]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/core/dev.c
net: Refactor removal of queues from XPS map and apply on num_tc changes
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
40e4e713 142#include <linux/crash_dump.h>
1da177e4 143
342709ef
PE
144#include "net-sysfs.h"
145
d565b0a1
HX
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
5d38a079
HX
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
1da177e4 152static DEFINE_SPINLOCK(ptype_lock);
62532da9 153static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
62532da9 156static struct list_head offload_base __read_mostly;
1da177e4 157
ae78dbfa 158static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
ae78dbfa 162
1da177e4 163/*
7562f876 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
165 * semaphore.
166 *
c6d14c84 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
7562f876 170 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
1da177e4 182DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
183EXPORT_SYMBOL(dev_base_lock);
184
af12fa6e
ET
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
52bd2d62 188static unsigned int napi_gen_id = NR_CPUS;
6180d9de 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 190
18afa4b0 191static seqcount_t devnet_rename_seq;
c91f6df2 192
4e985ada
TG
193static inline void dev_base_seq_inc(struct net *net)
194{
195 while (++net->dev_base_seq == 0);
196}
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 199{
8387ff25 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 201
08e9897d 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
203}
204
881d966b 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 206{
7c28bd0b 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
208}
209
e36fa2f7 210static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
e36fa2f7 217static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
ce286d32 224/* Device list insertion */
53759be9 225static void list_netdevice(struct net_device *dev)
ce286d32 226{
c346dca1 227 struct net *net = dev_net(dev);
ce286d32
EB
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
c6d14c84 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
ce286d32 236 write_unlock_bh(&dev_base_lock);
4e985ada
TG
237
238 dev_base_seq_inc(net);
ce286d32
EB
239}
240
fb699dfd
ED
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
ce286d32
EB
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
c6d14c84 250 list_del_rcu(&dev->dev_list);
72c9528b 251 hlist_del_rcu(&dev->name_hlist);
fb699dfd 252 hlist_del_rcu(&dev->index_hlist);
ce286d32 253 write_unlock_bh(&dev_base_lock);
4e985ada
TG
254
255 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
256}
257
1da177e4
LT
258/*
259 * Our notifier list
260 */
261
f07d5b94 262static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
263
264/*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
bea3348e 268
9958da05 269DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 270EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 271
cf508b12 272#ifdef CONFIG_LOCKDEP
723e98b7 273/*
c773e847 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
275 * according to dev->type
276 */
277static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 293
36cbd3dc 294static const char *const netdev_lock_name[] =
723e98b7
JP
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
cf508b12
DM
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
723e98b7
JP
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
cf508b12
DM
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
723e98b7 344#else
cf508b12
DM
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
350{
351}
352#endif
1da177e4
LT
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
1da177e4
LT
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
c07b68e8
ED
376static inline struct list_head *ptype_head(const struct packet_type *pt)
377{
378 if (pt->type == htons(ETH_P_ALL))
7866a621 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 380 else
7866a621
SN
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
383}
384
1da177e4
LT
385/**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
4ec93edb 393 * This call does not sleep therefore it can not
1da177e4
LT
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398void dev_add_pack(struct packet_type *pt)
399{
c07b68e8 400 struct list_head *head = ptype_head(pt);
1da177e4 401
c07b68e8
ED
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
1da177e4 405}
d1b19dff 406EXPORT_SYMBOL(dev_add_pack);
1da177e4 407
1da177e4
LT
408/**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
4ec93edb 415 * returns.
1da177e4
LT
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421void __dev_remove_pack(struct packet_type *pt)
422{
c07b68e8 423 struct list_head *head = ptype_head(pt);
1da177e4
LT
424 struct packet_type *pt1;
425
c07b68e8 426 spin_lock(&ptype_lock);
1da177e4
LT
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
7b6cd1ce 435 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 436out:
c07b68e8 437 spin_unlock(&ptype_lock);
1da177e4 438}
d1b19dff
ED
439EXPORT_SYMBOL(__dev_remove_pack);
440
1da177e4
LT
441/**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453void dev_remove_pack(struct packet_type *pt)
454{
455 __dev_remove_pack(pt);
4ec93edb 456
1da177e4
LT
457 synchronize_net();
458}
d1b19dff 459EXPORT_SYMBOL(dev_remove_pack);
1da177e4 460
62532da9
VY
461
462/**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474void dev_add_offload(struct packet_offload *po)
475{
bdef7de4 476 struct packet_offload *elem;
62532da9
VY
477
478 spin_lock(&offload_lock);
bdef7de4
DM
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
484 spin_unlock(&offload_lock);
485}
486EXPORT_SYMBOL(dev_add_offload);
487
488/**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
1d143d9f 501static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
502{
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
c53aa505 506 spin_lock(&offload_lock);
62532da9
VY
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516out:
c53aa505 517 spin_unlock(&offload_lock);
62532da9 518}
62532da9
VY
519
520/**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532void dev_remove_offload(struct packet_offload *po)
533{
534 __dev_remove_offload(po);
535
536 synchronize_net();
537}
538EXPORT_SYMBOL(dev_remove_offload);
539
1da177e4
LT
540/******************************************************************************
541
542 Device Boot-time Settings Routines
543
544*******************************************************************************/
545
546/* Boot time configuration table */
547static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549/**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558static int netdev_boot_setup_add(char *name, struct ifmap *map)
559{
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 567 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574}
575
576/**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585int netdev_boot_setup_check(struct net_device *dev)
586{
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 592 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601}
d1b19dff 602EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
603
604
605/**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615unsigned long netdev_boot_base(const char *prefix, int unit)
616{
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
881d966b 627 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634}
635
636/*
637 * Saves at boot time configured settings for any netdevice.
638 */
639int __init netdev_boot_setup(char *str)
640{
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661}
662
663__setup("netdev=", netdev_boot_setup);
664
665/*******************************************************************************
666
667 Device Interface Subroutines
668
669*******************************************************************************/
670
a54acb3a
ND
671/**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679int dev_get_iflink(const struct net_device *dev)
680{
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
7a66bbc9 684 return dev->ifindex;
a54acb3a
ND
685}
686EXPORT_SYMBOL(dev_get_iflink);
687
fc4099f1
PS
688/**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698{
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711}
712EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
1da177e4
LT
714/**
715 * __dev_get_by_name - find a device by its name
c4ea43c5 716 * @net: the applicable net namespace
1da177e4
LT
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
881d966b 726struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 727{
0bd8d536
ED
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 730
b67bfe0d 731 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
0bd8d536 734
1da177e4
LT
735 return NULL;
736}
d1b19dff 737EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 738
72c9528b
ED
739/**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752{
72c9528b
ED
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
b67bfe0d 756 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761}
762EXPORT_SYMBOL(dev_get_by_name_rcu);
763
1da177e4
LT
764/**
765 * dev_get_by_name - find a device by its name
c4ea43c5 766 * @net: the applicable net namespace
1da177e4
LT
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
881d966b 776struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
777{
778 struct net_device *dev;
779
72c9528b
ED
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
782 if (dev)
783 dev_hold(dev);
72c9528b 784 rcu_read_unlock();
1da177e4
LT
785 return dev;
786}
d1b19dff 787EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
788
789/**
790 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 791 * @net: the applicable net namespace
1da177e4
LT
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
881d966b 801struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 802{
0bd8d536
ED
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 805
b67bfe0d 806 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
807 if (dev->ifindex == ifindex)
808 return dev;
0bd8d536 809
1da177e4
LT
810 return NULL;
811}
d1b19dff 812EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 813
fb699dfd
ED
814/**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826{
fb699dfd
ED
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
b67bfe0d 830 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835}
836EXPORT_SYMBOL(dev_get_by_index_rcu);
837
1da177e4
LT
838
839/**
840 * dev_get_by_index - find a device by its ifindex
c4ea43c5 841 * @net: the applicable net namespace
1da177e4
LT
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
881d966b 850struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
851{
852 struct net_device *dev;
853
fb699dfd
ED
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
856 if (dev)
857 dev_hold(dev);
fb699dfd 858 rcu_read_unlock();
1da177e4
LT
859 return dev;
860}
d1b19dff 861EXPORT_SYMBOL(dev_get_by_index);
1da177e4 862
5dbe7c17
NS
863/**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873int netdev_get_name(struct net *net, char *name, int ifindex)
874{
875 struct net_device *dev;
876 unsigned int seq;
877
878retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895}
896
1da177e4 897/**
941666c2 898 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 899 * @net: the applicable net namespace
1da177e4
LT
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
941666c2 906 * The returned device has not had its ref count increased
1da177e4
LT
907 * and the caller must therefore be careful about locking
908 *
1da177e4
LT
909 */
910
941666c2
ED
911struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
1da177e4
LT
913{
914 struct net_device *dev;
915
941666c2 916 for_each_netdev_rcu(net, dev)
1da177e4
LT
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
919 return dev;
920
921 return NULL;
1da177e4 922}
941666c2 923EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 924
881d966b 925struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
926{
927 struct net_device *dev;
928
4e9cac2b 929 ASSERT_RTNL();
881d966b 930 for_each_netdev(net, dev)
4e9cac2b 931 if (dev->type == type)
7562f876
PE
932 return dev;
933
934 return NULL;
4e9cac2b 935}
4e9cac2b
PM
936EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
881d966b 938struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 939{
99fe3c39 940 struct net_device *dev, *ret = NULL;
4e9cac2b 941
99fe3c39
ED
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
1da177e4 951}
1da177e4
LT
952EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954/**
6c555490 955 * __dev_get_by_flags - find any device with given flags
c4ea43c5 956 * @net: the applicable net namespace
1da177e4
LT
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 961 * is not found or a pointer to the device. Must be called inside
6c555490 962 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
963 */
964
6c555490
WC
965struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
1da177e4 967{
7562f876 968 struct net_device *dev, *ret;
1da177e4 969
6c555490
WC
970 ASSERT_RTNL();
971
7562f876 972 ret = NULL;
6c555490 973 for_each_netdev(net, dev) {
1da177e4 974 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 975 ret = dev;
1da177e4
LT
976 break;
977 }
978 }
7562f876 979 return ret;
1da177e4 980}
6c555490 981EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
982
983/**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
c7fa9d18
DM
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
1da177e4 990 */
95f050bf 991bool dev_valid_name(const char *name)
1da177e4 992{
c7fa9d18 993 if (*name == '\0')
95f050bf 994 return false;
b6fe17d6 995 if (strlen(name) >= IFNAMSIZ)
95f050bf 996 return false;
c7fa9d18 997 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 998 return false;
c7fa9d18
DM
999
1000 while (*name) {
a4176a93 1001 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1002 return false;
c7fa9d18
DM
1003 name++;
1004 }
95f050bf 1005 return true;
1da177e4 1006}
d1b19dff 1007EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1008
1009/**
b267b179
EB
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1da177e4 1012 * @name: name format string
b267b179 1013 * @buf: scratch buffer and result name string
1da177e4
LT
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1022 */
1023
b267b179 1024static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1025{
1026 int i = 0;
1da177e4
LT
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1029 unsigned long *inuse;
1da177e4
LT
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
cfcabdcc 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1044 if (!inuse)
1045 return -ENOMEM;
1046
881d966b 1047 for_each_netdev(net, d) {
1da177e4
LT
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1054 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
d9031024
OP
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1065 if (!__dev_get_by_name(net, buf))
1da177e4 1066 return i;
1da177e4
LT
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073}
1074
b267b179
EB
1075/**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089int dev_alloc_name(struct net_device *dev, const char *name)
1090{
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
c346dca1
YH
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
b267b179
EB
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101}
d1b19dff 1102EXPORT_SYMBOL(dev_alloc_name);
b267b179 1103
828de4f6
G
1104static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
d9031024 1107{
828de4f6
G
1108 char buf[IFNAMSIZ];
1109 int ret;
8ce6cebc 1110
828de4f6
G
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115}
1116
1117static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120{
1121 BUG_ON(!net);
8ce6cebc 1122
d9031024
OP
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1c5cae81 1126 if (strchr(name, '%'))
828de4f6 1127 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
8ce6cebc
DL
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1132
1133 return 0;
1134}
1da177e4
LT
1135
1136/**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
cf04a4c7 1144int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1145{
238fa362 1146 unsigned char old_assign_type;
fcc5a03a 1147 char oldname[IFNAMSIZ];
1da177e4 1148 int err = 0;
fcc5a03a 1149 int ret;
881d966b 1150 struct net *net;
1da177e4
LT
1151
1152 ASSERT_RTNL();
c346dca1 1153 BUG_ON(!dev_net(dev));
1da177e4 1154
c346dca1 1155 net = dev_net(dev);
1da177e4
LT
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
30e6c9fa 1159 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1162 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1163 return 0;
c91f6df2 1164 }
c8d90dca 1165
fcc5a03a
HX
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
828de4f6 1168 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1169 if (err < 0) {
30e6c9fa 1170 write_seqcount_end(&devnet_rename_seq);
d9031024 1171 return err;
c91f6df2 1172 }
1da177e4 1173
6fe82a39
VF
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
238fa362
TG
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
fcc5a03a 1180rollback:
a1b3f594
EB
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1184 dev->name_assign_type = old_assign_type;
30e6c9fa 1185 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1186 return ret;
dcc99773 1187 }
7f988eab 1188
30e6c9fa 1189 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1190
5bb025fa
VF
1191 netdev_adjacent_rename_links(dev, oldname);
1192
7f988eab 1193 write_lock_bh(&dev_base_lock);
372b2312 1194 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1201 write_unlock_bh(&dev_base_lock);
1202
056925ab 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
91e9c07b
ED
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
fcc5a03a 1209 err = ret;
30e6c9fa 1210 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1211 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1212 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1215 goto rollback;
91e9c07b 1216 } else {
7b6cd1ce 1217 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1218 dev->name, ret);
fcc5a03a
HX
1219 }
1220 }
1da177e4
LT
1221
1222 return err;
1223}
1224
0b815a1a
SH
1225/**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
f0db275a 1229 * @len: limit of bytes to copy from info
0b815a1a
SH
1230 *
1231 * Set ifalias for a device,
1232 */
1233int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234{
7364e445
AK
1235 char *new_ifalias;
1236
0b815a1a
SH
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
96ca4a2c 1242 if (!len) {
388dfc2d
SK
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
96ca4a2c
OH
1245 return 0;
1246 }
1247
7364e445
AK
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
0b815a1a 1250 return -ENOMEM;
7364e445 1251 dev->ifalias = new_ifalias;
0b815a1a
SH
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255}
1256
1257
d8a33ac4 1258/**
3041a069 1259 * netdev_features_change - device changes features
d8a33ac4
SH
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264void netdev_features_change(struct net_device *dev)
1265{
056925ab 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1267}
1268EXPORT_SYMBOL(netdev_features_change);
1269
1da177e4
LT
1270/**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278void netdev_state_change(struct net_device *dev)
1279{
1280 if (dev->flags & IFF_UP) {
54951194
LP
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
7f294054 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1287 }
1288}
d1b19dff 1289EXPORT_SYMBOL(netdev_state_change);
1da177e4 1290
ee89bab1
AW
1291/**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1302{
ee89bab1
AW
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
c1da4ac7 1306}
ee89bab1 1307EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1308
bd380811 1309static int __dev_open(struct net_device *dev)
1da177e4 1310{
d314774c 1311 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1312 int ret;
1da177e4 1313
e46b66bc
BH
1314 ASSERT_RTNL();
1315
1da177e4
LT
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
ca99ca14
NH
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
66b5552f 1323 netpoll_poll_disable(dev);
ca99ca14 1324
3b8bcfd5
JB
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1da177e4 1330 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1331
d314774c
SH
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
bada339b 1334
d314774c
SH
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1da177e4 1337
66b5552f 1338 netpoll_poll_enable(dev);
ca99ca14 1339
bada339b
JG
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1da177e4 1343 dev->flags |= IFF_UP;
4417da66 1344 dev_set_rx_mode(dev);
1da177e4 1345 dev_activate(dev);
7bf23575 1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1347 }
bada339b 1348
1da177e4
LT
1349 return ret;
1350}
1351
1352/**
bd380811
PM
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1da177e4 1355 *
bd380811
PM
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1da177e4 1363 */
bd380811
PM
1364int dev_open(struct net_device *dev)
1365{
1366 int ret;
1367
bd380811
PM
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
bd380811
PM
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
7f294054 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379}
1380EXPORT_SYMBOL(dev_open);
1381
44345724 1382static int __dev_close_many(struct list_head *head)
1da177e4 1383{
44345724 1384 struct net_device *dev;
e46b66bc 1385
bd380811 1386 ASSERT_RTNL();
9d5010db
DM
1387 might_sleep();
1388
5cde2829 1389 list_for_each_entry(dev, head, close_list) {
3f4df206 1390 /* Temporarily disable netpoll until the interface is down */
66b5552f 1391 netpoll_poll_disable(dev);
3f4df206 1392
44345724 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1394
44345724 1395 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1396
44345724
OP
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
4e857c58 1403 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1404 }
1da177e4 1405
44345724 1406 dev_deactivate_many(head);
d8b2a4d2 1407
5cde2829 1408 list_for_each_entry(dev, head, close_list) {
44345724 1409 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1410
44345724
OP
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
44345724 1421 dev->flags &= ~IFF_UP;
66b5552f 1422 netpoll_poll_enable(dev);
44345724
OP
1423 }
1424
1425 return 0;
1426}
1427
1428static int __dev_close(struct net_device *dev)
1429{
f87e6f47 1430 int retval;
44345724
OP
1431 LIST_HEAD(single);
1432
5cde2829 1433 list_add(&dev->close_list, &single);
f87e6f47
LT
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
ca99ca14 1436
f87e6f47 1437 return retval;
44345724
OP
1438}
1439
99c4a26a 1440int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1441{
1442 struct net_device *dev, *tmp;
1da177e4 1443
5cde2829
EB
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1446 if (!(dev->flags & IFF_UP))
5cde2829 1447 list_del_init(&dev->close_list);
44345724
OP
1448
1449 __dev_close_many(head);
1da177e4 1450
5cde2829 1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1454 if (unlink)
1455 list_del_init(&dev->close_list);
44345724 1456 }
bd380811
PM
1457
1458 return 0;
1459}
99c4a26a 1460EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1461
1462/**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471int dev_close(struct net_device *dev)
1472{
e14a5993
ED
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1da177e4 1475
5cde2829 1476 list_add(&dev->close_list, &single);
99c4a26a 1477 dev_close_many(&single, true);
e14a5993
ED
1478 list_del(&single);
1479 }
da6e378b 1480 return 0;
1da177e4 1481}
d1b19dff 1482EXPORT_SYMBOL(dev_close);
1da177e4
LT
1483
1484
0187bdfb
BH
1485/**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493void dev_disable_lro(struct net_device *dev)
1494{
fbe168ba
MK
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
529d0489 1497
bc5787c6
MM
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
27660515 1500
22d5969f
MM
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
0187bdfb
BH
1506}
1507EXPORT_SYMBOL(dev_disable_lro);
1508
351638e7
JP
1509static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511{
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516}
0187bdfb 1517
881d966b
EB
1518static int dev_boot_phase = 1;
1519
1da177e4
LT
1520/**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
4ec93edb 1530 * to the new notifier to allow device to have a race free
1da177e4
LT
1531 * view of the network device list.
1532 */
1533
1534int register_netdevice_notifier(struct notifier_block *nb)
1535{
1536 struct net_device *dev;
fcc5a03a 1537 struct net_device *last;
881d966b 1538 struct net *net;
1da177e4
LT
1539 int err;
1540
1541 rtnl_lock();
f07d5b94 1542 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1543 if (err)
1544 goto unlock;
881d966b
EB
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
351638e7 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1da177e4 1556
351638e7 1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1558 }
1da177e4 1559 }
fcc5a03a
HX
1560
1561unlock:
1da177e4
LT
1562 rtnl_unlock();
1563 return err;
fcc5a03a
HX
1564
1565rollback:
1566 last = dev;
881d966b
EB
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
8f891489 1570 goto outroll;
fcc5a03a 1571
881d966b 1572 if (dev->flags & IFF_UP) {
351638e7
JP
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1576 }
351638e7 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1578 }
fcc5a03a 1579 }
c67625a1 1580
8f891489 1581outroll:
c67625a1 1582 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1583 goto unlock;
1da177e4 1584}
d1b19dff 1585EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1586
1587/**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
7d3d43da
EB
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1da177e4
LT
1599 */
1600
1601int unregister_netdevice_notifier(struct notifier_block *nb)
1602{
7d3d43da
EB
1603 struct net_device *dev;
1604 struct net *net;
9f514950
HX
1605 int err;
1606
1607 rtnl_lock();
f07d5b94 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
351638e7
JP
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1618 }
351638e7 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1620 }
1621 }
1622unlock:
9f514950
HX
1623 rtnl_unlock();
1624 return err;
1da177e4 1625}
d1b19dff 1626EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1627
351638e7
JP
1628/**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1d143d9f 1638static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
351638e7
JP
1641{
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645}
351638e7 1646
1da177e4
LT
1647/**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
c4ea43c5 1650 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1651 *
1652 * Call all network notifier blocks. Parameters and return value
f07d5b94 1653 * are as for raw_notifier_call_chain().
1da177e4
LT
1654 */
1655
ad7379d4 1656int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1657{
351638e7
JP
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1661}
edf947f1 1662EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1663
1cf51900 1664#ifdef CONFIG_NET_INGRESS
4577139b
DB
1665static struct static_key ingress_needed __read_mostly;
1666
1667void net_inc_ingress_queue(void)
1668{
1669 static_key_slow_inc(&ingress_needed);
1670}
1671EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673void net_dec_ingress_queue(void)
1674{
1675 static_key_slow_dec(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678#endif
1679
1f211a1b
DB
1680#ifdef CONFIG_NET_EGRESS
1681static struct static_key egress_needed __read_mostly;
1682
1683void net_inc_egress_queue(void)
1684{
1685 static_key_slow_inc(&egress_needed);
1686}
1687EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689void net_dec_egress_queue(void)
1690{
1691 static_key_slow_dec(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694#endif
1695
c5905afb 1696static struct static_key netstamp_needed __read_mostly;
b90e5794 1697#ifdef HAVE_JUMP_LABEL
c5905afb 1698/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1699 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1700 * static_key_slow_dec() calls.
b90e5794
ED
1701 */
1702static atomic_t netstamp_needed_deferred;
1703#endif
1da177e4
LT
1704
1705void net_enable_timestamp(void)
1706{
b90e5794
ED
1707#ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710 if (deferred) {
1711 while (--deferred)
c5905afb 1712 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1713 return;
1714 }
1715#endif
c5905afb 1716 static_key_slow_inc(&netstamp_needed);
1da177e4 1717}
d1b19dff 1718EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1719
1720void net_disable_timestamp(void)
1721{
b90e5794
ED
1722#ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1726 }
1727#endif
c5905afb 1728 static_key_slow_dec(&netstamp_needed);
1da177e4 1729}
d1b19dff 1730EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1731
3b098e2d 1732static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1733{
588f0330 1734 skb->tstamp.tv64 = 0;
c5905afb 1735 if (static_key_false(&netstamp_needed))
a61bbcf2 1736 __net_timestamp(skb);
1da177e4
LT
1737}
1738
588f0330 1739#define net_timestamp_check(COND, SKB) \
c5905afb 1740 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1741 if ((COND) && !(SKB)->tstamp.tv64) \
1742 __net_timestamp(SKB); \
1743 } \
3b098e2d 1744
f4b05d27 1745bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1746{
1747 unsigned int len;
1748
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1751
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1755
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1758 */
1759 if (skb_is_gso(skb))
1760 return true;
1761
1762 return false;
1763}
1ee481fb 1764EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1765
a0265d28
HX
1766int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767{
bbbf2df0
WB
1768 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1769 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1770 atomic_long_inc(&dev->rx_dropped);
1771 kfree_skb(skb);
1772 return NET_RX_DROP;
1773 }
1774
1775 skb_scrub_packet(skb, true);
08b4b8ea 1776 skb->priority = 0;
a0265d28 1777 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1778 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1779
1780 return 0;
1781}
1782EXPORT_SYMBOL_GPL(__dev_forward_skb);
1783
44540960
AB
1784/**
1785 * dev_forward_skb - loopback an skb to another netif
1786 *
1787 * @dev: destination network device
1788 * @skb: buffer to forward
1789 *
1790 * return values:
1791 * NET_RX_SUCCESS (no congestion)
6ec82562 1792 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1793 *
1794 * dev_forward_skb can be used for injecting an skb from the
1795 * start_xmit function of one device into the receive queue
1796 * of another device.
1797 *
1798 * The receiving device may be in another namespace, so
1799 * we have to clear all information in the skb that could
1800 * impact namespace isolation.
1801 */
1802int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1803{
a0265d28 1804 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1805}
1806EXPORT_SYMBOL_GPL(dev_forward_skb);
1807
71d9dec2
CG
1808static inline int deliver_skb(struct sk_buff *skb,
1809 struct packet_type *pt_prev,
1810 struct net_device *orig_dev)
1811{
1080e512
MT
1812 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1813 return -ENOMEM;
71d9dec2
CG
1814 atomic_inc(&skb->users);
1815 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1816}
1817
7866a621
SN
1818static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1819 struct packet_type **pt,
fbcb2170
JP
1820 struct net_device *orig_dev,
1821 __be16 type,
7866a621
SN
1822 struct list_head *ptype_list)
1823{
1824 struct packet_type *ptype, *pt_prev = *pt;
1825
1826 list_for_each_entry_rcu(ptype, ptype_list, list) {
1827 if (ptype->type != type)
1828 continue;
1829 if (pt_prev)
fbcb2170 1830 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1831 pt_prev = ptype;
1832 }
1833 *pt = pt_prev;
1834}
1835
c0de08d0
EL
1836static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1837{
a3d744e9 1838 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1839 return false;
1840
1841 if (ptype->id_match)
1842 return ptype->id_match(ptype, skb->sk);
1843 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1844 return true;
1845
1846 return false;
1847}
1848
1da177e4
LT
1849/*
1850 * Support routine. Sends outgoing frames to any network
1851 * taps currently in use.
1852 */
1853
74b20582 1854void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1855{
1856 struct packet_type *ptype;
71d9dec2
CG
1857 struct sk_buff *skb2 = NULL;
1858 struct packet_type *pt_prev = NULL;
7866a621 1859 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1860
1da177e4 1861 rcu_read_lock();
7866a621
SN
1862again:
1863 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1864 /* Never send packets back to the socket
1865 * they originated from - MvS (miquels@drinkel.ow.org)
1866 */
7866a621
SN
1867 if (skb_loop_sk(ptype, skb))
1868 continue;
71d9dec2 1869
7866a621
SN
1870 if (pt_prev) {
1871 deliver_skb(skb2, pt_prev, skb->dev);
1872 pt_prev = ptype;
1873 continue;
1874 }
1da177e4 1875
7866a621
SN
1876 /* need to clone skb, done only once */
1877 skb2 = skb_clone(skb, GFP_ATOMIC);
1878 if (!skb2)
1879 goto out_unlock;
70978182 1880
7866a621 1881 net_timestamp_set(skb2);
1da177e4 1882
7866a621
SN
1883 /* skb->nh should be correctly
1884 * set by sender, so that the second statement is
1885 * just protection against buggy protocols.
1886 */
1887 skb_reset_mac_header(skb2);
1888
1889 if (skb_network_header(skb2) < skb2->data ||
1890 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1891 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1892 ntohs(skb2->protocol),
1893 dev->name);
1894 skb_reset_network_header(skb2);
1da177e4 1895 }
7866a621
SN
1896
1897 skb2->transport_header = skb2->network_header;
1898 skb2->pkt_type = PACKET_OUTGOING;
1899 pt_prev = ptype;
1900 }
1901
1902 if (ptype_list == &ptype_all) {
1903 ptype_list = &dev->ptype_all;
1904 goto again;
1da177e4 1905 }
7866a621 1906out_unlock:
71d9dec2
CG
1907 if (pt_prev)
1908 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1909 rcu_read_unlock();
1910}
74b20582 1911EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1912
2c53040f
BH
1913/**
1914 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1915 * @dev: Network device
1916 * @txq: number of queues available
1917 *
1918 * If real_num_tx_queues is changed the tc mappings may no longer be
1919 * valid. To resolve this verify the tc mapping remains valid and if
1920 * not NULL the mapping. With no priorities mapping to this
1921 * offset/count pair it will no longer be used. In the worst case TC0
1922 * is invalid nothing can be done so disable priority mappings. If is
1923 * expected that drivers will fix this mapping if they can before
1924 * calling netif_set_real_num_tx_queues.
