]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/core/dev.c
bpf: prevent leaking pointer via xadd on unpriviledged
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4
LT
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
a7862b45 98#include <linux/bpf.h>
b5cdae32 99#include <linux/bpf_trace.h>
457c4cbc 100#include <net/net_namespace.h>
1da177e4 101#include <net/sock.h>
02d62e86 102#include <net/busy_poll.h>
1da177e4 103#include <linux/rtnetlink.h>
1da177e4 104#include <linux/stat.h>
1da177e4 105#include <net/dst.h>
fc4099f1 106#include <net/dst_metadata.h>
1da177e4
LT
107#include <net/pkt_sched.h>
108#include <net/checksum.h>
44540960 109#include <net/xfrm.h>
1da177e4
LT
110#include <linux/highmem.h>
111#include <linux/init.h>
1da177e4 112#include <linux/module.h>
1da177e4
LT
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
1da177e4 116#include <net/iw_handler.h>
1da177e4 117#include <asm/current.h>
5bdb9886 118#include <linux/audit.h>
db217334 119#include <linux/dmaengine.h>
f6a78bfc 120#include <linux/err.h>
c7fa9d18 121#include <linux/ctype.h>
723e98b7 122#include <linux/if_arp.h>
6de329e2 123#include <linux/if_vlan.h>
8f0f2223 124#include <linux/ip.h>
ad55dcaf 125#include <net/ip.h>
25cd9ba0 126#include <net/mpls.h>
8f0f2223
DM
127#include <linux/ipv6.h>
128#include <linux/in.h>
b6b2fed1
DM
129#include <linux/jhash.h>
130#include <linux/random.h>
9cbc1cb8 131#include <trace/events/napi.h>
cf66ba58 132#include <trace/events/net.h>
07dc22e7 133#include <trace/events/skb.h>
5acbbd42 134#include <linux/pci.h>
caeda9b9 135#include <linux/inetdevice.h>
c445477d 136#include <linux/cpu_rmap.h>
c5905afb 137#include <linux/static_key.h>
af12fa6e 138#include <linux/hashtable.h>
60877a32 139#include <linux/vmalloc.h>
529d0489 140#include <linux/if_macvlan.h>
e7fd2885 141#include <linux/errqueue.h>
3b47d303 142#include <linux/hrtimer.h>
e687ad60 143#include <linux/netfilter_ingress.h>
40e4e713 144#include <linux/crash_dump.h>
1da177e4 145
342709ef
PE
146#include "net-sysfs.h"
147
d565b0a1
HX
148/* Instead of increasing this, you should create a hash table. */
149#define MAX_GRO_SKBS 8
150
5d38a079
HX
151/* This should be increased if a protocol with a bigger head is added. */
152#define GRO_MAX_HEAD (MAX_HEADER + 128)
153
1da177e4 154static DEFINE_SPINLOCK(ptype_lock);
62532da9 155static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
156struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157struct list_head ptype_all __read_mostly; /* Taps */
62532da9 158static struct list_head offload_base __read_mostly;
1da177e4 159
ae78dbfa 160static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
161static int call_netdevice_notifiers_info(unsigned long val,
162 struct net_device *dev,
163 struct netdev_notifier_info *info);
ae78dbfa 164
1da177e4 165/*
7562f876 166 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
167 * semaphore.
168 *
c6d14c84 169 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
170 *
171 * Writers must hold the rtnl semaphore while they loop through the
7562f876 172 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
173 * actual updates. This allows pure readers to access the list even
174 * while a writer is preparing to update it.
175 *
176 * To put it another way, dev_base_lock is held for writing only to
177 * protect against pure readers; the rtnl semaphore provides the
178 * protection against other writers.
179 *
180 * See, for example usages, register_netdevice() and
181 * unregister_netdevice(), which must be called with the rtnl
182 * semaphore held.
183 */
1da177e4 184DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
185EXPORT_SYMBOL(dev_base_lock);
186
af12fa6e
ET
187/* protects napi_hash addition/deletion and napi_gen_id */
188static DEFINE_SPINLOCK(napi_hash_lock);
189
52bd2d62 190static unsigned int napi_gen_id = NR_CPUS;
6180d9de 191static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 192
18afa4b0 193static seqcount_t devnet_rename_seq;
c91f6df2 194
4e985ada
TG
195static inline void dev_base_seq_inc(struct net *net)
196{
643aa9cb 197 while (++net->dev_base_seq == 0)
198 ;
4e985ada
TG
199}
200
881d966b 201static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 202{
8387ff25 203 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 204
08e9897d 205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
206}
207
881d966b 208static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 209{
7c28bd0b 210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
211}
212
e36fa2f7 213static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
214{
215#ifdef CONFIG_RPS
e36fa2f7 216 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
217#endif
218}
219
e36fa2f7 220static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
221{
222#ifdef CONFIG_RPS
e36fa2f7 223 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
224#endif
225}
226
ce286d32 227/* Device list insertion */
53759be9 228static void list_netdevice(struct net_device *dev)
ce286d32 229{
c346dca1 230 struct net *net = dev_net(dev);
ce286d32
EB
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
c6d14c84 235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
ce286d32 239 write_unlock_bh(&dev_base_lock);
4e985ada
TG
240
241 dev_base_seq_inc(net);
ce286d32
EB
242}
243
fb699dfd
ED
244/* Device list removal
245 * caller must respect a RCU grace period before freeing/reusing dev
246 */
ce286d32
EB
247static void unlist_netdevice(struct net_device *dev)
248{
249 ASSERT_RTNL();
250
251 /* Unlink dev from the device chain */
252 write_lock_bh(&dev_base_lock);
c6d14c84 253 list_del_rcu(&dev->dev_list);
72c9528b 254 hlist_del_rcu(&dev->name_hlist);
fb699dfd 255 hlist_del_rcu(&dev->index_hlist);
ce286d32 256 write_unlock_bh(&dev_base_lock);
4e985ada
TG
257
258 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
259}
260
1da177e4
LT
261/*
262 * Our notifier list
263 */
264
f07d5b94 265static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
266
267/*
268 * Device drivers call our routines to queue packets here. We empty the
269 * queue in the local softnet handler.
270 */
bea3348e 271
9958da05 272DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 273EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 274
cf508b12 275#ifdef CONFIG_LOCKDEP
723e98b7 276/*
c773e847 277 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
278 * according to dev->type
279 */
643aa9cb 280static const unsigned short netdev_lock_type[] = {
281 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
282 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
283 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
284 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
285 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
286 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
287 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
288 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
289 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
290 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
291 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
292 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
293 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
294 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
295 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 296
643aa9cb 297static const char *const netdev_lock_name[] = {
298 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
299 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
300 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
301 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
302 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
303 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
304 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
305 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
306 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
307 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
308 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
309 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
310 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
311 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
312 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
313
314static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 315static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
316
317static inline unsigned short netdev_lock_pos(unsigned short dev_type)
318{
319 int i;
320
321 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
322 if (netdev_lock_type[i] == dev_type)
323 return i;
324 /* the last key is used by default */
325 return ARRAY_SIZE(netdev_lock_type) - 1;
326}
327
cf508b12
DM
328static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
329 unsigned short dev_type)
723e98b7
JP
330{
331 int i;
332
333 i = netdev_lock_pos(dev_type);
334 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
335 netdev_lock_name[i]);
336}
cf508b12
DM
337
338static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339{
340 int i;
341
342 i = netdev_lock_pos(dev->type);
343 lockdep_set_class_and_name(&dev->addr_list_lock,
344 &netdev_addr_lock_key[i],
345 netdev_lock_name[i]);
346}
723e98b7 347#else
cf508b12
DM
348static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
349 unsigned short dev_type)
350{
351}
352static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
353{
354}
355#endif
1da177e4
LT
356
357/*******************************************************************************
eb13da1a 358 *
359 * Protocol management and registration routines
360 *
361 *******************************************************************************/
1da177e4 362
1da177e4 363
1da177e4
LT
364/*
365 * Add a protocol ID to the list. Now that the input handler is
366 * smarter we can dispense with all the messy stuff that used to be
367 * here.
368 *
369 * BEWARE!!! Protocol handlers, mangling input packets,
370 * MUST BE last in hash buckets and checking protocol handlers
371 * MUST start from promiscuous ptype_all chain in net_bh.
372 * It is true now, do not change it.
373 * Explanation follows: if protocol handler, mangling packet, will
374 * be the first on list, it is not able to sense, that packet
375 * is cloned and should be copied-on-write, so that it will
376 * change it and subsequent readers will get broken packet.
377 * --ANK (980803)
378 */
379
c07b68e8
ED
380static inline struct list_head *ptype_head(const struct packet_type *pt)
381{
382 if (pt->type == htons(ETH_P_ALL))
7866a621 383 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 384 else
7866a621
SN
385 return pt->dev ? &pt->dev->ptype_specific :
386 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
387}
388
1da177e4
LT
389/**
390 * dev_add_pack - add packet handler
391 * @pt: packet type declaration
392 *
393 * Add a protocol handler to the networking stack. The passed &packet_type
394 * is linked into kernel lists and may not be freed until it has been
395 * removed from the kernel lists.
396 *
4ec93edb 397 * This call does not sleep therefore it can not
1da177e4
LT
398 * guarantee all CPU's that are in middle of receiving packets
399 * will see the new packet type (until the next received packet).
400 */
401
402void dev_add_pack(struct packet_type *pt)
403{
c07b68e8 404 struct list_head *head = ptype_head(pt);
1da177e4 405
c07b68e8
ED
406 spin_lock(&ptype_lock);
407 list_add_rcu(&pt->list, head);
408 spin_unlock(&ptype_lock);
1da177e4 409}
d1b19dff 410EXPORT_SYMBOL(dev_add_pack);
1da177e4 411
1da177e4
LT
412/**
413 * __dev_remove_pack - remove packet handler
414 * @pt: packet type declaration
415 *
416 * Remove a protocol handler that was previously added to the kernel
417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
418 * from the kernel lists and can be freed or reused once this function
4ec93edb 419 * returns.
