]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/core/dev.c
net: Add a skb_gro_flush_final helper.
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
40e4e713 142#include <linux/crash_dump.h>
1da177e4 143
342709ef
PE
144#include "net-sysfs.h"
145
d565b0a1
HX
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
5d38a079
HX
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
1da177e4 152static DEFINE_SPINLOCK(ptype_lock);
62532da9 153static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
62532da9 156static struct list_head offload_base __read_mostly;
1da177e4 157
ae78dbfa 158static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
ae78dbfa 162
1da177e4 163/*
7562f876 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
165 * semaphore.
166 *
c6d14c84 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
7562f876 170 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
1da177e4 182DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
183EXPORT_SYMBOL(dev_base_lock);
184
af12fa6e
ET
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
52bd2d62 188static unsigned int napi_gen_id = NR_CPUS;
6180d9de 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 190
18afa4b0 191static seqcount_t devnet_rename_seq;
c91f6df2 192
4e985ada
TG
193static inline void dev_base_seq_inc(struct net *net)
194{
195 while (++net->dev_base_seq == 0);
196}
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 199{
8387ff25 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 201
08e9897d 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
203}
204
881d966b 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 206{
7c28bd0b 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
208}
209
e36fa2f7 210static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
e36fa2f7 217static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
ce286d32 224/* Device list insertion */
53759be9 225static void list_netdevice(struct net_device *dev)
ce286d32 226{
c346dca1 227 struct net *net = dev_net(dev);
ce286d32
EB
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
c6d14c84 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
ce286d32 236 write_unlock_bh(&dev_base_lock);
4e985ada
TG
237
238 dev_base_seq_inc(net);
ce286d32
EB
239}
240
fb699dfd
ED
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
ce286d32
EB
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
c6d14c84 250 list_del_rcu(&dev->dev_list);
72c9528b 251 hlist_del_rcu(&dev->name_hlist);
fb699dfd 252 hlist_del_rcu(&dev->index_hlist);
ce286d32 253 write_unlock_bh(&dev_base_lock);
4e985ada
TG
254
255 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
256}
257
1da177e4
LT
258/*
259 * Our notifier list
260 */
261
f07d5b94 262static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
263
264/*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
bea3348e 268
9958da05 269DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 270EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 271
cf508b12 272#ifdef CONFIG_LOCKDEP
723e98b7 273/*
c773e847 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
275 * according to dev->type
276 */
277static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 293
36cbd3dc 294static const char *const netdev_lock_name[] =
723e98b7
JP
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
cf508b12
DM
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
723e98b7
JP
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
cf508b12
DM
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
723e98b7 344#else
cf508b12
DM
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
350{
351}
352#endif
1da177e4
LT
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
1da177e4
LT
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
c07b68e8
ED
376static inline struct list_head *ptype_head(const struct packet_type *pt)
377{
378 if (pt->type == htons(ETH_P_ALL))
7866a621 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 380 else
7866a621
SN
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
383}
384
1da177e4
LT
385/**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
4ec93edb 393 * This call does not sleep therefore it can not
1da177e4
LT
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398void dev_add_pack(struct packet_type *pt)
399{
c07b68e8 400 struct list_head *head = ptype_head(pt);
1da177e4 401
c07b68e8
ED
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
1da177e4 405}
d1b19dff 406EXPORT_SYMBOL(dev_add_pack);
1da177e4 407
1da177e4
LT
408/**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
4ec93edb 415 * returns.
1da177e4
LT
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421void __dev_remove_pack(struct packet_type *pt)
422{
c07b68e8 423 struct list_head *head = ptype_head(pt);
1da177e4
LT
424 struct packet_type *pt1;
425
c07b68e8 426 spin_lock(&ptype_lock);
1da177e4
LT
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
7b6cd1ce 435 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 436out:
c07b68e8 437 spin_unlock(&ptype_lock);
1da177e4 438}
d1b19dff
ED
439EXPORT_SYMBOL(__dev_remove_pack);
440
1da177e4
LT
441/**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453void dev_remove_pack(struct packet_type *pt)
454{
455 __dev_remove_pack(pt);
4ec93edb 456
1da177e4
LT
457 synchronize_net();
458}
d1b19dff 459EXPORT_SYMBOL(dev_remove_pack);
1da177e4 460
62532da9
VY
461
462/**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474void dev_add_offload(struct packet_offload *po)
475{
bdef7de4 476 struct packet_offload *elem;
62532da9
VY
477
478 spin_lock(&offload_lock);
bdef7de4
DM
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
484 spin_unlock(&offload_lock);
485}
486EXPORT_SYMBOL(dev_add_offload);
487
488/**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
1d143d9f 501static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
502{
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
c53aa505 506 spin_lock(&offload_lock);
62532da9
VY
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516out:
c53aa505 517 spin_unlock(&offload_lock);
62532da9 518}
62532da9
VY
519
520/**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532void dev_remove_offload(struct packet_offload *po)
533{
534 __dev_remove_offload(po);
535
536 synchronize_net();
537}
538EXPORT_SYMBOL(dev_remove_offload);
539
1da177e4
LT
540/******************************************************************************
541
542 Device Boot-time Settings Routines
543
544*******************************************************************************/
545
546/* Boot time configuration table */
547static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549/**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558static int netdev_boot_setup_add(char *name, struct ifmap *map)
559{
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 567 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574}
575
576/**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585int netdev_boot_setup_check(struct net_device *dev)
586{
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 592 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601}
d1b19dff 602EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
603
604
605/**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615unsigned long netdev_boot_base(const char *prefix, int unit)
616{
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
881d966b 627 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634}
635
636/*
637 * Saves at boot time configured settings for any netdevice.
638 */
639int __init netdev_boot_setup(char *str)
640{
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661}
662
663__setup("netdev=", netdev_boot_setup);
664
665/*******************************************************************************
666
667 Device Interface Subroutines
668
669*******************************************************************************/
670
a54acb3a
ND
671/**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679int dev_get_iflink(const struct net_device *dev)
680{
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
7a66bbc9 684 return dev->ifindex;
a54acb3a
ND
685}
686EXPORT_SYMBOL(dev_get_iflink);
687
fc4099f1
PS
688/**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698{
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711}
712EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
1da177e4
LT
714/**
715 * __dev_get_by_name - find a device by its name
c4ea43c5 716 * @net: the applicable net namespace
1da177e4
LT
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
881d966b 726struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 727{
0bd8d536
ED
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 730
b67bfe0d 731 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
0bd8d536 734
1da177e4
LT
735 return NULL;
736}
d1b19dff 737EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 738
72c9528b
ED
739/**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752{
72c9528b
ED
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
b67bfe0d 756 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761}
762EXPORT_SYMBOL(dev_get_by_name_rcu);
763
1da177e4
LT
764/**
765 * dev_get_by_name - find a device by its name
c4ea43c5 766 * @net: the applicable net namespace
1da177e4
LT
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
881d966b 776struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
777{
778 struct net_device *dev;
779
72c9528b
ED
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
782 if (dev)
783 dev_hold(dev);
72c9528b 784 rcu_read_unlock();
1da177e4
LT
785 return dev;
786}
d1b19dff 787EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
788
789/**
790 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 791 * @net: the applicable net namespace
1da177e4
LT
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
881d966b 801struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 802{
0bd8d536
ED
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 805
b67bfe0d 806 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
807 if (dev->ifindex == ifindex)
808 return dev;
0bd8d536 809
1da177e4
LT
810 return NULL;
811}
d1b19dff 812EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 813
fb699dfd
ED
814/**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826{
fb699dfd
ED
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
b67bfe0d 830 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835}
836EXPORT_SYMBOL(dev_get_by_index_rcu);
837
1da177e4
LT
838
839/**
840 * dev_get_by_index - find a device by its ifindex
c4ea43c5 841 * @net: the applicable net namespace
1da177e4
LT
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
881d966b 850struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
851{
852 struct net_device *dev;
853
fb699dfd
ED
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
856 if (dev)
857 dev_hold(dev);
fb699dfd 858 rcu_read_unlock();
1da177e4
LT
859 return dev;
860}
d1b19dff 861EXPORT_SYMBOL(dev_get_by_index);
1da177e4 862
5dbe7c17
NS
863/**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873int netdev_get_name(struct net *net, char *name, int ifindex)
874{
875 struct net_device *dev;
876 unsigned int seq;
877
878retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895}
896
1da177e4 897/**
941666c2 898 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 899 * @net: the applicable net namespace
1da177e4
LT
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
941666c2 906 * The returned device has not had its ref count increased
1da177e4
LT
907 * and the caller must therefore be careful about locking
908 *
1da177e4
LT
909 */
910
941666c2
ED
911struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
1da177e4
LT
913{
914 struct net_device *dev;
915
941666c2 916 for_each_netdev_rcu(net, dev)
1da177e4
LT
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
919 return dev;
920
921 return NULL;
1da177e4 922}
941666c2 923EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 924
881d966b 925struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
926{
927 struct net_device *dev;
928
4e9cac2b 929 ASSERT_RTNL();
881d966b 930 for_each_netdev(net, dev)
4e9cac2b 931 if (dev->type == type)
7562f876
PE
932 return dev;
933
934 return NULL;
4e9cac2b 935}
4e9cac2b
PM
936EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
881d966b 938struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 939{
99fe3c39 940 struct net_device *dev, *ret = NULL;
4e9cac2b 941
99fe3c39
ED
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
1da177e4 951}
1da177e4
LT
952EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954/**
6c555490 955 * __dev_get_by_flags - find any device with given flags
c4ea43c5 956 * @net: the applicable net namespace
1da177e4
LT
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 961 * is not found or a pointer to the device. Must be called inside
6c555490 962 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
963 */
964
6c555490
WC
965struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
1da177e4 967{
7562f876 968 struct net_device *dev, *ret;
1da177e4 969
6c555490
WC
970 ASSERT_RTNL();
971
7562f876 972 ret = NULL;
6c555490 973 for_each_netdev(net, dev) {
1da177e4 974 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 975 ret = dev;
1da177e4
LT
976 break;
977 }
978 }
7562f876 979 return ret;
1da177e4 980}
6c555490 981EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
982
983/**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
c7fa9d18
DM
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
1da177e4 990 */
95f050bf 991bool dev_valid_name(const char *name)
1da177e4 992{
c7fa9d18 993 if (*name == '\0')
95f050bf 994 return false;
b6fe17d6 995 if (strlen(name) >= IFNAMSIZ)
95f050bf 996 return false;
c7fa9d18 997 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 998 return false;
c7fa9d18
DM
999
1000 while (*name) {
a4176a93 1001 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1002 return false;
c7fa9d18
DM
1003 name++;
1004 }
95f050bf 1005 return true;
1da177e4 1006}
d1b19dff 1007EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1008
1009/**
b267b179
EB
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1da177e4 1012 * @name: name format string
b267b179 1013 * @buf: scratch buffer and result name string
1da177e4
LT
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1022 */
1023
b267b179 1024static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1025{
1026 int i = 0;
1da177e4
LT
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1029 unsigned long *inuse;
1da177e4
LT
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
cfcabdcc 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1044 if (!inuse)
1045 return -ENOMEM;
1046
881d966b 1047 for_each_netdev(net, d) {
1da177e4
LT
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1054 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
d9031024
OP
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1065 if (!__dev_get_by_name(net, buf))
1da177e4 1066 return i;
1da177e4
LT
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073}
1074
b267b179
EB
1075/**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089int dev_alloc_name(struct net_device *dev, const char *name)
1090{
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
c346dca1
YH
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
b267b179
EB
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101}
d1b19dff 1102EXPORT_SYMBOL(dev_alloc_name);
b267b179 1103
828de4f6
G
1104static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
d9031024 1107{
828de4f6
G
1108 char buf[IFNAMSIZ];
1109 int ret;
8ce6cebc 1110
828de4f6
G
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115}
1116
1117static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120{
1121 BUG_ON(!net);
8ce6cebc 1122
d9031024
OP
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1c5cae81 1126 if (strchr(name, '%'))
828de4f6 1127 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
8ce6cebc
DL
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1132
1133 return 0;
1134}
1da177e4
LT
1135
1136/**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
cf04a4c7 1144int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1145{
238fa362 1146 unsigned char old_assign_type;
fcc5a03a 1147 char oldname[IFNAMSIZ];
1da177e4 1148 int err = 0;
fcc5a03a 1149 int ret;
881d966b 1150 struct net *net;
1da177e4
LT
1151
1152 ASSERT_RTNL();
c346dca1 1153 BUG_ON(!dev_net(dev));
1da177e4 1154
c346dca1 1155 net = dev_net(dev);
1da177e4
LT
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
30e6c9fa 1159 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1162 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1163 return 0;
c91f6df2 1164 }
c8d90dca 1165
fcc5a03a
HX
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
828de4f6 1168 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1169 if (err < 0) {
30e6c9fa 1170 write_seqcount_end(&devnet_rename_seq);
d9031024 1171 return err;
c91f6df2 1172 }
1da177e4 1173
6fe82a39
VF
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
238fa362
TG
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
fcc5a03a 1180rollback:
a1b3f594
EB
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1184 dev->name_assign_type = old_assign_type;
30e6c9fa 1185 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1186 return ret;
dcc99773 1187 }
7f988eab 1188
30e6c9fa 1189 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1190
5bb025fa
VF
1191 netdev_adjacent_rename_links(dev, oldname);
1192
7f988eab 1193 write_lock_bh(&dev_base_lock);
372b2312 1194 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1201 write_unlock_bh(&dev_base_lock);
1202
056925ab 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
91e9c07b
ED
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
fcc5a03a 1209 err = ret;
30e6c9fa 1210 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1211 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1212 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1215 goto rollback;
91e9c07b 1216 } else {
7b6cd1ce 1217 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1218 dev->name, ret);
fcc5a03a
HX
1219 }
1220 }
1da177e4
LT
1221
1222 return err;
1223}
1224
0b815a1a
SH
1225/**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
f0db275a 1229 * @len: limit of bytes to copy from info
0b815a1a
SH
1230 *
1231 * Set ifalias for a device,
1232 */
1233int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234{
7364e445
AK
1235 char *new_ifalias;
1236
0b815a1a
SH
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
96ca4a2c 1242 if (!len) {
388dfc2d
SK
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
96ca4a2c
OH
1245 return 0;
1246 }
1247
7364e445
AK
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
0b815a1a 1250 return -ENOMEM;
7364e445 1251 dev->ifalias = new_ifalias;
0b815a1a
SH
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255}
1256
1257
d8a33ac4 1258/**
3041a069 1259 * netdev_features_change - device changes features
d8a33ac4
SH
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264void netdev_features_change(struct net_device *dev)
1265{
056925ab 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1267}
1268EXPORT_SYMBOL(netdev_features_change);
1269
1da177e4
LT
1270/**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278void netdev_state_change(struct net_device *dev)
1279{
1280 if (dev->flags & IFF_UP) {
54951194
LP
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
7f294054 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1287 }
1288}
d1b19dff 1289EXPORT_SYMBOL(netdev_state_change);
1da177e4 1290
ee89bab1
AW
1291/**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1302{
ee89bab1
AW
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
c1da4ac7 1306}
ee89bab1 1307EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1308
bd380811 1309static int __dev_open(struct net_device *dev)
1da177e4 1310{
d314774c 1311 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1312 int ret;
1da177e4 1313
e46b66bc
BH
1314 ASSERT_RTNL();
1315
1da177e4
LT
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
ca99ca14
NH
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
66b5552f 1323 netpoll_poll_disable(dev);
ca99ca14 1324
3b8bcfd5
JB
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1da177e4 1330 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1331
d314774c
SH
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
bada339b 1334
d314774c
SH
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1da177e4 1337
66b5552f 1338 netpoll_poll_enable(dev);
ca99ca14 1339
bada339b
JG
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1da177e4 1343 dev->flags |= IFF_UP;
4417da66 1344 dev_set_rx_mode(dev);
1da177e4 1345 dev_activate(dev);
7bf23575 1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1347 }
bada339b 1348
1da177e4
LT
1349 return ret;
1350}
1351
1352/**
bd380811
PM
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1da177e4 1355 *
bd380811
PM
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1da177e4 1363 */
bd380811
PM
1364int dev_open(struct net_device *dev)
1365{
1366 int ret;
1367
bd380811
PM
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
bd380811
PM
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
7f294054 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379}
1380EXPORT_SYMBOL(dev_open);
1381
44345724 1382static int __dev_close_many(struct list_head *head)
1da177e4 1383{
44345724 1384 struct net_device *dev;
e46b66bc 1385
bd380811 1386 ASSERT_RTNL();
9d5010db
DM
1387 might_sleep();
1388
5cde2829 1389 list_for_each_entry(dev, head, close_list) {
3f4df206 1390 /* Temporarily disable netpoll until the interface is down */
66b5552f 1391 netpoll_poll_disable(dev);
3f4df206 1392
44345724 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1394
44345724 1395 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1396
44345724
OP
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
4e857c58 1403 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1404 }
1da177e4 1405
44345724 1406 dev_deactivate_many(head);
d8b2a4d2 1407
5cde2829 1408 list_for_each_entry(dev, head, close_list) {
44345724 1409 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1410
44345724
OP
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
44345724 1421 dev->flags &= ~IFF_UP;
66b5552f 1422 netpoll_poll_enable(dev);
44345724
OP
1423 }
1424
1425 return 0;
1426}
1427
1428static int __dev_close(struct net_device *dev)
1429{
f87e6f47 1430 int retval;
44345724
OP
1431 LIST_HEAD(single);
1432
5cde2829 1433 list_add(&dev->close_list, &single);
f87e6f47
LT
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
ca99ca14 1436
f87e6f47 1437 return retval;
44345724
OP
1438}
1439
99c4a26a 1440int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1441{
1442 struct net_device *dev, *tmp;
1da177e4 1443
5cde2829
EB
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1446 if (!(dev->flags & IFF_UP))
5cde2829 1447 list_del_init(&dev->close_list);
44345724
OP
1448
1449 __dev_close_many(head);
1da177e4 1450
5cde2829 1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1454 if (unlink)
1455 list_del_init(&dev->close_list);
44345724 1456 }
bd380811
PM
1457
1458 return 0;
1459}
99c4a26a 1460EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1461
1462/**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471int dev_close(struct net_device *dev)
1472{
e14a5993
ED
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1da177e4 1475
5cde2829 1476 list_add(&dev->close_list, &single);
99c4a26a 1477 dev_close_many(&single, true);
e14a5993
ED
1478 list_del(&single);
1479 }
da6e378b 1480 return 0;
1da177e4 1481}
d1b19dff 1482EXPORT_SYMBOL(dev_close);
1da177e4
LT
1483
1484
0187bdfb
BH
1485/**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493void dev_disable_lro(struct net_device *dev)
1494{
fbe168ba
MK
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
529d0489 1497
bc5787c6
MM
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
27660515 1500
22d5969f
MM
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
0187bdfb
BH
1506}
1507EXPORT_SYMBOL(dev_disable_lro);
1508
351638e7
JP
1509static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511{
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516}
0187bdfb 1517
881d966b
EB
1518static int dev_boot_phase = 1;
1519
1da177e4
LT
1520/**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
4ec93edb 1530 * to the new notifier to allow device to have a race free
1da177e4
LT
1531 * view of the network device list.
1532 */
1533
1534int register_netdevice_notifier(struct notifier_block *nb)
1535{
1536 struct net_device *dev;
fcc5a03a 1537 struct net_device *last;
881d966b 1538 struct net *net;
1da177e4
LT
1539 int err;
1540
1541 rtnl_lock();
f07d5b94 1542 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1543 if (err)
1544 goto unlock;
881d966b
EB
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
351638e7 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1da177e4 1556
351638e7 1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1558 }
1da177e4 1559 }
fcc5a03a
HX
1560
1561unlock:
1da177e4
LT
1562 rtnl_unlock();
1563 return err;
fcc5a03a
HX
1564
1565rollback:
1566 last = dev;
881d966b
EB
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
8f891489 1570 goto outroll;
fcc5a03a 1571
881d966b 1572 if (dev->flags & IFF_UP) {
351638e7
JP
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1576 }
351638e7 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1578 }
fcc5a03a 1579 }
c67625a1 1580
8f891489 1581outroll:
c67625a1 1582 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1583 goto unlock;
1da177e4 1584}
d1b19dff 1585EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1586
1587/**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
7d3d43da
EB
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1da177e4
LT
1599 */
1600
1601int unregister_netdevice_notifier(struct notifier_block *nb)
1602{
7d3d43da
EB
1603 struct net_device *dev;
1604 struct net *net;
9f514950
HX
1605 int err;
1606
1607 rtnl_lock();
f07d5b94 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
351638e7
JP
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1618 }
351638e7 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1620 }
1621 }
1622unlock:
9f514950
HX
1623 rtnl_unlock();
1624 return err;
1da177e4 1625}
d1b19dff 1626EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1627
351638e7
JP
1628/**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1d143d9f 1638static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
351638e7
JP
1641{
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645}
351638e7 1646
1da177e4
LT
1647/**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
c4ea43c5 1650 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1651 *
1652 * Call all network notifier blocks. Parameters and return value
f07d5b94 1653 * are as for raw_notifier_call_chain().
1da177e4
LT
1654 */
1655
ad7379d4 1656int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1657{
351638e7
JP
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1661}
edf947f1 1662EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1663
1cf51900 1664#ifdef CONFIG_NET_INGRESS
4577139b
DB
1665static struct static_key ingress_needed __read_mostly;
1666
1667void net_inc_ingress_queue(void)
1668{
1669 static_key_slow_inc(&ingress_needed);
1670}
1671EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673void net_dec_ingress_queue(void)
1674{
1675 static_key_slow_dec(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678#endif
1679
1f211a1b
DB
1680#ifdef CONFIG_NET_EGRESS
1681static struct static_key egress_needed __read_mostly;
1682
1683void net_inc_egress_queue(void)
1684{
1685 static_key_slow_inc(&egress_needed);
1686}
1687EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689void net_dec_egress_queue(void)
1690{
1691 static_key_slow_dec(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694#endif
1695
c5905afb 1696static struct static_key netstamp_needed __read_mostly;
b90e5794 1697#ifdef HAVE_JUMP_LABEL
c5905afb 1698/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1699 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1700 * static_key_slow_dec() calls.
b90e5794
ED
1701 */
1702static atomic_t netstamp_needed_deferred;
1703#endif
1da177e4
LT
1704
1705void net_enable_timestamp(void)
1706{
b90e5794
ED
1707#ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710 if (deferred) {
1711 while (--deferred)
c5905afb 1712 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1713 return;
1714 }
1715#endif
c5905afb 1716 static_key_slow_inc(&netstamp_needed);
1da177e4 1717}
d1b19dff 1718EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1719
1720void net_disable_timestamp(void)
1721{
b90e5794
ED
1722#ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1726 }
1727#endif
c5905afb 1728 static_key_slow_dec(&netstamp_needed);
1da177e4 1729}
d1b19dff 1730EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1731
3b098e2d 1732static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1733{
2456e855 1734 skb->tstamp = 0;
c5905afb 1735 if (static_key_false(&netstamp_needed))
a61bbcf2 1736 __net_timestamp(skb);
1da177e4
LT
1737}
1738
588f0330 1739#define net_timestamp_check(COND, SKB) \
c5905afb 1740 if (static_key_false(&netstamp_needed)) { \
2456e855 1741 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1742 __net_timestamp(SKB); \
1743 } \
3b098e2d 1744
f4b05d27 1745bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1746{
1747 unsigned int len;
1748
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1751
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1755
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1758 */
1759 if (skb_is_gso(skb))
1760 return true;
1761
1762 return false;
1763}
1ee481fb 1764EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1765
a0265d28
HX
1766int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767{
4e3264d2 1768 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1769
4e3264d2
MKL
1770 if (likely(!ret)) {
1771 skb->protocol = eth_type_trans(skb, dev);
1772 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773 }
a0265d28 1774
4e3264d2 1775 return ret;
a0265d28
HX
1776}
1777EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778
44540960
AB
1779/**
1780 * dev_forward_skb - loopback an skb to another netif
1781 *
1782 * @dev: destination network device
1783 * @skb: buffer to forward
1784 *
1785 * return values:
1786 * NET_RX_SUCCESS (no congestion)
6ec82562 1787 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1788 *
1789 * dev_forward_skb can be used for injecting an skb from the
1790 * start_xmit function of one device into the receive queue
1791 * of another device.
1792 *
1793 * The receiving device may be in another namespace, so
1794 * we have to clear all information in the skb that could
1795 * impact namespace isolation.
1796 */
1797int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798{
a0265d28 1799 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1800}
1801EXPORT_SYMBOL_GPL(dev_forward_skb);
1802
71d9dec2
CG
1803static inline int deliver_skb(struct sk_buff *skb,
1804 struct packet_type *pt_prev,
1805 struct net_device *orig_dev)
1806{
1080e512
MT
1807 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808 return -ENOMEM;
71d9dec2
CG
1809 atomic_inc(&skb->users);
1810 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811}
1812
7866a621
SN
1813static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814 struct packet_type **pt,
fbcb2170
JP
1815 struct net_device *orig_dev,
1816 __be16 type,
7866a621
SN
1817 struct list_head *ptype_list)
1818{
1819 struct packet_type *ptype, *pt_prev = *pt;
1820
1821 list_for_each_entry_rcu(ptype, ptype_list, list) {
1822 if (ptype->type != type)
1823 continue;
1824 if (pt_prev)
fbcb2170 1825 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1826 pt_prev = ptype;
1827 }
1828 *pt = pt_prev;
1829}
1830
c0de08d0
EL
1831static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832{
a3d744e9 1833 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1834 return false;
1835
1836 if (ptype->id_match)
1837 return ptype->id_match(ptype, skb->sk);
1838 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839 return true;
1840
1841 return false;
1842}
1843
1da177e4
LT
1844/*
1845 * Support routine. Sends outgoing frames to any network
1846 * taps currently in use.
1847 */
1848
74b20582 1849void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1850{
1851 struct packet_type *ptype;
71d9dec2
CG
1852 struct sk_buff *skb2 = NULL;
1853 struct packet_type *pt_prev = NULL;
7866a621 1854 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1855
1da177e4 1856 rcu_read_lock();
7866a621
SN
1857again:
1858 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1859 /* Never send packets back to the socket
1860 * they originated from - MvS (miquels@drinkel.ow.org)
1861 */
7866a621
SN
1862 if (skb_loop_sk(ptype, skb))
1863 continue;
71d9dec2 1864
7866a621
SN
1865 if (pt_prev) {
1866 deliver_skb(skb2, pt_prev, skb->dev);
1867 pt_prev = ptype;
1868 continue;
1869 }
1da177e4 1870
7866a621
SN
1871 /* need to clone skb, done only once */
1872 skb2 = skb_clone(skb, GFP_ATOMIC);
1873 if (!skb2)
1874 goto out_unlock;
70978182 1875
7866a621 1876 net_timestamp_set(skb2);
1da177e4 1877
7866a621
SN
1878 /* skb->nh should be correctly
1879 * set by sender, so that the second statement is
1880 * just protection against buggy protocols.
1881 */
1882 skb_reset_mac_header(skb2);
1883
1884 if (skb_network_header(skb2) < skb2->data ||
1885 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887 ntohs(skb2->protocol),
1888 dev->name);
1889 skb_reset_network_header(skb2);
1da177e4 1890 }
7866a621
SN
1891
1892 skb2->transport_header = skb2->network_header;
1893 skb2->pkt_type = PACKET_OUTGOING;
1894 pt_prev = ptype;
1895 }
1896
1897 if (ptype_list == &ptype_all) {
1898 ptype_list = &dev->ptype_all;
1899 goto again;
1da177e4 1900 }
7866a621 1901out_unlock:
71d9dec2
CG
1902 if (pt_prev)
1903 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1904 rcu_read_unlock();
1905}
74b20582 1906EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1907
2c53040f
BH
1908/**
1909 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1910 * @dev: Network device
1911 * @txq: number of queues available
1912 *
1913 * If real_num_tx_queues is changed the tc mappings may no longer be
1914 * valid. To resolve this verify the tc mapping remains valid and if
1915 * not NULL the mapping. With no priorities mapping to this
1916 * offset/count pair it will no longer be used. In the worst case TC0
1917 * is invalid nothing can be done so disable priority mappings. If is
1918 * expected that drivers will fix this mapping if they can before
1919 * calling netif_set_real_num_tx_queues.