1925 */
bb134d22 1926static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1927{
1928 int i;
1929 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1930
1931 /* If TC0 is invalidated disable TC mapping */
1932 if (tc->offset + tc->count > txq) {
7b6cd1ce 1933 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1934 dev->num_tc = 0;
1935 return;
1936 }
1937
1938 /* Invalidated prio to tc mappings set to TC0 */
1939 for (i = 1; i < TC_BITMASK + 1; i++) {
1940 int q = netdev_get_prio_tc_map(dev, i);
1941
1942 tc = &dev->tc_to_txq[q];
1943 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1944 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1945 i, q);
4f57c087
JF
1946 netdev_set_prio_tc_map(dev, i, 0);
1947 }
1948 }
1949}
1950
8d059b0f
AD
1951int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1952{
1953 if (dev->num_tc) {
1954 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1955 int i;
1956
1957 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1958 if ((txq - tc->offset) < tc->count)
1959 return i;
1960 }
1961
1962 return -1;
1963 }
1964
1965 return 0;
1966}
1967
537c00de
AD
1968#ifdef CONFIG_XPS
1969static DEFINE_MUTEX(xps_map_mutex);
1970#define xmap_dereference(P) \
1971 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1972
6234f874
AD
1973static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1974 int tci, u16 index)
537c00de 1975{
10cdc3f3
AD
1976 struct xps_map *map = NULL;
1977 int pos;
537c00de 1978
10cdc3f3 1979 if (dev_maps)
6234f874
AD
1980 map = xmap_dereference(dev_maps->cpu_map[tci]);
1981 if (!map)
1982 return false;
537c00de 1983
6234f874
AD
1984 for (pos = map->len; pos--;) {
1985 if (map->queues[pos] != index)
1986 continue;
1987
1988 if (map->len > 1) {
1989 map->queues[pos] = map->queues[--map->len];
10cdc3f3 1990 break;
537c00de 1991 }
6234f874
AD
1992
1993 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1994 kfree_rcu(map, rcu);
1995 return false;
537c00de
AD
1996 }
1997
6234f874 1998 return true;
10cdc3f3
AD
1999}
2000
6234f874
AD
2001static bool remove_xps_queue_cpu(struct net_device *dev,
2002 struct xps_dev_maps *dev_maps,
2003 int cpu, u16 offset, u16 count)
2004{
2005 int i, j;
2006
2007 for (i = count, j = offset; i--; j++) {
2008 if (!remove_xps_queue(dev_maps, cpu, j))
2009 break;
2010 }
2011
2012 return i < 0;
2013}
2014
2015static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2016 u16 count)
10cdc3f3
AD
2017{
2018 struct xps_dev_maps *dev_maps;
024e9679 2019 int cpu, i;
10cdc3f3
AD
2020 bool active = false;
2021
2022 mutex_lock(&xps_map_mutex);
2023 dev_maps = xmap_dereference(dev->xps_maps);
2024
2025 if (!dev_maps)
2026 goto out_no_maps;
2027
6234f874
AD
2028 for_each_possible_cpu(cpu)
2029 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2030 offset, count);
10cdc3f3
AD
2031
2032 if (!active) {
537c00de
AD
2033 RCU_INIT_POINTER(dev->xps_maps, NULL);
2034 kfree_rcu(dev_maps, rcu);
2035 }
2036
6234f874 2037 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2038 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2039 NUMA_NO_NODE);
2040
537c00de
AD
2041out_no_maps:
2042 mutex_unlock(&xps_map_mutex);
2043}
2044
6234f874
AD
2045static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2046{
2047 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2048}
2049
01c5f864
AD
2050static struct xps_map *expand_xps_map(struct xps_map *map,
2051 int cpu, u16 index)
2052{
2053 struct xps_map *new_map;
2054 int alloc_len = XPS_MIN_MAP_ALLOC;
2055 int i, pos;
2056
2057 for (pos = 0; map && pos < map->len; pos++) {
2058 if (map->queues[pos] != index)
2059 continue;
2060 return map;
2061 }
2062
2063 /* Need to add queue to this CPU's existing map */
2064 if (map) {
2065 if (pos < map->alloc_len)
2066 return map;
2067
2068 alloc_len = map->alloc_len * 2;
2069 }
2070
2071 /* Need to allocate new map to store queue on this CPU's map */
2072 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2073 cpu_to_node(cpu));
2074 if (!new_map)
2075 return NULL;
2076
2077 for (i = 0; i < pos; i++)
2078 new_map->queues[i] = map->queues[i];
2079 new_map->alloc_len = alloc_len;
2080 new_map->len = pos;
2081
2082 return new_map;
2083}
2084
3573540c
MT
2085int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2086 u16 index)
537c00de 2087{
01c5f864 2088 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2089 struct xps_map *map, *new_map;
537c00de 2090 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2091 int cpu, numa_node_id = -2;
2092 bool active = false;
537c00de
AD
2093
2094 mutex_lock(&xps_map_mutex);
2095
2096 dev_maps = xmap_dereference(dev->xps_maps);
2097
01c5f864
AD
2098 /* allocate memory for queue storage */
2099 for_each_online_cpu(cpu) {
2100 if (!cpumask_test_cpu(cpu, mask))
2101 continue;
2102
2103 if (!new_dev_maps)
2104 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2105 if (!new_dev_maps) {
2106 mutex_unlock(&xps_map_mutex);
01c5f864 2107 return -ENOMEM;
2bb60cb9 2108 }
01c5f864
AD
2109
2110 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2111 NULL;
2112
2113 map = expand_xps_map(map, cpu, index);
2114 if (!map)
2115 goto error;
2116
2117 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2118 }
2119
2120 if (!new_dev_maps)
2121 goto out_no_new_maps;
2122
537c00de 2123 for_each_possible_cpu(cpu) {
01c5f864
AD
2124 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2125 /* add queue to CPU maps */
2126 int pos = 0;
2127
2128 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2129 while ((pos < map->len) && (map->queues[pos] != index))
2130 pos++;
2131
2132 if (pos == map->len)
2133 map->queues[map->len++] = index;
537c00de 2134#ifdef CONFIG_NUMA
537c00de
AD
2135 if (numa_node_id == -2)
2136 numa_node_id = cpu_to_node(cpu);
2137 else if (numa_node_id != cpu_to_node(cpu))
2138 numa_node_id = -1;
537c00de 2139#endif
01c5f864
AD
2140 } else if (dev_maps) {
2141 /* fill in the new device map from the old device map */
2142 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2143 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2144 }
01c5f864 2145
537c00de
AD
2146 }
2147
01c5f864
AD
2148 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2149
537c00de 2150 /* Cleanup old maps */
01c5f864
AD
2151 if (dev_maps) {
2152 for_each_possible_cpu(cpu) {
2153 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2154 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2155 if (map && map != new_map)
2156 kfree_rcu(map, rcu);
2157 }
537c00de 2158
01c5f864 2159 kfree_rcu(dev_maps, rcu);
537c00de
AD
2160 }
2161
01c5f864
AD
2162 dev_maps = new_dev_maps;
2163 active = true;
537c00de 2164
01c5f864
AD
2165out_no_new_maps:
2166 /* update Tx queue numa node */
537c00de
AD
2167 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2168 (numa_node_id >= 0) ? numa_node_id :
2169 NUMA_NO_NODE);
2170
01c5f864
AD
2171 if (!dev_maps)
2172 goto out_no_maps;
2173
2174 /* removes queue from unused CPUs */
2175 for_each_possible_cpu(cpu) {
2176 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2177 continue;
2178
2179 if (remove_xps_queue(dev_maps, cpu, index))
2180 active = true;
2181 }
2182
2183 /* free map if not active */
2184 if (!active) {
2185 RCU_INIT_POINTER(dev->xps_maps, NULL);
2186 kfree_rcu(dev_maps, rcu);
2187 }
2188
2189out_no_maps:
537c00de
AD
2190 mutex_unlock(&xps_map_mutex);
2191
2192 return 0;
2193error:
01c5f864
AD
2194 /* remove any maps that we added */
2195 for_each_possible_cpu(cpu) {
2196 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2197 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2198 NULL;
2199 if (new_map && new_map != map)
2200 kfree(new_map);
2201 }
2202
537c00de
AD
2203 mutex_unlock(&xps_map_mutex);
2204
537c00de
AD
2205 kfree(new_dev_maps);
2206 return -ENOMEM;
2207}
2208EXPORT_SYMBOL(netif_set_xps_queue);
2209
2210#endif
9cf1f6a8
AD
2211void netdev_reset_tc(struct net_device *dev)
2212{
6234f874
AD
2213#ifdef CONFIG_XPS
2214 netif_reset_xps_queues_gt(dev, 0);
2215#endif
9cf1f6a8
AD
2216 dev->num_tc = 0;
2217 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2218 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2219}
2220EXPORT_SYMBOL(netdev_reset_tc);
2221
2222int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2223{
2224 if (tc >= dev->num_tc)
2225 return -EINVAL;
2226
6234f874
AD
2227#ifdef CONFIG_XPS
2228 netif_reset_xps_queues(dev, offset, count);
2229#endif
9cf1f6a8
AD
2230 dev->tc_to_txq[tc].count = count;
2231 dev->tc_to_txq[tc].offset = offset;
2232 return 0;
2233}
2234EXPORT_SYMBOL(netdev_set_tc_queue);
2235
2236int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2237{
2238 if (num_tc > TC_MAX_QUEUE)
2239 return -EINVAL;
2240
6234f874
AD
2241#ifdef CONFIG_XPS
2242 netif_reset_xps_queues_gt(dev, 0);
2243#endif
9cf1f6a8
AD
2244 dev->num_tc = num_tc;
2245 return 0;
2246}
2247EXPORT_SYMBOL(netdev_set_num_tc);
2248
f0796d5c
JF
2249/*
2250 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2251 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2252 */
e6484930 2253int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2254{
1d24eb48
TH
2255 int rc;
2256
e6484930
TH
2257 if (txq < 1 || txq > dev->num_tx_queues)
2258 return -EINVAL;
f0796d5c 2259
5c56580b
BH
2260 if (dev->reg_state == NETREG_REGISTERED ||
2261 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2262 ASSERT_RTNL();
2263
1d24eb48
TH
2264 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2265 txq);
bf264145
TH
2266 if (rc)
2267 return rc;
2268
4f57c087
JF
2269 if (dev->num_tc)
2270 netif_setup_tc(dev, txq);
2271
024e9679 2272 if (txq < dev->real_num_tx_queues) {
e6484930 2273 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2274#ifdef CONFIG_XPS
2275 netif_reset_xps_queues_gt(dev, txq);
2276#endif
2277 }
f0796d5c 2278 }
e6484930
TH
2279
2280 dev->real_num_tx_queues = txq;
2281 return 0;
f0796d5c
JF
2282}
2283EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2284
a953be53 2285#ifdef CONFIG_SYSFS
62fe0b40
BH
2286/**
2287 * netif_set_real_num_rx_queues - set actual number of RX queues used
2288 * @dev: Network device
2289 * @rxq: Actual number of RX queues
2290 *
2291 * This must be called either with the rtnl_lock held or before
2292 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2293 * negative error code. If called before registration, it always
2294 * succeeds.
62fe0b40
BH
2295 */
2296int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2297{
2298 int rc;
2299
bd25fa7b
TH
2300 if (rxq < 1 || rxq > dev->num_rx_queues)
2301 return -EINVAL;
2302
62fe0b40
BH
2303 if (dev->reg_state == NETREG_REGISTERED) {
2304 ASSERT_RTNL();
2305
62fe0b40
BH
2306 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2307 rxq);
2308 if (rc)
2309 return rc;
62fe0b40
BH
2310 }
2311
2312 dev->real_num_rx_queues = rxq;
2313 return 0;
2314}
2315EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2316#endif
2317
2c53040f
BH
2318/**
2319 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2320 *
2321 * This routine should set an upper limit on the number of RSS queues
2322 * used by default by multiqueue devices.
2323 */
a55b138b 2324int netif_get_num_default_rss_queues(void)
16917b87 2325{
40e4e713
HS
2326 return is_kdump_kernel() ?
2327 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2328}
2329EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2330
3bcb846c 2331static void __netif_reschedule(struct Qdisc *q)
56079431 2332{
def82a1d
JP
2333 struct softnet_data *sd;
2334 unsigned long flags;
56079431 2335
def82a1d 2336 local_irq_save(flags);
903ceff7 2337 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2338 q->next_sched = NULL;
2339 *sd->output_queue_tailp = q;
2340 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2341 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2342 local_irq_restore(flags);
2343}
2344
2345void __netif_schedule(struct Qdisc *q)
2346{
2347 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2348 __netif_reschedule(q);
56079431
DV
2349}
2350EXPORT_SYMBOL(__netif_schedule);
2351
e6247027
ED
2352struct dev_kfree_skb_cb {
2353 enum skb_free_reason reason;
2354};
2355
2356static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2357{
e6247027
ED
2358 return (struct dev_kfree_skb_cb *)skb->cb;
2359}
2360
46e5da40
JF
2361void netif_schedule_queue(struct netdev_queue *txq)
2362{
2363 rcu_read_lock();
2364 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2365 struct Qdisc *q = rcu_dereference(txq->qdisc);
2366
2367 __netif_schedule(q);
2368 }
2369 rcu_read_unlock();
2370}
2371EXPORT_SYMBOL(netif_schedule_queue);
2372
2373/**
2374 * netif_wake_subqueue - allow sending packets on subqueue
2375 * @dev: network device
2376 * @queue_index: sub queue index
2377 *
2378 * Resume individual transmit queue of a device with multiple transmit queues.
2379 */
2380void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2381{
2382 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2383
2384 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2385 struct Qdisc *q;
2386
2387 rcu_read_lock();
2388 q = rcu_dereference(txq->qdisc);
2389 __netif_schedule(q);
2390 rcu_read_unlock();
2391 }
2392}
2393EXPORT_SYMBOL(netif_wake_subqueue);
2394
2395void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2396{
2397 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2398 struct Qdisc *q;
2399
2400 rcu_read_lock();
2401 q = rcu_dereference(dev_queue->qdisc);
2402 __netif_schedule(q);
2403 rcu_read_unlock();
2404 }
2405}
2406EXPORT_SYMBOL(netif_tx_wake_queue);
2407
e6247027 2408void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2409{
e6247027 2410 unsigned long flags;
56079431 2411
e6247027
ED
2412 if (likely(atomic_read(&skb->users) == 1)) {
2413 smp_rmb();
2414 atomic_set(&skb->users, 0);
2415 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2416 return;
bea3348e 2417 }
e6247027
ED
2418 get_kfree_skb_cb(skb)->reason = reason;
2419 local_irq_save(flags);
2420 skb->next = __this_cpu_read(softnet_data.completion_queue);
2421 __this_cpu_write(softnet_data.completion_queue, skb);
2422 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2423 local_irq_restore(flags);
56079431 2424}
e6247027 2425EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2426
e6247027 2427void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2428{
2429 if (in_irq() || irqs_disabled())
e6247027 2430 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2431 else
2432 dev_kfree_skb(skb);
2433}
e6247027 2434EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2435
2436
bea3348e
SH
2437/**
2438 * netif_device_detach - mark device as removed
2439 * @dev: network device
2440 *
2441 * Mark device as removed from system and therefore no longer available.
2442 */
56079431
DV
2443void netif_device_detach(struct net_device *dev)
2444{
2445 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2446 netif_running(dev)) {
d543103a 2447 netif_tx_stop_all_queues(dev);
56079431
DV
2448 }
2449}
2450EXPORT_SYMBOL(netif_device_detach);
2451
bea3348e
SH
2452/**
2453 * netif_device_attach - mark device as attached
2454 * @dev: network device
2455 *
2456 * Mark device as attached from system and restart if needed.
2457 */
56079431
DV
2458void netif_device_attach(struct net_device *dev)
2459{
2460 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2461 netif_running(dev)) {
d543103a 2462 netif_tx_wake_all_queues(dev);
4ec93edb 2463 __netdev_watchdog_up(dev);
56079431
DV
2464 }
2465}
2466EXPORT_SYMBOL(netif_device_attach);
2467
5605c762
JP
2468/*
2469 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2470 * to be used as a distribution range.
2471 */
2472u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2473 unsigned int num_tx_queues)
2474{
2475 u32 hash;
2476 u16 qoffset = 0;
2477 u16 qcount = num_tx_queues;
2478
2479 if (skb_rx_queue_recorded(skb)) {
2480 hash = skb_get_rx_queue(skb);
2481 while (unlikely(hash >= num_tx_queues))
2482 hash -= num_tx_queues;
2483 return hash;
2484 }
2485
2486 if (dev->num_tc) {
2487 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2488 qoffset = dev->tc_to_txq[tc].offset;
2489 qcount = dev->tc_to_txq[tc].count;
2490 }
2491
2492 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2493}
2494EXPORT_SYMBOL(__skb_tx_hash);
2495
36c92474
BH
2496static void skb_warn_bad_offload(const struct sk_buff *skb)
2497{
84d15ae5 2498 static const netdev_features_t null_features;
36c92474 2499 struct net_device *dev = skb->dev;
88ad4175 2500 const char *name = "";
36c92474 2501
c846ad9b
BG
2502 if (!net_ratelimit())
2503 return;
2504
88ad4175
BM
2505 if (dev) {
2506 if (dev->dev.parent)
2507 name = dev_driver_string(dev->dev.parent);
2508 else
2509 name = netdev_name(dev);
2510 }
36c92474
BH
2511 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2512 "gso_type=%d ip_summed=%d\n",
88ad4175 2513 name, dev ? &dev->features : &null_features,
65e9d2fa 2514 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2515 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2516 skb_shinfo(skb)->gso_type, skb->ip_summed);
2517}
2518
1da177e4
LT
2519/*
2520 * Invalidate hardware checksum when packet is to be mangled, and
2521 * complete checksum manually on outgoing path.
2522 */
84fa7933 2523int skb_checksum_help(struct sk_buff *skb)
1da177e4 2524{
d3bc23e7 2525 __wsum csum;
663ead3b 2526 int ret = 0, offset;
1da177e4 2527
84fa7933 2528 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2529 goto out_set_summed;
2530
2531 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2532 skb_warn_bad_offload(skb);
2533 return -EINVAL;
1da177e4
LT
2534 }
2535
cef401de
ED
2536 /* Before computing a checksum, we should make sure no frag could
2537 * be modified by an external entity : checksum could be wrong.
2538 */
2539 if (skb_has_shared_frag(skb)) {
2540 ret = __skb_linearize(skb);
2541 if (ret)
2542 goto out;
2543 }
2544
55508d60 2545 offset = skb_checksum_start_offset(skb);
a030847e
HX
2546 BUG_ON(offset >= skb_headlen(skb));
2547 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2548
2549 offset += skb->csum_offset;
2550 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2551
2552 if (skb_cloned(skb) &&
2553 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2554 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2555 if (ret)
2556 goto out;
2557 }
2558
a030847e 2559 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2560out_set_summed:
1da177e4 2561 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2562out:
1da177e4
LT
2563 return ret;
2564}
d1b19dff 2565EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2566
53d6471c 2567__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2568{
252e3346 2569 __be16 type = skb->protocol;
f6a78bfc 2570
19acc327
PS
2571 /* Tunnel gso handlers can set protocol to ethernet. */
2572 if (type == htons(ETH_P_TEB)) {
2573 struct ethhdr *eth;
2574
2575 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2576 return 0;
2577
2578 eth = (struct ethhdr *)skb_mac_header(skb);
2579 type = eth->h_proto;
2580 }
2581
d4bcef3f 2582 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2583}
2584
2585/**
2586 * skb_mac_gso_segment - mac layer segmentation handler.
2587 * @skb: buffer to segment
2588 * @features: features for the output path (see dev->features)
2589 */
2590struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2591 netdev_features_t features)
2592{
2593 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2594 struct packet_offload *ptype;
53d6471c
VY
2595 int vlan_depth = skb->mac_len;
2596 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2597
2598 if (unlikely(!type))
2599 return ERR_PTR(-EINVAL);
2600
53d6471c 2601 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2602
2603 rcu_read_lock();
22061d80 2604 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2605 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2606 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2607 break;
2608 }
2609 }
2610 rcu_read_unlock();
2611
98e399f8 2612 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2613
f6a78bfc
HX
2614 return segs;
2615}
05e8ef4a
PS
2616EXPORT_SYMBOL(skb_mac_gso_segment);
2617
2618
2619/* openvswitch calls this on rx path, so we need a different check.
2620 */
2621static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2622{
2623 if (tx_path)
2624 return skb->ip_summed != CHECKSUM_PARTIAL;
2625 else
2626 return skb->ip_summed == CHECKSUM_NONE;
2627}
2628
2629/**
2630 * __skb_gso_segment - Perform segmentation on skb.
2631 * @skb: buffer to segment
2632 * @features: features for the output path (see dev->features)
2633 * @tx_path: whether it is called in TX path
2634 *
2635 * This function segments the given skb and returns a list of segments.
2636 *
2637 * It may return NULL if the skb requires no segmentation. This is
2638 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2639 *
2640 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2641 */
2642struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2643 netdev_features_t features, bool tx_path)
2644{
2645 if (unlikely(skb_needs_check(skb, tx_path))) {
2646 int err;
2647
2648 skb_warn_bad_offload(skb);
2649
a40e0a66 2650 err = skb_cow_head(skb, 0);
2651 if (err < 0)
05e8ef4a
PS
2652 return ERR_PTR(err);
2653 }
2654
802ab55a
AD
2655 /* Only report GSO partial support if it will enable us to
2656 * support segmentation on this frame without needing additional
2657 * work.
2658 */
2659 if (features & NETIF_F_GSO_PARTIAL) {
2660 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2661 struct net_device *dev = skb->dev;
2662
2663 partial_features |= dev->features & dev->gso_partial_features;
2664 if (!skb_gso_ok(skb, features | partial_features))
2665 features &= ~NETIF_F_GSO_PARTIAL;
2666 }
2667
9207f9d4
KK
2668 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2669 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2670
68c33163 2671 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2672 SKB_GSO_CB(skb)->encap_level = 0;
2673
05e8ef4a
PS
2674 skb_reset_mac_header(skb);
2675 skb_reset_mac_len(skb);
2676
2677 return skb_mac_gso_segment(skb, features);
2678}
12b0004d 2679EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2680
fb286bb2
HX
2681/* Take action when hardware reception checksum errors are detected. */
2682#ifdef CONFIG_BUG
2683void netdev_rx_csum_fault(struct net_device *dev)
2684{
2685 if (net_ratelimit()) {
7b6cd1ce 2686 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2687 dump_stack();
2688 }
2689}
2690EXPORT_SYMBOL(netdev_rx_csum_fault);
2691#endif
2692
1da177e4
LT
2693/* Actually, we should eliminate this check as soon as we know, that:
2694 * 1. IOMMU is present and allows to map all the memory.
2695 * 2. No high memory really exists on this machine.
2696 */
2697
c1e756bf 2698static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2699{
3d3a8533 2700#ifdef CONFIG_HIGHMEM
1da177e4 2701 int i;
5acbbd42 2702 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2703 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2704 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2705 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2706 return 1;
ea2ab693 2707 }
5acbbd42 2708 }
1da177e4 2709
5acbbd42
FT
2710 if (PCI_DMA_BUS_IS_PHYS) {
2711 struct device *pdev = dev->dev.parent;
1da177e4 2712
9092c658
ED
2713 if (!pdev)
2714 return 0;
5acbbd42 2715 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2716 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2717 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2718 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2719 return 1;
2720 }
2721 }
3d3a8533 2722#endif
1da177e4
LT
2723 return 0;
2724}
1da177e4 2725
3b392ddb
SH
2726/* If MPLS offload request, verify we are testing hardware MPLS features
2727 * instead of standard features for the netdev.
2728 */
d0edc7bf 2729#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2730static netdev_features_t net_mpls_features(struct sk_buff *skb,
2731 netdev_features_t features,
2732 __be16 type)
2733{
25cd9ba0 2734 if (eth_p_mpls(type))
3b392ddb
SH
2735 features &= skb->dev->mpls_features;
2736
2737 return features;
2738}
2739#else
2740static netdev_features_t net_mpls_features(struct sk_buff *skb,
2741 netdev_features_t features,
2742 __be16 type)
2743{
2744 return features;
2745}
2746#endif
2747
c8f44aff 2748static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2749 netdev_features_t features)
f01a5236 2750{
53d6471c 2751 int tmp;
3b392ddb
SH
2752 __be16 type;
2753
2754 type = skb_network_protocol(skb, &tmp);
2755 features = net_mpls_features(skb, features, type);
53d6471c 2756
c0d680e5 2757 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2758 !can_checksum_protocol(features, type)) {
996e8021 2759 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2760 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2761 features &= ~NETIF_F_SG;
2762 }
2763
2764 return features;
2765}
2766
e38f3025
TM
2767netdev_features_t passthru_features_check(struct sk_buff *skb,
2768 struct net_device *dev,
2769 netdev_features_t features)
2770{
2771 return features;
2772}
2773EXPORT_SYMBOL(passthru_features_check);
2774
8cb65d00
TM
2775static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2776 struct net_device *dev,
2777 netdev_features_t features)
2778{
2779 return vlan_features_check(skb, features);
2780}
2781
cbc53e08
AD
2782static netdev_features_t gso_features_check(const struct sk_buff *skb,
2783 struct net_device *dev,
2784 netdev_features_t features)
2785{
2786 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2787
2788 if (gso_segs > dev->gso_max_segs)
2789 return features & ~NETIF_F_GSO_MASK;
2790
802ab55a
AD
2791 /* Support for GSO partial features requires software
2792 * intervention before we can actually process the packets
2793 * so we need to strip support for any partial features now
2794 * and we can pull them back in after we have partially
2795 * segmented the frame.
2796 */
2797 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2798 features &= ~dev->gso_partial_features;
2799
2800 /* Make sure to clear the IPv4 ID mangling feature if the
2801 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2802 */
2803 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2804 struct iphdr *iph = skb->encapsulation ?
2805 inner_ip_hdr(skb) : ip_hdr(skb);
2806
2807 if (!(iph->frag_off & htons(IP_DF)))
2808 features &= ~NETIF_F_TSO_MANGLEID;
2809 }
2810
2811 return features;
2812}
2813
c1e756bf 2814netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2815{
5f35227e 2816 struct net_device *dev = skb->dev;
fcbeb976 2817 netdev_features_t features = dev->features;
58e998c6 2818
cbc53e08
AD
2819 if (skb_is_gso(skb))
2820 features = gso_features_check(skb, dev, features);
30b678d8 2821
5f35227e
JG
2822 /* If encapsulation offload request, verify we are testing
2823 * hardware encapsulation features instead of standard
2824 * features for the netdev
2825 */
2826 if (skb->encapsulation)
2827 features &= dev->hw_enc_features;
2828
f5a7fb88
TM
2829 if (skb_vlan_tagged(skb))
2830 features = netdev_intersect_features(features,
2831 dev->vlan_features |
2832 NETIF_F_HW_VLAN_CTAG_TX |
2833 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2834
5f35227e
JG
2835 if (dev->netdev_ops->ndo_features_check)
2836 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2837 features);
8cb65d00
TM
2838 else
2839 features &= dflt_features_check(skb, dev, features);
5f35227e 2840
c1e756bf 2841 return harmonize_features(skb, features);
58e998c6 2842}
c1e756bf 2843EXPORT_SYMBOL(netif_skb_features);
58e998c6 2844
2ea25513 2845static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2846 struct netdev_queue *txq, bool more)
f6a78bfc 2847{
2ea25513
DM
2848 unsigned int len;
2849 int rc;
00829823 2850
7866a621 2851 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2852 dev_queue_xmit_nit(skb, dev);
fc741216 2853
2ea25513
DM
2854 len = skb->len;
2855 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2856 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2857 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2858
2ea25513
DM
2859 return rc;
2860}
7b9c6090 2861
8dcda22a
DM
2862struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2863 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2864{
2865 struct sk_buff *skb = first;
2866 int rc = NETDEV_TX_OK;
7b9c6090 2867
7f2e870f
DM
2868 while (skb) {
2869 struct sk_buff *next = skb->next;
fc70fb64 2870
7f2e870f 2871 skb->next = NULL;
95f6b3dd 2872 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2873 if (unlikely(!dev_xmit_complete(rc))) {
2874 skb->next = next;
2875 goto out;
2876 }
6afff0ca 2877
7f2e870f
DM
2878 skb = next;
2879 if (netif_xmit_stopped(txq) && skb) {
2880 rc = NETDEV_TX_BUSY;
2881 break;
9ccb8975 2882 }
7f2e870f 2883 }
9ccb8975 2884
7f2e870f
DM
2885out:
2886 *ret = rc;
2887 return skb;
2888}
b40863c6 2889
1ff0dc94
ED
2890static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2891 netdev_features_t features)
f6a78bfc 2892{
df8a39de 2893 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2894 !vlan_hw_offload_capable(features, skb->vlan_proto))
2895 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2896 return skb;
2897}
f6a78bfc 2898
55a93b3e 2899static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2900{
2901 netdev_features_t features;
f6a78bfc 2902
eae3f88e
DM
2903 features = netif_skb_features(skb);
2904 skb = validate_xmit_vlan(skb, features);
2905 if (unlikely(!skb))
2906 goto out_null;
7b9c6090 2907
8b86a61d 2908 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2909 struct sk_buff *segs;
2910
2911 segs = skb_gso_segment(skb, features);
cecda693 2912 if (IS_ERR(segs)) {
af6dabc9 2913 goto out_kfree_skb;
cecda693
JW
2914 } else if (segs) {
2915 consume_skb(skb);
2916 skb = segs;
f6a78bfc 2917 }
eae3f88e
DM
2918 } else {
2919 if (skb_needs_linearize(skb, features) &&
2920 __skb_linearize(skb))
2921 goto out_kfree_skb;
4ec93edb 2922
eae3f88e
DM
2923 /* If packet is not checksummed and device does not
2924 * support checksumming for this protocol, complete
2925 * checksumming here.
