]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/core/dev.c
net: centralize net_device min/max MTU checking
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
6ae23ad3 142#include <linux/sctp.h>
40e4e713 143#include <linux/crash_dump.h>
1da177e4 144
342709ef
PE
145#include "net-sysfs.h"
146
d565b0a1
HX
147/* Instead of increasing this, you should create a hash table. */
148#define MAX_GRO_SKBS 8
149
5d38a079
HX
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
1da177e4 153static DEFINE_SPINLOCK(ptype_lock);
62532da9 154static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
62532da9 157static struct list_head offload_base __read_mostly;
1da177e4 158
ae78dbfa 159static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
160static int call_netdevice_notifiers_info(unsigned long val,
161 struct net_device *dev,
162 struct netdev_notifier_info *info);
ae78dbfa 163
1da177e4 164/*
7562f876 165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
166 * semaphore.
167 *
c6d14c84 168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
169 *
170 * Writers must hold the rtnl semaphore while they loop through the
7562f876 171 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
172 * actual updates. This allows pure readers to access the list even
173 * while a writer is preparing to update it.
174 *
175 * To put it another way, dev_base_lock is held for writing only to
176 * protect against pure readers; the rtnl semaphore provides the
177 * protection against other writers.
178 *
179 * See, for example usages, register_netdevice() and
180 * unregister_netdevice(), which must be called with the rtnl
181 * semaphore held.
182 */
1da177e4 183DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
184EXPORT_SYMBOL(dev_base_lock);
185
af12fa6e
ET
186/* protects napi_hash addition/deletion and napi_gen_id */
187static DEFINE_SPINLOCK(napi_hash_lock);
188
52bd2d62 189static unsigned int napi_gen_id = NR_CPUS;
6180d9de 190static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 191
18afa4b0 192static seqcount_t devnet_rename_seq;
c91f6df2 193
4e985ada
TG
194static inline void dev_base_seq_inc(struct net *net)
195{
196 while (++net->dev_base_seq == 0);
197}
198
881d966b 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 200{
8387ff25 201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 202
08e9897d 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
204}
205
881d966b 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 207{
7c28bd0b 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
209}
210
e36fa2f7 211static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
212{
213#ifdef CONFIG_RPS
e36fa2f7 214 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
215#endif
216}
217
e36fa2f7 218static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
219{
220#ifdef CONFIG_RPS
e36fa2f7 221 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
222#endif
223}
224
ce286d32 225/* Device list insertion */
53759be9 226static void list_netdevice(struct net_device *dev)
ce286d32 227{
c346dca1 228 struct net *net = dev_net(dev);
ce286d32
EB
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
c6d14c84 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
ce286d32 237 write_unlock_bh(&dev_base_lock);
4e985ada
TG
238
239 dev_base_seq_inc(net);
ce286d32
EB
240}
241
fb699dfd
ED
242/* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
ce286d32
EB
245static void unlist_netdevice(struct net_device *dev)
246{
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
c6d14c84 251 list_del_rcu(&dev->dev_list);
72c9528b 252 hlist_del_rcu(&dev->name_hlist);
fb699dfd 253 hlist_del_rcu(&dev->index_hlist);
ce286d32 254 write_unlock_bh(&dev_base_lock);
4e985ada
TG
255
256 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
257}
258
1da177e4
LT
259/*
260 * Our notifier list
261 */
262
f07d5b94 263static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
264
265/*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
bea3348e 269
9958da05 270DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 271EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 272
cf508b12 273#ifdef CONFIG_LOCKDEP
723e98b7 274/*
c773e847 275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
276 * according to dev->type
277 */
278static const unsigned short netdev_lock_type[] =
279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 294
36cbd3dc 295static const char *const netdev_lock_name[] =
723e98b7
JP
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
311
312static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 313static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
314
315static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316{
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324}
325
cf508b12
DM
326static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
723e98b7
JP
328{
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334}
cf508b12
DM
335
336static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337{
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344}
723e98b7 345#else
cf508b12
DM
346static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348{
349}
350static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
351{
352}
353#endif
1da177e4
LT
354
355/*******************************************************************************
356
357 Protocol management and registration routines
358
359*******************************************************************************/
360
1da177e4
LT
361/*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
c07b68e8
ED
377static inline struct list_head *ptype_head(const struct packet_type *pt)
378{
379 if (pt->type == htons(ETH_P_ALL))
7866a621 380 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 381 else
7866a621
SN
382 return pt->dev ? &pt->dev->ptype_specific :
383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
384}
385
1da177e4
LT
386/**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
4ec93edb 394 * This call does not sleep therefore it can not
1da177e4
LT
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399void dev_add_pack(struct packet_type *pt)
400{
c07b68e8 401 struct list_head *head = ptype_head(pt);
1da177e4 402
c07b68e8
ED
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
1da177e4 406}
d1b19dff 407EXPORT_SYMBOL(dev_add_pack);
1da177e4 408
1da177e4
LT
409/**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
4ec93edb 416 * returns.
1da177e4
LT
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422void __dev_remove_pack(struct packet_type *pt)
423{
c07b68e8 424 struct list_head *head = ptype_head(pt);
1da177e4
LT
425 struct packet_type *pt1;
426
c07b68e8 427 spin_lock(&ptype_lock);
1da177e4
LT
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
7b6cd1ce 436 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 437out:
c07b68e8 438 spin_unlock(&ptype_lock);
1da177e4 439}
d1b19dff
ED
440EXPORT_SYMBOL(__dev_remove_pack);
441
1da177e4
LT
442/**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454void dev_remove_pack(struct packet_type *pt)
455{
456 __dev_remove_pack(pt);
4ec93edb 457
1da177e4
LT
458 synchronize_net();
459}
d1b19dff 460EXPORT_SYMBOL(dev_remove_pack);
1da177e4 461
62532da9
VY
462
463/**
464 * dev_add_offload - register offload handlers
465 * @po: protocol offload declaration
466 *
467 * Add protocol offload handlers to the networking stack. The passed
468 * &proto_offload is linked into kernel lists and may not be freed until
469 * it has been removed from the kernel lists.
470 *
471 * This call does not sleep therefore it can not
472 * guarantee all CPU's that are in middle of receiving packets
473 * will see the new offload handlers (until the next received packet).
474 */
475void dev_add_offload(struct packet_offload *po)
476{
bdef7de4 477 struct packet_offload *elem;
62532da9
VY
478
479 spin_lock(&offload_lock);
bdef7de4
DM
480 list_for_each_entry(elem, &offload_base, list) {
481 if (po->priority < elem->priority)
482 break;
483 }
484 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
485 spin_unlock(&offload_lock);
486}
487EXPORT_SYMBOL(dev_add_offload);
488
489/**
490 * __dev_remove_offload - remove offload handler
491 * @po: packet offload declaration
492 *
493 * Remove a protocol offload handler that was previously added to the
494 * kernel offload handlers by dev_add_offload(). The passed &offload_type
495 * is removed from the kernel lists and can be freed or reused once this
496 * function returns.
497 *
498 * The packet type might still be in use by receivers
499 * and must not be freed until after all the CPU's have gone
500 * through a quiescent state.
501 */
1d143d9f 502static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
503{
504 struct list_head *head = &offload_base;
505 struct packet_offload *po1;
506
c53aa505 507 spin_lock(&offload_lock);
62532da9
VY
508
509 list_for_each_entry(po1, head, list) {
510 if (po == po1) {
511 list_del_rcu(&po->list);
512 goto out;
513 }
514 }
515
516 pr_warn("dev_remove_offload: %p not found\n", po);
517out:
c53aa505 518 spin_unlock(&offload_lock);
62532da9 519}
62532da9
VY
520
521/**
522 * dev_remove_offload - remove packet offload handler
523 * @po: packet offload declaration
524 *
525 * Remove a packet offload handler that was previously added to the kernel
526 * offload handlers by dev_add_offload(). The passed &offload_type is
527 * removed from the kernel lists and can be freed or reused once this
528 * function returns.
529 *
530 * This call sleeps to guarantee that no CPU is looking at the packet
531 * type after return.
532 */
533void dev_remove_offload(struct packet_offload *po)
534{
535 __dev_remove_offload(po);
536
537 synchronize_net();
538}
539EXPORT_SYMBOL(dev_remove_offload);
540
1da177e4
LT
541/******************************************************************************
542
543 Device Boot-time Settings Routines
544
545*******************************************************************************/
546
547/* Boot time configuration table */
548static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550/**
551 * netdev_boot_setup_add - add new setup entry
552 * @name: name of the device
553 * @map: configured settings for the device
554 *
555 * Adds new setup entry to the dev_boot_setup list. The function
556 * returns 0 on error and 1 on success. This is a generic routine to
557 * all netdevices.
558 */
559static int netdev_boot_setup_add(char *name, struct ifmap *map)
560{
561 struct netdev_boot_setup *s;
562 int i;
563
564 s = dev_boot_setup;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 568 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
569 memcpy(&s[i].map, map, sizeof(s[i].map));
570 break;
571 }
572 }
573
574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575}
576
577/**
578 * netdev_boot_setup_check - check boot time settings
579 * @dev: the netdevice
580 *
581 * Check boot time settings for the device.
582 * The found settings are set for the device to be used
583 * later in the device probing.
584 * Returns 0 if no settings found, 1 if they are.
585 */
586int netdev_boot_setup_check(struct net_device *dev)
587{
588 struct netdev_boot_setup *s = dev_boot_setup;
589 int i;
590
591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 593 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
594 dev->irq = s[i].map.irq;
595 dev->base_addr = s[i].map.base_addr;
596 dev->mem_start = s[i].map.mem_start;
597 dev->mem_end = s[i].map.mem_end;
598 return 1;
599 }
600 }
601 return 0;
602}
d1b19dff 603EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
604
605
606/**
607 * netdev_boot_base - get address from boot time settings
608 * @prefix: prefix for network device
609 * @unit: id for network device
610 *
611 * Check boot time settings for the base address of device.
612 * The found settings are set for the device to be used
613 * later in the device probing.
614 * Returns 0 if no settings found.
615 */
616unsigned long netdev_boot_base(const char *prefix, int unit)
617{
618 const struct netdev_boot_setup *s = dev_boot_setup;
619 char name[IFNAMSIZ];
620 int i;
621
622 sprintf(name, "%s%d", prefix, unit);
623
624 /*
625 * If device already registered then return base of 1
626 * to indicate not to probe for this interface
627 */
881d966b 628 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
629 return 1;
630
631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 if (!strcmp(name, s[i].name))
633 return s[i].map.base_addr;
634 return 0;
635}
636
637/*
638 * Saves at boot time configured settings for any netdevice.
639 */
640int __init netdev_boot_setup(char *str)
641{
642 int ints[5];
643 struct ifmap map;
644
645 str = get_options(str, ARRAY_SIZE(ints), ints);
646 if (!str || !*str)
647 return 0;
648
649 /* Save settings */
650 memset(&map, 0, sizeof(map));
651 if (ints[0] > 0)
652 map.irq = ints[1];
653 if (ints[0] > 1)
654 map.base_addr = ints[2];
655 if (ints[0] > 2)
656 map.mem_start = ints[3];
657 if (ints[0] > 3)
658 map.mem_end = ints[4];
659
660 /* Add new entry to the list */
661 return netdev_boot_setup_add(str, &map);
662}
663
664__setup("netdev=", netdev_boot_setup);
665
666/*******************************************************************************
667
668 Device Interface Subroutines
669
670*******************************************************************************/
671
a54acb3a
ND
672/**
673 * dev_get_iflink - get 'iflink' value of a interface
674 * @dev: targeted interface
675 *
676 * Indicates the ifindex the interface is linked to.
677 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 */
679
680int dev_get_iflink(const struct net_device *dev)
681{
682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 return dev->netdev_ops->ndo_get_iflink(dev);
684
7a66bbc9 685 return dev->ifindex;
a54acb3a
ND
686}
687EXPORT_SYMBOL(dev_get_iflink);
688
fc4099f1
PS
689/**
690 * dev_fill_metadata_dst - Retrieve tunnel egress information.
691 * @dev: targeted interface
692 * @skb: The packet.
693 *
694 * For better visibility of tunnel traffic OVS needs to retrieve
695 * egress tunnel information for a packet. Following API allows
696 * user to get this info.
697 */
698int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699{
700 struct ip_tunnel_info *info;
701
702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
703 return -EINVAL;
704
705 info = skb_tunnel_info_unclone(skb);
706 if (!info)
707 return -ENOMEM;
708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 return -EINVAL;
710
711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712}
713EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
1da177e4
LT
715/**
716 * __dev_get_by_name - find a device by its name
c4ea43c5 717 * @net: the applicable net namespace
1da177e4
LT
718 * @name: name to find
719 *
720 * Find an interface by name. Must be called under RTNL semaphore
721 * or @dev_base_lock. If the name is found a pointer to the device
722 * is returned. If the name is not found then %NULL is returned. The
723 * reference counters are not incremented so the caller must be
724 * careful with locks.
725 */
726
881d966b 727struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 728{
0bd8d536
ED
729 struct net_device *dev;
730 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 731
b67bfe0d 732 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
733 if (!strncmp(dev->name, name, IFNAMSIZ))
734 return dev;
0bd8d536 735
1da177e4
LT
736 return NULL;
737}
d1b19dff 738EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 739
72c9528b
ED
740/**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753{
72c9528b
ED
754 struct net_device *dev;
755 struct hlist_head *head = dev_name_hash(net, name);
756
b67bfe0d 757 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
758 if (!strncmp(dev->name, name, IFNAMSIZ))
759 return dev;
760
761 return NULL;
762}
763EXPORT_SYMBOL(dev_get_by_name_rcu);
764
1da177e4
LT
765/**
766 * dev_get_by_name - find a device by its name
c4ea43c5 767 * @net: the applicable net namespace
1da177e4
LT
768 * @name: name to find
769 *
770 * Find an interface by name. This can be called from any
771 * context and does its own locking. The returned handle has
772 * the usage count incremented and the caller must use dev_put() to
773 * release it when it is no longer needed. %NULL is returned if no
774 * matching device is found.
775 */
776
881d966b 777struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
778{
779 struct net_device *dev;
780
72c9528b
ED
781 rcu_read_lock();
782 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
783 if (dev)
784 dev_hold(dev);
72c9528b 785 rcu_read_unlock();
1da177e4
LT
786 return dev;
787}
d1b19dff 788EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
789
790/**
791 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 792 * @net: the applicable net namespace
1da177e4
LT
793 * @ifindex: index of device
794 *
795 * Search for an interface by index. Returns %NULL if the device
796 * is not found or a pointer to the device. The device has not
797 * had its reference counter increased so the caller must be careful
798 * about locking. The caller must hold either the RTNL semaphore
799 * or @dev_base_lock.
800 */
801
881d966b 802struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 803{
0bd8d536
ED
804 struct net_device *dev;
805 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 806
b67bfe0d 807 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
808 if (dev->ifindex == ifindex)
809 return dev;
0bd8d536 810
1da177e4
LT
811 return NULL;
812}
d1b19dff 813EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 814
fb699dfd
ED
815/**
816 * dev_get_by_index_rcu - find a device by its ifindex
817 * @net: the applicable net namespace
818 * @ifindex: index of device
819 *
820 * Search for an interface by index. Returns %NULL if the device
821 * is not found or a pointer to the device. The device has not
822 * had its reference counter increased so the caller must be careful
823 * about locking. The caller must hold RCU lock.
824 */
825
826struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827{
fb699dfd
ED
828 struct net_device *dev;
829 struct hlist_head *head = dev_index_hash(net, ifindex);
830
b67bfe0d 831 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
832 if (dev->ifindex == ifindex)
833 return dev;
834
835 return NULL;
836}
837EXPORT_SYMBOL(dev_get_by_index_rcu);
838
1da177e4
LT
839
840/**
841 * dev_get_by_index - find a device by its ifindex
c4ea43c5 842 * @net: the applicable net namespace
1da177e4
LT
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns NULL if the device
846 * is not found or a pointer to the device. The device returned has
847 * had a reference added and the pointer is safe until the user calls
848 * dev_put to indicate they have finished with it.
849 */
850
881d966b 851struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
852{
853 struct net_device *dev;
854
fb699dfd
ED
855 rcu_read_lock();
856 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
857 if (dev)
858 dev_hold(dev);
fb699dfd 859 rcu_read_unlock();
1da177e4
LT
860 return dev;
861}
d1b19dff 862EXPORT_SYMBOL(dev_get_by_index);
1da177e4 863
5dbe7c17
NS
864/**
865 * netdev_get_name - get a netdevice name, knowing its ifindex.
866 * @net: network namespace
867 * @name: a pointer to the buffer where the name will be stored.
868 * @ifindex: the ifindex of the interface to get the name from.
869 *
870 * The use of raw_seqcount_begin() and cond_resched() before
871 * retrying is required as we want to give the writers a chance
872 * to complete when CONFIG_PREEMPT is not set.
873 */
874int netdev_get_name(struct net *net, char *name, int ifindex)
875{
876 struct net_device *dev;
877 unsigned int seq;
878
879retry:
880 seq = raw_seqcount_begin(&devnet_rename_seq);
881 rcu_read_lock();
882 dev = dev_get_by_index_rcu(net, ifindex);
883 if (!dev) {
884 rcu_read_unlock();
885 return -ENODEV;
886 }
887
888 strcpy(name, dev->name);
889 rcu_read_unlock();
890 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 cond_resched();
892 goto retry;
893 }
894
895 return 0;
896}
897
1da177e4 898/**
941666c2 899 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 900 * @net: the applicable net namespace
1da177e4
LT
901 * @type: media type of device
902 * @ha: hardware address
903 *
904 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
905 * is not found or a pointer to the device.
906 * The caller must hold RCU or RTNL.
941666c2 907 * The returned device has not had its ref count increased
1da177e4
LT
908 * and the caller must therefore be careful about locking
909 *
1da177e4
LT
910 */
911
941666c2
ED
912struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 const char *ha)
1da177e4
LT
914{
915 struct net_device *dev;
916
941666c2 917 for_each_netdev_rcu(net, dev)
1da177e4
LT
918 if (dev->type == type &&
919 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
920 return dev;
921
922 return NULL;
1da177e4 923}
941666c2 924EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 925
881d966b 926struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
927{
928 struct net_device *dev;
929
4e9cac2b 930 ASSERT_RTNL();
881d966b 931 for_each_netdev(net, dev)
4e9cac2b 932 if (dev->type == type)
7562f876
PE
933 return dev;
934
935 return NULL;
4e9cac2b 936}
4e9cac2b
PM
937EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
881d966b 939struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 940{
99fe3c39 941 struct net_device *dev, *ret = NULL;
4e9cac2b 942
99fe3c39
ED
943 rcu_read_lock();
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
946 dev_hold(dev);
947 ret = dev;
948 break;
949 }
950 rcu_read_unlock();
951 return ret;
1da177e4 952}
1da177e4
LT
953EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955/**
6c555490 956 * __dev_get_by_flags - find any device with given flags
c4ea43c5 957 * @net: the applicable net namespace
1da177e4
LT
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
960 *
961 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 962 * is not found or a pointer to the device. Must be called inside
6c555490 963 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
964 */
965
6c555490
WC
966struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 unsigned short mask)
1da177e4 968{
7562f876 969 struct net_device *dev, *ret;
1da177e4 970
6c555490
WC
971 ASSERT_RTNL();
972
7562f876 973 ret = NULL;
6c555490 974 for_each_netdev(net, dev) {
1da177e4 975 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 976 ret = dev;
1da177e4
LT
977 break;
978 }
979 }
7562f876 980 return ret;
1da177e4 981}
6c555490 982EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
983
984/**
985 * dev_valid_name - check if name is okay for network device
986 * @name: name string
987 *
988 * Network device names need to be valid file names to
c7fa9d18
DM
989 * to allow sysfs to work. We also disallow any kind of
990 * whitespace.
1da177e4 991 */
95f050bf 992bool dev_valid_name(const char *name)
1da177e4 993{
c7fa9d18 994 if (*name == '\0')
95f050bf 995 return false;
b6fe17d6 996 if (strlen(name) >= IFNAMSIZ)
95f050bf 997 return false;
c7fa9d18 998 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 999 return false;
c7fa9d18
DM
1000
1001 while (*name) {
a4176a93 1002 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1003 return false;
c7fa9d18
DM
1004 name++;
1005 }
95f050bf 1006 return true;
1da177e4 1007}
d1b19dff 1008EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1009
1010/**
b267b179
EB
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1da177e4 1013 * @name: name format string
b267b179 1014 * @buf: scratch buffer and result name string
1da177e4
LT
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1023 */
1024
b267b179 1025static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1026{
1027 int i = 0;
1da177e4
LT
1028 const char *p;
1029 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1030 unsigned long *inuse;
1da177e4
LT
1031 struct net_device *d;
1032
1033 p = strnchr(name, IFNAMSIZ-1, '%');
1034 if (p) {
1035 /*
1036 * Verify the string as this thing may have come from
1037 * the user. There must be either one "%d" and no other "%"
1038 * characters.
1039 */
1040 if (p[1] != 'd' || strchr(p + 2, '%'))
1041 return -EINVAL;
1042
1043 /* Use one page as a bit array of possible slots */
cfcabdcc 1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1045 if (!inuse)
1046 return -ENOMEM;
1047
881d966b 1048 for_each_netdev(net, d) {
1da177e4
LT
1049 if (!sscanf(d->name, name, &i))
1050 continue;
1051 if (i < 0 || i >= max_netdevices)
1052 continue;
1053
1054 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1055 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1056 if (!strncmp(buf, d->name, IFNAMSIZ))
1057 set_bit(i, inuse);
1058 }
1059
1060 i = find_first_zero_bit(inuse, max_netdevices);
1061 free_page((unsigned long) inuse);
1062 }
1063
d9031024
OP
1064 if (buf != name)
1065 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1066 if (!__dev_get_by_name(net, buf))
1da177e4 1067 return i;
1da177e4
LT
1068
1069 /* It is possible to run out of possible slots
1070 * when the name is long and there isn't enough space left
1071 * for the digits, or if all bits are used.
1072 */
1073 return -ENFILE;
1074}
1075
b267b179
EB
1076/**
1077 * dev_alloc_name - allocate a name for a device
1078 * @dev: device
1079 * @name: name format string
1080 *
1081 * Passed a format string - eg "lt%d" it will try and find a suitable
1082 * id. It scans list of devices to build up a free map, then chooses
1083 * the first empty slot. The caller must hold the dev_base or rtnl lock
1084 * while allocating the name and adding the device in order to avoid
1085 * duplicates.
1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087 * Returns the number of the unit assigned or a negative errno code.
1088 */
1089
1090int dev_alloc_name(struct net_device *dev, const char *name)
1091{
1092 char buf[IFNAMSIZ];
1093 struct net *net;
1094 int ret;
1095
c346dca1
YH
1096 BUG_ON(!dev_net(dev));
1097 net = dev_net(dev);
b267b179
EB
1098 ret = __dev_alloc_name(net, name, buf);
1099 if (ret >= 0)
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1101 return ret;
1102}
d1b19dff 1103EXPORT_SYMBOL(dev_alloc_name);
b267b179 1104
828de4f6
G
1105static int dev_alloc_name_ns(struct net *net,
1106 struct net_device *dev,
1107 const char *name)
d9031024 1108{
828de4f6
G
1109 char buf[IFNAMSIZ];
1110 int ret;
8ce6cebc 1111
828de4f6
G
1112 ret = __dev_alloc_name(net, name, buf);
1113 if (ret >= 0)
1114 strlcpy(dev->name, buf, IFNAMSIZ);
1115 return ret;
1116}
1117
1118static int dev_get_valid_name(struct net *net,
1119 struct net_device *dev,
1120 const char *name)
1121{
1122 BUG_ON(!net);
8ce6cebc 1123
d9031024
OP
1124 if (!dev_valid_name(name))
1125 return -EINVAL;
1126
1c5cae81 1127 if (strchr(name, '%'))
828de4f6 1128 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1129 else if (__dev_get_by_name(net, name))
1130 return -EEXIST;
8ce6cebc
DL
1131 else if (dev->name != name)
1132 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1133
1134 return 0;
1135}
1da177e4
LT
1136
1137/**
1138 * dev_change_name - change name of a device
1139 * @dev: device
1140 * @newname: name (or format string) must be at least IFNAMSIZ
1141 *
1142 * Change name of a device, can pass format strings "eth%d".
1143 * for wildcarding.
1144 */
cf04a4c7 1145int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1146{
238fa362 1147 unsigned char old_assign_type;
fcc5a03a 1148 char oldname[IFNAMSIZ];
1da177e4 1149 int err = 0;
fcc5a03a 1150 int ret;
881d966b 1151 struct net *net;
1da177e4
LT
1152
1153 ASSERT_RTNL();
c346dca1 1154 BUG_ON(!dev_net(dev));
1da177e4 1155
c346dca1 1156 net = dev_net(dev);
1da177e4
LT
1157 if (dev->flags & IFF_UP)
1158 return -EBUSY;
1159
30e6c9fa 1160 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1161
1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1163 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1164 return 0;
c91f6df2 1165 }
c8d90dca 1166
fcc5a03a
HX
1167 memcpy(oldname, dev->name, IFNAMSIZ);
1168
828de4f6 1169 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1170 if (err < 0) {
30e6c9fa 1171 write_seqcount_end(&devnet_rename_seq);
d9031024 1172 return err;
c91f6df2 1173 }
1da177e4 1174
6fe82a39
VF
1175 if (oldname[0] && !strchr(oldname, '%'))
1176 netdev_info(dev, "renamed from %s\n", oldname);
1177
238fa362
TG
1178 old_assign_type = dev->name_assign_type;
1179 dev->name_assign_type = NET_NAME_RENAMED;
1180
fcc5a03a 1181rollback:
a1b3f594
EB
1182 ret = device_rename(&dev->dev, dev->name);
1183 if (ret) {
1184 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1185 dev->name_assign_type = old_assign_type;
30e6c9fa 1186 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1187 return ret;
dcc99773 1188 }
7f988eab 1189
30e6c9fa 1190 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1191
5bb025fa
VF
1192 netdev_adjacent_rename_links(dev, oldname);
1193
7f988eab 1194 write_lock_bh(&dev_base_lock);
372b2312 1195 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1196 write_unlock_bh(&dev_base_lock);
1197
1198 synchronize_rcu();
1199
1200 write_lock_bh(&dev_base_lock);
1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1202 write_unlock_bh(&dev_base_lock);
1203
056925ab 1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1205 ret = notifier_to_errno(ret);
1206
1207 if (ret) {
91e9c07b
ED
1208 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209 if (err >= 0) {
fcc5a03a 1210 err = ret;
30e6c9fa 1211 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1212 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1213 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1214 dev->name_assign_type = old_assign_type;
1215 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1216 goto rollback;
91e9c07b 1217 } else {
7b6cd1ce 1218 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1219 dev->name, ret);
fcc5a03a
HX
1220 }
1221 }
1da177e4
LT
1222
1223 return err;
1224}
1225
0b815a1a
SH
1226/**
1227 * dev_set_alias - change ifalias of a device
1228 * @dev: device
1229 * @alias: name up to IFALIASZ
f0db275a 1230 * @len: limit of bytes to copy from info
0b815a1a
SH
1231 *
1232 * Set ifalias for a device,
1233 */
1234int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235{
7364e445
AK
1236 char *new_ifalias;
1237
0b815a1a
SH
1238 ASSERT_RTNL();
1239
1240 if (len >= IFALIASZ)
1241 return -EINVAL;
1242
96ca4a2c 1243 if (!len) {
388dfc2d
SK
1244 kfree(dev->ifalias);
1245 dev->ifalias = NULL;
96ca4a2c
OH
1246 return 0;
1247 }
1248
7364e445
AK
1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 if (!new_ifalias)
0b815a1a 1251 return -ENOMEM;
7364e445 1252 dev->ifalias = new_ifalias;
0b815a1a
SH
1253
1254 strlcpy(dev->ifalias, alias, len+1);
1255 return len;
1256}
1257
1258
d8a33ac4 1259/**
3041a069 1260 * netdev_features_change - device changes features
d8a33ac4
SH
1261 * @dev: device to cause notification
1262 *
1263 * Called to indicate a device has changed features.
1264 */
1265void netdev_features_change(struct net_device *dev)
1266{
056925ab 1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1268}
1269EXPORT_SYMBOL(netdev_features_change);
1270
1da177e4
LT
1271/**
1272 * netdev_state_change - device changes state
1273 * @dev: device to cause notification
1274 *
1275 * Called to indicate a device has changed state. This function calls
1276 * the notifier chains for netdev_chain and sends a NEWLINK message
1277 * to the routing socket.
1278 */
1279void netdev_state_change(struct net_device *dev)
1280{
1281 if (dev->flags & IFF_UP) {
54951194
LP
1282 struct netdev_notifier_change_info change_info;
1283
1284 change_info.flags_changed = 0;
1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 &change_info.info);
7f294054 1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1288 }
1289}
d1b19dff 1290EXPORT_SYMBOL(netdev_state_change);
1da177e4 1291
ee89bab1
AW
1292/**
1293 * netdev_notify_peers - notify network peers about existence of @dev
1294 * @dev: network device
1295 *
1296 * Generate traffic such that interested network peers are aware of
1297 * @dev, such as by generating a gratuitous ARP. This may be used when
1298 * a device wants to inform the rest of the network about some sort of
1299 * reconfiguration such as a failover event or virtual machine
1300 * migration.
1301 */
1302void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1303{
ee89bab1
AW
1304 rtnl_lock();
1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 rtnl_unlock();
c1da4ac7 1307}
ee89bab1 1308EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1309
bd380811 1310static int __dev_open(struct net_device *dev)
1da177e4 1311{
d314774c 1312 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1313 int ret;
1da177e4 1314
e46b66bc
BH
1315 ASSERT_RTNL();
1316
1da177e4
LT
1317 if (!netif_device_present(dev))
1318 return -ENODEV;
1319
ca99ca14
NH
1320 /* Block netpoll from trying to do any rx path servicing.
1321 * If we don't do this there is a chance ndo_poll_controller
1322 * or ndo_poll may be running while we open the device
1323 */
66b5552f 1324 netpoll_poll_disable(dev);
ca99ca14 1325
3b8bcfd5
JB
1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 ret = notifier_to_errno(ret);
1328 if (ret)
1329 return ret;
1330
1da177e4 1331 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1332
d314774c
SH
1333 if (ops->ndo_validate_addr)
1334 ret = ops->ndo_validate_addr(dev);
bada339b 1335
d314774c
SH
1336 if (!ret && ops->ndo_open)
1337 ret = ops->ndo_open(dev);
1da177e4 1338
66b5552f 1339 netpoll_poll_enable(dev);
ca99ca14 1340
bada339b
JG
1341 if (ret)
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343 else {
1da177e4 1344 dev->flags |= IFF_UP;
4417da66 1345 dev_set_rx_mode(dev);
1da177e4 1346 dev_activate(dev);
7bf23575 1347 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1348 }
bada339b 1349
1da177e4
LT
1350 return ret;
1351}
1352
1353/**
bd380811
PM
1354 * dev_open - prepare an interface for use.
