]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/core/dev.c
ipv4: enable route flushing in network namespaces
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
1da177e4
LT
82#include <linux/string.h>
83#include <linux/mm.h>
84#include <linux/socket.h>
85#include <linux/sockios.h>
86#include <linux/errno.h>
87#include <linux/interrupt.h>
88#include <linux/if_ether.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
0187bdfb 91#include <linux/ethtool.h>
1da177e4 92#include <linux/skbuff.h>
a7862b45 93#include <linux/bpf.h>
b5cdae32 94#include <linux/bpf_trace.h>
457c4cbc 95#include <net/net_namespace.h>
1da177e4 96#include <net/sock.h>
02d62e86 97#include <net/busy_poll.h>
1da177e4 98#include <linux/rtnetlink.h>
1da177e4 99#include <linux/stat.h>
1da177e4 100#include <net/dst.h>
fc4099f1 101#include <net/dst_metadata.h>
1da177e4 102#include <net/pkt_sched.h>
87d83093 103#include <net/pkt_cls.h>
1da177e4 104#include <net/checksum.h>
44540960 105#include <net/xfrm.h>
1da177e4
LT
106#include <linux/highmem.h>
107#include <linux/init.h>
1da177e4 108#include <linux/module.h>
1da177e4
LT
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
1da177e4 112#include <net/iw_handler.h>
1da177e4 113#include <asm/current.h>
5bdb9886 114#include <linux/audit.h>
db217334 115#include <linux/dmaengine.h>
f6a78bfc 116#include <linux/err.h>
c7fa9d18 117#include <linux/ctype.h>
723e98b7 118#include <linux/if_arp.h>
6de329e2 119#include <linux/if_vlan.h>
8f0f2223 120#include <linux/ip.h>
ad55dcaf 121#include <net/ip.h>
25cd9ba0 122#include <net/mpls.h>
8f0f2223
DM
123#include <linux/ipv6.h>
124#include <linux/in.h>
b6b2fed1
DM
125#include <linux/jhash.h>
126#include <linux/random.h>
9cbc1cb8 127#include <trace/events/napi.h>
cf66ba58 128#include <trace/events/net.h>
07dc22e7 129#include <trace/events/skb.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
e687ad60 138#include <linux/netfilter_ingress.h>
40e4e713 139#include <linux/crash_dump.h>
b72b5bf6 140#include <linux/sctp.h>
ae847f40 141#include <net/udp_tunnel.h>
6621dd29 142#include <linux/net_namespace.h>
aaa5d90b 143#include <linux/indirect_call_wrapper.h>
af3836df 144#include <net/devlink.h>
1da177e4 145
342709ef
PE
146#include "net-sysfs.h"
147
d565b0a1
HX
148#define MAX_GRO_SKBS 8
149
5d38a079
HX
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
1da177e4 153static DEFINE_SPINLOCK(ptype_lock);
62532da9 154static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
62532da9 157static struct list_head offload_base __read_mostly;
1da177e4 158
ae78dbfa 159static int netif_rx_internal(struct sk_buff *skb);
54951194 160static int call_netdevice_notifiers_info(unsigned long val,
54951194 161 struct netdev_notifier_info *info);
26372605
PM
162static int call_netdevice_notifiers_extack(unsigned long val,
163 struct net_device *dev,
164 struct netlink_ext_ack *extack);
90b602f8 165static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 166
1da177e4 167/*
7562f876 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
169 * semaphore.
170 *
c6d14c84 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
172 *
173 * Writers must hold the rtnl semaphore while they loop through the
7562f876 174 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
177 *
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
181 *
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
185 */
1da177e4 186DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
187EXPORT_SYMBOL(dev_base_lock);
188
6c557001
FW
189static DEFINE_MUTEX(ifalias_mutex);
190
af12fa6e
ET
191/* protects napi_hash addition/deletion and napi_gen_id */
192static DEFINE_SPINLOCK(napi_hash_lock);
193
52bd2d62 194static unsigned int napi_gen_id = NR_CPUS;
6180d9de 195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 196
18afa4b0 197static seqcount_t devnet_rename_seq;
c91f6df2 198
4e985ada
TG
199static inline void dev_base_seq_inc(struct net *net)
200{
643aa9cb 201 while (++net->dev_base_seq == 0)
202 ;
4e985ada
TG
203}
204
881d966b 205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 206{
8387ff25 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 208
08e9897d 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
210}
211
881d966b 212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 213{
7c28bd0b 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
215}
216
e36fa2f7 217static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
e36fa2f7 224static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
225{
226#ifdef CONFIG_RPS
e36fa2f7 227 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
228#endif
229}
230
ce286d32 231/* Device list insertion */
53759be9 232static void list_netdevice(struct net_device *dev)
ce286d32 233{
c346dca1 234 struct net *net = dev_net(dev);
ce286d32
EB
235
236 ASSERT_RTNL();
237
238 write_lock_bh(&dev_base_lock);
c6d14c84 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
241 hlist_add_head_rcu(&dev->index_hlist,
242 dev_index_hash(net, dev->ifindex));
ce286d32 243 write_unlock_bh(&dev_base_lock);
4e985ada
TG
244
245 dev_base_seq_inc(net);
ce286d32
EB
246}
247
fb699dfd
ED
248/* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
250 */
ce286d32
EB
251static void unlist_netdevice(struct net_device *dev)
252{
253 ASSERT_RTNL();
254
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock);
c6d14c84 257 list_del_rcu(&dev->dev_list);
72c9528b 258 hlist_del_rcu(&dev->name_hlist);
fb699dfd 259 hlist_del_rcu(&dev->index_hlist);
ce286d32 260 write_unlock_bh(&dev_base_lock);
4e985ada
TG
261
262 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
263}
264
1da177e4
LT
265/*
266 * Our notifier list
267 */
268
f07d5b94 269static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
270
271/*
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
274 */
bea3348e 275
9958da05 276DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 277EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 278
cf508b12 279#ifdef CONFIG_LOCKDEP
723e98b7 280/*
c773e847 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
282 * according to dev->type
283 */
643aa9cb 284static const unsigned short netdev_lock_type[] = {
285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 300
643aa9cb 301static const char *const netdev_lock_name[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
317
318static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 319static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
320
321static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322{
323 int i;
324
325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 if (netdev_lock_type[i] == dev_type)
327 return i;
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type) - 1;
330}
331
cf508b12
DM
332static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
723e98b7
JP
334{
335 int i;
336
337 i = netdev_lock_pos(dev_type);
338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 netdev_lock_name[i]);
340}
cf508b12
DM
341
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343{
344 int i;
345
346 i = netdev_lock_pos(dev->type);
347 lockdep_set_class_and_name(&dev->addr_list_lock,
348 &netdev_addr_lock_key[i],
349 netdev_lock_name[i]);
350}
723e98b7 351#else
cf508b12
DM
352static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 unsigned short dev_type)
354{
355}
356static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
357{
358}
359#endif
1da177e4
LT
360
361/*******************************************************************************
eb13da1a 362 *
363 * Protocol management and registration routines
364 *
365 *******************************************************************************/
1da177e4 366
1da177e4 367
1da177e4
LT
368/*
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
371 * here.
372 *
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
381 * --ANK (980803)
382 */
383
c07b68e8
ED
384static inline struct list_head *ptype_head(const struct packet_type *pt)
385{
386 if (pt->type == htons(ETH_P_ALL))
7866a621 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 388 else
7866a621
SN
389 return pt->dev ? &pt->dev->ptype_specific :
390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
391}
392
1da177e4
LT
393/**
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
396 *
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
400 *
4ec93edb 401 * This call does not sleep therefore it can not
1da177e4
LT
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
404 */
405
406void dev_add_pack(struct packet_type *pt)
407{
c07b68e8 408 struct list_head *head = ptype_head(pt);
1da177e4 409
c07b68e8
ED
410 spin_lock(&ptype_lock);
411 list_add_rcu(&pt->list, head);
412 spin_unlock(&ptype_lock);
1da177e4 413}
d1b19dff 414EXPORT_SYMBOL(dev_add_pack);
1da177e4 415
1da177e4
LT
416/**
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
419 *
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
4ec93edb 423 * returns.
1da177e4
LT
424 *
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
428 */
429void __dev_remove_pack(struct packet_type *pt)
430{
c07b68e8 431 struct list_head *head = ptype_head(pt);
1da177e4
LT
432 struct packet_type *pt1;
433
c07b68e8 434 spin_lock(&ptype_lock);
1da177e4
LT
435
436 list_for_each_entry(pt1, head, list) {
437 if (pt == pt1) {
438 list_del_rcu(&pt->list);
439 goto out;
440 }
441 }
442
7b6cd1ce 443 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 444out:
c07b68e8 445 spin_unlock(&ptype_lock);
1da177e4 446}
d1b19dff
ED
447EXPORT_SYMBOL(__dev_remove_pack);
448
1da177e4
LT
449/**
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
452 *
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
456 * returns.
457 *
458 * This call sleeps to guarantee that no CPU is looking at the packet
459 * type after return.
460 */
461void dev_remove_pack(struct packet_type *pt)
462{
463 __dev_remove_pack(pt);
4ec93edb 464
1da177e4
LT
465 synchronize_net();
466}
d1b19dff 467EXPORT_SYMBOL(dev_remove_pack);
1da177e4 468
62532da9
VY
469
470/**
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
473 *
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
477 *
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
481 */
482void dev_add_offload(struct packet_offload *po)
483{
bdef7de4 484 struct packet_offload *elem;
62532da9
VY
485
486 spin_lock(&offload_lock);
bdef7de4
DM
487 list_for_each_entry(elem, &offload_base, list) {
488 if (po->priority < elem->priority)
489 break;
490 }
491 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
492 spin_unlock(&offload_lock);
493}
494EXPORT_SYMBOL(dev_add_offload);
495
496/**
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
508 */
1d143d9f 509static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
510{
511 struct list_head *head = &offload_base;
512 struct packet_offload *po1;
513
c53aa505 514 spin_lock(&offload_lock);
62532da9
VY
515
516 list_for_each_entry(po1, head, list) {
517 if (po == po1) {
518 list_del_rcu(&po->list);
519 goto out;
520 }
521 }
522
523 pr_warn("dev_remove_offload: %p not found\n", po);
524out:
c53aa505 525 spin_unlock(&offload_lock);
62532da9 526}
62532da9
VY
527
528/**
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
531 *
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
535 * function returns.
536 *
537 * This call sleeps to guarantee that no CPU is looking at the packet
538 * type after return.
539 */
540void dev_remove_offload(struct packet_offload *po)
541{
542 __dev_remove_offload(po);
543
544 synchronize_net();
545}
546EXPORT_SYMBOL(dev_remove_offload);
547
1da177e4 548/******************************************************************************
eb13da1a 549 *
550 * Device Boot-time Settings Routines
551 *
552 ******************************************************************************/
1da177e4
LT
553
554/* Boot time configuration table */
555static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557/**
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
561 *
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
564 * all netdevices.
565 */
566static int netdev_boot_setup_add(char *name, struct ifmap *map)
567{
568 struct netdev_boot_setup *s;
569 int i;
570
571 s = dev_boot_setup;
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 575 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
576 memcpy(&s[i].map, map, sizeof(s[i].map));
577 break;
578 }
579 }
580
581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582}
583
584/**
722c9a0c 585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
1da177e4 587 *
722c9a0c 588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
592 */
593int netdev_boot_setup_check(struct net_device *dev)
594{
595 struct netdev_boot_setup *s = dev_boot_setup;
596 int i;
597
598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 600 !strcmp(dev->name, s[i].name)) {
722c9a0c 601 dev->irq = s[i].map.irq;
602 dev->base_addr = s[i].map.base_addr;
603 dev->mem_start = s[i].map.mem_start;
604 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
605 return 1;
606 }
607 }
608 return 0;
609}
d1b19dff 610EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
611
612
613/**
722c9a0c 614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
617 *
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
1da177e4
LT
622 */
623unsigned long netdev_boot_base(const char *prefix, int unit)
624{
625 const struct netdev_boot_setup *s = dev_boot_setup;
626 char name[IFNAMSIZ];
627 int i;
628
629 sprintf(name, "%s%d", prefix, unit);
630
631 /*
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
634 */
881d966b 635 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
636 return 1;
637
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 if (!strcmp(name, s[i].name))
640 return s[i].map.base_addr;
641 return 0;
642}
643
644/*
645 * Saves at boot time configured settings for any netdevice.
646 */
647int __init netdev_boot_setup(char *str)
648{
649 int ints[5];
650 struct ifmap map;
651
652 str = get_options(str, ARRAY_SIZE(ints), ints);
653 if (!str || !*str)
654 return 0;
655
656 /* Save settings */
657 memset(&map, 0, sizeof(map));
658 if (ints[0] > 0)
659 map.irq = ints[1];
660 if (ints[0] > 1)
661 map.base_addr = ints[2];
662 if (ints[0] > 2)
663 map.mem_start = ints[3];
664 if (ints[0] > 3)
665 map.mem_end = ints[4];
666
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str, &map);
669}
670
671__setup("netdev=", netdev_boot_setup);
672
673/*******************************************************************************
eb13da1a 674 *
675 * Device Interface Subroutines
676 *
677 *******************************************************************************/
1da177e4 678
a54acb3a
ND
679/**
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
682 *
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
685 */
686
687int dev_get_iflink(const struct net_device *dev)
688{
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
691
7a66bbc9 692 return dev->ifindex;
a54acb3a
ND
693}
694EXPORT_SYMBOL(dev_get_iflink);
695
fc4099f1
PS
696/**
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
699 * @skb: The packet.
700 *
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
704 */
705int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706{
707 struct ip_tunnel_info *info;
708
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
710 return -EINVAL;
711
712 info = skb_tunnel_info_unclone(skb);
713 if (!info)
714 return -ENOMEM;
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 return -EINVAL;
717
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719}
720EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
1da177e4
LT
722/**
723 * __dev_get_by_name - find a device by its name
c4ea43c5 724 * @net: the applicable net namespace
1da177e4
LT
725 * @name: name to find
726 *
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
732 */
733
881d966b 734struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 735{
0bd8d536
ED
736 struct net_device *dev;
737 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 738
b67bfe0d 739 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
740 if (!strncmp(dev->name, name, IFNAMSIZ))
741 return dev;
0bd8d536 742
1da177e4
LT
743 return NULL;
744}
d1b19dff 745EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 746
72c9528b 747/**
722c9a0c 748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
751 *
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
757 */
758
759struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760{
72c9528b
ED
761 struct net_device *dev;
762 struct hlist_head *head = dev_name_hash(net, name);
763
b67bfe0d 764 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
765 if (!strncmp(dev->name, name, IFNAMSIZ))
766 return dev;
767
768 return NULL;
769}
770EXPORT_SYMBOL(dev_get_by_name_rcu);
771
1da177e4
LT
772/**
773 * dev_get_by_name - find a device by its name
c4ea43c5 774 * @net: the applicable net namespace
1da177e4
LT
775 * @name: name to find
776 *
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
782 */
783
881d966b 784struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
785{
786 struct net_device *dev;
787
72c9528b
ED
788 rcu_read_lock();
789 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
790 if (dev)
791 dev_hold(dev);
72c9528b 792 rcu_read_unlock();
1da177e4
LT
793 return dev;
794}
d1b19dff 795EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
796
797/**
798 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 799 * @net: the applicable net namespace
1da177e4
LT
800 * @ifindex: index of device
801 *
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
806 * or @dev_base_lock.
807 */
808
881d966b 809struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 810{
0bd8d536
ED
811 struct net_device *dev;
812 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 813
b67bfe0d 814 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
815 if (dev->ifindex == ifindex)
816 return dev;
0bd8d536 817
1da177e4
LT
818 return NULL;
819}
d1b19dff 820EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 821
fb699dfd
ED
822/**
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
826 *
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
831 */
832
833struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834{
fb699dfd
ED
835 struct net_device *dev;
836 struct hlist_head *head = dev_index_hash(net, ifindex);
837
b67bfe0d 838 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
839 if (dev->ifindex == ifindex)
840 return dev;
841
842 return NULL;
843}
844EXPORT_SYMBOL(dev_get_by_index_rcu);
845
1da177e4
LT
846
847/**
848 * dev_get_by_index - find a device by its ifindex
c4ea43c5 849 * @net: the applicable net namespace
1da177e4
LT
850 * @ifindex: index of device
851 *
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
856 */
857
881d966b 858struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
859{
860 struct net_device *dev;
861
fb699dfd
ED
862 rcu_read_lock();
863 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
864 if (dev)
865 dev_hold(dev);
fb699dfd 866 rcu_read_unlock();
1da177e4
LT
867 return dev;
868}
d1b19dff 869EXPORT_SYMBOL(dev_get_by_index);
1da177e4 870
90b602f8
ML
871/**
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
874 *
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
879 */
880
881struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882{
883 struct napi_struct *napi;
884
885 WARN_ON_ONCE(!rcu_read_lock_held());
886
887 if (napi_id < MIN_NAPI_ID)
888 return NULL;
889
890 napi = napi_by_id(napi_id);
891
892 return napi ? napi->dev : NULL;
893}
894EXPORT_SYMBOL(dev_get_by_napi_id);
895
5dbe7c17
NS
896/**
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
901 *
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
905 */
906int netdev_get_name(struct net *net, char *name, int ifindex)
907{
908 struct net_device *dev;
909 unsigned int seq;
910
911retry:
912 seq = raw_seqcount_begin(&devnet_rename_seq);
913 rcu_read_lock();
914 dev = dev_get_by_index_rcu(net, ifindex);
915 if (!dev) {
916 rcu_read_unlock();
917 return -ENODEV;
918 }
919
920 strcpy(name, dev->name);
921 rcu_read_unlock();
922 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 cond_resched();
924 goto retry;
925 }
926
927 return 0;
928}
929
1da177e4 930/**
941666c2 931 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 932 * @net: the applicable net namespace
1da177e4
LT
933 * @type: media type of device
934 * @ha: hardware address
935 *
936 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
941666c2 939 * The returned device has not had its ref count increased
1da177e4
LT
940 * and the caller must therefore be careful about locking
941 *
1da177e4
LT
942 */
943
941666c2
ED
944struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 const char *ha)
1da177e4
LT
946{
947 struct net_device *dev;
948
941666c2 949 for_each_netdev_rcu(net, dev)
1da177e4
LT
950 if (dev->type == type &&
951 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
952 return dev;
953
954 return NULL;
1da177e4 955}
941666c2 956EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 957
881d966b 958struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
959{
960 struct net_device *dev;
961
4e9cac2b 962 ASSERT_RTNL();
881d966b 963 for_each_netdev(net, dev)
4e9cac2b 964 if (dev->type == type)
7562f876
PE
965 return dev;
966
967 return NULL;
4e9cac2b 968}
4e9cac2b
PM
969EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
881d966b 971struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 972{
99fe3c39 973 struct net_device *dev, *ret = NULL;
4e9cac2b 974
99fe3c39
ED
975 rcu_read_lock();
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type) {
978 dev_hold(dev);
979 ret = dev;
980 break;
981 }
982 rcu_read_unlock();
983 return ret;
1da177e4 984}
1da177e4
LT
985EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987/**
6c555490 988 * __dev_get_by_flags - find any device with given flags
c4ea43c5 989 * @net: the applicable net namespace
1da177e4
LT
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
992 *
993 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 994 * is not found or a pointer to the device. Must be called inside
6c555490 995 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
996 */
997
6c555490
WC
998struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 unsigned short mask)
1da177e4 1000{
7562f876 1001 struct net_device *dev, *ret;
1da177e4 1002
6c555490
WC
1003 ASSERT_RTNL();
1004
7562f876 1005 ret = NULL;
6c555490 1006 for_each_netdev(net, dev) {
1da177e4 1007 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1008 ret = dev;
1da177e4
LT
1009 break;
1010 }
1011 }
7562f876 1012 return ret;
1da177e4 1013}
6c555490 1014EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1015
1016/**
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1019 *
1020 * Network device names need to be valid file names to
c7fa9d18
DM
1021 * to allow sysfs to work. We also disallow any kind of
1022 * whitespace.
1da177e4 1023 */
95f050bf 1024bool dev_valid_name(const char *name)
1da177e4 1025{
c7fa9d18 1026 if (*name == '\0')
95f050bf 1027 return false;
a9d48205 1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1029 return false;
c7fa9d18 1030 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1031 return false;
c7fa9d18
DM
1032
1033 while (*name) {
a4176a93 1034 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1035 return false;
c7fa9d18
DM
1036 name++;
1037 }
95f050bf 1038 return true;
1da177e4 1039}
d1b19dff 1040EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1041
1042/**
b267b179
EB
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1da177e4 1045 * @name: name format string
b267b179 1046 * @buf: scratch buffer and result name string
1da177e4
LT
1047 *
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1052 * duplicates.
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1055 */
1056
b267b179 1057static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1058{
1059 int i = 0;
1da177e4
LT
1060 const char *p;
1061 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1062 unsigned long *inuse;
1da177e4
LT
1063 struct net_device *d;
1064
93809105
RV
1065 if (!dev_valid_name(name))
1066 return -EINVAL;
1067
51f299dd 1068 p = strchr(name, '%');
1da177e4
LT
1069 if (p) {
1070 /*
1071 * Verify the string as this thing may have come from
1072 * the user. There must be either one "%d" and no other "%"
1073 * characters.
1074 */
1075 if (p[1] != 'd' || strchr(p + 2, '%'))
1076 return -EINVAL;
1077
1078 /* Use one page as a bit array of possible slots */
cfcabdcc 1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1080 if (!inuse)
1081 return -ENOMEM;
1082
881d966b 1083 for_each_netdev(net, d) {
1da177e4
LT
1084 if (!sscanf(d->name, name, &i))
1085 continue;
1086 if (i < 0 || i >= max_netdevices)
1087 continue;
1088
1089 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1090 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1091 if (!strncmp(buf, d->name, IFNAMSIZ))
1092 set_bit(i, inuse);
1093 }
1094
1095 i = find_first_zero_bit(inuse, max_netdevices);
1096 free_page((unsigned long) inuse);
1097 }
1098
6224abda 1099 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1100 if (!__dev_get_by_name(net, buf))
1da177e4 1101 return i;
1da177e4
LT
1102
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1106 */
029b6d14 1107 return -ENFILE;
1da177e4
LT
1108}
1109
2c88b855
RV
1110static int dev_alloc_name_ns(struct net *net,
1111 struct net_device *dev,
1112 const char *name)
1113{
1114 char buf[IFNAMSIZ];
1115 int ret;
1116
c46d7642 1117 BUG_ON(!net);
2c88b855
RV
1118 ret = __dev_alloc_name(net, name, buf);
1119 if (ret >= 0)
1120 strlcpy(dev->name, buf, IFNAMSIZ);
1121 return ret;
1da177e4
LT
1122}
1123
b267b179
EB
1124/**
1125 * dev_alloc_name - allocate a name for a device
1126 * @dev: device
1127 * @name: name format string
1128 *
1129 * Passed a format string - eg "lt%d" it will try and find a suitable
1130 * id. It scans list of devices to build up a free map, then chooses
1131 * the first empty slot. The caller must hold the dev_base or rtnl lock
1132 * while allocating the name and adding the device in order to avoid
1133 * duplicates.
1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 * Returns the number of the unit assigned or a negative errno code.
1136 */
1137
1138int dev_alloc_name(struct net_device *dev, const char *name)
1139{
c46d7642 1140 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1141}
d1b19dff 1142EXPORT_SYMBOL(dev_alloc_name);
b267b179 1143
0ad646c8
CW
1144int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 const char *name)
828de4f6 1146{
55a5ec9b
DM
1147 BUG_ON(!net);
1148
1149 if (!dev_valid_name(name))
1150 return -EINVAL;
1151
1152 if (strchr(name, '%'))
1153 return dev_alloc_name_ns(net, dev, name);
1154 else if (__dev_get_by_name(net, name))
1155 return -EEXIST;
1156 else if (dev->name != name)
1157 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159 return 0;
d9031024 1160}
0ad646c8 1161EXPORT_SYMBOL(dev_get_valid_name);
1da177e4
LT
1162
1163/**
1164 * dev_change_name - change name of a device
1165 * @dev: device
1166 * @newname: name (or format string) must be at least IFNAMSIZ
1167 *
1168 * Change name of a device, can pass format strings "eth%d".
1169 * for wildcarding.
1170 */
cf04a4c7 1171int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1172{
238fa362 1173 unsigned char old_assign_type;
fcc5a03a 1174 char oldname[IFNAMSIZ];
1da177e4 1175 int err = 0;
fcc5a03a 1176 int ret;
881d966b 1177 struct net *net;
1da177e4
LT
1178
1179 ASSERT_RTNL();
c346dca1 1180 BUG_ON(!dev_net(dev));
1da177e4 1181
c346dca1 1182 net = dev_net(dev);
8065a779
SWL
1183
1184 /* Some auto-enslaved devices e.g. failover slaves are
1185 * special, as userspace might rename the device after
1186 * the interface had been brought up and running since
1187 * the point kernel initiated auto-enslavement. Allow
1188 * live name change even when these slave devices are
1189 * up and running.
1190 *
1191 * Typically, users of these auto-enslaving devices
1192 * don't actually care about slave name change, as
1193 * they are supposed to operate on master interface
1194 * directly.
1195 */
1196 if (dev->flags & IFF_UP &&
1197 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1198 return -EBUSY;
1199
30e6c9fa 1200 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1201
1202 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1203 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1204 return 0;
c91f6df2 1205 }
c8d90dca 1206
fcc5a03a
HX
1207 memcpy(oldname, dev->name, IFNAMSIZ);
1208
828de4f6 1209 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1210 if (err < 0) {
30e6c9fa 1211 write_seqcount_end(&devnet_rename_seq);
d9031024 1212 return err;
c91f6df2 1213 }
1da177e4 1214
6fe82a39
VF
1215 if (oldname[0] && !strchr(oldname, '%'))
1216 netdev_info(dev, "renamed from %s\n", oldname);
1217
238fa362
TG
1218 old_assign_type = dev->name_assign_type;
1219 dev->name_assign_type = NET_NAME_RENAMED;
1220
fcc5a03a 1221rollback:
a1b3f594
EB
1222 ret = device_rename(&dev->dev, dev->name);
1223 if (ret) {
1224 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1225 dev->name_assign_type = old_assign_type;
30e6c9fa 1226 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1227 return ret;
dcc99773 1228 }
7f988eab 1229
30e6c9fa 1230 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1231
5bb025fa
VF
1232 netdev_adjacent_rename_links(dev, oldname);
1233
7f988eab 1234 write_lock_bh(&dev_base_lock);
372b2312 1235 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1236 write_unlock_bh(&dev_base_lock);
1237
1238 synchronize_rcu();
1239
1240 write_lock_bh(&dev_base_lock);
1241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1242 write_unlock_bh(&dev_base_lock);
1243
056925ab 1244 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1245 ret = notifier_to_errno(ret);
1246
1247 if (ret) {
91e9c07b
ED
1248 /* err >= 0 after dev_alloc_name() or stores the first errno */
1249 if (err >= 0) {
fcc5a03a 1250 err = ret;
30e6c9fa 1251 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1252 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1253 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1254 dev->name_assign_type = old_assign_type;
1255 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1256 goto rollback;
91e9c07b 1257 } else {
7b6cd1ce 1258 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1259 dev->name, ret);
fcc5a03a
HX
1260 }
1261 }
1da177e4
LT
1262
1263 return err;
1264}
1265
0b815a1a
SH
1266/**
1267 * dev_set_alias - change ifalias of a device
1268 * @dev: device
1269 * @alias: name up to IFALIASZ
f0db275a 1270 * @len: limit of bytes to copy from info
0b815a1a
SH
1271 *
1272 * Set ifalias for a device,
1273 */
1274int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275{
6c557001 1276 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1277
1278 if (len >= IFALIASZ)
1279 return -EINVAL;
1280
6c557001
FW
1281 if (len) {
1282 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 if (!new_alias)
1284 return -ENOMEM;
1285
1286 memcpy(new_alias->ifalias, alias, len);
1287 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1288 }
1289
6c557001
FW
1290 mutex_lock(&ifalias_mutex);
1291 rcu_swap_protected(dev->ifalias, new_alias,
1292 mutex_is_locked(&ifalias_mutex));
1293 mutex_unlock(&ifalias_mutex);
1294
1295 if (new_alias)
1296 kfree_rcu(new_alias, rcuhead);
0b815a1a 1297
0b815a1a
SH
1298 return len;
1299}
0fe554a4 1300EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1301
6c557001
FW
1302/**
1303 * dev_get_alias - get ifalias of a device
1304 * @dev: device
20e88320 1305 * @name: buffer to store name of ifalias
6c557001
FW
1306 * @len: size of buffer
1307 *
1308 * get ifalias for a device. Caller must make sure dev cannot go
1309 * away, e.g. rcu read lock or own a reference count to device.
1310 */
1311int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312{
1313 const struct dev_ifalias *alias;
1314 int ret = 0;
1315
1316 rcu_read_lock();
1317 alias = rcu_dereference(dev->ifalias);
1318 if (alias)
1319 ret = snprintf(name, len, "%s", alias->ifalias);
1320 rcu_read_unlock();
1321
1322 return ret;
1323}
0b815a1a 1324
d8a33ac4 1325/**
3041a069 1326 * netdev_features_change - device changes features
d8a33ac4
SH
1327 * @dev: device to cause notification
1328 *
1329 * Called to indicate a device has changed features.
1330 */
1331void netdev_features_change(struct net_device *dev)
1332{
056925ab 1333 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1334}
1335EXPORT_SYMBOL(netdev_features_change);
1336
1da177e4
LT
1337/**
1338 * netdev_state_change - device changes state
1339 * @dev: device to cause notification
1340 *
1341 * Called to indicate a device has changed state. This function calls
1342 * the notifier chains for netdev_chain and sends a NEWLINK message
1343 * to the routing socket.
1344 */
1345void netdev_state_change(struct net_device *dev)
1346{
1347 if (dev->flags & IFF_UP) {
51d0c047
DA
1348 struct netdev_notifier_change_info change_info = {
1349 .info.dev = dev,
1350 };
54951194 1351
51d0c047 1352 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1353 &change_info.info);
7f294054 1354 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1355 }
1356}
d1b19dff 1357EXPORT_SYMBOL(netdev_state_change);
1da177e4 1358
ee89bab1 1359/**
722c9a0c 1360 * netdev_notify_peers - notify network peers about existence of @dev
1361 * @dev: network device
ee89bab1
AW
1362 *
1363 * Generate traffic such that interested network peers are aware of
1364 * @dev, such as by generating a gratuitous ARP. This may be used when
1365 * a device wants to inform the rest of the network about some sort of
1366 * reconfiguration such as a failover event or virtual machine
1367 * migration.
1368 */
1369void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1370{
ee89bab1
AW
1371 rtnl_lock();
1372 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1373 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1374 rtnl_unlock();
c1da4ac7 1375}
ee89bab1 1376EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1377
40c900aa 1378static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1379{
d314774c 1380 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1381 int ret;
1da177e4 1382
e46b66bc
BH
1383 ASSERT_RTNL();
1384
1da177e4
LT
1385 if (!netif_device_present(dev))
1386 return -ENODEV;
1387
ca99ca14
NH
1388 /* Block netpoll from trying to do any rx path servicing.
1389 * If we don't do this there is a chance ndo_poll_controller
1390 * or ndo_poll may be running while we open the device
1391 */
66b5552f 1392 netpoll_poll_disable(dev);
ca99ca14 1393
40c900aa 1394 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1395 ret = notifier_to_errno(ret);
1396 if (ret)
1397 return ret;
1398
1da177e4 1399 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1400
d314774c
SH
1401 if (ops->ndo_validate_addr)
1402 ret = ops->ndo_validate_addr(dev);
bada339b 1403
d314774c
SH
1404 if (!ret && ops->ndo_open)
1405 ret = ops->ndo_open(dev);
1da177e4 1406
66b5552f 1407 netpoll_poll_enable(dev);
ca99ca14 1408
bada339b
JG
1409 if (ret)
1410 clear_bit(__LINK_STATE_START, &dev->state);
1411 else {
1da177e4 1412 dev->flags |= IFF_UP;
4417da66 1413 dev_set_rx_mode(dev);
1da177e4 1414 dev_activate(dev);
7bf23575 1415 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1416 }
bada339b 1417
1da177e4
LT
1418 return ret;
1419}
1420
1421/**
bd380811 1422 * dev_open - prepare an interface for use.
00f54e68
PM
1423 * @dev: device to open
1424 * @extack: netlink extended ack
1da177e4 1425 *
bd380811
PM
1426 * Takes a device from down to up state. The device's private open
1427 * function is invoked and then the multicast lists are loaded. Finally
1428 * the device is moved into the up state and a %NETDEV_UP message is
1429 * sent to the netdev notifier chain.
1430 *
1431 * Calling this function on an active interface is a nop. On a failure
1432 * a negative errno code is returned.
1da177e4 1433 */
00f54e68 1434int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1435{
1436 int ret;
1437
bd380811
PM
1438 if (dev->flags & IFF_UP)
1439 return 0;
1440
40c900aa 1441 ret = __dev_open(dev, extack);
bd380811
PM
1442 if (ret < 0)
1443 return ret;
1444
7f294054 1445 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1446 call_netdevice_notifiers(NETDEV_UP, dev);
1447
1448 return ret;
1449}
1450EXPORT_SYMBOL(dev_open);
1451
7051b88a 1452static void __dev_close_many(struct list_head *head)
1da177e4 1453{
44345724 1454 struct net_device *dev;
e46b66bc 1455
bd380811 1456 ASSERT_RTNL();
9d5010db
DM
1457 might_sleep();
1458
5cde2829 1459 list_for_each_entry(dev, head, close_list) {
3f4df206 1460 /* Temporarily disable netpoll until the interface is down */
66b5552f 1461 netpoll_poll_disable(dev);
3f4df206 1462
44345724 1463 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1464
44345724 1465 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1466
44345724
OP
1467 /* Synchronize to scheduled poll. We cannot touch poll list, it
1468 * can be even on different cpu. So just clear netif_running().
1469 *
1470 * dev->stop() will invoke napi_disable() on all of it's
1471 * napi_struct instances on this device.
1472 */
4e857c58 1473 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1474 }
1da177e4 1475
44345724 1476 dev_deactivate_many(head);
d8b2a4d2 1477
5cde2829 1478 list_for_each_entry(dev, head, close_list) {
44345724 1479 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1480
44345724
OP
1481 /*
1482 * Call the device specific close. This cannot fail.
1483 * Only if device is UP
1484 *
1485 * We allow it to be called even after a DETACH hot-plug
1486 * event.
1487 */
1488 if (ops->ndo_stop)
1489 ops->ndo_stop(dev);
1490
44345724 1491 dev->flags &= ~IFF_UP;
66b5552f 1492 netpoll_poll_enable(dev);
44345724 1493 }
44345724
OP
1494}
1495
7051b88a 1496static void __dev_close(struct net_device *dev)
44345724
OP
1497{
1498 LIST_HEAD(single);
1499
5cde2829 1500 list_add(&dev->close_list, &single);
7051b88a 1501 __dev_close_many(&single);
f87e6f47 1502 list_del(&single);
44345724
OP
1503}
1504
7051b88a 1505void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1506{
1507 struct net_device *dev, *tmp;
1da177e4 1508
5cde2829
EB
1509 /* Remove the devices that don't need to be closed */
1510 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1511 if (!(dev->flags & IFF_UP))
5cde2829 1512 list_del_init(&dev->close_list);
44345724
OP
1513
1514 __dev_close_many(head);
1da177e4 1515
5cde2829 1516 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1517 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1518 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1519 if (unlink)
1520 list_del_init(&dev->close_list);
44345724 1521 }
bd380811 1522}
99c4a26a 1523EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1524
1525/**
1526 * dev_close - shutdown an interface.
1527 * @dev: device to shutdown
1528 *
1529 * This function moves an active device into down state. A
1530 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532 * chain.
1533 */
7051b88a 1534void dev_close(struct net_device *dev)
bd380811 1535{
e14a5993
ED
1536 if (dev->flags & IFF_UP) {
1537 LIST_HEAD(single);
1da177e4 1538
5cde2829 1539 list_add(&dev->close_list, &single);
99c4a26a 1540 dev_close_many(&single, true);
e14a5993
ED
1541 list_del(&single);
1542 }
1da177e4 1543}
d1b19dff 1544EXPORT_SYMBOL(dev_close);
1da177e4
LT
1545
1546
0187bdfb
BH
1547/**
1548 * dev_disable_lro - disable Large Receive Offload on a device
1549 * @dev: device
1550 *
1551 * Disable Large Receive Offload (LRO) on a net device. Must be
1552 * called under RTNL. This is needed if received packets may be
1553 * forwarded to another interface.
1554 */
1555void dev_disable_lro(struct net_device *dev)
1556{
fbe168ba
MK
1557 struct net_device *lower_dev;
1558 struct list_head *iter;
529d0489 1559
bc5787c6
MM
1560 dev->wanted_features &= ~NETIF_F_LRO;
1561 netdev_update_features(dev);
27660515 1562
22d5969f
MM
1563 if (unlikely(dev->features & NETIF_F_LRO))
1564 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1565
1566 netdev_for_each_lower_dev(dev, lower_dev, iter)
1567 dev_disable_lro(lower_dev);
0187bdfb
BH
1568}
1569EXPORT_SYMBOL(dev_disable_lro);
1570
56f5aa77
MC
1571/**
1572 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573 * @dev: device
1574 *
1575 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1576 * called under RTNL. This is needed if Generic XDP is installed on
1577 * the device.
