffff)
7521 return -EINVAL;
62b5942a 7522
dcda9b04 7523 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7524 if (!tx)
7525 return -ENOMEM;
7526
e6484930 7527 dev->_tx = tx;
1d24eb48 7528
e6484930
TH
7529 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7530 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7531
7532 return 0;
e6484930
TH
7533}
7534
a2029240
DV
7535void netif_tx_stop_all_queues(struct net_device *dev)
7536{
7537 unsigned int i;
7538
7539 for (i = 0; i < dev->num_tx_queues; i++) {
7540 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 7541
a2029240
DV
7542 netif_tx_stop_queue(txq);
7543 }
7544}
7545EXPORT_SYMBOL(netif_tx_stop_all_queues);
7546
1da177e4
LT
7547/**
7548 * register_netdevice - register a network device
7549 * @dev: device to register
7550 *
7551 * Take a completed network device structure and add it to the kernel
7552 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7553 * chain. 0 is returned on success. A negative errno code is returned
7554 * on a failure to set up the device, or if the name is a duplicate.
7555 *
7556 * Callers must hold the rtnl semaphore. You may want
7557 * register_netdev() instead of this.
7558 *
7559 * BUGS:
7560 * The locking appears insufficient to guarantee two parallel registers
7561 * will not get the same name.
7562 */
7563
7564int register_netdevice(struct net_device *dev)
7565{
1da177e4 7566 int ret;
d314774c 7567 struct net *net = dev_net(dev);
1da177e4
LT
7568
7569 BUG_ON(dev_boot_phase);
7570 ASSERT_RTNL();
7571
b17a7c17
SH
7572 might_sleep();
7573
1da177e4
LT
7574 /* When net_device's are persistent, this will be fatal. */
7575 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7576 BUG_ON(!net);
1da177e4 7577
f1f28aa3 7578 spin_lock_init(&dev->addr_list_lock);
cf508b12 7579 netdev_set_addr_lockdep_class(dev);
1da177e4 7580
828de4f6 7581 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7582 if (ret < 0)
7583 goto out;
7584
1da177e4 7585 /* Init, if this function is available */
d314774c
SH
7586 if (dev->netdev_ops->ndo_init) {
7587 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7588 if (ret) {
7589 if (ret > 0)
7590 ret = -EIO;
90833aa4 7591 goto out;
1da177e4
LT
7592 }
7593 }
4ec93edb 7594
f646968f
PM
7595 if (((dev->hw_features | dev->features) &
7596 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7597 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7598 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7599 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7600 ret = -EINVAL;
7601 goto err_uninit;
7602 }
7603
9c7dafbf
PE
7604 ret = -EBUSY;
7605 if (!dev->ifindex)
7606 dev->ifindex = dev_new_index(net);
7607 else if (__dev_get_by_index(net, dev->ifindex))
7608 goto err_uninit;
7609
5455c699
MM
7610 /* Transfer changeable features to wanted_features and enable
7611 * software offloads (GSO and GRO).
7612 */
7613 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 7614 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
7615
7616 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7617 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7618 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7619 }
7620
14d1232f 7621 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7622
cbc53e08 7623 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7624 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7625
7f348a60
AD
7626 /* If IPv4 TCP segmentation offload is supported we should also
7627 * allow the device to enable segmenting the frame with the option
7628 * of ignoring a static IP ID value. This doesn't enable the
7629 * feature itself but allows the user to enable it later.
7630 */
cbc53e08
AD
7631 if (dev->hw_features & NETIF_F_TSO)
7632 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7633 if (dev->vlan_features & NETIF_F_TSO)
7634 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7635 if (dev->mpls_features & NETIF_F_TSO)
7636 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7637 if (dev->hw_enc_features & NETIF_F_TSO)
7638 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7639
1180e7d6 7640 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7641 */
1180e7d6 7642 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7643
ee579677
PS
7644 /* Make NETIF_F_SG inheritable to tunnel devices.
7645 */
802ab55a 7646 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7647
0d89d203
SH
7648 /* Make NETIF_F_SG inheritable to MPLS.
7649 */
7650 dev->mpls_features |= NETIF_F_SG;
7651
7ffbe3fd
JB
7652 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7653 ret = notifier_to_errno(ret);
7654 if (ret)
7655 goto err_uninit;
7656
8b41d188 7657 ret = netdev_register_kobject(dev);
b17a7c17 7658 if (ret)
7ce1b0ed 7659 goto err_uninit;
b17a7c17
SH
7660 dev->reg_state = NETREG_REGISTERED;
7661
6cb6a27c 7662 __netdev_update_features(dev);
8e9b59b2 7663
1da177e4
LT
7664 /*
7665 * Default initial state at registry is that the
7666 * device is present.
7667 */
7668
7669 set_bit(__LINK_STATE_PRESENT, &dev->state);
7670
8f4cccbb
BH
7671 linkwatch_init_dev(dev);
7672
1da177e4 7673 dev_init_scheduler(dev);
1da177e4 7674 dev_hold(dev);
ce286d32 7675 list_netdevice(dev);
7bf23575 7676 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7677
948b337e
JP
7678 /* If the device has permanent device address, driver should
7679 * set dev_addr and also addr_assign_type should be set to
7680 * NET_ADDR_PERM (default value).