1355 * @dev: device to open
1da177e4 1356 *
bd380811
PM
1357 * Takes a device from down to up state. The device's private open
1358 * function is invoked and then the multicast lists are loaded. Finally
1359 * the device is moved into the up state and a %NETDEV_UP message is
1360 * sent to the netdev notifier chain.
1361 *
1362 * Calling this function on an active interface is a nop. On a failure
1363 * a negative errno code is returned.
1da177e4 1364 */
bd380811
PM
1365int dev_open(struct net_device *dev)
1366{
1367 int ret;
1368
bd380811
PM
1369 if (dev->flags & IFF_UP)
1370 return 0;
1371
bd380811
PM
1372 ret = __dev_open(dev);
1373 if (ret < 0)
1374 return ret;
1375
7f294054 1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1377 call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379 return ret;
1380}
1381EXPORT_SYMBOL(dev_open);
1382
44345724 1383static int __dev_close_many(struct list_head *head)
1da177e4 1384{
44345724 1385 struct net_device *dev;
e46b66bc 1386
bd380811 1387 ASSERT_RTNL();
9d5010db
DM
1388 might_sleep();
1389
5cde2829 1390 list_for_each_entry(dev, head, close_list) {
3f4df206 1391 /* Temporarily disable netpoll until the interface is down */
66b5552f 1392 netpoll_poll_disable(dev);
3f4df206 1393
44345724 1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1395
44345724 1396 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1397
44345724
OP
1398 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399 * can be even on different cpu. So just clear netif_running().
1400 *
1401 * dev->stop() will invoke napi_disable() on all of it's
1402 * napi_struct instances on this device.
1403 */
4e857c58 1404 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1405 }
1da177e4 1406
44345724 1407 dev_deactivate_many(head);
d8b2a4d2 1408
5cde2829 1409 list_for_each_entry(dev, head, close_list) {
44345724 1410 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1411
44345724
OP
1412 /*
1413 * Call the device specific close. This cannot fail.
1414 * Only if device is UP
1415 *
1416 * We allow it to be called even after a DETACH hot-plug
1417 * event.
1418 */
1419 if (ops->ndo_stop)
1420 ops->ndo_stop(dev);
1421
44345724 1422 dev->flags &= ~IFF_UP;
66b5552f 1423 netpoll_poll_enable(dev);
44345724
OP
1424 }
1425
1426 return 0;
1427}
1428
1429static int __dev_close(struct net_device *dev)
1430{
f87e6f47 1431 int retval;
44345724
OP
1432 LIST_HEAD(single);
1433
5cde2829 1434 list_add(&dev->close_list, &single);
f87e6f47
LT
1435 retval = __dev_close_many(&single);
1436 list_del(&single);
ca99ca14 1437
f87e6f47 1438 return retval;
44345724
OP
1439}
1440
99c4a26a 1441int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1442{
1443 struct net_device *dev, *tmp;
1da177e4 1444
5cde2829
EB
1445 /* Remove the devices that don't need to be closed */
1446 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1447 if (!(dev->flags & IFF_UP))
5cde2829 1448 list_del_init(&dev->close_list);
44345724
OP
1449
1450 __dev_close_many(head);
1da177e4 1451
5cde2829 1452 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1454 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1455 if (unlink)
1456 list_del_init(&dev->close_list);
44345724 1457 }
bd380811
PM
1458
1459 return 0;
1460}
99c4a26a 1461EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1462
1463/**
1464 * dev_close - shutdown an interface.
1465 * @dev: device to shutdown
1466 *
1467 * This function moves an active device into down state. A
1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470 * chain.
1471 */
1472int dev_close(struct net_device *dev)
1473{
e14a5993
ED
1474 if (dev->flags & IFF_UP) {
1475 LIST_HEAD(single);
1da177e4 1476
5cde2829 1477 list_add(&dev->close_list, &single);
99c4a26a 1478 dev_close_many(&single, true);
e14a5993
ED
1479 list_del(&single);
1480 }
da6e378b 1481 return 0;
1da177e4 1482}
d1b19dff 1483EXPORT_SYMBOL(dev_close);
1da177e4
LT
1484
1485
0187bdfb
BH
1486/**
1487 * dev_disable_lro - disable Large Receive Offload on a device
1488 * @dev: device
1489 *
1490 * Disable Large Receive Offload (LRO) on a net device. Must be
1491 * called under RTNL. This is needed if received packets may be
1492 * forwarded to another interface.
1493 */
1494void dev_disable_lro(struct net_device *dev)
1495{
fbe168ba
MK
1496 struct net_device *lower_dev;
1497 struct list_head *iter;
529d0489 1498
bc5787c6
MM
1499 dev->wanted_features &= ~NETIF_F_LRO;
1500 netdev_update_features(dev);
27660515 1501
22d5969f
MM
1502 if (unlikely(dev->features & NETIF_F_LRO))
1503 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1504
1505 netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 dev_disable_lro(lower_dev);
0187bdfb
BH
1507}
1508EXPORT_SYMBOL(dev_disable_lro);
1509
351638e7
JP
1510static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 struct net_device *dev)
1512{
1513 struct netdev_notifier_info info;
1514
1515 netdev_notifier_info_init(&info, dev);
1516 return nb->notifier_call(nb, val, &info);
1517}
0187bdfb 1518
881d966b
EB
1519static int dev_boot_phase = 1;
1520
1da177e4
LT
1521/**
1522 * register_netdevice_notifier - register a network notifier block
1523 * @nb: notifier
1524 *
1525 * Register a notifier to be called when network device events occur.
1526 * The notifier passed is linked into the kernel structures and must
1527 * not be reused until it has been unregistered. A negative errno code
1528 * is returned on a failure.
1529 *
1530 * When registered all registration and up events are replayed
4ec93edb 1531 * to the new notifier to allow device to have a race free
1da177e4
LT
1532 * view of the network device list.
1533 */
1534
1535int register_netdevice_notifier(struct notifier_block *nb)
1536{
1537 struct net_device *dev;
fcc5a03a 1538 struct net_device *last;
881d966b 1539 struct net *net;
1da177e4
LT
1540 int err;
1541
1542 rtnl_lock();
f07d5b94 1543 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1544 if (err)
1545 goto unlock;
881d966b
EB
1546 if (dev_boot_phase)
1547 goto unlock;
1548 for_each_net(net) {
1549 for_each_netdev(net, dev) {
351638e7 1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1551 err = notifier_to_errno(err);
1552 if (err)
1553 goto rollback;
1554
1555 if (!(dev->flags & IFF_UP))
1556 continue;
1da177e4 1557
351638e7 1558 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1559 }
1da177e4 1560 }
fcc5a03a
HX
1561
1562unlock:
1da177e4
LT
1563 rtnl_unlock();
1564 return err;
fcc5a03a
HX
1565
1566rollback:
1567 last = dev;
881d966b
EB
1568 for_each_net(net) {
1569 for_each_netdev(net, dev) {
1570 if (dev == last)
8f891489 1571 goto outroll;
fcc5a03a 1572
881d966b 1573 if (dev->flags & IFF_UP) {
351638e7
JP
1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 dev);
1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1577 }
351638e7 1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1579 }
fcc5a03a 1580 }
c67625a1 1581
8f891489 1582outroll:
c67625a1 1583 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1584 goto unlock;
1da177e4 1585}
d1b19dff 1586EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1587
1588/**
1589 * unregister_netdevice_notifier - unregister a network notifier block
1590 * @nb: notifier
1591 *
1592 * Unregister a notifier previously registered by
1593 * register_netdevice_notifier(). The notifier is unlinked into the
1594 * kernel structures and may then be reused. A negative errno code
1595 * is returned on a failure.
7d3d43da
EB
1596 *
1597 * After unregistering unregister and down device events are synthesized
1598 * for all devices on the device list to the removed notifier to remove
1599 * the need for special case cleanup code.
1da177e4
LT
1600 */
1601
1602int unregister_netdevice_notifier(struct notifier_block *nb)
1603{
7d3d43da
EB
1604 struct net_device *dev;
1605 struct net *net;
9f514950
HX
1606 int err;
1607
1608 rtnl_lock();
f07d5b94 1609 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1610 if (err)
1611 goto unlock;
1612
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 if (dev->flags & IFF_UP) {
351638e7
JP
1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 dev);
1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1619 }
351638e7 1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1621 }
1622 }
1623unlock:
9f514950
HX
1624 rtnl_unlock();
1625 return err;
1da177e4 1626}
d1b19dff 1627EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1628
351638e7
JP
1629/**
1630 * call_netdevice_notifiers_info - call all network notifier blocks
1631 * @val: value passed unmodified to notifier function
1632 * @dev: net_device pointer passed unmodified to notifier function
1633 * @info: notifier information data
1634 *
1635 * Call all network notifier blocks. Parameters and return value
1636 * are as for raw_notifier_call_chain().
1637 */
1638
1d143d9f 1639static int call_netdevice_notifiers_info(unsigned long val,
1640 struct net_device *dev,
1641 struct netdev_notifier_info *info)
351638e7
JP
1642{
1643 ASSERT_RTNL();
1644 netdev_notifier_info_init(info, dev);
1645 return raw_notifier_call_chain(&netdev_chain, val, info);
1646}
351638e7 1647
1da177e4
LT
1648/**
1649 * call_netdevice_notifiers - call all network notifier blocks
1650 * @val: value passed unmodified to notifier function
c4ea43c5 1651 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1652 *
1653 * Call all network notifier blocks. Parameters and return value
f07d5b94 1654 * are as for raw_notifier_call_chain().
1da177e4
LT
1655 */
1656
ad7379d4 1657int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1658{
351638e7
JP
1659 struct netdev_notifier_info info;
1660
1661 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1662}
edf947f1 1663EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1664
1cf51900 1665#ifdef CONFIG_NET_INGRESS
4577139b
DB
1666static struct static_key ingress_needed __read_mostly;
1667
1668void net_inc_ingress_queue(void)
1669{
1670 static_key_slow_inc(&ingress_needed);
1671}
1672EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674void net_dec_ingress_queue(void)
1675{
1676 static_key_slow_dec(&ingress_needed);
1677}
1678EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679#endif
1680
1f211a1b
DB
1681#ifdef CONFIG_NET_EGRESS
1682static struct static_key egress_needed __read_mostly;
1683
1684void net_inc_egress_queue(void)
1685{
1686 static_key_slow_inc(&egress_needed);
1687}
1688EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690void net_dec_egress_queue(void)
1691{
1692 static_key_slow_dec(&egress_needed);
1693}
1694EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695#endif
1696
c5905afb 1697static struct static_key netstamp_needed __read_mostly;
b90e5794 1698#ifdef HAVE_JUMP_LABEL
c5905afb 1699/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1700 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1701 * static_key_slow_dec() calls.
b90e5794
ED
1702 */
1703static atomic_t netstamp_needed_deferred;
1704#endif
1da177e4
LT
1705
1706void net_enable_timestamp(void)
1707{
b90e5794
ED
1708#ifdef HAVE_JUMP_LABEL
1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711 if (deferred) {
1712 while (--deferred)
c5905afb 1713 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1714 return;
1715 }
1716#endif
c5905afb 1717 static_key_slow_inc(&netstamp_needed);
1da177e4 1718}
d1b19dff 1719EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1720
1721void net_disable_timestamp(void)
1722{
b90e5794
ED
1723#ifdef HAVE_JUMP_LABEL
1724 if (in_interrupt()) {
1725 atomic_inc(&netstamp_needed_deferred);
1726 return;
1727 }
1728#endif
c5905afb 1729 static_key_slow_dec(&netstamp_needed);
1da177e4 1730}
d1b19dff 1731EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1732
3b098e2d 1733static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1734{
588f0330 1735 skb->tstamp.tv64 = 0;
c5905afb 1736 if (static_key_false(&netstamp_needed))
a61bbcf2 1737 __net_timestamp(skb);
1da177e4
LT
1738}
1739
588f0330 1740#define net_timestamp_check(COND, SKB) \
c5905afb 1741 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1742 if ((COND) && !(SKB)->tstamp.tv64) \
1743 __net_timestamp(SKB); \
1744 } \
3b098e2d 1745
f4b05d27 1746bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1747{
1748 unsigned int len;
1749
1750 if (!(dev->flags & IFF_UP))
1751 return false;
1752
1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 if (skb->len <= len)
1755 return true;
1756
1757 /* if TSO is enabled, we don't care about the length as the packet
1758 * could be forwarded without being segmented before
1759 */
1760 if (skb_is_gso(skb))
1761 return true;
1762
1763 return false;
1764}
1ee481fb 1765EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1766
a0265d28
HX
1767int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768{
bbbf2df0
WB
1769 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1771 atomic_long_inc(&dev->rx_dropped);
1772 kfree_skb(skb);
1773 return NET_RX_DROP;
1774 }
1775
1776 skb_scrub_packet(skb, true);
08b4b8ea 1777 skb->priority = 0;
a0265d28 1778 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1780
1781 return 0;
1782}
1783EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
44540960
AB
1785/**
1786 * dev_forward_skb - loopback an skb to another netif
1787 *
1788 * @dev: destination network device
1789 * @skb: buffer to forward
1790 *
1791 * return values:
1792 * NET_RX_SUCCESS (no congestion)
6ec82562 1793 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1794 *
1795 * dev_forward_skb can be used for injecting an skb from the
1796 * start_xmit function of one device into the receive queue
1797 * of another device.
1798 *
1799 * The receiving device may be in another namespace, so
1800 * we have to clear all information in the skb that could
1801 * impact namespace isolation.
1802 */
1803int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804{
a0265d28 1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1806}
1807EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
71d9dec2
CG
1809static inline int deliver_skb(struct sk_buff *skb,
1810 struct packet_type *pt_prev,
1811 struct net_device *orig_dev)
1812{
1080e512
MT
1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 return -ENOMEM;
71d9dec2
CG
1815 atomic_inc(&skb->users);
1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817}
1818
7866a621
SN
1819static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 struct packet_type **pt,
fbcb2170
JP
1821 struct net_device *orig_dev,
1822 __be16 type,
7866a621
SN
1823 struct list_head *ptype_list)
1824{
1825 struct packet_type *ptype, *pt_prev = *pt;
1826
1827 list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 if (ptype->type != type)
1829 continue;
1830 if (pt_prev)
fbcb2170 1831 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1832 pt_prev = ptype;
1833 }
1834 *pt = pt_prev;
1835}
1836
c0de08d0
EL
1837static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838{
a3d744e9 1839 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1840 return false;
1841
1842 if (ptype->id_match)
1843 return ptype->id_match(ptype, skb->sk);
1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 return true;
1846
1847 return false;
1848}
1849
1da177e4
LT
1850/*
1851 * Support routine. Sends outgoing frames to any network
1852 * taps currently in use.
1853 */
1854
74b20582 1855void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1856{
1857 struct packet_type *ptype;
71d9dec2
CG
1858 struct sk_buff *skb2 = NULL;
1859 struct packet_type *pt_prev = NULL;
7866a621 1860 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1861
1da177e4 1862 rcu_read_lock();
7866a621
SN
1863again:
1864 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1865 /* Never send packets back to the socket
1866 * they originated from - MvS (miquels@drinkel.ow.org)
1867 */
7866a621
SN
1868 if (skb_loop_sk(ptype, skb))
1869 continue;
71d9dec2 1870
7866a621
SN
1871 if (pt_prev) {
1872 deliver_skb(skb2, pt_prev, skb->dev);
1873 pt_prev = ptype;
1874 continue;
1875 }
1da177e4 1876
7866a621
SN
1877 /* need to clone skb, done only once */
1878 skb2 = skb_clone(skb, GFP_ATOMIC);
1879 if (!skb2)
1880 goto out_unlock;
70978182 1881
7866a621 1882 net_timestamp_set(skb2);
1da177e4 1883
7866a621
SN
1884 /* skb->nh should be correctly
1885 * set by sender, so that the second statement is
1886 * just protection against buggy protocols.
1887 */
1888 skb_reset_mac_header(skb2);
1889
1890 if (skb_network_header(skb2) < skb2->data ||
1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 ntohs(skb2->protocol),
1894 dev->name);
1895 skb_reset_network_header(skb2);
1da177e4 1896 }
7866a621
SN
1897
1898 skb2->transport_header = skb2->network_header;
1899 skb2->pkt_type = PACKET_OUTGOING;
1900 pt_prev = ptype;
1901 }
1902
1903 if (ptype_list == &ptype_all) {
1904 ptype_list = &dev->ptype_all;
1905 goto again;
1da177e4 1906 }
7866a621 1907out_unlock:
71d9dec2
CG
1908 if (pt_prev)
1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1910 rcu_read_unlock();
1911}
74b20582 1912EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1913
2c53040f
BH
1914/**
1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1916 * @dev: Network device
1917 * @txq: number of queues available
1918 *
1919 * If real_num_tx_queues is changed the tc mappings may no longer be
1920 * valid. To resolve this verify the tc mapping remains valid and if
1921 * not NULL the mapping. With no priorities mapping to this
1922 * offset/count pair it will no longer be used. In the worst case TC0
1923 * is invalid nothing can be done so disable priority mappings. If is
1924 * expected that drivers will fix this mapping if they can before
1925 * calling netif_set_real_num_tx_queues.
1926 */
bb134d22 1927static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1928{
1929 int i;
1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932 /* If TC0 is invalidated disable TC mapping */
1933 if (tc->offset + tc->count > txq) {
7b6cd1ce 1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1935 dev->num_tc = 0;
1936 return;
1937 }
1938
1939 /* Invalidated prio to tc mappings set to TC0 */
1940 for (i = 1; i < TC_BITMASK + 1; i++) {
1941 int q = netdev_get_prio_tc_map(dev, i);
1942
1943 tc = &dev->tc_to_txq[q];
1944 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 i, q);
4f57c087
JF
1947 netdev_set_prio_tc_map(dev, i, 0);
1948 }
1949 }
1950}
1951
537c00de
AD
1952#ifdef CONFIG_XPS
1953static DEFINE_MUTEX(xps_map_mutex);
1954#define xmap_dereference(P) \
1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
10cdc3f3
AD
1957static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 int cpu, u16 index)
537c00de 1959{
10cdc3f3
AD
1960 struct xps_map *map = NULL;
1961 int pos;
537c00de 1962
10cdc3f3
AD
1963 if (dev_maps)
1964 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1965
10cdc3f3
AD
1966 for (pos = 0; map && pos < map->len; pos++) {
1967 if (map->queues[pos] == index) {
537c00de
AD
1968 if (map->len > 1) {
1969 map->queues[pos] = map->queues[--map->len];
1970 } else {
10cdc3f3 1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1972 kfree_rcu(map, rcu);
1973 map = NULL;
1974 }
10cdc3f3 1975 break;
537c00de 1976 }
537c00de
AD
1977 }
1978
10cdc3f3
AD
1979 return map;
1980}
1981
024e9679 1982static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1983{
1984 struct xps_dev_maps *dev_maps;
024e9679 1985 int cpu, i;
10cdc3f3
AD
1986 bool active = false;
1987
1988 mutex_lock(&xps_map_mutex);
1989 dev_maps = xmap_dereference(dev->xps_maps);
1990
1991 if (!dev_maps)
1992 goto out_no_maps;
1993
1994 for_each_possible_cpu(cpu) {
024e9679
AD
1995 for (i = index; i < dev->num_tx_queues; i++) {
1996 if (!remove_xps_queue(dev_maps, cpu, i))
1997 break;
1998 }
1999 if (i == dev->num_tx_queues)
10cdc3f3
AD
2000 active = true;
2001 }
2002
2003 if (!active) {
537c00de
AD
2004 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 kfree_rcu(dev_maps, rcu);
2006 }
2007
024e9679
AD
2008 for (i = index; i < dev->num_tx_queues; i++)
2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 NUMA_NO_NODE);
2011
537c00de
AD
2012out_no_maps:
2013 mutex_unlock(&xps_map_mutex);
2014}
2015
01c5f864
AD
2016static struct xps_map *expand_xps_map(struct xps_map *map,
2017 int cpu, u16 index)
2018{
2019 struct xps_map *new_map;
2020 int alloc_len = XPS_MIN_MAP_ALLOC;
2021 int i, pos;
2022
2023 for (pos = 0; map && pos < map->len; pos++) {
2024 if (map->queues[pos] != index)
2025 continue;
2026 return map;
2027 }
2028
2029 /* Need to add queue to this CPU's existing map */
2030 if (map) {
2031 if (pos < map->alloc_len)
2032 return map;
2033
2034 alloc_len = map->alloc_len * 2;
2035 }
2036
2037 /* Need to allocate new map to store queue on this CPU's map */
2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 cpu_to_node(cpu));
2040 if (!new_map)
2041 return NULL;
2042
2043 for (i = 0; i < pos; i++)
2044 new_map->queues[i] = map->queues[i];
2045 new_map->alloc_len = alloc_len;
2046 new_map->len = pos;
2047
2048 return new_map;
2049}
2050
3573540c
MT
2051int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 u16 index)
537c00de 2053{
01c5f864 2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2055 struct xps_map *map, *new_map;
537c00de 2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2057 int cpu, numa_node_id = -2;
2058 bool active = false;
537c00de
AD
2059
2060 mutex_lock(&xps_map_mutex);
2061
2062 dev_maps = xmap_dereference(dev->xps_maps);
2063
01c5f864
AD
2064 /* allocate memory for queue storage */
2065 for_each_online_cpu(cpu) {
2066 if (!cpumask_test_cpu(cpu, mask))
2067 continue;
2068
2069 if (!new_dev_maps)
2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2071 if (!new_dev_maps) {
2072 mutex_unlock(&xps_map_mutex);
01c5f864 2073 return -ENOMEM;
2bb60cb9 2074 }
01c5f864
AD
2075
2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 NULL;
2078
2079 map = expand_xps_map(map, cpu, index);
2080 if (!map)
2081 goto error;
2082
2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 }
2085
2086 if (!new_dev_maps)
2087 goto out_no_new_maps;
2088
537c00de 2089 for_each_possible_cpu(cpu) {
01c5f864
AD
2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 /* add queue to CPU maps */
2092 int pos = 0;
2093
2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 while ((pos < map->len) && (map->queues[pos] != index))
2096 pos++;
2097
2098 if (pos == map->len)
2099 map->queues[map->len++] = index;
537c00de 2100#ifdef CONFIG_NUMA
537c00de
AD
2101 if (numa_node_id == -2)
2102 numa_node_id = cpu_to_node(cpu);
2103 else if (numa_node_id != cpu_to_node(cpu))
2104 numa_node_id = -1;
537c00de 2105#endif
01c5f864
AD
2106 } else if (dev_maps) {
2107 /* fill in the new device map from the old device map */
2108 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2110 }
01c5f864 2111
537c00de
AD
2112 }
2113
01c5f864
AD
2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
537c00de 2116 /* Cleanup old maps */
01c5f864
AD
2117 if (dev_maps) {
2118 for_each_possible_cpu(cpu) {
2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 if (map && map != new_map)
2122 kfree_rcu(map, rcu);
2123 }
537c00de 2124
01c5f864 2125 kfree_rcu(dev_maps, rcu);
537c00de
AD
2126 }
2127
01c5f864
AD
2128 dev_maps = new_dev_maps;
2129 active = true;
537c00de 2130
01c5f864
AD
2131out_no_new_maps:
2132 /* update Tx queue numa node */
537c00de
AD
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 (numa_node_id >= 0) ? numa_node_id :
2135 NUMA_NO_NODE);
2136
01c5f864
AD
2137 if (!dev_maps)
2138 goto out_no_maps;
2139
2140 /* removes queue from unused CPUs */
2141 for_each_possible_cpu(cpu) {
2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 continue;
2144
2145 if (remove_xps_queue(dev_maps, cpu, index))
2146 active = true;
2147 }
2148
2149 /* free map if not active */
2150 if (!active) {
2151 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 kfree_rcu(dev_maps, rcu);
2153 }
2154
2155out_no_maps:
537c00de
AD
2156 mutex_unlock(&xps_map_mutex);
2157
2158 return 0;
2159error:
01c5f864
AD
2160 /* remove any maps that we added */
2161 for_each_possible_cpu(cpu) {
2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 NULL;
2165 if (new_map && new_map != map)
2166 kfree(new_map);
2167 }
2168
537c00de
AD
2169 mutex_unlock(&xps_map_mutex);
2170
537c00de
AD
2171 kfree(new_dev_maps);
2172 return -ENOMEM;
2173}
2174EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176#endif
f0796d5c
JF
2177/*
2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180 */
e6484930 2181int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2182{
1d24eb48
TH
2183 int rc;
2184
e6484930
TH
2185 if (txq < 1 || txq > dev->num_tx_queues)
2186 return -EINVAL;
f0796d5c 2187
5c56580b
BH
2188 if (dev->reg_state == NETREG_REGISTERED ||
2189 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2190 ASSERT_RTNL();
2191
1d24eb48
TH
2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 txq);
bf264145
TH
2194 if (rc)
2195 return rc;
2196
4f57c087
JF
2197 if (dev->num_tc)
2198 netif_setup_tc(dev, txq);
2199
024e9679 2200 if (txq < dev->real_num_tx_queues) {
e6484930 2201 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2202#ifdef CONFIG_XPS
2203 netif_reset_xps_queues_gt(dev, txq);
2204#endif
2205 }
f0796d5c 2206 }
e6484930
TH
2207
2208 dev->real_num_tx_queues = txq;
2209 return 0;
f0796d5c
JF
2210}
2211EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2212
a953be53 2213#ifdef CONFIG_SYSFS
62fe0b40
BH
2214/**
2215 * netif_set_real_num_rx_queues - set actual number of RX queues used
2216 * @dev: Network device
2217 * @rxq: Actual number of RX queues
2218 *
2219 * This must be called either with the rtnl_lock held or before
2220 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2221 * negative error code. If called before registration, it always
2222 * succeeds.
62fe0b40
BH
2223 */
2224int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225{
2226 int rc;
2227
bd25fa7b
TH
2228 if (rxq < 1 || rxq > dev->num_rx_queues)
2229 return -EINVAL;
2230
62fe0b40
BH
2231 if (dev->reg_state == NETREG_REGISTERED) {
2232 ASSERT_RTNL();
2233
62fe0b40
BH
2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 rxq);
2236 if (rc)
2237 return rc;
62fe0b40
BH
2238 }
2239
2240 dev->real_num_rx_queues = rxq;
2241 return 0;
2242}
2243EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244#endif
2245
2c53040f
BH
2246/**
2247 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2248 *
2249 * This routine should set an upper limit on the number of RSS queues
2250 * used by default by multiqueue devices.
2251 */
a55b138b 2252int netif_get_num_default_rss_queues(void)
16917b87 2253{
40e4e713
HS
2254 return is_kdump_kernel() ?
2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2256}
2257EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
3bcb846c 2259static void __netif_reschedule(struct Qdisc *q)
56079431 2260{
def82a1d
JP
2261 struct softnet_data *sd;
2262 unsigned long flags;
56079431 2263
def82a1d 2264 local_irq_save(flags);
903ceff7 2265 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2266 q->next_sched = NULL;
2267 *sd->output_queue_tailp = q;
2268 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2271}
2272
2273void __netif_schedule(struct Qdisc *q)
2274{
2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 __netif_reschedule(q);
56079431
DV
2277}
2278EXPORT_SYMBOL(__netif_schedule);
2279
e6247027
ED
2280struct dev_kfree_skb_cb {
2281 enum skb_free_reason reason;
2282};
2283
2284static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2285{
e6247027
ED
2286 return (struct dev_kfree_skb_cb *)skb->cb;
2287}
2288
46e5da40
JF
2289void netif_schedule_queue(struct netdev_queue *txq)
2290{
2291 rcu_read_lock();
2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295 __netif_schedule(q);
2296 }
2297 rcu_read_unlock();
2298}
2299EXPORT_SYMBOL(netif_schedule_queue);
2300
2301/**
2302 * netif_wake_subqueue - allow sending packets on subqueue
2303 * @dev: network device
2304 * @queue_index: sub queue index
2305 *
2306 * Resume individual transmit queue of a device with multiple transmit queues.
2307 */
2308void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309{
2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 struct Qdisc *q;
2314
2315 rcu_read_lock();
2316 q = rcu_dereference(txq->qdisc);
2317 __netif_schedule(q);
2318 rcu_read_unlock();
2319 }
2320}
2321EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324{
2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 struct Qdisc *q;
2327
2328 rcu_read_lock();
2329 q = rcu_dereference(dev_queue->qdisc);
2330 __netif_schedule(q);
2331 rcu_read_unlock();
2332 }
2333}
2334EXPORT_SYMBOL(netif_tx_wake_queue);
2335
e6247027 2336void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2337{
e6247027 2338 unsigned long flags;
56079431 2339
e6247027
ED
2340 if (likely(atomic_read(&skb->users) == 1)) {
2341 smp_rmb();
2342 atomic_set(&skb->users, 0);
2343 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 return;
bea3348e 2345 }
e6247027
ED
2346 get_kfree_skb_cb(skb)->reason = reason;
2347 local_irq_save(flags);
2348 skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 __this_cpu_write(softnet_data.completion_queue, skb);
2350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 local_irq_restore(flags);
56079431 2352}
e6247027 2353EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2354
e6247027 2355void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2356{
2357 if (in_irq() || irqs_disabled())
e6247027 2358 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2359 else
2360 dev_kfree_skb(skb);
2361}
e6247027 2362EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2363
2364
bea3348e
SH
2365/**
2366 * netif_device_detach - mark device as removed
2367 * @dev: network device
2368 *
2369 * Mark device as removed from system and therefore no longer available.
2370 */
56079431
DV
2371void netif_device_detach(struct net_device *dev)
2372{
2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 netif_running(dev)) {
d543103a 2375 netif_tx_stop_all_queues(dev);
56079431
DV
2376 }
2377}
2378EXPORT_SYMBOL(netif_device_detach);
2379
bea3348e
SH
2380/**
2381 * netif_device_attach - mark device as attached
2382 * @dev: network device
2383 *
2384 * Mark device as attached from system and restart if needed.
2385 */
56079431
DV
2386void netif_device_attach(struct net_device *dev)
2387{
2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 netif_running(dev)) {
d543103a 2390 netif_tx_wake_all_queues(dev);
4ec93edb 2391 __netdev_watchdog_up(dev);
56079431
DV
2392 }
2393}
2394EXPORT_SYMBOL(netif_device_attach);
2395
5605c762
JP
2396/*
2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398 * to be used as a distribution range.