1920 */
bb134d22 1921static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1922{
1923 int i;
1924 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925
1926 /* If TC0 is invalidated disable TC mapping */
1927 if (tc->offset + tc->count > txq) {
7b6cd1ce 1928 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1929 dev->num_tc = 0;
1930 return;
1931 }
1932
1933 /* Invalidated prio to tc mappings set to TC0 */
1934 for (i = 1; i < TC_BITMASK + 1; i++) {
1935 int q = netdev_get_prio_tc_map(dev, i);
1936
1937 tc = &dev->tc_to_txq[q];
1938 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1939 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940 i, q);
4f57c087
JF
1941 netdev_set_prio_tc_map(dev, i, 0);
1942 }
1943 }
1944}
1945
8d059b0f
AD
1946int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947{
1948 if (dev->num_tc) {
1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950 int i;
1951
1952 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953 if ((txq - tc->offset) < tc->count)
1954 return i;
1955 }
1956
1957 return -1;
1958 }
1959
1960 return 0;
1961}
1962
537c00de
AD
1963#ifdef CONFIG_XPS
1964static DEFINE_MUTEX(xps_map_mutex);
1965#define xmap_dereference(P) \
1966 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967
6234f874
AD
1968static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969 int tci, u16 index)
537c00de 1970{
10cdc3f3
AD
1971 struct xps_map *map = NULL;
1972 int pos;
537c00de 1973
10cdc3f3 1974 if (dev_maps)
6234f874
AD
1975 map = xmap_dereference(dev_maps->cpu_map[tci]);
1976 if (!map)
1977 return false;
537c00de 1978
6234f874
AD
1979 for (pos = map->len; pos--;) {
1980 if (map->queues[pos] != index)
1981 continue;
1982
1983 if (map->len > 1) {
1984 map->queues[pos] = map->queues[--map->len];
10cdc3f3 1985 break;
537c00de 1986 }
6234f874
AD
1987
1988 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989 kfree_rcu(map, rcu);
1990 return false;
537c00de
AD
1991 }
1992
6234f874 1993 return true;
10cdc3f3
AD
1994}
1995
6234f874
AD
1996static bool remove_xps_queue_cpu(struct net_device *dev,
1997 struct xps_dev_maps *dev_maps,
1998 int cpu, u16 offset, u16 count)
1999{
184c449f
AD
2000 int num_tc = dev->num_tc ? : 1;
2001 bool active = false;
2002 int tci;
6234f874 2003
184c449f
AD
2004 for (tci = cpu * num_tc; num_tc--; tci++) {
2005 int i, j;
2006
2007 for (i = count, j = offset; i--; j++) {
2008 if (!remove_xps_queue(dev_maps, cpu, j))
2009 break;
2010 }
2011
2012 active |= i < 0;
6234f874
AD
2013 }
2014
184c449f 2015 return active;
6234f874
AD
2016}
2017
2018static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019 u16 count)
10cdc3f3
AD
2020{
2021 struct xps_dev_maps *dev_maps;
024e9679 2022 int cpu, i;
10cdc3f3
AD
2023 bool active = false;
2024
2025 mutex_lock(&xps_map_mutex);
2026 dev_maps = xmap_dereference(dev->xps_maps);
2027
2028 if (!dev_maps)
2029 goto out_no_maps;
2030
6234f874
AD
2031 for_each_possible_cpu(cpu)
2032 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033 offset, count);
10cdc3f3
AD
2034
2035 if (!active) {
537c00de
AD
2036 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037 kfree_rcu(dev_maps, rcu);
2038 }
2039
6234f874 2040 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2041 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042 NUMA_NO_NODE);
2043
537c00de
AD
2044out_no_maps:
2045 mutex_unlock(&xps_map_mutex);
2046}
2047
6234f874
AD
2048static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049{
2050 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051}
2052
01c5f864
AD
2053static struct xps_map *expand_xps_map(struct xps_map *map,
2054 int cpu, u16 index)
2055{
2056 struct xps_map *new_map;
2057 int alloc_len = XPS_MIN_MAP_ALLOC;
2058 int i, pos;
2059
2060 for (pos = 0; map && pos < map->len; pos++) {
2061 if (map->queues[pos] != index)
2062 continue;
2063 return map;
2064 }
2065
2066 /* Need to add queue to this CPU's existing map */
2067 if (map) {
2068 if (pos < map->alloc_len)
2069 return map;
2070
2071 alloc_len = map->alloc_len * 2;
2072 }
2073
2074 /* Need to allocate new map to store queue on this CPU's map */
2075 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076 cpu_to_node(cpu));
2077 if (!new_map)
2078 return NULL;
2079
2080 for (i = 0; i < pos; i++)
2081 new_map->queues[i] = map->queues[i];
2082 new_map->alloc_len = alloc_len;
2083 new_map->len = pos;
2084
2085 return new_map;
2086}
2087
3573540c
MT
2088int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089 u16 index)
537c00de 2090{
01c5f864 2091 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2092 int i, cpu, tci, numa_node_id = -2;
2093 int maps_sz, num_tc = 1, tc = 0;
537c00de 2094 struct xps_map *map, *new_map;
01c5f864 2095 bool active = false;
537c00de 2096
184c449f
AD
2097 if (dev->num_tc) {
2098 num_tc = dev->num_tc;
2099 tc = netdev_txq_to_tc(dev, index);
2100 if (tc < 0)
2101 return -EINVAL;
2102 }
2103
2104 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105 if (maps_sz < L1_CACHE_BYTES)
2106 maps_sz = L1_CACHE_BYTES;
2107
537c00de
AD
2108 mutex_lock(&xps_map_mutex);
2109
2110 dev_maps = xmap_dereference(dev->xps_maps);
2111
01c5f864 2112 /* allocate memory for queue storage */
184c449f 2113 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2114 if (!new_dev_maps)
2115 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2116 if (!new_dev_maps) {
2117 mutex_unlock(&xps_map_mutex);
01c5f864 2118 return -ENOMEM;
2bb60cb9 2119 }
01c5f864 2120
184c449f
AD
2121 tci = cpu * num_tc + tc;
2122 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2123 NULL;
2124
2125 map = expand_xps_map(map, cpu, index);
2126 if (!map)
2127 goto error;
2128
184c449f 2129 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2130 }
2131
2132 if (!new_dev_maps)
2133 goto out_no_new_maps;
2134
537c00de 2135 for_each_possible_cpu(cpu) {
184c449f
AD
2136 /* copy maps belonging to foreign traffic classes */
2137 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138 /* fill in the new device map from the old device map */
2139 map = xmap_dereference(dev_maps->cpu_map[tci]);
2140 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141 }
2142
2143 /* We need to explicitly update tci as prevous loop
2144 * could break out early if dev_maps is NULL.
2145 */
2146 tci = cpu * num_tc + tc;
2147
01c5f864
AD
2148 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149 /* add queue to CPU maps */
2150 int pos = 0;
2151
184c449f 2152 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2153 while ((pos < map->len) && (map->queues[pos] != index))
2154 pos++;
2155
2156 if (pos == map->len)
2157 map->queues[map->len++] = index;
537c00de 2158#ifdef CONFIG_NUMA
537c00de
AD
2159 if (numa_node_id == -2)
2160 numa_node_id = cpu_to_node(cpu);
2161 else if (numa_node_id != cpu_to_node(cpu))
2162 numa_node_id = -1;
537c00de 2163#endif
01c5f864
AD
2164 } else if (dev_maps) {
2165 /* fill in the new device map from the old device map */
184c449f
AD
2166 map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2168 }
01c5f864 2169
184c449f
AD
2170 /* copy maps belonging to foreign traffic classes */
2171 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172 /* fill in the new device map from the old device map */
2173 map = xmap_dereference(dev_maps->cpu_map[tci]);
2174 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175 }
537c00de
AD
2176 }
2177
01c5f864
AD
2178 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179
537c00de 2180 /* Cleanup old maps */
184c449f
AD
2181 if (!dev_maps)
2182 goto out_no_old_maps;
2183
2184 for_each_possible_cpu(cpu) {
2185 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2188 if (map && map != new_map)
2189 kfree_rcu(map, rcu);
2190 }
537c00de
AD
2191 }
2192
184c449f
AD
2193 kfree_rcu(dev_maps, rcu);
2194
2195out_no_old_maps:
01c5f864
AD
2196 dev_maps = new_dev_maps;
2197 active = true;
537c00de 2198
01c5f864
AD
2199out_no_new_maps:
2200 /* update Tx queue numa node */
537c00de
AD
2201 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202 (numa_node_id >= 0) ? numa_node_id :
2203 NUMA_NO_NODE);
2204
01c5f864
AD
2205 if (!dev_maps)
2206 goto out_no_maps;
2207
2208 /* removes queue from unused CPUs */
2209 for_each_possible_cpu(cpu) {
184c449f
AD
2210 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211 active |= remove_xps_queue(dev_maps, tci, index);
2212 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213 active |= remove_xps_queue(dev_maps, tci, index);
2214 for (i = num_tc - tc, tci++; --i; tci++)
2215 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2216 }
2217
2218 /* free map if not active */
2219 if (!active) {
2220 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221 kfree_rcu(dev_maps, rcu);
2222 }
2223
2224out_no_maps:
537c00de
AD
2225 mutex_unlock(&xps_map_mutex);
2226
2227 return 0;
2228error:
01c5f864
AD
2229 /* remove any maps that we added */
2230 for_each_possible_cpu(cpu) {
184c449f
AD
2231 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233 map = dev_maps ?
2234 xmap_dereference(dev_maps->cpu_map[tci]) :
2235 NULL;
2236 if (new_map && new_map != map)
2237 kfree(new_map);
2238 }
01c5f864
AD
2239 }
2240
537c00de
AD
2241 mutex_unlock(&xps_map_mutex);
2242
537c00de
AD
2243 kfree(new_dev_maps);
2244 return -ENOMEM;
2245}
2246EXPORT_SYMBOL(netif_set_xps_queue);
2247
2248#endif
9cf1f6a8
AD
2249void netdev_reset_tc(struct net_device *dev)
2250{
6234f874
AD
2251#ifdef CONFIG_XPS
2252 netif_reset_xps_queues_gt(dev, 0);
2253#endif
9cf1f6a8
AD
2254 dev->num_tc = 0;
2255 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257}
2258EXPORT_SYMBOL(netdev_reset_tc);
2259
2260int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261{
2262 if (tc >= dev->num_tc)
2263 return -EINVAL;
2264
6234f874
AD
2265#ifdef CONFIG_XPS
2266 netif_reset_xps_queues(dev, offset, count);
2267#endif
9cf1f6a8
AD
2268 dev->tc_to_txq[tc].count = count;
2269 dev->tc_to_txq[tc].offset = offset;
2270 return 0;
2271}
2272EXPORT_SYMBOL(netdev_set_tc_queue);
2273
2274int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275{
2276 if (num_tc > TC_MAX_QUEUE)
2277 return -EINVAL;
2278
6234f874
AD
2279#ifdef CONFIG_XPS
2280 netif_reset_xps_queues_gt(dev, 0);
2281#endif
9cf1f6a8
AD
2282 dev->num_tc = num_tc;
2283 return 0;
2284}
2285EXPORT_SYMBOL(netdev_set_num_tc);
2286
f0796d5c
JF
2287/*
2288 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290 */
e6484930 2291int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2292{
1d24eb48
TH
2293 int rc;
2294
e6484930
TH
2295 if (txq < 1 || txq > dev->num_tx_queues)
2296 return -EINVAL;
f0796d5c 2297
5c56580b
BH
2298 if (dev->reg_state == NETREG_REGISTERED ||
2299 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2300 ASSERT_RTNL();
2301
1d24eb48
TH
2302 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303 txq);
bf264145
TH
2304 if (rc)
2305 return rc;
2306
4f57c087
JF
2307 if (dev->num_tc)
2308 netif_setup_tc(dev, txq);
2309
024e9679 2310 if (txq < dev->real_num_tx_queues) {
e6484930 2311 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2312#ifdef CONFIG_XPS
2313 netif_reset_xps_queues_gt(dev, txq);
2314#endif
2315 }
f0796d5c 2316 }
e6484930
TH
2317
2318 dev->real_num_tx_queues = txq;
2319 return 0;
f0796d5c
JF
2320}
2321EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2322
a953be53 2323#ifdef CONFIG_SYSFS
62fe0b40
BH
2324/**
2325 * netif_set_real_num_rx_queues - set actual number of RX queues used
2326 * @dev: Network device
2327 * @rxq: Actual number of RX queues
2328 *
2329 * This must be called either with the rtnl_lock held or before
2330 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2331 * negative error code. If called before registration, it always
2332 * succeeds.
62fe0b40
BH
2333 */
2334int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335{
2336 int rc;
2337
bd25fa7b
TH
2338 if (rxq < 1 || rxq > dev->num_rx_queues)
2339 return -EINVAL;
2340
62fe0b40
BH
2341 if (dev->reg_state == NETREG_REGISTERED) {
2342 ASSERT_RTNL();
2343
62fe0b40
BH
2344 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345 rxq);
2346 if (rc)
2347 return rc;
62fe0b40
BH
2348 }
2349
2350 dev->real_num_rx_queues = rxq;
2351 return 0;
2352}
2353EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354#endif
2355
2c53040f
BH
2356/**
2357 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2358 *
2359 * This routine should set an upper limit on the number of RSS queues
2360 * used by default by multiqueue devices.
2361 */
a55b138b 2362int netif_get_num_default_rss_queues(void)
16917b87 2363{
40e4e713
HS
2364 return is_kdump_kernel() ?
2365 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2366}
2367EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368
3bcb846c 2369static void __netif_reschedule(struct Qdisc *q)
56079431 2370{
def82a1d
JP
2371 struct softnet_data *sd;
2372 unsigned long flags;
56079431 2373
def82a1d 2374 local_irq_save(flags);
903ceff7 2375 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2376 q->next_sched = NULL;
2377 *sd->output_queue_tailp = q;
2378 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2379 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380 local_irq_restore(flags);
2381}
2382
2383void __netif_schedule(struct Qdisc *q)
2384{
2385 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386 __netif_reschedule(q);
56079431
DV
2387}
2388EXPORT_SYMBOL(__netif_schedule);
2389
e6247027
ED
2390struct dev_kfree_skb_cb {
2391 enum skb_free_reason reason;
2392};
2393
2394static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2395{
e6247027
ED
2396 return (struct dev_kfree_skb_cb *)skb->cb;
2397}
2398
46e5da40
JF
2399void netif_schedule_queue(struct netdev_queue *txq)
2400{
2401 rcu_read_lock();
2402 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403 struct Qdisc *q = rcu_dereference(txq->qdisc);
2404
2405 __netif_schedule(q);
2406 }
2407 rcu_read_unlock();
2408}
2409EXPORT_SYMBOL(netif_schedule_queue);
2410
46e5da40
JF
2411void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2412{
2413 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2414 struct Qdisc *q;
2415
2416 rcu_read_lock();
2417 q = rcu_dereference(dev_queue->qdisc);
2418 __netif_schedule(q);
2419 rcu_read_unlock();
2420 }
2421}
2422EXPORT_SYMBOL(netif_tx_wake_queue);
2423
e6247027 2424void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2425{
e6247027 2426 unsigned long flags;
56079431 2427
e6247027
ED
2428 if (likely(atomic_read(&skb->users) == 1)) {
2429 smp_rmb();
2430 atomic_set(&skb->users, 0);
2431 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2432 return;
bea3348e 2433 }
e6247027
ED
2434 get_kfree_skb_cb(skb)->reason = reason;
2435 local_irq_save(flags);
2436 skb->next = __this_cpu_read(softnet_data.completion_queue);
2437 __this_cpu_write(softnet_data.completion_queue, skb);
2438 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2439 local_irq_restore(flags);
56079431 2440}
e6247027 2441EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2442
e6247027 2443void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2444{
2445 if (in_irq() || irqs_disabled())
e6247027 2446 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2447 else
2448 dev_kfree_skb(skb);
2449}
e6247027 2450EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2451
2452
bea3348e
SH
2453/**
2454 * netif_device_detach - mark device as removed
2455 * @dev: network device
2456 *
2457 * Mark device as removed from system and therefore no longer available.
2458 */
56079431
DV
2459void netif_device_detach(struct net_device *dev)
2460{
2461 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2462 netif_running(dev)) {
d543103a 2463 netif_tx_stop_all_queues(dev);
56079431
DV
2464 }
2465}
2466EXPORT_SYMBOL(netif_device_detach);
2467
bea3348e
SH
2468/**
2469 * netif_device_attach - mark device as attached
2470 * @dev: network device
2471 *
2472 * Mark device as attached from system and restart if needed.
2473 */
56079431
DV
2474void netif_device_attach(struct net_device *dev)
2475{
2476 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2477 netif_running(dev)) {
d543103a 2478 netif_tx_wake_all_queues(dev);
4ec93edb 2479 __netdev_watchdog_up(dev);
56079431
DV
2480 }
2481}
2482EXPORT_SYMBOL(netif_device_attach);
2483
5605c762
JP
2484/*
2485 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2486 * to be used as a distribution range.
2487 */
2488u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2489 unsigned int num_tx_queues)
2490{
2491 u32 hash;
2492 u16 qoffset = 0;
2493 u16 qcount = num_tx_queues;
2494
2495 if (skb_rx_queue_recorded(skb)) {
2496 hash = skb_get_rx_queue(skb);
2497 while (unlikely(hash >= num_tx_queues))
2498 hash -= num_tx_queues;
2499 return hash;
2500 }
2501
2502 if (dev->num_tc) {
2503 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2504 qoffset = dev->tc_to_txq[tc].offset;
2505 qcount = dev->tc_to_txq[tc].count;
2506 }
2507
2508 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2509}
2510EXPORT_SYMBOL(__skb_tx_hash);
2511
36c92474
BH
2512static void skb_warn_bad_offload(const struct sk_buff *skb)
2513{
84d15ae5 2514 static const netdev_features_t null_features;
36c92474 2515 struct net_device *dev = skb->dev;
88ad4175 2516 const char *name = "";
36c92474 2517
c846ad9b
BG
2518 if (!net_ratelimit())
2519 return;
2520
88ad4175
BM
2521 if (dev) {
2522 if (dev->dev.parent)
2523 name = dev_driver_string(dev->dev.parent);
2524 else
2525 name = netdev_name(dev);
2526 }
36c92474
BH
2527 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2528 "gso_type=%d ip_summed=%d\n",
88ad4175 2529 name, dev ? &dev->features : &null_features,
65e9d2fa 2530 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2531 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2532 skb_shinfo(skb)->gso_type, skb->ip_summed);
2533}
2534
1da177e4
LT
2535/*
2536 * Invalidate hardware checksum when packet is to be mangled, and
2537 * complete checksum manually on outgoing path.
2538 */
84fa7933 2539int skb_checksum_help(struct sk_buff *skb)
1da177e4 2540{
d3bc23e7 2541 __wsum csum;
663ead3b 2542 int ret = 0, offset;
1da177e4 2543
84fa7933 2544 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2545 goto out_set_summed;
2546
2547 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2548 skb_warn_bad_offload(skb);
2549 return -EINVAL;
1da177e4
LT
2550 }
2551
cef401de
ED
2552 /* Before computing a checksum, we should make sure no frag could
2553 * be modified by an external entity : checksum could be wrong.
2554 */
2555 if (skb_has_shared_frag(skb)) {
2556 ret = __skb_linearize(skb);
2557 if (ret)
2558 goto out;
2559 }
2560
55508d60 2561 offset = skb_checksum_start_offset(skb);
a030847e
HX
2562 BUG_ON(offset >= skb_headlen(skb));
2563 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2564
2565 offset += skb->csum_offset;
2566 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2567
2568 if (skb_cloned(skb) &&
2569 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2570 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2571 if (ret)
2572 goto out;
2573 }
2574
4f2e4ad5 2575 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2576out_set_summed:
1da177e4 2577 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2578out:
1da177e4
LT
2579 return ret;
2580}
d1b19dff 2581EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2582
53d6471c 2583__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2584{
252e3346 2585 __be16 type = skb->protocol;
f6a78bfc 2586
19acc327
PS
2587 /* Tunnel gso handlers can set protocol to ethernet. */
2588 if (type == htons(ETH_P_TEB)) {
2589 struct ethhdr *eth;
2590
2591 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2592 return 0;
2593
2594 eth = (struct ethhdr *)skb_mac_header(skb);
2595 type = eth->h_proto;
2596 }
2597
d4bcef3f 2598 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2599}
2600
2601/**
2602 * skb_mac_gso_segment - mac layer segmentation handler.
2603 * @skb: buffer to segment
2604 * @features: features for the output path (see dev->features)
2605 */
2606struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2607 netdev_features_t features)
2608{
2609 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2610 struct packet_offload *ptype;
53d6471c
VY
2611 int vlan_depth = skb->mac_len;
2612 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2613
2614 if (unlikely(!type))
2615 return ERR_PTR(-EINVAL);
2616
53d6471c 2617 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2618
2619 rcu_read_lock();
22061d80 2620 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2621 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2622 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2623 break;
2624 }
2625 }
2626 rcu_read_unlock();
2627
98e399f8 2628 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2629
f6a78bfc
HX
2630 return segs;
2631}
05e8ef4a
PS
2632EXPORT_SYMBOL(skb_mac_gso_segment);
2633
2634
2635/* openvswitch calls this on rx path, so we need a different check.
2636 */
2637static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2638{
2639 if (tx_path)
6e7bc478
ED
2640 return skb->ip_summed != CHECKSUM_PARTIAL &&
2641 skb->ip_summed != CHECKSUM_NONE;
2642
2643 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2644}
2645
2646/**
2647 * __skb_gso_segment - Perform segmentation on skb.
2648 * @skb: buffer to segment
2649 * @features: features for the output path (see dev->features)
2650 * @tx_path: whether it is called in TX path
2651 *
2652 * This function segments the given skb and returns a list of segments.
2653 *
2654 * It may return NULL if the skb requires no segmentation. This is
2655 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2656 *
2657 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2658 */
2659struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2660 netdev_features_t features, bool tx_path)
2661{
b2504a5d
ED
2662 struct sk_buff *segs;
2663
05e8ef4a
PS
2664 if (unlikely(skb_needs_check(skb, tx_path))) {
2665 int err;
2666
b2504a5d 2667 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2668 err = skb_cow_head(skb, 0);
2669 if (err < 0)
05e8ef4a
PS
2670 return ERR_PTR(err);
2671 }
2672
802ab55a
AD
2673 /* Only report GSO partial support if it will enable us to
2674 * support segmentation on this frame without needing additional
2675 * work.
2676 */
2677 if (features & NETIF_F_GSO_PARTIAL) {
2678 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2679 struct net_device *dev = skb->dev;
2680
2681 partial_features |= dev->features & dev->gso_partial_features;
2682 if (!skb_gso_ok(skb, features | partial_features))
2683 features &= ~NETIF_F_GSO_PARTIAL;
2684 }
2685
9207f9d4
KK
2686 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2687 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2688
68c33163 2689 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2690 SKB_GSO_CB(skb)->encap_level = 0;
2691
05e8ef4a
PS
2692 skb_reset_mac_header(skb);
2693 skb_reset_mac_len(skb);
2694
b2504a5d
ED
2695 segs = skb_mac_gso_segment(skb, features);
2696
2697 if (unlikely(skb_needs_check(skb, tx_path)))
2698 skb_warn_bad_offload(skb);
2699
2700 return segs;
05e8ef4a 2701}
12b0004d 2702EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2703
fb286bb2
HX
2704/* Take action when hardware reception checksum errors are detected. */
2705#ifdef CONFIG_BUG
2706void netdev_rx_csum_fault(struct net_device *dev)
2707{
2708 if (net_ratelimit()) {
7b6cd1ce 2709 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2710 dump_stack();
2711 }
2712}
2713EXPORT_SYMBOL(netdev_rx_csum_fault);
2714#endif
2715
1da177e4
LT
2716/* Actually, we should eliminate this check as soon as we know, that:
2717 * 1. IOMMU is present and allows to map all the memory.
2718 * 2. No high memory really exists on this machine.
2719 */
2720
c1e756bf 2721static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2722{
3d3a8533 2723#ifdef CONFIG_HIGHMEM
1da177e4 2724 int i;
5acbbd42 2725 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2726 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2727 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2728 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2729 return 1;
ea2ab693 2730 }
5acbbd42 2731 }
1da177e4 2732
5acbbd42
FT
2733 if (PCI_DMA_BUS_IS_PHYS) {
2734 struct device *pdev = dev->dev.parent;
1da177e4 2735
9092c658
ED
2736 if (!pdev)
2737 return 0;
5acbbd42 2738 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2739 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2740 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2741 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2742 return 1;
2743 }
2744 }
3d3a8533 2745#endif
1da177e4
LT
2746 return 0;
2747}
1da177e4 2748
3b392ddb
SH
2749/* If MPLS offload request, verify we are testing hardware MPLS features
2750 * instead of standard features for the netdev.
2751 */
d0edc7bf 2752#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2753static netdev_features_t net_mpls_features(struct sk_buff *skb,
2754 netdev_features_t features,
2755 __be16 type)
2756{
25cd9ba0 2757 if (eth_p_mpls(type))
3b392ddb
SH
2758 features &= skb->dev->mpls_features;
2759
2760 return features;
2761}
2762#else
2763static netdev_features_t net_mpls_features(struct sk_buff *skb,
2764 netdev_features_t features,
2765 __be16 type)
2766{
2767 return features;
2768}
2769#endif
2770
c8f44aff 2771static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2772 netdev_features_t features)
f01a5236 2773{
53d6471c 2774 int tmp;
3b392ddb
SH
2775 __be16 type;
2776
2777 type = skb_network_protocol(skb, &tmp);
2778 features = net_mpls_features(skb, features, type);
53d6471c 2779
c0d680e5 2780 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2781 !can_checksum_protocol(features, type)) {
996e8021 2782 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2783 }
7be2c82c
ED
2784 if (illegal_highdma(skb->dev, skb))
2785 features &= ~NETIF_F_SG;
f01a5236
JG
2786
2787 return features;
2788}
2789
e38f3025
TM
2790netdev_features_t passthru_features_check(struct sk_buff *skb,
2791 struct net_device *dev,
2792 netdev_features_t features)
2793{
2794 return features;
2795}
2796EXPORT_SYMBOL(passthru_features_check);
2797
8cb65d00
TM
2798static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2799 struct net_device *dev,
2800 netdev_features_t features)
2801{
2802 return vlan_features_check(skb, features);
2803}
2804
cbc53e08
AD
2805static netdev_features_t gso_features_check(const struct sk_buff *skb,
2806 struct net_device *dev,
2807 netdev_features_t features)
2808{
2809 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2810
2811 if (gso_segs > dev->gso_max_segs)
2812 return features & ~NETIF_F_GSO_MASK;
2813
802ab55a
AD
2814 /* Support for GSO partial features requires software
2815 * intervention before we can actually process the packets
2816 * so we need to strip support for any partial features now
2817 * and we can pull them back in after we have partially
2818 * segmented the frame.
2819 */
2820 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2821 features &= ~dev->gso_partial_features;
2822
2823 /* Make sure to clear the IPv4 ID mangling feature if the
2824 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2825 */
2826 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2827 struct iphdr *iph = skb->encapsulation ?
