]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/core/dev.c
usbnet: fix status interrupt urb handling
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4
LT
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
44540960 104#include <net/xfrm.h>
1da177e4
LT
105#include <linux/highmem.h>
106#include <linux/init.h>
1da177e4 107#include <linux/module.h>
1da177e4
LT
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
1da177e4 111#include <net/iw_handler.h>
1da177e4 112#include <asm/current.h>
5bdb9886 113#include <linux/audit.h>
db217334 114#include <linux/dmaengine.h>
f6a78bfc 115#include <linux/err.h>
c7fa9d18 116#include <linux/ctype.h>
723e98b7 117#include <linux/if_arp.h>
6de329e2 118#include <linux/if_vlan.h>
8f0f2223 119#include <linux/ip.h>
ad55dcaf 120#include <net/ip.h>
8f0f2223
DM
121#include <linux/ipv6.h>
122#include <linux/in.h>
b6b2fed1
DM
123#include <linux/jhash.h>
124#include <linux/random.h>
9cbc1cb8 125#include <trace/events/napi.h>
cf66ba58 126#include <trace/events/net.h>
07dc22e7 127#include <trace/events/skb.h>
5acbbd42 128#include <linux/pci.h>
caeda9b9 129#include <linux/inetdevice.h>
c445477d 130#include <linux/cpu_rmap.h>
c5905afb 131#include <linux/static_key.h>
af12fa6e 132#include <linux/hashtable.h>
60877a32 133#include <linux/vmalloc.h>
1da177e4 134
342709ef
PE
135#include "net-sysfs.h"
136
d565b0a1
HX
137/* Instead of increasing this, you should create a hash table. */
138#define MAX_GRO_SKBS 8
139
5d38a079
HX
140/* This should be increased if a protocol with a bigger head is added. */
141#define GRO_MAX_HEAD (MAX_HEADER + 128)
142
1da177e4 143static DEFINE_SPINLOCK(ptype_lock);
62532da9 144static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
145struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
146struct list_head ptype_all __read_mostly; /* Taps */
62532da9 147static struct list_head offload_base __read_mostly;
1da177e4 148
1da177e4 149/*
7562f876 150 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
151 * semaphore.
152 *
c6d14c84 153 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
154 *
155 * Writers must hold the rtnl semaphore while they loop through the
7562f876 156 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
157 * actual updates. This allows pure readers to access the list even
158 * while a writer is preparing to update it.
159 *
160 * To put it another way, dev_base_lock is held for writing only to
161 * protect against pure readers; the rtnl semaphore provides the
162 * protection against other writers.
163 *
164 * See, for example usages, register_netdevice() and
165 * unregister_netdevice(), which must be called with the rtnl
166 * semaphore held.
167 */
1da177e4 168DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
169EXPORT_SYMBOL(dev_base_lock);
170
af12fa6e
ET
171/* protects napi_hash addition/deletion and napi_gen_id */
172static DEFINE_SPINLOCK(napi_hash_lock);
173
174static unsigned int napi_gen_id;
175static DEFINE_HASHTABLE(napi_hash, 8);
176
18afa4b0 177static seqcount_t devnet_rename_seq;
c91f6df2 178
4e985ada
TG
179static inline void dev_base_seq_inc(struct net *net)
180{
181 while (++net->dev_base_seq == 0);
182}
183
881d966b 184static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 185{
95c96174
ED
186 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
187
08e9897d 188 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
189}
190
881d966b 191static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 192{
7c28bd0b 193 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
194}
195
e36fa2f7 196static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
197{
198#ifdef CONFIG_RPS
e36fa2f7 199 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
200#endif
201}
202
e36fa2f7 203static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
204{
205#ifdef CONFIG_RPS
e36fa2f7 206 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
207#endif
208}
209
ce286d32 210/* Device list insertion */
53759be9 211static void list_netdevice(struct net_device *dev)
ce286d32 212{
c346dca1 213 struct net *net = dev_net(dev);
ce286d32
EB
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
c6d14c84 218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
220 hlist_add_head_rcu(&dev->index_hlist,
221 dev_index_hash(net, dev->ifindex));
ce286d32 222 write_unlock_bh(&dev_base_lock);
4e985ada
TG
223
224 dev_base_seq_inc(net);
ce286d32
EB
225}
226
fb699dfd
ED
227/* Device list removal
228 * caller must respect a RCU grace period before freeing/reusing dev
229 */
ce286d32
EB
230static void unlist_netdevice(struct net_device *dev)
231{
232 ASSERT_RTNL();
233
234 /* Unlink dev from the device chain */
235 write_lock_bh(&dev_base_lock);
c6d14c84 236 list_del_rcu(&dev->dev_list);
72c9528b 237 hlist_del_rcu(&dev->name_hlist);
fb699dfd 238 hlist_del_rcu(&dev->index_hlist);
ce286d32 239 write_unlock_bh(&dev_base_lock);
4e985ada
TG
240
241 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
242}
243
1da177e4
LT
244/*
245 * Our notifier list
246 */
247
f07d5b94 248static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
249
250/*
251 * Device drivers call our routines to queue packets here. We empty the
252 * queue in the local softnet handler.
253 */
bea3348e 254
9958da05 255DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 256EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 257
cf508b12 258#ifdef CONFIG_LOCKDEP
723e98b7 259/*
c773e847 260 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
261 * according to dev->type
262 */
263static const unsigned short netdev_lock_type[] =
264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
276 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
277 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
278 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 279
36cbd3dc 280static const char *const netdev_lock_name[] =
723e98b7
JP
281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
293 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
294 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
295 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
296
297static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 298static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
299
300static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301{
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309}
310
cf508b12
DM
311static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
723e98b7
JP
313{
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319}
cf508b12
DM
320
321static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
322{
323 int i;
324
325 i = netdev_lock_pos(dev->type);
326 lockdep_set_class_and_name(&dev->addr_list_lock,
327 &netdev_addr_lock_key[i],
328 netdev_lock_name[i]);
329}
723e98b7 330#else
cf508b12
DM
331static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 unsigned short dev_type)
333{
334}
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
336{
337}
338#endif
1da177e4
LT
339
340/*******************************************************************************
341
342 Protocol management and registration routines
343
344*******************************************************************************/
345
1da177e4
LT
346/*
347 * Add a protocol ID to the list. Now that the input handler is
348 * smarter we can dispense with all the messy stuff that used to be
349 * here.
350 *
351 * BEWARE!!! Protocol handlers, mangling input packets,
352 * MUST BE last in hash buckets and checking protocol handlers
353 * MUST start from promiscuous ptype_all chain in net_bh.
354 * It is true now, do not change it.
355 * Explanation follows: if protocol handler, mangling packet, will
356 * be the first on list, it is not able to sense, that packet
357 * is cloned and should be copied-on-write, so that it will
358 * change it and subsequent readers will get broken packet.
359 * --ANK (980803)
360 */
361
c07b68e8
ED
362static inline struct list_head *ptype_head(const struct packet_type *pt)
363{
364 if (pt->type == htons(ETH_P_ALL))
365 return &ptype_all;
366 else
367 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
368}
369
1da177e4
LT
370/**
371 * dev_add_pack - add packet handler
372 * @pt: packet type declaration
373 *
374 * Add a protocol handler to the networking stack. The passed &packet_type
375 * is linked into kernel lists and may not be freed until it has been
376 * removed from the kernel lists.
377 *
4ec93edb 378 * This call does not sleep therefore it can not
1da177e4
LT
379 * guarantee all CPU's that are in middle of receiving packets
380 * will see the new packet type (until the next received packet).
381 */
382
383void dev_add_pack(struct packet_type *pt)
384{
c07b68e8 385 struct list_head *head = ptype_head(pt);
1da177e4 386
c07b68e8
ED
387 spin_lock(&ptype_lock);
388 list_add_rcu(&pt->list, head);
389 spin_unlock(&ptype_lock);
1da177e4 390}
d1b19dff 391EXPORT_SYMBOL(dev_add_pack);
1da177e4 392
1da177e4
LT
393/**
394 * __dev_remove_pack - remove packet handler
395 * @pt: packet type declaration
396 *
397 * Remove a protocol handler that was previously added to the kernel
398 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
399 * from the kernel lists and can be freed or reused once this function
4ec93edb 400 * returns.
1da177e4
LT
401 *
402 * The packet type might still be in use by receivers
403 * and must not be freed until after all the CPU's have gone
404 * through a quiescent state.
405 */
406void __dev_remove_pack(struct packet_type *pt)
407{
c07b68e8 408 struct list_head *head = ptype_head(pt);
1da177e4
LT
409 struct packet_type *pt1;
410
c07b68e8 411 spin_lock(&ptype_lock);
1da177e4
LT
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
7b6cd1ce 420 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 421out:
c07b68e8 422 spin_unlock(&ptype_lock);
1da177e4 423}
d1b19dff
ED
424EXPORT_SYMBOL(__dev_remove_pack);
425
1da177e4
LT
426/**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438void dev_remove_pack(struct packet_type *pt)
439{
440 __dev_remove_pack(pt);
4ec93edb 441
1da177e4
LT
442 synchronize_net();
443}
d1b19dff 444EXPORT_SYMBOL(dev_remove_pack);
1da177e4 445
62532da9
VY
446
447/**
448 * dev_add_offload - register offload handlers
449 * @po: protocol offload declaration
450 *
451 * Add protocol offload handlers to the networking stack. The passed
452 * &proto_offload is linked into kernel lists and may not be freed until
453 * it has been removed from the kernel lists.
454 *
455 * This call does not sleep therefore it can not
456 * guarantee all CPU's that are in middle of receiving packets
457 * will see the new offload handlers (until the next received packet).
458 */
459void dev_add_offload(struct packet_offload *po)
460{
461 struct list_head *head = &offload_base;
462
463 spin_lock(&offload_lock);
464 list_add_rcu(&po->list, head);
465 spin_unlock(&offload_lock);
466}
467EXPORT_SYMBOL(dev_add_offload);
468
469/**
470 * __dev_remove_offload - remove offload handler
471 * @po: packet offload declaration
472 *
473 * Remove a protocol offload handler that was previously added to the
474 * kernel offload handlers by dev_add_offload(). The passed &offload_type
475 * is removed from the kernel lists and can be freed or reused once this
476 * function returns.
477 *
478 * The packet type might still be in use by receivers
479 * and must not be freed until after all the CPU's have gone
480 * through a quiescent state.
481 */
482void __dev_remove_offload(struct packet_offload *po)
483{
484 struct list_head *head = &offload_base;
485 struct packet_offload *po1;
486
c53aa505 487 spin_lock(&offload_lock);
62532da9
VY
488
489 list_for_each_entry(po1, head, list) {
490 if (po == po1) {
491 list_del_rcu(&po->list);
492 goto out;
493 }
494 }
495
496 pr_warn("dev_remove_offload: %p not found\n", po);
497out:
c53aa505 498 spin_unlock(&offload_lock);
62532da9
VY
499}
500EXPORT_SYMBOL(__dev_remove_offload);
501
502/**
503 * dev_remove_offload - remove packet offload handler
504 * @po: packet offload declaration
505 *
506 * Remove a packet offload handler that was previously added to the kernel
507 * offload handlers by dev_add_offload(). The passed &offload_type is
508 * removed from the kernel lists and can be freed or reused once this
509 * function returns.
510 *
511 * This call sleeps to guarantee that no CPU is looking at the packet
512 * type after return.
513 */
514void dev_remove_offload(struct packet_offload *po)
515{
516 __dev_remove_offload(po);
517
518 synchronize_net();
519}
520EXPORT_SYMBOL(dev_remove_offload);
521
1da177e4
LT
522/******************************************************************************
523
524 Device Boot-time Settings Routines
525
526*******************************************************************************/
527
528/* Boot time configuration table */
529static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
530
531/**
532 * netdev_boot_setup_add - add new setup entry
533 * @name: name of the device
534 * @map: configured settings for the device
535 *
536 * Adds new setup entry to the dev_boot_setup list. The function
537 * returns 0 on error and 1 on success. This is a generic routine to
538 * all netdevices.
539 */
540static int netdev_boot_setup_add(char *name, struct ifmap *map)
541{
542 struct netdev_boot_setup *s;
543 int i;
544
545 s = dev_boot_setup;
546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
548 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 549 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
550 memcpy(&s[i].map, map, sizeof(s[i].map));
551 break;
552 }
553 }
554
555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
556}
557
558/**
559 * netdev_boot_setup_check - check boot time settings
560 * @dev: the netdevice
561 *
562 * Check boot time settings for the device.
563 * The found settings are set for the device to be used
564 * later in the device probing.
565 * Returns 0 if no settings found, 1 if they are.
566 */
567int netdev_boot_setup_check(struct net_device *dev)
568{
569 struct netdev_boot_setup *s = dev_boot_setup;
570 int i;
571
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 574 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
575 dev->irq = s[i].map.irq;
576 dev->base_addr = s[i].map.base_addr;
577 dev->mem_start = s[i].map.mem_start;
578 dev->mem_end = s[i].map.mem_end;
579 return 1;
580 }
581 }
582 return 0;
583}
d1b19dff 584EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
585
586
587/**
588 * netdev_boot_base - get address from boot time settings
589 * @prefix: prefix for network device
590 * @unit: id for network device
591 *
592 * Check boot time settings for the base address of device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found.
596 */
597unsigned long netdev_boot_base(const char *prefix, int unit)
598{
599 const struct netdev_boot_setup *s = dev_boot_setup;
600 char name[IFNAMSIZ];
601 int i;
602
603 sprintf(name, "%s%d", prefix, unit);
604
605 /*
606 * If device already registered then return base of 1
607 * to indicate not to probe for this interface
608 */
881d966b 609 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
610 return 1;
611
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
613 if (!strcmp(name, s[i].name))
614 return s[i].map.base_addr;
615 return 0;
616}
617
618/*
619 * Saves at boot time configured settings for any netdevice.
620 */
621int __init netdev_boot_setup(char *str)
622{
623 int ints[5];
624 struct ifmap map;
625
626 str = get_options(str, ARRAY_SIZE(ints), ints);
627 if (!str || !*str)
628 return 0;
629
630 /* Save settings */
631 memset(&map, 0, sizeof(map));
632 if (ints[0] > 0)
633 map.irq = ints[1];
634 if (ints[0] > 1)
635 map.base_addr = ints[2];
636 if (ints[0] > 2)
637 map.mem_start = ints[3];
638 if (ints[0] > 3)
639 map.mem_end = ints[4];
640
641 /* Add new entry to the list */
642 return netdev_boot_setup_add(str, &map);
643}
644
645__setup("netdev=", netdev_boot_setup);
646
647/*******************************************************************************
648
649 Device Interface Subroutines
650
651*******************************************************************************/
652
653/**
654 * __dev_get_by_name - find a device by its name
c4ea43c5 655 * @net: the applicable net namespace
1da177e4
LT
656 * @name: name to find
657 *
658 * Find an interface by name. Must be called under RTNL semaphore
659 * or @dev_base_lock. If the name is found a pointer to the device
660 * is returned. If the name is not found then %NULL is returned. The
661 * reference counters are not incremented so the caller must be
662 * careful with locks.
663 */
664
881d966b 665struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 666{
0bd8d536
ED
667 struct net_device *dev;
668 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 669
b67bfe0d 670 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
671 if (!strncmp(dev->name, name, IFNAMSIZ))
672 return dev;
0bd8d536 673
1da177e4
LT
674 return NULL;
675}
d1b19dff 676EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 677
72c9528b
ED
678/**
679 * dev_get_by_name_rcu - find a device by its name
680 * @net: the applicable net namespace
681 * @name: name to find
682 *
683 * Find an interface by name.
684 * If the name is found a pointer to the device is returned.
685 * If the name is not found then %NULL is returned.
686 * The reference counters are not incremented so the caller must be
687 * careful with locks. The caller must hold RCU lock.
688 */
689
690struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
691{
72c9528b
ED
692 struct net_device *dev;
693 struct hlist_head *head = dev_name_hash(net, name);
694
b67bfe0d 695 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
696 if (!strncmp(dev->name, name, IFNAMSIZ))
697 return dev;
698
699 return NULL;
700}
701EXPORT_SYMBOL(dev_get_by_name_rcu);
702
1da177e4
LT
703/**
704 * dev_get_by_name - find a device by its name
c4ea43c5 705 * @net: the applicable net namespace
1da177e4
LT
706 * @name: name to find
707 *
708 * Find an interface by name. This can be called from any
709 * context and does its own locking. The returned handle has
710 * the usage count incremented and the caller must use dev_put() to
711 * release it when it is no longer needed. %NULL is returned if no
712 * matching device is found.
713 */
714
881d966b 715struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
716{
717 struct net_device *dev;
718
72c9528b
ED
719 rcu_read_lock();
720 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
721 if (dev)
722 dev_hold(dev);
72c9528b 723 rcu_read_unlock();
1da177e4
LT
724 return dev;
725}
d1b19dff 726EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
727
728/**
729 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 730 * @net: the applicable net namespace
1da177e4
LT
731 * @ifindex: index of device
732 *
733 * Search for an interface by index. Returns %NULL if the device
734 * is not found or a pointer to the device. The device has not
735 * had its reference counter increased so the caller must be careful
736 * about locking. The caller must hold either the RTNL semaphore
737 * or @dev_base_lock.
738 */
739
881d966b 740struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 741{
0bd8d536
ED
742 struct net_device *dev;
743 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 744
b67bfe0d 745 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
746 if (dev->ifindex == ifindex)
747 return dev;
0bd8d536 748
1da177e4
LT
749 return NULL;
750}
d1b19dff 751EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 752
fb699dfd
ED
753/**
754 * dev_get_by_index_rcu - find a device by its ifindex
755 * @net: the applicable net namespace
756 * @ifindex: index of device
757 *
758 * Search for an interface by index. Returns %NULL if the device
759 * is not found or a pointer to the device. The device has not
760 * had its reference counter increased so the caller must be careful
761 * about locking. The caller must hold RCU lock.
762 */
763
764struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
765{
fb699dfd
ED
766 struct net_device *dev;
767 struct hlist_head *head = dev_index_hash(net, ifindex);
768
b67bfe0d 769 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
770 if (dev->ifindex == ifindex)
771 return dev;
772
773 return NULL;
774}
775EXPORT_SYMBOL(dev_get_by_index_rcu);
776
1da177e4
LT
777
778/**
779 * dev_get_by_index - find a device by its ifindex
c4ea43c5 780 * @net: the applicable net namespace
1da177e4
LT
781 * @ifindex: index of device
782 *
783 * Search for an interface by index. Returns NULL if the device
784 * is not found or a pointer to the device. The device returned has
785 * had a reference added and the pointer is safe until the user calls
786 * dev_put to indicate they have finished with it.
787 */
788
881d966b 789struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
790{
791 struct net_device *dev;
792
fb699dfd
ED
793 rcu_read_lock();
794 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
795 if (dev)
796 dev_hold(dev);
fb699dfd 797 rcu_read_unlock();
1da177e4
LT
798 return dev;
799}
d1b19dff 800EXPORT_SYMBOL(dev_get_by_index);
1da177e4 801
5dbe7c17
NS
802/**
803 * netdev_get_name - get a netdevice name, knowing its ifindex.
804 * @net: network namespace
805 * @name: a pointer to the buffer where the name will be stored.
806 * @ifindex: the ifindex of the interface to get the name from.
807 *
808 * The use of raw_seqcount_begin() and cond_resched() before
809 * retrying is required as we want to give the writers a chance
810 * to complete when CONFIG_PREEMPT is not set.
811 */
812int netdev_get_name(struct net *net, char *name, int ifindex)
813{
814 struct net_device *dev;
815 unsigned int seq;
816
817retry:
818 seq = raw_seqcount_begin(&devnet_rename_seq);
819 rcu_read_lock();
820 dev = dev_get_by_index_rcu(net, ifindex);
821 if (!dev) {
822 rcu_read_unlock();
823 return -ENODEV;
824 }
825
826 strcpy(name, dev->name);
827 rcu_read_unlock();
828 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
829 cond_resched();
830 goto retry;
831 }
832
833 return 0;
834}
835
1da177e4 836/**
941666c2 837 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 838 * @net: the applicable net namespace
1da177e4
LT
839 * @type: media type of device
840 * @ha: hardware address
841 *
842 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
843 * is not found or a pointer to the device.
844 * The caller must hold RCU or RTNL.
941666c2 845 * The returned device has not had its ref count increased
1da177e4
LT
846 * and the caller must therefore be careful about locking
847 *
1da177e4
LT
848 */
849
941666c2
ED
850struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
851 const char *ha)
1da177e4
LT
852{
853 struct net_device *dev;
854
941666c2 855 for_each_netdev_rcu(net, dev)
1da177e4
LT
856 if (dev->type == type &&
857 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
858 return dev;
859
860 return NULL;
1da177e4 861}
941666c2 862EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 863
881d966b 864struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
865{
866 struct net_device *dev;
867
4e9cac2b 868 ASSERT_RTNL();
881d966b 869 for_each_netdev(net, dev)
4e9cac2b 870 if (dev->type == type)
7562f876
PE
871 return dev;
872
873 return NULL;
4e9cac2b 874}
4e9cac2b
PM
875EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876
881d966b 877struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 878{
99fe3c39 879 struct net_device *dev, *ret = NULL;
4e9cac2b 880
99fe3c39
ED
881 rcu_read_lock();
882 for_each_netdev_rcu(net, dev)
883 if (dev->type == type) {
884 dev_hold(dev);
885 ret = dev;
886 break;
887 }
888 rcu_read_unlock();
889 return ret;
1da177e4 890}
1da177e4
LT
891EXPORT_SYMBOL(dev_getfirstbyhwtype);
892
893/**
bb69ae04 894 * dev_get_by_flags_rcu - find any device with given flags
c4ea43c5 895 * @net: the applicable net namespace
1da177e4
LT
896 * @if_flags: IFF_* values
897 * @mask: bitmask of bits in if_flags to check
898 *
899 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04
ED
900 * is not found or a pointer to the device. Must be called inside
901 * rcu_read_lock(), and result refcount is unchanged.
1da177e4
LT
902 */
903
bb69ae04 904struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
d1b19dff 905 unsigned short mask)
1da177e4 906{
7562f876 907 struct net_device *dev, *ret;
1da177e4 908
7562f876 909 ret = NULL;
c6d14c84 910 for_each_netdev_rcu(net, dev) {
1da177e4 911 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 912 ret = dev;
1da177e4
LT
913 break;
914 }
915 }
7562f876 916 return ret;
1da177e4 917}
bb69ae04 918EXPORT_SYMBOL(dev_get_by_flags_rcu);
1da177e4
LT
919
920/**
921 * dev_valid_name - check if name is okay for network device
922 * @name: name string
923 *
924 * Network device names need to be valid file names to
c7fa9d18
DM
925 * to allow sysfs to work. We also disallow any kind of
926 * whitespace.
1da177e4 927 */
95f050bf 928bool dev_valid_name(const char *name)
1da177e4 929{
c7fa9d18 930 if (*name == '\0')
95f050bf 931 return false;
b6fe17d6 932 if (strlen(name) >= IFNAMSIZ)
95f050bf 933 return false;
c7fa9d18 934 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 935 return false;
c7fa9d18
DM
936
937 while (*name) {
938 if (*name == '/' || isspace(*name))
95f050bf 939 return false;
c7fa9d18
DM
940 name++;
941 }
95f050bf 942 return true;
1da177e4 943}
d1b19dff 944EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
945
946/**
b267b179
EB
947 * __dev_alloc_name - allocate a name for a device
948 * @net: network namespace to allocate the device name in
1da177e4 949 * @name: name format string
b267b179 950 * @buf: scratch buffer and result name string
1da177e4
LT
951 *
952 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
953 * id. It scans list of devices to build up a free map, then chooses
954 * the first empty slot. The caller must hold the dev_base or rtnl lock
955 * while allocating the name and adding the device in order to avoid
956 * duplicates.
957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
959 */
960
b267b179 961static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
962{
963 int i = 0;
1da177e4
LT
964 const char *p;
965 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 966 unsigned long *inuse;
1da177e4
LT
967 struct net_device *d;
968
969 p = strnchr(name, IFNAMSIZ-1, '%');
970 if (p) {
971 /*
972 * Verify the string as this thing may have come from
973 * the user. There must be either one "%d" and no other "%"
974 * characters.
975 */
976 if (p[1] != 'd' || strchr(p + 2, '%'))
977 return -EINVAL;
978
979 /* Use one page as a bit array of possible slots */
cfcabdcc 980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
981 if (!inuse)
982 return -ENOMEM;
983
881d966b 984 for_each_netdev(net, d) {
1da177e4
LT
985 if (!sscanf(d->name, name, &i))
986 continue;
987 if (i < 0 || i >= max_netdevices)
988 continue;
989
990 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 991 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
992 if (!strncmp(buf, d->name, IFNAMSIZ))
993 set_bit(i, inuse);
994 }
995
996 i = find_first_zero_bit(inuse, max_netdevices);
997 free_page((unsigned long) inuse);
998 }
999
d9031024
OP
1000 if (buf != name)
1001 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1002 if (!__dev_get_by_name(net, buf))
1da177e4 1003 return i;
1da177e4
LT
1004
1005 /* It is possible to run out of possible slots
1006 * when the name is long and there isn't enough space left
1007 * for the digits, or if all bits are used.
1008 */
1009 return -ENFILE;
1010}
1011
b267b179
EB
1012/**
1013 * dev_alloc_name - allocate a name for a device
1014 * @dev: device
1015 * @name: name format string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026int dev_alloc_name(struct net_device *dev, const char *name)
1027{
1028 char buf[IFNAMSIZ];
1029 struct net *net;
1030 int ret;
1031
c346dca1
YH
1032 BUG_ON(!dev_net(dev));
1033 net = dev_net(dev);
b267b179
EB
1034 ret = __dev_alloc_name(net, name, buf);
1035 if (ret >= 0)
1036 strlcpy(dev->name, buf, IFNAMSIZ);
1037 return ret;
1038}
d1b19dff 1039EXPORT_SYMBOL(dev_alloc_name);
b267b179 1040
828de4f6
G
1041static int dev_alloc_name_ns(struct net *net,
1042 struct net_device *dev,
1043 const char *name)
d9031024 1044{
828de4f6
G
1045 char buf[IFNAMSIZ];
1046 int ret;
8ce6cebc 1047
828de4f6
G
1048 ret = __dev_alloc_name(net, name, buf);
1049 if (ret >= 0)
1050 strlcpy(dev->name, buf, IFNAMSIZ);
1051 return ret;
1052}
1053
1054static int dev_get_valid_name(struct net *net,
1055 struct net_device *dev,
1056 const char *name)
1057{
1058 BUG_ON(!net);
8ce6cebc 1059
d9031024
OP
1060 if (!dev_valid_name(name))
1061 return -EINVAL;
1062
1c5cae81 1063 if (strchr(name, '%'))
828de4f6 1064 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1065 else if (__dev_get_by_name(net, name))
1066 return -EEXIST;
8ce6cebc
DL
1067 else if (dev->name != name)
1068 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1069
1070 return 0;
1071}
1da177e4
LT
1072
1073/**
1074 * dev_change_name - change name of a device
1075 * @dev: device
1076 * @newname: name (or format string) must be at least IFNAMSIZ
1077 *
1078 * Change name of a device, can pass format strings "eth%d".
1079 * for wildcarding.