2399 */
2400u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 unsigned int num_tx_queues)
2402{
2403 u32 hash;
2404 u16 qoffset = 0;
2405 u16 qcount = num_tx_queues;
2406
2407 if (skb_rx_queue_recorded(skb)) {
2408 hash = skb_get_rx_queue(skb);
2409 while (unlikely(hash >= num_tx_queues))
2410 hash -= num_tx_queues;
2411 return hash;
2412 }
2413
2414 if (dev->num_tc) {
2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 qoffset = dev->tc_to_txq[tc].offset;
2417 qcount = dev->tc_to_txq[tc].count;
2418 }
2419
2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421}
2422EXPORT_SYMBOL(__skb_tx_hash);
2423
36c92474
BH
2424static void skb_warn_bad_offload(const struct sk_buff *skb)
2425{
84d15ae5 2426 static const netdev_features_t null_features;
36c92474 2427 struct net_device *dev = skb->dev;
88ad4175 2428 const char *name = "";
36c92474 2429
c846ad9b
BG
2430 if (!net_ratelimit())
2431 return;
2432
88ad4175
BM
2433 if (dev) {
2434 if (dev->dev.parent)
2435 name = dev_driver_string(dev->dev.parent);
2436 else
2437 name = netdev_name(dev);
2438 }
36c92474
BH
2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 "gso_type=%d ip_summed=%d\n",
88ad4175 2441 name, dev ? &dev->features : &null_features,
65e9d2fa 2442 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 skb_shinfo(skb)->gso_type, skb->ip_summed);
2445}
2446
1da177e4
LT
2447/*
2448 * Invalidate hardware checksum when packet is to be mangled, and
2449 * complete checksum manually on outgoing path.
2450 */
84fa7933 2451int skb_checksum_help(struct sk_buff *skb)
1da177e4 2452{
d3bc23e7 2453 __wsum csum;
663ead3b 2454 int ret = 0, offset;
1da177e4 2455
84fa7933 2456 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2457 goto out_set_summed;
2458
2459 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2460 skb_warn_bad_offload(skb);
2461 return -EINVAL;
1da177e4
LT
2462 }
2463
cef401de
ED
2464 /* Before computing a checksum, we should make sure no frag could
2465 * be modified by an external entity : checksum could be wrong.
2466 */
2467 if (skb_has_shared_frag(skb)) {
2468 ret = __skb_linearize(skb);
2469 if (ret)
2470 goto out;
2471 }
2472
55508d60 2473 offset = skb_checksum_start_offset(skb);
a030847e
HX
2474 BUG_ON(offset >= skb_headlen(skb));
2475 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477 offset += skb->csum_offset;
2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480 if (skb_cloned(skb) &&
2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 if (ret)
2484 goto out;
2485 }
2486
a030847e 2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2488out_set_summed:
1da177e4 2489 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2490out:
1da177e4
LT
2491 return ret;
2492}
d1b19dff 2493EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2494
6ae23ad3
TH
2495/* skb_csum_offload_check - Driver helper function to determine if a device
2496 * with limited checksum offload capabilities is able to offload the checksum
2497 * for a given packet.
2498 *
2499 * Arguments:
2500 * skb - sk_buff for the packet in question
2501 * spec - contains the description of what device can offload
2502 * csum_encapped - returns true if the checksum being offloaded is
2503 * encpasulated. That is it is checksum for the transport header
2504 * in the inner headers.
2505 * checksum_help - when set indicates that helper function should
2506 * call skb_checksum_help if offload checks fail
2507 *
2508 * Returns:
2509 * true: Packet has passed the checksum checks and should be offloadable to
2510 * the device (a driver may still need to check for additional
2511 * restrictions of its device)
2512 * false: Checksum is not offloadable. If checksum_help was set then
2513 * skb_checksum_help was called to resolve checksum for non-GSO
2514 * packets and when IP protocol is not SCTP
2515 */
2516bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 const struct skb_csum_offl_spec *spec,
2518 bool *csum_encapped,
2519 bool csum_help)
2520{
2521 struct iphdr *iph;
2522 struct ipv6hdr *ipv6;
2523 void *nhdr;
2524 int protocol;
2525 u8 ip_proto;
2526
2527 if (skb->protocol == htons(ETH_P_8021Q) ||
2528 skb->protocol == htons(ETH_P_8021AD)) {
2529 if (!spec->vlan_okay)
2530 goto need_help;
2531 }
2532
2533 /* We check whether the checksum refers to a transport layer checksum in
2534 * the outermost header or an encapsulated transport layer checksum that
2535 * corresponds to the inner headers of the skb. If the checksum is for
2536 * something else in the packet we need help.
2537 */
2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 /* Non-encapsulated checksum */
2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 nhdr = skb_network_header(skb);
2542 *csum_encapped = false;
2543 if (spec->no_not_encapped)
2544 goto need_help;
2545 } else if (skb->encapsulation && spec->encap_okay &&
2546 skb_checksum_start_offset(skb) ==
2547 skb_inner_transport_offset(skb)) {
2548 /* Encapsulated checksum */
2549 *csum_encapped = true;
2550 switch (skb->inner_protocol_type) {
2551 case ENCAP_TYPE_ETHER:
2552 protocol = eproto_to_ipproto(skb->inner_protocol);
2553 break;
2554 case ENCAP_TYPE_IPPROTO:
2555 protocol = skb->inner_protocol;
2556 break;
2557 }
2558 nhdr = skb_inner_network_header(skb);
2559 } else {
2560 goto need_help;
2561 }
2562
2563 switch (protocol) {
2564 case IPPROTO_IP:
2565 if (!spec->ipv4_okay)
2566 goto need_help;
2567 iph = nhdr;
2568 ip_proto = iph->protocol;
2569 if (iph->ihl != 5 && !spec->ip_options_okay)
2570 goto need_help;
2571 break;
2572 case IPPROTO_IPV6:
2573 if (!spec->ipv6_okay)
2574 goto need_help;
2575 if (spec->no_encapped_ipv6 && *csum_encapped)
2576 goto need_help;
2577 ipv6 = nhdr;
2578 nhdr += sizeof(*ipv6);
2579 ip_proto = ipv6->nexthdr;
2580 break;
2581 default:
2582 goto need_help;
2583 }
2584
2585ip_proto_again:
2586 switch (ip_proto) {
2587 case IPPROTO_TCP:
2588 if (!spec->tcp_okay ||
2589 skb->csum_offset != offsetof(struct tcphdr, check))
2590 goto need_help;
2591 break;
2592 case IPPROTO_UDP:
2593 if (!spec->udp_okay ||
2594 skb->csum_offset != offsetof(struct udphdr, check))
2595 goto need_help;
2596 break;
2597 case IPPROTO_SCTP:
2598 if (!spec->sctp_okay ||
2599 skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 goto cant_help;
2601 break;
2602 case NEXTHDR_HOP:
2603 case NEXTHDR_ROUTING:
2604 case NEXTHDR_DEST: {
2605 u8 *opthdr = nhdr;
2606
2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 goto need_help;
2609
2610 ip_proto = opthdr[0];
2611 nhdr += (opthdr[1] + 1) << 3;
2612
2613 goto ip_proto_again;
2614 }
2615 default:
2616 goto need_help;
2617 }
2618
2619 /* Passed the tests for offloading checksum */
2620 return true;
2621
2622need_help:
2623 if (csum_help && !skb_shinfo(skb)->gso_size)
2624 skb_checksum_help(skb);
2625cant_help:
2626 return false;
2627}
2628EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
53d6471c 2630__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2631{
252e3346 2632 __be16 type = skb->protocol;
f6a78bfc 2633
19acc327
PS
2634 /* Tunnel gso handlers can set protocol to ethernet. */
2635 if (type == htons(ETH_P_TEB)) {
2636 struct ethhdr *eth;
2637
2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 return 0;
2640
2641 eth = (struct ethhdr *)skb_mac_header(skb);
2642 type = eth->h_proto;
2643 }
2644
d4bcef3f 2645 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2646}
2647
2648/**
2649 * skb_mac_gso_segment - mac layer segmentation handler.
2650 * @skb: buffer to segment
2651 * @features: features for the output path (see dev->features)
2652 */
2653struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 netdev_features_t features)
2655{
2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 struct packet_offload *ptype;
53d6471c
VY
2658 int vlan_depth = skb->mac_len;
2659 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2660
2661 if (unlikely(!type))
2662 return ERR_PTR(-EINVAL);
2663
53d6471c 2664 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2665
2666 rcu_read_lock();
22061d80 2667 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2668 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2669 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2670 break;
2671 }
2672 }
2673 rcu_read_unlock();
2674
98e399f8 2675 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2676
f6a78bfc
HX
2677 return segs;
2678}
05e8ef4a
PS
2679EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682/* openvswitch calls this on rx path, so we need a different check.
2683 */
2684static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685{
2686 if (tx_path)
2687 return skb->ip_summed != CHECKSUM_PARTIAL;
2688 else
2689 return skb->ip_summed == CHECKSUM_NONE;
2690}
2691
2692/**
2693 * __skb_gso_segment - Perform segmentation on skb.
2694 * @skb: buffer to segment
2695 * @features: features for the output path (see dev->features)
2696 * @tx_path: whether it is called in TX path
2697 *
2698 * This function segments the given skb and returns a list of segments.
2699 *
2700 * It may return NULL if the skb requires no segmentation. This is
2701 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2702 *
2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2704 */
2705struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 netdev_features_t features, bool tx_path)
2707{
2708 if (unlikely(skb_needs_check(skb, tx_path))) {
2709 int err;
2710
2711 skb_warn_bad_offload(skb);
2712
a40e0a66 2713 err = skb_cow_head(skb, 0);
2714 if (err < 0)
05e8ef4a
PS
2715 return ERR_PTR(err);
2716 }
2717
802ab55a
AD
2718 /* Only report GSO partial support if it will enable us to
2719 * support segmentation on this frame without needing additional
2720 * work.
2721 */
2722 if (features & NETIF_F_GSO_PARTIAL) {
2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 struct net_device *dev = skb->dev;
2725
2726 partial_features |= dev->features & dev->gso_partial_features;
2727 if (!skb_gso_ok(skb, features | partial_features))
2728 features &= ~NETIF_F_GSO_PARTIAL;
2729 }
2730
9207f9d4
KK
2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
68c33163 2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2735 SKB_GSO_CB(skb)->encap_level = 0;
2736
05e8ef4a
PS
2737 skb_reset_mac_header(skb);
2738 skb_reset_mac_len(skb);
2739
2740 return skb_mac_gso_segment(skb, features);
2741}
12b0004d 2742EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2743
fb286bb2
HX
2744/* Take action when hardware reception checksum errors are detected. */
2745#ifdef CONFIG_BUG
2746void netdev_rx_csum_fault(struct net_device *dev)
2747{
2748 if (net_ratelimit()) {
7b6cd1ce 2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2750 dump_stack();
2751 }
2752}
2753EXPORT_SYMBOL(netdev_rx_csum_fault);
2754#endif
2755
1da177e4
LT
2756/* Actually, we should eliminate this check as soon as we know, that:
2757 * 1. IOMMU is present and allows to map all the memory.
2758 * 2. No high memory really exists on this machine.
2759 */
2760
c1e756bf 2761static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2762{
3d3a8533 2763#ifdef CONFIG_HIGHMEM
1da177e4 2764 int i;
5acbbd42 2765 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2769 return 1;
ea2ab693 2770 }
5acbbd42 2771 }
1da177e4 2772
5acbbd42
FT
2773 if (PCI_DMA_BUS_IS_PHYS) {
2774 struct device *pdev = dev->dev.parent;
1da177e4 2775
9092c658
ED
2776 if (!pdev)
2777 return 0;
5acbbd42 2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 return 1;
2783 }
2784 }
3d3a8533 2785#endif
1da177e4
LT
2786 return 0;
2787}
1da177e4 2788
3b392ddb
SH
2789/* If MPLS offload request, verify we are testing hardware MPLS features
2790 * instead of standard features for the netdev.
2791 */
d0edc7bf 2792#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2793static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 netdev_features_t features,
2795 __be16 type)
2796{
25cd9ba0 2797 if (eth_p_mpls(type))
3b392ddb
SH
2798 features &= skb->dev->mpls_features;
2799
2800 return features;
2801}
2802#else
2803static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 netdev_features_t features,
2805 __be16 type)
2806{
2807 return features;
2808}
2809#endif
2810
c8f44aff 2811static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2812 netdev_features_t features)
f01a5236 2813{
53d6471c 2814 int tmp;
3b392ddb
SH
2815 __be16 type;
2816
2817 type = skb_network_protocol(skb, &tmp);
2818 features = net_mpls_features(skb, features, type);
53d6471c 2819
c0d680e5 2820 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2821 !can_checksum_protocol(features, type)) {
996e8021 2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2823 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2824 features &= ~NETIF_F_SG;
2825 }
2826
2827 return features;
2828}
2829
e38f3025
TM
2830netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 struct net_device *dev,
2832 netdev_features_t features)
2833{
2834 return features;
2835}
2836EXPORT_SYMBOL(passthru_features_check);
2837
8cb65d00
TM
2838static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 struct net_device *dev,
2840 netdev_features_t features)
2841{
2842 return vlan_features_check(skb, features);
2843}
2844
cbc53e08
AD
2845static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 struct net_device *dev,
2847 netdev_features_t features)
2848{
2849 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851 if (gso_segs > dev->gso_max_segs)
2852 return features & ~NETIF_F_GSO_MASK;
2853
802ab55a
AD
2854 /* Support for GSO partial features requires software
2855 * intervention before we can actually process the packets
2856 * so we need to strip support for any partial features now
2857 * and we can pull them back in after we have partially
2858 * segmented the frame.
2859 */
2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 features &= ~dev->gso_partial_features;
2862
2863 /* Make sure to clear the IPv4 ID mangling feature if the
2864 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2865 */
2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 struct iphdr *iph = skb->encapsulation ?
2868 inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870 if (!(iph->frag_off & htons(IP_DF)))
2871 features &= ~NETIF_F_TSO_MANGLEID;
2872 }
2873
2874 return features;
2875}
2876
c1e756bf 2877netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2878{
5f35227e 2879 struct net_device *dev = skb->dev;
fcbeb976 2880 netdev_features_t features = dev->features;
58e998c6 2881
cbc53e08
AD
2882 if (skb_is_gso(skb))
2883 features = gso_features_check(skb, dev, features);
30b678d8 2884
5f35227e
JG
2885 /* If encapsulation offload request, verify we are testing
2886 * hardware encapsulation features instead of standard
2887 * features for the netdev
2888 */
2889 if (skb->encapsulation)
2890 features &= dev->hw_enc_features;
2891
f5a7fb88
TM
2892 if (skb_vlan_tagged(skb))
2893 features = netdev_intersect_features(features,
2894 dev->vlan_features |
2895 NETIF_F_HW_VLAN_CTAG_TX |
2896 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2897
5f35227e
JG
2898 if (dev->netdev_ops->ndo_features_check)
2899 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 features);
8cb65d00
TM
2901 else
2902 features &= dflt_features_check(skb, dev, features);
5f35227e 2903
c1e756bf 2904 return harmonize_features(skb, features);
58e998c6 2905}
c1e756bf 2906EXPORT_SYMBOL(netif_skb_features);
58e998c6 2907
2ea25513 2908static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2909 struct netdev_queue *txq, bool more)
f6a78bfc 2910{
2ea25513
DM
2911 unsigned int len;
2912 int rc;
00829823 2913
7866a621 2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2915 dev_queue_xmit_nit(skb, dev);
fc741216 2916
2ea25513
DM
2917 len = skb->len;
2918 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2919 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2920 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2921
2ea25513
DM
2922 return rc;
2923}
7b9c6090 2924
8dcda22a
DM
2925struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2927{
2928 struct sk_buff *skb = first;
2929 int rc = NETDEV_TX_OK;
7b9c6090 2930
7f2e870f
DM
2931 while (skb) {
2932 struct sk_buff *next = skb->next;
fc70fb64 2933
7f2e870f 2934 skb->next = NULL;
95f6b3dd 2935 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2936 if (unlikely(!dev_xmit_complete(rc))) {
2937 skb->next = next;
2938 goto out;
2939 }
6afff0ca 2940
7f2e870f
DM
2941 skb = next;
2942 if (netif_xmit_stopped(txq) && skb) {
2943 rc = NETDEV_TX_BUSY;
2944 break;
9ccb8975 2945 }
7f2e870f 2946 }
9ccb8975 2947
7f2e870f
DM
2948out:
2949 *ret = rc;
2950 return skb;
2951}
b40863c6 2952
1ff0dc94
ED
2953static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 netdev_features_t features)
f6a78bfc 2955{
df8a39de 2956 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2957 !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2959 return skb;
2960}
f6a78bfc 2961
55a93b3e 2962static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2963{
2964 netdev_features_t features;
f6a78bfc 2965
eae3f88e
DM
2966 features = netif_skb_features(skb);
2967 skb = validate_xmit_vlan(skb, features);
2968 if (unlikely(!skb))
2969 goto out_null;
7b9c6090 2970
8b86a61d 2971 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2972 struct sk_buff *segs;
2973
2974 segs = skb_gso_segment(skb, features);
cecda693 2975 if (IS_ERR(segs)) {
af6dabc9 2976 goto out_kfree_skb;
cecda693
JW
2977 } else if (segs) {
2978 consume_skb(skb);
2979 skb = segs;
f6a78bfc 2980 }
eae3f88e
DM
2981 } else {
2982 if (skb_needs_linearize(skb, features) &&
2983 __skb_linearize(skb))
2984 goto out_kfree_skb;
4ec93edb 2985
eae3f88e
DM
2986 /* If packet is not checksummed and device does not
2987 * support checksumming for this protocol, complete
2988 * checksumming here.
2989 */
2990 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 if (skb->encapsulation)
2992 skb_set_inner_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 else
2995 skb_set_transport_header(skb,
2996 skb_checksum_start_offset(skb));
a188222b 2997 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2998 skb_checksum_help(skb))
2999 goto out_kfree_skb;
7b9c6090 3000 }
0c772159 3001 }
7b9c6090 3002
eae3f88e 3003 return skb;
fc70fb64 3004
f6a78bfc
HX
3005out_kfree_skb:
3006 kfree_skb(skb);
eae3f88e 3007out_null:
d21fd63e 3008 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3009 return NULL;
3010}
6afff0ca 3011
55a93b3e
ED
3012struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013{
3014 struct sk_buff *next, *head = NULL, *tail;
3015
bec3cfdc 3016 for (; skb != NULL; skb = next) {
55a93b3e
ED
3017 next = skb->next;
3018 skb->next = NULL;
bec3cfdc
ED
3019
3020 /* in case skb wont be segmented, point to itself */
3021 skb->prev = skb;
3022
55a93b3e 3023 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3024 if (!skb)
3025 continue;
55a93b3e 3026
bec3cfdc
ED
3027 if (!head)
3028 head = skb;
3029 else
3030 tail->next = skb;
3031 /* If skb was segmented, skb->prev points to
3032 * the last segment. If not, it still contains skb.
3033 */
3034 tail = skb->prev;
55a93b3e
ED
3035 }
3036 return head;
f6a78bfc
HX
3037}
3038
1def9238
ED
3039static void qdisc_pkt_len_init(struct sk_buff *skb)
3040{
3041 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043 qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045 /* To get more precise estimation of bytes sent on wire,
3046 * we add to pkt_len the headers size of all segments
3047 */
3048 if (shinfo->gso_size) {
757b8b1d 3049 unsigned int hdr_len;
15e5a030 3050 u16 gso_segs = shinfo->gso_segs;
1def9238 3051
757b8b1d
ED
3052 /* mac layer + network layer */
3053 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055 /* + transport layer */
1def9238
ED
3056 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057 hdr_len += tcp_hdrlen(skb);
3058 else
3059 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3060
3061 if (shinfo->gso_type & SKB_GSO_DODGY)
3062 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063 shinfo->gso_size);
3064
3065 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3066 }
3067}
3068
bbd8a0d3
KK
3069static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070 struct net_device *dev,
3071 struct netdev_queue *txq)
3072{
3073 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3074 struct sk_buff *to_free = NULL;
a2da570d 3075 bool contended;
bbd8a0d3
KK
3076 int rc;
3077
a2da570d 3078 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3079 /*
3080 * Heuristic to force contended enqueues to serialize on a
3081 * separate lock before trying to get qdisc main lock.
f9eb8aea 3082 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3083 * often and dequeue packets faster.
79640a4c 3084 */
a2da570d 3085 contended = qdisc_is_running(q);
79640a4c
ED
3086 if (unlikely(contended))
3087 spin_lock(&q->busylock);
3088
bbd8a0d3
KK
3089 spin_lock(root_lock);
3090 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3091 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3092 rc = NET_XMIT_DROP;
3093 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3094 qdisc_run_begin(q)) {
bbd8a0d3
KK
3095 /*
3096 * This is a work-conserving queue; there are no old skbs
3097 * waiting to be sent out; and the qdisc is not running -
3098 * xmit the skb directly.
3099 */
bfe0d029 3100
bfe0d029
ED
3101 qdisc_bstats_update(q, skb);
3102
55a93b3e 3103 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3104 if (unlikely(contended)) {
3105 spin_unlock(&q->busylock);
3106 contended = false;
3107 }
bbd8a0d3 3108 __qdisc_run(q);
79640a4c 3109 } else
bc135b23 3110 qdisc_run_end(q);
bbd8a0d3
KK
3111
3112 rc = NET_XMIT_SUCCESS;
3113 } else {
520ac30f 3114 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3115 if (qdisc_run_begin(q)) {
3116 if (unlikely(contended)) {
3117 spin_unlock(&q->busylock);
3118 contended = false;
3119 }
3120 __qdisc_run(q);
3121 }
bbd8a0d3
KK
3122 }
3123 spin_unlock(root_lock);
520ac30f
ED
3124 if (unlikely(to_free))
3125 kfree_skb_list(to_free);
79640a4c
ED
3126 if (unlikely(contended))
3127 spin_unlock(&q->busylock);
bbd8a0d3
KK
3128 return rc;
3129}
3130
86f8515f 3131#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3132static void skb_update_prio(struct sk_buff *skb)
3133{
6977a79d 3134 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3135
91c68ce2 3136 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3137 unsigned int prioidx =
3138 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3139
3140 if (prioidx < map->priomap_len)
3141 skb->priority = map->priomap[prioidx];
3142 }
5bc1421e
NH
3143}
3144#else
3145#define skb_update_prio(skb)
3146#endif
3147
f60e5990 3148DEFINE_PER_CPU(int, xmit_recursion);
3149EXPORT_SYMBOL(xmit_recursion);
3150
95603e22
MM
3151/**
3152 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3153 * @net: network namespace this loopback is happening in
3154 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3155 * @skb: buffer to transmit
3156 */
0c4b51f0 3157int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3158{
3159 skb_reset_mac_header(skb);
3160 __skb_pull(skb, skb_network_offset(skb));
3161 skb->pkt_type = PACKET_LOOPBACK;
3162 skb->ip_summed = CHECKSUM_UNNECESSARY;
3163 WARN_ON(!skb_dst(skb));
3164 skb_dst_force(skb);
3165 netif_rx_ni(skb);
3166 return 0;
3167}
3168EXPORT_SYMBOL(dev_loopback_xmit);
3169
1f211a1b
DB
3170#ifdef CONFIG_NET_EGRESS
3171static struct sk_buff *
3172sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173{
3174 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175 struct tcf_result cl_res;
3176
3177 if (!cl)
3178 return skb;
3179
3180 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181 * earlier by the caller.
3182 */
3183 qdisc_bstats_cpu_update(cl->q, skb);
3184
3185 switch (tc_classify(skb, cl, &cl_res, false)) {
3186 case TC_ACT_OK:
3187 case TC_ACT_RECLASSIFY:
3188 skb->tc_index = TC_H_MIN(cl_res.classid);
3189 break;
3190 case TC_ACT_SHOT:
3191 qdisc_qstats_cpu_drop(cl->q);
3192 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3193 kfree_skb(skb);
3194 return NULL;
1f211a1b
DB
3195 case TC_ACT_STOLEN:
3196 case TC_ACT_QUEUED:
3197 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3198 consume_skb(skb);
1f211a1b
DB
3199 return NULL;
3200 case TC_ACT_REDIRECT:
3201 /* No need to push/pop skb's mac_header here on egress! */
3202 skb_do_redirect(skb);
3203 *ret = NET_XMIT_SUCCESS;
3204 return NULL;
3205 default:
3206 break;
3207 }
3208
3209 return skb;
3210}
3211#endif /* CONFIG_NET_EGRESS */
3212
638b2a69
JP
3213static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214{
3215#ifdef CONFIG_XPS
3216 struct xps_dev_maps *dev_maps;
3217 struct xps_map *map;
3218 int queue_index = -1;
3219
3220 rcu_read_lock();
3221 dev_maps = rcu_dereference(dev->xps_maps);
3222 if (dev_maps) {
3223 map = rcu_dereference(
3224 dev_maps->cpu_map[skb->sender_cpu - 1]);
3225 if (map) {
3226 if (map->len == 1)
3227 queue_index = map->queues[0];
3228 else
3229 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230 map->len)];
3231 if (unlikely(queue_index >= dev->real_num_tx_queues))
3232 queue_index = -1;
3233 }
3234 }
3235 rcu_read_unlock();
3236
3237 return queue_index;
3238#else
3239 return -1;
3240#endif
3241}
3242
3243static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244{
3245 struct sock *sk = skb->sk;
3246 int queue_index = sk_tx_queue_get(sk);
3247
3248 if (queue_index < 0 || skb->ooo_okay ||
3249 queue_index >= dev->real_num_tx_queues) {
3250 int new_index = get_xps_queue(dev, skb);
3251 if (new_index < 0)
3252 new_index = skb_tx_hash(dev, skb);
3253
3254 if (queue_index != new_index && sk &&
004a5d01 3255 sk_fullsock(sk) &&
638b2a69
JP
3256 rcu_access_pointer(sk->sk_dst_cache))
3257 sk_tx_queue_set(sk, new_index);
3258
3259 queue_index = new_index;
3260 }
3261
3262 return queue_index;
3263}
3264
3265struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266 struct sk_buff *skb,
3267 void *accel_priv)
3268{
3269 int queue_index = 0;
3270
3271#ifdef CONFIG_XPS
52bd2d62
ED
3272 u32 sender_cpu = skb->sender_cpu - 1;
3273
3274 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3275 skb->sender_cpu = raw_smp_processor_id() + 1;
3276#endif
3277
3278 if (dev->real_num_tx_queues != 1) {
3279 const struct net_device_ops *ops = dev->netdev_ops;
3280 if (ops->ndo_select_queue)
3281 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282 __netdev_pick_tx);
3283 else
3284 queue_index = __netdev_pick_tx(dev, skb);
3285
3286 if (!accel_priv)
3287 queue_index = netdev_cap_txqueue(dev, queue_index);
3288 }
3289
3290 skb_set_queue_mapping(skb, queue_index);
3291 return netdev_get_tx_queue(dev, queue_index);
3292}
3293
d29f749e 3294/**
9d08dd3d 3295 * __dev_queue_xmit - transmit a buffer
d29f749e 3296 * @skb: buffer to transmit
9d08dd3d 3297 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3298 *
3299 * Queue a buffer for transmission to a network device. The caller must
3300 * have set the device and priority and built the buffer before calling
3301 * this function. The function can be called from an interrupt.
3302 *
3303 * A negative errno code is returned on a failure. A success does not
3304 * guarantee the frame will be transmitted as it may be dropped due
3305 * to congestion or traffic shaping.
3306 *
3307 * -----------------------------------------------------------------------------------
3308 * I notice this method can also return errors from the queue disciplines,
3309 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3310 * be positive.
3311 *
3312 * Regardless of the return value, the skb is consumed, so it is currently
3313 * difficult to retry a send to this method. (You can bump the ref count
3314 * before sending to hold a reference for retry if you are careful.)
3315 *
3316 * When calling this method, interrupts MUST be enabled. This is because
3317 * the BH enable code must have IRQs enabled so that it will not deadlock.
3318 * --BLG
3319 */
0a59f3a9 3320static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3321{
3322 struct net_device *dev = skb->dev;
dc2b4847 3323 struct netdev_queue *txq;
1da177e4
LT
3324 struct Qdisc *q;
3325 int rc = -ENOMEM;
3326
6d1ccff6
ED
3327 skb_reset_mac_header(skb);
3328
e7fd2885
WB
3329 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
4ec93edb
YH
3332 /* Disable soft irqs for various locks below. Also
3333 * stops preemption for RCU.
1da177e4 3334 */
4ec93edb 3335 rcu_read_lock_bh();
1da177e4 3336
5bc1421e
NH
3337 skb_update_prio(skb);
3338
1f211a1b
DB
3339 qdisc_pkt_len_init(skb);
3340#ifdef CONFIG_NET_CLS_ACT
3341 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342# ifdef CONFIG_NET_EGRESS
3343 if (static_key_false(&egress_needed)) {
3344 skb = sch_handle_egress(skb, &rc, dev);
3345 if (!skb)
3346 goto out;
3347 }
3348# endif
3349#endif
02875878
ED
3350 /* If device/qdisc don't need skb->dst, release it right now while
3351 * its hot in this cpu cache.
3352 */
3353 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354 skb_dst_drop(skb);
3355 else
3356 skb_dst_force(skb);
3357
f663dd9a 3358 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3359 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3360
cf66ba58 3361 trace_net_dev_queue(skb);
1da177e4 3362 if (q->enqueue) {
bbd8a0d3 3363 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3364 goto out;
1da177e4
LT
3365 }
3366
3367 /* The device has no queue. Common case for software devices:
3368 loopback, all the sorts of tunnels...
3369
932ff279
HX
3370 Really, it is unlikely that netif_tx_lock protection is necessary
3371 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3372 counters.)
3373 However, it is possible, that they rely on protection
3374 made by us here.