2926 */
2927 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2928 if (skb->encapsulation)
2929 skb_set_inner_transport_header(skb,
2930 skb_checksum_start_offset(skb));
2931 else
2932 skb_set_transport_header(skb,
2933 skb_checksum_start_offset(skb));
a188222b 2934 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2935 skb_checksum_help(skb))
2936 goto out_kfree_skb;
7b9c6090 2937 }
0c772159 2938 }
7b9c6090 2939
eae3f88e 2940 return skb;
fc70fb64 2941
f6a78bfc
HX
2942out_kfree_skb:
2943 kfree_skb(skb);
eae3f88e 2944out_null:
d21fd63e 2945 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
2946 return NULL;
2947}
6afff0ca 2948
55a93b3e
ED
2949struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2950{
2951 struct sk_buff *next, *head = NULL, *tail;
2952
bec3cfdc 2953 for (; skb != NULL; skb = next) {
55a93b3e
ED
2954 next = skb->next;
2955 skb->next = NULL;
bec3cfdc
ED
2956
2957 /* in case skb wont be segmented, point to itself */
2958 skb->prev = skb;
2959
55a93b3e 2960 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2961 if (!skb)
2962 continue;
55a93b3e 2963
bec3cfdc
ED
2964 if (!head)
2965 head = skb;
2966 else
2967 tail->next = skb;
2968 /* If skb was segmented, skb->prev points to
2969 * the last segment. If not, it still contains skb.
2970 */
2971 tail = skb->prev;
55a93b3e
ED
2972 }
2973 return head;
f6a78bfc 2974}
104ba78c 2975EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 2976
1def9238
ED
2977static void qdisc_pkt_len_init(struct sk_buff *skb)
2978{
2979 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2980
2981 qdisc_skb_cb(skb)->pkt_len = skb->len;
2982
2983 /* To get more precise estimation of bytes sent on wire,
2984 * we add to pkt_len the headers size of all segments
2985 */
2986 if (shinfo->gso_size) {
757b8b1d 2987 unsigned int hdr_len;
15e5a030 2988 u16 gso_segs = shinfo->gso_segs;
1def9238 2989
757b8b1d
ED
2990 /* mac layer + network layer */
2991 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2992
2993 /* + transport layer */
1def9238
ED
2994 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2995 hdr_len += tcp_hdrlen(skb);
2996 else
2997 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2998
2999 if (shinfo->gso_type & SKB_GSO_DODGY)
3000 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3001 shinfo->gso_size);
3002
3003 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3004 }
3005}
3006
bbd8a0d3
KK
3007static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3008 struct net_device *dev,
3009 struct netdev_queue *txq)
3010{
3011 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3012 struct sk_buff *to_free = NULL;
a2da570d 3013 bool contended;
bbd8a0d3
KK
3014 int rc;
3015
a2da570d 3016 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3017 /*
3018 * Heuristic to force contended enqueues to serialize on a
3019 * separate lock before trying to get qdisc main lock.
f9eb8aea 3020 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3021 * often and dequeue packets faster.
79640a4c 3022 */
a2da570d 3023 contended = qdisc_is_running(q);
79640a4c
ED
3024 if (unlikely(contended))
3025 spin_lock(&q->busylock);
3026
bbd8a0d3
KK
3027 spin_lock(root_lock);
3028 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3029 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3030 rc = NET_XMIT_DROP;
3031 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3032 qdisc_run_begin(q)) {
bbd8a0d3
KK
3033 /*
3034 * This is a work-conserving queue; there are no old skbs
3035 * waiting to be sent out; and the qdisc is not running -
3036 * xmit the skb directly.
3037 */
bfe0d029 3038
bfe0d029
ED
3039 qdisc_bstats_update(q, skb);
3040
55a93b3e 3041 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3042 if (unlikely(contended)) {
3043 spin_unlock(&q->busylock);
3044 contended = false;
3045 }
bbd8a0d3 3046 __qdisc_run(q);
79640a4c 3047 } else
bc135b23 3048 qdisc_run_end(q);
bbd8a0d3
KK
3049
3050 rc = NET_XMIT_SUCCESS;
3051 } else {
520ac30f 3052 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3053 if (qdisc_run_begin(q)) {
3054 if (unlikely(contended)) {
3055 spin_unlock(&q->busylock);
3056 contended = false;
3057 }
3058 __qdisc_run(q);
3059 }
bbd8a0d3
KK
3060 }
3061 spin_unlock(root_lock);
520ac30f
ED
3062 if (unlikely(to_free))
3063 kfree_skb_list(to_free);
79640a4c
ED
3064 if (unlikely(contended))
3065 spin_unlock(&q->busylock);
bbd8a0d3
KK
3066 return rc;
3067}
3068
86f8515f 3069#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3070static void skb_update_prio(struct sk_buff *skb)
3071{
6977a79d 3072 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3073
91c68ce2 3074 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3075 unsigned int prioidx =
3076 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3077
3078 if (prioidx < map->priomap_len)
3079 skb->priority = map->priomap[prioidx];
3080 }
5bc1421e
NH
3081}
3082#else
3083#define skb_update_prio(skb)
3084#endif
3085
f60e5990 3086DEFINE_PER_CPU(int, xmit_recursion);
3087EXPORT_SYMBOL(xmit_recursion);
3088
95603e22
MM
3089/**
3090 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3091 * @net: network namespace this loopback is happening in
3092 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3093 * @skb: buffer to transmit
3094 */
0c4b51f0 3095int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3096{
3097 skb_reset_mac_header(skb);
3098 __skb_pull(skb, skb_network_offset(skb));
3099 skb->pkt_type = PACKET_LOOPBACK;
3100 skb->ip_summed = CHECKSUM_UNNECESSARY;
3101 WARN_ON(!skb_dst(skb));
3102 skb_dst_force(skb);
3103 netif_rx_ni(skb);
3104 return 0;
3105}
3106EXPORT_SYMBOL(dev_loopback_xmit);
3107
1f211a1b
DB
3108#ifdef CONFIG_NET_EGRESS
3109static struct sk_buff *
3110sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3111{
3112 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3113 struct tcf_result cl_res;
3114
3115 if (!cl)
3116 return skb;
3117
3118 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3119 * earlier by the caller.
3120 */
3121 qdisc_bstats_cpu_update(cl->q, skb);
3122
3123 switch (tc_classify(skb, cl, &cl_res, false)) {
3124 case TC_ACT_OK:
3125 case TC_ACT_RECLASSIFY:
3126 skb->tc_index = TC_H_MIN(cl_res.classid);
3127 break;
3128 case TC_ACT_SHOT:
3129 qdisc_qstats_cpu_drop(cl->q);
3130 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3131 kfree_skb(skb);
3132 return NULL;
1f211a1b
DB
3133 case TC_ACT_STOLEN:
3134 case TC_ACT_QUEUED:
3135 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3136 consume_skb(skb);
1f211a1b
DB
3137 return NULL;
3138 case TC_ACT_REDIRECT:
3139 /* No need to push/pop skb's mac_header here on egress! */
3140 skb_do_redirect(skb);
3141 *ret = NET_XMIT_SUCCESS;
3142 return NULL;
3143 default:
3144 break;
3145 }
3146
3147 return skb;
3148}
3149#endif /* CONFIG_NET_EGRESS */
3150
638b2a69
JP
3151static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3152{
3153#ifdef CONFIG_XPS
3154 struct xps_dev_maps *dev_maps;
3155 struct xps_map *map;
3156 int queue_index = -1;
3157
3158 rcu_read_lock();
3159 dev_maps = rcu_dereference(dev->xps_maps);
3160 if (dev_maps) {
3161 map = rcu_dereference(
3162 dev_maps->cpu_map[skb->sender_cpu - 1]);
3163 if (map) {
3164 if (map->len == 1)
3165 queue_index = map->queues[0];
3166 else
3167 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3168 map->len)];
3169 if (unlikely(queue_index >= dev->real_num_tx_queues))
3170 queue_index = -1;
3171 }
3172 }
3173 rcu_read_unlock();
3174
3175 return queue_index;
3176#else
3177 return -1;
3178#endif
3179}
3180
3181static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3182{
3183 struct sock *sk = skb->sk;
3184 int queue_index = sk_tx_queue_get(sk);
3185
3186 if (queue_index < 0 || skb->ooo_okay ||
3187 queue_index >= dev->real_num_tx_queues) {
3188 int new_index = get_xps_queue(dev, skb);
3189 if (new_index < 0)
3190 new_index = skb_tx_hash(dev, skb);
3191
3192 if (queue_index != new_index && sk &&
004a5d01 3193 sk_fullsock(sk) &&
638b2a69
JP
3194 rcu_access_pointer(sk->sk_dst_cache))
3195 sk_tx_queue_set(sk, new_index);
3196
3197 queue_index = new_index;
3198 }
3199
3200 return queue_index;
3201}
3202
3203struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3204 struct sk_buff *skb,
3205 void *accel_priv)
3206{
3207 int queue_index = 0;
3208
3209#ifdef CONFIG_XPS
52bd2d62
ED
3210 u32 sender_cpu = skb->sender_cpu - 1;
3211
3212 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3213 skb->sender_cpu = raw_smp_processor_id() + 1;
3214#endif
3215
3216 if (dev->real_num_tx_queues != 1) {
3217 const struct net_device_ops *ops = dev->netdev_ops;
3218 if (ops->ndo_select_queue)
3219 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3220 __netdev_pick_tx);
3221 else
3222 queue_index = __netdev_pick_tx(dev, skb);
3223
3224 if (!accel_priv)
3225 queue_index = netdev_cap_txqueue(dev, queue_index);
3226 }
3227
3228 skb_set_queue_mapping(skb, queue_index);
3229 return netdev_get_tx_queue(dev, queue_index);
3230}
3231
d29f749e 3232/**
9d08dd3d 3233 * __dev_queue_xmit - transmit a buffer
d29f749e 3234 * @skb: buffer to transmit
9d08dd3d 3235 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3236 *
3237 * Queue a buffer for transmission to a network device. The caller must
3238 * have set the device and priority and built the buffer before calling
3239 * this function. The function can be called from an interrupt.
3240 *
3241 * A negative errno code is returned on a failure. A success does not
3242 * guarantee the frame will be transmitted as it may be dropped due
3243 * to congestion or traffic shaping.
3244 *
3245 * -----------------------------------------------------------------------------------
3246 * I notice this method can also return errors from the queue disciplines,
3247 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3248 * be positive.
3249 *
3250 * Regardless of the return value, the skb is consumed, so it is currently
3251 * difficult to retry a send to this method. (You can bump the ref count
3252 * before sending to hold a reference for retry if you are careful.)
3253 *
3254 * When calling this method, interrupts MUST be enabled. This is because
3255 * the BH enable code must have IRQs enabled so that it will not deadlock.
3256 * --BLG
3257 */
0a59f3a9 3258static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3259{
3260 struct net_device *dev = skb->dev;
dc2b4847 3261 struct netdev_queue *txq;
1da177e4
LT
3262 struct Qdisc *q;
3263 int rc = -ENOMEM;
3264
6d1ccff6
ED
3265 skb_reset_mac_header(skb);
3266
e7fd2885
WB
3267 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3268 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3269
4ec93edb
YH
3270 /* Disable soft irqs for various locks below. Also
3271 * stops preemption for RCU.
1da177e4 3272 */
4ec93edb 3273 rcu_read_lock_bh();
1da177e4 3274
5bc1421e
NH
3275 skb_update_prio(skb);
3276
1f211a1b
DB
3277 qdisc_pkt_len_init(skb);
3278#ifdef CONFIG_NET_CLS_ACT
3279 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3280# ifdef CONFIG_NET_EGRESS
3281 if (static_key_false(&egress_needed)) {
3282 skb = sch_handle_egress(skb, &rc, dev);
3283 if (!skb)
3284 goto out;
3285 }
3286# endif
3287#endif
02875878
ED
3288 /* If device/qdisc don't need skb->dst, release it right now while
3289 * its hot in this cpu cache.
3290 */
3291 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3292 skb_dst_drop(skb);
3293 else
3294 skb_dst_force(skb);
3295
f663dd9a 3296 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3297 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3298
cf66ba58 3299 trace_net_dev_queue(skb);
1da177e4 3300 if (q->enqueue) {
bbd8a0d3 3301 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3302 goto out;
1da177e4
LT
3303 }
3304
3305 /* The device has no queue. Common case for software devices:
3306 loopback, all the sorts of tunnels...
3307
932ff279
HX
3308 Really, it is unlikely that netif_tx_lock protection is necessary
3309 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3310 counters.)
3311 However, it is possible, that they rely on protection
3312 made by us here.
3313
3314 Check this and shot the lock. It is not prone from deadlocks.
3315 Either shot noqueue qdisc, it is even simpler 8)
3316 */
3317 if (dev->flags & IFF_UP) {
3318 int cpu = smp_processor_id(); /* ok because BHs are off */
3319
c773e847 3320 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3321 if (unlikely(__this_cpu_read(xmit_recursion) >
3322 XMIT_RECURSION_LIMIT))
745e20f1
ED
3323 goto recursion_alert;
3324
1f59533f
JDB
3325 skb = validate_xmit_skb(skb, dev);
3326 if (!skb)
d21fd63e 3327 goto out;
1f59533f 3328
c773e847 3329 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3330
73466498 3331 if (!netif_xmit_stopped(txq)) {
745e20f1 3332 __this_cpu_inc(xmit_recursion);
ce93718f 3333 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3334 __this_cpu_dec(xmit_recursion);
572a9d7b 3335 if (dev_xmit_complete(rc)) {
c773e847 3336 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3337 goto out;
3338 }
3339 }
c773e847 3340 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3341 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3342 dev->name);
1da177e4
LT
3343 } else {
3344 /* Recursion is detected! It is possible,
745e20f1
ED
3345 * unfortunately
3346 */
3347recursion_alert:
e87cc472
JP
3348 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3349 dev->name);
1da177e4
LT
3350 }
3351 }
3352
3353 rc = -ENETDOWN;
d4828d85 3354 rcu_read_unlock_bh();
1da177e4 3355
015f0688 3356 atomic_long_inc(&dev->tx_dropped);
1f59533f 3357 kfree_skb_list(skb);
1da177e4
LT
3358 return rc;
3359out:
d4828d85 3360 rcu_read_unlock_bh();
1da177e4
LT
3361 return rc;
3362}
f663dd9a 3363
2b4aa3ce 3364int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3365{
3366 return __dev_queue_xmit(skb, NULL);
3367}
2b4aa3ce 3368EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3369
f663dd9a
JW
3370int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3371{
3372 return __dev_queue_xmit(skb, accel_priv);
3373}
3374EXPORT_SYMBOL(dev_queue_xmit_accel);
3375
1da177e4
LT
3376
3377/*=======================================================================
3378 Receiver routines
3379 =======================================================================*/
3380
6b2bedc3 3381int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3382EXPORT_SYMBOL(netdev_max_backlog);
3383
3b098e2d 3384int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3385int netdev_budget __read_mostly = 300;
3386int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3387
eecfd7c4
ED
3388/* Called with irq disabled */
3389static inline void ____napi_schedule(struct softnet_data *sd,
3390 struct napi_struct *napi)
3391{
3392 list_add_tail(&napi->poll_list, &sd->poll_list);
3393 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3394}
3395
bfb564e7
KK
3396#ifdef CONFIG_RPS
3397
3398/* One global table that all flow-based protocols share. */
6e3f7faf 3399struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3400EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3401u32 rps_cpu_mask __read_mostly;
3402EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3403
c5905afb 3404struct static_key rps_needed __read_mostly;
3df97ba8 3405EXPORT_SYMBOL(rps_needed);
adc9300e 3406
c445477d
BH
3407static struct rps_dev_flow *
3408set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3409 struct rps_dev_flow *rflow, u16 next_cpu)
3410{
a31196b0 3411 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3412#ifdef CONFIG_RFS_ACCEL
3413 struct netdev_rx_queue *rxqueue;
3414 struct rps_dev_flow_table *flow_table;
3415 struct rps_dev_flow *old_rflow;
3416 u32 flow_id;
3417 u16 rxq_index;
3418 int rc;
3419
3420 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3421 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3422 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3423 goto out;
3424 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3425 if (rxq_index == skb_get_rx_queue(skb))
3426 goto out;
3427
3428 rxqueue = dev->_rx + rxq_index;
3429 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3430 if (!flow_table)
3431 goto out;
61b905da 3432 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3433 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3434 rxq_index, flow_id);
3435 if (rc < 0)
3436 goto out;
3437 old_rflow = rflow;
3438 rflow = &flow_table->flows[flow_id];
c445477d
BH
3439 rflow->filter = rc;
3440 if (old_rflow->filter == rflow->filter)
3441 old_rflow->filter = RPS_NO_FILTER;
3442 out:
3443#endif
3444 rflow->last_qtail =
09994d1b 3445 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3446 }
3447
09994d1b 3448 rflow->cpu = next_cpu;
c445477d
BH
3449 return rflow;
3450}
3451
bfb564e7
KK
3452/*
3453 * get_rps_cpu is called from netif_receive_skb and returns the target
3454 * CPU from the RPS map of the receiving queue for a given skb.
3455 * rcu_read_lock must be held on entry.
3456 */
3457static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3458 struct rps_dev_flow **rflowp)
3459{
567e4b79
ED
3460 const struct rps_sock_flow_table *sock_flow_table;
3461 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3462 struct rps_dev_flow_table *flow_table;
567e4b79 3463 struct rps_map *map;
bfb564e7 3464 int cpu = -1;
567e4b79 3465 u32 tcpu;
61b905da 3466 u32 hash;
bfb564e7
KK
3467
3468 if (skb_rx_queue_recorded(skb)) {
3469 u16 index = skb_get_rx_queue(skb);
567e4b79 3470
62fe0b40
BH
3471 if (unlikely(index >= dev->real_num_rx_queues)) {
3472 WARN_ONCE(dev->real_num_rx_queues > 1,
3473 "%s received packet on queue %u, but number "
3474 "of RX queues is %u\n",
3475 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3476 goto done;
3477 }
567e4b79
ED
3478 rxqueue += index;
3479 }
bfb564e7 3480
567e4b79
ED
3481 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3482
3483 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3484 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3485 if (!flow_table && !map)
bfb564e7
KK
3486 goto done;
3487
2d47b459 3488 skb_reset_network_header(skb);
61b905da
TH
3489 hash = skb_get_hash(skb);
3490 if (!hash)
bfb564e7
KK
3491 goto done;
3492
fec5e652
TH
3493 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3494 if (flow_table && sock_flow_table) {
fec5e652 3495 struct rps_dev_flow *rflow;
567e4b79
ED
3496 u32 next_cpu;
3497 u32 ident;
3498
3499 /* First check into global flow table if there is a match */
3500 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3501 if ((ident ^ hash) & ~rps_cpu_mask)
3502 goto try_rps;
fec5e652 3503
567e4b79
ED
3504 next_cpu = ident & rps_cpu_mask;
3505
3506 /* OK, now we know there is a match,
3507 * we can look at the local (per receive queue) flow table
3508 */
61b905da 3509 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3510 tcpu = rflow->cpu;
3511
fec5e652
TH
3512 /*
3513 * If the desired CPU (where last recvmsg was done) is
3514 * different from current CPU (one in the rx-queue flow
3515 * table entry), switch if one of the following holds:
a31196b0 3516 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3517 * - Current CPU is offline.
3518 * - The current CPU's queue tail has advanced beyond the
3519 * last packet that was enqueued using this table entry.
3520 * This guarantees that all previous packets for the flow
3521 * have been dequeued, thus preserving in order delivery.
3522 */
3523 if (unlikely(tcpu != next_cpu) &&
a31196b0 3524 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3525 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3526 rflow->last_qtail)) >= 0)) {
3527 tcpu = next_cpu;
c445477d 3528 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3529 }
c445477d 3530
a31196b0 3531 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3532 *rflowp = rflow;
3533 cpu = tcpu;
3534 goto done;
3535 }
3536 }
3537
567e4b79
ED
3538try_rps:
3539
0a9627f2 3540 if (map) {
8fc54f68 3541 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3542 if (cpu_online(tcpu)) {
3543 cpu = tcpu;
3544 goto done;
3545 }
3546 }
3547
3548done:
0a9627f2
TH
3549 return cpu;
3550}
3551
c445477d
BH
3552#ifdef CONFIG_RFS_ACCEL
3553
3554/**
3555 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3556 * @dev: Device on which the filter was set
3557 * @rxq_index: RX queue index
3558 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3559 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3560 *
3561 * Drivers that implement ndo_rx_flow_steer() should periodically call
3562 * this function for each installed filter and remove the filters for
3563 * which it returns %true.
3564 */
3565bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3566 u32 flow_id, u16 filter_id)
3567{
3568 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3569 struct rps_dev_flow_table *flow_table;
3570 struct rps_dev_flow *rflow;
3571 bool expire = true;
a31196b0 3572 unsigned int cpu;
c445477d
BH
3573
3574 rcu_read_lock();
3575 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3576 if (flow_table && flow_id <= flow_table->mask) {
3577 rflow = &flow_table->flows[flow_id];
3578 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3579 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3580 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3581 rflow->last_qtail) <
3582 (int)(10 * flow_table->mask)))
3583 expire = false;
3584 }
3585 rcu_read_unlock();
3586 return expire;
3587}
3588EXPORT_SYMBOL(rps_may_expire_flow);
3589
3590#endif /* CONFIG_RFS_ACCEL */
3591
0a9627f2 3592/* Called from hardirq (IPI) context */
e36fa2f7 3593static void rps_trigger_softirq(void *data)
0a9627f2 3594{
e36fa2f7
ED
3595 struct softnet_data *sd = data;
3596
eecfd7c4 3597 ____napi_schedule(sd, &sd->backlog);
dee42870 3598 sd->received_rps++;
0a9627f2 3599}
e36fa2f7 3600
fec5e652 3601#endif /* CONFIG_RPS */
0a9627f2 3602
e36fa2f7
ED
3603/*
3604 * Check if this softnet_data structure is another cpu one
3605 * If yes, queue it to our IPI list and return 1
3606 * If no, return 0
3607 */
3608static int rps_ipi_queued(struct softnet_data *sd)
3609{
3610#ifdef CONFIG_RPS
903ceff7 3611 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3612
3613 if (sd != mysd) {
3614 sd->rps_ipi_next = mysd->rps_ipi_list;
3615 mysd->rps_ipi_list = sd;
3616
3617 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3618 return 1;
3619 }
3620#endif /* CONFIG_RPS */
3621 return 0;
3622}
3623
99bbc707
WB
3624#ifdef CONFIG_NET_FLOW_LIMIT
3625int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3626#endif
3627
3628static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3629{
3630#ifdef CONFIG_NET_FLOW_LIMIT
3631 struct sd_flow_limit *fl;
3632 struct softnet_data *sd;
3633 unsigned int old_flow, new_flow;
3634
3635 if (qlen < (netdev_max_backlog >> 1))
3636 return false;
3637
903ceff7 3638 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3639
3640 rcu_read_lock();
3641 fl = rcu_dereference(sd->flow_limit);
3642 if (fl) {
3958afa1 3643 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3644 old_flow = fl->history[fl->history_head];
3645 fl->history[fl->history_head] = new_flow;
3646
3647 fl->history_head++;
3648 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3649
3650 if (likely(fl->buckets[old_flow]))
3651 fl->buckets[old_flow]--;
3652
3653 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3654 fl->count++;
3655 rcu_read_unlock();
3656 return true;
3657 }
3658 }
3659 rcu_read_unlock();
3660#endif
3661 return false;
3662}
3663
0a9627f2
TH
3664/*
3665 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3666 * queue (may be a remote CPU queue).
3667 */
fec5e652
TH
3668static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3669 unsigned int *qtail)
0a9627f2 3670{
e36fa2f7 3671 struct softnet_data *sd;
0a9627f2 3672 unsigned long flags;
99bbc707 3673 unsigned int qlen;
0a9627f2 3674
e36fa2f7 3675 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3676
3677 local_irq_save(flags);
0a9627f2 3678
e36fa2f7 3679 rps_lock(sd);
e9e4dd32
JA
3680 if (!netif_running(skb->dev))
3681 goto drop;
99bbc707
WB
3682 qlen = skb_queue_len(&sd->input_pkt_queue);
3683 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3684 if (qlen) {
0a9627f2 3685enqueue:
e36fa2f7 3686 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3687 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3688 rps_unlock(sd);
152102c7 3689 local_irq_restore(flags);
0a9627f2
TH
3690 return NET_RX_SUCCESS;
3691 }
3692
ebda37c2
ED
3693 /* Schedule NAPI for backlog device
3694 * We can use non atomic operation since we own the queue lock
3695 */
3696 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3697 if (!rps_ipi_queued(sd))
eecfd7c4 3698 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3699 }
3700 goto enqueue;
3701 }
3702
e9e4dd32 3703drop:
dee42870 3704 sd->dropped++;
e36fa2f7 3705 rps_unlock(sd);
0a9627f2 3706
0a9627f2
TH
3707 local_irq_restore(flags);
3708
caf586e5 3709 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3710 kfree_skb(skb);
3711 return NET_RX_DROP;
3712}
1da177e4 3713
ae78dbfa 3714static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3715{
b0e28f1e 3716 int ret;
1da177e4 3717
588f0330 3718 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3719
cf66ba58 3720 trace_netif_rx(skb);
df334545 3721#ifdef CONFIG_RPS
c5905afb 3722 if (static_key_false(&rps_needed)) {
fec5e652 3723 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3724 int cpu;
3725
cece1945 3726 preempt_disable();
b0e28f1e 3727 rcu_read_lock();
fec5e652
TH
3728
3729 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3730 if (cpu < 0)
3731 cpu = smp_processor_id();
fec5e652
TH
3732
3733 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3734
b0e28f1e 3735 rcu_read_unlock();
cece1945 3736 preempt_enable();
adc9300e
ED
3737 } else
3738#endif
fec5e652
TH
3739 {
3740 unsigned int qtail;
3741 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3742 put_cpu();
3743 }
b0e28f1e 3744 return ret;
1da177e4 3745}
ae78dbfa
BH
3746
3747/**
3748 * netif_rx - post buffer to the network code
3749 * @skb: buffer to post
3750 *
3751 * This function receives a packet from a device driver and queues it for
3752 * the upper (protocol) levels to process. It always succeeds. The buffer
3753 * may be dropped during processing for congestion control or by the
3754 * protocol layers.