1da177e4
LT
420 *
421 * The packet type might still be in use by receivers
422 * and must not be freed until after all the CPU's have gone
423 * through a quiescent state.
424 */
425void __dev_remove_pack(struct packet_type *pt)
426{
c07b68e8 427 struct list_head *head = ptype_head(pt);
1da177e4
LT
428 struct packet_type *pt1;
429
c07b68e8 430 spin_lock(&ptype_lock);
1da177e4
LT
431
432 list_for_each_entry(pt1, head, list) {
433 if (pt == pt1) {
434 list_del_rcu(&pt->list);
435 goto out;
436 }
437 }
438
7b6cd1ce 439 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 440out:
c07b68e8 441 spin_unlock(&ptype_lock);
1da177e4 442}
d1b19dff
ED
443EXPORT_SYMBOL(__dev_remove_pack);
444
1da177e4
LT
445/**
446 * dev_remove_pack - remove packet handler
447 * @pt: packet type declaration
448 *
449 * Remove a protocol handler that was previously added to the kernel
450 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
451 * from the kernel lists and can be freed or reused once this function
452 * returns.
453 *
454 * This call sleeps to guarantee that no CPU is looking at the packet
455 * type after return.
456 */
457void dev_remove_pack(struct packet_type *pt)
458{
459 __dev_remove_pack(pt);
4ec93edb 460
1da177e4
LT
461 synchronize_net();
462}
d1b19dff 463EXPORT_SYMBOL(dev_remove_pack);
1da177e4 464
62532da9
VY
465
466/**
467 * dev_add_offload - register offload handlers
468 * @po: protocol offload declaration
469 *
470 * Add protocol offload handlers to the networking stack. The passed
471 * &proto_offload is linked into kernel lists and may not be freed until
472 * it has been removed from the kernel lists.
473 *
474 * This call does not sleep therefore it can not
475 * guarantee all CPU's that are in middle of receiving packets
476 * will see the new offload handlers (until the next received packet).
477 */
478void dev_add_offload(struct packet_offload *po)
479{
bdef7de4 480 struct packet_offload *elem;
62532da9
VY
481
482 spin_lock(&offload_lock);
bdef7de4
DM
483 list_for_each_entry(elem, &offload_base, list) {
484 if (po->priority < elem->priority)
485 break;
486 }
487 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
488 spin_unlock(&offload_lock);
489}
490EXPORT_SYMBOL(dev_add_offload);
491
492/**
493 * __dev_remove_offload - remove offload handler
494 * @po: packet offload declaration
495 *
496 * Remove a protocol offload handler that was previously added to the
497 * kernel offload handlers by dev_add_offload(). The passed &offload_type
498 * is removed from the kernel lists and can be freed or reused once this
499 * function returns.
500 *
501 * The packet type might still be in use by receivers
502 * and must not be freed until after all the CPU's have gone
503 * through a quiescent state.
504 */
1d143d9f 505static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
506{
507 struct list_head *head = &offload_base;
508 struct packet_offload *po1;
509
c53aa505 510 spin_lock(&offload_lock);
62532da9
VY
511
512 list_for_each_entry(po1, head, list) {
513 if (po == po1) {
514 list_del_rcu(&po->list);
515 goto out;
516 }
517 }
518
519 pr_warn("dev_remove_offload: %p not found\n", po);
520out:
c53aa505 521 spin_unlock(&offload_lock);
62532da9 522}
62532da9
VY
523
524/**
525 * dev_remove_offload - remove packet offload handler
526 * @po: packet offload declaration
527 *
528 * Remove a packet offload handler that was previously added to the kernel
529 * offload handlers by dev_add_offload(). The passed &offload_type is
530 * removed from the kernel lists and can be freed or reused once this
531 * function returns.
532 *
533 * This call sleeps to guarantee that no CPU is looking at the packet
534 * type after return.
535 */
536void dev_remove_offload(struct packet_offload *po)
537{
538 __dev_remove_offload(po);
539
540 synchronize_net();
541}
542EXPORT_SYMBOL(dev_remove_offload);
543
1da177e4 544/******************************************************************************
eb13da1a 545 *
546 * Device Boot-time Settings Routines
547 *
548 ******************************************************************************/
1da177e4
LT
549
550/* Boot time configuration table */
551static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
552
553/**
554 * netdev_boot_setup_add - add new setup entry
555 * @name: name of the device
556 * @map: configured settings for the device
557 *
558 * Adds new setup entry to the dev_boot_setup list. The function
559 * returns 0 on error and 1 on success. This is a generic routine to
560 * all netdevices.
561 */
562static int netdev_boot_setup_add(char *name, struct ifmap *map)
563{
564 struct netdev_boot_setup *s;
565 int i;
566
567 s = dev_boot_setup;
568 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
569 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
570 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 571 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
572 memcpy(&s[i].map, map, sizeof(s[i].map));
573 break;
574 }
575 }
576
577 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
578}
579
580/**
722c9a0c 581 * netdev_boot_setup_check - check boot time settings
582 * @dev: the netdevice
1da177e4 583 *
722c9a0c 584 * Check boot time settings for the device.
585 * The found settings are set for the device to be used
586 * later in the device probing.
587 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
588 */
589int netdev_boot_setup_check(struct net_device *dev)
590{
591 struct netdev_boot_setup *s = dev_boot_setup;
592 int i;
593
594 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
595 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 596 !strcmp(dev->name, s[i].name)) {
722c9a0c 597 dev->irq = s[i].map.irq;
598 dev->base_addr = s[i].map.base_addr;
599 dev->mem_start = s[i].map.mem_start;
600 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
601 return 1;
602 }
603 }
604 return 0;
605}
d1b19dff 606EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
607
608
609/**
722c9a0c 610 * netdev_boot_base - get address from boot time settings
611 * @prefix: prefix for network device
612 * @unit: id for network device
613 *
614 * Check boot time settings for the base address of device.
615 * The found settings are set for the device to be used
616 * later in the device probing.
617 * Returns 0 if no settings found.
1da177e4
LT
618 */
619unsigned long netdev_boot_base(const char *prefix, int unit)
620{
621 const struct netdev_boot_setup *s = dev_boot_setup;
622 char name[IFNAMSIZ];
623 int i;
624
625 sprintf(name, "%s%d", prefix, unit);
626
627 /*
628 * If device already registered then return base of 1
629 * to indicate not to probe for this interface
630 */
881d966b 631 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
632 return 1;
633
634 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
635 if (!strcmp(name, s[i].name))
636 return s[i].map.base_addr;
637 return 0;
638}
639
640/*
641 * Saves at boot time configured settings for any netdevice.
642 */
643int __init netdev_boot_setup(char *str)
644{
645 int ints[5];
646 struct ifmap map;
647
648 str = get_options(str, ARRAY_SIZE(ints), ints);
649 if (!str || !*str)
650 return 0;
651
652 /* Save settings */
653 memset(&map, 0, sizeof(map));
654 if (ints[0] > 0)
655 map.irq = ints[1];
656 if (ints[0] > 1)
657 map.base_addr = ints[2];
658 if (ints[0] > 2)
659 map.mem_start = ints[3];
660 if (ints[0] > 3)
661 map.mem_end = ints[4];
662
663 /* Add new entry to the list */
664 return netdev_boot_setup_add(str, &map);
665}
666
667__setup("netdev=", netdev_boot_setup);
668
669/*******************************************************************************
eb13da1a 670 *
671 * Device Interface Subroutines
672 *
673 *******************************************************************************/
1da177e4 674
a54acb3a
ND
675/**
676 * dev_get_iflink - get 'iflink' value of a interface
677 * @dev: targeted interface
678 *
679 * Indicates the ifindex the interface is linked to.
680 * Physical interfaces have the same 'ifindex' and 'iflink' values.
681 */
682
683int dev_get_iflink(const struct net_device *dev)
684{
685 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
686 return dev->netdev_ops->ndo_get_iflink(dev);
687
7a66bbc9 688 return dev->ifindex;
a54acb3a
ND
689}
690EXPORT_SYMBOL(dev_get_iflink);
691
fc4099f1
PS
692/**
693 * dev_fill_metadata_dst - Retrieve tunnel egress information.
694 * @dev: targeted interface
695 * @skb: The packet.
696 *
697 * For better visibility of tunnel traffic OVS needs to retrieve
698 * egress tunnel information for a packet. Following API allows
699 * user to get this info.
700 */
701int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
702{
703 struct ip_tunnel_info *info;
704
705 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
706 return -EINVAL;
707
708 info = skb_tunnel_info_unclone(skb);
709 if (!info)
710 return -ENOMEM;
711 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
712 return -EINVAL;
713
714 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
715}
716EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
717
1da177e4
LT
718/**
719 * __dev_get_by_name - find a device by its name
c4ea43c5 720 * @net: the applicable net namespace
1da177e4
LT
721 * @name: name to find
722 *
723 * Find an interface by name. Must be called under RTNL semaphore
724 * or @dev_base_lock. If the name is found a pointer to the device
725 * is returned. If the name is not found then %NULL is returned. The
726 * reference counters are not incremented so the caller must be
727 * careful with locks.
728 */
729
881d966b 730struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 731{
0bd8d536
ED
732 struct net_device *dev;
733 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 734
b67bfe0d 735 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
736 if (!strncmp(dev->name, name, IFNAMSIZ))
737 return dev;
0bd8d536 738
1da177e4
LT
739 return NULL;
740}
d1b19dff 741EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 742
72c9528b 743/**
722c9a0c 744 * dev_get_by_name_rcu - find a device by its name
745 * @net: the applicable net namespace
746 * @name: name to find
747 *
748 * Find an interface by name.
749 * If the name is found a pointer to the device is returned.
750 * If the name is not found then %NULL is returned.