1080 */
cf04a4c7 1081int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1082{
fcc5a03a 1083 char oldname[IFNAMSIZ];
1da177e4 1084 int err = 0;
fcc5a03a 1085 int ret;
881d966b 1086 struct net *net;
1da177e4
LT
1087
1088 ASSERT_RTNL();
c346dca1 1089 BUG_ON(!dev_net(dev));
1da177e4 1090
c346dca1 1091 net = dev_net(dev);
1da177e4
LT
1092 if (dev->flags & IFF_UP)
1093 return -EBUSY;
1094
30e6c9fa 1095 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1096
1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1098 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1099 return 0;
c91f6df2 1100 }
c8d90dca 1101
fcc5a03a
HX
1102 memcpy(oldname, dev->name, IFNAMSIZ);
1103
828de4f6 1104 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1105 if (err < 0) {
30e6c9fa 1106 write_seqcount_end(&devnet_rename_seq);
d9031024 1107 return err;
c91f6df2 1108 }
1da177e4 1109
fcc5a03a 1110rollback:
a1b3f594
EB
1111 ret = device_rename(&dev->dev, dev->name);
1112 if (ret) {
1113 memcpy(dev->name, oldname, IFNAMSIZ);
30e6c9fa 1114 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1115 return ret;
dcc99773 1116 }
7f988eab 1117
30e6c9fa 1118 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1119
7f988eab 1120 write_lock_bh(&dev_base_lock);
372b2312 1121 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1122 write_unlock_bh(&dev_base_lock);
1123
1124 synchronize_rcu();
1125
1126 write_lock_bh(&dev_base_lock);
1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1128 write_unlock_bh(&dev_base_lock);
1129
056925ab 1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1131 ret = notifier_to_errno(ret);
1132
1133 if (ret) {
91e9c07b
ED
1134 /* err >= 0 after dev_alloc_name() or stores the first errno */
1135 if (err >= 0) {
fcc5a03a 1136 err = ret;
30e6c9fa 1137 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a
HX
1138 memcpy(dev->name, oldname, IFNAMSIZ);
1139 goto rollback;
91e9c07b 1140 } else {
7b6cd1ce 1141 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1142 dev->name, ret);
fcc5a03a
HX
1143 }
1144 }
1da177e4
LT
1145
1146 return err;
1147}
1148
0b815a1a
SH
1149/**
1150 * dev_set_alias - change ifalias of a device
1151 * @dev: device
1152 * @alias: name up to IFALIASZ
f0db275a 1153 * @len: limit of bytes to copy from info
0b815a1a
SH
1154 *
1155 * Set ifalias for a device,
1156 */
1157int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1158{
7364e445
AK
1159 char *new_ifalias;
1160
0b815a1a
SH
1161 ASSERT_RTNL();
1162
1163 if (len >= IFALIASZ)
1164 return -EINVAL;
1165
96ca4a2c 1166 if (!len) {
388dfc2d
SK
1167 kfree(dev->ifalias);
1168 dev->ifalias = NULL;
96ca4a2c
OH
1169 return 0;
1170 }
1171
7364e445
AK
1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1173 if (!new_ifalias)
0b815a1a 1174 return -ENOMEM;
7364e445 1175 dev->ifalias = new_ifalias;
0b815a1a
SH
1176
1177 strlcpy(dev->ifalias, alias, len+1);
1178 return len;
1179}
1180
1181
d8a33ac4 1182/**
3041a069 1183 * netdev_features_change - device changes features
d8a33ac4
SH
1184 * @dev: device to cause notification
1185 *
1186 * Called to indicate a device has changed features.
1187 */
1188void netdev_features_change(struct net_device *dev)
1189{
056925ab 1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1191}
1192EXPORT_SYMBOL(netdev_features_change);
1193
1da177e4
LT
1194/**
1195 * netdev_state_change - device changes state
1196 * @dev: device to cause notification
1197 *
1198 * Called to indicate a device has changed state. This function calls
1199 * the notifier chains for netdev_chain and sends a NEWLINK message
1200 * to the routing socket.
1201 */
1202void netdev_state_change(struct net_device *dev)
1203{
1204 if (dev->flags & IFF_UP) {
056925ab 1205 call_netdevice_notifiers(NETDEV_CHANGE, dev);
7f294054 1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1207 }
1208}
d1b19dff 1209EXPORT_SYMBOL(netdev_state_change);
1da177e4 1210
ee89bab1
AW
1211/**
1212 * netdev_notify_peers - notify network peers about existence of @dev
1213 * @dev: network device
1214 *
1215 * Generate traffic such that interested network peers are aware of
1216 * @dev, such as by generating a gratuitous ARP. This may be used when
1217 * a device wants to inform the rest of the network about some sort of
1218 * reconfiguration such as a failover event or virtual machine
1219 * migration.
1220 */
1221void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1222{
ee89bab1
AW
1223 rtnl_lock();
1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1225 rtnl_unlock();
c1da4ac7 1226}
ee89bab1 1227EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1228
bd380811 1229static int __dev_open(struct net_device *dev)
1da177e4 1230{
d314774c 1231 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1232 int ret;
1da177e4 1233
e46b66bc
BH
1234 ASSERT_RTNL();
1235
1da177e4
LT
1236 if (!netif_device_present(dev))
1237 return -ENODEV;
1238
ca99ca14
NH
1239 /* Block netpoll from trying to do any rx path servicing.
1240 * If we don't do this there is a chance ndo_poll_controller
1241 * or ndo_poll may be running while we open the device
1242 */
da6e378b 1243 netpoll_rx_disable(dev);
ca99ca14 1244
3b8bcfd5
JB
1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1246 ret = notifier_to_errno(ret);
1247 if (ret)
1248 return ret;
1249
1da177e4 1250 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1251
d314774c
SH
1252 if (ops->ndo_validate_addr)
1253 ret = ops->ndo_validate_addr(dev);
bada339b 1254
d314774c
SH
1255 if (!ret && ops->ndo_open)
1256 ret = ops->ndo_open(dev);
1da177e4 1257
ca99ca14
NH
1258 netpoll_rx_enable(dev);
1259
bada339b
JG
1260 if (ret)
1261 clear_bit(__LINK_STATE_START, &dev->state);
1262 else {
1da177e4 1263 dev->flags |= IFF_UP;
b4bd07c2 1264 net_dmaengine_get();
4417da66 1265 dev_set_rx_mode(dev);
1da177e4 1266 dev_activate(dev);
7bf23575 1267 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1268 }
bada339b 1269
1da177e4
LT
1270 return ret;
1271}
1272
1273/**
bd380811
PM
1274 * dev_open - prepare an interface for use.
1275 * @dev: device to open
1da177e4 1276 *
bd380811
PM
1277 * Takes a device from down to up state. The device's private open
1278 * function is invoked and then the multicast lists are loaded. Finally
1279 * the device is moved into the up state and a %NETDEV_UP message is
1280 * sent to the netdev notifier chain.
1281 *
1282 * Calling this function on an active interface is a nop. On a failure
1283 * a negative errno code is returned.
1da177e4 1284 */
bd380811
PM
1285int dev_open(struct net_device *dev)
1286{
1287 int ret;
1288
bd380811
PM
1289 if (dev->flags & IFF_UP)
1290 return 0;
1291
bd380811
PM
1292 ret = __dev_open(dev);
1293 if (ret < 0)
1294 return ret;
1295
7f294054 1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1297 call_netdevice_notifiers(NETDEV_UP, dev);
1298
1299 return ret;
1300}
1301EXPORT_SYMBOL(dev_open);
1302
44345724 1303static int __dev_close_many(struct list_head *head)
1da177e4 1304{
44345724 1305 struct net_device *dev;
e46b66bc 1306
bd380811 1307 ASSERT_RTNL();
9d5010db
DM
1308 might_sleep();
1309
5cde2829 1310 list_for_each_entry(dev, head, close_list) {
44345724 1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1312
44345724 1313 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1314
44345724
OP
1315 /* Synchronize to scheduled poll. We cannot touch poll list, it
1316 * can be even on different cpu. So just clear netif_running().
1317 *
1318 * dev->stop() will invoke napi_disable() on all of it's
1319 * napi_struct instances on this device.
1320 */
1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1322 }
1da177e4 1323
44345724 1324 dev_deactivate_many(head);
d8b2a4d2 1325
5cde2829 1326 list_for_each_entry(dev, head, close_list) {
44345724 1327 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1328
44345724
OP
1329 /*
1330 * Call the device specific close. This cannot fail.
1331 * Only if device is UP
1332 *
1333 * We allow it to be called even after a DETACH hot-plug
1334 * event.
1335 */
1336 if (ops->ndo_stop)
1337 ops->ndo_stop(dev);
1338
44345724 1339 dev->flags &= ~IFF_UP;
44345724
OP
1340 net_dmaengine_put();
1341 }
1342
1343 return 0;
1344}
1345
1346static int __dev_close(struct net_device *dev)
1347{
f87e6f47 1348 int retval;
44345724
OP
1349 LIST_HEAD(single);
1350
ca99ca14 1351 /* Temporarily disable netpoll until the interface is down */
da6e378b 1352 netpoll_rx_disable(dev);
ca99ca14 1353
5cde2829 1354 list_add(&dev->close_list, &single);
f87e6f47
LT
1355 retval = __dev_close_many(&single);
1356 list_del(&single);
ca99ca14
NH
1357
1358 netpoll_rx_enable(dev);
f87e6f47 1359 return retval;
44345724
OP
1360}
1361
3fbd8758 1362static int dev_close_many(struct list_head *head)
44345724
OP
1363{
1364 struct net_device *dev, *tmp;
1da177e4 1365
5cde2829
EB
1366 /* Remove the devices that don't need to be closed */
1367 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1368 if (!(dev->flags & IFF_UP))
5cde2829 1369 list_del_init(&dev->close_list);
44345724
OP
1370
1371 __dev_close_many(head);
1da177e4 1372
5cde2829 1373 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1375 call_netdevice_notifiers(NETDEV_DOWN, dev);
5cde2829 1376 list_del_init(&dev->close_list);
44345724 1377 }
bd380811
PM
1378
1379 return 0;
1380}
1381
1382/**
1383 * dev_close - shutdown an interface.
1384 * @dev: device to shutdown
1385 *
1386 * This function moves an active device into down state. A
1387 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1388 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1389 * chain.
1390 */
1391int dev_close(struct net_device *dev)
1392{
e14a5993
ED
1393 if (dev->flags & IFF_UP) {
1394 LIST_HEAD(single);
1da177e4 1395
ca99ca14 1396 /* Block netpoll rx while the interface is going down */
da6e378b 1397 netpoll_rx_disable(dev);
ca99ca14 1398
5cde2829 1399 list_add(&dev->close_list, &single);
e14a5993
ED
1400 dev_close_many(&single);
1401 list_del(&single);
ca99ca14
NH
1402
1403 netpoll_rx_enable(dev);
e14a5993 1404 }
da6e378b 1405 return 0;
1da177e4 1406}
d1b19dff 1407EXPORT_SYMBOL(dev_close);
1da177e4
LT
1408
1409
0187bdfb
BH
1410/**
1411 * dev_disable_lro - disable Large Receive Offload on a device
1412 * @dev: device
1413 *
1414 * Disable Large Receive Offload (LRO) on a net device. Must be
1415 * called under RTNL. This is needed if received packets may be
1416 * forwarded to another interface.
1417 */
1418void dev_disable_lro(struct net_device *dev)
1419{
f11970e3
NH
1420 /*
1421 * If we're trying to disable lro on a vlan device
1422 * use the underlying physical device instead
1423 */
1424 if (is_vlan_dev(dev))
1425 dev = vlan_dev_real_dev(dev);
1426
bc5787c6
MM
1427 dev->wanted_features &= ~NETIF_F_LRO;
1428 netdev_update_features(dev);
27660515 1429
22d5969f
MM
1430 if (unlikely(dev->features & NETIF_F_LRO))
1431 netdev_WARN(dev, "failed to disable LRO!\n");
0187bdfb
BH
1432}
1433EXPORT_SYMBOL(dev_disable_lro);
1434
351638e7
JP
1435static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1436 struct net_device *dev)
1437{
1438 struct netdev_notifier_info info;
1439
1440 netdev_notifier_info_init(&info, dev);
1441 return nb->notifier_call(nb, val, &info);
1442}
0187bdfb 1443
881d966b
EB
1444static int dev_boot_phase = 1;
1445
1da177e4
LT
1446/**
1447 * register_netdevice_notifier - register a network notifier block
1448 * @nb: notifier
1449 *
1450 * Register a notifier to be called when network device events occur.
1451 * The notifier passed is linked into the kernel structures and must
1452 * not be reused until it has been unregistered. A negative errno code
1453 * is returned on a failure.
1454 *
1455 * When registered all registration and up events are replayed
4ec93edb 1456 * to the new notifier to allow device to have a race free
1da177e4
LT
1457 * view of the network device list.
1458 */
1459
1460int register_netdevice_notifier(struct notifier_block *nb)
1461{
1462 struct net_device *dev;
fcc5a03a 1463 struct net_device *last;
881d966b 1464 struct net *net;
1da177e4
LT
1465 int err;
1466
1467 rtnl_lock();
f07d5b94 1468 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1469 if (err)
1470 goto unlock;
881d966b
EB
1471 if (dev_boot_phase)
1472 goto unlock;
1473 for_each_net(net) {
1474 for_each_netdev(net, dev) {
351638e7 1475 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1476 err = notifier_to_errno(err);
1477 if (err)
1478 goto rollback;
1479
1480 if (!(dev->flags & IFF_UP))
1481 continue;
1da177e4 1482
351638e7 1483 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1484 }
1da177e4 1485 }
fcc5a03a
HX
1486
1487unlock:
1da177e4
LT
1488 rtnl_unlock();
1489 return err;
fcc5a03a
HX
1490
1491rollback:
1492 last = dev;
881d966b
EB
1493 for_each_net(net) {
1494 for_each_netdev(net, dev) {
1495 if (dev == last)
8f891489 1496 goto outroll;
fcc5a03a 1497
881d966b 1498 if (dev->flags & IFF_UP) {
351638e7
JP
1499 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1500 dev);
1501 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1502 }
351638e7 1503 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1504 }
fcc5a03a 1505 }
c67625a1 1506
8f891489 1507outroll:
c67625a1 1508 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1509 goto unlock;
1da177e4 1510}
d1b19dff 1511EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1512
1513/**
1514 * unregister_netdevice_notifier - unregister a network notifier block
1515 * @nb: notifier
1516 *
1517 * Unregister a notifier previously registered by
1518 * register_netdevice_notifier(). The notifier is unlinked into the
1519 * kernel structures and may then be reused. A negative errno code
1520 * is returned on a failure.
7d3d43da
EB
1521 *
1522 * After unregistering unregister and down device events are synthesized
1523 * for all devices on the device list to the removed notifier to remove
1524 * the need for special case cleanup code.
1da177e4
LT
1525 */
1526
1527int unregister_netdevice_notifier(struct notifier_block *nb)
1528{
7d3d43da
EB
1529 struct net_device *dev;
1530 struct net *net;
9f514950
HX
1531 int err;
1532
1533 rtnl_lock();
f07d5b94 1534 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1535 if (err)
1536 goto unlock;
1537
1538 for_each_net(net) {
1539 for_each_netdev(net, dev) {
1540 if (dev->flags & IFF_UP) {
351638e7
JP
1541 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1542 dev);
1543 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1544 }
351638e7 1545 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1546 }
1547 }
1548unlock:
9f514950
HX
1549 rtnl_unlock();
1550 return err;
1da177e4 1551}
d1b19dff 1552EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1553
351638e7
JP
1554/**
1555 * call_netdevice_notifiers_info - call all network notifier blocks
1556 * @val: value passed unmodified to notifier function
1557 * @dev: net_device pointer passed unmodified to notifier function
1558 * @info: notifier information data
1559 *
1560 * Call all network notifier blocks. Parameters and return value
1561 * are as for raw_notifier_call_chain().
1562 */
1563
1564int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1565 struct netdev_notifier_info *info)
1566{
1567 ASSERT_RTNL();
1568 netdev_notifier_info_init(info, dev);
1569 return raw_notifier_call_chain(&netdev_chain, val, info);
1570}
1571EXPORT_SYMBOL(call_netdevice_notifiers_info);
1572
1da177e4
LT
1573/**
1574 * call_netdevice_notifiers - call all network notifier blocks
1575 * @val: value passed unmodified to notifier function
c4ea43c5 1576 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1577 *
1578 * Call all network notifier blocks. Parameters and return value
f07d5b94 1579 * are as for raw_notifier_call_chain().
1da177e4
LT
1580 */
1581
ad7379d4 1582int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1583{
351638e7
JP
1584 struct netdev_notifier_info info;
1585
1586 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1587}
edf947f1 1588EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1589
c5905afb 1590static struct static_key netstamp_needed __read_mostly;
b90e5794 1591#ifdef HAVE_JUMP_LABEL
c5905afb 1592/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1593 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1594 * static_key_slow_dec() calls.
b90e5794
ED
1595 */
1596static atomic_t netstamp_needed_deferred;
1597#endif
1da177e4
LT
1598
1599void net_enable_timestamp(void)
1600{
b90e5794
ED
1601#ifdef HAVE_JUMP_LABEL
1602 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1603
1604 if (deferred) {
1605 while (--deferred)
c5905afb 1606 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1607 return;
1608 }
1609#endif
c5905afb 1610 static_key_slow_inc(&netstamp_needed);
1da177e4 1611}
d1b19dff 1612EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1613
1614void net_disable_timestamp(void)
1615{
b90e5794
ED
1616#ifdef HAVE_JUMP_LABEL
1617 if (in_interrupt()) {
1618 atomic_inc(&netstamp_needed_deferred);
1619 return;
1620 }
1621#endif
c5905afb 1622 static_key_slow_dec(&netstamp_needed);
1da177e4 1623}
d1b19dff 1624EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1625
3b098e2d 1626static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1627{
588f0330 1628 skb->tstamp.tv64 = 0;
c5905afb 1629 if (static_key_false(&netstamp_needed))
a61bbcf2 1630 __net_timestamp(skb);
1da177e4
LT
1631}
1632
588f0330 1633#define net_timestamp_check(COND, SKB) \
c5905afb 1634 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1635 if ((COND) && !(SKB)->tstamp.tv64) \
1636 __net_timestamp(SKB); \
1637 } \
3b098e2d 1638
79b569f0
DL
1639static inline bool is_skb_forwardable(struct net_device *dev,
1640 struct sk_buff *skb)
1641{
1642 unsigned int len;
1643
1644 if (!(dev->flags & IFF_UP))
1645 return false;
1646
1647 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1648 if (skb->len <= len)
1649 return true;
1650
1651 /* if TSO is enabled, we don't care about the length as the packet
1652 * could be forwarded without being segmented before
1653 */
1654 if (skb_is_gso(skb))
1655 return true;
1656
1657 return false;
1658}
1659
44540960
AB
1660/**
1661 * dev_forward_skb - loopback an skb to another netif
1662 *
1663 * @dev: destination network device
1664 * @skb: buffer to forward
1665 *
1666 * return values:
1667 * NET_RX_SUCCESS (no congestion)
6ec82562 1668 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1669 *
1670 * dev_forward_skb can be used for injecting an skb from the
1671 * start_xmit function of one device into the receive queue
1672 * of another device.
1673 *
1674 * The receiving device may be in another namespace, so
1675 * we have to clear all information in the skb that could
1676 * impact namespace isolation.
1677 */
1678int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1679{
48c83012
MT
1680 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1681 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1682 atomic_long_inc(&dev->rx_dropped);
1683 kfree_skb(skb);
1684 return NET_RX_DROP;
1685 }
1686 }
1687
79b569f0 1688 if (unlikely(!is_skb_forwardable(dev, skb))) {
caf586e5 1689 atomic_long_inc(&dev->rx_dropped);
6ec82562 1690 kfree_skb(skb);
44540960 1691 return NET_RX_DROP;
6ec82562 1692 }
44540960 1693 skb->protocol = eth_type_trans(skb, dev);
06a23fe3
IY
1694
1695 /* eth_type_trans() can set pkt_type.
64261f23
ND
1696 * call skb_scrub_packet() after it to clear pkt_type _after_ calling
1697 * eth_type_trans().
06a23fe3 1698 */
8b27f277 1699 skb_scrub_packet(skb, true);
06a23fe3 1700
44540960
AB
1701 return netif_rx(skb);
1702}
1703EXPORT_SYMBOL_GPL(dev_forward_skb);
1704
71d9dec2
CG
1705static inline int deliver_skb(struct sk_buff *skb,
1706 struct packet_type *pt_prev,
1707 struct net_device *orig_dev)
1708{
1080e512
MT
1709 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710 return -ENOMEM;
71d9dec2
CG
1711 atomic_inc(&skb->users);
1712 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1713}
1714
c0de08d0
EL
1715static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1716{
a3d744e9 1717 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1718 return false;
1719
1720 if (ptype->id_match)
1721 return ptype->id_match(ptype, skb->sk);
1722 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723 return true;
1724
1725 return false;
1726}
1727
1da177e4
LT
1728/*
1729 * Support routine. Sends outgoing frames to any network
1730 * taps currently in use.
1731 */
1732
f6a78bfc 1733static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1734{
1735 struct packet_type *ptype;
71d9dec2
CG
1736 struct sk_buff *skb2 = NULL;
1737 struct packet_type *pt_prev = NULL;
a61bbcf2 1738
1da177e4
LT
1739 rcu_read_lock();
1740 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741 /* Never send packets back to the socket
1742 * they originated from - MvS (miquels@drinkel.ow.org)
1743 */
1744 if ((ptype->dev == dev || !ptype->dev) &&
c0de08d0 1745 (!skb_loop_sk(ptype, skb))) {
71d9dec2
CG
1746 if (pt_prev) {
1747 deliver_skb(skb2, pt_prev, skb->dev);
1748 pt_prev = ptype;
1749 continue;
1750 }
1751
1752 skb2 = skb_clone(skb, GFP_ATOMIC);
1da177e4
LT
1753 if (!skb2)
1754 break;
1755
70978182
ED
1756 net_timestamp_set(skb2);
1757
1da177e4
LT
1758 /* skb->nh should be correctly
1759 set by sender, so that the second statement is
1760 just protection against buggy protocols.
1761 */
459a98ed 1762 skb_reset_mac_header(skb2);
1da177e4 1763
d56f90a7 1764 if (skb_network_header(skb2) < skb2->data ||
ced14f68 1765 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
e87cc472
JP
1766 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767 ntohs(skb2->protocol),
1768 dev->name);
c1d2bbe1 1769 skb_reset_network_header(skb2);
1da177e4
LT
1770 }
1771
b0e380b1 1772 skb2->transport_header = skb2->network_header;
1da177e4 1773 skb2->pkt_type = PACKET_OUTGOING;
71d9dec2 1774 pt_prev = ptype;
1da177e4
LT
1775 }
1776 }
71d9dec2
CG
1777 if (pt_prev)
1778 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1779 rcu_read_unlock();
1780}
1781
2c53040f
BH
1782/**
1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1784 * @dev: Network device
1785 * @txq: number of queues available
1786 *
1787 * If real_num_tx_queues is changed the tc mappings may no longer be
1788 * valid. To resolve this verify the tc mapping remains valid and if
1789 * not NULL the mapping. With no priorities mapping to this
1790 * offset/count pair it will no longer be used. In the worst case TC0
1791 * is invalid nothing can be done so disable priority mappings. If is
1792 * expected that drivers will fix this mapping if they can before
1793 * calling netif_set_real_num_tx_queues.
1794 */
bb134d22 1795static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1796{
1797 int i;
1798 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1799
1800 /* If TC0 is invalidated disable TC mapping */
1801 if (tc->offset + tc->count > txq) {
7b6cd1ce 1802 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1803 dev->num_tc = 0;
1804 return;
1805 }
1806
1807 /* Invalidated prio to tc mappings set to TC0 */
1808 for (i = 1; i < TC_BITMASK + 1; i++) {
1809 int q = netdev_get_prio_tc_map(dev, i);
1810
1811 tc = &dev->tc_to_txq[q];
1812 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1813 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814 i, q);
4f57c087
JF
1815 netdev_set_prio_tc_map(dev, i, 0);
1816 }
1817 }
1818}
1819
537c00de
AD
1820#ifdef CONFIG_XPS
1821static DEFINE_MUTEX(xps_map_mutex);
1822#define xmap_dereference(P) \
1823 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1824
10cdc3f3
AD
1825static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826 int cpu, u16 index)
537c00de 1827{
10cdc3f3
AD
1828 struct xps_map *map = NULL;
1829 int pos;
537c00de 1830
10cdc3f3
AD
1831 if (dev_maps)
1832 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1833
10cdc3f3
AD
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] == index) {
537c00de
AD
1836 if (map->len > 1) {
1837 map->queues[pos] = map->queues[--map->len];
1838 } else {
10cdc3f3 1839 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1840 kfree_rcu(map, rcu);
1841 map = NULL;
1842 }
10cdc3f3 1843 break;
537c00de 1844 }
537c00de
AD
1845 }
1846
10cdc3f3
AD
1847 return map;
1848}
1849
024e9679 1850static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1851{
1852 struct xps_dev_maps *dev_maps;
024e9679 1853 int cpu, i;
10cdc3f3
AD
1854 bool active = false;
1855
1856 mutex_lock(&xps_map_mutex);
1857 dev_maps = xmap_dereference(dev->xps_maps);
1858
1859 if (!dev_maps)
1860 goto out_no_maps;
1861
1862 for_each_possible_cpu(cpu) {
024e9679
AD
1863 for (i = index; i < dev->num_tx_queues; i++) {
1864 if (!remove_xps_queue(dev_maps, cpu, i))
1865 break;
1866 }
1867 if (i == dev->num_tx_queues)
10cdc3f3
AD
1868 active = true;
1869 }
1870
1871 if (!active) {
537c00de
AD
1872 RCU_INIT_POINTER(dev->xps_maps, NULL);
1873 kfree_rcu(dev_maps, rcu);
1874 }
1875
024e9679
AD
1876 for (i = index; i < dev->num_tx_queues; i++)
1877 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878 NUMA_NO_NODE);
1879
537c00de
AD
1880out_no_maps:
1881 mutex_unlock(&xps_map_mutex);
1882}
1883
01c5f864
AD
1884static struct xps_map *expand_xps_map(struct xps_map *map,
1885 int cpu, u16 index)
1886{
1887 struct xps_map *new_map;
1888 int alloc_len = XPS_MIN_MAP_ALLOC;
1889 int i, pos;
1890
1891 for (pos = 0; map && pos < map->len; pos++) {
1892 if (map->queues[pos] != index)
1893 continue;
1894 return map;
1895 }
1896
1897 /* Need to add queue to this CPU's existing map */
1898 if (map) {
1899 if (pos < map->alloc_len)
1900 return map;
1901
1902 alloc_len = map->alloc_len * 2;
1903 }
1904
1905 /* Need to allocate new map to store queue on this CPU's map */
1906 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907 cpu_to_node(cpu));
1908 if (!new_map)
1909 return NULL;
1910
1911 for (i = 0; i < pos; i++)
1912 new_map->queues[i] = map->queues[i];
1913 new_map->alloc_len = alloc_len;
1914 new_map->len = pos;
1915
1916 return new_map;
1917}
1918
3573540c
MT
1919int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920 u16 index)
537c00de 1921{
01c5f864 1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 1923 struct xps_map *map, *new_map;
537c00de 1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
1925 int cpu, numa_node_id = -2;
1926 bool active = false;
537c00de
AD
1927
1928 mutex_lock(&xps_map_mutex);
1929
1930 dev_maps = xmap_dereference(dev->xps_maps);
1931
01c5f864
AD
1932 /* allocate memory for queue storage */
1933 for_each_online_cpu(cpu) {
1934 if (!cpumask_test_cpu(cpu, mask))
1935 continue;
1936
1937 if (!new_dev_maps)
1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
1939 if (!new_dev_maps) {
1940 mutex_unlock(&xps_map_mutex);
01c5f864 1941 return -ENOMEM;
2bb60cb9 1942 }
01c5f864
AD
1943
1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 NULL;
1946
1947 map = expand_xps_map(map, cpu, index);
1948 if (!map)
1949 goto error;
1950
1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 }
1953
1954 if (!new_dev_maps)
1955 goto out_no_new_maps;
1956
537c00de 1957 for_each_possible_cpu(cpu) {
01c5f864
AD
1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 /* add queue to CPU maps */
1960 int pos = 0;
1961
1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 while ((pos < map->len) && (map->queues[pos] != index))
1964 pos++;
1965
1966 if (pos == map->len)
1967 map->queues[map->len++] = index;
537c00de 1968#ifdef CONFIG_NUMA
537c00de
AD
1969 if (numa_node_id == -2)
1970 numa_node_id = cpu_to_node(cpu);
1971 else if (numa_node_id != cpu_to_node(cpu))
1972 numa_node_id = -1;
537c00de 1973#endif
01c5f864
AD
1974 } else if (dev_maps) {
1975 /* fill in the new device map from the old device map */
1976 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 1978 }
01c5f864 1979
537c00de
AD
1980 }
1981
01c5f864
AD
1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983
537c00de 1984 /* Cleanup old maps */
01c5f864
AD
1985 if (dev_maps) {
1986 for_each_possible_cpu(cpu) {
1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 if (map && map != new_map)
1990 kfree_rcu(map, rcu);
1991 }
537c00de 1992
01c5f864 1993 kfree_rcu(dev_maps, rcu);
537c00de
AD
1994 }
1995
01c5f864
AD
1996 dev_maps = new_dev_maps;
1997 active = true;
537c00de 1998
01c5f864
AD
1999out_no_new_maps:
2000 /* update Tx queue numa node */
537c00de
AD
2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 (numa_node_id >= 0) ? numa_node_id :
2003 NUMA_NO_NODE);
2004
01c5f864
AD
2005 if (!dev_maps)
2006 goto out_no_maps;
2007
2008 /* removes queue from unused CPUs */
2009 for_each_possible_cpu(cpu) {
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 continue;
2012
2013 if (remove_xps_queue(dev_maps, cpu, index))
2014 active = true;
2015 }
2016
2017 /* free map if not active */
2018 if (!active) {
2019 RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 kfree_rcu(dev_maps, rcu);
2021 }
2022
2023out_no_maps:
537c00de
AD
2024 mutex_unlock(&xps_map_mutex);
2025
2026 return 0;
2027error:
01c5f864
AD
2028 /* remove any maps that we added */
2029 for_each_possible_cpu(cpu) {
2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 NULL;
2033 if (new_map && new_map != map)
2034 kfree(new_map);
2035 }
2036
537c00de
AD
2037 mutex_unlock(&xps_map_mutex);
2038
537c00de
AD
2039 kfree(new_dev_maps);
2040 return -ENOMEM;
2041}
2042EXPORT_SYMBOL(netif_set_xps_queue);
2043
2044#endif
f0796d5c
JF
2045/*
2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048 */
e6484930 2049int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2050{
1d24eb48
TH
2051 int rc;
2052
e6484930
TH
2053 if (txq < 1 || txq > dev->num_tx_queues)
2054 return -EINVAL;
f0796d5c 2055
5c56580b
BH
2056 if (dev->reg_state == NETREG_REGISTERED ||
2057 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2058 ASSERT_RTNL();
2059
1d24eb48
TH
2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 txq);
bf264145
TH
2062 if (rc)
2063 return rc;
2064
4f57c087
JF
2065 if (dev->num_tc)
2066 netif_setup_tc(dev, txq);
2067
024e9679 2068 if (txq < dev->real_num_tx_queues) {
e6484930 2069 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2070#ifdef CONFIG_XPS
2071 netif_reset_xps_queues_gt(dev, txq);
2072#endif
2073 }
f0796d5c 2074 }
e6484930
TH
2075
2076 dev->real_num_tx_queues = txq;
2077 return 0;
f0796d5c
JF
2078}
2079EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2080
62fe0b40
BH
2081#ifdef CONFIG_RPS
2082/**
2083 * netif_set_real_num_rx_queues - set actual number of RX queues used
2084 * @dev: Network device
2085 * @rxq: Actual number of RX queues
2086 *
2087 * This must be called either with the rtnl_lock held or before
2088 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2089 * negative error code. If called before registration, it always
2090 * succeeds.