2828 inner_ip_hdr(skb) : ip_hdr(skb);
2829
2830 if (!(iph->frag_off & htons(IP_DF)))
2831 features &= ~NETIF_F_TSO_MANGLEID;
2832 }
2833
2834 return features;
2835}
2836
c1e756bf 2837netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2838{
5f35227e 2839 struct net_device *dev = skb->dev;
fcbeb976 2840 netdev_features_t features = dev->features;
58e998c6 2841
cbc53e08
AD
2842 if (skb_is_gso(skb))
2843 features = gso_features_check(skb, dev, features);
30b678d8 2844
5f35227e
JG
2845 /* If encapsulation offload request, verify we are testing
2846 * hardware encapsulation features instead of standard
2847 * features for the netdev
2848 */
2849 if (skb->encapsulation)
2850 features &= dev->hw_enc_features;
2851
f5a7fb88
TM
2852 if (skb_vlan_tagged(skb))
2853 features = netdev_intersect_features(features,
2854 dev->vlan_features |
2855 NETIF_F_HW_VLAN_CTAG_TX |
2856 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2857
5f35227e
JG
2858 if (dev->netdev_ops->ndo_features_check)
2859 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2860 features);
8cb65d00
TM
2861 else
2862 features &= dflt_features_check(skb, dev, features);
5f35227e 2863
c1e756bf 2864 return harmonize_features(skb, features);
58e998c6 2865}
c1e756bf 2866EXPORT_SYMBOL(netif_skb_features);
58e998c6 2867
2ea25513 2868static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2869 struct netdev_queue *txq, bool more)
f6a78bfc 2870{
2ea25513
DM
2871 unsigned int len;
2872 int rc;
00829823 2873
7866a621 2874 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2875 dev_queue_xmit_nit(skb, dev);
fc741216 2876
2ea25513
DM
2877 len = skb->len;
2878 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2879 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2880 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2881
2ea25513
DM
2882 return rc;
2883}
7b9c6090 2884
8dcda22a
DM
2885struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2886 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2887{
2888 struct sk_buff *skb = first;
2889 int rc = NETDEV_TX_OK;
7b9c6090 2890
7f2e870f
DM
2891 while (skb) {
2892 struct sk_buff *next = skb->next;
fc70fb64 2893
7f2e870f 2894 skb->next = NULL;
95f6b3dd 2895 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2896 if (unlikely(!dev_xmit_complete(rc))) {
2897 skb->next = next;
2898 goto out;
2899 }
6afff0ca 2900
7f2e870f
DM
2901 skb = next;
2902 if (netif_xmit_stopped(txq) && skb) {
2903 rc = NETDEV_TX_BUSY;
2904 break;
9ccb8975 2905 }
7f2e870f 2906 }
9ccb8975 2907
7f2e870f
DM
2908out:
2909 *ret = rc;
2910 return skb;
2911}
b40863c6 2912
1ff0dc94
ED
2913static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2914 netdev_features_t features)
f6a78bfc 2915{
df8a39de 2916 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2917 !vlan_hw_offload_capable(features, skb->vlan_proto))
2918 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2919 return skb;
2920}
f6a78bfc 2921
55a93b3e 2922static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2923{
2924 netdev_features_t features;
f6a78bfc 2925
eae3f88e
DM
2926 features = netif_skb_features(skb);
2927 skb = validate_xmit_vlan(skb, features);
2928 if (unlikely(!skb))
2929 goto out_null;
7b9c6090 2930
8b86a61d 2931 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2932 struct sk_buff *segs;
2933
2934 segs = skb_gso_segment(skb, features);
cecda693 2935 if (IS_ERR(segs)) {
af6dabc9 2936 goto out_kfree_skb;
cecda693
JW
2937 } else if (segs) {
2938 consume_skb(skb);
2939 skb = segs;
f6a78bfc 2940 }
eae3f88e
DM
2941 } else {
2942 if (skb_needs_linearize(skb, features) &&
2943 __skb_linearize(skb))
2944 goto out_kfree_skb;
4ec93edb 2945
eae3f88e
DM
2946 /* If packet is not checksummed and device does not
2947 * support checksumming for this protocol, complete
2948 * checksumming here.
2949 */
2950 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2951 if (skb->encapsulation)
2952 skb_set_inner_transport_header(skb,
2953 skb_checksum_start_offset(skb));
2954 else
2955 skb_set_transport_header(skb,
2956 skb_checksum_start_offset(skb));
a188222b 2957 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2958 skb_checksum_help(skb))
2959 goto out_kfree_skb;
7b9c6090 2960 }
0c772159 2961 }
7b9c6090 2962
eae3f88e 2963 return skb;
fc70fb64 2964
f6a78bfc
HX
2965out_kfree_skb:
2966 kfree_skb(skb);
eae3f88e 2967out_null:
d21fd63e 2968 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
2969 return NULL;
2970}
6afff0ca 2971
55a93b3e
ED
2972struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2973{
2974 struct sk_buff *next, *head = NULL, *tail;
2975
bec3cfdc 2976 for (; skb != NULL; skb = next) {
55a93b3e
ED
2977 next = skb->next;
2978 skb->next = NULL;
bec3cfdc
ED
2979
2980 /* in case skb wont be segmented, point to itself */
2981 skb->prev = skb;
2982
55a93b3e 2983 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2984 if (!skb)
2985 continue;
55a93b3e 2986
bec3cfdc
ED
2987 if (!head)
2988 head = skb;
2989 else
2990 tail->next = skb;
2991 /* If skb was segmented, skb->prev points to
2992 * the last segment. If not, it still contains skb.
2993 */
2994 tail = skb->prev;
55a93b3e
ED
2995 }
2996 return head;
f6a78bfc 2997}
104ba78c 2998EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 2999
1def9238
ED
3000static void qdisc_pkt_len_init(struct sk_buff *skb)
3001{
3002 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3003
3004 qdisc_skb_cb(skb)->pkt_len = skb->len;
3005
3006 /* To get more precise estimation of bytes sent on wire,
3007 * we add to pkt_len the headers size of all segments
3008 */
3009 if (shinfo->gso_size) {
757b8b1d 3010 unsigned int hdr_len;
15e5a030 3011 u16 gso_segs = shinfo->gso_segs;
1def9238 3012
757b8b1d
ED
3013 /* mac layer + network layer */
3014 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3015
3016 /* + transport layer */
1def9238
ED
3017 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3018 hdr_len += tcp_hdrlen(skb);
3019 else
3020 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3021
3022 if (shinfo->gso_type & SKB_GSO_DODGY)
3023 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3024 shinfo->gso_size);
3025
3026 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3027 }
3028}
3029
bbd8a0d3
KK
3030static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3031 struct net_device *dev,
3032 struct netdev_queue *txq)
3033{
3034 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3035 struct sk_buff *to_free = NULL;
a2da570d 3036 bool contended;
bbd8a0d3
KK
3037 int rc;
3038
a2da570d 3039 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3040 /*
3041 * Heuristic to force contended enqueues to serialize on a
3042 * separate lock before trying to get qdisc main lock.
f9eb8aea 3043 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3044 * often and dequeue packets faster.
79640a4c 3045 */
a2da570d 3046 contended = qdisc_is_running(q);
79640a4c
ED
3047 if (unlikely(contended))
3048 spin_lock(&q->busylock);
3049
bbd8a0d3
KK
3050 spin_lock(root_lock);
3051 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3052 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3053 rc = NET_XMIT_DROP;
3054 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3055 qdisc_run_begin(q)) {
bbd8a0d3
KK
3056 /*
3057 * This is a work-conserving queue; there are no old skbs
3058 * waiting to be sent out; and the qdisc is not running -
3059 * xmit the skb directly.
3060 */
bfe0d029 3061
bfe0d029
ED
3062 qdisc_bstats_update(q, skb);
3063
55a93b3e 3064 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3065 if (unlikely(contended)) {
3066 spin_unlock(&q->busylock);
3067 contended = false;
3068 }
bbd8a0d3 3069 __qdisc_run(q);
79640a4c 3070 } else
bc135b23 3071 qdisc_run_end(q);
bbd8a0d3
KK
3072
3073 rc = NET_XMIT_SUCCESS;
3074 } else {
520ac30f 3075 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3076 if (qdisc_run_begin(q)) {
3077 if (unlikely(contended)) {
3078 spin_unlock(&q->busylock);
3079 contended = false;
3080 }
3081 __qdisc_run(q);
3082 }
bbd8a0d3
KK
3083 }
3084 spin_unlock(root_lock);
520ac30f
ED
3085 if (unlikely(to_free))
3086 kfree_skb_list(to_free);
79640a4c
ED
3087 if (unlikely(contended))
3088 spin_unlock(&q->busylock);
bbd8a0d3
KK
3089 return rc;
3090}
3091
86f8515f 3092#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3093static void skb_update_prio(struct sk_buff *skb)
3094{
6977a79d 3095 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3096
91c68ce2 3097 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3098 unsigned int prioidx =
3099 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3100
3101 if (prioidx < map->priomap_len)
3102 skb->priority = map->priomap[prioidx];
3103 }
5bc1421e
NH
3104}
3105#else
3106#define skb_update_prio(skb)
3107#endif
3108
f60e5990 3109DEFINE_PER_CPU(int, xmit_recursion);
3110EXPORT_SYMBOL(xmit_recursion);
3111
95603e22
MM
3112/**
3113 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3114 * @net: network namespace this loopback is happening in
3115 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3116 * @skb: buffer to transmit
3117 */
0c4b51f0 3118int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3119{
3120 skb_reset_mac_header(skb);
3121 __skb_pull(skb, skb_network_offset(skb));
3122 skb->pkt_type = PACKET_LOOPBACK;
3123 skb->ip_summed = CHECKSUM_UNNECESSARY;
3124 WARN_ON(!skb_dst(skb));
3125 skb_dst_force(skb);
3126 netif_rx_ni(skb);
3127 return 0;
3128}
3129EXPORT_SYMBOL(dev_loopback_xmit);
3130
1f211a1b
DB
3131#ifdef CONFIG_NET_EGRESS
3132static struct sk_buff *
3133sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3134{
3135 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3136 struct tcf_result cl_res;
3137
3138 if (!cl)
3139 return skb;
3140
8dc07fdb 3141 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
1f211a1b
DB
3142 qdisc_bstats_cpu_update(cl->q, skb);
3143
3144 switch (tc_classify(skb, cl, &cl_res, false)) {
3145 case TC_ACT_OK:
3146 case TC_ACT_RECLASSIFY:
3147 skb->tc_index = TC_H_MIN(cl_res.classid);
3148 break;
3149 case TC_ACT_SHOT:
3150 qdisc_qstats_cpu_drop(cl->q);
3151 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3152 kfree_skb(skb);
3153 return NULL;
1f211a1b
DB
3154 case TC_ACT_STOLEN:
3155 case TC_ACT_QUEUED:
3156 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3157 consume_skb(skb);
1f211a1b
DB
3158 return NULL;
3159 case TC_ACT_REDIRECT:
3160 /* No need to push/pop skb's mac_header here on egress! */
3161 skb_do_redirect(skb);
3162 *ret = NET_XMIT_SUCCESS;
3163 return NULL;
3164 default:
3165 break;
3166 }
3167
3168 return skb;
3169}
3170#endif /* CONFIG_NET_EGRESS */
3171
638b2a69
JP
3172static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3173{
3174#ifdef CONFIG_XPS
3175 struct xps_dev_maps *dev_maps;
3176 struct xps_map *map;
3177 int queue_index = -1;
3178
3179 rcu_read_lock();
3180 dev_maps = rcu_dereference(dev->xps_maps);
3181 if (dev_maps) {
184c449f
AD
3182 unsigned int tci = skb->sender_cpu - 1;
3183
3184 if (dev->num_tc) {
3185 tci *= dev->num_tc;
3186 tci += netdev_get_prio_tc_map(dev, skb->priority);
3187 }
3188
3189 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3190 if (map) {
3191 if (map->len == 1)
3192 queue_index = map->queues[0];
3193 else
3194 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3195 map->len)];
3196 if (unlikely(queue_index >= dev->real_num_tx_queues))
3197 queue_index = -1;
3198 }
3199 }
3200 rcu_read_unlock();
3201
3202 return queue_index;
3203#else
3204 return -1;
3205#endif
3206}
3207
3208static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3209{
3210 struct sock *sk = skb->sk;
3211 int queue_index = sk_tx_queue_get(sk);
3212
3213 if (queue_index < 0 || skb->ooo_okay ||
3214 queue_index >= dev->real_num_tx_queues) {
3215 int new_index = get_xps_queue(dev, skb);
3216 if (new_index < 0)
3217 new_index = skb_tx_hash(dev, skb);
3218
3219 if (queue_index != new_index && sk &&
004a5d01 3220 sk_fullsock(sk) &&
638b2a69
JP
3221 rcu_access_pointer(sk->sk_dst_cache))
3222 sk_tx_queue_set(sk, new_index);
3223
3224 queue_index = new_index;
3225 }
3226
3227 return queue_index;
3228}
3229
3230struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3231 struct sk_buff *skb,
3232 void *accel_priv)
3233{
3234 int queue_index = 0;
3235
3236#ifdef CONFIG_XPS
52bd2d62
ED
3237 u32 sender_cpu = skb->sender_cpu - 1;
3238
3239 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3240 skb->sender_cpu = raw_smp_processor_id() + 1;
3241#endif
3242
3243 if (dev->real_num_tx_queues != 1) {
3244 const struct net_device_ops *ops = dev->netdev_ops;
3245 if (ops->ndo_select_queue)
3246 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3247 __netdev_pick_tx);
3248 else
3249 queue_index = __netdev_pick_tx(dev, skb);
3250
3251 if (!accel_priv)
3252 queue_index = netdev_cap_txqueue(dev, queue_index);
3253 }
3254
3255 skb_set_queue_mapping(skb, queue_index);
3256 return netdev_get_tx_queue(dev, queue_index);
3257}
3258
d29f749e 3259/**
9d08dd3d 3260 * __dev_queue_xmit - transmit a buffer
d29f749e 3261 * @skb: buffer to transmit
9d08dd3d 3262 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3263 *
3264 * Queue a buffer for transmission to a network device. The caller must
3265 * have set the device and priority and built the buffer before calling
3266 * this function. The function can be called from an interrupt.
3267 *
3268 * A negative errno code is returned on a failure. A success does not
3269 * guarantee the frame will be transmitted as it may be dropped due
3270 * to congestion or traffic shaping.
3271 *
3272 * -----------------------------------------------------------------------------------
3273 * I notice this method can also return errors from the queue disciplines,
3274 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3275 * be positive.
3276 *
3277 * Regardless of the return value, the skb is consumed, so it is currently
3278 * difficult to retry a send to this method. (You can bump the ref count
3279 * before sending to hold a reference for retry if you are careful.)
3280 *
3281 * When calling this method, interrupts MUST be enabled. This is because
3282 * the BH enable code must have IRQs enabled so that it will not deadlock.
3283 * --BLG
3284 */
0a59f3a9 3285static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3286{
3287 struct net_device *dev = skb->dev;
dc2b4847 3288 struct netdev_queue *txq;
1da177e4
LT
3289 struct Qdisc *q;
3290 int rc = -ENOMEM;
3291
6d1ccff6
ED
3292 skb_reset_mac_header(skb);
3293
e7fd2885
WB
3294 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3295 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3296
4ec93edb
YH
3297 /* Disable soft irqs for various locks below. Also
3298 * stops preemption for RCU.
1da177e4 3299 */
4ec93edb 3300 rcu_read_lock_bh();
1da177e4 3301
5bc1421e
NH
3302 skb_update_prio(skb);
3303
1f211a1b
DB
3304 qdisc_pkt_len_init(skb);
3305#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3306 skb->tc_at_ingress = 0;
1f211a1b
DB
3307# ifdef CONFIG_NET_EGRESS
3308 if (static_key_false(&egress_needed)) {
3309 skb = sch_handle_egress(skb, &rc, dev);
3310 if (!skb)
3311 goto out;
3312 }
3313# endif
3314#endif
02875878
ED
3315 /* If device/qdisc don't need skb->dst, release it right now while
3316 * its hot in this cpu cache.
3317 */
3318 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3319 skb_dst_drop(skb);
3320 else
3321 skb_dst_force(skb);
3322
f663dd9a 3323 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3324 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3325
cf66ba58 3326 trace_net_dev_queue(skb);
1da177e4 3327 if (q->enqueue) {
bbd8a0d3 3328 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3329 goto out;
1da177e4
LT
3330 }
3331
3332 /* The device has no queue. Common case for software devices:
3333 loopback, all the sorts of tunnels...
3334
932ff279
HX
3335 Really, it is unlikely that netif_tx_lock protection is necessary
3336 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3337 counters.)
3338 However, it is possible, that they rely on protection
3339 made by us here.
3340
3341 Check this and shot the lock. It is not prone from deadlocks.
3342 Either shot noqueue qdisc, it is even simpler 8)
3343 */
3344 if (dev->flags & IFF_UP) {
3345 int cpu = smp_processor_id(); /* ok because BHs are off */
3346
c773e847 3347 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3348 if (unlikely(__this_cpu_read(xmit_recursion) >
3349 XMIT_RECURSION_LIMIT))
745e20f1
ED
3350 goto recursion_alert;
3351
1f59533f
JDB
3352 skb = validate_xmit_skb(skb, dev);
3353 if (!skb)
d21fd63e 3354 goto out;
1f59533f 3355
c773e847 3356 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3357
73466498 3358 if (!netif_xmit_stopped(txq)) {
745e20f1 3359 __this_cpu_inc(xmit_recursion);
ce93718f 3360 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3361 __this_cpu_dec(xmit_recursion);
572a9d7b 3362 if (dev_xmit_complete(rc)) {
c773e847 3363 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3364 goto out;
3365 }
3366 }
c773e847 3367 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3368 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3369 dev->name);
1da177e4
LT
3370 } else {
3371 /* Recursion is detected! It is possible,
745e20f1
ED
3372 * unfortunately
3373 */
3374recursion_alert:
e87cc472
JP
3375 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3376 dev->name);
1da177e4
LT
3377 }
3378 }
3379
3380 rc = -ENETDOWN;
d4828d85 3381 rcu_read_unlock_bh();
1da177e4 3382
015f0688 3383 atomic_long_inc(&dev->tx_dropped);
1f59533f 3384 kfree_skb_list(skb);
1da177e4
LT
3385 return rc;
3386out:
d4828d85 3387 rcu_read_unlock_bh();
1da177e4
LT
3388 return rc;
3389}
f663dd9a 3390
2b4aa3ce 3391int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3392{
3393 return __dev_queue_xmit(skb, NULL);
3394}
2b4aa3ce 3395EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3396
f663dd9a
JW
3397int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3398{
3399 return __dev_queue_xmit(skb, accel_priv);
3400}
3401EXPORT_SYMBOL(dev_queue_xmit_accel);
3402
1da177e4
LT
3403
3404/*=======================================================================
3405 Receiver routines
3406 =======================================================================*/
3407
6b2bedc3 3408int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3409EXPORT_SYMBOL(netdev_max_backlog);
3410
3b098e2d 3411int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3412int netdev_budget __read_mostly = 300;
3d48b53f
MT
3413int weight_p __read_mostly = 64; /* old backlog weight */
3414int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3415int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3416int dev_rx_weight __read_mostly = 64;
3417int dev_tx_weight __read_mostly = 64;
1da177e4 3418
eecfd7c4
ED
3419/* Called with irq disabled */
3420static inline void ____napi_schedule(struct softnet_data *sd,
3421 struct napi_struct *napi)
3422{
3423 list_add_tail(&napi->poll_list, &sd->poll_list);
3424 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3425}
3426
bfb564e7
KK
3427#ifdef CONFIG_RPS
3428
3429/* One global table that all flow-based protocols share. */
6e3f7faf 3430struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3431EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3432u32 rps_cpu_mask __read_mostly;
3433EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3434
c5905afb 3435struct static_key rps_needed __read_mostly;
3df97ba8 3436EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3437struct static_key rfs_needed __read_mostly;
3438EXPORT_SYMBOL(rfs_needed);
adc9300e 3439
c445477d
BH
3440static struct rps_dev_flow *
3441set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3442 struct rps_dev_flow *rflow, u16 next_cpu)
3443{
a31196b0 3444 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3445#ifdef CONFIG_RFS_ACCEL
3446 struct netdev_rx_queue *rxqueue;
3447 struct rps_dev_flow_table *flow_table;
3448 struct rps_dev_flow *old_rflow;
3449 u32 flow_id;
3450 u16 rxq_index;
3451 int rc;
3452
3453 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3454 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3455 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3456 goto out;
3457 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3458 if (rxq_index == skb_get_rx_queue(skb))
3459 goto out;
3460
3461 rxqueue = dev->_rx + rxq_index;
3462 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3463 if (!flow_table)
3464 goto out;
61b905da 3465 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3466 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3467 rxq_index, flow_id);
3468 if (rc < 0)
3469 goto out;
3470 old_rflow = rflow;
3471 rflow = &flow_table->flows[flow_id];
c445477d
BH
3472 rflow->filter = rc;
3473 if (old_rflow->filter == rflow->filter)
3474 old_rflow->filter = RPS_NO_FILTER;
3475 out:
3476#endif
3477 rflow->last_qtail =
09994d1b 3478 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3479 }
3480
09994d1b 3481 rflow->cpu = next_cpu;
c445477d
BH
3482 return rflow;
3483}
3484
bfb564e7
KK
3485/*
3486 * get_rps_cpu is called from netif_receive_skb and returns the target
3487 * CPU from the RPS map of the receiving queue for a given skb.
3488 * rcu_read_lock must be held on entry.
3489 */
3490static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3491 struct rps_dev_flow **rflowp)
3492{
567e4b79
ED
3493 const struct rps_sock_flow_table *sock_flow_table;
3494 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3495 struct rps_dev_flow_table *flow_table;
567e4b79 3496 struct rps_map *map;
bfb564e7 3497 int cpu = -1;
567e4b79 3498 u32 tcpu;
61b905da 3499 u32 hash;
bfb564e7
KK
3500
3501 if (skb_rx_queue_recorded(skb)) {
3502 u16 index = skb_get_rx_queue(skb);
567e4b79 3503
62fe0b40
BH
3504 if (unlikely(index >= dev->real_num_rx_queues)) {
3505 WARN_ONCE(dev->real_num_rx_queues > 1,
3506 "%s received packet on queue %u, but number "
3507 "of RX queues is %u\n",
3508 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3509 goto done;
3510 }
567e4b79
ED
3511 rxqueue += index;
3512 }
bfb564e7 3513
567e4b79
ED
3514 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3515
3516 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3517 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3518 if (!flow_table && !map)
bfb564e7
KK
3519 goto done;
3520
2d47b459 3521 skb_reset_network_header(skb);
61b905da
TH
3522 hash = skb_get_hash(skb);
3523 if (!hash)
bfb564e7
KK
3524 goto done;
3525
fec5e652
TH
3526 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3527 if (flow_table && sock_flow_table) {
fec5e652 3528 struct rps_dev_flow *rflow;
567e4b79
ED
3529 u32 next_cpu;
3530 u32 ident;
3531
3532 /* First check into global flow table if there is a match */
3533 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3534 if ((ident ^ hash) & ~rps_cpu_mask)
3535 goto try_rps;
fec5e652 3536
567e4b79
ED
3537 next_cpu = ident & rps_cpu_mask;
3538
3539 /* OK, now we know there is a match,
3540 * we can look at the local (per receive queue) flow table
3541 */
61b905da 3542 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3543 tcpu = rflow->cpu;
3544
fec5e652
TH
3545 /*
3546 * If the desired CPU (where last recvmsg was done) is
3547 * different from current CPU (one in the rx-queue flow
3548 * table entry), switch if one of the following holds:
a31196b0 3549 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3550 * - Current CPU is offline.
3551 * - The current CPU's queue tail has advanced beyond the
3552 * last packet that was enqueued using this table entry.
3553 * This guarantees that all previous packets for the flow
3554 * have been dequeued, thus preserving in order delivery.
3555 */
3556 if (unlikely(tcpu != next_cpu) &&
a31196b0 3557 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3558 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3559 rflow->last_qtail)) >= 0)) {
3560 tcpu = next_cpu;
c445477d 3561 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3562 }
c445477d 3563
a31196b0 3564 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3565 *rflowp = rflow;
3566 cpu = tcpu;
3567 goto done;
3568 }
3569 }
3570
567e4b79
ED
3571try_rps:
3572
0a9627f2 3573 if (map) {
8fc54f68 3574 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3575 if (cpu_online(tcpu)) {
3576 cpu = tcpu;
3577 goto done;
3578 }
3579 }
3580
3581done:
0a9627f2
TH
3582 return cpu;
3583}
3584
c445477d
BH
3585#ifdef CONFIG_RFS_ACCEL
3586
3587/**
3588 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3589 * @dev: Device on which the filter was set
3590 * @rxq_index: RX queue index
3591 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3592 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3593 *
3594 * Drivers that implement ndo_rx_flow_steer() should periodically call
3595 * this function for each installed filter and remove the filters for
3596 * which it returns %true.
3597 */
3598bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3599 u32 flow_id, u16 filter_id)
3600{
3601 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3602 struct rps_dev_flow_table *flow_table;
3603 struct rps_dev_flow *rflow;
3604 bool expire = true;
a31196b0 3605 unsigned int cpu;
c445477d
BH
3606
3607 rcu_read_lock();
3608 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3609 if (flow_table && flow_id <= flow_table->mask) {
3610 rflow = &flow_table->flows[flow_id];
3611 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3612 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3613 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3614 rflow->last_qtail) <
3615 (int)(10 * flow_table->mask)))
3616 expire = false;
3617 }
3618 rcu_read_unlock();
3619 return expire;
3620}
3621EXPORT_SYMBOL(rps_may_expire_flow);
3622
3623#endif /* CONFIG_RFS_ACCEL */
3624
0a9627f2 3625/* Called from hardirq (IPI) context */
e36fa2f7 3626static void rps_trigger_softirq(void *data)
0a9627f2 3627{
e36fa2f7
ED
3628 struct softnet_data *sd = data;
3629
eecfd7c4 3630 ____napi_schedule(sd, &sd->backlog);
dee42870 3631 sd->received_rps++;
0a9627f2 3632}
e36fa2f7 3633
fec5e652 3634#endif /* CONFIG_RPS */
0a9627f2 3635
e36fa2f7
ED
3636/*
3637 * Check if this softnet_data structure is another cpu one
3638 * If yes, queue it to our IPI list and return 1
3639 * If no, return 0
3640 */
3641static int rps_ipi_queued(struct softnet_data *sd)
3642{
3643#ifdef CONFIG_RPS
903ceff7 3644 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3645
3646 if (sd != mysd) {
3647 sd->rps_ipi_next = mysd->rps_ipi_list;
3648 mysd->rps_ipi_list = sd;
3649
3650 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3651 return 1;
3652 }
3653#endif /* CONFIG_RPS */
3654 return 0;
3655}
3656
99bbc707
WB
3657#ifdef CONFIG_NET_FLOW_LIMIT
3658int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3659#endif
3660
3661static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3662{
3663#ifdef CONFIG_NET_FLOW_LIMIT
3664 struct sd_flow_limit *fl;
3665 struct softnet_data *sd;
3666 unsigned int old_flow, new_flow;
3667
3668 if (qlen < (netdev_max_backlog >> 1))
3669 return false;
3670
903ceff7 3671 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3672
3673 rcu_read_lock();
3674 fl = rcu_dereference(sd->flow_limit);
3675 if (fl) {
3958afa1 3676 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3677 old_flow = fl->history[fl->history_head];
3678 fl->history[fl->history_head] = new_flow;
3679
3680 fl->history_head++;
3681 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3682
3683 if (likely(fl->buckets[old_flow]))
3684 fl->buckets[old_flow]--;
3685
3686 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3687 fl->count++;
3688 rcu_read_unlock();
3689 return true;
3690 }
3691 }
3692 rcu_read_unlock();
3693#endif
3694 return false;
3695}
3696
0a9627f2
TH
3697/*
3698 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3699 * queue (may be a remote CPU queue).
3700 */
fec5e652
TH
3701static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3702 unsigned int *qtail)
0a9627f2 3703{
e36fa2f7 3704 struct softnet_data *sd;
0a9627f2 3705 unsigned long flags;
99bbc707 3706 unsigned int qlen;
0a9627f2 3707
e36fa2f7 3708 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3709
3710 local_irq_save(flags);
0a9627f2 3711
e36fa2f7 3712 rps_lock(sd);
e9e4dd32
JA
3713 if (!netif_running(skb->dev))
3714 goto drop;
99bbc707
WB
3715 qlen = skb_queue_len(&sd->input_pkt_queue);
3716 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3717 if (qlen) {
0a9627f2 3718enqueue:
e36fa2f7 3719 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3720 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3721 rps_unlock(sd);
152102c7 3722 local_irq_restore(flags);
0a9627f2
TH
3723 return NET_RX_SUCCESS;
3724 }
3725
ebda37c2
ED
3726 /* Schedule NAPI for backlog device
3727 * We can use non atomic operation since we own the queue lock
3728 */
3729 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3730 if (!rps_ipi_queued(sd))
eecfd7c4 3731 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3732 }
3733 goto enqueue;
3734 }
3735
e9e4dd32 3736drop:
dee42870 3737 sd->dropped++;
e36fa2f7 3738 rps_unlock(sd);
0a9627f2 3739
0a9627f2
TH
3740 local_irq_restore(flags);
3741
caf586e5 3742 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3743 kfree_skb(skb);
3744 return NET_RX_DROP;
3745}
1da177e4 3746
ae78dbfa 3747static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3748{
b0e28f1e 3749 int ret;
1da177e4 3750
588f0330 3751 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3752
cf66ba58 3753 trace_netif_rx(skb);
df334545 3754#ifdef CONFIG_RPS
c5905afb 3755 if (static_key_false(&rps_needed)) {
fec5e652 3756 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3757 int cpu;
3758
cece1945 3759 preempt_disable();
b0e28f1e 3760 rcu_read_lock();
fec5e652
TH
3761
3762 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3763 if (cpu < 0)
3764 cpu = smp_processor_id();
fec5e652
TH
3765
3766 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3767
b0e28f1e 3768 rcu_read_unlock();
cece1945 3769 preempt_enable();
adc9300e
ED
3770 } else
3771#endif
fec5e652
TH
3772 {
3773 unsigned int qtail;
3774 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3775 put_cpu();
3776 }
b0e28f1e 3777 return ret;
1da177e4 3778}
ae78dbfa
BH
3779
3780/**
3781 * netif_rx - post buffer to the network code
3782 * @skb: buffer to post
3783 *
3784 * This function receives a packet from a device driver and queues it for
3785 * the upper (protocol) levels to process. It always succeeds. The buffer
3786 * may be dropped during processing for congestion control or by the
3787 * protocol layers.