3755 *
3756 * return values:
3757 * NET_RX_SUCCESS (no congestion)
3758 * NET_RX_DROP (packet was dropped)
3759 *
3760 */
3761
3762int netif_rx(struct sk_buff *skb)
3763{
3764 trace_netif_rx_entry(skb);
3765
3766 return netif_rx_internal(skb);
3767}
d1b19dff 3768EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3769
3770int netif_rx_ni(struct sk_buff *skb)
3771{
3772 int err;
3773
ae78dbfa
BH
3774 trace_netif_rx_ni_entry(skb);
3775
1da177e4 3776 preempt_disable();
ae78dbfa 3777 err = netif_rx_internal(skb);
1da177e4
LT
3778 if (local_softirq_pending())
3779 do_softirq();
3780 preempt_enable();
3781
3782 return err;
3783}
1da177e4
LT
3784EXPORT_SYMBOL(netif_rx_ni);
3785
0766f788 3786static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3787{
903ceff7 3788 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3789
3790 if (sd->completion_queue) {
3791 struct sk_buff *clist;
3792
3793 local_irq_disable();
3794 clist = sd->completion_queue;
3795 sd->completion_queue = NULL;
3796 local_irq_enable();
3797
3798 while (clist) {
3799 struct sk_buff *skb = clist;
3800 clist = clist->next;
3801
547b792c 3802 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3803 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3804 trace_consume_skb(skb);
3805 else
3806 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3807
3808 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3809 __kfree_skb(skb);
3810 else
3811 __kfree_skb_defer(skb);
1da177e4 3812 }
15fad714
JDB
3813
3814 __kfree_skb_flush();
1da177e4
LT
3815 }
3816
3817 if (sd->output_queue) {
37437bb2 3818 struct Qdisc *head;
1da177e4
LT
3819
3820 local_irq_disable();
3821 head = sd->output_queue;
3822 sd->output_queue = NULL;
a9cbd588 3823 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3824 local_irq_enable();
3825
3826 while (head) {
37437bb2
DM
3827 struct Qdisc *q = head;
3828 spinlock_t *root_lock;
3829
1da177e4
LT
3830 head = head->next_sched;
3831
5fb66229 3832 root_lock = qdisc_lock(q);
3bcb846c
ED
3833 spin_lock(root_lock);
3834 /* We need to make sure head->next_sched is read
3835 * before clearing __QDISC_STATE_SCHED
3836 */
3837 smp_mb__before_atomic();
3838 clear_bit(__QDISC_STATE_SCHED, &q->state);
3839 qdisc_run(q);
3840 spin_unlock(root_lock);
1da177e4
LT
3841 }
3842 }
3843}
3844
181402a5 3845#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3846/* This hook is defined here for ATM LANE */
3847int (*br_fdb_test_addr_hook)(struct net_device *dev,
3848 unsigned char *addr) __read_mostly;
4fb019a0 3849EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3850#endif
1da177e4 3851
1f211a1b
DB
3852static inline struct sk_buff *
3853sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3854 struct net_device *orig_dev)
f697c3e8 3855{
e7582bab 3856#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3857 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3858 struct tcf_result cl_res;
24824a09 3859
c9e99fd0
DB
3860 /* If there's at least one ingress present somewhere (so
3861 * we get here via enabled static key), remaining devices
3862 * that are not configured with an ingress qdisc will bail
d2788d34 3863 * out here.
c9e99fd0 3864 */
d2788d34 3865 if (!cl)
4577139b 3866 return skb;
f697c3e8
HX
3867 if (*pt_prev) {
3868 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3869 *pt_prev = NULL;
1da177e4
LT
3870 }
3871
3365495c 3872 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3873 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3874 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3875
3b3ae880 3876 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3877 case TC_ACT_OK:
3878 case TC_ACT_RECLASSIFY:
3879 skb->tc_index = TC_H_MIN(cl_res.classid);
3880 break;
3881 case TC_ACT_SHOT:
24ea591d 3882 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3883 kfree_skb(skb);
3884 return NULL;
d2788d34
DB
3885 case TC_ACT_STOLEN:
3886 case TC_ACT_QUEUED:
8a3a4c6e 3887 consume_skb(skb);
d2788d34 3888 return NULL;
27b29f63
AS
3889 case TC_ACT_REDIRECT:
3890 /* skb_mac_header check was done by cls/act_bpf, so
3891 * we can safely push the L2 header back before
3892 * redirecting to another netdev
3893 */
3894 __skb_push(skb, skb->mac_len);
3895 skb_do_redirect(skb);
3896 return NULL;
d2788d34
DB
3897 default:
3898 break;
f697c3e8 3899 }
e7582bab 3900#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3901 return skb;
3902}
1da177e4 3903
24b27fc4
MB
3904/**
3905 * netdev_is_rx_handler_busy - check if receive handler is registered
3906 * @dev: device to check
3907 *
3908 * Check if a receive handler is already registered for a given device.
3909 * Return true if there one.
3910 *
3911 * The caller must hold the rtnl_mutex.
3912 */
3913bool netdev_is_rx_handler_busy(struct net_device *dev)
3914{
3915 ASSERT_RTNL();
3916 return dev && rtnl_dereference(dev->rx_handler);
3917}
3918EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3919
ab95bfe0
JP
3920/**
3921 * netdev_rx_handler_register - register receive handler
3922 * @dev: device to register a handler for
3923 * @rx_handler: receive handler to register
93e2c32b 3924 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3925 *
e227867f 3926 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3927 * called from __netif_receive_skb. A negative errno code is returned
3928 * on a failure.
3929 *
3930 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3931 *
3932 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3933 */
3934int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3935 rx_handler_func_t *rx_handler,
3936 void *rx_handler_data)
ab95bfe0
JP
3937{
3938 ASSERT_RTNL();
3939
3940 if (dev->rx_handler)
3941 return -EBUSY;
3942
00cfec37 3943 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3944 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3945 rcu_assign_pointer(dev->rx_handler, rx_handler);
3946
3947 return 0;
3948}
3949EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3950
3951/**
3952 * netdev_rx_handler_unregister - unregister receive handler
3953 * @dev: device to unregister a handler from
3954 *
166ec369 3955 * Unregister a receive handler from a device.
ab95bfe0
JP
3956 *
3957 * The caller must hold the rtnl_mutex.
3958 */
3959void netdev_rx_handler_unregister(struct net_device *dev)
3960{
3961
3962 ASSERT_RTNL();
a9b3cd7f 3963 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3964 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3965 * section has a guarantee to see a non NULL rx_handler_data
3966 * as well.
3967 */
3968 synchronize_net();
a9b3cd7f 3969 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3970}
3971EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3972
b4b9e355
MG
3973/*
3974 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3975 * the special handling of PFMEMALLOC skbs.
3976 */
3977static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3978{
3979 switch (skb->protocol) {
2b8837ae
JP
3980 case htons(ETH_P_ARP):
3981 case htons(ETH_P_IP):
3982 case htons(ETH_P_IPV6):
3983 case htons(ETH_P_8021Q):
3984 case htons(ETH_P_8021AD):
b4b9e355
MG
3985 return true;
3986 default:
3987 return false;
3988 }
3989}
3990
e687ad60
PN
3991static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3992 int *ret, struct net_device *orig_dev)
3993{
e7582bab 3994#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 3995 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
3996 int ingress_retval;
3997
e687ad60
PN
3998 if (*pt_prev) {
3999 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4000 *pt_prev = NULL;
4001 }
4002
2c1e2703
AC
4003 rcu_read_lock();
4004 ingress_retval = nf_hook_ingress(skb);
4005 rcu_read_unlock();
4006 return ingress_retval;
e687ad60 4007 }
e7582bab 4008#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4009 return 0;
4010}
e687ad60 4011
9754e293 4012static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4013{
4014 struct packet_type *ptype, *pt_prev;
ab95bfe0 4015 rx_handler_func_t *rx_handler;
f2ccd8fa 4016 struct net_device *orig_dev;
8a4eb573 4017 bool deliver_exact = false;
1da177e4 4018 int ret = NET_RX_DROP;
252e3346 4019 __be16 type;
1da177e4 4020
588f0330 4021 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4022
cf66ba58 4023 trace_netif_receive_skb(skb);
9b22ea56 4024
cc9bd5ce 4025 orig_dev = skb->dev;
8f903c70 4026
c1d2bbe1 4027 skb_reset_network_header(skb);
fda55eca
ED
4028 if (!skb_transport_header_was_set(skb))
4029 skb_reset_transport_header(skb);
0b5c9db1 4030 skb_reset_mac_len(skb);
1da177e4
LT
4031
4032 pt_prev = NULL;
4033
63d8ea7f 4034another_round:
b6858177 4035 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4036
4037 __this_cpu_inc(softnet_data.processed);
4038
8ad227ff
PM
4039 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4040 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4041 skb = skb_vlan_untag(skb);
bcc6d479 4042 if (unlikely(!skb))
2c17d27c 4043 goto out;
bcc6d479
JP
4044 }
4045
1da177e4
LT
4046#ifdef CONFIG_NET_CLS_ACT
4047 if (skb->tc_verd & TC_NCLS) {
4048 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4049 goto ncls;
4050 }
4051#endif
4052
9754e293 4053 if (pfmemalloc)
b4b9e355
MG
4054 goto skip_taps;
4055
1da177e4 4056 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4057 if (pt_prev)
4058 ret = deliver_skb(skb, pt_prev, orig_dev);
4059 pt_prev = ptype;
4060 }
4061
4062 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4063 if (pt_prev)
4064 ret = deliver_skb(skb, pt_prev, orig_dev);
4065 pt_prev = ptype;
1da177e4
LT
4066 }
4067
b4b9e355 4068skip_taps:
1cf51900 4069#ifdef CONFIG_NET_INGRESS
4577139b 4070 if (static_key_false(&ingress_needed)) {
1f211a1b 4071 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4072 if (!skb)
2c17d27c 4073 goto out;
e687ad60
PN
4074
4075 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4076 goto out;
4577139b 4077 }
1cf51900
PN
4078#endif
4079#ifdef CONFIG_NET_CLS_ACT
4577139b 4080 skb->tc_verd = 0;
1da177e4
LT
4081ncls:
4082#endif
9754e293 4083 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4084 goto drop;
4085
df8a39de 4086 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4087 if (pt_prev) {
4088 ret = deliver_skb(skb, pt_prev, orig_dev);
4089 pt_prev = NULL;
4090 }
48cc32d3 4091 if (vlan_do_receive(&skb))
2425717b
JF
4092 goto another_round;
4093 else if (unlikely(!skb))
2c17d27c 4094 goto out;
2425717b
JF
4095 }
4096
48cc32d3 4097 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4098 if (rx_handler) {
4099 if (pt_prev) {
4100 ret = deliver_skb(skb, pt_prev, orig_dev);
4101 pt_prev = NULL;
4102 }
8a4eb573
JP
4103 switch (rx_handler(&skb)) {
4104 case RX_HANDLER_CONSUMED:
3bc1b1ad 4105 ret = NET_RX_SUCCESS;
2c17d27c 4106 goto out;
8a4eb573 4107 case RX_HANDLER_ANOTHER:
63d8ea7f 4108 goto another_round;
8a4eb573
JP
4109 case RX_HANDLER_EXACT:
4110 deliver_exact = true;
4111 case RX_HANDLER_PASS:
4112 break;
4113 default:
4114 BUG();
4115 }
ab95bfe0 4116 }
1da177e4 4117
df8a39de
JP
4118 if (unlikely(skb_vlan_tag_present(skb))) {
4119 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4120 skb->pkt_type = PACKET_OTHERHOST;
4121 /* Note: we might in the future use prio bits
4122 * and set skb->priority like in vlan_do_receive()
4123 * For the time being, just ignore Priority Code Point
4124 */
4125 skb->vlan_tci = 0;
4126 }
48cc32d3 4127
7866a621
SN
4128 type = skb->protocol;
4129
63d8ea7f 4130 /* deliver only exact match when indicated */
7866a621
SN
4131 if (likely(!deliver_exact)) {
4132 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4133 &ptype_base[ntohs(type) &
4134 PTYPE_HASH_MASK]);
4135 }
1f3c8804 4136
7866a621
SN
4137 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4138 &orig_dev->ptype_specific);
4139
4140 if (unlikely(skb->dev != orig_dev)) {
4141 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4142 &skb->dev->ptype_specific);
1da177e4
LT
4143 }
4144
4145 if (pt_prev) {
1080e512 4146 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4147 goto drop;
1080e512
MT
4148 else
4149 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4150 } else {
b4b9e355 4151drop:
6e7333d3
JW
4152 if (!deliver_exact)
4153 atomic_long_inc(&skb->dev->rx_dropped);
4154 else
4155 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4156 kfree_skb(skb);
4157 /* Jamal, now you will not able to escape explaining
4158 * me how you were going to use this. :-)
4159 */
4160 ret = NET_RX_DROP;
4161 }
4162
2c17d27c 4163out:
9754e293
DM
4164 return ret;
4165}
4166
4167static int __netif_receive_skb(struct sk_buff *skb)
4168{
4169 int ret;
4170
4171 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4172 unsigned long pflags = current->flags;
4173
4174 /*
4175 * PFMEMALLOC skbs are special, they should
4176 * - be delivered to SOCK_MEMALLOC sockets only
4177 * - stay away from userspace
4178 * - have bounded memory usage
4179 *
4180 * Use PF_MEMALLOC as this saves us from propagating the allocation
4181 * context down to all allocation sites.
4182 */
4183 current->flags |= PF_MEMALLOC;
4184 ret = __netif_receive_skb_core(skb, true);
4185 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4186 } else
4187 ret = __netif_receive_skb_core(skb, false);
4188
1da177e4
LT
4189 return ret;
4190}
0a9627f2 4191
ae78dbfa 4192static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4193{
2c17d27c
JA
4194 int ret;
4195
588f0330 4196 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4197
c1f19b51
RC
4198 if (skb_defer_rx_timestamp(skb))
4199 return NET_RX_SUCCESS;
4200
2c17d27c
JA
4201 rcu_read_lock();
4202
df334545 4203#ifdef CONFIG_RPS
c5905afb 4204 if (static_key_false(&rps_needed)) {
3b098e2d 4205 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4206 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4207
3b098e2d
ED
4208 if (cpu >= 0) {
4209 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4210 rcu_read_unlock();
adc9300e 4211 return ret;
3b098e2d 4212 }
fec5e652 4213 }
1e94d72f 4214#endif
2c17d27c
JA
4215 ret = __netif_receive_skb(skb);
4216 rcu_read_unlock();
4217 return ret;
0a9627f2 4218}
ae78dbfa
BH
4219
4220/**
4221 * netif_receive_skb - process receive buffer from network
4222 * @skb: buffer to process
4223 *
4224 * netif_receive_skb() is the main receive data processing function.
4225 * It always succeeds. The buffer may be dropped during processing
4226 * for congestion control or by the protocol layers.
4227 *
4228 * This function may only be called from softirq context and interrupts
4229 * should be enabled.
4230 *
4231 * Return values (usually ignored):
4232 * NET_RX_SUCCESS: no congestion
4233 * NET_RX_DROP: packet was dropped
4234 */
04eb4489 4235int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4236{
4237 trace_netif_receive_skb_entry(skb);
4238
4239 return netif_receive_skb_internal(skb);
4240}
04eb4489 4241EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4242
41852497 4243DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4244
4245/* Network device is going away, flush any packets still pending */
4246static void flush_backlog(struct work_struct *work)
6e583ce5 4247{
6e583ce5 4248 struct sk_buff *skb, *tmp;
145dd5f9
PA
4249 struct softnet_data *sd;
4250
4251 local_bh_disable();
4252 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4253
145dd5f9 4254 local_irq_disable();
e36fa2f7 4255 rps_lock(sd);
6e7676c1 4256 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4257 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4258 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4259 kfree_skb(skb);
76cc8b13 4260 input_queue_head_incr(sd);
6e583ce5 4261 }
6e7676c1 4262 }
e36fa2f7 4263 rps_unlock(sd);
145dd5f9 4264 local_irq_enable();
6e7676c1
CG
4265
4266 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4267 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4268 __skb_unlink(skb, &sd->process_queue);
4269 kfree_skb(skb);
76cc8b13 4270 input_queue_head_incr(sd);
6e7676c1
CG
4271 }
4272 }
145dd5f9
PA
4273 local_bh_enable();
4274}
4275
41852497 4276static void flush_all_backlogs(void)
145dd5f9
PA
4277{
4278 unsigned int cpu;
4279
4280 get_online_cpus();
4281
41852497
ED
4282 for_each_online_cpu(cpu)
4283 queue_work_on(cpu, system_highpri_wq,
4284 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4285
4286 for_each_online_cpu(cpu)
41852497 4287 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4288
4289 put_online_cpus();
6e583ce5
SH
4290}
4291
d565b0a1
HX
4292static int napi_gro_complete(struct sk_buff *skb)
4293{
22061d80 4294 struct packet_offload *ptype;
d565b0a1 4295 __be16 type = skb->protocol;
22061d80 4296 struct list_head *head = &offload_base;
d565b0a1
HX
4297 int err = -ENOENT;
4298
c3c7c254
ED
4299 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4300
fc59f9a3
HX
4301 if (NAPI_GRO_CB(skb)->count == 1) {
4302 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4303 goto out;
fc59f9a3 4304 }
d565b0a1
HX
4305
4306 rcu_read_lock();
4307 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4308 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4309 continue;
4310
299603e8 4311 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4312 break;
4313 }
4314 rcu_read_unlock();
4315
4316 if (err) {
4317 WARN_ON(&ptype->list == head);
4318 kfree_skb(skb);
4319 return NET_RX_SUCCESS;
4320 }
4321
4322out:
ae78dbfa 4323 return netif_receive_skb_internal(skb);
d565b0a1
HX
4324}
4325
2e71a6f8
ED
4326/* napi->gro_list contains packets ordered by age.
4327 * youngest packets at the head of it.
4328 * Complete skbs in reverse order to reduce latencies.
4329 */
4330void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4331{
2e71a6f8 4332 struct sk_buff *skb, *prev = NULL;
d565b0a1 4333
2e71a6f8
ED
4334 /* scan list and build reverse chain */
4335 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4336 skb->prev = prev;
4337 prev = skb;
4338 }
4339
4340 for (skb = prev; skb; skb = prev) {
d565b0a1 4341 skb->next = NULL;
2e71a6f8
ED
4342
4343 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4344 return;
4345
4346 prev = skb->prev;
d565b0a1 4347 napi_gro_complete(skb);
2e71a6f8 4348 napi->gro_count--;
d565b0a1
HX
4349 }
4350
4351 napi->gro_list = NULL;
4352}
86cac58b 4353EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4354
89c5fa33
ED
4355static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4356{
4357 struct sk_buff *p;
4358 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4359 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4360
4361 for (p = napi->gro_list; p; p = p->next) {
4362 unsigned long diffs;
4363
0b4cec8c
TH
4364 NAPI_GRO_CB(p)->flush = 0;
4365
4366 if (hash != skb_get_hash_raw(p)) {
4367 NAPI_GRO_CB(p)->same_flow = 0;
4368 continue;
4369 }
4370
89c5fa33
ED
4371 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4372 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4373 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4374 if (maclen == ETH_HLEN)
4375 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4376 skb_mac_header(skb));
89c5fa33
ED
4377 else if (!diffs)
4378 diffs = memcmp(skb_mac_header(p),
a50e233c 4379 skb_mac_header(skb),
89c5fa33
ED
4380 maclen);
4381 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4382 }
4383}
4384
299603e8
JC
4385static void skb_gro_reset_offset(struct sk_buff *skb)
4386{
4387 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4388 const skb_frag_t *frag0 = &pinfo->frags[0];
4389
4390 NAPI_GRO_CB(skb)->data_offset = 0;
4391 NAPI_GRO_CB(skb)->frag0 = NULL;
4392 NAPI_GRO_CB(skb)->frag0_len = 0;
4393
4394 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4395 pinfo->nr_frags &&
4396 !PageHighMem(skb_frag_page(frag0))) {
4397 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4398 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4399 }
4400}
4401
a50e233c
ED
4402static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4403{
4404 struct skb_shared_info *pinfo = skb_shinfo(skb);
4405
4406 BUG_ON(skb->end - skb->tail < grow);
4407
4408 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4409
4410 skb->data_len -= grow;
4411 skb->tail += grow;
4412
4413 pinfo->frags[0].page_offset += grow;
4414 skb_frag_size_sub(&pinfo->frags[0], grow);
4415
4416 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4417 skb_frag_unref(skb, 0);
4418 memmove(pinfo->frags, pinfo->frags + 1,
4419 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4420 }
4421}
4422
bb728820 4423static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4424{
4425 struct sk_buff **pp = NULL;
22061d80 4426 struct packet_offload *ptype;
d565b0a1 4427 __be16 type = skb->protocol;
22061d80 4428 struct list_head *head = &offload_base;
0da2afd5 4429 int same_flow;
5b252f0c 4430 enum gro_result ret;
a50e233c 4431 int grow;
d565b0a1 4432
9c62a68d 4433 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4434 goto normal;
4435
5a212329 4436 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4437 goto normal;
4438
89c5fa33
ED
4439 gro_list_prepare(napi, skb);
4440
d565b0a1
HX
4441 rcu_read_lock();
4442 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4443 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4444 continue;
4445
86911732 4446 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4447 skb_reset_mac_len(skb);
d565b0a1
HX
4448 NAPI_GRO_CB(skb)->same_flow = 0;
4449 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4450 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4451 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4452 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4453 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4454 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4455 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4456
662880f4
TH
4457 /* Setup for GRO checksum validation */
4458 switch (skb->ip_summed) {
4459 case CHECKSUM_COMPLETE:
4460 NAPI_GRO_CB(skb)->csum = skb->csum;
4461 NAPI_GRO_CB(skb)->csum_valid = 1;
4462 NAPI_GRO_CB(skb)->csum_cnt = 0;
4463 break;
4464 case CHECKSUM_UNNECESSARY:
4465 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4466 NAPI_GRO_CB(skb)->csum_valid = 0;
4467 break;
4468 default:
4469 NAPI_GRO_CB(skb)->csum_cnt = 0;
4470 NAPI_GRO_CB(skb)->csum_valid = 0;
4471 }
d565b0a1 4472
f191a1d1 4473 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4474 break;
4475 }
4476 rcu_read_unlock();
4477
4478 if (&ptype->list == head)
4479 goto normal;
4480
0da2afd5 4481 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4482 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4483
d565b0a1
HX
4484 if (pp) {
4485 struct sk_buff *nskb = *pp;
4486
4487 *pp = nskb->next;
4488 nskb->next = NULL;
4489 napi_gro_complete(nskb);
4ae5544f 4490 napi->gro_count--;
d565b0a1
HX
4491 }
4492
0da2afd5 4493 if (same_flow)
d565b0a1
HX
4494 goto ok;
4495
600adc18 4496 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4497 goto normal;
d565b0a1 4498
600adc18
ED
4499 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4500 struct sk_buff *nskb = napi->gro_list;
4501
4502 /* locate the end of the list to select the 'oldest' flow */
4503 while (nskb->next) {
4504 pp = &nskb->next;
4505 nskb = *pp;
4506 }
4507 *pp = NULL;
4508 nskb->next = NULL;
4509 napi_gro_complete(nskb);
4510 } else {
4511 napi->gro_count++;
4512 }
d565b0a1 4513 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4514 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4515 NAPI_GRO_CB(skb)->last = skb;
86911732 4516 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4517 skb->next = napi->gro_list;
4518 napi->gro_list = skb;
5d0d9be8 4519 ret = GRO_HELD;
d565b0a1 4520
ad0f9904 4521pull:
a50e233c
ED
4522 grow = skb_gro_offset(skb) - skb_headlen(skb);
4523 if (grow > 0)
4524 gro_pull_from_frag0(skb, grow);
d565b0a1 4525ok:
5d0d9be8 4526 return ret;
d565b0a1
HX
4527
4528normal:
ad0f9904
HX
4529 ret = GRO_NORMAL;
4530 goto pull;
5d38a079 4531}
96e93eab 4532
bf5a755f
JC
4533struct packet_offload *gro_find_receive_by_type(__be16 type)
4534{
4535 struct list_head *offload_head = &offload_base;
4536 struct packet_offload *ptype;
4537
4538 list_for_each_entry_rcu(ptype, offload_head, list) {
4539 if (ptype->type != type || !ptype->callbacks.gro_receive)
4540 continue;
4541 return ptype;
4542 }
4543 return NULL;
4544}
e27a2f83 4545EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4546
4547struct packet_offload *gro_find_complete_by_type(__be16 type)
4548{
4549 struct list_head *offload_head = &offload_base;
4550 struct packet_offload *ptype;
4551
4552 list_for_each_entry_rcu(ptype, offload_head, list) {
4553 if (ptype->type != type || !ptype->callbacks.gro_complete)
4554 continue;
4555 return ptype;
4556 }
4557 return NULL;
4558}
e27a2f83 4559EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4560
bb728820 4561static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4562{
5d0d9be8
HX
4563 switch (ret) {
4564 case GRO_NORMAL:
ae78dbfa 4565 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4566 ret = GRO_DROP;
4567 break;
5d38a079 4568
5d0d9be8 4569 case GRO_DROP:
5d38a079
HX
4570 kfree_skb(skb);
4571 break;
5b252f0c 4572
daa86548 4573 case GRO_MERGED_FREE:
ce87fc6c
JG
4574 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4575 skb_dst_drop(skb);
d7e8883c 4576 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4577 } else {
d7e8883c 4578 __kfree_skb(skb);
ce87fc6c 4579 }
daa86548
ED
4580 break;
4581
5b252f0c
BH
4582 case GRO_HELD:
4583 case GRO_MERGED:
4584 break;
5d38a079
HX
4585 }
4586
c7c4b3b6 4587 return ret;
5d0d9be8 4588}
5d0d9be8 4589
c7c4b3b6 4590gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4591{
93f93a44 4592 skb_mark_napi_id(skb, napi);
ae78dbfa 4593 trace_napi_gro_receive_entry(skb);
86911732 4594
a50e233c
ED
4595 skb_gro_reset_offset(skb);
4596
89c5fa33 4597 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4598}
4599EXPORT_SYMBOL(napi_gro_receive);
4600
d0c2b0d2 4601static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4602{
93a35f59
ED
4603 if (unlikely(skb->pfmemalloc)) {
4604 consume_skb(skb);
4605 return;
4606 }
96e93eab 4607 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4608 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4609 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4610 skb->vlan_tci = 0;
66c46d74 4611 skb->dev = napi->dev;
6d152e23 4612 skb->skb_iif = 0;
c3caf119
JC
4613 skb->encapsulation = 0;
4614 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4615 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4616
4617 napi->skb = skb;
4618}
96e93eab 4619
76620aaf 4620struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4621{
5d38a079 4622 struct sk_buff *skb = napi->skb;
5d38a079
HX
4623
4624 if (!skb) {
fd11a83d 4625 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4626 if (skb) {
4627 napi->skb = skb;
4628 skb_mark_napi_id(skb, napi);
4629 }
80595d59 4630 }
96e93eab
HX
4631 return skb;
4632}
76620aaf 4633EXPORT_SYMBOL(napi_get_frags);
96e93eab 4634
a50e233c
ED
4635static gro_result_t napi_frags_finish(struct napi_struct *napi,
4636 struct sk_buff *skb,
4637 gro_result_t ret)
96e93eab 4638{
5d0d9be8
HX
4639 switch (ret) {
4640 case GRO_NORMAL:
a50e233c
ED
4641 case GRO_HELD:
4642 __skb_push(skb, ETH_HLEN);
4643 skb->protocol = eth_type_trans(skb, skb->dev);
4644 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4645 ret = GRO_DROP;
86911732 4646 break;
5d38a079 4647
5d0d9be8 4648 case GRO_DROP:
5d0d9be8
HX
4649 case GRO_MERGED_FREE:
4650 napi_reuse_skb(napi, skb);
4651 break;
5b252f0c
BH
4652
4653 case GRO_MERGED:
4654 break;
5d0d9be8 4655 }
5d38a079 4656
c7c4b3b6 4657 return ret;
5d38a079 4658}
5d0d9be8 4659
a50e233c
ED
4660/* Upper GRO stack assumes network header starts at gro_offset=0
4661 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4662 * We copy ethernet header into skb->data to have a common layout.
4663 */
4adb9c4a 4664static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4665{
4666 struct sk_buff *skb = napi->skb;
a50e233c
ED
4667 const struct ethhdr *eth;
4668 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4669
4670 napi->skb = NULL;
4671
a50e233c
ED
4672 skb_reset_mac_header(skb);
4673 skb_gro_reset_offset(skb);
4674
4675 eth = skb_gro_header_fast(skb, 0);
4676 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4677 eth = skb_gro_header_slow(skb, hlen, 0);
4678 if (unlikely(!eth)) {
4da46ceb
AC
4679 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4680 __func__, napi->dev->name);
a50e233c
ED
4681 napi_reuse_skb(napi, skb);
4682 return NULL;
4683 }
4684 } else {
4685 gro_pull_from_frag0(skb, hlen);
4686 NAPI_GRO_CB(skb)->frag0 += hlen;
4687 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4688 }
a50e233c
ED
4689 __skb_pull(skb, hlen);
4690
4691 /*
4692 * This works because the only protocols we care about don't require
4693 * special handling.