1578 */
1579static void dev_disable_gro_hw(struct net_device *dev)
1580{
1581 dev->wanted_features &= ~NETIF_F_GRO_HW;
1582 netdev_update_features(dev);
1583
1584 if (unlikely(dev->features & NETIF_F_GRO_HW))
1585 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1586}
1587
ede2762d
KT
1588const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1589{
1590#define N(val) \
1591 case NETDEV_##val: \
1592 return "NETDEV_" __stringify(val);
1593 switch (cmd) {
1594 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1601 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1603 N(PRE_CHANGEADDR)
3f5ecd8a 1604 }
ede2762d
KT
1605#undef N
1606 return "UNKNOWN_NETDEV_EVENT";
1607}
1608EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1609
351638e7
JP
1610static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611 struct net_device *dev)
1612{
51d0c047
DA
1613 struct netdev_notifier_info info = {
1614 .dev = dev,
1615 };
351638e7 1616
351638e7
JP
1617 return nb->notifier_call(nb, val, &info);
1618}
0187bdfb 1619
881d966b
EB
1620static int dev_boot_phase = 1;
1621
1da177e4 1622/**
722c9a0c 1623 * register_netdevice_notifier - register a network notifier block
1624 * @nb: notifier
1da177e4 1625 *
722c9a0c 1626 * Register a notifier to be called when network device events occur.
1627 * The notifier passed is linked into the kernel structures and must
1628 * not be reused until it has been unregistered. A negative errno code
1629 * is returned on a failure.
1da177e4 1630 *
722c9a0c 1631 * When registered all registration and up events are replayed
1632 * to the new notifier to allow device to have a race free
1633 * view of the network device list.
1da177e4
LT
1634 */
1635
1636int register_netdevice_notifier(struct notifier_block *nb)
1637{
1638 struct net_device *dev;
fcc5a03a 1639 struct net_device *last;
881d966b 1640 struct net *net;
1da177e4
LT
1641 int err;
1642
328fbe74
KT
1643 /* Close race with setup_net() and cleanup_net() */
1644 down_write(&pernet_ops_rwsem);
1da177e4 1645 rtnl_lock();
f07d5b94 1646 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1647 if (err)
1648 goto unlock;
881d966b
EB
1649 if (dev_boot_phase)
1650 goto unlock;
1651 for_each_net(net) {
1652 for_each_netdev(net, dev) {
351638e7 1653 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1654 err = notifier_to_errno(err);
1655 if (err)
1656 goto rollback;
1657
1658 if (!(dev->flags & IFF_UP))
1659 continue;
1da177e4 1660
351638e7 1661 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1662 }
1da177e4 1663 }
fcc5a03a
HX
1664
1665unlock:
1da177e4 1666 rtnl_unlock();
328fbe74 1667 up_write(&pernet_ops_rwsem);
1da177e4 1668 return err;
fcc5a03a
HX
1669
1670rollback:
1671 last = dev;
881d966b
EB
1672 for_each_net(net) {
1673 for_each_netdev(net, dev) {
1674 if (dev == last)
8f891489 1675 goto outroll;
fcc5a03a 1676
881d966b 1677 if (dev->flags & IFF_UP) {
351638e7
JP
1678 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679 dev);
1680 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1681 }
351638e7 1682 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1683 }
fcc5a03a 1684 }
c67625a1 1685
8f891489 1686outroll:
c67625a1 1687 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1688 goto unlock;
1da177e4 1689}
d1b19dff 1690EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1691
1692/**
722c9a0c 1693 * unregister_netdevice_notifier - unregister a network notifier block
1694 * @nb: notifier
1da177e4 1695 *
722c9a0c 1696 * Unregister a notifier previously registered by
1697 * register_netdevice_notifier(). The notifier is unlinked into the
1698 * kernel structures and may then be reused. A negative errno code
1699 * is returned on a failure.
7d3d43da 1700 *
722c9a0c 1701 * After unregistering unregister and down device events are synthesized
1702 * for all devices on the device list to the removed notifier to remove
1703 * the need for special case cleanup code.
1da177e4
LT
1704 */
1705
1706int unregister_netdevice_notifier(struct notifier_block *nb)
1707{
7d3d43da
EB
1708 struct net_device *dev;
1709 struct net *net;
9f514950
HX
1710 int err;
1711
328fbe74
KT
1712 /* Close race with setup_net() and cleanup_net() */
1713 down_write(&pernet_ops_rwsem);
9f514950 1714 rtnl_lock();
f07d5b94 1715 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1716 if (err)
1717 goto unlock;
1718
1719 for_each_net(net) {
1720 for_each_netdev(net, dev) {
1721 if (dev->flags & IFF_UP) {
351638e7
JP
1722 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723 dev);
1724 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1725 }
351638e7 1726 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1727 }
1728 }
1729unlock:
9f514950 1730 rtnl_unlock();
328fbe74 1731 up_write(&pernet_ops_rwsem);
9f514950 1732 return err;
1da177e4 1733}
d1b19dff 1734EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1735
351638e7
JP
1736/**
1737 * call_netdevice_notifiers_info - call all network notifier blocks
1738 * @val: value passed unmodified to notifier function
351638e7
JP
1739 * @info: notifier information data
1740 *
1741 * Call all network notifier blocks. Parameters and return value
1742 * are as for raw_notifier_call_chain().
1743 */
1744
1d143d9f 1745static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1746 struct netdev_notifier_info *info)
351638e7
JP
1747{
1748 ASSERT_RTNL();
351638e7
JP
1749 return raw_notifier_call_chain(&netdev_chain, val, info);
1750}
351638e7 1751
26372605
PM
1752static int call_netdevice_notifiers_extack(unsigned long val,
1753 struct net_device *dev,
1754 struct netlink_ext_ack *extack)
1755{
1756 struct netdev_notifier_info info = {
1757 .dev = dev,
1758 .extack = extack,
1759 };
1760
1761 return call_netdevice_notifiers_info(val, &info);
1762}
1763
1da177e4
LT
1764/**
1765 * call_netdevice_notifiers - call all network notifier blocks
1766 * @val: value passed unmodified to notifier function
c4ea43c5 1767 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1768 *
1769 * Call all network notifier blocks. Parameters and return value
f07d5b94 1770 * are as for raw_notifier_call_chain().
1da177e4
LT
1771 */
1772
ad7379d4 1773int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1774{
26372605 1775 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 1776}
edf947f1 1777EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1778
af7d6cce
SD
1779/**
1780 * call_netdevice_notifiers_mtu - call all network notifier blocks
1781 * @val: value passed unmodified to notifier function
1782 * @dev: net_device pointer passed unmodified to notifier function
1783 * @arg: additional u32 argument passed to the notifier function
1784 *
1785 * Call all network notifier blocks. Parameters and return value
1786 * are as for raw_notifier_call_chain().
1787 */
1788static int call_netdevice_notifiers_mtu(unsigned long val,
1789 struct net_device *dev, u32 arg)
1790{
1791 struct netdev_notifier_info_ext info = {
1792 .info.dev = dev,
1793 .ext.mtu = arg,
1794 };
1795
1796 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1797
1798 return call_netdevice_notifiers_info(val, &info.info);
1799}
1800
1cf51900 1801#ifdef CONFIG_NET_INGRESS
aabf6772 1802static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
1803
1804void net_inc_ingress_queue(void)
1805{
aabf6772 1806 static_branch_inc(&ingress_needed_key);
4577139b
DB
1807}
1808EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1809
1810void net_dec_ingress_queue(void)
1811{
aabf6772 1812 static_branch_dec(&ingress_needed_key);
4577139b
DB
1813}
1814EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815#endif
1816
1f211a1b 1817#ifdef CONFIG_NET_EGRESS
aabf6772 1818static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
1819
1820void net_inc_egress_queue(void)
1821{
aabf6772 1822 static_branch_inc(&egress_needed_key);
1f211a1b
DB
1823}
1824EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1825
1826void net_dec_egress_queue(void)
1827{
aabf6772 1828 static_branch_dec(&egress_needed_key);
1f211a1b
DB
1829}
1830EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831#endif
1832
39e83922 1833static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 1834#ifdef CONFIG_JUMP_LABEL
b90e5794 1835static atomic_t netstamp_needed_deferred;
13baa00a 1836static atomic_t netstamp_wanted;
5fa8bbda 1837static void netstamp_clear(struct work_struct *work)
1da177e4 1838{
b90e5794 1839 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1840 int wanted;
b90e5794 1841
13baa00a
ED
1842 wanted = atomic_add_return(deferred, &netstamp_wanted);
1843 if (wanted > 0)
39e83922 1844 static_branch_enable(&netstamp_needed_key);
13baa00a 1845 else
39e83922 1846 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
1847}
1848static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1849#endif
5fa8bbda
ED
1850
1851void net_enable_timestamp(void)
1852{
e9666d10 1853#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
1854 int wanted;
1855
1856 while (1) {
1857 wanted = atomic_read(&netstamp_wanted);
1858 if (wanted <= 0)
1859 break;
1860 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861 return;
1862 }
1863 atomic_inc(&netstamp_needed_deferred);
1864 schedule_work(&netstamp_work);
1865#else
39e83922 1866 static_branch_inc(&netstamp_needed_key);
13baa00a 1867#endif
1da177e4 1868}
d1b19dff 1869EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1870
1871void net_disable_timestamp(void)
1872{
e9666d10 1873#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
1874 int wanted;
1875
1876 while (1) {
1877 wanted = atomic_read(&netstamp_wanted);
1878 if (wanted <= 1)
1879 break;
1880 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881 return;
1882 }
1883 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1884 schedule_work(&netstamp_work);
1885#else
39e83922 1886 static_branch_dec(&netstamp_needed_key);
5fa8bbda 1887#endif
1da177e4 1888}
d1b19dff 1889EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1890
3b098e2d 1891static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1892{
2456e855 1893 skb->tstamp = 0;
39e83922 1894 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 1895 __net_timestamp(skb);
1da177e4
LT
1896}
1897
39e83922
DB
1898#define net_timestamp_check(COND, SKB) \
1899 if (static_branch_unlikely(&netstamp_needed_key)) { \
1900 if ((COND) && !(SKB)->tstamp) \
1901 __net_timestamp(SKB); \
1902 } \
3b098e2d 1903
f4b05d27 1904bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1905{
1906 unsigned int len;
1907
1908 if (!(dev->flags & IFF_UP))
1909 return false;
1910
1911 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912 if (skb->len <= len)
1913 return true;
1914
1915 /* if TSO is enabled, we don't care about the length as the packet
1916 * could be forwarded without being segmented before
1917 */
1918 if (skb_is_gso(skb))
1919 return true;
1920
1921 return false;
1922}
1ee481fb 1923EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1924
a0265d28
HX
1925int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1926{
4e3264d2 1927 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1928
4e3264d2
MKL
1929 if (likely(!ret)) {
1930 skb->protocol = eth_type_trans(skb, dev);
1931 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1932 }
a0265d28 1933
4e3264d2 1934 return ret;
a0265d28
HX
1935}
1936EXPORT_SYMBOL_GPL(__dev_forward_skb);
1937
44540960
AB
1938/**
1939 * dev_forward_skb - loopback an skb to another netif
1940 *
1941 * @dev: destination network device
1942 * @skb: buffer to forward
1943 *
1944 * return values:
1945 * NET_RX_SUCCESS (no congestion)
6ec82562 1946 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1947 *
1948 * dev_forward_skb can be used for injecting an skb from the
1949 * start_xmit function of one device into the receive queue
1950 * of another device.
1951 *
1952 * The receiving device may be in another namespace, so
1953 * we have to clear all information in the skb that could
1954 * impact namespace isolation.
1955 */
1956int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1957{
a0265d28 1958 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1959}
1960EXPORT_SYMBOL_GPL(dev_forward_skb);
1961
71d9dec2
CG
1962static inline int deliver_skb(struct sk_buff *skb,
1963 struct packet_type *pt_prev,
1964 struct net_device *orig_dev)
1965{
1f8b977a 1966 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1967 return -ENOMEM;
63354797 1968 refcount_inc(&skb->users);
71d9dec2
CG
1969 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1970}
1971
7866a621
SN
1972static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973 struct packet_type **pt,
fbcb2170
JP
1974 struct net_device *orig_dev,
1975 __be16 type,
7866a621
SN
1976 struct list_head *ptype_list)
1977{
1978 struct packet_type *ptype, *pt_prev = *pt;
1979
1980 list_for_each_entry_rcu(ptype, ptype_list, list) {
1981 if (ptype->type != type)
1982 continue;
1983 if (pt_prev)
fbcb2170 1984 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1985 pt_prev = ptype;
1986 }
1987 *pt = pt_prev;
1988}
1989
c0de08d0
EL
1990static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1991{
a3d744e9 1992 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1993 return false;
1994
1995 if (ptype->id_match)
1996 return ptype->id_match(ptype, skb->sk);
1997 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998 return true;
1999
2000 return false;
2001}
2002
9f9a742d
MR
2003/**
2004 * dev_nit_active - return true if any network interface taps are in use
2005 *
2006 * @dev: network device to check for the presence of taps
2007 */
2008bool dev_nit_active(struct net_device *dev)
2009{
2010 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2011}
2012EXPORT_SYMBOL_GPL(dev_nit_active);
2013
1da177e4
LT
2014/*
2015 * Support routine. Sends outgoing frames to any network
2016 * taps currently in use.
2017 */
2018
74b20582 2019void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2020{
2021 struct packet_type *ptype;
71d9dec2
CG
2022 struct sk_buff *skb2 = NULL;
2023 struct packet_type *pt_prev = NULL;
7866a621 2024 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2025
1da177e4 2026 rcu_read_lock();
7866a621
SN
2027again:
2028 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2029 if (ptype->ignore_outgoing)
2030 continue;
2031
1da177e4
LT
2032 /* Never send packets back to the socket
2033 * they originated from - MvS (miquels@drinkel.ow.org)
2034 */
7866a621
SN
2035 if (skb_loop_sk(ptype, skb))
2036 continue;
71d9dec2 2037
7866a621
SN
2038 if (pt_prev) {
2039 deliver_skb(skb2, pt_prev, skb->dev);
2040 pt_prev = ptype;
2041 continue;
2042 }
1da177e4 2043
7866a621
SN
2044 /* need to clone skb, done only once */
2045 skb2 = skb_clone(skb, GFP_ATOMIC);
2046 if (!skb2)
2047 goto out_unlock;
70978182 2048
7866a621 2049 net_timestamp_set(skb2);
1da177e4 2050
7866a621
SN
2051 /* skb->nh should be correctly
2052 * set by sender, so that the second statement is
2053 * just protection against buggy protocols.
2054 */
2055 skb_reset_mac_header(skb2);
2056
2057 if (skb_network_header(skb2) < skb2->data ||
2058 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060 ntohs(skb2->protocol),
2061 dev->name);
2062 skb_reset_network_header(skb2);
1da177e4 2063 }
7866a621
SN
2064
2065 skb2->transport_header = skb2->network_header;
2066 skb2->pkt_type = PACKET_OUTGOING;
2067 pt_prev = ptype;
2068 }
2069
2070 if (ptype_list == &ptype_all) {
2071 ptype_list = &dev->ptype_all;
2072 goto again;
1da177e4 2073 }
7866a621 2074out_unlock:
581fe0ea
WB
2075 if (pt_prev) {
2076 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078 else
2079 kfree_skb(skb2);
2080 }
1da177e4
LT
2081 rcu_read_unlock();
2082}
74b20582 2083EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2084
2c53040f
BH
2085/**
2086 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2087 * @dev: Network device
2088 * @txq: number of queues available
2089 *
2090 * If real_num_tx_queues is changed the tc mappings may no longer be
2091 * valid. To resolve this verify the tc mapping remains valid and if
2092 * not NULL the mapping. With no priorities mapping to this
2093 * offset/count pair it will no longer be used. In the worst case TC0
2094 * is invalid nothing can be done so disable priority mappings. If is
2095 * expected that drivers will fix this mapping if they can before
2096 * calling netif_set_real_num_tx_queues.
2097 */
bb134d22 2098static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2099{
2100 int i;
2101 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2102
2103 /* If TC0 is invalidated disable TC mapping */
2104 if (tc->offset + tc->count > txq) {
7b6cd1ce 2105 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2106 dev->num_tc = 0;
2107 return;
2108 }
2109
2110 /* Invalidated prio to tc mappings set to TC0 */
2111 for (i = 1; i < TC_BITMASK + 1; i++) {
2112 int q = netdev_get_prio_tc_map(dev, i);
2113
2114 tc = &dev->tc_to_txq[q];
2115 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2116 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117 i, q);
4f57c087
JF
2118 netdev_set_prio_tc_map(dev, i, 0);
2119 }
2120 }
2121}
2122
8d059b0f
AD
2123int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2124{
2125 if (dev->num_tc) {
2126 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127 int i;
2128
ffcfe25b 2129 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2130 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131 if ((txq - tc->offset) < tc->count)
2132 return i;
2133 }
2134
ffcfe25b 2135 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2136 return -1;
2137 }
2138
2139 return 0;
2140}
8a5f2166 2141EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2142
537c00de 2143#ifdef CONFIG_XPS
04157469
AN
2144struct static_key xps_needed __read_mostly;
2145EXPORT_SYMBOL(xps_needed);
2146struct static_key xps_rxqs_needed __read_mostly;
2147EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2148static DEFINE_MUTEX(xps_map_mutex);
2149#define xmap_dereference(P) \
2150 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2151
6234f874
AD
2152static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153 int tci, u16 index)
537c00de 2154{
10cdc3f3
AD
2155 struct xps_map *map = NULL;
2156 int pos;
537c00de 2157
10cdc3f3 2158 if (dev_maps)
80d19669 2159 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2160 if (!map)
2161 return false;
537c00de 2162
6234f874
AD
2163 for (pos = map->len; pos--;) {
2164 if (map->queues[pos] != index)
2165 continue;
2166
2167 if (map->len > 1) {
2168 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2169 break;
537c00de 2170 }
6234f874 2171
80d19669 2172 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2173 kfree_rcu(map, rcu);
2174 return false;
537c00de
AD
2175 }
2176
6234f874 2177 return true;
10cdc3f3
AD
2178}
2179
6234f874
AD
2180static bool remove_xps_queue_cpu(struct net_device *dev,
2181 struct xps_dev_maps *dev_maps,
2182 int cpu, u16 offset, u16 count)
2183{
184c449f
AD
2184 int num_tc = dev->num_tc ? : 1;
2185 bool active = false;
2186 int tci;
6234f874 2187
184c449f
AD
2188 for (tci = cpu * num_tc; num_tc--; tci++) {
2189 int i, j;
2190
2191 for (i = count, j = offset; i--; j++) {
6358d49a 2192 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2193 break;
2194 }
2195
2196 active |= i < 0;
6234f874
AD
2197 }
2198
184c449f 2199 return active;
6234f874
AD
2200}
2201
867d0ad4
SD
2202static void reset_xps_maps(struct net_device *dev,
2203 struct xps_dev_maps *dev_maps,
2204 bool is_rxqs_map)
2205{
2206 if (is_rxqs_map) {
2207 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209 } else {
2210 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2211 }
2212 static_key_slow_dec_cpuslocked(&xps_needed);
2213 kfree_rcu(dev_maps, rcu);
2214}
2215
80d19669
AN
2216static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218 u16 offset, u16 count, bool is_rxqs_map)
2219{
2220 bool active = false;
2221 int i, j;
2222
2223 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224 j < nr_ids;)
2225 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226 count);
867d0ad4
SD
2227 if (!active)
2228 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2229
f28c020f
SD
2230 if (!is_rxqs_map) {
2231 for (i = offset + (count - 1); count--; i--) {
2232 netdev_queue_numa_node_write(
2233 netdev_get_tx_queue(dev, i),
2234 NUMA_NO_NODE);
80d19669 2235 }
80d19669
AN
2236 }
2237}
2238
6234f874
AD
2239static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240 u16 count)
10cdc3f3 2241{
80d19669 2242 const unsigned long *possible_mask = NULL;
10cdc3f3 2243 struct xps_dev_maps *dev_maps;
80d19669 2244 unsigned int nr_ids;
10cdc3f3 2245
04157469
AN
2246 if (!static_key_false(&xps_needed))
2247 return;
10cdc3f3 2248
4d99f660 2249 cpus_read_lock();
04157469 2250 mutex_lock(&xps_map_mutex);
10cdc3f3 2251
04157469
AN
2252 if (static_key_false(&xps_rxqs_needed)) {
2253 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254 if (dev_maps) {
2255 nr_ids = dev->num_rx_queues;
2256 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257 offset, count, true);
2258 }
537c00de
AD
2259 }
2260
80d19669
AN
2261 dev_maps = xmap_dereference(dev->xps_cpus_map);
2262 if (!dev_maps)
2263 goto out_no_maps;
2264
2265 if (num_possible_cpus() > 1)
2266 possible_mask = cpumask_bits(cpu_possible_mask);
2267 nr_ids = nr_cpu_ids;
2268 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269 false);
024e9679 2270
537c00de
AD
2271out_no_maps:
2272 mutex_unlock(&xps_map_mutex);
4d99f660 2273 cpus_read_unlock();
537c00de
AD
2274}
2275
6234f874
AD
2276static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2277{
2278 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2279}
2280
80d19669
AN
2281static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282 u16 index, bool is_rxqs_map)
01c5f864
AD
2283{
2284 struct xps_map *new_map;
2285 int alloc_len = XPS_MIN_MAP_ALLOC;
2286 int i, pos;
2287
2288 for (pos = 0; map && pos < map->len; pos++) {
2289 if (map->queues[pos] != index)
2290 continue;
2291 return map;
2292 }
2293
80d19669 2294 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2295 if (map) {
2296 if (pos < map->alloc_len)
2297 return map;
2298
2299 alloc_len = map->alloc_len * 2;
2300 }
2301
80d19669
AN
2302 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303 * map
2304 */
2305 if (is_rxqs_map)
2306 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307 else
2308 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309 cpu_to_node(attr_index));
01c5f864
AD
2310 if (!new_map)
2311 return NULL;
2312
2313 for (i = 0; i < pos; i++)
2314 new_map->queues[i] = map->queues[i];
2315 new_map->alloc_len = alloc_len;
2316 new_map->len = pos;
2317
2318 return new_map;
2319}
2320
4d99f660 2321/* Must be called under cpus_read_lock */
80d19669
AN
2322int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323 u16 index, bool is_rxqs_map)
537c00de 2324{
80d19669 2325 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2326 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2327 int i, j, tci, numa_node_id = -2;
184c449f 2328 int maps_sz, num_tc = 1, tc = 0;
537c00de 2329 struct xps_map *map, *new_map;
01c5f864 2330 bool active = false;
80d19669 2331 unsigned int nr_ids;
537c00de 2332
184c449f 2333 if (dev->num_tc) {
ffcfe25b 2334 /* Do not allow XPS on subordinate device directly */
184c449f 2335 num_tc = dev->num_tc;
ffcfe25b
AD
2336 if (num_tc < 0)
2337 return -EINVAL;
2338
2339 /* If queue belongs to subordinate dev use its map */
2340 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2341
184c449f
AD
2342 tc = netdev_txq_to_tc(dev, index);
2343 if (tc < 0)
2344 return -EINVAL;
2345 }
2346
537c00de 2347 mutex_lock(&xps_map_mutex);
80d19669
AN
2348 if (is_rxqs_map) {
2349 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351 nr_ids = dev->num_rx_queues;
2352 } else {
2353 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354 if (num_possible_cpus() > 1) {
2355 online_mask = cpumask_bits(cpu_online_mask);
2356 possible_mask = cpumask_bits(cpu_possible_mask);
2357 }
2358 dev_maps = xmap_dereference(dev->xps_cpus_map);
2359 nr_ids = nr_cpu_ids;
2360 }
537c00de 2361
80d19669
AN
2362 if (maps_sz < L1_CACHE_BYTES)
2363 maps_sz = L1_CACHE_BYTES;
537c00de 2364
01c5f864 2365 /* allocate memory for queue storage */
80d19669
AN
2366 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367 j < nr_ids;) {
01c5f864
AD
2368 if (!new_dev_maps)
2369 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2370 if (!new_dev_maps) {
2371 mutex_unlock(&xps_map_mutex);
01c5f864 2372 return -ENOMEM;
2bb60cb9 2373 }
01c5f864 2374
80d19669
AN
2375 tci = j * num_tc + tc;
2376 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2377 NULL;
2378
80d19669 2379 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2380 if (!map)
2381 goto error;
2382
80d19669 2383 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2384 }
2385
2386 if (!new_dev_maps)
2387 goto out_no_new_maps;
2388
867d0ad4
SD
2389 if (!dev_maps) {
2390 /* Increment static keys at most once per type */
2391 static_key_slow_inc_cpuslocked(&xps_needed);
2392 if (is_rxqs_map)
2393 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2394 }
04157469 2395
80d19669
AN
2396 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397 j < nr_ids;) {
184c449f 2398 /* copy maps belonging to foreign traffic classes */
80d19669 2399 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2400 /* fill in the new device map from the old device map */
80d19669
AN
2401 map = xmap_dereference(dev_maps->attr_map[tci]);
2402 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2403 }
2404
2405 /* We need to explicitly update tci as prevous loop
2406 * could break out early if dev_maps is NULL.
2407 */
80d19669 2408 tci = j * num_tc + tc;
184c449f 2409
80d19669
AN
2410 if (netif_attr_test_mask(j, mask, nr_ids) &&
2411 netif_attr_test_online(j, online_mask, nr_ids)) {
2412 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2413 int pos = 0;
2414
80d19669 2415 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2416 while ((pos < map->len) && (map->queues[pos] != index))
2417 pos++;
2418
2419 if (pos == map->len)
2420 map->queues[map->len++] = index;
537c00de 2421#ifdef CONFIG_NUMA
80d19669
AN
2422 if (!is_rxqs_map) {
2423 if (numa_node_id == -2)
2424 numa_node_id = cpu_to_node(j);
2425 else if (numa_node_id != cpu_to_node(j))
2426 numa_node_id = -1;
2427 }
537c00de 2428#endif
01c5f864
AD
2429 } else if (dev_maps) {
2430 /* fill in the new device map from the old device map */
80d19669
AN
2431 map = xmap_dereference(dev_maps->attr_map[tci]);
2432 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2433 }
01c5f864 2434
184c449f
AD
2435 /* copy maps belonging to foreign traffic classes */
2436 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437 /* fill in the new device map from the old device map */
80d19669
AN
2438 map = xmap_dereference(dev_maps->attr_map[tci]);
2439 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2440 }
537c00de
AD
2441 }
2442
80d19669
AN
2443 if (is_rxqs_map)
2444 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445 else
2446 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2447
537c00de 2448 /* Cleanup old maps */
184c449f
AD
2449 if (!dev_maps)
2450 goto out_no_old_maps;
2451
80d19669
AN
2452 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453 j < nr_ids;) {
2454 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2457 if (map && map != new_map)
2458 kfree_rcu(map, rcu);
2459 }
537c00de
AD
2460 }
2461
184c449f
AD
2462 kfree_rcu(dev_maps, rcu);
2463
2464out_no_old_maps:
01c5f864
AD
2465 dev_maps = new_dev_maps;
2466 active = true;
537c00de 2467
01c5f864 2468out_no_new_maps:
80d19669
AN
2469 if (!is_rxqs_map) {
2470 /* update Tx queue numa node */
2471 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472 (numa_node_id >= 0) ?
2473 numa_node_id : NUMA_NO_NODE);
2474 }
537c00de 2475
01c5f864
AD
2476 if (!dev_maps)
2477 goto out_no_maps;
2478
80d19669
AN
2479 /* removes tx-queue from unused CPUs/rx-queues */
2480 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481 j < nr_ids;) {
2482 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2483 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2484 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2486 active |= remove_xps_queue(dev_maps, tci, index);
2487 for (i = num_tc - tc, tci++; --i; tci++)
2488 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2489 }
2490
2491 /* free map if not active */
867d0ad4
SD
2492 if (!active)
2493 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2494
2495out_no_maps:
537c00de
AD
2496 mutex_unlock(&xps_map_mutex);
2497
2498 return 0;
2499error:
01c5f864 2500 /* remove any maps that we added */
80d19669
AN
2501 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502 j < nr_ids;) {
2503 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2505 map = dev_maps ?
80d19669 2506 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2507 NULL;
2508 if (new_map && new_map != map)
2509 kfree(new_map);
2510 }
01c5f864
AD
2511 }
2512
537c00de
AD
2513 mutex_unlock(&xps_map_mutex);
2514
537c00de
AD
2515 kfree(new_dev_maps);
2516 return -ENOMEM;
2517}
4d99f660 2518EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2519
2520int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521 u16 index)
2522{
4d99f660
AV
2523 int ret;
2524
2525 cpus_read_lock();
2526 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527 cpus_read_unlock();
2528
2529 return ret;
80d19669 2530}
537c00de
AD
2531EXPORT_SYMBOL(netif_set_xps_queue);
2532
2533#endif
ffcfe25b
AD
2534static void netdev_unbind_all_sb_channels(struct net_device *dev)
2535{
2536 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2537
2538 /* Unbind any subordinate channels */
2539 while (txq-- != &dev->_tx[0]) {
2540 if (txq->sb_dev)
2541 netdev_unbind_sb_channel(dev, txq->sb_dev);
2542 }
2543}
2544
9cf1f6a8
AD
2545void netdev_reset_tc(struct net_device *dev)
2546{
6234f874
AD
2547#ifdef CONFIG_XPS
2548 netif_reset_xps_queues_gt(dev, 0);
2549#endif
ffcfe25b
AD
2550 netdev_unbind_all_sb_channels(dev);
2551
2552 /* Reset TC configuration of device */
9cf1f6a8
AD
2553 dev->num_tc = 0;
2554 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2556}
2557EXPORT_SYMBOL(netdev_reset_tc);
2558
2559int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2560{
2561 if (tc >= dev->num_tc)
2562 return -EINVAL;
2563
6234f874
AD
2564#ifdef CONFIG_XPS
2565 netif_reset_xps_queues(dev, offset, count);
2566#endif
9cf1f6a8
AD
2567 dev->tc_to_txq[tc].count = count;
2568 dev->tc_to_txq[tc].offset = offset;
2569 return 0;
2570}
2571EXPORT_SYMBOL(netdev_set_tc_queue);
2572
2573int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2574{
2575 if (num_tc > TC_MAX_QUEUE)
2576 return -EINVAL;
2577
6234f874
AD
2578#ifdef CONFIG_XPS
2579 netif_reset_xps_queues_gt(dev, 0);
2580#endif
ffcfe25b
AD
2581 netdev_unbind_all_sb_channels(dev);
2582
9cf1f6a8
AD
2583 dev->num_tc = num_tc;
2584 return 0;
2585}
2586EXPORT_SYMBOL(netdev_set_num_tc);
2587
ffcfe25b
AD
2588void netdev_unbind_sb_channel(struct net_device *dev,
2589 struct net_device *sb_dev)
2590{
2591 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2592
2593#ifdef CONFIG_XPS
2594 netif_reset_xps_queues_gt(sb_dev, 0);
2595#endif
2596 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2598
2599 while (txq-- != &dev->_tx[0]) {
2600 if (txq->sb_dev == sb_dev)
2601 txq->sb_dev = NULL;
2602 }
2603}
2604EXPORT_SYMBOL(netdev_unbind_sb_channel);
2605
2606int netdev_bind_sb_channel_queue(struct net_device *dev,
2607 struct net_device *sb_dev,
2608 u8 tc, u16 count, u16 offset)
2609{
2610 /* Make certain the sb_dev and dev are already configured */
2611 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612 return -EINVAL;
2613
2614 /* We cannot hand out queues we don't have */
2615 if ((offset + count) > dev->real_num_tx_queues)
2616 return -EINVAL;
2617
2618 /* Record the mapping */
2619 sb_dev->tc_to_txq[tc].count = count;
2620 sb_dev->tc_to_txq[tc].offset = offset;
2621
2622 /* Provide a way for Tx queue to find the tc_to_txq map or
2623 * XPS map for itself.
2624 */
2625 while (count--)
2626 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2627
2628 return 0;
2629}
2630EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2631
2632int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2633{
2634 /* Do not use a multiqueue device to represent a subordinate channel */
2635 if (netif_is_multiqueue(dev))
2636 return -ENODEV;
2637
2638 /* We allow channels 1 - 32767 to be used for subordinate channels.
2639 * Channel 0 is meant to be "native" mode and used only to represent
2640 * the main root device. We allow writing 0 to reset the device back
2641 * to normal mode after being used as a subordinate channel.
2642 */
2643 if (channel > S16_MAX)
2644 return -EINVAL;
2645
2646 dev->num_tc = -channel;
2647
2648 return 0;
2649}
2650EXPORT_SYMBOL(netdev_set_sb_channel);
2651
f0796d5c
JF
2652/*
2653 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2654 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2655 */
e6484930 2656int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2657{
ac5b7019 2658 bool disabling;
1d24eb48
TH
2659 int rc;
2660
ac5b7019
JK
2661 disabling = txq < dev->real_num_tx_queues;
2662
e6484930
TH
2663 if (txq < 1 || txq > dev->num_tx_queues)
2664 return -EINVAL;
f0796d5c 2665
5c56580b
BH
2666 if (dev->reg_state == NETREG_REGISTERED ||
2667 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2668 ASSERT_RTNL();
2669
1d24eb48
TH
2670 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671 txq);
bf264145
TH
2672 if (rc)
2673 return rc;
2674
4f57c087
JF
2675 if (dev->num_tc)
2676 netif_setup_tc(dev, txq);
2677
ac5b7019
JK
2678 dev->real_num_tx_queues = txq;
2679
2680 if (disabling) {
2681 synchronize_net();
e6484930 2682 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2683#ifdef CONFIG_XPS
2684 netif_reset_xps_queues_gt(dev, txq);
2685#endif
2686 }
ac5b7019
JK
2687 } else {
2688 dev->real_num_tx_queues = txq;
f0796d5c 2689 }
e6484930 2690
e6484930 2691 return 0;
f0796d5c
JF
2692}
2693EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2694
a953be53 2695#ifdef CONFIG_SYSFS
62fe0b40
BH
2696/**
2697 * netif_set_real_num_rx_queues - set actual number of RX queues used
2698 * @dev: Network device
2699 * @rxq: Actual number of RX queues
2700 *
2701 * This must be called either with the rtnl_lock held or before
2702 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2703 * negative error code. If called before registration, it always
2704 * succeeds.
62fe0b40
BH
2705 */
2706int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2707{
2708 int rc;
2709
bd25fa7b
TH
2710 if (rxq < 1 || rxq > dev->num_rx_queues)
2711 return -EINVAL;
2712
62fe0b40
BH
2713 if (dev->reg_state == NETREG_REGISTERED) {
2714 ASSERT_RTNL();
2715
62fe0b40
BH
2716 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717 rxq);
2718 if (rc)
2719 return rc;
62fe0b40
BH
2720 }
2721
2722 dev->real_num_rx_queues = rxq;
2723 return 0;
2724}
2725EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726#endif
2727
2c53040f
BH
2728/**
2729 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2730 *
2731 * This routine should set an upper limit on the number of RSS queues
2732 * used by default by multiqueue devices.
2733 */
a55b138b 2734int netif_get_num_default_rss_queues(void)
16917b87 2735{
40e4e713
HS
2736 return is_kdump_kernel() ?
2737 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2738}
2739EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2740
3bcb846c 2741static void __netif_reschedule(struct Qdisc *q)
56079431 2742{
def82a1d
JP
2743 struct softnet_data *sd;
2744 unsigned long flags;
56079431 2745
def82a1d 2746 local_irq_save(flags);
903ceff7 2747 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2748 q->next_sched = NULL;
2749 *sd->output_queue_tailp = q;
2750 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2751 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752 local_irq_restore(flags);
2753}
2754
2755void __netif_schedule(struct Qdisc *q)
2756{
2757 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758 __netif_reschedule(q);
56079431
DV
2759}
2760EXPORT_SYMBOL(__netif_schedule);
2761
e6247027
ED
2762struct dev_kfree_skb_cb {
2763 enum skb_free_reason reason;
2764};
2765
2766static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2767{
e6247027
ED
2768 return (struct dev_kfree_skb_cb *)skb->cb;
2769}
2770
46e5da40
JF
2771void netif_schedule_queue(struct netdev_queue *txq)
2772{
2773 rcu_read_lock();
2774 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775 struct Qdisc *q = rcu_dereference(txq->qdisc);
2776
2777 __netif_schedule(q);
2778 }
2779 rcu_read_unlock();
2780}
2781EXPORT_SYMBOL(netif_schedule_queue);
2782
46e5da40
JF
2783void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2784{
2785 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786 struct Qdisc *q;
2787
2788 rcu_read_lock();
2789 q = rcu_dereference(dev_queue->qdisc);
2790 __netif_schedule(q);
2791 rcu_read_unlock();
2792 }
2793}
2794EXPORT_SYMBOL(netif_tx_wake_queue);
2795
e6247027 2796void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2797{
e6247027 2798 unsigned long flags;
56079431 2799
9899886d
MJ
2800 if (unlikely(!skb))
2801 return;
2802
63354797 2803 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2804 smp_rmb();
63354797
RE
2805 refcount_set(&skb->users, 0);
2806 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2807 return;
bea3348e 2808 }
e6247027
ED
2809 get_kfree_skb_cb(skb)->reason = reason;
2810 local_irq_save(flags);
2811 skb->next = __this_cpu_read(softnet_data.completion_queue);
2812 __this_cpu_write(softnet_data.completion_queue, skb);
2813 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814 local_irq_restore(flags);
56079431 2815}
e6247027 2816EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2817
e6247027 2818void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2819{
2820 if (in_irq() || irqs_disabled())
e6247027 2821 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2822 else
2823 dev_kfree_skb(skb);
2824}
e6247027 2825EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2826
2827
bea3348e
SH
2828/**
2829 * netif_device_detach - mark device as removed
2830 * @dev: network device
2831 *
2832 * Mark device as removed from system and therefore no longer available.