7681 */
7682 if (dev->addr_assign_type == NET_ADDR_PERM)
7683 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7684
1da177e4 7685 /* Notify protocols, that a new device appeared. */
056925ab 7686 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7687 ret = notifier_to_errno(ret);
93ee31f1
DL
7688 if (ret) {
7689 rollback_registered(dev);
7690 dev->reg_state = NETREG_UNREGISTERED;
7691 }
d90a909e
EB
7692 /*
7693 * Prevent userspace races by waiting until the network
7694 * device is fully setup before sending notifications.
7695 */
a2835763
PM
7696 if (!dev->rtnl_link_ops ||
7697 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7698 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7699
7700out:
7701 return ret;
7ce1b0ed
HX
7702
7703err_uninit:
d314774c
SH
7704 if (dev->netdev_ops->ndo_uninit)
7705 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
7706 if (dev->priv_destructor)
7707 dev->priv_destructor(dev);
7ce1b0ed 7708 goto out;
1da177e4 7709}
d1b19dff 7710EXPORT_SYMBOL(register_netdevice);
1da177e4 7711
937f1ba5
BH
7712/**
7713 * init_dummy_netdev - init a dummy network device for NAPI
7714 * @dev: device to init
7715 *
7716 * This takes a network device structure and initialize the minimum
7717 * amount of fields so it can be used to schedule NAPI polls without
7718 * registering a full blown interface. This is to be used by drivers
7719 * that need to tie several hardware interfaces to a single NAPI
7720 * poll scheduler due to HW limitations.
7721 */
7722int init_dummy_netdev(struct net_device *dev)
7723{
7724 /* Clear everything. Note we don't initialize spinlocks
7725 * are they aren't supposed to be taken by any of the
7726 * NAPI code and this dummy netdev is supposed to be
7727 * only ever used for NAPI polls
7728 */
7729 memset(dev, 0, sizeof(struct net_device));
7730
7731 /* make sure we BUG if trying to hit standard
7732 * register/unregister code path
7733 */
7734 dev->reg_state = NETREG_DUMMY;
7735
937f1ba5
BH
7736 /* NAPI wants this */
7737 INIT_LIST_HEAD(&dev->napi_list);
7738
7739 /* a dummy interface is started by default */
7740 set_bit(__LINK_STATE_PRESENT, &dev->state);
7741 set_bit(__LINK_STATE_START, &dev->state);
7742
29b4433d
ED
7743 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7744 * because users of this 'device' dont need to change
7745 * its refcount.
7746 */
7747
937f1ba5
BH
7748 return 0;
7749}
7750EXPORT_SYMBOL_GPL(init_dummy_netdev);
7751
7752
1da177e4
LT
7753/**
7754 * register_netdev - register a network device
7755 * @dev: device to register
7756 *
7757 * Take a completed network device structure and add it to the kernel
7758 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7759 * chain. 0 is returned on success. A negative errno code is returned
7760 * on a failure to set up the device, or if the name is a duplicate.
7761 *
38b4da38 7762 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7763 * and expands the device name if you passed a format string to
7764 * alloc_netdev.
7765 */
7766int register_netdev(struct net_device *dev)
7767{
7768 int err;
7769
7770 rtnl_lock();
1da177e4 7771 err = register_netdevice(dev);
1da177e4
LT
7772 rtnl_unlock();
7773 return err;
7774}
7775EXPORT_SYMBOL(register_netdev);
7776
29b4433d
ED
7777int netdev_refcnt_read(const struct net_device *dev)
7778{
7779 int i, refcnt = 0;
7780
7781 for_each_possible_cpu(i)
7782 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7783 return refcnt;
7784}
7785EXPORT_SYMBOL(netdev_refcnt_read);
7786
2c53040f 7787/**
1da177e4 7788 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7789 * @dev: target net_device
1da177e4
LT
7790 *
7791 * This is called when unregistering network devices.
7792 *
7793 * Any protocol or device that holds a reference should register
7794 * for netdevice notification, and cleanup and put back the
7795 * reference if they receive an UNREGISTER event.
7796 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7797 * call dev_put.
1da177e4
LT
7798 */
7799static void netdev_wait_allrefs(struct net_device *dev)
7800{
7801 unsigned long rebroadcast_time, warning_time;
29b4433d 7802 int refcnt;
1da177e4 7803
e014debe
ED
7804 linkwatch_forget_dev(dev);
7805
1da177e4 7806 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7807 refcnt = netdev_refcnt_read(dev);
7808
7809 while (refcnt != 0) {
1da177e4 7810 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7811 rtnl_lock();
1da177e4
LT
7812
7813 /* Rebroadcast unregister notification */
056925ab 7814 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7815
748e2d93 7816 __rtnl_unlock();
0115e8e3 7817 rcu_barrier();
748e2d93
ED
7818 rtnl_lock();
7819
0115e8e3 7820 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7821 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7822 &dev->state)) {
7823 /* We must not have linkwatch events
7824 * pending on unregister. If this
7825 * happens, we simply run the queue
7826 * unscheduled, resulting in a noop
7827 * for this device.
7828 */
7829 linkwatch_run_queue();
7830 }
7831
6756ae4b 7832 __rtnl_unlock();
1da177e4
LT
7833
7834 rebroadcast_time = jiffies;
7835 }
7836
7837 msleep(250);
7838
29b4433d
ED
7839 refcnt = netdev_refcnt_read(dev);
7840
1da177e4 7841 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7842 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7843 dev->name, refcnt);
1da177e4
LT
7844 warning_time = jiffies;
7845 }
7846 }
7847}
7848
7849/* The sequence is:
7850 *
7851 * rtnl_lock();
7852 * ...
7853 * register_netdevice(x1);
7854 * register_netdevice(x2);
7855 * ...