751 * The reference counters are not incremented so the caller must be
752 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
753 */
754
755struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
756{
72c9528b
ED
757 struct net_device *dev;
758 struct hlist_head *head = dev_name_hash(net, name);
759
b67bfe0d 760 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
761 if (!strncmp(dev->name, name, IFNAMSIZ))
762 return dev;
763
764 return NULL;
765}
766EXPORT_SYMBOL(dev_get_by_name_rcu);
767
1da177e4
LT
768/**
769 * dev_get_by_name - find a device by its name
c4ea43c5 770 * @net: the applicable net namespace
1da177e4
LT
771 * @name: name to find
772 *
773 * Find an interface by name. This can be called from any
774 * context and does its own locking. The returned handle has
775 * the usage count incremented and the caller must use dev_put() to
776 * release it when it is no longer needed. %NULL is returned if no
777 * matching device is found.
778 */
779
881d966b 780struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
781{
782 struct net_device *dev;
783
72c9528b
ED
784 rcu_read_lock();
785 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
786 if (dev)
787 dev_hold(dev);
72c9528b 788 rcu_read_unlock();
1da177e4
LT
789 return dev;
790}
d1b19dff 791EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
792
793/**
794 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 795 * @net: the applicable net namespace
1da177e4
LT
796 * @ifindex: index of device
797 *
798 * Search for an interface by index. Returns %NULL if the device
799 * is not found or a pointer to the device. The device has not
800 * had its reference counter increased so the caller must be careful
801 * about locking. The caller must hold either the RTNL semaphore
802 * or @dev_base_lock.
803 */
804
881d966b 805struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 806{
0bd8d536
ED
807 struct net_device *dev;
808 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 809
b67bfe0d 810 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
811 if (dev->ifindex == ifindex)
812 return dev;
0bd8d536 813
1da177e4
LT
814 return NULL;
815}
d1b19dff 816EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 817
fb699dfd
ED
818/**
819 * dev_get_by_index_rcu - find a device by its ifindex
820 * @net: the applicable net namespace
821 * @ifindex: index of device
822 *
823 * Search for an interface by index. Returns %NULL if the device
824 * is not found or a pointer to the device. The device has not
825 * had its reference counter increased so the caller must be careful
826 * about locking. The caller must hold RCU lock.
827 */
828
829struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
830{
fb699dfd
ED
831 struct net_device *dev;
832 struct hlist_head *head = dev_index_hash(net, ifindex);
833
b67bfe0d 834 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
835 if (dev->ifindex == ifindex)
836 return dev;
837
838 return NULL;
839}
840EXPORT_SYMBOL(dev_get_by_index_rcu);
841
1da177e4
LT
842
843/**
844 * dev_get_by_index - find a device by its ifindex
c4ea43c5 845 * @net: the applicable net namespace
1da177e4
LT
846 * @ifindex: index of device
847 *
848 * Search for an interface by index. Returns NULL if the device
849 * is not found or a pointer to the device. The device returned has
850 * had a reference added and the pointer is safe until the user calls
851 * dev_put to indicate they have finished with it.
852 */
853
881d966b 854struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
855{
856 struct net_device *dev;
857
fb699dfd
ED
858 rcu_read_lock();
859 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
860 if (dev)
861 dev_hold(dev);
fb699dfd 862 rcu_read_unlock();
1da177e4
LT
863 return dev;
864}
d1b19dff 865EXPORT_SYMBOL(dev_get_by_index);
1da177e4 866
5dbe7c17
NS
867/**
868 * netdev_get_name - get a netdevice name, knowing its ifindex.
869 * @net: network namespace
870 * @name: a pointer to the buffer where the name will be stored.
871 * @ifindex: the ifindex of the interface to get the name from.
872 *
873 * The use of raw_seqcount_begin() and cond_resched() before
874 * retrying is required as we want to give the writers a chance
875 * to complete when CONFIG_PREEMPT is not set.
876 */
877int netdev_get_name(struct net *net, char *name, int ifindex)
878{
879 struct net_device *dev;
880 unsigned int seq;
881
882retry:
883 seq = raw_seqcount_begin(&devnet_rename_seq);
884 rcu_read_lock();
885 dev = dev_get_by_index_rcu(net, ifindex);
886 if (!dev) {
887 rcu_read_unlock();
888 return -ENODEV;
889 }
890
891 strcpy(name, dev->name);
892 rcu_read_unlock();
893 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
894 cond_resched();
895 goto retry;
896 }
897
898 return 0;
899}
900
1da177e4 901/**
941666c2 902 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 903 * @net: the applicable net namespace
1da177e4
LT
904 * @type: media type of device
905 * @ha: hardware address
906 *
907 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
908 * is not found or a pointer to the device.
909 * The caller must hold RCU or RTNL.
941666c2 910 * The returned device has not had its ref count increased
1da177e4
LT
911 * and the caller must therefore be careful about locking
912 *
1da177e4
LT
913 */
914
941666c2
ED
915struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
916 const char *ha)
1da177e4
LT
917{
918 struct net_device *dev;
919
941666c2 920 for_each_netdev_rcu(net, dev)
1da177e4
LT
921 if (dev->type == type &&
922 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
923 return dev;
924
925 return NULL;
1da177e4 926}
941666c2 927EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 928
881d966b 929struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
930{
931 struct net_device *dev;
932
4e9cac2b 933 ASSERT_RTNL();
881d966b 934 for_each_netdev(net, dev)
4e9cac2b 935 if (dev->type == type)
7562f876
PE
936 return dev;
937
938 return NULL;
4e9cac2b 939}
4e9cac2b
PM
940EXPORT_SYMBOL(__dev_getfirstbyhwtype);
941
881d966b 942struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 943{
99fe3c39 944 struct net_device *dev, *ret = NULL;
4e9cac2b 945
99fe3c39
ED
946 rcu_read_lock();
947 for_each_netdev_rcu(net, dev)
948 if (dev->type == type) {
949 dev_hold(dev);
950 ret = dev;
951 break;
952 }
953 rcu_read_unlock();
954 return ret;
1da177e4 955}
1da177e4
LT
956EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958/**
6c555490 959 * __dev_get_by_flags - find any device with given flags
c4ea43c5 960 * @net: the applicable net namespace
1da177e4
LT
961 * @if_flags: IFF_* values
962 * @mask: bitmask of bits in if_flags to check
963 *
964 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 965 * is not found or a pointer to the device. Must be called inside
6c555490 966 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
967 */
968
6c555490
WC
969struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 unsigned short mask)
1da177e4 971{
7562f876 972 struct net_device *dev, *ret;
1da177e4 973
6c555490
WC
974 ASSERT_RTNL();
975
7562f876 976 ret = NULL;
6c555490 977 for_each_netdev(net, dev) {
1da177e4 978 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 979 ret = dev;
1da177e4
LT
980 break;
981 }
982 }
7562f876 983 return ret;
1da177e4 984}
6c555490 985EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
986
987/**
988 * dev_valid_name - check if name is okay for network device
989 * @name: name string
990 *
991 * Network device names need to be valid file names to
c7fa9d18
DM
992 * to allow sysfs to work. We also disallow any kind of
993 * whitespace.
1da177e4 994 */
95f050bf 995bool dev_valid_name(const char *name)
1da177e4 996{
c7fa9d18 997 if (*name == '\0')
95f050bf 998 return false;
b6fe17d6 999 if (strlen(name) >= IFNAMSIZ)
95f050bf 1000 return false;
c7fa9d18 1001 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1002 return false;
c7fa9d18
DM
1003
1004 while (*name) {
a4176a93 1005 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1006 return false;
c7fa9d18
DM
1007 name++;
1008 }
95f050bf 1009 return true;
1da177e4 1010}
d1b19dff 1011EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1012
1013/**
b267b179
EB
1014 * __dev_alloc_name - allocate a name for a device
1015 * @net: network namespace to allocate the device name in
1da177e4 1016 * @name: name format string
b267b179 1017 * @buf: scratch buffer and result name string
1da177e4
LT
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1026 */
1027
b267b179 1028static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1029{
1030 int i = 0;
1da177e4
LT
1031 const char *p;
1032 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1033 unsigned long *inuse;
1da177e4
LT
1034 struct net_device *d;
1035
1036 p = strnchr(name, IFNAMSIZ-1, '%');
1037 if (p) {
1038 /*
1039 * Verify the string as this thing may have come from
1040 * the user. There must be either one "%d" and no other "%"
1041 * characters.
1042 */
1043 if (p[1] != 'd' || strchr(p + 2, '%'))
1044 return -EINVAL;
1045
1046 /* Use one page as a bit array of possible slots */
cfcabdcc 1047 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1048 if (!inuse)
1049 return -ENOMEM;
1050
881d966b 1051 for_each_netdev(net, d) {
1da177e4
LT
1052 if (!sscanf(d->name, name, &i))
1053 continue;
1054 if (i < 0 || i >= max_netdevices)
1055 continue;
1056
1057 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1058 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1059 if (!strncmp(buf, d->name, IFNAMSIZ))
1060 set_bit(i, inuse);
1061 }
1062
1063 i = find_first_zero_bit(inuse, max_netdevices);
1064 free_page((unsigned long) inuse);
1065 }
1066
d9031024
OP
1067 if (buf != name)
1068 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1069 if (!__dev_get_by_name(net, buf))
1da177e4 1070 return i;
1da177e4
LT
1071
1072 /* It is possible to run out of possible slots
1073 * when the name is long and there isn't enough space left
1074 * for the digits, or if all bits are used.
1075 */
1076 return -ENFILE;
1077}
1078
b267b179
EB
1079/**
1080 * dev_alloc_name - allocate a name for a device
1081 * @dev: device
1082 * @name: name format string
1083 *
1084 * Passed a format string - eg "lt%d" it will try and find a suitable
1085 * id. It scans list of devices to build up a free map, then chooses
1086 * the first empty slot. The caller must hold the dev_base or rtnl lock
1087 * while allocating the name and adding the device in order to avoid
1088 * duplicates.
1089 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1090 * Returns the number of the unit assigned or a negative errno code.