3375
3376 Check this and shot the lock. It is not prone from deadlocks.
3377 Either shot noqueue qdisc, it is even simpler 8)
3378 */
3379 if (dev->flags & IFF_UP) {
3380 int cpu = smp_processor_id(); /* ok because BHs are off */
3381
c773e847 3382 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3383 if (unlikely(__this_cpu_read(xmit_recursion) >
3384 XMIT_RECURSION_LIMIT))
745e20f1
ED
3385 goto recursion_alert;
3386
1f59533f
JDB
3387 skb = validate_xmit_skb(skb, dev);
3388 if (!skb)
d21fd63e 3389 goto out;
1f59533f 3390
c773e847 3391 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3392
73466498 3393 if (!netif_xmit_stopped(txq)) {
745e20f1 3394 __this_cpu_inc(xmit_recursion);
ce93718f 3395 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3396 __this_cpu_dec(xmit_recursion);
572a9d7b 3397 if (dev_xmit_complete(rc)) {
c773e847 3398 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3399 goto out;
3400 }
3401 }
c773e847 3402 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3403 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3404 dev->name);
1da177e4
LT
3405 } else {
3406 /* Recursion is detected! It is possible,
745e20f1
ED
3407 * unfortunately
3408 */
3409recursion_alert:
e87cc472
JP
3410 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3411 dev->name);
1da177e4
LT
3412 }
3413 }
3414
3415 rc = -ENETDOWN;
d4828d85 3416 rcu_read_unlock_bh();
1da177e4 3417
015f0688 3418 atomic_long_inc(&dev->tx_dropped);
1f59533f 3419 kfree_skb_list(skb);
1da177e4
LT
3420 return rc;
3421out:
d4828d85 3422 rcu_read_unlock_bh();
1da177e4
LT
3423 return rc;
3424}
f663dd9a 3425
2b4aa3ce 3426int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3427{
3428 return __dev_queue_xmit(skb, NULL);
3429}
2b4aa3ce 3430EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3431
f663dd9a
JW
3432int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3433{
3434 return __dev_queue_xmit(skb, accel_priv);
3435}
3436EXPORT_SYMBOL(dev_queue_xmit_accel);
3437
1da177e4
LT
3438
3439/*=======================================================================
3440 Receiver routines
3441 =======================================================================*/
3442
6b2bedc3 3443int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3444EXPORT_SYMBOL(netdev_max_backlog);
3445
3b098e2d 3446int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3447int netdev_budget __read_mostly = 300;
3448int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3449
eecfd7c4
ED
3450/* Called with irq disabled */
3451static inline void ____napi_schedule(struct softnet_data *sd,
3452 struct napi_struct *napi)
3453{
3454 list_add_tail(&napi->poll_list, &sd->poll_list);
3455 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3456}
3457
bfb564e7
KK
3458#ifdef CONFIG_RPS
3459
3460/* One global table that all flow-based protocols share. */
6e3f7faf 3461struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3462EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3463u32 rps_cpu_mask __read_mostly;
3464EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3465
c5905afb 3466struct static_key rps_needed __read_mostly;
3df97ba8 3467EXPORT_SYMBOL(rps_needed);
adc9300e 3468
c445477d
BH
3469static struct rps_dev_flow *
3470set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3471 struct rps_dev_flow *rflow, u16 next_cpu)
3472{
a31196b0 3473 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3474#ifdef CONFIG_RFS_ACCEL
3475 struct netdev_rx_queue *rxqueue;
3476 struct rps_dev_flow_table *flow_table;
3477 struct rps_dev_flow *old_rflow;
3478 u32 flow_id;
3479 u16 rxq_index;
3480 int rc;
3481
3482 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3483 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3484 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3485 goto out;
3486 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3487 if (rxq_index == skb_get_rx_queue(skb))
3488 goto out;
3489
3490 rxqueue = dev->_rx + rxq_index;
3491 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3492 if (!flow_table)
3493 goto out;
61b905da 3494 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3495 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3496 rxq_index, flow_id);
3497 if (rc < 0)
3498 goto out;
3499 old_rflow = rflow;
3500 rflow = &flow_table->flows[flow_id];
c445477d
BH
3501 rflow->filter = rc;
3502 if (old_rflow->filter == rflow->filter)
3503 old_rflow->filter = RPS_NO_FILTER;
3504 out:
3505#endif
3506 rflow->last_qtail =
09994d1b 3507 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3508 }
3509
09994d1b 3510 rflow->cpu = next_cpu;
c445477d
BH
3511 return rflow;
3512}
3513
bfb564e7
KK
3514/*
3515 * get_rps_cpu is called from netif_receive_skb and returns the target
3516 * CPU from the RPS map of the receiving queue for a given skb.
3517 * rcu_read_lock must be held on entry.
3518 */
3519static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3520 struct rps_dev_flow **rflowp)
3521{
567e4b79
ED
3522 const struct rps_sock_flow_table *sock_flow_table;
3523 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3524 struct rps_dev_flow_table *flow_table;
567e4b79 3525 struct rps_map *map;
bfb564e7 3526 int cpu = -1;
567e4b79 3527 u32 tcpu;
61b905da 3528 u32 hash;
bfb564e7
KK
3529
3530 if (skb_rx_queue_recorded(skb)) {
3531 u16 index = skb_get_rx_queue(skb);
567e4b79 3532
62fe0b40
BH
3533 if (unlikely(index >= dev->real_num_rx_queues)) {
3534 WARN_ONCE(dev->real_num_rx_queues > 1,
3535 "%s received packet on queue %u, but number "
3536 "of RX queues is %u\n",
3537 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3538 goto done;
3539 }
567e4b79
ED
3540 rxqueue += index;
3541 }
bfb564e7 3542
567e4b79
ED
3543 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3544
3545 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3546 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3547 if (!flow_table && !map)
bfb564e7
KK
3548 goto done;
3549
2d47b459 3550 skb_reset_network_header(skb);
61b905da
TH
3551 hash = skb_get_hash(skb);
3552 if (!hash)
bfb564e7
KK
3553 goto done;
3554
fec5e652
TH
3555 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3556 if (flow_table && sock_flow_table) {
fec5e652 3557 struct rps_dev_flow *rflow;
567e4b79
ED
3558 u32 next_cpu;
3559 u32 ident;
3560
3561 /* First check into global flow table if there is a match */
3562 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3563 if ((ident ^ hash) & ~rps_cpu_mask)
3564 goto try_rps;
fec5e652 3565
567e4b79
ED
3566 next_cpu = ident & rps_cpu_mask;
3567
3568 /* OK, now we know there is a match,
3569 * we can look at the local (per receive queue) flow table
3570 */
61b905da 3571 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3572 tcpu = rflow->cpu;
3573
fec5e652
TH
3574 /*
3575 * If the desired CPU (where last recvmsg was done) is
3576 * different from current CPU (one in the rx-queue flow
3577 * table entry), switch if one of the following holds:
a31196b0 3578 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3579 * - Current CPU is offline.
3580 * - The current CPU's queue tail has advanced beyond the
3581 * last packet that was enqueued using this table entry.
3582 * This guarantees that all previous packets for the flow
3583 * have been dequeued, thus preserving in order delivery.
3584 */
3585 if (unlikely(tcpu != next_cpu) &&
a31196b0 3586 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3587 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3588 rflow->last_qtail)) >= 0)) {
3589 tcpu = next_cpu;
c445477d 3590 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3591 }
c445477d 3592
a31196b0 3593 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3594 *rflowp = rflow;
3595 cpu = tcpu;
3596 goto done;
3597 }
3598 }
3599
567e4b79
ED
3600try_rps:
3601
0a9627f2 3602 if (map) {
8fc54f68 3603 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3604 if (cpu_online(tcpu)) {
3605 cpu = tcpu;
3606 goto done;
3607 }
3608 }
3609
3610done:
0a9627f2
TH
3611 return cpu;
3612}
3613
c445477d
BH
3614#ifdef CONFIG_RFS_ACCEL
3615
3616/**
3617 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3618 * @dev: Device on which the filter was set
3619 * @rxq_index: RX queue index
3620 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3621 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3622 *
3623 * Drivers that implement ndo_rx_flow_steer() should periodically call
3624 * this function for each installed filter and remove the filters for
3625 * which it returns %true.
3626 */
3627bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3628 u32 flow_id, u16 filter_id)
3629{
3630 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3631 struct rps_dev_flow_table *flow_table;
3632 struct rps_dev_flow *rflow;
3633 bool expire = true;
a31196b0 3634 unsigned int cpu;
c445477d
BH
3635
3636 rcu_read_lock();
3637 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638 if (flow_table && flow_id <= flow_table->mask) {
3639 rflow = &flow_table->flows[flow_id];
3640 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3641 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3642 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3643 rflow->last_qtail) <
3644 (int)(10 * flow_table->mask)))
3645 expire = false;
3646 }
3647 rcu_read_unlock();
3648 return expire;
3649}
3650EXPORT_SYMBOL(rps_may_expire_flow);
3651
3652#endif /* CONFIG_RFS_ACCEL */
3653
0a9627f2 3654/* Called from hardirq (IPI) context */
e36fa2f7 3655static void rps_trigger_softirq(void *data)
0a9627f2 3656{
e36fa2f7
ED
3657 struct softnet_data *sd = data;
3658
eecfd7c4 3659 ____napi_schedule(sd, &sd->backlog);
dee42870 3660 sd->received_rps++;
0a9627f2 3661}
e36fa2f7 3662
fec5e652 3663#endif /* CONFIG_RPS */
0a9627f2 3664
e36fa2f7
ED
3665/*
3666 * Check if this softnet_data structure is another cpu one
3667 * If yes, queue it to our IPI list and return 1
3668 * If no, return 0
3669 */
3670static int rps_ipi_queued(struct softnet_data *sd)
3671{
3672#ifdef CONFIG_RPS
903ceff7 3673 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3674
3675 if (sd != mysd) {
3676 sd->rps_ipi_next = mysd->rps_ipi_list;
3677 mysd->rps_ipi_list = sd;
3678
3679 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3680 return 1;
3681 }
3682#endif /* CONFIG_RPS */
3683 return 0;
3684}
3685
99bbc707
WB
3686#ifdef CONFIG_NET_FLOW_LIMIT
3687int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3688#endif
3689
3690static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3691{
3692#ifdef CONFIG_NET_FLOW_LIMIT
3693 struct sd_flow_limit *fl;
3694 struct softnet_data *sd;
3695 unsigned int old_flow, new_flow;
3696
3697 if (qlen < (netdev_max_backlog >> 1))
3698 return false;
3699
903ceff7 3700 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3701
3702 rcu_read_lock();
3703 fl = rcu_dereference(sd->flow_limit);
3704 if (fl) {
3958afa1 3705 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3706 old_flow = fl->history[fl->history_head];
3707 fl->history[fl->history_head] = new_flow;
3708
3709 fl->history_head++;
3710 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3711
3712 if (likely(fl->buckets[old_flow]))
3713 fl->buckets[old_flow]--;
3714
3715 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3716 fl->count++;
3717 rcu_read_unlock();
3718 return true;
3719 }
3720 }
3721 rcu_read_unlock();
3722#endif
3723 return false;
3724}
3725
0a9627f2
TH
3726/*
3727 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3728 * queue (may be a remote CPU queue).
3729 */
fec5e652
TH
3730static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3731 unsigned int *qtail)
0a9627f2 3732{
e36fa2f7 3733 struct softnet_data *sd;
0a9627f2 3734 unsigned long flags;
99bbc707 3735 unsigned int qlen;
0a9627f2 3736
e36fa2f7 3737 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3738
3739 local_irq_save(flags);
0a9627f2 3740
e36fa2f7 3741 rps_lock(sd);
e9e4dd32
JA
3742 if (!netif_running(skb->dev))
3743 goto drop;
99bbc707
WB
3744 qlen = skb_queue_len(&sd->input_pkt_queue);
3745 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3746 if (qlen) {
0a9627f2 3747enqueue:
e36fa2f7 3748 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3749 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3750 rps_unlock(sd);
152102c7 3751 local_irq_restore(flags);
0a9627f2
TH
3752 return NET_RX_SUCCESS;
3753 }
3754
ebda37c2
ED
3755 /* Schedule NAPI for backlog device
3756 * We can use non atomic operation since we own the queue lock
3757 */
3758 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3759 if (!rps_ipi_queued(sd))
eecfd7c4 3760 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3761 }
3762 goto enqueue;
3763 }
3764
e9e4dd32 3765drop:
dee42870 3766 sd->dropped++;
e36fa2f7 3767 rps_unlock(sd);
0a9627f2 3768
0a9627f2
TH
3769 local_irq_restore(flags);
3770
caf586e5 3771 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3772 kfree_skb(skb);
3773 return NET_RX_DROP;
3774}
1da177e4 3775
ae78dbfa 3776static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3777{
b0e28f1e 3778 int ret;
1da177e4 3779
588f0330 3780 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3781
cf66ba58 3782 trace_netif_rx(skb);
df334545 3783#ifdef CONFIG_RPS
c5905afb 3784 if (static_key_false(&rps_needed)) {
fec5e652 3785 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3786 int cpu;
3787
cece1945 3788 preempt_disable();
b0e28f1e 3789 rcu_read_lock();
fec5e652
TH
3790
3791 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3792 if (cpu < 0)
3793 cpu = smp_processor_id();
fec5e652
TH
3794
3795 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3796
b0e28f1e 3797 rcu_read_unlock();
cece1945 3798 preempt_enable();
adc9300e
ED
3799 } else
3800#endif
fec5e652
TH
3801 {
3802 unsigned int qtail;
3803 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3804 put_cpu();
3805 }
b0e28f1e 3806 return ret;
1da177e4 3807}
ae78dbfa
BH
3808
3809/**
3810 * netif_rx - post buffer to the network code
3811 * @skb: buffer to post
3812 *
3813 * This function receives a packet from a device driver and queues it for
3814 * the upper (protocol) levels to process. It always succeeds. The buffer
3815 * may be dropped during processing for congestion control or by the
3816 * protocol layers.
3817 *
3818 * return values:
3819 * NET_RX_SUCCESS (no congestion)
3820 * NET_RX_DROP (packet was dropped)
3821 *
3822 */
3823
3824int netif_rx(struct sk_buff *skb)
3825{
3826 trace_netif_rx_entry(skb);
3827
3828 return netif_rx_internal(skb);
3829}
d1b19dff 3830EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3831
3832int netif_rx_ni(struct sk_buff *skb)
3833{
3834 int err;
3835
ae78dbfa
BH
3836 trace_netif_rx_ni_entry(skb);
3837
1da177e4 3838 preempt_disable();
ae78dbfa 3839 err = netif_rx_internal(skb);
1da177e4
LT
3840 if (local_softirq_pending())
3841 do_softirq();
3842 preempt_enable();
3843
3844 return err;
3845}
1da177e4
LT
3846EXPORT_SYMBOL(netif_rx_ni);
3847
1da177e4
LT
3848static void net_tx_action(struct softirq_action *h)
3849{
903ceff7 3850 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3851
3852 if (sd->completion_queue) {
3853 struct sk_buff *clist;
3854
3855 local_irq_disable();
3856 clist = sd->completion_queue;
3857 sd->completion_queue = NULL;
3858 local_irq_enable();
3859
3860 while (clist) {
3861 struct sk_buff *skb = clist;
3862 clist = clist->next;
3863
547b792c 3864 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3865 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3866 trace_consume_skb(skb);
3867 else
3868 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3869
3870 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3871 __kfree_skb(skb);
3872 else
3873 __kfree_skb_defer(skb);
1da177e4 3874 }
15fad714
JDB
3875
3876 __kfree_skb_flush();
1da177e4
LT
3877 }
3878
3879 if (sd->output_queue) {
37437bb2 3880 struct Qdisc *head;
1da177e4
LT
3881
3882 local_irq_disable();
3883 head = sd->output_queue;
3884 sd->output_queue = NULL;
a9cbd588 3885 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3886 local_irq_enable();
3887
3888 while (head) {
37437bb2
DM
3889 struct Qdisc *q = head;
3890 spinlock_t *root_lock;
3891
1da177e4
LT
3892 head = head->next_sched;
3893
5fb66229 3894 root_lock = qdisc_lock(q);
3bcb846c
ED
3895 spin_lock(root_lock);
3896 /* We need to make sure head->next_sched is read
3897 * before clearing __QDISC_STATE_SCHED
3898 */
3899 smp_mb__before_atomic();
3900 clear_bit(__QDISC_STATE_SCHED, &q->state);
3901 qdisc_run(q);
3902 spin_unlock(root_lock);
1da177e4
LT
3903 }
3904 }
3905}
3906
181402a5 3907#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3908/* This hook is defined here for ATM LANE */
3909int (*br_fdb_test_addr_hook)(struct net_device *dev,
3910 unsigned char *addr) __read_mostly;
4fb019a0 3911EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3912#endif
1da177e4 3913
1f211a1b
DB
3914static inline struct sk_buff *
3915sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3916 struct net_device *orig_dev)
f697c3e8 3917{
e7582bab 3918#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3919 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3920 struct tcf_result cl_res;
24824a09 3921
c9e99fd0
DB
3922 /* If there's at least one ingress present somewhere (so
3923 * we get here via enabled static key), remaining devices
3924 * that are not configured with an ingress qdisc will bail
d2788d34 3925 * out here.
c9e99fd0 3926 */
d2788d34 3927 if (!cl)
4577139b 3928 return skb;
f697c3e8
HX
3929 if (*pt_prev) {
3930 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3931 *pt_prev = NULL;
1da177e4
LT
3932 }
3933
3365495c 3934 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3935 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3936 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3937
3b3ae880 3938 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3939 case TC_ACT_OK:
3940 case TC_ACT_RECLASSIFY:
3941 skb->tc_index = TC_H_MIN(cl_res.classid);
3942 break;
3943 case TC_ACT_SHOT:
24ea591d 3944 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3945 kfree_skb(skb);
3946 return NULL;
d2788d34
DB
3947 case TC_ACT_STOLEN:
3948 case TC_ACT_QUEUED:
8a3a4c6e 3949 consume_skb(skb);
d2788d34 3950 return NULL;
27b29f63
AS
3951 case TC_ACT_REDIRECT:
3952 /* skb_mac_header check was done by cls/act_bpf, so
3953 * we can safely push the L2 header back before
3954 * redirecting to another netdev
3955 */
3956 __skb_push(skb, skb->mac_len);
3957 skb_do_redirect(skb);
3958 return NULL;
d2788d34
DB
3959 default:
3960 break;
f697c3e8 3961 }
e7582bab 3962#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3963 return skb;
3964}
1da177e4 3965
24b27fc4
MB
3966/**
3967 * netdev_is_rx_handler_busy - check if receive handler is registered
3968 * @dev: device to check
3969 *
3970 * Check if a receive handler is already registered for a given device.
3971 * Return true if there one.
3972 *
3973 * The caller must hold the rtnl_mutex.
3974 */
3975bool netdev_is_rx_handler_busy(struct net_device *dev)
3976{
3977 ASSERT_RTNL();
3978 return dev && rtnl_dereference(dev->rx_handler);
3979}
3980EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3981
ab95bfe0
JP
3982/**
3983 * netdev_rx_handler_register - register receive handler
3984 * @dev: device to register a handler for
3985 * @rx_handler: receive handler to register
93e2c32b 3986 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3987 *
e227867f 3988 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3989 * called from __netif_receive_skb. A negative errno code is returned
3990 * on a failure.
3991 *
3992 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3993 *
3994 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3995 */
3996int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3997 rx_handler_func_t *rx_handler,
3998 void *rx_handler_data)
ab95bfe0
JP
3999{
4000 ASSERT_RTNL();
4001
4002 if (dev->rx_handler)
4003 return -EBUSY;
4004
00cfec37 4005 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4006 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4007 rcu_assign_pointer(dev->rx_handler, rx_handler);
4008
4009 return 0;
4010}
4011EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4012
4013/**
4014 * netdev_rx_handler_unregister - unregister receive handler
4015 * @dev: device to unregister a handler from
4016 *
166ec369 4017 * Unregister a receive handler from a device.
ab95bfe0
JP
4018 *
4019 * The caller must hold the rtnl_mutex.
4020 */
4021void netdev_rx_handler_unregister(struct net_device *dev)
4022{
4023
4024 ASSERT_RTNL();
a9b3cd7f 4025 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4026 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4027 * section has a guarantee to see a non NULL rx_handler_data
4028 * as well.
4029 */
4030 synchronize_net();
a9b3cd7f 4031 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4032}
4033EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4034
b4b9e355
MG
4035/*
4036 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4037 * the special handling of PFMEMALLOC skbs.
4038 */
4039static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4040{
4041 switch (skb->protocol) {
2b8837ae
JP
4042 case htons(ETH_P_ARP):
4043 case htons(ETH_P_IP):
4044 case htons(ETH_P_IPV6):
4045 case htons(ETH_P_8021Q):
4046 case htons(ETH_P_8021AD):
b4b9e355
MG
4047 return true;
4048 default:
4049 return false;
4050 }
4051}
4052
e687ad60
PN
4053static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4054 int *ret, struct net_device *orig_dev)
4055{
e7582bab 4056#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4057 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4058 int ingress_retval;
4059
e687ad60
PN
4060 if (*pt_prev) {
4061 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4062 *pt_prev = NULL;
4063 }
4064
2c1e2703
AC
4065 rcu_read_lock();
4066 ingress_retval = nf_hook_ingress(skb);
4067 rcu_read_unlock();
4068 return ingress_retval;
e687ad60 4069 }
e7582bab 4070#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4071 return 0;
4072}
e687ad60 4073
9754e293 4074static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4075{
4076 struct packet_type *ptype, *pt_prev;
ab95bfe0 4077 rx_handler_func_t *rx_handler;
f2ccd8fa 4078 struct net_device *orig_dev;
8a4eb573 4079 bool deliver_exact = false;
1da177e4 4080 int ret = NET_RX_DROP;
252e3346 4081 __be16 type;
1da177e4 4082
588f0330 4083 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4084
cf66ba58 4085 trace_netif_receive_skb(skb);
9b22ea56 4086
cc9bd5ce 4087 orig_dev = skb->dev;
8f903c70 4088
c1d2bbe1 4089 skb_reset_network_header(skb);
fda55eca
ED
4090 if (!skb_transport_header_was_set(skb))
4091 skb_reset_transport_header(skb);
0b5c9db1 4092 skb_reset_mac_len(skb);
1da177e4
LT
4093
4094 pt_prev = NULL;
4095
63d8ea7f 4096another_round:
b6858177 4097 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4098
4099 __this_cpu_inc(softnet_data.processed);
4100
8ad227ff
PM
4101 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4102 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4103 skb = skb_vlan_untag(skb);
bcc6d479 4104 if (unlikely(!skb))
2c17d27c 4105 goto out;
bcc6d479
JP
4106 }
4107
1da177e4
LT
4108#ifdef CONFIG_NET_CLS_ACT
4109 if (skb->tc_verd & TC_NCLS) {
4110 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4111 goto ncls;
4112 }
4113#endif
4114
9754e293 4115 if (pfmemalloc)
b4b9e355
MG
4116 goto skip_taps;
4117
1da177e4 4118 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4119 if (pt_prev)
4120 ret = deliver_skb(skb, pt_prev, orig_dev);
4121 pt_prev = ptype;
4122 }
4123
4124 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4125 if (pt_prev)
4126 ret = deliver_skb(skb, pt_prev, orig_dev);
4127 pt_prev = ptype;
1da177e4
LT
4128 }
4129
b4b9e355 4130skip_taps:
1cf51900 4131#ifdef CONFIG_NET_INGRESS
4577139b 4132 if (static_key_false(&ingress_needed)) {
1f211a1b 4133 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4134 if (!skb)
2c17d27c 4135 goto out;
e687ad60
PN
4136
4137 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4138 goto out;
4577139b 4139 }
1cf51900
PN
4140#endif
4141#ifdef CONFIG_NET_CLS_ACT
4577139b 4142 skb->tc_verd = 0;
1da177e4
LT
4143ncls:
4144#endif
9754e293 4145 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4146 goto drop;
4147
df8a39de 4148 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4149 if (pt_prev) {
4150 ret = deliver_skb(skb, pt_prev, orig_dev);
4151 pt_prev = NULL;
4152 }
48cc32d3 4153 if (vlan_do_receive(&skb))
2425717b
JF
4154 goto another_round;
4155 else if (unlikely(!skb))
2c17d27c 4156 goto out;
2425717b
JF
4157 }
4158
48cc32d3 4159 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4160 if (rx_handler) {
4161 if (pt_prev) {
4162 ret = deliver_skb(skb, pt_prev, orig_dev);
4163 pt_prev = NULL;
4164 }
8a4eb573
JP
4165 switch (rx_handler(&skb)) {
4166 case RX_HANDLER_CONSUMED:
3bc1b1ad 4167 ret = NET_RX_SUCCESS;
2c17d27c 4168 goto out;
8a4eb573 4169 case RX_HANDLER_ANOTHER:
63d8ea7f 4170 goto another_round;
8a4eb573
JP
4171 case RX_HANDLER_EXACT:
4172 deliver_exact = true;
4173 case RX_HANDLER_PASS:
4174 break;
4175 default:
4176 BUG();
4177 }
ab95bfe0 4178 }
1da177e4 4179
df8a39de
JP
4180 if (unlikely(skb_vlan_tag_present(skb))) {
4181 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4182 skb->pkt_type = PACKET_OTHERHOST;
4183 /* Note: we might in the future use prio bits
4184 * and set skb->priority like in vlan_do_receive()
4185 * For the time being, just ignore Priority Code Point
4186 */
4187 skb->vlan_tci = 0;
4188 }
48cc32d3 4189
7866a621
SN
4190 type = skb->protocol;
4191
63d8ea7f 4192 /* deliver only exact match when indicated */
7866a621
SN
4193 if (likely(!deliver_exact)) {
4194 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195 &ptype_base[ntohs(type) &
4196 PTYPE_HASH_MASK]);
4197 }
1f3c8804 4198
7866a621
SN
4199 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200 &orig_dev->ptype_specific);
4201
4202 if (unlikely(skb->dev != orig_dev)) {
4203 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4204 &skb->dev->ptype_specific);
1da177e4
LT
4205 }
4206
4207 if (pt_prev) {
1080e512 4208 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4209 goto drop;
1080e512
MT
4210 else
4211 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4212 } else {
b4b9e355 4213drop:
6e7333d3
JW
4214 if (!deliver_exact)
4215 atomic_long_inc(&skb->dev->rx_dropped);
4216 else
4217 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4218 kfree_skb(skb);
4219 /* Jamal, now you will not able to escape explaining
4220 * me how you were going to use this. :-)
4221 */
4222 ret = NET_RX_DROP;
4223 }
4224
2c17d27c 4225out:
9754e293
DM
4226 return ret;
4227}
4228
4229static int __netif_receive_skb(struct sk_buff *skb)
4230{
4231 int ret;
4232
4233 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4234 unsigned long pflags = current->flags;
4235
4236 /*
4237 * PFMEMALLOC skbs are special, they should
4238 * - be delivered to SOCK_MEMALLOC sockets only
4239 * - stay away from userspace
4240 * - have bounded memory usage
4241 *
4242 * Use PF_MEMALLOC as this saves us from propagating the allocation
4243 * context down to all allocation sites.
4244 */
4245 current->flags |= PF_MEMALLOC;
4246 ret = __netif_receive_skb_core(skb, true);
4247 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4248 } else
4249 ret = __netif_receive_skb_core(skb, false);
4250
1da177e4
LT
4251 return ret;
4252}
0a9627f2 4253
ae78dbfa 4254static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4255{
2c17d27c
JA
4256 int ret;
4257
588f0330 4258 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4259
c1f19b51
RC
4260 if (skb_defer_rx_timestamp(skb))
4261 return NET_RX_SUCCESS;
4262
2c17d27c
JA
4263 rcu_read_lock();
4264
df334545 4265#ifdef CONFIG_RPS
c5905afb 4266 if (static_key_false(&rps_needed)) {
3b098e2d 4267 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4268 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4269
3b098e2d
ED
4270 if (cpu >= 0) {
4271 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4272 rcu_read_unlock();
adc9300e 4273 return ret;
3b098e2d 4274 }
fec5e652 4275 }
1e94d72f 4276#endif
2c17d27c
JA
4277 ret = __netif_receive_skb(skb);
4278 rcu_read_unlock();
4279 return ret;
0a9627f2 4280}
ae78dbfa
BH
4281
4282/**
4283 * netif_receive_skb - process receive buffer from network
4284 * @skb: buffer to process
4285 *
4286 * netif_receive_skb() is the main receive data processing function.
4287 * It always succeeds. The buffer may be dropped during processing
4288 * for congestion control or by the protocol layers.
4289 *
4290 * This function may only be called from softirq context and interrupts
4291 * should be enabled.
4292 *
4293 * Return values (usually ignored):
4294 * NET_RX_SUCCESS: no congestion
4295 * NET_RX_DROP: packet was dropped
4296 */
04eb4489 4297int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4298{
4299 trace_netif_receive_skb_entry(skb);
4300
4301 return netif_receive_skb_internal(skb);
4302}
04eb4489 4303EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4304
41852497 4305DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4306
4307/* Network device is going away, flush any packets still pending */
4308static void flush_backlog(struct work_struct *work)
6e583ce5 4309{
6e583ce5 4310 struct sk_buff *skb, *tmp;
145dd5f9
PA
4311 struct softnet_data *sd;
4312
4313 local_bh_disable();
4314 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4315
145dd5f9 4316 local_irq_disable();
e36fa2f7 4317 rps_lock(sd);
6e7676c1 4318 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4319 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4320 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4321 kfree_skb(skb);
76cc8b13 4322 input_queue_head_incr(sd);
6e583ce5 4323 }
6e7676c1 4324 }
e36fa2f7 4325 rps_unlock(sd);
145dd5f9 4326 local_irq_enable();
6e7676c1
CG
4327
4328 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4329 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4330 __skb_unlink(skb, &sd->process_queue);
4331 kfree_skb(skb);
76cc8b13 4332 input_queue_head_incr(sd);
6e7676c1
CG
4333 }
4334 }
145dd5f9
PA
4335 local_bh_enable();
4336}
4337
41852497 4338static void flush_all_backlogs(void)
145dd5f9
PA
4339{
4340 unsigned int cpu;
4341
4342 get_online_cpus();
4343
41852497
ED
4344 for_each_online_cpu(cpu)
4345 queue_work_on(cpu, system_highpri_wq,
4346 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4347
4348 for_each_online_cpu(cpu)
41852497 4349 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4350
4351 put_online_cpus();
6e583ce5
SH
4352}
4353
d565b0a1
HX
4354static int napi_gro_complete(struct sk_buff *skb)
4355{
22061d80 4356 struct packet_offload *ptype;
d565b0a1 4357 __be16 type = skb->protocol;
22061d80 4358 struct list_head *head = &offload_base;
d565b0a1
HX
4359 int err = -ENOENT;
4360
c3c7c254
ED
4361 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4362
fc59f9a3
HX
4363 if (NAPI_GRO_CB(skb)->count == 1) {
4364 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4365 goto out;
fc59f9a3 4366 }
d565b0a1
HX
4367
4368 rcu_read_lock();
4369 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4370 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4371 continue;
4372
299603e8 4373 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4374 break;
4375 }
4376 rcu_read_unlock();
4377
4378 if (err) {
4379 WARN_ON(&ptype->list == head);
4380 kfree_skb(skb);
4381 return NET_RX_SUCCESS;
4382 }
4383
4384out:
ae78dbfa 4385 return netif_receive_skb_internal(skb);
d565b0a1
HX
4386}
4387
2e71a6f8
ED
4388/* napi->gro_list contains packets ordered by age.
4389 * youngest packets at the head of it.
4390 * Complete skbs in reverse order to reduce latencies.