7856 * unregister_netdevice(y1);
7857 * unregister_netdevice(y2);
7858 * ...
7859 * rtnl_unlock();
7860 * free_netdev(y1);
7861 * free_netdev(y2);
7862 *
58ec3b4d 7863 * We are invoked by rtnl_unlock().
1da177e4 7864 * This allows us to deal with problems:
b17a7c17 7865 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7866 * without deadlocking with linkwatch via keventd.
7867 * 2) Since we run with the RTNL semaphore not held, we can sleep
7868 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7869 *
7870 * We must not return until all unregister events added during
7871 * the interval the lock was held have been completed.
1da177e4 7872 */
1da177e4
LT
7873void netdev_run_todo(void)
7874{
626ab0e6 7875 struct list_head list;
1da177e4 7876
1da177e4 7877 /* Snapshot list, allow later requests */
626ab0e6 7878 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7879
7880 __rtnl_unlock();
626ab0e6 7881
0115e8e3
ED
7882
7883 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7884 if (!list_empty(&list))
7885 rcu_barrier();
7886
1da177e4
LT
7887 while (!list_empty(&list)) {
7888 struct net_device *dev
e5e26d75 7889 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7890 list_del(&dev->todo_list);
7891
748e2d93 7892 rtnl_lock();
0115e8e3 7893 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7894 __rtnl_unlock();
0115e8e3 7895
b17a7c17 7896 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7897 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7898 dev->name, dev->reg_state);
7899 dump_stack();
7900 continue;
7901 }
1da177e4 7902
b17a7c17 7903 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7904
b17a7c17 7905 netdev_wait_allrefs(dev);
1da177e4 7906
b17a7c17 7907 /* paranoia */
29b4433d 7908 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7909 BUG_ON(!list_empty(&dev->ptype_all));
7910 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7911 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7912 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7913 WARN_ON(dev->dn_ptr);
1da177e4 7914
cf124db5
DM
7915 if (dev->priv_destructor)
7916 dev->priv_destructor(dev);
7917 if (dev->needs_free_netdev)
7918 free_netdev(dev);
9093bbb2 7919
50624c93
EB
7920 /* Report a network device has been unregistered */
7921 rtnl_lock();
7922 dev_net(dev)->dev_unreg_count--;
7923 __rtnl_unlock();
7924 wake_up(&netdev_unregistering_wq);
7925
9093bbb2
SH
7926 /* Free network device */
7927 kobject_put(&dev->dev.kobj);
1da177e4 7928 }
1da177e4
LT
7929}
7930
9256645a
JW
7931/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7932 * all the same fields in the same order as net_device_stats, with only
7933 * the type differing, but rtnl_link_stats64 may have additional fields
7934 * at the end for newer counters.
3cfde79c 7935 */
77a1abf5
ED
7936void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7937 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7938{
7939#if BITS_PER_LONG == 64
9256645a 7940 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 7941 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
7942 /* zero out counters that only exist in rtnl_link_stats64 */
7943 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7944 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7945#else
9256645a 7946 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7947 const unsigned long *src = (const unsigned long *)netdev_stats;
7948 u64 *dst = (u64 *)stats64;
7949
9256645a 7950 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7951 for (i = 0; i < n; i++)
7952 dst[i] = src[i];
9256645a
JW
7953 /* zero out counters that only exist in rtnl_link_stats64 */
7954 memset((char *)stats64 + n * sizeof(u64), 0,
7955 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7956#endif
7957}
77a1abf5 7958EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7959
eeda3fd6
SH
7960/**
7961 * dev_get_stats - get network device statistics
7962 * @dev: device to get statistics from
28172739 7963 * @storage: place to store stats
eeda3fd6 7964 *
d7753516
BH
7965 * Get network statistics from device. Return @storage.
7966 * The device driver may provide its own method by setting
7967 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7968 * otherwise the internal statistics structure is used.
eeda3fd6 7969 */
d7753516
BH
7970struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7971 struct rtnl_link_stats64 *storage)
7004bf25 7972{
eeda3fd6
SH
7973 const struct net_device_ops *ops = dev->netdev_ops;
7974
28172739
ED
7975 if (ops->ndo_get_stats64) {
7976 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7977 ops->ndo_get_stats64(dev, storage);
7978 } else if (ops->ndo_get_stats) {
3cfde79c 7979 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7980 } else {
7981 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7982 }
6f64ec74
ED
7983 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7984 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7985 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 7986 return storage;
c45d286e 7987}
eeda3fd6 7988EXPORT_SYMBOL(dev_get_stats);
c45d286e 7989
24824a09 7990struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7991{
24824a09 7992 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7993
24824a09
ED
7994#ifdef CONFIG_NET_CLS_ACT
7995 if (queue)
7996 return queue;
7997 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7998 if (!queue)
7999 return NULL;
8000 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 8001 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
8002 queue->qdisc_sleeping = &noop_qdisc;
8003 rcu_assign_pointer(dev->ingress_queue, queue);
8004#endif
8005 return queue;
bb949fbd
DM
8006}
8007
2c60db03
ED
8008static const struct ethtool_ops default_ethtool_ops;
8009
d07d7507
SG
8010void netdev_set_default_ethtool_ops(struct net_device *dev,
8011 const struct ethtool_ops *ops)
8012{
8013 if (dev->ethtool_ops == &default_ethtool_ops)
8014 dev->ethtool_ops = ops;
8015}
8016EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8017
74d332c1
ED
8018void netdev_freemem(struct net_device *dev)
8019{
8020 char *addr = (char *)dev - dev->padded;
8021
4cb28970 8022 kvfree(addr);
74d332c1
ED
8023}
8024
1da177e4 8025/**
722c9a0c 8026 * alloc_netdev_mqs - allocate network device
8027 * @sizeof_priv: size of private data to allocate space for
8028 * @name: device name format string
8029 * @name_assign_type: origin of device name
8030 * @setup: callback to initialize device
8031 * @txqs: the number of TX subqueues to allocate
8032 * @rxqs: the number of RX subqueues to allocate
8033 *
8034 * Allocates a struct net_device with private data area for driver use
8035 * and performs basic initialization. Also allocates subqueue structs
8036 * for each queue on the device.