1091 */
1092
1093int dev_alloc_name(struct net_device *dev, const char *name)
1094{
1095 char buf[IFNAMSIZ];
1096 struct net *net;
1097 int ret;
1098
c346dca1
YH
1099 BUG_ON(!dev_net(dev));
1100 net = dev_net(dev);
b267b179
EB
1101 ret = __dev_alloc_name(net, name, buf);
1102 if (ret >= 0)
1103 strlcpy(dev->name, buf, IFNAMSIZ);
1104 return ret;
1105}
d1b19dff 1106EXPORT_SYMBOL(dev_alloc_name);
b267b179 1107
828de4f6
G
1108static int dev_alloc_name_ns(struct net *net,
1109 struct net_device *dev,
1110 const char *name)
d9031024 1111{
828de4f6
G
1112 char buf[IFNAMSIZ];
1113 int ret;
8ce6cebc 1114
828de4f6
G
1115 ret = __dev_alloc_name(net, name, buf);
1116 if (ret >= 0)
1117 strlcpy(dev->name, buf, IFNAMSIZ);
1118 return ret;
1119}
1120
1121static int dev_get_valid_name(struct net *net,
1122 struct net_device *dev,
1123 const char *name)
1124{
1125 BUG_ON(!net);
8ce6cebc 1126
d9031024
OP
1127 if (!dev_valid_name(name))
1128 return -EINVAL;
1129
1c5cae81 1130 if (strchr(name, '%'))
828de4f6 1131 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1132 else if (__dev_get_by_name(net, name))
1133 return -EEXIST;
8ce6cebc
DL
1134 else if (dev->name != name)
1135 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1136
1137 return 0;
1138}
1da177e4
LT
1139
1140/**
1141 * dev_change_name - change name of a device
1142 * @dev: device
1143 * @newname: name (or format string) must be at least IFNAMSIZ
1144 *
1145 * Change name of a device, can pass format strings "eth%d".
1146 * for wildcarding.
1147 */
cf04a4c7 1148int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1149{
238fa362 1150 unsigned char old_assign_type;
fcc5a03a 1151 char oldname[IFNAMSIZ];
1da177e4 1152 int err = 0;
fcc5a03a 1153 int ret;
881d966b 1154 struct net *net;
1da177e4
LT
1155
1156 ASSERT_RTNL();
c346dca1 1157 BUG_ON(!dev_net(dev));
1da177e4 1158
c346dca1 1159 net = dev_net(dev);
1da177e4
LT
1160 if (dev->flags & IFF_UP)
1161 return -EBUSY;
1162
30e6c9fa 1163 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1164
1165 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1166 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1167 return 0;
c91f6df2 1168 }
c8d90dca 1169
fcc5a03a
HX
1170 memcpy(oldname, dev->name, IFNAMSIZ);
1171
828de4f6 1172 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1173 if (err < 0) {
30e6c9fa 1174 write_seqcount_end(&devnet_rename_seq);
d9031024 1175 return err;
c91f6df2 1176 }
1da177e4 1177
6fe82a39
VF
1178 if (oldname[0] && !strchr(oldname, '%'))
1179 netdev_info(dev, "renamed from %s\n", oldname);
1180
238fa362
TG
1181 old_assign_type = dev->name_assign_type;
1182 dev->name_assign_type = NET_NAME_RENAMED;
1183
fcc5a03a 1184rollback:
a1b3f594
EB
1185 ret = device_rename(&dev->dev, dev->name);
1186 if (ret) {
1187 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1188 dev->name_assign_type = old_assign_type;
30e6c9fa 1189 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1190 return ret;
dcc99773 1191 }
7f988eab 1192
30e6c9fa 1193 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1194
5bb025fa
VF
1195 netdev_adjacent_rename_links(dev, oldname);
1196
7f988eab 1197 write_lock_bh(&dev_base_lock);
372b2312 1198 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1199 write_unlock_bh(&dev_base_lock);
1200
1201 synchronize_rcu();
1202
1203 write_lock_bh(&dev_base_lock);
1204 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1205 write_unlock_bh(&dev_base_lock);
1206
056925ab 1207 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1208 ret = notifier_to_errno(ret);
1209
1210 if (ret) {
91e9c07b
ED
1211 /* err >= 0 after dev_alloc_name() or stores the first errno */
1212 if (err >= 0) {
fcc5a03a 1213 err = ret;
30e6c9fa 1214 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1215 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1216 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1217 dev->name_assign_type = old_assign_type;
1218 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1219 goto rollback;
91e9c07b 1220 } else {
7b6cd1ce 1221 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1222 dev->name, ret);
fcc5a03a
HX
1223 }
1224 }
1da177e4
LT
1225
1226 return err;
1227}
1228
0b815a1a
SH
1229/**
1230 * dev_set_alias - change ifalias of a device
1231 * @dev: device
1232 * @alias: name up to IFALIASZ
f0db275a 1233 * @len: limit of bytes to copy from info
0b815a1a
SH
1234 *
1235 * Set ifalias for a device,
1236 */
1237int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1238{
7364e445
AK
1239 char *new_ifalias;
1240
0b815a1a
SH
1241 ASSERT_RTNL();
1242
1243 if (len >= IFALIASZ)
1244 return -EINVAL;
1245
96ca4a2c 1246 if (!len) {
388dfc2d
SK
1247 kfree(dev->ifalias);
1248 dev->ifalias = NULL;
96ca4a2c
OH
1249 return 0;
1250 }
1251
7364e445
AK
1252 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1253 if (!new_ifalias)
0b815a1a 1254 return -ENOMEM;
7364e445 1255 dev->ifalias = new_ifalias;
c28294b9
AP
1256 memcpy(dev->ifalias, alias, len);
1257 dev->ifalias[len] = 0;
0b815a1a 1258
0b815a1a
SH
1259 return len;
1260}
1261
1262
d8a33ac4 1263/**
3041a069 1264 * netdev_features_change - device changes features
d8a33ac4
SH
1265 * @dev: device to cause notification
1266 *
1267 * Called to indicate a device has changed features.
1268 */
1269void netdev_features_change(struct net_device *dev)
1270{
056925ab 1271 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1272}
1273EXPORT_SYMBOL(netdev_features_change);
1274
1da177e4
LT
1275/**
1276 * netdev_state_change - device changes state
1277 * @dev: device to cause notification
1278 *
1279 * Called to indicate a device has changed state. This function calls
1280 * the notifier chains for netdev_chain and sends a NEWLINK message
1281 * to the routing socket.
1282 */
1283void netdev_state_change(struct net_device *dev)
1284{
1285 if (dev->flags & IFF_UP) {
54951194
LP
1286 struct netdev_notifier_change_info change_info;
1287
1288 change_info.flags_changed = 0;
1289 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1290 &change_info.info);
7f294054 1291 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1292 }
1293}
d1b19dff 1294EXPORT_SYMBOL(netdev_state_change);
1da177e4 1295
ee89bab1 1296/**
722c9a0c 1297 * netdev_notify_peers - notify network peers about existence of @dev
1298 * @dev: network device
ee89bab1
AW
1299 *
1300 * Generate traffic such that interested network peers are aware of
1301 * @dev, such as by generating a gratuitous ARP. This may be used when
1302 * a device wants to inform the rest of the network about some sort of
1303 * reconfiguration such as a failover event or virtual machine
1304 * migration.
1305 */
1306void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1307{
ee89bab1
AW
1308 rtnl_lock();
1309 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1310 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1311 rtnl_unlock();
c1da4ac7 1312}
ee89bab1 1313EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1314
bd380811 1315static int __dev_open(struct net_device *dev)
1da177e4 1316{
d314774c 1317 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1318 int ret;
1da177e4 1319
e46b66bc
BH
1320 ASSERT_RTNL();
1321
1da177e4
LT
1322 if (!netif_device_present(dev))
1323 return -ENODEV;
1324
ca99ca14
NH
1325 /* Block netpoll from trying to do any rx path servicing.
1326 * If we don't do this there is a chance ndo_poll_controller
1327 * or ndo_poll may be running while we open the device
1328 */
66b5552f 1329 netpoll_poll_disable(dev);
ca99ca14 1330
3b8bcfd5
JB
1331 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1332 ret = notifier_to_errno(ret);
1333 if (ret)
1334 return ret;
1335
1da177e4 1336 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1337
d314774c
SH
1338 if (ops->ndo_validate_addr)
1339 ret = ops->ndo_validate_addr(dev);
bada339b 1340
d314774c
SH
1341 if (!ret && ops->ndo_open)
1342 ret = ops->ndo_open(dev);
1da177e4 1343
66b5552f 1344 netpoll_poll_enable(dev);
ca99ca14 1345
bada339b
JG
1346 if (ret)
1347 clear_bit(__LINK_STATE_START, &dev->state);
1348 else {
1da177e4 1349 dev->flags |= IFF_UP;
4417da66 1350 dev_set_rx_mode(dev);
1da177e4 1351 dev_activate(dev);
7bf23575 1352 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1353 }
bada339b 1354
1da177e4
LT
1355 return ret;
1356}
1357
1358/**
bd380811
PM
1359 * dev_open - prepare an interface for use.
1360 * @dev: device to open
1da177e4 1361 *
bd380811
PM
1362 * Takes a device from down to up state. The device's private open
1363 * function is invoked and then the multicast lists are loaded. Finally
1364 * the device is moved into the up state and a %NETDEV_UP message is
1365 * sent to the netdev notifier chain.
1366 *
1367 * Calling this function on an active interface is a nop. On a failure
1368 * a negative errno code is returned.