4391 */
4392void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4393{
2e71a6f8 4394 struct sk_buff *skb, *prev = NULL;
d565b0a1 4395
2e71a6f8
ED
4396 /* scan list and build reverse chain */
4397 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4398 skb->prev = prev;
4399 prev = skb;
4400 }
4401
4402 for (skb = prev; skb; skb = prev) {
d565b0a1 4403 skb->next = NULL;
2e71a6f8
ED
4404
4405 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4406 return;
4407
4408 prev = skb->prev;
d565b0a1 4409 napi_gro_complete(skb);
2e71a6f8 4410 napi->gro_count--;
d565b0a1
HX
4411 }
4412
4413 napi->gro_list = NULL;
4414}
86cac58b 4415EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4416
89c5fa33
ED
4417static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4418{
4419 struct sk_buff *p;
4420 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4421 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4422
4423 for (p = napi->gro_list; p; p = p->next) {
4424 unsigned long diffs;
4425
0b4cec8c
TH
4426 NAPI_GRO_CB(p)->flush = 0;
4427
4428 if (hash != skb_get_hash_raw(p)) {
4429 NAPI_GRO_CB(p)->same_flow = 0;
4430 continue;
4431 }
4432
89c5fa33
ED
4433 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4434 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4435 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4436 if (maclen == ETH_HLEN)
4437 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4438 skb_mac_header(skb));
89c5fa33
ED
4439 else if (!diffs)
4440 diffs = memcmp(skb_mac_header(p),
a50e233c 4441 skb_mac_header(skb),
89c5fa33
ED
4442 maclen);
4443 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4444 }
4445}
4446
299603e8
JC
4447static void skb_gro_reset_offset(struct sk_buff *skb)
4448{
4449 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4450 const skb_frag_t *frag0 = &pinfo->frags[0];
4451
4452 NAPI_GRO_CB(skb)->data_offset = 0;
4453 NAPI_GRO_CB(skb)->frag0 = NULL;
4454 NAPI_GRO_CB(skb)->frag0_len = 0;
4455
4456 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4457 pinfo->nr_frags &&
4458 !PageHighMem(skb_frag_page(frag0))) {
4459 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4460 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4461 }
4462}
4463
a50e233c
ED
4464static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4465{
4466 struct skb_shared_info *pinfo = skb_shinfo(skb);
4467
4468 BUG_ON(skb->end - skb->tail < grow);
4469
4470 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4471
4472 skb->data_len -= grow;
4473 skb->tail += grow;
4474
4475 pinfo->frags[0].page_offset += grow;
4476 skb_frag_size_sub(&pinfo->frags[0], grow);
4477
4478 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4479 skb_frag_unref(skb, 0);
4480 memmove(pinfo->frags, pinfo->frags + 1,
4481 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4482 }
4483}
4484
bb728820 4485static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4486{
4487 struct sk_buff **pp = NULL;
22061d80 4488 struct packet_offload *ptype;
d565b0a1 4489 __be16 type = skb->protocol;
22061d80 4490 struct list_head *head = &offload_base;
0da2afd5 4491 int same_flow;
5b252f0c 4492 enum gro_result ret;
a50e233c 4493 int grow;
d565b0a1 4494
9c62a68d 4495 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4496 goto normal;
4497
5a212329 4498 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4499 goto normal;
4500
89c5fa33
ED
4501 gro_list_prepare(napi, skb);
4502
d565b0a1
HX
4503 rcu_read_lock();
4504 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4505 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4506 continue;
4507
86911732 4508 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4509 skb_reset_mac_len(skb);
d565b0a1
HX
4510 NAPI_GRO_CB(skb)->same_flow = 0;
4511 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4512 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4513 NAPI_GRO_CB(skb)->encap_mark = 0;
a0ca153f 4514 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4515 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4516 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4517
662880f4
TH
4518 /* Setup for GRO checksum validation */
4519 switch (skb->ip_summed) {
4520 case CHECKSUM_COMPLETE:
4521 NAPI_GRO_CB(skb)->csum = skb->csum;
4522 NAPI_GRO_CB(skb)->csum_valid = 1;
4523 NAPI_GRO_CB(skb)->csum_cnt = 0;
4524 break;
4525 case CHECKSUM_UNNECESSARY:
4526 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4527 NAPI_GRO_CB(skb)->csum_valid = 0;
4528 break;
4529 default:
4530 NAPI_GRO_CB(skb)->csum_cnt = 0;
4531 NAPI_GRO_CB(skb)->csum_valid = 0;
4532 }
d565b0a1 4533
f191a1d1 4534 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4535 break;
4536 }
4537 rcu_read_unlock();
4538
4539 if (&ptype->list == head)
4540 goto normal;
4541
0da2afd5 4542 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4543 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4544
d565b0a1
HX
4545 if (pp) {
4546 struct sk_buff *nskb = *pp;
4547
4548 *pp = nskb->next;
4549 nskb->next = NULL;
4550 napi_gro_complete(nskb);
4ae5544f 4551 napi->gro_count--;
d565b0a1
HX
4552 }
4553
0da2afd5 4554 if (same_flow)
d565b0a1
HX
4555 goto ok;
4556
600adc18 4557 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4558 goto normal;
d565b0a1 4559
600adc18
ED
4560 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4561 struct sk_buff *nskb = napi->gro_list;
4562
4563 /* locate the end of the list to select the 'oldest' flow */
4564 while (nskb->next) {
4565 pp = &nskb->next;
4566 nskb = *pp;
4567 }
4568 *pp = NULL;
4569 nskb->next = NULL;
4570 napi_gro_complete(nskb);
4571 } else {
4572 napi->gro_count++;
4573 }
d565b0a1 4574 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4575 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4576 NAPI_GRO_CB(skb)->last = skb;
86911732 4577 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4578 skb->next = napi->gro_list;
4579 napi->gro_list = skb;
5d0d9be8 4580 ret = GRO_HELD;
d565b0a1 4581
ad0f9904 4582pull:
a50e233c
ED
4583 grow = skb_gro_offset(skb) - skb_headlen(skb);
4584 if (grow > 0)
4585 gro_pull_from_frag0(skb, grow);
d565b0a1 4586ok:
5d0d9be8 4587 return ret;
d565b0a1
HX
4588
4589normal:
ad0f9904
HX
4590 ret = GRO_NORMAL;
4591 goto pull;
5d38a079 4592}
96e93eab 4593
bf5a755f
JC
4594struct packet_offload *gro_find_receive_by_type(__be16 type)
4595{
4596 struct list_head *offload_head = &offload_base;
4597 struct packet_offload *ptype;
4598
4599 list_for_each_entry_rcu(ptype, offload_head, list) {
4600 if (ptype->type != type || !ptype->callbacks.gro_receive)
4601 continue;
4602 return ptype;
4603 }
4604 return NULL;
4605}
e27a2f83 4606EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4607
4608struct packet_offload *gro_find_complete_by_type(__be16 type)
4609{
4610 struct list_head *offload_head = &offload_base;
4611 struct packet_offload *ptype;
4612
4613 list_for_each_entry_rcu(ptype, offload_head, list) {
4614 if (ptype->type != type || !ptype->callbacks.gro_complete)
4615 continue;
4616 return ptype;
4617 }
4618 return NULL;
4619}
e27a2f83 4620EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4621
bb728820 4622static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4623{
5d0d9be8
HX
4624 switch (ret) {
4625 case GRO_NORMAL:
ae78dbfa 4626 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4627 ret = GRO_DROP;
4628 break;
5d38a079 4629
5d0d9be8 4630 case GRO_DROP:
5d38a079
HX
4631 kfree_skb(skb);
4632 break;
5b252f0c 4633
daa86548 4634 case GRO_MERGED_FREE:
ce87fc6c
JG
4635 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4636 skb_dst_drop(skb);
d7e8883c 4637 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4638 } else {
d7e8883c 4639 __kfree_skb(skb);
ce87fc6c 4640 }
daa86548
ED
4641 break;
4642
5b252f0c
BH
4643 case GRO_HELD:
4644 case GRO_MERGED:
4645 break;
5d38a079
HX
4646 }
4647
c7c4b3b6 4648 return ret;
5d0d9be8 4649}
5d0d9be8 4650
c7c4b3b6 4651gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4652{
93f93a44 4653 skb_mark_napi_id(skb, napi);
ae78dbfa 4654 trace_napi_gro_receive_entry(skb);
86911732 4655
a50e233c
ED
4656 skb_gro_reset_offset(skb);
4657
89c5fa33 4658 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4659}
4660EXPORT_SYMBOL(napi_gro_receive);
4661
d0c2b0d2 4662static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4663{
93a35f59
ED
4664 if (unlikely(skb->pfmemalloc)) {
4665 consume_skb(skb);
4666 return;
4667 }
96e93eab 4668 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4669 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4670 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4671 skb->vlan_tci = 0;
66c46d74 4672 skb->dev = napi->dev;
6d152e23 4673 skb->skb_iif = 0;
c3caf119
JC
4674 skb->encapsulation = 0;
4675 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4676 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4677
4678 napi->skb = skb;
4679}
96e93eab 4680
76620aaf 4681struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4682{
5d38a079 4683 struct sk_buff *skb = napi->skb;
5d38a079
HX
4684
4685 if (!skb) {
fd11a83d 4686 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4687 if (skb) {
4688 napi->skb = skb;
4689 skb_mark_napi_id(skb, napi);
4690 }
80595d59 4691 }
96e93eab
HX
4692 return skb;
4693}
76620aaf 4694EXPORT_SYMBOL(napi_get_frags);
96e93eab 4695
a50e233c
ED
4696static gro_result_t napi_frags_finish(struct napi_struct *napi,
4697 struct sk_buff *skb,
4698 gro_result_t ret)
96e93eab 4699{
5d0d9be8
HX
4700 switch (ret) {
4701 case GRO_NORMAL:
a50e233c
ED
4702 case GRO_HELD:
4703 __skb_push(skb, ETH_HLEN);
4704 skb->protocol = eth_type_trans(skb, skb->dev);
4705 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4706 ret = GRO_DROP;
86911732 4707 break;
5d38a079 4708
5d0d9be8 4709 case GRO_DROP:
5d0d9be8
HX
4710 case GRO_MERGED_FREE:
4711 napi_reuse_skb(napi, skb);
4712 break;
5b252f0c
BH
4713
4714 case GRO_MERGED:
4715 break;
5d0d9be8 4716 }
5d38a079 4717
c7c4b3b6 4718 return ret;
5d38a079 4719}
5d0d9be8 4720
a50e233c
ED
4721/* Upper GRO stack assumes network header starts at gro_offset=0
4722 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4723 * We copy ethernet header into skb->data to have a common layout.
4724 */
4adb9c4a 4725static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4726{
4727 struct sk_buff *skb = napi->skb;
a50e233c
ED
4728 const struct ethhdr *eth;
4729 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4730
4731 napi->skb = NULL;
4732
a50e233c
ED
4733 skb_reset_mac_header(skb);
4734 skb_gro_reset_offset(skb);
4735
4736 eth = skb_gro_header_fast(skb, 0);
4737 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4738 eth = skb_gro_header_slow(skb, hlen, 0);
4739 if (unlikely(!eth)) {
4da46ceb
AC
4740 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4741 __func__, napi->dev->name);
a50e233c
ED
4742 napi_reuse_skb(napi, skb);
4743 return NULL;
4744 }
4745 } else {
4746 gro_pull_from_frag0(skb, hlen);
4747 NAPI_GRO_CB(skb)->frag0 += hlen;
4748 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4749 }
a50e233c
ED
4750 __skb_pull(skb, hlen);
4751
4752 /*
4753 * This works because the only protocols we care about don't require
4754 * special handling.
4755 * We'll fix it up properly in napi_frags_finish()
4756 */
4757 skb->protocol = eth->h_proto;
76620aaf 4758
76620aaf
HX
4759 return skb;
4760}
76620aaf 4761
c7c4b3b6 4762gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4763{
76620aaf 4764 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4765
4766 if (!skb)
c7c4b3b6 4767 return GRO_DROP;
5d0d9be8 4768
ae78dbfa
BH
4769 trace_napi_gro_frags_entry(skb);
4770
89c5fa33 4771 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4772}
5d38a079
HX
4773EXPORT_SYMBOL(napi_gro_frags);
4774
573e8fca
TH
4775/* Compute the checksum from gro_offset and return the folded value
4776 * after adding in any pseudo checksum.
4777 */
4778__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4779{
4780 __wsum wsum;
4781 __sum16 sum;
4782
4783 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4784
4785 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4786 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4787 if (likely(!sum)) {
4788 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4789 !skb->csum_complete_sw)
4790 netdev_rx_csum_fault(skb->dev);
4791 }
4792
4793 NAPI_GRO_CB(skb)->csum = wsum;
4794 NAPI_GRO_CB(skb)->csum_valid = 1;
4795
4796 return sum;
4797}
4798EXPORT_SYMBOL(__skb_gro_checksum_complete);
4799
e326bed2 4800/*
855abcf0 4801 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4802 * Note: called with local irq disabled, but exits with local irq enabled.
4803 */
4804static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4805{
4806#ifdef CONFIG_RPS
4807 struct softnet_data *remsd = sd->rps_ipi_list;
4808
4809 if (remsd) {
4810 sd->rps_ipi_list = NULL;
4811
4812 local_irq_enable();
4813
4814 /* Send pending IPI's to kick RPS processing on remote cpus. */
4815 while (remsd) {
4816 struct softnet_data *next = remsd->rps_ipi_next;
4817
4818 if (cpu_online(remsd->cpu))
c46fff2a 4819 smp_call_function_single_async(remsd->cpu,
fce8ad15 4820 &remsd->csd);
e326bed2
ED
4821 remsd = next;
4822 }
4823 } else
4824#endif
4825 local_irq_enable();
4826}
4827
d75b1ade
ED
4828static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4829{
4830#ifdef CONFIG_RPS
4831 return sd->rps_ipi_list != NULL;
4832#else
4833 return false;
4834#endif
4835}
4836
bea3348e 4837static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4838{
eecfd7c4 4839 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4840 bool again = true;
4841 int work = 0;
1da177e4 4842
e326bed2
ED
4843 /* Check if we have pending ipi, its better to send them now,
4844 * not waiting net_rx_action() end.
4845 */
d75b1ade 4846 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4847 local_irq_disable();
4848 net_rps_action_and_irq_enable(sd);
4849 }
d75b1ade 4850
bea3348e 4851 napi->weight = weight_p;
145dd5f9 4852 while (again) {
1da177e4 4853 struct sk_buff *skb;
6e7676c1
CG
4854
4855 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4856 rcu_read_lock();
6e7676c1 4857 __netif_receive_skb(skb);
2c17d27c 4858 rcu_read_unlock();
76cc8b13 4859 input_queue_head_incr(sd);
145dd5f9 4860 if (++work >= quota)
76cc8b13 4861 return work;
145dd5f9 4862
6e7676c1 4863 }
1da177e4 4864
145dd5f9 4865 local_irq_disable();
e36fa2f7 4866 rps_lock(sd);
11ef7a89 4867 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4868 /*
4869 * Inline a custom version of __napi_complete().
4870 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4871 * and NAPI_STATE_SCHED is the only possible flag set
4872 * on backlog.
4873 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4874 * and we dont need an smp_mb() memory barrier.
4875 */
eecfd7c4 4876 napi->state = 0;
145dd5f9
PA
4877 again = false;
4878 } else {
4879 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4880 &sd->process_queue);
bea3348e 4881 }
e36fa2f7 4882 rps_unlock(sd);
145dd5f9 4883 local_irq_enable();
6e7676c1 4884 }
1da177e4 4885
bea3348e
SH
4886 return work;
4887}
1da177e4 4888
bea3348e
SH
4889/**
4890 * __napi_schedule - schedule for receive
c4ea43c5 4891 * @n: entry to schedule
bea3348e 4892 *
bc9ad166
ED
4893 * The entry's receive function will be scheduled to run.
4894 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4895 */
b5606c2d 4896void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4897{
4898 unsigned long flags;
1da177e4 4899
bea3348e 4900 local_irq_save(flags);
903ceff7 4901 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4902 local_irq_restore(flags);
1da177e4 4903}
bea3348e
SH
4904EXPORT_SYMBOL(__napi_schedule);
4905
bc9ad166
ED
4906/**
4907 * __napi_schedule_irqoff - schedule for receive
4908 * @n: entry to schedule
4909 *
4910 * Variant of __napi_schedule() assuming hard irqs are masked
4911 */
4912void __napi_schedule_irqoff(struct napi_struct *n)
4913{
4914 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4915}
4916EXPORT_SYMBOL(__napi_schedule_irqoff);
4917
d565b0a1
HX
4918void __napi_complete(struct napi_struct *n)
4919{
4920 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4921
d75b1ade 4922 list_del_init(&n->poll_list);
4e857c58 4923 smp_mb__before_atomic();
d565b0a1
HX
4924 clear_bit(NAPI_STATE_SCHED, &n->state);
4925}
4926EXPORT_SYMBOL(__napi_complete);
4927
3b47d303 4928void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4929{
4930 unsigned long flags;
4931
4932 /*
4933 * don't let napi dequeue from the cpu poll list
4934 * just in case its running on a different cpu
4935 */
4936 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4937 return;
4938
3b47d303
ED
4939 if (n->gro_list) {
4940 unsigned long timeout = 0;
d75b1ade 4941
3b47d303
ED
4942 if (work_done)
4943 timeout = n->dev->gro_flush_timeout;
4944
4945 if (timeout)
4946 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4947 HRTIMER_MODE_REL_PINNED);
4948 else
4949 napi_gro_flush(n, false);
4950 }
d75b1ade
ED
4951 if (likely(list_empty(&n->poll_list))) {
4952 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4953 } else {
4954 /* If n->poll_list is not empty, we need to mask irqs */
4955 local_irq_save(flags);
4956 __napi_complete(n);
4957 local_irq_restore(flags);
4958 }
d565b0a1 4959}
3b47d303 4960EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4961
af12fa6e 4962/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4963static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4964{
4965 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4966 struct napi_struct *napi;
4967
4968 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4969 if (napi->napi_id == napi_id)
4970 return napi;
4971
4972 return NULL;
4973}
02d62e86
ED
4974
4975#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4976#define BUSY_POLL_BUDGET 8
02d62e86
ED
4977bool sk_busy_loop(struct sock *sk, int nonblock)
4978{
4979 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4980 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4981 struct napi_struct *napi;
4982 int rc = false;
4983
2a028ecb 4984 rcu_read_lock();
02d62e86
ED
4985
4986 napi = napi_by_id(sk->sk_napi_id);
4987 if (!napi)
4988 goto out;
4989
ce6aea93
ED
4990 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4991 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4992
4993 do {
ce6aea93 4994 rc = 0;
2a028ecb 4995 local_bh_disable();
ce6aea93
ED
4996 if (busy_poll) {
4997 rc = busy_poll(napi);
4998 } else if (napi_schedule_prep(napi)) {
4999 void *have = netpoll_poll_lock(napi);
5000
5001 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
5002 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1db19db7 5003 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
ce6aea93
ED
5004 if (rc == BUSY_POLL_BUDGET) {
5005 napi_complete_done(napi, rc);
5006 napi_schedule(napi);
5007 }
5008 }
5009 netpoll_poll_unlock(have);
5010 }
2a028ecb 5011 if (rc > 0)
02a1d6e7
ED
5012 __NET_ADD_STATS(sock_net(sk),
5013 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 5014 local_bh_enable();
02d62e86
ED
5015
5016 if (rc == LL_FLUSH_FAILED)
5017 break; /* permanent failure */
5018
02d62e86 5019 cpu_relax();
02d62e86
ED
5020 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5021 !need_resched() && !busy_loop_timeout(end_time));
5022
5023 rc = !skb_queue_empty(&sk->sk_receive_queue);
5024out:
2a028ecb 5025 rcu_read_unlock();
02d62e86
ED
5026 return rc;
5027}
5028EXPORT_SYMBOL(sk_busy_loop);
5029
5030#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5031
5032void napi_hash_add(struct napi_struct *napi)
5033{
d64b5e85
ED
5034 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5035 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5036 return;
af12fa6e 5037
52bd2d62 5038 spin_lock(&napi_hash_lock);
af12fa6e 5039
52bd2d62
ED
5040 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5041 do {
5042 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5043 napi_gen_id = NR_CPUS + 1;
5044 } while (napi_by_id(napi_gen_id));
5045 napi->napi_id = napi_gen_id;
af12fa6e 5046
52bd2d62
ED
5047 hlist_add_head_rcu(&napi->napi_hash_node,
5048 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5049
52bd2d62 5050 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5051}
5052EXPORT_SYMBOL_GPL(napi_hash_add);
5053
5054/* Warning : caller is responsible to make sure rcu grace period
5055 * is respected before freeing memory containing @napi
5056 */
34cbe27e 5057bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5058{
34cbe27e
ED
5059 bool rcu_sync_needed = false;
5060
af12fa6e
ET
5061 spin_lock(&napi_hash_lock);
5062
34cbe27e
ED
5063 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5064 rcu_sync_needed = true;
af12fa6e 5065 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5066 }
af12fa6e 5067 spin_unlock(&napi_hash_lock);
34cbe27e 5068 return rcu_sync_needed;
af12fa6e
ET
5069}
5070EXPORT_SYMBOL_GPL(napi_hash_del);
5071
3b47d303
ED
5072static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5073{
5074 struct napi_struct *napi;
5075
5076 napi = container_of(timer, struct napi_struct, timer);
5077 if (napi->gro_list)
5078 napi_schedule(napi);
5079
5080 return HRTIMER_NORESTART;
5081}
5082
d565b0a1
HX
5083void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5084 int (*poll)(struct napi_struct *, int), int weight)
5085{
5086 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5087 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5088 napi->timer.function = napi_watchdog;
4ae5544f 5089 napi->gro_count = 0;
d565b0a1 5090 napi->gro_list = NULL;
5d38a079 5091 napi->skb = NULL;
d565b0a1 5092 napi->poll = poll;
82dc3c63
ED
5093 if (weight > NAPI_POLL_WEIGHT)
5094 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5095 weight, dev->name);
d565b0a1
HX
5096 napi->weight = weight;
5097 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5098 napi->dev = dev;
5d38a079 5099#ifdef CONFIG_NETPOLL
d565b0a1
HX
5100 spin_lock_init(&napi->poll_lock);
5101 napi->poll_owner = -1;
5102#endif
5103 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5104 napi_hash_add(napi);
d565b0a1
HX
5105}
5106EXPORT_SYMBOL(netif_napi_add);
5107
3b47d303
ED
5108void napi_disable(struct napi_struct *n)
5109{
5110 might_sleep();
5111 set_bit(NAPI_STATE_DISABLE, &n->state);
5112
5113 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5114 msleep(1);
2d8bff12
NH
5115 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5116 msleep(1);
3b47d303
ED
5117
5118 hrtimer_cancel(&n->timer);
5119
5120 clear_bit(NAPI_STATE_DISABLE, &n->state);
5121}
5122EXPORT_SYMBOL(napi_disable);
5123
93d05d4a 5124/* Must be called in process context */
d565b0a1
HX
5125void netif_napi_del(struct napi_struct *napi)
5126{
93d05d4a
ED
5127 might_sleep();
5128 if (napi_hash_del(napi))
5129 synchronize_net();
d7b06636 5130 list_del_init(&napi->dev_list);
76620aaf 5131 napi_free_frags(napi);
d565b0a1 5132
289dccbe 5133 kfree_skb_list(napi->gro_list);
d565b0a1 5134 napi->gro_list = NULL;
4ae5544f 5135 napi->gro_count = 0;
d565b0a1
HX
5136}
5137EXPORT_SYMBOL(netif_napi_del);
5138
726ce70e
HX
5139static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5140{
5141 void *have;
5142 int work, weight;
5143
5144 list_del_init(&n->poll_list);
5145
5146 have = netpoll_poll_lock(n);
5147
5148 weight = n->weight;
5149
5150 /* This NAPI_STATE_SCHED test is for avoiding a race
5151 * with netpoll's poll_napi(). Only the entity which
5152 * obtains the lock and sees NAPI_STATE_SCHED set will
5153 * actually make the ->poll() call. Therefore we avoid
5154 * accidentally calling ->poll() when NAPI is not scheduled.
5155 */
5156 work = 0;
5157 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5158 work = n->poll(n, weight);
1db19db7 5159 trace_napi_poll(n, work, weight);
726ce70e
HX
5160 }
5161
5162 WARN_ON_ONCE(work > weight);
5163
5164 if (likely(work < weight))
5165 goto out_unlock;
5166
5167 /* Drivers must not modify the NAPI state if they
5168 * consume the entire weight. In such cases this code
5169 * still "owns" the NAPI instance and therefore can
5170 * move the instance around on the list at-will.
5171 */
5172 if (unlikely(napi_disable_pending(n))) {
5173 napi_complete(n);
5174 goto out_unlock;
5175 }
5176
5177 if (n->gro_list) {
5178 /* flush too old packets
5179 * If HZ < 1000, flush all packets.
5180 */
5181 napi_gro_flush(n, HZ >= 1000);
5182 }
5183
001ce546
HX
5184 /* Some drivers may have called napi_schedule
5185 * prior to exhausting their budget.
5186 */
5187 if (unlikely(!list_empty(&n->poll_list))) {
5188 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5189 n->dev ? n->dev->name : "backlog");
5190 goto out_unlock;
5191 }
5192
726ce70e
HX
5193 list_add_tail(&n->poll_list, repoll);
5194
5195out_unlock:
5196 netpoll_poll_unlock(have);
5197
5198 return work;
5199}
5200
1da177e4
LT
5201static void net_rx_action(struct softirq_action *h)
5202{
903ceff7 5203 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5204 unsigned long time_limit = jiffies + 2;
51b0bded 5205 int budget = netdev_budget;
d75b1ade
ED
5206 LIST_HEAD(list);
5207 LIST_HEAD(repoll);
53fb95d3 5208
1da177e4 5209 local_irq_disable();
d75b1ade
ED
5210 list_splice_init(&sd->poll_list, &list);
5211 local_irq_enable();
1da177e4 5212
ceb8d5bf 5213 for (;;) {
bea3348e 5214 struct napi_struct *n;
1da177e4 5215
ceb8d5bf
HX
5216 if (list_empty(&list)) {
5217 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5218 return;
5219 break;
5220 }
5221
6bd373eb
HX
5222 n = list_first_entry(&list, struct napi_struct, poll_list);
5223 budget -= napi_poll(n, &repoll);
5224
d75b1ade 5225 /* If softirq window is exhausted then punt.
24f8b238
SH
5226 * Allow this to run for 2 jiffies since which will allow
5227 * an average latency of 1.5/HZ.
bea3348e 5228 */
ceb8d5bf
HX
5229 if (unlikely(budget <= 0 ||
5230 time_after_eq(jiffies, time_limit))) {
5231 sd->time_squeeze++;
5232 break;
5233 }
1da177e4 5234 }
d75b1ade 5235
795bb1c0 5236 __kfree_skb_flush();
d75b1ade
ED
5237 local_irq_disable();
5238
5239 list_splice_tail_init(&sd->poll_list, &list);
5240 list_splice_tail(&repoll, &list);
5241 list_splice(&list, &sd->poll_list);
5242 if (!list_empty(&sd->poll_list))
5243 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5244
e326bed2 5245 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5246}
5247
aa9d8560 5248struct netdev_adjacent {
9ff162a8 5249 struct net_device *dev;
5d261913
VF
5250
5251 /* upper master flag, there can only be one master device per list */
9ff162a8 5252 bool master;
5d261913 5253
5d261913
VF
5254 /* counter for the number of times this device was added to us */
5255 u16 ref_nr;
5256
402dae96
VF
5257 /* private field for the users */
5258 void *private;
5259
9ff162a8
JP
5260 struct list_head list;
5261 struct rcu_head rcu;
9ff162a8
JP
5262};
5263
6ea29da1 5264static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5265 struct list_head *adj_list)
9ff162a8 5266{
5d261913 5267 struct netdev_adjacent *adj;
5d261913 5268
2f268f12 5269 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5270 if (adj->dev == adj_dev)
5271 return adj;
9ff162a8
JP
5272 }
5273 return NULL;
5274}
5275
5276/**
5277 * netdev_has_upper_dev - Check if device is linked to an upper device
5278 * @dev: device
5279 * @upper_dev: upper device to check
5280 *
5281 * Find out if a device is linked to specified upper device and return true
5282 * in case it is. Note that this checks only immediate upper device,
5283 * not through a complete stack of devices. The caller must hold the RTNL lock.
5284 */
5285bool netdev_has_upper_dev(struct net_device *dev,
5286 struct net_device *upper_dev)
5287{
5288 ASSERT_RTNL();
5289
6ea29da1 5290 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5291}
5292EXPORT_SYMBOL(netdev_has_upper_dev);
5293
5294/**
5295 * netdev_has_any_upper_dev - Check if device is linked to some device
5296 * @dev: device
5297 *
5298 * Find out if a device is linked to an upper device and return true in case
5299 * it is. The caller must hold the RTNL lock.
5300 */
1d143d9f 5301static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5302{
5303 ASSERT_RTNL();
5304
2f268f12 5305 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5306}
9ff162a8
JP
5307
5308/**
5309 * netdev_master_upper_dev_get - Get master upper device
5310 * @dev: device
5311 *
5312 * Find a master upper device and return pointer to it or NULL in case
5313 * it's not there. The caller must hold the RTNL lock.
5314 */
5315struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5316{
aa9d8560 5317 struct netdev_adjacent *upper;
9ff162a8
JP
5318
5319 ASSERT_RTNL();
5320
2f268f12 5321 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5322 return NULL;
5323
2f268f12 5324 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5325 struct netdev_adjacent, list);
9ff162a8
JP
5326 if (likely(upper->master))
5327 return upper->dev;
5328 return NULL;
5329}
5330EXPORT_SYMBOL(netdev_master_upper_dev_get);
5331
b6ccba4c
VF
5332void *netdev_adjacent_get_private(struct list_head *adj_list)
5333{
5334 struct netdev_adjacent *adj;
5335
5336 adj = list_entry(adj_list, struct netdev_adjacent, list);
5337
5338 return adj->private;
5339}
5340EXPORT_SYMBOL(netdev_adjacent_get_private);
5341
44a40855
VY
5342/**
5343 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5344 * @dev: device
5345 * @iter: list_head ** of the current position
5346 *
5347 * Gets the next device from the dev's upper list, starting from iter
5348 * position. The caller must hold RCU read lock.
5349 */
5350struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5351 struct list_head **iter)
5352{
5353 struct netdev_adjacent *upper;
5354
5355 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5356
5357 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5358
5359 if (&upper->list == &dev->adj_list.upper)
5360 return NULL;
5361
5362 *iter = &upper->list;
5363
5364 return upper->dev;
5365}
5366EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5367
31088a11
VF
5368/**
5369 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5370 * @dev: device
5371 * @iter: list_head ** of the current position
5372 *
5373 * Gets the next device from the dev's upper list, starting from iter
5374 * position. The caller must hold RCU read lock.
5375 */
2f268f12
VF
5376struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5377 struct list_head **iter)
48311f46
VF
5378{
5379 struct netdev_adjacent *upper;
5380
85328240 5381 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5382
5383 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5384
2f268f12 5385 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5386 return NULL;
5387
5388 *iter = &upper->list;
5389
5390 return upper->dev;
5391}
2f268f12 5392EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5393
31088a11
VF
5394/**
5395 * netdev_lower_get_next_private - Get the next ->private from the
5396 * lower neighbour list
5397 * @dev: device
5398 * @iter: list_head ** of the current position
5399 *
5400 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5401 * list, starting from iter position. The caller must hold either hold the
5402 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5403 * list will remain unchanged.
31088a11
VF
5404 */
5405void *netdev_lower_get_next_private(struct net_device *dev,
5406 struct list_head **iter)
5407{
5408 struct netdev_adjacent *lower;
5409
5410 lower = list_entry(*iter, struct netdev_adjacent, list);
5411
5412 if (&lower->list == &dev->adj_list.lower)
5413 return NULL;
5414
6859e7df 5415 *iter = lower->list.next;
31088a11
VF
5416
5417 return lower->private;
5418}
5419EXPORT_SYMBOL(netdev_lower_get_next_private);
5420
5421/**
5422 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5423 * lower neighbour list, RCU
5424 * variant
5425 * @dev: device
5426 * @iter: list_head ** of the current position
5427 *
5428 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5429 * list, starting from iter position. The caller must hold RCU read lock.