1da177e4 8037 */
36909ea4 8038struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 8039 unsigned char name_assign_type,
36909ea4
TH
8040 void (*setup)(struct net_device *),
8041 unsigned int txqs, unsigned int rxqs)
1da177e4 8042{
1da177e4 8043 struct net_device *dev;
52a59bd5 8044 unsigned int alloc_size;
1ce8e7b5 8045 struct net_device *p;
1da177e4 8046
b6fe17d6
SH
8047 BUG_ON(strlen(name) >= sizeof(dev->name));
8048
36909ea4 8049 if (txqs < 1) {
7b6cd1ce 8050 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
8051 return NULL;
8052 }
8053
a953be53 8054#ifdef CONFIG_SYSFS
36909ea4 8055 if (rxqs < 1) {
7b6cd1ce 8056 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
8057 return NULL;
8058 }
8059#endif
8060
fd2ea0a7 8061 alloc_size = sizeof(struct net_device);
d1643d24
AD
8062 if (sizeof_priv) {
8063 /* ensure 32-byte alignment of private area */
1ce8e7b5 8064 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
8065 alloc_size += sizeof_priv;
8066 }
8067 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 8068 alloc_size += NETDEV_ALIGN - 1;
1da177e4 8069
dcda9b04 8070 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 8071 if (!p)
1da177e4 8072 return NULL;
1da177e4 8073
1ce8e7b5 8074 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 8075 dev->padded = (char *)dev - (char *)p;
ab9c73cc 8076
29b4433d
ED
8077 dev->pcpu_refcnt = alloc_percpu(int);
8078 if (!dev->pcpu_refcnt)
74d332c1 8079 goto free_dev;
ab9c73cc 8080
ab9c73cc 8081 if (dev_addr_init(dev))
29b4433d 8082 goto free_pcpu;
ab9c73cc 8083
22bedad3 8084 dev_mc_init(dev);
a748ee24 8085 dev_uc_init(dev);
ccffad25 8086
c346dca1 8087 dev_net_set(dev, &init_net);
1da177e4 8088
8d3bdbd5 8089 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 8090 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 8091
8d3bdbd5
DM
8092 INIT_LIST_HEAD(&dev->napi_list);
8093 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 8094 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 8095 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
8096 INIT_LIST_HEAD(&dev->adj_list.upper);
8097 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
8098 INIT_LIST_HEAD(&dev->ptype_all);
8099 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
8100#ifdef CONFIG_NET_SCHED
8101 hash_init(dev->qdisc_hash);
8102#endif
02875878 8103 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
8104 setup(dev);
8105
a813104d 8106 if (!dev->tx_queue_len) {
f84bb1ea 8107 dev->priv_flags |= IFF_NO_QUEUE;
11597084 8108 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 8109 }
906470c1 8110
36909ea4
TH
8111 dev->num_tx_queues = txqs;
8112 dev->real_num_tx_queues = txqs;
ed9af2e8 8113 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 8114 goto free_all;
e8a0464c 8115
a953be53 8116#ifdef CONFIG_SYSFS
36909ea4
TH
8117 dev->num_rx_queues = rxqs;
8118 dev->real_num_rx_queues = rxqs;
fe822240 8119 if (netif_alloc_rx_queues(dev))
8d3bdbd5 8120 goto free_all;
df334545 8121#endif
0a9627f2 8122
1da177e4 8123 strcpy(dev->name, name);
c835a677 8124 dev->name_assign_type = name_assign_type;
cbda10fa 8125 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
8126 if (!dev->ethtool_ops)
8127 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
8128
8129 nf_hook_ingress_init(dev);
8130
1da177e4 8131 return dev;
ab9c73cc 8132
8d3bdbd5
DM
8133free_all:
8134 free_netdev(dev);
8135 return NULL;
8136
29b4433d
ED
8137free_pcpu:
8138 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
8139free_dev:
8140 netdev_freemem(dev);
ab9c73cc 8141 return NULL;
1da177e4 8142}
36909ea4 8143EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
8144
8145/**
722c9a0c 8146 * free_netdev - free network device
8147 * @dev: device
1da177e4 8148 *
722c9a0c 8149 * This function does the last stage of destroying an allocated device
8150 * interface. The reference to the device object is released. If this
8151 * is the last reference then it will be freed.Must be called in process
8152 * context.