3788 *
3789 * return values:
3790 * NET_RX_SUCCESS (no congestion)
3791 * NET_RX_DROP (packet was dropped)
3792 *
3793 */
3794
3795int netif_rx(struct sk_buff *skb)
3796{
3797 trace_netif_rx_entry(skb);
3798
3799 return netif_rx_internal(skb);
3800}
d1b19dff 3801EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3802
3803int netif_rx_ni(struct sk_buff *skb)
3804{
3805 int err;
3806
ae78dbfa
BH
3807 trace_netif_rx_ni_entry(skb);
3808
1da177e4 3809 preempt_disable();
ae78dbfa 3810 err = netif_rx_internal(skb);
1da177e4
LT
3811 if (local_softirq_pending())
3812 do_softirq();
3813 preempt_enable();
3814
3815 return err;
3816}
1da177e4
LT
3817EXPORT_SYMBOL(netif_rx_ni);
3818
0766f788 3819static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3820{
903ceff7 3821 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3822
3823 if (sd->completion_queue) {
3824 struct sk_buff *clist;
3825
3826 local_irq_disable();
3827 clist = sd->completion_queue;
3828 sd->completion_queue = NULL;
3829 local_irq_enable();
3830
3831 while (clist) {
3832 struct sk_buff *skb = clist;
3833 clist = clist->next;
3834
547b792c 3835 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3836 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3837 trace_consume_skb(skb);
3838 else
3839 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3840
3841 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3842 __kfree_skb(skb);
3843 else
3844 __kfree_skb_defer(skb);
1da177e4 3845 }
15fad714
JDB
3846
3847 __kfree_skb_flush();
1da177e4
LT
3848 }
3849
3850 if (sd->output_queue) {
37437bb2 3851 struct Qdisc *head;
1da177e4
LT
3852
3853 local_irq_disable();
3854 head = sd->output_queue;
3855 sd->output_queue = NULL;
a9cbd588 3856 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3857 local_irq_enable();
3858
3859 while (head) {
37437bb2
DM
3860 struct Qdisc *q = head;
3861 spinlock_t *root_lock;
3862
1da177e4
LT
3863 head = head->next_sched;
3864
5fb66229 3865 root_lock = qdisc_lock(q);
3bcb846c
ED
3866 spin_lock(root_lock);
3867 /* We need to make sure head->next_sched is read
3868 * before clearing __QDISC_STATE_SCHED
3869 */
3870 smp_mb__before_atomic();
3871 clear_bit(__QDISC_STATE_SCHED, &q->state);
3872 qdisc_run(q);
3873 spin_unlock(root_lock);
1da177e4
LT
3874 }
3875 }
3876}
3877
181402a5 3878#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3879/* This hook is defined here for ATM LANE */
3880int (*br_fdb_test_addr_hook)(struct net_device *dev,
3881 unsigned char *addr) __read_mostly;
4fb019a0 3882EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3883#endif
1da177e4 3884
1f211a1b
DB
3885static inline struct sk_buff *
3886sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3887 struct net_device *orig_dev)
f697c3e8 3888{
e7582bab 3889#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3890 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3891 struct tcf_result cl_res;
24824a09 3892
c9e99fd0
DB
3893 /* If there's at least one ingress present somewhere (so
3894 * we get here via enabled static key), remaining devices
3895 * that are not configured with an ingress qdisc will bail
d2788d34 3896 * out here.
c9e99fd0 3897 */
d2788d34 3898 if (!cl)
4577139b 3899 return skb;
f697c3e8
HX
3900 if (*pt_prev) {
3901 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3902 *pt_prev = NULL;
1da177e4
LT
3903 }
3904
3365495c 3905 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 3906 skb->tc_at_ingress = 1;
24ea591d 3907 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3908
3b3ae880 3909 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3910 case TC_ACT_OK:
3911 case TC_ACT_RECLASSIFY:
3912 skb->tc_index = TC_H_MIN(cl_res.classid);
3913 break;
3914 case TC_ACT_SHOT:
24ea591d 3915 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3916 kfree_skb(skb);
3917 return NULL;
d2788d34
DB
3918 case TC_ACT_STOLEN:
3919 case TC_ACT_QUEUED:
8a3a4c6e 3920 consume_skb(skb);
d2788d34 3921 return NULL;
27b29f63
AS
3922 case TC_ACT_REDIRECT:
3923 /* skb_mac_header check was done by cls/act_bpf, so
3924 * we can safely push the L2 header back before
3925 * redirecting to another netdev
3926 */
3927 __skb_push(skb, skb->mac_len);
3928 skb_do_redirect(skb);
3929 return NULL;
d2788d34
DB
3930 default:
3931 break;
f697c3e8 3932 }
e7582bab 3933#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3934 return skb;
3935}
1da177e4 3936
24b27fc4
MB
3937/**
3938 * netdev_is_rx_handler_busy - check if receive handler is registered
3939 * @dev: device to check
3940 *
3941 * Check if a receive handler is already registered for a given device.
3942 * Return true if there one.
3943 *
3944 * The caller must hold the rtnl_mutex.
3945 */
3946bool netdev_is_rx_handler_busy(struct net_device *dev)
3947{
3948 ASSERT_RTNL();
3949 return dev && rtnl_dereference(dev->rx_handler);
3950}
3951EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3952
ab95bfe0
JP
3953/**
3954 * netdev_rx_handler_register - register receive handler
3955 * @dev: device to register a handler for
3956 * @rx_handler: receive handler to register
93e2c32b 3957 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3958 *
e227867f 3959 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3960 * called from __netif_receive_skb. A negative errno code is returned
3961 * on a failure.
3962 *
3963 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3964 *
3965 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3966 */
3967int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3968 rx_handler_func_t *rx_handler,
3969 void *rx_handler_data)
ab95bfe0 3970{
1b7cd004 3971 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
3972 return -EBUSY;
3973
00cfec37 3974 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3975 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3976 rcu_assign_pointer(dev->rx_handler, rx_handler);
3977
3978 return 0;
3979}
3980EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3981
3982/**
3983 * netdev_rx_handler_unregister - unregister receive handler
3984 * @dev: device to unregister a handler from
3985 *
166ec369 3986 * Unregister a receive handler from a device.
ab95bfe0
JP
3987 *
3988 * The caller must hold the rtnl_mutex.
3989 */
3990void netdev_rx_handler_unregister(struct net_device *dev)
3991{
3992
3993 ASSERT_RTNL();
a9b3cd7f 3994 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3995 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3996 * section has a guarantee to see a non NULL rx_handler_data
3997 * as well.
3998 */
3999 synchronize_net();
a9b3cd7f 4000 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4001}
4002EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4003
b4b9e355
MG
4004/*
4005 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4006 * the special handling of PFMEMALLOC skbs.
4007 */
4008static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4009{
4010 switch (skb->protocol) {
2b8837ae
JP
4011 case htons(ETH_P_ARP):
4012 case htons(ETH_P_IP):
4013 case htons(ETH_P_IPV6):
4014 case htons(ETH_P_8021Q):
4015 case htons(ETH_P_8021AD):
b4b9e355
MG
4016 return true;
4017 default:
4018 return false;
4019 }
4020}
4021
e687ad60
PN
4022static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4023 int *ret, struct net_device *orig_dev)
4024{
e7582bab 4025#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4026 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4027 int ingress_retval;
4028
e687ad60
PN
4029 if (*pt_prev) {
4030 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4031 *pt_prev = NULL;
4032 }
4033
2c1e2703
AC
4034 rcu_read_lock();
4035 ingress_retval = nf_hook_ingress(skb);
4036 rcu_read_unlock();
4037 return ingress_retval;
e687ad60 4038 }
e7582bab 4039#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4040 return 0;
4041}
e687ad60 4042
9754e293 4043static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4044{
4045 struct packet_type *ptype, *pt_prev;
ab95bfe0 4046 rx_handler_func_t *rx_handler;
f2ccd8fa 4047 struct net_device *orig_dev;
8a4eb573 4048 bool deliver_exact = false;
1da177e4 4049 int ret = NET_RX_DROP;
252e3346 4050 __be16 type;
1da177e4 4051
588f0330 4052 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4053
cf66ba58 4054 trace_netif_receive_skb(skb);
9b22ea56 4055
cc9bd5ce 4056 orig_dev = skb->dev;
8f903c70 4057
c1d2bbe1 4058 skb_reset_network_header(skb);
fda55eca
ED
4059 if (!skb_transport_header_was_set(skb))
4060 skb_reset_transport_header(skb);
0b5c9db1 4061 skb_reset_mac_len(skb);
1da177e4
LT
4062
4063 pt_prev = NULL;
4064
63d8ea7f 4065another_round:
b6858177 4066 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4067
4068 __this_cpu_inc(softnet_data.processed);
4069
8ad227ff
PM
4070 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4071 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4072 skb = skb_vlan_untag(skb);
bcc6d479 4073 if (unlikely(!skb))
2c17d27c 4074 goto out;
bcc6d479
JP
4075 }
4076
e7246e12
WB
4077 if (skb_skip_tc_classify(skb))
4078 goto skip_classify;
1da177e4 4079
9754e293 4080 if (pfmemalloc)
b4b9e355
MG
4081 goto skip_taps;
4082
1da177e4 4083 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4084 if (pt_prev)
4085 ret = deliver_skb(skb, pt_prev, orig_dev);
4086 pt_prev = ptype;
4087 }
4088
4089 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4090 if (pt_prev)
4091 ret = deliver_skb(skb, pt_prev, orig_dev);
4092 pt_prev = ptype;
1da177e4
LT
4093 }
4094
b4b9e355 4095skip_taps:
1cf51900 4096#ifdef CONFIG_NET_INGRESS
4577139b 4097 if (static_key_false(&ingress_needed)) {
1f211a1b 4098 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4099 if (!skb)
2c17d27c 4100 goto out;
e687ad60
PN
4101
4102 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4103 goto out;
4577139b 4104 }
1cf51900 4105#endif
a5135bcf 4106 skb_reset_tc(skb);
e7246e12 4107skip_classify:
9754e293 4108 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4109 goto drop;
4110
df8a39de 4111 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4112 if (pt_prev) {
4113 ret = deliver_skb(skb, pt_prev, orig_dev);
4114 pt_prev = NULL;
4115 }
48cc32d3 4116 if (vlan_do_receive(&skb))
2425717b
JF
4117 goto another_round;
4118 else if (unlikely(!skb))
2c17d27c 4119 goto out;
2425717b
JF
4120 }
4121
48cc32d3 4122 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4123 if (rx_handler) {
4124 if (pt_prev) {
4125 ret = deliver_skb(skb, pt_prev, orig_dev);
4126 pt_prev = NULL;
4127 }
8a4eb573
JP
4128 switch (rx_handler(&skb)) {
4129 case RX_HANDLER_CONSUMED:
3bc1b1ad 4130 ret = NET_RX_SUCCESS;
2c17d27c 4131 goto out;
8a4eb573 4132 case RX_HANDLER_ANOTHER:
63d8ea7f 4133 goto another_round;
8a4eb573
JP
4134 case RX_HANDLER_EXACT:
4135 deliver_exact = true;
4136 case RX_HANDLER_PASS:
4137 break;
4138 default:
4139 BUG();
4140 }
ab95bfe0 4141 }
1da177e4 4142
df8a39de
JP
4143 if (unlikely(skb_vlan_tag_present(skb))) {
4144 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4145 skb->pkt_type = PACKET_OTHERHOST;
4146 /* Note: we might in the future use prio bits
4147 * and set skb->priority like in vlan_do_receive()
4148 * For the time being, just ignore Priority Code Point
4149 */
4150 skb->vlan_tci = 0;
4151 }
48cc32d3 4152
7866a621
SN
4153 type = skb->protocol;
4154
63d8ea7f 4155 /* deliver only exact match when indicated */
7866a621
SN
4156 if (likely(!deliver_exact)) {
4157 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4158 &ptype_base[ntohs(type) &
4159 PTYPE_HASH_MASK]);
4160 }
1f3c8804 4161
7866a621
SN
4162 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4163 &orig_dev->ptype_specific);
4164
4165 if (unlikely(skb->dev != orig_dev)) {
4166 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4167 &skb->dev->ptype_specific);
1da177e4
LT
4168 }
4169
4170 if (pt_prev) {
1080e512 4171 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4172 goto drop;
1080e512
MT
4173 else
4174 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4175 } else {
b4b9e355 4176drop:
6e7333d3
JW
4177 if (!deliver_exact)
4178 atomic_long_inc(&skb->dev->rx_dropped);
4179 else
4180 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4181 kfree_skb(skb);
4182 /* Jamal, now you will not able to escape explaining
4183 * me how you were going to use this. :-)
4184 */
4185 ret = NET_RX_DROP;
4186 }
4187
2c17d27c 4188out:
9754e293
DM
4189 return ret;
4190}
4191
4192static int __netif_receive_skb(struct sk_buff *skb)
4193{
4194 int ret;
4195
4196 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4197 unsigned long pflags = current->flags;
4198
4199 /*
4200 * PFMEMALLOC skbs are special, they should
4201 * - be delivered to SOCK_MEMALLOC sockets only
4202 * - stay away from userspace
4203 * - have bounded memory usage
4204 *
4205 * Use PF_MEMALLOC as this saves us from propagating the allocation
4206 * context down to all allocation sites.
4207 */
4208 current->flags |= PF_MEMALLOC;
4209 ret = __netif_receive_skb_core(skb, true);
4210 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4211 } else
4212 ret = __netif_receive_skb_core(skb, false);
4213
1da177e4
LT
4214 return ret;
4215}
0a9627f2 4216
ae78dbfa 4217static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4218{
2c17d27c
JA
4219 int ret;
4220
588f0330 4221 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4222
c1f19b51
RC
4223 if (skb_defer_rx_timestamp(skb))
4224 return NET_RX_SUCCESS;
4225
2c17d27c
JA
4226 rcu_read_lock();
4227
df334545 4228#ifdef CONFIG_RPS
c5905afb 4229 if (static_key_false(&rps_needed)) {
3b098e2d 4230 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4231 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4232
3b098e2d
ED
4233 if (cpu >= 0) {
4234 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4235 rcu_read_unlock();
adc9300e 4236 return ret;
3b098e2d 4237 }
fec5e652 4238 }
1e94d72f 4239#endif
2c17d27c
JA
4240 ret = __netif_receive_skb(skb);
4241 rcu_read_unlock();
4242 return ret;
0a9627f2 4243}
ae78dbfa
BH
4244
4245/**
4246 * netif_receive_skb - process receive buffer from network
4247 * @skb: buffer to process
4248 *
4249 * netif_receive_skb() is the main receive data processing function.
4250 * It always succeeds. The buffer may be dropped during processing
4251 * for congestion control or by the protocol layers.
4252 *
4253 * This function may only be called from softirq context and interrupts
4254 * should be enabled.
4255 *
4256 * Return values (usually ignored):
4257 * NET_RX_SUCCESS: no congestion
4258 * NET_RX_DROP: packet was dropped
4259 */
04eb4489 4260int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4261{
4262 trace_netif_receive_skb_entry(skb);
4263
4264 return netif_receive_skb_internal(skb);
4265}
04eb4489 4266EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4267
41852497 4268DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4269
4270/* Network device is going away, flush any packets still pending */
4271static void flush_backlog(struct work_struct *work)
6e583ce5 4272{
6e583ce5 4273 struct sk_buff *skb, *tmp;
145dd5f9
PA
4274 struct softnet_data *sd;
4275
4276 local_bh_disable();
4277 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4278
145dd5f9 4279 local_irq_disable();
e36fa2f7 4280 rps_lock(sd);
6e7676c1 4281 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4282 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4283 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4284 kfree_skb(skb);
76cc8b13 4285 input_queue_head_incr(sd);
6e583ce5 4286 }
6e7676c1 4287 }
e36fa2f7 4288 rps_unlock(sd);
145dd5f9 4289 local_irq_enable();
6e7676c1
CG
4290
4291 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4292 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4293 __skb_unlink(skb, &sd->process_queue);
4294 kfree_skb(skb);
76cc8b13 4295 input_queue_head_incr(sd);
6e7676c1
CG
4296 }
4297 }
145dd5f9
PA
4298 local_bh_enable();
4299}
4300
41852497 4301static void flush_all_backlogs(void)
145dd5f9
PA
4302{
4303 unsigned int cpu;
4304
4305 get_online_cpus();
4306
41852497
ED
4307 for_each_online_cpu(cpu)
4308 queue_work_on(cpu, system_highpri_wq,
4309 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4310
4311 for_each_online_cpu(cpu)
41852497 4312 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4313
4314 put_online_cpus();
6e583ce5
SH
4315}
4316
d565b0a1
HX
4317static int napi_gro_complete(struct sk_buff *skb)
4318{
22061d80 4319 struct packet_offload *ptype;
d565b0a1 4320 __be16 type = skb->protocol;
22061d80 4321 struct list_head *head = &offload_base;
d565b0a1
HX
4322 int err = -ENOENT;
4323
c3c7c254
ED
4324 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4325
fc59f9a3
HX
4326 if (NAPI_GRO_CB(skb)->count == 1) {
4327 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4328 goto out;
fc59f9a3 4329 }
d565b0a1
HX
4330
4331 rcu_read_lock();
4332 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4333 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4334 continue;
4335
299603e8 4336 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4337 break;
4338 }
4339 rcu_read_unlock();
4340
4341 if (err) {
4342 WARN_ON(&ptype->list == head);
4343 kfree_skb(skb);
4344 return NET_RX_SUCCESS;
4345 }
4346
4347out:
ae78dbfa 4348 return netif_receive_skb_internal(skb);
d565b0a1
HX
4349}
4350
2e71a6f8
ED
4351/* napi->gro_list contains packets ordered by age.
4352 * youngest packets at the head of it.
4353 * Complete skbs in reverse order to reduce latencies.
4354 */
4355void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4356{
2e71a6f8 4357 struct sk_buff *skb, *prev = NULL;
d565b0a1 4358
2e71a6f8
ED
4359 /* scan list and build reverse chain */
4360 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4361 skb->prev = prev;
4362 prev = skb;
4363 }
4364
4365 for (skb = prev; skb; skb = prev) {
d565b0a1 4366 skb->next = NULL;
2e71a6f8
ED
4367
4368 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4369 return;
4370
4371 prev = skb->prev;
d565b0a1 4372 napi_gro_complete(skb);
2e71a6f8 4373 napi->gro_count--;
d565b0a1
HX
4374 }
4375
4376 napi->gro_list = NULL;
4377}
86cac58b 4378EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4379
89c5fa33
ED
4380static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4381{
4382 struct sk_buff *p;
4383 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4384 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4385
4386 for (p = napi->gro_list; p; p = p->next) {
4387 unsigned long diffs;
4388
0b4cec8c
TH
4389 NAPI_GRO_CB(p)->flush = 0;
4390
4391 if (hash != skb_get_hash_raw(p)) {
4392 NAPI_GRO_CB(p)->same_flow = 0;
4393 continue;
4394 }
4395
89c5fa33
ED
4396 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4397 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4398 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4399 if (maclen == ETH_HLEN)
4400 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4401 skb_mac_header(skb));
89c5fa33
ED
4402 else if (!diffs)
4403 diffs = memcmp(skb_mac_header(p),
a50e233c 4404 skb_mac_header(skb),
89c5fa33
ED
4405 maclen);
4406 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4407 }
4408}
4409
299603e8
JC
4410static void skb_gro_reset_offset(struct sk_buff *skb)
4411{
4412 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4413 const skb_frag_t *frag0 = &pinfo->frags[0];
4414
4415 NAPI_GRO_CB(skb)->data_offset = 0;
4416 NAPI_GRO_CB(skb)->frag0 = NULL;
4417 NAPI_GRO_CB(skb)->frag0_len = 0;
4418
4419 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4420 pinfo->nr_frags &&
4421 !PageHighMem(skb_frag_page(frag0))) {
4422 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4423 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4424 skb_frag_size(frag0),
4425 skb->end - skb->tail);
89c5fa33
ED
4426 }
4427}
4428
a50e233c
ED
4429static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4430{
4431 struct skb_shared_info *pinfo = skb_shinfo(skb);
4432
4433 BUG_ON(skb->end - skb->tail < grow);
4434
4435 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4436
4437 skb->data_len -= grow;
4438 skb->tail += grow;
4439
4440 pinfo->frags[0].page_offset += grow;
4441 skb_frag_size_sub(&pinfo->frags[0], grow);
4442
4443 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4444 skb_frag_unref(skb, 0);
4445 memmove(pinfo->frags, pinfo->frags + 1,
4446 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4447 }
4448}
4449
bb728820 4450static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4451{
4452 struct sk_buff **pp = NULL;
22061d80 4453 struct packet_offload *ptype;
d565b0a1 4454 __be16 type = skb->protocol;
22061d80 4455 struct list_head *head = &offload_base;
0da2afd5 4456 int same_flow;
5b252f0c 4457 enum gro_result ret;
a50e233c 4458 int grow;
d565b0a1 4459
9c62a68d 4460 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4461 goto normal;
4462
d61d072e 4463 if (skb->csum_bad)
f17f5c91
HX
4464 goto normal;
4465
89c5fa33
ED
4466 gro_list_prepare(napi, skb);
4467
d565b0a1
HX
4468 rcu_read_lock();
4469 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4470 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4471 continue;
4472
86911732 4473 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4474 skb_reset_mac_len(skb);
d565b0a1 4475 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4476 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4477 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4478 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4479 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4480 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4481 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4482 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4483
662880f4
TH
4484 /* Setup for GRO checksum validation */
4485 switch (skb->ip_summed) {
4486 case CHECKSUM_COMPLETE:
4487 NAPI_GRO_CB(skb)->csum = skb->csum;
4488 NAPI_GRO_CB(skb)->csum_valid = 1;
4489 NAPI_GRO_CB(skb)->csum_cnt = 0;
4490 break;
4491 case CHECKSUM_UNNECESSARY:
4492 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4493 NAPI_GRO_CB(skb)->csum_valid = 0;
4494 break;
4495 default:
4496 NAPI_GRO_CB(skb)->csum_cnt = 0;
4497 NAPI_GRO_CB(skb)->csum_valid = 0;
4498 }
d565b0a1 4499
f191a1d1 4500 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4501 break;
4502 }
4503 rcu_read_unlock();
4504
4505 if (&ptype->list == head)
4506 goto normal;
4507
0da2afd5 4508 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4509 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4510
d565b0a1
HX
4511 if (pp) {
4512 struct sk_buff *nskb = *pp;
4513
4514 *pp = nskb->next;
4515 nskb->next = NULL;
4516 napi_gro_complete(nskb);
4ae5544f 4517 napi->gro_count--;
d565b0a1
HX
4518 }
4519
0da2afd5 4520 if (same_flow)
d565b0a1
HX
4521 goto ok;
4522
600adc18 4523 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4524 goto normal;
d565b0a1 4525
600adc18
ED
4526 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4527 struct sk_buff *nskb = napi->gro_list;
4528
4529 /* locate the end of the list to select the 'oldest' flow */
4530 while (nskb->next) {
4531 pp = &nskb->next;
4532 nskb = *pp;
4533 }
4534 *pp = NULL;
4535 nskb->next = NULL;
4536 napi_gro_complete(nskb);
4537 } else {
4538 napi->gro_count++;
4539 }
d565b0a1 4540 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4541 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4542 NAPI_GRO_CB(skb)->last = skb;
86911732 4543 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4544 skb->next = napi->gro_list;
4545 napi->gro_list = skb;
5d0d9be8 4546 ret = GRO_HELD;
d565b0a1 4547
ad0f9904 4548pull:
a50e233c
ED
4549 grow = skb_gro_offset(skb) - skb_headlen(skb);
4550 if (grow > 0)
4551 gro_pull_from_frag0(skb, grow);
d565b0a1 4552ok:
5d0d9be8 4553 return ret;
d565b0a1
HX
4554
4555normal:
ad0f9904
HX
4556 ret = GRO_NORMAL;
4557 goto pull;
5d38a079 4558}
96e93eab 4559
bf5a755f
JC
4560struct packet_offload *gro_find_receive_by_type(__be16 type)
4561{
4562 struct list_head *offload_head = &offload_base;
4563 struct packet_offload *ptype;
4564
4565 list_for_each_entry_rcu(ptype, offload_head, list) {
4566 if (ptype->type != type || !ptype->callbacks.gro_receive)
4567 continue;
4568 return ptype;
4569 }
4570 return NULL;
4571}
e27a2f83 4572EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4573
4574struct packet_offload *gro_find_complete_by_type(__be16 type)
4575{
4576 struct list_head *offload_head = &offload_base;
4577 struct packet_offload *ptype;
4578
4579 list_for_each_entry_rcu(ptype, offload_head, list) {
4580 if (ptype->type != type || !ptype->callbacks.gro_complete)
4581 continue;
4582 return ptype;
4583 }
4584 return NULL;
4585}
e27a2f83 4586EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4587
bb728820 4588static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4589{
5d0d9be8
HX
4590 switch (ret) {
4591 case GRO_NORMAL:
ae78dbfa 4592 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4593 ret = GRO_DROP;
4594 break;
5d38a079 4595
5d0d9be8 4596 case GRO_DROP:
5d38a079
HX
4597 kfree_skb(skb);
4598 break;
5b252f0c 4599
daa86548 4600 case GRO_MERGED_FREE:
ce87fc6c
JG
4601 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4602 skb_dst_drop(skb);
f991bb9d 4603 secpath_reset(skb);
d7e8883c 4604 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4605 } else {
d7e8883c 4606 __kfree_skb(skb);
ce87fc6c 4607 }
daa86548
ED
4608 break;
4609
5b252f0c
BH
4610 case GRO_HELD:
4611 case GRO_MERGED:
4612 break;
5d38a079
HX
4613 }
4614
c7c4b3b6 4615 return ret;
5d0d9be8 4616}
5d0d9be8 4617
c7c4b3b6 4618gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4619{
93f93a44 4620 skb_mark_napi_id(skb, napi);
ae78dbfa 4621 trace_napi_gro_receive_entry(skb);
86911732 4622
a50e233c
ED
4623 skb_gro_reset_offset(skb);
4624
89c5fa33 4625 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4626}
4627EXPORT_SYMBOL(napi_gro_receive);
4628
d0c2b0d2 4629static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4630{
93a35f59
ED
4631 if (unlikely(skb->pfmemalloc)) {
4632 consume_skb(skb);
4633 return;
4634 }
96e93eab 4635 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4636 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4637 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4638 skb->vlan_tci = 0;
66c46d74 4639 skb->dev = napi->dev;
6d152e23 4640 skb->skb_iif = 0;
c3caf119
JC
4641 skb->encapsulation = 0;
4642 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4643 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 4644 secpath_reset(skb);
96e93eab
HX
4645
4646 napi->skb = skb;
4647}
96e93eab 4648
76620aaf 4649struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4650{
5d38a079 4651 struct sk_buff *skb = napi->skb;
5d38a079
HX
4652
4653 if (!skb) {
fd11a83d 4654 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4655 if (skb) {
4656 napi->skb = skb;
4657 skb_mark_napi_id(skb, napi);
4658 }
80595d59 4659 }
96e93eab
HX
4660 return skb;
4661}
76620aaf 4662EXPORT_SYMBOL(napi_get_frags);
96e93eab 4663
a50e233c
ED
4664static gro_result_t napi_frags_finish(struct napi_struct *napi,
4665 struct sk_buff *skb,
4666 gro_result_t ret)
96e93eab 4667{
5d0d9be8
HX
4668 switch (ret) {
4669 case GRO_NORMAL:
a50e233c
ED
4670 case GRO_HELD:
4671 __skb_push(skb, ETH_HLEN);
4672 skb->protocol = eth_type_trans(skb, skb->dev);
4673 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4674 ret = GRO_DROP;
86911732 4675 break;
5d38a079 4676
5d0d9be8 4677 case GRO_DROP:
5d0d9be8
HX
4678 case GRO_MERGED_FREE:
4679 napi_reuse_skb(napi, skb);
4680 break;
5b252f0c
BH
4681
4682 case GRO_MERGED:
4683 break;
5d0d9be8 4684 }
5d38a079 4685
c7c4b3b6 4686 return ret;
5d38a079 4687}
5d0d9be8 4688
a50e233c
ED
4689/* Upper GRO stack assumes network header starts at gro_offset=0
4690 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4691 * We copy ethernet header into skb->data to have a common layout.