1da177e4 1369 */
bd380811
PM
1370int dev_open(struct net_device *dev)
1371{
1372 int ret;
1373
bd380811
PM
1374 if (dev->flags & IFF_UP)
1375 return 0;
1376
bd380811
PM
1377 ret = __dev_open(dev);
1378 if (ret < 0)
1379 return ret;
1380
7f294054 1381 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1382 call_netdevice_notifiers(NETDEV_UP, dev);
1383
1384 return ret;
1385}
1386EXPORT_SYMBOL(dev_open);
1387
44345724 1388static int __dev_close_many(struct list_head *head)
1da177e4 1389{
44345724 1390 struct net_device *dev;
e46b66bc 1391
bd380811 1392 ASSERT_RTNL();
9d5010db
DM
1393 might_sleep();
1394
5cde2829 1395 list_for_each_entry(dev, head, close_list) {
3f4df206 1396 /* Temporarily disable netpoll until the interface is down */
66b5552f 1397 netpoll_poll_disable(dev);
3f4df206 1398
44345724 1399 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1400
44345724 1401 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1402
44345724
OP
1403 /* Synchronize to scheduled poll. We cannot touch poll list, it
1404 * can be even on different cpu. So just clear netif_running().
1405 *
1406 * dev->stop() will invoke napi_disable() on all of it's
1407 * napi_struct instances on this device.
1408 */
4e857c58 1409 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1410 }
1da177e4 1411
44345724 1412 dev_deactivate_many(head);
d8b2a4d2 1413
5cde2829 1414 list_for_each_entry(dev, head, close_list) {
44345724 1415 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1416
44345724
OP
1417 /*
1418 * Call the device specific close. This cannot fail.
1419 * Only if device is UP
1420 *
1421 * We allow it to be called even after a DETACH hot-plug
1422 * event.
1423 */
1424 if (ops->ndo_stop)
1425 ops->ndo_stop(dev);
1426
44345724 1427 dev->flags &= ~IFF_UP;
66b5552f 1428 netpoll_poll_enable(dev);
44345724
OP
1429 }
1430
1431 return 0;
1432}
1433
1434static int __dev_close(struct net_device *dev)
1435{
f87e6f47 1436 int retval;
44345724
OP
1437 LIST_HEAD(single);
1438
5cde2829 1439 list_add(&dev->close_list, &single);
f87e6f47
LT
1440 retval = __dev_close_many(&single);
1441 list_del(&single);
ca99ca14 1442
f87e6f47 1443 return retval;
44345724
OP
1444}
1445
99c4a26a 1446int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1447{
1448 struct net_device *dev, *tmp;
1da177e4 1449
5cde2829
EB
1450 /* Remove the devices that don't need to be closed */
1451 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1452 if (!(dev->flags & IFF_UP))
5cde2829 1453 list_del_init(&dev->close_list);
44345724
OP
1454
1455 __dev_close_many(head);
1da177e4 1456
5cde2829 1457 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1458 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1459 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1460 if (unlink)
1461 list_del_init(&dev->close_list);
44345724 1462 }
bd380811
PM
1463
1464 return 0;
1465}
99c4a26a 1466EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1467
1468/**
1469 * dev_close - shutdown an interface.
1470 * @dev: device to shutdown
1471 *
1472 * This function moves an active device into down state. A
1473 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1474 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1475 * chain.
1476 */
1477int dev_close(struct net_device *dev)
1478{
e14a5993
ED
1479 if (dev->flags & IFF_UP) {
1480 LIST_HEAD(single);
1da177e4 1481
5cde2829 1482 list_add(&dev->close_list, &single);
99c4a26a 1483 dev_close_many(&single, true);
e14a5993
ED
1484 list_del(&single);
1485 }
da6e378b 1486 return 0;
1da177e4 1487}
d1b19dff 1488EXPORT_SYMBOL(dev_close);
1da177e4
LT
1489
1490
0187bdfb
BH
1491/**
1492 * dev_disable_lro - disable Large Receive Offload on a device
1493 * @dev: device
1494 *
1495 * Disable Large Receive Offload (LRO) on a net device. Must be
1496 * called under RTNL. This is needed if received packets may be
1497 * forwarded to another interface.
1498 */
1499void dev_disable_lro(struct net_device *dev)
1500{
fbe168ba
MK
1501 struct net_device *lower_dev;
1502 struct list_head *iter;
529d0489 1503
bc5787c6
MM
1504 dev->wanted_features &= ~NETIF_F_LRO;
1505 netdev_update_features(dev);
27660515 1506
22d5969f
MM
1507 if (unlikely(dev->features & NETIF_F_LRO))
1508 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1509
1510 netdev_for_each_lower_dev(dev, lower_dev, iter)
1511 dev_disable_lro(lower_dev);
0187bdfb
BH
1512}
1513EXPORT_SYMBOL(dev_disable_lro);
1514
351638e7
JP
1515static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1516 struct net_device *dev)
1517{
1518 struct netdev_notifier_info info;
1519
1520 netdev_notifier_info_init(&info, dev);
1521 return nb->notifier_call(nb, val, &info);
1522}
0187bdfb 1523
881d966b
EB
1524static int dev_boot_phase = 1;
1525
1da177e4 1526/**
722c9a0c 1527 * register_netdevice_notifier - register a network notifier block
1528 * @nb: notifier
1da177e4 1529 *
722c9a0c 1530 * Register a notifier to be called when network device events occur.
1531 * The notifier passed is linked into the kernel structures and must
1532 * not be reused until it has been unregistered. A negative errno code
1533 * is returned on a failure.
1da177e4 1534 *
722c9a0c 1535 * When registered all registration and up events are replayed
1536 * to the new notifier to allow device to have a race free
1537 * view of the network device list.
1da177e4
LT
1538 */
1539
1540int register_netdevice_notifier(struct notifier_block *nb)
1541{
1542 struct net_device *dev;
fcc5a03a 1543 struct net_device *last;
881d966b 1544 struct net *net;
1da177e4
LT
1545 int err;
1546
1547 rtnl_lock();
f07d5b94 1548 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1549 if (err)
1550 goto unlock;
881d966b
EB
1551 if (dev_boot_phase)
1552 goto unlock;
1553 for_each_net(net) {
1554 for_each_netdev(net, dev) {
351638e7 1555 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1556 err = notifier_to_errno(err);
1557 if (err)
1558 goto rollback;
1559
1560 if (!(dev->flags & IFF_UP))
1561 continue;
1da177e4 1562
351638e7 1563 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1564 }
1da177e4 1565 }
fcc5a03a
HX
1566
1567unlock:
1da177e4
LT
1568 rtnl_unlock();
1569 return err;
fcc5a03a
HX
1570
1571rollback:
1572 last = dev;
881d966b
EB
1573 for_each_net(net) {
1574 for_each_netdev(net, dev) {
1575 if (dev == last)
8f891489 1576 goto outroll;
fcc5a03a 1577
881d966b 1578 if (dev->flags & IFF_UP) {
351638e7
JP
1579 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1580 dev);
1581 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1582 }
351638e7 1583 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1584 }
fcc5a03a 1585 }
c67625a1 1586
8f891489 1587outroll:
c67625a1 1588 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1589 goto unlock;
1da177e4 1590}
d1b19dff 1591EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1592
1593/**
722c9a0c 1594 * unregister_netdevice_notifier - unregister a network notifier block
1595 * @nb: notifier
1da177e4 1596 *
722c9a0c 1597 * Unregister a notifier previously registered by
1598 * register_netdevice_notifier(). The notifier is unlinked into the
1599 * kernel structures and may then be reused. A negative errno code
1600 * is returned on a failure.
7d3d43da 1601 *
722c9a0c 1602 * After unregistering unregister and down device events are synthesized
1603 * for all devices on the device list to the removed notifier to remove
1604 * the need for special case cleanup code.
1da177e4
LT
1605 */
1606
1607int unregister_netdevice_notifier(struct notifier_block *nb)
1608{
7d3d43da
EB
1609 struct net_device *dev;
1610 struct net *net;
9f514950
HX
1611 int err;
1612
1613 rtnl_lock();
f07d5b94 1614 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1615 if (err)
1616 goto unlock;
1617
1618 for_each_net(net) {
1619 for_each_netdev(net, dev) {
1620 if (dev->flags & IFF_UP) {
351638e7
JP
1621 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1622 dev);
1623 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1624 }
351638e7 1625 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1626 }
1627 }
1628unlock:
9f514950
HX
1629 rtnl_unlock();
1630 return err;
1da177e4 1631}
d1b19dff 1632EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1633
351638e7
JP
1634/**
1635 * call_netdevice_notifiers_info - call all network notifier blocks
1636 * @val: value passed unmodified to notifier function
1637 * @dev: net_device pointer passed unmodified to notifier function
1638 * @info: notifier information data
1639 *
1640 * Call all network notifier blocks. Parameters and return value
1641 * are as for raw_notifier_call_chain().
1642 */
1643
1d143d9f 1644static int call_netdevice_notifiers_info(unsigned long val,
1645 struct net_device *dev,
1646 struct netdev_notifier_info *info)
351638e7
JP
1647{
1648 ASSERT_RTNL();
1649 netdev_notifier_info_init(info, dev);
1650 return raw_notifier_call_chain(&netdev_chain, val, info);
1651}
351638e7 1652
1da177e4
LT
1653/**
1654 * call_netdevice_notifiers - call all network notifier blocks
1655 * @val: value passed unmodified to notifier function
c4ea43c5 1656 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1657 *
1658 * Call all network notifier blocks. Parameters and return value
f07d5b94 1659 * are as for raw_notifier_call_chain().