5430 */
5431void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5432 struct list_head **iter)
5433{
5434 struct netdev_adjacent *lower;
5435
5436 WARN_ON_ONCE(!rcu_read_lock_held());
5437
5438 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5439
5440 if (&lower->list == &dev->adj_list.lower)
5441 return NULL;
5442
6859e7df 5443 *iter = &lower->list;
31088a11
VF
5444
5445 return lower->private;
5446}
5447EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5448
4085ebe8
VY
5449/**
5450 * netdev_lower_get_next - Get the next device from the lower neighbour
5451 * list
5452 * @dev: device
5453 * @iter: list_head ** of the current position
5454 *
5455 * Gets the next netdev_adjacent from the dev's lower neighbour
5456 * list, starting from iter position. The caller must hold RTNL lock or
5457 * its own locking that guarantees that the neighbour lower
b469139e 5458 * list will remain unchanged.
4085ebe8
VY
5459 */
5460void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5461{
5462 struct netdev_adjacent *lower;
5463
cfdd28be 5464 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5465
5466 if (&lower->list == &dev->adj_list.lower)
5467 return NULL;
5468
cfdd28be 5469 *iter = lower->list.next;
4085ebe8
VY
5470
5471 return lower->dev;
5472}
5473EXPORT_SYMBOL(netdev_lower_get_next);
5474
7ce856aa
JP
5475/**
5476 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5477 * @dev: device
5478 * @iter: list_head ** of the current position
5479 *
5480 * Gets the next netdev_adjacent from the dev's all lower neighbour
5481 * list, starting from iter position. The caller must hold RTNL lock or
5482 * its own locking that guarantees that the neighbour all lower
5483 * list will remain unchanged.
5484 */
5485struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5486{
5487 struct netdev_adjacent *lower;
5488
5489 lower = list_entry(*iter, struct netdev_adjacent, list);
5490
5491 if (&lower->list == &dev->all_adj_list.lower)
5492 return NULL;
5493
5494 *iter = lower->list.next;
5495
5496 return lower->dev;
5497}
5498EXPORT_SYMBOL(netdev_all_lower_get_next);
5499
5500/**
5501 * netdev_all_lower_get_next_rcu - Get the next device from all
5502 * lower neighbour list, RCU variant
5503 * @dev: device
5504 * @iter: list_head ** of the current position
5505 *
5506 * Gets the next netdev_adjacent from the dev's all lower neighbour
5507 * list, starting from iter position. The caller must hold RCU read lock.
5508 */
5509struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5510 struct list_head **iter)
5511{
5512 struct netdev_adjacent *lower;
5513
5514 lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5515 struct netdev_adjacent, list);
5516
5517 return lower ? lower->dev : NULL;
5518}
5519EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5520
e001bfad 5521/**
5522 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5523 * lower neighbour list, RCU
5524 * variant
5525 * @dev: device
5526 *
5527 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5528 * list. The caller must hold RCU read lock.
5529 */
5530void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5531{
5532 struct netdev_adjacent *lower;
5533
5534 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5535 struct netdev_adjacent, list);
5536 if (lower)
5537 return lower->private;
5538 return NULL;
5539}
5540EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5541
9ff162a8
JP
5542/**
5543 * netdev_master_upper_dev_get_rcu - Get master upper device
5544 * @dev: device
5545 *
5546 * Find a master upper device and return pointer to it or NULL in case
5547 * it's not there. The caller must hold the RCU read lock.
5548 */
5549struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5550{
aa9d8560 5551 struct netdev_adjacent *upper;
9ff162a8 5552
2f268f12 5553 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5554 struct netdev_adjacent, list);
9ff162a8
JP
5555 if (upper && likely(upper->master))
5556 return upper->dev;
5557 return NULL;
5558}
5559EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5560
0a59f3a9 5561static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5562 struct net_device *adj_dev,
5563 struct list_head *dev_list)
5564{
5565 char linkname[IFNAMSIZ+7];
5566 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5567 "upper_%s" : "lower_%s", adj_dev->name);
5568 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5569 linkname);
5570}
0a59f3a9 5571static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5572 char *name,
5573 struct list_head *dev_list)
5574{
5575 char linkname[IFNAMSIZ+7];
5576 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5577 "upper_%s" : "lower_%s", name);
5578 sysfs_remove_link(&(dev->dev.kobj), linkname);
5579}
5580
7ce64c79
AF
5581static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5582 struct net_device *adj_dev,
5583 struct list_head *dev_list)
5584{
5585 return (dev_list == &dev->adj_list.upper ||
5586 dev_list == &dev->adj_list.lower) &&
5587 net_eq(dev_net(dev), dev_net(adj_dev));
5588}
3ee32707 5589
5d261913
VF
5590static int __netdev_adjacent_dev_insert(struct net_device *dev,
5591 struct net_device *adj_dev,
93409033 5592 u16 ref_nr,
7863c054 5593 struct list_head *dev_list,
402dae96 5594 void *private, bool master)
5d261913
VF
5595{
5596 struct netdev_adjacent *adj;
842d67a7 5597 int ret;
5d261913 5598
6ea29da1 5599 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5600
5601 if (adj) {
93409033 5602 adj->ref_nr += ref_nr;
5d261913
VF
5603 return 0;
5604 }
5605
5606 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5607 if (!adj)
5608 return -ENOMEM;
5609
5610 adj->dev = adj_dev;
5611 adj->master = master;
93409033 5612 adj->ref_nr = ref_nr;
402dae96 5613 adj->private = private;
5d261913 5614 dev_hold(adj_dev);
2f268f12
VF
5615
5616 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5617 adj_dev->name, dev->name, adj_dev->name);
5d261913 5618
7ce64c79 5619 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5620 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5621 if (ret)
5622 goto free_adj;
5623 }
5624
7863c054 5625 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5626 if (master) {
5627 ret = sysfs_create_link(&(dev->dev.kobj),
5628 &(adj_dev->dev.kobj), "master");
5629 if (ret)
5831d66e 5630 goto remove_symlinks;
842d67a7 5631
7863c054 5632 list_add_rcu(&adj->list, dev_list);
842d67a7 5633 } else {
7863c054 5634 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5635 }
5d261913
VF
5636
5637 return 0;
842d67a7 5638
5831d66e 5639remove_symlinks:
7ce64c79 5640 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5641 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5642free_adj:
5643 kfree(adj);
974daef7 5644 dev_put(adj_dev);
842d67a7
VF
5645
5646 return ret;
5d261913
VF
5647}
5648
1d143d9f 5649static void __netdev_adjacent_dev_remove(struct net_device *dev,
5650 struct net_device *adj_dev,
93409033 5651 u16 ref_nr,
1d143d9f 5652 struct list_head *dev_list)
5d261913
VF
5653{
5654 struct netdev_adjacent *adj;
5655
6ea29da1 5656 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5657
2f268f12
VF
5658 if (!adj) {
5659 pr_err("tried to remove device %s from %s\n",
5660 dev->name, adj_dev->name);
5d261913 5661 BUG();
2f268f12 5662 }
5d261913 5663
93409033
AC
5664 if (adj->ref_nr > ref_nr) {
5665 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5666 ref_nr, adj->ref_nr-ref_nr);
5667 adj->ref_nr -= ref_nr;
5d261913
VF
5668 return;
5669 }
5670
842d67a7
VF
5671 if (adj->master)
5672 sysfs_remove_link(&(dev->dev.kobj), "master");
5673
7ce64c79 5674 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5675 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5676
5d261913 5677 list_del_rcu(&adj->list);
2f268f12
VF
5678 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5679 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5680 dev_put(adj_dev);
5681 kfree_rcu(adj, rcu);
5682}
5683
1d143d9f 5684static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5685 struct net_device *upper_dev,
93409033 5686 u16 ref_nr,
1d143d9f 5687 struct list_head *up_list,
5688 struct list_head *down_list,
5689 void *private, bool master)
5d261913
VF
5690{
5691 int ret;
5692
93409033
AC
5693 ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5694 private, master);
5d261913
VF
5695 if (ret)
5696 return ret;
5697
93409033
AC
5698 ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5699 private, false);
5d261913 5700 if (ret) {
93409033 5701 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5d261913
VF
5702 return ret;
5703 }
5704
5705 return 0;
5706}
5707
1d143d9f 5708static int __netdev_adjacent_dev_link(struct net_device *dev,
93409033
AC
5709 struct net_device *upper_dev,
5710 u16 ref_nr)
5d261913 5711{
93409033 5712 return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
2f268f12
VF
5713 &dev->all_adj_list.upper,
5714 &upper_dev->all_adj_list.lower,
402dae96 5715 NULL, false);
5d261913
VF
5716}
5717
1d143d9f 5718static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5719 struct net_device *upper_dev,
93409033 5720 u16 ref_nr,
1d143d9f 5721 struct list_head *up_list,
5722 struct list_head *down_list)
5d261913 5723{
93409033
AC
5724 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5725 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5726}
5727
1d143d9f 5728static void __netdev_adjacent_dev_unlink(struct net_device *dev,
93409033
AC
5729 struct net_device *upper_dev,
5730 u16 ref_nr)
5d261913 5731{
93409033 5732 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
2f268f12
VF
5733 &dev->all_adj_list.upper,
5734 &upper_dev->all_adj_list.lower);
5735}
5736
1d143d9f 5737static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5738 struct net_device *upper_dev,
5739 void *private, bool master)
2f268f12 5740{
93409033 5741 int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
2f268f12
VF
5742
5743 if (ret)
5744 return ret;
5745
93409033 5746 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
2f268f12
VF
5747 &dev->adj_list.upper,
5748 &upper_dev->adj_list.lower,
402dae96 5749 private, master);
2f268f12 5750 if (ret) {
93409033 5751 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
2f268f12
VF
5752 return ret;
5753 }
5754
5755 return 0;
5d261913
VF
5756}
5757
1d143d9f 5758static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5759 struct net_device *upper_dev)
2f268f12 5760{
93409033
AC
5761 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5762 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5763 &dev->adj_list.upper,
5764 &upper_dev->adj_list.lower);
5765}
5d261913 5766
9ff162a8 5767static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5768 struct net_device *upper_dev, bool master,
29bf24af 5769 void *upper_priv, void *upper_info)
9ff162a8 5770{
0e4ead9d 5771 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5772 struct netdev_adjacent *i, *j, *to_i, *to_j;
5773 int ret = 0;
9ff162a8
JP
5774
5775 ASSERT_RTNL();
5776
5777 if (dev == upper_dev)
5778 return -EBUSY;
5779
5780 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5781 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5782 return -EBUSY;
5783
6ea29da1 5784 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5785 return -EEXIST;
5786
5787 if (master && netdev_master_upper_dev_get(dev))
5788 return -EBUSY;
5789
0e4ead9d
JP
5790 changeupper_info.upper_dev = upper_dev;
5791 changeupper_info.master = master;
5792 changeupper_info.linking = true;
29bf24af 5793 changeupper_info.upper_info = upper_info;
0e4ead9d 5794
573c7ba0
JP
5795 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5796 &changeupper_info.info);
5797 ret = notifier_to_errno(ret);
5798 if (ret)
5799 return ret;
5800
6dffb044 5801 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5802 master);
5d261913
VF
5803 if (ret)
5804 return ret;
9ff162a8 5805
5d261913 5806 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5807 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5808 * versa, and don't forget the devices itself. All of these
5809 * links are non-neighbours.
5810 */
2f268f12
VF
5811 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5812 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5813 pr_debug("Interlinking %s with %s, non-neighbour\n",
5814 i->dev->name, j->dev->name);
93409033 5815 ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5d261913
VF
5816 if (ret)
5817 goto rollback_mesh;
5818 }
5819 }
5820
5821 /* add dev to every upper_dev's upper device */
2f268f12
VF
5822 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5823 pr_debug("linking %s's upper device %s with %s\n",
5824 upper_dev->name, i->dev->name, dev->name);
93409033 5825 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5d261913
VF
5826 if (ret)
5827 goto rollback_upper_mesh;
5828 }
5829
5830 /* add upper_dev to every dev's lower device */
2f268f12
VF
5831 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5832 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5833 i->dev->name, upper_dev->name);
93409033 5834 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5d261913
VF
5835 if (ret)
5836 goto rollback_lower_mesh;
5837 }
9ff162a8 5838
b03804e7
IS
5839 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5840 &changeupper_info.info);
5841 ret = notifier_to_errno(ret);
5842 if (ret)
5843 goto rollback_lower_mesh;
5844
9ff162a8 5845 return 0;
5d261913
VF
5846
5847rollback_lower_mesh:
5848 to_i = i;
2f268f12 5849 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5850 if (i == to_i)
5851 break;
93409033 5852 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5d261913
VF
5853 }
5854
5855 i = NULL;
5856
5857rollback_upper_mesh:
5858 to_i = i;
2f268f12 5859 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5860 if (i == to_i)
5861 break;
93409033 5862 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5d261913
VF
5863 }
5864
5865 i = j = NULL;
5866
5867rollback_mesh:
5868 to_i = i;
5869 to_j = j;
2f268f12
VF
5870 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5871 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5872 if (i == to_i && j == to_j)
5873 break;
93409033 5874 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5d261913
VF
5875 }
5876 if (i == to_i)
5877 break;
5878 }
5879
2f268f12 5880 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5881
5882 return ret;
9ff162a8
JP
5883}
5884
5885/**
5886 * netdev_upper_dev_link - Add a link to the upper device
5887 * @dev: device
5888 * @upper_dev: new upper device
5889 *
5890 * Adds a link to device which is upper to this one. The caller must hold
5891 * the RTNL lock. On a failure a negative errno code is returned.
5892 * On success the reference counts are adjusted and the function
5893 * returns zero.
5894 */
5895int netdev_upper_dev_link(struct net_device *dev,
5896 struct net_device *upper_dev)
5897{
29bf24af 5898 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5899}
5900EXPORT_SYMBOL(netdev_upper_dev_link);
5901
5902/**
5903 * netdev_master_upper_dev_link - Add a master link to the upper device
5904 * @dev: device
5905 * @upper_dev: new upper device
6dffb044 5906 * @upper_priv: upper device private
29bf24af 5907 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5908 *
5909 * Adds a link to device which is upper to this one. In this case, only
5910 * one master upper device can be linked, although other non-master devices
5911 * might be linked as well. The caller must hold the RTNL lock.
5912 * On a failure a negative errno code is returned. On success the reference
5913 * counts are adjusted and the function returns zero.
5914 */
5915int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5916 struct net_device *upper_dev,
29bf24af 5917 void *upper_priv, void *upper_info)
9ff162a8 5918{
29bf24af
JP
5919 return __netdev_upper_dev_link(dev, upper_dev, true,
5920 upper_priv, upper_info);
9ff162a8
JP
5921}
5922EXPORT_SYMBOL(netdev_master_upper_dev_link);
5923
5924/**
5925 * netdev_upper_dev_unlink - Removes a link to upper device
5926 * @dev: device
5927 * @upper_dev: new upper device
5928 *
5929 * Removes a link to device which is upper to this one. The caller must hold
5930 * the RTNL lock.
5931 */
5932void netdev_upper_dev_unlink(struct net_device *dev,
5933 struct net_device *upper_dev)
5934{
0e4ead9d 5935 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5936 struct netdev_adjacent *i, *j;
9ff162a8
JP
5937 ASSERT_RTNL();
5938
0e4ead9d
JP
5939 changeupper_info.upper_dev = upper_dev;
5940 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5941 changeupper_info.linking = false;
5942
573c7ba0
JP
5943 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5944 &changeupper_info.info);
5945
2f268f12 5946 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5947
5948 /* Here is the tricky part. We must remove all dev's lower
5949 * devices from all upper_dev's upper devices and vice
5950 * versa, to maintain the graph relationship.
5951 */
2f268f12
VF
5952 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5953 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
93409033 5954 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5d261913
VF
5955
5956 /* remove also the devices itself from lower/upper device
5957 * list
5958 */
2f268f12 5959 list_for_each_entry(i, &dev->all_adj_list.lower, list)
93409033 5960 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5d261913 5961
2f268f12 5962 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
93409033 5963 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5d261913 5964
0e4ead9d
JP
5965 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5966 &changeupper_info.info);
9ff162a8
JP
5967}
5968EXPORT_SYMBOL(netdev_upper_dev_unlink);
5969
61bd3857
MS
5970/**
5971 * netdev_bonding_info_change - Dispatch event about slave change
5972 * @dev: device
4a26e453 5973 * @bonding_info: info to dispatch
61bd3857
MS
5974 *
5975 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5976 * The caller must hold the RTNL lock.
5977 */
5978void netdev_bonding_info_change(struct net_device *dev,
5979 struct netdev_bonding_info *bonding_info)
5980{
5981 struct netdev_notifier_bonding_info info;
5982
5983 memcpy(&info.bonding_info, bonding_info,
5984 sizeof(struct netdev_bonding_info));
5985 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5986 &info.info);
5987}
5988EXPORT_SYMBOL(netdev_bonding_info_change);
5989
2ce1ee17 5990static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5991{
5992 struct netdev_adjacent *iter;
5993
5994 struct net *net = dev_net(dev);
5995
5996 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5997 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5998 continue;
5999 netdev_adjacent_sysfs_add(iter->dev, dev,
6000 &iter->dev->adj_list.lower);
6001 netdev_adjacent_sysfs_add(dev, iter->dev,
6002 &dev->adj_list.upper);
6003 }
6004
6005 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6006 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6007 continue;
6008 netdev_adjacent_sysfs_add(iter->dev, dev,
6009 &iter->dev->adj_list.upper);
6010 netdev_adjacent_sysfs_add(dev, iter->dev,
6011 &dev->adj_list.lower);
6012 }
6013}
6014
2ce1ee17 6015static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6016{
6017 struct netdev_adjacent *iter;
6018
6019 struct net *net = dev_net(dev);
6020
6021 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6022 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6023 continue;
6024 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6025 &iter->dev->adj_list.lower);
6026 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6027 &dev->adj_list.upper);
6028 }
6029
6030 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6031 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6032 continue;
6033 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6034 &iter->dev->adj_list.upper);
6035 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6036 &dev->adj_list.lower);
6037 }
6038}
6039
5bb025fa 6040void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6041{
5bb025fa 6042 struct netdev_adjacent *iter;
402dae96 6043
4c75431a
AF
6044 struct net *net = dev_net(dev);
6045
5bb025fa 6046 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6047 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6048 continue;
5bb025fa
VF
6049 netdev_adjacent_sysfs_del(iter->dev, oldname,
6050 &iter->dev->adj_list.lower);
6051 netdev_adjacent_sysfs_add(iter->dev, dev,
6052 &iter->dev->adj_list.lower);
6053 }
402dae96 6054
5bb025fa 6055 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6056 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6057 continue;
5bb025fa
VF
6058 netdev_adjacent_sysfs_del(iter->dev, oldname,
6059 &iter->dev->adj_list.upper);
6060 netdev_adjacent_sysfs_add(iter->dev, dev,
6061 &iter->dev->adj_list.upper);
6062 }
402dae96 6063}
402dae96
VF
6064
6065void *netdev_lower_dev_get_private(struct net_device *dev,
6066 struct net_device *lower_dev)
6067{
6068 struct netdev_adjacent *lower;
6069
6070 if (!lower_dev)
6071 return NULL;
6ea29da1 6072 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6073 if (!lower)
6074 return NULL;
6075
6076 return lower->private;
6077}
6078EXPORT_SYMBOL(netdev_lower_dev_get_private);
6079
4085ebe8 6080
952fcfd0 6081int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6082{
6083 struct net_device *lower = NULL;
6084 struct list_head *iter;
6085 int max_nest = -1;
6086 int nest;
6087
6088 ASSERT_RTNL();
6089
6090 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6091 nest = dev_get_nest_level(lower);
4085ebe8
VY
6092 if (max_nest < nest)
6093 max_nest = nest;
6094 }
6095
952fcfd0 6096 return max_nest + 1;
4085ebe8
VY
6097}
6098EXPORT_SYMBOL(dev_get_nest_level);
6099
04d48266
JP
6100/**
6101 * netdev_lower_change - Dispatch event about lower device state change
6102 * @lower_dev: device
6103 * @lower_state_info: state to dispatch
6104 *
6105 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6106 * The caller must hold the RTNL lock.
6107 */
6108void netdev_lower_state_changed(struct net_device *lower_dev,
6109 void *lower_state_info)
6110{
6111 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6112
6113 ASSERT_RTNL();
6114 changelowerstate_info.lower_state_info = lower_state_info;
6115 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6116 &changelowerstate_info.info);
6117}
6118EXPORT_SYMBOL(netdev_lower_state_changed);
6119
18bfb924
JP
6120int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6121 struct neighbour *n)
6122{
6123 struct net_device *lower_dev, *stop_dev;
6124 struct list_head *iter;
6125 int err;
6126
6127 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6128 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6129 continue;
6130 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6131 if (err) {
6132 stop_dev = lower_dev;
6133 goto rollback;
6134 }
6135 }
6136 return 0;
6137
6138rollback:
6139 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6140 if (lower_dev == stop_dev)
6141 break;
6142 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6143 continue;
6144 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6145 }
6146 return err;
6147}
6148EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6149
6150void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6151 struct neighbour *n)
6152{
6153 struct net_device *lower_dev;
6154 struct list_head *iter;
6155
6156 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6157 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6158 continue;
6159 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6160 }
6161}
6162EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6163
b6c40d68
PM
6164static void dev_change_rx_flags(struct net_device *dev, int flags)
6165{
d314774c
SH
6166 const struct net_device_ops *ops = dev->netdev_ops;
6167
d2615bf4 6168 if (ops->ndo_change_rx_flags)
d314774c 6169 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6170}
6171
991fb3f7 6172static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6173{
b536db93 6174 unsigned int old_flags = dev->flags;
d04a48b0
EB
6175 kuid_t uid;
6176 kgid_t gid;
1da177e4 6177
24023451
PM
6178 ASSERT_RTNL();
6179
dad9b335
WC
6180 dev->flags |= IFF_PROMISC;
6181 dev->promiscuity += inc;
6182 if (dev->promiscuity == 0) {
6183 /*
6184 * Avoid overflow.
6185 * If inc causes overflow, untouch promisc and return error.
6186 */
6187 if (inc < 0)
6188 dev->flags &= ~IFF_PROMISC;
6189 else {
6190 dev->promiscuity -= inc;
7b6cd1ce
JP
6191 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6192 dev->name);
dad9b335
WC
6193 return -EOVERFLOW;
6194 }
6195 }
52609c0b 6196 if (dev->flags != old_flags) {
7b6cd1ce
JP
6197 pr_info("device %s %s promiscuous mode\n",
6198 dev->name,
6199 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6200 if (audit_enabled) {
6201 current_uid_gid(&uid, &gid);
7759db82
KHK
6202 audit_log(current->audit_context, GFP_ATOMIC,
6203 AUDIT_ANOM_PROMISCUOUS,
6204 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6205 dev->name, (dev->flags & IFF_PROMISC),
6206 (old_flags & IFF_PROMISC),
e1760bd5 6207 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6208 from_kuid(&init_user_ns, uid),
6209 from_kgid(&init_user_ns, gid),
7759db82 6210 audit_get_sessionid(current));
8192b0c4 6211 }
24023451 6212
b6c40d68 6213 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6214 }
991fb3f7
ND
6215 if (notify)
6216 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6217 return 0;
1da177e4
LT
6218}
6219
4417da66
PM
6220/**
6221 * dev_set_promiscuity - update promiscuity count on a device
6222 * @dev: device
6223 * @inc: modifier
6224 *
6225 * Add or remove promiscuity from a device. While the count in the device
6226 * remains above zero the interface remains promiscuous. Once it hits zero
6227 * the device reverts back to normal filtering operation. A negative inc
6228 * value is used to drop promiscuity on the device.
dad9b335 6229 * Return 0 if successful or a negative errno code on error.
4417da66 6230 */
dad9b335 6231int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6232{
b536db93 6233 unsigned int old_flags = dev->flags;
dad9b335 6234 int err;
4417da66 6235
991fb3f7 6236 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6237 if (err < 0)
dad9b335 6238 return err;
4417da66
PM
6239 if (dev->flags != old_flags)
6240 dev_set_rx_mode(dev);
dad9b335 6241 return err;
4417da66 6242}
d1b19dff 6243EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6244
991fb3f7 6245static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6246{
991fb3f7 6247 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6248
24023451
PM
6249 ASSERT_RTNL();
6250
1da177e4 6251 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6252 dev->allmulti += inc;
6253 if (dev->allmulti == 0) {
6254 /*
6255 * Avoid overflow.
6256 * If inc causes overflow, untouch allmulti and return error.
6257 */
6258 if (inc < 0)
6259 dev->flags &= ~IFF_ALLMULTI;
6260 else {
6261 dev->allmulti -= inc;
7b6cd1ce
JP
6262 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6263 dev->name);
dad9b335
WC
6264 return -EOVERFLOW;
6265 }
6266 }
24023451 6267 if (dev->flags ^ old_flags) {
b6c40d68 6268 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6269 dev_set_rx_mode(dev);
991fb3f7
ND
6270 if (notify)
6271 __dev_notify_flags(dev, old_flags,
6272 dev->gflags ^ old_gflags);
24023451 6273 }
dad9b335 6274 return 0;
4417da66 6275}
991fb3f7
ND
6276
6277/**
6278 * dev_set_allmulti - update allmulti count on a device
6279 * @dev: device
6280 * @inc: modifier
6281 *
6282 * Add or remove reception of all multicast frames to a device. While the
6283 * count in the device remains above zero the interface remains listening
6284 * to all interfaces. Once it hits zero the device reverts back to normal
6285 * filtering operation. A negative @inc value is used to drop the counter
6286 * when releasing a resource needing all multicasts.
6287 * Return 0 if successful or a negative errno code on error.
6288 */
6289
6290int dev_set_allmulti(struct net_device *dev, int inc)
6291{
6292 return __dev_set_allmulti(dev, inc, true);
6293}
d1b19dff 6294EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6295
6296/*
6297 * Upload unicast and multicast address lists to device and
6298 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6299 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6300 * are present.
6301 */
6302void __dev_set_rx_mode(struct net_device *dev)
6303{
d314774c
SH
6304 const struct net_device_ops *ops = dev->netdev_ops;
6305
4417da66
PM
6306 /* dev_open will call this function so the list will stay sane. */
6307 if (!(dev->flags&IFF_UP))
6308 return;
6309
6310 if (!netif_device_present(dev))
40b77c94 6311 return;
4417da66 6312
01789349 6313 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6314 /* Unicast addresses changes may only happen under the rtnl,
6315 * therefore calling __dev_set_promiscuity here is safe.
6316 */
32e7bfc4 6317 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6318 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6319 dev->uc_promisc = true;
32e7bfc4 6320 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6321 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6322 dev->uc_promisc = false;
4417da66 6323 }
4417da66 6324 }
01789349
JP
6325
6326 if (ops->ndo_set_rx_mode)
6327 ops->ndo_set_rx_mode(dev);
4417da66
PM
6328}
6329
6330void dev_set_rx_mode(struct net_device *dev)
6331{
b9e40857 6332 netif_addr_lock_bh(dev);
4417da66 6333 __dev_set_rx_mode(dev);
b9e40857 6334 netif_addr_unlock_bh(dev);
1da177e4
LT
6335}
6336
f0db275a
SH
6337/**
6338 * dev_get_flags - get flags reported to userspace
6339 * @dev: device
6340 *
6341 * Get the combination of flag bits exported through APIs to userspace.
6342 */
95c96174 6343unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6344{
95c96174 6345 unsigned int flags;
1da177e4
LT
6346
6347 flags = (dev->flags & ~(IFF_PROMISC |
6348 IFF_ALLMULTI |
b00055aa
SR
6349 IFF_RUNNING |
6350 IFF_LOWER_UP |
6351 IFF_DORMANT)) |
1da177e4
LT
6352 (dev->gflags & (IFF_PROMISC |
6353 IFF_ALLMULTI));
6354
b00055aa
SR
6355 if (netif_running(dev)) {
6356 if (netif_oper_up(dev))
6357 flags |= IFF_RUNNING;
6358 if (netif_carrier_ok(dev))
6359 flags |= IFF_LOWER_UP;
6360 if (netif_dormant(dev))
6361 flags |= IFF_DORMANT;
6362 }
1da177e4
LT
6363
6364 return flags;
6365}
d1b19dff 6366EXPORT_SYMBOL(dev_get_flags);
1da177e4 6367
bd380811 6368int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6369{
b536db93 6370 unsigned int old_flags = dev->flags;
bd380811 6371 int ret;
1da177e4 6372
24023451
PM
6373 ASSERT_RTNL();
6374
1da177e4
LT
6375 /*
6376 * Set the flags on our device.
6377 */
6378
6379 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6380 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6381 IFF_AUTOMEDIA)) |
6382 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6383 IFF_ALLMULTI));
6384
6385 /*
6386 * Load in the correct multicast list now the flags have changed.
6387 */
6388
b6c40d68
PM
6389 if ((old_flags ^ flags) & IFF_MULTICAST)
6390 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6391
4417da66 6392 dev_set_rx_mode(dev);
1da177e4
LT
6393
6394 /*
6395 * Have we downed the interface. We handle IFF_UP ourselves
6396 * according to user attempts to set it, rather than blindly
6397 * setting it.
6398 */
6399
6400 ret = 0;
d215d10f 6401 if ((old_flags ^ flags) & IFF_UP)
bd380811 6402 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6403
1da177e4 6404 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6405 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6406 unsigned int old_flags = dev->flags;
d1b19dff 6407
1da177e4 6408 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6409
6410 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6411 if (dev->flags != old_flags)
6412 dev_set_rx_mode(dev);
1da177e4
LT
6413 }
6414
6415 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6416 is important. Some (broken) drivers set IFF_PROMISC, when
6417 IFF_ALLMULTI is requested not asking us and not reporting.
6418 */
6419 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6420 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6421
1da177e4 6422 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6423 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6424 }
6425
bd380811
PM
6426 return ret;
6427}
6428
a528c219
ND
6429void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6430 unsigned int gchanges)
bd380811
PM
6431{
6432 unsigned int changes = dev->flags ^ old_flags;
6433
a528c219 6434 if (gchanges)
7f294054 6435 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6436
bd380811
PM
6437 if (changes & IFF_UP) {
6438 if (dev->flags & IFF_UP)
6439 call_netdevice_notifiers(NETDEV_UP, dev);
6440 else
6441 call_netdevice_notifiers(NETDEV_DOWN, dev);
6442 }
6443
6444 if (dev->flags & IFF_UP &&
be9efd36
JP
6445 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6446 struct netdev_notifier_change_info change_info;
6447
6448 change_info.flags_changed = changes;
6449 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6450 &change_info.info);
6451 }
bd380811
PM
6452}
6453
6454/**
6455 * dev_change_flags - change device settings
6456 * @dev: device
6457 * @flags: device state flags
6458 *
6459 * Change settings on device based state flags. The flags are
6460 * in the userspace exported format.