2833 */
56079431
DV
2834void netif_device_detach(struct net_device *dev)
2835{
2836 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837 netif_running(dev)) {
d543103a 2838 netif_tx_stop_all_queues(dev);
56079431
DV
2839 }
2840}
2841EXPORT_SYMBOL(netif_device_detach);
2842
bea3348e
SH
2843/**
2844 * netif_device_attach - mark device as attached
2845 * @dev: network device
2846 *
2847 * Mark device as attached from system and restart if needed.
2848 */
56079431
DV
2849void netif_device_attach(struct net_device *dev)
2850{
2851 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852 netif_running(dev)) {
d543103a 2853 netif_tx_wake_all_queues(dev);
4ec93edb 2854 __netdev_watchdog_up(dev);
56079431
DV
2855 }
2856}
2857EXPORT_SYMBOL(netif_device_attach);
2858
5605c762
JP
2859/*
2860 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861 * to be used as a distribution range.
2862 */
eadec877
AD
2863static u16 skb_tx_hash(const struct net_device *dev,
2864 const struct net_device *sb_dev,
2865 struct sk_buff *skb)
5605c762
JP
2866{
2867 u32 hash;
2868 u16 qoffset = 0;
1b837d48 2869 u16 qcount = dev->real_num_tx_queues;
5605c762 2870
eadec877
AD
2871 if (dev->num_tc) {
2872 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2873
2874 qoffset = sb_dev->tc_to_txq[tc].offset;
2875 qcount = sb_dev->tc_to_txq[tc].count;
2876 }
2877
5605c762
JP
2878 if (skb_rx_queue_recorded(skb)) {
2879 hash = skb_get_rx_queue(skb);
1b837d48
AD
2880 while (unlikely(hash >= qcount))
2881 hash -= qcount;
eadec877 2882 return hash + qoffset;
5605c762
JP
2883 }
2884
2885 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2886}
5605c762 2887
36c92474
BH
2888static void skb_warn_bad_offload(const struct sk_buff *skb)
2889{
84d15ae5 2890 static const netdev_features_t null_features;
36c92474 2891 struct net_device *dev = skb->dev;
88ad4175 2892 const char *name = "";
36c92474 2893
c846ad9b
BG
2894 if (!net_ratelimit())
2895 return;
2896
88ad4175
BM
2897 if (dev) {
2898 if (dev->dev.parent)
2899 name = dev_driver_string(dev->dev.parent);
2900 else
2901 name = netdev_name(dev);
2902 }
36c92474
BH
2903 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2904 "gso_type=%d ip_summed=%d\n",
88ad4175 2905 name, dev ? &dev->features : &null_features,
65e9d2fa 2906 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2907 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2908 skb_shinfo(skb)->gso_type, skb->ip_summed);
2909}
2910
1da177e4
LT
2911/*
2912 * Invalidate hardware checksum when packet is to be mangled, and
2913 * complete checksum manually on outgoing path.
2914 */
84fa7933 2915int skb_checksum_help(struct sk_buff *skb)
1da177e4 2916{
d3bc23e7 2917 __wsum csum;
663ead3b 2918 int ret = 0, offset;
1da177e4 2919
84fa7933 2920 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2921 goto out_set_summed;
2922
2923 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2924 skb_warn_bad_offload(skb);
2925 return -EINVAL;
1da177e4
LT
2926 }
2927
cef401de
ED
2928 /* Before computing a checksum, we should make sure no frag could
2929 * be modified by an external entity : checksum could be wrong.
2930 */
2931 if (skb_has_shared_frag(skb)) {
2932 ret = __skb_linearize(skb);
2933 if (ret)
2934 goto out;
2935 }
2936
55508d60 2937 offset = skb_checksum_start_offset(skb);
a030847e
HX
2938 BUG_ON(offset >= skb_headlen(skb));
2939 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2940
2941 offset += skb->csum_offset;
2942 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2943
2944 if (skb_cloned(skb) &&
2945 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2946 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2947 if (ret)
2948 goto out;
2949 }
2950
4f2e4ad5 2951 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2952out_set_summed:
1da177e4 2953 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2954out:
1da177e4
LT
2955 return ret;
2956}
d1b19dff 2957EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2958
b72b5bf6
DC
2959int skb_crc32c_csum_help(struct sk_buff *skb)
2960{
2961 __le32 crc32c_csum;
2962 int ret = 0, offset, start;
2963
2964 if (skb->ip_summed != CHECKSUM_PARTIAL)
2965 goto out;
2966
2967 if (unlikely(skb_is_gso(skb)))
2968 goto out;
2969
2970 /* Before computing a checksum, we should make sure no frag could
2971 * be modified by an external entity : checksum could be wrong.
2972 */
2973 if (unlikely(skb_has_shared_frag(skb))) {
2974 ret = __skb_linearize(skb);
2975 if (ret)
2976 goto out;
2977 }
2978 start = skb_checksum_start_offset(skb);
2979 offset = start + offsetof(struct sctphdr, checksum);
2980 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2981 ret = -EINVAL;
2982 goto out;
2983 }
2984 if (skb_cloned(skb) &&
2985 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2986 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2987 if (ret)
2988 goto out;
2989 }
2990 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2991 skb->len - start, ~(__u32)0,
2992 crc32c_csum_stub));
2993 *(__le32 *)(skb->data + offset) = crc32c_csum;
2994 skb->ip_summed = CHECKSUM_NONE;
dba00306 2995 skb->csum_not_inet = 0;
b72b5bf6
DC
2996out:
2997 return ret;
2998}
2999
53d6471c 3000__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3001{
252e3346 3002 __be16 type = skb->protocol;
f6a78bfc 3003
19acc327
PS
3004 /* Tunnel gso handlers can set protocol to ethernet. */
3005 if (type == htons(ETH_P_TEB)) {
3006 struct ethhdr *eth;
3007
3008 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3009 return 0;
3010
1dfe82eb 3011 eth = (struct ethhdr *)skb->data;
19acc327
PS
3012 type = eth->h_proto;
3013 }
3014
d4bcef3f 3015 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3016}
3017
3018/**
3019 * skb_mac_gso_segment - mac layer segmentation handler.
3020 * @skb: buffer to segment
3021 * @features: features for the output path (see dev->features)
3022 */
3023struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3024 netdev_features_t features)
3025{
3026 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3027 struct packet_offload *ptype;
53d6471c
VY
3028 int vlan_depth = skb->mac_len;
3029 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3030
3031 if (unlikely(!type))
3032 return ERR_PTR(-EINVAL);
3033
53d6471c 3034 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3035
3036 rcu_read_lock();
22061d80 3037 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3038 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3039 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3040 break;
3041 }
3042 }
3043 rcu_read_unlock();
3044
98e399f8 3045 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3046
f6a78bfc
HX
3047 return segs;
3048}
05e8ef4a
PS
3049EXPORT_SYMBOL(skb_mac_gso_segment);
3050
3051
3052/* openvswitch calls this on rx path, so we need a different check.
3053 */
3054static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3055{
3056 if (tx_path)
0c19f846
WB
3057 return skb->ip_summed != CHECKSUM_PARTIAL &&
3058 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3059
3060 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3061}
3062
3063/**
3064 * __skb_gso_segment - Perform segmentation on skb.
3065 * @skb: buffer to segment
3066 * @features: features for the output path (see dev->features)
3067 * @tx_path: whether it is called in TX path
3068 *
3069 * This function segments the given skb and returns a list of segments.
3070 *
3071 * It may return NULL if the skb requires no segmentation. This is
3072 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
3073 *
3074 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3075 */
3076struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3077 netdev_features_t features, bool tx_path)
3078{
b2504a5d
ED
3079 struct sk_buff *segs;
3080
05e8ef4a
PS
3081 if (unlikely(skb_needs_check(skb, tx_path))) {
3082 int err;
3083
b2504a5d 3084 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3085 err = skb_cow_head(skb, 0);
3086 if (err < 0)
05e8ef4a
PS
3087 return ERR_PTR(err);
3088 }
3089
802ab55a
AD
3090 /* Only report GSO partial support if it will enable us to
3091 * support segmentation on this frame without needing additional
3092 * work.
3093 */
3094 if (features & NETIF_F_GSO_PARTIAL) {
3095 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3096 struct net_device *dev = skb->dev;
3097
3098 partial_features |= dev->features & dev->gso_partial_features;
3099 if (!skb_gso_ok(skb, features | partial_features))
3100 features &= ~NETIF_F_GSO_PARTIAL;
3101 }
3102
9207f9d4
KK
3103 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3104 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3105
68c33163 3106 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3107 SKB_GSO_CB(skb)->encap_level = 0;
3108
05e8ef4a
PS
3109 skb_reset_mac_header(skb);
3110 skb_reset_mac_len(skb);
3111
b2504a5d
ED
3112 segs = skb_mac_gso_segment(skb, features);
3113
8d74e9f8 3114 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3115 skb_warn_bad_offload(skb);
3116
3117 return segs;
05e8ef4a 3118}
12b0004d 3119EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3120
fb286bb2
HX
3121/* Take action when hardware reception checksum errors are detected. */
3122#ifdef CONFIG_BUG
7fe50ac8 3123void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3124{
3125 if (net_ratelimit()) {
7b6cd1ce 3126 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
7fe50ac8
CW
3127 if (dev)
3128 pr_err("dev features: %pNF\n", &dev->features);
3129 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3130 skb->len, skb->data_len, skb->pkt_type,
3131 skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3132 skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3133 skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
fb286bb2
HX
3134 dump_stack();
3135 }
3136}
3137EXPORT_SYMBOL(netdev_rx_csum_fault);
3138#endif
3139
ab74cfeb 3140/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3141static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3142{
3d3a8533 3143#ifdef CONFIG_HIGHMEM
1da177e4 3144 int i;
f4563a75 3145
5acbbd42 3146 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3147 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3148 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3149
ea2ab693 3150 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3151 return 1;
ea2ab693 3152 }
5acbbd42 3153 }
3d3a8533 3154#endif
1da177e4
LT
3155 return 0;
3156}
1da177e4 3157
3b392ddb
SH
3158/* If MPLS offload request, verify we are testing hardware MPLS features
3159 * instead of standard features for the netdev.
3160 */
d0edc7bf 3161#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3162static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163 netdev_features_t features,
3164 __be16 type)
3165{
25cd9ba0 3166 if (eth_p_mpls(type))
3b392ddb
SH
3167 features &= skb->dev->mpls_features;
3168
3169 return features;
3170}
3171#else
3172static netdev_features_t net_mpls_features(struct sk_buff *skb,
3173 netdev_features_t features,
3174 __be16 type)
3175{
3176 return features;
3177}
3178#endif
3179
c8f44aff 3180static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3181 netdev_features_t features)
f01a5236 3182{
53d6471c 3183 int tmp;
3b392ddb
SH
3184 __be16 type;
3185
3186 type = skb_network_protocol(skb, &tmp);
3187 features = net_mpls_features(skb, features, type);
53d6471c 3188
c0d680e5 3189 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3190 !can_checksum_protocol(features, type)) {
996e8021 3191 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3192 }
7be2c82c
ED
3193 if (illegal_highdma(skb->dev, skb))
3194 features &= ~NETIF_F_SG;
f01a5236
JG
3195
3196 return features;
3197}
3198
e38f3025
TM
3199netdev_features_t passthru_features_check(struct sk_buff *skb,
3200 struct net_device *dev,
3201 netdev_features_t features)
3202{
3203 return features;
3204}
3205EXPORT_SYMBOL(passthru_features_check);
3206
7ce23672 3207static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3208 struct net_device *dev,
3209 netdev_features_t features)
3210{
3211 return vlan_features_check(skb, features);
3212}
3213
cbc53e08
AD
3214static netdev_features_t gso_features_check(const struct sk_buff *skb,
3215 struct net_device *dev,
3216 netdev_features_t features)
3217{
3218 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3219
3220 if (gso_segs > dev->gso_max_segs)
3221 return features & ~NETIF_F_GSO_MASK;
3222
802ab55a
AD
3223 /* Support for GSO partial features requires software
3224 * intervention before we can actually process the packets
3225 * so we need to strip support for any partial features now
3226 * and we can pull them back in after we have partially
3227 * segmented the frame.
3228 */
3229 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3230 features &= ~dev->gso_partial_features;
3231
3232 /* Make sure to clear the IPv4 ID mangling feature if the
3233 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3234 */
3235 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3236 struct iphdr *iph = skb->encapsulation ?
3237 inner_ip_hdr(skb) : ip_hdr(skb);
3238
3239 if (!(iph->frag_off & htons(IP_DF)))
3240 features &= ~NETIF_F_TSO_MANGLEID;
3241 }
3242
3243 return features;
3244}
3245
c1e756bf 3246netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3247{
5f35227e 3248 struct net_device *dev = skb->dev;
fcbeb976 3249 netdev_features_t features = dev->features;
58e998c6 3250
cbc53e08
AD
3251 if (skb_is_gso(skb))
3252 features = gso_features_check(skb, dev, features);
30b678d8 3253
5f35227e
JG
3254 /* If encapsulation offload request, verify we are testing
3255 * hardware encapsulation features instead of standard
3256 * features for the netdev
3257 */
3258 if (skb->encapsulation)
3259 features &= dev->hw_enc_features;
3260
f5a7fb88
TM
3261 if (skb_vlan_tagged(skb))
3262 features = netdev_intersect_features(features,
3263 dev->vlan_features |
3264 NETIF_F_HW_VLAN_CTAG_TX |
3265 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3266
5f35227e
JG
3267 if (dev->netdev_ops->ndo_features_check)
3268 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3269 features);
8cb65d00
TM
3270 else
3271 features &= dflt_features_check(skb, dev, features);
5f35227e 3272
c1e756bf 3273 return harmonize_features(skb, features);
58e998c6 3274}
c1e756bf 3275EXPORT_SYMBOL(netif_skb_features);
58e998c6 3276
2ea25513 3277static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3278 struct netdev_queue *txq, bool more)
f6a78bfc 3279{
2ea25513
DM
3280 unsigned int len;
3281 int rc;
00829823 3282
9f9a742d 3283 if (dev_nit_active(dev))
2ea25513 3284 dev_queue_xmit_nit(skb, dev);
fc741216 3285
2ea25513
DM
3286 len = skb->len;
3287 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3288 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3289 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3290
2ea25513
DM
3291 return rc;
3292}
7b9c6090 3293
8dcda22a
DM
3294struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3295 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3296{
3297 struct sk_buff *skb = first;
3298 int rc = NETDEV_TX_OK;
7b9c6090 3299
7f2e870f
DM
3300 while (skb) {
3301 struct sk_buff *next = skb->next;
fc70fb64 3302
a8305bff 3303 skb_mark_not_on_list(skb);
95f6b3dd 3304 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3305 if (unlikely(!dev_xmit_complete(rc))) {
3306 skb->next = next;
3307 goto out;
3308 }
6afff0ca 3309
7f2e870f 3310 skb = next;
fe60faa5 3311 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3312 rc = NETDEV_TX_BUSY;
3313 break;
9ccb8975 3314 }
7f2e870f 3315 }
9ccb8975 3316
7f2e870f
DM
3317out:
3318 *ret = rc;
3319 return skb;
3320}
b40863c6 3321
1ff0dc94
ED
3322static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3323 netdev_features_t features)
f6a78bfc 3324{
df8a39de 3325 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3326 !vlan_hw_offload_capable(features, skb->vlan_proto))
3327 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3328 return skb;
3329}
f6a78bfc 3330
43c26a1a
DC
3331int skb_csum_hwoffload_help(struct sk_buff *skb,
3332 const netdev_features_t features)
3333{
3334 if (unlikely(skb->csum_not_inet))
3335 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3336 skb_crc32c_csum_help(skb);
3337
3338 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3339}
3340EXPORT_SYMBOL(skb_csum_hwoffload_help);
3341
f53c7239 3342static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3343{
3344 netdev_features_t features;
f6a78bfc 3345
eae3f88e
DM
3346 features = netif_skb_features(skb);
3347 skb = validate_xmit_vlan(skb, features);
3348 if (unlikely(!skb))
3349 goto out_null;
7b9c6090 3350
ebf4e808
IL
3351 skb = sk_validate_xmit_skb(skb, dev);
3352 if (unlikely(!skb))
3353 goto out_null;
3354
8b86a61d 3355 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3356 struct sk_buff *segs;
3357
3358 segs = skb_gso_segment(skb, features);
cecda693 3359 if (IS_ERR(segs)) {
af6dabc9 3360 goto out_kfree_skb;
cecda693
JW
3361 } else if (segs) {
3362 consume_skb(skb);
3363 skb = segs;
f6a78bfc 3364 }
eae3f88e
DM
3365 } else {
3366 if (skb_needs_linearize(skb, features) &&
3367 __skb_linearize(skb))
3368 goto out_kfree_skb;
4ec93edb 3369
eae3f88e
DM
3370 /* If packet is not checksummed and device does not
3371 * support checksumming for this protocol, complete
3372 * checksumming here.
3373 */
3374 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3375 if (skb->encapsulation)
3376 skb_set_inner_transport_header(skb,
3377 skb_checksum_start_offset(skb));
3378 else
3379 skb_set_transport_header(skb,
3380 skb_checksum_start_offset(skb));
43c26a1a 3381 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3382 goto out_kfree_skb;
7b9c6090 3383 }
0c772159 3384 }
7b9c6090 3385
f53c7239 3386 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3387
eae3f88e 3388 return skb;
fc70fb64 3389
f6a78bfc
HX
3390out_kfree_skb:
3391 kfree_skb(skb);
eae3f88e 3392out_null:
d21fd63e 3393 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3394 return NULL;
3395}
6afff0ca 3396
f53c7239 3397struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3398{
3399 struct sk_buff *next, *head = NULL, *tail;
3400
bec3cfdc 3401 for (; skb != NULL; skb = next) {
55a93b3e 3402 next = skb->next;
a8305bff 3403 skb_mark_not_on_list(skb);
bec3cfdc
ED
3404
3405 /* in case skb wont be segmented, point to itself */
3406 skb->prev = skb;
3407
f53c7239 3408 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3409 if (!skb)
3410 continue;
55a93b3e 3411
bec3cfdc
ED
3412 if (!head)
3413 head = skb;
3414 else
3415 tail->next = skb;
3416 /* If skb was segmented, skb->prev points to
3417 * the last segment. If not, it still contains skb.
3418 */
3419 tail = skb->prev;
55a93b3e
ED
3420 }
3421 return head;
f6a78bfc 3422}
104ba78c 3423EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3424
1def9238
ED
3425static void qdisc_pkt_len_init(struct sk_buff *skb)
3426{
3427 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3428
3429 qdisc_skb_cb(skb)->pkt_len = skb->len;
3430
3431 /* To get more precise estimation of bytes sent on wire,
3432 * we add to pkt_len the headers size of all segments
3433 */
a0dce875 3434 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3435 unsigned int hdr_len;
15e5a030 3436 u16 gso_segs = shinfo->gso_segs;
1def9238 3437
757b8b1d
ED
3438 /* mac layer + network layer */
3439 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3440
3441 /* + transport layer */
7c68d1a6
ED
3442 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3443 const struct tcphdr *th;
3444 struct tcphdr _tcphdr;
3445
3446 th = skb_header_pointer(skb, skb_transport_offset(skb),
3447 sizeof(_tcphdr), &_tcphdr);
3448 if (likely(th))
3449 hdr_len += __tcp_hdrlen(th);
3450 } else {
3451 struct udphdr _udphdr;
3452
3453 if (skb_header_pointer(skb, skb_transport_offset(skb),
3454 sizeof(_udphdr), &_udphdr))
3455 hdr_len += sizeof(struct udphdr);
3456 }
15e5a030
JW
3457
3458 if (shinfo->gso_type & SKB_GSO_DODGY)
3459 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3460 shinfo->gso_size);
3461
3462 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3463 }
3464}
3465
bbd8a0d3
KK
3466static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3467 struct net_device *dev,
3468 struct netdev_queue *txq)
3469{
3470 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3471 struct sk_buff *to_free = NULL;
a2da570d 3472 bool contended;
bbd8a0d3
KK
3473 int rc;
3474
a2da570d 3475 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3476
3477 if (q->flags & TCQ_F_NOLOCK) {
3478 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3479 __qdisc_drop(skb, &to_free);
3480 rc = NET_XMIT_DROP;
ba27b4cd
PA
3481 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3482 qdisc_run_begin(q)) {
3483 qdisc_bstats_cpu_update(q, skb);
3484
3485 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3486 __qdisc_run(q);
3487
3488 qdisc_run_end(q);
3489 rc = NET_XMIT_SUCCESS;
6b3ba914
JF
3490 } else {
3491 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
32f7b44d 3492 qdisc_run(q);
6b3ba914
JF
3493 }
3494
3495 if (unlikely(to_free))
3496 kfree_skb_list(to_free);
3497 return rc;
3498 }
3499
79640a4c
ED
3500 /*
3501 * Heuristic to force contended enqueues to serialize on a
3502 * separate lock before trying to get qdisc main lock.
f9eb8aea 3503 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3504 * often and dequeue packets faster.
79640a4c 3505 */
a2da570d 3506 contended = qdisc_is_running(q);
79640a4c
ED
3507 if (unlikely(contended))
3508 spin_lock(&q->busylock);
3509
bbd8a0d3
KK
3510 spin_lock(root_lock);
3511 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3512 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3513 rc = NET_XMIT_DROP;
3514 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3515 qdisc_run_begin(q)) {
bbd8a0d3
KK
3516 /*
3517 * This is a work-conserving queue; there are no old skbs
3518 * waiting to be sent out; and the qdisc is not running -
3519 * xmit the skb directly.
3520 */
bfe0d029 3521
bfe0d029
ED
3522 qdisc_bstats_update(q, skb);
3523
55a93b3e 3524 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3525 if (unlikely(contended)) {
3526 spin_unlock(&q->busylock);
3527 contended = false;
3528 }
bbd8a0d3 3529 __qdisc_run(q);
6c148184 3530 }
bbd8a0d3 3531
6c148184 3532 qdisc_run_end(q);
bbd8a0d3
KK
3533 rc = NET_XMIT_SUCCESS;
3534 } else {
520ac30f 3535 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3536 if (qdisc_run_begin(q)) {
3537 if (unlikely(contended)) {
3538 spin_unlock(&q->busylock);
3539 contended = false;
3540 }
3541 __qdisc_run(q);
6c148184 3542 qdisc_run_end(q);
79640a4c 3543 }
bbd8a0d3
KK
3544 }
3545 spin_unlock(root_lock);
520ac30f
ED
3546 if (unlikely(to_free))
3547 kfree_skb_list(to_free);
79640a4c
ED
3548 if (unlikely(contended))
3549 spin_unlock(&q->busylock);
bbd8a0d3
KK
3550 return rc;
3551}
3552
86f8515f 3553#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3554static void skb_update_prio(struct sk_buff *skb)
3555{
4dcb31d4
ED
3556 const struct netprio_map *map;
3557 const struct sock *sk;
3558 unsigned int prioidx;
5bc1421e 3559
4dcb31d4
ED
3560 if (skb->priority)
3561 return;
3562 map = rcu_dereference_bh(skb->dev->priomap);
3563 if (!map)
3564 return;
3565 sk = skb_to_full_sk(skb);
3566 if (!sk)
3567 return;
91c68ce2 3568
4dcb31d4
ED
3569 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3570
3571 if (prioidx < map->priomap_len)
3572 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3573}
3574#else
3575#define skb_update_prio(skb)
3576#endif
3577
95603e22
MM
3578/**
3579 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3580 * @net: network namespace this loopback is happening in
3581 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3582 * @skb: buffer to transmit
3583 */
0c4b51f0 3584int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3585{
3586 skb_reset_mac_header(skb);
3587 __skb_pull(skb, skb_network_offset(skb));
3588 skb->pkt_type = PACKET_LOOPBACK;
3589 skb->ip_summed = CHECKSUM_UNNECESSARY;
3590 WARN_ON(!skb_dst(skb));
3591 skb_dst_force(skb);
3592 netif_rx_ni(skb);
3593 return 0;
3594}
3595EXPORT_SYMBOL(dev_loopback_xmit);
3596
1f211a1b
DB
3597#ifdef CONFIG_NET_EGRESS
3598static struct sk_buff *
3599sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3600{
46209401 3601 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3602 struct tcf_result cl_res;
3603
46209401 3604 if (!miniq)
1f211a1b
DB
3605 return skb;
3606
8dc07fdb 3607 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3608 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3609
46209401 3610 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3611 case TC_ACT_OK:
3612 case TC_ACT_RECLASSIFY:
3613 skb->tc_index = TC_H_MIN(cl_res.classid);
3614 break;
3615 case TC_ACT_SHOT:
46209401 3616 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3617 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3618 kfree_skb(skb);
3619 return NULL;
1f211a1b
DB
3620 case TC_ACT_STOLEN:
3621 case TC_ACT_QUEUED:
e25ea21f 3622 case TC_ACT_TRAP:
1f211a1b 3623 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3624 consume_skb(skb);
1f211a1b
DB
3625 return NULL;
3626 case TC_ACT_REDIRECT:
3627 /* No need to push/pop skb's mac_header here on egress! */
3628 skb_do_redirect(skb);
3629 *ret = NET_XMIT_SUCCESS;
3630 return NULL;
3631 default:
3632 break;
3633 }
3634
3635 return skb;
3636}
3637#endif /* CONFIG_NET_EGRESS */
3638
fc9bab24
AN
3639#ifdef CONFIG_XPS
3640static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3641 struct xps_dev_maps *dev_maps, unsigned int tci)
3642{
3643 struct xps_map *map;
3644 int queue_index = -1;
3645
3646 if (dev->num_tc) {
3647 tci *= dev->num_tc;
3648 tci += netdev_get_prio_tc_map(dev, skb->priority);
3649 }
3650
3651 map = rcu_dereference(dev_maps->attr_map[tci]);
3652 if (map) {
3653 if (map->len == 1)
3654 queue_index = map->queues[0];
3655 else
3656 queue_index = map->queues[reciprocal_scale(
3657 skb_get_hash(skb), map->len)];
3658 if (unlikely(queue_index >= dev->real_num_tx_queues))
3659 queue_index = -1;
3660 }
3661 return queue_index;
3662}
3663#endif
3664
eadec877
AD
3665static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3666 struct sk_buff *skb)
638b2a69
JP
3667{
3668#ifdef CONFIG_XPS
3669 struct xps_dev_maps *dev_maps;
fc9bab24 3670 struct sock *sk = skb->sk;
638b2a69
JP
3671 int queue_index = -1;
3672
04157469
AN
3673 if (!static_key_false(&xps_needed))
3674 return -1;
3675
638b2a69 3676 rcu_read_lock();
fc9bab24
AN
3677 if (!static_key_false(&xps_rxqs_needed))
3678 goto get_cpus_map;
3679
eadec877 3680 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3681 if (dev_maps) {
fc9bab24 3682 int tci = sk_rx_queue_get(sk);
184c449f 3683
fc9bab24
AN
3684 if (tci >= 0 && tci < dev->num_rx_queues)
3685 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3686 tci);
3687 }
184c449f 3688
fc9bab24
AN
3689get_cpus_map:
3690 if (queue_index < 0) {
eadec877 3691 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3692 if (dev_maps) {
3693 unsigned int tci = skb->sender_cpu - 1;
3694
3695 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3696 tci);
638b2a69
JP
3697 }
3698 }
3699 rcu_read_unlock();
3700
3701 return queue_index;
3702#else
3703 return -1;
3704#endif
3705}
3706
a4ea8a3d 3707u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3708 struct net_device *sb_dev)
a4ea8a3d
AD
3709{
3710 return 0;
3711}
3712EXPORT_SYMBOL(dev_pick_tx_zero);
3713
3714u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3715 struct net_device *sb_dev)
a4ea8a3d
AD
3716{
3717 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3718}
3719EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3720
b71b5837
PA
3721u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3722 struct net_device *sb_dev)
638b2a69
JP
3723{
3724 struct sock *sk = skb->sk;
3725 int queue_index = sk_tx_queue_get(sk);
3726
eadec877
AD
3727 sb_dev = sb_dev ? : dev;
3728
638b2a69
JP
3729 if (queue_index < 0 || skb->ooo_okay ||
3730 queue_index >= dev->real_num_tx_queues) {
eadec877 3731 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3732
638b2a69 3733 if (new_index < 0)
eadec877 3734 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3735
3736 if (queue_index != new_index && sk &&
004a5d01 3737 sk_fullsock(sk) &&
638b2a69
JP
3738 rcu_access_pointer(sk->sk_dst_cache))
3739 sk_tx_queue_set(sk, new_index);
3740
3741 queue_index = new_index;
3742 }
3743
3744 return queue_index;
3745}
b71b5837 3746EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 3747
4bd97d51
PA
3748struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3749 struct sk_buff *skb,
3750 struct net_device *sb_dev)
638b2a69
JP
3751{
3752 int queue_index = 0;
3753
3754#ifdef CONFIG_XPS
52bd2d62
ED
3755 u32 sender_cpu = skb->sender_cpu - 1;
3756
3757 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3758 skb->sender_cpu = raw_smp_processor_id() + 1;
3759#endif
3760
3761 if (dev->real_num_tx_queues != 1) {
3762 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3763
638b2a69 3764 if (ops->ndo_select_queue)
a350ecce 3765 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 3766 else
4bd97d51 3767 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 3768
d584527c 3769 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
3770 }
3771
3772 skb_set_queue_mapping(skb, queue_index);
3773 return netdev_get_tx_queue(dev, queue_index);
3774}
3775
d29f749e 3776/**
9d08dd3d 3777 * __dev_queue_xmit - transmit a buffer
d29f749e 3778 * @skb: buffer to transmit
eadec877 3779 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
3780 *
3781 * Queue a buffer for transmission to a network device. The caller must
3782 * have set the device and priority and built the buffer before calling
3783 * this function. The function can be called from an interrupt.
3784 *
3785 * A negative errno code is returned on a failure. A success does not
3786 * guarantee the frame will be transmitted as it may be dropped due
3787 * to congestion or traffic shaping.
3788 *
3789 * -----------------------------------------------------------------------------------
3790 * I notice this method can also return errors from the queue disciplines,
3791 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3792 * be positive.
3793 *
3794 * Regardless of the return value, the skb is consumed, so it is currently
3795 * difficult to retry a send to this method. (You can bump the ref count
3796 * before sending to hold a reference for retry if you are careful.)
3797 *
3798 * When calling this method, interrupts MUST be enabled. This is because
3799 * the BH enable code must have IRQs enabled so that it will not deadlock.
3800 * --BLG
3801 */
eadec877 3802static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
3803{
3804 struct net_device *dev = skb->dev;
dc2b4847 3805 struct netdev_queue *txq;
1da177e4
LT
3806 struct Qdisc *q;
3807 int rc = -ENOMEM;
f53c7239 3808 bool again = false;
1da177e4 3809
6d1ccff6
ED
3810 skb_reset_mac_header(skb);
3811
e7fd2885
WB
3812 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3813 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3814
4ec93edb
YH
3815 /* Disable soft irqs for various locks below. Also
3816 * stops preemption for RCU.
1da177e4 3817 */
4ec93edb 3818 rcu_read_lock_bh();
1da177e4 3819
5bc1421e
NH
3820 skb_update_prio(skb);
3821
1f211a1b
DB
3822 qdisc_pkt_len_init(skb);
3823#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3824 skb->tc_at_ingress = 0;
1f211a1b 3825# ifdef CONFIG_NET_EGRESS
aabf6772 3826 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
3827 skb = sch_handle_egress(skb, &rc, dev);
3828 if (!skb)
3829 goto out;
3830 }
3831# endif
3832#endif
02875878
ED
3833 /* If device/qdisc don't need skb->dst, release it right now while
3834 * its hot in this cpu cache.
3835 */
3836 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3837 skb_dst_drop(skb);
3838 else
3839 skb_dst_force(skb);
3840
4bd97d51 3841 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 3842 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3843
cf66ba58 3844 trace_net_dev_queue(skb);
1da177e4 3845 if (q->enqueue) {
bbd8a0d3 3846 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3847 goto out;
1da177e4
LT
3848 }
3849
3850 /* The device has no queue. Common case for software devices:
eb13da1a 3851 * loopback, all the sorts of tunnels...
1da177e4 3852
eb13da1a 3853 * Really, it is unlikely that netif_tx_lock protection is necessary
3854 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3855 * counters.)
3856 * However, it is possible, that they rely on protection
3857 * made by us here.
1da177e4 3858
eb13da1a 3859 * Check this and shot the lock. It is not prone from deadlocks.
3860 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3861 */
3862 if (dev->flags & IFF_UP) {
3863 int cpu = smp_processor_id(); /* ok because BHs are off */
3864
c773e847 3865 if (txq->xmit_lock_owner != cpu) {
97cdcf37 3866 if (dev_xmit_recursion())
745e20f1
ED
3867 goto recursion_alert;
3868
f53c7239 3869 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 3870 if (!skb)
d21fd63e 3871 goto out;
1f59533f 3872
c773e847 3873 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3874
73466498 3875 if (!netif_xmit_stopped(txq)) {
97cdcf37 3876 dev_xmit_recursion_inc();
ce93718f 3877 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 3878 dev_xmit_recursion_dec();
572a9d7b 3879 if (dev_xmit_complete(rc)) {
c773e847 3880 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3881 goto out;
3882 }
3883 }
c773e847 3884 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3885 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3886 dev->name);
1da177e4
LT
3887 } else {
3888 /* Recursion is detected! It is possible,
745e20f1
ED
3889 * unfortunately
3890 */
3891recursion_alert:
e87cc472
JP
3892 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3893 dev->name);
1da177e4
LT
3894 }
3895 }
3896
3897 rc = -ENETDOWN;
d4828d85 3898 rcu_read_unlock_bh();
1da177e4 3899
015f0688 3900 atomic_long_inc(&dev->tx_dropped);
1f59533f 3901 kfree_skb_list(skb);
1da177e4
LT
3902 return rc;
3903out:
d4828d85 3904 rcu_read_unlock_bh();
1da177e4
LT
3905 return rc;
3906}
f663dd9a 3907
2b4aa3ce 3908int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3909{
3910 return __dev_queue_xmit(skb, NULL);
3911}
2b4aa3ce 3912EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3913
eadec877 3914int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 3915{
eadec877 3916 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
3917}
3918EXPORT_SYMBOL(dev_queue_xmit_accel);
3919
865b03f2
MK
3920int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3921{
3922 struct net_device *dev = skb->dev;
3923 struct sk_buff *orig_skb = skb;
3924 struct netdev_queue *txq;
3925 int ret = NETDEV_TX_BUSY;
3926 bool again = false;
3927
3928 if (unlikely(!netif_running(dev) ||
3929 !netif_carrier_ok(dev)))
3930 goto drop;
3931
3932 skb = validate_xmit_skb_list(skb, dev, &again);
3933 if (skb != orig_skb)
3934 goto drop;
3935
3936 skb_set_queue_mapping(skb, queue_id);
3937 txq = skb_get_tx_queue(dev, skb);
3938
3939 local_bh_disable();
3940
3941 HARD_TX_LOCK(dev, txq, smp_processor_id());
3942 if (!netif_xmit_frozen_or_drv_stopped(txq))
3943 ret = netdev_start_xmit(skb, dev, txq, false);
3944 HARD_TX_UNLOCK(dev, txq);
3945
3946 local_bh_enable();
3947
3948 if (!dev_xmit_complete(ret))
3949 kfree_skb(skb);
3950
3951 return ret;
3952drop:
3953 atomic_long_inc(&dev->tx_dropped);
3954 kfree_skb_list(skb);
3955 return NET_XMIT_DROP;
3956}
3957EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 3958
eb13da1a 3959/*************************************************************************
3960 * Receiver routines
3961 *************************************************************************/
1da177e4 3962
6b2bedc3 3963int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3964EXPORT_SYMBOL(netdev_max_backlog);
3965
3b098e2d 3966int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3967int netdev_budget __read_mostly = 300;
7acf8a1e 3968unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3969int weight_p __read_mostly = 64; /* old backlog weight */
3970int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3971int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3972int dev_rx_weight __read_mostly = 64;
3973int dev_tx_weight __read_mostly = 64;
1da177e4 3974
eecfd7c4
ED
3975/* Called with irq disabled */
3976static inline void ____napi_schedule(struct softnet_data *sd,
3977 struct napi_struct *napi)
3978{
3979 list_add_tail(&napi->poll_list, &sd->poll_list);
3980 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3981}
3982
bfb564e7
KK
3983#ifdef CONFIG_RPS
3984
3985/* One global table that all flow-based protocols share. */
6e3f7faf 3986struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3987EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3988u32 rps_cpu_mask __read_mostly;
3989EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3990
dc05360f 3991struct static_key_false rps_needed __read_mostly;
3df97ba8 3992EXPORT_SYMBOL(rps_needed);
dc05360f 3993struct static_key_false rfs_needed __read_mostly;
13bfff25 3994EXPORT_SYMBOL(rfs_needed);
adc9300e 3995
c445477d
BH
3996static struct rps_dev_flow *
3997set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3998 struct rps_dev_flow *rflow, u16 next_cpu)
3999{
a31196b0 4000 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4001#ifdef CONFIG_RFS_ACCEL
4002 struct netdev_rx_queue *rxqueue;
4003 struct rps_dev_flow_table *flow_table;
4004 struct rps_dev_flow *old_rflow;
4005 u32 flow_id;
4006 u16 rxq_index;
4007 int rc;
4008
4009 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4010 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4011 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4012 goto out;
4013 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4014 if (rxq_index == skb_get_rx_queue(skb))
4015 goto out;
4016
4017 rxqueue = dev->_rx + rxq_index;
4018 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4019 if (!flow_table)
4020 goto out;
61b905da 4021 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4022 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4023 rxq_index, flow_id);
4024 if (rc < 0)
4025 goto out;
4026 old_rflow = rflow;
4027 rflow = &flow_table->flows[flow_id];
c445477d
BH
4028 rflow->filter = rc;
4029 if (old_rflow->filter == rflow->filter)
4030 old_rflow->filter = RPS_NO_FILTER;
4031 out:
4032#endif
4033 rflow->last_qtail =
09994d1b 4034 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4035 }
4036
09994d1b 4037 rflow->cpu = next_cpu;
c445477d
BH
4038 return rflow;
4039}
4040
bfb564e7
KK
4041/*
4042 * get_rps_cpu is called from netif_receive_skb and returns the target
4043 * CPU from the RPS map of the receiving queue for a given skb.