4694 * We'll fix it up properly in napi_frags_finish()
4695 */
4696 skb->protocol = eth->h_proto;
76620aaf 4697
76620aaf
HX
4698 return skb;
4699}
76620aaf 4700
c7c4b3b6 4701gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4702{
76620aaf 4703 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4704
4705 if (!skb)
c7c4b3b6 4706 return GRO_DROP;
5d0d9be8 4707
ae78dbfa
BH
4708 trace_napi_gro_frags_entry(skb);
4709
89c5fa33 4710 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4711}
5d38a079
HX
4712EXPORT_SYMBOL(napi_gro_frags);
4713
573e8fca
TH
4714/* Compute the checksum from gro_offset and return the folded value
4715 * after adding in any pseudo checksum.
4716 */
4717__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4718{
4719 __wsum wsum;
4720 __sum16 sum;
4721
4722 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4723
4724 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4725 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4726 if (likely(!sum)) {
4727 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4728 !skb->csum_complete_sw)
4729 netdev_rx_csum_fault(skb->dev);
4730 }
4731
4732 NAPI_GRO_CB(skb)->csum = wsum;
4733 NAPI_GRO_CB(skb)->csum_valid = 1;
4734
4735 return sum;
4736}
4737EXPORT_SYMBOL(__skb_gro_checksum_complete);
4738
e326bed2 4739/*
855abcf0 4740 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4741 * Note: called with local irq disabled, but exits with local irq enabled.
4742 */
4743static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4744{
4745#ifdef CONFIG_RPS
4746 struct softnet_data *remsd = sd->rps_ipi_list;
4747
4748 if (remsd) {
4749 sd->rps_ipi_list = NULL;
4750
4751 local_irq_enable();
4752
4753 /* Send pending IPI's to kick RPS processing on remote cpus. */
4754 while (remsd) {
4755 struct softnet_data *next = remsd->rps_ipi_next;
4756
4757 if (cpu_online(remsd->cpu))
c46fff2a 4758 smp_call_function_single_async(remsd->cpu,
fce8ad15 4759 &remsd->csd);
e326bed2
ED
4760 remsd = next;
4761 }
4762 } else
4763#endif
4764 local_irq_enable();
4765}
4766
d75b1ade
ED
4767static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4768{
4769#ifdef CONFIG_RPS
4770 return sd->rps_ipi_list != NULL;
4771#else
4772 return false;
4773#endif
4774}
4775
bea3348e 4776static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4777{
eecfd7c4 4778 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4779 bool again = true;
4780 int work = 0;
1da177e4 4781
e326bed2
ED
4782 /* Check if we have pending ipi, its better to send them now,
4783 * not waiting net_rx_action() end.
4784 */
d75b1ade 4785 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4786 local_irq_disable();
4787 net_rps_action_and_irq_enable(sd);
4788 }
d75b1ade 4789
bea3348e 4790 napi->weight = weight_p;
145dd5f9 4791 while (again) {
1da177e4 4792 struct sk_buff *skb;
6e7676c1
CG
4793
4794 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4795 rcu_read_lock();
6e7676c1 4796 __netif_receive_skb(skb);
2c17d27c 4797 rcu_read_unlock();
76cc8b13 4798 input_queue_head_incr(sd);
145dd5f9 4799 if (++work >= quota)
76cc8b13 4800 return work;
145dd5f9 4801
6e7676c1 4802 }
1da177e4 4803
145dd5f9 4804 local_irq_disable();
e36fa2f7 4805 rps_lock(sd);
11ef7a89 4806 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4807 /*
4808 * Inline a custom version of __napi_complete().
4809 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4810 * and NAPI_STATE_SCHED is the only possible flag set
4811 * on backlog.
4812 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4813 * and we dont need an smp_mb() memory barrier.
4814 */
eecfd7c4 4815 napi->state = 0;
145dd5f9
PA
4816 again = false;
4817 } else {
4818 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4819 &sd->process_queue);
bea3348e 4820 }
e36fa2f7 4821 rps_unlock(sd);
145dd5f9 4822 local_irq_enable();
6e7676c1 4823 }
1da177e4 4824
bea3348e
SH
4825 return work;
4826}
1da177e4 4827
bea3348e
SH
4828/**
4829 * __napi_schedule - schedule for receive
c4ea43c5 4830 * @n: entry to schedule
bea3348e 4831 *
bc9ad166
ED
4832 * The entry's receive function will be scheduled to run.
4833 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4834 */
b5606c2d 4835void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4836{
4837 unsigned long flags;
1da177e4 4838
bea3348e 4839 local_irq_save(flags);
903ceff7 4840 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4841 local_irq_restore(flags);
1da177e4 4842}
bea3348e
SH
4843EXPORT_SYMBOL(__napi_schedule);
4844
bc9ad166
ED
4845/**
4846 * __napi_schedule_irqoff - schedule for receive
4847 * @n: entry to schedule
4848 *
4849 * Variant of __napi_schedule() assuming hard irqs are masked
4850 */
4851void __napi_schedule_irqoff(struct napi_struct *n)
4852{
4853 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4854}
4855EXPORT_SYMBOL(__napi_schedule_irqoff);
4856
d565b0a1
HX
4857void __napi_complete(struct napi_struct *n)
4858{
4859 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4860
d75b1ade 4861 list_del_init(&n->poll_list);
4e857c58 4862 smp_mb__before_atomic();
d565b0a1
HX
4863 clear_bit(NAPI_STATE_SCHED, &n->state);
4864}
4865EXPORT_SYMBOL(__napi_complete);
4866
3b47d303 4867void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4868{
4869 unsigned long flags;
4870
4871 /*
4872 * don't let napi dequeue from the cpu poll list
4873 * just in case its running on a different cpu
4874 */
4875 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4876 return;
4877
3b47d303
ED
4878 if (n->gro_list) {
4879 unsigned long timeout = 0;
d75b1ade 4880
3b47d303
ED
4881 if (work_done)
4882 timeout = n->dev->gro_flush_timeout;
4883
4884 if (timeout)
4885 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4886 HRTIMER_MODE_REL_PINNED);
4887 else
4888 napi_gro_flush(n, false);
4889 }
d75b1ade
ED
4890 if (likely(list_empty(&n->poll_list))) {
4891 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4892 } else {
4893 /* If n->poll_list is not empty, we need to mask irqs */
4894 local_irq_save(flags);
4895 __napi_complete(n);
4896 local_irq_restore(flags);
4897 }
d565b0a1 4898}
3b47d303 4899EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4900
af12fa6e 4901/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4902static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4903{
4904 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4905 struct napi_struct *napi;
4906
4907 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4908 if (napi->napi_id == napi_id)
4909 return napi;
4910
4911 return NULL;
4912}
02d62e86
ED
4913
4914#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4915#define BUSY_POLL_BUDGET 8
02d62e86
ED
4916bool sk_busy_loop(struct sock *sk, int nonblock)
4917{
4918 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4919 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4920 struct napi_struct *napi;
4921 int rc = false;
4922
2a028ecb 4923 rcu_read_lock();
02d62e86
ED
4924
4925 napi = napi_by_id(sk->sk_napi_id);
4926 if (!napi)
4927 goto out;
4928
ce6aea93
ED
4929 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4930 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4931
4932 do {
ce6aea93 4933 rc = 0;
2a028ecb 4934 local_bh_disable();
ce6aea93
ED
4935 if (busy_poll) {
4936 rc = busy_poll(napi);
4937 } else if (napi_schedule_prep(napi)) {
4938 void *have = netpoll_poll_lock(napi);
4939
4940 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4941 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1db19db7 4942 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
ce6aea93
ED
4943 if (rc == BUSY_POLL_BUDGET) {
4944 napi_complete_done(napi, rc);
4945 napi_schedule(napi);
4946 }
4947 }
4948 netpoll_poll_unlock(have);
4949 }
2a028ecb 4950 if (rc > 0)
02a1d6e7
ED
4951 __NET_ADD_STATS(sock_net(sk),
4952 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 4953 local_bh_enable();
02d62e86
ED
4954
4955 if (rc == LL_FLUSH_FAILED)
4956 break; /* permanent failure */
4957
02d62e86 4958 cpu_relax();
02d62e86
ED
4959 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4960 !need_resched() && !busy_loop_timeout(end_time));
4961
4962 rc = !skb_queue_empty(&sk->sk_receive_queue);
4963out:
2a028ecb 4964 rcu_read_unlock();
02d62e86
ED
4965 return rc;
4966}
4967EXPORT_SYMBOL(sk_busy_loop);
4968
4969#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
4970
4971void napi_hash_add(struct napi_struct *napi)
4972{
d64b5e85
ED
4973 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4974 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 4975 return;
af12fa6e 4976
52bd2d62 4977 spin_lock(&napi_hash_lock);
af12fa6e 4978
52bd2d62
ED
4979 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4980 do {
4981 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4982 napi_gen_id = NR_CPUS + 1;
4983 } while (napi_by_id(napi_gen_id));
4984 napi->napi_id = napi_gen_id;
af12fa6e 4985
52bd2d62
ED
4986 hlist_add_head_rcu(&napi->napi_hash_node,
4987 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 4988
52bd2d62 4989 spin_unlock(&napi_hash_lock);
af12fa6e
ET
4990}
4991EXPORT_SYMBOL_GPL(napi_hash_add);
4992
4993/* Warning : caller is responsible to make sure rcu grace period
4994 * is respected before freeing memory containing @napi
4995 */
34cbe27e 4996bool napi_hash_del(struct napi_struct *napi)
af12fa6e 4997{
34cbe27e
ED
4998 bool rcu_sync_needed = false;
4999
af12fa6e
ET
5000 spin_lock(&napi_hash_lock);
5001
34cbe27e
ED
5002 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5003 rcu_sync_needed = true;
af12fa6e 5004 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5005 }
af12fa6e 5006 spin_unlock(&napi_hash_lock);
34cbe27e 5007 return rcu_sync_needed;
af12fa6e
ET
5008}
5009EXPORT_SYMBOL_GPL(napi_hash_del);
5010
3b47d303
ED
5011static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5012{
5013 struct napi_struct *napi;
5014
5015 napi = container_of(timer, struct napi_struct, timer);
5016 if (napi->gro_list)
5017 napi_schedule(napi);
5018
5019 return HRTIMER_NORESTART;
5020}
5021
d565b0a1
HX
5022void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5023 int (*poll)(struct napi_struct *, int), int weight)
5024{
5025 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5026 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5027 napi->timer.function = napi_watchdog;
4ae5544f 5028 napi->gro_count = 0;
d565b0a1 5029 napi->gro_list = NULL;
5d38a079 5030 napi->skb = NULL;
d565b0a1 5031 napi->poll = poll;
82dc3c63
ED
5032 if (weight > NAPI_POLL_WEIGHT)
5033 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5034 weight, dev->name);
d565b0a1
HX
5035 napi->weight = weight;
5036 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5037 napi->dev = dev;
5d38a079 5038#ifdef CONFIG_NETPOLL
d565b0a1
HX
5039 spin_lock_init(&napi->poll_lock);
5040 napi->poll_owner = -1;
5041#endif
5042 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5043 napi_hash_add(napi);
d565b0a1
HX
5044}
5045EXPORT_SYMBOL(netif_napi_add);
5046
3b47d303
ED
5047void napi_disable(struct napi_struct *n)
5048{
5049 might_sleep();
5050 set_bit(NAPI_STATE_DISABLE, &n->state);
5051
5052 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5053 msleep(1);
2d8bff12
NH
5054 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5055 msleep(1);
3b47d303
ED
5056
5057 hrtimer_cancel(&n->timer);
5058
5059 clear_bit(NAPI_STATE_DISABLE, &n->state);
5060}
5061EXPORT_SYMBOL(napi_disable);
5062
93d05d4a 5063/* Must be called in process context */
d565b0a1
HX
5064void netif_napi_del(struct napi_struct *napi)
5065{
93d05d4a
ED
5066 might_sleep();
5067 if (napi_hash_del(napi))
5068 synchronize_net();
d7b06636 5069 list_del_init(&napi->dev_list);
76620aaf 5070 napi_free_frags(napi);
d565b0a1 5071
289dccbe 5072 kfree_skb_list(napi->gro_list);
d565b0a1 5073 napi->gro_list = NULL;
4ae5544f 5074 napi->gro_count = 0;
d565b0a1
HX
5075}
5076EXPORT_SYMBOL(netif_napi_del);
5077
726ce70e
HX
5078static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5079{
5080 void *have;
5081 int work, weight;
5082
5083 list_del_init(&n->poll_list);
5084
5085 have = netpoll_poll_lock(n);
5086
5087 weight = n->weight;
5088
5089 /* This NAPI_STATE_SCHED test is for avoiding a race
5090 * with netpoll's poll_napi(). Only the entity which
5091 * obtains the lock and sees NAPI_STATE_SCHED set will
5092 * actually make the ->poll() call. Therefore we avoid
5093 * accidentally calling ->poll() when NAPI is not scheduled.
5094 */
5095 work = 0;
5096 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5097 work = n->poll(n, weight);
1db19db7 5098 trace_napi_poll(n, work, weight);
726ce70e
HX
5099 }
5100
5101 WARN_ON_ONCE(work > weight);
5102
5103 if (likely(work < weight))
5104 goto out_unlock;
5105
5106 /* Drivers must not modify the NAPI state if they
5107 * consume the entire weight. In such cases this code
5108 * still "owns" the NAPI instance and therefore can
5109 * move the instance around on the list at-will.
5110 */
5111 if (unlikely(napi_disable_pending(n))) {
5112 napi_complete(n);
5113 goto out_unlock;
5114 }
5115
5116 if (n->gro_list) {
5117 /* flush too old packets
5118 * If HZ < 1000, flush all packets.
5119 */
5120 napi_gro_flush(n, HZ >= 1000);
5121 }
5122
001ce546
HX
5123 /* Some drivers may have called napi_schedule
5124 * prior to exhausting their budget.
5125 */
5126 if (unlikely(!list_empty(&n->poll_list))) {
5127 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5128 n->dev ? n->dev->name : "backlog");
5129 goto out_unlock;
5130 }
5131
726ce70e
HX
5132 list_add_tail(&n->poll_list, repoll);
5133
5134out_unlock:
5135 netpoll_poll_unlock(have);
5136
5137 return work;
5138}
5139
0766f788 5140static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5141{
903ceff7 5142 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5143 unsigned long time_limit = jiffies + 2;
51b0bded 5144 int budget = netdev_budget;
d75b1ade
ED
5145 LIST_HEAD(list);
5146 LIST_HEAD(repoll);
53fb95d3 5147
1da177e4 5148 local_irq_disable();
d75b1ade
ED
5149 list_splice_init(&sd->poll_list, &list);
5150 local_irq_enable();
1da177e4 5151
ceb8d5bf 5152 for (;;) {
bea3348e 5153 struct napi_struct *n;
1da177e4 5154
ceb8d5bf
HX
5155 if (list_empty(&list)) {
5156 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5157 return;
5158 break;
5159 }
5160
6bd373eb
HX
5161 n = list_first_entry(&list, struct napi_struct, poll_list);
5162 budget -= napi_poll(n, &repoll);
5163
d75b1ade 5164 /* If softirq window is exhausted then punt.
24f8b238
SH
5165 * Allow this to run for 2 jiffies since which will allow
5166 * an average latency of 1.5/HZ.
bea3348e 5167 */
ceb8d5bf
HX
5168 if (unlikely(budget <= 0 ||
5169 time_after_eq(jiffies, time_limit))) {
5170 sd->time_squeeze++;
5171 break;
5172 }
1da177e4 5173 }
d75b1ade 5174
795bb1c0 5175 __kfree_skb_flush();
d75b1ade
ED
5176 local_irq_disable();
5177
5178 list_splice_tail_init(&sd->poll_list, &list);
5179 list_splice_tail(&repoll, &list);
5180 list_splice(&list, &sd->poll_list);
5181 if (!list_empty(&sd->poll_list))
5182 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5183
e326bed2 5184 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5185}
5186
aa9d8560 5187struct netdev_adjacent {
9ff162a8 5188 struct net_device *dev;
5d261913
VF
5189
5190 /* upper master flag, there can only be one master device per list */
9ff162a8 5191 bool master;
5d261913 5192
5d261913
VF
5193 /* counter for the number of times this device was added to us */
5194 u16 ref_nr;
5195
402dae96
VF
5196 /* private field for the users */
5197 void *private;
5198
9ff162a8
JP
5199 struct list_head list;
5200 struct rcu_head rcu;
9ff162a8
JP
5201};
5202
6ea29da1 5203static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5204 struct list_head *adj_list)
9ff162a8 5205{
5d261913 5206 struct netdev_adjacent *adj;
5d261913 5207
2f268f12 5208 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5209 if (adj->dev == adj_dev)
5210 return adj;
9ff162a8
JP
5211 }
5212 return NULL;
5213}
5214
f1170fd4
DA
5215static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5216{
5217 struct net_device *dev = data;
5218
5219 return upper_dev == dev;
5220}
5221
9ff162a8
JP
5222/**
5223 * netdev_has_upper_dev - Check if device is linked to an upper device
5224 * @dev: device
5225 * @upper_dev: upper device to check
5226 *
5227 * Find out if a device is linked to specified upper device and return true
5228 * in case it is. Note that this checks only immediate upper device,
5229 * not through a complete stack of devices. The caller must hold the RTNL lock.
5230 */
5231bool netdev_has_upper_dev(struct net_device *dev,
5232 struct net_device *upper_dev)
5233{
5234 ASSERT_RTNL();
5235
f1170fd4
DA
5236 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5237 upper_dev);
9ff162a8
JP
5238}
5239EXPORT_SYMBOL(netdev_has_upper_dev);
5240
1a3f060c
DA
5241/**
5242 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5243 * @dev: device
5244 * @upper_dev: upper device to check
5245 *
5246 * Find out if a device is linked to specified upper device and return true
5247 * in case it is. Note that this checks the entire upper device chain.
5248 * The caller must hold rcu lock.
5249 */
5250
1a3f060c
DA
5251bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5252 struct net_device *upper_dev)
5253{
5254 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5255 upper_dev);
5256}
5257EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5258
9ff162a8
JP
5259/**
5260 * netdev_has_any_upper_dev - Check if device is linked to some device
5261 * @dev: device
5262 *
5263 * Find out if a device is linked to an upper device and return true in case
5264 * it is. The caller must hold the RTNL lock.
5265 */
1d143d9f 5266static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5267{
5268 ASSERT_RTNL();
5269
f1170fd4 5270 return !list_empty(&dev->adj_list.upper);
9ff162a8 5271}
9ff162a8
JP
5272
5273/**
5274 * netdev_master_upper_dev_get - Get master upper device
5275 * @dev: device
5276 *
5277 * Find a master upper device and return pointer to it or NULL in case
5278 * it's not there. The caller must hold the RTNL lock.
5279 */
5280struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5281{
aa9d8560 5282 struct netdev_adjacent *upper;
9ff162a8
JP
5283
5284 ASSERT_RTNL();
5285
2f268f12 5286 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5287 return NULL;
5288
2f268f12 5289 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5290 struct netdev_adjacent, list);
9ff162a8
JP
5291 if (likely(upper->master))
5292 return upper->dev;
5293 return NULL;
5294}
5295EXPORT_SYMBOL(netdev_master_upper_dev_get);
5296
0f524a80
DA
5297/**
5298 * netdev_has_any_lower_dev - Check if device is linked to some device
5299 * @dev: device
5300 *
5301 * Find out if a device is linked to a lower device and return true in case
5302 * it is. The caller must hold the RTNL lock.
5303 */
5304static bool netdev_has_any_lower_dev(struct net_device *dev)
5305{
5306 ASSERT_RTNL();
5307
5308 return !list_empty(&dev->adj_list.lower);
5309}
5310
b6ccba4c
VF
5311void *netdev_adjacent_get_private(struct list_head *adj_list)
5312{
5313 struct netdev_adjacent *adj;
5314
5315 adj = list_entry(adj_list, struct netdev_adjacent, list);
5316
5317 return adj->private;
5318}
5319EXPORT_SYMBOL(netdev_adjacent_get_private);
5320
44a40855
VY
5321/**
5322 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5323 * @dev: device
5324 * @iter: list_head ** of the current position
5325 *
5326 * Gets the next device from the dev's upper list, starting from iter
5327 * position. The caller must hold RCU read lock.
5328 */
5329struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5330 struct list_head **iter)
5331{
5332 struct netdev_adjacent *upper;
5333
5334 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5335
5336 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5337
5338 if (&upper->list == &dev->adj_list.upper)
5339 return NULL;
5340
5341 *iter = &upper->list;
5342
5343 return upper->dev;
5344}
5345EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5346
1a3f060c
DA
5347static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5348 struct list_head **iter)
5349{
5350 struct netdev_adjacent *upper;
5351
5352 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5353
5354 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5355
5356 if (&upper->list == &dev->adj_list.upper)
5357 return NULL;
5358
5359 *iter = &upper->list;
5360
5361 return upper->dev;
5362}
5363
5364int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5365 int (*fn)(struct net_device *dev,
5366 void *data),
5367 void *data)
5368{
5369 struct net_device *udev;
5370 struct list_head *iter;
5371 int ret;
5372
5373 for (iter = &dev->adj_list.upper,
5374 udev = netdev_next_upper_dev_rcu(dev, &iter);
5375 udev;
5376 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5377 /* first is the upper device itself */
5378 ret = fn(udev, data);
5379 if (ret)
5380 return ret;
5381
5382 /* then look at all of its upper devices */
5383 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5384 if (ret)
5385 return ret;
5386 }
5387
5388 return 0;
5389}
5390EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5391
31088a11
VF
5392/**
5393 * netdev_lower_get_next_private - Get the next ->private from the
5394 * lower neighbour list
5395 * @dev: device
5396 * @iter: list_head ** of the current position
5397 *
5398 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5399 * list, starting from iter position. The caller must hold either hold the
5400 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5401 * list will remain unchanged.
31088a11
VF
5402 */
5403void *netdev_lower_get_next_private(struct net_device *dev,
5404 struct list_head **iter)
5405{
5406 struct netdev_adjacent *lower;
5407
5408 lower = list_entry(*iter, struct netdev_adjacent, list);
5409
5410 if (&lower->list == &dev->adj_list.lower)
5411 return NULL;
5412
6859e7df 5413 *iter = lower->list.next;
31088a11
VF
5414
5415 return lower->private;
5416}
5417EXPORT_SYMBOL(netdev_lower_get_next_private);
5418
5419/**
5420 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5421 * lower neighbour list, RCU
5422 * variant
5423 * @dev: device
5424 * @iter: list_head ** of the current position
5425 *
5426 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5427 * list, starting from iter position. The caller must hold RCU read lock.
5428 */
5429void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5430 struct list_head **iter)
5431{
5432 struct netdev_adjacent *lower;
5433
5434 WARN_ON_ONCE(!rcu_read_lock_held());
5435
5436 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5437
5438 if (&lower->list == &dev->adj_list.lower)
5439 return NULL;
5440
6859e7df 5441 *iter = &lower->list;
31088a11
VF
5442
5443 return lower->private;
5444}
5445EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5446
4085ebe8
VY
5447/**
5448 * netdev_lower_get_next - Get the next device from the lower neighbour
5449 * list
5450 * @dev: device
5451 * @iter: list_head ** of the current position
5452 *
5453 * Gets the next netdev_adjacent from the dev's lower neighbour
5454 * list, starting from iter position. The caller must hold RTNL lock or
5455 * its own locking that guarantees that the neighbour lower
b469139e 5456 * list will remain unchanged.
4085ebe8
VY
5457 */
5458void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5459{
5460 struct netdev_adjacent *lower;
5461
cfdd28be 5462 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5463
5464 if (&lower->list == &dev->adj_list.lower)
5465 return NULL;
5466
cfdd28be 5467 *iter = lower->list.next;
4085ebe8
VY
5468
5469 return lower->dev;
5470}
5471EXPORT_SYMBOL(netdev_lower_get_next);
5472
1a3f060c
DA
5473static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5474 struct list_head **iter)
5475{
5476 struct netdev_adjacent *lower;
5477
46b5ab1a 5478 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5479
5480 if (&lower->list == &dev->adj_list.lower)
5481 return NULL;
5482
46b5ab1a 5483 *iter = &lower->list;
1a3f060c
DA
5484
5485 return lower->dev;
5486}
5487
5488int netdev_walk_all_lower_dev(struct net_device *dev,
5489 int (*fn)(struct net_device *dev,
5490 void *data),
5491 void *data)
5492{
5493 struct net_device *ldev;
5494 struct list_head *iter;
5495 int ret;
5496
5497 for (iter = &dev->adj_list.lower,
5498 ldev = netdev_next_lower_dev(dev, &iter);
5499 ldev;
5500 ldev = netdev_next_lower_dev(dev, &iter)) {
5501 /* first is the lower device itself */
5502 ret = fn(ldev, data);
5503 if (ret)
5504 return ret;
5505
5506 /* then look at all of its lower devices */
5507 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5508 if (ret)
5509 return ret;
5510 }
5511
5512 return 0;
5513}
5514EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5515
1a3f060c
DA
5516static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5517 struct list_head **iter)
5518{
5519 struct netdev_adjacent *lower;
5520
5521 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5522 if (&lower->list == &dev->adj_list.lower)
5523 return NULL;
5524
5525 *iter = &lower->list;
5526
5527 return lower->dev;
5528}
5529
5530int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5531 int (*fn)(struct net_device *dev,
5532 void *data),
5533 void *data)
5534{
5535 struct net_device *ldev;
5536 struct list_head *iter;
5537 int ret;
5538
5539 for (iter = &dev->adj_list.lower,
5540 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5541 ldev;
5542 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5543 /* first is the lower device itself */
5544 ret = fn(ldev, data);
5545 if (ret)
5546 return ret;
5547
5548 /* then look at all of its lower devices */
5549 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5550 if (ret)
5551 return ret;
5552 }
5553
5554 return 0;
5555}
5556EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5557
e001bfad 5558/**
5559 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5560 * lower neighbour list, RCU
5561 * variant
5562 * @dev: device
5563 *
5564 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5565 * list. The caller must hold RCU read lock.
5566 */
5567void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5568{
5569 struct netdev_adjacent *lower;
5570
5571 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5572 struct netdev_adjacent, list);
5573 if (lower)
5574 return lower->private;
5575 return NULL;
5576}
5577EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5578
9ff162a8
JP
5579/**
5580 * netdev_master_upper_dev_get_rcu - Get master upper device
5581 * @dev: device
5582 *
5583 * Find a master upper device and return pointer to it or NULL in case
5584 * it's not there. The caller must hold the RCU read lock.