4692 */
4adb9c4a 4693static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4694{
4695 struct sk_buff *skb = napi->skb;
a50e233c
ED
4696 const struct ethhdr *eth;
4697 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4698
4699 napi->skb = NULL;
4700
a50e233c
ED
4701 skb_reset_mac_header(skb);
4702 skb_gro_reset_offset(skb);
4703
4704 eth = skb_gro_header_fast(skb, 0);
4705 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4706 eth = skb_gro_header_slow(skb, hlen, 0);
4707 if (unlikely(!eth)) {
4da46ceb
AC
4708 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4709 __func__, napi->dev->name);
a50e233c
ED
4710 napi_reuse_skb(napi, skb);
4711 return NULL;
4712 }
4713 } else {
4714 gro_pull_from_frag0(skb, hlen);
4715 NAPI_GRO_CB(skb)->frag0 += hlen;
4716 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4717 }
a50e233c
ED
4718 __skb_pull(skb, hlen);
4719
4720 /*
4721 * This works because the only protocols we care about don't require
4722 * special handling.
4723 * We'll fix it up properly in napi_frags_finish()
4724 */
4725 skb->protocol = eth->h_proto;
76620aaf 4726
76620aaf
HX
4727 return skb;
4728}
76620aaf 4729
c7c4b3b6 4730gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4731{
76620aaf 4732 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4733
4734 if (!skb)
c7c4b3b6 4735 return GRO_DROP;
5d0d9be8 4736
ae78dbfa
BH
4737 trace_napi_gro_frags_entry(skb);
4738
89c5fa33 4739 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4740}
5d38a079
HX
4741EXPORT_SYMBOL(napi_gro_frags);
4742
573e8fca
TH
4743/* Compute the checksum from gro_offset and return the folded value
4744 * after adding in any pseudo checksum.
4745 */
4746__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4747{
4748 __wsum wsum;
4749 __sum16 sum;
4750
4751 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4752
4753 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4754 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4755 if (likely(!sum)) {
4756 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4757 !skb->csum_complete_sw)
4758 netdev_rx_csum_fault(skb->dev);
4759 }
4760
4761 NAPI_GRO_CB(skb)->csum = wsum;
4762 NAPI_GRO_CB(skb)->csum_valid = 1;
4763
4764 return sum;
4765}
4766EXPORT_SYMBOL(__skb_gro_checksum_complete);
4767
e326bed2 4768/*
855abcf0 4769 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4770 * Note: called with local irq disabled, but exits with local irq enabled.
4771 */
4772static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4773{
4774#ifdef CONFIG_RPS
4775 struct softnet_data *remsd = sd->rps_ipi_list;
4776
4777 if (remsd) {
4778 sd->rps_ipi_list = NULL;
4779
4780 local_irq_enable();
4781
4782 /* Send pending IPI's to kick RPS processing on remote cpus. */
4783 while (remsd) {
4784 struct softnet_data *next = remsd->rps_ipi_next;
4785
4786 if (cpu_online(remsd->cpu))
c46fff2a 4787 smp_call_function_single_async(remsd->cpu,
fce8ad15 4788 &remsd->csd);
e326bed2
ED
4789 remsd = next;
4790 }
4791 } else
4792#endif
4793 local_irq_enable();
4794}
4795
d75b1ade
ED
4796static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4797{
4798#ifdef CONFIG_RPS
4799 return sd->rps_ipi_list != NULL;
4800#else
4801 return false;
4802#endif
4803}
4804
bea3348e 4805static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4806{
eecfd7c4 4807 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4808 bool again = true;
4809 int work = 0;
1da177e4 4810
e326bed2
ED
4811 /* Check if we have pending ipi, its better to send them now,
4812 * not waiting net_rx_action() end.
4813 */
d75b1ade 4814 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4815 local_irq_disable();
4816 net_rps_action_and_irq_enable(sd);
4817 }
d75b1ade 4818
3d48b53f 4819 napi->weight = dev_rx_weight;
145dd5f9 4820 while (again) {
1da177e4 4821 struct sk_buff *skb;
6e7676c1
CG
4822
4823 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4824 rcu_read_lock();
6e7676c1 4825 __netif_receive_skb(skb);
2c17d27c 4826 rcu_read_unlock();
76cc8b13 4827 input_queue_head_incr(sd);
145dd5f9 4828 if (++work >= quota)
76cc8b13 4829 return work;
145dd5f9 4830
6e7676c1 4831 }
1da177e4 4832
145dd5f9 4833 local_irq_disable();
e36fa2f7 4834 rps_lock(sd);
11ef7a89 4835 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4836 /*
4837 * Inline a custom version of __napi_complete().
4838 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4839 * and NAPI_STATE_SCHED is the only possible flag set
4840 * on backlog.
4841 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4842 * and we dont need an smp_mb() memory barrier.
4843 */
eecfd7c4 4844 napi->state = 0;
145dd5f9
PA
4845 again = false;
4846 } else {
4847 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4848 &sd->process_queue);
bea3348e 4849 }
e36fa2f7 4850 rps_unlock(sd);
145dd5f9 4851 local_irq_enable();
6e7676c1 4852 }
1da177e4 4853
bea3348e
SH
4854 return work;
4855}
1da177e4 4856
bea3348e
SH
4857/**
4858 * __napi_schedule - schedule for receive
c4ea43c5 4859 * @n: entry to schedule
bea3348e 4860 *
bc9ad166
ED
4861 * The entry's receive function will be scheduled to run.
4862 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4863 */
b5606c2d 4864void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4865{
4866 unsigned long flags;
1da177e4 4867
bea3348e 4868 local_irq_save(flags);
903ceff7 4869 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4870 local_irq_restore(flags);
1da177e4 4871}
bea3348e
SH
4872EXPORT_SYMBOL(__napi_schedule);
4873
bc9ad166
ED
4874/**
4875 * __napi_schedule_irqoff - schedule for receive
4876 * @n: entry to schedule
4877 *
4878 * Variant of __napi_schedule() assuming hard irqs are masked
4879 */
4880void __napi_schedule_irqoff(struct napi_struct *n)
4881{
4882 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4883}
4884EXPORT_SYMBOL(__napi_schedule_irqoff);
4885
364b6055 4886bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4887{
4888 unsigned long flags;
4889
4890 /*
217f6974
ED
4891 * 1) Don't let napi dequeue from the cpu poll list
4892 * just in case its running on a different cpu.
4893 * 2) If we are busy polling, do nothing here, we have
4894 * the guarantee we will be called later.
d565b0a1 4895 */
217f6974
ED
4896 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4897 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 4898 return false;
d565b0a1 4899
3b47d303
ED
4900 if (n->gro_list) {
4901 unsigned long timeout = 0;
d75b1ade 4902
3b47d303
ED
4903 if (work_done)
4904 timeout = n->dev->gro_flush_timeout;
4905
4906 if (timeout)
4907 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4908 HRTIMER_MODE_REL_PINNED);
4909 else
4910 napi_gro_flush(n, false);
4911 }
02c1602e 4912 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
4913 /* If n->poll_list is not empty, we need to mask irqs */
4914 local_irq_save(flags);
02c1602e 4915 list_del_init(&n->poll_list);
d75b1ade
ED
4916 local_irq_restore(flags);
4917 }
02c1602e 4918 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
364b6055 4919 return true;
d565b0a1 4920}
3b47d303 4921EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4922
af12fa6e 4923/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4924static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4925{
4926 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4927 struct napi_struct *napi;
4928
4929 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4930 if (napi->napi_id == napi_id)
4931 return napi;
4932
4933 return NULL;
4934}
02d62e86
ED
4935
4936#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 4937
ce6aea93 4938#define BUSY_POLL_BUDGET 8
217f6974
ED
4939
4940static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4941{
4942 int rc;
4943
4944 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4945
4946 local_bh_disable();
4947
4948 /* All we really want here is to re-enable device interrupts.
4949 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4950 */
4951 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4952 netpoll_poll_unlock(have_poll_lock);
4953 if (rc == BUSY_POLL_BUDGET)
4954 __napi_schedule(napi);
4955 local_bh_enable();
4956 if (local_softirq_pending())
4957 do_softirq();
4958}
4959
02d62e86
ED
4960bool sk_busy_loop(struct sock *sk, int nonblock)
4961{
4962 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
217f6974 4963 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 4964 void *have_poll_lock = NULL;
02d62e86 4965 struct napi_struct *napi;
217f6974
ED
4966 int rc;
4967
4968restart:
4969 rc = false;
4970 napi_poll = NULL;
02d62e86 4971
2a028ecb 4972 rcu_read_lock();
02d62e86
ED
4973
4974 napi = napi_by_id(sk->sk_napi_id);
4975 if (!napi)
4976 goto out;
4977
217f6974
ED
4978 preempt_disable();
4979 for (;;) {
ce6aea93 4980 rc = 0;
2a028ecb 4981 local_bh_disable();
217f6974
ED
4982 if (!napi_poll) {
4983 unsigned long val = READ_ONCE(napi->state);
4984
4985 /* If multiple threads are competing for this napi,
4986 * we avoid dirtying napi->state as much as we can.
4987 */
4988 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
4989 NAPIF_STATE_IN_BUSY_POLL))
4990 goto count;
4991 if (cmpxchg(&napi->state, val,
4992 val | NAPIF_STATE_IN_BUSY_POLL |
4993 NAPIF_STATE_SCHED) != val)
4994 goto count;
4995 have_poll_lock = netpoll_poll_lock(napi);
4996 napi_poll = napi->poll;
4997 }
4998 rc = napi_poll(napi, BUSY_POLL_BUDGET);
4999 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5000count:
2a028ecb 5001 if (rc > 0)
02a1d6e7
ED
5002 __NET_ADD_STATS(sock_net(sk),
5003 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 5004 local_bh_enable();
02d62e86
ED
5005
5006 if (rc == LL_FLUSH_FAILED)
5007 break; /* permanent failure */
5008
217f6974
ED
5009 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5010 busy_loop_timeout(end_time))
5011 break;
02d62e86 5012
217f6974
ED
5013 if (unlikely(need_resched())) {
5014 if (napi_poll)
5015 busy_poll_stop(napi, have_poll_lock);
5016 preempt_enable();
5017 rcu_read_unlock();
5018 cond_resched();
5019 rc = !skb_queue_empty(&sk->sk_receive_queue);
5020 if (rc || busy_loop_timeout(end_time))
5021 return rc;
5022 goto restart;
5023 }
6cdf89b1 5024 cpu_relax();
217f6974
ED
5025 }
5026 if (napi_poll)
5027 busy_poll_stop(napi, have_poll_lock);
5028 preempt_enable();
02d62e86
ED
5029 rc = !skb_queue_empty(&sk->sk_receive_queue);
5030out:
2a028ecb 5031 rcu_read_unlock();
02d62e86
ED
5032 return rc;
5033}
5034EXPORT_SYMBOL(sk_busy_loop);
5035
5036#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5037
149d6ad8 5038static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5039{
d64b5e85
ED
5040 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5041 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5042 return;
af12fa6e 5043
52bd2d62 5044 spin_lock(&napi_hash_lock);
af12fa6e 5045
52bd2d62
ED
5046 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5047 do {
5048 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5049 napi_gen_id = NR_CPUS + 1;
5050 } while (napi_by_id(napi_gen_id));
5051 napi->napi_id = napi_gen_id;
af12fa6e 5052
52bd2d62
ED
5053 hlist_add_head_rcu(&napi->napi_hash_node,
5054 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5055
52bd2d62 5056 spin_unlock(&napi_hash_lock);
af12fa6e 5057}
af12fa6e
ET
5058
5059/* Warning : caller is responsible to make sure rcu grace period
5060 * is respected before freeing memory containing @napi
5061 */
34cbe27e 5062bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5063{
34cbe27e
ED
5064 bool rcu_sync_needed = false;
5065
af12fa6e
ET
5066 spin_lock(&napi_hash_lock);
5067
34cbe27e
ED
5068 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5069 rcu_sync_needed = true;
af12fa6e 5070 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5071 }
af12fa6e 5072 spin_unlock(&napi_hash_lock);
34cbe27e 5073 return rcu_sync_needed;
af12fa6e
ET
5074}
5075EXPORT_SYMBOL_GPL(napi_hash_del);
5076
3b47d303
ED
5077static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5078{
5079 struct napi_struct *napi;
5080
5081 napi = container_of(timer, struct napi_struct, timer);
5082 if (napi->gro_list)
5083 napi_schedule(napi);
5084
5085 return HRTIMER_NORESTART;
5086}
5087
d565b0a1
HX
5088void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5089 int (*poll)(struct napi_struct *, int), int weight)
5090{
5091 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5092 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5093 napi->timer.function = napi_watchdog;
4ae5544f 5094 napi->gro_count = 0;
d565b0a1 5095 napi->gro_list = NULL;
5d38a079 5096 napi->skb = NULL;
d565b0a1 5097 napi->poll = poll;
82dc3c63
ED
5098 if (weight > NAPI_POLL_WEIGHT)
5099 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5100 weight, dev->name);
d565b0a1
HX
5101 napi->weight = weight;
5102 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5103 napi->dev = dev;
5d38a079 5104#ifdef CONFIG_NETPOLL
d565b0a1
HX
5105 napi->poll_owner = -1;
5106#endif
5107 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5108 napi_hash_add(napi);
d565b0a1
HX
5109}
5110EXPORT_SYMBOL(netif_napi_add);
5111
3b47d303
ED
5112void napi_disable(struct napi_struct *n)
5113{
5114 might_sleep();
5115 set_bit(NAPI_STATE_DISABLE, &n->state);
5116
5117 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5118 msleep(1);
2d8bff12
NH
5119 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5120 msleep(1);
3b47d303
ED
5121
5122 hrtimer_cancel(&n->timer);
5123
5124 clear_bit(NAPI_STATE_DISABLE, &n->state);
5125}
5126EXPORT_SYMBOL(napi_disable);
5127
93d05d4a 5128/* Must be called in process context */
d565b0a1
HX
5129void netif_napi_del(struct napi_struct *napi)
5130{
93d05d4a
ED
5131 might_sleep();
5132 if (napi_hash_del(napi))
5133 synchronize_net();
d7b06636 5134 list_del_init(&napi->dev_list);
76620aaf 5135 napi_free_frags(napi);
d565b0a1 5136
289dccbe 5137 kfree_skb_list(napi->gro_list);
d565b0a1 5138 napi->gro_list = NULL;
4ae5544f 5139 napi->gro_count = 0;
d565b0a1
HX
5140}
5141EXPORT_SYMBOL(netif_napi_del);
5142
726ce70e
HX
5143static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5144{
5145 void *have;
5146 int work, weight;
5147
5148 list_del_init(&n->poll_list);
5149
5150 have = netpoll_poll_lock(n);
5151
5152 weight = n->weight;
5153
5154 /* This NAPI_STATE_SCHED test is for avoiding a race
5155 * with netpoll's poll_napi(). Only the entity which
5156 * obtains the lock and sees NAPI_STATE_SCHED set will
5157 * actually make the ->poll() call. Therefore we avoid
5158 * accidentally calling ->poll() when NAPI is not scheduled.
5159 */
5160 work = 0;
5161 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5162 work = n->poll(n, weight);
1db19db7 5163 trace_napi_poll(n, work, weight);
726ce70e
HX
5164 }
5165
5166 WARN_ON_ONCE(work > weight);
5167
5168 if (likely(work < weight))
5169 goto out_unlock;
5170
5171 /* Drivers must not modify the NAPI state if they
5172 * consume the entire weight. In such cases this code
5173 * still "owns" the NAPI instance and therefore can
5174 * move the instance around on the list at-will.
5175 */
5176 if (unlikely(napi_disable_pending(n))) {
5177 napi_complete(n);
5178 goto out_unlock;
5179 }
5180
5181 if (n->gro_list) {
5182 /* flush too old packets
5183 * If HZ < 1000, flush all packets.
5184 */
5185 napi_gro_flush(n, HZ >= 1000);
5186 }
5187
001ce546
HX
5188 /* Some drivers may have called napi_schedule
5189 * prior to exhausting their budget.
5190 */
5191 if (unlikely(!list_empty(&n->poll_list))) {
5192 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5193 n->dev ? n->dev->name : "backlog");
5194 goto out_unlock;
5195 }
5196
726ce70e
HX
5197 list_add_tail(&n->poll_list, repoll);
5198
5199out_unlock:
5200 netpoll_poll_unlock(have);
5201
5202 return work;
5203}
5204
0766f788 5205static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5206{
903ceff7 5207 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5208 unsigned long time_limit = jiffies + 2;
51b0bded 5209 int budget = netdev_budget;
d75b1ade
ED
5210 LIST_HEAD(list);
5211 LIST_HEAD(repoll);
53fb95d3 5212
1da177e4 5213 local_irq_disable();
d75b1ade
ED
5214 list_splice_init(&sd->poll_list, &list);
5215 local_irq_enable();
1da177e4 5216
ceb8d5bf 5217 for (;;) {
bea3348e 5218 struct napi_struct *n;
1da177e4 5219
ceb8d5bf
HX
5220 if (list_empty(&list)) {
5221 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5222 goto out;
ceb8d5bf
HX
5223 break;
5224 }
5225
6bd373eb
HX
5226 n = list_first_entry(&list, struct napi_struct, poll_list);
5227 budget -= napi_poll(n, &repoll);
5228
d75b1ade 5229 /* If softirq window is exhausted then punt.
24f8b238
SH
5230 * Allow this to run for 2 jiffies since which will allow
5231 * an average latency of 1.5/HZ.
bea3348e 5232 */
ceb8d5bf
HX
5233 if (unlikely(budget <= 0 ||
5234 time_after_eq(jiffies, time_limit))) {
5235 sd->time_squeeze++;
5236 break;
5237 }
1da177e4 5238 }
d75b1ade 5239
d75b1ade
ED
5240 local_irq_disable();
5241
5242 list_splice_tail_init(&sd->poll_list, &list);
5243 list_splice_tail(&repoll, &list);
5244 list_splice(&list, &sd->poll_list);
5245 if (!list_empty(&sd->poll_list))
5246 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5247
e326bed2 5248 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5249out:
5250 __kfree_skb_flush();
1da177e4
LT
5251}
5252
aa9d8560 5253struct netdev_adjacent {
9ff162a8 5254 struct net_device *dev;
5d261913
VF
5255
5256 /* upper master flag, there can only be one master device per list */
9ff162a8 5257 bool master;
5d261913 5258
5d261913
VF
5259 /* counter for the number of times this device was added to us */
5260 u16 ref_nr;
5261
402dae96
VF
5262 /* private field for the users */
5263 void *private;
5264
9ff162a8
JP
5265 struct list_head list;
5266 struct rcu_head rcu;
9ff162a8
JP
5267};
5268
6ea29da1 5269static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5270 struct list_head *adj_list)
9ff162a8 5271{
5d261913 5272 struct netdev_adjacent *adj;
5d261913 5273
2f268f12 5274 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5275 if (adj->dev == adj_dev)
5276 return adj;
9ff162a8
JP
5277 }
5278 return NULL;
5279}
5280
f1170fd4
DA
5281static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5282{
5283 struct net_device *dev = data;
5284
5285 return upper_dev == dev;
5286}
5287
9ff162a8
JP
5288/**
5289 * netdev_has_upper_dev - Check if device is linked to an upper device
5290 * @dev: device
5291 * @upper_dev: upper device to check
5292 *
5293 * Find out if a device is linked to specified upper device and return true
5294 * in case it is. Note that this checks only immediate upper device,
5295 * not through a complete stack of devices. The caller must hold the RTNL lock.
5296 */
5297bool netdev_has_upper_dev(struct net_device *dev,
5298 struct net_device *upper_dev)
5299{
5300 ASSERT_RTNL();
5301
f1170fd4
DA
5302 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5303 upper_dev);
9ff162a8
JP
5304}
5305EXPORT_SYMBOL(netdev_has_upper_dev);
5306
1a3f060c
DA
5307/**
5308 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5309 * @dev: device
5310 * @upper_dev: upper device to check
5311 *
5312 * Find out if a device is linked to specified upper device and return true
5313 * in case it is. Note that this checks the entire upper device chain.
5314 * The caller must hold rcu lock.
5315 */
5316
1a3f060c
DA
5317bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5318 struct net_device *upper_dev)
5319{
5320 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5321 upper_dev);
5322}
5323EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5324
9ff162a8
JP
5325/**
5326 * netdev_has_any_upper_dev - Check if device is linked to some device
5327 * @dev: device
5328 *
5329 * Find out if a device is linked to an upper device and return true in case
5330 * it is. The caller must hold the RTNL lock.
5331 */
1d143d9f 5332static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5333{
5334 ASSERT_RTNL();
5335
f1170fd4 5336 return !list_empty(&dev->adj_list.upper);
9ff162a8 5337}
9ff162a8
JP
5338
5339/**
5340 * netdev_master_upper_dev_get - Get master upper device
5341 * @dev: device
5342 *
5343 * Find a master upper device and return pointer to it or NULL in case
5344 * it's not there. The caller must hold the RTNL lock.
5345 */
5346struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5347{
aa9d8560 5348 struct netdev_adjacent *upper;
9ff162a8
JP
5349
5350 ASSERT_RTNL();
5351
2f268f12 5352 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5353 return NULL;
5354
2f268f12 5355 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5356 struct netdev_adjacent, list);
9ff162a8
JP
5357 if (likely(upper->master))
5358 return upper->dev;
5359 return NULL;
5360}
5361EXPORT_SYMBOL(netdev_master_upper_dev_get);
5362
0f524a80
DA
5363/**
5364 * netdev_has_any_lower_dev - Check if device is linked to some device
5365 * @dev: device
5366 *
5367 * Find out if a device is linked to a lower device and return true in case
5368 * it is. The caller must hold the RTNL lock.
5369 */
5370static bool netdev_has_any_lower_dev(struct net_device *dev)
5371{
5372 ASSERT_RTNL();
5373
5374 return !list_empty(&dev->adj_list.lower);
5375}
5376
b6ccba4c
VF
5377void *netdev_adjacent_get_private(struct list_head *adj_list)
5378{
5379 struct netdev_adjacent *adj;
5380
5381 adj = list_entry(adj_list, struct netdev_adjacent, list);
5382
5383 return adj->private;
5384}
5385EXPORT_SYMBOL(netdev_adjacent_get_private);
5386
44a40855
VY
5387/**
5388 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5389 * @dev: device
5390 * @iter: list_head ** of the current position
5391 *
5392 * Gets the next device from the dev's upper list, starting from iter
5393 * position. The caller must hold RCU read lock.
5394 */
5395struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5396 struct list_head **iter)
5397{
5398 struct netdev_adjacent *upper;
5399
5400 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5401
5402 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5403
5404 if (&upper->list == &dev->adj_list.upper)
5405 return NULL;
5406
5407 *iter = &upper->list;
5408
5409 return upper->dev;
5410}
5411EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5412
1a3f060c
DA
5413static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5414 struct list_head **iter)
5415{
5416 struct netdev_adjacent *upper;
5417
5418 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5419
5420 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5421
5422 if (&upper->list == &dev->adj_list.upper)
5423 return NULL;
5424
5425 *iter = &upper->list;
5426
5427 return upper->dev;
5428}
5429
5430int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5431 int (*fn)(struct net_device *dev,
5432 void *data),
5433 void *data)
5434{
5435 struct net_device *udev;
5436 struct list_head *iter;
5437 int ret;
5438
5439 for (iter = &dev->adj_list.upper,
5440 udev = netdev_next_upper_dev_rcu(dev, &iter);
5441 udev;
5442 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5443 /* first is the upper device itself */
5444 ret = fn(udev, data);
5445 if (ret)
5446 return ret;
5447
5448 /* then look at all of its upper devices */
5449 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5450 if (ret)
5451 return ret;
5452 }
5453
5454 return 0;
5455}
5456EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5457
31088a11
VF
5458/**
5459 * netdev_lower_get_next_private - Get the next ->private from the
5460 * lower neighbour list
5461 * @dev: device
5462 * @iter: list_head ** of the current position
5463 *
5464 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5465 * list, starting from iter position. The caller must hold either hold the
5466 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5467 * list will remain unchanged.
31088a11
VF
5468 */
5469void *netdev_lower_get_next_private(struct net_device *dev,
5470 struct list_head **iter)
5471{
5472 struct netdev_adjacent *lower;
5473
5474 lower = list_entry(*iter, struct netdev_adjacent, list);
5475
5476 if (&lower->list == &dev->adj_list.lower)
5477 return NULL;
5478
6859e7df 5479 *iter = lower->list.next;
31088a11
VF
5480
5481 return lower->private;
5482}
5483EXPORT_SYMBOL(netdev_lower_get_next_private);
5484
5485/**
5486 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5487 * lower neighbour list, RCU
5488 * variant
5489 * @dev: device
5490 * @iter: list_head ** of the current position
5491 *
5492 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5493 * list, starting from iter position. The caller must hold RCU read lock.
5494 */
5495void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5496 struct list_head **iter)
5497{
5498 struct netdev_adjacent *lower;
5499
5500 WARN_ON_ONCE(!rcu_read_lock_held());
5501
5502 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5503
5504 if (&lower->list == &dev->adj_list.lower)
5505 return NULL;
5506
6859e7df 5507 *iter = &lower->list;
31088a11
VF
5508
5509 return lower->private;
5510}
5511EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5512
4085ebe8
VY
5513/**
5514 * netdev_lower_get_next - Get the next device from the lower neighbour
5515 * list
5516 * @dev: device
5517 * @iter: list_head ** of the current position
5518 *
5519 * Gets the next netdev_adjacent from the dev's lower neighbour
5520 * list, starting from iter position. The caller must hold RTNL lock or
5521 * its own locking that guarantees that the neighbour lower
b469139e 5522 * list will remain unchanged.
4085ebe8
VY
5523 */
5524void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5525{
5526 struct netdev_adjacent *lower;
5527
cfdd28be 5528 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5529
5530 if (&lower->list == &dev->adj_list.lower)
5531 return NULL;
5532
cfdd28be 5533 *iter = lower->list.next;
4085ebe8
VY
5534
5535 return lower->dev;
5536}
5537EXPORT_SYMBOL(netdev_lower_get_next);
5538
1a3f060c
DA
5539static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5540 struct list_head **iter)
5541{
5542 struct netdev_adjacent *lower;
5543
46b5ab1a 5544 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5545
5546 if (&lower->list == &dev->adj_list.lower)
5547 return NULL;
5548
46b5ab1a 5549 *iter = &lower->list;
1a3f060c
DA
5550
5551 return lower->dev;
5552}
5553
5554int netdev_walk_all_lower_dev(struct net_device *dev,
5555 int (*fn)(struct net_device *dev,
5556 void *data),
5557 void *data)
5558{
5559 struct net_device *ldev;
5560 struct list_head *iter;
5561 int ret;
5562
5563 for (iter = &dev->adj_list.lower,
5564 ldev = netdev_next_lower_dev(dev, &iter);
5565 ldev;
5566 ldev = netdev_next_lower_dev(dev, &iter)) {
5567 /* first is the lower device itself */
5568 ret = fn(ldev, data);
5569 if (ret)
5570 return ret;
5571
5572 /* then look at all of its lower devices */
5573 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5574 if (ret)
5575 return ret;
5576 }
5577
5578 return 0;
5579}
5580EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5581
1a3f060c
DA
5582static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5583 struct list_head **iter)
5584{
5585 struct netdev_adjacent *lower;
5586
5587 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5588 if (&lower->list == &dev->adj_list.lower)
5589 return NULL;
5590
5591 *iter = &lower->list;
5592
5593 return lower->dev;
5594}
5595
5596int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5597 int (*fn)(struct net_device *dev,
5598 void *data),
5599 void *data)
5600{
5601 struct net_device *ldev;
5602 struct list_head *iter;
5603 int ret;
5604
5605 for (iter = &dev->adj_list.lower,
5606 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5607 ldev;
5608 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5609 /* first is the lower device itself */
5610 ret = fn(ldev, data);
5611 if (ret)
5612 return ret;
5613
5614 /* then look at all of its lower devices */
5615 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5616 if (ret)
5617 return ret;
5618 }
5619
5620 return 0;
5621}
5622EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5623
e001bfad 5624/**
5625 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5626 * lower neighbour list, RCU
5627 * variant
5628 * @dev: device
5629 *
5630 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5631 * list. The caller must hold RCU read lock.
5632 */
5633void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5634{
5635 struct netdev_adjacent *lower;
5636
5637 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5638 struct netdev_adjacent, list);
5639 if (lower)
5640 return lower->private;
5641 return NULL;
5642}
5643EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5644
9ff162a8
JP
5645/**
5646 * netdev_master_upper_dev_get_rcu - Get master upper device
5647 * @dev: device
5648 *
5649 * Find a master upper device and return pointer to it or NULL in case
5650 * it's not there. The caller must hold the RCU read lock.