4044 * rcu_read_lock must be held on entry.
4045 */
4046static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4047 struct rps_dev_flow **rflowp)
4048{
567e4b79
ED
4049 const struct rps_sock_flow_table *sock_flow_table;
4050 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4051 struct rps_dev_flow_table *flow_table;
567e4b79 4052 struct rps_map *map;
bfb564e7 4053 int cpu = -1;
567e4b79 4054 u32 tcpu;
61b905da 4055 u32 hash;
bfb564e7
KK
4056
4057 if (skb_rx_queue_recorded(skb)) {
4058 u16 index = skb_get_rx_queue(skb);
567e4b79 4059
62fe0b40
BH
4060 if (unlikely(index >= dev->real_num_rx_queues)) {
4061 WARN_ONCE(dev->real_num_rx_queues > 1,
4062 "%s received packet on queue %u, but number "
4063 "of RX queues is %u\n",
4064 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4065 goto done;
4066 }
567e4b79
ED
4067 rxqueue += index;
4068 }
bfb564e7 4069
567e4b79
ED
4070 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4071
4072 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4073 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4074 if (!flow_table && !map)
bfb564e7
KK
4075 goto done;
4076
2d47b459 4077 skb_reset_network_header(skb);
61b905da
TH
4078 hash = skb_get_hash(skb);
4079 if (!hash)
bfb564e7
KK
4080 goto done;
4081
fec5e652
TH
4082 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4083 if (flow_table && sock_flow_table) {
fec5e652 4084 struct rps_dev_flow *rflow;
567e4b79
ED
4085 u32 next_cpu;
4086 u32 ident;
4087
4088 /* First check into global flow table if there is a match */
4089 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4090 if ((ident ^ hash) & ~rps_cpu_mask)
4091 goto try_rps;
fec5e652 4092
567e4b79
ED
4093 next_cpu = ident & rps_cpu_mask;
4094
4095 /* OK, now we know there is a match,
4096 * we can look at the local (per receive queue) flow table
4097 */
61b905da 4098 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4099 tcpu = rflow->cpu;
4100
fec5e652
TH
4101 /*
4102 * If the desired CPU (where last recvmsg was done) is
4103 * different from current CPU (one in the rx-queue flow
4104 * table entry), switch if one of the following holds:
a31196b0 4105 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4106 * - Current CPU is offline.
4107 * - The current CPU's queue tail has advanced beyond the
4108 * last packet that was enqueued using this table entry.
4109 * This guarantees that all previous packets for the flow
4110 * have been dequeued, thus preserving in order delivery.
4111 */
4112 if (unlikely(tcpu != next_cpu) &&
a31196b0 4113 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4114 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4115 rflow->last_qtail)) >= 0)) {
4116 tcpu = next_cpu;
c445477d 4117 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4118 }
c445477d 4119
a31196b0 4120 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4121 *rflowp = rflow;
4122 cpu = tcpu;
4123 goto done;
4124 }
4125 }
4126
567e4b79
ED
4127try_rps:
4128
0a9627f2 4129 if (map) {
8fc54f68 4130 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4131 if (cpu_online(tcpu)) {
4132 cpu = tcpu;
4133 goto done;
4134 }
4135 }
4136
4137done:
0a9627f2
TH
4138 return cpu;
4139}
4140
c445477d
BH
4141#ifdef CONFIG_RFS_ACCEL
4142
4143/**
4144 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4145 * @dev: Device on which the filter was set
4146 * @rxq_index: RX queue index
4147 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4148 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4149 *
4150 * Drivers that implement ndo_rx_flow_steer() should periodically call
4151 * this function for each installed filter and remove the filters for
4152 * which it returns %true.
4153 */
4154bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4155 u32 flow_id, u16 filter_id)
4156{
4157 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4158 struct rps_dev_flow_table *flow_table;
4159 struct rps_dev_flow *rflow;
4160 bool expire = true;
a31196b0 4161 unsigned int cpu;
c445477d
BH
4162
4163 rcu_read_lock();
4164 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4165 if (flow_table && flow_id <= flow_table->mask) {
4166 rflow = &flow_table->flows[flow_id];
6aa7de05 4167 cpu = READ_ONCE(rflow->cpu);
a31196b0 4168 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4169 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4170 rflow->last_qtail) <
4171 (int)(10 * flow_table->mask)))
4172 expire = false;
4173 }
4174 rcu_read_unlock();
4175 return expire;
4176}
4177EXPORT_SYMBOL(rps_may_expire_flow);
4178
4179#endif /* CONFIG_RFS_ACCEL */
4180
0a9627f2 4181/* Called from hardirq (IPI) context */
e36fa2f7 4182static void rps_trigger_softirq(void *data)
0a9627f2 4183{
e36fa2f7
ED
4184 struct softnet_data *sd = data;
4185
eecfd7c4 4186 ____napi_schedule(sd, &sd->backlog);
dee42870 4187 sd->received_rps++;
0a9627f2 4188}
e36fa2f7 4189
fec5e652 4190#endif /* CONFIG_RPS */
0a9627f2 4191
e36fa2f7
ED
4192/*
4193 * Check if this softnet_data structure is another cpu one
4194 * If yes, queue it to our IPI list and return 1
4195 * If no, return 0
4196 */
4197static int rps_ipi_queued(struct softnet_data *sd)
4198{
4199#ifdef CONFIG_RPS
903ceff7 4200 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4201
4202 if (sd != mysd) {
4203 sd->rps_ipi_next = mysd->rps_ipi_list;
4204 mysd->rps_ipi_list = sd;
4205
4206 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4207 return 1;
4208 }
4209#endif /* CONFIG_RPS */
4210 return 0;
4211}
4212
99bbc707
WB
4213#ifdef CONFIG_NET_FLOW_LIMIT
4214int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4215#endif
4216
4217static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4218{
4219#ifdef CONFIG_NET_FLOW_LIMIT
4220 struct sd_flow_limit *fl;
4221 struct softnet_data *sd;
4222 unsigned int old_flow, new_flow;
4223
4224 if (qlen < (netdev_max_backlog >> 1))
4225 return false;
4226
903ceff7 4227 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4228
4229 rcu_read_lock();
4230 fl = rcu_dereference(sd->flow_limit);
4231 if (fl) {
3958afa1 4232 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4233 old_flow = fl->history[fl->history_head];
4234 fl->history[fl->history_head] = new_flow;
4235
4236 fl->history_head++;
4237 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4238
4239 if (likely(fl->buckets[old_flow]))
4240 fl->buckets[old_flow]--;
4241
4242 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4243 fl->count++;
4244 rcu_read_unlock();
4245 return true;
4246 }
4247 }
4248 rcu_read_unlock();
4249#endif
4250 return false;
4251}
4252
0a9627f2
TH
4253/*
4254 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4255 * queue (may be a remote CPU queue).
4256 */
fec5e652
TH
4257static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4258 unsigned int *qtail)
0a9627f2 4259{
e36fa2f7 4260 struct softnet_data *sd;
0a9627f2 4261 unsigned long flags;
99bbc707 4262 unsigned int qlen;
0a9627f2 4263
e36fa2f7 4264 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4265
4266 local_irq_save(flags);
0a9627f2 4267
e36fa2f7 4268 rps_lock(sd);
e9e4dd32
JA
4269 if (!netif_running(skb->dev))
4270 goto drop;
99bbc707
WB
4271 qlen = skb_queue_len(&sd->input_pkt_queue);
4272 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4273 if (qlen) {
0a9627f2 4274enqueue:
e36fa2f7 4275 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4276 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4277 rps_unlock(sd);
152102c7 4278 local_irq_restore(flags);
0a9627f2
TH
4279 return NET_RX_SUCCESS;
4280 }
4281
ebda37c2
ED
4282 /* Schedule NAPI for backlog device
4283 * We can use non atomic operation since we own the queue lock
4284 */
4285 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4286 if (!rps_ipi_queued(sd))
eecfd7c4 4287 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4288 }
4289 goto enqueue;
4290 }
4291
e9e4dd32 4292drop:
dee42870 4293 sd->dropped++;
e36fa2f7 4294 rps_unlock(sd);
0a9627f2 4295
0a9627f2
TH
4296 local_irq_restore(flags);
4297
caf586e5 4298 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4299 kfree_skb(skb);
4300 return NET_RX_DROP;
4301}
1da177e4 4302
e817f856
JDB
4303static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4304{
4305 struct net_device *dev = skb->dev;
4306 struct netdev_rx_queue *rxqueue;
4307
4308 rxqueue = dev->_rx;
4309
4310 if (skb_rx_queue_recorded(skb)) {
4311 u16 index = skb_get_rx_queue(skb);
4312
4313 if (unlikely(index >= dev->real_num_rx_queues)) {
4314 WARN_ONCE(dev->real_num_rx_queues > 1,
4315 "%s received packet on queue %u, but number "
4316 "of RX queues is %u\n",
4317 dev->name, index, dev->real_num_rx_queues);
4318
4319 return rxqueue; /* Return first rxqueue */
4320 }
4321 rxqueue += index;
4322 }
4323 return rxqueue;
4324}
4325
d4455169 4326static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4327 struct xdp_buff *xdp,
d4455169
JF
4328 struct bpf_prog *xdp_prog)
4329{
e817f856 4330 struct netdev_rx_queue *rxqueue;
198d83bb 4331 void *orig_data, *orig_data_end;
de8f3a83 4332 u32 metalen, act = XDP_DROP;
29724956
JDB
4333 __be16 orig_eth_type;
4334 struct ethhdr *eth;
4335 bool orig_bcast;
d4455169
JF
4336 int hlen, off;
4337 u32 mac_len;
4338
4339 /* Reinjected packets coming from act_mirred or similar should
4340 * not get XDP generic processing.
4341 */
cd11b164 4342 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
d4455169
JF
4343 return XDP_PASS;
4344
de8f3a83
DB
4345 /* XDP packets must be linear and must have sufficient headroom
4346 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4347 * native XDP provides, thus we need to do it here as well.
4348 */
4349 if (skb_is_nonlinear(skb) ||
4350 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4351 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4352 int troom = skb->tail + skb->data_len - skb->end;
4353
4354 /* In case we have to go down the path and also linearize,
4355 * then lets do the pskb_expand_head() work just once here.
4356 */
4357 if (pskb_expand_head(skb,
4358 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4359 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4360 goto do_drop;
2d17d8d7 4361 if (skb_linearize(skb))
de8f3a83
DB
4362 goto do_drop;
4363 }
d4455169
JF
4364
4365 /* The XDP program wants to see the packet starting at the MAC
4366 * header.
4367 */
4368 mac_len = skb->data - skb_mac_header(skb);
4369 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4370 xdp->data = skb->data - mac_len;
4371 xdp->data_meta = xdp->data;
4372 xdp->data_end = xdp->data + hlen;
4373 xdp->data_hard_start = skb->data - skb_headroom(skb);
4374 orig_data_end = xdp->data_end;
4375 orig_data = xdp->data;
29724956
JDB
4376 eth = (struct ethhdr *)xdp->data;
4377 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4378 orig_eth_type = eth->h_proto;
d4455169 4379
e817f856 4380 rxqueue = netif_get_rxqueue(skb);
02671e23 4381 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4382
02671e23 4383 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4384
02671e23 4385 off = xdp->data - orig_data;
d4455169
JF
4386 if (off > 0)
4387 __skb_pull(skb, off);
4388 else if (off < 0)
4389 __skb_push(skb, -off);
92dd5452 4390 skb->mac_header += off;
d4455169 4391
198d83bb
NS
4392 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4393 * pckt.
4394 */
02671e23 4395 off = orig_data_end - xdp->data_end;
f7613120 4396 if (off != 0) {
02671e23 4397 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
f7613120 4398 skb->len -= off;
02671e23 4399
f7613120 4400 }
198d83bb 4401
29724956
JDB
4402 /* check if XDP changed eth hdr such SKB needs update */
4403 eth = (struct ethhdr *)xdp->data;
4404 if ((orig_eth_type != eth->h_proto) ||
4405 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4406 __skb_push(skb, ETH_HLEN);
4407 skb->protocol = eth_type_trans(skb, skb->dev);
4408 }
4409
d4455169 4410 switch (act) {
6103aa96 4411 case XDP_REDIRECT:
d4455169
JF
4412 case XDP_TX:
4413 __skb_push(skb, mac_len);
de8f3a83 4414 break;
d4455169 4415 case XDP_PASS:
02671e23 4416 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4417 if (metalen)
4418 skb_metadata_set(skb, metalen);
d4455169 4419 break;
d4455169
JF
4420 default:
4421 bpf_warn_invalid_xdp_action(act);
4422 /* fall through */
4423 case XDP_ABORTED:
4424 trace_xdp_exception(skb->dev, xdp_prog, act);
4425 /* fall through */
4426 case XDP_DROP:
4427 do_drop:
4428 kfree_skb(skb);
4429 break;
4430 }
4431
4432 return act;
4433}
4434
4435/* When doing generic XDP we have to bypass the qdisc layer and the
4436 * network taps in order to match in-driver-XDP behavior.
4437 */
7c497478 4438void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4439{
4440 struct net_device *dev = skb->dev;
4441 struct netdev_queue *txq;
4442 bool free_skb = true;
4443 int cpu, rc;
4444
4bd97d51 4445 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4446 cpu = smp_processor_id();
4447 HARD_TX_LOCK(dev, txq, cpu);
4448 if (!netif_xmit_stopped(txq)) {
4449 rc = netdev_start_xmit(skb, dev, txq, 0);
4450 if (dev_xmit_complete(rc))
4451 free_skb = false;
4452 }
4453 HARD_TX_UNLOCK(dev, txq);
4454 if (free_skb) {
4455 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4456 kfree_skb(skb);
4457 }
4458}
7c497478 4459EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169 4460
02786475 4461static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4462
7c497478 4463int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4464{
d4455169 4465 if (xdp_prog) {
02671e23
BT
4466 struct xdp_buff xdp;
4467 u32 act;
6103aa96 4468 int err;
d4455169 4469
02671e23 4470 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4471 if (act != XDP_PASS) {
6103aa96
JF
4472 switch (act) {
4473 case XDP_REDIRECT:
2facaad6 4474 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4475 &xdp, xdp_prog);
6103aa96
JF
4476 if (err)
4477 goto out_redir;
02671e23 4478 break;
6103aa96 4479 case XDP_TX:
d4455169 4480 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4481 break;
4482 }
d4455169
JF
4483 return XDP_DROP;
4484 }
4485 }
4486 return XDP_PASS;
6103aa96 4487out_redir:
6103aa96
JF
4488 kfree_skb(skb);
4489 return XDP_DROP;
d4455169 4490}
7c497478 4491EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4492
ae78dbfa 4493static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4494{
b0e28f1e 4495 int ret;
1da177e4 4496
588f0330 4497 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4498
cf66ba58 4499 trace_netif_rx(skb);
d4455169 4500
df334545 4501#ifdef CONFIG_RPS
dc05360f 4502 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4503 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4504 int cpu;
4505
cece1945 4506 preempt_disable();
b0e28f1e 4507 rcu_read_lock();
fec5e652
TH
4508
4509 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4510 if (cpu < 0)
4511 cpu = smp_processor_id();
fec5e652
TH
4512
4513 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4514
b0e28f1e 4515 rcu_read_unlock();
cece1945 4516 preempt_enable();
adc9300e
ED
4517 } else
4518#endif
fec5e652
TH
4519 {
4520 unsigned int qtail;
f4563a75 4521
fec5e652
TH
4522 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4523 put_cpu();
4524 }
b0e28f1e 4525 return ret;
1da177e4 4526}
ae78dbfa
BH
4527
4528/**
4529 * netif_rx - post buffer to the network code
4530 * @skb: buffer to post
4531 *
4532 * This function receives a packet from a device driver and queues it for
4533 * the upper (protocol) levels to process. It always succeeds. The buffer
4534 * may be dropped during processing for congestion control or by the
4535 * protocol layers.
4536 *
4537 * return values:
4538 * NET_RX_SUCCESS (no congestion)
4539 * NET_RX_DROP (packet was dropped)
4540 *
4541 */
4542
4543int netif_rx(struct sk_buff *skb)
4544{
b0e3f1bd
GB
4545 int ret;
4546
ae78dbfa
BH
4547 trace_netif_rx_entry(skb);
4548
b0e3f1bd
GB
4549 ret = netif_rx_internal(skb);
4550 trace_netif_rx_exit(ret);
4551
4552 return ret;
ae78dbfa 4553}
d1b19dff 4554EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4555
4556int netif_rx_ni(struct sk_buff *skb)
4557{
4558 int err;
4559
ae78dbfa
BH
4560 trace_netif_rx_ni_entry(skb);
4561
1da177e4 4562 preempt_disable();
ae78dbfa 4563 err = netif_rx_internal(skb);
1da177e4
LT
4564 if (local_softirq_pending())
4565 do_softirq();
4566 preempt_enable();
b0e3f1bd 4567 trace_netif_rx_ni_exit(err);
1da177e4
LT
4568
4569 return err;
4570}
1da177e4
LT
4571EXPORT_SYMBOL(netif_rx_ni);
4572
0766f788 4573static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4574{
903ceff7 4575 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4576
4577 if (sd->completion_queue) {
4578 struct sk_buff *clist;
4579
4580 local_irq_disable();
4581 clist = sd->completion_queue;
4582 sd->completion_queue = NULL;
4583 local_irq_enable();
4584
4585 while (clist) {
4586 struct sk_buff *skb = clist;
f4563a75 4587
1da177e4
LT
4588 clist = clist->next;
4589
63354797 4590 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4591 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4592 trace_consume_skb(skb);
4593 else
4594 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4595
4596 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4597 __kfree_skb(skb);
4598 else
4599 __kfree_skb_defer(skb);
1da177e4 4600 }
15fad714
JDB
4601
4602 __kfree_skb_flush();
1da177e4
LT
4603 }
4604
4605 if (sd->output_queue) {
37437bb2 4606 struct Qdisc *head;
1da177e4
LT
4607
4608 local_irq_disable();
4609 head = sd->output_queue;
4610 sd->output_queue = NULL;
a9cbd588 4611 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4612 local_irq_enable();
4613
4614 while (head) {
37437bb2 4615 struct Qdisc *q = head;
6b3ba914 4616 spinlock_t *root_lock = NULL;
37437bb2 4617
1da177e4
LT
4618 head = head->next_sched;
4619
6b3ba914
JF
4620 if (!(q->flags & TCQ_F_NOLOCK)) {
4621 root_lock = qdisc_lock(q);
4622 spin_lock(root_lock);
4623 }
3bcb846c
ED
4624 /* We need to make sure head->next_sched is read
4625 * before clearing __QDISC_STATE_SCHED
4626 */
4627 smp_mb__before_atomic();
4628 clear_bit(__QDISC_STATE_SCHED, &q->state);
4629 qdisc_run(q);
6b3ba914
JF
4630 if (root_lock)
4631 spin_unlock(root_lock);
1da177e4
LT
4632 }
4633 }
f53c7239
SK
4634
4635 xfrm_dev_backlog(sd);
1da177e4
LT
4636}
4637
181402a5 4638#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4639/* This hook is defined here for ATM LANE */
4640int (*br_fdb_test_addr_hook)(struct net_device *dev,
4641 unsigned char *addr) __read_mostly;
4fb019a0 4642EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4643#endif
1da177e4 4644
1f211a1b
DB
4645static inline struct sk_buff *
4646sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4647 struct net_device *orig_dev)
f697c3e8 4648{
e7582bab 4649#ifdef CONFIG_NET_CLS_ACT
46209401 4650 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4651 struct tcf_result cl_res;
24824a09 4652
c9e99fd0
DB
4653 /* If there's at least one ingress present somewhere (so
4654 * we get here via enabled static key), remaining devices
4655 * that are not configured with an ingress qdisc will bail
d2788d34 4656 * out here.
c9e99fd0 4657 */
46209401 4658 if (!miniq)
4577139b 4659 return skb;
46209401 4660
f697c3e8
HX
4661 if (*pt_prev) {
4662 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4663 *pt_prev = NULL;
1da177e4
LT
4664 }
4665
3365495c 4666 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4667 skb->tc_at_ingress = 1;
46209401 4668 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4669
46209401 4670 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
4671 case TC_ACT_OK:
4672 case TC_ACT_RECLASSIFY:
4673 skb->tc_index = TC_H_MIN(cl_res.classid);
4674 break;
4675 case TC_ACT_SHOT:
46209401 4676 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4677 kfree_skb(skb);
4678 return NULL;
d2788d34
DB
4679 case TC_ACT_STOLEN:
4680 case TC_ACT_QUEUED:
e25ea21f 4681 case TC_ACT_TRAP:
8a3a4c6e 4682 consume_skb(skb);
d2788d34 4683 return NULL;
27b29f63
AS
4684 case TC_ACT_REDIRECT:
4685 /* skb_mac_header check was done by cls/act_bpf, so
4686 * we can safely push the L2 header back before
4687 * redirecting to another netdev
4688 */
4689 __skb_push(skb, skb->mac_len);
4690 skb_do_redirect(skb);
4691 return NULL;
cd11b164
PA
4692 case TC_ACT_REINSERT:
4693 /* this does not scrub the packet, and updates stats on error */
4694 skb_tc_reinsert(skb, &cl_res);
4695 return NULL;
d2788d34
DB
4696 default:
4697 break;
f697c3e8 4698 }
e7582bab 4699#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4700 return skb;
4701}
1da177e4 4702
24b27fc4
MB
4703/**
4704 * netdev_is_rx_handler_busy - check if receive handler is registered
4705 * @dev: device to check
4706 *
4707 * Check if a receive handler is already registered for a given device.
4708 * Return true if there one.
4709 *
4710 * The caller must hold the rtnl_mutex.
4711 */
4712bool netdev_is_rx_handler_busy(struct net_device *dev)
4713{
4714 ASSERT_RTNL();
4715 return dev && rtnl_dereference(dev->rx_handler);
4716}
4717EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4718
ab95bfe0
JP
4719/**
4720 * netdev_rx_handler_register - register receive handler
4721 * @dev: device to register a handler for
4722 * @rx_handler: receive handler to register
93e2c32b 4723 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4724 *
e227867f 4725 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4726 * called from __netif_receive_skb. A negative errno code is returned
4727 * on a failure.
4728 *
4729 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4730 *
4731 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4732 */
4733int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4734 rx_handler_func_t *rx_handler,
4735 void *rx_handler_data)
ab95bfe0 4736{
1b7cd004 4737 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4738 return -EBUSY;
4739
f5426250
PA
4740 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4741 return -EINVAL;
4742
00cfec37 4743 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4744 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4745 rcu_assign_pointer(dev->rx_handler, rx_handler);
4746
4747 return 0;
4748}
4749EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4750
4751/**
4752 * netdev_rx_handler_unregister - unregister receive handler
4753 * @dev: device to unregister a handler from
4754 *
166ec369 4755 * Unregister a receive handler from a device.
ab95bfe0
JP
4756 *
4757 * The caller must hold the rtnl_mutex.
4758 */
4759void netdev_rx_handler_unregister(struct net_device *dev)
4760{
4761
4762 ASSERT_RTNL();
a9b3cd7f 4763 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4764 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4765 * section has a guarantee to see a non NULL rx_handler_data
4766 * as well.
4767 */
4768 synchronize_net();
a9b3cd7f 4769 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4770}
4771EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4772
b4b9e355
MG
4773/*
4774 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4775 * the special handling of PFMEMALLOC skbs.
4776 */
4777static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4778{
4779 switch (skb->protocol) {
2b8837ae
JP
4780 case htons(ETH_P_ARP):
4781 case htons(ETH_P_IP):
4782 case htons(ETH_P_IPV6):
4783 case htons(ETH_P_8021Q):
4784 case htons(ETH_P_8021AD):
b4b9e355
MG
4785 return true;
4786 default:
4787 return false;
4788 }
4789}
4790
e687ad60
PN
4791static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4792 int *ret, struct net_device *orig_dev)
4793{
e7582bab 4794#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4795 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4796 int ingress_retval;
4797
e687ad60
PN
4798 if (*pt_prev) {
4799 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4800 *pt_prev = NULL;
4801 }
4802
2c1e2703
AC
4803 rcu_read_lock();
4804 ingress_retval = nf_hook_ingress(skb);
4805 rcu_read_unlock();
4806 return ingress_retval;
e687ad60 4807 }
e7582bab 4808#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4809 return 0;
4810}
e687ad60 4811
88eb1944
EC
4812static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4813 struct packet_type **ppt_prev)
1da177e4
LT
4814{
4815 struct packet_type *ptype, *pt_prev;
ab95bfe0 4816 rx_handler_func_t *rx_handler;
f2ccd8fa 4817 struct net_device *orig_dev;
8a4eb573 4818 bool deliver_exact = false;
1da177e4 4819 int ret = NET_RX_DROP;
252e3346 4820 __be16 type;
1da177e4 4821
588f0330 4822 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4823
cf66ba58 4824 trace_netif_receive_skb(skb);
9b22ea56 4825
cc9bd5ce 4826 orig_dev = skb->dev;
8f903c70 4827
c1d2bbe1 4828 skb_reset_network_header(skb);
fda55eca
ED
4829 if (!skb_transport_header_was_set(skb))
4830 skb_reset_transport_header(skb);
0b5c9db1 4831 skb_reset_mac_len(skb);
1da177e4
LT
4832
4833 pt_prev = NULL;
4834
63d8ea7f 4835another_round:
b6858177 4836 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4837
4838 __this_cpu_inc(softnet_data.processed);
4839
458bf2f2
SH
4840 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4841 int ret2;
4842
4843 preempt_disable();
4844 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4845 preempt_enable();
4846
4847 if (ret2 != XDP_PASS)
4848 return NET_RX_DROP;
4849 skb_reset_mac_len(skb);
4850 }
4851
8ad227ff
PM
4852 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4853 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4854 skb = skb_vlan_untag(skb);
bcc6d479 4855 if (unlikely(!skb))
2c17d27c 4856 goto out;
bcc6d479
JP
4857 }
4858
e7246e12
WB
4859 if (skb_skip_tc_classify(skb))
4860 goto skip_classify;
1da177e4 4861
9754e293 4862 if (pfmemalloc)
b4b9e355
MG
4863 goto skip_taps;
4864
1da177e4 4865 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4866 if (pt_prev)
4867 ret = deliver_skb(skb, pt_prev, orig_dev);
4868 pt_prev = ptype;
4869 }
4870
4871 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4872 if (pt_prev)
4873 ret = deliver_skb(skb, pt_prev, orig_dev);
4874 pt_prev = ptype;
1da177e4
LT
4875 }
4876
b4b9e355 4877skip_taps:
1cf51900 4878#ifdef CONFIG_NET_INGRESS
aabf6772 4879 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 4880 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4881 if (!skb)
2c17d27c 4882 goto out;
e687ad60
PN
4883
4884 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4885 goto out;
4577139b 4886 }
1cf51900 4887#endif
a5135bcf 4888 skb_reset_tc(skb);
e7246e12 4889skip_classify:
9754e293 4890 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4891 goto drop;
4892
df8a39de 4893 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4894 if (pt_prev) {
4895 ret = deliver_skb(skb, pt_prev, orig_dev);
4896 pt_prev = NULL;
4897 }
48cc32d3 4898 if (vlan_do_receive(&skb))
2425717b
JF
4899 goto another_round;
4900 else if (unlikely(!skb))
2c17d27c 4901 goto out;
2425717b
JF
4902 }
4903
48cc32d3 4904 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4905 if (rx_handler) {
4906 if (pt_prev) {
4907 ret = deliver_skb(skb, pt_prev, orig_dev);
4908 pt_prev = NULL;
4909 }
8a4eb573
JP
4910 switch (rx_handler(&skb)) {
4911 case RX_HANDLER_CONSUMED:
3bc1b1ad 4912 ret = NET_RX_SUCCESS;
2c17d27c 4913 goto out;
8a4eb573 4914 case RX_HANDLER_ANOTHER:
63d8ea7f 4915 goto another_round;
8a4eb573
JP
4916 case RX_HANDLER_EXACT:
4917 deliver_exact = true;
4918 case RX_HANDLER_PASS:
4919 break;
4920 default:
4921 BUG();
4922 }
ab95bfe0 4923 }
1da177e4 4924
df8a39de 4925 if (unlikely(skb_vlan_tag_present(skb))) {
36b2f61a
GV
4926check_vlan_id:
4927 if (skb_vlan_tag_get_id(skb)) {
4928 /* Vlan id is non 0 and vlan_do_receive() above couldn't
4929 * find vlan device.
4930 */
d4b812de 4931 skb->pkt_type = PACKET_OTHERHOST;
36b2f61a
GV
4932 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4933 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4934 /* Outer header is 802.1P with vlan 0, inner header is
4935 * 802.1Q or 802.1AD and vlan_do_receive() above could
4936 * not find vlan dev for vlan id 0.
4937 */
4938 __vlan_hwaccel_clear_tag(skb);
4939 skb = skb_vlan_untag(skb);
4940 if (unlikely(!skb))
4941 goto out;
4942 if (vlan_do_receive(&skb))
4943 /* After stripping off 802.1P header with vlan 0
4944 * vlan dev is found for inner header.
4945 */
4946 goto another_round;
4947 else if (unlikely(!skb))
4948 goto out;
4949 else
4950 /* We have stripped outer 802.1P vlan 0 header.
4951 * But could not find vlan dev.
4952 * check again for vlan id to set OTHERHOST.
4953 */
4954 goto check_vlan_id;
4955 }
d4b812de
ED
4956 /* Note: we might in the future use prio bits
4957 * and set skb->priority like in vlan_do_receive()
4958 * For the time being, just ignore Priority Code Point
4959 */
b1817524 4960 __vlan_hwaccel_clear_tag(skb);
d4b812de 4961 }
48cc32d3 4962
7866a621
SN
4963 type = skb->protocol;
4964
63d8ea7f 4965 /* deliver only exact match when indicated */
7866a621
SN
4966 if (likely(!deliver_exact)) {
4967 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4968 &ptype_base[ntohs(type) &
4969 PTYPE_HASH_MASK]);
4970 }
1f3c8804 4971
7866a621
SN
4972 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4973 &orig_dev->ptype_specific);
4974
4975 if (unlikely(skb->dev != orig_dev)) {
4976 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4977 &skb->dev->ptype_specific);
1da177e4
LT
4978 }
4979
4980 if (pt_prev) {
1f8b977a 4981 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4982 goto drop;
88eb1944 4983 *ppt_prev = pt_prev;
1da177e4 4984 } else {
b4b9e355 4985drop:
6e7333d3
JW
4986 if (!deliver_exact)
4987 atomic_long_inc(&skb->dev->rx_dropped);
4988 else
4989 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4990 kfree_skb(skb);
4991 /* Jamal, now you will not able to escape explaining
4992 * me how you were going to use this. :-)
4993 */
4994 ret = NET_RX_DROP;
4995 }
4996
2c17d27c 4997out:
9754e293
DM
4998 return ret;
4999}
5000
88eb1944
EC
5001static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5002{
5003 struct net_device *orig_dev = skb->dev;
5004 struct packet_type *pt_prev = NULL;
5005 int ret;
5006
5007 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5008 if (pt_prev)
f5737cba
PA
5009 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5010 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5011 return ret;
5012}
5013
1c601d82
JDB
5014/**
5015 * netif_receive_skb_core - special purpose version of netif_receive_skb
5016 * @skb: buffer to process
5017 *
5018 * More direct receive version of netif_receive_skb(). It should
5019 * only be used by callers that have a need to skip RPS and Generic XDP.
5020 * Caller must also take care of handling if (page_is_)pfmemalloc.
5021 *
5022 * This function may only be called from softirq context and interrupts
5023 * should be enabled.
5024 *
5025 * Return values (usually ignored):
5026 * NET_RX_SUCCESS: no congestion
5027 * NET_RX_DROP: packet was dropped
5028 */
5029int netif_receive_skb_core(struct sk_buff *skb)
5030{
5031 int ret;
5032
5033 rcu_read_lock();
88eb1944 5034 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5035 rcu_read_unlock();
5036
5037 return ret;
5038}
5039EXPORT_SYMBOL(netif_receive_skb_core);
5040
88eb1944
EC
5041static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5042 struct packet_type *pt_prev,
5043 struct net_device *orig_dev)
4ce0017a
EC
5044{
5045 struct sk_buff *skb, *next;
5046
88eb1944
EC
5047 if (!pt_prev)
5048 return;
5049 if (list_empty(head))
5050 return;
17266ee9 5051 if (pt_prev->list_func != NULL)
fdf71426
PA
5052 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5053 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5054 else
9a5a90d1
AL
5055 list_for_each_entry_safe(skb, next, head, list) {
5056 skb_list_del_init(skb);
fdf71426 5057 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5058 }
88eb1944
EC
5059}
5060
5061static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5062{
5063 /* Fast-path assumptions:
5064 * - There is no RX handler.
5065 * - Only one packet_type matches.
5066 * If either of these fails, we will end up doing some per-packet
5067 * processing in-line, then handling the 'last ptype' for the whole
5068 * sublist. This can't cause out-of-order delivery to any single ptype,
5069 * because the 'last ptype' must be constant across the sublist, and all
5070 * other ptypes are handled per-packet.
5071 */
5072 /* Current (common) ptype of sublist */
5073 struct packet_type *pt_curr = NULL;
5074 /* Current (common) orig_dev of sublist */
5075 struct net_device *od_curr = NULL;
5076 struct list_head sublist;
5077 struct sk_buff *skb, *next;
5078
9af86f93 5079 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5080 list_for_each_entry_safe(skb, next, head, list) {
5081 struct net_device *orig_dev = skb->dev;
5082 struct packet_type *pt_prev = NULL;
5083
22f6bbb7 5084 skb_list_del_init(skb);
88eb1944 5085 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
9af86f93
EC
5086 if (!pt_prev)
5087 continue;
88eb1944
EC
5088 if (pt_curr != pt_prev || od_curr != orig_dev) {
5089 /* dispatch old sublist */
88eb1944
EC
5090 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5091 /* start new sublist */
9af86f93 5092 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5093 pt_curr = pt_prev;
5094 od_curr = orig_dev;
5095 }
9af86f93 5096 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5097 }
5098
5099 /* dispatch final sublist */
9af86f93 5100 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5101}
5102
9754e293
DM
5103static int __netif_receive_skb(struct sk_buff *skb)
5104{
5105 int ret;
5106
5107 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5108 unsigned int noreclaim_flag;
9754e293
DM
5109
5110 /*
5111 * PFMEMALLOC skbs are special, they should
5112 * - be delivered to SOCK_MEMALLOC sockets only
5113 * - stay away from userspace
5114 * - have bounded memory usage
5115 *
5116 * Use PF_MEMALLOC as this saves us from propagating the allocation
5117 * context down to all allocation sites.
5118 */
f1083048 5119 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5120 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5121 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5122 } else
88eb1944 5123 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5124
1da177e4
LT
5125 return ret;
5126}
0a9627f2 5127
4ce0017a
EC
5128static void __netif_receive_skb_list(struct list_head *head)
5129{
5130 unsigned long noreclaim_flag = 0;
5131 struct sk_buff *skb, *next;
5132 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5133
5134 list_for_each_entry_safe(skb, next, head, list) {
5135 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5136 struct list_head sublist;
5137
5138 /* Handle the previous sublist */
5139 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5140 if (!list_empty(&sublist))
5141 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5142 pfmemalloc = !pfmemalloc;
5143 /* See comments in __netif_receive_skb */
5144 if (pfmemalloc)
5145 noreclaim_flag = memalloc_noreclaim_save();
5146 else
5147 memalloc_noreclaim_restore(noreclaim_flag);
5148 }
5149 }
5150 /* Handle the remaining sublist */
b9f463d6
EC
5151 if (!list_empty(head))
5152 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5153 /* Restore pflags */
5154 if (pfmemalloc)
5155 memalloc_noreclaim_restore(noreclaim_flag);
5156}
5157
f4e63525 5158static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5159{
58038695 5160 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5161 struct bpf_prog *new = xdp->prog;
5162 int ret = 0;
5163
5164 switch (xdp->command) {
58038695 5165 case XDP_SETUP_PROG:
b5cdae32
DM
5166 rcu_assign_pointer(dev->xdp_prog, new);
5167 if (old)
5168 bpf_prog_put(old);
5169
5170 if (old && !new) {
02786475 5171 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5172 } else if (new && !old) {
02786475 5173 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5174 dev_disable_lro(dev);
56f5aa77 5175 dev_disable_gro_hw(dev);
b5cdae32
DM
5176 }
5177 break;
b5cdae32
DM
5178
5179 case XDP_QUERY_PROG:
58038695 5180 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
5181 break;
5182
5183 default:
5184 ret = -EINVAL;
5185 break;
5186 }
5187
5188 return ret;
5189}
5190
ae78dbfa 5191static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5192{
2c17d27c
JA
5193 int ret;
5194
588f0330 5195 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5196
c1f19b51
RC
5197 if (skb_defer_rx_timestamp(skb))
5198 return NET_RX_SUCCESS;
5199
bbbe211c 5200 rcu_read_lock();
df334545 5201#ifdef CONFIG_RPS
dc05360f 5202 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5203 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5204 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5205
3b098e2d
ED
5206 if (cpu >= 0) {
5207 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5208 rcu_read_unlock();
adc9300e 5209 return ret;
3b098e2d 5210 }
fec5e652 5211 }
1e94d72f 5212#endif
2c17d27c
JA
5213 ret = __netif_receive_skb(skb);
5214 rcu_read_unlock();
5215 return ret;
0a9627f2 5216}
ae78dbfa 5217
7da517a3
EC
5218static void netif_receive_skb_list_internal(struct list_head *head)
5219{
7da517a3 5220 struct sk_buff *skb, *next;
8c057efa 5221 struct list_head sublist;
7da517a3 5222
8c057efa 5223 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5224 list_for_each_entry_safe(skb, next, head, list) {
5225 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5226 skb_list_del_init(skb);
8c057efa
EC
5227 if (!skb_defer_rx_timestamp(skb))
5228 list_add_tail(&skb->list, &sublist);
7da517a3 5229 }
8c057efa 5230 list_splice_init(&sublist, head);
7da517a3 5231
7da517a3
EC
5232 rcu_read_lock();
5233#ifdef CONFIG_RPS
dc05360f 5234 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5235 list_for_each_entry_safe(skb, next, head, list) {
5236 struct rps_dev_flow voidflow, *rflow = &voidflow;
5237 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5238
5239 if (cpu >= 0) {
8c057efa 5240 /* Will be handled, remove from list */
22f6bbb7 5241 skb_list_del_init(skb);
8c057efa 5242 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5243 }
5244 }
5245 }
5246#endif
5247 __netif_receive_skb_list(head);
5248 rcu_read_unlock();
5249}
5250
ae78dbfa
BH
5251/**
5252 * netif_receive_skb - process receive buffer from network
5253 * @skb: buffer to process
5254 *
5255 * netif_receive_skb() is the main receive data processing function.