1da177e4
LT
8153 */
8154void free_netdev(struct net_device *dev)
8155{
d565b0a1 8156 struct napi_struct *p, *n;
b5cdae32 8157 struct bpf_prog *prog;
d565b0a1 8158
93d05d4a 8159 might_sleep();
60877a32 8160 netif_free_tx_queues(dev);
a953be53 8161#ifdef CONFIG_SYSFS
10595902 8162 kvfree(dev->_rx);
fe822240 8163#endif
e8a0464c 8164
33d480ce 8165 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 8166
f001fde5
JP
8167 /* Flush device addresses */
8168 dev_addr_flush(dev);
8169
d565b0a1
HX
8170 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8171 netif_napi_del(p);
8172
29b4433d
ED
8173 free_percpu(dev->pcpu_refcnt);
8174 dev->pcpu_refcnt = NULL;
8175
b5cdae32
DM
8176 prog = rcu_dereference_protected(dev->xdp_prog, 1);
8177 if (prog) {
8178 bpf_prog_put(prog);
8179 static_key_slow_dec(&generic_xdp_needed);
8180 }
8181
3041a069 8182 /* Compatibility with error handling in drivers */
1da177e4 8183 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 8184 netdev_freemem(dev);
1da177e4
LT
8185 return;
8186 }
8187
8188 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8189 dev->reg_state = NETREG_RELEASED;
8190
43cb76d9
GKH
8191 /* will free via device release */
8192 put_device(&dev->dev);
1da177e4 8193}
d1b19dff 8194EXPORT_SYMBOL(free_netdev);
4ec93edb 8195
f0db275a
SH
8196/**
8197 * synchronize_net - Synchronize with packet receive processing
8198 *
8199 * Wait for packets currently being received to be done.
8200 * Does not block later packets from starting.
8201 */
4ec93edb 8202void synchronize_net(void)
1da177e4
LT
8203{
8204 might_sleep();
be3fc413
ED
8205 if (rtnl_is_locked())
8206 synchronize_rcu_expedited();
8207 else
8208 synchronize_rcu();
1da177e4 8209}
d1b19dff 8210EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
8211
8212/**
44a0873d 8213 * unregister_netdevice_queue - remove device from the kernel
1da177e4 8214 * @dev: device
44a0873d 8215 * @head: list
6ebfbc06 8216 *
1da177e4 8217 * This function shuts down a device interface and removes it
d59b54b1 8218 * from the kernel tables.
44a0873d 8219 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
8220 *
8221 * Callers must hold the rtnl semaphore. You may want
8222 * unregister_netdev() instead of this.
8223 */
8224
44a0873d 8225void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 8226{
a6620712
HX
8227 ASSERT_RTNL();
8228
44a0873d 8229 if (head) {
9fdce099 8230 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
8231 } else {
8232 rollback_registered(dev);
8233 /* Finish processing unregister after unlock */
8234 net_set_todo(dev);
8235 }
1da177e4 8236}
44a0873d 8237EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 8238
9b5e383c
ED
8239/**
8240 * unregister_netdevice_many - unregister many devices
8241 * @head: list of devices
87757a91
ED
8242 *
8243 * Note: As most callers use a stack allocated list_head,
8244 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
8245 */
8246void unregister_netdevice_many(struct list_head *head)
8247{
8248 struct net_device *dev;
8249
8250 if (!list_empty(head)) {
8251 rollback_registered_many(head);
8252 list_for_each_entry(dev, head, unreg_list)
8253 net_set_todo(dev);
87757a91 8254 list_del(head);
9b5e383c
ED
8255 }
8256}
63c8099d 8257EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 8258
1da177e4
LT
8259/**
8260 * unregister_netdev - remove device from the kernel
8261 * @dev: device
8262 *
8263 * This function shuts down a device interface and removes it
d59b54b1 8264 * from the kernel tables.
1da177e4
LT
8265 *
8266 * This is just a wrapper for unregister_netdevice that takes
8267 * the rtnl semaphore. In general you want to use this and not
8268 * unregister_netdevice.
8269 */
8270void unregister_netdev(struct net_device *dev)
8271{
8272 rtnl_lock();
8273 unregister_netdevice(dev);
8274 rtnl_unlock();
8275}
1da177e4
LT
8276EXPORT_SYMBOL(unregister_netdev);
8277
ce286d32
EB
8278/**
8279 * dev_change_net_namespace - move device to different nethost namespace
8280 * @dev: device
8281 * @net: network namespace
8282 * @pat: If not NULL name pattern to try if the current device name
8283 * is already taken in the destination network namespace.
8284 *
8285 * This function shuts down a device interface and moves it
8286 * to a new network namespace. On success 0 is returned, on
8287 * a failure a netagive errno code is returned.
8288 *
8289 * Callers must hold the rtnl semaphore.
8290 */
8291
8292int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8293{
ce286d32
EB
8294 int err;
8295
8296 ASSERT_RTNL();
8297
8298 /* Don't allow namespace local devices to be moved. */
8299 err = -EINVAL;
8300 if (dev->features & NETIF_F_NETNS_LOCAL)
8301 goto out;
8302
8303 /* Ensure the device has been registrered */
ce286d32
EB
8304 if (dev->reg_state != NETREG_REGISTERED)
8305 goto out;
8306
8307 /* Get out if there is nothing todo */
8308 err = 0;
878628fb 8309 if (net_eq(dev_net(dev), net))
ce286d32
EB
8310 goto out;
8311
8312 /* Pick the destination device name, and ensure
8313 * we can use it in the destination network namespace.
8314 */
8315 err = -EEXIST;
d9031024 8316 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
8317 /* We get here if we can't use the current device name */
8318 if (!pat)
8319 goto out;
828de4f6 8320 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
8321 goto out;
8322 }
8323
8324 /*
8325 * And now a mini version of register_netdevice unregister_netdevice.