1da177e4
LT
1660 */
1661
ad7379d4 1662int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1663{
351638e7
JP
1664 struct netdev_notifier_info info;
1665
1666 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1667}
edf947f1 1668EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1669
1cf51900 1670#ifdef CONFIG_NET_INGRESS
4577139b
DB
1671static struct static_key ingress_needed __read_mostly;
1672
1673void net_inc_ingress_queue(void)
1674{
1675 static_key_slow_inc(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1678
1679void net_dec_ingress_queue(void)
1680{
1681 static_key_slow_dec(&ingress_needed);
1682}
1683EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1684#endif
1685
1f211a1b
DB
1686#ifdef CONFIG_NET_EGRESS
1687static struct static_key egress_needed __read_mostly;
1688
1689void net_inc_egress_queue(void)
1690{
1691 static_key_slow_inc(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1694
1695void net_dec_egress_queue(void)
1696{
1697 static_key_slow_dec(&egress_needed);
1698}
1699EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1700#endif
1701
c5905afb 1702static struct static_key netstamp_needed __read_mostly;
b90e5794 1703#ifdef HAVE_JUMP_LABEL
b90e5794 1704static atomic_t netstamp_needed_deferred;
13baa00a 1705static atomic_t netstamp_wanted;
5fa8bbda 1706static void netstamp_clear(struct work_struct *work)
1da177e4 1707{
b90e5794 1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1709 int wanted;
b90e5794 1710
13baa00a
ED
1711 wanted = atomic_add_return(deferred, &netstamp_wanted);
1712 if (wanted > 0)
1713 static_key_enable(&netstamp_needed);
1714 else
1715 static_key_disable(&netstamp_needed);
5fa8bbda
ED
1716}
1717static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1718#endif
5fa8bbda
ED
1719
1720void net_enable_timestamp(void)
1721{
13baa00a
ED
1722#ifdef HAVE_JUMP_LABEL
1723 int wanted;
1724
1725 while (1) {
1726 wanted = atomic_read(&netstamp_wanted);
1727 if (wanted <= 0)
1728 break;
1729 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1730 return;
1731 }
1732 atomic_inc(&netstamp_needed_deferred);
1733 schedule_work(&netstamp_work);
1734#else
c5905afb 1735 static_key_slow_inc(&netstamp_needed);
13baa00a 1736#endif
1da177e4 1737}
d1b19dff 1738EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1739
1740void net_disable_timestamp(void)
1741{
b90e5794 1742#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1743 int wanted;
1744
1745 while (1) {
1746 wanted = atomic_read(&netstamp_wanted);
1747 if (wanted <= 1)
1748 break;
1749 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1750 return;
1751 }
1752 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1753 schedule_work(&netstamp_work);
1754#else
c5905afb 1755 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1756#endif
1da177e4 1757}
d1b19dff 1758EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1759
3b098e2d 1760static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1761{
2456e855 1762 skb->tstamp = 0;
c5905afb 1763 if (static_key_false(&netstamp_needed))
a61bbcf2 1764 __net_timestamp(skb);
1da177e4
LT
1765}
1766
588f0330 1767#define net_timestamp_check(COND, SKB) \
c5905afb 1768 if (static_key_false(&netstamp_needed)) { \
2456e855 1769 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1770 __net_timestamp(SKB); \
1771 } \
3b098e2d 1772
f4b05d27 1773bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1774{
1775 unsigned int len;
1776
1777 if (!(dev->flags & IFF_UP))
1778 return false;
1779
1780 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1781 if (skb->len <= len)
1782 return true;
1783
1784 /* if TSO is enabled, we don't care about the length as the packet
1785 * could be forwarded without being segmented before
1786 */
1787 if (skb_is_gso(skb))
1788 return true;
1789
1790 return false;
1791}
1ee481fb 1792EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1793
a0265d28
HX
1794int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1795{
4e3264d2 1796 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1797
4e3264d2
MKL
1798 if (likely(!ret)) {
1799 skb->protocol = eth_type_trans(skb, dev);
1800 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1801 }
a0265d28 1802
4e3264d2 1803 return ret;
a0265d28
HX
1804}
1805EXPORT_SYMBOL_GPL(__dev_forward_skb);
1806
44540960
AB
1807/**
1808 * dev_forward_skb - loopback an skb to another netif
1809 *
1810 * @dev: destination network device
1811 * @skb: buffer to forward
1812 *
1813 * return values:
1814 * NET_RX_SUCCESS (no congestion)
6ec82562 1815 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1816 *
1817 * dev_forward_skb can be used for injecting an skb from the
1818 * start_xmit function of one device into the receive queue
1819 * of another device.
1820 *
1821 * The receiving device may be in another namespace, so
1822 * we have to clear all information in the skb that could
1823 * impact namespace isolation.
1824 */
1825int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1826{
a0265d28 1827 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1828}
1829EXPORT_SYMBOL_GPL(dev_forward_skb);
1830
71d9dec2
CG
1831static inline int deliver_skb(struct sk_buff *skb,
1832 struct packet_type *pt_prev,
1833 struct net_device *orig_dev)
1834{
1080e512
MT
1835 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1836 return -ENOMEM;
71d9dec2
CG
1837 atomic_inc(&skb->users);
1838 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1839}
1840
7866a621
SN
1841static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1842 struct packet_type **pt,
fbcb2170
JP
1843 struct net_device *orig_dev,
1844 __be16 type,
7866a621
SN
1845 struct list_head *ptype_list)
1846{
1847 struct packet_type *ptype, *pt_prev = *pt;
1848
1849 list_for_each_entry_rcu(ptype, ptype_list, list) {
1850 if (ptype->type != type)
1851 continue;
1852 if (pt_prev)
fbcb2170 1853 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1854 pt_prev = ptype;
1855 }
1856 *pt = pt_prev;
1857}
1858
c0de08d0
EL
1859static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1860{
a3d744e9 1861 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1862 return false;
1863
1864 if (ptype->id_match)
1865 return ptype->id_match(ptype, skb->sk);
1866 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1867 return true;
1868
1869 return false;
1870}
1871
1da177e4
LT
1872/*
1873 * Support routine. Sends outgoing frames to any network
1874 * taps currently in use.
1875 */
1876
74b20582 1877void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1878{
1879 struct packet_type *ptype;
71d9dec2
CG
1880 struct sk_buff *skb2 = NULL;
1881 struct packet_type *pt_prev = NULL;
7866a621 1882 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1883
1da177e4 1884 rcu_read_lock();
7866a621
SN
1885again:
1886 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1887 /* Never send packets back to the socket
1888 * they originated from - MvS (miquels@drinkel.ow.org)
1889 */
7866a621
SN
1890 if (skb_loop_sk(ptype, skb))
1891 continue;
71d9dec2 1892
7866a621
SN
1893 if (pt_prev) {
1894 deliver_skb(skb2, pt_prev, skb->dev);
1895 pt_prev = ptype;
1896 continue;
1897 }
1da177e4 1898
7866a621
SN
1899 /* need to clone skb, done only once */
1900 skb2 = skb_clone(skb, GFP_ATOMIC);
1901 if (!skb2)
1902 goto out_unlock;
70978182 1903
7866a621 1904 net_timestamp_set(skb2);
1da177e4 1905
7866a621
SN
1906 /* skb->nh should be correctly
1907 * set by sender, so that the second statement is
1908 * just protection against buggy protocols.
1909 */
1910 skb_reset_mac_header(skb2);
1911
1912 if (skb_network_header(skb2) < skb2->data ||
1913 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1914 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1915 ntohs(skb2->protocol),
1916 dev->name);
1917 skb_reset_network_header(skb2);
1da177e4 1918 }
7866a621
SN
1919
1920 skb2->transport_header = skb2->network_header;
1921 skb2->pkt_type = PACKET_OUTGOING;
1922 pt_prev = ptype;
1923 }
1924
1925 if (ptype_list == &ptype_all) {
1926 ptype_list = &dev->ptype_all;
1927 goto again;
1da177e4 1928 }
7866a621 1929out_unlock:
71d9dec2
CG
1930 if (pt_prev)
1931 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1932 rcu_read_unlock();
1933}
74b20582 1934EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1935
2c53040f
BH
1936/**
1937 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1938 * @dev: Network device
1939 * @txq: number of queues available
1940 *
1941 * If real_num_tx_queues is changed the tc mappings may no longer be
1942 * valid. To resolve this verify the tc mapping remains valid and if
1943 * not NULL the mapping. With no priorities mapping to this
1944 * offset/count pair it will no longer be used. In the worst case TC0
1945 * is invalid nothing can be done so disable priority mappings. If is
1946 * expected that drivers will fix this mapping if they can before
1947 * calling netif_set_real_num_tx_queues.