5256 * It always succeeds. The buffer may be dropped during processing
5257 * for congestion control or by the protocol layers.
5258 *
5259 * This function may only be called from softirq context and interrupts
5260 * should be enabled.
5261 *
5262 * Return values (usually ignored):
5263 * NET_RX_SUCCESS: no congestion
5264 * NET_RX_DROP: packet was dropped
5265 */
04eb4489 5266int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5267{
b0e3f1bd
GB
5268 int ret;
5269
ae78dbfa
BH
5270 trace_netif_receive_skb_entry(skb);
5271
b0e3f1bd
GB
5272 ret = netif_receive_skb_internal(skb);
5273 trace_netif_receive_skb_exit(ret);
5274
5275 return ret;
ae78dbfa 5276}
04eb4489 5277EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5278
f6ad8c1b
EC
5279/**
5280 * netif_receive_skb_list - process many receive buffers from network
5281 * @head: list of skbs to process.
5282 *
7da517a3
EC
5283 * Since return value of netif_receive_skb() is normally ignored, and
5284 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5285 *
5286 * This function may only be called from softirq context and interrupts
5287 * should be enabled.
5288 */
5289void netif_receive_skb_list(struct list_head *head)
5290{
7da517a3 5291 struct sk_buff *skb;
f6ad8c1b 5292
b9f463d6
EC
5293 if (list_empty(head))
5294 return;
b0e3f1bd
GB
5295 if (trace_netif_receive_skb_list_entry_enabled()) {
5296 list_for_each_entry(skb, head, list)
5297 trace_netif_receive_skb_list_entry(skb);
5298 }
7da517a3 5299 netif_receive_skb_list_internal(head);
b0e3f1bd 5300 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5301}
5302EXPORT_SYMBOL(netif_receive_skb_list);
5303
41852497 5304DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5305
5306/* Network device is going away, flush any packets still pending */
5307static void flush_backlog(struct work_struct *work)
6e583ce5 5308{
6e583ce5 5309 struct sk_buff *skb, *tmp;
145dd5f9
PA
5310 struct softnet_data *sd;
5311
5312 local_bh_disable();
5313 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5314
145dd5f9 5315 local_irq_disable();
e36fa2f7 5316 rps_lock(sd);
6e7676c1 5317 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5318 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5319 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 5320 kfree_skb(skb);
76cc8b13 5321 input_queue_head_incr(sd);
6e583ce5 5322 }
6e7676c1 5323 }
e36fa2f7 5324 rps_unlock(sd);
145dd5f9 5325 local_irq_enable();
6e7676c1
CG
5326
5327 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5328 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5329 __skb_unlink(skb, &sd->process_queue);
5330 kfree_skb(skb);
76cc8b13 5331 input_queue_head_incr(sd);
6e7676c1
CG
5332 }
5333 }
145dd5f9
PA
5334 local_bh_enable();
5335}
5336
41852497 5337static void flush_all_backlogs(void)
145dd5f9
PA
5338{
5339 unsigned int cpu;
5340
5341 get_online_cpus();
5342
41852497
ED
5343 for_each_online_cpu(cpu)
5344 queue_work_on(cpu, system_highpri_wq,
5345 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5346
5347 for_each_online_cpu(cpu)
41852497 5348 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5349
5350 put_online_cpus();
6e583ce5
SH
5351}
5352
aaa5d90b
PA
5353INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5354INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
d565b0a1
HX
5355static int napi_gro_complete(struct sk_buff *skb)
5356{
22061d80 5357 struct packet_offload *ptype;
d565b0a1 5358 __be16 type = skb->protocol;
22061d80 5359 struct list_head *head = &offload_base;
d565b0a1
HX
5360 int err = -ENOENT;
5361
c3c7c254
ED
5362 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5363
fc59f9a3
HX
5364 if (NAPI_GRO_CB(skb)->count == 1) {
5365 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5366 goto out;
fc59f9a3 5367 }
d565b0a1
HX
5368
5369 rcu_read_lock();
5370 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5371 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5372 continue;
5373
aaa5d90b
PA
5374 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5375 ipv6_gro_complete, inet_gro_complete,
5376 skb, 0);
d565b0a1
HX
5377 break;
5378 }
5379 rcu_read_unlock();
5380
5381 if (err) {
5382 WARN_ON(&ptype->list == head);
5383 kfree_skb(skb);
5384 return NET_RX_SUCCESS;
5385 }
5386
5387out:
ae78dbfa 5388 return netif_receive_skb_internal(skb);
d565b0a1
HX
5389}
5390
6312fe77 5391static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5392 bool flush_old)
d565b0a1 5393{
6312fe77 5394 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5395 struct sk_buff *skb, *p;
2e71a6f8 5396
07d78363 5397 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5398 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5399 return;
992cba7e 5400 skb_list_del_init(skb);
d565b0a1 5401 napi_gro_complete(skb);
6312fe77 5402 napi->gro_hash[index].count--;
d565b0a1 5403 }
d9f37d01
LR
5404
5405 if (!napi->gro_hash[index].count)
5406 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5407}
07d78363 5408
6312fe77 5409/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5410 * youngest packets at the head of it.
5411 * Complete skbs in reverse order to reduce latencies.
5412 */
5413void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5414{
42519ede
ED
5415 unsigned long bitmask = napi->gro_bitmask;
5416 unsigned int i, base = ~0U;
07d78363 5417
42519ede
ED
5418 while ((i = ffs(bitmask)) != 0) {
5419 bitmask >>= i;
5420 base += i;
5421 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5422 }
07d78363 5423}
86cac58b 5424EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5425
07d78363
DM
5426static struct list_head *gro_list_prepare(struct napi_struct *napi,
5427 struct sk_buff *skb)
89c5fa33 5428{
89c5fa33 5429 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5430 u32 hash = skb_get_hash_raw(skb);
07d78363 5431 struct list_head *head;
d4546c25 5432 struct sk_buff *p;
89c5fa33 5433
6312fe77 5434 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5435 list_for_each_entry(p, head, list) {
89c5fa33
ED
5436 unsigned long diffs;
5437
0b4cec8c
TH
5438 NAPI_GRO_CB(p)->flush = 0;
5439
5440 if (hash != skb_get_hash_raw(p)) {
5441 NAPI_GRO_CB(p)->same_flow = 0;
5442 continue;
5443 }
5444
89c5fa33 5445 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5446 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5447 if (skb_vlan_tag_present(p))
5448 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 5449 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5450 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5451 if (maclen == ETH_HLEN)
5452 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5453 skb_mac_header(skb));
89c5fa33
ED
5454 else if (!diffs)
5455 diffs = memcmp(skb_mac_header(p),
a50e233c 5456 skb_mac_header(skb),
89c5fa33
ED
5457 maclen);
5458 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5459 }
07d78363
DM
5460
5461 return head;
89c5fa33
ED
5462}
5463
299603e8
JC
5464static void skb_gro_reset_offset(struct sk_buff *skb)
5465{
5466 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5467 const skb_frag_t *frag0 = &pinfo->frags[0];
5468
5469 NAPI_GRO_CB(skb)->data_offset = 0;
5470 NAPI_GRO_CB(skb)->frag0 = NULL;
5471 NAPI_GRO_CB(skb)->frag0_len = 0;
5472
5473 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5474 pinfo->nr_frags &&
5475 !PageHighMem(skb_frag_page(frag0))) {
5476 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5477 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5478 skb_frag_size(frag0),
5479 skb->end - skb->tail);
89c5fa33
ED
5480 }
5481}
5482
a50e233c
ED
5483static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5484{
5485 struct skb_shared_info *pinfo = skb_shinfo(skb);
5486
5487 BUG_ON(skb->end - skb->tail < grow);
5488
5489 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5490
5491 skb->data_len -= grow;
5492 skb->tail += grow;
5493
5494 pinfo->frags[0].page_offset += grow;
5495 skb_frag_size_sub(&pinfo->frags[0], grow);
5496
5497 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5498 skb_frag_unref(skb, 0);
5499 memmove(pinfo->frags, pinfo->frags + 1,
5500 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5501 }
5502}
5503
6312fe77 5504static void gro_flush_oldest(struct list_head *head)
07d78363 5505{
6312fe77 5506 struct sk_buff *oldest;
07d78363 5507
6312fe77 5508 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5509
6312fe77 5510 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5511 * impossible.
5512 */
5513 if (WARN_ON_ONCE(!oldest))
5514 return;
5515
d9f37d01
LR
5516 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5517 * SKB to the chain.
07d78363 5518 */
ece23711 5519 skb_list_del_init(oldest);
07d78363
DM
5520 napi_gro_complete(oldest);
5521}
5522
aaa5d90b
PA
5523INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5524 struct sk_buff *));
5525INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5526 struct sk_buff *));
bb728820 5527static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5528{
6312fe77 5529 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5530 struct list_head *head = &offload_base;
22061d80 5531 struct packet_offload *ptype;
d565b0a1 5532 __be16 type = skb->protocol;
07d78363 5533 struct list_head *gro_head;
d4546c25 5534 struct sk_buff *pp = NULL;
5b252f0c 5535 enum gro_result ret;
d4546c25 5536 int same_flow;
a50e233c 5537 int grow;
d565b0a1 5538
b5cdae32 5539 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5540 goto normal;
5541
07d78363 5542 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5543
d565b0a1
HX
5544 rcu_read_lock();
5545 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5546 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5547 continue;
5548
86911732 5549 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5550 skb_reset_mac_len(skb);
d565b0a1 5551 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5552 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5553 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5554 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5555 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5556 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5557 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5558 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5559
662880f4
TH
5560 /* Setup for GRO checksum validation */
5561 switch (skb->ip_summed) {
5562 case CHECKSUM_COMPLETE:
5563 NAPI_GRO_CB(skb)->csum = skb->csum;
5564 NAPI_GRO_CB(skb)->csum_valid = 1;
5565 NAPI_GRO_CB(skb)->csum_cnt = 0;
5566 break;
5567 case CHECKSUM_UNNECESSARY:
5568 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5569 NAPI_GRO_CB(skb)->csum_valid = 0;
5570 break;
5571 default:
5572 NAPI_GRO_CB(skb)->csum_cnt = 0;
5573 NAPI_GRO_CB(skb)->csum_valid = 0;
5574 }
d565b0a1 5575
aaa5d90b
PA
5576 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5577 ipv6_gro_receive, inet_gro_receive,
5578 gro_head, skb);
d565b0a1
HX
5579 break;
5580 }
5581 rcu_read_unlock();
5582
5583 if (&ptype->list == head)
5584 goto normal;
5585
25393d3f
SK
5586 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5587 ret = GRO_CONSUMED;
5588 goto ok;
5589 }
5590
0da2afd5 5591 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5592 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5593
d565b0a1 5594 if (pp) {
992cba7e 5595 skb_list_del_init(pp);
d4546c25 5596 napi_gro_complete(pp);
6312fe77 5597 napi->gro_hash[hash].count--;
d565b0a1
HX
5598 }
5599
0da2afd5 5600 if (same_flow)
d565b0a1
HX
5601 goto ok;
5602
600adc18 5603 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5604 goto normal;
d565b0a1 5605
6312fe77
LR
5606 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5607 gro_flush_oldest(gro_head);
600adc18 5608 } else {
6312fe77 5609 napi->gro_hash[hash].count++;
600adc18 5610 }
d565b0a1 5611 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5612 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5613 NAPI_GRO_CB(skb)->last = skb;
86911732 5614 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5615 list_add(&skb->list, gro_head);
5d0d9be8 5616 ret = GRO_HELD;
d565b0a1 5617
ad0f9904 5618pull:
a50e233c
ED
5619 grow = skb_gro_offset(skb) - skb_headlen(skb);
5620 if (grow > 0)
5621 gro_pull_from_frag0(skb, grow);
d565b0a1 5622ok:
d9f37d01
LR
5623 if (napi->gro_hash[hash].count) {
5624 if (!test_bit(hash, &napi->gro_bitmask))
5625 __set_bit(hash, &napi->gro_bitmask);
5626 } else if (test_bit(hash, &napi->gro_bitmask)) {
5627 __clear_bit(hash, &napi->gro_bitmask);
5628 }
5629
5d0d9be8 5630 return ret;
d565b0a1
HX
5631
5632normal:
ad0f9904
HX
5633 ret = GRO_NORMAL;
5634 goto pull;
5d38a079 5635}
96e93eab 5636
bf5a755f
JC
5637struct packet_offload *gro_find_receive_by_type(__be16 type)
5638{
5639 struct list_head *offload_head = &offload_base;
5640 struct packet_offload *ptype;
5641
5642 list_for_each_entry_rcu(ptype, offload_head, list) {
5643 if (ptype->type != type || !ptype->callbacks.gro_receive)
5644 continue;
5645 return ptype;
5646 }
5647 return NULL;
5648}
e27a2f83 5649EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
5650
5651struct packet_offload *gro_find_complete_by_type(__be16 type)
5652{
5653 struct list_head *offload_head = &offload_base;
5654 struct packet_offload *ptype;
5655
5656 list_for_each_entry_rcu(ptype, offload_head, list) {
5657 if (ptype->type != type || !ptype->callbacks.gro_complete)
5658 continue;
5659 return ptype;
5660 }
5661 return NULL;
5662}
e27a2f83 5663EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5664
e44699d2
MK
5665static void napi_skb_free_stolen_head(struct sk_buff *skb)
5666{
5667 skb_dst_drop(skb);
5668 secpath_reset(skb);
5669 kmem_cache_free(skbuff_head_cache, skb);
5670}
5671
bb728820 5672static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 5673{
5d0d9be8
HX
5674 switch (ret) {
5675 case GRO_NORMAL:
ae78dbfa 5676 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
5677 ret = GRO_DROP;
5678 break;
5d38a079 5679
5d0d9be8 5680 case GRO_DROP:
5d38a079
HX
5681 kfree_skb(skb);
5682 break;
5b252f0c 5683
daa86548 5684 case GRO_MERGED_FREE:
e44699d2
MK
5685 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5686 napi_skb_free_stolen_head(skb);
5687 else
d7e8883c 5688 __kfree_skb(skb);
daa86548
ED
5689 break;
5690
5b252f0c
BH
5691 case GRO_HELD:
5692 case GRO_MERGED:
25393d3f 5693 case GRO_CONSUMED:
5b252f0c 5694 break;
5d38a079
HX
5695 }
5696
c7c4b3b6 5697 return ret;
5d0d9be8 5698}
5d0d9be8 5699
c7c4b3b6 5700gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 5701{
b0e3f1bd
GB
5702 gro_result_t ret;
5703
93f93a44 5704 skb_mark_napi_id(skb, napi);
ae78dbfa 5705 trace_napi_gro_receive_entry(skb);
86911732 5706
a50e233c
ED
5707 skb_gro_reset_offset(skb);
5708
b0e3f1bd
GB
5709 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5710 trace_napi_gro_receive_exit(ret);
5711
5712 return ret;
d565b0a1
HX
5713}
5714EXPORT_SYMBOL(napi_gro_receive);
5715
d0c2b0d2 5716static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5717{
93a35f59
ED
5718 if (unlikely(skb->pfmemalloc)) {
5719 consume_skb(skb);
5720 return;
5721 }
96e93eab 5722 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5723 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5724 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 5725 __vlan_hwaccel_clear_tag(skb);
66c46d74 5726 skb->dev = napi->dev;
6d152e23 5727 skb->skb_iif = 0;
33d9a2c7
ED
5728
5729 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5730 skb->pkt_type = PACKET_HOST;
5731
c3caf119
JC
5732 skb->encapsulation = 0;
5733 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5734 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 5735 secpath_reset(skb);
96e93eab
HX
5736
5737 napi->skb = skb;
5738}
96e93eab 5739
76620aaf 5740struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5741{
5d38a079 5742 struct sk_buff *skb = napi->skb;
5d38a079
HX
5743
5744 if (!skb) {
fd11a83d 5745 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5746 if (skb) {
5747 napi->skb = skb;
5748 skb_mark_napi_id(skb, napi);
5749 }
80595d59 5750 }
96e93eab
HX
5751 return skb;
5752}
76620aaf 5753EXPORT_SYMBOL(napi_get_frags);
96e93eab 5754
a50e233c
ED
5755static gro_result_t napi_frags_finish(struct napi_struct *napi,
5756 struct sk_buff *skb,
5757 gro_result_t ret)
96e93eab 5758{
5d0d9be8
HX
5759 switch (ret) {
5760 case GRO_NORMAL:
a50e233c
ED
5761 case GRO_HELD:
5762 __skb_push(skb, ETH_HLEN);
5763 skb->protocol = eth_type_trans(skb, skb->dev);
5764 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 5765 ret = GRO_DROP;
86911732 5766 break;
5d38a079 5767
5d0d9be8 5768 case GRO_DROP:
5d0d9be8
HX
5769 napi_reuse_skb(napi, skb);
5770 break;
5b252f0c 5771
e44699d2
MK
5772 case GRO_MERGED_FREE:
5773 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5774 napi_skb_free_stolen_head(skb);
5775 else
5776 napi_reuse_skb(napi, skb);
5777 break;
5778
5b252f0c 5779 case GRO_MERGED:
25393d3f 5780 case GRO_CONSUMED:
5b252f0c 5781 break;
5d0d9be8 5782 }
5d38a079 5783
c7c4b3b6 5784 return ret;
5d38a079 5785}
5d0d9be8 5786
a50e233c
ED
5787/* Upper GRO stack assumes network header starts at gro_offset=0
5788 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5789 * We copy ethernet header into skb->data to have a common layout.
5790 */
4adb9c4a 5791static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5792{
5793 struct sk_buff *skb = napi->skb;
a50e233c
ED
5794 const struct ethhdr *eth;
5795 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5796
5797 napi->skb = NULL;
5798
a50e233c
ED
5799 skb_reset_mac_header(skb);
5800 skb_gro_reset_offset(skb);
5801
a50e233c
ED
5802 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5803 eth = skb_gro_header_slow(skb, hlen, 0);
5804 if (unlikely(!eth)) {
4da46ceb
AC
5805 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5806 __func__, napi->dev->name);
a50e233c
ED
5807 napi_reuse_skb(napi, skb);
5808 return NULL;
5809 }
5810 } else {
a4270d67 5811 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
5812 gro_pull_from_frag0(skb, hlen);
5813 NAPI_GRO_CB(skb)->frag0 += hlen;
5814 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5815 }
a50e233c
ED
5816 __skb_pull(skb, hlen);
5817
5818 /*
5819 * This works because the only protocols we care about don't require
5820 * special handling.
5821 * We'll fix it up properly in napi_frags_finish()
5822 */
5823 skb->protocol = eth->h_proto;
76620aaf 5824
76620aaf
HX
5825 return skb;
5826}
76620aaf 5827
c7c4b3b6 5828gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5829{
b0e3f1bd 5830 gro_result_t ret;
76620aaf 5831 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5832
5833 if (!skb)
c7c4b3b6 5834 return GRO_DROP;
5d0d9be8 5835
ae78dbfa
BH
5836 trace_napi_gro_frags_entry(skb);
5837
b0e3f1bd
GB
5838 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5839 trace_napi_gro_frags_exit(ret);
5840
5841 return ret;
5d0d9be8 5842}
5d38a079
HX
5843EXPORT_SYMBOL(napi_gro_frags);
5844
573e8fca
TH
5845/* Compute the checksum from gro_offset and return the folded value
5846 * after adding in any pseudo checksum.
5847 */
5848__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5849{
5850 __wsum wsum;
5851 __sum16 sum;
5852
5853 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5854
5855 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5856 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 5857 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
5858 if (likely(!sum)) {
5859 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5860 !skb->csum_complete_sw)
7fe50ac8 5861 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
5862 }
5863
5864 NAPI_GRO_CB(skb)->csum = wsum;
5865 NAPI_GRO_CB(skb)->csum_valid = 1;
5866
5867 return sum;
5868}
5869EXPORT_SYMBOL(__skb_gro_checksum_complete);
5870
773fc8f6 5871static void net_rps_send_ipi(struct softnet_data *remsd)
5872{
5873#ifdef CONFIG_RPS
5874 while (remsd) {
5875 struct softnet_data *next = remsd->rps_ipi_next;
5876
5877 if (cpu_online(remsd->cpu))
5878 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5879 remsd = next;
5880 }
5881#endif
5882}
5883
e326bed2 5884/*
855abcf0 5885 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5886 * Note: called with local irq disabled, but exits with local irq enabled.
5887 */
5888static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5889{
5890#ifdef CONFIG_RPS
5891 struct softnet_data *remsd = sd->rps_ipi_list;
5892
5893 if (remsd) {
5894 sd->rps_ipi_list = NULL;
5895
5896 local_irq_enable();
5897
5898 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5899 net_rps_send_ipi(remsd);
e326bed2
ED
5900 } else
5901#endif
5902 local_irq_enable();
5903}
5904
d75b1ade
ED
5905static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5906{
5907#ifdef CONFIG_RPS
5908 return sd->rps_ipi_list != NULL;
5909#else
5910 return false;
5911#endif
5912}
5913
bea3348e 5914static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5915{
eecfd7c4 5916 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5917 bool again = true;
5918 int work = 0;
1da177e4 5919
e326bed2
ED
5920 /* Check if we have pending ipi, its better to send them now,
5921 * not waiting net_rx_action() end.
5922 */
d75b1ade 5923 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5924 local_irq_disable();
5925 net_rps_action_and_irq_enable(sd);
5926 }
d75b1ade 5927
3d48b53f 5928 napi->weight = dev_rx_weight;
145dd5f9 5929 while (again) {
1da177e4 5930 struct sk_buff *skb;
6e7676c1
CG
5931
5932 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5933 rcu_read_lock();
6e7676c1 5934 __netif_receive_skb(skb);
2c17d27c 5935 rcu_read_unlock();
76cc8b13 5936 input_queue_head_incr(sd);
145dd5f9 5937 if (++work >= quota)
76cc8b13 5938 return work;
145dd5f9 5939
6e7676c1 5940 }
1da177e4 5941
145dd5f9 5942 local_irq_disable();
e36fa2f7 5943 rps_lock(sd);
11ef7a89 5944 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5945 /*
5946 * Inline a custom version of __napi_complete().
5947 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5948 * and NAPI_STATE_SCHED is the only possible flag set
5949 * on backlog.
5950 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5951 * and we dont need an smp_mb() memory barrier.
5952 */
eecfd7c4 5953 napi->state = 0;
145dd5f9
PA
5954 again = false;
5955 } else {
5956 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5957 &sd->process_queue);
bea3348e 5958 }
e36fa2f7 5959 rps_unlock(sd);
145dd5f9 5960 local_irq_enable();
6e7676c1 5961 }
1da177e4 5962
bea3348e
SH
5963 return work;
5964}
1da177e4 5965
bea3348e
SH
5966/**
5967 * __napi_schedule - schedule for receive
c4ea43c5 5968 * @n: entry to schedule
bea3348e 5969 *
bc9ad166
ED
5970 * The entry's receive function will be scheduled to run.
5971 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5972 */
b5606c2d 5973void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5974{
5975 unsigned long flags;
1da177e4 5976
bea3348e 5977 local_irq_save(flags);
903ceff7 5978 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5979 local_irq_restore(flags);
1da177e4 5980}
bea3348e
SH
5981EXPORT_SYMBOL(__napi_schedule);
5982
39e6c820
ED
5983/**
5984 * napi_schedule_prep - check if napi can be scheduled
5985 * @n: napi context
5986 *
5987 * Test if NAPI routine is already running, and if not mark
5988 * it as running. This is used as a condition variable
5989 * insure only one NAPI poll instance runs. We also make
5990 * sure there is no pending NAPI disable.
5991 */
5992bool napi_schedule_prep(struct napi_struct *n)
5993{
5994 unsigned long val, new;
5995
5996 do {
5997 val = READ_ONCE(n->state);
5998 if (unlikely(val & NAPIF_STATE_DISABLE))
5999 return false;
6000 new = val | NAPIF_STATE_SCHED;
6001
6002 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6003 * This was suggested by Alexander Duyck, as compiler
6004 * emits better code than :
6005 * if (val & NAPIF_STATE_SCHED)
6006 * new |= NAPIF_STATE_MISSED;
6007 */
6008 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6009 NAPIF_STATE_MISSED;
6010 } while (cmpxchg(&n->state, val, new) != val);
6011
6012 return !(val & NAPIF_STATE_SCHED);
6013}
6014EXPORT_SYMBOL(napi_schedule_prep);
6015
bc9ad166
ED
6016/**
6017 * __napi_schedule_irqoff - schedule for receive
6018 * @n: entry to schedule
6019 *
6020 * Variant of __napi_schedule() assuming hard irqs are masked
6021 */
6022void __napi_schedule_irqoff(struct napi_struct *n)
6023{
6024 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6025}
6026EXPORT_SYMBOL(__napi_schedule_irqoff);
6027
364b6055 6028bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6029{
39e6c820 6030 unsigned long flags, val, new;
d565b0a1
HX
6031
6032 /*
217f6974
ED
6033 * 1) Don't let napi dequeue from the cpu poll list
6034 * just in case its running on a different cpu.
6035 * 2) If we are busy polling, do nothing here, we have
6036 * the guarantee we will be called later.
d565b0a1 6037 */
217f6974
ED
6038 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6039 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6040 return false;
d565b0a1 6041
d9f37d01 6042 if (n->gro_bitmask) {
3b47d303 6043 unsigned long timeout = 0;
d75b1ade 6044
3b47d303
ED
6045 if (work_done)
6046 timeout = n->dev->gro_flush_timeout;
6047
605108ac
PA
6048 /* When the NAPI instance uses a timeout and keeps postponing
6049 * it, we need to bound somehow the time packets are kept in
6050 * the GRO layer
6051 */
6052 napi_gro_flush(n, !!timeout);
3b47d303
ED
6053 if (timeout)
6054 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6055 HRTIMER_MODE_REL_PINNED);
3b47d303 6056 }
02c1602e 6057 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6058 /* If n->poll_list is not empty, we need to mask irqs */
6059 local_irq_save(flags);
02c1602e 6060 list_del_init(&n->poll_list);
d75b1ade
ED
6061 local_irq_restore(flags);
6062 }
39e6c820
ED
6063
6064 do {
6065 val = READ_ONCE(n->state);
6066
6067 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6068
6069 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6070
6071 /* If STATE_MISSED was set, leave STATE_SCHED set,
6072 * because we will call napi->poll() one more time.
6073 * This C code was suggested by Alexander Duyck to help gcc.
6074 */
6075 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6076 NAPIF_STATE_SCHED;
6077 } while (cmpxchg(&n->state, val, new) != val);
6078
6079 if (unlikely(val & NAPIF_STATE_MISSED)) {
6080 __napi_schedule(n);
6081 return false;
6082 }
6083
364b6055 6084 return true;
d565b0a1 6085}
3b47d303 6086EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6087
af12fa6e 6088/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6089static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6090{
6091 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6092 struct napi_struct *napi;
6093
6094 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6095 if (napi->napi_id == napi_id)
6096 return napi;
6097
6098 return NULL;
6099}
02d62e86
ED
6100
6101#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6102
ce6aea93 6103#define BUSY_POLL_BUDGET 8
217f6974
ED
6104
6105static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6106{
6107 int rc;
6108
39e6c820
ED
6109 /* Busy polling means there is a high chance device driver hard irq
6110 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6111 * set in napi_schedule_prep().
6112 * Since we are about to call napi->poll() once more, we can safely
6113 * clear NAPI_STATE_MISSED.
6114 *
6115 * Note: x86 could use a single "lock and ..." instruction
6116 * to perform these two clear_bit()
6117 */
6118 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6119 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6120
6121 local_bh_disable();
6122
6123 /* All we really want here is to re-enable device interrupts.
6124 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6125 */
6126 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1e22391e 6127 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974
ED
6128 netpoll_poll_unlock(have_poll_lock);
6129 if (rc == BUSY_POLL_BUDGET)
6130 __napi_schedule(napi);
6131 local_bh_enable();
217f6974
ED
6132}
6133
7db6b048
SS
6134void napi_busy_loop(unsigned int napi_id,
6135 bool (*loop_end)(void *, unsigned long),
6136 void *loop_end_arg)
02d62e86 6137{
7db6b048 6138 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6139 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6140 void *have_poll_lock = NULL;
02d62e86 6141 struct napi_struct *napi;
217f6974
ED
6142
6143restart:
217f6974 6144 napi_poll = NULL;
02d62e86 6145
2a028ecb 6146 rcu_read_lock();
02d62e86 6147
545cd5e5 6148 napi = napi_by_id(napi_id);
02d62e86
ED
6149 if (!napi)
6150 goto out;
6151
217f6974
ED
6152 preempt_disable();
6153 for (;;) {
2b5cd0df
AD
6154 int work = 0;
6155
2a028ecb 6156 local_bh_disable();
217f6974
ED
6157 if (!napi_poll) {
6158 unsigned long val = READ_ONCE(napi->state);
6159
6160 /* If multiple threads are competing for this napi,
6161 * we avoid dirtying napi->state as much as we can.
6162 */
6163 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6164 NAPIF_STATE_IN_BUSY_POLL))
6165 goto count;
6166 if (cmpxchg(&napi->state, val,
6167 val | NAPIF_STATE_IN_BUSY_POLL |
6168 NAPIF_STATE_SCHED) != val)
6169 goto count;
6170 have_poll_lock = netpoll_poll_lock(napi);
6171 napi_poll = napi->poll;
6172 }
2b5cd0df
AD
6173 work = napi_poll(napi, BUSY_POLL_BUDGET);
6174 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 6175count:
2b5cd0df 6176 if (work > 0)
7db6b048 6177 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6178 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6179 local_bh_enable();
02d62e86 6180
7db6b048 6181 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6182 break;
02d62e86 6183
217f6974
ED
6184 if (unlikely(need_resched())) {
6185 if (napi_poll)
6186 busy_poll_stop(napi, have_poll_lock);
6187 preempt_enable();
6188 rcu_read_unlock();
6189 cond_resched();
7db6b048 6190 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6191 return;
217f6974
ED
6192 goto restart;
6193 }
6cdf89b1 6194 cpu_relax();
217f6974
ED
6195 }
6196 if (napi_poll)
6197 busy_poll_stop(napi, have_poll_lock);
6198 preempt_enable();
02d62e86 6199out:
2a028ecb 6200 rcu_read_unlock();
02d62e86 6201}
7db6b048 6202EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6203
6204#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6205
149d6ad8 6206static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6207{
d64b5e85
ED
6208 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6209 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 6210 return;
af12fa6e 6211
52bd2d62 6212 spin_lock(&napi_hash_lock);
af12fa6e 6213
545cd5e5 6214 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6215 do {
545cd5e5
AD
6216 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6217 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6218 } while (napi_by_id(napi_gen_id));
6219 napi->napi_id = napi_gen_id;
af12fa6e 6220
52bd2d62
ED
6221 hlist_add_head_rcu(&napi->napi_hash_node,
6222 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6223
52bd2d62 6224 spin_unlock(&napi_hash_lock);
af12fa6e 6225}
af12fa6e
ET
6226
6227/* Warning : caller is responsible to make sure rcu grace period
6228 * is respected before freeing memory containing @napi
6229 */
34cbe27e 6230bool napi_hash_del(struct napi_struct *napi)
af12fa6e 6231{
34cbe27e
ED
6232 bool rcu_sync_needed = false;
6233
af12fa6e
ET
6234 spin_lock(&napi_hash_lock);
6235
34cbe27e
ED
6236 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6237 rcu_sync_needed = true;
af12fa6e 6238 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 6239 }
af12fa6e 6240 spin_unlock(&napi_hash_lock);
34cbe27e 6241 return rcu_sync_needed;
af12fa6e
ET
6242}
6243EXPORT_SYMBOL_GPL(napi_hash_del);
6244
3b47d303
ED
6245static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6246{
6247 struct napi_struct *napi;
6248
6249 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6250
6251 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6252 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6253 */
d9f37d01 6254 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
39e6c820
ED
6255 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6256 __napi_schedule_irqoff(napi);
3b47d303
ED
6257
6258 return HRTIMER_NORESTART;
6259}
6260
7c4ec749 6261static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6262{
07d78363
DM
6263 int i;
6264
6312fe77
LR
6265 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6266 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6267 napi->gro_hash[i].count = 0;
6268 }
7c4ec749
DM
6269 napi->gro_bitmask = 0;
6270}
6271
6272void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6273 int (*poll)(struct napi_struct *, int), int weight)
6274{
6275 INIT_LIST_HEAD(&napi->poll_list);
6276 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6277 napi->timer.function = napi_watchdog;
6278 init_gro_hash(napi);
5d38a079 6279 napi->skb = NULL;
d565b0a1 6280 napi->poll = poll;
82dc3c63 6281 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6282 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6283 weight);
d565b0a1
HX
6284 napi->weight = weight;
6285 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 6286 napi->dev = dev;
5d38a079 6287#ifdef CONFIG_NETPOLL
d565b0a1
HX
6288 napi->poll_owner = -1;
6289#endif
6290 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 6291 napi_hash_add(napi);
d565b0a1
HX
6292}
6293EXPORT_SYMBOL(netif_napi_add);
6294
3b47d303
ED
6295void napi_disable(struct napi_struct *n)
6296{
6297 might_sleep();
6298 set_bit(NAPI_STATE_DISABLE, &n->state);
6299
6300 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6301 msleep(1);
2d8bff12
NH
6302 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6303 msleep(1);
3b47d303
ED
6304
6305 hrtimer_cancel(&n->timer);
6306
6307 clear_bit(NAPI_STATE_DISABLE, &n->state);
6308}
6309EXPORT_SYMBOL(napi_disable);
6310
07d78363 6311static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6312{
07d78363 6313 int i;
d4546c25 6314
07d78363
DM
6315 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6316 struct sk_buff *skb, *n;
6317
6312fe77 6318 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6319 kfree_skb(skb);
6312fe77 6320 napi->gro_hash[i].count = 0;
07d78363 6321 }
d4546c25
DM
6322}
6323
93d05d4a 6324/* Must be called in process context */
d565b0a1
HX
6325void netif_napi_del(struct napi_struct *napi)
6326{
93d05d4a
ED
6327 might_sleep();
6328 if (napi_hash_del(napi))
6329 synchronize_net();
d7b06636 6330 list_del_init(&napi->dev_list);
76620aaf 6331 napi_free_frags(napi);
d565b0a1 6332
07d78363 6333 flush_gro_hash(napi);
d9f37d01 6334 napi->gro_bitmask = 0;
d565b0a1
HX
6335}
6336EXPORT_SYMBOL(netif_napi_del);
6337
726ce70e
HX
6338static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6339{
6340 void *have;
6341 int work, weight;
6342
6343 list_del_init(&n->poll_list);
6344
6345 have = netpoll_poll_lock(n);
6346
6347 weight = n->weight;
6348
6349 /* This NAPI_STATE_SCHED test is for avoiding a race
6350 * with netpoll's poll_napi(). Only the entity which
6351 * obtains the lock and sees NAPI_STATE_SCHED set will
6352 * actually make the ->poll() call. Therefore we avoid
6353 * accidentally calling ->poll() when NAPI is not scheduled.
6354 */
6355 work = 0;
6356 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6357 work = n->poll(n, weight);
1db19db7 6358 trace_napi_poll(n, work, weight);
726ce70e
HX
6359 }
6360
6361 WARN_ON_ONCE(work > weight);
6362
6363 if (likely(work < weight))
6364 goto out_unlock;
6365
6366 /* Drivers must not modify the NAPI state if they
6367 * consume the entire weight. In such cases this code
6368 * still "owns" the NAPI instance and therefore can
6369 * move the instance around on the list at-will.
6370 */
6371 if (unlikely(napi_disable_pending(n))) {
6372 napi_complete(n);
6373 goto out_unlock;
6374 }
6375
d9f37d01 6376 if (n->gro_bitmask) {
726ce70e
HX
6377 /* flush too old packets
6378 * If HZ < 1000, flush all packets.