5651 */
5652struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5653{
aa9d8560 5654 struct netdev_adjacent *upper;
9ff162a8 5655
2f268f12 5656 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5657 struct netdev_adjacent, list);
9ff162a8
JP
5658 if (upper && likely(upper->master))
5659 return upper->dev;
5660 return NULL;
5661}
5662EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5663
0a59f3a9 5664static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5665 struct net_device *adj_dev,
5666 struct list_head *dev_list)
5667{
5668 char linkname[IFNAMSIZ+7];
5669 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5670 "upper_%s" : "lower_%s", adj_dev->name);
5671 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5672 linkname);
5673}
0a59f3a9 5674static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5675 char *name,
5676 struct list_head *dev_list)
5677{
5678 char linkname[IFNAMSIZ+7];
5679 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5680 "upper_%s" : "lower_%s", name);
5681 sysfs_remove_link(&(dev->dev.kobj), linkname);
5682}
5683
7ce64c79
AF
5684static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5685 struct net_device *adj_dev,
5686 struct list_head *dev_list)
5687{
5688 return (dev_list == &dev->adj_list.upper ||
5689 dev_list == &dev->adj_list.lower) &&
5690 net_eq(dev_net(dev), dev_net(adj_dev));
5691}
3ee32707 5692
5d261913
VF
5693static int __netdev_adjacent_dev_insert(struct net_device *dev,
5694 struct net_device *adj_dev,
7863c054 5695 struct list_head *dev_list,
402dae96 5696 void *private, bool master)
5d261913
VF
5697{
5698 struct netdev_adjacent *adj;
842d67a7 5699 int ret;
5d261913 5700
6ea29da1 5701 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5702
5703 if (adj) {
790510d9 5704 adj->ref_nr += 1;
67b62f98
DA
5705 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5706 dev->name, adj_dev->name, adj->ref_nr);
5707
5d261913
VF
5708 return 0;
5709 }
5710
5711 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5712 if (!adj)
5713 return -ENOMEM;
5714
5715 adj->dev = adj_dev;
5716 adj->master = master;
790510d9 5717 adj->ref_nr = 1;
402dae96 5718 adj->private = private;
5d261913 5719 dev_hold(adj_dev);
2f268f12 5720
67b62f98
DA
5721 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5722 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 5723
7ce64c79 5724 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5725 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5726 if (ret)
5727 goto free_adj;
5728 }
5729
7863c054 5730 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5731 if (master) {
5732 ret = sysfs_create_link(&(dev->dev.kobj),
5733 &(adj_dev->dev.kobj), "master");
5734 if (ret)
5831d66e 5735 goto remove_symlinks;
842d67a7 5736
7863c054 5737 list_add_rcu(&adj->list, dev_list);
842d67a7 5738 } else {
7863c054 5739 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5740 }
5d261913
VF
5741
5742 return 0;
842d67a7 5743
5831d66e 5744remove_symlinks:
7ce64c79 5745 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5746 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5747free_adj:
5748 kfree(adj);
974daef7 5749 dev_put(adj_dev);
842d67a7
VF
5750
5751 return ret;
5d261913
VF
5752}
5753
1d143d9f 5754static void __netdev_adjacent_dev_remove(struct net_device *dev,
5755 struct net_device *adj_dev,
93409033 5756 u16 ref_nr,
1d143d9f 5757 struct list_head *dev_list)
5d261913
VF
5758{
5759 struct netdev_adjacent *adj;
5760
67b62f98
DA
5761 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5762 dev->name, adj_dev->name, ref_nr);
5763
6ea29da1 5764 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5765
2f268f12 5766 if (!adj) {
67b62f98 5767 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 5768 dev->name, adj_dev->name);
67b62f98
DA
5769 WARN_ON(1);
5770 return;
2f268f12 5771 }
5d261913 5772
93409033 5773 if (adj->ref_nr > ref_nr) {
67b62f98
DA
5774 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5775 dev->name, adj_dev->name, ref_nr,
5776 adj->ref_nr - ref_nr);
93409033 5777 adj->ref_nr -= ref_nr;
5d261913
VF
5778 return;
5779 }
5780
842d67a7
VF
5781 if (adj->master)
5782 sysfs_remove_link(&(dev->dev.kobj), "master");
5783
7ce64c79 5784 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5785 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5786
5d261913 5787 list_del_rcu(&adj->list);
67b62f98 5788 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 5789 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5790 dev_put(adj_dev);
5791 kfree_rcu(adj, rcu);
5792}
5793
1d143d9f 5794static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5795 struct net_device *upper_dev,
5796 struct list_head *up_list,
5797 struct list_head *down_list,
5798 void *private, bool master)
5d261913
VF
5799{
5800 int ret;
5801
790510d9 5802 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 5803 private, master);
5d261913
VF
5804 if (ret)
5805 return ret;
5806
790510d9 5807 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 5808 private, false);
5d261913 5809 if (ret) {
790510d9 5810 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
5811 return ret;
5812 }
5813
5814 return 0;
5815}
5816
1d143d9f 5817static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5818 struct net_device *upper_dev,
93409033 5819 u16 ref_nr,
1d143d9f 5820 struct list_head *up_list,
5821 struct list_head *down_list)
5d261913 5822{
93409033
AC
5823 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5824 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5825}
5826
1d143d9f 5827static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5828 struct net_device *upper_dev,
5829 void *private, bool master)
2f268f12 5830{
f1170fd4
DA
5831 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5832 &dev->adj_list.upper,
5833 &upper_dev->adj_list.lower,
5834 private, master);
5d261913
VF
5835}
5836
1d143d9f 5837static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5838 struct net_device *upper_dev)
2f268f12 5839{
93409033 5840 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5841 &dev->adj_list.upper,
5842 &upper_dev->adj_list.lower);
5843}
5d261913 5844
9ff162a8 5845static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5846 struct net_device *upper_dev, bool master,
29bf24af 5847 void *upper_priv, void *upper_info)
9ff162a8 5848{
0e4ead9d 5849 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5850 int ret = 0;
9ff162a8
JP
5851
5852 ASSERT_RTNL();
5853
5854 if (dev == upper_dev)
5855 return -EBUSY;
5856
5857 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 5858 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
5859 return -EBUSY;
5860
f1170fd4 5861 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
5862 return -EEXIST;
5863
5864 if (master && netdev_master_upper_dev_get(dev))
5865 return -EBUSY;
5866
0e4ead9d
JP
5867 changeupper_info.upper_dev = upper_dev;
5868 changeupper_info.master = master;
5869 changeupper_info.linking = true;
29bf24af 5870 changeupper_info.upper_info = upper_info;
0e4ead9d 5871
573c7ba0
JP
5872 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5873 &changeupper_info.info);
5874 ret = notifier_to_errno(ret);
5875 if (ret)
5876 return ret;
5877
6dffb044 5878 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5879 master);
5d261913
VF
5880 if (ret)
5881 return ret;
9ff162a8 5882
b03804e7
IS
5883 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5884 &changeupper_info.info);
5885 ret = notifier_to_errno(ret);
5886 if (ret)
f1170fd4 5887 goto rollback;
b03804e7 5888
9ff162a8 5889 return 0;
5d261913 5890
f1170fd4 5891rollback:
2f268f12 5892 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5893
5894 return ret;
9ff162a8
JP
5895}
5896
5897/**
5898 * netdev_upper_dev_link - Add a link to the upper device
5899 * @dev: device
5900 * @upper_dev: new upper device
5901 *
5902 * Adds a link to device which is upper to this one. The caller must hold
5903 * the RTNL lock. On a failure a negative errno code is returned.
5904 * On success the reference counts are adjusted and the function
5905 * returns zero.
5906 */
5907int netdev_upper_dev_link(struct net_device *dev,
5908 struct net_device *upper_dev)
5909{
29bf24af 5910 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5911}
5912EXPORT_SYMBOL(netdev_upper_dev_link);
5913
5914/**
5915 * netdev_master_upper_dev_link - Add a master link to the upper device
5916 * @dev: device
5917 * @upper_dev: new upper device
6dffb044 5918 * @upper_priv: upper device private
29bf24af 5919 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5920 *
5921 * Adds a link to device which is upper to this one. In this case, only
5922 * one master upper device can be linked, although other non-master devices
5923 * might be linked as well. The caller must hold the RTNL lock.
5924 * On a failure a negative errno code is returned. On success the reference
5925 * counts are adjusted and the function returns zero.
5926 */
5927int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5928 struct net_device *upper_dev,
29bf24af 5929 void *upper_priv, void *upper_info)
9ff162a8 5930{
29bf24af
JP
5931 return __netdev_upper_dev_link(dev, upper_dev, true,
5932 upper_priv, upper_info);
9ff162a8
JP
5933}
5934EXPORT_SYMBOL(netdev_master_upper_dev_link);
5935
5936/**
5937 * netdev_upper_dev_unlink - Removes a link to upper device
5938 * @dev: device
5939 * @upper_dev: new upper device
5940 *
5941 * Removes a link to device which is upper to this one. The caller must hold
5942 * the RTNL lock.
5943 */
5944void netdev_upper_dev_unlink(struct net_device *dev,
5945 struct net_device *upper_dev)
5946{
0e4ead9d 5947 struct netdev_notifier_changeupper_info changeupper_info;
9ff162a8
JP
5948 ASSERT_RTNL();
5949
0e4ead9d
JP
5950 changeupper_info.upper_dev = upper_dev;
5951 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5952 changeupper_info.linking = false;
5953
573c7ba0
JP
5954 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5955 &changeupper_info.info);
5956
2f268f12 5957 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 5958
0e4ead9d
JP
5959 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5960 &changeupper_info.info);
9ff162a8
JP
5961}
5962EXPORT_SYMBOL(netdev_upper_dev_unlink);
5963
61bd3857
MS
5964/**
5965 * netdev_bonding_info_change - Dispatch event about slave change
5966 * @dev: device
4a26e453 5967 * @bonding_info: info to dispatch
61bd3857
MS
5968 *
5969 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5970 * The caller must hold the RTNL lock.
5971 */
5972void netdev_bonding_info_change(struct net_device *dev,
5973 struct netdev_bonding_info *bonding_info)
5974{
5975 struct netdev_notifier_bonding_info info;
5976
5977 memcpy(&info.bonding_info, bonding_info,
5978 sizeof(struct netdev_bonding_info));
5979 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5980 &info.info);
5981}
5982EXPORT_SYMBOL(netdev_bonding_info_change);
5983
2ce1ee17 5984static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5985{
5986 struct netdev_adjacent *iter;
5987
5988 struct net *net = dev_net(dev);
5989
5990 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5991 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5992 continue;
5993 netdev_adjacent_sysfs_add(iter->dev, dev,
5994 &iter->dev->adj_list.lower);
5995 netdev_adjacent_sysfs_add(dev, iter->dev,
5996 &dev->adj_list.upper);
5997 }
5998
5999 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6000 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6001 continue;
6002 netdev_adjacent_sysfs_add(iter->dev, dev,
6003 &iter->dev->adj_list.upper);
6004 netdev_adjacent_sysfs_add(dev, iter->dev,
6005 &dev->adj_list.lower);
6006 }
6007}
6008
2ce1ee17 6009static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6010{
6011 struct netdev_adjacent *iter;
6012
6013 struct net *net = dev_net(dev);
6014
6015 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6016 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6017 continue;
6018 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6019 &iter->dev->adj_list.lower);
6020 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6021 &dev->adj_list.upper);
6022 }
6023
6024 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6025 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6026 continue;
6027 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6028 &iter->dev->adj_list.upper);
6029 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6030 &dev->adj_list.lower);
6031 }
6032}
6033
5bb025fa 6034void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6035{
5bb025fa 6036 struct netdev_adjacent *iter;
402dae96 6037
4c75431a
AF
6038 struct net *net = dev_net(dev);
6039
5bb025fa 6040 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6041 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6042 continue;
5bb025fa
VF
6043 netdev_adjacent_sysfs_del(iter->dev, oldname,
6044 &iter->dev->adj_list.lower);
6045 netdev_adjacent_sysfs_add(iter->dev, dev,
6046 &iter->dev->adj_list.lower);
6047 }
402dae96 6048
5bb025fa 6049 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6050 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6051 continue;
5bb025fa
VF
6052 netdev_adjacent_sysfs_del(iter->dev, oldname,
6053 &iter->dev->adj_list.upper);
6054 netdev_adjacent_sysfs_add(iter->dev, dev,
6055 &iter->dev->adj_list.upper);
6056 }
402dae96 6057}
402dae96
VF
6058
6059void *netdev_lower_dev_get_private(struct net_device *dev,
6060 struct net_device *lower_dev)
6061{
6062 struct netdev_adjacent *lower;
6063
6064 if (!lower_dev)
6065 return NULL;
6ea29da1 6066 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6067 if (!lower)
6068 return NULL;
6069
6070 return lower->private;
6071}
6072EXPORT_SYMBOL(netdev_lower_dev_get_private);
6073
4085ebe8 6074
952fcfd0 6075int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6076{
6077 struct net_device *lower = NULL;
6078 struct list_head *iter;
6079 int max_nest = -1;
6080 int nest;
6081
6082 ASSERT_RTNL();
6083
6084 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6085 nest = dev_get_nest_level(lower);
4085ebe8
VY
6086 if (max_nest < nest)
6087 max_nest = nest;
6088 }
6089
952fcfd0 6090 return max_nest + 1;
4085ebe8
VY
6091}
6092EXPORT_SYMBOL(dev_get_nest_level);
6093
04d48266
JP
6094/**
6095 * netdev_lower_change - Dispatch event about lower device state change
6096 * @lower_dev: device
6097 * @lower_state_info: state to dispatch
6098 *
6099 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6100 * The caller must hold the RTNL lock.
6101 */
6102void netdev_lower_state_changed(struct net_device *lower_dev,
6103 void *lower_state_info)
6104{
6105 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6106
6107 ASSERT_RTNL();
6108 changelowerstate_info.lower_state_info = lower_state_info;
6109 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6110 &changelowerstate_info.info);
6111}
6112EXPORT_SYMBOL(netdev_lower_state_changed);
6113
b6c40d68
PM
6114static void dev_change_rx_flags(struct net_device *dev, int flags)
6115{
d314774c
SH
6116 const struct net_device_ops *ops = dev->netdev_ops;
6117
d2615bf4 6118 if (ops->ndo_change_rx_flags)
d314774c 6119 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6120}
6121
991fb3f7 6122static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6123{
b536db93 6124 unsigned int old_flags = dev->flags;
d04a48b0
EB
6125 kuid_t uid;
6126 kgid_t gid;
1da177e4 6127
24023451
PM
6128 ASSERT_RTNL();
6129
dad9b335
WC
6130 dev->flags |= IFF_PROMISC;
6131 dev->promiscuity += inc;
6132 if (dev->promiscuity == 0) {
6133 /*
6134 * Avoid overflow.
6135 * If inc causes overflow, untouch promisc and return error.
6136 */
6137 if (inc < 0)
6138 dev->flags &= ~IFF_PROMISC;
6139 else {
6140 dev->promiscuity -= inc;
7b6cd1ce
JP
6141 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6142 dev->name);
dad9b335
WC
6143 return -EOVERFLOW;
6144 }
6145 }
52609c0b 6146 if (dev->flags != old_flags) {
7b6cd1ce
JP
6147 pr_info("device %s %s promiscuous mode\n",
6148 dev->name,
6149 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6150 if (audit_enabled) {
6151 current_uid_gid(&uid, &gid);
7759db82
KHK
6152 audit_log(current->audit_context, GFP_ATOMIC,
6153 AUDIT_ANOM_PROMISCUOUS,
6154 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6155 dev->name, (dev->flags & IFF_PROMISC),
6156 (old_flags & IFF_PROMISC),
e1760bd5 6157 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6158 from_kuid(&init_user_ns, uid),
6159 from_kgid(&init_user_ns, gid),
7759db82 6160 audit_get_sessionid(current));
8192b0c4 6161 }
24023451 6162
b6c40d68 6163 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6164 }
991fb3f7
ND
6165 if (notify)
6166 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6167 return 0;
1da177e4
LT
6168}
6169
4417da66
PM
6170/**
6171 * dev_set_promiscuity - update promiscuity count on a device
6172 * @dev: device
6173 * @inc: modifier
6174 *
6175 * Add or remove promiscuity from a device. While the count in the device
6176 * remains above zero the interface remains promiscuous. Once it hits zero
6177 * the device reverts back to normal filtering operation. A negative inc
6178 * value is used to drop promiscuity on the device.
dad9b335 6179 * Return 0 if successful or a negative errno code on error.
4417da66 6180 */
dad9b335 6181int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6182{
b536db93 6183 unsigned int old_flags = dev->flags;
dad9b335 6184 int err;
4417da66 6185
991fb3f7 6186 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6187 if (err < 0)
dad9b335 6188 return err;
4417da66
PM
6189 if (dev->flags != old_flags)
6190 dev_set_rx_mode(dev);
dad9b335 6191 return err;
4417da66 6192}
d1b19dff 6193EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6194
991fb3f7 6195static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6196{
991fb3f7 6197 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6198
24023451
PM
6199 ASSERT_RTNL();
6200
1da177e4 6201 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6202 dev->allmulti += inc;
6203 if (dev->allmulti == 0) {
6204 /*
6205 * Avoid overflow.
6206 * If inc causes overflow, untouch allmulti and return error.
6207 */
6208 if (inc < 0)
6209 dev->flags &= ~IFF_ALLMULTI;
6210 else {
6211 dev->allmulti -= inc;
7b6cd1ce
JP
6212 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6213 dev->name);
dad9b335
WC
6214 return -EOVERFLOW;
6215 }
6216 }
24023451 6217 if (dev->flags ^ old_flags) {
b6c40d68 6218 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6219 dev_set_rx_mode(dev);
991fb3f7
ND
6220 if (notify)
6221 __dev_notify_flags(dev, old_flags,
6222 dev->gflags ^ old_gflags);
24023451 6223 }
dad9b335 6224 return 0;
4417da66 6225}
991fb3f7
ND
6226
6227/**
6228 * dev_set_allmulti - update allmulti count on a device
6229 * @dev: device
6230 * @inc: modifier
6231 *
6232 * Add or remove reception of all multicast frames to a device. While the
6233 * count in the device remains above zero the interface remains listening
6234 * to all interfaces. Once it hits zero the device reverts back to normal
6235 * filtering operation. A negative @inc value is used to drop the counter
6236 * when releasing a resource needing all multicasts.
6237 * Return 0 if successful or a negative errno code on error.
6238 */
6239
6240int dev_set_allmulti(struct net_device *dev, int inc)
6241{
6242 return __dev_set_allmulti(dev, inc, true);
6243}
d1b19dff 6244EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6245
6246/*
6247 * Upload unicast and multicast address lists to device and
6248 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6249 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6250 * are present.
6251 */
6252void __dev_set_rx_mode(struct net_device *dev)
6253{
d314774c
SH
6254 const struct net_device_ops *ops = dev->netdev_ops;
6255
4417da66
PM
6256 /* dev_open will call this function so the list will stay sane. */
6257 if (!(dev->flags&IFF_UP))
6258 return;
6259
6260 if (!netif_device_present(dev))
40b77c94 6261 return;
4417da66 6262
01789349 6263 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6264 /* Unicast addresses changes may only happen under the rtnl,
6265 * therefore calling __dev_set_promiscuity here is safe.
6266 */
32e7bfc4 6267 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6268 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6269 dev->uc_promisc = true;
32e7bfc4 6270 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6271 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6272 dev->uc_promisc = false;
4417da66 6273 }
4417da66 6274 }
01789349
JP
6275
6276 if (ops->ndo_set_rx_mode)
6277 ops->ndo_set_rx_mode(dev);
4417da66
PM
6278}
6279
6280void dev_set_rx_mode(struct net_device *dev)
6281{
b9e40857 6282 netif_addr_lock_bh(dev);
4417da66 6283 __dev_set_rx_mode(dev);
b9e40857 6284 netif_addr_unlock_bh(dev);
1da177e4
LT
6285}
6286
f0db275a
SH
6287/**
6288 * dev_get_flags - get flags reported to userspace
6289 * @dev: device
6290 *
6291 * Get the combination of flag bits exported through APIs to userspace.
6292 */
95c96174 6293unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6294{
95c96174 6295 unsigned int flags;
1da177e4
LT
6296
6297 flags = (dev->flags & ~(IFF_PROMISC |
6298 IFF_ALLMULTI |
b00055aa
SR
6299 IFF_RUNNING |
6300 IFF_LOWER_UP |
6301 IFF_DORMANT)) |
1da177e4
LT
6302 (dev->gflags & (IFF_PROMISC |
6303 IFF_ALLMULTI));
6304
b00055aa
SR
6305 if (netif_running(dev)) {
6306 if (netif_oper_up(dev))
6307 flags |= IFF_RUNNING;
6308 if (netif_carrier_ok(dev))
6309 flags |= IFF_LOWER_UP;
6310 if (netif_dormant(dev))
6311 flags |= IFF_DORMANT;
6312 }
1da177e4
LT
6313
6314 return flags;
6315}
d1b19dff 6316EXPORT_SYMBOL(dev_get_flags);
1da177e4 6317
bd380811 6318int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6319{
b536db93 6320 unsigned int old_flags = dev->flags;
bd380811 6321 int ret;
1da177e4 6322
24023451
PM
6323 ASSERT_RTNL();
6324
1da177e4
LT
6325 /*
6326 * Set the flags on our device.
6327 */
6328
6329 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6330 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6331 IFF_AUTOMEDIA)) |
6332 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6333 IFF_ALLMULTI));
6334
6335 /*
6336 * Load in the correct multicast list now the flags have changed.
6337 */
6338
b6c40d68
PM
6339 if ((old_flags ^ flags) & IFF_MULTICAST)
6340 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6341
4417da66 6342 dev_set_rx_mode(dev);
1da177e4
LT
6343
6344 /*
6345 * Have we downed the interface. We handle IFF_UP ourselves
6346 * according to user attempts to set it, rather than blindly
6347 * setting it.
6348 */
6349
6350 ret = 0;
d215d10f 6351 if ((old_flags ^ flags) & IFF_UP)
bd380811 6352 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6353
1da177e4 6354 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6355 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6356 unsigned int old_flags = dev->flags;
d1b19dff 6357
1da177e4 6358 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6359
6360 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6361 if (dev->flags != old_flags)
6362 dev_set_rx_mode(dev);
1da177e4
LT
6363 }
6364
6365 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6366 is important. Some (broken) drivers set IFF_PROMISC, when
6367 IFF_ALLMULTI is requested not asking us and not reporting.
6368 */
6369 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6370 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6371
1da177e4 6372 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6373 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6374 }
6375
bd380811
PM
6376 return ret;
6377}
6378
a528c219
ND
6379void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6380 unsigned int gchanges)
bd380811
PM
6381{
6382 unsigned int changes = dev->flags ^ old_flags;
6383
a528c219 6384 if (gchanges)
7f294054 6385 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6386
bd380811
PM
6387 if (changes & IFF_UP) {
6388 if (dev->flags & IFF_UP)
6389 call_netdevice_notifiers(NETDEV_UP, dev);
6390 else
6391 call_netdevice_notifiers(NETDEV_DOWN, dev);
6392 }
6393
6394 if (dev->flags & IFF_UP &&
be9efd36
JP
6395 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6396 struct netdev_notifier_change_info change_info;
6397
6398 change_info.flags_changed = changes;
6399 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6400 &change_info.info);
6401 }
bd380811
PM
6402}
6403
6404/**
6405 * dev_change_flags - change device settings
6406 * @dev: device
6407 * @flags: device state flags
6408 *
6409 * Change settings on device based state flags. The flags are
6410 * in the userspace exported format.
6411 */
b536db93 6412int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6413{
b536db93 6414 int ret;
991fb3f7 6415 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6416
6417 ret = __dev_change_flags(dev, flags);
6418 if (ret < 0)
6419 return ret;
6420
991fb3f7 6421 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6422 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6423 return ret;
6424}
d1b19dff 6425EXPORT_SYMBOL(dev_change_flags);
1da177e4 6426
2315dc91
VF
6427static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6428{
6429 const struct net_device_ops *ops = dev->netdev_ops;
6430
6431 if (ops->ndo_change_mtu)
6432 return ops->ndo_change_mtu(dev, new_mtu);
6433
6434 dev->mtu = new_mtu;
6435 return 0;
6436}
6437
f0db275a
SH
6438/**
6439 * dev_set_mtu - Change maximum transfer unit
6440 * @dev: device
6441 * @new_mtu: new transfer unit
6442 *
6443 * Change the maximum transfer size of the network device.
6444 */
1da177e4
LT
6445int dev_set_mtu(struct net_device *dev, int new_mtu)
6446{
2315dc91 6447 int err, orig_mtu;
1da177e4
LT
6448
6449 if (new_mtu == dev->mtu)
6450 return 0;
6451
61e84623
JW
6452 /* MTU must be positive, and in range */
6453 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6454 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6455 dev->name, new_mtu, dev->min_mtu);
1da177e4 6456 return -EINVAL;
61e84623
JW
6457 }
6458
6459 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6460 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6461 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6462 return -EINVAL;
6463 }
1da177e4
LT
6464
6465 if (!netif_device_present(dev))
6466 return -ENODEV;
6467
1d486bfb
VF
6468 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6469 err = notifier_to_errno(err);
6470 if (err)
6471 return err;
d314774c 6472
2315dc91
VF
6473 orig_mtu = dev->mtu;
6474 err = __dev_set_mtu(dev, new_mtu);
d314774c 6475
2315dc91
VF
6476 if (!err) {
6477 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6478 err = notifier_to_errno(err);
6479 if (err) {
6480 /* setting mtu back and notifying everyone again,
6481 * so that they have a chance to revert changes.
6482 */
6483 __dev_set_mtu(dev, orig_mtu);
6484 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6485 }
6486 }
1da177e4
LT
6487 return err;
6488}
d1b19dff 6489EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6490
cbda10fa
VD
6491/**
6492 * dev_set_group - Change group this device belongs to
6493 * @dev: device
6494 * @new_group: group this device should belong to
6495 */
6496void dev_set_group(struct net_device *dev, int new_group)
6497{
6498 dev->group = new_group;
6499}
6500EXPORT_SYMBOL(dev_set_group);
6501
f0db275a
SH
6502/**
6503 * dev_set_mac_address - Change Media Access Control Address
6504 * @dev: device
6505 * @sa: new address
6506 *
6507 * Change the hardware (MAC) address of the device
6508 */
1da177e4
LT
6509int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6510{
d314774c 6511 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6512 int err;
6513
d314774c 6514 if (!ops->ndo_set_mac_address)
1da177e4
LT
6515 return -EOPNOTSUPP;
6516 if (sa->sa_family != dev->type)
6517 return -EINVAL;
6518 if (!netif_device_present(dev))
6519 return -ENODEV;
d314774c 6520 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6521 if (err)
6522 return err;
fbdeca2d 6523 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6524 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6525 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6526 return 0;
1da177e4 6527}
d1b19dff 6528EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6529
4bf84c35
JP
6530/**
6531 * dev_change_carrier - Change device carrier
6532 * @dev: device
691b3b7e 6533 * @new_carrier: new value
4bf84c35
JP
6534 *
6535 * Change device carrier
6536 */
6537int dev_change_carrier(struct net_device *dev, bool new_carrier)
6538{
6539 const struct net_device_ops *ops = dev->netdev_ops;
6540
6541 if (!ops->ndo_change_carrier)
6542 return -EOPNOTSUPP;
6543 if (!netif_device_present(dev))
6544 return -ENODEV;
6545 return ops->ndo_change_carrier(dev, new_carrier);
6546}
6547EXPORT_SYMBOL(dev_change_carrier);
6548
66b52b0d
JP
6549/**
6550 * dev_get_phys_port_id - Get device physical port ID
6551 * @dev: device
6552 * @ppid: port ID
6553 *
6554 * Get device physical port ID
6555 */
6556int dev_get_phys_port_id(struct net_device *dev,
02637fce 6557 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6558{
6559 const struct net_device_ops *ops = dev->netdev_ops;
6560
6561 if (!ops->ndo_get_phys_port_id)
6562 return -EOPNOTSUPP;
6563 return ops->ndo_get_phys_port_id(dev, ppid);
6564}
6565EXPORT_SYMBOL(dev_get_phys_port_id);
6566
db24a904
DA
6567/**
6568 * dev_get_phys_port_name - Get device physical port name
6569 * @dev: device
6570 * @name: port name
ed49e650 6571 * @len: limit of bytes to copy to name
db24a904
DA
6572 *
6573 * Get device physical port name
6574 */
6575int dev_get_phys_port_name(struct net_device *dev,
6576 char *name, size_t len)
6577{
6578 const struct net_device_ops *ops = dev->netdev_ops;
6579
6580 if (!ops->ndo_get_phys_port_name)
6581 return -EOPNOTSUPP;
6582 return ops->ndo_get_phys_port_name(dev, name, len);
6583}
6584EXPORT_SYMBOL(dev_get_phys_port_name);
6585
d746d707
AK
6586/**
6587 * dev_change_proto_down - update protocol port state information
6588 * @dev: device
6589 * @proto_down: new value
6590 *
6591 * This info can be used by switch drivers to set the phys state of the
6592 * port.