8326 */
8327
8328 /* If device is running close it first. */
9b772652 8329 dev_close(dev);
ce286d32
EB
8330
8331 /* And unlink it from device chain */
8332 err = -ENODEV;
8333 unlist_netdevice(dev);
8334
8335 synchronize_net();
8336
8337 /* Shutdown queueing discipline. */
8338 dev_shutdown(dev);
8339
8340 /* Notify protocols, that we are about to destroy
eb13da1a 8341 * this device. They should clean all the things.
8342 *
8343 * Note that dev->reg_state stays at NETREG_REGISTERED.
8344 * This is wanted because this way 8021q and macvlan know
8345 * the device is just moving and can keep their slaves up.
8346 */
ce286d32 8347 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
8348 rcu_barrier();
8349 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 8350 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
8351
8352 /*
8353 * Flush the unicast and multicast chains
8354 */
a748ee24 8355 dev_uc_flush(dev);
22bedad3 8356 dev_mc_flush(dev);
ce286d32 8357
4e66ae2e
SH
8358 /* Send a netdev-removed uevent to the old namespace */
8359 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 8360 netdev_adjacent_del_links(dev);
4e66ae2e 8361
ce286d32 8362 /* Actually switch the network namespace */
c346dca1 8363 dev_net_set(dev, net);
ce286d32 8364
ce286d32 8365 /* If there is an ifindex conflict assign a new one */
7a66bbc9 8366 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 8367 dev->ifindex = dev_new_index(net);
ce286d32 8368
4e66ae2e
SH
8369 /* Send a netdev-add uevent to the new namespace */
8370 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 8371 netdev_adjacent_add_links(dev);
4e66ae2e 8372
8b41d188 8373 /* Fixup kobjects */
a1b3f594 8374 err = device_rename(&dev->dev, dev->name);
8b41d188 8375 WARN_ON(err);
ce286d32
EB
8376
8377 /* Add the device back in the hashes */
8378 list_netdevice(dev);
8379
8380 /* Notify protocols, that a new device appeared. */
8381 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8382
d90a909e
EB
8383 /*
8384 * Prevent userspace races by waiting until the network
8385 * device is fully setup before sending notifications.
8386 */
7f294054 8387 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8388
ce286d32
EB
8389 synchronize_net();
8390 err = 0;
8391out:
8392 return err;
8393}
463d0183 8394EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8395
f0bf90de 8396static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8397{
8398 struct sk_buff **list_skb;
1da177e4 8399 struct sk_buff *skb;
f0bf90de 8400 unsigned int cpu;
97d8b6e3 8401 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 8402
1da177e4
LT
8403 local_irq_disable();
8404 cpu = smp_processor_id();
8405 sd = &per_cpu(softnet_data, cpu);
8406 oldsd = &per_cpu(softnet_data, oldcpu);
8407
8408 /* Find end of our completion_queue. */
8409 list_skb = &sd->completion_queue;
8410 while (*list_skb)
8411 list_skb = &(*list_skb)->next;
8412 /* Append completion queue from offline CPU. */
8413 *list_skb = oldsd->completion_queue;
8414 oldsd->completion_queue = NULL;
8415
1da177e4 8416 /* Append output queue from offline CPU. */
a9cbd588
CG
8417 if (oldsd->output_queue) {
8418 *sd->output_queue_tailp = oldsd->output_queue;
8419 sd->output_queue_tailp = oldsd->output_queue_tailp;
8420 oldsd->output_queue = NULL;
8421 oldsd->output_queue_tailp = &oldsd->output_queue;
8422 }
ac64da0b
ED
8423 /* Append NAPI poll list from offline CPU, with one exception :
8424 * process_backlog() must be called by cpu owning percpu backlog.
8425 * We properly handle process_queue & input_pkt_queue later.
8426 */
8427 while (!list_empty(&oldsd->poll_list)) {
8428 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8429 struct napi_struct,
8430 poll_list);
8431
8432 list_del_init(&napi->poll_list);
8433 if (napi->poll == process_backlog)
8434 napi->state = 0;
8435 else
8436 ____napi_schedule(sd, napi);
264524d5 8437 }
1da177e4
LT
8438
8439 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8440 local_irq_enable();
8441
773fc8f6 8442#ifdef CONFIG_RPS
8443 remsd = oldsd->rps_ipi_list;
8444 oldsd->rps_ipi_list = NULL;
8445#endif
8446 /* send out pending IPI's on offline CPU */
8447 net_rps_send_ipi(remsd);
8448
1da177e4 8449 /* Process offline CPU's input_pkt_queue */
76cc8b13 8450 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8451 netif_rx_ni(skb);
76cc8b13 8452 input_queue_head_incr(oldsd);
fec5e652 8453 }
ac64da0b 8454 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8455 netif_rx_ni(skb);
76cc8b13
TH
8456 input_queue_head_incr(oldsd);
8457 }
1da177e4 8458
f0bf90de 8459 return 0;
1da177e4 8460}
1da177e4 8461
7f353bf2 8462/**
b63365a2
HX
8463 * netdev_increment_features - increment feature set by one
8464 * @all: current feature set
8465 * @one: new feature set
8466 * @mask: mask feature set
7f353bf2
HX
8467 *
8468 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8469 * @one to the master device with current feature set @all. Will not
8470 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8471 */
c8f44aff
MM
8472netdev_features_t netdev_increment_features(netdev_features_t all,
8473 netdev_features_t one, netdev_features_t mask)
b63365a2 8474{
c8cd0989 8475 if (mask & NETIF_F_HW_CSUM)
a188222b 8476 mask |= NETIF_F_CSUM_MASK;
1742f183 8477 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8478
a188222b 8479 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8480 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8481
1742f183 8482 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8483 if (all & NETIF_F_HW_CSUM)
8484 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8485
8486 return all;
8487}
b63365a2 8488EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8489
430f03cd 8490static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8491{
8492 int i;
8493 struct hlist_head *hash;
8494
8495 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8496 if (hash != NULL)
8497 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8498 INIT_HLIST_HEAD(&hash[i]);
8499
8500 return hash;
8501}
8502
881d966b 8503/* Initialize per network namespace state */
4665079c 8504static int __net_init netdev_init(struct net *net)
881d966b 8505{
734b6541
RM
8506 if (net != &init_net)
8507 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8508
30d97d35
PE
8509 net->dev_name_head = netdev_create_hash();
8510 if (net->dev_name_head == NULL)
8511 goto err_name;
881d966b 8512
30d97d35
PE
8513 net->dev_index_head = netdev_create_hash();
8514 if (net->dev_index_head == NULL)
8515 goto err_idx;
881d966b
EB
8516
8517 return 0;
30d97d35
PE
8518
8519err_idx:
8520 kfree(net->dev_name_head);
8521err_name:
8522 return -ENOMEM;
881d966b
EB
8523}
8524
f0db275a
SH
8525/**
8526 * netdev_drivername - network driver for the device
8527 * @dev: network device
f0db275a
SH
8528 *
8529 * Determine network driver for device.