62fe0b40
BH
2091 */
2092int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093{
2094 int rc;
2095
bd25fa7b
TH
2096 if (rxq < 1 || rxq > dev->num_rx_queues)
2097 return -EINVAL;
2098
62fe0b40
BH
2099 if (dev->reg_state == NETREG_REGISTERED) {
2100 ASSERT_RTNL();
2101
62fe0b40
BH
2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 rxq);
2104 if (rc)
2105 return rc;
62fe0b40
BH
2106 }
2107
2108 dev->real_num_rx_queues = rxq;
2109 return 0;
2110}
2111EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112#endif
2113
2c53040f
BH
2114/**
2115 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2116 *
2117 * This routine should set an upper limit on the number of RSS queues
2118 * used by default by multiqueue devices.
2119 */
a55b138b 2120int netif_get_num_default_rss_queues(void)
16917b87
YM
2121{
2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123}
2124EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125
def82a1d 2126static inline void __netif_reschedule(struct Qdisc *q)
56079431 2127{
def82a1d
JP
2128 struct softnet_data *sd;
2129 unsigned long flags;
56079431 2130
def82a1d
JP
2131 local_irq_save(flags);
2132 sd = &__get_cpu_var(softnet_data);
a9cbd588
CG
2133 q->next_sched = NULL;
2134 *sd->output_queue_tailp = q;
2135 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2136 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 local_irq_restore(flags);
2138}
2139
2140void __netif_schedule(struct Qdisc *q)
2141{
2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 __netif_reschedule(q);
56079431
DV
2144}
2145EXPORT_SYMBOL(__netif_schedule);
2146
bea3348e 2147void dev_kfree_skb_irq(struct sk_buff *skb)
56079431 2148{
3578b0c8 2149 if (atomic_dec_and_test(&skb->users)) {
bea3348e
SH
2150 struct softnet_data *sd;
2151 unsigned long flags;
56079431 2152
bea3348e
SH
2153 local_irq_save(flags);
2154 sd = &__get_cpu_var(softnet_data);
2155 skb->next = sd->completion_queue;
2156 sd->completion_queue = skb;
2157 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2158 local_irq_restore(flags);
2159 }
56079431 2160}
bea3348e 2161EXPORT_SYMBOL(dev_kfree_skb_irq);
56079431
DV
2162
2163void dev_kfree_skb_any(struct sk_buff *skb)
2164{
2165 if (in_irq() || irqs_disabled())
2166 dev_kfree_skb_irq(skb);
2167 else
2168 dev_kfree_skb(skb);
2169}
2170EXPORT_SYMBOL(dev_kfree_skb_any);
2171
2172
bea3348e
SH
2173/**
2174 * netif_device_detach - mark device as removed
2175 * @dev: network device
2176 *
2177 * Mark device as removed from system and therefore no longer available.
2178 */
56079431
DV
2179void netif_device_detach(struct net_device *dev)
2180{
2181 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2182 netif_running(dev)) {
d543103a 2183 netif_tx_stop_all_queues(dev);
56079431
DV
2184 }
2185}
2186EXPORT_SYMBOL(netif_device_detach);
2187
bea3348e
SH
2188/**
2189 * netif_device_attach - mark device as attached
2190 * @dev: network device
2191 *
2192 * Mark device as attached from system and restart if needed.
2193 */
56079431
DV
2194void netif_device_attach(struct net_device *dev)
2195{
2196 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2197 netif_running(dev)) {
d543103a 2198 netif_tx_wake_all_queues(dev);
4ec93edb 2199 __netdev_watchdog_up(dev);
56079431
DV
2200 }
2201}
2202EXPORT_SYMBOL(netif_device_attach);
2203
36c92474
BH
2204static void skb_warn_bad_offload(const struct sk_buff *skb)
2205{
65e9d2fa 2206 static const netdev_features_t null_features = 0;
36c92474
BH
2207 struct net_device *dev = skb->dev;
2208 const char *driver = "";
2209
c846ad9b
BG
2210 if (!net_ratelimit())
2211 return;
2212
36c92474
BH
2213 if (dev && dev->dev.parent)
2214 driver = dev_driver_string(dev->dev.parent);
2215
2216 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2217 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2218 driver, dev ? &dev->features : &null_features,
2219 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2220 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2221 skb_shinfo(skb)->gso_type, skb->ip_summed);
2222}
2223
1da177e4
LT
2224/*
2225 * Invalidate hardware checksum when packet is to be mangled, and
2226 * complete checksum manually on outgoing path.
2227 */
84fa7933 2228int skb_checksum_help(struct sk_buff *skb)
1da177e4 2229{
d3bc23e7 2230 __wsum csum;
663ead3b 2231 int ret = 0, offset;
1da177e4 2232
84fa7933 2233 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2234 goto out_set_summed;
2235
2236 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2237 skb_warn_bad_offload(skb);
2238 return -EINVAL;
1da177e4
LT
2239 }
2240
cef401de
ED
2241 /* Before computing a checksum, we should make sure no frag could
2242 * be modified by an external entity : checksum could be wrong.
2243 */
2244 if (skb_has_shared_frag(skb)) {
2245 ret = __skb_linearize(skb);
2246 if (ret)
2247 goto out;
2248 }
2249
55508d60 2250 offset = skb_checksum_start_offset(skb);
a030847e
HX
2251 BUG_ON(offset >= skb_headlen(skb));
2252 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2253
2254 offset += skb->csum_offset;
2255 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2256
2257 if (skb_cloned(skb) &&
2258 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2259 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2260 if (ret)
2261 goto out;
2262 }
2263
a030847e 2264 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2265out_set_summed:
1da177e4 2266 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2267out:
1da177e4
LT
2268 return ret;
2269}
d1b19dff 2270EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2271
ec5f0615 2272__be16 skb_network_protocol(struct sk_buff *skb)
f6a78bfc 2273{
252e3346 2274 __be16 type = skb->protocol;
c80a8512 2275 int vlan_depth = ETH_HLEN;
f6a78bfc 2276
19acc327
PS
2277 /* Tunnel gso handlers can set protocol to ethernet. */
2278 if (type == htons(ETH_P_TEB)) {
2279 struct ethhdr *eth;
2280
2281 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2282 return 0;
2283
2284 eth = (struct ethhdr *)skb_mac_header(skb);
2285 type = eth->h_proto;
2286 }
2287
8ad227ff 2288 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
c8d5bcd1 2289 struct vlan_hdr *vh;
7b9c6090 2290
c8d5bcd1 2291 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
ec5f0615 2292 return 0;
7b9c6090 2293
c8d5bcd1
JG
2294 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2295 type = vh->h_vlan_encapsulated_proto;
2296 vlan_depth += VLAN_HLEN;
7b9c6090
JG
2297 }
2298
ec5f0615
PS
2299 return type;
2300}
2301
2302/**
2303 * skb_mac_gso_segment - mac layer segmentation handler.
2304 * @skb: buffer to segment
2305 * @features: features for the output path (see dev->features)
2306 */
2307struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2308 netdev_features_t features)
2309{
2310 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2311 struct packet_offload *ptype;
2312 __be16 type = skb_network_protocol(skb);
2313
2314 if (unlikely(!type))
2315 return ERR_PTR(-EINVAL);
2316
f6a78bfc
HX
2317 __skb_pull(skb, skb->mac_len);
2318
2319 rcu_read_lock();
22061d80 2320 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2321 if (ptype->type == type && ptype->callbacks.gso_segment) {
84fa7933 2322 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
05e8ef4a
PS
2323 int err;
2324
f191a1d1 2325 err = ptype->callbacks.gso_send_check(skb);
a430a43d
HX
2326 segs = ERR_PTR(err);
2327 if (err || skb_gso_ok(skb, features))
2328 break;
d56f90a7
ACM
2329 __skb_push(skb, (skb->data -
2330 skb_network_header(skb)));
a430a43d 2331 }
f191a1d1 2332 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2333 break;
2334 }
2335 }
2336 rcu_read_unlock();
2337
98e399f8 2338 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2339
f6a78bfc
HX
2340 return segs;
2341}
05e8ef4a
PS
2342EXPORT_SYMBOL(skb_mac_gso_segment);
2343
2344
2345/* openvswitch calls this on rx path, so we need a different check.
2346 */
2347static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2348{
2349 if (tx_path)
2350 return skb->ip_summed != CHECKSUM_PARTIAL;
2351 else
2352 return skb->ip_summed == CHECKSUM_NONE;
2353}
2354
2355/**
2356 * __skb_gso_segment - Perform segmentation on skb.
2357 * @skb: buffer to segment
2358 * @features: features for the output path (see dev->features)
2359 * @tx_path: whether it is called in TX path
2360 *
2361 * This function segments the given skb and returns a list of segments.
2362 *
2363 * It may return NULL if the skb requires no segmentation. This is
2364 * only possible when GSO is used for verifying header integrity.
2365 */
2366struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2367 netdev_features_t features, bool tx_path)
2368{
2369 if (unlikely(skb_needs_check(skb, tx_path))) {
2370 int err;
2371
2372 skb_warn_bad_offload(skb);
2373
2374 if (skb_header_cloned(skb) &&
2375 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2376 return ERR_PTR(err);
2377 }
2378
68c33163 2379 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2380 SKB_GSO_CB(skb)->encap_level = 0;
2381
05e8ef4a
PS
2382 skb_reset_mac_header(skb);
2383 skb_reset_mac_len(skb);
2384
2385 return skb_mac_gso_segment(skb, features);
2386}
12b0004d 2387EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2388
fb286bb2
HX
2389/* Take action when hardware reception checksum errors are detected. */
2390#ifdef CONFIG_BUG
2391void netdev_rx_csum_fault(struct net_device *dev)
2392{
2393 if (net_ratelimit()) {
7b6cd1ce 2394 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2395 dump_stack();
2396 }
2397}
2398EXPORT_SYMBOL(netdev_rx_csum_fault);
2399#endif
2400
1da177e4
LT
2401/* Actually, we should eliminate this check as soon as we know, that:
2402 * 1. IOMMU is present and allows to map all the memory.
2403 * 2. No high memory really exists on this machine.
2404 */
2405
9092c658 2406static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2407{
3d3a8533 2408#ifdef CONFIG_HIGHMEM
1da177e4 2409 int i;
5acbbd42 2410 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2411 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2412 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2413 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2414 return 1;
ea2ab693 2415 }
5acbbd42 2416 }
1da177e4 2417
5acbbd42
FT
2418 if (PCI_DMA_BUS_IS_PHYS) {
2419 struct device *pdev = dev->dev.parent;
1da177e4 2420
9092c658
ED
2421 if (!pdev)
2422 return 0;
5acbbd42 2423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2425 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2426 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2427 return 1;
2428 }
2429 }
3d3a8533 2430#endif
1da177e4
LT
2431 return 0;
2432}
1da177e4 2433
f6a78bfc
HX
2434struct dev_gso_cb {
2435 void (*destructor)(struct sk_buff *skb);
2436};
2437
2438#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2439
2440static void dev_gso_skb_destructor(struct sk_buff *skb)
2441{
2442 struct dev_gso_cb *cb;
2443
2444 do {
2445 struct sk_buff *nskb = skb->next;
2446
2447 skb->next = nskb->next;
2448 nskb->next = NULL;
2449 kfree_skb(nskb);
2450 } while (skb->next);
2451
2452 cb = DEV_GSO_CB(skb);
2453 if (cb->destructor)
2454 cb->destructor(skb);
2455}
2456
2457/**
2458 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2459 * @skb: buffer to segment
91ecb63c 2460 * @features: device features as applicable to this skb
f6a78bfc
HX
2461 *
2462 * This function segments the given skb and stores the list of segments
2463 * in skb->next.
2464 */
c8f44aff 2465static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
f6a78bfc 2466{
f6a78bfc 2467 struct sk_buff *segs;
576a30eb
HX
2468
2469 segs = skb_gso_segment(skb, features);
2470
2471 /* Verifying header integrity only. */
2472 if (!segs)
2473 return 0;
f6a78bfc 2474
801678c5 2475 if (IS_ERR(segs))
f6a78bfc
HX
2476 return PTR_ERR(segs);
2477
2478 skb->next = segs;
2479 DEV_GSO_CB(skb)->destructor = skb->destructor;
2480 skb->destructor = dev_gso_skb_destructor;
2481
2482 return 0;
2483}
2484
c8f44aff 2485static netdev_features_t harmonize_features(struct sk_buff *skb,
cdbaa0bb 2486 netdev_features_t features)
f01a5236 2487{
c0d680e5 2488 if (skb->ip_summed != CHECKSUM_NONE &&
cdbaa0bb 2489 !can_checksum_protocol(features, skb_network_protocol(skb))) {
f01a5236 2490 features &= ~NETIF_F_ALL_CSUM;
f01a5236
JG
2491 } else if (illegal_highdma(skb->dev, skb)) {
2492 features &= ~NETIF_F_SG;
2493 }
2494
2495 return features;
2496}
2497
c8f44aff 2498netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6
JG
2499{
2500 __be16 protocol = skb->protocol;
c8f44aff 2501 netdev_features_t features = skb->dev->features;
58e998c6 2502
30b678d8
BH
2503 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2504 features &= ~NETIF_F_GSO_MASK;
2505
8ad227ff 2506 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
58e998c6
JG
2507 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2508 protocol = veh->h_vlan_encapsulated_proto;
f01a5236 2509 } else if (!vlan_tx_tag_present(skb)) {
cdbaa0bb 2510 return harmonize_features(skb, features);
f01a5236 2511 }
58e998c6 2512
8ad227ff
PM
2513 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2514 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2515
cdbaa0bb 2516 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
f01a5236 2517 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
8ad227ff
PM
2518 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2519 NETIF_F_HW_VLAN_STAG_TX;
cdbaa0bb
AD
2520
2521 return harmonize_features(skb, features);
58e998c6 2522}
f01a5236 2523EXPORT_SYMBOL(netif_skb_features);
58e998c6 2524
6afff0ca
JF
2525/*
2526 * Returns true if either:
2527 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
d1a53dfd 2528 * 2. skb is fragmented and the device does not support SG.
6afff0ca
JF
2529 */
2530static inline int skb_needs_linearize(struct sk_buff *skb,
6708c9e5 2531 netdev_features_t features)
6afff0ca 2532{
02932ce9
JG
2533 return skb_is_nonlinear(skb) &&
2534 ((skb_has_frag_list(skb) &&
2535 !(features & NETIF_F_FRAGLIST)) ||
e1e78db6 2536 (skb_shinfo(skb)->nr_frags &&
02932ce9 2537 !(features & NETIF_F_SG)));
6afff0ca
JF
2538}
2539
fd2ea0a7 2540int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
a6cc0cfa 2541 struct netdev_queue *txq, void *accel_priv)
f6a78bfc 2542{
00829823 2543 const struct net_device_ops *ops = dev->netdev_ops;
572a9d7b 2544 int rc = NETDEV_TX_OK;
ec764bf0 2545 unsigned int skb_len;
00829823 2546
f6a78bfc 2547 if (likely(!skb->next)) {
c8f44aff 2548 netdev_features_t features;
fc741216 2549
93f154b5 2550 /*
25985edc 2551 * If device doesn't need skb->dst, release it right now while
93f154b5
ED
2552 * its hot in this cpu cache
2553 */
adf30907
ED
2554 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2555 skb_dst_drop(skb);
2556
fc741216
JG
2557 features = netif_skb_features(skb);
2558
7b9c6090 2559 if (vlan_tx_tag_present(skb) &&
86a9bad3
PM
2560 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2561 skb = __vlan_put_tag(skb, skb->vlan_proto,
2562 vlan_tx_tag_get(skb));
7b9c6090
JG
2563 if (unlikely(!skb))
2564 goto out;
2565
2566 skb->vlan_tci = 0;
2567 }
2568
fc70fb64
AD
2569 /* If encapsulation offload request, verify we are testing
2570 * hardware encapsulation features instead of standard
2571 * features for the netdev
2572 */
2573 if (skb->encapsulation)
2574 features &= dev->hw_enc_features;
2575
fc741216 2576 if (netif_needs_gso(skb, features)) {
91ecb63c 2577 if (unlikely(dev_gso_segment(skb, features)))
9ccb8975
DM
2578 goto out_kfree_skb;
2579 if (skb->next)
2580 goto gso;
6afff0ca 2581 } else {
02932ce9 2582 if (skb_needs_linearize(skb, features) &&
6afff0ca
JF
2583 __skb_linearize(skb))
2584 goto out_kfree_skb;
2585
2586 /* If packet is not checksummed and device does not
2587 * support checksumming for this protocol, complete
2588 * checksumming here.
2589 */
2590 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fc70fb64
AD
2591 if (skb->encapsulation)
2592 skb_set_inner_transport_header(skb,
2593 skb_checksum_start_offset(skb));
2594 else
2595 skb_set_transport_header(skb,
2596 skb_checksum_start_offset(skb));
03634668 2597 if (!(features & NETIF_F_ALL_CSUM) &&
6afff0ca
JF
2598 skb_checksum_help(skb))
2599 goto out_kfree_skb;
2600 }
9ccb8975
DM
2601 }
2602
b40863c6
ED
2603 if (!list_empty(&ptype_all))
2604 dev_queue_xmit_nit(skb, dev);
2605
ec764bf0 2606 skb_len = skb->len;
a6cc0cfa
JF
2607 if (accel_priv)
2608 rc = ops->ndo_dfwd_start_xmit(skb, dev, accel_priv);
2609 else
2610 rc = ops->ndo_start_xmit(skb, dev);
2611
ec764bf0 2612 trace_net_dev_xmit(skb, rc, dev, skb_len);
a6cc0cfa 2613 if (rc == NETDEV_TX_OK && txq)
08baf561 2614 txq_trans_update(txq);
ac45f602 2615 return rc;
f6a78bfc
HX
2616 }
2617
576a30eb 2618gso:
f6a78bfc
HX
2619 do {
2620 struct sk_buff *nskb = skb->next;
f6a78bfc
HX
2621
2622 skb->next = nskb->next;
2623 nskb->next = NULL;
068a2de5 2624
b40863c6
ED
2625 if (!list_empty(&ptype_all))
2626 dev_queue_xmit_nit(nskb, dev);
2627
ec764bf0 2628 skb_len = nskb->len;
a6cc0cfa
JF
2629 if (accel_priv)
2630 rc = ops->ndo_dfwd_start_xmit(nskb, dev, accel_priv);
2631 else
2632 rc = ops->ndo_start_xmit(nskb, dev);
ec764bf0 2633 trace_net_dev_xmit(nskb, rc, dev, skb_len);
ec634fe3 2634 if (unlikely(rc != NETDEV_TX_OK)) {
572a9d7b
PM
2635 if (rc & ~NETDEV_TX_MASK)
2636 goto out_kfree_gso_skb;
f54d9e8d 2637 nskb->next = skb->next;
f6a78bfc
HX
2638 skb->next = nskb;
2639 return rc;
2640 }
08baf561 2641 txq_trans_update(txq);
73466498 2642 if (unlikely(netif_xmit_stopped(txq) && skb->next))
f54d9e8d 2643 return NETDEV_TX_BUSY;
f6a78bfc 2644 } while (skb->next);
4ec93edb 2645
572a9d7b 2646out_kfree_gso_skb:
0c772159 2647 if (likely(skb->next == NULL)) {
572a9d7b 2648 skb->destructor = DEV_GSO_CB(skb)->destructor;
0c772159
SS
2649 consume_skb(skb);
2650 return rc;
2651 }
f6a78bfc
HX
2652out_kfree_skb:
2653 kfree_skb(skb);
7b9c6090 2654out:
572a9d7b 2655 return rc;
f6a78bfc 2656}
a6cc0cfa 2657EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
f6a78bfc 2658
1def9238
ED
2659static void qdisc_pkt_len_init(struct sk_buff *skb)
2660{
2661 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2662
2663 qdisc_skb_cb(skb)->pkt_len = skb->len;
2664
2665 /* To get more precise estimation of bytes sent on wire,
2666 * we add to pkt_len the headers size of all segments
2667 */
2668 if (shinfo->gso_size) {
757b8b1d 2669 unsigned int hdr_len;
15e5a030 2670 u16 gso_segs = shinfo->gso_segs;
1def9238 2671
757b8b1d
ED
2672 /* mac layer + network layer */
2673 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2674
2675 /* + transport layer */
1def9238
ED
2676 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2677 hdr_len += tcp_hdrlen(skb);
2678 else
2679 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2680
2681 if (shinfo->gso_type & SKB_GSO_DODGY)
2682 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2683 shinfo->gso_size);
2684
2685 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2686 }
2687}
2688
bbd8a0d3
KK
2689static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2690 struct net_device *dev,
2691 struct netdev_queue *txq)
2692{
2693 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2694 bool contended;
bbd8a0d3
KK
2695 int rc;
2696
1def9238 2697 qdisc_pkt_len_init(skb);
a2da570d 2698 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2699 /*
2700 * Heuristic to force contended enqueues to serialize on a
2701 * separate lock before trying to get qdisc main lock.
2702 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2703 * and dequeue packets faster.
2704 */
a2da570d 2705 contended = qdisc_is_running(q);
79640a4c
ED
2706 if (unlikely(contended))
2707 spin_lock(&q->busylock);
2708
bbd8a0d3
KK
2709 spin_lock(root_lock);
2710 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2711 kfree_skb(skb);
2712 rc = NET_XMIT_DROP;
2713 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2714 qdisc_run_begin(q)) {
bbd8a0d3
KK
2715 /*
2716 * This is a work-conserving queue; there are no old skbs
2717 * waiting to be sent out; and the qdisc is not running -
2718 * xmit the skb directly.
2719 */
7fee226a
ED
2720 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2721 skb_dst_force(skb);
bfe0d029 2722
bfe0d029
ED
2723 qdisc_bstats_update(q, skb);
2724
79640a4c
ED
2725 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2726 if (unlikely(contended)) {
2727 spin_unlock(&q->busylock);
2728 contended = false;
2729 }
bbd8a0d3 2730 __qdisc_run(q);
79640a4c 2731 } else
bc135b23 2732 qdisc_run_end(q);
bbd8a0d3
KK
2733
2734 rc = NET_XMIT_SUCCESS;
2735 } else {
7fee226a 2736 skb_dst_force(skb);
a2da570d 2737 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2738 if (qdisc_run_begin(q)) {
2739 if (unlikely(contended)) {
2740 spin_unlock(&q->busylock);
2741 contended = false;
2742 }
2743 __qdisc_run(q);
2744 }
bbd8a0d3
KK
2745 }
2746 spin_unlock(root_lock);
79640a4c
ED
2747 if (unlikely(contended))
2748 spin_unlock(&q->busylock);
bbd8a0d3
KK
2749 return rc;
2750}
2751
5bc1421e
NH
2752#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2753static void skb_update_prio(struct sk_buff *skb)
2754{
6977a79d 2755 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2756
91c68ce2
ED
2757 if (!skb->priority && skb->sk && map) {
2758 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2759
2760 if (prioidx < map->priomap_len)
2761 skb->priority = map->priomap[prioidx];
2762 }
5bc1421e
NH
2763}
2764#else
2765#define skb_update_prio(skb)
2766#endif
2767
745e20f1 2768static DEFINE_PER_CPU(int, xmit_recursion);
11a766ce 2769#define RECURSION_LIMIT 10
745e20f1 2770
95603e22
MM
2771/**
2772 * dev_loopback_xmit - loop back @skb
2773 * @skb: buffer to transmit
2774 */
2775int dev_loopback_xmit(struct sk_buff *skb)
2776{
2777 skb_reset_mac_header(skb);
2778 __skb_pull(skb, skb_network_offset(skb));
2779 skb->pkt_type = PACKET_LOOPBACK;
2780 skb->ip_summed = CHECKSUM_UNNECESSARY;
2781 WARN_ON(!skb_dst(skb));
2782 skb_dst_force(skb);
2783 netif_rx_ni(skb);
2784 return 0;
2785}
2786EXPORT_SYMBOL(dev_loopback_xmit);
2787
d29f749e
DJ
2788/**
2789 * dev_queue_xmit - transmit a buffer
2790 * @skb: buffer to transmit
2791 *
2792 * Queue a buffer for transmission to a network device. The caller must
2793 * have set the device and priority and built the buffer before calling
2794 * this function. The function can be called from an interrupt.