6461 */
b536db93 6462int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6463{
b536db93 6464 int ret;
991fb3f7 6465 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6466
6467 ret = __dev_change_flags(dev, flags);
6468 if (ret < 0)
6469 return ret;
6470
991fb3f7 6471 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6472 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6473 return ret;
6474}
d1b19dff 6475EXPORT_SYMBOL(dev_change_flags);
1da177e4 6476
2315dc91
VF
6477static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6478{
6479 const struct net_device_ops *ops = dev->netdev_ops;
6480
6481 if (ops->ndo_change_mtu)
6482 return ops->ndo_change_mtu(dev, new_mtu);
6483
6484 dev->mtu = new_mtu;
6485 return 0;
6486}
6487
f0db275a
SH
6488/**
6489 * dev_set_mtu - Change maximum transfer unit
6490 * @dev: device
6491 * @new_mtu: new transfer unit
6492 *
6493 * Change the maximum transfer size of the network device.
6494 */
1da177e4
LT
6495int dev_set_mtu(struct net_device *dev, int new_mtu)
6496{
2315dc91 6497 int err, orig_mtu;
1da177e4
LT
6498
6499 if (new_mtu == dev->mtu)
6500 return 0;
6501
61e84623
JW
6502 /* MTU must be positive, and in range */
6503 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6504 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6505 dev->name, new_mtu, dev->min_mtu);
1da177e4 6506 return -EINVAL;
61e84623
JW
6507 }
6508
6509 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6510 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6511 dev->name, new_mtu, dev->min_mtu);
6512 return -EINVAL;
6513 }
1da177e4
LT
6514
6515 if (!netif_device_present(dev))
6516 return -ENODEV;
6517
1d486bfb
VF
6518 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6519 err = notifier_to_errno(err);
6520 if (err)
6521 return err;
d314774c 6522
2315dc91
VF
6523 orig_mtu = dev->mtu;
6524 err = __dev_set_mtu(dev, new_mtu);
d314774c 6525
2315dc91
VF
6526 if (!err) {
6527 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6528 err = notifier_to_errno(err);
6529 if (err) {
6530 /* setting mtu back and notifying everyone again,
6531 * so that they have a chance to revert changes.
6532 */
6533 __dev_set_mtu(dev, orig_mtu);
6534 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6535 }
6536 }
1da177e4
LT
6537 return err;
6538}
d1b19dff 6539EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6540
cbda10fa
VD
6541/**
6542 * dev_set_group - Change group this device belongs to
6543 * @dev: device
6544 * @new_group: group this device should belong to
6545 */
6546void dev_set_group(struct net_device *dev, int new_group)
6547{
6548 dev->group = new_group;
6549}
6550EXPORT_SYMBOL(dev_set_group);
6551
f0db275a
SH
6552/**
6553 * dev_set_mac_address - Change Media Access Control Address
6554 * @dev: device
6555 * @sa: new address
6556 *
6557 * Change the hardware (MAC) address of the device
6558 */
1da177e4
LT
6559int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6560{
d314774c 6561 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6562 int err;
6563
d314774c 6564 if (!ops->ndo_set_mac_address)
1da177e4
LT
6565 return -EOPNOTSUPP;
6566 if (sa->sa_family != dev->type)
6567 return -EINVAL;
6568 if (!netif_device_present(dev))
6569 return -ENODEV;
d314774c 6570 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6571 if (err)
6572 return err;
fbdeca2d 6573 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6574 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6575 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6576 return 0;
1da177e4 6577}
d1b19dff 6578EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6579
4bf84c35
JP
6580/**
6581 * dev_change_carrier - Change device carrier
6582 * @dev: device
691b3b7e 6583 * @new_carrier: new value
4bf84c35
JP
6584 *
6585 * Change device carrier
6586 */
6587int dev_change_carrier(struct net_device *dev, bool new_carrier)
6588{
6589 const struct net_device_ops *ops = dev->netdev_ops;
6590
6591 if (!ops->ndo_change_carrier)
6592 return -EOPNOTSUPP;
6593 if (!netif_device_present(dev))
6594 return -ENODEV;
6595 return ops->ndo_change_carrier(dev, new_carrier);
6596}
6597EXPORT_SYMBOL(dev_change_carrier);
6598
66b52b0d
JP
6599/**
6600 * dev_get_phys_port_id - Get device physical port ID
6601 * @dev: device
6602 * @ppid: port ID
6603 *
6604 * Get device physical port ID
6605 */
6606int dev_get_phys_port_id(struct net_device *dev,
02637fce 6607 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6608{
6609 const struct net_device_ops *ops = dev->netdev_ops;
6610
6611 if (!ops->ndo_get_phys_port_id)
6612 return -EOPNOTSUPP;
6613 return ops->ndo_get_phys_port_id(dev, ppid);
6614}
6615EXPORT_SYMBOL(dev_get_phys_port_id);
6616
db24a904
DA
6617/**
6618 * dev_get_phys_port_name - Get device physical port name
6619 * @dev: device
6620 * @name: port name
ed49e650 6621 * @len: limit of bytes to copy to name
db24a904
DA
6622 *
6623 * Get device physical port name
6624 */
6625int dev_get_phys_port_name(struct net_device *dev,
6626 char *name, size_t len)
6627{
6628 const struct net_device_ops *ops = dev->netdev_ops;
6629
6630 if (!ops->ndo_get_phys_port_name)
6631 return -EOPNOTSUPP;
6632 return ops->ndo_get_phys_port_name(dev, name, len);
6633}
6634EXPORT_SYMBOL(dev_get_phys_port_name);
6635
d746d707
AK
6636/**
6637 * dev_change_proto_down - update protocol port state information
6638 * @dev: device
6639 * @proto_down: new value
6640 *
6641 * This info can be used by switch drivers to set the phys state of the
6642 * port.
6643 */
6644int dev_change_proto_down(struct net_device *dev, bool proto_down)
6645{
6646 const struct net_device_ops *ops = dev->netdev_ops;
6647
6648 if (!ops->ndo_change_proto_down)
6649 return -EOPNOTSUPP;
6650 if (!netif_device_present(dev))
6651 return -ENODEV;
6652 return ops->ndo_change_proto_down(dev, proto_down);
6653}
6654EXPORT_SYMBOL(dev_change_proto_down);
6655
a7862b45
BB
6656/**
6657 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6658 * @dev: device
6659 * @fd: new program fd or negative value to clear
6660 *
6661 * Set or clear a bpf program for a device
6662 */
6663int dev_change_xdp_fd(struct net_device *dev, int fd)
6664{
6665 const struct net_device_ops *ops = dev->netdev_ops;
6666 struct bpf_prog *prog = NULL;
6667 struct netdev_xdp xdp = {};
6668 int err;
6669
6670 if (!ops->ndo_xdp)
6671 return -EOPNOTSUPP;
6672 if (fd >= 0) {
6673 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6674 if (IS_ERR(prog))
6675 return PTR_ERR(prog);
6676 }
6677
6678 xdp.command = XDP_SETUP_PROG;
6679 xdp.prog = prog;
6680 err = ops->ndo_xdp(dev, &xdp);
6681 if (err < 0 && prog)
6682 bpf_prog_put(prog);
6683
6684 return err;
6685}
6686EXPORT_SYMBOL(dev_change_xdp_fd);
6687
1da177e4
LT
6688/**
6689 * dev_new_index - allocate an ifindex
c4ea43c5 6690 * @net: the applicable net namespace
1da177e4
LT
6691 *
6692 * Returns a suitable unique value for a new device interface
6693 * number. The caller must hold the rtnl semaphore or the
6694 * dev_base_lock to be sure it remains unique.
6695 */
881d966b 6696static int dev_new_index(struct net *net)
1da177e4 6697{
aa79e66e 6698 int ifindex = net->ifindex;
1da177e4
LT
6699 for (;;) {
6700 if (++ifindex <= 0)
6701 ifindex = 1;
881d966b 6702 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6703 return net->ifindex = ifindex;
1da177e4
LT
6704 }
6705}
6706
1da177e4 6707/* Delayed registration/unregisteration */
3b5b34fd 6708static LIST_HEAD(net_todo_list);
200b916f 6709DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6710
6f05f629 6711static void net_set_todo(struct net_device *dev)
1da177e4 6712{
1da177e4 6713 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6714 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6715}
6716
9b5e383c 6717static void rollback_registered_many(struct list_head *head)
93ee31f1 6718{
e93737b0 6719 struct net_device *dev, *tmp;
5cde2829 6720 LIST_HEAD(close_head);
9b5e383c 6721
93ee31f1
DL
6722 BUG_ON(dev_boot_phase);
6723 ASSERT_RTNL();
6724
e93737b0 6725 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6726 /* Some devices call without registering
e93737b0
KK
6727 * for initialization unwind. Remove those
6728 * devices and proceed with the remaining.
9b5e383c
ED
6729 */
6730 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6731 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6732 dev->name, dev);
93ee31f1 6733
9b5e383c 6734 WARN_ON(1);
e93737b0
KK
6735 list_del(&dev->unreg_list);
6736 continue;
9b5e383c 6737 }
449f4544 6738 dev->dismantle = true;
9b5e383c 6739 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6740 }
93ee31f1 6741
44345724 6742 /* If device is running, close it first. */
5cde2829
EB
6743 list_for_each_entry(dev, head, unreg_list)
6744 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6745 dev_close_many(&close_head, true);
93ee31f1 6746
44345724 6747 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6748 /* And unlink it from device chain. */
6749 unlist_netdevice(dev);
93ee31f1 6750
9b5e383c
ED
6751 dev->reg_state = NETREG_UNREGISTERING;
6752 }
41852497 6753 flush_all_backlogs();
93ee31f1
DL
6754
6755 synchronize_net();
6756
9b5e383c 6757 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6758 struct sk_buff *skb = NULL;
6759
9b5e383c
ED
6760 /* Shutdown queueing discipline. */
6761 dev_shutdown(dev);
93ee31f1
DL
6762
6763
9b5e383c
ED
6764 /* Notify protocols, that we are about to destroy
6765 this device. They should clean all the things.
6766 */
6767 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6768
395eea6c
MB
6769 if (!dev->rtnl_link_ops ||
6770 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6771 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6772 GFP_KERNEL);
6773
9b5e383c
ED
6774 /*
6775 * Flush the unicast and multicast chains
6776 */
a748ee24 6777 dev_uc_flush(dev);
22bedad3 6778 dev_mc_flush(dev);
93ee31f1 6779
9b5e383c
ED
6780 if (dev->netdev_ops->ndo_uninit)
6781 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6782
395eea6c
MB
6783 if (skb)
6784 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6785
9ff162a8
JP
6786 /* Notifier chain MUST detach us all upper devices. */
6787 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6788
9b5e383c
ED
6789 /* Remove entries from kobject tree */
6790 netdev_unregister_kobject(dev);
024e9679
AD
6791#ifdef CONFIG_XPS
6792 /* Remove XPS queueing entries */
6793 netif_reset_xps_queues_gt(dev, 0);
6794#endif
9b5e383c 6795 }
93ee31f1 6796
850a545b 6797 synchronize_net();
395264d5 6798
a5ee1551 6799 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6800 dev_put(dev);
6801}
6802
6803static void rollback_registered(struct net_device *dev)
6804{
6805 LIST_HEAD(single);
6806
6807 list_add(&dev->unreg_list, &single);
6808 rollback_registered_many(&single);
ceaaec98 6809 list_del(&single);
93ee31f1
DL
6810}
6811
fd867d51
JW
6812static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6813 struct net_device *upper, netdev_features_t features)
6814{
6815 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6816 netdev_features_t feature;
5ba3f7d6 6817 int feature_bit;
fd867d51 6818
5ba3f7d6
JW
6819 for_each_netdev_feature(&upper_disables, feature_bit) {
6820 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6821 if (!(upper->wanted_features & feature)
6822 && (features & feature)) {
6823 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6824 &feature, upper->name);
6825 features &= ~feature;
6826 }
6827 }
6828
6829 return features;
6830}
6831
6832static void netdev_sync_lower_features(struct net_device *upper,
6833 struct net_device *lower, netdev_features_t features)
6834{
6835 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6836 netdev_features_t feature;
5ba3f7d6 6837 int feature_bit;
fd867d51 6838
5ba3f7d6
JW
6839 for_each_netdev_feature(&upper_disables, feature_bit) {
6840 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6841 if (!(features & feature) && (lower->features & feature)) {
6842 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6843 &feature, lower->name);
6844 lower->wanted_features &= ~feature;
6845 netdev_update_features(lower);
6846
6847 if (unlikely(lower->features & feature))
6848 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6849 &feature, lower->name);
6850 }
6851 }
6852}
6853
c8f44aff
MM
6854static netdev_features_t netdev_fix_features(struct net_device *dev,
6855 netdev_features_t features)
b63365a2 6856{
57422dc5
MM
6857 /* Fix illegal checksum combinations */
6858 if ((features & NETIF_F_HW_CSUM) &&
6859 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6860 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6861 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6862 }
6863
b63365a2 6864 /* TSO requires that SG is present as well. */
ea2d3688 6865 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6866 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6867 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6868 }
6869
ec5f0615
PS
6870 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6871 !(features & NETIF_F_IP_CSUM)) {
6872 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6873 features &= ~NETIF_F_TSO;
6874 features &= ~NETIF_F_TSO_ECN;
6875 }
6876
6877 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6878 !(features & NETIF_F_IPV6_CSUM)) {
6879 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6880 features &= ~NETIF_F_TSO6;
6881 }
6882
b1dc497b
AD
6883 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6884 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6885 features &= ~NETIF_F_TSO_MANGLEID;
6886
31d8b9e0
BH
6887 /* TSO ECN requires that TSO is present as well. */
6888 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6889 features &= ~NETIF_F_TSO_ECN;
6890
212b573f
MM
6891 /* Software GSO depends on SG. */
6892 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6893 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6894 features &= ~NETIF_F_GSO;
6895 }
6896
acd1130e 6897 /* UFO needs SG and checksumming */
b63365a2 6898 if (features & NETIF_F_UFO) {
79032644 6899 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6900 if (!(features & NETIF_F_HW_CSUM) &&
6901 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6902 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6903 netdev_dbg(dev,
acd1130e 6904 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6905 features &= ~NETIF_F_UFO;
6906 }
6907
6908 if (!(features & NETIF_F_SG)) {
6f404e44 6909 netdev_dbg(dev,
acd1130e 6910 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6911 features &= ~NETIF_F_UFO;
6912 }
6913 }
6914
802ab55a
AD
6915 /* GSO partial features require GSO partial be set */
6916 if ((features & dev->gso_partial_features) &&
6917 !(features & NETIF_F_GSO_PARTIAL)) {
6918 netdev_dbg(dev,
6919 "Dropping partially supported GSO features since no GSO partial.\n");
6920 features &= ~dev->gso_partial_features;
6921 }
6922
d0290214
JP
6923#ifdef CONFIG_NET_RX_BUSY_POLL
6924 if (dev->netdev_ops->ndo_busy_poll)
6925 features |= NETIF_F_BUSY_POLL;
6926 else
6927#endif
6928 features &= ~NETIF_F_BUSY_POLL;
6929
b63365a2
HX
6930 return features;
6931}
b63365a2 6932
6cb6a27c 6933int __netdev_update_features(struct net_device *dev)
5455c699 6934{
fd867d51 6935 struct net_device *upper, *lower;
c8f44aff 6936 netdev_features_t features;
fd867d51 6937 struct list_head *iter;
e7868a85 6938 int err = -1;
5455c699 6939
87267485
MM
6940 ASSERT_RTNL();
6941
5455c699
MM
6942 features = netdev_get_wanted_features(dev);
6943
6944 if (dev->netdev_ops->ndo_fix_features)
6945 features = dev->netdev_ops->ndo_fix_features(dev, features);
6946
6947 /* driver might be less strict about feature dependencies */
6948 features = netdev_fix_features(dev, features);
6949
fd867d51
JW
6950 /* some features can't be enabled if they're off an an upper device */
6951 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6952 features = netdev_sync_upper_features(dev, upper, features);
6953
5455c699 6954 if (dev->features == features)
e7868a85 6955 goto sync_lower;
5455c699 6956
c8f44aff
MM
6957 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6958 &dev->features, &features);
5455c699
MM
6959
6960 if (dev->netdev_ops->ndo_set_features)
6961 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6962 else
6963 err = 0;
5455c699 6964
6cb6a27c 6965 if (unlikely(err < 0)) {
5455c699 6966 netdev_err(dev,
c8f44aff
MM
6967 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6968 err, &features, &dev->features);
17b85d29
NA
6969 /* return non-0 since some features might have changed and
6970 * it's better to fire a spurious notification than miss it
6971 */
6972 return -1;
6cb6a27c
MM
6973 }
6974
e7868a85 6975sync_lower:
fd867d51
JW
6976 /* some features must be disabled on lower devices when disabled
6977 * on an upper device (think: bonding master or bridge)
6978 */
6979 netdev_for_each_lower_dev(dev, lower, iter)
6980 netdev_sync_lower_features(dev, lower, features);
6981
6cb6a27c
MM
6982 if (!err)
6983 dev->features = features;
6984
e7868a85 6985 return err < 0 ? 0 : 1;
6cb6a27c
MM
6986}
6987
afe12cc8
MM
6988/**
6989 * netdev_update_features - recalculate device features
6990 * @dev: the device to check
6991 *
6992 * Recalculate dev->features set and send notifications if it
6993 * has changed. Should be called after driver or hardware dependent
6994 * conditions might have changed that influence the features.
6995 */
6cb6a27c
MM
6996void netdev_update_features(struct net_device *dev)
6997{
6998 if (__netdev_update_features(dev))
6999 netdev_features_change(dev);
5455c699
MM
7000}
7001EXPORT_SYMBOL(netdev_update_features);
7002
afe12cc8
MM
7003/**
7004 * netdev_change_features - recalculate device features
7005 * @dev: the device to check
7006 *
7007 * Recalculate dev->features set and send notifications even
7008 * if they have not changed. Should be called instead of
7009 * netdev_update_features() if also dev->vlan_features might
7010 * have changed to allow the changes to be propagated to stacked
7011 * VLAN devices.
7012 */
7013void netdev_change_features(struct net_device *dev)
7014{
7015 __netdev_update_features(dev);
7016 netdev_features_change(dev);
7017}
7018EXPORT_SYMBOL(netdev_change_features);
7019
fc4a7489
PM
7020/**
7021 * netif_stacked_transfer_operstate - transfer operstate
7022 * @rootdev: the root or lower level device to transfer state from
7023 * @dev: the device to transfer operstate to
7024 *
7025 * Transfer operational state from root to device. This is normally
7026 * called when a stacking relationship exists between the root
7027 * device and the device(a leaf device).
7028 */
7029void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7030 struct net_device *dev)
7031{
7032 if (rootdev->operstate == IF_OPER_DORMANT)
7033 netif_dormant_on(dev);
7034 else
7035 netif_dormant_off(dev);
7036
7037 if (netif_carrier_ok(rootdev)) {
7038 if (!netif_carrier_ok(dev))
7039 netif_carrier_on(dev);
7040 } else {
7041 if (netif_carrier_ok(dev))
7042 netif_carrier_off(dev);
7043 }
7044}
7045EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7046
a953be53 7047#ifdef CONFIG_SYSFS
1b4bf461
ED
7048static int netif_alloc_rx_queues(struct net_device *dev)
7049{
1b4bf461 7050 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7051 struct netdev_rx_queue *rx;
10595902 7052 size_t sz = count * sizeof(*rx);
1b4bf461 7053
bd25fa7b 7054 BUG_ON(count < 1);
1b4bf461 7055
10595902
PG
7056 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7057 if (!rx) {
7058 rx = vzalloc(sz);
7059 if (!rx)
7060 return -ENOMEM;
7061 }
bd25fa7b
TH
7062 dev->_rx = rx;
7063
bd25fa7b 7064 for (i = 0; i < count; i++)
fe822240 7065 rx[i].dev = dev;
1b4bf461
ED
7066 return 0;
7067}
bf264145 7068#endif
1b4bf461 7069
aa942104
CG
7070static void netdev_init_one_queue(struct net_device *dev,
7071 struct netdev_queue *queue, void *_unused)
7072{
7073 /* Initialize queue lock */
7074 spin_lock_init(&queue->_xmit_lock);
7075 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7076 queue->xmit_lock_owner = -1;
b236da69 7077 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7078 queue->dev = dev;
114cf580
TH
7079#ifdef CONFIG_BQL
7080 dql_init(&queue->dql, HZ);
7081#endif
aa942104
CG
7082}
7083
60877a32
ED
7084static void netif_free_tx_queues(struct net_device *dev)
7085{
4cb28970 7086 kvfree(dev->_tx);
60877a32
ED
7087}
7088
e6484930
TH
7089static int netif_alloc_netdev_queues(struct net_device *dev)
7090{
7091 unsigned int count = dev->num_tx_queues;
7092 struct netdev_queue *tx;
60877a32 7093 size_t sz = count * sizeof(*tx);
e6484930 7094
d339727c
ED
7095 if (count < 1 || count > 0xffff)
7096 return -EINVAL;
62b5942a 7097
60877a32
ED
7098 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7099 if (!tx) {
7100 tx = vzalloc(sz);
7101 if (!tx)
7102 return -ENOMEM;
7103 }
e6484930 7104 dev->_tx = tx;
1d24eb48 7105
e6484930
TH
7106 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7107 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7108
7109 return 0;
e6484930
TH
7110}
7111
a2029240
DV
7112void netif_tx_stop_all_queues(struct net_device *dev)
7113{
7114 unsigned int i;
7115
7116 for (i = 0; i < dev->num_tx_queues; i++) {
7117 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7118 netif_tx_stop_queue(txq);
7119 }
7120}
7121EXPORT_SYMBOL(netif_tx_stop_all_queues);
7122
1da177e4
LT
7123/**
7124 * register_netdevice - register a network device
7125 * @dev: device to register
7126 *
7127 * Take a completed network device structure and add it to the kernel
7128 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7129 * chain. 0 is returned on success. A negative errno code is returned
7130 * on a failure to set up the device, or if the name is a duplicate.
7131 *
7132 * Callers must hold the rtnl semaphore. You may want
7133 * register_netdev() instead of this.
7134 *
7135 * BUGS:
7136 * The locking appears insufficient to guarantee two parallel registers
7137 * will not get the same name.
7138 */
7139
7140int register_netdevice(struct net_device *dev)
7141{
1da177e4 7142 int ret;
d314774c 7143 struct net *net = dev_net(dev);
1da177e4
LT
7144
7145 BUG_ON(dev_boot_phase);
7146 ASSERT_RTNL();
7147
b17a7c17
SH
7148 might_sleep();
7149
1da177e4
LT
7150 /* When net_device's are persistent, this will be fatal. */
7151 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7152 BUG_ON(!net);
1da177e4 7153
f1f28aa3 7154 spin_lock_init(&dev->addr_list_lock);
cf508b12 7155 netdev_set_addr_lockdep_class(dev);
1da177e4 7156
828de4f6 7157 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7158 if (ret < 0)
7159 goto out;
7160
1da177e4 7161 /* Init, if this function is available */
d314774c
SH
7162 if (dev->netdev_ops->ndo_init) {
7163 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7164 if (ret) {
7165 if (ret > 0)
7166 ret = -EIO;
90833aa4 7167 goto out;
1da177e4
LT
7168 }
7169 }
4ec93edb 7170
f646968f
PM
7171 if (((dev->hw_features | dev->features) &
7172 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7173 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7174 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7175 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7176 ret = -EINVAL;
7177 goto err_uninit;
7178 }
7179
9c7dafbf
PE
7180 ret = -EBUSY;
7181 if (!dev->ifindex)
7182 dev->ifindex = dev_new_index(net);
7183 else if (__dev_get_by_index(net, dev->ifindex))
7184 goto err_uninit;
7185
5455c699
MM
7186 /* Transfer changeable features to wanted_features and enable
7187 * software offloads (GSO and GRO).
7188 */
7189 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7190 dev->features |= NETIF_F_SOFT_FEATURES;
7191 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7192
cbc53e08 7193 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7194 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7195
7f348a60
AD
7196 /* If IPv4 TCP segmentation offload is supported we should also
7197 * allow the device to enable segmenting the frame with the option
7198 * of ignoring a static IP ID value. This doesn't enable the
7199 * feature itself but allows the user to enable it later.
7200 */
cbc53e08
AD
7201 if (dev->hw_features & NETIF_F_TSO)
7202 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7203 if (dev->vlan_features & NETIF_F_TSO)
7204 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7205 if (dev->mpls_features & NETIF_F_TSO)
7206 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7207 if (dev->hw_enc_features & NETIF_F_TSO)
7208 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7209
1180e7d6 7210 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7211 */
1180e7d6 7212 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7213
ee579677
PS
7214 /* Make NETIF_F_SG inheritable to tunnel devices.
7215 */
802ab55a 7216 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7217
0d89d203
SH
7218 /* Make NETIF_F_SG inheritable to MPLS.
7219 */
7220 dev->mpls_features |= NETIF_F_SG;
7221
7ffbe3fd
JB
7222 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7223 ret = notifier_to_errno(ret);
7224 if (ret)
7225 goto err_uninit;
7226
8b41d188 7227 ret = netdev_register_kobject(dev);
b17a7c17 7228 if (ret)
7ce1b0ed 7229 goto err_uninit;
b17a7c17
SH
7230 dev->reg_state = NETREG_REGISTERED;
7231
6cb6a27c 7232 __netdev_update_features(dev);
8e9b59b2 7233
1da177e4
LT
7234 /*
7235 * Default initial state at registry is that the
7236 * device is present.
7237 */
7238
7239 set_bit(__LINK_STATE_PRESENT, &dev->state);
7240
8f4cccbb
BH
7241 linkwatch_init_dev(dev);
7242
1da177e4 7243 dev_init_scheduler(dev);
1da177e4 7244 dev_hold(dev);
ce286d32 7245 list_netdevice(dev);
7bf23575 7246 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7247
948b337e
JP
7248 /* If the device has permanent device address, driver should
7249 * set dev_addr and also addr_assign_type should be set to
7250 * NET_ADDR_PERM (default value).
7251 */
7252 if (dev->addr_assign_type == NET_ADDR_PERM)
7253 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7254
1da177e4 7255 /* Notify protocols, that a new device appeared. */
056925ab 7256 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7257 ret = notifier_to_errno(ret);
93ee31f1
DL
7258 if (ret) {
7259 rollback_registered(dev);
7260 dev->reg_state = NETREG_UNREGISTERED;
7261 }
d90a909e
EB
7262 /*
7263 * Prevent userspace races by waiting until the network
7264 * device is fully setup before sending notifications.
7265 */
a2835763
PM
7266 if (!dev->rtnl_link_ops ||
7267 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7268 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7269
7270out:
7271 return ret;
7ce1b0ed
HX
7272
7273err_uninit:
d314774c
SH
7274 if (dev->netdev_ops->ndo_uninit)
7275 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7276 goto out;
1da177e4 7277}
d1b19dff 7278EXPORT_SYMBOL(register_netdevice);
1da177e4 7279
937f1ba5
BH
7280/**
7281 * init_dummy_netdev - init a dummy network device for NAPI
7282 * @dev: device to init
7283 *
7284 * This takes a network device structure and initialize the minimum
7285 * amount of fields so it can be used to schedule NAPI polls without
7286 * registering a full blown interface. This is to be used by drivers
7287 * that need to tie several hardware interfaces to a single NAPI
7288 * poll scheduler due to HW limitations.
7289 */
7290int init_dummy_netdev(struct net_device *dev)
7291{
7292 /* Clear everything. Note we don't initialize spinlocks
7293 * are they aren't supposed to be taken by any of the
7294 * NAPI code and this dummy netdev is supposed to be
7295 * only ever used for NAPI polls
7296 */
7297 memset(dev, 0, sizeof(struct net_device));
7298
7299 /* make sure we BUG if trying to hit standard
7300 * register/unregister code path
7301 */
7302 dev->reg_state = NETREG_DUMMY;
7303
937f1ba5
BH
7304 /* NAPI wants this */
7305 INIT_LIST_HEAD(&dev->napi_list);
7306
7307 /* a dummy interface is started by default */
7308 set_bit(__LINK_STATE_PRESENT, &dev->state);
7309 set_bit(__LINK_STATE_START, &dev->state);
7310
29b4433d
ED
7311 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7312 * because users of this 'device' dont need to change
7313 * its refcount.
7314 */
7315
937f1ba5
BH
7316 return 0;
7317}
7318EXPORT_SYMBOL_GPL(init_dummy_netdev);
7319
7320
1da177e4
LT
7321/**
7322 * register_netdev - register a network device
7323 * @dev: device to register
7324 *
7325 * Take a completed network device structure and add it to the kernel
7326 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7327 * chain. 0 is returned on success. A negative errno code is returned
7328 * on a failure to set up the device, or if the name is a duplicate.
7329 *
38b4da38 7330 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7331 * and expands the device name if you passed a format string to
7332 * alloc_netdev.
7333 */
7334int register_netdev(struct net_device *dev)
7335{
7336 int err;
7337
7338 rtnl_lock();
1da177e4 7339 err = register_netdevice(dev);
1da177e4
LT
7340 rtnl_unlock();
7341 return err;
7342}
7343EXPORT_SYMBOL(register_netdev);
7344
29b4433d
ED
7345int netdev_refcnt_read(const struct net_device *dev)
7346{
7347 int i, refcnt = 0;
7348
7349 for_each_possible_cpu(i)
7350 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7351 return refcnt;
7352}
7353EXPORT_SYMBOL(netdev_refcnt_read);
7354
2c53040f 7355/**
1da177e4 7356 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7357 * @dev: target net_device
1da177e4
LT
7358 *
7359 * This is called when unregistering network devices.
7360 *
7361 * Any protocol or device that holds a reference should register
7362 * for netdevice notification, and cleanup and put back the
7363 * reference if they receive an UNREGISTER event.
7364 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7365 * call dev_put.
1da177e4
LT
7366 */
7367static void netdev_wait_allrefs(struct net_device *dev)
7368{
7369 unsigned long rebroadcast_time, warning_time;
29b4433d 7370 int refcnt;
1da177e4 7371
e014debe
ED
7372 linkwatch_forget_dev(dev);
7373
1da177e4 7374 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7375 refcnt = netdev_refcnt_read(dev);
7376
7377 while (refcnt != 0) {
1da177e4 7378 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7379 rtnl_lock();
1da177e4
LT
7380
7381 /* Rebroadcast unregister notification */
056925ab 7382 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7383
748e2d93 7384 __rtnl_unlock();
0115e8e3 7385 rcu_barrier();
748e2d93
ED
7386 rtnl_lock();
7387
0115e8e3 7388 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7389 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7390 &dev->state)) {
7391 /* We must not have linkwatch events
7392 * pending on unregister. If this
7393 * happens, we simply run the queue
7394 * unscheduled, resulting in a noop
7395 * for this device.
7396 */
7397 linkwatch_run_queue();
7398 }
7399
6756ae4b 7400 __rtnl_unlock();
1da177e4
LT
7401
7402 rebroadcast_time = jiffies;
7403 }
7404
7405 msleep(250);
7406
29b4433d
ED
7407 refcnt = netdev_refcnt_read(dev);
7408
1da177e4 7409 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7410 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7411 dev->name, refcnt);
1da177e4
LT
7412 warning_time = jiffies;
7413 }
7414 }
7415}
7416
7417/* The sequence is:
7418 *
7419 * rtnl_lock();
7420 * ...