1948 */
bb134d22 1949static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1950{
1951 int i;
1952 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1953
1954 /* If TC0 is invalidated disable TC mapping */
1955 if (tc->offset + tc->count > txq) {
7b6cd1ce 1956 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1957 dev->num_tc = 0;
1958 return;
1959 }
1960
1961 /* Invalidated prio to tc mappings set to TC0 */
1962 for (i = 1; i < TC_BITMASK + 1; i++) {
1963 int q = netdev_get_prio_tc_map(dev, i);
1964
1965 tc = &dev->tc_to_txq[q];
1966 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1967 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1968 i, q);
4f57c087
JF
1969 netdev_set_prio_tc_map(dev, i, 0);
1970 }
1971 }
1972}
1973
8d059b0f
AD
1974int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1975{
1976 if (dev->num_tc) {
1977 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1978 int i;
1979
1980 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1981 if ((txq - tc->offset) < tc->count)
1982 return i;
1983 }
1984
1985 return -1;
1986 }
1987
1988 return 0;
1989}
1990
537c00de
AD
1991#ifdef CONFIG_XPS
1992static DEFINE_MUTEX(xps_map_mutex);
1993#define xmap_dereference(P) \
1994 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1995
6234f874
AD
1996static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1997 int tci, u16 index)
537c00de 1998{
10cdc3f3
AD
1999 struct xps_map *map = NULL;
2000 int pos;
537c00de 2001
10cdc3f3 2002 if (dev_maps)
6234f874
AD
2003 map = xmap_dereference(dev_maps->cpu_map[tci]);
2004 if (!map)
2005 return false;
537c00de 2006
6234f874
AD
2007 for (pos = map->len; pos--;) {
2008 if (map->queues[pos] != index)
2009 continue;
2010
2011 if (map->len > 1) {
2012 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2013 break;
537c00de 2014 }
6234f874
AD
2015
2016 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2017 kfree_rcu(map, rcu);
2018 return false;
537c00de
AD
2019 }
2020
6234f874 2021 return true;
10cdc3f3
AD
2022}
2023
6234f874
AD
2024static bool remove_xps_queue_cpu(struct net_device *dev,
2025 struct xps_dev_maps *dev_maps,
2026 int cpu, u16 offset, u16 count)
2027{
184c449f
AD
2028 int num_tc = dev->num_tc ? : 1;
2029 bool active = false;
2030 int tci;
6234f874 2031
184c449f
AD
2032 for (tci = cpu * num_tc; num_tc--; tci++) {
2033 int i, j;
2034
2035 for (i = count, j = offset; i--; j++) {
2036 if (!remove_xps_queue(dev_maps, cpu, j))
2037 break;
2038 }
2039
2040 active |= i < 0;
6234f874
AD
2041 }
2042
184c449f 2043 return active;
6234f874
AD
2044}
2045
2046static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2047 u16 count)
10cdc3f3
AD
2048{
2049 struct xps_dev_maps *dev_maps;
024e9679 2050 int cpu, i;
10cdc3f3
AD
2051 bool active = false;
2052
2053 mutex_lock(&xps_map_mutex);
2054 dev_maps = xmap_dereference(dev->xps_maps);
2055
2056 if (!dev_maps)
2057 goto out_no_maps;
2058
6234f874
AD
2059 for_each_possible_cpu(cpu)
2060 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2061 offset, count);
10cdc3f3
AD
2062
2063 if (!active) {
537c00de
AD
2064 RCU_INIT_POINTER(dev->xps_maps, NULL);
2065 kfree_rcu(dev_maps, rcu);
2066 }
2067
6234f874 2068 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2069 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2070 NUMA_NO_NODE);
2071
537c00de
AD
2072out_no_maps:
2073 mutex_unlock(&xps_map_mutex);
2074}
2075
6234f874
AD
2076static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2077{
2078 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2079}
2080
01c5f864
AD
2081static struct xps_map *expand_xps_map(struct xps_map *map,
2082 int cpu, u16 index)
2083{
2084 struct xps_map *new_map;
2085 int alloc_len = XPS_MIN_MAP_ALLOC;
2086 int i, pos;
2087
2088 for (pos = 0; map && pos < map->len; pos++) {
2089 if (map->queues[pos] != index)
2090 continue;
2091 return map;
2092 }
2093
2094 /* Need to add queue to this CPU's existing map */
2095 if (map) {
2096 if (pos < map->alloc_len)
2097 return map;
2098
2099 alloc_len = map->alloc_len * 2;
2100 }
2101
2102 /* Need to allocate new map to store queue on this CPU's map */
2103 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2104 cpu_to_node(cpu));
2105 if (!new_map)
2106 return NULL;
2107
2108 for (i = 0; i < pos; i++)
2109 new_map->queues[i] = map->queues[i];
2110 new_map->alloc_len = alloc_len;
2111 new_map->len = pos;
2112
2113 return new_map;
2114}
2115
3573540c
MT
2116int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2117 u16 index)
537c00de 2118{
01c5f864 2119 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2120 int i, cpu, tci, numa_node_id = -2;
2121 int maps_sz, num_tc = 1, tc = 0;
537c00de 2122 struct xps_map *map, *new_map;
01c5f864 2123 bool active = false;
537c00de 2124
184c449f
AD
2125 if (dev->num_tc) {
2126 num_tc = dev->num_tc;
2127 tc = netdev_txq_to_tc(dev, index);
2128 if (tc < 0)
2129 return -EINVAL;
2130 }
2131
2132 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2133 if (maps_sz < L1_CACHE_BYTES)
2134 maps_sz = L1_CACHE_BYTES;
2135
537c00de
AD
2136 mutex_lock(&xps_map_mutex);
2137
2138 dev_maps = xmap_dereference(dev->xps_maps);
2139
01c5f864 2140 /* allocate memory for queue storage */
184c449f 2141 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2142 if (!new_dev_maps)
2143 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2144 if (!new_dev_maps) {
2145 mutex_unlock(&xps_map_mutex);
01c5f864 2146 return -ENOMEM;
2bb60cb9 2147 }
01c5f864 2148
184c449f
AD
2149 tci = cpu * num_tc + tc;
2150 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2151 NULL;
2152
2153 map = expand_xps_map(map, cpu, index);
2154 if (!map)
2155 goto error;
2156
184c449f 2157 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2158 }
2159
2160 if (!new_dev_maps)
2161 goto out_no_new_maps;
2162
537c00de 2163 for_each_possible_cpu(cpu) {
184c449f
AD
2164 /* copy maps belonging to foreign traffic classes */
2165 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2166 /* fill in the new device map from the old device map */
2167 map = xmap_dereference(dev_maps->cpu_map[tci]);
2168 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2169 }
2170
2171 /* We need to explicitly update tci as prevous loop
2172 * could break out early if dev_maps is NULL.
2173 */
2174 tci = cpu * num_tc + tc;
2175
01c5f864
AD
2176 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2177 /* add queue to CPU maps */
2178 int pos = 0;
2179
184c449f 2180 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2181 while ((pos < map->len) && (map->queues[pos] != index))
2182 pos++;
2183
2184 if (pos == map->len)
2185 map->queues[map->len++] = index;
537c00de 2186#ifdef CONFIG_NUMA
537c00de
AD
2187 if (numa_node_id == -2)
2188 numa_node_id = cpu_to_node(cpu);
2189 else if (numa_node_id != cpu_to_node(cpu))
2190 numa_node_id = -1;
537c00de 2191#endif
01c5f864
AD
2192 } else if (dev_maps) {
2193 /* fill in the new device map from the old device map */
184c449f
AD
2194 map = xmap_dereference(dev_maps->cpu_map[tci]);
2195 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2196 }
01c5f864 2197
184c449f
AD
2198 /* copy maps belonging to foreign traffic classes */
2199 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2200 /* fill in the new device map from the old device map */
2201 map = xmap_dereference(dev_maps->cpu_map[tci]);
2202 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2203 }
537c00de
AD
2204 }
2205
01c5f864
AD
2206 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2207
537c00de 2208 /* Cleanup old maps */
184c449f
AD
2209 if (!dev_maps)
2210 goto out_no_old_maps;
2211
2212 for_each_possible_cpu(cpu) {
2213 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2214 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2215 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2216 if (map && map != new_map)
2217 kfree_rcu(map, rcu);
2218 }
537c00de
AD
2219 }
2220
184c449f
AD
2221 kfree_rcu(dev_maps, rcu);
2222
2223out_no_old_maps:
01c5f864
AD
2224 dev_maps = new_dev_maps;
2225 active = true;
537c00de 2226
01c5f864
AD
2227out_no_new_maps:
2228 /* update Tx queue numa node */
537c00de
AD
2229 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2230 (numa_node_id >= 0) ? numa_node_id :
2231 NUMA_NO_NODE);
2232
01c5f864
AD
2233 if (!dev_maps)
2234 goto out_no_maps;
2235
2236 /* removes queue from unused CPUs */
2237 for_each_possible_cpu(cpu) {
184c449f
AD
2238 for (i = tc, tci = cpu * num_tc; i--; tci++)
2239 active |= remove_xps_queue(dev_maps, tci, index);
2240 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2241 active |= remove_xps_queue(dev_maps, tci, index);
2242 for (i = num_tc - tc, tci++; --i; tci++)
2243 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2244 }
2245
2246 /* free map if not active */
2247 if (!active) {
2248 RCU_INIT_POINTER(dev->xps_maps, NULL);
2249 kfree_rcu(dev_maps, rcu);
2250 }
2251
2252out_no_maps:
537c00de
AD
2253 mutex_unlock(&xps_map_mutex);
2254
2255 return 0;
2256error:
01c5f864
AD
2257 /* remove any maps that we added */
2258 for_each_possible_cpu(cpu) {
184c449f
AD
2259 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2260 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2261 map = dev_maps ?
2262 xmap_dereference(dev_maps->cpu_map[tci]) :
2263 NULL;
2264 if (new_map && new_map != map)
2265 kfree(new_map);
2266 }
01c5f864
AD
2267 }
2268
537c00de
AD
2269 mutex_unlock(&xps_map_mutex);
2270
537c00de
AD
2271 kfree(new_dev_maps);
2272 return -ENOMEM;
2273}
2274EXPORT_SYMBOL(netif_set_xps_queue);
2275
2276#endif
9cf1f6a8
AD
2277void netdev_reset_tc(struct net_device *dev)
2278{
6234f874
AD
2279#ifdef CONFIG_XPS
2280 netif_reset_xps_queues_gt(dev, 0);
2281#endif
9cf1f6a8
AD
2282 dev->num_tc = 0;
2283 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2284 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2285}
2286EXPORT_SYMBOL(netdev_reset_tc);
2287
2288int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2289{
2290 if (tc >= dev->num_tc)
2291 return -EINVAL;
2292
6234f874
AD
2293#ifdef CONFIG_XPS
2294 netif_reset_xps_queues(dev, offset, count);
2295#endif
9cf1f6a8
AD
2296 dev->tc_to_txq[tc].count = count;
2297 dev->tc_to_txq[tc].offset = offset;
2298 return 0;
2299}
2300EXPORT_SYMBOL(netdev_set_tc_queue);
2301
2302int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2303{
2304 if (num_tc > TC_MAX_QUEUE)
2305 return -EINVAL;
2306
6234f874
AD
2307#ifdef CONFIG_XPS
2308 netif_reset_xps_queues_gt(dev, 0);
2309#endif
9cf1f6a8
AD
2310 dev->num_tc = num_tc;
2311 return 0;
2312}
2313EXPORT_SYMBOL(netdev_set_num_tc);
2314
f0796d5c
JF
2315/*
2316 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2317 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2318 */
e6484930 2319int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2320{
1d24eb48
TH
2321 int rc;
2322
e6484930
TH
2323 if (txq < 1 || txq > dev->num_tx_queues)
2324 return -EINVAL;
f0796d5c 2325
5c56580b
BH
2326 if (dev->reg_state == NETREG_REGISTERED ||
2327 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2328 ASSERT_RTNL();
2329
1d24eb48
TH
2330 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2331 txq);
bf264145
TH
2332 if (rc)
2333 return rc;
2334
4f57c087
JF
2335 if (dev->num_tc)
2336 netif_setup_tc(dev, txq);
2337
024e9679 2338 if (txq < dev->real_num_tx_queues) {
e6484930 2339 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2340#ifdef CONFIG_XPS
2341 netif_reset_xps_queues_gt(dev, txq);
2342#endif
2343 }
f0796d5c 2344 }
e6484930
TH
2345
2346 dev->real_num_tx_queues = txq;
2347 return 0;
f0796d5c
JF
2348}
2349EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2350
a953be53 2351#ifdef CONFIG_SYSFS
62fe0b40
BH
2352/**
2353 * netif_set_real_num_rx_queues - set actual number of RX queues used
2354 * @dev: Network device
2355 * @rxq: Actual number of RX queues
2356 *
2357 * This must be called either with the rtnl_lock held or before
2358 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2359 * negative error code. If called before registration, it always
2360 * succeeds.