6593 */
6594int dev_change_proto_down(struct net_device *dev, bool proto_down)
6595{
6596 const struct net_device_ops *ops = dev->netdev_ops;
6597
6598 if (!ops->ndo_change_proto_down)
6599 return -EOPNOTSUPP;
6600 if (!netif_device_present(dev))
6601 return -ENODEV;
6602 return ops->ndo_change_proto_down(dev, proto_down);
6603}
6604EXPORT_SYMBOL(dev_change_proto_down);
6605
a7862b45
BB
6606/**
6607 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6608 * @dev: device
6609 * @fd: new program fd or negative value to clear
85de8576 6610 * @flags: xdp-related flags
a7862b45
BB
6611 *
6612 * Set or clear a bpf program for a device
6613 */
85de8576 6614int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
a7862b45
BB
6615{
6616 const struct net_device_ops *ops = dev->netdev_ops;
6617 struct bpf_prog *prog = NULL;
85de8576 6618 struct netdev_xdp xdp;
a7862b45
BB
6619 int err;
6620
85de8576
DB
6621 ASSERT_RTNL();
6622
a7862b45
BB
6623 if (!ops->ndo_xdp)
6624 return -EOPNOTSUPP;
6625 if (fd >= 0) {
85de8576
DB
6626 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6627 memset(&xdp, 0, sizeof(xdp));
6628 xdp.command = XDP_QUERY_PROG;
6629
6630 err = ops->ndo_xdp(dev, &xdp);
6631 if (err < 0)
6632 return err;
6633 if (xdp.prog_attached)
6634 return -EBUSY;
6635 }
6636
a7862b45
BB
6637 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6638 if (IS_ERR(prog))
6639 return PTR_ERR(prog);
6640 }
6641
85de8576 6642 memset(&xdp, 0, sizeof(xdp));
a7862b45
BB
6643 xdp.command = XDP_SETUP_PROG;
6644 xdp.prog = prog;
85de8576 6645
a7862b45
BB
6646 err = ops->ndo_xdp(dev, &xdp);
6647 if (err < 0 && prog)
6648 bpf_prog_put(prog);
6649
6650 return err;
6651}
6652EXPORT_SYMBOL(dev_change_xdp_fd);
6653
1da177e4
LT
6654/**
6655 * dev_new_index - allocate an ifindex
c4ea43c5 6656 * @net: the applicable net namespace
1da177e4
LT
6657 *
6658 * Returns a suitable unique value for a new device interface
6659 * number. The caller must hold the rtnl semaphore or the
6660 * dev_base_lock to be sure it remains unique.
6661 */
881d966b 6662static int dev_new_index(struct net *net)
1da177e4 6663{
aa79e66e 6664 int ifindex = net->ifindex;
1da177e4
LT
6665 for (;;) {
6666 if (++ifindex <= 0)
6667 ifindex = 1;
881d966b 6668 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6669 return net->ifindex = ifindex;
1da177e4
LT
6670 }
6671}
6672
1da177e4 6673/* Delayed registration/unregisteration */
3b5b34fd 6674static LIST_HEAD(net_todo_list);
200b916f 6675DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6676
6f05f629 6677static void net_set_todo(struct net_device *dev)
1da177e4 6678{
1da177e4 6679 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6680 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6681}
6682
9b5e383c 6683static void rollback_registered_many(struct list_head *head)
93ee31f1 6684{
e93737b0 6685 struct net_device *dev, *tmp;
5cde2829 6686 LIST_HEAD(close_head);
9b5e383c 6687
93ee31f1
DL
6688 BUG_ON(dev_boot_phase);
6689 ASSERT_RTNL();
6690
e93737b0 6691 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6692 /* Some devices call without registering
e93737b0
KK
6693 * for initialization unwind. Remove those
6694 * devices and proceed with the remaining.
9b5e383c
ED
6695 */
6696 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6697 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6698 dev->name, dev);
93ee31f1 6699
9b5e383c 6700 WARN_ON(1);
e93737b0
KK
6701 list_del(&dev->unreg_list);
6702 continue;
9b5e383c 6703 }
449f4544 6704 dev->dismantle = true;
9b5e383c 6705 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6706 }
93ee31f1 6707
44345724 6708 /* If device is running, close it first. */
5cde2829
EB
6709 list_for_each_entry(dev, head, unreg_list)
6710 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6711 dev_close_many(&close_head, true);
93ee31f1 6712
44345724 6713 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6714 /* And unlink it from device chain. */
6715 unlist_netdevice(dev);
93ee31f1 6716
9b5e383c
ED
6717 dev->reg_state = NETREG_UNREGISTERING;
6718 }
41852497 6719 flush_all_backlogs();
93ee31f1
DL
6720
6721 synchronize_net();
6722
9b5e383c 6723 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6724 struct sk_buff *skb = NULL;
6725
9b5e383c
ED
6726 /* Shutdown queueing discipline. */
6727 dev_shutdown(dev);
93ee31f1
DL
6728
6729
9b5e383c
ED
6730 /* Notify protocols, that we are about to destroy
6731 this device. They should clean all the things.
6732 */
6733 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6734
395eea6c
MB
6735 if (!dev->rtnl_link_ops ||
6736 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6737 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6738 GFP_KERNEL);
6739
9b5e383c
ED
6740 /*
6741 * Flush the unicast and multicast chains
6742 */
a748ee24 6743 dev_uc_flush(dev);
22bedad3 6744 dev_mc_flush(dev);
93ee31f1 6745
9b5e383c
ED
6746 if (dev->netdev_ops->ndo_uninit)
6747 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6748
395eea6c
MB
6749 if (skb)
6750 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6751
9ff162a8
JP
6752 /* Notifier chain MUST detach us all upper devices. */
6753 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 6754 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 6755
9b5e383c
ED
6756 /* Remove entries from kobject tree */
6757 netdev_unregister_kobject(dev);
024e9679
AD
6758#ifdef CONFIG_XPS
6759 /* Remove XPS queueing entries */
6760 netif_reset_xps_queues_gt(dev, 0);
6761#endif
9b5e383c 6762 }
93ee31f1 6763
850a545b 6764 synchronize_net();
395264d5 6765
a5ee1551 6766 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6767 dev_put(dev);
6768}
6769
6770static void rollback_registered(struct net_device *dev)
6771{
6772 LIST_HEAD(single);
6773
6774 list_add(&dev->unreg_list, &single);
6775 rollback_registered_many(&single);
ceaaec98 6776 list_del(&single);
93ee31f1
DL
6777}
6778
fd867d51
JW
6779static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6780 struct net_device *upper, netdev_features_t features)
6781{
6782 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6783 netdev_features_t feature;
5ba3f7d6 6784 int feature_bit;
fd867d51 6785
5ba3f7d6
JW
6786 for_each_netdev_feature(&upper_disables, feature_bit) {
6787 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6788 if (!(upper->wanted_features & feature)
6789 && (features & feature)) {
6790 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6791 &feature, upper->name);
6792 features &= ~feature;
6793 }
6794 }
6795
6796 return features;
6797}
6798
6799static void netdev_sync_lower_features(struct net_device *upper,
6800 struct net_device *lower, netdev_features_t features)
6801{
6802 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6803 netdev_features_t feature;
5ba3f7d6 6804 int feature_bit;
fd867d51 6805
5ba3f7d6
JW
6806 for_each_netdev_feature(&upper_disables, feature_bit) {
6807 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6808 if (!(features & feature) && (lower->features & feature)) {
6809 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6810 &feature, lower->name);
6811 lower->wanted_features &= ~feature;
6812 netdev_update_features(lower);
6813
6814 if (unlikely(lower->features & feature))
6815 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6816 &feature, lower->name);
6817 }
6818 }
6819}
6820
c8f44aff
MM
6821static netdev_features_t netdev_fix_features(struct net_device *dev,
6822 netdev_features_t features)
b63365a2 6823{
57422dc5
MM
6824 /* Fix illegal checksum combinations */
6825 if ((features & NETIF_F_HW_CSUM) &&
6826 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6827 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6828 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6829 }
6830
b63365a2 6831 /* TSO requires that SG is present as well. */
ea2d3688 6832 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6833 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6834 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6835 }
6836
ec5f0615
PS
6837 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6838 !(features & NETIF_F_IP_CSUM)) {
6839 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6840 features &= ~NETIF_F_TSO;
6841 features &= ~NETIF_F_TSO_ECN;
6842 }
6843
6844 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6845 !(features & NETIF_F_IPV6_CSUM)) {
6846 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6847 features &= ~NETIF_F_TSO6;
6848 }
6849
b1dc497b
AD
6850 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6851 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6852 features &= ~NETIF_F_TSO_MANGLEID;
6853
31d8b9e0
BH
6854 /* TSO ECN requires that TSO is present as well. */
6855 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6856 features &= ~NETIF_F_TSO_ECN;
6857
212b573f
MM
6858 /* Software GSO depends on SG. */
6859 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6860 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6861 features &= ~NETIF_F_GSO;
6862 }
6863
acd1130e 6864 /* UFO needs SG and checksumming */
b63365a2 6865 if (features & NETIF_F_UFO) {
79032644 6866 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6867 if (!(features & NETIF_F_HW_CSUM) &&
6868 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6869 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6870 netdev_dbg(dev,
acd1130e 6871 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6872 features &= ~NETIF_F_UFO;
6873 }
6874
6875 if (!(features & NETIF_F_SG)) {
6f404e44 6876 netdev_dbg(dev,
acd1130e 6877 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6878 features &= ~NETIF_F_UFO;
6879 }
6880 }
6881
802ab55a
AD
6882 /* GSO partial features require GSO partial be set */
6883 if ((features & dev->gso_partial_features) &&
6884 !(features & NETIF_F_GSO_PARTIAL)) {
6885 netdev_dbg(dev,
6886 "Dropping partially supported GSO features since no GSO partial.\n");
6887 features &= ~dev->gso_partial_features;
6888 }
6889
b63365a2
HX
6890 return features;
6891}
b63365a2 6892
6cb6a27c 6893int __netdev_update_features(struct net_device *dev)
5455c699 6894{
fd867d51 6895 struct net_device *upper, *lower;
c8f44aff 6896 netdev_features_t features;
fd867d51 6897 struct list_head *iter;
e7868a85 6898 int err = -1;
5455c699 6899
87267485
MM
6900 ASSERT_RTNL();
6901
5455c699
MM
6902 features = netdev_get_wanted_features(dev);
6903
6904 if (dev->netdev_ops->ndo_fix_features)
6905 features = dev->netdev_ops->ndo_fix_features(dev, features);
6906
6907 /* driver might be less strict about feature dependencies */
6908 features = netdev_fix_features(dev, features);
6909
fd867d51
JW
6910 /* some features can't be enabled if they're off an an upper device */
6911 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6912 features = netdev_sync_upper_features(dev, upper, features);
6913
5455c699 6914 if (dev->features == features)
e7868a85 6915 goto sync_lower;
5455c699 6916
c8f44aff
MM
6917 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6918 &dev->features, &features);
5455c699
MM
6919
6920 if (dev->netdev_ops->ndo_set_features)
6921 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6922 else
6923 err = 0;
5455c699 6924
6cb6a27c 6925 if (unlikely(err < 0)) {
5455c699 6926 netdev_err(dev,
c8f44aff
MM
6927 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6928 err, &features, &dev->features);
17b85d29
NA
6929 /* return non-0 since some features might have changed and
6930 * it's better to fire a spurious notification than miss it
6931 */
6932 return -1;
6cb6a27c
MM
6933 }
6934
e7868a85 6935sync_lower:
fd867d51
JW
6936 /* some features must be disabled on lower devices when disabled
6937 * on an upper device (think: bonding master or bridge)
6938 */
6939 netdev_for_each_lower_dev(dev, lower, iter)
6940 netdev_sync_lower_features(dev, lower, features);
6941
6cb6a27c
MM
6942 if (!err)
6943 dev->features = features;
6944
e7868a85 6945 return err < 0 ? 0 : 1;
6cb6a27c
MM
6946}
6947
afe12cc8
MM
6948/**
6949 * netdev_update_features - recalculate device features
6950 * @dev: the device to check
6951 *
6952 * Recalculate dev->features set and send notifications if it
6953 * has changed. Should be called after driver or hardware dependent
6954 * conditions might have changed that influence the features.
6955 */
6cb6a27c
MM
6956void netdev_update_features(struct net_device *dev)
6957{
6958 if (__netdev_update_features(dev))
6959 netdev_features_change(dev);
5455c699
MM
6960}
6961EXPORT_SYMBOL(netdev_update_features);
6962
afe12cc8
MM
6963/**
6964 * netdev_change_features - recalculate device features
6965 * @dev: the device to check
6966 *
6967 * Recalculate dev->features set and send notifications even
6968 * if they have not changed. Should be called instead of
6969 * netdev_update_features() if also dev->vlan_features might
6970 * have changed to allow the changes to be propagated to stacked
6971 * VLAN devices.
6972 */
6973void netdev_change_features(struct net_device *dev)
6974{
6975 __netdev_update_features(dev);
6976 netdev_features_change(dev);
6977}
6978EXPORT_SYMBOL(netdev_change_features);
6979
fc4a7489
PM
6980/**
6981 * netif_stacked_transfer_operstate - transfer operstate
6982 * @rootdev: the root or lower level device to transfer state from
6983 * @dev: the device to transfer operstate to
6984 *
6985 * Transfer operational state from root to device. This is normally
6986 * called when a stacking relationship exists between the root
6987 * device and the device(a leaf device).
6988 */
6989void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6990 struct net_device *dev)
6991{
6992 if (rootdev->operstate == IF_OPER_DORMANT)
6993 netif_dormant_on(dev);
6994 else
6995 netif_dormant_off(dev);
6996
6997 if (netif_carrier_ok(rootdev)) {
6998 if (!netif_carrier_ok(dev))
6999 netif_carrier_on(dev);
7000 } else {
7001 if (netif_carrier_ok(dev))
7002 netif_carrier_off(dev);
7003 }
7004}
7005EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7006
a953be53 7007#ifdef CONFIG_SYSFS
1b4bf461
ED
7008static int netif_alloc_rx_queues(struct net_device *dev)
7009{
1b4bf461 7010 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7011 struct netdev_rx_queue *rx;
10595902 7012 size_t sz = count * sizeof(*rx);
1b4bf461 7013
bd25fa7b 7014 BUG_ON(count < 1);
1b4bf461 7015
10595902
PG
7016 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7017 if (!rx) {
7018 rx = vzalloc(sz);
7019 if (!rx)
7020 return -ENOMEM;
7021 }
bd25fa7b
TH
7022 dev->_rx = rx;
7023
bd25fa7b 7024 for (i = 0; i < count; i++)
fe822240 7025 rx[i].dev = dev;
1b4bf461
ED
7026 return 0;
7027}
bf264145 7028#endif
1b4bf461 7029
aa942104
CG
7030static void netdev_init_one_queue(struct net_device *dev,
7031 struct netdev_queue *queue, void *_unused)
7032{
7033 /* Initialize queue lock */
7034 spin_lock_init(&queue->_xmit_lock);
7035 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7036 queue->xmit_lock_owner = -1;
b236da69 7037 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7038 queue->dev = dev;
114cf580
TH
7039#ifdef CONFIG_BQL
7040 dql_init(&queue->dql, HZ);
7041#endif
aa942104
CG
7042}
7043
60877a32
ED
7044static void netif_free_tx_queues(struct net_device *dev)
7045{
4cb28970 7046 kvfree(dev->_tx);
60877a32
ED
7047}
7048
e6484930
TH
7049static int netif_alloc_netdev_queues(struct net_device *dev)
7050{
7051 unsigned int count = dev->num_tx_queues;
7052 struct netdev_queue *tx;
60877a32 7053 size_t sz = count * sizeof(*tx);
e6484930 7054
d339727c
ED
7055 if (count < 1 || count > 0xffff)
7056 return -EINVAL;
62b5942a 7057
60877a32
ED
7058 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7059 if (!tx) {
7060 tx = vzalloc(sz);
7061 if (!tx)
7062 return -ENOMEM;
7063 }
e6484930 7064 dev->_tx = tx;
1d24eb48 7065
e6484930
TH
7066 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7067 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7068
7069 return 0;
e6484930
TH
7070}
7071
a2029240
DV
7072void netif_tx_stop_all_queues(struct net_device *dev)
7073{
7074 unsigned int i;
7075
7076 for (i = 0; i < dev->num_tx_queues; i++) {
7077 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7078 netif_tx_stop_queue(txq);
7079 }
7080}
7081EXPORT_SYMBOL(netif_tx_stop_all_queues);
7082
1da177e4
LT
7083/**
7084 * register_netdevice - register a network device
7085 * @dev: device to register
7086 *
7087 * Take a completed network device structure and add it to the kernel
7088 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7089 * chain. 0 is returned on success. A negative errno code is returned
7090 * on a failure to set up the device, or if the name is a duplicate.
7091 *
7092 * Callers must hold the rtnl semaphore. You may want
7093 * register_netdev() instead of this.
7094 *
7095 * BUGS:
7096 * The locking appears insufficient to guarantee two parallel registers
7097 * will not get the same name.
7098 */
7099
7100int register_netdevice(struct net_device *dev)
7101{
1da177e4 7102 int ret;
d314774c 7103 struct net *net = dev_net(dev);
1da177e4
LT
7104
7105 BUG_ON(dev_boot_phase);
7106 ASSERT_RTNL();
7107
b17a7c17
SH
7108 might_sleep();
7109
1da177e4
LT
7110 /* When net_device's are persistent, this will be fatal. */
7111 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7112 BUG_ON(!net);
1da177e4 7113
f1f28aa3 7114 spin_lock_init(&dev->addr_list_lock);
cf508b12 7115 netdev_set_addr_lockdep_class(dev);
1da177e4 7116
828de4f6 7117 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7118 if (ret < 0)
7119 goto out;
7120
1da177e4 7121 /* Init, if this function is available */
d314774c
SH
7122 if (dev->netdev_ops->ndo_init) {
7123 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7124 if (ret) {
7125 if (ret > 0)
7126 ret = -EIO;
90833aa4 7127 goto out;
1da177e4
LT
7128 }
7129 }
4ec93edb 7130
f646968f
PM
7131 if (((dev->hw_features | dev->features) &
7132 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7133 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7134 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7135 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7136 ret = -EINVAL;
7137 goto err_uninit;
7138 }
7139
9c7dafbf
PE
7140 ret = -EBUSY;
7141 if (!dev->ifindex)
7142 dev->ifindex = dev_new_index(net);
7143 else if (__dev_get_by_index(net, dev->ifindex))
7144 goto err_uninit;
7145
5455c699
MM
7146 /* Transfer changeable features to wanted_features and enable
7147 * software offloads (GSO and GRO).
7148 */
7149 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7150 dev->features |= NETIF_F_SOFT_FEATURES;
7151 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7152
cbc53e08 7153 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7154 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7155
7f348a60
AD
7156 /* If IPv4 TCP segmentation offload is supported we should also
7157 * allow the device to enable segmenting the frame with the option
7158 * of ignoring a static IP ID value. This doesn't enable the
7159 * feature itself but allows the user to enable it later.
7160 */
cbc53e08
AD
7161 if (dev->hw_features & NETIF_F_TSO)
7162 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7163 if (dev->vlan_features & NETIF_F_TSO)
7164 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7165 if (dev->mpls_features & NETIF_F_TSO)
7166 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7167 if (dev->hw_enc_features & NETIF_F_TSO)
7168 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7169
1180e7d6 7170 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7171 */
1180e7d6 7172 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7173
ee579677
PS
7174 /* Make NETIF_F_SG inheritable to tunnel devices.
7175 */
802ab55a 7176 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7177
0d89d203
SH
7178 /* Make NETIF_F_SG inheritable to MPLS.
7179 */
7180 dev->mpls_features |= NETIF_F_SG;
7181
7ffbe3fd
JB
7182 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7183 ret = notifier_to_errno(ret);
7184 if (ret)
7185 goto err_uninit;
7186
8b41d188 7187 ret = netdev_register_kobject(dev);
b17a7c17 7188 if (ret)
7ce1b0ed 7189 goto err_uninit;
b17a7c17
SH
7190 dev->reg_state = NETREG_REGISTERED;
7191
6cb6a27c 7192 __netdev_update_features(dev);
8e9b59b2 7193
1da177e4
LT
7194 /*
7195 * Default initial state at registry is that the
7196 * device is present.
7197 */
7198
7199 set_bit(__LINK_STATE_PRESENT, &dev->state);
7200
8f4cccbb
BH
7201 linkwatch_init_dev(dev);
7202
1da177e4 7203 dev_init_scheduler(dev);
1da177e4 7204 dev_hold(dev);
ce286d32 7205 list_netdevice(dev);
7bf23575 7206 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7207
948b337e
JP
7208 /* If the device has permanent device address, driver should
7209 * set dev_addr and also addr_assign_type should be set to
7210 * NET_ADDR_PERM (default value).
7211 */
7212 if (dev->addr_assign_type == NET_ADDR_PERM)
7213 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7214
1da177e4 7215 /* Notify protocols, that a new device appeared. */
056925ab 7216 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7217 ret = notifier_to_errno(ret);
93ee31f1
DL
7218 if (ret) {
7219 rollback_registered(dev);
7220 dev->reg_state = NETREG_UNREGISTERED;
7221 }
d90a909e
EB
7222 /*
7223 * Prevent userspace races by waiting until the network
7224 * device is fully setup before sending notifications.
7225 */
a2835763
PM
7226 if (!dev->rtnl_link_ops ||
7227 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7228 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7229
7230out:
7231 return ret;
7ce1b0ed
HX
7232
7233err_uninit:
d314774c
SH
7234 if (dev->netdev_ops->ndo_uninit)
7235 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7236 goto out;
1da177e4 7237}
d1b19dff 7238EXPORT_SYMBOL(register_netdevice);
1da177e4 7239
937f1ba5
BH
7240/**
7241 * init_dummy_netdev - init a dummy network device for NAPI
7242 * @dev: device to init
7243 *
7244 * This takes a network device structure and initialize the minimum
7245 * amount of fields so it can be used to schedule NAPI polls without
7246 * registering a full blown interface. This is to be used by drivers
7247 * that need to tie several hardware interfaces to a single NAPI
7248 * poll scheduler due to HW limitations.
7249 */
7250int init_dummy_netdev(struct net_device *dev)
7251{
7252 /* Clear everything. Note we don't initialize spinlocks
7253 * are they aren't supposed to be taken by any of the
7254 * NAPI code and this dummy netdev is supposed to be
7255 * only ever used for NAPI polls
7256 */
7257 memset(dev, 0, sizeof(struct net_device));
7258
7259 /* make sure we BUG if trying to hit standard
7260 * register/unregister code path
7261 */
7262 dev->reg_state = NETREG_DUMMY;
7263
937f1ba5
BH
7264 /* NAPI wants this */
7265 INIT_LIST_HEAD(&dev->napi_list);
7266
7267 /* a dummy interface is started by default */
7268 set_bit(__LINK_STATE_PRESENT, &dev->state);
7269 set_bit(__LINK_STATE_START, &dev->state);
7270
29b4433d
ED
7271 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7272 * because users of this 'device' dont need to change
7273 * its refcount.
7274 */
7275
937f1ba5
BH
7276 return 0;
7277}
7278EXPORT_SYMBOL_GPL(init_dummy_netdev);
7279
7280
1da177e4
LT
7281/**
7282 * register_netdev - register a network device
7283 * @dev: device to register
7284 *
7285 * Take a completed network device structure and add it to the kernel
7286 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7287 * chain. 0 is returned on success. A negative errno code is returned
7288 * on a failure to set up the device, or if the name is a duplicate.
7289 *
38b4da38 7290 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7291 * and expands the device name if you passed a format string to
7292 * alloc_netdev.
7293 */
7294int register_netdev(struct net_device *dev)
7295{
7296 int err;
7297
7298 rtnl_lock();
1da177e4 7299 err = register_netdevice(dev);
1da177e4
LT
7300 rtnl_unlock();
7301 return err;
7302}
7303EXPORT_SYMBOL(register_netdev);
7304
29b4433d
ED
7305int netdev_refcnt_read(const struct net_device *dev)
7306{
7307 int i, refcnt = 0;
7308
7309 for_each_possible_cpu(i)
7310 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7311 return refcnt;
7312}
7313EXPORT_SYMBOL(netdev_refcnt_read);
7314
2c53040f 7315/**
1da177e4 7316 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7317 * @dev: target net_device
1da177e4
LT
7318 *
7319 * This is called when unregistering network devices.
7320 *
7321 * Any protocol or device that holds a reference should register
7322 * for netdevice notification, and cleanup and put back the
7323 * reference if they receive an UNREGISTER event.
7324 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7325 * call dev_put.
1da177e4
LT
7326 */
7327static void netdev_wait_allrefs(struct net_device *dev)
7328{
7329 unsigned long rebroadcast_time, warning_time;
29b4433d 7330 int refcnt;
1da177e4 7331
e014debe
ED
7332 linkwatch_forget_dev(dev);
7333
1da177e4 7334 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7335 refcnt = netdev_refcnt_read(dev);
7336
7337 while (refcnt != 0) {
1da177e4 7338 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7339 rtnl_lock();
1da177e4
LT
7340
7341 /* Rebroadcast unregister notification */
056925ab 7342 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7343
748e2d93 7344 __rtnl_unlock();
0115e8e3 7345 rcu_barrier();
748e2d93
ED
7346 rtnl_lock();
7347
0115e8e3 7348 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7349 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7350 &dev->state)) {
7351 /* We must not have linkwatch events
7352 * pending on unregister. If this
7353 * happens, we simply run the queue
7354 * unscheduled, resulting in a noop
7355 * for this device.
7356 */
7357 linkwatch_run_queue();
7358 }
7359
6756ae4b 7360 __rtnl_unlock();
1da177e4
LT
7361
7362 rebroadcast_time = jiffies;
7363 }
7364
7365 msleep(250);
7366
29b4433d
ED
7367 refcnt = netdev_refcnt_read(dev);
7368
1da177e4 7369 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7370 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7371 dev->name, refcnt);
1da177e4
LT
7372 warning_time = jiffies;
7373 }
7374 }
7375}
7376
7377/* The sequence is:
7378 *
7379 * rtnl_lock();
7380 * ...
7381 * register_netdevice(x1);
7382 * register_netdevice(x2);
7383 * ...
7384 * unregister_netdevice(y1);
7385 * unregister_netdevice(y2);
7386 * ...
7387 * rtnl_unlock();
7388 * free_netdev(y1);
7389 * free_netdev(y2);
7390 *
58ec3b4d 7391 * We are invoked by rtnl_unlock().
1da177e4 7392 * This allows us to deal with problems:
b17a7c17 7393 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7394 * without deadlocking with linkwatch via keventd.
7395 * 2) Since we run with the RTNL semaphore not held, we can sleep
7396 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7397 *
7398 * We must not return until all unregister events added during
7399 * the interval the lock was held have been completed.
1da177e4 7400 */
1da177e4
LT
7401void netdev_run_todo(void)
7402{
626ab0e6 7403 struct list_head list;
1da177e4 7404
1da177e4 7405 /* Snapshot list, allow later requests */
626ab0e6 7406 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7407
7408 __rtnl_unlock();
626ab0e6 7409
0115e8e3
ED
7410
7411 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7412 if (!list_empty(&list))
7413 rcu_barrier();
7414
1da177e4
LT
7415 while (!list_empty(&list)) {
7416 struct net_device *dev
e5e26d75 7417 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7418 list_del(&dev->todo_list);
7419
748e2d93 7420 rtnl_lock();
0115e8e3 7421 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7422 __rtnl_unlock();
0115e8e3 7423
b17a7c17 7424 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7425 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7426 dev->name, dev->reg_state);
7427 dump_stack();
7428 continue;
7429 }
1da177e4 7430
b17a7c17 7431 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7432
b17a7c17 7433 netdev_wait_allrefs(dev);
1da177e4 7434
b17a7c17 7435 /* paranoia */
29b4433d 7436 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7437 BUG_ON(!list_empty(&dev->ptype_all));
7438 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7439 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7440 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7441 WARN_ON(dev->dn_ptr);
1da177e4 7442
b17a7c17
SH
7443 if (dev->destructor)
7444 dev->destructor(dev);
9093bbb2 7445
50624c93
EB
7446 /* Report a network device has been unregistered */
7447 rtnl_lock();
7448 dev_net(dev)->dev_unreg_count--;
7449 __rtnl_unlock();
7450 wake_up(&netdev_unregistering_wq);
7451
9093bbb2
SH
7452 /* Free network device */
7453 kobject_put(&dev->dev.kobj);
1da177e4 7454 }
1da177e4
LT
7455}
7456
9256645a
JW
7457/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7458 * all the same fields in the same order as net_device_stats, with only
7459 * the type differing, but rtnl_link_stats64 may have additional fields
7460 * at the end for newer counters.