7421 * register_netdevice(x1);
7422 * register_netdevice(x2);
7423 * ...
7424 * unregister_netdevice(y1);
7425 * unregister_netdevice(y2);
7426 * ...
7427 * rtnl_unlock();
7428 * free_netdev(y1);
7429 * free_netdev(y2);
7430 *
58ec3b4d 7431 * We are invoked by rtnl_unlock().
1da177e4 7432 * This allows us to deal with problems:
b17a7c17 7433 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7434 * without deadlocking with linkwatch via keventd.
7435 * 2) Since we run with the RTNL semaphore not held, we can sleep
7436 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7437 *
7438 * We must not return until all unregister events added during
7439 * the interval the lock was held have been completed.
1da177e4 7440 */
1da177e4
LT
7441void netdev_run_todo(void)
7442{
626ab0e6 7443 struct list_head list;
1da177e4 7444
1da177e4 7445 /* Snapshot list, allow later requests */
626ab0e6 7446 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7447
7448 __rtnl_unlock();
626ab0e6 7449
0115e8e3
ED
7450
7451 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7452 if (!list_empty(&list))
7453 rcu_barrier();
7454
1da177e4
LT
7455 while (!list_empty(&list)) {
7456 struct net_device *dev
e5e26d75 7457 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7458 list_del(&dev->todo_list);
7459
748e2d93 7460 rtnl_lock();
0115e8e3 7461 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7462 __rtnl_unlock();
0115e8e3 7463
b17a7c17 7464 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7465 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7466 dev->name, dev->reg_state);
7467 dump_stack();
7468 continue;
7469 }
1da177e4 7470
b17a7c17 7471 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7472
b17a7c17 7473 netdev_wait_allrefs(dev);
1da177e4 7474
b17a7c17 7475 /* paranoia */
29b4433d 7476 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7477 BUG_ON(!list_empty(&dev->ptype_all));
7478 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7479 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7480 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7481 WARN_ON(dev->dn_ptr);
1da177e4 7482
b17a7c17
SH
7483 if (dev->destructor)
7484 dev->destructor(dev);
9093bbb2 7485
50624c93
EB
7486 /* Report a network device has been unregistered */
7487 rtnl_lock();
7488 dev_net(dev)->dev_unreg_count--;
7489 __rtnl_unlock();
7490 wake_up(&netdev_unregistering_wq);
7491
9093bbb2
SH
7492 /* Free network device */
7493 kobject_put(&dev->dev.kobj);
1da177e4 7494 }
1da177e4
LT
7495}
7496
9256645a
JW
7497/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7498 * all the same fields in the same order as net_device_stats, with only
7499 * the type differing, but rtnl_link_stats64 may have additional fields
7500 * at the end for newer counters.
3cfde79c 7501 */
77a1abf5
ED
7502void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7503 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7504{
7505#if BITS_PER_LONG == 64
9256645a 7506 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7507 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7508 /* zero out counters that only exist in rtnl_link_stats64 */
7509 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7510 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7511#else
9256645a 7512 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7513 const unsigned long *src = (const unsigned long *)netdev_stats;
7514 u64 *dst = (u64 *)stats64;
7515
9256645a 7516 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7517 for (i = 0; i < n; i++)
7518 dst[i] = src[i];
9256645a
JW
7519 /* zero out counters that only exist in rtnl_link_stats64 */
7520 memset((char *)stats64 + n * sizeof(u64), 0,
7521 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7522#endif
7523}
77a1abf5 7524EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7525
eeda3fd6
SH
7526/**
7527 * dev_get_stats - get network device statistics
7528 * @dev: device to get statistics from
28172739 7529 * @storage: place to store stats
eeda3fd6 7530 *
d7753516
BH
7531 * Get network statistics from device. Return @storage.
7532 * The device driver may provide its own method by setting
7533 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7534 * otherwise the internal statistics structure is used.
eeda3fd6 7535 */
d7753516
BH
7536struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7537 struct rtnl_link_stats64 *storage)
7004bf25 7538{
eeda3fd6
SH
7539 const struct net_device_ops *ops = dev->netdev_ops;
7540
28172739
ED
7541 if (ops->ndo_get_stats64) {
7542 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7543 ops->ndo_get_stats64(dev, storage);
7544 } else if (ops->ndo_get_stats) {
3cfde79c 7545 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7546 } else {
7547 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7548 }
caf586e5 7549 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7550 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7551 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7552 return storage;
c45d286e 7553}
eeda3fd6 7554EXPORT_SYMBOL(dev_get_stats);
c45d286e 7555
24824a09 7556struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7557{
24824a09 7558 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7559
24824a09
ED
7560#ifdef CONFIG_NET_CLS_ACT
7561 if (queue)
7562 return queue;
7563 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7564 if (!queue)
7565 return NULL;
7566 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7567 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7568 queue->qdisc_sleeping = &noop_qdisc;
7569 rcu_assign_pointer(dev->ingress_queue, queue);
7570#endif
7571 return queue;
bb949fbd
DM
7572}
7573
2c60db03
ED
7574static const struct ethtool_ops default_ethtool_ops;
7575
d07d7507
SG
7576void netdev_set_default_ethtool_ops(struct net_device *dev,
7577 const struct ethtool_ops *ops)
7578{
7579 if (dev->ethtool_ops == &default_ethtool_ops)
7580 dev->ethtool_ops = ops;
7581}
7582EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7583
74d332c1
ED
7584void netdev_freemem(struct net_device *dev)
7585{
7586 char *addr = (char *)dev - dev->padded;
7587
4cb28970 7588 kvfree(addr);
74d332c1
ED
7589}
7590
1da177e4 7591/**
36909ea4 7592 * alloc_netdev_mqs - allocate network device
c835a677
TG
7593 * @sizeof_priv: size of private data to allocate space for
7594 * @name: device name format string
7595 * @name_assign_type: origin of device name
7596 * @setup: callback to initialize device
7597 * @txqs: the number of TX subqueues to allocate
7598 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7599 *
7600 * Allocates a struct net_device with private data area for driver use
90e51adf 7601 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7602 * for each queue on the device.
1da177e4 7603 */
36909ea4 7604struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7605 unsigned char name_assign_type,
36909ea4
TH
7606 void (*setup)(struct net_device *),
7607 unsigned int txqs, unsigned int rxqs)
1da177e4 7608{
1da177e4 7609 struct net_device *dev;
7943986c 7610 size_t alloc_size;
1ce8e7b5 7611 struct net_device *p;
1da177e4 7612
b6fe17d6
SH
7613 BUG_ON(strlen(name) >= sizeof(dev->name));
7614
36909ea4 7615 if (txqs < 1) {
7b6cd1ce 7616 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7617 return NULL;
7618 }
7619
a953be53 7620#ifdef CONFIG_SYSFS
36909ea4 7621 if (rxqs < 1) {
7b6cd1ce 7622 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7623 return NULL;
7624 }
7625#endif
7626
fd2ea0a7 7627 alloc_size = sizeof(struct net_device);
d1643d24
AD
7628 if (sizeof_priv) {
7629 /* ensure 32-byte alignment of private area */
1ce8e7b5 7630 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7631 alloc_size += sizeof_priv;
7632 }
7633 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7634 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7635
74d332c1
ED
7636 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7637 if (!p)
7638 p = vzalloc(alloc_size);
62b5942a 7639 if (!p)
1da177e4 7640 return NULL;
1da177e4 7641
1ce8e7b5 7642 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7643 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7644
29b4433d
ED
7645 dev->pcpu_refcnt = alloc_percpu(int);
7646 if (!dev->pcpu_refcnt)
74d332c1 7647 goto free_dev;
ab9c73cc 7648
ab9c73cc 7649 if (dev_addr_init(dev))
29b4433d 7650 goto free_pcpu;
ab9c73cc 7651
22bedad3 7652 dev_mc_init(dev);
a748ee24 7653 dev_uc_init(dev);
ccffad25 7654
c346dca1 7655 dev_net_set(dev, &init_net);
1da177e4 7656
8d3bdbd5 7657 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7658 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7659
8d3bdbd5
DM
7660 INIT_LIST_HEAD(&dev->napi_list);
7661 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7662 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7663 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7664 INIT_LIST_HEAD(&dev->adj_list.upper);
7665 INIT_LIST_HEAD(&dev->adj_list.lower);
7666 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7667 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7668 INIT_LIST_HEAD(&dev->ptype_all);
7669 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7670#ifdef CONFIG_NET_SCHED
7671 hash_init(dev->qdisc_hash);
7672#endif
02875878 7673 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7674 setup(dev);
7675
a813104d 7676 if (!dev->tx_queue_len) {
f84bb1ea 7677 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7678 dev->tx_queue_len = 1;
7679 }
906470c1 7680
36909ea4
TH
7681 dev->num_tx_queues = txqs;
7682 dev->real_num_tx_queues = txqs;
ed9af2e8 7683 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7684 goto free_all;
e8a0464c 7685
a953be53 7686#ifdef CONFIG_SYSFS
36909ea4
TH
7687 dev->num_rx_queues = rxqs;
7688 dev->real_num_rx_queues = rxqs;
fe822240 7689 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7690 goto free_all;
df334545 7691#endif
0a9627f2 7692
1da177e4 7693 strcpy(dev->name, name);
c835a677 7694 dev->name_assign_type = name_assign_type;
cbda10fa 7695 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7696 if (!dev->ethtool_ops)
7697 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7698
7699 nf_hook_ingress_init(dev);
7700
1da177e4 7701 return dev;
ab9c73cc 7702
8d3bdbd5
DM
7703free_all:
7704 free_netdev(dev);
7705 return NULL;
7706
29b4433d
ED
7707free_pcpu:
7708 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7709free_dev:
7710 netdev_freemem(dev);
ab9c73cc 7711 return NULL;
1da177e4 7712}
36909ea4 7713EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7714
7715/**
7716 * free_netdev - free network device
7717 * @dev: device
7718 *
4ec93edb
YH
7719 * This function does the last stage of destroying an allocated device
7720 * interface. The reference to the device object is released.
1da177e4 7721 * If this is the last reference then it will be freed.
93d05d4a 7722 * Must be called in process context.
1da177e4
LT
7723 */
7724void free_netdev(struct net_device *dev)
7725{
d565b0a1
HX
7726 struct napi_struct *p, *n;
7727
93d05d4a 7728 might_sleep();
60877a32 7729 netif_free_tx_queues(dev);
a953be53 7730#ifdef CONFIG_SYSFS
10595902 7731 kvfree(dev->_rx);
fe822240 7732#endif
e8a0464c 7733
33d480ce 7734 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7735
f001fde5
JP
7736 /* Flush device addresses */
7737 dev_addr_flush(dev);
7738
d565b0a1
HX
7739 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7740 netif_napi_del(p);
7741
29b4433d
ED
7742 free_percpu(dev->pcpu_refcnt);
7743 dev->pcpu_refcnt = NULL;
7744
3041a069 7745 /* Compatibility with error handling in drivers */
1da177e4 7746 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7747 netdev_freemem(dev);
1da177e4
LT
7748 return;
7749 }
7750
7751 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7752 dev->reg_state = NETREG_RELEASED;
7753
43cb76d9
GKH
7754 /* will free via device release */
7755 put_device(&dev->dev);
1da177e4 7756}
d1b19dff 7757EXPORT_SYMBOL(free_netdev);
4ec93edb 7758
f0db275a
SH
7759/**
7760 * synchronize_net - Synchronize with packet receive processing
7761 *
7762 * Wait for packets currently being received to be done.
7763 * Does not block later packets from starting.
7764 */
4ec93edb 7765void synchronize_net(void)
1da177e4
LT
7766{
7767 might_sleep();
be3fc413
ED
7768 if (rtnl_is_locked())
7769 synchronize_rcu_expedited();
7770 else
7771 synchronize_rcu();
1da177e4 7772}
d1b19dff 7773EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7774
7775/**
44a0873d 7776 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7777 * @dev: device
44a0873d 7778 * @head: list
6ebfbc06 7779 *
1da177e4 7780 * This function shuts down a device interface and removes it
d59b54b1 7781 * from the kernel tables.
44a0873d 7782 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7783 *
7784 * Callers must hold the rtnl semaphore. You may want
7785 * unregister_netdev() instead of this.
7786 */
7787
44a0873d 7788void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7789{
a6620712
HX
7790 ASSERT_RTNL();
7791
44a0873d 7792 if (head) {
9fdce099 7793 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7794 } else {
7795 rollback_registered(dev);
7796 /* Finish processing unregister after unlock */
7797 net_set_todo(dev);
7798 }
1da177e4 7799}
44a0873d 7800EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7801
9b5e383c
ED
7802/**
7803 * unregister_netdevice_many - unregister many devices
7804 * @head: list of devices
87757a91
ED
7805 *
7806 * Note: As most callers use a stack allocated list_head,
7807 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7808 */
7809void unregister_netdevice_many(struct list_head *head)
7810{
7811 struct net_device *dev;
7812
7813 if (!list_empty(head)) {
7814 rollback_registered_many(head);
7815 list_for_each_entry(dev, head, unreg_list)
7816 net_set_todo(dev);
87757a91 7817 list_del(head);
9b5e383c
ED
7818 }
7819}
63c8099d 7820EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7821
1da177e4
LT
7822/**
7823 * unregister_netdev - remove device from the kernel
7824 * @dev: device
7825 *
7826 * This function shuts down a device interface and removes it
d59b54b1 7827 * from the kernel tables.
1da177e4
LT
7828 *
7829 * This is just a wrapper for unregister_netdevice that takes
7830 * the rtnl semaphore. In general you want to use this and not
7831 * unregister_netdevice.
7832 */
7833void unregister_netdev(struct net_device *dev)
7834{
7835 rtnl_lock();
7836 unregister_netdevice(dev);
7837 rtnl_unlock();
7838}
1da177e4
LT
7839EXPORT_SYMBOL(unregister_netdev);
7840
ce286d32
EB
7841/**
7842 * dev_change_net_namespace - move device to different nethost namespace
7843 * @dev: device
7844 * @net: network namespace
7845 * @pat: If not NULL name pattern to try if the current device name
7846 * is already taken in the destination network namespace.
7847 *
7848 * This function shuts down a device interface and moves it
7849 * to a new network namespace. On success 0 is returned, on
7850 * a failure a netagive errno code is returned.
7851 *
7852 * Callers must hold the rtnl semaphore.
7853 */
7854
7855int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7856{
ce286d32
EB
7857 int err;
7858
7859 ASSERT_RTNL();
7860
7861 /* Don't allow namespace local devices to be moved. */
7862 err = -EINVAL;
7863 if (dev->features & NETIF_F_NETNS_LOCAL)
7864 goto out;
7865
7866 /* Ensure the device has been registrered */
ce286d32
EB
7867 if (dev->reg_state != NETREG_REGISTERED)
7868 goto out;
7869
7870 /* Get out if there is nothing todo */
7871 err = 0;
878628fb 7872 if (net_eq(dev_net(dev), net))
ce286d32
EB
7873 goto out;
7874
7875 /* Pick the destination device name, and ensure
7876 * we can use it in the destination network namespace.
7877 */
7878 err = -EEXIST;
d9031024 7879 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7880 /* We get here if we can't use the current device name */
7881 if (!pat)
7882 goto out;
828de4f6 7883 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7884 goto out;
7885 }
7886
7887 /*
7888 * And now a mini version of register_netdevice unregister_netdevice.
7889 */
7890
7891 /* If device is running close it first. */
9b772652 7892 dev_close(dev);
ce286d32
EB
7893
7894 /* And unlink it from device chain */
7895 err = -ENODEV;
7896 unlist_netdevice(dev);
7897
7898 synchronize_net();
7899
7900 /* Shutdown queueing discipline. */
7901 dev_shutdown(dev);
7902
7903 /* Notify protocols, that we are about to destroy
7904 this device. They should clean all the things.
3b27e105
DL
7905
7906 Note that dev->reg_state stays at NETREG_REGISTERED.
7907 This is wanted because this way 8021q and macvlan know
7908 the device is just moving and can keep their slaves up.
ce286d32
EB
7909 */
7910 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7911 rcu_barrier();
7912 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7913 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7914
7915 /*
7916 * Flush the unicast and multicast chains
7917 */
a748ee24 7918 dev_uc_flush(dev);
22bedad3 7919 dev_mc_flush(dev);
ce286d32 7920
4e66ae2e
SH
7921 /* Send a netdev-removed uevent to the old namespace */
7922 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7923 netdev_adjacent_del_links(dev);
4e66ae2e 7924
ce286d32 7925 /* Actually switch the network namespace */
c346dca1 7926 dev_net_set(dev, net);
ce286d32 7927
ce286d32 7928 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7929 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7930 dev->ifindex = dev_new_index(net);
ce286d32 7931
4e66ae2e
SH
7932 /* Send a netdev-add uevent to the new namespace */
7933 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7934 netdev_adjacent_add_links(dev);
4e66ae2e 7935
8b41d188 7936 /* Fixup kobjects */
a1b3f594 7937 err = device_rename(&dev->dev, dev->name);
8b41d188 7938 WARN_ON(err);
ce286d32
EB
7939
7940 /* Add the device back in the hashes */
7941 list_netdevice(dev);
7942
7943 /* Notify protocols, that a new device appeared. */
7944 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7945
d90a909e
EB
7946 /*
7947 * Prevent userspace races by waiting until the network
7948 * device is fully setup before sending notifications.
7949 */
7f294054 7950 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7951
ce286d32
EB
7952 synchronize_net();
7953 err = 0;
7954out:
7955 return err;
7956}
463d0183 7957EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7958
1da177e4
LT
7959static int dev_cpu_callback(struct notifier_block *nfb,
7960 unsigned long action,
7961 void *ocpu)
7962{
7963 struct sk_buff **list_skb;
1da177e4
LT
7964 struct sk_buff *skb;
7965 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7966 struct softnet_data *sd, *oldsd;
7967
8bb78442 7968 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7969 return NOTIFY_OK;
7970
7971 local_irq_disable();
7972 cpu = smp_processor_id();
7973 sd = &per_cpu(softnet_data, cpu);
7974 oldsd = &per_cpu(softnet_data, oldcpu);
7975
7976 /* Find end of our completion_queue. */
7977 list_skb = &sd->completion_queue;
7978 while (*list_skb)
7979 list_skb = &(*list_skb)->next;
7980 /* Append completion queue from offline CPU. */
7981 *list_skb = oldsd->completion_queue;
7982 oldsd->completion_queue = NULL;
7983
1da177e4 7984 /* Append output queue from offline CPU. */
a9cbd588
CG
7985 if (oldsd->output_queue) {
7986 *sd->output_queue_tailp = oldsd->output_queue;
7987 sd->output_queue_tailp = oldsd->output_queue_tailp;
7988 oldsd->output_queue = NULL;
7989 oldsd->output_queue_tailp = &oldsd->output_queue;
7990 }
ac64da0b
ED
7991 /* Append NAPI poll list from offline CPU, with one exception :
7992 * process_backlog() must be called by cpu owning percpu backlog.
7993 * We properly handle process_queue & input_pkt_queue later.
7994 */
7995 while (!list_empty(&oldsd->poll_list)) {
7996 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7997 struct napi_struct,
7998 poll_list);
7999
8000 list_del_init(&napi->poll_list);
8001 if (napi->poll == process_backlog)
8002 napi->state = 0;
8003 else
8004 ____napi_schedule(sd, napi);
264524d5 8005 }
1da177e4
LT
8006
8007 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8008 local_irq_enable();
8009
8010 /* Process offline CPU's input_pkt_queue */
76cc8b13 8011 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8012 netif_rx_ni(skb);
76cc8b13 8013 input_queue_head_incr(oldsd);
fec5e652 8014 }
ac64da0b 8015 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8016 netif_rx_ni(skb);
76cc8b13
TH
8017 input_queue_head_incr(oldsd);
8018 }
1da177e4
LT
8019
8020 return NOTIFY_OK;
8021}
1da177e4
LT
8022
8023
7f353bf2 8024/**
b63365a2
HX
8025 * netdev_increment_features - increment feature set by one
8026 * @all: current feature set
8027 * @one: new feature set
8028 * @mask: mask feature set
7f353bf2
HX
8029 *
8030 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8031 * @one to the master device with current feature set @all. Will not
8032 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8033 */
c8f44aff
MM
8034netdev_features_t netdev_increment_features(netdev_features_t all,
8035 netdev_features_t one, netdev_features_t mask)
b63365a2 8036{
c8cd0989 8037 if (mask & NETIF_F_HW_CSUM)
a188222b 8038 mask |= NETIF_F_CSUM_MASK;
1742f183 8039 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8040
a188222b 8041 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8042 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8043
1742f183 8044 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8045 if (all & NETIF_F_HW_CSUM)
8046 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8047
8048 return all;
8049}
b63365a2 8050EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8051
430f03cd 8052static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8053{
8054 int i;
8055 struct hlist_head *hash;
8056
8057 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8058 if (hash != NULL)
8059 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8060 INIT_HLIST_HEAD(&hash[i]);
8061
8062 return hash;
8063}
8064
881d966b 8065/* Initialize per network namespace state */
4665079c 8066static int __net_init netdev_init(struct net *net)
881d966b 8067{
734b6541
RM
8068 if (net != &init_net)
8069 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8070
30d97d35
PE
8071 net->dev_name_head = netdev_create_hash();
8072 if (net->dev_name_head == NULL)
8073 goto err_name;
881d966b 8074
30d97d35
PE
8075 net->dev_index_head = netdev_create_hash();
8076 if (net->dev_index_head == NULL)
8077 goto err_idx;
881d966b
EB
8078
8079 return 0;
30d97d35
PE
8080
8081err_idx:
8082 kfree(net->dev_name_head);
8083err_name:
8084 return -ENOMEM;
881d966b
EB
8085}
8086
f0db275a
SH
8087/**
8088 * netdev_drivername - network driver for the device
8089 * @dev: network device
f0db275a
SH
8090 *
8091 * Determine network driver for device.
8092 */
3019de12 8093const char *netdev_drivername(const struct net_device *dev)
6579e57b 8094{
cf04a4c7
SH
8095 const struct device_driver *driver;
8096 const struct device *parent;
3019de12 8097 const char *empty = "";
6579e57b
AV
8098
8099 parent = dev->dev.parent;
6579e57b 8100 if (!parent)
3019de12 8101 return empty;
6579e57b
AV
8102
8103 driver = parent->driver;
8104 if (driver && driver->name)
3019de12
DM
8105 return driver->name;
8106 return empty;
6579e57b
AV
8107}
8108
6ea754eb
JP
8109static void __netdev_printk(const char *level, const struct net_device *dev,
8110 struct va_format *vaf)
256df2f3 8111{
b004ff49 8112 if (dev && dev->dev.parent) {
6ea754eb
JP
8113 dev_printk_emit(level[1] - '0',
8114 dev->dev.parent,
8115 "%s %s %s%s: %pV",
8116 dev_driver_string(dev->dev.parent),
8117 dev_name(dev->dev.parent),
8118 netdev_name(dev), netdev_reg_state(dev),
8119 vaf);
b004ff49 8120 } else if (dev) {
6ea754eb
JP
8121 printk("%s%s%s: %pV",
8122 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8123 } else {
6ea754eb 8124 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8125 }
256df2f3
JP
8126}
8127
6ea754eb
JP
8128void netdev_printk(const char *level, const struct net_device *dev,
8129 const char *format, ...)
256df2f3
JP
8130{
8131 struct va_format vaf;
8132 va_list args;
256df2f3
JP
8133
8134 va_start(args, format);
8135
8136 vaf.fmt = format;
8137 vaf.va = &args;
8138
6ea754eb 8139 __netdev_printk(level, dev, &vaf);
b004ff49 8140
256df2f3 8141 va_end(args);
256df2f3
JP
8142}
8143EXPORT_SYMBOL(netdev_printk);
8144
8145#define define_netdev_printk_level(func, level) \
6ea754eb 8146void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8147{ \
256df2f3
JP
8148 struct va_format vaf; \
8149 va_list args; \
8150 \
8151 va_start(args, fmt); \
8152 \
8153 vaf.fmt = fmt; \
8154 vaf.va = &args; \
8155 \
6ea754eb 8156 __netdev_printk(level, dev, &vaf); \
b004ff49 8157 \
256df2f3 8158 va_end(args); \
256df2f3
JP
8159} \
8160EXPORT_SYMBOL(func);
8161
8162define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8163define_netdev_printk_level(netdev_alert, KERN_ALERT);
8164define_netdev_printk_level(netdev_crit, KERN_CRIT);
8165define_netdev_printk_level(netdev_err, KERN_ERR);
8166define_netdev_printk_level(netdev_warn, KERN_WARNING);
8167define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8168define_netdev_printk_level(netdev_info, KERN_INFO);
8169
4665079c 8170static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8171{
8172 kfree(net->dev_name_head);
8173 kfree(net->dev_index_head);
8174}
8175
022cbae6 8176static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8177 .init = netdev_init,
8178 .exit = netdev_exit,
8179};
8180
4665079c 8181static void __net_exit default_device_exit(struct net *net)
ce286d32 8182{
e008b5fc 8183 struct net_device *dev, *aux;
ce286d32 8184 /*
e008b5fc 8185 * Push all migratable network devices back to the
ce286d32
EB
8186 * initial network namespace
8187 */
8188 rtnl_lock();
e008b5fc 8189 for_each_netdev_safe(net, dev, aux) {
ce286d32 8190 int err;
aca51397 8191 char fb_name[IFNAMSIZ];
ce286d32
EB
8192
8193 /* Ignore unmoveable devices (i.e. loopback) */
8194 if (dev->features & NETIF_F_NETNS_LOCAL)
8195 continue;
8196
e008b5fc
EB
8197 /* Leave virtual devices for the generic cleanup */
8198 if (dev->rtnl_link_ops)
8199 continue;
d0c082ce 8200
25985edc 8201 /* Push remaining network devices to init_net */
aca51397
PE
8202 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8203 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8204 if (err) {
7b6cd1ce
JP
8205 pr_emerg("%s: failed to move %s to init_net: %d\n",
8206 __func__, dev->name, err);
aca51397 8207 BUG();
ce286d32
EB
8208 }
8209 }
8210 rtnl_unlock();
8211}
8212
50624c93
EB
8213static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8214{
8215 /* Return with the rtnl_lock held when there are no network
8216 * devices unregistering in any network namespace in net_list.
8217 */
8218 struct net *net;
8219 bool unregistering;
ff960a73 8220 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8221
ff960a73 8222 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8223 for (;;) {
50624c93
EB
8224 unregistering = false;
8225 rtnl_lock();
8226 list_for_each_entry(net, net_list, exit_list) {
8227 if (net->dev_unreg_count > 0) {
8228 unregistering = true;
8229 break;
8230 }
8231 }
8232 if (!unregistering)
8233 break;
8234 __rtnl_unlock();
ff960a73
PZ
8235
8236 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8237 }
ff960a73 8238 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8239}
8240
04dc7f6b
EB
8241static void __net_exit default_device_exit_batch(struct list_head *net_list)
8242{
8243 /* At exit all network devices most be removed from a network
b595076a 8244 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8245 * Do this across as many network namespaces as possible to
8246 * improve batching efficiency.
8247 */
8248 struct net_device *dev;
8249 struct net *net;
8250 LIST_HEAD(dev_kill_list);
8251
50624c93
EB
8252 /* To prevent network device cleanup code from dereferencing
8253 * loopback devices or network devices that have been freed
8254 * wait here for all pending unregistrations to complete,
8255 * before unregistring the loopback device and allowing the
8256 * network namespace be freed.
8257 *
8258 * The netdev todo list containing all network devices
8259 * unregistrations that happen in default_device_exit_batch
8260 * will run in the rtnl_unlock() at the end of
8261 * default_device_exit_batch.
8262 */
8263 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8264 list_for_each_entry(net, net_list, exit_list) {
8265 for_each_netdev_reverse(net, dev) {
b0ab2fab 8266 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8267 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8268 else
8269 unregister_netdevice_queue(dev, &dev_kill_list);
8270 }
8271 }
8272 unregister_netdevice_many(&dev_kill_list);
8273 rtnl_unlock();
8274}
8275
022cbae6 8276static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8277 .exit = default_device_exit,
04dc7f6b 8278 .exit_batch = default_device_exit_batch,
ce286d32
EB
8279};
8280
1da177e4
LT
8281/*
8282 * Initialize the DEV module. At boot time this walks the device list and
8283 * unhooks any devices that fail to initialise (normally hardware not
8284 * present) and leaves us with a valid list of present and active devices.
8285 *
8286 */
8287
8288/*
8289 * This is called single threaded during boot, so no need
8290 * to take the rtnl semaphore.
8291 */
8292static int __init net_dev_init(void)
8293{
8294 int i, rc = -ENOMEM;
8295
8296 BUG_ON(!dev_boot_phase);
8297
1da177e4
LT
8298 if (dev_proc_init())
8299 goto out;
8300
8b41d188 8301 if (netdev_kobject_init())
1da177e4
LT
8302 goto out;
8303
8304 INIT_LIST_HEAD(&ptype_all);
82d8a867 8305 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8306 INIT_LIST_HEAD(&ptype_base[i]);
8307
62532da9
VY
8308 INIT_LIST_HEAD(&offload_base);
8309
881d966b
EB
8310 if (register_pernet_subsys(&netdev_net_ops))
8311 goto out;
1da177e4
LT
8312
8313 /*
8314 * Initialise the packet receive queues.
8315 */
8316
6f912042 8317 for_each_possible_cpu(i) {
41852497 8318 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8319 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8320
41852497
ED
8321 INIT_WORK(flush, flush_backlog);
8322
e36fa2f7 8323 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8324 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8325 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8326 sd->output_queue_tailp = &sd->output_queue;
df334545 8327#ifdef CONFIG_RPS
e36fa2f7
ED
8328 sd->csd.func = rps_trigger_softirq;
8329 sd->csd.info = sd;
e36fa2f7 8330 sd->cpu = i;
1e94d72f 8331#endif
0a9627f2 8332
e36fa2f7
ED
8333 sd->backlog.poll = process_backlog;
8334 sd->backlog.weight = weight_p;
1da177e4
LT
8335 }
8336
1da177e4
LT
8337 dev_boot_phase = 0;
8338
505d4f73
EB
8339 /* The loopback device is special if any other network devices
8340 * is present in a network namespace the loopback device must
8341 * be present. Since we now dynamically allocate and free the
8342 * loopback device ensure this invariant is maintained by
8343 * keeping the loopback device as the first device on the
8344 * list of network devices. Ensuring the loopback devices
8345 * is the first device that appears and the last network device
8346 * that disappears.
8347 */
8348 if (register_pernet_device(&loopback_net_ops))
8349 goto out;
8350
8351 if (register_pernet_device(&default_device_ops))
8352 goto out;
8353
962cf36c
CM
8354 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8355 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8356
8357 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8358 dst_subsys_init();
1da177e4
LT
8359 rc = 0;
8360out:
8361 return rc;
8362}
8363
8364subsys_initcall(net_dev_init);