2795 *
2796 * A negative errno code is returned on a failure. A success does not
2797 * guarantee the frame will be transmitted as it may be dropped due
2798 * to congestion or traffic shaping.
2799 *
2800 * -----------------------------------------------------------------------------------
2801 * I notice this method can also return errors from the queue disciplines,
2802 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2803 * be positive.
2804 *
2805 * Regardless of the return value, the skb is consumed, so it is currently
2806 * difficult to retry a send to this method. (You can bump the ref count
2807 * before sending to hold a reference for retry if you are careful.)
2808 *
2809 * When calling this method, interrupts MUST be enabled. This is because
2810 * the BH enable code must have IRQs enabled so that it will not deadlock.
2811 * --BLG
2812 */
1da177e4
LT
2813int dev_queue_xmit(struct sk_buff *skb)
2814{
2815 struct net_device *dev = skb->dev;
dc2b4847 2816 struct netdev_queue *txq;
1da177e4
LT
2817 struct Qdisc *q;
2818 int rc = -ENOMEM;
2819
6d1ccff6
ED
2820 skb_reset_mac_header(skb);
2821
4ec93edb
YH
2822 /* Disable soft irqs for various locks below. Also
2823 * stops preemption for RCU.
1da177e4 2824 */
4ec93edb 2825 rcu_read_lock_bh();
1da177e4 2826
5bc1421e
NH
2827 skb_update_prio(skb);
2828
8c4c49df 2829 txq = netdev_pick_tx(dev, skb);
a898def2 2830 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2831
1da177e4 2832#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2833 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 2834#endif
cf66ba58 2835 trace_net_dev_queue(skb);
1da177e4 2836 if (q->enqueue) {
bbd8a0d3 2837 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2838 goto out;
1da177e4
LT
2839 }
2840
2841 /* The device has no queue. Common case for software devices:
2842 loopback, all the sorts of tunnels...
2843
932ff279
HX
2844 Really, it is unlikely that netif_tx_lock protection is necessary
2845 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2846 counters.)
2847 However, it is possible, that they rely on protection
2848 made by us here.
2849
2850 Check this and shot the lock. It is not prone from deadlocks.
2851 Either shot noqueue qdisc, it is even simpler 8)
2852 */
2853 if (dev->flags & IFF_UP) {
2854 int cpu = smp_processor_id(); /* ok because BHs are off */
2855
c773e847 2856 if (txq->xmit_lock_owner != cpu) {
1da177e4 2857
745e20f1
ED
2858 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2859 goto recursion_alert;
2860
c773e847 2861 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2862
73466498 2863 if (!netif_xmit_stopped(txq)) {
745e20f1 2864 __this_cpu_inc(xmit_recursion);
a6cc0cfa 2865 rc = dev_hard_start_xmit(skb, dev, txq, NULL);
745e20f1 2866 __this_cpu_dec(xmit_recursion);
572a9d7b 2867 if (dev_xmit_complete(rc)) {
c773e847 2868 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2869 goto out;
2870 }
2871 }
c773e847 2872 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
2873 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2874 dev->name);
1da177e4
LT
2875 } else {
2876 /* Recursion is detected! It is possible,
745e20f1
ED
2877 * unfortunately
2878 */
2879recursion_alert:
e87cc472
JP
2880 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2881 dev->name);
1da177e4
LT
2882 }
2883 }
2884
2885 rc = -ENETDOWN;
d4828d85 2886 rcu_read_unlock_bh();
1da177e4 2887
1da177e4
LT
2888 kfree_skb(skb);
2889 return rc;
2890out:
d4828d85 2891 rcu_read_unlock_bh();
1da177e4
LT
2892 return rc;
2893}
d1b19dff 2894EXPORT_SYMBOL(dev_queue_xmit);
1da177e4
LT
2895
2896
2897/*=======================================================================
2898 Receiver routines
2899 =======================================================================*/
2900
6b2bedc3 2901int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
2902EXPORT_SYMBOL(netdev_max_backlog);
2903
3b098e2d 2904int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
2905int netdev_budget __read_mostly = 300;
2906int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 2907
eecfd7c4
ED
2908/* Called with irq disabled */
2909static inline void ____napi_schedule(struct softnet_data *sd,
2910 struct napi_struct *napi)
2911{
2912 list_add_tail(&napi->poll_list, &sd->poll_list);
2913 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2914}
2915
bfb564e7
KK
2916#ifdef CONFIG_RPS
2917
2918/* One global table that all flow-based protocols share. */
6e3f7faf 2919struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7
KK
2920EXPORT_SYMBOL(rps_sock_flow_table);
2921
c5905afb 2922struct static_key rps_needed __read_mostly;
adc9300e 2923
c445477d
BH
2924static struct rps_dev_flow *
2925set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2926 struct rps_dev_flow *rflow, u16 next_cpu)
2927{
09994d1b 2928 if (next_cpu != RPS_NO_CPU) {
c445477d
BH
2929#ifdef CONFIG_RFS_ACCEL
2930 struct netdev_rx_queue *rxqueue;
2931 struct rps_dev_flow_table *flow_table;
2932 struct rps_dev_flow *old_rflow;
2933 u32 flow_id;
2934 u16 rxq_index;
2935 int rc;
2936
2937 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
2938 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2939 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
2940 goto out;
2941 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2942 if (rxq_index == skb_get_rx_queue(skb))
2943 goto out;
2944
2945 rxqueue = dev->_rx + rxq_index;
2946 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2947 if (!flow_table)
2948 goto out;
2949 flow_id = skb->rxhash & flow_table->mask;
2950 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2951 rxq_index, flow_id);
2952 if (rc < 0)
2953 goto out;
2954 old_rflow = rflow;
2955 rflow = &flow_table->flows[flow_id];
c445477d
BH
2956 rflow->filter = rc;
2957 if (old_rflow->filter == rflow->filter)
2958 old_rflow->filter = RPS_NO_FILTER;
2959 out:
2960#endif
2961 rflow->last_qtail =
09994d1b 2962 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
2963 }
2964
09994d1b 2965 rflow->cpu = next_cpu;
c445477d
BH
2966 return rflow;
2967}
2968
bfb564e7
KK
2969/*
2970 * get_rps_cpu is called from netif_receive_skb and returns the target
2971 * CPU from the RPS map of the receiving queue for a given skb.
2972 * rcu_read_lock must be held on entry.
2973 */
2974static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2975 struct rps_dev_flow **rflowp)
2976{
2977 struct netdev_rx_queue *rxqueue;
6e3f7faf 2978 struct rps_map *map;
bfb564e7
KK
2979 struct rps_dev_flow_table *flow_table;
2980 struct rps_sock_flow_table *sock_flow_table;
2981 int cpu = -1;
2982 u16 tcpu;
2983
2984 if (skb_rx_queue_recorded(skb)) {
2985 u16 index = skb_get_rx_queue(skb);
62fe0b40
BH
2986 if (unlikely(index >= dev->real_num_rx_queues)) {
2987 WARN_ONCE(dev->real_num_rx_queues > 1,
2988 "%s received packet on queue %u, but number "
2989 "of RX queues is %u\n",
2990 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
2991 goto done;
2992 }
2993 rxqueue = dev->_rx + index;
2994 } else
2995 rxqueue = dev->_rx;
2996
6e3f7faf
ED
2997 map = rcu_dereference(rxqueue->rps_map);
2998 if (map) {
85875236 2999 if (map->len == 1 &&
33d480ce 3000 !rcu_access_pointer(rxqueue->rps_flow_table)) {
6febfca9
CG
3001 tcpu = map->cpus[0];
3002 if (cpu_online(tcpu))
3003 cpu = tcpu;
3004 goto done;
3005 }
33d480ce 3006 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
bfb564e7 3007 goto done;
6febfca9 3008 }
bfb564e7 3009
2d47b459 3010 skb_reset_network_header(skb);
bfb564e7
KK
3011 if (!skb_get_rxhash(skb))
3012 goto done;
3013
fec5e652
TH
3014 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3015 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3016 if (flow_table && sock_flow_table) {
3017 u16 next_cpu;
3018 struct rps_dev_flow *rflow;
3019
3020 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3021 tcpu = rflow->cpu;
3022
3023 next_cpu = sock_flow_table->ents[skb->rxhash &
3024 sock_flow_table->mask];
3025
3026 /*
3027 * If the desired CPU (where last recvmsg was done) is
3028 * different from current CPU (one in the rx-queue flow
3029 * table entry), switch if one of the following holds:
3030 * - Current CPU is unset (equal to RPS_NO_CPU).
3031 * - Current CPU is offline.
3032 * - The current CPU's queue tail has advanced beyond the
3033 * last packet that was enqueued using this table entry.
3034 * This guarantees that all previous packets for the flow
3035 * have been dequeued, thus preserving in order delivery.
3036 */
3037 if (unlikely(tcpu != next_cpu) &&
3038 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3039 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3040 rflow->last_qtail)) >= 0)) {
3041 tcpu = next_cpu;
c445477d 3042 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3043 }
c445477d 3044
fec5e652
TH
3045 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3046 *rflowp = rflow;
3047 cpu = tcpu;
3048 goto done;
3049 }
3050 }
3051
0a9627f2 3052 if (map) {
fec5e652 3053 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
0a9627f2
TH
3054
3055 if (cpu_online(tcpu)) {
3056 cpu = tcpu;
3057 goto done;
3058 }
3059 }
3060
3061done:
0a9627f2
TH
3062 return cpu;
3063}
3064
c445477d
BH
3065#ifdef CONFIG_RFS_ACCEL
3066
3067/**
3068 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3069 * @dev: Device on which the filter was set
3070 * @rxq_index: RX queue index
3071 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3072 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3073 *
3074 * Drivers that implement ndo_rx_flow_steer() should periodically call
3075 * this function for each installed filter and remove the filters for
3076 * which it returns %true.
3077 */
3078bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3079 u32 flow_id, u16 filter_id)
3080{
3081 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3082 struct rps_dev_flow_table *flow_table;
3083 struct rps_dev_flow *rflow;
3084 bool expire = true;
3085 int cpu;
3086
3087 rcu_read_lock();
3088 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3089 if (flow_table && flow_id <= flow_table->mask) {
3090 rflow = &flow_table->flows[flow_id];
3091 cpu = ACCESS_ONCE(rflow->cpu);
3092 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3093 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3094 rflow->last_qtail) <
3095 (int)(10 * flow_table->mask)))
3096 expire = false;
3097 }
3098 rcu_read_unlock();
3099 return expire;
3100}
3101EXPORT_SYMBOL(rps_may_expire_flow);
3102
3103#endif /* CONFIG_RFS_ACCEL */
3104
0a9627f2 3105/* Called from hardirq (IPI) context */
e36fa2f7 3106static void rps_trigger_softirq(void *data)
0a9627f2 3107{
e36fa2f7
ED
3108 struct softnet_data *sd = data;
3109
eecfd7c4 3110 ____napi_schedule(sd, &sd->backlog);
dee42870 3111 sd->received_rps++;
0a9627f2 3112}
e36fa2f7 3113
fec5e652 3114#endif /* CONFIG_RPS */
0a9627f2 3115
e36fa2f7
ED
3116/*
3117 * Check if this softnet_data structure is another cpu one
3118 * If yes, queue it to our IPI list and return 1
3119 * If no, return 0
3120 */
3121static int rps_ipi_queued(struct softnet_data *sd)
3122{
3123#ifdef CONFIG_RPS
3124 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3125
3126 if (sd != mysd) {
3127 sd->rps_ipi_next = mysd->rps_ipi_list;
3128 mysd->rps_ipi_list = sd;
3129
3130 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3131 return 1;
3132 }
3133#endif /* CONFIG_RPS */
3134 return 0;
3135}
3136
99bbc707
WB
3137#ifdef CONFIG_NET_FLOW_LIMIT
3138int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3139#endif
3140
3141static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3142{
3143#ifdef CONFIG_NET_FLOW_LIMIT
3144 struct sd_flow_limit *fl;
3145 struct softnet_data *sd;
3146 unsigned int old_flow, new_flow;
3147
3148 if (qlen < (netdev_max_backlog >> 1))
3149 return false;
3150
3151 sd = &__get_cpu_var(softnet_data);
3152
3153 rcu_read_lock();
3154 fl = rcu_dereference(sd->flow_limit);
3155 if (fl) {
3156 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3157 old_flow = fl->history[fl->history_head];
3158 fl->history[fl->history_head] = new_flow;
3159
3160 fl->history_head++;
3161 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3162
3163 if (likely(fl->buckets[old_flow]))
3164 fl->buckets[old_flow]--;
3165
3166 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3167 fl->count++;
3168 rcu_read_unlock();
3169 return true;
3170 }
3171 }
3172 rcu_read_unlock();
3173#endif
3174 return false;
3175}
3176
0a9627f2
TH
3177/*
3178 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3179 * queue (may be a remote CPU queue).
3180 */
fec5e652
TH
3181static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3182 unsigned int *qtail)
0a9627f2 3183{
e36fa2f7 3184 struct softnet_data *sd;
0a9627f2 3185 unsigned long flags;
99bbc707 3186 unsigned int qlen;
0a9627f2 3187
e36fa2f7 3188 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3189
3190 local_irq_save(flags);
0a9627f2 3191
e36fa2f7 3192 rps_lock(sd);
99bbc707
WB
3193 qlen = skb_queue_len(&sd->input_pkt_queue);
3194 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
6e7676c1 3195 if (skb_queue_len(&sd->input_pkt_queue)) {
0a9627f2 3196enqueue:
e36fa2f7 3197 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3198 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3199 rps_unlock(sd);
152102c7 3200 local_irq_restore(flags);
0a9627f2
TH
3201 return NET_RX_SUCCESS;
3202 }
3203
ebda37c2
ED
3204 /* Schedule NAPI for backlog device
3205 * We can use non atomic operation since we own the queue lock
3206 */
3207 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3208 if (!rps_ipi_queued(sd))
eecfd7c4 3209 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3210 }
3211 goto enqueue;
3212 }
3213
dee42870 3214 sd->dropped++;
e36fa2f7 3215 rps_unlock(sd);
0a9627f2 3216
0a9627f2
TH
3217 local_irq_restore(flags);
3218
caf586e5 3219 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3220 kfree_skb(skb);
3221 return NET_RX_DROP;
3222}
1da177e4 3223
1da177e4
LT
3224/**
3225 * netif_rx - post buffer to the network code
3226 * @skb: buffer to post
3227 *
3228 * This function receives a packet from a device driver and queues it for
3229 * the upper (protocol) levels to process. It always succeeds. The buffer
3230 * may be dropped during processing for congestion control or by the
3231 * protocol layers.
3232 *
3233 * return values:
3234 * NET_RX_SUCCESS (no congestion)
1da177e4
LT
3235 * NET_RX_DROP (packet was dropped)
3236 *
3237 */
3238
3239int netif_rx(struct sk_buff *skb)
3240{
b0e28f1e 3241 int ret;
1da177e4
LT
3242
3243 /* if netpoll wants it, pretend we never saw it */
3244 if (netpoll_rx(skb))
3245 return NET_RX_DROP;
3246
588f0330 3247 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3248
cf66ba58 3249 trace_netif_rx(skb);
df334545 3250#ifdef CONFIG_RPS
c5905afb 3251 if (static_key_false(&rps_needed)) {
fec5e652 3252 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3253 int cpu;
3254
cece1945 3255 preempt_disable();
b0e28f1e 3256 rcu_read_lock();
fec5e652
TH
3257
3258 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3259 if (cpu < 0)
3260 cpu = smp_processor_id();
fec5e652
TH
3261
3262 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3263
b0e28f1e 3264 rcu_read_unlock();
cece1945 3265 preempt_enable();
adc9300e
ED
3266 } else
3267#endif
fec5e652
TH
3268 {
3269 unsigned int qtail;
3270 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3271 put_cpu();
3272 }
b0e28f1e 3273 return ret;
1da177e4 3274}
d1b19dff 3275EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3276
3277int netif_rx_ni(struct sk_buff *skb)
3278{
3279 int err;
3280
3281 preempt_disable();
3282 err = netif_rx(skb);
3283 if (local_softirq_pending())
3284 do_softirq();
3285 preempt_enable();
3286
3287 return err;
3288}
1da177e4
LT
3289EXPORT_SYMBOL(netif_rx_ni);
3290
1da177e4
LT
3291static void net_tx_action(struct softirq_action *h)
3292{
3293 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3294
3295 if (sd->completion_queue) {
3296 struct sk_buff *clist;
3297
3298 local_irq_disable();
3299 clist = sd->completion_queue;
3300 sd->completion_queue = NULL;
3301 local_irq_enable();
3302
3303 while (clist) {
3304 struct sk_buff *skb = clist;
3305 clist = clist->next;
3306
547b792c 3307 WARN_ON(atomic_read(&skb->users));
07dc22e7 3308 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3309 __kfree_skb(skb);
3310 }
3311 }
3312
3313 if (sd->output_queue) {
37437bb2 3314 struct Qdisc *head;
1da177e4
LT
3315
3316 local_irq_disable();
3317 head = sd->output_queue;
3318 sd->output_queue = NULL;
a9cbd588 3319 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3320 local_irq_enable();
3321
3322 while (head) {
37437bb2
DM
3323 struct Qdisc *q = head;
3324 spinlock_t *root_lock;
3325
1da177e4
LT
3326 head = head->next_sched;
3327
5fb66229 3328 root_lock = qdisc_lock(q);
37437bb2 3329 if (spin_trylock(root_lock)) {
def82a1d
JP
3330 smp_mb__before_clear_bit();
3331 clear_bit(__QDISC_STATE_SCHED,
3332 &q->state);
37437bb2
DM
3333 qdisc_run(q);
3334 spin_unlock(root_lock);
1da177e4 3335 } else {
195648bb 3336 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3337 &q->state)) {
195648bb 3338 __netif_reschedule(q);
e8a83e10
JP
3339 } else {
3340 smp_mb__before_clear_bit();
3341 clear_bit(__QDISC_STATE_SCHED,
3342 &q->state);
3343 }
1da177e4
LT
3344 }
3345 }
3346 }
3347}
3348
ab95bfe0
JP
3349#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3350 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3351/* This hook is defined here for ATM LANE */
3352int (*br_fdb_test_addr_hook)(struct net_device *dev,
3353 unsigned char *addr) __read_mostly;
4fb019a0 3354EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3355#endif
1da177e4 3356
1da177e4
LT
3357#ifdef CONFIG_NET_CLS_ACT
3358/* TODO: Maybe we should just force sch_ingress to be compiled in
3359 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3360 * a compare and 2 stores extra right now if we dont have it on
3361 * but have CONFIG_NET_CLS_ACT
25985edc
LDM
3362 * NOTE: This doesn't stop any functionality; if you dont have
3363 * the ingress scheduler, you just can't add policies on ingress.
1da177e4
LT
3364 *
3365 */
24824a09 3366static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
1da177e4 3367{
1da177e4 3368 struct net_device *dev = skb->dev;
f697c3e8 3369 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
3370 int result = TC_ACT_OK;
3371 struct Qdisc *q;
4ec93edb 3372
de384830 3373 if (unlikely(MAX_RED_LOOP < ttl++)) {
e87cc472
JP
3374 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3375 skb->skb_iif, dev->ifindex);
f697c3e8
HX
3376 return TC_ACT_SHOT;
3377 }
1da177e4 3378
f697c3e8
HX
3379 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3380 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 3381
83874000 3382 q = rxq->qdisc;
8d50b53d 3383 if (q != &noop_qdisc) {
83874000 3384 spin_lock(qdisc_lock(q));
a9312ae8
DM
3385 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3386 result = qdisc_enqueue_root(skb, q);
83874000
DM
3387 spin_unlock(qdisc_lock(q));
3388 }
f697c3e8
HX
3389
3390 return result;
3391}
86e65da9 3392
f697c3e8
HX
3393static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3394 struct packet_type **pt_prev,
3395 int *ret, struct net_device *orig_dev)
3396{
24824a09
ED
3397 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3398
3399 if (!rxq || rxq->qdisc == &noop_qdisc)
f697c3e8 3400 goto out;
1da177e4 3401
f697c3e8
HX
3402 if (*pt_prev) {
3403 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3404 *pt_prev = NULL;
1da177e4
LT
3405 }
3406
24824a09 3407 switch (ing_filter(skb, rxq)) {
f697c3e8
HX
3408 case TC_ACT_SHOT:
3409 case TC_ACT_STOLEN:
3410 kfree_skb(skb);
3411 return NULL;
3412 }
3413
3414out:
3415 skb->tc_verd = 0;
3416 return skb;
1da177e4
LT
3417}
3418#endif
3419
ab95bfe0
JP
3420/**
3421 * netdev_rx_handler_register - register receive handler
3422 * @dev: device to register a handler for
3423 * @rx_handler: receive handler to register
93e2c32b 3424 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0
JP
3425 *
3426 * Register a receive hander for a device. This handler will then be
3427 * called from __netif_receive_skb. A negative errno code is returned
3428 * on a failure.
3429 *
3430 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3431 *
3432 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3433 */
3434int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3435 rx_handler_func_t *rx_handler,
3436 void *rx_handler_data)
ab95bfe0
JP
3437{
3438 ASSERT_RTNL();
3439
3440 if (dev->rx_handler)
3441 return -EBUSY;
3442
00cfec37 3443 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3444 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3445 rcu_assign_pointer(dev->rx_handler, rx_handler);
3446
3447 return 0;
3448}
3449EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3450
3451/**
3452 * netdev_rx_handler_unregister - unregister receive handler
3453 * @dev: device to unregister a handler from
3454 *
166ec369 3455 * Unregister a receive handler from a device.
ab95bfe0
JP
3456 *
3457 * The caller must hold the rtnl_mutex.
3458 */
3459void netdev_rx_handler_unregister(struct net_device *dev)
3460{
3461
3462 ASSERT_RTNL();
a9b3cd7f 3463 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3464 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3465 * section has a guarantee to see a non NULL rx_handler_data
3466 * as well.
3467 */
3468 synchronize_net();
a9b3cd7f 3469 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3470}
3471EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3472
b4b9e355
MG
3473/*
3474 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3475 * the special handling of PFMEMALLOC skbs.
3476 */
3477static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3478{
3479 switch (skb->protocol) {
3480 case __constant_htons(ETH_P_ARP):
3481 case __constant_htons(ETH_P_IP):
3482 case __constant_htons(ETH_P_IPV6):
3483 case __constant_htons(ETH_P_8021Q):
8ad227ff 3484 case __constant_htons(ETH_P_8021AD):
b4b9e355
MG
3485 return true;
3486 default:
3487 return false;
3488 }
3489}
3490
9754e293 3491static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3492{
3493 struct packet_type *ptype, *pt_prev;
ab95bfe0 3494 rx_handler_func_t *rx_handler;
f2ccd8fa 3495 struct net_device *orig_dev;
63d8ea7f 3496 struct net_device *null_or_dev;
8a4eb573 3497 bool deliver_exact = false;
1da177e4 3498 int ret = NET_RX_DROP;
252e3346 3499 __be16 type;
1da177e4 3500
588f0330 3501 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3502
cf66ba58 3503 trace_netif_receive_skb(skb);
9b22ea56 3504
1da177e4 3505 /* if we've gotten here through NAPI, check netpoll */
bea3348e 3506 if (netpoll_receive_skb(skb))
b4b9e355 3507 goto out;
1da177e4 3508
cc9bd5ce 3509 orig_dev = skb->dev;
8f903c70 3510
c1d2bbe1 3511 skb_reset_network_header(skb);
fda55eca
ED
3512 if (!skb_transport_header_was_set(skb))
3513 skb_reset_transport_header(skb);
0b5c9db1 3514 skb_reset_mac_len(skb);
1da177e4
LT
3515
3516 pt_prev = NULL;
3517
3518 rcu_read_lock();
3519
63d8ea7f 3520another_round:
b6858177 3521 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3522
3523 __this_cpu_inc(softnet_data.processed);
3524
8ad227ff
PM
3525 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3526 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
bcc6d479
JP
3527 skb = vlan_untag(skb);
3528 if (unlikely(!skb))
b4b9e355 3529 goto unlock;
bcc6d479
JP
3530 }
3531
1da177e4
LT
3532#ifdef CONFIG_NET_CLS_ACT
3533 if (skb->tc_verd & TC_NCLS) {
3534 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3535 goto ncls;
3536 }
3537#endif
3538
9754e293 3539 if (pfmemalloc)
b4b9e355
MG
3540 goto skip_taps;
3541
1da177e4 3542 list_for_each_entry_rcu(ptype, &ptype_all, list) {
63d8ea7f 3543 if (!ptype->dev || ptype->dev == skb->dev) {
4ec93edb 3544 if (pt_prev)
f2ccd8fa 3545 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
3546 pt_prev = ptype;
3547 }
3548 }
3549
b4b9e355 3550skip_taps:
1da177e4 3551#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
3552 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3553 if (!skb)
b4b9e355 3554 goto unlock;
1da177e4
LT
3555ncls:
3556#endif
3557
9754e293 3558 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3559 goto drop;
3560
2425717b
JF
3561 if (vlan_tx_tag_present(skb)) {
3562 if (pt_prev) {
3563 ret = deliver_skb(skb, pt_prev, orig_dev);
3564 pt_prev = NULL;
3565 }
48cc32d3 3566 if (vlan_do_receive(&skb))
2425717b
JF
3567 goto another_round;
3568 else if (unlikely(!skb))
b4b9e355 3569 goto unlock;
2425717b
JF
3570 }
3571
48cc32d3 3572 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3573 if (rx_handler) {
3574 if (pt_prev) {
3575 ret = deliver_skb(skb, pt_prev, orig_dev);
3576 pt_prev = NULL;
3577 }
8a4eb573
JP
3578 switch (rx_handler(&skb)) {
3579 case RX_HANDLER_CONSUMED:
3bc1b1ad 3580 ret = NET_RX_SUCCESS;
b4b9e355 3581 goto unlock;
8a4eb573 3582 case RX_HANDLER_ANOTHER:
63d8ea7f 3583 goto another_round;
8a4eb573
JP
3584 case RX_HANDLER_EXACT:
3585 deliver_exact = true;
3586 case RX_HANDLER_PASS:
3587 break;
3588 default:
3589 BUG();
3590 }
ab95bfe0 3591 }
1da177e4 3592
d4b812de
ED
3593 if (unlikely(vlan_tx_tag_present(skb))) {
3594 if (vlan_tx_tag_get_id(skb))
3595 skb->pkt_type = PACKET_OTHERHOST;
3596 /* Note: we might in the future use prio bits
3597 * and set skb->priority like in vlan_do_receive()
3598 * For the time being, just ignore Priority Code Point
3599 */
3600 skb->vlan_tci = 0;
3601 }
48cc32d3 3602
63d8ea7f 3603 /* deliver only exact match when indicated */
8a4eb573 3604 null_or_dev = deliver_exact ? skb->dev : NULL;
1f3c8804 3605
1da177e4 3606 type = skb->protocol;
82d8a867
PE
3607 list_for_each_entry_rcu(ptype,
3608 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
63d8ea7f 3609 if (ptype->type == type &&
e3f48d37
JP
3610 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3611 ptype->dev == orig_dev)) {
4ec93edb 3612 if (pt_prev)
f2ccd8fa 3613 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
3614 pt_prev = ptype;
3615 }
3616 }
3617
3618 if (pt_prev) {
1080e512 3619 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3620 goto drop;
1080e512
MT
3621 else
3622 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3623 } else {
b4b9e355 3624drop:
caf586e5 3625 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3626 kfree_skb(skb);
3627 /* Jamal, now you will not able to escape explaining
3628 * me how you were going to use this. :-)
3629 */
3630 ret = NET_RX_DROP;
3631 }
3632
b4b9e355 3633unlock:
1da177e4 3634 rcu_read_unlock();
b4b9e355 3635out:
9754e293
DM
3636 return ret;
3637}
3638
3639static int __netif_receive_skb(struct sk_buff *skb)
3640{
3641 int ret;
3642
3643 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3644 unsigned long pflags = current->flags;
3645
3646 /*
3647 * PFMEMALLOC skbs are special, they should
3648 * - be delivered to SOCK_MEMALLOC sockets only
3649 * - stay away from userspace
3650 * - have bounded memory usage
3651 *
3652 * Use PF_MEMALLOC as this saves us from propagating the allocation
3653 * context down to all allocation sites.