6379 */
6380 napi_gro_flush(n, HZ >= 1000);
6381 }
6382
001ce546
HX
6383 /* Some drivers may have called napi_schedule
6384 * prior to exhausting their budget.
6385 */
6386 if (unlikely(!list_empty(&n->poll_list))) {
6387 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6388 n->dev ? n->dev->name : "backlog");
6389 goto out_unlock;
6390 }
6391
726ce70e
HX
6392 list_add_tail(&n->poll_list, repoll);
6393
6394out_unlock:
6395 netpoll_poll_unlock(have);
6396
6397 return work;
6398}
6399
0766f788 6400static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6401{
903ceff7 6402 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6403 unsigned long time_limit = jiffies +
6404 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6405 int budget = netdev_budget;
d75b1ade
ED
6406 LIST_HEAD(list);
6407 LIST_HEAD(repoll);
53fb95d3 6408
1da177e4 6409 local_irq_disable();
d75b1ade
ED
6410 list_splice_init(&sd->poll_list, &list);
6411 local_irq_enable();
1da177e4 6412
ceb8d5bf 6413 for (;;) {
bea3348e 6414 struct napi_struct *n;
1da177e4 6415
ceb8d5bf
HX
6416 if (list_empty(&list)) {
6417 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6418 goto out;
ceb8d5bf
HX
6419 break;
6420 }
6421
6bd373eb
HX
6422 n = list_first_entry(&list, struct napi_struct, poll_list);
6423 budget -= napi_poll(n, &repoll);
6424
d75b1ade 6425 /* If softirq window is exhausted then punt.
24f8b238
SH
6426 * Allow this to run for 2 jiffies since which will allow
6427 * an average latency of 1.5/HZ.
bea3348e 6428 */
ceb8d5bf
HX
6429 if (unlikely(budget <= 0 ||
6430 time_after_eq(jiffies, time_limit))) {
6431 sd->time_squeeze++;
6432 break;
6433 }
1da177e4 6434 }
d75b1ade 6435
d75b1ade
ED
6436 local_irq_disable();
6437
6438 list_splice_tail_init(&sd->poll_list, &list);
6439 list_splice_tail(&repoll, &list);
6440 list_splice(&list, &sd->poll_list);
6441 if (!list_empty(&sd->poll_list))
6442 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6443
e326bed2 6444 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6445out:
6446 __kfree_skb_flush();
1da177e4
LT
6447}
6448
aa9d8560 6449struct netdev_adjacent {
9ff162a8 6450 struct net_device *dev;
5d261913
VF
6451
6452 /* upper master flag, there can only be one master device per list */
9ff162a8 6453 bool master;
5d261913 6454
5d261913
VF
6455 /* counter for the number of times this device was added to us */
6456 u16 ref_nr;
6457
402dae96
VF
6458 /* private field for the users */
6459 void *private;
6460
9ff162a8
JP
6461 struct list_head list;
6462 struct rcu_head rcu;
9ff162a8
JP
6463};
6464
6ea29da1 6465static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6466 struct list_head *adj_list)
9ff162a8 6467{
5d261913 6468 struct netdev_adjacent *adj;
5d261913 6469
2f268f12 6470 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6471 if (adj->dev == adj_dev)
6472 return adj;
9ff162a8
JP
6473 }
6474 return NULL;
6475}
6476
f1170fd4
DA
6477static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6478{
6479 struct net_device *dev = data;
6480
6481 return upper_dev == dev;
6482}
6483
9ff162a8
JP
6484/**
6485 * netdev_has_upper_dev - Check if device is linked to an upper device
6486 * @dev: device
6487 * @upper_dev: upper device to check
6488 *
6489 * Find out if a device is linked to specified upper device and return true
6490 * in case it is. Note that this checks only immediate upper device,
6491 * not through a complete stack of devices. The caller must hold the RTNL lock.
6492 */
6493bool netdev_has_upper_dev(struct net_device *dev,
6494 struct net_device *upper_dev)
6495{
6496 ASSERT_RTNL();
6497
f1170fd4
DA
6498 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6499 upper_dev);
9ff162a8
JP
6500}
6501EXPORT_SYMBOL(netdev_has_upper_dev);
6502
1a3f060c
DA
6503/**
6504 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6505 * @dev: device
6506 * @upper_dev: upper device to check
6507 *
6508 * Find out if a device is linked to specified upper device and return true
6509 * in case it is. Note that this checks the entire upper device chain.
6510 * The caller must hold rcu lock.
6511 */
6512
1a3f060c
DA
6513bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6514 struct net_device *upper_dev)
6515{
6516 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6517 upper_dev);
6518}
6519EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6520
9ff162a8
JP
6521/**
6522 * netdev_has_any_upper_dev - Check if device is linked to some device
6523 * @dev: device
6524 *
6525 * Find out if a device is linked to an upper device and return true in case
6526 * it is. The caller must hold the RTNL lock.
6527 */
25cc72a3 6528bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6529{
6530 ASSERT_RTNL();
6531
f1170fd4 6532 return !list_empty(&dev->adj_list.upper);
9ff162a8 6533}
25cc72a3 6534EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6535
6536/**
6537 * netdev_master_upper_dev_get - Get master upper device
6538 * @dev: device
6539 *
6540 * Find a master upper device and return pointer to it or NULL in case
6541 * it's not there. The caller must hold the RTNL lock.
6542 */
6543struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6544{
aa9d8560 6545 struct netdev_adjacent *upper;
9ff162a8
JP
6546
6547 ASSERT_RTNL();
6548
2f268f12 6549 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6550 return NULL;
6551
2f268f12 6552 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6553 struct netdev_adjacent, list);
9ff162a8
JP
6554 if (likely(upper->master))
6555 return upper->dev;
6556 return NULL;
6557}
6558EXPORT_SYMBOL(netdev_master_upper_dev_get);
6559
0f524a80
DA
6560/**
6561 * netdev_has_any_lower_dev - Check if device is linked to some device
6562 * @dev: device
6563 *
6564 * Find out if a device is linked to a lower device and return true in case
6565 * it is. The caller must hold the RTNL lock.
6566 */
6567static bool netdev_has_any_lower_dev(struct net_device *dev)
6568{
6569 ASSERT_RTNL();
6570
6571 return !list_empty(&dev->adj_list.lower);
6572}
6573
b6ccba4c
VF
6574void *netdev_adjacent_get_private(struct list_head *adj_list)
6575{
6576 struct netdev_adjacent *adj;
6577
6578 adj = list_entry(adj_list, struct netdev_adjacent, list);
6579
6580 return adj->private;
6581}
6582EXPORT_SYMBOL(netdev_adjacent_get_private);
6583
44a40855
VY
6584/**
6585 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6586 * @dev: device
6587 * @iter: list_head ** of the current position
6588 *
6589 * Gets the next device from the dev's upper list, starting from iter
6590 * position. The caller must hold RCU read lock.
6591 */
6592struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6593 struct list_head **iter)
6594{
6595 struct netdev_adjacent *upper;
6596
6597 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6598
6599 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6600
6601 if (&upper->list == &dev->adj_list.upper)
6602 return NULL;
6603
6604 *iter = &upper->list;
6605
6606 return upper->dev;
6607}
6608EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6609
1a3f060c
DA
6610static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6611 struct list_head **iter)
6612{
6613 struct netdev_adjacent *upper;
6614
6615 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6616
6617 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6618
6619 if (&upper->list == &dev->adj_list.upper)
6620 return NULL;
6621
6622 *iter = &upper->list;
6623
6624 return upper->dev;
6625}
6626
6627int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6628 int (*fn)(struct net_device *dev,
6629 void *data),
6630 void *data)
6631{
6632 struct net_device *udev;
6633 struct list_head *iter;
6634 int ret;
6635
6636 for (iter = &dev->adj_list.upper,
6637 udev = netdev_next_upper_dev_rcu(dev, &iter);
6638 udev;
6639 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6640 /* first is the upper device itself */
6641 ret = fn(udev, data);
6642 if (ret)
6643 return ret;
6644
6645 /* then look at all of its upper devices */
6646 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6647 if (ret)
6648 return ret;
6649 }
6650
6651 return 0;
6652}
6653EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6654
31088a11
VF
6655/**
6656 * netdev_lower_get_next_private - Get the next ->private from the
6657 * lower neighbour list
6658 * @dev: device
6659 * @iter: list_head ** of the current position
6660 *
6661 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6662 * list, starting from iter position. The caller must hold either hold the
6663 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 6664 * list will remain unchanged.
31088a11
VF
6665 */
6666void *netdev_lower_get_next_private(struct net_device *dev,
6667 struct list_head **iter)
6668{
6669 struct netdev_adjacent *lower;
6670
6671 lower = list_entry(*iter, struct netdev_adjacent, list);
6672
6673 if (&lower->list == &dev->adj_list.lower)
6674 return NULL;
6675
6859e7df 6676 *iter = lower->list.next;
31088a11
VF
6677
6678 return lower->private;
6679}
6680EXPORT_SYMBOL(netdev_lower_get_next_private);
6681
6682/**
6683 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6684 * lower neighbour list, RCU
6685 * variant
6686 * @dev: device
6687 * @iter: list_head ** of the current position
6688 *
6689 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6690 * list, starting from iter position. The caller must hold RCU read lock.
6691 */
6692void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6693 struct list_head **iter)
6694{
6695 struct netdev_adjacent *lower;
6696
6697 WARN_ON_ONCE(!rcu_read_lock_held());
6698
6699 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6700
6701 if (&lower->list == &dev->adj_list.lower)
6702 return NULL;
6703
6859e7df 6704 *iter = &lower->list;
31088a11
VF
6705
6706 return lower->private;
6707}
6708EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6709
4085ebe8
VY
6710/**
6711 * netdev_lower_get_next - Get the next device from the lower neighbour
6712 * list
6713 * @dev: device
6714 * @iter: list_head ** of the current position
6715 *
6716 * Gets the next netdev_adjacent from the dev's lower neighbour
6717 * list, starting from iter position. The caller must hold RTNL lock or
6718 * its own locking that guarantees that the neighbour lower
b469139e 6719 * list will remain unchanged.
4085ebe8
VY
6720 */
6721void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6722{
6723 struct netdev_adjacent *lower;
6724
cfdd28be 6725 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
6726
6727 if (&lower->list == &dev->adj_list.lower)
6728 return NULL;
6729
cfdd28be 6730 *iter = lower->list.next;
4085ebe8
VY
6731
6732 return lower->dev;
6733}
6734EXPORT_SYMBOL(netdev_lower_get_next);
6735
1a3f060c
DA
6736static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6737 struct list_head **iter)
6738{
6739 struct netdev_adjacent *lower;
6740
46b5ab1a 6741 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
6742
6743 if (&lower->list == &dev->adj_list.lower)
6744 return NULL;
6745
46b5ab1a 6746 *iter = &lower->list;
1a3f060c
DA
6747
6748 return lower->dev;
6749}
6750
6751int netdev_walk_all_lower_dev(struct net_device *dev,
6752 int (*fn)(struct net_device *dev,
6753 void *data),
6754 void *data)
6755{
6756 struct net_device *ldev;
6757 struct list_head *iter;
6758 int ret;
6759
6760 for (iter = &dev->adj_list.lower,
6761 ldev = netdev_next_lower_dev(dev, &iter);
6762 ldev;
6763 ldev = netdev_next_lower_dev(dev, &iter)) {
6764 /* first is the lower device itself */
6765 ret = fn(ldev, data);
6766 if (ret)
6767 return ret;
6768
6769 /* then look at all of its lower devices */
6770 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6771 if (ret)
6772 return ret;
6773 }
6774
6775 return 0;
6776}
6777EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6778
1a3f060c
DA
6779static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6780 struct list_head **iter)
6781{
6782 struct netdev_adjacent *lower;
6783
6784 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6785 if (&lower->list == &dev->adj_list.lower)
6786 return NULL;
6787
6788 *iter = &lower->list;
6789
6790 return lower->dev;
6791}
6792
6793int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6794 int (*fn)(struct net_device *dev,
6795 void *data),
6796 void *data)
6797{
6798 struct net_device *ldev;
6799 struct list_head *iter;
6800 int ret;
6801
6802 for (iter = &dev->adj_list.lower,
6803 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6804 ldev;
6805 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6806 /* first is the lower device itself */
6807 ret = fn(ldev, data);
6808 if (ret)
6809 return ret;
6810
6811 /* then look at all of its lower devices */
6812 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6813 if (ret)
6814 return ret;
6815 }
6816
6817 return 0;
6818}
6819EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6820
e001bfad 6821/**
6822 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6823 * lower neighbour list, RCU
6824 * variant
6825 * @dev: device
6826 *
6827 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6828 * list. The caller must hold RCU read lock.
6829 */
6830void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6831{
6832 struct netdev_adjacent *lower;
6833
6834 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6835 struct netdev_adjacent, list);
6836 if (lower)
6837 return lower->private;
6838 return NULL;
6839}
6840EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6841
9ff162a8
JP
6842/**
6843 * netdev_master_upper_dev_get_rcu - Get master upper device
6844 * @dev: device
6845 *
6846 * Find a master upper device and return pointer to it or NULL in case
6847 * it's not there. The caller must hold the RCU read lock.
6848 */
6849struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6850{
aa9d8560 6851 struct netdev_adjacent *upper;
9ff162a8 6852
2f268f12 6853 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6854 struct netdev_adjacent, list);
9ff162a8
JP
6855 if (upper && likely(upper->master))
6856 return upper->dev;
6857 return NULL;
6858}
6859EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6860
0a59f3a9 6861static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6862 struct net_device *adj_dev,
6863 struct list_head *dev_list)
6864{
6865 char linkname[IFNAMSIZ+7];
f4563a75 6866
3ee32707
VF
6867 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6868 "upper_%s" : "lower_%s", adj_dev->name);
6869 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6870 linkname);
6871}
0a59f3a9 6872static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6873 char *name,
6874 struct list_head *dev_list)
6875{
6876 char linkname[IFNAMSIZ+7];
f4563a75 6877
3ee32707
VF
6878 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6879 "upper_%s" : "lower_%s", name);
6880 sysfs_remove_link(&(dev->dev.kobj), linkname);
6881}
6882
7ce64c79
AF
6883static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6884 struct net_device *adj_dev,
6885 struct list_head *dev_list)
6886{
6887 return (dev_list == &dev->adj_list.upper ||
6888 dev_list == &dev->adj_list.lower) &&
6889 net_eq(dev_net(dev), dev_net(adj_dev));
6890}
3ee32707 6891
5d261913
VF
6892static int __netdev_adjacent_dev_insert(struct net_device *dev,
6893 struct net_device *adj_dev,
7863c054 6894 struct list_head *dev_list,
402dae96 6895 void *private, bool master)
5d261913
VF
6896{
6897 struct netdev_adjacent *adj;
842d67a7 6898 int ret;
5d261913 6899
6ea29da1 6900 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6901
6902 if (adj) {
790510d9 6903 adj->ref_nr += 1;
67b62f98
DA
6904 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6905 dev->name, adj_dev->name, adj->ref_nr);
6906
5d261913
VF
6907 return 0;
6908 }
6909
6910 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6911 if (!adj)
6912 return -ENOMEM;
6913
6914 adj->dev = adj_dev;
6915 adj->master = master;
790510d9 6916 adj->ref_nr = 1;
402dae96 6917 adj->private = private;
5d261913 6918 dev_hold(adj_dev);
2f268f12 6919
67b62f98
DA
6920 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6921 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6922
7ce64c79 6923 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6924 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6925 if (ret)
6926 goto free_adj;
6927 }
6928
7863c054 6929 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6930 if (master) {
6931 ret = sysfs_create_link(&(dev->dev.kobj),
6932 &(adj_dev->dev.kobj), "master");
6933 if (ret)
5831d66e 6934 goto remove_symlinks;
842d67a7 6935
7863c054 6936 list_add_rcu(&adj->list, dev_list);
842d67a7 6937 } else {
7863c054 6938 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6939 }
5d261913
VF
6940
6941 return 0;
842d67a7 6942
5831d66e 6943remove_symlinks:
7ce64c79 6944 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6945 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6946free_adj:
6947 kfree(adj);
974daef7 6948 dev_put(adj_dev);
842d67a7
VF
6949
6950 return ret;
5d261913
VF
6951}
6952
1d143d9f 6953static void __netdev_adjacent_dev_remove(struct net_device *dev,
6954 struct net_device *adj_dev,
93409033 6955 u16 ref_nr,
1d143d9f 6956 struct list_head *dev_list)
5d261913
VF
6957{
6958 struct netdev_adjacent *adj;
6959
67b62f98
DA
6960 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6961 dev->name, adj_dev->name, ref_nr);
6962
6ea29da1 6963 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6964
2f268f12 6965 if (!adj) {
67b62f98 6966 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6967 dev->name, adj_dev->name);
67b62f98
DA
6968 WARN_ON(1);
6969 return;
2f268f12 6970 }
5d261913 6971
93409033 6972 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6973 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6974 dev->name, adj_dev->name, ref_nr,
6975 adj->ref_nr - ref_nr);
93409033 6976 adj->ref_nr -= ref_nr;
5d261913
VF
6977 return;
6978 }
6979
842d67a7
VF
6980 if (adj->master)
6981 sysfs_remove_link(&(dev->dev.kobj), "master");
6982
7ce64c79 6983 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6984 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6985
5d261913 6986 list_del_rcu(&adj->list);
67b62f98 6987 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6988 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6989 dev_put(adj_dev);
6990 kfree_rcu(adj, rcu);
6991}
6992
1d143d9f 6993static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6994 struct net_device *upper_dev,
6995 struct list_head *up_list,
6996 struct list_head *down_list,
6997 void *private, bool master)
5d261913
VF
6998{
6999 int ret;
7000
790510d9 7001 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7002 private, master);
5d261913
VF
7003 if (ret)
7004 return ret;
7005
790510d9 7006 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7007 private, false);
5d261913 7008 if (ret) {
790510d9 7009 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7010 return ret;
7011 }
7012
7013 return 0;
7014}
7015
1d143d9f 7016static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7017 struct net_device *upper_dev,
93409033 7018 u16 ref_nr,
1d143d9f 7019 struct list_head *up_list,
7020 struct list_head *down_list)
5d261913 7021{
93409033
AC
7022 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7023 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7024}
7025
1d143d9f 7026static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7027 struct net_device *upper_dev,
7028 void *private, bool master)
2f268f12 7029{
f1170fd4
DA
7030 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7031 &dev->adj_list.upper,
7032 &upper_dev->adj_list.lower,
7033 private, master);
5d261913
VF
7034}
7035
1d143d9f 7036static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7037 struct net_device *upper_dev)
2f268f12 7038{
93409033 7039 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7040 &dev->adj_list.upper,
7041 &upper_dev->adj_list.lower);
7042}
5d261913 7043
9ff162a8 7044static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7045 struct net_device *upper_dev, bool master,
42ab19ee
DA
7046 void *upper_priv, void *upper_info,
7047 struct netlink_ext_ack *extack)
9ff162a8 7048{
51d0c047
DA
7049 struct netdev_notifier_changeupper_info changeupper_info = {
7050 .info = {
7051 .dev = dev,
42ab19ee 7052 .extack = extack,
51d0c047
DA
7053 },
7054 .upper_dev = upper_dev,
7055 .master = master,
7056 .linking = true,
7057 .upper_info = upper_info,
7058 };
50d629e7 7059 struct net_device *master_dev;
5d261913 7060 int ret = 0;
9ff162a8
JP
7061
7062 ASSERT_RTNL();
7063
7064 if (dev == upper_dev)
7065 return -EBUSY;
7066
7067 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 7068 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7069 return -EBUSY;
7070
50d629e7
MM
7071 if (!master) {
7072 if (netdev_has_upper_dev(dev, upper_dev))
7073 return -EEXIST;
7074 } else {
7075 master_dev = netdev_master_upper_dev_get(dev);
7076 if (master_dev)
7077 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7078 }
9ff162a8 7079
51d0c047 7080 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7081 &changeupper_info.info);
7082 ret = notifier_to_errno(ret);
7083 if (ret)
7084 return ret;
7085
6dffb044 7086 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7087 master);
5d261913
VF
7088 if (ret)
7089 return ret;
9ff162a8 7090
51d0c047 7091 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7092 &changeupper_info.info);
7093 ret = notifier_to_errno(ret);
7094 if (ret)
f1170fd4 7095 goto rollback;
b03804e7 7096
9ff162a8 7097 return 0;
5d261913 7098
f1170fd4 7099rollback:
2f268f12 7100 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7101
7102 return ret;
9ff162a8
JP
7103}
7104
7105/**
7106 * netdev_upper_dev_link - Add a link to the upper device
7107 * @dev: device
7108 * @upper_dev: new upper device
7a006d59 7109 * @extack: netlink extended ack
9ff162a8
JP
7110 *
7111 * Adds a link to device which is upper to this one. The caller must hold
7112 * the RTNL lock. On a failure a negative errno code is returned.
7113 * On success the reference counts are adjusted and the function
7114 * returns zero.
7115 */
7116int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7117 struct net_device *upper_dev,
7118 struct netlink_ext_ack *extack)
9ff162a8 7119{
42ab19ee
DA
7120 return __netdev_upper_dev_link(dev, upper_dev, false,
7121 NULL, NULL, extack);
9ff162a8
JP
7122}
7123EXPORT_SYMBOL(netdev_upper_dev_link);
7124
7125/**
7126 * netdev_master_upper_dev_link - Add a master link to the upper device
7127 * @dev: device
7128 * @upper_dev: new upper device
6dffb044 7129 * @upper_priv: upper device private
29bf24af 7130 * @upper_info: upper info to be passed down via notifier
7a006d59 7131 * @extack: netlink extended ack
9ff162a8
JP
7132 *
7133 * Adds a link to device which is upper to this one. In this case, only
7134 * one master upper device can be linked, although other non-master devices
7135 * might be linked as well. The caller must hold the RTNL lock.
7136 * On a failure a negative errno code is returned. On success the reference
7137 * counts are adjusted and the function returns zero.
7138 */
7139int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7140 struct net_device *upper_dev,
42ab19ee
DA
7141 void *upper_priv, void *upper_info,
7142 struct netlink_ext_ack *extack)
9ff162a8 7143{
29bf24af 7144 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7145 upper_priv, upper_info, extack);
9ff162a8
JP
7146}
7147EXPORT_SYMBOL(netdev_master_upper_dev_link);
7148
7149/**
7150 * netdev_upper_dev_unlink - Removes a link to upper device
7151 * @dev: device
7152 * @upper_dev: new upper device
7153 *
7154 * Removes a link to device which is upper to this one. The caller must hold
7155 * the RTNL lock.
7156 */
7157void netdev_upper_dev_unlink(struct net_device *dev,
7158 struct net_device *upper_dev)
7159{
51d0c047
DA
7160 struct netdev_notifier_changeupper_info changeupper_info = {
7161 .info = {
7162 .dev = dev,
7163 },
7164 .upper_dev = upper_dev,
7165 .linking = false,
7166 };
f4563a75 7167
9ff162a8
JP
7168 ASSERT_RTNL();
7169
0e4ead9d 7170 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7171
51d0c047 7172 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7173 &changeupper_info.info);
7174
2f268f12 7175 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7176
51d0c047 7177 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7178 &changeupper_info.info);
9ff162a8
JP
7179}
7180EXPORT_SYMBOL(netdev_upper_dev_unlink);
7181
61bd3857
MS
7182/**
7183 * netdev_bonding_info_change - Dispatch event about slave change
7184 * @dev: device
4a26e453 7185 * @bonding_info: info to dispatch
61bd3857
MS
7186 *
7187 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7188 * The caller must hold the RTNL lock.
7189 */
7190void netdev_bonding_info_change(struct net_device *dev,
7191 struct netdev_bonding_info *bonding_info)
7192{
51d0c047
DA
7193 struct netdev_notifier_bonding_info info = {
7194 .info.dev = dev,
7195 };
61bd3857
MS
7196
7197 memcpy(&info.bonding_info, bonding_info,
7198 sizeof(struct netdev_bonding_info));
51d0c047 7199 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7200 &info.info);
7201}
7202EXPORT_SYMBOL(netdev_bonding_info_change);
7203
2ce1ee17 7204static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7205{
7206 struct netdev_adjacent *iter;
7207
7208 struct net *net = dev_net(dev);
7209
7210 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7211 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7212 continue;
7213 netdev_adjacent_sysfs_add(iter->dev, dev,
7214 &iter->dev->adj_list.lower);
7215 netdev_adjacent_sysfs_add(dev, iter->dev,
7216 &dev->adj_list.upper);
7217 }
7218
7219 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7220 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7221 continue;
7222 netdev_adjacent_sysfs_add(iter->dev, dev,
7223 &iter->dev->adj_list.upper);
7224 netdev_adjacent_sysfs_add(dev, iter->dev,
7225 &dev->adj_list.lower);
7226 }
7227}
7228
2ce1ee17 7229static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
7230{
7231 struct netdev_adjacent *iter;
7232
7233 struct net *net = dev_net(dev);
7234
7235 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7236 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7237 continue;
7238 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7239 &iter->dev->adj_list.lower);
7240 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7241 &dev->adj_list.upper);
7242 }
7243
7244 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7245 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7246 continue;
7247 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7248 &iter->dev->adj_list.upper);
7249 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7250 &dev->adj_list.lower);
7251 }
7252}
7253
5bb025fa 7254void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 7255{
5bb025fa 7256 struct netdev_adjacent *iter;
402dae96 7257
4c75431a
AF
7258 struct net *net = dev_net(dev);
7259
5bb025fa 7260 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7261 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7262 continue;
5bb025fa
VF
7263 netdev_adjacent_sysfs_del(iter->dev, oldname,
7264 &iter->dev->adj_list.lower);
7265 netdev_adjacent_sysfs_add(iter->dev, dev,
7266 &iter->dev->adj_list.lower);
7267 }
402dae96 7268
5bb025fa 7269 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7270 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7271 continue;
5bb025fa
VF
7272 netdev_adjacent_sysfs_del(iter->dev, oldname,
7273 &iter->dev->adj_list.upper);
7274 netdev_adjacent_sysfs_add(iter->dev, dev,
7275 &iter->dev->adj_list.upper);
7276 }
402dae96 7277}
402dae96
VF
7278
7279void *netdev_lower_dev_get_private(struct net_device *dev,
7280 struct net_device *lower_dev)
7281{
7282 struct netdev_adjacent *lower;
7283
7284 if (!lower_dev)
7285 return NULL;
6ea29da1 7286 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
7287 if (!lower)
7288 return NULL;
7289
7290 return lower->private;
7291}
7292EXPORT_SYMBOL(netdev_lower_dev_get_private);
7293
4085ebe8 7294
952fcfd0 7295int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
7296{
7297 struct net_device *lower = NULL;
7298 struct list_head *iter;
7299 int max_nest = -1;
7300 int nest;
7301
7302 ASSERT_RTNL();
7303
7304 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 7305 nest = dev_get_nest_level(lower);
4085ebe8
VY
7306 if (max_nest < nest)
7307 max_nest = nest;
7308 }
7309
952fcfd0 7310 return max_nest + 1;
4085ebe8
VY
7311}
7312EXPORT_SYMBOL(dev_get_nest_level);
7313
04d48266
JP
7314/**
7315 * netdev_lower_change - Dispatch event about lower device state change
7316 * @lower_dev: device
7317 * @lower_state_info: state to dispatch
7318 *
7319 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7320 * The caller must hold the RTNL lock.
7321 */
7322void netdev_lower_state_changed(struct net_device *lower_dev,
7323 void *lower_state_info)
7324{
51d0c047
DA
7325 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7326 .info.dev = lower_dev,
7327 };
04d48266
JP
7328
7329 ASSERT_RTNL();
7330 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 7331 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
7332 &changelowerstate_info.info);
7333}
7334EXPORT_SYMBOL(netdev_lower_state_changed);
7335
b6c40d68
PM
7336static void dev_change_rx_flags(struct net_device *dev, int flags)
7337{
d314774c
SH
7338 const struct net_device_ops *ops = dev->netdev_ops;
7339
d2615bf4 7340 if (ops->ndo_change_rx_flags)
d314774c 7341 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
7342}
7343
991fb3f7 7344static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 7345{
b536db93 7346 unsigned int old_flags = dev->flags;
d04a48b0
EB
7347 kuid_t uid;
7348 kgid_t gid;
1da177e4 7349
24023451
PM
7350 ASSERT_RTNL();
7351
dad9b335
WC
7352 dev->flags |= IFF_PROMISC;
7353 dev->promiscuity += inc;
7354 if (dev->promiscuity == 0) {
7355 /*
7356 * Avoid overflow.
7357 * If inc causes overflow, untouch promisc and return error.
7358 */
7359 if (inc < 0)
7360 dev->flags &= ~IFF_PROMISC;
7361 else {
7362 dev->promiscuity -= inc;
7b6cd1ce
JP
7363 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7364 dev->name);
dad9b335
WC
7365 return -EOVERFLOW;
7366 }
7367 }
52609c0b 7368 if (dev->flags != old_flags) {
7b6cd1ce
JP
7369 pr_info("device %s %s promiscuous mode\n",
7370 dev->name,
7371 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
7372 if (audit_enabled) {
7373 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
7374 audit_log(audit_context(), GFP_ATOMIC,
7375 AUDIT_ANOM_PROMISCUOUS,
7376 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7377 dev->name, (dev->flags & IFF_PROMISC),
7378 (old_flags & IFF_PROMISC),
7379 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7380 from_kuid(&init_user_ns, uid),
7381 from_kgid(&init_user_ns, gid),
7382 audit_get_sessionid(current));
8192b0c4 7383 }
24023451 7384
b6c40d68 7385 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 7386 }
991fb3f7
ND
7387 if (notify)
7388 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 7389 return 0;
1da177e4
LT
7390}
7391
4417da66
PM
7392/**
7393 * dev_set_promiscuity - update promiscuity count on a device
7394 * @dev: device
7395 * @inc: modifier
7396 *
7397 * Add or remove promiscuity from a device. While the count in the device
7398 * remains above zero the interface remains promiscuous. Once it hits zero
7399 * the device reverts back to normal filtering operation. A negative inc
7400 * value is used to drop promiscuity on the device.
dad9b335 7401 * Return 0 if successful or a negative errno code on error.
4417da66 7402 */
dad9b335 7403int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 7404{
b536db93 7405 unsigned int old_flags = dev->flags;
dad9b335 7406 int err;
4417da66 7407
991fb3f7 7408 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 7409 if (err < 0)
dad9b335 7410 return err;
4417da66
PM
7411 if (dev->flags != old_flags)
7412 dev_set_rx_mode(dev);
dad9b335 7413 return err;
4417da66 7414}
d1b19dff 7415EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 7416
991fb3f7 7417static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 7418{
991fb3f7 7419 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 7420
24023451
PM
7421 ASSERT_RTNL();
7422
1da177e4 7423 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
7424 dev->allmulti += inc;
7425 if (dev->allmulti == 0) {
7426 /*
7427 * Avoid overflow.
7428 * If inc causes overflow, untouch allmulti and return error.
7429 */
7430 if (inc < 0)
7431 dev->flags &= ~IFF_ALLMULTI;
7432 else {
7433 dev->allmulti -= inc;
7b6cd1ce
JP
7434 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7435 dev->name);
dad9b335
WC
7436 return -EOVERFLOW;
7437 }
7438 }
24023451 7439 if (dev->flags ^ old_flags) {
b6c40d68 7440 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 7441 dev_set_rx_mode(dev);
991fb3f7
ND
7442 if (notify)
7443 __dev_notify_flags(dev, old_flags,
7444 dev->gflags ^ old_gflags);
24023451 7445 }
dad9b335 7446 return 0;
4417da66 7447}
991fb3f7
ND
7448
7449/**
7450 * dev_set_allmulti - update allmulti count on a device
7451 * @dev: device
7452 * @inc: modifier
7453 *
7454 * Add or remove reception of all multicast frames to a device. While the
7455 * count in the device remains above zero the interface remains listening
7456 * to all interfaces. Once it hits zero the device reverts back to normal
7457 * filtering operation. A negative @inc value is used to drop the counter
7458 * when releasing a resource needing all multicasts.
7459 * Return 0 if successful or a negative errno code on error.
7460 */
7461
7462int dev_set_allmulti(struct net_device *dev, int inc)
7463{
7464 return __dev_set_allmulti(dev, inc, true);
7465}
d1b19dff 7466EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
7467
7468/*
7469 * Upload unicast and multicast address lists to device and
7470 * configure RX filtering. When the device doesn't support unicast
53ccaae1 7471 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
7472 * are present.
7473 */
7474void __dev_set_rx_mode(struct net_device *dev)
7475{
d314774c
SH
7476 const struct net_device_ops *ops = dev->netdev_ops;
7477
4417da66
PM
7478 /* dev_open will call this function so the list will stay sane. */
7479 if (!(dev->flags&IFF_UP))
7480 return;
7481
7482 if (!netif_device_present(dev))
40b77c94 7483 return;
4417da66 7484
01789349 7485 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
7486 /* Unicast addresses changes may only happen under the rtnl,
7487 * therefore calling __dev_set_promiscuity here is safe.
7488 */
32e7bfc4 7489 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 7490 __dev_set_promiscuity(dev, 1, false);
2d348d1f 7491 dev->uc_promisc = true;
32e7bfc4 7492 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 7493 __dev_set_promiscuity(dev, -1, false);
2d348d1f 7494 dev->uc_promisc = false;
4417da66 7495 }
4417da66 7496 }
01789349
JP
7497
7498 if (ops->ndo_set_rx_mode)
7499 ops->ndo_set_rx_mode(dev);
4417da66
PM
7500}
7501
7502void dev_set_rx_mode(struct net_device *dev)
7503{
b9e40857 7504 netif_addr_lock_bh(dev);
4417da66 7505 __dev_set_rx_mode(dev);
b9e40857 7506 netif_addr_unlock_bh(dev);
1da177e4
LT
7507}
7508
f0db275a
SH
7509/**
7510 * dev_get_flags - get flags reported to userspace
7511 * @dev: device
7512 *
7513 * Get the combination of flag bits exported through APIs to userspace.
7514 */
95c96174 7515unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 7516{
95c96174 7517 unsigned int flags;
1da177e4
LT
7518
7519 flags = (dev->flags & ~(IFF_PROMISC |
7520 IFF_ALLMULTI |
b00055aa
SR
7521 IFF_RUNNING |
7522 IFF_LOWER_UP |
7523 IFF_DORMANT)) |
1da177e4
LT
7524 (dev->gflags & (IFF_PROMISC |
7525 IFF_ALLMULTI));
7526
b00055aa
SR
7527 if (netif_running(dev)) {
7528 if (netif_oper_up(dev))
7529 flags |= IFF_RUNNING;
7530 if (netif_carrier_ok(dev))
7531 flags |= IFF_LOWER_UP;
7532 if (netif_dormant(dev))
7533 flags |= IFF_DORMANT;
7534 }
1da177e4
LT
7535
7536 return flags;
7537}
d1b19dff 7538EXPORT_SYMBOL(dev_get_flags);
1da177e4 7539
6d040321
PM
7540int __dev_change_flags(struct net_device *dev, unsigned int flags,
7541 struct netlink_ext_ack *extack)
1da177e4 7542{
b536db93 7543 unsigned int old_flags = dev->flags;
bd380811 7544 int ret;
1da177e4 7545
24023451
PM
7546 ASSERT_RTNL();
7547
1da177e4
LT
7548 /*
7549 * Set the flags on our device.
7550 */
7551
7552 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7553 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7554 IFF_AUTOMEDIA)) |
7555 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7556 IFF_ALLMULTI));
7557
7558 /*
7559 * Load in the correct multicast list now the flags have changed.
7560 */
7561
b6c40d68
PM
7562 if ((old_flags ^ flags) & IFF_MULTICAST)
7563 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 7564
4417da66 7565 dev_set_rx_mode(dev);
1da177e4
LT
7566
7567 /*
7568 * Have we downed the interface. We handle IFF_UP ourselves
7569 * according to user attempts to set it, rather than blindly
7570 * setting it.
7571 */
7572
7573 ret = 0;
7051b88a 7574 if ((old_flags ^ flags) & IFF_UP) {
7575 if (old_flags & IFF_UP)
7576 __dev_close(dev);
7577 else
40c900aa 7578 ret = __dev_open(dev, extack);
7051b88a 7579 }
1da177e4 7580
1da177e4 7581 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 7582 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 7583 unsigned int old_flags = dev->flags;
d1b19dff 7584
1da177e4 7585 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
7586
7587 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7588 if (dev->flags != old_flags)
7589 dev_set_rx_mode(dev);
1da177e4
LT
7590 }
7591
7592 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 7593 * is important. Some (broken) drivers set IFF_PROMISC, when
7594 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
7595 */
7596 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
7597 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7598
1da177e4 7599 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 7600 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
7601 }
7602
bd380811
PM
7603 return ret;
7604}
7605
a528c219
ND
7606void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7607 unsigned int gchanges)
bd380811
PM
7608{
7609 unsigned int changes = dev->flags ^ old_flags;
7610
a528c219 7611 if (gchanges)
7f294054 7612 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 7613
bd380811
PM
7614 if (changes & IFF_UP) {
7615 if (dev->flags & IFF_UP)
7616 call_netdevice_notifiers(NETDEV_UP, dev);
7617 else
7618 call_netdevice_notifiers(NETDEV_DOWN, dev);
7619 }
7620
7621 if (dev->flags & IFF_UP &&
be9efd36 7622 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
7623 struct netdev_notifier_change_info change_info = {
7624 .info = {
7625 .dev = dev,
7626 },
7627 .flags_changed = changes,
7628 };
be9efd36 7629
51d0c047 7630 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 7631 }
bd380811
PM
7632}
7633
7634/**
7635 * dev_change_flags - change device settings
7636 * @dev: device
7637 * @flags: device state flags
567c5e13 7638 * @extack: netlink extended ack
bd380811
PM
7639 *
7640 * Change settings on device based state flags. The flags are
7641 * in the userspace exported format.