5585 */
5586struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5587{
aa9d8560 5588 struct netdev_adjacent *upper;
9ff162a8 5589
2f268f12 5590 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5591 struct netdev_adjacent, list);
9ff162a8
JP
5592 if (upper && likely(upper->master))
5593 return upper->dev;
5594 return NULL;
5595}
5596EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5597
0a59f3a9 5598static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5599 struct net_device *adj_dev,
5600 struct list_head *dev_list)
5601{
5602 char linkname[IFNAMSIZ+7];
5603 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5604 "upper_%s" : "lower_%s", adj_dev->name);
5605 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5606 linkname);
5607}
0a59f3a9 5608static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5609 char *name,
5610 struct list_head *dev_list)
5611{
5612 char linkname[IFNAMSIZ+7];
5613 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5614 "upper_%s" : "lower_%s", name);
5615 sysfs_remove_link(&(dev->dev.kobj), linkname);
5616}
5617
7ce64c79
AF
5618static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5619 struct net_device *adj_dev,
5620 struct list_head *dev_list)
5621{
5622 return (dev_list == &dev->adj_list.upper ||
5623 dev_list == &dev->adj_list.lower) &&
5624 net_eq(dev_net(dev), dev_net(adj_dev));
5625}
3ee32707 5626
5d261913
VF
5627static int __netdev_adjacent_dev_insert(struct net_device *dev,
5628 struct net_device *adj_dev,
7863c054 5629 struct list_head *dev_list,
402dae96 5630 void *private, bool master)
5d261913
VF
5631{
5632 struct netdev_adjacent *adj;
842d67a7 5633 int ret;
5d261913 5634
6ea29da1 5635 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5636
5637 if (adj) {
790510d9 5638 adj->ref_nr += 1;
67b62f98
DA
5639 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5640 dev->name, adj_dev->name, adj->ref_nr);
5641
5d261913
VF
5642 return 0;
5643 }
5644
5645 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5646 if (!adj)
5647 return -ENOMEM;
5648
5649 adj->dev = adj_dev;
5650 adj->master = master;
790510d9 5651 adj->ref_nr = 1;
402dae96 5652 adj->private = private;
5d261913 5653 dev_hold(adj_dev);
2f268f12 5654
67b62f98
DA
5655 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5656 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 5657
7ce64c79 5658 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5659 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5660 if (ret)
5661 goto free_adj;
5662 }
5663
7863c054 5664 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5665 if (master) {
5666 ret = sysfs_create_link(&(dev->dev.kobj),
5667 &(adj_dev->dev.kobj), "master");
5668 if (ret)
5831d66e 5669 goto remove_symlinks;
842d67a7 5670
7863c054 5671 list_add_rcu(&adj->list, dev_list);
842d67a7 5672 } else {
7863c054 5673 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5674 }
5d261913
VF
5675
5676 return 0;
842d67a7 5677
5831d66e 5678remove_symlinks:
7ce64c79 5679 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5680 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5681free_adj:
5682 kfree(adj);
974daef7 5683 dev_put(adj_dev);
842d67a7
VF
5684
5685 return ret;
5d261913
VF
5686}
5687
1d143d9f 5688static void __netdev_adjacent_dev_remove(struct net_device *dev,
5689 struct net_device *adj_dev,
93409033 5690 u16 ref_nr,
1d143d9f 5691 struct list_head *dev_list)
5d261913
VF
5692{
5693 struct netdev_adjacent *adj;
5694
67b62f98
DA
5695 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5696 dev->name, adj_dev->name, ref_nr);
5697
6ea29da1 5698 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5699
2f268f12 5700 if (!adj) {
67b62f98 5701 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 5702 dev->name, adj_dev->name);
67b62f98
DA
5703 WARN_ON(1);
5704 return;
2f268f12 5705 }
5d261913 5706
93409033 5707 if (adj->ref_nr > ref_nr) {
67b62f98
DA
5708 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5709 dev->name, adj_dev->name, ref_nr,
5710 adj->ref_nr - ref_nr);
93409033 5711 adj->ref_nr -= ref_nr;
5d261913
VF
5712 return;
5713 }
5714
842d67a7
VF
5715 if (adj->master)
5716 sysfs_remove_link(&(dev->dev.kobj), "master");
5717
7ce64c79 5718 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5719 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5720
5d261913 5721 list_del_rcu(&adj->list);
67b62f98 5722 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 5723 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5724 dev_put(adj_dev);
5725 kfree_rcu(adj, rcu);
5726}
5727
1d143d9f 5728static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5729 struct net_device *upper_dev,
5730 struct list_head *up_list,
5731 struct list_head *down_list,
5732 void *private, bool master)
5d261913
VF
5733{
5734 int ret;
5735
790510d9 5736 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 5737 private, master);
5d261913
VF
5738 if (ret)
5739 return ret;
5740
790510d9 5741 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 5742 private, false);
5d261913 5743 if (ret) {
790510d9 5744 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
5745 return ret;
5746 }
5747
5748 return 0;
5749}
5750
1d143d9f 5751static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5752 struct net_device *upper_dev,
93409033 5753 u16 ref_nr,
1d143d9f 5754 struct list_head *up_list,
5755 struct list_head *down_list)
5d261913 5756{
93409033
AC
5757 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5758 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5759}
5760
1d143d9f 5761static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5762 struct net_device *upper_dev,
5763 void *private, bool master)
2f268f12 5764{
f1170fd4
DA
5765 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5766 &dev->adj_list.upper,
5767 &upper_dev->adj_list.lower,
5768 private, master);
5d261913
VF
5769}
5770
1d143d9f 5771static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5772 struct net_device *upper_dev)
2f268f12 5773{
93409033 5774 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5775 &dev->adj_list.upper,
5776 &upper_dev->adj_list.lower);
5777}
5d261913 5778
9ff162a8 5779static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5780 struct net_device *upper_dev, bool master,
29bf24af 5781 void *upper_priv, void *upper_info)
9ff162a8 5782{
0e4ead9d 5783 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5784 int ret = 0;
9ff162a8
JP
5785
5786 ASSERT_RTNL();
5787
5788 if (dev == upper_dev)
5789 return -EBUSY;
5790
5791 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 5792 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
5793 return -EBUSY;
5794
f1170fd4 5795 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
5796 return -EEXIST;
5797
5798 if (master && netdev_master_upper_dev_get(dev))
5799 return -EBUSY;
5800
0e4ead9d
JP
5801 changeupper_info.upper_dev = upper_dev;
5802 changeupper_info.master = master;
5803 changeupper_info.linking = true;
29bf24af 5804 changeupper_info.upper_info = upper_info;
0e4ead9d 5805
573c7ba0
JP
5806 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5807 &changeupper_info.info);
5808 ret = notifier_to_errno(ret);
5809 if (ret)
5810 return ret;
5811
6dffb044 5812 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5813 master);
5d261913
VF
5814 if (ret)
5815 return ret;
9ff162a8 5816
b03804e7
IS
5817 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5818 &changeupper_info.info);
5819 ret = notifier_to_errno(ret);
5820 if (ret)
f1170fd4 5821 goto rollback;
b03804e7 5822
9ff162a8 5823 return 0;
5d261913 5824
f1170fd4 5825rollback:
2f268f12 5826 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5827
5828 return ret;
9ff162a8
JP
5829}
5830
5831/**
5832 * netdev_upper_dev_link - Add a link to the upper device
5833 * @dev: device
5834 * @upper_dev: new upper device
5835 *
5836 * Adds a link to device which is upper to this one. The caller must hold
5837 * the RTNL lock. On a failure a negative errno code is returned.
5838 * On success the reference counts are adjusted and the function
5839 * returns zero.
5840 */
5841int netdev_upper_dev_link(struct net_device *dev,
5842 struct net_device *upper_dev)
5843{
29bf24af 5844 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5845}
5846EXPORT_SYMBOL(netdev_upper_dev_link);
5847
5848/**
5849 * netdev_master_upper_dev_link - Add a master link to the upper device
5850 * @dev: device
5851 * @upper_dev: new upper device
6dffb044 5852 * @upper_priv: upper device private
29bf24af 5853 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5854 *
5855 * Adds a link to device which is upper to this one. In this case, only
5856 * one master upper device can be linked, although other non-master devices
5857 * might be linked as well. The caller must hold the RTNL lock.
5858 * On a failure a negative errno code is returned. On success the reference
5859 * counts are adjusted and the function returns zero.
5860 */
5861int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5862 struct net_device *upper_dev,
29bf24af 5863 void *upper_priv, void *upper_info)
9ff162a8 5864{
29bf24af
JP
5865 return __netdev_upper_dev_link(dev, upper_dev, true,
5866 upper_priv, upper_info);
9ff162a8
JP
5867}
5868EXPORT_SYMBOL(netdev_master_upper_dev_link);
5869
5870/**
5871 * netdev_upper_dev_unlink - Removes a link to upper device
5872 * @dev: device
5873 * @upper_dev: new upper device
5874 *
5875 * Removes a link to device which is upper to this one. The caller must hold
5876 * the RTNL lock.
5877 */
5878void netdev_upper_dev_unlink(struct net_device *dev,
5879 struct net_device *upper_dev)
5880{
0e4ead9d 5881 struct netdev_notifier_changeupper_info changeupper_info;
9ff162a8
JP
5882 ASSERT_RTNL();
5883
0e4ead9d
JP
5884 changeupper_info.upper_dev = upper_dev;
5885 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5886 changeupper_info.linking = false;
5887
573c7ba0
JP
5888 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5889 &changeupper_info.info);
5890
2f268f12 5891 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 5892
0e4ead9d
JP
5893 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5894 &changeupper_info.info);
9ff162a8
JP
5895}
5896EXPORT_SYMBOL(netdev_upper_dev_unlink);
5897
61bd3857
MS
5898/**
5899 * netdev_bonding_info_change - Dispatch event about slave change
5900 * @dev: device
4a26e453 5901 * @bonding_info: info to dispatch
61bd3857
MS
5902 *
5903 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5904 * The caller must hold the RTNL lock.
5905 */
5906void netdev_bonding_info_change(struct net_device *dev,
5907 struct netdev_bonding_info *bonding_info)
5908{
5909 struct netdev_notifier_bonding_info info;
5910
5911 memcpy(&info.bonding_info, bonding_info,
5912 sizeof(struct netdev_bonding_info));
5913 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5914 &info.info);
5915}
5916EXPORT_SYMBOL(netdev_bonding_info_change);
5917
2ce1ee17 5918static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5919{
5920 struct netdev_adjacent *iter;
5921
5922 struct net *net = dev_net(dev);
5923
5924 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5925 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5926 continue;
5927 netdev_adjacent_sysfs_add(iter->dev, dev,
5928 &iter->dev->adj_list.lower);
5929 netdev_adjacent_sysfs_add(dev, iter->dev,
5930 &dev->adj_list.upper);
5931 }
5932
5933 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5934 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5935 continue;
5936 netdev_adjacent_sysfs_add(iter->dev, dev,
5937 &iter->dev->adj_list.upper);
5938 netdev_adjacent_sysfs_add(dev, iter->dev,
5939 &dev->adj_list.lower);
5940 }
5941}
5942
2ce1ee17 5943static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5944{
5945 struct netdev_adjacent *iter;
5946
5947 struct net *net = dev_net(dev);
5948
5949 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5950 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5951 continue;
5952 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5953 &iter->dev->adj_list.lower);
5954 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5955 &dev->adj_list.upper);
5956 }
5957
5958 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5959 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5960 continue;
5961 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5962 &iter->dev->adj_list.upper);
5963 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5964 &dev->adj_list.lower);
5965 }
5966}
5967
5bb025fa 5968void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5969{
5bb025fa 5970 struct netdev_adjacent *iter;
402dae96 5971
4c75431a
AF
5972 struct net *net = dev_net(dev);
5973
5bb025fa 5974 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5975 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 5976 continue;
5bb025fa
VF
5977 netdev_adjacent_sysfs_del(iter->dev, oldname,
5978 &iter->dev->adj_list.lower);
5979 netdev_adjacent_sysfs_add(iter->dev, dev,
5980 &iter->dev->adj_list.lower);
5981 }
402dae96 5982
5bb025fa 5983 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5984 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 5985 continue;
5bb025fa
VF
5986 netdev_adjacent_sysfs_del(iter->dev, oldname,
5987 &iter->dev->adj_list.upper);
5988 netdev_adjacent_sysfs_add(iter->dev, dev,
5989 &iter->dev->adj_list.upper);
5990 }
402dae96 5991}
402dae96
VF
5992
5993void *netdev_lower_dev_get_private(struct net_device *dev,
5994 struct net_device *lower_dev)
5995{
5996 struct netdev_adjacent *lower;
5997
5998 if (!lower_dev)
5999 return NULL;
6ea29da1 6000 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6001 if (!lower)
6002 return NULL;
6003
6004 return lower->private;
6005}
6006EXPORT_SYMBOL(netdev_lower_dev_get_private);
6007
4085ebe8 6008
952fcfd0 6009int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6010{
6011 struct net_device *lower = NULL;
6012 struct list_head *iter;
6013 int max_nest = -1;
6014 int nest;
6015
6016 ASSERT_RTNL();
6017
6018 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6019 nest = dev_get_nest_level(lower);
4085ebe8
VY
6020 if (max_nest < nest)
6021 max_nest = nest;
6022 }
6023
952fcfd0 6024 return max_nest + 1;
4085ebe8
VY
6025}
6026EXPORT_SYMBOL(dev_get_nest_level);
6027
04d48266
JP
6028/**
6029 * netdev_lower_change - Dispatch event about lower device state change
6030 * @lower_dev: device
6031 * @lower_state_info: state to dispatch
6032 *
6033 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6034 * The caller must hold the RTNL lock.
6035 */
6036void netdev_lower_state_changed(struct net_device *lower_dev,
6037 void *lower_state_info)
6038{
6039 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6040
6041 ASSERT_RTNL();
6042 changelowerstate_info.lower_state_info = lower_state_info;
6043 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6044 &changelowerstate_info.info);
6045}
6046EXPORT_SYMBOL(netdev_lower_state_changed);
6047
18bfb924
JP
6048int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6049 struct neighbour *n)
6050{
6051 struct net_device *lower_dev, *stop_dev;
6052 struct list_head *iter;
6053 int err;
6054
6055 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6056 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6057 continue;
6058 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6059 if (err) {
6060 stop_dev = lower_dev;
6061 goto rollback;
6062 }
6063 }
6064 return 0;
6065
6066rollback:
6067 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6068 if (lower_dev == stop_dev)
6069 break;
6070 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6071 continue;
6072 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6073 }
6074 return err;
6075}
6076EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6077
6078void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6079 struct neighbour *n)
6080{
6081 struct net_device *lower_dev;
6082 struct list_head *iter;
6083
6084 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6085 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6086 continue;
6087 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6088 }
6089}
6090EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6091
b6c40d68
PM
6092static void dev_change_rx_flags(struct net_device *dev, int flags)
6093{
d314774c
SH
6094 const struct net_device_ops *ops = dev->netdev_ops;
6095
d2615bf4 6096 if (ops->ndo_change_rx_flags)
d314774c 6097 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6098}
6099
991fb3f7 6100static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6101{
b536db93 6102 unsigned int old_flags = dev->flags;
d04a48b0
EB
6103 kuid_t uid;
6104 kgid_t gid;
1da177e4 6105
24023451
PM
6106 ASSERT_RTNL();
6107
dad9b335
WC
6108 dev->flags |= IFF_PROMISC;
6109 dev->promiscuity += inc;
6110 if (dev->promiscuity == 0) {
6111 /*
6112 * Avoid overflow.
6113 * If inc causes overflow, untouch promisc and return error.
6114 */
6115 if (inc < 0)
6116 dev->flags &= ~IFF_PROMISC;
6117 else {
6118 dev->promiscuity -= inc;
7b6cd1ce
JP
6119 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6120 dev->name);
dad9b335
WC
6121 return -EOVERFLOW;
6122 }
6123 }
52609c0b 6124 if (dev->flags != old_flags) {
7b6cd1ce
JP
6125 pr_info("device %s %s promiscuous mode\n",
6126 dev->name,
6127 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6128 if (audit_enabled) {
6129 current_uid_gid(&uid, &gid);
7759db82
KHK
6130 audit_log(current->audit_context, GFP_ATOMIC,
6131 AUDIT_ANOM_PROMISCUOUS,
6132 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6133 dev->name, (dev->flags & IFF_PROMISC),
6134 (old_flags & IFF_PROMISC),
e1760bd5 6135 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6136 from_kuid(&init_user_ns, uid),
6137 from_kgid(&init_user_ns, gid),
7759db82 6138 audit_get_sessionid(current));
8192b0c4 6139 }
24023451 6140
b6c40d68 6141 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6142 }
991fb3f7
ND
6143 if (notify)
6144 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6145 return 0;
1da177e4
LT
6146}
6147
4417da66
PM
6148/**
6149 * dev_set_promiscuity - update promiscuity count on a device
6150 * @dev: device
6151 * @inc: modifier
6152 *
6153 * Add or remove promiscuity from a device. While the count in the device
6154 * remains above zero the interface remains promiscuous. Once it hits zero
6155 * the device reverts back to normal filtering operation. A negative inc
6156 * value is used to drop promiscuity on the device.
dad9b335 6157 * Return 0 if successful or a negative errno code on error.
4417da66 6158 */
dad9b335 6159int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6160{
b536db93 6161 unsigned int old_flags = dev->flags;
dad9b335 6162 int err;
4417da66 6163
991fb3f7 6164 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6165 if (err < 0)
dad9b335 6166 return err;
4417da66
PM
6167 if (dev->flags != old_flags)
6168 dev_set_rx_mode(dev);
dad9b335 6169 return err;
4417da66 6170}
d1b19dff 6171EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6172
991fb3f7 6173static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6174{
991fb3f7 6175 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6176
24023451
PM
6177 ASSERT_RTNL();
6178
1da177e4 6179 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6180 dev->allmulti += inc;
6181 if (dev->allmulti == 0) {
6182 /*
6183 * Avoid overflow.
6184 * If inc causes overflow, untouch allmulti and return error.
6185 */
6186 if (inc < 0)
6187 dev->flags &= ~IFF_ALLMULTI;
6188 else {
6189 dev->allmulti -= inc;
7b6cd1ce
JP
6190 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6191 dev->name);
dad9b335
WC
6192 return -EOVERFLOW;
6193 }
6194 }
24023451 6195 if (dev->flags ^ old_flags) {
b6c40d68 6196 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6197 dev_set_rx_mode(dev);
991fb3f7
ND
6198 if (notify)
6199 __dev_notify_flags(dev, old_flags,
6200 dev->gflags ^ old_gflags);
24023451 6201 }
dad9b335 6202 return 0;
4417da66 6203}
991fb3f7
ND
6204
6205/**
6206 * dev_set_allmulti - update allmulti count on a device
6207 * @dev: device
6208 * @inc: modifier
6209 *
6210 * Add or remove reception of all multicast frames to a device. While the
6211 * count in the device remains above zero the interface remains listening
6212 * to all interfaces. Once it hits zero the device reverts back to normal
6213 * filtering operation. A negative @inc value is used to drop the counter
6214 * when releasing a resource needing all multicasts.
6215 * Return 0 if successful or a negative errno code on error.
6216 */
6217
6218int dev_set_allmulti(struct net_device *dev, int inc)
6219{
6220 return __dev_set_allmulti(dev, inc, true);
6221}
d1b19dff 6222EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6223
6224/*
6225 * Upload unicast and multicast address lists to device and
6226 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6227 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6228 * are present.
6229 */
6230void __dev_set_rx_mode(struct net_device *dev)
6231{
d314774c
SH
6232 const struct net_device_ops *ops = dev->netdev_ops;
6233
4417da66
PM
6234 /* dev_open will call this function so the list will stay sane. */
6235 if (!(dev->flags&IFF_UP))
6236 return;
6237
6238 if (!netif_device_present(dev))
40b77c94 6239 return;
4417da66 6240
01789349 6241 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6242 /* Unicast addresses changes may only happen under the rtnl,
6243 * therefore calling __dev_set_promiscuity here is safe.
6244 */
32e7bfc4 6245 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6246 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6247 dev->uc_promisc = true;
32e7bfc4 6248 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6249 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6250 dev->uc_promisc = false;
4417da66 6251 }
4417da66 6252 }
01789349
JP
6253
6254 if (ops->ndo_set_rx_mode)
6255 ops->ndo_set_rx_mode(dev);
4417da66
PM
6256}
6257
6258void dev_set_rx_mode(struct net_device *dev)
6259{
b9e40857 6260 netif_addr_lock_bh(dev);
4417da66 6261 __dev_set_rx_mode(dev);
b9e40857 6262 netif_addr_unlock_bh(dev);
1da177e4
LT
6263}
6264
f0db275a
SH
6265/**
6266 * dev_get_flags - get flags reported to userspace
6267 * @dev: device
6268 *
6269 * Get the combination of flag bits exported through APIs to userspace.
6270 */
95c96174 6271unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6272{
95c96174 6273 unsigned int flags;
1da177e4
LT
6274
6275 flags = (dev->flags & ~(IFF_PROMISC |
6276 IFF_ALLMULTI |
b00055aa
SR
6277 IFF_RUNNING |
6278 IFF_LOWER_UP |
6279 IFF_DORMANT)) |
1da177e4
LT
6280 (dev->gflags & (IFF_PROMISC |
6281 IFF_ALLMULTI));
6282
b00055aa
SR
6283 if (netif_running(dev)) {
6284 if (netif_oper_up(dev))
6285 flags |= IFF_RUNNING;
6286 if (netif_carrier_ok(dev))
6287 flags |= IFF_LOWER_UP;
6288 if (netif_dormant(dev))
6289 flags |= IFF_DORMANT;
6290 }
1da177e4
LT
6291
6292 return flags;
6293}
d1b19dff 6294EXPORT_SYMBOL(dev_get_flags);
1da177e4 6295
bd380811 6296int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6297{
b536db93 6298 unsigned int old_flags = dev->flags;
bd380811 6299 int ret;
1da177e4 6300
24023451
PM
6301 ASSERT_RTNL();
6302
1da177e4
LT
6303 /*
6304 * Set the flags on our device.
6305 */
6306
6307 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6308 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6309 IFF_AUTOMEDIA)) |
6310 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6311 IFF_ALLMULTI));
6312
6313 /*
6314 * Load in the correct multicast list now the flags have changed.
6315 */
6316
b6c40d68
PM
6317 if ((old_flags ^ flags) & IFF_MULTICAST)
6318 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6319
4417da66 6320 dev_set_rx_mode(dev);
1da177e4
LT
6321
6322 /*
6323 * Have we downed the interface. We handle IFF_UP ourselves
6324 * according to user attempts to set it, rather than blindly
6325 * setting it.
6326 */
6327
6328 ret = 0;
d215d10f 6329 if ((old_flags ^ flags) & IFF_UP)
bd380811 6330 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6331
1da177e4 6332 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6333 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6334 unsigned int old_flags = dev->flags;
d1b19dff 6335
1da177e4 6336 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6337
6338 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6339 if (dev->flags != old_flags)
6340 dev_set_rx_mode(dev);
1da177e4
LT
6341 }
6342
6343 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6344 is important. Some (broken) drivers set IFF_PROMISC, when
6345 IFF_ALLMULTI is requested not asking us and not reporting.
6346 */
6347 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6348 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6349
1da177e4 6350 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6351 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6352 }
6353
bd380811
PM
6354 return ret;
6355}
6356
a528c219
ND
6357void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6358 unsigned int gchanges)
bd380811
PM
6359{
6360 unsigned int changes = dev->flags ^ old_flags;
6361
a528c219 6362 if (gchanges)
7f294054 6363 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6364
bd380811
PM
6365 if (changes & IFF_UP) {
6366 if (dev->flags & IFF_UP)
6367 call_netdevice_notifiers(NETDEV_UP, dev);
6368 else
6369 call_netdevice_notifiers(NETDEV_DOWN, dev);
6370 }
6371
6372 if (dev->flags & IFF_UP &&
be9efd36
JP
6373 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6374 struct netdev_notifier_change_info change_info;
6375
6376 change_info.flags_changed = changes;
6377 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6378 &change_info.info);
6379 }
bd380811
PM
6380}
6381
6382/**
6383 * dev_change_flags - change device settings
6384 * @dev: device
6385 * @flags: device state flags
6386 *
6387 * Change settings on device based state flags. The flags are
6388 * in the userspace exported format.
6389 */
b536db93 6390int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6391{
b536db93 6392 int ret;
991fb3f7 6393 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6394
6395 ret = __dev_change_flags(dev, flags);
6396 if (ret < 0)
6397 return ret;
6398
991fb3f7 6399 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6400 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6401 return ret;
6402}
d1b19dff 6403EXPORT_SYMBOL(dev_change_flags);
1da177e4 6404
2315dc91
VF
6405static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6406{
6407 const struct net_device_ops *ops = dev->netdev_ops;
6408
6409 if (ops->ndo_change_mtu)
6410 return ops->ndo_change_mtu(dev, new_mtu);
6411
6412 dev->mtu = new_mtu;
6413 return 0;
6414}
6415
f0db275a
SH
6416/**
6417 * dev_set_mtu - Change maximum transfer unit
6418 * @dev: device
6419 * @new_mtu: new transfer unit
6420 *
6421 * Change the maximum transfer size of the network device.
6422 */
1da177e4
LT
6423int dev_set_mtu(struct net_device *dev, int new_mtu)
6424{
2315dc91 6425 int err, orig_mtu;
1da177e4
LT
6426
6427 if (new_mtu == dev->mtu)
6428 return 0;
6429
61e84623
JW
6430 /* MTU must be positive, and in range */
6431 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6432 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6433 dev->name, new_mtu, dev->min_mtu);
1da177e4 6434 return -EINVAL;
61e84623
JW
6435 }
6436
6437 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6438 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6439 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6440 return -EINVAL;
6441 }
1da177e4
LT
6442
6443 if (!netif_device_present(dev))
6444 return -ENODEV;
6445
1d486bfb
VF
6446 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6447 err = notifier_to_errno(err);
6448 if (err)
6449 return err;
d314774c 6450
2315dc91
VF
6451 orig_mtu = dev->mtu;
6452 err = __dev_set_mtu(dev, new_mtu);
d314774c 6453
2315dc91
VF
6454 if (!err) {
6455 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6456 err = notifier_to_errno(err);
6457 if (err) {
6458 /* setting mtu back and notifying everyone again,
6459 * so that they have a chance to revert changes.
6460 */
6461 __dev_set_mtu(dev, orig_mtu);
6462 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6463 }
6464 }
1da177e4
LT
6465 return err;
6466}
d1b19dff 6467EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6468
cbda10fa
VD
6469/**
6470 * dev_set_group - Change group this device belongs to
6471 * @dev: device
6472 * @new_group: group this device should belong to
6473 */
6474void dev_set_group(struct net_device *dev, int new_group)
6475{
6476 dev->group = new_group;
6477}
6478EXPORT_SYMBOL(dev_set_group);
6479
f0db275a
SH
6480/**
6481 * dev_set_mac_address - Change Media Access Control Address
6482 * @dev: device
6483 * @sa: new address
6484 *
6485 * Change the hardware (MAC) address of the device
6486 */
1da177e4
LT
6487int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6488{
d314774c 6489 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6490 int err;
6491
d314774c 6492 if (!ops->ndo_set_mac_address)
1da177e4
LT
6493 return -EOPNOTSUPP;
6494 if (sa->sa_family != dev->type)
6495 return -EINVAL;
6496 if (!netif_device_present(dev))
6497 return -ENODEV;
d314774c 6498 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6499 if (err)
6500 return err;
fbdeca2d 6501 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6502 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6503 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6504 return 0;
1da177e4 6505}
d1b19dff 6506EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6507
4bf84c35
JP
6508/**
6509 * dev_change_carrier - Change device carrier
6510 * @dev: device
691b3b7e 6511 * @new_carrier: new value
4bf84c35
JP
6512 *
6513 * Change device carrier
6514 */
6515int dev_change_carrier(struct net_device *dev, bool new_carrier)
6516{
6517 const struct net_device_ops *ops = dev->netdev_ops;
6518
6519 if (!ops->ndo_change_carrier)
6520 return -EOPNOTSUPP;
6521 if (!netif_device_present(dev))
6522 return -ENODEV;
6523 return ops->ndo_change_carrier(dev, new_carrier);
6524}
6525EXPORT_SYMBOL(dev_change_carrier);
6526
66b52b0d
JP
6527/**
6528 * dev_get_phys_port_id - Get device physical port ID
6529 * @dev: device
6530 * @ppid: port ID
6531 *
6532 * Get device physical port ID
6533 */
6534int dev_get_phys_port_id(struct net_device *dev,
02637fce 6535 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6536{
6537 const struct net_device_ops *ops = dev->netdev_ops;
6538
6539 if (!ops->ndo_get_phys_port_id)
6540 return -EOPNOTSUPP;
6541 return ops->ndo_get_phys_port_id(dev, ppid);
6542}
6543EXPORT_SYMBOL(dev_get_phys_port_id);
6544
db24a904
DA
6545/**
6546 * dev_get_phys_port_name - Get device physical port name
6547 * @dev: device
6548 * @name: port name
ed49e650 6549 * @len: limit of bytes to copy to name
db24a904
DA
6550 *
6551 * Get device physical port name
6552 */
6553int dev_get_phys_port_name(struct net_device *dev,
6554 char *name, size_t len)
6555{
6556 const struct net_device_ops *ops = dev->netdev_ops;
6557
6558 if (!ops->ndo_get_phys_port_name)
6559 return -EOPNOTSUPP;
6560 return ops->ndo_get_phys_port_name(dev, name, len);
6561}
6562EXPORT_SYMBOL(dev_get_phys_port_name);
6563
d746d707
AK
6564/**
6565 * dev_change_proto_down - update protocol port state information
6566 * @dev: device
6567 * @proto_down: new value
6568 *
6569 * This info can be used by switch drivers to set the phys state of the
6570 * port.