3654 */
3655 current->flags |= PF_MEMALLOC;
3656 ret = __netif_receive_skb_core(skb, true);
3657 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3658 } else
3659 ret = __netif_receive_skb_core(skb, false);
3660
1da177e4
LT
3661 return ret;
3662}
0a9627f2
TH
3663
3664/**
3665 * netif_receive_skb - process receive buffer from network
3666 * @skb: buffer to process
3667 *
3668 * netif_receive_skb() is the main receive data processing function.
3669 * It always succeeds. The buffer may be dropped during processing
3670 * for congestion control or by the protocol layers.
3671 *
3672 * This function may only be called from softirq context and interrupts
3673 * should be enabled.
3674 *
3675 * Return values (usually ignored):
3676 * NET_RX_SUCCESS: no congestion
3677 * NET_RX_DROP: packet was dropped
3678 */
3679int netif_receive_skb(struct sk_buff *skb)
3680{
588f0330 3681 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3682
c1f19b51
RC
3683 if (skb_defer_rx_timestamp(skb))
3684 return NET_RX_SUCCESS;
3685
df334545 3686#ifdef CONFIG_RPS
c5905afb 3687 if (static_key_false(&rps_needed)) {
3b098e2d
ED
3688 struct rps_dev_flow voidflow, *rflow = &voidflow;
3689 int cpu, ret;
fec5e652 3690
3b098e2d
ED
3691 rcu_read_lock();
3692
3693 cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3694
3b098e2d
ED
3695 if (cpu >= 0) {
3696 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3697 rcu_read_unlock();
adc9300e 3698 return ret;
3b098e2d 3699 }
adc9300e 3700 rcu_read_unlock();
fec5e652 3701 }
1e94d72f 3702#endif
adc9300e 3703 return __netif_receive_skb(skb);
0a9627f2 3704}
d1b19dff 3705EXPORT_SYMBOL(netif_receive_skb);
1da177e4 3706
88751275
ED
3707/* Network device is going away, flush any packets still pending
3708 * Called with irqs disabled.
3709 */
152102c7 3710static void flush_backlog(void *arg)
6e583ce5 3711{
152102c7 3712 struct net_device *dev = arg;
e36fa2f7 3713 struct softnet_data *sd = &__get_cpu_var(softnet_data);
6e583ce5
SH
3714 struct sk_buff *skb, *tmp;
3715
e36fa2f7 3716 rps_lock(sd);
6e7676c1 3717 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 3718 if (skb->dev == dev) {
e36fa2f7 3719 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 3720 kfree_skb(skb);
76cc8b13 3721 input_queue_head_incr(sd);
6e583ce5 3722 }
6e7676c1 3723 }
e36fa2f7 3724 rps_unlock(sd);
6e7676c1
CG
3725
3726 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3727 if (skb->dev == dev) {
3728 __skb_unlink(skb, &sd->process_queue);
3729 kfree_skb(skb);
76cc8b13 3730 input_queue_head_incr(sd);
6e7676c1
CG
3731 }
3732 }
6e583ce5
SH
3733}
3734
d565b0a1
HX
3735static int napi_gro_complete(struct sk_buff *skb)
3736{
22061d80 3737 struct packet_offload *ptype;
d565b0a1 3738 __be16 type = skb->protocol;
22061d80 3739 struct list_head *head = &offload_base;
d565b0a1
HX
3740 int err = -ENOENT;
3741
c3c7c254
ED
3742 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3743
fc59f9a3
HX
3744 if (NAPI_GRO_CB(skb)->count == 1) {
3745 skb_shinfo(skb)->gso_size = 0;
d565b0a1 3746 goto out;
fc59f9a3 3747 }
d565b0a1
HX
3748
3749 rcu_read_lock();
3750 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3751 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
3752 continue;
3753
f191a1d1 3754 err = ptype->callbacks.gro_complete(skb);
d565b0a1
HX
3755 break;
3756 }
3757 rcu_read_unlock();
3758
3759 if (err) {
3760 WARN_ON(&ptype->list == head);
3761 kfree_skb(skb);
3762 return NET_RX_SUCCESS;
3763 }
3764
3765out:
d565b0a1
HX
3766 return netif_receive_skb(skb);
3767}
3768
2e71a6f8
ED
3769/* napi->gro_list contains packets ordered by age.
3770 * youngest packets at the head of it.
3771 * Complete skbs in reverse order to reduce latencies.
3772 */
3773void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 3774{
2e71a6f8 3775 struct sk_buff *skb, *prev = NULL;
d565b0a1 3776
2e71a6f8
ED
3777 /* scan list and build reverse chain */
3778 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3779 skb->prev = prev;
3780 prev = skb;
3781 }
3782
3783 for (skb = prev; skb; skb = prev) {
d565b0a1 3784 skb->next = NULL;
2e71a6f8
ED
3785
3786 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3787 return;
3788
3789 prev = skb->prev;
d565b0a1 3790 napi_gro_complete(skb);
2e71a6f8 3791 napi->gro_count--;
d565b0a1
HX
3792 }
3793
3794 napi->gro_list = NULL;
3795}
86cac58b 3796EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 3797
89c5fa33
ED
3798static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3799{
3800 struct sk_buff *p;
3801 unsigned int maclen = skb->dev->hard_header_len;
3802
3803 for (p = napi->gro_list; p; p = p->next) {
3804 unsigned long diffs;
3805
3806 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3807 diffs |= p->vlan_tci ^ skb->vlan_tci;
3808 if (maclen == ETH_HLEN)
3809 diffs |= compare_ether_header(skb_mac_header(p),
3810 skb_gro_mac_header(skb));
3811 else if (!diffs)
3812 diffs = memcmp(skb_mac_header(p),
3813 skb_gro_mac_header(skb),
3814 maclen);
3815 NAPI_GRO_CB(p)->same_flow = !diffs;
3816 NAPI_GRO_CB(p)->flush = 0;
3817 }
3818}
3819
bb728820 3820static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
3821{
3822 struct sk_buff **pp = NULL;
22061d80 3823 struct packet_offload *ptype;
d565b0a1 3824 __be16 type = skb->protocol;
22061d80 3825 struct list_head *head = &offload_base;
0da2afd5 3826 int same_flow;
5b252f0c 3827 enum gro_result ret;
d565b0a1 3828
ce9e76c8 3829 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
d565b0a1
HX
3830 goto normal;
3831
21dc3301 3832 if (skb_is_gso(skb) || skb_has_frag_list(skb))
f17f5c91
HX
3833 goto normal;
3834
89c5fa33
ED
3835 gro_list_prepare(napi, skb);
3836
d565b0a1
HX
3837 rcu_read_lock();
3838 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3839 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
3840 continue;
3841
86911732 3842 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 3843 skb_reset_mac_len(skb);
d565b0a1
HX
3844 NAPI_GRO_CB(skb)->same_flow = 0;
3845 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 3846 NAPI_GRO_CB(skb)->free = 0;
d565b0a1 3847
f191a1d1 3848 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
3849 break;
3850 }
3851 rcu_read_unlock();
3852
3853 if (&ptype->list == head)
3854 goto normal;
3855
0da2afd5 3856 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 3857 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 3858
d565b0a1
HX
3859 if (pp) {
3860 struct sk_buff *nskb = *pp;
3861
3862 *pp = nskb->next;
3863 nskb->next = NULL;
3864 napi_gro_complete(nskb);
4ae5544f 3865 napi->gro_count--;
d565b0a1
HX
3866 }
3867
0da2afd5 3868 if (same_flow)
d565b0a1
HX
3869 goto ok;
3870
4ae5544f 3871 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
d565b0a1 3872 goto normal;
d565b0a1 3873
4ae5544f 3874 napi->gro_count++;
d565b0a1 3875 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 3876 NAPI_GRO_CB(skb)->age = jiffies;
86911732 3877 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
3878 skb->next = napi->gro_list;
3879 napi->gro_list = skb;
5d0d9be8 3880 ret = GRO_HELD;
d565b0a1 3881
ad0f9904 3882pull:
cb18978c
HX
3883 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3884 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3885
3886 BUG_ON(skb->end - skb->tail < grow);
3887
3888 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3889
3890 skb->tail += grow;
3891 skb->data_len -= grow;
3892
3893 skb_shinfo(skb)->frags[0].page_offset += grow;
9e903e08 3894 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
cb18978c 3895
9e903e08 3896 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
ea2ab693 3897 skb_frag_unref(skb, 0);
cb18978c
HX
3898 memmove(skb_shinfo(skb)->frags,
3899 skb_shinfo(skb)->frags + 1,
e5093aec 3900 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
cb18978c 3901 }
ad0f9904
HX
3902 }
3903
d565b0a1 3904ok:
5d0d9be8 3905 return ret;
d565b0a1
HX
3906
3907normal:
ad0f9904
HX
3908 ret = GRO_NORMAL;
3909 goto pull;
5d38a079 3910}
96e93eab 3911
5d38a079 3912
bb728820 3913static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 3914{
5d0d9be8
HX
3915 switch (ret) {
3916 case GRO_NORMAL:
c7c4b3b6
BH
3917 if (netif_receive_skb(skb))
3918 ret = GRO_DROP;
3919 break;
5d38a079 3920
5d0d9be8 3921 case GRO_DROP:
5d38a079
HX
3922 kfree_skb(skb);
3923 break;
5b252f0c 3924
daa86548 3925 case GRO_MERGED_FREE:
d7e8883c
ED
3926 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3927 kmem_cache_free(skbuff_head_cache, skb);
3928 else
3929 __kfree_skb(skb);
daa86548
ED
3930 break;
3931
5b252f0c
BH
3932 case GRO_HELD:
3933 case GRO_MERGED:
3934 break;
5d38a079
HX
3935 }
3936
c7c4b3b6 3937 return ret;
5d0d9be8 3938}
5d0d9be8 3939
ca07e43e 3940static void skb_gro_reset_offset(struct sk_buff *skb)
78a478d0 3941{
ca07e43e
ED
3942 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3943 const skb_frag_t *frag0 = &pinfo->frags[0];
3944
78a478d0
HX
3945 NAPI_GRO_CB(skb)->data_offset = 0;
3946 NAPI_GRO_CB(skb)->frag0 = NULL;
7489594c 3947 NAPI_GRO_CB(skb)->frag0_len = 0;
78a478d0 3948
ced14f68 3949 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
ca07e43e
ED
3950 pinfo->nr_frags &&
3951 !PageHighMem(skb_frag_page(frag0))) {
3952 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3953 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
7489594c 3954 }
78a478d0 3955}
78a478d0 3956
c7c4b3b6 3957gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 3958{
86911732
HX
3959 skb_gro_reset_offset(skb);
3960
89c5fa33 3961 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
3962}
3963EXPORT_SYMBOL(napi_gro_receive);
3964
d0c2b0d2 3965static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 3966{
96e93eab 3967 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
3968 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3969 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 3970 skb->vlan_tci = 0;
66c46d74 3971 skb->dev = napi->dev;
6d152e23 3972 skb->skb_iif = 0;
96e93eab
HX
3973
3974 napi->skb = skb;
3975}
96e93eab 3976
76620aaf 3977struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 3978{
5d38a079 3979 struct sk_buff *skb = napi->skb;
5d38a079
HX
3980
3981 if (!skb) {
89d71a66
ED
3982 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3983 if (skb)
3984 napi->skb = skb;
80595d59 3985 }
96e93eab
HX
3986 return skb;
3987}
76620aaf 3988EXPORT_SYMBOL(napi_get_frags);
96e93eab 3989
bb728820 3990static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
c7c4b3b6 3991 gro_result_t ret)
96e93eab 3992{
5d0d9be8
HX
3993 switch (ret) {
3994 case GRO_NORMAL:
86911732 3995 case GRO_HELD:
e76b69cc 3996 skb->protocol = eth_type_trans(skb, skb->dev);
86911732 3997
c7c4b3b6
BH
3998 if (ret == GRO_HELD)
3999 skb_gro_pull(skb, -ETH_HLEN);
4000 else if (netif_receive_skb(skb))
4001 ret = GRO_DROP;
86911732 4002 break;
5d38a079 4003
5d0d9be8 4004 case GRO_DROP:
5d0d9be8
HX
4005 case GRO_MERGED_FREE:
4006 napi_reuse_skb(napi, skb);
4007 break;
5b252f0c
BH
4008
4009 case GRO_MERGED:
4010 break;
5d0d9be8 4011 }
5d38a079 4012
c7c4b3b6 4013 return ret;
5d38a079 4014}
5d0d9be8 4015
4adb9c4a 4016static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4017{
4018 struct sk_buff *skb = napi->skb;
4019 struct ethhdr *eth;
a5b1cf28
HX
4020 unsigned int hlen;
4021 unsigned int off;
76620aaf
HX
4022
4023 napi->skb = NULL;
4024
4025 skb_reset_mac_header(skb);
4026 skb_gro_reset_offset(skb);
4027
a5b1cf28
HX
4028 off = skb_gro_offset(skb);
4029 hlen = off + sizeof(*eth);
4030 eth = skb_gro_header_fast(skb, off);
4031 if (skb_gro_header_hard(skb, hlen)) {
4032 eth = skb_gro_header_slow(skb, hlen, off);
4033 if (unlikely(!eth)) {
4034 napi_reuse_skb(napi, skb);
4035 skb = NULL;
4036 goto out;
4037 }
76620aaf
HX
4038 }
4039
4040 skb_gro_pull(skb, sizeof(*eth));
4041
4042 /*
4043 * This works because the only protocols we care about don't require
4044 * special handling. We'll fix it up properly at the end.
4045 */
4046 skb->protocol = eth->h_proto;
4047
4048out:
4049 return skb;
4050}
76620aaf 4051
c7c4b3b6 4052gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4053{
76620aaf 4054 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4055
4056 if (!skb)
c7c4b3b6 4057 return GRO_DROP;
5d0d9be8 4058
89c5fa33 4059 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4060}
5d38a079
HX
4061EXPORT_SYMBOL(napi_gro_frags);
4062
e326bed2
ED
4063/*
4064 * net_rps_action sends any pending IPI's for rps.
4065 * Note: called with local irq disabled, but exits with local irq enabled.
4066 */
4067static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4068{
4069#ifdef CONFIG_RPS
4070 struct softnet_data *remsd = sd->rps_ipi_list;
4071
4072 if (remsd) {
4073 sd->rps_ipi_list = NULL;
4074
4075 local_irq_enable();
4076
4077 /* Send pending IPI's to kick RPS processing on remote cpus. */
4078 while (remsd) {
4079 struct softnet_data *next = remsd->rps_ipi_next;
4080
4081 if (cpu_online(remsd->cpu))
4082 __smp_call_function_single(remsd->cpu,
4083 &remsd->csd, 0);
4084 remsd = next;
4085 }
4086 } else
4087#endif
4088 local_irq_enable();
4089}
4090
bea3348e 4091static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4092{
4093 int work = 0;
eecfd7c4 4094 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4095
e326bed2
ED
4096#ifdef CONFIG_RPS
4097 /* Check if we have pending ipi, its better to send them now,
4098 * not waiting net_rx_action() end.
4099 */
4100 if (sd->rps_ipi_list) {
4101 local_irq_disable();
4102 net_rps_action_and_irq_enable(sd);
4103 }
4104#endif
bea3348e 4105 napi->weight = weight_p;
6e7676c1
CG
4106 local_irq_disable();
4107 while (work < quota) {
1da177e4 4108 struct sk_buff *skb;
6e7676c1
CG
4109 unsigned int qlen;
4110
4111 while ((skb = __skb_dequeue(&sd->process_queue))) {
4112 local_irq_enable();
4113 __netif_receive_skb(skb);
6e7676c1 4114 local_irq_disable();
76cc8b13
TH
4115 input_queue_head_incr(sd);
4116 if (++work >= quota) {
4117 local_irq_enable();
4118 return work;
4119 }
6e7676c1 4120 }
1da177e4 4121
e36fa2f7 4122 rps_lock(sd);
6e7676c1 4123 qlen = skb_queue_len(&sd->input_pkt_queue);
76cc8b13 4124 if (qlen)
6e7676c1
CG
4125 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4126 &sd->process_queue);
76cc8b13 4127
6e7676c1 4128 if (qlen < quota - work) {
eecfd7c4
ED
4129 /*
4130 * Inline a custom version of __napi_complete().
4131 * only current cpu owns and manipulates this napi,
4132 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4133 * we can use a plain write instead of clear_bit(),
4134 * and we dont need an smp_mb() memory barrier.
4135 */
4136 list_del(&napi->poll_list);
4137 napi->state = 0;
4138
6e7676c1 4139 quota = work + qlen;
bea3348e 4140 }
e36fa2f7 4141 rps_unlock(sd);
6e7676c1
CG
4142 }
4143 local_irq_enable();
1da177e4 4144
bea3348e
SH
4145 return work;
4146}
1da177e4 4147
bea3348e
SH
4148/**
4149 * __napi_schedule - schedule for receive
c4ea43c5 4150 * @n: entry to schedule
bea3348e
SH
4151 *
4152 * The entry's receive function will be scheduled to run
4153 */
b5606c2d 4154void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4155{
4156 unsigned long flags;
1da177e4 4157
bea3348e 4158 local_irq_save(flags);
eecfd7c4 4159 ____napi_schedule(&__get_cpu_var(softnet_data), n);
bea3348e 4160 local_irq_restore(flags);
1da177e4 4161}
bea3348e
SH
4162EXPORT_SYMBOL(__napi_schedule);
4163
d565b0a1
HX
4164void __napi_complete(struct napi_struct *n)
4165{
4166 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4167 BUG_ON(n->gro_list);
4168
4169 list_del(&n->poll_list);
4170 smp_mb__before_clear_bit();
4171 clear_bit(NAPI_STATE_SCHED, &n->state);
4172}
4173EXPORT_SYMBOL(__napi_complete);
4174
4175void napi_complete(struct napi_struct *n)
4176{
4177 unsigned long flags;
4178
4179 /*
4180 * don't let napi dequeue from the cpu poll list
4181 * just in case its running on a different cpu
4182 */
4183 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4184 return;
4185
2e71a6f8 4186 napi_gro_flush(n, false);
d565b0a1
HX
4187 local_irq_save(flags);
4188 __napi_complete(n);
4189 local_irq_restore(flags);
4190}
4191EXPORT_SYMBOL(napi_complete);
4192
af12fa6e
ET
4193/* must be called under rcu_read_lock(), as we dont take a reference */
4194struct napi_struct *napi_by_id(unsigned int napi_id)
4195{
4196 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4197 struct napi_struct *napi;
4198
4199 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4200 if (napi->napi_id == napi_id)
4201 return napi;
4202
4203 return NULL;
4204}
4205EXPORT_SYMBOL_GPL(napi_by_id);
4206
4207void napi_hash_add(struct napi_struct *napi)
4208{
4209 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4210
4211 spin_lock(&napi_hash_lock);
4212
4213 /* 0 is not a valid id, we also skip an id that is taken
4214 * we expect both events to be extremely rare
4215 */
4216 napi->napi_id = 0;
4217 while (!napi->napi_id) {
4218 napi->napi_id = ++napi_gen_id;
4219 if (napi_by_id(napi->napi_id))
4220 napi->napi_id = 0;
4221 }
4222
4223 hlist_add_head_rcu(&napi->napi_hash_node,
4224 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4225
4226 spin_unlock(&napi_hash_lock);
4227 }
4228}
4229EXPORT_SYMBOL_GPL(napi_hash_add);
4230
4231/* Warning : caller is responsible to make sure rcu grace period
4232 * is respected before freeing memory containing @napi
4233 */
4234void napi_hash_del(struct napi_struct *napi)
4235{
4236 spin_lock(&napi_hash_lock);
4237
4238 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4239 hlist_del_rcu(&napi->napi_hash_node);
4240
4241 spin_unlock(&napi_hash_lock);
4242}
4243EXPORT_SYMBOL_GPL(napi_hash_del);
4244
d565b0a1
HX
4245void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4246 int (*poll)(struct napi_struct *, int), int weight)
4247{
4248 INIT_LIST_HEAD(&napi->poll_list);
4ae5544f 4249 napi->gro_count = 0;
d565b0a1 4250 napi->gro_list = NULL;
5d38a079 4251 napi->skb = NULL;
d565b0a1 4252 napi->poll = poll;
82dc3c63
ED
4253 if (weight > NAPI_POLL_WEIGHT)
4254 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4255 weight, dev->name);
d565b0a1
HX
4256 napi->weight = weight;
4257 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4258 napi->dev = dev;
5d38a079 4259#ifdef CONFIG_NETPOLL
d565b0a1
HX
4260 spin_lock_init(&napi->poll_lock);
4261 napi->poll_owner = -1;
4262#endif
4263 set_bit(NAPI_STATE_SCHED, &napi->state);
4264}
4265EXPORT_SYMBOL(netif_napi_add);
4266
4267void netif_napi_del(struct napi_struct *napi)
4268{
4269 struct sk_buff *skb, *next;
4270
d7b06636 4271 list_del_init(&napi->dev_list);
76620aaf 4272 napi_free_frags(napi);
d565b0a1
HX
4273
4274 for (skb = napi->gro_list; skb; skb = next) {
4275 next = skb->next;
4276 skb->next = NULL;
4277 kfree_skb(skb);
4278 }
4279
4280 napi->gro_list = NULL;
4ae5544f 4281 napi->gro_count = 0;
d565b0a1
HX
4282}
4283EXPORT_SYMBOL(netif_napi_del);
4284
1da177e4
LT
4285static void net_rx_action(struct softirq_action *h)
4286{
e326bed2 4287 struct softnet_data *sd = &__get_cpu_var(softnet_data);
24f8b238 4288 unsigned long time_limit = jiffies + 2;
51b0bded 4289 int budget = netdev_budget;
53fb95d3
MM
4290 void *have;
4291
1da177e4
LT
4292 local_irq_disable();
4293
e326bed2 4294 while (!list_empty(&sd->poll_list)) {
bea3348e
SH
4295 struct napi_struct *n;
4296 int work, weight;
1da177e4 4297
bea3348e 4298 /* If softirq window is exhuasted then punt.
24f8b238
SH
4299 * Allow this to run for 2 jiffies since which will allow
4300 * an average latency of 1.5/HZ.
bea3348e 4301 */
d1f41b67 4302 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
1da177e4
LT
4303 goto softnet_break;
4304
4305 local_irq_enable();
4306
bea3348e
SH
4307 /* Even though interrupts have been re-enabled, this
4308 * access is safe because interrupts can only add new
4309 * entries to the tail of this list, and only ->poll()
4310 * calls can remove this head entry from the list.
4311 */
e326bed2 4312 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
1da177e4 4313
bea3348e
SH
4314 have = netpoll_poll_lock(n);
4315
4316 weight = n->weight;
4317
0a7606c1
DM
4318 /* This NAPI_STATE_SCHED test is for avoiding a race
4319 * with netpoll's poll_napi(). Only the entity which
4320 * obtains the lock and sees NAPI_STATE_SCHED set will
4321 * actually make the ->poll() call. Therefore we avoid
25985edc 4322 * accidentally calling ->poll() when NAPI is not scheduled.
0a7606c1
DM
4323 */
4324 work = 0;
4ea7e386 4325 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
0a7606c1 4326 work = n->poll(n, weight);
4ea7e386
NH
4327 trace_napi_poll(n);
4328 }
bea3348e
SH
4329
4330 WARN_ON_ONCE(work > weight);
4331
4332 budget -= work;
4333
4334 local_irq_disable();
4335
4336 /* Drivers must not modify the NAPI state if they
4337 * consume the entire weight. In such cases this code
4338 * still "owns" the NAPI instance and therefore can
4339 * move the instance around on the list at-will.
4340 */
fed17f30 4341 if (unlikely(work == weight)) {
ff780cd8
HX
4342 if (unlikely(napi_disable_pending(n))) {
4343 local_irq_enable();
4344 napi_complete(n);
4345 local_irq_disable();
2e71a6f8
ED
4346 } else {
4347 if (n->gro_list) {
4348 /* flush too old packets
4349 * If HZ < 1000, flush all packets.
4350 */
4351 local_irq_enable();
4352 napi_gro_flush(n, HZ >= 1000);
4353 local_irq_disable();
4354 }
e326bed2 4355 list_move_tail(&n->poll_list, &sd->poll_list);
2e71a6f8 4356 }
fed17f30 4357 }
bea3348e
SH
4358
4359 netpoll_poll_unlock(have);
1da177e4
LT
4360 }
4361out:
e326bed2 4362 net_rps_action_and_irq_enable(sd);
0a9627f2 4363
db217334
CL
4364#ifdef CONFIG_NET_DMA
4365 /*
4366 * There may not be any more sk_buffs coming right now, so push
4367 * any pending DMA copies to hardware
4368 */
2ba05622 4369 dma_issue_pending_all();
db217334 4370#endif
bea3348e 4371
1da177e4
LT
4372 return;
4373
4374softnet_break:
dee42870 4375 sd->time_squeeze++;
1da177e4
LT
4376 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4377 goto out;
4378}
4379
aa9d8560 4380struct netdev_adjacent {
9ff162a8 4381 struct net_device *dev;
5d261913
VF
4382
4383 /* upper master flag, there can only be one master device per list */
9ff162a8 4384 bool master;
5d261913 4385
5d261913
VF
4386 /* counter for the number of times this device was added to us */
4387 u16 ref_nr;
4388
402dae96
VF
4389 /* private field for the users */
4390 void *private;
4391
9ff162a8
JP
4392 struct list_head list;
4393 struct rcu_head rcu;
9ff162a8
JP
4394};
4395
5249dec7
VF
4396static struct netdev_adjacent *__netdev_find_adj_rcu(struct net_device *dev,
4397 struct net_device *adj_dev,
4398 struct list_head *adj_list)
4399{
4400 struct netdev_adjacent *adj;
4401
4402 list_for_each_entry_rcu(adj, adj_list, list) {
4403 if (adj->dev == adj_dev)
4404 return adj;
4405 }
4406 return NULL;
4407}
4408
5d261913
VF
4409static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4410 struct net_device *adj_dev,
2f268f12 4411 struct list_head *adj_list)
9ff162a8 4412{
5d261913 4413 struct netdev_adjacent *adj;
5d261913 4414
2f268f12 4415 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4416 if (adj->dev == adj_dev)
4417 return adj;
9ff162a8
JP
4418 }
4419 return NULL;
4420}
4421
4422/**
4423 * netdev_has_upper_dev - Check if device is linked to an upper device
4424 * @dev: device
4425 * @upper_dev: upper device to check
4426 *
4427 * Find out if a device is linked to specified upper device and return true
4428 * in case it is. Note that this checks only immediate upper device,
4429 * not through a complete stack of devices. The caller must hold the RTNL lock.
4430 */
4431bool netdev_has_upper_dev(struct net_device *dev,
4432 struct net_device *upper_dev)
4433{
4434 ASSERT_RTNL();
4435
2f268f12 4436 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4437}
4438EXPORT_SYMBOL(netdev_has_upper_dev);
4439
4440/**
4441 * netdev_has_any_upper_dev - Check if device is linked to some device
4442 * @dev: device
4443 *
4444 * Find out if a device is linked to an upper device and return true in case
4445 * it is. The caller must hold the RTNL lock.