7642 */
567c5e13
PM
7643int dev_change_flags(struct net_device *dev, unsigned int flags,
7644 struct netlink_ext_ack *extack)
bd380811 7645{
b536db93 7646 int ret;
991fb3f7 7647 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 7648
6d040321 7649 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
7650 if (ret < 0)
7651 return ret;
7652
991fb3f7 7653 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 7654 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
7655 return ret;
7656}
d1b19dff 7657EXPORT_SYMBOL(dev_change_flags);
1da177e4 7658
f51048c3 7659int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
7660{
7661 const struct net_device_ops *ops = dev->netdev_ops;
7662
7663 if (ops->ndo_change_mtu)
7664 return ops->ndo_change_mtu(dev, new_mtu);
7665
7666 dev->mtu = new_mtu;
7667 return 0;
7668}
f51048c3 7669EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 7670
f0db275a 7671/**
7a4c53be 7672 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
7673 * @dev: device
7674 * @new_mtu: new transfer unit
7a4c53be 7675 * @extack: netlink extended ack
f0db275a
SH
7676 *
7677 * Change the maximum transfer size of the network device.
7678 */
7a4c53be
SH
7679int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7680 struct netlink_ext_ack *extack)
1da177e4 7681{
2315dc91 7682 int err, orig_mtu;
1da177e4
LT
7683
7684 if (new_mtu == dev->mtu)
7685 return 0;
7686
61e84623
JW
7687 /* MTU must be positive, and in range */
7688 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7a4c53be 7689 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
1da177e4 7690 return -EINVAL;
61e84623
JW
7691 }
7692
7693 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7a4c53be 7694 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
61e84623
JW
7695 return -EINVAL;
7696 }
1da177e4
LT
7697
7698 if (!netif_device_present(dev))
7699 return -ENODEV;
7700
1d486bfb
VF
7701 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7702 err = notifier_to_errno(err);
7703 if (err)
7704 return err;
d314774c 7705
2315dc91
VF
7706 orig_mtu = dev->mtu;
7707 err = __dev_set_mtu(dev, new_mtu);
d314774c 7708
2315dc91 7709 if (!err) {
af7d6cce
SD
7710 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7711 orig_mtu);
2315dc91
VF
7712 err = notifier_to_errno(err);
7713 if (err) {
7714 /* setting mtu back and notifying everyone again,
7715 * so that they have a chance to revert changes.
7716 */
7717 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
7718 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7719 new_mtu);
2315dc91
VF
7720 }
7721 }
1da177e4
LT
7722 return err;
7723}
7a4c53be
SH
7724
7725int dev_set_mtu(struct net_device *dev, int new_mtu)
7726{
7727 struct netlink_ext_ack extack;
7728 int err;
7729
a6bcfc89 7730 memset(&extack, 0, sizeof(extack));
7a4c53be 7731 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 7732 if (err && extack._msg)
7a4c53be
SH
7733 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7734 return err;
7735}
d1b19dff 7736EXPORT_SYMBOL(dev_set_mtu);
1da177e4 7737
6a643ddb
CW
7738/**
7739 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7740 * @dev: device
7741 * @new_len: new tx queue length
7742 */
7743int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7744{
7745 unsigned int orig_len = dev->tx_queue_len;
7746 int res;
7747
7748 if (new_len != (unsigned int)new_len)
7749 return -ERANGE;
7750
7751 if (new_len != orig_len) {
7752 dev->tx_queue_len = new_len;
7753 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7754 res = notifier_to_errno(res);
7effaf06
TT
7755 if (res)
7756 goto err_rollback;
7757 res = dev_qdisc_change_tx_queue_len(dev);
7758 if (res)
7759 goto err_rollback;
6a643ddb
CW
7760 }
7761
7762 return 0;
7effaf06
TT
7763
7764err_rollback:
7765 netdev_err(dev, "refused to change device tx_queue_len\n");
7766 dev->tx_queue_len = orig_len;
7767 return res;
6a643ddb
CW
7768}
7769
cbda10fa
VD
7770/**
7771 * dev_set_group - Change group this device belongs to
7772 * @dev: device
7773 * @new_group: group this device should belong to
7774 */
7775void dev_set_group(struct net_device *dev, int new_group)
7776{
7777 dev->group = new_group;
7778}
7779EXPORT_SYMBOL(dev_set_group);
7780
d59cdf94
PM
7781/**
7782 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7783 * @dev: device
7784 * @addr: new address
7785 * @extack: netlink extended ack
7786 */
7787int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7788 struct netlink_ext_ack *extack)
7789{
7790 struct netdev_notifier_pre_changeaddr_info info = {
7791 .info.dev = dev,
7792 .info.extack = extack,
7793 .dev_addr = addr,
7794 };
7795 int rc;
7796
7797 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7798 return notifier_to_errno(rc);
7799}
7800EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7801
f0db275a
SH
7802/**
7803 * dev_set_mac_address - Change Media Access Control Address
7804 * @dev: device
7805 * @sa: new address
3a37a963 7806 * @extack: netlink extended ack
f0db275a
SH
7807 *
7808 * Change the hardware (MAC) address of the device
7809 */
3a37a963
PM
7810int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7811 struct netlink_ext_ack *extack)
1da177e4 7812{
d314774c 7813 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
7814 int err;
7815
d314774c 7816 if (!ops->ndo_set_mac_address)
1da177e4
LT
7817 return -EOPNOTSUPP;
7818 if (sa->sa_family != dev->type)
7819 return -EINVAL;
7820 if (!netif_device_present(dev))
7821 return -ENODEV;
d59cdf94
PM
7822 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7823 if (err)
7824 return err;
d314774c 7825 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
7826 if (err)
7827 return err;
fbdeca2d 7828 dev->addr_assign_type = NET_ADDR_SET;
f6521516 7829 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 7830 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 7831 return 0;
1da177e4 7832}
d1b19dff 7833EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 7834
4bf84c35
JP
7835/**
7836 * dev_change_carrier - Change device carrier
7837 * @dev: device
691b3b7e 7838 * @new_carrier: new value
4bf84c35
JP
7839 *
7840 * Change device carrier
7841 */
7842int dev_change_carrier(struct net_device *dev, bool new_carrier)
7843{
7844 const struct net_device_ops *ops = dev->netdev_ops;
7845
7846 if (!ops->ndo_change_carrier)
7847 return -EOPNOTSUPP;
7848 if (!netif_device_present(dev))
7849 return -ENODEV;
7850 return ops->ndo_change_carrier(dev, new_carrier);
7851}
7852EXPORT_SYMBOL(dev_change_carrier);
7853
66b52b0d
JP
7854/**
7855 * dev_get_phys_port_id - Get device physical port ID
7856 * @dev: device
7857 * @ppid: port ID
7858 *
7859 * Get device physical port ID
7860 */
7861int dev_get_phys_port_id(struct net_device *dev,
02637fce 7862 struct netdev_phys_item_id *ppid)
66b52b0d
JP
7863{
7864 const struct net_device_ops *ops = dev->netdev_ops;
7865
7866 if (!ops->ndo_get_phys_port_id)
7867 return -EOPNOTSUPP;
7868 return ops->ndo_get_phys_port_id(dev, ppid);
7869}
7870EXPORT_SYMBOL(dev_get_phys_port_id);
7871
db24a904
DA
7872/**
7873 * dev_get_phys_port_name - Get device physical port name
7874 * @dev: device
7875 * @name: port name
ed49e650 7876 * @len: limit of bytes to copy to name
db24a904
DA
7877 *
7878 * Get device physical port name
7879 */
7880int dev_get_phys_port_name(struct net_device *dev,
7881 char *name, size_t len)
7882{
7883 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 7884 int err;
db24a904 7885
af3836df
JP
7886 if (ops->ndo_get_phys_port_name) {
7887 err = ops->ndo_get_phys_port_name(dev, name, len);
7888 if (err != -EOPNOTSUPP)
7889 return err;
7890 }
7891 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
7892}
7893EXPORT_SYMBOL(dev_get_phys_port_name);
7894
d6abc596
FF
7895/**
7896 * dev_get_port_parent_id - Get the device's port parent identifier
7897 * @dev: network device
7898 * @ppid: pointer to a storage for the port's parent identifier
7899 * @recurse: allow/disallow recursion to lower devices
7900 *
7901 * Get the devices's port parent identifier
7902 */
7903int dev_get_port_parent_id(struct net_device *dev,
7904 struct netdev_phys_item_id *ppid,
7905 bool recurse)
7906{
7907 const struct net_device_ops *ops = dev->netdev_ops;
7908 struct netdev_phys_item_id first = { };
7909 struct net_device *lower_dev;
7910 struct list_head *iter;
7e1146e8
JP
7911 int err;
7912
7913 if (ops->ndo_get_port_parent_id) {
7914 err = ops->ndo_get_port_parent_id(dev, ppid);
7915 if (err != -EOPNOTSUPP)
7916 return err;
7917 }
d6abc596 7918
7e1146e8
JP
7919 err = devlink_compat_switch_id_get(dev, ppid);
7920 if (!err || err != -EOPNOTSUPP)
7921 return err;
d6abc596
FF
7922
7923 if (!recurse)
7e1146e8 7924 return -EOPNOTSUPP;
d6abc596
FF
7925
7926 netdev_for_each_lower_dev(dev, lower_dev, iter) {
7927 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7928 if (err)
7929 break;
7930 if (!first.id_len)
7931 first = *ppid;
7932 else if (memcmp(&first, ppid, sizeof(*ppid)))
7933 return -ENODATA;
7934 }
7935
7936 return err;
7937}
7938EXPORT_SYMBOL(dev_get_port_parent_id);
7939
7940/**
7941 * netdev_port_same_parent_id - Indicate if two network devices have
7942 * the same port parent identifier
7943 * @a: first network device
7944 * @b: second network device
7945 */
7946bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7947{
7948 struct netdev_phys_item_id a_id = { };
7949 struct netdev_phys_item_id b_id = { };
7950
7951 if (dev_get_port_parent_id(a, &a_id, true) ||
7952 dev_get_port_parent_id(b, &b_id, true))
7953 return false;
7954
7955 return netdev_phys_item_id_same(&a_id, &b_id);
7956}
7957EXPORT_SYMBOL(netdev_port_same_parent_id);
7958
d746d707
AK
7959/**
7960 * dev_change_proto_down - update protocol port state information
7961 * @dev: device
7962 * @proto_down: new value
7963 *
7964 * This info can be used by switch drivers to set the phys state of the
7965 * port.
7966 */
7967int dev_change_proto_down(struct net_device *dev, bool proto_down)
7968{
7969 const struct net_device_ops *ops = dev->netdev_ops;
7970
7971 if (!ops->ndo_change_proto_down)
7972 return -EOPNOTSUPP;
7973 if (!netif_device_present(dev))
7974 return -ENODEV;
7975 return ops->ndo_change_proto_down(dev, proto_down);
7976}
7977EXPORT_SYMBOL(dev_change_proto_down);
7978
b5899679
AR
7979/**
7980 * dev_change_proto_down_generic - generic implementation for
7981 * ndo_change_proto_down that sets carrier according to
7982 * proto_down.
7983 *
7984 * @dev: device
7985 * @proto_down: new value
7986 */
7987int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7988{
7989 if (proto_down)
7990 netif_carrier_off(dev);
7991 else
7992 netif_carrier_on(dev);
7993 dev->proto_down = proto_down;
7994 return 0;
7995}
7996EXPORT_SYMBOL(dev_change_proto_down_generic);
7997
a25717d2
JK
7998u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7999 enum bpf_netdev_command cmd)
d67b9cd2 8000{
a25717d2 8001 struct netdev_bpf xdp;
d67b9cd2 8002
a25717d2
JK
8003 if (!bpf_op)
8004 return 0;
118b4aa2 8005
a25717d2
JK
8006 memset(&xdp, 0, sizeof(xdp));
8007 xdp.command = cmd;
118b4aa2 8008
a25717d2
JK
8009 /* Query must always succeed. */
8010 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
58038695 8011
6b867589 8012 return xdp.prog_id;
d67b9cd2
DB
8013}
8014
f4e63525 8015static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 8016 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
8017 struct bpf_prog *prog)
8018{
f4e63525 8019 struct netdev_bpf xdp;
d67b9cd2
DB
8020
8021 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
8022 if (flags & XDP_FLAGS_HW_MODE)
8023 xdp.command = XDP_SETUP_PROG_HW;
8024 else
8025 xdp.command = XDP_SETUP_PROG;
d67b9cd2 8026 xdp.extack = extack;
32d60277 8027 xdp.flags = flags;
d67b9cd2
DB
8028 xdp.prog = prog;
8029
f4e63525 8030 return bpf_op(dev, &xdp);
d67b9cd2
DB
8031}
8032
bd0b2e7f
JK
8033static void dev_xdp_uninstall(struct net_device *dev)
8034{
8035 struct netdev_bpf xdp;
8036 bpf_op_t ndo_bpf;
8037
8038 /* Remove generic XDP */
8039 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8040
8041 /* Remove from the driver */
8042 ndo_bpf = dev->netdev_ops->ndo_bpf;
8043 if (!ndo_bpf)
8044 return;
8045
a25717d2
JK
8046 memset(&xdp, 0, sizeof(xdp));
8047 xdp.command = XDP_QUERY_PROG;
8048 WARN_ON(ndo_bpf(dev, &xdp));
8049 if (xdp.prog_id)
8050 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8051 NULL));
bd0b2e7f 8052
a25717d2
JK
8053 /* Remove HW offload */
8054 memset(&xdp, 0, sizeof(xdp));
8055 xdp.command = XDP_QUERY_PROG_HW;
8056 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8057 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8058 NULL));
bd0b2e7f
JK
8059}
8060
a7862b45
BB
8061/**
8062 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8063 * @dev: device
b5d60989 8064 * @extack: netlink extended ack
a7862b45 8065 * @fd: new program fd or negative value to clear
85de8576 8066 * @flags: xdp-related flags
a7862b45
BB
8067 *
8068 * Set or clear a bpf program for a device
8069 */
ddf9f970
JK
8070int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8071 int fd, u32 flags)
a7862b45
BB
8072{
8073 const struct net_device_ops *ops = dev->netdev_ops;
a25717d2 8074 enum bpf_netdev_command query;
a7862b45 8075 struct bpf_prog *prog = NULL;
f4e63525 8076 bpf_op_t bpf_op, bpf_chk;
9ee963d6 8077 bool offload;
a7862b45
BB
8078 int err;
8079
85de8576
DB
8080 ASSERT_RTNL();
8081
9ee963d6
JK
8082 offload = flags & XDP_FLAGS_HW_MODE;
8083 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
a25717d2 8084
f4e63525 8085 bpf_op = bpf_chk = ops->ndo_bpf;
01dde20c
MF
8086 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8087 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
0489df9a 8088 return -EOPNOTSUPP;
01dde20c 8089 }
f4e63525
JK
8090 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8091 bpf_op = generic_xdp_install;
8092 if (bpf_op == bpf_chk)
8093 bpf_chk = generic_xdp_install;
b5cdae32 8094
a7862b45 8095 if (fd >= 0) {
9ee963d6 8096 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
01dde20c 8097 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
d67b9cd2 8098 return -EEXIST;
01dde20c 8099 }
d67b9cd2 8100 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
01dde20c
MF
8101 __dev_xdp_query(dev, bpf_op, query)) {
8102 NL_SET_ERR_MSG(extack, "XDP program already attached");
d67b9cd2 8103 return -EBUSY;
01dde20c 8104 }
85de8576 8105
288b3de5
JK
8106 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8107 bpf_op == ops->ndo_bpf);
a7862b45
BB
8108 if (IS_ERR(prog))
8109 return PTR_ERR(prog);
441a3303 8110
9ee963d6 8111 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
441a3303
JK
8112 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8113 bpf_prog_put(prog);
8114 return -EINVAL;
8115 }
a7862b45
BB
8116 }
8117
f4e63525 8118 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
8119 if (err < 0 && prog)
8120 bpf_prog_put(prog);
8121
8122 return err;
8123}
a7862b45 8124
1da177e4
LT
8125/**
8126 * dev_new_index - allocate an ifindex
c4ea43c5 8127 * @net: the applicable net namespace
1da177e4
LT
8128 *
8129 * Returns a suitable unique value for a new device interface
8130 * number. The caller must hold the rtnl semaphore or the
8131 * dev_base_lock to be sure it remains unique.
8132 */
881d966b 8133static int dev_new_index(struct net *net)
1da177e4 8134{
aa79e66e 8135 int ifindex = net->ifindex;
f4563a75 8136
1da177e4
LT
8137 for (;;) {
8138 if (++ifindex <= 0)
8139 ifindex = 1;
881d966b 8140 if (!__dev_get_by_index(net, ifindex))
aa79e66e 8141 return net->ifindex = ifindex;
1da177e4
LT
8142 }
8143}
8144
1da177e4 8145/* Delayed registration/unregisteration */
3b5b34fd 8146static LIST_HEAD(net_todo_list);
200b916f 8147DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 8148
6f05f629 8149static void net_set_todo(struct net_device *dev)
1da177e4 8150{
1da177e4 8151 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 8152 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
8153}
8154
9b5e383c 8155static void rollback_registered_many(struct list_head *head)
93ee31f1 8156{
e93737b0 8157 struct net_device *dev, *tmp;
5cde2829 8158 LIST_HEAD(close_head);
9b5e383c 8159
93ee31f1
DL
8160 BUG_ON(dev_boot_phase);
8161 ASSERT_RTNL();
8162
e93737b0 8163 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 8164 /* Some devices call without registering
e93737b0
KK
8165 * for initialization unwind. Remove those
8166 * devices and proceed with the remaining.
9b5e383c
ED
8167 */
8168 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
8169 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8170 dev->name, dev);
93ee31f1 8171
9b5e383c 8172 WARN_ON(1);
e93737b0
KK
8173 list_del(&dev->unreg_list);
8174 continue;
9b5e383c 8175 }
449f4544 8176 dev->dismantle = true;
9b5e383c 8177 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 8178 }
93ee31f1 8179
44345724 8180 /* If device is running, close it first. */
5cde2829
EB
8181 list_for_each_entry(dev, head, unreg_list)
8182 list_add_tail(&dev->close_list, &close_head);
99c4a26a 8183 dev_close_many(&close_head, true);
93ee31f1 8184
44345724 8185 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
8186 /* And unlink it from device chain. */
8187 unlist_netdevice(dev);
93ee31f1 8188
9b5e383c
ED
8189 dev->reg_state = NETREG_UNREGISTERING;
8190 }
41852497 8191 flush_all_backlogs();
93ee31f1
DL
8192
8193 synchronize_net();
8194
9b5e383c 8195 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
8196 struct sk_buff *skb = NULL;
8197
9b5e383c
ED
8198 /* Shutdown queueing discipline. */
8199 dev_shutdown(dev);
93ee31f1 8200
bd0b2e7f 8201 dev_xdp_uninstall(dev);
93ee31f1 8202
9b5e383c 8203 /* Notify protocols, that we are about to destroy
eb13da1a 8204 * this device. They should clean all the things.
8205 */
9b5e383c 8206 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 8207
395eea6c
MB
8208 if (!dev->rtnl_link_ops ||
8209 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 8210 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 8211 GFP_KERNEL, NULL, 0);
395eea6c 8212
9b5e383c
ED
8213 /*
8214 * Flush the unicast and multicast chains
8215 */
a748ee24 8216 dev_uc_flush(dev);
22bedad3 8217 dev_mc_flush(dev);
93ee31f1 8218
9b5e383c
ED
8219 if (dev->netdev_ops->ndo_uninit)
8220 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 8221
395eea6c
MB
8222 if (skb)
8223 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 8224
9ff162a8
JP
8225 /* Notifier chain MUST detach us all upper devices. */
8226 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 8227 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 8228
9b5e383c
ED
8229 /* Remove entries from kobject tree */
8230 netdev_unregister_kobject(dev);
024e9679
AD
8231#ifdef CONFIG_XPS
8232 /* Remove XPS queueing entries */
8233 netif_reset_xps_queues_gt(dev, 0);
8234#endif
9b5e383c 8235 }
93ee31f1 8236
850a545b 8237 synchronize_net();
395264d5 8238
a5ee1551 8239 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
8240 dev_put(dev);
8241}
8242
8243static void rollback_registered(struct net_device *dev)
8244{
8245 LIST_HEAD(single);
8246
8247 list_add(&dev->unreg_list, &single);
8248 rollback_registered_many(&single);
ceaaec98 8249 list_del(&single);
93ee31f1
DL
8250}
8251
fd867d51
JW
8252static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8253 struct net_device *upper, netdev_features_t features)
8254{
8255 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8256 netdev_features_t feature;
5ba3f7d6 8257 int feature_bit;
fd867d51 8258
3b89ea9c 8259 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8260 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8261 if (!(upper->wanted_features & feature)
8262 && (features & feature)) {
8263 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8264 &feature, upper->name);
8265 features &= ~feature;
8266 }
8267 }
8268
8269 return features;
8270}
8271
8272static void netdev_sync_lower_features(struct net_device *upper,
8273 struct net_device *lower, netdev_features_t features)
8274{
8275 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8276 netdev_features_t feature;
5ba3f7d6 8277 int feature_bit;
fd867d51 8278
3b89ea9c 8279 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8280 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8281 if (!(features & feature) && (lower->features & feature)) {
8282 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8283 &feature, lower->name);
8284 lower->wanted_features &= ~feature;
8285 netdev_update_features(lower);
8286
8287 if (unlikely(lower->features & feature))
8288 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8289 &feature, lower->name);
8290 }
8291 }
8292}
8293
c8f44aff
MM
8294static netdev_features_t netdev_fix_features(struct net_device *dev,
8295 netdev_features_t features)
b63365a2 8296{
57422dc5
MM
8297 /* Fix illegal checksum combinations */
8298 if ((features & NETIF_F_HW_CSUM) &&
8299 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 8300 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
8301 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8302 }
8303
b63365a2 8304 /* TSO requires that SG is present as well. */
ea2d3688 8305 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 8306 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 8307 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
8308 }
8309
ec5f0615
PS
8310 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8311 !(features & NETIF_F_IP_CSUM)) {
8312 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8313 features &= ~NETIF_F_TSO;
8314 features &= ~NETIF_F_TSO_ECN;
8315 }
8316
8317 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8318 !(features & NETIF_F_IPV6_CSUM)) {
8319 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8320 features &= ~NETIF_F_TSO6;
8321 }
8322
b1dc497b
AD
8323 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8324 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8325 features &= ~NETIF_F_TSO_MANGLEID;
8326
31d8b9e0
BH
8327 /* TSO ECN requires that TSO is present as well. */
8328 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8329 features &= ~NETIF_F_TSO_ECN;
8330
212b573f
MM
8331 /* Software GSO depends on SG. */
8332 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 8333 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
8334 features &= ~NETIF_F_GSO;
8335 }
8336
802ab55a
AD
8337 /* GSO partial features require GSO partial be set */
8338 if ((features & dev->gso_partial_features) &&
8339 !(features & NETIF_F_GSO_PARTIAL)) {
8340 netdev_dbg(dev,
8341 "Dropping partially supported GSO features since no GSO partial.\n");
8342 features &= ~dev->gso_partial_features;
8343 }
8344
fb1f5f79
MC
8345 if (!(features & NETIF_F_RXCSUM)) {
8346 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8347 * successfully merged by hardware must also have the
8348 * checksum verified by hardware. If the user does not
8349 * want to enable RXCSUM, logically, we should disable GRO_HW.
8350 */
8351 if (features & NETIF_F_GRO_HW) {
8352 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8353 features &= ~NETIF_F_GRO_HW;
8354 }
8355 }
8356
de8d5ab2
GP
8357 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8358 if (features & NETIF_F_RXFCS) {
8359 if (features & NETIF_F_LRO) {
8360 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8361 features &= ~NETIF_F_LRO;
8362 }
8363
8364 if (features & NETIF_F_GRO_HW) {
8365 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8366 features &= ~NETIF_F_GRO_HW;
8367 }
e6c6a929
GP
8368 }
8369
b63365a2
HX
8370 return features;
8371}
b63365a2 8372
6cb6a27c 8373int __netdev_update_features(struct net_device *dev)
5455c699 8374{
fd867d51 8375 struct net_device *upper, *lower;
c8f44aff 8376 netdev_features_t features;
fd867d51 8377 struct list_head *iter;
e7868a85 8378 int err = -1;
5455c699 8379
87267485
MM
8380 ASSERT_RTNL();
8381
5455c699
MM
8382 features = netdev_get_wanted_features(dev);
8383
8384 if (dev->netdev_ops->ndo_fix_features)
8385 features = dev->netdev_ops->ndo_fix_features(dev, features);
8386
8387 /* driver might be less strict about feature dependencies */
8388 features = netdev_fix_features(dev, features);
8389
fd867d51
JW
8390 /* some features can't be enabled if they're off an an upper device */
8391 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8392 features = netdev_sync_upper_features(dev, upper, features);
8393
5455c699 8394 if (dev->features == features)
e7868a85 8395 goto sync_lower;
5455c699 8396
c8f44aff
MM
8397 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8398 &dev->features, &features);
5455c699
MM
8399
8400 if (dev->netdev_ops->ndo_set_features)
8401 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
8402 else
8403 err = 0;
5455c699 8404
6cb6a27c 8405 if (unlikely(err < 0)) {
5455c699 8406 netdev_err(dev,
c8f44aff
MM
8407 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8408 err, &features, &dev->features);
17b85d29
NA
8409 /* return non-0 since some features might have changed and
8410 * it's better to fire a spurious notification than miss it
8411 */
8412 return -1;
6cb6a27c
MM
8413 }
8414
e7868a85 8415sync_lower:
fd867d51
JW
8416 /* some features must be disabled on lower devices when disabled
8417 * on an upper device (think: bonding master or bridge)
8418 */
8419 netdev_for_each_lower_dev(dev, lower, iter)
8420 netdev_sync_lower_features(dev, lower, features);
8421
ae847f40
SD
8422 if (!err) {
8423 netdev_features_t diff = features ^ dev->features;
8424
8425 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8426 /* udp_tunnel_{get,drop}_rx_info both need
8427 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8428 * device, or they won't do anything.
8429 * Thus we need to update dev->features
8430 * *before* calling udp_tunnel_get_rx_info,
8431 * but *after* calling udp_tunnel_drop_rx_info.
8432 */
8433 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8434 dev->features = features;
8435 udp_tunnel_get_rx_info(dev);
8436 } else {
8437 udp_tunnel_drop_rx_info(dev);
8438 }
8439 }
8440
9daae9bd
GP
8441 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8442 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8443 dev->features = features;
8444 err |= vlan_get_rx_ctag_filter_info(dev);
8445 } else {
8446 vlan_drop_rx_ctag_filter_info(dev);
8447 }
8448 }
8449
8450 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8451 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8452 dev->features = features;
8453 err |= vlan_get_rx_stag_filter_info(dev);
8454 } else {
8455 vlan_drop_rx_stag_filter_info(dev);
8456 }
8457 }
8458
6cb6a27c 8459 dev->features = features;
ae847f40 8460 }
6cb6a27c 8461
e7868a85 8462 return err < 0 ? 0 : 1;
6cb6a27c
MM
8463}
8464
afe12cc8
MM
8465/**
8466 * netdev_update_features - recalculate device features
8467 * @dev: the device to check
8468 *
8469 * Recalculate dev->features set and send notifications if it
8470 * has changed. Should be called after driver or hardware dependent
8471 * conditions might have changed that influence the features.
8472 */
6cb6a27c
MM
8473void netdev_update_features(struct net_device *dev)
8474{
8475 if (__netdev_update_features(dev))
8476 netdev_features_change(dev);
5455c699
MM
8477}
8478EXPORT_SYMBOL(netdev_update_features);
8479
afe12cc8
MM
8480/**
8481 * netdev_change_features - recalculate device features
8482 * @dev: the device to check
8483 *
8484 * Recalculate dev->features set and send notifications even
8485 * if they have not changed. Should be called instead of
8486 * netdev_update_features() if also dev->vlan_features might
8487 * have changed to allow the changes to be propagated to stacked
8488 * VLAN devices.
8489 */
8490void netdev_change_features(struct net_device *dev)
8491{
8492 __netdev_update_features(dev);
8493 netdev_features_change(dev);
8494}
8495EXPORT_SYMBOL(netdev_change_features);
8496
fc4a7489
PM
8497/**
8498 * netif_stacked_transfer_operstate - transfer operstate
8499 * @rootdev: the root or lower level device to transfer state from
8500 * @dev: the device to transfer operstate to
8501 *
8502 * Transfer operational state from root to device. This is normally
8503 * called when a stacking relationship exists between the root
8504 * device and the device(a leaf device).
8505 */
8506void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8507 struct net_device *dev)
8508{
8509 if (rootdev->operstate == IF_OPER_DORMANT)
8510 netif_dormant_on(dev);
8511 else
8512 netif_dormant_off(dev);
8513
0575c86b
ZS
8514 if (netif_carrier_ok(rootdev))
8515 netif_carrier_on(dev);
8516 else
8517 netif_carrier_off(dev);
fc4a7489
PM
8518}
8519EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8520
1b4bf461
ED
8521static int netif_alloc_rx_queues(struct net_device *dev)
8522{
1b4bf461 8523 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 8524 struct netdev_rx_queue *rx;
10595902 8525 size_t sz = count * sizeof(*rx);
e817f856 8526 int err = 0;
1b4bf461 8527
bd25fa7b 8528 BUG_ON(count < 1);
1b4bf461 8529
dcda9b04 8530 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8531 if (!rx)
8532 return -ENOMEM;
8533
bd25fa7b
TH
8534 dev->_rx = rx;
8535
e817f856 8536 for (i = 0; i < count; i++) {
fe822240 8537 rx[i].dev = dev;
e817f856
JDB
8538
8539 /* XDP RX-queue setup */
8540 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8541 if (err < 0)
8542 goto err_rxq_info;
8543 }
1b4bf461 8544 return 0;
e817f856
JDB
8545
8546err_rxq_info:
8547 /* Rollback successful reg's and free other resources */
8548 while (i--)
8549 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 8550 kvfree(dev->_rx);
e817f856
JDB
8551 dev->_rx = NULL;
8552 return err;
8553}
8554
8555static void netif_free_rx_queues(struct net_device *dev)
8556{
8557 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
8558
8559 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8560 if (!dev->_rx)
8561 return;
8562
e817f856 8563 for (i = 0; i < count; i++)
82aaff2f
JK
8564 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8565
8566 kvfree(dev->_rx);
1b4bf461
ED
8567}
8568
aa942104
CG
8569static void netdev_init_one_queue(struct net_device *dev,
8570 struct netdev_queue *queue, void *_unused)
8571{
8572 /* Initialize queue lock */
8573 spin_lock_init(&queue->_xmit_lock);
8574 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8575 queue->xmit_lock_owner = -1;
b236da69 8576 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 8577 queue->dev = dev;
114cf580
TH
8578#ifdef CONFIG_BQL
8579 dql_init(&queue->dql, HZ);
8580#endif
aa942104
CG
8581}
8582
60877a32
ED
8583static void netif_free_tx_queues(struct net_device *dev)
8584{
4cb28970 8585 kvfree(dev->_tx);
60877a32
ED
8586}
8587
e6484930
TH
8588static int netif_alloc_netdev_queues(struct net_device *dev)
8589{
8590 unsigned int count = dev->num_tx_queues;
8591 struct netdev_queue *tx;
60877a32 8592 size_t sz = count * sizeof(*tx);
e6484930 8593
d339727c
ED
8594 if (count < 1 || count > 0xffff)
8595 return -EINVAL;
62b5942a 8596
dcda9b04 8597 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8598 if (!tx)
8599 return -ENOMEM;
8600
e6484930 8601 dev->_tx = tx;
1d24eb48 8602
e6484930
TH
8603 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8604 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
8605
8606 return 0;
e6484930
TH
8607}
8608
a2029240
DV
8609void netif_tx_stop_all_queues(struct net_device *dev)
8610{
8611 unsigned int i;
8612
8613 for (i = 0; i < dev->num_tx_queues; i++) {
8614 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 8615
a2029240
DV
8616 netif_tx_stop_queue(txq);
8617 }
8618}
8619EXPORT_SYMBOL(netif_tx_stop_all_queues);
8620
1da177e4
LT
8621/**
8622 * register_netdevice - register a network device
8623 * @dev: device to register
8624 *
8625 * Take a completed network device structure and add it to the kernel
8626 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8627 * chain. 0 is returned on success. A negative errno code is returned
8628 * on a failure to set up the device, or if the name is a duplicate.
8629 *
8630 * Callers must hold the rtnl semaphore. You may want
8631 * register_netdev() instead of this.
8632 *
8633 * BUGS:
8634 * The locking appears insufficient to guarantee two parallel registers
8635 * will not get the same name.
8636 */
8637
8638int register_netdevice(struct net_device *dev)
8639{
1da177e4 8640 int ret;
d314774c 8641 struct net *net = dev_net(dev);
1da177e4 8642
e283de3a
FF
8643 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8644 NETDEV_FEATURE_COUNT);
1da177e4
LT
8645 BUG_ON(dev_boot_phase);
8646 ASSERT_RTNL();
8647
b17a7c17
SH
8648 might_sleep();
8649
1da177e4
LT
8650 /* When net_device's are persistent, this will be fatal. */
8651 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 8652 BUG_ON(!net);
1da177e4 8653
f1f28aa3 8654 spin_lock_init(&dev->addr_list_lock);
cf508b12 8655 netdev_set_addr_lockdep_class(dev);
1da177e4 8656
828de4f6 8657 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
8658 if (ret < 0)
8659 goto out;
8660
1da177e4 8661 /* Init, if this function is available */
d314774c
SH
8662 if (dev->netdev_ops->ndo_init) {
8663 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
8664 if (ret) {
8665 if (ret > 0)
8666 ret = -EIO;
90833aa4 8667 goto out;
1da177e4
LT
8668 }
8669 }
4ec93edb 8670
f646968f
PM
8671 if (((dev->hw_features | dev->features) &
8672 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
8673 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8674 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8675 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8676 ret = -EINVAL;
8677 goto err_uninit;
8678 }
8679
9c7dafbf
PE
8680 ret = -EBUSY;
8681 if (!dev->ifindex)
8682 dev->ifindex = dev_new_index(net);
8683 else if (__dev_get_by_index(net, dev->ifindex))
8684 goto err_uninit;
8685
5455c699
MM
8686 /* Transfer changeable features to wanted_features and enable
8687 * software offloads (GSO and GRO).
8688 */
8689 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 8690 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
8691
8692 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8693 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8694 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8695 }
8696
14d1232f 8697 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 8698
cbc53e08 8699 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 8700 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 8701
7f348a60
AD
8702 /* If IPv4 TCP segmentation offload is supported we should also
8703 * allow the device to enable segmenting the frame with the option
8704 * of ignoring a static IP ID value. This doesn't enable the
8705 * feature itself but allows the user to enable it later.
8706 */
cbc53e08
AD
8707 if (dev->hw_features & NETIF_F_TSO)
8708 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
8709 if (dev->vlan_features & NETIF_F_TSO)
8710 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8711 if (dev->mpls_features & NETIF_F_TSO)
8712 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8713 if (dev->hw_enc_features & NETIF_F_TSO)
8714 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 8715
1180e7d6 8716 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 8717 */
1180e7d6 8718 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 8719
ee579677
PS
8720 /* Make NETIF_F_SG inheritable to tunnel devices.
8721 */
802ab55a 8722 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 8723
0d89d203
SH
8724 /* Make NETIF_F_SG inheritable to MPLS.
8725 */
8726 dev->mpls_features |= NETIF_F_SG;
8727
7ffbe3fd
JB
8728 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8729 ret = notifier_to_errno(ret);
8730 if (ret)
8731 goto err_uninit;
8732
8b41d188 8733 ret = netdev_register_kobject(dev);
b17a7c17 8734 if (ret)
7ce1b0ed 8735 goto err_uninit;
b17a7c17
SH
8736 dev->reg_state = NETREG_REGISTERED;
8737
6cb6a27c 8738 __netdev_update_features(dev);
8e9b59b2 8739
1da177e4
LT
8740 /*
8741 * Default initial state at registry is that the
8742 * device is present.
8743 */
8744
8745 set_bit(__LINK_STATE_PRESENT, &dev->state);
8746
8f4cccbb
BH
8747 linkwatch_init_dev(dev);
8748
1da177e4 8749 dev_init_scheduler(dev);
1da177e4 8750 dev_hold(dev);
ce286d32 8751 list_netdevice(dev);
7bf23575 8752 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 8753
948b337e
JP
8754 /* If the device has permanent device address, driver should
8755 * set dev_addr and also addr_assign_type should be set to
8756 * NET_ADDR_PERM (default value).
8757 */
8758 if (dev->addr_assign_type == NET_ADDR_PERM)
8759 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8760
1da177e4 8761 /* Notify protocols, that a new device appeared. */
056925ab 8762 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 8763 ret = notifier_to_errno(ret);
93ee31f1
DL
8764 if (ret) {
8765 rollback_registered(dev);
8766 dev->reg_state = NETREG_UNREGISTERED;
8767 }
d90a909e
EB
8768 /*
8769 * Prevent userspace races by waiting until the network
8770 * device is fully setup before sending notifications.