6571 */
6572int dev_change_proto_down(struct net_device *dev, bool proto_down)
6573{
6574 const struct net_device_ops *ops = dev->netdev_ops;
6575
6576 if (!ops->ndo_change_proto_down)
6577 return -EOPNOTSUPP;
6578 if (!netif_device_present(dev))
6579 return -ENODEV;
6580 return ops->ndo_change_proto_down(dev, proto_down);
6581}
6582EXPORT_SYMBOL(dev_change_proto_down);
6583
a7862b45
BB
6584/**
6585 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6586 * @dev: device
6587 * @fd: new program fd or negative value to clear
6588 *
6589 * Set or clear a bpf program for a device
6590 */
6591int dev_change_xdp_fd(struct net_device *dev, int fd)
6592{
6593 const struct net_device_ops *ops = dev->netdev_ops;
6594 struct bpf_prog *prog = NULL;
6595 struct netdev_xdp xdp = {};
6596 int err;
6597
6598 if (!ops->ndo_xdp)
6599 return -EOPNOTSUPP;
6600 if (fd >= 0) {
6601 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6602 if (IS_ERR(prog))
6603 return PTR_ERR(prog);
6604 }
6605
6606 xdp.command = XDP_SETUP_PROG;
6607 xdp.prog = prog;
6608 err = ops->ndo_xdp(dev, &xdp);
6609 if (err < 0 && prog)
6610 bpf_prog_put(prog);
6611
6612 return err;
6613}
6614EXPORT_SYMBOL(dev_change_xdp_fd);
6615
1da177e4
LT
6616/**
6617 * dev_new_index - allocate an ifindex
c4ea43c5 6618 * @net: the applicable net namespace
1da177e4
LT
6619 *
6620 * Returns a suitable unique value for a new device interface
6621 * number. The caller must hold the rtnl semaphore or the
6622 * dev_base_lock to be sure it remains unique.
6623 */
881d966b 6624static int dev_new_index(struct net *net)
1da177e4 6625{
aa79e66e 6626 int ifindex = net->ifindex;
1da177e4
LT
6627 for (;;) {
6628 if (++ifindex <= 0)
6629 ifindex = 1;
881d966b 6630 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6631 return net->ifindex = ifindex;
1da177e4
LT
6632 }
6633}
6634
1da177e4 6635/* Delayed registration/unregisteration */
3b5b34fd 6636static LIST_HEAD(net_todo_list);
200b916f 6637DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6638
6f05f629 6639static void net_set_todo(struct net_device *dev)
1da177e4 6640{
1da177e4 6641 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6642 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6643}
6644
9b5e383c 6645static void rollback_registered_many(struct list_head *head)
93ee31f1 6646{
e93737b0 6647 struct net_device *dev, *tmp;
5cde2829 6648 LIST_HEAD(close_head);
9b5e383c 6649
93ee31f1
DL
6650 BUG_ON(dev_boot_phase);
6651 ASSERT_RTNL();
6652
e93737b0 6653 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6654 /* Some devices call without registering
e93737b0
KK
6655 * for initialization unwind. Remove those
6656 * devices and proceed with the remaining.
9b5e383c
ED
6657 */
6658 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6659 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6660 dev->name, dev);
93ee31f1 6661
9b5e383c 6662 WARN_ON(1);
e93737b0
KK
6663 list_del(&dev->unreg_list);
6664 continue;
9b5e383c 6665 }
449f4544 6666 dev->dismantle = true;
9b5e383c 6667 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6668 }
93ee31f1 6669
44345724 6670 /* If device is running, close it first. */
5cde2829
EB
6671 list_for_each_entry(dev, head, unreg_list)
6672 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6673 dev_close_many(&close_head, true);
93ee31f1 6674
44345724 6675 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6676 /* And unlink it from device chain. */
6677 unlist_netdevice(dev);
93ee31f1 6678
9b5e383c
ED
6679 dev->reg_state = NETREG_UNREGISTERING;
6680 }
41852497 6681 flush_all_backlogs();
93ee31f1
DL
6682
6683 synchronize_net();
6684
9b5e383c 6685 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6686 struct sk_buff *skb = NULL;
6687
9b5e383c
ED
6688 /* Shutdown queueing discipline. */
6689 dev_shutdown(dev);
93ee31f1
DL
6690
6691
9b5e383c
ED
6692 /* Notify protocols, that we are about to destroy
6693 this device. They should clean all the things.
6694 */
6695 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6696
395eea6c
MB
6697 if (!dev->rtnl_link_ops ||
6698 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6699 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6700 GFP_KERNEL);
6701
9b5e383c
ED
6702 /*
6703 * Flush the unicast and multicast chains
6704 */
a748ee24 6705 dev_uc_flush(dev);
22bedad3 6706 dev_mc_flush(dev);
93ee31f1 6707
9b5e383c
ED
6708 if (dev->netdev_ops->ndo_uninit)
6709 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6710
395eea6c
MB
6711 if (skb)
6712 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6713
9ff162a8
JP
6714 /* Notifier chain MUST detach us all upper devices. */
6715 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 6716 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 6717
9b5e383c
ED
6718 /* Remove entries from kobject tree */
6719 netdev_unregister_kobject(dev);
024e9679
AD
6720#ifdef CONFIG_XPS
6721 /* Remove XPS queueing entries */
6722 netif_reset_xps_queues_gt(dev, 0);
6723#endif
9b5e383c 6724 }
93ee31f1 6725
850a545b 6726 synchronize_net();
395264d5 6727
a5ee1551 6728 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6729 dev_put(dev);
6730}
6731
6732static void rollback_registered(struct net_device *dev)
6733{
6734 LIST_HEAD(single);
6735
6736 list_add(&dev->unreg_list, &single);
6737 rollback_registered_many(&single);
ceaaec98 6738 list_del(&single);
93ee31f1
DL
6739}
6740
fd867d51
JW
6741static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6742 struct net_device *upper, netdev_features_t features)
6743{
6744 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6745 netdev_features_t feature;
5ba3f7d6 6746 int feature_bit;
fd867d51 6747
5ba3f7d6
JW
6748 for_each_netdev_feature(&upper_disables, feature_bit) {
6749 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6750 if (!(upper->wanted_features & feature)
6751 && (features & feature)) {
6752 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6753 &feature, upper->name);
6754 features &= ~feature;
6755 }
6756 }
6757
6758 return features;
6759}
6760
6761static void netdev_sync_lower_features(struct net_device *upper,
6762 struct net_device *lower, netdev_features_t features)
6763{
6764 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6765 netdev_features_t feature;
5ba3f7d6 6766 int feature_bit;
fd867d51 6767
5ba3f7d6
JW
6768 for_each_netdev_feature(&upper_disables, feature_bit) {
6769 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6770 if (!(features & feature) && (lower->features & feature)) {
6771 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6772 &feature, lower->name);
6773 lower->wanted_features &= ~feature;
6774 netdev_update_features(lower);
6775
6776 if (unlikely(lower->features & feature))
6777 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6778 &feature, lower->name);
6779 }
6780 }
6781}
6782
c8f44aff
MM
6783static netdev_features_t netdev_fix_features(struct net_device *dev,
6784 netdev_features_t features)
b63365a2 6785{
57422dc5
MM
6786 /* Fix illegal checksum combinations */
6787 if ((features & NETIF_F_HW_CSUM) &&
6788 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6789 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6790 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6791 }
6792
b63365a2 6793 /* TSO requires that SG is present as well. */
ea2d3688 6794 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6795 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6796 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6797 }
6798
ec5f0615
PS
6799 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6800 !(features & NETIF_F_IP_CSUM)) {
6801 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6802 features &= ~NETIF_F_TSO;
6803 features &= ~NETIF_F_TSO_ECN;
6804 }
6805
6806 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6807 !(features & NETIF_F_IPV6_CSUM)) {
6808 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6809 features &= ~NETIF_F_TSO6;
6810 }
6811
b1dc497b
AD
6812 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6813 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6814 features &= ~NETIF_F_TSO_MANGLEID;
6815
31d8b9e0
BH
6816 /* TSO ECN requires that TSO is present as well. */
6817 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6818 features &= ~NETIF_F_TSO_ECN;
6819
212b573f
MM
6820 /* Software GSO depends on SG. */
6821 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6822 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6823 features &= ~NETIF_F_GSO;
6824 }
6825
acd1130e 6826 /* UFO needs SG and checksumming */
b63365a2 6827 if (features & NETIF_F_UFO) {
79032644 6828 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6829 if (!(features & NETIF_F_HW_CSUM) &&
6830 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6831 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6832 netdev_dbg(dev,
acd1130e 6833 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6834 features &= ~NETIF_F_UFO;
6835 }
6836
6837 if (!(features & NETIF_F_SG)) {
6f404e44 6838 netdev_dbg(dev,
acd1130e 6839 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6840 features &= ~NETIF_F_UFO;
6841 }
6842 }
6843
802ab55a
AD
6844 /* GSO partial features require GSO partial be set */
6845 if ((features & dev->gso_partial_features) &&
6846 !(features & NETIF_F_GSO_PARTIAL)) {
6847 netdev_dbg(dev,
6848 "Dropping partially supported GSO features since no GSO partial.\n");
6849 features &= ~dev->gso_partial_features;
6850 }
6851
d0290214
JP
6852#ifdef CONFIG_NET_RX_BUSY_POLL
6853 if (dev->netdev_ops->ndo_busy_poll)
6854 features |= NETIF_F_BUSY_POLL;
6855 else
6856#endif
6857 features &= ~NETIF_F_BUSY_POLL;
6858
b63365a2
HX
6859 return features;
6860}
b63365a2 6861
6cb6a27c 6862int __netdev_update_features(struct net_device *dev)
5455c699 6863{
fd867d51 6864 struct net_device *upper, *lower;
c8f44aff 6865 netdev_features_t features;
fd867d51 6866 struct list_head *iter;
e7868a85 6867 int err = -1;
5455c699 6868
87267485
MM
6869 ASSERT_RTNL();
6870
5455c699
MM
6871 features = netdev_get_wanted_features(dev);
6872
6873 if (dev->netdev_ops->ndo_fix_features)
6874 features = dev->netdev_ops->ndo_fix_features(dev, features);
6875
6876 /* driver might be less strict about feature dependencies */
6877 features = netdev_fix_features(dev, features);
6878
fd867d51
JW
6879 /* some features can't be enabled if they're off an an upper device */
6880 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6881 features = netdev_sync_upper_features(dev, upper, features);
6882
5455c699 6883 if (dev->features == features)
e7868a85 6884 goto sync_lower;
5455c699 6885
c8f44aff
MM
6886 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6887 &dev->features, &features);
5455c699
MM
6888
6889 if (dev->netdev_ops->ndo_set_features)
6890 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6891 else
6892 err = 0;
5455c699 6893
6cb6a27c 6894 if (unlikely(err < 0)) {
5455c699 6895 netdev_err(dev,
c8f44aff
MM
6896 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6897 err, &features, &dev->features);
17b85d29
NA
6898 /* return non-0 since some features might have changed and
6899 * it's better to fire a spurious notification than miss it
6900 */
6901 return -1;
6cb6a27c
MM
6902 }
6903
e7868a85 6904sync_lower:
fd867d51
JW
6905 /* some features must be disabled on lower devices when disabled
6906 * on an upper device (think: bonding master or bridge)
6907 */
6908 netdev_for_each_lower_dev(dev, lower, iter)
6909 netdev_sync_lower_features(dev, lower, features);
6910
6cb6a27c
MM
6911 if (!err)
6912 dev->features = features;
6913
e7868a85 6914 return err < 0 ? 0 : 1;
6cb6a27c
MM
6915}
6916
afe12cc8
MM
6917/**
6918 * netdev_update_features - recalculate device features
6919 * @dev: the device to check
6920 *
6921 * Recalculate dev->features set and send notifications if it
6922 * has changed. Should be called after driver or hardware dependent
6923 * conditions might have changed that influence the features.
6924 */
6cb6a27c
MM
6925void netdev_update_features(struct net_device *dev)
6926{
6927 if (__netdev_update_features(dev))
6928 netdev_features_change(dev);
5455c699
MM
6929}
6930EXPORT_SYMBOL(netdev_update_features);
6931
afe12cc8
MM
6932/**
6933 * netdev_change_features - recalculate device features
6934 * @dev: the device to check
6935 *
6936 * Recalculate dev->features set and send notifications even
6937 * if they have not changed. Should be called instead of
6938 * netdev_update_features() if also dev->vlan_features might
6939 * have changed to allow the changes to be propagated to stacked
6940 * VLAN devices.
6941 */
6942void netdev_change_features(struct net_device *dev)
6943{
6944 __netdev_update_features(dev);
6945 netdev_features_change(dev);
6946}
6947EXPORT_SYMBOL(netdev_change_features);
6948
fc4a7489
PM
6949/**
6950 * netif_stacked_transfer_operstate - transfer operstate
6951 * @rootdev: the root or lower level device to transfer state from
6952 * @dev: the device to transfer operstate to
6953 *
6954 * Transfer operational state from root to device. This is normally
6955 * called when a stacking relationship exists between the root
6956 * device and the device(a leaf device).
6957 */
6958void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6959 struct net_device *dev)
6960{
6961 if (rootdev->operstate == IF_OPER_DORMANT)
6962 netif_dormant_on(dev);
6963 else
6964 netif_dormant_off(dev);
6965
6966 if (netif_carrier_ok(rootdev)) {
6967 if (!netif_carrier_ok(dev))
6968 netif_carrier_on(dev);
6969 } else {
6970 if (netif_carrier_ok(dev))
6971 netif_carrier_off(dev);
6972 }
6973}
6974EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6975
a953be53 6976#ifdef CONFIG_SYSFS
1b4bf461
ED
6977static int netif_alloc_rx_queues(struct net_device *dev)
6978{
1b4bf461 6979 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6980 struct netdev_rx_queue *rx;
10595902 6981 size_t sz = count * sizeof(*rx);
1b4bf461 6982
bd25fa7b 6983 BUG_ON(count < 1);
1b4bf461 6984
10595902
PG
6985 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6986 if (!rx) {
6987 rx = vzalloc(sz);
6988 if (!rx)
6989 return -ENOMEM;
6990 }
bd25fa7b
TH
6991 dev->_rx = rx;
6992
bd25fa7b 6993 for (i = 0; i < count; i++)
fe822240 6994 rx[i].dev = dev;
1b4bf461
ED
6995 return 0;
6996}
bf264145 6997#endif
1b4bf461 6998
aa942104
CG
6999static void netdev_init_one_queue(struct net_device *dev,
7000 struct netdev_queue *queue, void *_unused)
7001{
7002 /* Initialize queue lock */
7003 spin_lock_init(&queue->_xmit_lock);
7004 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7005 queue->xmit_lock_owner = -1;
b236da69 7006 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7007 queue->dev = dev;
114cf580
TH
7008#ifdef CONFIG_BQL
7009 dql_init(&queue->dql, HZ);
7010#endif
aa942104
CG
7011}
7012
60877a32
ED
7013static void netif_free_tx_queues(struct net_device *dev)
7014{
4cb28970 7015 kvfree(dev->_tx);
60877a32
ED
7016}
7017
e6484930
TH
7018static int netif_alloc_netdev_queues(struct net_device *dev)
7019{
7020 unsigned int count = dev->num_tx_queues;
7021 struct netdev_queue *tx;
60877a32 7022 size_t sz = count * sizeof(*tx);
e6484930 7023
d339727c
ED
7024 if (count < 1 || count > 0xffff)
7025 return -EINVAL;
62b5942a 7026
60877a32
ED
7027 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7028 if (!tx) {
7029 tx = vzalloc(sz);
7030 if (!tx)
7031 return -ENOMEM;
7032 }
e6484930 7033 dev->_tx = tx;
1d24eb48 7034
e6484930
TH
7035 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7036 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7037
7038 return 0;
e6484930
TH
7039}
7040
a2029240
DV
7041void netif_tx_stop_all_queues(struct net_device *dev)
7042{
7043 unsigned int i;
7044
7045 for (i = 0; i < dev->num_tx_queues; i++) {
7046 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7047 netif_tx_stop_queue(txq);
7048 }
7049}
7050EXPORT_SYMBOL(netif_tx_stop_all_queues);
7051
1da177e4
LT
7052/**
7053 * register_netdevice - register a network device
7054 * @dev: device to register
7055 *
7056 * Take a completed network device structure and add it to the kernel
7057 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7058 * chain. 0 is returned on success. A negative errno code is returned
7059 * on a failure to set up the device, or if the name is a duplicate.
7060 *
7061 * Callers must hold the rtnl semaphore. You may want
7062 * register_netdev() instead of this.
7063 *
7064 * BUGS:
7065 * The locking appears insufficient to guarantee two parallel registers
7066 * will not get the same name.
7067 */
7068
7069int register_netdevice(struct net_device *dev)
7070{
1da177e4 7071 int ret;
d314774c 7072 struct net *net = dev_net(dev);
1da177e4
LT
7073
7074 BUG_ON(dev_boot_phase);
7075 ASSERT_RTNL();
7076
b17a7c17
SH
7077 might_sleep();
7078
1da177e4
LT
7079 /* When net_device's are persistent, this will be fatal. */
7080 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7081 BUG_ON(!net);
1da177e4 7082
f1f28aa3 7083 spin_lock_init(&dev->addr_list_lock);
cf508b12 7084 netdev_set_addr_lockdep_class(dev);
1da177e4 7085
828de4f6 7086 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7087 if (ret < 0)
7088 goto out;
7089
1da177e4 7090 /* Init, if this function is available */
d314774c
SH
7091 if (dev->netdev_ops->ndo_init) {
7092 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7093 if (ret) {
7094 if (ret > 0)
7095 ret = -EIO;
90833aa4 7096 goto out;
1da177e4
LT
7097 }
7098 }
4ec93edb 7099
f646968f
PM
7100 if (((dev->hw_features | dev->features) &
7101 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7102 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7103 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7104 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7105 ret = -EINVAL;
7106 goto err_uninit;
7107 }
7108
9c7dafbf
PE
7109 ret = -EBUSY;
7110 if (!dev->ifindex)
7111 dev->ifindex = dev_new_index(net);
7112 else if (__dev_get_by_index(net, dev->ifindex))
7113 goto err_uninit;
7114
5455c699
MM
7115 /* Transfer changeable features to wanted_features and enable
7116 * software offloads (GSO and GRO).
7117 */
7118 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7119 dev->features |= NETIF_F_SOFT_FEATURES;
7120 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7121
cbc53e08 7122 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7123 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7124
7f348a60
AD
7125 /* If IPv4 TCP segmentation offload is supported we should also
7126 * allow the device to enable segmenting the frame with the option
7127 * of ignoring a static IP ID value. This doesn't enable the
7128 * feature itself but allows the user to enable it later.
7129 */
cbc53e08
AD
7130 if (dev->hw_features & NETIF_F_TSO)
7131 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7132 if (dev->vlan_features & NETIF_F_TSO)
7133 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7134 if (dev->mpls_features & NETIF_F_TSO)
7135 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7136 if (dev->hw_enc_features & NETIF_F_TSO)
7137 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7138
1180e7d6 7139 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7140 */
1180e7d6 7141 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7142
ee579677
PS
7143 /* Make NETIF_F_SG inheritable to tunnel devices.
7144 */
802ab55a 7145 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7146
0d89d203
SH
7147 /* Make NETIF_F_SG inheritable to MPLS.
7148 */
7149 dev->mpls_features |= NETIF_F_SG;
7150
7ffbe3fd
JB
7151 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7152 ret = notifier_to_errno(ret);
7153 if (ret)
7154 goto err_uninit;
7155
8b41d188 7156 ret = netdev_register_kobject(dev);
b17a7c17 7157 if (ret)
7ce1b0ed 7158 goto err_uninit;
b17a7c17
SH
7159 dev->reg_state = NETREG_REGISTERED;
7160
6cb6a27c 7161 __netdev_update_features(dev);
8e9b59b2 7162
1da177e4
LT
7163 /*
7164 * Default initial state at registry is that the
7165 * device is present.
7166 */
7167
7168 set_bit(__LINK_STATE_PRESENT, &dev->state);
7169
8f4cccbb
BH
7170 linkwatch_init_dev(dev);
7171
1da177e4 7172 dev_init_scheduler(dev);
1da177e4 7173 dev_hold(dev);
ce286d32 7174 list_netdevice(dev);
7bf23575 7175 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7176
948b337e
JP
7177 /* If the device has permanent device address, driver should
7178 * set dev_addr and also addr_assign_type should be set to
7179 * NET_ADDR_PERM (default value).
7180 */
7181 if (dev->addr_assign_type == NET_ADDR_PERM)
7182 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7183
1da177e4 7184 /* Notify protocols, that a new device appeared. */
056925ab 7185 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7186 ret = notifier_to_errno(ret);
93ee31f1
DL
7187 if (ret) {
7188 rollback_registered(dev);
7189 dev->reg_state = NETREG_UNREGISTERED;
7190 }
d90a909e
EB
7191 /*
7192 * Prevent userspace races by waiting until the network
7193 * device is fully setup before sending notifications.
7194 */
a2835763
PM
7195 if (!dev->rtnl_link_ops ||
7196 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7197 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7198
7199out:
7200 return ret;
7ce1b0ed
HX
7201
7202err_uninit:
d314774c
SH
7203 if (dev->netdev_ops->ndo_uninit)
7204 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7205 goto out;
1da177e4 7206}
d1b19dff 7207EXPORT_SYMBOL(register_netdevice);
1da177e4 7208
937f1ba5
BH
7209/**
7210 * init_dummy_netdev - init a dummy network device for NAPI
7211 * @dev: device to init
7212 *
7213 * This takes a network device structure and initialize the minimum
7214 * amount of fields so it can be used to schedule NAPI polls without
7215 * registering a full blown interface. This is to be used by drivers
7216 * that need to tie several hardware interfaces to a single NAPI
7217 * poll scheduler due to HW limitations.
7218 */
7219int init_dummy_netdev(struct net_device *dev)
7220{
7221 /* Clear everything. Note we don't initialize spinlocks
7222 * are they aren't supposed to be taken by any of the
7223 * NAPI code and this dummy netdev is supposed to be
7224 * only ever used for NAPI polls
7225 */
7226 memset(dev, 0, sizeof(struct net_device));
7227
7228 /* make sure we BUG if trying to hit standard
7229 * register/unregister code path
7230 */
7231 dev->reg_state = NETREG_DUMMY;
7232
937f1ba5
BH
7233 /* NAPI wants this */
7234 INIT_LIST_HEAD(&dev->napi_list);
7235
7236 /* a dummy interface is started by default */
7237 set_bit(__LINK_STATE_PRESENT, &dev->state);
7238 set_bit(__LINK_STATE_START, &dev->state);
7239
29b4433d
ED
7240 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7241 * because users of this 'device' dont need to change
7242 * its refcount.
7243 */
7244
937f1ba5
BH
7245 return 0;
7246}
7247EXPORT_SYMBOL_GPL(init_dummy_netdev);
7248
7249
1da177e4
LT
7250/**
7251 * register_netdev - register a network device
7252 * @dev: device to register
7253 *
7254 * Take a completed network device structure and add it to the kernel
7255 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7256 * chain. 0 is returned on success. A negative errno code is returned
7257 * on a failure to set up the device, or if the name is a duplicate.
7258 *
38b4da38 7259 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7260 * and expands the device name if you passed a format string to
7261 * alloc_netdev.
7262 */
7263int register_netdev(struct net_device *dev)
7264{
7265 int err;
7266
7267 rtnl_lock();
1da177e4 7268 err = register_netdevice(dev);
1da177e4
LT
7269 rtnl_unlock();
7270 return err;
7271}
7272EXPORT_SYMBOL(register_netdev);
7273
29b4433d
ED
7274int netdev_refcnt_read(const struct net_device *dev)
7275{
7276 int i, refcnt = 0;
7277
7278 for_each_possible_cpu(i)
7279 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7280 return refcnt;
7281}
7282EXPORT_SYMBOL(netdev_refcnt_read);
7283
2c53040f 7284/**
1da177e4 7285 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7286 * @dev: target net_device
1da177e4
LT
7287 *
7288 * This is called when unregistering network devices.
7289 *
7290 * Any protocol or device that holds a reference should register
7291 * for netdevice notification, and cleanup and put back the
7292 * reference if they receive an UNREGISTER event.
7293 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7294 * call dev_put.
1da177e4
LT
7295 */
7296static void netdev_wait_allrefs(struct net_device *dev)
7297{
7298 unsigned long rebroadcast_time, warning_time;
29b4433d 7299 int refcnt;
1da177e4 7300
e014debe
ED
7301 linkwatch_forget_dev(dev);
7302
1da177e4 7303 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7304 refcnt = netdev_refcnt_read(dev);
7305
7306 while (refcnt != 0) {
1da177e4 7307 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7308 rtnl_lock();
1da177e4
LT
7309
7310 /* Rebroadcast unregister notification */
056925ab 7311 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7312
748e2d93 7313 __rtnl_unlock();
0115e8e3 7314 rcu_barrier();
748e2d93
ED
7315 rtnl_lock();
7316
0115e8e3 7317 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7318 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7319 &dev->state)) {
7320 /* We must not have linkwatch events
7321 * pending on unregister. If this
7322 * happens, we simply run the queue
7323 * unscheduled, resulting in a noop
7324 * for this device.
7325 */
7326 linkwatch_run_queue();
7327 }
7328
6756ae4b 7329 __rtnl_unlock();
1da177e4
LT
7330
7331 rebroadcast_time = jiffies;
7332 }
7333
7334 msleep(250);
7335
29b4433d
ED
7336 refcnt = netdev_refcnt_read(dev);
7337
1da177e4 7338 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7339 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7340 dev->name, refcnt);
1da177e4
LT
7341 warning_time = jiffies;
7342 }
7343 }
7344}
7345
7346/* The sequence is:
7347 *
7348 * rtnl_lock();
7349 * ...
7350 * register_netdevice(x1);
7351 * register_netdevice(x2);
7352 * ...
7353 * unregister_netdevice(y1);
7354 * unregister_netdevice(y2);
7355 * ...
7356 * rtnl_unlock();
7357 * free_netdev(y1);
7358 * free_netdev(y2);
7359 *
58ec3b4d 7360 * We are invoked by rtnl_unlock().
1da177e4 7361 * This allows us to deal with problems:
b17a7c17 7362 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7363 * without deadlocking with linkwatch via keventd.
7364 * 2) Since we run with the RTNL semaphore not held, we can sleep
7365 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7366 *
7367 * We must not return until all unregister events added during
7368 * the interval the lock was held have been completed.
1da177e4 7369 */
1da177e4
LT
7370void netdev_run_todo(void)
7371{
626ab0e6 7372 struct list_head list;
1da177e4 7373
1da177e4 7374 /* Snapshot list, allow later requests */
626ab0e6 7375 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7376
7377 __rtnl_unlock();
626ab0e6 7378
0115e8e3
ED
7379
7380 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7381 if (!list_empty(&list))
7382 rcu_barrier();
7383
1da177e4
LT
7384 while (!list_empty(&list)) {
7385 struct net_device *dev
e5e26d75 7386 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7387 list_del(&dev->todo_list);
7388
748e2d93 7389 rtnl_lock();
0115e8e3 7390 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7391 __rtnl_unlock();
0115e8e3 7392
b17a7c17 7393 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7394 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7395 dev->name, dev->reg_state);
7396 dump_stack();
7397 continue;
7398 }
1da177e4 7399
b17a7c17 7400 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7401
b17a7c17 7402 netdev_wait_allrefs(dev);
1da177e4 7403
b17a7c17 7404 /* paranoia */
29b4433d 7405 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7406 BUG_ON(!list_empty(&dev->ptype_all));
7407 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7408 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7409 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7410 WARN_ON(dev->dn_ptr);
1da177e4 7411
b17a7c17
SH
7412 if (dev->destructor)
7413 dev->destructor(dev);
9093bbb2 7414
50624c93
EB
7415 /* Report a network device has been unregistered */
7416 rtnl_lock();
7417 dev_net(dev)->dev_unreg_count--;
7418 __rtnl_unlock();
7419 wake_up(&netdev_unregistering_wq);
7420
9093bbb2
SH
7421 /* Free network device */
7422 kobject_put(&dev->dev.kobj);
1da177e4 7423 }
1da177e4
LT
7424}
7425
9256645a
JW
7426/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7427 * all the same fields in the same order as net_device_stats, with only
7428 * the type differing, but rtnl_link_stats64 may have additional fields
7429 * at the end for newer counters.