4446 */
4447bool netdev_has_any_upper_dev(struct net_device *dev)
4448{
4449 ASSERT_RTNL();
4450
2f268f12 4451 return !list_empty(&dev->all_adj_list.upper);
9ff162a8
JP
4452}
4453EXPORT_SYMBOL(netdev_has_any_upper_dev);
4454
4455/**
4456 * netdev_master_upper_dev_get - Get master upper device
4457 * @dev: device
4458 *
4459 * Find a master upper device and return pointer to it or NULL in case
4460 * it's not there. The caller must hold the RTNL lock.
4461 */
4462struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4463{
aa9d8560 4464 struct netdev_adjacent *upper;
9ff162a8
JP
4465
4466 ASSERT_RTNL();
4467
2f268f12 4468 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4469 return NULL;
4470
2f268f12 4471 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4472 struct netdev_adjacent, list);
9ff162a8
JP
4473 if (likely(upper->master))
4474 return upper->dev;
4475 return NULL;
4476}
4477EXPORT_SYMBOL(netdev_master_upper_dev_get);
4478
b6ccba4c
VF
4479void *netdev_adjacent_get_private(struct list_head *adj_list)
4480{
4481 struct netdev_adjacent *adj;
4482
4483 adj = list_entry(adj_list, struct netdev_adjacent, list);
4484
4485 return adj->private;
4486}
4487EXPORT_SYMBOL(netdev_adjacent_get_private);
4488
31088a11
VF
4489/**
4490 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4491 * @dev: device
4492 * @iter: list_head ** of the current position
4493 *
4494 * Gets the next device from the dev's upper list, starting from iter
4495 * position. The caller must hold RCU read lock.
4496 */
2f268f12
VF
4497struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4498 struct list_head **iter)
48311f46
VF
4499{
4500 struct netdev_adjacent *upper;
4501
4502 WARN_ON_ONCE(!rcu_read_lock_held());
4503
4504 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4505
2f268f12 4506 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
4507 return NULL;
4508
4509 *iter = &upper->list;
4510
4511 return upper->dev;
4512}
2f268f12 4513EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 4514
31088a11
VF
4515/**
4516 * netdev_lower_get_next_private - Get the next ->private from the
4517 * lower neighbour list
4518 * @dev: device
4519 * @iter: list_head ** of the current position
4520 *
4521 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4522 * list, starting from iter position. The caller must hold either hold the
4523 * RTNL lock or its own locking that guarantees that the neighbour lower
4524 * list will remain unchainged.
4525 */
4526void *netdev_lower_get_next_private(struct net_device *dev,
4527 struct list_head **iter)
4528{
4529 struct netdev_adjacent *lower;
4530
4531 lower = list_entry(*iter, struct netdev_adjacent, list);
4532
4533 if (&lower->list == &dev->adj_list.lower)
4534 return NULL;
4535
4536 if (iter)
4537 *iter = lower->list.next;
4538
4539 return lower->private;
4540}
4541EXPORT_SYMBOL(netdev_lower_get_next_private);
4542
4543/**
4544 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4545 * lower neighbour list, RCU
4546 * variant
4547 * @dev: device
4548 * @iter: list_head ** of the current position
4549 *
4550 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4551 * list, starting from iter position. The caller must hold RCU read lock.
4552 */
4553void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4554 struct list_head **iter)
4555{
4556 struct netdev_adjacent *lower;
4557
4558 WARN_ON_ONCE(!rcu_read_lock_held());
4559
4560 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4561
4562 if (&lower->list == &dev->adj_list.lower)
4563 return NULL;
4564
4565 if (iter)
4566 *iter = &lower->list;
4567
4568 return lower->private;
4569}
4570EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4571
9ff162a8
JP
4572/**
4573 * netdev_master_upper_dev_get_rcu - Get master upper device
4574 * @dev: device
4575 *
4576 * Find a master upper device and return pointer to it or NULL in case
4577 * it's not there. The caller must hold the RCU read lock.
4578 */
4579struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4580{
aa9d8560 4581 struct netdev_adjacent *upper;
9ff162a8 4582
2f268f12 4583 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 4584 struct netdev_adjacent, list);
9ff162a8
JP
4585 if (upper && likely(upper->master))
4586 return upper->dev;
4587 return NULL;
4588}
4589EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4590
5d261913
VF
4591static int __netdev_adjacent_dev_insert(struct net_device *dev,
4592 struct net_device *adj_dev,
7863c054 4593 struct list_head *dev_list,
402dae96 4594 void *private, bool master)
5d261913
VF
4595{
4596 struct netdev_adjacent *adj;
5831d66e 4597 char linkname[IFNAMSIZ+7];
842d67a7 4598 int ret;
5d261913 4599
7863c054 4600 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913
VF
4601
4602 if (adj) {
5d261913
VF
4603 adj->ref_nr++;
4604 return 0;
4605 }
4606
4607 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4608 if (!adj)
4609 return -ENOMEM;
4610
4611 adj->dev = adj_dev;
4612 adj->master = master;
5d261913 4613 adj->ref_nr = 1;
402dae96 4614 adj->private = private;
5d261913 4615 dev_hold(adj_dev);
2f268f12
VF
4616
4617 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4618 adj_dev->name, dev->name, adj_dev->name);
5d261913 4619
5831d66e
VF
4620 if (dev_list == &dev->adj_list.lower) {
4621 sprintf(linkname, "lower_%s", adj_dev->name);
4622 ret = sysfs_create_link(&(dev->dev.kobj),
4623 &(adj_dev->dev.kobj), linkname);
4624 if (ret)
4625 goto free_adj;
4626 } else if (dev_list == &dev->adj_list.upper) {
4627 sprintf(linkname, "upper_%s", adj_dev->name);
4628 ret = sysfs_create_link(&(dev->dev.kobj),
4629 &(adj_dev->dev.kobj), linkname);
4630 if (ret)
4631 goto free_adj;
4632 }
4633
7863c054 4634 /* Ensure that master link is always the first item in list. */
842d67a7
VF
4635 if (master) {
4636 ret = sysfs_create_link(&(dev->dev.kobj),
4637 &(adj_dev->dev.kobj), "master");
4638 if (ret)
5831d66e 4639 goto remove_symlinks;
842d67a7 4640
7863c054 4641 list_add_rcu(&adj->list, dev_list);
842d67a7 4642 } else {
7863c054 4643 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 4644 }
5d261913
VF
4645
4646 return 0;
842d67a7 4647
5831d66e
VF
4648remove_symlinks:
4649 if (dev_list == &dev->adj_list.lower) {
4650 sprintf(linkname, "lower_%s", adj_dev->name);
4651 sysfs_remove_link(&(dev->dev.kobj), linkname);
4652 } else if (dev_list == &dev->adj_list.upper) {
4653 sprintf(linkname, "upper_%s", adj_dev->name);
4654 sysfs_remove_link(&(dev->dev.kobj), linkname);
4655 }
4656
842d67a7
VF
4657free_adj:
4658 kfree(adj);
974daef7 4659 dev_put(adj_dev);
842d67a7
VF
4660
4661 return ret;
5d261913
VF
4662}
4663
5d261913 4664void __netdev_adjacent_dev_remove(struct net_device *dev,
7863c054
VF
4665 struct net_device *adj_dev,
4666 struct list_head *dev_list)
5d261913
VF
4667{
4668 struct netdev_adjacent *adj;
5831d66e 4669 char linkname[IFNAMSIZ+7];
5d261913 4670
7863c054 4671 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913 4672
2f268f12
VF
4673 if (!adj) {
4674 pr_err("tried to remove device %s from %s\n",
4675 dev->name, adj_dev->name);
5d261913 4676 BUG();
2f268f12 4677 }
5d261913
VF
4678
4679 if (adj->ref_nr > 1) {
2f268f12
VF
4680 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4681 adj->ref_nr-1);
5d261913
VF
4682 adj->ref_nr--;
4683 return;
4684 }
4685
842d67a7
VF
4686 if (adj->master)
4687 sysfs_remove_link(&(dev->dev.kobj), "master");
4688
5831d66e
VF
4689 if (dev_list == &dev->adj_list.lower) {
4690 sprintf(linkname, "lower_%s", adj_dev->name);
4691 sysfs_remove_link(&(dev->dev.kobj), linkname);
4692 } else if (dev_list == &dev->adj_list.upper) {
4693 sprintf(linkname, "upper_%s", adj_dev->name);
4694 sysfs_remove_link(&(dev->dev.kobj), linkname);
4695 }
4696
5d261913 4697 list_del_rcu(&adj->list);
2f268f12
VF
4698 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4699 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
4700 dev_put(adj_dev);
4701 kfree_rcu(adj, rcu);
4702}
4703
2f268f12
VF
4704int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4705 struct net_device *upper_dev,
4706 struct list_head *up_list,
4707 struct list_head *down_list,
402dae96 4708 void *private, bool master)
5d261913
VF
4709{
4710 int ret;
4711
402dae96
VF
4712 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4713 master);
5d261913
VF
4714 if (ret)
4715 return ret;
4716
402dae96
VF
4717 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4718 false);
5d261913 4719 if (ret) {
2f268f12 4720 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
4721 return ret;
4722 }
4723
4724 return 0;
4725}
4726
2f268f12
VF
4727int __netdev_adjacent_dev_link(struct net_device *dev,
4728 struct net_device *upper_dev)
5d261913 4729{
2f268f12
VF
4730 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4731 &dev->all_adj_list.upper,
4732 &upper_dev->all_adj_list.lower,
402dae96 4733 NULL, false);
5d261913
VF
4734}
4735
2f268f12
VF
4736void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4737 struct net_device *upper_dev,
4738 struct list_head *up_list,
4739 struct list_head *down_list)
5d261913 4740{
2f268f12
VF
4741 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4742 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
4743}
4744
4745void __netdev_adjacent_dev_unlink(struct net_device *dev,
4746 struct net_device *upper_dev)
4747{
2f268f12
VF
4748 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4749 &dev->all_adj_list.upper,
4750 &upper_dev->all_adj_list.lower);
4751}
4752
4753int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4754 struct net_device *upper_dev,
402dae96 4755 void *private, bool master)
2f268f12
VF
4756{
4757 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4758
4759 if (ret)
4760 return ret;
4761
4762 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4763 &dev->adj_list.upper,
4764 &upper_dev->adj_list.lower,
402dae96 4765 private, master);
2f268f12
VF
4766 if (ret) {
4767 __netdev_adjacent_dev_unlink(dev, upper_dev);
4768 return ret;
4769 }
4770
4771 return 0;
5d261913
VF
4772}
4773
2f268f12
VF
4774void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4775 struct net_device *upper_dev)
4776{
4777 __netdev_adjacent_dev_unlink(dev, upper_dev);
4778 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4779 &dev->adj_list.upper,
4780 &upper_dev->adj_list.lower);
4781}
5d261913 4782
9ff162a8 4783static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
4784 struct net_device *upper_dev, bool master,
4785 void *private)
9ff162a8 4786{
5d261913
VF
4787 struct netdev_adjacent *i, *j, *to_i, *to_j;
4788 int ret = 0;
9ff162a8
JP
4789
4790 ASSERT_RTNL();
4791
4792 if (dev == upper_dev)
4793 return -EBUSY;
4794
4795 /* To prevent loops, check if dev is not upper device to upper_dev. */
2f268f12 4796 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
4797 return -EBUSY;
4798
2f268f12 4799 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
9ff162a8
JP
4800 return -EEXIST;
4801
4802 if (master && netdev_master_upper_dev_get(dev))
4803 return -EBUSY;
4804
402dae96
VF
4805 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4806 master);
5d261913
VF
4807 if (ret)
4808 return ret;
9ff162a8 4809
5d261913 4810 /* Now that we linked these devs, make all the upper_dev's
2f268f12 4811 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
4812 * versa, and don't forget the devices itself. All of these
4813 * links are non-neighbours.
4814 */
2f268f12
VF
4815 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4816 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4817 pr_debug("Interlinking %s with %s, non-neighbour\n",
4818 i->dev->name, j->dev->name);
5d261913
VF
4819 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4820 if (ret)
4821 goto rollback_mesh;
4822 }
4823 }
4824
4825 /* add dev to every upper_dev's upper device */
2f268f12
VF
4826 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4827 pr_debug("linking %s's upper device %s with %s\n",
4828 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
4829 ret = __netdev_adjacent_dev_link(dev, i->dev);
4830 if (ret)
4831 goto rollback_upper_mesh;
4832 }
4833
4834 /* add upper_dev to every dev's lower device */
2f268f12
VF
4835 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4836 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4837 i->dev->name, upper_dev->name);
5d261913
VF
4838 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4839 if (ret)
4840 goto rollback_lower_mesh;
4841 }
9ff162a8 4842
42e52bf9 4843 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8 4844 return 0;
5d261913
VF
4845
4846rollback_lower_mesh:
4847 to_i = i;
2f268f12 4848 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
4849 if (i == to_i)
4850 break;
4851 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4852 }
4853
4854 i = NULL;
4855
4856rollback_upper_mesh:
4857 to_i = i;
2f268f12 4858 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
4859 if (i == to_i)
4860 break;
4861 __netdev_adjacent_dev_unlink(dev, i->dev);
4862 }
4863
4864 i = j = NULL;
4865
4866rollback_mesh:
4867 to_i = i;
4868 to_j = j;
2f268f12
VF
4869 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4870 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
4871 if (i == to_i && j == to_j)
4872 break;
4873 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4874 }
4875 if (i == to_i)
4876 break;
4877 }
4878
2f268f12 4879 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
4880
4881 return ret;
9ff162a8
JP
4882}
4883
4884/**
4885 * netdev_upper_dev_link - Add a link to the upper device
4886 * @dev: device
4887 * @upper_dev: new upper device
4888 *
4889 * Adds a link to device which is upper to this one. The caller must hold
4890 * the RTNL lock. On a failure a negative errno code is returned.
4891 * On success the reference counts are adjusted and the function
4892 * returns zero.
4893 */
4894int netdev_upper_dev_link(struct net_device *dev,
4895 struct net_device *upper_dev)
4896{
402dae96 4897 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
4898}
4899EXPORT_SYMBOL(netdev_upper_dev_link);
4900
4901/**
4902 * netdev_master_upper_dev_link - Add a master link to the upper device
4903 * @dev: device
4904 * @upper_dev: new upper device
4905 *
4906 * Adds a link to device which is upper to this one. In this case, only
4907 * one master upper device can be linked, although other non-master devices
4908 * might be linked as well. The caller must hold the RTNL lock.
4909 * On a failure a negative errno code is returned. On success the reference
4910 * counts are adjusted and the function returns zero.
4911 */
4912int netdev_master_upper_dev_link(struct net_device *dev,
4913 struct net_device *upper_dev)
4914{
402dae96 4915 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
4916}
4917EXPORT_SYMBOL(netdev_master_upper_dev_link);
4918
402dae96
VF
4919int netdev_master_upper_dev_link_private(struct net_device *dev,
4920 struct net_device *upper_dev,
4921 void *private)
4922{
4923 return __netdev_upper_dev_link(dev, upper_dev, true, private);
4924}
4925EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4926
9ff162a8
JP
4927/**
4928 * netdev_upper_dev_unlink - Removes a link to upper device
4929 * @dev: device
4930 * @upper_dev: new upper device
4931 *
4932 * Removes a link to device which is upper to this one. The caller must hold
4933 * the RTNL lock.
4934 */
4935void netdev_upper_dev_unlink(struct net_device *dev,
4936 struct net_device *upper_dev)
4937{
5d261913 4938 struct netdev_adjacent *i, *j;
9ff162a8
JP
4939 ASSERT_RTNL();
4940
2f268f12 4941 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
4942
4943 /* Here is the tricky part. We must remove all dev's lower
4944 * devices from all upper_dev's upper devices and vice
4945 * versa, to maintain the graph relationship.
4946 */
2f268f12
VF
4947 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4948 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
4949 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4950
4951 /* remove also the devices itself from lower/upper device
4952 * list
4953 */
2f268f12 4954 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
4955 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4956
2f268f12 4957 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
4958 __netdev_adjacent_dev_unlink(dev, i->dev);
4959
42e52bf9 4960 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8
JP
4961}
4962EXPORT_SYMBOL(netdev_upper_dev_unlink);
4963
402dae96
VF
4964void *netdev_lower_dev_get_private_rcu(struct net_device *dev,
4965 struct net_device *lower_dev)
4966{
4967 struct netdev_adjacent *lower;
4968
4969 if (!lower_dev)
4970 return NULL;
4971 lower = __netdev_find_adj_rcu(dev, lower_dev, &dev->adj_list.lower);
4972 if (!lower)
4973 return NULL;
4974
4975 return lower->private;
4976}
4977EXPORT_SYMBOL(netdev_lower_dev_get_private_rcu);
4978
4979void *netdev_lower_dev_get_private(struct net_device *dev,
4980 struct net_device *lower_dev)
4981{
4982 struct netdev_adjacent *lower;
4983
4984 if (!lower_dev)
4985 return NULL;
4986 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
4987 if (!lower)
4988 return NULL;
4989
4990 return lower->private;
4991}
4992EXPORT_SYMBOL(netdev_lower_dev_get_private);
4993
b6c40d68
PM
4994static void dev_change_rx_flags(struct net_device *dev, int flags)
4995{
d314774c
SH
4996 const struct net_device_ops *ops = dev->netdev_ops;
4997
4998 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4999 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5000}
5001
991fb3f7 5002static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5003{
b536db93 5004 unsigned int old_flags = dev->flags;
d04a48b0
EB
5005 kuid_t uid;
5006 kgid_t gid;
1da177e4 5007
24023451
PM
5008 ASSERT_RTNL();
5009
dad9b335
WC
5010 dev->flags |= IFF_PROMISC;
5011 dev->promiscuity += inc;
5012 if (dev->promiscuity == 0) {
5013 /*
5014 * Avoid overflow.
5015 * If inc causes overflow, untouch promisc and return error.
5016 */
5017 if (inc < 0)
5018 dev->flags &= ~IFF_PROMISC;
5019 else {
5020 dev->promiscuity -= inc;
7b6cd1ce
JP
5021 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5022 dev->name);
dad9b335
WC
5023 return -EOVERFLOW;
5024 }
5025 }
52609c0b 5026 if (dev->flags != old_flags) {
7b6cd1ce
JP
5027 pr_info("device %s %s promiscuous mode\n",
5028 dev->name,
5029 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5030 if (audit_enabled) {
5031 current_uid_gid(&uid, &gid);
7759db82
KHK
5032 audit_log(current->audit_context, GFP_ATOMIC,
5033 AUDIT_ANOM_PROMISCUOUS,
5034 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5035 dev->name, (dev->flags & IFF_PROMISC),
5036 (old_flags & IFF_PROMISC),
e1760bd5 5037 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5038 from_kuid(&init_user_ns, uid),
5039 from_kgid(&init_user_ns, gid),
7759db82 5040 audit_get_sessionid(current));
8192b0c4 5041 }
24023451 5042
b6c40d68 5043 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5044 }
991fb3f7
ND
5045 if (notify)
5046 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5047 return 0;
1da177e4
LT
5048}
5049
4417da66
PM
5050/**
5051 * dev_set_promiscuity - update promiscuity count on a device
5052 * @dev: device
5053 * @inc: modifier
5054 *
5055 * Add or remove promiscuity from a device. While the count in the device
5056 * remains above zero the interface remains promiscuous. Once it hits zero
5057 * the device reverts back to normal filtering operation. A negative inc
5058 * value is used to drop promiscuity on the device.
dad9b335 5059 * Return 0 if successful or a negative errno code on error.
4417da66 5060 */
dad9b335 5061int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5062{
b536db93 5063 unsigned int old_flags = dev->flags;
dad9b335 5064 int err;
4417da66 5065
991fb3f7 5066 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5067 if (err < 0)
dad9b335 5068 return err;
4417da66
PM
5069 if (dev->flags != old_flags)
5070 dev_set_rx_mode(dev);
dad9b335 5071 return err;
4417da66 5072}
d1b19dff 5073EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5074
991fb3f7 5075static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5076{
991fb3f7 5077 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5078
24023451
PM
5079 ASSERT_RTNL();
5080
1da177e4 5081 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5082 dev->allmulti += inc;
5083 if (dev->allmulti == 0) {
5084 /*
5085 * Avoid overflow.
5086 * If inc causes overflow, untouch allmulti and return error.
5087 */
5088 if (inc < 0)
5089 dev->flags &= ~IFF_ALLMULTI;
5090 else {
5091 dev->allmulti -= inc;
7b6cd1ce
JP
5092 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5093 dev->name);
dad9b335
WC
5094 return -EOVERFLOW;
5095 }
5096 }
24023451 5097 if (dev->flags ^ old_flags) {
b6c40d68 5098 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5099 dev_set_rx_mode(dev);
991fb3f7
ND
5100 if (notify)
5101 __dev_notify_flags(dev, old_flags,
5102 dev->gflags ^ old_gflags);
24023451 5103 }
dad9b335 5104 return 0;
4417da66 5105}
991fb3f7
ND
5106
5107/**
5108 * dev_set_allmulti - update allmulti count on a device
5109 * @dev: device
5110 * @inc: modifier
5111 *
5112 * Add or remove reception of all multicast frames to a device. While the
5113 * count in the device remains above zero the interface remains listening
5114 * to all interfaces. Once it hits zero the device reverts back to normal
5115 * filtering operation. A negative @inc value is used to drop the counter
5116 * when releasing a resource needing all multicasts.
5117 * Return 0 if successful or a negative errno code on error.
5118 */
5119
5120int dev_set_allmulti(struct net_device *dev, int inc)
5121{
5122 return __dev_set_allmulti(dev, inc, true);
5123}
d1b19dff 5124EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5125
5126/*
5127 * Upload unicast and multicast address lists to device and
5128 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5129 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5130 * are present.
5131 */
5132void __dev_set_rx_mode(struct net_device *dev)
5133{
d314774c
SH
5134 const struct net_device_ops *ops = dev->netdev_ops;
5135
4417da66
PM
5136 /* dev_open will call this function so the list will stay sane. */
5137 if (!(dev->flags&IFF_UP))
5138 return;
5139
5140 if (!netif_device_present(dev))
40b77c94 5141 return;
4417da66 5142
01789349 5143 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5144 /* Unicast addresses changes may only happen under the rtnl,
5145 * therefore calling __dev_set_promiscuity here is safe.
5146 */
32e7bfc4 5147 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5148 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5149 dev->uc_promisc = true;
32e7bfc4 5150 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5151 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5152 dev->uc_promisc = false;
4417da66 5153 }
4417da66 5154 }
01789349
JP
5155
5156 if (ops->ndo_set_rx_mode)
5157 ops->ndo_set_rx_mode(dev);
4417da66
PM
5158}
5159
5160void dev_set_rx_mode(struct net_device *dev)
5161{
b9e40857 5162 netif_addr_lock_bh(dev);
4417da66 5163 __dev_set_rx_mode(dev);
b9e40857 5164 netif_addr_unlock_bh(dev);
1da177e4
LT
5165}
5166
f0db275a
SH
5167/**
5168 * dev_get_flags - get flags reported to userspace
5169 * @dev: device
5170 *
5171 * Get the combination of flag bits exported through APIs to userspace.
5172 */
95c96174 5173unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5174{
95c96174 5175 unsigned int flags;
1da177e4
LT
5176
5177 flags = (dev->flags & ~(IFF_PROMISC |
5178 IFF_ALLMULTI |
b00055aa
SR
5179 IFF_RUNNING |
5180 IFF_LOWER_UP |
5181 IFF_DORMANT)) |
1da177e4
LT
5182 (dev->gflags & (IFF_PROMISC |
5183 IFF_ALLMULTI));
5184
b00055aa
SR
5185 if (netif_running(dev)) {
5186 if (netif_oper_up(dev))
5187 flags |= IFF_RUNNING;
5188 if (netif_carrier_ok(dev))
5189 flags |= IFF_LOWER_UP;
5190 if (netif_dormant(dev))
5191 flags |= IFF_DORMANT;
5192 }
1da177e4
LT
5193
5194 return flags;
5195}
d1b19dff 5196EXPORT_SYMBOL(dev_get_flags);
1da177e4 5197
bd380811 5198int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5199{
b536db93 5200 unsigned int old_flags = dev->flags;
bd380811 5201 int ret;
1da177e4 5202
24023451
PM
5203 ASSERT_RTNL();
5204
1da177e4
LT
5205 /*
5206 * Set the flags on our device.
5207 */
5208
5209 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5210 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5211 IFF_AUTOMEDIA)) |
5212 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5213 IFF_ALLMULTI));
5214
5215 /*
5216 * Load in the correct multicast list now the flags have changed.
5217 */
5218
b6c40d68
PM
5219 if ((old_flags ^ flags) & IFF_MULTICAST)
5220 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5221
4417da66 5222 dev_set_rx_mode(dev);
1da177e4
LT
5223
5224 /*
5225 * Have we downed the interface. We handle IFF_UP ourselves
5226 * according to user attempts to set it, rather than blindly
5227 * setting it.
5228 */
5229
5230 ret = 0;
5231 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
bd380811 5232 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4
LT
5233
5234 if (!ret)
4417da66 5235 dev_set_rx_mode(dev);
1da177e4
LT
5236 }
5237
1da177e4 5238 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5239 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5240 unsigned int old_flags = dev->flags;
d1b19dff 5241
1da177e4 5242 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5243
5244 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5245 if (dev->flags != old_flags)
5246 dev_set_rx_mode(dev);
1da177e4
LT
5247 }
5248
5249 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5250 is important. Some (broken) drivers set IFF_PROMISC, when
5251 IFF_ALLMULTI is requested not asking us and not reporting.
5252 */
5253 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5254 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5255
1da177e4 5256 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5257 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5258 }
5259
bd380811
PM
5260 return ret;
5261}
5262
a528c219
ND
5263void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5264 unsigned int gchanges)
bd380811
PM
5265{
5266 unsigned int changes = dev->flags ^ old_flags;
5267
a528c219 5268 if (gchanges)
7f294054 5269 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5270
bd380811
PM
5271 if (changes & IFF_UP) {
5272 if (dev->flags & IFF_UP)
5273 call_netdevice_notifiers(NETDEV_UP, dev);
5274 else
5275 call_netdevice_notifiers(NETDEV_DOWN, dev);
5276 }
5277
5278 if (dev->flags & IFF_UP &&
be9efd36
JP
5279 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5280 struct netdev_notifier_change_info change_info;
5281
5282 change_info.flags_changed = changes;
5283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5284 &change_info.info);
5285 }
bd380811
PM
5286}
5287
5288/**
5289 * dev_change_flags - change device settings
5290 * @dev: device
5291 * @flags: device state flags
5292 *
5293 * Change settings on device based state flags. The flags are
5294 * in the userspace exported format.
5295 */
b536db93 5296int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5297{
b536db93 5298 int ret;
991fb3f7 5299 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5300
5301 ret = __dev_change_flags(dev, flags);
5302 if (ret < 0)
5303 return ret;
5304
991fb3f7 5305 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5306 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5307 return ret;
5308}
d1b19dff 5309EXPORT_SYMBOL(dev_change_flags);
1da177e4 5310
f0db275a
SH
5311/**
5312 * dev_set_mtu - Change maximum transfer unit
5313 * @dev: device
5314 * @new_mtu: new transfer unit
5315 *
5316 * Change the maximum transfer size of the network device.