8771 */
a2835763
PM
8772 if (!dev->rtnl_link_ops ||
8773 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 8774 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
8775
8776out:
8777 return ret;
7ce1b0ed
HX
8778
8779err_uninit:
d314774c
SH
8780 if (dev->netdev_ops->ndo_uninit)
8781 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
8782 if (dev->priv_destructor)
8783 dev->priv_destructor(dev);
7ce1b0ed 8784 goto out;
1da177e4 8785}
d1b19dff 8786EXPORT_SYMBOL(register_netdevice);
1da177e4 8787
937f1ba5
BH
8788/**
8789 * init_dummy_netdev - init a dummy network device for NAPI
8790 * @dev: device to init
8791 *
8792 * This takes a network device structure and initialize the minimum
8793 * amount of fields so it can be used to schedule NAPI polls without
8794 * registering a full blown interface. This is to be used by drivers
8795 * that need to tie several hardware interfaces to a single NAPI
8796 * poll scheduler due to HW limitations.
8797 */
8798int init_dummy_netdev(struct net_device *dev)
8799{
8800 /* Clear everything. Note we don't initialize spinlocks
8801 * are they aren't supposed to be taken by any of the
8802 * NAPI code and this dummy netdev is supposed to be
8803 * only ever used for NAPI polls
8804 */
8805 memset(dev, 0, sizeof(struct net_device));
8806
8807 /* make sure we BUG if trying to hit standard
8808 * register/unregister code path
8809 */
8810 dev->reg_state = NETREG_DUMMY;
8811
937f1ba5
BH
8812 /* NAPI wants this */
8813 INIT_LIST_HEAD(&dev->napi_list);
8814
8815 /* a dummy interface is started by default */
8816 set_bit(__LINK_STATE_PRESENT, &dev->state);
8817 set_bit(__LINK_STATE_START, &dev->state);
8818
35edfdc7
JE
8819 /* napi_busy_loop stats accounting wants this */
8820 dev_net_set(dev, &init_net);
8821
29b4433d
ED
8822 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8823 * because users of this 'device' dont need to change
8824 * its refcount.
8825 */
8826
937f1ba5
BH
8827 return 0;
8828}
8829EXPORT_SYMBOL_GPL(init_dummy_netdev);
8830
8831
1da177e4
LT
8832/**
8833 * register_netdev - register a network device
8834 * @dev: device to register
8835 *
8836 * Take a completed network device structure and add it to the kernel
8837 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8838 * chain. 0 is returned on success. A negative errno code is returned
8839 * on a failure to set up the device, or if the name is a duplicate.
8840 *
38b4da38 8841 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
8842 * and expands the device name if you passed a format string to
8843 * alloc_netdev.
8844 */
8845int register_netdev(struct net_device *dev)
8846{
8847 int err;
8848
b0f3debc
KT
8849 if (rtnl_lock_killable())
8850 return -EINTR;
1da177e4 8851 err = register_netdevice(dev);
1da177e4
LT
8852 rtnl_unlock();
8853 return err;
8854}
8855EXPORT_SYMBOL(register_netdev);
8856
29b4433d
ED
8857int netdev_refcnt_read(const struct net_device *dev)
8858{
8859 int i, refcnt = 0;
8860
8861 for_each_possible_cpu(i)
8862 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8863 return refcnt;
8864}
8865EXPORT_SYMBOL(netdev_refcnt_read);
8866
2c53040f 8867/**
1da177e4 8868 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 8869 * @dev: target net_device
1da177e4
LT
8870 *
8871 * This is called when unregistering network devices.
8872 *
8873 * Any protocol or device that holds a reference should register
8874 * for netdevice notification, and cleanup and put back the
8875 * reference if they receive an UNREGISTER event.
8876 * We can get stuck here if buggy protocols don't correctly
4ec93edb 8877 * call dev_put.
1da177e4
LT
8878 */
8879static void netdev_wait_allrefs(struct net_device *dev)
8880{
8881 unsigned long rebroadcast_time, warning_time;
29b4433d 8882 int refcnt;
1da177e4 8883
e014debe
ED
8884 linkwatch_forget_dev(dev);
8885
1da177e4 8886 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
8887 refcnt = netdev_refcnt_read(dev);
8888
8889 while (refcnt != 0) {
1da177e4 8890 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 8891 rtnl_lock();
1da177e4
LT
8892
8893 /* Rebroadcast unregister notification */
056925ab 8894 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 8895
748e2d93 8896 __rtnl_unlock();
0115e8e3 8897 rcu_barrier();
748e2d93
ED
8898 rtnl_lock();
8899
1da177e4
LT
8900 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8901 &dev->state)) {
8902 /* We must not have linkwatch events
8903 * pending on unregister. If this
8904 * happens, we simply run the queue
8905 * unscheduled, resulting in a noop
8906 * for this device.
8907 */
8908 linkwatch_run_queue();
8909 }
8910
6756ae4b 8911 __rtnl_unlock();
1da177e4
LT
8912
8913 rebroadcast_time = jiffies;
8914 }
8915
8916 msleep(250);
8917
29b4433d
ED
8918 refcnt = netdev_refcnt_read(dev);
8919
d7c04b05 8920 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
8921 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8922 dev->name, refcnt);
1da177e4
LT
8923 warning_time = jiffies;
8924 }
8925 }
8926}
8927
8928/* The sequence is:
8929 *
8930 * rtnl_lock();
8931 * ...
8932 * register_netdevice(x1);
8933 * register_netdevice(x2);
8934 * ...
8935 * unregister_netdevice(y1);
8936 * unregister_netdevice(y2);
8937 * ...
8938 * rtnl_unlock();
8939 * free_netdev(y1);
8940 * free_netdev(y2);
8941 *
58ec3b4d 8942 * We are invoked by rtnl_unlock().
1da177e4 8943 * This allows us to deal with problems:
b17a7c17 8944 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
8945 * without deadlocking with linkwatch via keventd.
8946 * 2) Since we run with the RTNL semaphore not held, we can sleep
8947 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
8948 *
8949 * We must not return until all unregister events added during
8950 * the interval the lock was held have been completed.
1da177e4 8951 */
1da177e4
LT
8952void netdev_run_todo(void)
8953{
626ab0e6 8954 struct list_head list;
1da177e4 8955
1da177e4 8956 /* Snapshot list, allow later requests */
626ab0e6 8957 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
8958
8959 __rtnl_unlock();
626ab0e6 8960
0115e8e3
ED
8961
8962 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
8963 if (!list_empty(&list))
8964 rcu_barrier();
8965
1da177e4
LT
8966 while (!list_empty(&list)) {
8967 struct net_device *dev
e5e26d75 8968 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
8969 list_del(&dev->todo_list);
8970
b17a7c17 8971 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 8972 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
8973 dev->name, dev->reg_state);
8974 dump_stack();
8975 continue;
8976 }
1da177e4 8977
b17a7c17 8978 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 8979
b17a7c17 8980 netdev_wait_allrefs(dev);
1da177e4 8981
b17a7c17 8982 /* paranoia */
29b4433d 8983 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
8984 BUG_ON(!list_empty(&dev->ptype_all));
8985 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
8986 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8987 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 8988#if IS_ENABLED(CONFIG_DECNET)
547b792c 8989 WARN_ON(dev->dn_ptr);
330c7272 8990#endif
cf124db5
DM
8991 if (dev->priv_destructor)
8992 dev->priv_destructor(dev);
8993 if (dev->needs_free_netdev)
8994 free_netdev(dev);
9093bbb2 8995
50624c93
EB
8996 /* Report a network device has been unregistered */
8997 rtnl_lock();
8998 dev_net(dev)->dev_unreg_count--;
8999 __rtnl_unlock();
9000 wake_up(&netdev_unregistering_wq);
9001
9093bbb2
SH
9002 /* Free network device */
9003 kobject_put(&dev->dev.kobj);
1da177e4 9004 }
1da177e4
LT
9005}
9006
9256645a
JW
9007/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9008 * all the same fields in the same order as net_device_stats, with only
9009 * the type differing, but rtnl_link_stats64 may have additional fields
9010 * at the end for newer counters.
3cfde79c 9011 */
77a1abf5
ED
9012void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9013 const struct net_device_stats *netdev_stats)
3cfde79c
BH
9014{
9015#if BITS_PER_LONG == 64
9256645a 9016 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 9017 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
9018 /* zero out counters that only exist in rtnl_link_stats64 */
9019 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9020 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 9021#else
9256645a 9022 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
9023 const unsigned long *src = (const unsigned long *)netdev_stats;
9024 u64 *dst = (u64 *)stats64;
9025
9256645a 9026 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
9027 for (i = 0; i < n; i++)
9028 dst[i] = src[i];
9256645a
JW
9029 /* zero out counters that only exist in rtnl_link_stats64 */
9030 memset((char *)stats64 + n * sizeof(u64), 0,
9031 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
9032#endif
9033}
77a1abf5 9034EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 9035
eeda3fd6
SH
9036/**
9037 * dev_get_stats - get network device statistics
9038 * @dev: device to get statistics from
28172739 9039 * @storage: place to store stats
eeda3fd6 9040 *
d7753516
BH
9041 * Get network statistics from device. Return @storage.
9042 * The device driver may provide its own method by setting
9043 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9044 * otherwise the internal statistics structure is used.
eeda3fd6 9045 */
d7753516
BH
9046struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9047 struct rtnl_link_stats64 *storage)
7004bf25 9048{
eeda3fd6
SH
9049 const struct net_device_ops *ops = dev->netdev_ops;
9050
28172739
ED
9051 if (ops->ndo_get_stats64) {
9052 memset(storage, 0, sizeof(*storage));
caf586e5
ED
9053 ops->ndo_get_stats64(dev, storage);
9054 } else if (ops->ndo_get_stats) {
3cfde79c 9055 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
9056 } else {
9057 netdev_stats_to_stats64(storage, &dev->stats);
28172739 9058 }
6f64ec74
ED
9059 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9060 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9061 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 9062 return storage;
c45d286e 9063}
eeda3fd6 9064EXPORT_SYMBOL(dev_get_stats);
c45d286e 9065
24824a09 9066struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 9067{
24824a09 9068 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 9069
24824a09
ED
9070#ifdef CONFIG_NET_CLS_ACT
9071 if (queue)
9072 return queue;
9073 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9074 if (!queue)
9075 return NULL;
9076 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 9077 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
9078 queue->qdisc_sleeping = &noop_qdisc;
9079 rcu_assign_pointer(dev->ingress_queue, queue);
9080#endif
9081 return queue;
bb949fbd
DM
9082}
9083
2c60db03
ED
9084static const struct ethtool_ops default_ethtool_ops;
9085
d07d7507
SG
9086void netdev_set_default_ethtool_ops(struct net_device *dev,
9087 const struct ethtool_ops *ops)
9088{
9089 if (dev->ethtool_ops == &default_ethtool_ops)
9090 dev->ethtool_ops = ops;
9091}
9092EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9093
74d332c1
ED
9094void netdev_freemem(struct net_device *dev)
9095{
9096 char *addr = (char *)dev - dev->padded;
9097
4cb28970 9098 kvfree(addr);
74d332c1
ED
9099}
9100
1da177e4 9101/**
722c9a0c 9102 * alloc_netdev_mqs - allocate network device
9103 * @sizeof_priv: size of private data to allocate space for
9104 * @name: device name format string
9105 * @name_assign_type: origin of device name
9106 * @setup: callback to initialize device
9107 * @txqs: the number of TX subqueues to allocate
9108 * @rxqs: the number of RX subqueues to allocate
9109 *
9110 * Allocates a struct net_device with private data area for driver use
9111 * and performs basic initialization. Also allocates subqueue structs
9112 * for each queue on the device.
1da177e4 9113 */
36909ea4 9114struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 9115 unsigned char name_assign_type,
36909ea4
TH
9116 void (*setup)(struct net_device *),
9117 unsigned int txqs, unsigned int rxqs)
1da177e4 9118{
1da177e4 9119 struct net_device *dev;
52a59bd5 9120 unsigned int alloc_size;
1ce8e7b5 9121 struct net_device *p;
1da177e4 9122
b6fe17d6
SH
9123 BUG_ON(strlen(name) >= sizeof(dev->name));
9124
36909ea4 9125 if (txqs < 1) {
7b6cd1ce 9126 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
9127 return NULL;
9128 }
9129
36909ea4 9130 if (rxqs < 1) {
7b6cd1ce 9131 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
9132 return NULL;
9133 }
36909ea4 9134
fd2ea0a7 9135 alloc_size = sizeof(struct net_device);
d1643d24
AD
9136 if (sizeof_priv) {
9137 /* ensure 32-byte alignment of private area */
1ce8e7b5 9138 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
9139 alloc_size += sizeof_priv;
9140 }
9141 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 9142 alloc_size += NETDEV_ALIGN - 1;
1da177e4 9143
dcda9b04 9144 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 9145 if (!p)
1da177e4 9146 return NULL;
1da177e4 9147
1ce8e7b5 9148 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 9149 dev->padded = (char *)dev - (char *)p;
ab9c73cc 9150
29b4433d
ED
9151 dev->pcpu_refcnt = alloc_percpu(int);
9152 if (!dev->pcpu_refcnt)
74d332c1 9153 goto free_dev;
ab9c73cc 9154
ab9c73cc 9155 if (dev_addr_init(dev))
29b4433d 9156 goto free_pcpu;
ab9c73cc 9157
22bedad3 9158 dev_mc_init(dev);
a748ee24 9159 dev_uc_init(dev);
ccffad25 9160
c346dca1 9161 dev_net_set(dev, &init_net);
1da177e4 9162
8d3bdbd5 9163 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 9164 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 9165
8d3bdbd5
DM
9166 INIT_LIST_HEAD(&dev->napi_list);
9167 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 9168 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 9169 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
9170 INIT_LIST_HEAD(&dev->adj_list.upper);
9171 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
9172 INIT_LIST_HEAD(&dev->ptype_all);
9173 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
9174#ifdef CONFIG_NET_SCHED
9175 hash_init(dev->qdisc_hash);
9176#endif
02875878 9177 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
9178 setup(dev);
9179
a813104d 9180 if (!dev->tx_queue_len) {
f84bb1ea 9181 dev->priv_flags |= IFF_NO_QUEUE;
11597084 9182 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 9183 }
906470c1 9184
36909ea4
TH
9185 dev->num_tx_queues = txqs;
9186 dev->real_num_tx_queues = txqs;
ed9af2e8 9187 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 9188 goto free_all;
e8a0464c 9189
36909ea4
TH
9190 dev->num_rx_queues = rxqs;
9191 dev->real_num_rx_queues = rxqs;
fe822240 9192 if (netif_alloc_rx_queues(dev))
8d3bdbd5 9193 goto free_all;
0a9627f2 9194
1da177e4 9195 strcpy(dev->name, name);
c835a677 9196 dev->name_assign_type = name_assign_type;
cbda10fa 9197 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
9198 if (!dev->ethtool_ops)
9199 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
9200
9201 nf_hook_ingress_init(dev);
9202
1da177e4 9203 return dev;
ab9c73cc 9204
8d3bdbd5
DM
9205free_all:
9206 free_netdev(dev);
9207 return NULL;
9208
29b4433d
ED
9209free_pcpu:
9210 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
9211free_dev:
9212 netdev_freemem(dev);
ab9c73cc 9213 return NULL;
1da177e4 9214}
36909ea4 9215EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
9216
9217/**
722c9a0c 9218 * free_netdev - free network device
9219 * @dev: device
1da177e4 9220 *
722c9a0c 9221 * This function does the last stage of destroying an allocated device
9222 * interface. The reference to the device object is released. If this
9223 * is the last reference then it will be freed.Must be called in process
9224 * context.
1da177e4
LT
9225 */
9226void free_netdev(struct net_device *dev)
9227{
d565b0a1
HX
9228 struct napi_struct *p, *n;
9229
93d05d4a 9230 might_sleep();
60877a32 9231 netif_free_tx_queues(dev);
e817f856 9232 netif_free_rx_queues(dev);
e8a0464c 9233
33d480ce 9234 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 9235
f001fde5
JP
9236 /* Flush device addresses */
9237 dev_addr_flush(dev);
9238
d565b0a1
HX
9239 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9240 netif_napi_del(p);
9241
29b4433d
ED
9242 free_percpu(dev->pcpu_refcnt);
9243 dev->pcpu_refcnt = NULL;
9244
3041a069 9245 /* Compatibility with error handling in drivers */
1da177e4 9246 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 9247 netdev_freemem(dev);
1da177e4
LT
9248 return;
9249 }
9250
9251 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9252 dev->reg_state = NETREG_RELEASED;
9253
43cb76d9
GKH
9254 /* will free via device release */
9255 put_device(&dev->dev);
1da177e4 9256}
d1b19dff 9257EXPORT_SYMBOL(free_netdev);
4ec93edb 9258
f0db275a
SH
9259/**
9260 * synchronize_net - Synchronize with packet receive processing
9261 *
9262 * Wait for packets currently being received to be done.
9263 * Does not block later packets from starting.
9264 */
4ec93edb 9265void synchronize_net(void)
1da177e4
LT
9266{
9267 might_sleep();
be3fc413
ED
9268 if (rtnl_is_locked())
9269 synchronize_rcu_expedited();
9270 else
9271 synchronize_rcu();
1da177e4 9272}
d1b19dff 9273EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
9274
9275/**
44a0873d 9276 * unregister_netdevice_queue - remove device from the kernel
1da177e4 9277 * @dev: device
44a0873d 9278 * @head: list
6ebfbc06 9279 *
1da177e4 9280 * This function shuts down a device interface and removes it
d59b54b1 9281 * from the kernel tables.
44a0873d 9282 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
9283 *
9284 * Callers must hold the rtnl semaphore. You may want
9285 * unregister_netdev() instead of this.
9286 */
9287
44a0873d 9288void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 9289{
a6620712
HX
9290 ASSERT_RTNL();
9291
44a0873d 9292 if (head) {
9fdce099 9293 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
9294 } else {
9295 rollback_registered(dev);
9296 /* Finish processing unregister after unlock */
9297 net_set_todo(dev);
9298 }
1da177e4 9299}
44a0873d 9300EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 9301
9b5e383c
ED
9302/**
9303 * unregister_netdevice_many - unregister many devices
9304 * @head: list of devices
87757a91
ED
9305 *
9306 * Note: As most callers use a stack allocated list_head,
9307 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
9308 */
9309void unregister_netdevice_many(struct list_head *head)
9310{
9311 struct net_device *dev;
9312
9313 if (!list_empty(head)) {
9314 rollback_registered_many(head);
9315 list_for_each_entry(dev, head, unreg_list)
9316 net_set_todo(dev);
87757a91 9317 list_del(head);
9b5e383c
ED
9318 }
9319}
63c8099d 9320EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 9321
1da177e4
LT
9322/**
9323 * unregister_netdev - remove device from the kernel
9324 * @dev: device
9325 *
9326 * This function shuts down a device interface and removes it
d59b54b1 9327 * from the kernel tables.
1da177e4
LT
9328 *
9329 * This is just a wrapper for unregister_netdevice that takes
9330 * the rtnl semaphore. In general you want to use this and not
9331 * unregister_netdevice.
9332 */
9333void unregister_netdev(struct net_device *dev)
9334{
9335 rtnl_lock();
9336 unregister_netdevice(dev);
9337 rtnl_unlock();
9338}
1da177e4
LT
9339EXPORT_SYMBOL(unregister_netdev);
9340
ce286d32
EB
9341/**
9342 * dev_change_net_namespace - move device to different nethost namespace
9343 * @dev: device
9344 * @net: network namespace
9345 * @pat: If not NULL name pattern to try if the current device name
9346 * is already taken in the destination network namespace.
9347 *
9348 * This function shuts down a device interface and moves it
9349 * to a new network namespace. On success 0 is returned, on
9350 * a failure a netagive errno code is returned.
9351 *
9352 * Callers must hold the rtnl semaphore.
9353 */
9354
9355int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9356{
38e01b30 9357 int err, new_nsid, new_ifindex;
ce286d32
EB
9358
9359 ASSERT_RTNL();
9360
9361 /* Don't allow namespace local devices to be moved. */
9362 err = -EINVAL;
9363 if (dev->features & NETIF_F_NETNS_LOCAL)
9364 goto out;
9365
9366 /* Ensure the device has been registrered */
ce286d32
EB
9367 if (dev->reg_state != NETREG_REGISTERED)
9368 goto out;
9369
9370 /* Get out if there is nothing todo */
9371 err = 0;
878628fb 9372 if (net_eq(dev_net(dev), net))
ce286d32
EB
9373 goto out;
9374
9375 /* Pick the destination device name, and ensure
9376 * we can use it in the destination network namespace.
9377 */
9378 err = -EEXIST;
d9031024 9379 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
9380 /* We get here if we can't use the current device name */
9381 if (!pat)
9382 goto out;
7892bd08
LR
9383 err = dev_get_valid_name(net, dev, pat);
9384 if (err < 0)
ce286d32
EB
9385 goto out;
9386 }
9387
9388 /*
9389 * And now a mini version of register_netdevice unregister_netdevice.
9390 */
9391
9392 /* If device is running close it first. */
9b772652 9393 dev_close(dev);
ce286d32
EB
9394
9395 /* And unlink it from device chain */
ce286d32
EB
9396 unlist_netdevice(dev);
9397
9398 synchronize_net();
9399
9400 /* Shutdown queueing discipline. */
9401 dev_shutdown(dev);
9402
9403 /* Notify protocols, that we are about to destroy
eb13da1a 9404 * this device. They should clean all the things.
9405 *
9406 * Note that dev->reg_state stays at NETREG_REGISTERED.
9407 * This is wanted because this way 8021q and macvlan know
9408 * the device is just moving and can keep their slaves up.
9409 */
ce286d32 9410 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 9411 rcu_barrier();
38e01b30 9412
c36ac8e2 9413 new_nsid = peernet2id_alloc(dev_net(dev), net);
38e01b30
ND
9414 /* If there is an ifindex conflict assign a new one */
9415 if (__dev_get_by_index(net, dev->ifindex))
9416 new_ifindex = dev_new_index(net);
9417 else
9418 new_ifindex = dev->ifindex;
9419
9420 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9421 new_ifindex);
ce286d32
EB
9422
9423 /*
9424 * Flush the unicast and multicast chains
9425 */
a748ee24 9426 dev_uc_flush(dev);
22bedad3 9427 dev_mc_flush(dev);
ce286d32 9428
4e66ae2e
SH
9429 /* Send a netdev-removed uevent to the old namespace */
9430 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 9431 netdev_adjacent_del_links(dev);
4e66ae2e 9432
ce286d32 9433 /* Actually switch the network namespace */
c346dca1 9434 dev_net_set(dev, net);
38e01b30 9435 dev->ifindex = new_ifindex;
ce286d32 9436
4e66ae2e
SH
9437 /* Send a netdev-add uevent to the new namespace */
9438 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 9439 netdev_adjacent_add_links(dev);
4e66ae2e 9440
8b41d188 9441 /* Fixup kobjects */
a1b3f594 9442 err = device_rename(&dev->dev, dev->name);
8b41d188 9443 WARN_ON(err);
ce286d32
EB
9444
9445 /* Add the device back in the hashes */
9446 list_netdevice(dev);
9447
9448 /* Notify protocols, that a new device appeared. */
9449 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9450
d90a909e
EB
9451 /*
9452 * Prevent userspace races by waiting until the network
9453 * device is fully setup before sending notifications.
9454 */
7f294054 9455 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 9456
ce286d32
EB
9457 synchronize_net();
9458 err = 0;
9459out:
9460 return err;
9461}
463d0183 9462EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 9463
f0bf90de 9464static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
9465{
9466 struct sk_buff **list_skb;
1da177e4 9467 struct sk_buff *skb;
f0bf90de 9468 unsigned int cpu;
97d8b6e3 9469 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 9470
1da177e4
LT
9471 local_irq_disable();
9472 cpu = smp_processor_id();
9473 sd = &per_cpu(softnet_data, cpu);
9474 oldsd = &per_cpu(softnet_data, oldcpu);
9475
9476 /* Find end of our completion_queue. */
9477 list_skb = &sd->completion_queue;
9478 while (*list_skb)
9479 list_skb = &(*list_skb)->next;
9480 /* Append completion queue from offline CPU. */
9481 *list_skb = oldsd->completion_queue;
9482 oldsd->completion_queue = NULL;
9483
1da177e4 9484 /* Append output queue from offline CPU. */
a9cbd588
CG
9485 if (oldsd->output_queue) {
9486 *sd->output_queue_tailp = oldsd->output_queue;
9487 sd->output_queue_tailp = oldsd->output_queue_tailp;
9488 oldsd->output_queue = NULL;
9489 oldsd->output_queue_tailp = &oldsd->output_queue;
9490 }
ac64da0b
ED
9491 /* Append NAPI poll list from offline CPU, with one exception :
9492 * process_backlog() must be called by cpu owning percpu backlog.
9493 * We properly handle process_queue & input_pkt_queue later.
9494 */
9495 while (!list_empty(&oldsd->poll_list)) {
9496 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9497 struct napi_struct,
9498 poll_list);
9499
9500 list_del_init(&napi->poll_list);
9501 if (napi->poll == process_backlog)
9502 napi->state = 0;
9503 else
9504 ____napi_schedule(sd, napi);
264524d5 9505 }
1da177e4
LT
9506
9507 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9508 local_irq_enable();
9509
773fc8f6 9510#ifdef CONFIG_RPS
9511 remsd = oldsd->rps_ipi_list;
9512 oldsd->rps_ipi_list = NULL;
9513#endif
9514 /* send out pending IPI's on offline CPU */
9515 net_rps_send_ipi(remsd);
9516
1da177e4 9517 /* Process offline CPU's input_pkt_queue */
76cc8b13 9518 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 9519 netif_rx_ni(skb);
76cc8b13 9520 input_queue_head_incr(oldsd);
fec5e652 9521 }
ac64da0b 9522 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 9523 netif_rx_ni(skb);
76cc8b13
TH
9524 input_queue_head_incr(oldsd);
9525 }
1da177e4 9526
f0bf90de 9527 return 0;
1da177e4 9528}
1da177e4 9529
7f353bf2 9530/**
b63365a2
HX
9531 * netdev_increment_features - increment feature set by one
9532 * @all: current feature set
9533 * @one: new feature set
9534 * @mask: mask feature set
7f353bf2
HX
9535 *
9536 * Computes a new feature set after adding a device with feature set
b63365a2
HX
9537 * @one to the master device with current feature set @all. Will not
9538 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 9539 */
c8f44aff
MM
9540netdev_features_t netdev_increment_features(netdev_features_t all,
9541 netdev_features_t one, netdev_features_t mask)
b63365a2 9542{
c8cd0989 9543 if (mask & NETIF_F_HW_CSUM)
a188222b 9544 mask |= NETIF_F_CSUM_MASK;
1742f183 9545 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 9546
a188222b 9547 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 9548 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 9549
1742f183 9550 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
9551 if (all & NETIF_F_HW_CSUM)
9552 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
9553
9554 return all;
9555}
b63365a2 9556EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 9557
430f03cd 9558static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
9559{
9560 int i;
9561 struct hlist_head *hash;
9562
6da2ec56 9563 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
9564 if (hash != NULL)
9565 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9566 INIT_HLIST_HEAD(&hash[i]);
9567
9568 return hash;
9569}
9570
881d966b 9571/* Initialize per network namespace state */
4665079c 9572static int __net_init netdev_init(struct net *net)
881d966b 9573{
d9f37d01 9574 BUILD_BUG_ON(GRO_HASH_BUCKETS >
ccdb5171 9575 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
d9f37d01 9576
734b6541
RM
9577 if (net != &init_net)
9578 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 9579
30d97d35
PE
9580 net->dev_name_head = netdev_create_hash();
9581 if (net->dev_name_head == NULL)
9582 goto err_name;
881d966b 9583
30d97d35
PE
9584 net->dev_index_head = netdev_create_hash();
9585 if (net->dev_index_head == NULL)
9586 goto err_idx;
881d966b
EB
9587
9588 return 0;
30d97d35
PE
9589
9590err_idx:
9591 kfree(net->dev_name_head);
9592err_name:
9593 return -ENOMEM;
881d966b
EB
9594}
9595
f0db275a
SH
9596/**
9597 * netdev_drivername - network driver for the device
9598 * @dev: network device
f0db275a
SH
9599 *
9600 * Determine network driver for device.
9601 */
3019de12 9602const char *netdev_drivername(const struct net_device *dev)
6579e57b 9603{
cf04a4c7
SH
9604 const struct device_driver *driver;
9605 const struct device *parent;
3019de12 9606 const char *empty = "";
6579e57b
AV
9607
9608 parent = dev->dev.parent;
6579e57b 9609 if (!parent)
3019de12 9610 return empty;
6579e57b
AV
9611
9612 driver = parent->driver;
9613 if (driver && driver->name)
3019de12
DM
9614 return driver->name;
9615 return empty;
6579e57b
AV
9616}
9617
6ea754eb
JP
9618static void __netdev_printk(const char *level, const struct net_device *dev,
9619 struct va_format *vaf)
256df2f3 9620{
b004ff49 9621 if (dev && dev->dev.parent) {
6ea754eb
JP
9622 dev_printk_emit(level[1] - '0',
9623 dev->dev.parent,
9624 "%s %s %s%s: %pV",
9625 dev_driver_string(dev->dev.parent),
9626 dev_name(dev->dev.parent),
9627 netdev_name(dev), netdev_reg_state(dev),
9628 vaf);
b004ff49 9629 } else if (dev) {
6ea754eb
JP
9630 printk("%s%s%s: %pV",
9631 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 9632 } else {
6ea754eb 9633 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 9634 }
256df2f3
JP
9635}
9636
6ea754eb
JP
9637void netdev_printk(const char *level, const struct net_device *dev,
9638 const char *format, ...)
256df2f3
JP
9639{
9640 struct va_format vaf;
9641 va_list args;
256df2f3
JP
9642
9643 va_start(args, format);
9644
9645 vaf.fmt = format;
9646 vaf.va = &args;
9647
6ea754eb 9648 __netdev_printk(level, dev, &vaf);
b004ff49 9649
256df2f3 9650 va_end(args);
256df2f3
JP
9651}
9652EXPORT_SYMBOL(netdev_printk);
9653
9654#define define_netdev_printk_level(func, level) \
6ea754eb 9655void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 9656{ \
256df2f3
JP
9657 struct va_format vaf; \
9658 va_list args; \
9659 \
9660 va_start(args, fmt); \
9661 \
9662 vaf.fmt = fmt; \
9663 vaf.va = &args; \
9664 \
6ea754eb 9665 __netdev_printk(level, dev, &vaf); \
b004ff49 9666 \
256df2f3 9667 va_end(args); \
256df2f3
JP
9668} \
9669EXPORT_SYMBOL(func);
9670
9671define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9672define_netdev_printk_level(netdev_alert, KERN_ALERT);
9673define_netdev_printk_level(netdev_crit, KERN_CRIT);
9674define_netdev_printk_level(netdev_err, KERN_ERR);
9675define_netdev_printk_level(netdev_warn, KERN_WARNING);
9676define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9677define_netdev_printk_level(netdev_info, KERN_INFO);
9678
4665079c 9679static void __net_exit netdev_exit(struct net *net)
881d966b
EB
9680{
9681 kfree(net->dev_name_head);
9682 kfree(net->dev_index_head);
ee21b18b
VA
9683 if (net != &init_net)
9684 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
9685}
9686
022cbae6 9687static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
9688 .init = netdev_init,
9689 .exit = netdev_exit,
9690};
9691
4665079c 9692static void __net_exit default_device_exit(struct net *net)
ce286d32 9693{
e008b5fc 9694 struct net_device *dev, *aux;
ce286d32 9695 /*
e008b5fc 9696 * Push all migratable network devices back to the
ce286d32
EB
9697 * initial network namespace
9698 */
9699 rtnl_lock();
e008b5fc 9700 for_each_netdev_safe(net, dev, aux) {
ce286d32 9701 int err;
aca51397 9702 char fb_name[IFNAMSIZ];
ce286d32
EB
9703
9704 /* Ignore unmoveable devices (i.e. loopback) */
9705 if (dev->features & NETIF_F_NETNS_LOCAL)
9706 continue;
9707
e008b5fc
EB
9708 /* Leave virtual devices for the generic cleanup */
9709 if (dev->rtnl_link_ops)
9710 continue;
d0c082ce 9711
25985edc 9712 /* Push remaining network devices to init_net */
aca51397
PE
9713 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9714 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 9715 if (err) {
7b6cd1ce
JP
9716 pr_emerg("%s: failed to move %s to init_net: %d\n",
9717 __func__, dev->name, err);
aca51397 9718 BUG();
ce286d32
EB
9719 }
9720 }
9721 rtnl_unlock();
9722}
9723
50624c93
EB
9724static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9725{
9726 /* Return with the rtnl_lock held when there are no network
9727 * devices unregistering in any network namespace in net_list.
9728 */
9729 struct net *net;
9730 bool unregistering;
ff960a73 9731 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 9732
ff960a73 9733 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 9734 for (;;) {
50624c93
EB
9735 unregistering = false;
9736 rtnl_lock();
9737 list_for_each_entry(net, net_list, exit_list) {
9738 if (net->dev_unreg_count > 0) {
9739 unregistering = true;
9740 break;
9741 }
9742 }
9743 if (!unregistering)
9744 break;
9745 __rtnl_unlock();
ff960a73
PZ
9746
9747 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 9748 }
ff960a73 9749 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
9750}
9751
04dc7f6b
EB
9752static void __net_exit default_device_exit_batch(struct list_head *net_list)
9753{
9754 /* At exit all network devices most be removed from a network
b595076a 9755 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
9756 * Do this across as many network namespaces as possible to
9757 * improve batching efficiency.
9758 */
9759 struct net_device *dev;
9760 struct net *net;
9761 LIST_HEAD(dev_kill_list);
9762
50624c93
EB
9763 /* To prevent network device cleanup code from dereferencing
9764 * loopback devices or network devices that have been freed
9765 * wait here for all pending unregistrations to complete,
9766 * before unregistring the loopback device and allowing the
9767 * network namespace be freed.
9768 *
9769 * The netdev todo list containing all network devices
9770 * unregistrations that happen in default_device_exit_batch
9771 * will run in the rtnl_unlock() at the end of
9772 * default_device_exit_batch.
9773 */
9774 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
9775 list_for_each_entry(net, net_list, exit_list) {
9776 for_each_netdev_reverse(net, dev) {
b0ab2fab 9777 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
9778 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9779 else
9780 unregister_netdevice_queue(dev, &dev_kill_list);
9781 }
9782 }
9783 unregister_netdevice_many(&dev_kill_list);
9784 rtnl_unlock();
9785}
9786
022cbae6 9787static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 9788 .exit = default_device_exit,
04dc7f6b 9789 .exit_batch = default_device_exit_batch,
ce286d32
EB
9790};
9791
1da177e4
LT
9792/*
9793 * Initialize the DEV module. At boot time this walks the device list and
9794 * unhooks any devices that fail to initialise (normally hardware not
9795 * present) and leaves us with a valid list of present and active devices.
9796 *
9797 */
9798
9799/*
9800 * This is called single threaded during boot, so no need
9801 * to take the rtnl semaphore.
9802 */
9803static int __init net_dev_init(void)
9804{
9805 int i, rc = -ENOMEM;
9806
9807 BUG_ON(!dev_boot_phase);
9808
1da177e4
LT
9809 if (dev_proc_init())
9810 goto out;
9811
8b41d188 9812 if (netdev_kobject_init())
1da177e4
LT
9813 goto out;
9814
9815 INIT_LIST_HEAD(&ptype_all);
82d8a867 9816 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
9817 INIT_LIST_HEAD(&ptype_base[i]);
9818
62532da9
VY
9819 INIT_LIST_HEAD(&offload_base);
9820
881d966b
EB
9821 if (register_pernet_subsys(&netdev_net_ops))
9822 goto out;
1da177e4
LT
9823
9824 /*
9825 * Initialise the packet receive queues.
9826 */
9827
6f912042 9828 for_each_possible_cpu(i) {
41852497 9829 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 9830 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 9831
41852497
ED
9832 INIT_WORK(flush, flush_backlog);
9833
e36fa2f7 9834 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 9835 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
9836#ifdef CONFIG_XFRM_OFFLOAD
9837 skb_queue_head_init(&sd->xfrm_backlog);
9838#endif
e36fa2f7 9839 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 9840 sd->output_queue_tailp = &sd->output_queue;
df334545 9841#ifdef CONFIG_RPS
e36fa2f7
ED
9842 sd->csd.func = rps_trigger_softirq;
9843 sd->csd.info = sd;
e36fa2f7 9844 sd->cpu = i;
1e94d72f 9845#endif
0a9627f2 9846
7c4ec749 9847 init_gro_hash(&sd->backlog);
e36fa2f7
ED
9848 sd->backlog.poll = process_backlog;
9849 sd->backlog.weight = weight_p;
1da177e4
LT
9850 }
9851
1da177e4
LT
9852 dev_boot_phase = 0;
9853
505d4f73
EB
9854 /* The loopback device is special if any other network devices
9855 * is present in a network namespace the loopback device must
9856 * be present. Since we now dynamically allocate and free the
9857 * loopback device ensure this invariant is maintained by
9858 * keeping the loopback device as the first device on the
9859 * list of network devices. Ensuring the loopback devices
9860 * is the first device that appears and the last network device
9861 * that disappears.
9862 */
9863 if (register_pernet_device(&loopback_net_ops))
9864 goto out;
9865
9866 if (register_pernet_device(&default_device_ops))
9867 goto out;
9868
962cf36c
CM
9869 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9870 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 9871
f0bf90de
SAS
9872 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9873 NULL, dev_cpu_dead);
9874 WARN_ON(rc < 0);
1da177e4
LT
9875 rc = 0;
9876out:
9877 return rc;
9878}
9879
9880subsys_initcall(net_dev_init);