3cfde79c 7430 */
77a1abf5
ED
7431void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7432 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7433{
7434#if BITS_PER_LONG == 64
9256645a 7435 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7436 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7437 /* zero out counters that only exist in rtnl_link_stats64 */
7438 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7439 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7440#else
9256645a 7441 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7442 const unsigned long *src = (const unsigned long *)netdev_stats;
7443 u64 *dst = (u64 *)stats64;
7444
9256645a 7445 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7446 for (i = 0; i < n; i++)
7447 dst[i] = src[i];
9256645a
JW
7448 /* zero out counters that only exist in rtnl_link_stats64 */
7449 memset((char *)stats64 + n * sizeof(u64), 0,
7450 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7451#endif
7452}
77a1abf5 7453EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7454
eeda3fd6
SH
7455/**
7456 * dev_get_stats - get network device statistics
7457 * @dev: device to get statistics from
28172739 7458 * @storage: place to store stats
eeda3fd6 7459 *
d7753516
BH
7460 * Get network statistics from device. Return @storage.
7461 * The device driver may provide its own method by setting
7462 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7463 * otherwise the internal statistics structure is used.
eeda3fd6 7464 */
d7753516
BH
7465struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7466 struct rtnl_link_stats64 *storage)
7004bf25 7467{
eeda3fd6
SH
7468 const struct net_device_ops *ops = dev->netdev_ops;
7469
28172739
ED
7470 if (ops->ndo_get_stats64) {
7471 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7472 ops->ndo_get_stats64(dev, storage);
7473 } else if (ops->ndo_get_stats) {
3cfde79c 7474 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7475 } else {
7476 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7477 }
caf586e5 7478 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7479 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7480 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7481 return storage;
c45d286e 7482}
eeda3fd6 7483EXPORT_SYMBOL(dev_get_stats);
c45d286e 7484
24824a09 7485struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7486{
24824a09 7487 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7488
24824a09
ED
7489#ifdef CONFIG_NET_CLS_ACT
7490 if (queue)
7491 return queue;
7492 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7493 if (!queue)
7494 return NULL;
7495 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7496 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7497 queue->qdisc_sleeping = &noop_qdisc;
7498 rcu_assign_pointer(dev->ingress_queue, queue);
7499#endif
7500 return queue;
bb949fbd
DM
7501}
7502
2c60db03
ED
7503static const struct ethtool_ops default_ethtool_ops;
7504
d07d7507
SG
7505void netdev_set_default_ethtool_ops(struct net_device *dev,
7506 const struct ethtool_ops *ops)
7507{
7508 if (dev->ethtool_ops == &default_ethtool_ops)
7509 dev->ethtool_ops = ops;
7510}
7511EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7512
74d332c1
ED
7513void netdev_freemem(struct net_device *dev)
7514{
7515 char *addr = (char *)dev - dev->padded;
7516
4cb28970 7517 kvfree(addr);
74d332c1
ED
7518}
7519
1da177e4 7520/**
36909ea4 7521 * alloc_netdev_mqs - allocate network device
c835a677
TG
7522 * @sizeof_priv: size of private data to allocate space for
7523 * @name: device name format string
7524 * @name_assign_type: origin of device name
7525 * @setup: callback to initialize device
7526 * @txqs: the number of TX subqueues to allocate
7527 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7528 *
7529 * Allocates a struct net_device with private data area for driver use
90e51adf 7530 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7531 * for each queue on the device.
1da177e4 7532 */
36909ea4 7533struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7534 unsigned char name_assign_type,
36909ea4
TH
7535 void (*setup)(struct net_device *),
7536 unsigned int txqs, unsigned int rxqs)
1da177e4 7537{
1da177e4 7538 struct net_device *dev;
7943986c 7539 size_t alloc_size;
1ce8e7b5 7540 struct net_device *p;
1da177e4 7541
b6fe17d6
SH
7542 BUG_ON(strlen(name) >= sizeof(dev->name));
7543
36909ea4 7544 if (txqs < 1) {
7b6cd1ce 7545 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7546 return NULL;
7547 }
7548
a953be53 7549#ifdef CONFIG_SYSFS
36909ea4 7550 if (rxqs < 1) {
7b6cd1ce 7551 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7552 return NULL;
7553 }
7554#endif
7555
fd2ea0a7 7556 alloc_size = sizeof(struct net_device);
d1643d24
AD
7557 if (sizeof_priv) {
7558 /* ensure 32-byte alignment of private area */
1ce8e7b5 7559 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7560 alloc_size += sizeof_priv;
7561 }
7562 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7563 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7564
74d332c1
ED
7565 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7566 if (!p)
7567 p = vzalloc(alloc_size);
62b5942a 7568 if (!p)
1da177e4 7569 return NULL;
1da177e4 7570
1ce8e7b5 7571 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7572 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7573
29b4433d
ED
7574 dev->pcpu_refcnt = alloc_percpu(int);
7575 if (!dev->pcpu_refcnt)
74d332c1 7576 goto free_dev;
ab9c73cc 7577
ab9c73cc 7578 if (dev_addr_init(dev))
29b4433d 7579 goto free_pcpu;
ab9c73cc 7580
22bedad3 7581 dev_mc_init(dev);
a748ee24 7582 dev_uc_init(dev);
ccffad25 7583
c346dca1 7584 dev_net_set(dev, &init_net);
1da177e4 7585
8d3bdbd5 7586 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7587 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7588
8d3bdbd5
DM
7589 INIT_LIST_HEAD(&dev->napi_list);
7590 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7591 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7592 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7593 INIT_LIST_HEAD(&dev->adj_list.upper);
7594 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
7595 INIT_LIST_HEAD(&dev->ptype_all);
7596 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7597#ifdef CONFIG_NET_SCHED
7598 hash_init(dev->qdisc_hash);
7599#endif
02875878 7600 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7601 setup(dev);
7602
a813104d 7603 if (!dev->tx_queue_len) {
f84bb1ea 7604 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7605 dev->tx_queue_len = 1;
7606 }
906470c1 7607
36909ea4
TH
7608 dev->num_tx_queues = txqs;
7609 dev->real_num_tx_queues = txqs;
ed9af2e8 7610 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7611 goto free_all;
e8a0464c 7612
a953be53 7613#ifdef CONFIG_SYSFS
36909ea4
TH
7614 dev->num_rx_queues = rxqs;
7615 dev->real_num_rx_queues = rxqs;
fe822240 7616 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7617 goto free_all;
df334545 7618#endif
0a9627f2 7619
1da177e4 7620 strcpy(dev->name, name);
c835a677 7621 dev->name_assign_type = name_assign_type;
cbda10fa 7622 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7623 if (!dev->ethtool_ops)
7624 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7625
7626 nf_hook_ingress_init(dev);
7627
1da177e4 7628 return dev;
ab9c73cc 7629
8d3bdbd5
DM
7630free_all:
7631 free_netdev(dev);
7632 return NULL;
7633
29b4433d
ED
7634free_pcpu:
7635 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7636free_dev:
7637 netdev_freemem(dev);
ab9c73cc 7638 return NULL;
1da177e4 7639}
36909ea4 7640EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7641
7642/**
7643 * free_netdev - free network device
7644 * @dev: device
7645 *
4ec93edb
YH
7646 * This function does the last stage of destroying an allocated device
7647 * interface. The reference to the device object is released.
1da177e4 7648 * If this is the last reference then it will be freed.
93d05d4a 7649 * Must be called in process context.
1da177e4
LT
7650 */
7651void free_netdev(struct net_device *dev)
7652{
d565b0a1
HX
7653 struct napi_struct *p, *n;
7654
93d05d4a 7655 might_sleep();
60877a32 7656 netif_free_tx_queues(dev);
a953be53 7657#ifdef CONFIG_SYSFS
10595902 7658 kvfree(dev->_rx);
fe822240 7659#endif
e8a0464c 7660
33d480ce 7661 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7662
f001fde5
JP
7663 /* Flush device addresses */
7664 dev_addr_flush(dev);
7665
d565b0a1
HX
7666 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7667 netif_napi_del(p);
7668
29b4433d
ED
7669 free_percpu(dev->pcpu_refcnt);
7670 dev->pcpu_refcnt = NULL;
7671
3041a069 7672 /* Compatibility with error handling in drivers */
1da177e4 7673 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7674 netdev_freemem(dev);
1da177e4
LT
7675 return;
7676 }
7677
7678 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7679 dev->reg_state = NETREG_RELEASED;
7680
43cb76d9
GKH
7681 /* will free via device release */
7682 put_device(&dev->dev);
1da177e4 7683}
d1b19dff 7684EXPORT_SYMBOL(free_netdev);
4ec93edb 7685
f0db275a
SH
7686/**
7687 * synchronize_net - Synchronize with packet receive processing
7688 *
7689 * Wait for packets currently being received to be done.
7690 * Does not block later packets from starting.
7691 */
4ec93edb 7692void synchronize_net(void)
1da177e4
LT
7693{
7694 might_sleep();
be3fc413
ED
7695 if (rtnl_is_locked())
7696 synchronize_rcu_expedited();
7697 else
7698 synchronize_rcu();
1da177e4 7699}
d1b19dff 7700EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7701
7702/**
44a0873d 7703 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7704 * @dev: device
44a0873d 7705 * @head: list
6ebfbc06 7706 *
1da177e4 7707 * This function shuts down a device interface and removes it
d59b54b1 7708 * from the kernel tables.
44a0873d 7709 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7710 *
7711 * Callers must hold the rtnl semaphore. You may want
7712 * unregister_netdev() instead of this.
7713 */
7714
44a0873d 7715void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7716{
a6620712
HX
7717 ASSERT_RTNL();
7718
44a0873d 7719 if (head) {
9fdce099 7720 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7721 } else {
7722 rollback_registered(dev);
7723 /* Finish processing unregister after unlock */
7724 net_set_todo(dev);
7725 }
1da177e4 7726}
44a0873d 7727EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7728
9b5e383c
ED
7729/**
7730 * unregister_netdevice_many - unregister many devices
7731 * @head: list of devices
87757a91
ED
7732 *
7733 * Note: As most callers use a stack allocated list_head,
7734 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7735 */
7736void unregister_netdevice_many(struct list_head *head)
7737{
7738 struct net_device *dev;
7739
7740 if (!list_empty(head)) {
7741 rollback_registered_many(head);
7742 list_for_each_entry(dev, head, unreg_list)
7743 net_set_todo(dev);
87757a91 7744 list_del(head);
9b5e383c
ED
7745 }
7746}
63c8099d 7747EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7748
1da177e4
LT
7749/**
7750 * unregister_netdev - remove device from the kernel
7751 * @dev: device
7752 *
7753 * This function shuts down a device interface and removes it
d59b54b1 7754 * from the kernel tables.
1da177e4
LT
7755 *
7756 * This is just a wrapper for unregister_netdevice that takes
7757 * the rtnl semaphore. In general you want to use this and not
7758 * unregister_netdevice.
7759 */
7760void unregister_netdev(struct net_device *dev)
7761{
7762 rtnl_lock();
7763 unregister_netdevice(dev);
7764 rtnl_unlock();
7765}
1da177e4
LT
7766EXPORT_SYMBOL(unregister_netdev);
7767
ce286d32
EB
7768/**
7769 * dev_change_net_namespace - move device to different nethost namespace
7770 * @dev: device
7771 * @net: network namespace
7772 * @pat: If not NULL name pattern to try if the current device name
7773 * is already taken in the destination network namespace.
7774 *
7775 * This function shuts down a device interface and moves it
7776 * to a new network namespace. On success 0 is returned, on
7777 * a failure a netagive errno code is returned.
7778 *
7779 * Callers must hold the rtnl semaphore.
7780 */
7781
7782int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7783{
ce286d32
EB
7784 int err;
7785
7786 ASSERT_RTNL();
7787
7788 /* Don't allow namespace local devices to be moved. */
7789 err = -EINVAL;
7790 if (dev->features & NETIF_F_NETNS_LOCAL)
7791 goto out;
7792
7793 /* Ensure the device has been registrered */
ce286d32
EB
7794 if (dev->reg_state != NETREG_REGISTERED)
7795 goto out;
7796
7797 /* Get out if there is nothing todo */
7798 err = 0;
878628fb 7799 if (net_eq(dev_net(dev), net))
ce286d32
EB
7800 goto out;
7801
7802 /* Pick the destination device name, and ensure
7803 * we can use it in the destination network namespace.
7804 */
7805 err = -EEXIST;
d9031024 7806 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7807 /* We get here if we can't use the current device name */
7808 if (!pat)
7809 goto out;
828de4f6 7810 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7811 goto out;
7812 }
7813
7814 /*
7815 * And now a mini version of register_netdevice unregister_netdevice.
7816 */
7817
7818 /* If device is running close it first. */
9b772652 7819 dev_close(dev);
ce286d32
EB
7820
7821 /* And unlink it from device chain */
7822 err = -ENODEV;
7823 unlist_netdevice(dev);
7824
7825 synchronize_net();
7826
7827 /* Shutdown queueing discipline. */
7828 dev_shutdown(dev);
7829
7830 /* Notify protocols, that we are about to destroy
7831 this device. They should clean all the things.
3b27e105
DL
7832
7833 Note that dev->reg_state stays at NETREG_REGISTERED.
7834 This is wanted because this way 8021q and macvlan know
7835 the device is just moving and can keep their slaves up.
ce286d32
EB
7836 */
7837 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7838 rcu_barrier();
7839 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7840 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7841
7842 /*
7843 * Flush the unicast and multicast chains
7844 */
a748ee24 7845 dev_uc_flush(dev);
22bedad3 7846 dev_mc_flush(dev);
ce286d32 7847
4e66ae2e
SH
7848 /* Send a netdev-removed uevent to the old namespace */
7849 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7850 netdev_adjacent_del_links(dev);
4e66ae2e 7851
ce286d32 7852 /* Actually switch the network namespace */
c346dca1 7853 dev_net_set(dev, net);
ce286d32 7854
ce286d32 7855 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7856 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7857 dev->ifindex = dev_new_index(net);
ce286d32 7858
4e66ae2e
SH
7859 /* Send a netdev-add uevent to the new namespace */
7860 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7861 netdev_adjacent_add_links(dev);
4e66ae2e 7862
8b41d188 7863 /* Fixup kobjects */
a1b3f594 7864 err = device_rename(&dev->dev, dev->name);
8b41d188 7865 WARN_ON(err);
ce286d32
EB
7866
7867 /* Add the device back in the hashes */
7868 list_netdevice(dev);
7869
7870 /* Notify protocols, that a new device appeared. */
7871 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7872
d90a909e
EB
7873 /*
7874 * Prevent userspace races by waiting until the network
7875 * device is fully setup before sending notifications.
7876 */
7f294054 7877 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7878
ce286d32
EB
7879 synchronize_net();
7880 err = 0;
7881out:
7882 return err;
7883}
463d0183 7884EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7885
1da177e4
LT
7886static int dev_cpu_callback(struct notifier_block *nfb,
7887 unsigned long action,
7888 void *ocpu)
7889{
7890 struct sk_buff **list_skb;
1da177e4
LT
7891 struct sk_buff *skb;
7892 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7893 struct softnet_data *sd, *oldsd;
7894
8bb78442 7895 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7896 return NOTIFY_OK;
7897
7898 local_irq_disable();
7899 cpu = smp_processor_id();
7900 sd = &per_cpu(softnet_data, cpu);
7901 oldsd = &per_cpu(softnet_data, oldcpu);
7902
7903 /* Find end of our completion_queue. */
7904 list_skb = &sd->completion_queue;
7905 while (*list_skb)
7906 list_skb = &(*list_skb)->next;
7907 /* Append completion queue from offline CPU. */
7908 *list_skb = oldsd->completion_queue;
7909 oldsd->completion_queue = NULL;
7910
1da177e4 7911 /* Append output queue from offline CPU. */
a9cbd588
CG
7912 if (oldsd->output_queue) {
7913 *sd->output_queue_tailp = oldsd->output_queue;
7914 sd->output_queue_tailp = oldsd->output_queue_tailp;
7915 oldsd->output_queue = NULL;
7916 oldsd->output_queue_tailp = &oldsd->output_queue;
7917 }
ac64da0b
ED
7918 /* Append NAPI poll list from offline CPU, with one exception :
7919 * process_backlog() must be called by cpu owning percpu backlog.
7920 * We properly handle process_queue & input_pkt_queue later.
7921 */
7922 while (!list_empty(&oldsd->poll_list)) {
7923 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7924 struct napi_struct,
7925 poll_list);
7926
7927 list_del_init(&napi->poll_list);
7928 if (napi->poll == process_backlog)
7929 napi->state = 0;
7930 else
7931 ____napi_schedule(sd, napi);
264524d5 7932 }
1da177e4
LT
7933
7934 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7935 local_irq_enable();
7936
7937 /* Process offline CPU's input_pkt_queue */
76cc8b13 7938 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7939 netif_rx_ni(skb);
76cc8b13 7940 input_queue_head_incr(oldsd);
fec5e652 7941 }
ac64da0b 7942 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7943 netif_rx_ni(skb);
76cc8b13
TH
7944 input_queue_head_incr(oldsd);
7945 }
1da177e4
LT
7946
7947 return NOTIFY_OK;
7948}
1da177e4
LT
7949
7950
7f353bf2 7951/**
b63365a2
HX
7952 * netdev_increment_features - increment feature set by one
7953 * @all: current feature set
7954 * @one: new feature set
7955 * @mask: mask feature set
7f353bf2
HX
7956 *
7957 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7958 * @one to the master device with current feature set @all. Will not
7959 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7960 */
c8f44aff
MM
7961netdev_features_t netdev_increment_features(netdev_features_t all,
7962 netdev_features_t one, netdev_features_t mask)
b63365a2 7963{
c8cd0989 7964 if (mask & NETIF_F_HW_CSUM)
a188222b 7965 mask |= NETIF_F_CSUM_MASK;
1742f183 7966 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7967
a188222b 7968 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 7969 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7970
1742f183 7971 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
7972 if (all & NETIF_F_HW_CSUM)
7973 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
7974
7975 return all;
7976}
b63365a2 7977EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7978
430f03cd 7979static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7980{
7981 int i;
7982 struct hlist_head *hash;
7983
7984 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7985 if (hash != NULL)
7986 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7987 INIT_HLIST_HEAD(&hash[i]);
7988
7989 return hash;
7990}
7991
881d966b 7992/* Initialize per network namespace state */
4665079c 7993static int __net_init netdev_init(struct net *net)
881d966b 7994{
734b6541
RM
7995 if (net != &init_net)
7996 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7997
30d97d35
PE
7998 net->dev_name_head = netdev_create_hash();
7999 if (net->dev_name_head == NULL)
8000 goto err_name;
881d966b 8001
30d97d35
PE
8002 net->dev_index_head = netdev_create_hash();
8003 if (net->dev_index_head == NULL)
8004 goto err_idx;
881d966b
EB
8005
8006 return 0;
30d97d35
PE
8007
8008err_idx:
8009 kfree(net->dev_name_head);
8010err_name:
8011 return -ENOMEM;
881d966b
EB
8012}
8013
f0db275a
SH
8014/**
8015 * netdev_drivername - network driver for the device
8016 * @dev: network device
f0db275a
SH
8017 *
8018 * Determine network driver for device.
8019 */
3019de12 8020const char *netdev_drivername(const struct net_device *dev)
6579e57b 8021{
cf04a4c7
SH
8022 const struct device_driver *driver;
8023 const struct device *parent;
3019de12 8024 const char *empty = "";
6579e57b
AV
8025
8026 parent = dev->dev.parent;
6579e57b 8027 if (!parent)
3019de12 8028 return empty;
6579e57b
AV
8029
8030 driver = parent->driver;
8031 if (driver && driver->name)
3019de12
DM
8032 return driver->name;
8033 return empty;
6579e57b
AV
8034}
8035
6ea754eb
JP
8036static void __netdev_printk(const char *level, const struct net_device *dev,
8037 struct va_format *vaf)
256df2f3 8038{
b004ff49 8039 if (dev && dev->dev.parent) {
6ea754eb
JP
8040 dev_printk_emit(level[1] - '0',
8041 dev->dev.parent,
8042 "%s %s %s%s: %pV",
8043 dev_driver_string(dev->dev.parent),
8044 dev_name(dev->dev.parent),
8045 netdev_name(dev), netdev_reg_state(dev),
8046 vaf);
b004ff49 8047 } else if (dev) {
6ea754eb
JP
8048 printk("%s%s%s: %pV",
8049 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8050 } else {
6ea754eb 8051 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8052 }
256df2f3
JP
8053}
8054
6ea754eb
JP
8055void netdev_printk(const char *level, const struct net_device *dev,
8056 const char *format, ...)
256df2f3
JP
8057{
8058 struct va_format vaf;
8059 va_list args;
256df2f3
JP
8060
8061 va_start(args, format);
8062
8063 vaf.fmt = format;
8064 vaf.va = &args;
8065
6ea754eb 8066 __netdev_printk(level, dev, &vaf);
b004ff49 8067
256df2f3 8068 va_end(args);
256df2f3
JP
8069}
8070EXPORT_SYMBOL(netdev_printk);
8071
8072#define define_netdev_printk_level(func, level) \
6ea754eb 8073void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8074{ \
256df2f3
JP
8075 struct va_format vaf; \
8076 va_list args; \
8077 \
8078 va_start(args, fmt); \
8079 \
8080 vaf.fmt = fmt; \
8081 vaf.va = &args; \
8082 \
6ea754eb 8083 __netdev_printk(level, dev, &vaf); \
b004ff49 8084 \
256df2f3 8085 va_end(args); \
256df2f3
JP
8086} \
8087EXPORT_SYMBOL(func);
8088
8089define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8090define_netdev_printk_level(netdev_alert, KERN_ALERT);
8091define_netdev_printk_level(netdev_crit, KERN_CRIT);
8092define_netdev_printk_level(netdev_err, KERN_ERR);
8093define_netdev_printk_level(netdev_warn, KERN_WARNING);
8094define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8095define_netdev_printk_level(netdev_info, KERN_INFO);
8096
4665079c 8097static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8098{
8099 kfree(net->dev_name_head);
8100 kfree(net->dev_index_head);
8101}
8102
022cbae6 8103static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8104 .init = netdev_init,
8105 .exit = netdev_exit,
8106};
8107
4665079c 8108static void __net_exit default_device_exit(struct net *net)
ce286d32 8109{
e008b5fc 8110 struct net_device *dev, *aux;
ce286d32 8111 /*
e008b5fc 8112 * Push all migratable network devices back to the
ce286d32
EB
8113 * initial network namespace
8114 */
8115 rtnl_lock();
e008b5fc 8116 for_each_netdev_safe(net, dev, aux) {
ce286d32 8117 int err;
aca51397 8118 char fb_name[IFNAMSIZ];
ce286d32
EB
8119
8120 /* Ignore unmoveable devices (i.e. loopback) */
8121 if (dev->features & NETIF_F_NETNS_LOCAL)
8122 continue;
8123
e008b5fc
EB
8124 /* Leave virtual devices for the generic cleanup */
8125 if (dev->rtnl_link_ops)
8126 continue;
d0c082ce 8127
25985edc 8128 /* Push remaining network devices to init_net */
aca51397
PE
8129 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8130 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8131 if (err) {
7b6cd1ce
JP
8132 pr_emerg("%s: failed to move %s to init_net: %d\n",
8133 __func__, dev->name, err);
aca51397 8134 BUG();
ce286d32
EB
8135 }
8136 }
8137 rtnl_unlock();
8138}
8139
50624c93
EB
8140static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8141{
8142 /* Return with the rtnl_lock held when there are no network
8143 * devices unregistering in any network namespace in net_list.
8144 */
8145 struct net *net;
8146 bool unregistering;
ff960a73 8147 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8148
ff960a73 8149 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8150 for (;;) {
50624c93
EB
8151 unregistering = false;
8152 rtnl_lock();
8153 list_for_each_entry(net, net_list, exit_list) {
8154 if (net->dev_unreg_count > 0) {
8155 unregistering = true;
8156 break;
8157 }
8158 }
8159 if (!unregistering)
8160 break;
8161 __rtnl_unlock();
ff960a73
PZ
8162
8163 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8164 }
ff960a73 8165 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8166}
8167
04dc7f6b
EB
8168static void __net_exit default_device_exit_batch(struct list_head *net_list)
8169{
8170 /* At exit all network devices most be removed from a network
b595076a 8171 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8172 * Do this across as many network namespaces as possible to
8173 * improve batching efficiency.
8174 */
8175 struct net_device *dev;
8176 struct net *net;
8177 LIST_HEAD(dev_kill_list);
8178
50624c93
EB
8179 /* To prevent network device cleanup code from dereferencing
8180 * loopback devices or network devices that have been freed
8181 * wait here for all pending unregistrations to complete,
8182 * before unregistring the loopback device and allowing the
8183 * network namespace be freed.
8184 *
8185 * The netdev todo list containing all network devices
8186 * unregistrations that happen in default_device_exit_batch
8187 * will run in the rtnl_unlock() at the end of
8188 * default_device_exit_batch.
8189 */
8190 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8191 list_for_each_entry(net, net_list, exit_list) {
8192 for_each_netdev_reverse(net, dev) {
b0ab2fab 8193 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8194 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8195 else
8196 unregister_netdevice_queue(dev, &dev_kill_list);
8197 }
8198 }
8199 unregister_netdevice_many(&dev_kill_list);
8200 rtnl_unlock();
8201}
8202
022cbae6 8203static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8204 .exit = default_device_exit,
04dc7f6b 8205 .exit_batch = default_device_exit_batch,
ce286d32
EB
8206};
8207
1da177e4
LT
8208/*
8209 * Initialize the DEV module. At boot time this walks the device list and
8210 * unhooks any devices that fail to initialise (normally hardware not
8211 * present) and leaves us with a valid list of present and active devices.
8212 *
8213 */
8214
8215/*
8216 * This is called single threaded during boot, so no need
8217 * to take the rtnl semaphore.
8218 */
8219static int __init net_dev_init(void)
8220{
8221 int i, rc = -ENOMEM;
8222
8223 BUG_ON(!dev_boot_phase);
8224
1da177e4
LT
8225 if (dev_proc_init())
8226 goto out;
8227
8b41d188 8228 if (netdev_kobject_init())
1da177e4
LT
8229 goto out;
8230
8231 INIT_LIST_HEAD(&ptype_all);
82d8a867 8232 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8233 INIT_LIST_HEAD(&ptype_base[i]);
8234
62532da9
VY
8235 INIT_LIST_HEAD(&offload_base);
8236
881d966b
EB
8237 if (register_pernet_subsys(&netdev_net_ops))
8238 goto out;
1da177e4
LT
8239
8240 /*
8241 * Initialise the packet receive queues.
8242 */
8243
6f912042 8244 for_each_possible_cpu(i) {
41852497 8245 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8246 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8247
41852497
ED
8248 INIT_WORK(flush, flush_backlog);
8249
e36fa2f7 8250 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8251 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8252 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8253 sd->output_queue_tailp = &sd->output_queue;
df334545 8254#ifdef CONFIG_RPS
e36fa2f7
ED
8255 sd->csd.func = rps_trigger_softirq;
8256 sd->csd.info = sd;
e36fa2f7 8257 sd->cpu = i;
1e94d72f 8258#endif
0a9627f2 8259
e36fa2f7
ED
8260 sd->backlog.poll = process_backlog;
8261 sd->backlog.weight = weight_p;
1da177e4
LT
8262 }
8263
1da177e4
LT
8264 dev_boot_phase = 0;
8265
505d4f73
EB
8266 /* The loopback device is special if any other network devices
8267 * is present in a network namespace the loopback device must
8268 * be present. Since we now dynamically allocate and free the
8269 * loopback device ensure this invariant is maintained by
8270 * keeping the loopback device as the first device on the
8271 * list of network devices. Ensuring the loopback devices
8272 * is the first device that appears and the last network device
8273 * that disappears.
8274 */
8275 if (register_pernet_device(&loopback_net_ops))
8276 goto out;
8277
8278 if (register_pernet_device(&default_device_ops))
8279 goto out;
8280
962cf36c
CM
8281 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8282 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8283
8284 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8285 dst_subsys_init();
1da177e4
LT
8286 rc = 0;
8287out:
8288 return rc;
8289}
8290
8291subsys_initcall(net_dev_init);