5317 */
1da177e4
LT
5318int dev_set_mtu(struct net_device *dev, int new_mtu)
5319{
d314774c 5320 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
5321 int err;
5322
5323 if (new_mtu == dev->mtu)
5324 return 0;
5325
5326 /* MTU must be positive. */
5327 if (new_mtu < 0)
5328 return -EINVAL;
5329
5330 if (!netif_device_present(dev))
5331 return -ENODEV;
5332
5333 err = 0;
d314774c
SH
5334 if (ops->ndo_change_mtu)
5335 err = ops->ndo_change_mtu(dev, new_mtu);
1da177e4
LT
5336 else
5337 dev->mtu = new_mtu;
d314774c 5338
e3d8fabe 5339 if (!err)
056925ab 5340 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
1da177e4
LT
5341 return err;
5342}
d1b19dff 5343EXPORT_SYMBOL(dev_set_mtu);
1da177e4 5344
cbda10fa
VD
5345/**
5346 * dev_set_group - Change group this device belongs to
5347 * @dev: device
5348 * @new_group: group this device should belong to
5349 */
5350void dev_set_group(struct net_device *dev, int new_group)
5351{
5352 dev->group = new_group;
5353}
5354EXPORT_SYMBOL(dev_set_group);
5355
f0db275a
SH
5356/**
5357 * dev_set_mac_address - Change Media Access Control Address
5358 * @dev: device
5359 * @sa: new address
5360 *
5361 * Change the hardware (MAC) address of the device
5362 */
1da177e4
LT
5363int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5364{
d314774c 5365 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
5366 int err;
5367
d314774c 5368 if (!ops->ndo_set_mac_address)
1da177e4
LT
5369 return -EOPNOTSUPP;
5370 if (sa->sa_family != dev->type)
5371 return -EINVAL;
5372 if (!netif_device_present(dev))
5373 return -ENODEV;
d314774c 5374 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
5375 if (err)
5376 return err;
fbdeca2d 5377 dev->addr_assign_type = NET_ADDR_SET;
f6521516 5378 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 5379 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 5380 return 0;
1da177e4 5381}
d1b19dff 5382EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 5383
4bf84c35
JP
5384/**
5385 * dev_change_carrier - Change device carrier
5386 * @dev: device
691b3b7e 5387 * @new_carrier: new value
4bf84c35
JP
5388 *
5389 * Change device carrier
5390 */
5391int dev_change_carrier(struct net_device *dev, bool new_carrier)
5392{
5393 const struct net_device_ops *ops = dev->netdev_ops;
5394
5395 if (!ops->ndo_change_carrier)
5396 return -EOPNOTSUPP;
5397 if (!netif_device_present(dev))
5398 return -ENODEV;
5399 return ops->ndo_change_carrier(dev, new_carrier);
5400}
5401EXPORT_SYMBOL(dev_change_carrier);
5402
66b52b0d
JP
5403/**
5404 * dev_get_phys_port_id - Get device physical port ID
5405 * @dev: device
5406 * @ppid: port ID
5407 *
5408 * Get device physical port ID
5409 */
5410int dev_get_phys_port_id(struct net_device *dev,
5411 struct netdev_phys_port_id *ppid)
5412{
5413 const struct net_device_ops *ops = dev->netdev_ops;
5414
5415 if (!ops->ndo_get_phys_port_id)
5416 return -EOPNOTSUPP;
5417 return ops->ndo_get_phys_port_id(dev, ppid);
5418}
5419EXPORT_SYMBOL(dev_get_phys_port_id);
5420
1da177e4
LT
5421/**
5422 * dev_new_index - allocate an ifindex
c4ea43c5 5423 * @net: the applicable net namespace
1da177e4
LT
5424 *
5425 * Returns a suitable unique value for a new device interface
5426 * number. The caller must hold the rtnl semaphore or the
5427 * dev_base_lock to be sure it remains unique.
5428 */
881d966b 5429static int dev_new_index(struct net *net)
1da177e4 5430{
aa79e66e 5431 int ifindex = net->ifindex;
1da177e4
LT
5432 for (;;) {
5433 if (++ifindex <= 0)
5434 ifindex = 1;
881d966b 5435 if (!__dev_get_by_index(net, ifindex))
aa79e66e 5436 return net->ifindex = ifindex;
1da177e4
LT
5437 }
5438}
5439
1da177e4 5440/* Delayed registration/unregisteration */
3b5b34fd 5441static LIST_HEAD(net_todo_list);
50624c93 5442static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 5443
6f05f629 5444static void net_set_todo(struct net_device *dev)
1da177e4 5445{
1da177e4 5446 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 5447 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
5448}
5449
9b5e383c 5450static void rollback_registered_many(struct list_head *head)
93ee31f1 5451{
e93737b0 5452 struct net_device *dev, *tmp;
5cde2829 5453 LIST_HEAD(close_head);
9b5e383c 5454
93ee31f1
DL
5455 BUG_ON(dev_boot_phase);
5456 ASSERT_RTNL();
5457
e93737b0 5458 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5459 /* Some devices call without registering
e93737b0
KK
5460 * for initialization unwind. Remove those
5461 * devices and proceed with the remaining.
9b5e383c
ED
5462 */
5463 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
5464 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5465 dev->name, dev);
93ee31f1 5466
9b5e383c 5467 WARN_ON(1);
e93737b0
KK
5468 list_del(&dev->unreg_list);
5469 continue;
9b5e383c 5470 }
449f4544 5471 dev->dismantle = true;
9b5e383c 5472 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 5473 }
93ee31f1 5474
44345724 5475 /* If device is running, close it first. */
5cde2829
EB
5476 list_for_each_entry(dev, head, unreg_list)
5477 list_add_tail(&dev->close_list, &close_head);
5478 dev_close_many(&close_head);
93ee31f1 5479
44345724 5480 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
5481 /* And unlink it from device chain. */
5482 unlist_netdevice(dev);
93ee31f1 5483
9b5e383c
ED
5484 dev->reg_state = NETREG_UNREGISTERING;
5485 }
93ee31f1
DL
5486
5487 synchronize_net();
5488
9b5e383c
ED
5489 list_for_each_entry(dev, head, unreg_list) {
5490 /* Shutdown queueing discipline. */
5491 dev_shutdown(dev);
93ee31f1
DL
5492
5493
9b5e383c
ED
5494 /* Notify protocols, that we are about to destroy
5495 this device. They should clean all the things.
5496 */
5497 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 5498
a2835763
PM
5499 if (!dev->rtnl_link_ops ||
5500 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 5501 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
a2835763 5502
9b5e383c
ED
5503 /*
5504 * Flush the unicast and multicast chains
5505 */
a748ee24 5506 dev_uc_flush(dev);
22bedad3 5507 dev_mc_flush(dev);
93ee31f1 5508
9b5e383c
ED
5509 if (dev->netdev_ops->ndo_uninit)
5510 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 5511
9ff162a8
JP
5512 /* Notifier chain MUST detach us all upper devices. */
5513 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 5514
9b5e383c
ED
5515 /* Remove entries from kobject tree */
5516 netdev_unregister_kobject(dev);
024e9679
AD
5517#ifdef CONFIG_XPS
5518 /* Remove XPS queueing entries */
5519 netif_reset_xps_queues_gt(dev, 0);
5520#endif
9b5e383c 5521 }
93ee31f1 5522
850a545b 5523 synchronize_net();
395264d5 5524
a5ee1551 5525 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
5526 dev_put(dev);
5527}
5528
5529static void rollback_registered(struct net_device *dev)
5530{
5531 LIST_HEAD(single);
5532
5533 list_add(&dev->unreg_list, &single);
5534 rollback_registered_many(&single);
ceaaec98 5535 list_del(&single);
93ee31f1
DL
5536}
5537
c8f44aff
MM
5538static netdev_features_t netdev_fix_features(struct net_device *dev,
5539 netdev_features_t features)
b63365a2 5540{
57422dc5
MM
5541 /* Fix illegal checksum combinations */
5542 if ((features & NETIF_F_HW_CSUM) &&
5543 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 5544 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
5545 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5546 }
5547
b63365a2 5548 /* TSO requires that SG is present as well. */
ea2d3688 5549 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 5550 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 5551 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
5552 }
5553
ec5f0615
PS
5554 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5555 !(features & NETIF_F_IP_CSUM)) {
5556 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5557 features &= ~NETIF_F_TSO;
5558 features &= ~NETIF_F_TSO_ECN;
5559 }
5560
5561 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5562 !(features & NETIF_F_IPV6_CSUM)) {
5563 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5564 features &= ~NETIF_F_TSO6;
5565 }
5566
31d8b9e0
BH
5567 /* TSO ECN requires that TSO is present as well. */
5568 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5569 features &= ~NETIF_F_TSO_ECN;
5570
212b573f
MM
5571 /* Software GSO depends on SG. */
5572 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 5573 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
5574 features &= ~NETIF_F_GSO;
5575 }
5576
acd1130e 5577 /* UFO needs SG and checksumming */
b63365a2 5578 if (features & NETIF_F_UFO) {
79032644
MM
5579 /* maybe split UFO into V4 and V6? */
5580 if (!((features & NETIF_F_GEN_CSUM) ||
5581 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5582 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 5583 netdev_dbg(dev,
acd1130e 5584 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
5585 features &= ~NETIF_F_UFO;
5586 }
5587
5588 if (!(features & NETIF_F_SG)) {
6f404e44 5589 netdev_dbg(dev,
acd1130e 5590 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
5591 features &= ~NETIF_F_UFO;
5592 }
5593 }
5594
5595 return features;
5596}
b63365a2 5597
6cb6a27c 5598int __netdev_update_features(struct net_device *dev)
5455c699 5599{
c8f44aff 5600 netdev_features_t features;
5455c699
MM
5601 int err = 0;
5602
87267485
MM
5603 ASSERT_RTNL();
5604
5455c699
MM
5605 features = netdev_get_wanted_features(dev);
5606
5607 if (dev->netdev_ops->ndo_fix_features)
5608 features = dev->netdev_ops->ndo_fix_features(dev, features);
5609
5610 /* driver might be less strict about feature dependencies */
5611 features = netdev_fix_features(dev, features);
5612
5613 if (dev->features == features)
6cb6a27c 5614 return 0;
5455c699 5615
c8f44aff
MM
5616 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5617 &dev->features, &features);
5455c699
MM
5618
5619 if (dev->netdev_ops->ndo_set_features)
5620 err = dev->netdev_ops->ndo_set_features(dev, features);
5621
6cb6a27c 5622 if (unlikely(err < 0)) {
5455c699 5623 netdev_err(dev,
c8f44aff
MM
5624 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5625 err, &features, &dev->features);
6cb6a27c
MM
5626 return -1;
5627 }
5628
5629 if (!err)
5630 dev->features = features;
5631
5632 return 1;
5633}
5634
afe12cc8
MM
5635/**
5636 * netdev_update_features - recalculate device features
5637 * @dev: the device to check
5638 *
5639 * Recalculate dev->features set and send notifications if it
5640 * has changed. Should be called after driver or hardware dependent
5641 * conditions might have changed that influence the features.
5642 */
6cb6a27c
MM
5643void netdev_update_features(struct net_device *dev)
5644{
5645 if (__netdev_update_features(dev))
5646 netdev_features_change(dev);
5455c699
MM
5647}
5648EXPORT_SYMBOL(netdev_update_features);
5649
afe12cc8
MM
5650/**
5651 * netdev_change_features - recalculate device features
5652 * @dev: the device to check
5653 *
5654 * Recalculate dev->features set and send notifications even
5655 * if they have not changed. Should be called instead of
5656 * netdev_update_features() if also dev->vlan_features might
5657 * have changed to allow the changes to be propagated to stacked
5658 * VLAN devices.
5659 */
5660void netdev_change_features(struct net_device *dev)
5661{
5662 __netdev_update_features(dev);
5663 netdev_features_change(dev);
5664}
5665EXPORT_SYMBOL(netdev_change_features);
5666
fc4a7489
PM
5667/**
5668 * netif_stacked_transfer_operstate - transfer operstate
5669 * @rootdev: the root or lower level device to transfer state from
5670 * @dev: the device to transfer operstate to
5671 *
5672 * Transfer operational state from root to device. This is normally
5673 * called when a stacking relationship exists between the root
5674 * device and the device(a leaf device).
5675 */
5676void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5677 struct net_device *dev)
5678{
5679 if (rootdev->operstate == IF_OPER_DORMANT)
5680 netif_dormant_on(dev);
5681 else
5682 netif_dormant_off(dev);
5683
5684 if (netif_carrier_ok(rootdev)) {
5685 if (!netif_carrier_ok(dev))
5686 netif_carrier_on(dev);
5687 } else {
5688 if (netif_carrier_ok(dev))
5689 netif_carrier_off(dev);
5690 }
5691}
5692EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5693
bf264145 5694#ifdef CONFIG_RPS
1b4bf461
ED
5695static int netif_alloc_rx_queues(struct net_device *dev)
5696{
1b4bf461 5697 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 5698 struct netdev_rx_queue *rx;
1b4bf461 5699
bd25fa7b 5700 BUG_ON(count < 1);
1b4bf461 5701
bd25fa7b 5702 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
62b5942a 5703 if (!rx)
bd25fa7b 5704 return -ENOMEM;
62b5942a 5705
bd25fa7b
TH
5706 dev->_rx = rx;
5707
bd25fa7b 5708 for (i = 0; i < count; i++)
fe822240 5709 rx[i].dev = dev;
1b4bf461
ED
5710 return 0;
5711}
bf264145 5712#endif
1b4bf461 5713
aa942104
CG
5714static void netdev_init_one_queue(struct net_device *dev,
5715 struct netdev_queue *queue, void *_unused)
5716{
5717 /* Initialize queue lock */
5718 spin_lock_init(&queue->_xmit_lock);
5719 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5720 queue->xmit_lock_owner = -1;
b236da69 5721 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 5722 queue->dev = dev;
114cf580
TH
5723#ifdef CONFIG_BQL
5724 dql_init(&queue->dql, HZ);
5725#endif
aa942104
CG
5726}
5727
60877a32
ED
5728static void netif_free_tx_queues(struct net_device *dev)
5729{
5730 if (is_vmalloc_addr(dev->_tx))
5731 vfree(dev->_tx);
5732 else
5733 kfree(dev->_tx);
5734}
5735
e6484930
TH
5736static int netif_alloc_netdev_queues(struct net_device *dev)
5737{
5738 unsigned int count = dev->num_tx_queues;
5739 struct netdev_queue *tx;
60877a32 5740 size_t sz = count * sizeof(*tx);
e6484930 5741
60877a32 5742 BUG_ON(count < 1 || count > 0xffff);
62b5942a 5743
60877a32
ED
5744 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5745 if (!tx) {
5746 tx = vzalloc(sz);
5747 if (!tx)
5748 return -ENOMEM;
5749 }
e6484930 5750 dev->_tx = tx;
1d24eb48 5751
e6484930
TH
5752 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5753 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
5754
5755 return 0;
e6484930
TH
5756}
5757
1da177e4
LT
5758/**
5759 * register_netdevice - register a network device
5760 * @dev: device to register
5761 *
5762 * Take a completed network device structure and add it to the kernel
5763 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5764 * chain. 0 is returned on success. A negative errno code is returned
5765 * on a failure to set up the device, or if the name is a duplicate.
5766 *
5767 * Callers must hold the rtnl semaphore. You may want
5768 * register_netdev() instead of this.
5769 *
5770 * BUGS:
5771 * The locking appears insufficient to guarantee two parallel registers
5772 * will not get the same name.
5773 */
5774
5775int register_netdevice(struct net_device *dev)
5776{
1da177e4 5777 int ret;
d314774c 5778 struct net *net = dev_net(dev);
1da177e4
LT
5779
5780 BUG_ON(dev_boot_phase);
5781 ASSERT_RTNL();
5782
b17a7c17
SH
5783 might_sleep();
5784
1da177e4
LT
5785 /* When net_device's are persistent, this will be fatal. */
5786 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 5787 BUG_ON(!net);
1da177e4 5788
f1f28aa3 5789 spin_lock_init(&dev->addr_list_lock);
cf508b12 5790 netdev_set_addr_lockdep_class(dev);
1da177e4 5791
1da177e4
LT
5792 dev->iflink = -1;
5793
828de4f6 5794 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
5795 if (ret < 0)
5796 goto out;
5797
1da177e4 5798 /* Init, if this function is available */
d314774c
SH
5799 if (dev->netdev_ops->ndo_init) {
5800 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
5801 if (ret) {
5802 if (ret > 0)
5803 ret = -EIO;
90833aa4 5804 goto out;
1da177e4
LT
5805 }
5806 }
4ec93edb 5807
f646968f
PM
5808 if (((dev->hw_features | dev->features) &
5809 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
5810 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5811 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5812 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5813 ret = -EINVAL;
5814 goto err_uninit;
5815 }
5816
9c7dafbf
PE
5817 ret = -EBUSY;
5818 if (!dev->ifindex)
5819 dev->ifindex = dev_new_index(net);
5820 else if (__dev_get_by_index(net, dev->ifindex))
5821 goto err_uninit;
5822
1da177e4
LT
5823 if (dev->iflink == -1)
5824 dev->iflink = dev->ifindex;
5825
5455c699
MM
5826 /* Transfer changeable features to wanted_features and enable
5827 * software offloads (GSO and GRO).
5828 */
5829 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
5830 dev->features |= NETIF_F_SOFT_FEATURES;
5831 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 5832
c6e1a0d1 5833 /* Turn on no cache copy if HW is doing checksum */
34324dc2
MM
5834 if (!(dev->flags & IFF_LOOPBACK)) {
5835 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5836 if (dev->features & NETIF_F_ALL_CSUM) {
5837 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5838 dev->features |= NETIF_F_NOCACHE_COPY;
5839 }
c6e1a0d1
TH
5840 }
5841
1180e7d6 5842 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 5843 */
1180e7d6 5844 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 5845
ee579677
PS
5846 /* Make NETIF_F_SG inheritable to tunnel devices.
5847 */
5848 dev->hw_enc_features |= NETIF_F_SG;
5849
0d89d203
SH
5850 /* Make NETIF_F_SG inheritable to MPLS.
5851 */
5852 dev->mpls_features |= NETIF_F_SG;
5853
7ffbe3fd
JB
5854 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5855 ret = notifier_to_errno(ret);
5856 if (ret)
5857 goto err_uninit;
5858
8b41d188 5859 ret = netdev_register_kobject(dev);
b17a7c17 5860 if (ret)
7ce1b0ed 5861 goto err_uninit;
b17a7c17
SH
5862 dev->reg_state = NETREG_REGISTERED;
5863
6cb6a27c 5864 __netdev_update_features(dev);
8e9b59b2 5865
1da177e4
LT
5866 /*
5867 * Default initial state at registry is that the
5868 * device is present.
5869 */
5870
5871 set_bit(__LINK_STATE_PRESENT, &dev->state);
5872
8f4cccbb
BH
5873 linkwatch_init_dev(dev);
5874
1da177e4 5875 dev_init_scheduler(dev);
1da177e4 5876 dev_hold(dev);
ce286d32 5877 list_netdevice(dev);
7bf23575 5878 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 5879
948b337e
JP
5880 /* If the device has permanent device address, driver should
5881 * set dev_addr and also addr_assign_type should be set to
5882 * NET_ADDR_PERM (default value).
5883 */
5884 if (dev->addr_assign_type == NET_ADDR_PERM)
5885 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5886
1da177e4 5887 /* Notify protocols, that a new device appeared. */
056925ab 5888 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 5889 ret = notifier_to_errno(ret);
93ee31f1
DL
5890 if (ret) {
5891 rollback_registered(dev);
5892 dev->reg_state = NETREG_UNREGISTERED;
5893 }
d90a909e
EB
5894 /*
5895 * Prevent userspace races by waiting until the network
5896 * device is fully setup before sending notifications.
5897 */
a2835763
PM
5898 if (!dev->rtnl_link_ops ||
5899 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 5900 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
5901
5902out:
5903 return ret;
7ce1b0ed
HX
5904
5905err_uninit:
d314774c
SH
5906 if (dev->netdev_ops->ndo_uninit)
5907 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 5908 goto out;
1da177e4 5909}
d1b19dff 5910EXPORT_SYMBOL(register_netdevice);
1da177e4 5911
937f1ba5
BH
5912/**
5913 * init_dummy_netdev - init a dummy network device for NAPI
5914 * @dev: device to init
5915 *
5916 * This takes a network device structure and initialize the minimum
5917 * amount of fields so it can be used to schedule NAPI polls without
5918 * registering a full blown interface. This is to be used by drivers
5919 * that need to tie several hardware interfaces to a single NAPI
5920 * poll scheduler due to HW limitations.
5921 */
5922int init_dummy_netdev(struct net_device *dev)
5923{
5924 /* Clear everything. Note we don't initialize spinlocks
5925 * are they aren't supposed to be taken by any of the
5926 * NAPI code and this dummy netdev is supposed to be
5927 * only ever used for NAPI polls
5928 */
5929 memset(dev, 0, sizeof(struct net_device));
5930
5931 /* make sure we BUG if trying to hit standard
5932 * register/unregister code path
5933 */
5934 dev->reg_state = NETREG_DUMMY;
5935
937f1ba5
BH
5936 /* NAPI wants this */
5937 INIT_LIST_HEAD(&dev->napi_list);
5938
5939 /* a dummy interface is started by default */
5940 set_bit(__LINK_STATE_PRESENT, &dev->state);
5941 set_bit(__LINK_STATE_START, &dev->state);
5942
29b4433d
ED
5943 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5944 * because users of this 'device' dont need to change
5945 * its refcount.
5946 */
5947
937f1ba5
BH
5948 return 0;
5949}
5950EXPORT_SYMBOL_GPL(init_dummy_netdev);
5951
5952
1da177e4
LT
5953/**
5954 * register_netdev - register a network device
5955 * @dev: device to register
5956 *
5957 * Take a completed network device structure and add it to the kernel
5958 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5959 * chain. 0 is returned on success. A negative errno code is returned
5960 * on a failure to set up the device, or if the name is a duplicate.
5961 *
38b4da38 5962 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
5963 * and expands the device name if you passed a format string to
5964 * alloc_netdev.
5965 */
5966int register_netdev(struct net_device *dev)
5967{
5968 int err;
5969
5970 rtnl_lock();
1da177e4 5971 err = register_netdevice(dev);
1da177e4
LT
5972 rtnl_unlock();
5973 return err;
5974}
5975EXPORT_SYMBOL(register_netdev);
5976
29b4433d
ED
5977int netdev_refcnt_read(const struct net_device *dev)
5978{
5979 int i, refcnt = 0;
5980
5981 for_each_possible_cpu(i)
5982 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5983 return refcnt;
5984}
5985EXPORT_SYMBOL(netdev_refcnt_read);
5986
2c53040f 5987/**
1da177e4 5988 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 5989 * @dev: target net_device
1da177e4
LT
5990 *
5991 * This is called when unregistering network devices.
5992 *
5993 * Any protocol or device that holds a reference should register
5994 * for netdevice notification, and cleanup and put back the
5995 * reference if they receive an UNREGISTER event.
5996 * We can get stuck here if buggy protocols don't correctly
4ec93edb 5997 * call dev_put.
1da177e4
LT
5998 */
5999static void netdev_wait_allrefs(struct net_device *dev)
6000{
6001 unsigned long rebroadcast_time, warning_time;
29b4433d 6002 int refcnt;
1da177e4 6003
e014debe
ED
6004 linkwatch_forget_dev(dev);
6005
1da177e4 6006 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6007 refcnt = netdev_refcnt_read(dev);
6008
6009 while (refcnt != 0) {
1da177e4 6010 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6011 rtnl_lock();
1da177e4
LT
6012
6013 /* Rebroadcast unregister notification */
056925ab 6014 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6015
748e2d93 6016 __rtnl_unlock();
0115e8e3 6017 rcu_barrier();
748e2d93
ED
6018 rtnl_lock();
6019
0115e8e3 6020 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6021 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6022 &dev->state)) {
6023 /* We must not have linkwatch events
6024 * pending on unregister. If this
6025 * happens, we simply run the queue
6026 * unscheduled, resulting in a noop
6027 * for this device.
6028 */
6029 linkwatch_run_queue();
6030 }
6031
6756ae4b 6032 __rtnl_unlock();
1da177e4
LT
6033
6034 rebroadcast_time = jiffies;
6035 }
6036
6037 msleep(250);
6038
29b4433d
ED
6039 refcnt = netdev_refcnt_read(dev);
6040
1da177e4 6041 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6042 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6043 dev->name, refcnt);
1da177e4
LT
6044 warning_time = jiffies;
6045 }
6046 }
6047}
6048
6049/* The sequence is:
6050 *
6051 * rtnl_lock();
6052 * ...
6053 * register_netdevice(x1);
6054 * register_netdevice(x2);
6055 * ...
6056 * unregister_netdevice(y1);
6057 * unregister_netdevice(y2);
6058 * ...
6059 * rtnl_unlock();
6060 * free_netdev(y1);
6061 * free_netdev(y2);
6062 *
58ec3b4d 6063 * We are invoked by rtnl_unlock().
1da177e4 6064 * This allows us to deal with problems:
b17a7c17 6065 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6066 * without deadlocking with linkwatch via keventd.
6067 * 2) Since we run with the RTNL semaphore not held, we can sleep
6068 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6069 *
6070 * We must not return until all unregister events added during
6071 * the interval the lock was held have been completed.
1da177e4 6072 */
1da177e4
LT
6073void netdev_run_todo(void)
6074{
626ab0e6 6075 struct list_head list;
1da177e4 6076
1da177e4 6077 /* Snapshot list, allow later requests */
626ab0e6 6078 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6079
6080 __rtnl_unlock();
626ab0e6 6081
0115e8e3
ED
6082
6083 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6084 if (!list_empty(&list))
6085 rcu_barrier();
6086
1da177e4
LT
6087 while (!list_empty(&list)) {
6088 struct net_device *dev
e5e26d75 6089 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6090 list_del(&dev->todo_list);
6091
748e2d93 6092 rtnl_lock();
0115e8e3 6093 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6094 __rtnl_unlock();
0115e8e3 6095
b17a7c17 6096 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6097 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6098 dev->name, dev->reg_state);
6099 dump_stack();
6100 continue;
6101 }
1da177e4 6102
b17a7c17 6103 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6104
152102c7 6105 on_each_cpu(flush_backlog, dev, 1);
6e583ce5 6106
b17a7c17 6107 netdev_wait_allrefs(dev);
1da177e4 6108
b17a7c17 6109 /* paranoia */
29b4433d 6110 BUG_ON(netdev_refcnt_read(dev));
33d480ce
ED
6111 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6112 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6113 WARN_ON(dev->dn_ptr);
1da177e4 6114
b17a7c17
SH
6115 if (dev->destructor)
6116 dev->destructor(dev);
9093bbb2 6117
50624c93
EB
6118 /* Report a network device has been unregistered */
6119 rtnl_lock();
6120 dev_net(dev)->dev_unreg_count--;
6121 __rtnl_unlock();
6122 wake_up(&netdev_unregistering_wq);
6123
9093bbb2
SH
6124 /* Free network device */
6125 kobject_put(&dev->dev.kobj);
1da177e4 6126 }
1da177e4
LT
6127}
6128
3cfde79c
BH
6129/* Convert net_device_stats to rtnl_link_stats64. They have the same
6130 * fields in the same order, with only the type differing.
6131 */
77a1abf5
ED
6132void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6133 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6134{
6135#if BITS_PER_LONG == 64
77a1abf5
ED
6136 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6137 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6138#else
6139 size_t i, n = sizeof(*stats64) / sizeof(u64);
6140 const unsigned long *src = (const unsigned long *)netdev_stats;
6141 u64 *dst = (u64 *)stats64;
6142
6143 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6144 sizeof(*stats64) / sizeof(u64));
6145 for (i = 0; i < n; i++)
6146 dst[i] = src[i];
6147#endif
6148}
77a1abf5 6149EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6150
eeda3fd6
SH
6151/**
6152 * dev_get_stats - get network device statistics
6153 * @dev: device to get statistics from
28172739 6154 * @storage: place to store stats
eeda3fd6 6155 *
d7753516
BH
6156 * Get network statistics from device. Return @storage.