3cfde79c 7461 */
77a1abf5
ED
7462void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7463 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7464{
7465#if BITS_PER_LONG == 64
9256645a 7466 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7467 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7468 /* zero out counters that only exist in rtnl_link_stats64 */
7469 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7470 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7471#else
9256645a 7472 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7473 const unsigned long *src = (const unsigned long *)netdev_stats;
7474 u64 *dst = (u64 *)stats64;
7475
9256645a 7476 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7477 for (i = 0; i < n; i++)
7478 dst[i] = src[i];
9256645a
JW
7479 /* zero out counters that only exist in rtnl_link_stats64 */
7480 memset((char *)stats64 + n * sizeof(u64), 0,
7481 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7482#endif
7483}
77a1abf5 7484EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7485
eeda3fd6
SH
7486/**
7487 * dev_get_stats - get network device statistics
7488 * @dev: device to get statistics from
28172739 7489 * @storage: place to store stats
eeda3fd6 7490 *
d7753516
BH
7491 * Get network statistics from device. Return @storage.
7492 * The device driver may provide its own method by setting
7493 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7494 * otherwise the internal statistics structure is used.
eeda3fd6 7495 */
d7753516
BH
7496struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7497 struct rtnl_link_stats64 *storage)
7004bf25 7498{
eeda3fd6
SH
7499 const struct net_device_ops *ops = dev->netdev_ops;
7500
28172739
ED
7501 if (ops->ndo_get_stats64) {
7502 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7503 ops->ndo_get_stats64(dev, storage);
7504 } else if (ops->ndo_get_stats) {
3cfde79c 7505 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7506 } else {
7507 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7508 }
caf586e5 7509 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7510 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7511 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7512 return storage;
c45d286e 7513}
eeda3fd6 7514EXPORT_SYMBOL(dev_get_stats);
c45d286e 7515
24824a09 7516struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7517{
24824a09 7518 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7519
24824a09
ED
7520#ifdef CONFIG_NET_CLS_ACT
7521 if (queue)
7522 return queue;
7523 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7524 if (!queue)
7525 return NULL;
7526 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7527 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7528 queue->qdisc_sleeping = &noop_qdisc;
7529 rcu_assign_pointer(dev->ingress_queue, queue);
7530#endif
7531 return queue;
bb949fbd
DM
7532}
7533
2c60db03
ED
7534static const struct ethtool_ops default_ethtool_ops;
7535
d07d7507
SG
7536void netdev_set_default_ethtool_ops(struct net_device *dev,
7537 const struct ethtool_ops *ops)
7538{
7539 if (dev->ethtool_ops == &default_ethtool_ops)
7540 dev->ethtool_ops = ops;
7541}
7542EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7543
74d332c1
ED
7544void netdev_freemem(struct net_device *dev)
7545{
7546 char *addr = (char *)dev - dev->padded;
7547
4cb28970 7548 kvfree(addr);
74d332c1
ED
7549}
7550
1da177e4 7551/**
36909ea4 7552 * alloc_netdev_mqs - allocate network device
c835a677
TG
7553 * @sizeof_priv: size of private data to allocate space for
7554 * @name: device name format string
7555 * @name_assign_type: origin of device name
7556 * @setup: callback to initialize device
7557 * @txqs: the number of TX subqueues to allocate
7558 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7559 *
7560 * Allocates a struct net_device with private data area for driver use
90e51adf 7561 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7562 * for each queue on the device.
1da177e4 7563 */
36909ea4 7564struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7565 unsigned char name_assign_type,
36909ea4
TH
7566 void (*setup)(struct net_device *),
7567 unsigned int txqs, unsigned int rxqs)
1da177e4 7568{
1da177e4 7569 struct net_device *dev;
7943986c 7570 size_t alloc_size;
1ce8e7b5 7571 struct net_device *p;
1da177e4 7572
b6fe17d6
SH
7573 BUG_ON(strlen(name) >= sizeof(dev->name));
7574
36909ea4 7575 if (txqs < 1) {
7b6cd1ce 7576 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7577 return NULL;
7578 }
7579
a953be53 7580#ifdef CONFIG_SYSFS
36909ea4 7581 if (rxqs < 1) {
7b6cd1ce 7582 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7583 return NULL;
7584 }
7585#endif
7586
fd2ea0a7 7587 alloc_size = sizeof(struct net_device);
d1643d24
AD
7588 if (sizeof_priv) {
7589 /* ensure 32-byte alignment of private area */
1ce8e7b5 7590 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7591 alloc_size += sizeof_priv;
7592 }
7593 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7594 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7595
74d332c1
ED
7596 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7597 if (!p)
7598 p = vzalloc(alloc_size);
62b5942a 7599 if (!p)
1da177e4 7600 return NULL;
1da177e4 7601
1ce8e7b5 7602 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7603 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7604
29b4433d
ED
7605 dev->pcpu_refcnt = alloc_percpu(int);
7606 if (!dev->pcpu_refcnt)
74d332c1 7607 goto free_dev;
ab9c73cc 7608
ab9c73cc 7609 if (dev_addr_init(dev))
29b4433d 7610 goto free_pcpu;
ab9c73cc 7611
22bedad3 7612 dev_mc_init(dev);
a748ee24 7613 dev_uc_init(dev);
ccffad25 7614
c346dca1 7615 dev_net_set(dev, &init_net);
1da177e4 7616
8d3bdbd5 7617 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7618 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7619
8d3bdbd5
DM
7620 INIT_LIST_HEAD(&dev->napi_list);
7621 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7622 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7623 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7624 INIT_LIST_HEAD(&dev->adj_list.upper);
7625 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
7626 INIT_LIST_HEAD(&dev->ptype_all);
7627 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7628#ifdef CONFIG_NET_SCHED
7629 hash_init(dev->qdisc_hash);
7630#endif
02875878 7631 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7632 setup(dev);
7633
a813104d 7634 if (!dev->tx_queue_len) {
f84bb1ea 7635 dev->priv_flags |= IFF_NO_QUEUE;
11597084 7636 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 7637 }
906470c1 7638
36909ea4
TH
7639 dev->num_tx_queues = txqs;
7640 dev->real_num_tx_queues = txqs;
ed9af2e8 7641 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7642 goto free_all;
e8a0464c 7643
a953be53 7644#ifdef CONFIG_SYSFS
36909ea4
TH
7645 dev->num_rx_queues = rxqs;
7646 dev->real_num_rx_queues = rxqs;
fe822240 7647 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7648 goto free_all;
df334545 7649#endif
0a9627f2 7650
1da177e4 7651 strcpy(dev->name, name);
c835a677 7652 dev->name_assign_type = name_assign_type;
cbda10fa 7653 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7654 if (!dev->ethtool_ops)
7655 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7656
7657 nf_hook_ingress_init(dev);
7658
1da177e4 7659 return dev;
ab9c73cc 7660
8d3bdbd5
DM
7661free_all:
7662 free_netdev(dev);
7663 return NULL;
7664
29b4433d
ED
7665free_pcpu:
7666 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7667free_dev:
7668 netdev_freemem(dev);
ab9c73cc 7669 return NULL;
1da177e4 7670}
36909ea4 7671EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7672
7673/**
7674 * free_netdev - free network device
7675 * @dev: device
7676 *
4ec93edb
YH
7677 * This function does the last stage of destroying an allocated device
7678 * interface. The reference to the device object is released.
1da177e4 7679 * If this is the last reference then it will be freed.
93d05d4a 7680 * Must be called in process context.
1da177e4
LT
7681 */
7682void free_netdev(struct net_device *dev)
7683{
d565b0a1
HX
7684 struct napi_struct *p, *n;
7685
93d05d4a 7686 might_sleep();
60877a32 7687 netif_free_tx_queues(dev);
a953be53 7688#ifdef CONFIG_SYSFS
10595902 7689 kvfree(dev->_rx);
fe822240 7690#endif
e8a0464c 7691
33d480ce 7692 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7693
f001fde5
JP
7694 /* Flush device addresses */
7695 dev_addr_flush(dev);
7696
d565b0a1
HX
7697 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7698 netif_napi_del(p);
7699
29b4433d
ED
7700 free_percpu(dev->pcpu_refcnt);
7701 dev->pcpu_refcnt = NULL;
7702
3041a069 7703 /* Compatibility with error handling in drivers */
1da177e4 7704 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7705 netdev_freemem(dev);
1da177e4
LT
7706 return;
7707 }
7708
7709 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7710 dev->reg_state = NETREG_RELEASED;
7711
43cb76d9
GKH
7712 /* will free via device release */
7713 put_device(&dev->dev);
1da177e4 7714}
d1b19dff 7715EXPORT_SYMBOL(free_netdev);
4ec93edb 7716
f0db275a
SH
7717/**
7718 * synchronize_net - Synchronize with packet receive processing
7719 *
7720 * Wait for packets currently being received to be done.
7721 * Does not block later packets from starting.
7722 */
4ec93edb 7723void synchronize_net(void)
1da177e4
LT
7724{
7725 might_sleep();
be3fc413
ED
7726 if (rtnl_is_locked())
7727 synchronize_rcu_expedited();
7728 else
7729 synchronize_rcu();
1da177e4 7730}
d1b19dff 7731EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7732
7733/**
44a0873d 7734 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7735 * @dev: device
44a0873d 7736 * @head: list
6ebfbc06 7737 *
1da177e4 7738 * This function shuts down a device interface and removes it
d59b54b1 7739 * from the kernel tables.
44a0873d 7740 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7741 *
7742 * Callers must hold the rtnl semaphore. You may want
7743 * unregister_netdev() instead of this.
7744 */
7745
44a0873d 7746void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7747{
a6620712
HX
7748 ASSERT_RTNL();
7749
44a0873d 7750 if (head) {
9fdce099 7751 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7752 } else {
7753 rollback_registered(dev);
7754 /* Finish processing unregister after unlock */
7755 net_set_todo(dev);
7756 }
1da177e4 7757}
44a0873d 7758EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7759
9b5e383c
ED
7760/**
7761 * unregister_netdevice_many - unregister many devices
7762 * @head: list of devices
87757a91
ED
7763 *
7764 * Note: As most callers use a stack allocated list_head,
7765 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7766 */
7767void unregister_netdevice_many(struct list_head *head)
7768{
7769 struct net_device *dev;
7770
7771 if (!list_empty(head)) {
7772 rollback_registered_many(head);
7773 list_for_each_entry(dev, head, unreg_list)
7774 net_set_todo(dev);
87757a91 7775 list_del(head);
9b5e383c
ED
7776 }
7777}
63c8099d 7778EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7779
1da177e4
LT
7780/**
7781 * unregister_netdev - remove device from the kernel
7782 * @dev: device
7783 *
7784 * This function shuts down a device interface and removes it
d59b54b1 7785 * from the kernel tables.
1da177e4
LT
7786 *
7787 * This is just a wrapper for unregister_netdevice that takes
7788 * the rtnl semaphore. In general you want to use this and not
7789 * unregister_netdevice.
7790 */
7791void unregister_netdev(struct net_device *dev)
7792{
7793 rtnl_lock();
7794 unregister_netdevice(dev);
7795 rtnl_unlock();
7796}
1da177e4
LT
7797EXPORT_SYMBOL(unregister_netdev);
7798
ce286d32
EB
7799/**
7800 * dev_change_net_namespace - move device to different nethost namespace
7801 * @dev: device
7802 * @net: network namespace
7803 * @pat: If not NULL name pattern to try if the current device name
7804 * is already taken in the destination network namespace.
7805 *
7806 * This function shuts down a device interface and moves it
7807 * to a new network namespace. On success 0 is returned, on
7808 * a failure a netagive errno code is returned.
7809 *
7810 * Callers must hold the rtnl semaphore.
7811 */
7812
7813int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7814{
ce286d32
EB
7815 int err;
7816
7817 ASSERT_RTNL();
7818
7819 /* Don't allow namespace local devices to be moved. */
7820 err = -EINVAL;
7821 if (dev->features & NETIF_F_NETNS_LOCAL)
7822 goto out;
7823
7824 /* Ensure the device has been registrered */
ce286d32
EB
7825 if (dev->reg_state != NETREG_REGISTERED)
7826 goto out;
7827
7828 /* Get out if there is nothing todo */
7829 err = 0;
878628fb 7830 if (net_eq(dev_net(dev), net))
ce286d32
EB
7831 goto out;
7832
7833 /* Pick the destination device name, and ensure
7834 * we can use it in the destination network namespace.
7835 */
7836 err = -EEXIST;
d9031024 7837 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7838 /* We get here if we can't use the current device name */
7839 if (!pat)
7840 goto out;
828de4f6 7841 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7842 goto out;
7843 }
7844
7845 /*
7846 * And now a mini version of register_netdevice unregister_netdevice.
7847 */
7848
7849 /* If device is running close it first. */
9b772652 7850 dev_close(dev);
ce286d32
EB
7851
7852 /* And unlink it from device chain */
7853 err = -ENODEV;
7854 unlist_netdevice(dev);
7855
7856 synchronize_net();
7857
7858 /* Shutdown queueing discipline. */
7859 dev_shutdown(dev);
7860
7861 /* Notify protocols, that we are about to destroy
7862 this device. They should clean all the things.
3b27e105
DL
7863
7864 Note that dev->reg_state stays at NETREG_REGISTERED.
7865 This is wanted because this way 8021q and macvlan know
7866 the device is just moving and can keep their slaves up.
ce286d32
EB
7867 */
7868 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7869 rcu_barrier();
7870 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7871 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7872
7873 /*
7874 * Flush the unicast and multicast chains
7875 */
a748ee24 7876 dev_uc_flush(dev);
22bedad3 7877 dev_mc_flush(dev);
ce286d32 7878
4e66ae2e
SH
7879 /* Send a netdev-removed uevent to the old namespace */
7880 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7881 netdev_adjacent_del_links(dev);
4e66ae2e 7882
ce286d32 7883 /* Actually switch the network namespace */
c346dca1 7884 dev_net_set(dev, net);
ce286d32 7885
ce286d32 7886 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7887 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7888 dev->ifindex = dev_new_index(net);
ce286d32 7889
4e66ae2e
SH
7890 /* Send a netdev-add uevent to the new namespace */
7891 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7892 netdev_adjacent_add_links(dev);
4e66ae2e 7893
8b41d188 7894 /* Fixup kobjects */
a1b3f594 7895 err = device_rename(&dev->dev, dev->name);
8b41d188 7896 WARN_ON(err);
ce286d32
EB
7897
7898 /* Add the device back in the hashes */
7899 list_netdevice(dev);
7900
7901 /* Notify protocols, that a new device appeared. */
7902 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7903
d90a909e
EB
7904 /*
7905 * Prevent userspace races by waiting until the network
7906 * device is fully setup before sending notifications.
7907 */
7f294054 7908 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7909
ce286d32
EB
7910 synchronize_net();
7911 err = 0;
7912out:
7913 return err;
7914}
463d0183 7915EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7916
f0bf90de 7917static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
7918{
7919 struct sk_buff **list_skb;
1da177e4 7920 struct sk_buff *skb;
f0bf90de 7921 unsigned int cpu;
1da177e4
LT
7922 struct softnet_data *sd, *oldsd;
7923
1da177e4
LT
7924 local_irq_disable();
7925 cpu = smp_processor_id();
7926 sd = &per_cpu(softnet_data, cpu);
7927 oldsd = &per_cpu(softnet_data, oldcpu);
7928
7929 /* Find end of our completion_queue. */
7930 list_skb = &sd->completion_queue;
7931 while (*list_skb)
7932 list_skb = &(*list_skb)->next;
7933 /* Append completion queue from offline CPU. */
7934 *list_skb = oldsd->completion_queue;
7935 oldsd->completion_queue = NULL;
7936
1da177e4 7937 /* Append output queue from offline CPU. */
a9cbd588
CG
7938 if (oldsd->output_queue) {
7939 *sd->output_queue_tailp = oldsd->output_queue;
7940 sd->output_queue_tailp = oldsd->output_queue_tailp;
7941 oldsd->output_queue = NULL;
7942 oldsd->output_queue_tailp = &oldsd->output_queue;
7943 }
ac64da0b
ED
7944 /* Append NAPI poll list from offline CPU, with one exception :
7945 * process_backlog() must be called by cpu owning percpu backlog.
7946 * We properly handle process_queue & input_pkt_queue later.
7947 */
7948 while (!list_empty(&oldsd->poll_list)) {
7949 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7950 struct napi_struct,
7951 poll_list);
7952
7953 list_del_init(&napi->poll_list);
7954 if (napi->poll == process_backlog)
7955 napi->state = 0;
7956 else
7957 ____napi_schedule(sd, napi);
264524d5 7958 }
1da177e4
LT
7959
7960 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7961 local_irq_enable();
7962
7963 /* Process offline CPU's input_pkt_queue */
76cc8b13 7964 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7965 netif_rx_ni(skb);
76cc8b13 7966 input_queue_head_incr(oldsd);
fec5e652 7967 }
ac64da0b 7968 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7969 netif_rx_ni(skb);
76cc8b13
TH
7970 input_queue_head_incr(oldsd);
7971 }
1da177e4 7972
f0bf90de 7973 return 0;
1da177e4 7974}
1da177e4 7975
7f353bf2 7976/**
b63365a2
HX
7977 * netdev_increment_features - increment feature set by one
7978 * @all: current feature set
7979 * @one: new feature set
7980 * @mask: mask feature set
7f353bf2
HX
7981 *
7982 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7983 * @one to the master device with current feature set @all. Will not
7984 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7985 */
c8f44aff
MM
7986netdev_features_t netdev_increment_features(netdev_features_t all,
7987 netdev_features_t one, netdev_features_t mask)
b63365a2 7988{
c8cd0989 7989 if (mask & NETIF_F_HW_CSUM)
a188222b 7990 mask |= NETIF_F_CSUM_MASK;
1742f183 7991 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7992
a188222b 7993 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 7994 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7995
1742f183 7996 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
7997 if (all & NETIF_F_HW_CSUM)
7998 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
7999
8000 return all;
8001}
b63365a2 8002EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8003
430f03cd 8004static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8005{
8006 int i;
8007 struct hlist_head *hash;
8008
8009 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8010 if (hash != NULL)
8011 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8012 INIT_HLIST_HEAD(&hash[i]);
8013
8014 return hash;
8015}
8016
881d966b 8017/* Initialize per network namespace state */
4665079c 8018static int __net_init netdev_init(struct net *net)
881d966b 8019{
734b6541
RM
8020 if (net != &init_net)
8021 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8022
30d97d35
PE
8023 net->dev_name_head = netdev_create_hash();
8024 if (net->dev_name_head == NULL)
8025 goto err_name;
881d966b 8026
30d97d35
PE
8027 net->dev_index_head = netdev_create_hash();
8028 if (net->dev_index_head == NULL)
8029 goto err_idx;
881d966b
EB
8030
8031 return 0;
30d97d35
PE
8032
8033err_idx:
8034 kfree(net->dev_name_head);
8035err_name:
8036 return -ENOMEM;
881d966b
EB
8037}
8038
f0db275a
SH
8039/**
8040 * netdev_drivername - network driver for the device
8041 * @dev: network device
f0db275a
SH
8042 *
8043 * Determine network driver for device.
8044 */
3019de12 8045const char *netdev_drivername(const struct net_device *dev)
6579e57b 8046{
cf04a4c7
SH
8047 const struct device_driver *driver;
8048 const struct device *parent;
3019de12 8049 const char *empty = "";
6579e57b
AV
8050
8051 parent = dev->dev.parent;
6579e57b 8052 if (!parent)
3019de12 8053 return empty;
6579e57b
AV
8054
8055 driver = parent->driver;
8056 if (driver && driver->name)
3019de12
DM
8057 return driver->name;
8058 return empty;
6579e57b
AV
8059}
8060
6ea754eb
JP
8061static void __netdev_printk(const char *level, const struct net_device *dev,
8062 struct va_format *vaf)
256df2f3 8063{
b004ff49 8064 if (dev && dev->dev.parent) {
6ea754eb
JP
8065 dev_printk_emit(level[1] - '0',
8066 dev->dev.parent,
8067 "%s %s %s%s: %pV",
8068 dev_driver_string(dev->dev.parent),
8069 dev_name(dev->dev.parent),
8070 netdev_name(dev), netdev_reg_state(dev),
8071 vaf);
b004ff49 8072 } else if (dev) {
6ea754eb
JP
8073 printk("%s%s%s: %pV",
8074 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8075 } else {
6ea754eb 8076 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8077 }
256df2f3
JP
8078}
8079
6ea754eb
JP
8080void netdev_printk(const char *level, const struct net_device *dev,
8081 const char *format, ...)
256df2f3
JP
8082{
8083 struct va_format vaf;
8084 va_list args;
256df2f3
JP
8085
8086 va_start(args, format);
8087
8088 vaf.fmt = format;
8089 vaf.va = &args;
8090
6ea754eb 8091 __netdev_printk(level, dev, &vaf);
b004ff49 8092
256df2f3 8093 va_end(args);
256df2f3
JP
8094}
8095EXPORT_SYMBOL(netdev_printk);
8096
8097#define define_netdev_printk_level(func, level) \
6ea754eb 8098void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8099{ \
256df2f3
JP
8100 struct va_format vaf; \
8101 va_list args; \
8102 \
8103 va_start(args, fmt); \
8104 \
8105 vaf.fmt = fmt; \
8106 vaf.va = &args; \
8107 \
6ea754eb 8108 __netdev_printk(level, dev, &vaf); \
b004ff49 8109 \
256df2f3 8110 va_end(args); \
256df2f3
JP
8111} \
8112EXPORT_SYMBOL(func);
8113
8114define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8115define_netdev_printk_level(netdev_alert, KERN_ALERT);
8116define_netdev_printk_level(netdev_crit, KERN_CRIT);
8117define_netdev_printk_level(netdev_err, KERN_ERR);
8118define_netdev_printk_level(netdev_warn, KERN_WARNING);
8119define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8120define_netdev_printk_level(netdev_info, KERN_INFO);
8121
4665079c 8122static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8123{
8124 kfree(net->dev_name_head);
8125 kfree(net->dev_index_head);
8126}
8127
022cbae6 8128static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8129 .init = netdev_init,
8130 .exit = netdev_exit,
8131};
8132
4665079c 8133static void __net_exit default_device_exit(struct net *net)
ce286d32 8134{
e008b5fc 8135 struct net_device *dev, *aux;
ce286d32 8136 /*
e008b5fc 8137 * Push all migratable network devices back to the
ce286d32
EB
8138 * initial network namespace
8139 */
8140 rtnl_lock();
e008b5fc 8141 for_each_netdev_safe(net, dev, aux) {
ce286d32 8142 int err;
aca51397 8143 char fb_name[IFNAMSIZ];
ce286d32
EB
8144
8145 /* Ignore unmoveable devices (i.e. loopback) */
8146 if (dev->features & NETIF_F_NETNS_LOCAL)
8147 continue;
8148
e008b5fc
EB
8149 /* Leave virtual devices for the generic cleanup */
8150 if (dev->rtnl_link_ops)
8151 continue;
d0c082ce 8152
25985edc 8153 /* Push remaining network devices to init_net */
aca51397
PE
8154 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8155 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8156 if (err) {
7b6cd1ce
JP
8157 pr_emerg("%s: failed to move %s to init_net: %d\n",
8158 __func__, dev->name, err);
aca51397 8159 BUG();
ce286d32
EB
8160 }
8161 }
8162 rtnl_unlock();
8163}
8164
50624c93
EB
8165static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8166{
8167 /* Return with the rtnl_lock held when there are no network
8168 * devices unregistering in any network namespace in net_list.
8169 */
8170 struct net *net;
8171 bool unregistering;
ff960a73 8172 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8173
ff960a73 8174 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8175 for (;;) {
50624c93
EB
8176 unregistering = false;
8177 rtnl_lock();
8178 list_for_each_entry(net, net_list, exit_list) {
8179 if (net->dev_unreg_count > 0) {
8180 unregistering = true;
8181 break;
8182 }
8183 }
8184 if (!unregistering)
8185 break;
8186 __rtnl_unlock();
ff960a73
PZ
8187
8188 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8189 }
ff960a73 8190 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8191}
8192
04dc7f6b
EB
8193static void __net_exit default_device_exit_batch(struct list_head *net_list)
8194{
8195 /* At exit all network devices most be removed from a network
b595076a 8196 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8197 * Do this across as many network namespaces as possible to
8198 * improve batching efficiency.
8199 */
8200 struct net_device *dev;
8201 struct net *net;
8202 LIST_HEAD(dev_kill_list);
8203
50624c93
EB
8204 /* To prevent network device cleanup code from dereferencing
8205 * loopback devices or network devices that have been freed
8206 * wait here for all pending unregistrations to complete,
8207 * before unregistring the loopback device and allowing the
8208 * network namespace be freed.
8209 *
8210 * The netdev todo list containing all network devices
8211 * unregistrations that happen in default_device_exit_batch
8212 * will run in the rtnl_unlock() at the end of
8213 * default_device_exit_batch.
8214 */
8215 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8216 list_for_each_entry(net, net_list, exit_list) {
8217 for_each_netdev_reverse(net, dev) {
b0ab2fab 8218 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8219 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8220 else
8221 unregister_netdevice_queue(dev, &dev_kill_list);
8222 }
8223 }
8224 unregister_netdevice_many(&dev_kill_list);
8225 rtnl_unlock();
8226}
8227
022cbae6 8228static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8229 .exit = default_device_exit,
04dc7f6b 8230 .exit_batch = default_device_exit_batch,
ce286d32
EB
8231};
8232
1da177e4
LT
8233/*
8234 * Initialize the DEV module. At boot time this walks the device list and
8235 * unhooks any devices that fail to initialise (normally hardware not
8236 * present) and leaves us with a valid list of present and active devices.
8237 *
8238 */
8239
8240/*
8241 * This is called single threaded during boot, so no need
8242 * to take the rtnl semaphore.
8243 */
8244static int __init net_dev_init(void)
8245{
8246 int i, rc = -ENOMEM;
8247
8248 BUG_ON(!dev_boot_phase);
8249
1da177e4
LT
8250 if (dev_proc_init())
8251 goto out;
8252
8b41d188 8253 if (netdev_kobject_init())
1da177e4
LT
8254 goto out;
8255
8256 INIT_LIST_HEAD(&ptype_all);
82d8a867 8257 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8258 INIT_LIST_HEAD(&ptype_base[i]);
8259
62532da9
VY
8260 INIT_LIST_HEAD(&offload_base);
8261
881d966b
EB
8262 if (register_pernet_subsys(&netdev_net_ops))
8263 goto out;
1da177e4
LT
8264
8265 /*
8266 * Initialise the packet receive queues.
8267 */
8268
6f912042 8269 for_each_possible_cpu(i) {
41852497 8270 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8271 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8272
41852497
ED
8273 INIT_WORK(flush, flush_backlog);
8274
e36fa2f7 8275 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8276 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8277 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8278 sd->output_queue_tailp = &sd->output_queue;
df334545 8279#ifdef CONFIG_RPS
e36fa2f7
ED
8280 sd->csd.func = rps_trigger_softirq;
8281 sd->csd.info = sd;
e36fa2f7 8282 sd->cpu = i;
1e94d72f 8283#endif
0a9627f2 8284
e36fa2f7
ED
8285 sd->backlog.poll = process_backlog;
8286 sd->backlog.weight = weight_p;
1da177e4
LT
8287 }
8288
1da177e4
LT
8289 dev_boot_phase = 0;
8290
505d4f73
EB
8291 /* The loopback device is special if any other network devices
8292 * is present in a network namespace the loopback device must
8293 * be present. Since we now dynamically allocate and free the
8294 * loopback device ensure this invariant is maintained by
8295 * keeping the loopback device as the first device on the
8296 * list of network devices. Ensuring the loopback devices
8297 * is the first device that appears and the last network device
8298 * that disappears.
8299 */
8300 if (register_pernet_device(&loopback_net_ops))
8301 goto out;
8302
8303 if (register_pernet_device(&default_device_ops))
8304 goto out;
8305
962cf36c
CM
8306 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8307 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8308
f0bf90de
SAS
8309 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8310 NULL, dev_cpu_dead);
8311 WARN_ON(rc < 0);
f38a9eb1 8312 dst_subsys_init();
1da177e4
LT
8313 rc = 0;
8314out:
8315 return rc;
8316}
8317
8318subsys_initcall(net_dev_init);