8530 */
3019de12 8531const char *netdev_drivername(const struct net_device *dev)
6579e57b 8532{
cf04a4c7
SH
8533 const struct device_driver *driver;
8534 const struct device *parent;
3019de12 8535 const char *empty = "";
6579e57b
AV
8536
8537 parent = dev->dev.parent;
6579e57b 8538 if (!parent)
3019de12 8539 return empty;
6579e57b
AV
8540
8541 driver = parent->driver;
8542 if (driver && driver->name)
3019de12
DM
8543 return driver->name;
8544 return empty;
6579e57b
AV
8545}
8546
6ea754eb
JP
8547static void __netdev_printk(const char *level, const struct net_device *dev,
8548 struct va_format *vaf)
256df2f3 8549{
b004ff49 8550 if (dev && dev->dev.parent) {
6ea754eb
JP
8551 dev_printk_emit(level[1] - '0',
8552 dev->dev.parent,
8553 "%s %s %s%s: %pV",
8554 dev_driver_string(dev->dev.parent),
8555 dev_name(dev->dev.parent),
8556 netdev_name(dev), netdev_reg_state(dev),
8557 vaf);
b004ff49 8558 } else if (dev) {
6ea754eb
JP
8559 printk("%s%s%s: %pV",
8560 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8561 } else {
6ea754eb 8562 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8563 }
256df2f3
JP
8564}
8565
6ea754eb
JP
8566void netdev_printk(const char *level, const struct net_device *dev,
8567 const char *format, ...)
256df2f3
JP
8568{
8569 struct va_format vaf;
8570 va_list args;
256df2f3
JP
8571
8572 va_start(args, format);
8573
8574 vaf.fmt = format;
8575 vaf.va = &args;
8576
6ea754eb 8577 __netdev_printk(level, dev, &vaf);
b004ff49 8578
256df2f3 8579 va_end(args);
256df2f3
JP
8580}
8581EXPORT_SYMBOL(netdev_printk);
8582
8583#define define_netdev_printk_level(func, level) \
6ea754eb 8584void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8585{ \
256df2f3
JP
8586 struct va_format vaf; \
8587 va_list args; \
8588 \
8589 va_start(args, fmt); \
8590 \
8591 vaf.fmt = fmt; \
8592 vaf.va = &args; \
8593 \
6ea754eb 8594 __netdev_printk(level, dev, &vaf); \
b004ff49 8595 \
256df2f3 8596 va_end(args); \
256df2f3
JP
8597} \
8598EXPORT_SYMBOL(func);
8599
8600define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8601define_netdev_printk_level(netdev_alert, KERN_ALERT);
8602define_netdev_printk_level(netdev_crit, KERN_CRIT);
8603define_netdev_printk_level(netdev_err, KERN_ERR);
8604define_netdev_printk_level(netdev_warn, KERN_WARNING);
8605define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8606define_netdev_printk_level(netdev_info, KERN_INFO);
8607
4665079c 8608static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8609{
8610 kfree(net->dev_name_head);
8611 kfree(net->dev_index_head);
8612}
8613
022cbae6 8614static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8615 .init = netdev_init,
8616 .exit = netdev_exit,
8617};
8618
4665079c 8619static void __net_exit default_device_exit(struct net *net)
ce286d32 8620{
e008b5fc 8621 struct net_device *dev, *aux;
ce286d32 8622 /*
e008b5fc 8623 * Push all migratable network devices back to the
ce286d32
EB
8624 * initial network namespace
8625 */
8626 rtnl_lock();
e008b5fc 8627 for_each_netdev_safe(net, dev, aux) {
ce286d32 8628 int err;
aca51397 8629 char fb_name[IFNAMSIZ];
ce286d32
EB
8630
8631 /* Ignore unmoveable devices (i.e. loopback) */
8632 if (dev->features & NETIF_F_NETNS_LOCAL)
8633 continue;
8634
e008b5fc
EB
8635 /* Leave virtual devices for the generic cleanup */
8636 if (dev->rtnl_link_ops)
8637 continue;
d0c082ce 8638
25985edc 8639 /* Push remaining network devices to init_net */
aca51397
PE
8640 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8641 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8642 if (err) {
7b6cd1ce
JP
8643 pr_emerg("%s: failed to move %s to init_net: %d\n",
8644 __func__, dev->name, err);
aca51397 8645 BUG();
ce286d32
EB
8646 }
8647 }
8648 rtnl_unlock();
8649}
8650
50624c93
EB
8651static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8652{
8653 /* Return with the rtnl_lock held when there are no network
8654 * devices unregistering in any network namespace in net_list.