6157 * The device driver may provide its own method by setting
6158 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6159 * otherwise the internal statistics structure is used.
eeda3fd6 6160 */
d7753516
BH
6161struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6162 struct rtnl_link_stats64 *storage)
7004bf25 6163{
eeda3fd6
SH
6164 const struct net_device_ops *ops = dev->netdev_ops;
6165
28172739
ED
6166 if (ops->ndo_get_stats64) {
6167 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6168 ops->ndo_get_stats64(dev, storage);
6169 } else if (ops->ndo_get_stats) {
3cfde79c 6170 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6171 } else {
6172 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6173 }
caf586e5 6174 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
28172739 6175 return storage;
c45d286e 6176}
eeda3fd6 6177EXPORT_SYMBOL(dev_get_stats);
c45d286e 6178
24824a09 6179struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6180{
24824a09 6181 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6182
24824a09
ED
6183#ifdef CONFIG_NET_CLS_ACT
6184 if (queue)
6185 return queue;
6186 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6187 if (!queue)
6188 return NULL;
6189 netdev_init_one_queue(dev, queue, NULL);
24824a09
ED
6190 queue->qdisc = &noop_qdisc;
6191 queue->qdisc_sleeping = &noop_qdisc;
6192 rcu_assign_pointer(dev->ingress_queue, queue);
6193#endif
6194 return queue;
bb949fbd
DM
6195}
6196
2c60db03
ED
6197static const struct ethtool_ops default_ethtool_ops;
6198
d07d7507
SG
6199void netdev_set_default_ethtool_ops(struct net_device *dev,
6200 const struct ethtool_ops *ops)
6201{
6202 if (dev->ethtool_ops == &default_ethtool_ops)
6203 dev->ethtool_ops = ops;
6204}
6205EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6206
74d332c1
ED
6207void netdev_freemem(struct net_device *dev)
6208{
6209 char *addr = (char *)dev - dev->padded;
6210
6211 if (is_vmalloc_addr(addr))
6212 vfree(addr);
6213 else
6214 kfree(addr);
6215}
6216
1da177e4 6217/**
36909ea4 6218 * alloc_netdev_mqs - allocate network device
1da177e4
LT
6219 * @sizeof_priv: size of private data to allocate space for
6220 * @name: device name format string
6221 * @setup: callback to initialize device
36909ea4
TH
6222 * @txqs: the number of TX subqueues to allocate
6223 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6224 *
6225 * Allocates a struct net_device with private data area for driver use
f25f4e44 6226 * and performs basic initialization. Also allocates subquue structs
36909ea4 6227 * for each queue on the device.
1da177e4 6228 */
36909ea4
TH
6229struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6230 void (*setup)(struct net_device *),
6231 unsigned int txqs, unsigned int rxqs)
1da177e4 6232{
1da177e4 6233 struct net_device *dev;
7943986c 6234 size_t alloc_size;
1ce8e7b5 6235 struct net_device *p;
1da177e4 6236
b6fe17d6
SH
6237 BUG_ON(strlen(name) >= sizeof(dev->name));
6238
36909ea4 6239 if (txqs < 1) {
7b6cd1ce 6240 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6241 return NULL;
6242 }
6243
36909ea4
TH
6244#ifdef CONFIG_RPS
6245 if (rxqs < 1) {
7b6cd1ce 6246 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6247 return NULL;
6248 }
6249#endif
6250
fd2ea0a7 6251 alloc_size = sizeof(struct net_device);
d1643d24
AD
6252 if (sizeof_priv) {
6253 /* ensure 32-byte alignment of private area */
1ce8e7b5 6254 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6255 alloc_size += sizeof_priv;
6256 }
6257 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 6258 alloc_size += NETDEV_ALIGN - 1;
1da177e4 6259
74d332c1
ED
6260 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6261 if (!p)
6262 p = vzalloc(alloc_size);
62b5942a 6263 if (!p)
1da177e4 6264 return NULL;
1da177e4 6265
1ce8e7b5 6266 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 6267 dev->padded = (char *)dev - (char *)p;
ab9c73cc 6268
29b4433d
ED
6269 dev->pcpu_refcnt = alloc_percpu(int);
6270 if (!dev->pcpu_refcnt)
74d332c1 6271 goto free_dev;
ab9c73cc 6272
ab9c73cc 6273 if (dev_addr_init(dev))
29b4433d 6274 goto free_pcpu;
ab9c73cc 6275
22bedad3 6276 dev_mc_init(dev);
a748ee24 6277 dev_uc_init(dev);
ccffad25 6278
c346dca1 6279 dev_net_set(dev, &init_net);
1da177e4 6280
8d3bdbd5 6281 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 6282 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 6283
8d3bdbd5
DM
6284 INIT_LIST_HEAD(&dev->napi_list);
6285 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 6286 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 6287 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
6288 INIT_LIST_HEAD(&dev->adj_list.upper);
6289 INIT_LIST_HEAD(&dev->adj_list.lower);
6290 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6291 INIT_LIST_HEAD(&dev->all_adj_list.lower);
8d3bdbd5
DM
6292 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6293 setup(dev);
6294
36909ea4
TH
6295 dev->num_tx_queues = txqs;
6296 dev->real_num_tx_queues = txqs;
ed9af2e8 6297 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 6298 goto free_all;
e8a0464c 6299
df334545 6300#ifdef CONFIG_RPS
36909ea4
TH
6301 dev->num_rx_queues = rxqs;
6302 dev->real_num_rx_queues = rxqs;
fe822240 6303 if (netif_alloc_rx_queues(dev))
8d3bdbd5 6304 goto free_all;
df334545 6305#endif
0a9627f2 6306
1da177e4 6307 strcpy(dev->name, name);
cbda10fa 6308 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
6309 if (!dev->ethtool_ops)
6310 dev->ethtool_ops = &default_ethtool_ops;
1da177e4 6311 return dev;
ab9c73cc 6312
8d3bdbd5
DM
6313free_all:
6314 free_netdev(dev);
6315 return NULL;
6316
29b4433d
ED
6317free_pcpu:
6318 free_percpu(dev->pcpu_refcnt);
60877a32 6319 netif_free_tx_queues(dev);
fe822240
TH
6320#ifdef CONFIG_RPS
6321 kfree(dev->_rx);
6322#endif
6323
74d332c1
ED
6324free_dev:
6325 netdev_freemem(dev);
ab9c73cc 6326 return NULL;
1da177e4 6327}
36909ea4 6328EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
6329
6330/**
6331 * free_netdev - free network device
6332 * @dev: device
6333 *
4ec93edb
YH
6334 * This function does the last stage of destroying an allocated device
6335 * interface. The reference to the device object is released.
1da177e4
LT
6336 * If this is the last reference then it will be freed.
6337 */
6338void free_netdev(struct net_device *dev)
6339{
d565b0a1
HX
6340 struct napi_struct *p, *n;
6341
f3005d7f
DL
6342 release_net(dev_net(dev));
6343
60877a32 6344 netif_free_tx_queues(dev);
fe822240
TH
6345#ifdef CONFIG_RPS
6346 kfree(dev->_rx);
6347#endif
e8a0464c 6348
33d480ce 6349 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 6350
f001fde5
JP
6351 /* Flush device addresses */
6352 dev_addr_flush(dev);
6353
d565b0a1
HX
6354 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6355 netif_napi_del(p);
6356
29b4433d
ED
6357 free_percpu(dev->pcpu_refcnt);
6358 dev->pcpu_refcnt = NULL;
6359
3041a069 6360 /* Compatibility with error handling in drivers */
1da177e4 6361 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 6362 netdev_freemem(dev);
1da177e4
LT
6363 return;
6364 }
6365
6366 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6367 dev->reg_state = NETREG_RELEASED;
6368
43cb76d9
GKH
6369 /* will free via device release */
6370 put_device(&dev->dev);
1da177e4 6371}
d1b19dff 6372EXPORT_SYMBOL(free_netdev);
4ec93edb 6373
f0db275a
SH
6374/**
6375 * synchronize_net - Synchronize with packet receive processing
6376 *
6377 * Wait for packets currently being received to be done.
6378 * Does not block later packets from starting.
6379 */
4ec93edb 6380void synchronize_net(void)
1da177e4
LT
6381{
6382 might_sleep();
be3fc413
ED
6383 if (rtnl_is_locked())
6384 synchronize_rcu_expedited();
6385 else
6386 synchronize_rcu();
1da177e4 6387}
d1b19dff 6388EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
6389
6390/**
44a0873d 6391 * unregister_netdevice_queue - remove device from the kernel
1da177e4 6392 * @dev: device
44a0873d 6393 * @head: list
6ebfbc06 6394 *
1da177e4 6395 * This function shuts down a device interface and removes it
d59b54b1 6396 * from the kernel tables.
44a0873d 6397 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
6398 *
6399 * Callers must hold the rtnl semaphore. You may want
6400 * unregister_netdev() instead of this.
6401 */
6402
44a0873d 6403void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 6404{
a6620712
HX
6405 ASSERT_RTNL();
6406
44a0873d 6407 if (head) {
9fdce099 6408 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
6409 } else {
6410 rollback_registered(dev);
6411 /* Finish processing unregister after unlock */
6412 net_set_todo(dev);
6413 }
1da177e4 6414}
44a0873d 6415EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 6416
9b5e383c
ED
6417/**
6418 * unregister_netdevice_many - unregister many devices
6419 * @head: list of devices
9b5e383c
ED
6420 */
6421void unregister_netdevice_many(struct list_head *head)
6422{
6423 struct net_device *dev;
6424
6425 if (!list_empty(head)) {
6426 rollback_registered_many(head);
6427 list_for_each_entry(dev, head, unreg_list)
6428 net_set_todo(dev);
6429 }
6430}
63c8099d 6431EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 6432
1da177e4
LT
6433/**
6434 * unregister_netdev - remove device from the kernel
6435 * @dev: device
6436 *
6437 * This function shuts down a device interface and removes it
d59b54b1 6438 * from the kernel tables.
1da177e4
LT
6439 *
6440 * This is just a wrapper for unregister_netdevice that takes
6441 * the rtnl semaphore. In general you want to use this and not
6442 * unregister_netdevice.
6443 */
6444void unregister_netdev(struct net_device *dev)
6445{
6446 rtnl_lock();
6447 unregister_netdevice(dev);
6448 rtnl_unlock();
6449}
1da177e4
LT
6450EXPORT_SYMBOL(unregister_netdev);
6451
ce286d32
EB
6452/**
6453 * dev_change_net_namespace - move device to different nethost namespace
6454 * @dev: device
6455 * @net: network namespace
6456 * @pat: If not NULL name pattern to try if the current device name
6457 * is already taken in the destination network namespace.
6458 *
6459 * This function shuts down a device interface and moves it
6460 * to a new network namespace. On success 0 is returned, on
6461 * a failure a netagive errno code is returned.
6462 *
6463 * Callers must hold the rtnl semaphore.
6464 */
6465
6466int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6467{
ce286d32
EB
6468 int err;
6469
6470 ASSERT_RTNL();
6471
6472 /* Don't allow namespace local devices to be moved. */
6473 err = -EINVAL;
6474 if (dev->features & NETIF_F_NETNS_LOCAL)
6475 goto out;
6476
6477 /* Ensure the device has been registrered */
ce286d32
EB
6478 if (dev->reg_state != NETREG_REGISTERED)
6479 goto out;
6480
6481 /* Get out if there is nothing todo */
6482 err = 0;
878628fb 6483 if (net_eq(dev_net(dev), net))
ce286d32
EB
6484 goto out;
6485
6486 /* Pick the destination device name, and ensure
6487 * we can use it in the destination network namespace.
6488 */
6489 err = -EEXIST;
d9031024 6490 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
6491 /* We get here if we can't use the current device name */
6492 if (!pat)
6493 goto out;
828de4f6 6494 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
6495 goto out;
6496 }
6497
6498 /*
6499 * And now a mini version of register_netdevice unregister_netdevice.
6500 */
6501
6502 /* If device is running close it first. */
9b772652 6503 dev_close(dev);
ce286d32
EB
6504
6505 /* And unlink it from device chain */
6506 err = -ENODEV;
6507 unlist_netdevice(dev);
6508
6509 synchronize_net();
6510
6511 /* Shutdown queueing discipline. */
6512 dev_shutdown(dev);
6513
6514 /* Notify protocols, that we are about to destroy
6515 this device. They should clean all the things.
3b27e105
DL
6516
6517 Note that dev->reg_state stays at NETREG_REGISTERED.
6518 This is wanted because this way 8021q and macvlan know
6519 the device is just moving and can keep their slaves up.
ce286d32
EB
6520 */
6521 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
6522 rcu_barrier();
6523 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 6524 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
6525
6526 /*
6527 * Flush the unicast and multicast chains
6528 */
a748ee24 6529 dev_uc_flush(dev);
22bedad3 6530 dev_mc_flush(dev);
ce286d32 6531
4e66ae2e
SH
6532 /* Send a netdev-removed uevent to the old namespace */
6533 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6534
ce286d32 6535 /* Actually switch the network namespace */
c346dca1 6536 dev_net_set(dev, net);
ce286d32 6537
ce286d32
EB
6538 /* If there is an ifindex conflict assign a new one */
6539 if (__dev_get_by_index(net, dev->ifindex)) {
6540 int iflink = (dev->iflink == dev->ifindex);
6541 dev->ifindex = dev_new_index(net);
6542 if (iflink)
6543 dev->iflink = dev->ifindex;
6544 }
6545
4e66ae2e
SH
6546 /* Send a netdev-add uevent to the new namespace */
6547 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6548
8b41d188 6549 /* Fixup kobjects */
a1b3f594 6550 err = device_rename(&dev->dev, dev->name);
8b41d188 6551 WARN_ON(err);
ce286d32
EB
6552
6553 /* Add the device back in the hashes */
6554 list_netdevice(dev);
6555
6556 /* Notify protocols, that a new device appeared. */
6557 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6558
d90a909e
EB
6559 /*
6560 * Prevent userspace races by waiting until the network
6561 * device is fully setup before sending notifications.
6562 */
7f294054 6563 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 6564
ce286d32
EB
6565 synchronize_net();
6566 err = 0;
6567out:
6568 return err;
6569}
463d0183 6570EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 6571
1da177e4
LT
6572static int dev_cpu_callback(struct notifier_block *nfb,
6573 unsigned long action,
6574 void *ocpu)
6575{
6576 struct sk_buff **list_skb;
1da177e4
LT
6577 struct sk_buff *skb;
6578 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6579 struct softnet_data *sd, *oldsd;
6580
8bb78442 6581 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
6582 return NOTIFY_OK;
6583
6584 local_irq_disable();
6585 cpu = smp_processor_id();
6586 sd = &per_cpu(softnet_data, cpu);
6587 oldsd = &per_cpu(softnet_data, oldcpu);
6588
6589 /* Find end of our completion_queue. */
6590 list_skb = &sd->completion_queue;
6591 while (*list_skb)
6592 list_skb = &(*list_skb)->next;
6593 /* Append completion queue from offline CPU. */
6594 *list_skb = oldsd->completion_queue;
6595 oldsd->completion_queue = NULL;
6596
1da177e4 6597 /* Append output queue from offline CPU. */
a9cbd588
CG
6598 if (oldsd->output_queue) {
6599 *sd->output_queue_tailp = oldsd->output_queue;
6600 sd->output_queue_tailp = oldsd->output_queue_tailp;
6601 oldsd->output_queue = NULL;
6602 oldsd->output_queue_tailp = &oldsd->output_queue;
6603 }
264524d5
HC
6604 /* Append NAPI poll list from offline CPU. */
6605 if (!list_empty(&oldsd->poll_list)) {
6606 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6607 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6608 }
1da177e4
LT
6609
6610 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6611 local_irq_enable();
6612
6613 /* Process offline CPU's input_pkt_queue */
76cc8b13 6614 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
1da177e4 6615 netif_rx(skb);
76cc8b13 6616 input_queue_head_incr(oldsd);
fec5e652 6617 }
76cc8b13 6618 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6e7676c1 6619 netif_rx(skb);
76cc8b13
TH
6620 input_queue_head_incr(oldsd);
6621 }
1da177e4
LT
6622
6623 return NOTIFY_OK;
6624}
1da177e4
LT
6625
6626
7f353bf2 6627/**
b63365a2
HX
6628 * netdev_increment_features - increment feature set by one
6629 * @all: current feature set
6630 * @one: new feature set
6631 * @mask: mask feature set
7f353bf2
HX
6632 *
6633 * Computes a new feature set after adding a device with feature set
b63365a2
HX
6634 * @one to the master device with current feature set @all. Will not
6635 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 6636 */
c8f44aff
MM
6637netdev_features_t netdev_increment_features(netdev_features_t all,
6638 netdev_features_t one, netdev_features_t mask)
b63365a2 6639{
1742f183
MM
6640 if (mask & NETIF_F_GEN_CSUM)
6641 mask |= NETIF_F_ALL_CSUM;
6642 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 6643
1742f183
MM
6644 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6645 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 6646
1742f183
MM
6647 /* If one device supports hw checksumming, set for all. */
6648 if (all & NETIF_F_GEN_CSUM)
6649 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
6650
6651 return all;
6652}
b63365a2 6653EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 6654
430f03cd 6655static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
6656{
6657 int i;
6658 struct hlist_head *hash;
6659
6660 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6661 if (hash != NULL)
6662 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6663 INIT_HLIST_HEAD(&hash[i]);
6664
6665 return hash;
6666}
6667
881d966b 6668/* Initialize per network namespace state */
4665079c 6669static int __net_init netdev_init(struct net *net)
881d966b 6670{
734b6541
RM
6671 if (net != &init_net)
6672 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 6673
30d97d35
PE
6674 net->dev_name_head = netdev_create_hash();
6675 if (net->dev_name_head == NULL)
6676 goto err_name;
881d966b 6677
30d97d35
PE
6678 net->dev_index_head = netdev_create_hash();
6679 if (net->dev_index_head == NULL)
6680 goto err_idx;
881d966b
EB
6681
6682 return 0;
30d97d35
PE
6683
6684err_idx:
6685 kfree(net->dev_name_head);
6686err_name:
6687 return -ENOMEM;
881d966b
EB
6688}
6689
f0db275a
SH
6690/**
6691 * netdev_drivername - network driver for the device
6692 * @dev: network device
f0db275a
SH
6693 *
6694 * Determine network driver for device.
6695 */
3019de12 6696const char *netdev_drivername(const struct net_device *dev)
6579e57b 6697{
cf04a4c7
SH
6698 const struct device_driver *driver;
6699 const struct device *parent;
3019de12 6700 const char *empty = "";
6579e57b
AV
6701
6702 parent = dev->dev.parent;
6579e57b 6703 if (!parent)
3019de12 6704 return empty;
6579e57b
AV
6705
6706 driver = parent->driver;
6707 if (driver && driver->name)
3019de12
DM
6708 return driver->name;
6709 return empty;
6579e57b
AV
6710}
6711
b004ff49 6712static int __netdev_printk(const char *level, const struct net_device *dev,
256df2f3
JP
6713 struct va_format *vaf)
6714{
6715 int r;
6716
b004ff49 6717 if (dev && dev->dev.parent) {
666f355f
JP
6718 r = dev_printk_emit(level[1] - '0',
6719 dev->dev.parent,
6720 "%s %s %s: %pV",
6721 dev_driver_string(dev->dev.parent),
6722 dev_name(dev->dev.parent),
6723 netdev_name(dev), vaf);
b004ff49 6724 } else if (dev) {
256df2f3 6725 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
b004ff49 6726 } else {
256df2f3 6727 r = printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 6728 }
256df2f3
JP
6729
6730 return r;
6731}
6732
6733int netdev_printk(const char *level, const struct net_device *dev,
6734 const char *format, ...)
6735{
6736 struct va_format vaf;
6737 va_list args;
6738 int r;
6739
6740 va_start(args, format);
6741
6742 vaf.fmt = format;
6743 vaf.va = &args;
6744
6745 r = __netdev_printk(level, dev, &vaf);
b004ff49 6746
256df2f3
JP
6747 va_end(args);
6748
6749 return r;
6750}
6751EXPORT_SYMBOL(netdev_printk);
6752
6753#define define_netdev_printk_level(func, level) \
6754int func(const struct net_device *dev, const char *fmt, ...) \
6755{ \
6756 int r; \
6757 struct va_format vaf; \
6758 va_list args; \
6759 \
6760 va_start(args, fmt); \
6761 \
6762 vaf.fmt = fmt; \
6763 vaf.va = &args; \
6764 \
6765 r = __netdev_printk(level, dev, &vaf); \
b004ff49 6766 \
256df2f3
JP
6767 va_end(args); \
6768 \
6769 return r; \
6770} \
6771EXPORT_SYMBOL(func);
6772
6773define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6774define_netdev_printk_level(netdev_alert, KERN_ALERT);
6775define_netdev_printk_level(netdev_crit, KERN_CRIT);
6776define_netdev_printk_level(netdev_err, KERN_ERR);
6777define_netdev_printk_level(netdev_warn, KERN_WARNING);
6778define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6779define_netdev_printk_level(netdev_info, KERN_INFO);
6780
4665079c 6781static void __net_exit netdev_exit(struct net *net)
881d966b
EB
6782{
6783 kfree(net->dev_name_head);
6784 kfree(net->dev_index_head);
6785}
6786
022cbae6 6787static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
6788 .init = netdev_init,
6789 .exit = netdev_exit,
6790};
6791
4665079c 6792static void __net_exit default_device_exit(struct net *net)
ce286d32 6793{
e008b5fc 6794 struct net_device *dev, *aux;
ce286d32 6795 /*
e008b5fc 6796 * Push all migratable network devices back to the
ce286d32
EB
6797 * initial network namespace
6798 */
6799 rtnl_lock();
e008b5fc 6800 for_each_netdev_safe(net, dev, aux) {
ce286d32 6801 int err;
aca51397 6802 char fb_name[IFNAMSIZ];
ce286d32
EB
6803
6804 /* Ignore unmoveable devices (i.e. loopback) */
6805 if (dev->features & NETIF_F_NETNS_LOCAL)
6806 continue;
6807
e008b5fc
EB
6808 /* Leave virtual devices for the generic cleanup */
6809 if (dev->rtnl_link_ops)
6810 continue;
d0c082ce 6811
25985edc 6812 /* Push remaining network devices to init_net */
aca51397
PE
6813 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6814 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 6815 if (err) {
7b6cd1ce
JP
6816 pr_emerg("%s: failed to move %s to init_net: %d\n",
6817 __func__, dev->name, err);
aca51397 6818 BUG();
ce286d32
EB
6819 }
6820 }
6821 rtnl_unlock();
6822}
6823
50624c93
EB
6824static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6825{
6826 /* Return with the rtnl_lock held when there are no network
6827 * devices unregistering in any network namespace in net_list.
6828 */
6829 struct net *net;
6830 bool unregistering;
6831 DEFINE_WAIT(wait);
6832
6833 for (;;) {
6834 prepare_to_wait(&netdev_unregistering_wq, &wait,
6835 TASK_UNINTERRUPTIBLE);
6836 unregistering = false;
6837 rtnl_lock();
6838 list_for_each_entry(net, net_list, exit_list) {
6839 if (net->dev_unreg_count > 0) {
6840 unregistering = true;
6841 break;
6842 }
6843 }
6844 if (!unregistering)
6845 break;
6846 __rtnl_unlock();
6847 schedule();
6848 }
6849 finish_wait(&netdev_unregistering_wq, &wait);
6850}
6851
04dc7f6b
EB
6852static void __net_exit default_device_exit_batch(struct list_head *net_list)
6853{
6854 /* At exit all network devices most be removed from a network
b595076a 6855 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
6856 * Do this across as many network namespaces as possible to
6857 * improve batching efficiency.
6858 */
6859 struct net_device *dev;
6860 struct net *net;
6861 LIST_HEAD(dev_kill_list);
6862
50624c93
EB
6863 /* To prevent network device cleanup code from dereferencing
6864 * loopback devices or network devices that have been freed
6865 * wait here for all pending unregistrations to complete,
6866 * before unregistring the loopback device and allowing the
6867 * network namespace be freed.
6868 *
6869 * The netdev todo list containing all network devices
6870 * unregistrations that happen in default_device_exit_batch
6871 * will run in the rtnl_unlock() at the end of
6872 * default_device_exit_batch.
6873 */
6874 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
6875 list_for_each_entry(net, net_list, exit_list) {
6876 for_each_netdev_reverse(net, dev) {
6877 if (dev->rtnl_link_ops)
6878 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6879 else
6880 unregister_netdevice_queue(dev, &dev_kill_list);
6881 }
6882 }
6883 unregister_netdevice_many(&dev_kill_list);
ceaaec98 6884 list_del(&dev_kill_list);
04dc7f6b
EB
6885 rtnl_unlock();
6886}
6887
022cbae6 6888static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 6889 .exit = default_device_exit,
04dc7f6b 6890 .exit_batch = default_device_exit_batch,
ce286d32
EB
6891};
6892
1da177e4
LT
6893/*
6894 * Initialize the DEV module. At boot time this walks the device list and
6895 * unhooks any devices that fail to initialise (normally hardware not
6896 * present) and leaves us with a valid list of present and active devices.
6897 *
6898 */
6899
6900/*
6901 * This is called single threaded during boot, so no need
6902 * to take the rtnl semaphore.
6903 */
6904static int __init net_dev_init(void)
6905{
6906 int i, rc = -ENOMEM;
6907
6908 BUG_ON(!dev_boot_phase);
6909
1da177e4
LT
6910 if (dev_proc_init())
6911 goto out;
6912
8b41d188 6913 if (netdev_kobject_init())
1da177e4
LT
6914 goto out;
6915
6916 INIT_LIST_HEAD(&ptype_all);
82d8a867 6917 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
6918 INIT_LIST_HEAD(&ptype_base[i]);
6919
62532da9
VY
6920 INIT_LIST_HEAD(&offload_base);
6921
881d966b
EB
6922 if (register_pernet_subsys(&netdev_net_ops))
6923 goto out;
1da177e4
LT
6924
6925 /*
6926 * Initialise the packet receive queues.
6927 */
6928
6f912042 6929 for_each_possible_cpu(i) {
e36fa2f7 6930 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 6931
dee42870 6932 memset(sd, 0, sizeof(*sd));
e36fa2f7 6933 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 6934 skb_queue_head_init(&sd->process_queue);
e36fa2f7
ED
6935 sd->completion_queue = NULL;
6936 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588
CG
6937 sd->output_queue = NULL;
6938 sd->output_queue_tailp = &sd->output_queue;
df334545 6939#ifdef CONFIG_RPS
e36fa2f7
ED
6940 sd->csd.func = rps_trigger_softirq;
6941 sd->csd.info = sd;
6942 sd->csd.flags = 0;
6943 sd->cpu = i;
1e94d72f 6944#endif
0a9627f2 6945
e36fa2f7
ED
6946 sd->backlog.poll = process_backlog;
6947 sd->backlog.weight = weight_p;
6948 sd->backlog.gro_list = NULL;
6949 sd->backlog.gro_count = 0;
99bbc707
WB
6950
6951#ifdef CONFIG_NET_FLOW_LIMIT
6952 sd->flow_limit = NULL;
6953#endif
1da177e4
LT
6954 }
6955
1da177e4
LT
6956 dev_boot_phase = 0;
6957
505d4f73
EB
6958 /* The loopback device is special if any other network devices
6959 * is present in a network namespace the loopback device must
6960 * be present. Since we now dynamically allocate and free the
6961 * loopback device ensure this invariant is maintained by
6962 * keeping the loopback device as the first device on the
6963 * list of network devices. Ensuring the loopback devices
6964 * is the first device that appears and the last network device
6965 * that disappears.
6966 */
6967 if (register_pernet_device(&loopback_net_ops))
6968 goto out;
6969
6970 if (register_pernet_device(&default_device_ops))
6971 goto out;
6972
962cf36c
CM
6973 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6974 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
6975
6976 hotcpu_notifier(dev_cpu_callback, 0);
6977 dst_init();
1da177e4
LT
6978 rc = 0;
6979out:
6980 return rc;
6981}
6982
6983subsys_initcall(net_dev_init);