8655 */
8656 struct net *net;
8657 bool unregistering;
ff960a73 8658 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8659
ff960a73 8660 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8661 for (;;) {
50624c93
EB
8662 unregistering = false;
8663 rtnl_lock();
8664 list_for_each_entry(net, net_list, exit_list) {
8665 if (net->dev_unreg_count > 0) {
8666 unregistering = true;
8667 break;
8668 }
8669 }
8670 if (!unregistering)
8671 break;
8672 __rtnl_unlock();
ff960a73
PZ
8673
8674 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8675 }
ff960a73 8676 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8677}
8678
04dc7f6b
EB
8679static void __net_exit default_device_exit_batch(struct list_head *net_list)
8680{
8681 /* At exit all network devices most be removed from a network
b595076a 8682 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8683 * Do this across as many network namespaces as possible to
8684 * improve batching efficiency.
8685 */
8686 struct net_device *dev;
8687 struct net *net;
8688 LIST_HEAD(dev_kill_list);
8689
50624c93
EB
8690 /* To prevent network device cleanup code from dereferencing
8691 * loopback devices or network devices that have been freed
8692 * wait here for all pending unregistrations to complete,
8693 * before unregistring the loopback device and allowing the
8694 * network namespace be freed.
8695 *
8696 * The netdev todo list containing all network devices
8697 * unregistrations that happen in default_device_exit_batch
8698 * will run in the rtnl_unlock() at the end of
8699 * default_device_exit_batch.
8700 */
8701 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8702 list_for_each_entry(net, net_list, exit_list) {
8703 for_each_netdev_reverse(net, dev) {
b0ab2fab 8704 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8705 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8706 else
8707 unregister_netdevice_queue(dev, &dev_kill_list);
8708 }
8709 }
8710 unregister_netdevice_many(&dev_kill_list);
8711 rtnl_unlock();
8712}
8713
022cbae6 8714static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8715 .exit = default_device_exit,
04dc7f6b 8716 .exit_batch = default_device_exit_batch,
ce286d32
EB
8717};
8718
1da177e4
LT
8719/*
8720 * Initialize the DEV module. At boot time this walks the device list and
8721 * unhooks any devices that fail to initialise (normally hardware not
8722 * present) and leaves us with a valid list of present and active devices.
8723 *
8724 */
8725
8726/*
8727 * This is called single threaded during boot, so no need
8728 * to take the rtnl semaphore.
8729 */
8730static int __init net_dev_init(void)
8731{
8732 int i, rc = -ENOMEM;
8733
8734 BUG_ON(!dev_boot_phase);
8735
1da177e4
LT
8736 if (dev_proc_init())
8737 goto out;
8738
8b41d188 8739 if (netdev_kobject_init())
1da177e4
LT
8740 goto out;
8741
8742 INIT_LIST_HEAD(&ptype_all);
82d8a867 8743 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8744 INIT_LIST_HEAD(&ptype_base[i]);
8745
62532da9
VY
8746 INIT_LIST_HEAD(&offload_base);
8747
881d966b
EB
8748 if (register_pernet_subsys(&netdev_net_ops))
8749 goto out;
1da177e4
LT
8750
8751 /*
8752 * Initialise the packet receive queues.
8753 */
8754
6f912042 8755 for_each_possible_cpu(i) {
41852497 8756 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8757 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8758
41852497
ED
8759 INIT_WORK(flush, flush_backlog);
8760
e36fa2f7 8761 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8762 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8763 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8764 sd->output_queue_tailp = &sd->output_queue;
df334545 8765#ifdef CONFIG_RPS
e36fa2f7
ED
8766 sd->csd.func = rps_trigger_softirq;
8767 sd->csd.info = sd;
e36fa2f7 8768 sd->cpu = i;
1e94d72f 8769#endif
0a9627f2 8770
e36fa2f7
ED
8771 sd->backlog.poll = process_backlog;
8772 sd->backlog.weight = weight_p;
1da177e4
LT
8773 }
8774
1da177e4
LT
8775 dev_boot_phase = 0;
8776
505d4f73
EB
8777 /* The loopback device is special if any other network devices
8778 * is present in a network namespace the loopback device must
8779 * be present. Since we now dynamically allocate and free the
8780 * loopback device ensure this invariant is maintained by
8781 * keeping the loopback device as the first device on the
8782 * list of network devices. Ensuring the loopback devices
8783 * is the first device that appears and the last network device
8784 * that disappears.
8785 */
8786 if (register_pernet_device(&loopback_net_ops))
8787 goto out;
8788
8789 if (register_pernet_device(&default_device_ops))
8790 goto out;
8791
962cf36c
CM
8792 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8793 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8794
f0bf90de
SAS
8795 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8796 NULL, dev_cpu_dead);
8797 WARN_ON(rc < 0);
1da177e4
LT
8798 rc = 0;
8799out:
8800 return rc;
8801}
8802
8803subsys_initcall(net_dev_init);