62fe0b40
BH
2361 */
2362int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2363{
2364 int rc;
2365
bd25fa7b
TH
2366 if (rxq < 1 || rxq > dev->num_rx_queues)
2367 return -EINVAL;
2368
62fe0b40
BH
2369 if (dev->reg_state == NETREG_REGISTERED) {
2370 ASSERT_RTNL();
2371
62fe0b40
BH
2372 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2373 rxq);
2374 if (rc)
2375 return rc;
62fe0b40
BH
2376 }
2377
2378 dev->real_num_rx_queues = rxq;
2379 return 0;
2380}
2381EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2382#endif
2383
2c53040f
BH
2384/**
2385 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2386 *
2387 * This routine should set an upper limit on the number of RSS queues
2388 * used by default by multiqueue devices.
2389 */
a55b138b 2390int netif_get_num_default_rss_queues(void)
16917b87 2391{
40e4e713
HS
2392 return is_kdump_kernel() ?
2393 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2394}
2395EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2396
3bcb846c 2397static void __netif_reschedule(struct Qdisc *q)
56079431 2398{
def82a1d
JP
2399 struct softnet_data *sd;
2400 unsigned long flags;
56079431 2401
def82a1d 2402 local_irq_save(flags);
903ceff7 2403 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2404 q->next_sched = NULL;
2405 *sd->output_queue_tailp = q;
2406 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2407 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2408 local_irq_restore(flags);
2409}
2410
2411void __netif_schedule(struct Qdisc *q)
2412{
2413 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2414 __netif_reschedule(q);
56079431
DV
2415}
2416EXPORT_SYMBOL(__netif_schedule);
2417
e6247027
ED
2418struct dev_kfree_skb_cb {
2419 enum skb_free_reason reason;
2420};
2421
2422static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2423{
e6247027
ED
2424 return (struct dev_kfree_skb_cb *)skb->cb;
2425}
2426
46e5da40
JF
2427void netif_schedule_queue(struct netdev_queue *txq)
2428{
2429 rcu_read_lock();
2430 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2431 struct Qdisc *q = rcu_dereference(txq->qdisc);
2432
2433 __netif_schedule(q);
2434 }
2435 rcu_read_unlock();
2436}
2437EXPORT_SYMBOL(netif_schedule_queue);
2438
46e5da40
JF
2439void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2440{
2441 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2442 struct Qdisc *q;
2443
2444 rcu_read_lock();
2445 q = rcu_dereference(dev_queue->qdisc);
2446 __netif_schedule(q);
2447 rcu_read_unlock();
2448 }
2449}
2450EXPORT_SYMBOL(netif_tx_wake_queue);
2451
e6247027 2452void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2453{
e6247027 2454 unsigned long flags;
56079431 2455
9899886d
MJ
2456 if (unlikely(!skb))
2457 return;
2458
e6247027
ED
2459 if (likely(atomic_read(&skb->users) == 1)) {
2460 smp_rmb();
2461 atomic_set(&skb->users, 0);
2462 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2463 return;
bea3348e 2464 }
e6247027
ED
2465 get_kfree_skb_cb(skb)->reason = reason;
2466 local_irq_save(flags);
2467 skb->next = __this_cpu_read(softnet_data.completion_queue);
2468 __this_cpu_write(softnet_data.completion_queue, skb);
2469 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2470 local_irq_restore(flags);
56079431 2471}
e6247027 2472EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2473
e6247027 2474void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2475{
2476 if (in_irq() || irqs_disabled())
e6247027 2477 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2478 else
2479 dev_kfree_skb(skb);
2480}
e6247027 2481EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2482
2483
bea3348e
SH
2484/**
2485 * netif_device_detach - mark device as removed
2486 * @dev: network device
2487 *
2488 * Mark device as removed from system and therefore no longer available.
2489 */
56079431
DV
2490void netif_device_detach(struct net_device *dev)
2491{
2492 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2493 netif_running(dev)) {
d543103a 2494 netif_tx_stop_all_queues(dev);
56079431
DV
2495 }
2496}
2497EXPORT_SYMBOL(netif_device_detach);
2498
bea3348e
SH
2499/**
2500 * netif_device_attach - mark device as attached
2501 * @dev: network device
2502 *
2503 * Mark device as attached from system and restart if needed.
2504 */
56079431
DV
2505void netif_device_attach(struct net_device *dev)
2506{
2507 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2508 netif_running(dev)) {
d543103a 2509 netif_tx_wake_all_queues(dev);
4ec93edb 2510 __netdev_watchdog_up(dev);
56079431
DV
2511 }
2512}
2513EXPORT_SYMBOL(netif_device_attach);
2514
5605c762
JP
2515/*
2516 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2517 * to be used as a distribution range.
2518 */
2519u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2520 unsigned int num_tx_queues)
2521{
2522 u32 hash;
2523 u16 qoffset = 0;
2524 u16 qcount = num_tx_queues;
2525
2526 if (skb_rx_queue_recorded(skb)) {
2527 hash = skb_get_rx_queue(skb);
2528 while (unlikely(hash >= num_tx_queues))
2529 hash -= num_tx_queues;
2530 return hash;
2531 }
2532
2533 if (dev->num_tc) {
2534 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
f4563a75 2535
5605c762
JP
2536 qoffset = dev->tc_to_txq[tc].offset;
2537 qcount = dev->tc_to_txq[tc].count;
2538 }
2539
2540 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2541}
2542EXPORT_SYMBOL(__skb_tx_hash);
2543
36c92474
BH
2544static void skb_warn_bad_offload(const struct sk_buff *skb)
2545{
84d15ae5 2546 static const netdev_features_t null_features;
36c92474 2547 struct net_device *dev = skb->dev;
88ad4175 2548 const char *name = "";
36c92474 2549
c846ad9b
BG
2550 if (!net_ratelimit())
2551 return;
2552
88ad4175
BM
2553 if (dev) {
2554 if (dev->dev.parent)
2555 name = dev_driver_string(dev->dev.parent);
2556 else
2557 name = netdev_name(dev);
2558 }
36c92474
BH
2559 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2560 "gso_type=%d ip_summed=%d\n",
88ad4175 2561 name, dev ? &dev->features : &null_features,
65e9d2fa 2562 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2563 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2564 skb_shinfo(skb)->gso_type, skb->ip_summed);
2565}
2566
1da177e4
LT
2567/*
2568 * Invalidate hardware checksum when packet is to be mangled, and
2569 * complete checksum manually on outgoing path.
2570 */
84fa7933 2571int skb_checksum_help(struct sk_buff *skb)
1da177e4 2572{
d3bc23e7 2573 __wsum csum;
663ead3b 2574 int ret = 0, offset;
1da177e4 2575
84fa7933 2576 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2577 goto out_set_summed;
2578
2579 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2580 skb_warn_bad_offload(skb);
2581 return -EINVAL;
1da177e4
LT
2582 }
2583
cef401de
ED
2584 /* Before computing a checksum, we should make sure no frag could
2585 * be modified by an external entity : checksum could be wrong.
2586 */
2587 if (skb_has_shared_frag(skb)) {
2588 ret = __skb_linearize(skb);
2589 if (ret)
2590 goto out;
2591 }
2592
55508d60 2593 offset = skb_checksum_start_offset(skb);
a030847e
HX
2594 BUG_ON(offset >= skb_headlen(skb));
2595 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2596
2597 offset += skb->csum_offset;
2598 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2599
2600 if (skb_cloned(skb) &&
2601 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2602 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2603 if (ret)
2604 goto out;
2605 }
2606
4f2e4ad5 2607 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2608out_set_summed:
1da177e4 2609 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2610out:
1da177e4
LT
2611 return ret;
2612}
d1b19dff 2613EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2614
53d6471c 2615__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2616{
252e3346 2617 __be16 type = skb->protocol;
f6a78bfc 2618
19acc327
PS
2619 /* Tunnel gso handlers can set protocol to ethernet. */
2620 if (type == htons(ETH_P_TEB)) {
2621 struct ethhdr *eth;
2622
2623 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2624 return 0;
2625
2626 eth = (struct ethhdr *)skb_mac_header(skb);
2627 type = eth->h_proto;
2628 }
2629
d4bcef3f 2630 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2631}
2632
2633/**
2634 * skb_mac_gso_segment - mac layer segmentation handler.
2635 * @skb: buffer to segment
2636 * @features: features for the output path (see dev->features)
2637 */
2638struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2639 netdev_features_t features)
2640{
2641 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2642 struct packet_offload *ptype;
53d6471c
VY
2643 int vlan_depth = skb->mac_len;
2644 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2645
2646 if (unlikely(!type))
2647 return ERR_PTR(-EINVAL);
2648
53d6471c 2649 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2650
2651 rcu_read_lock();
22061d80 2652 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2653 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2654 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2655 break;
2656 }
2657 }
2658 rcu_read_unlock();
2659
98e399f8 2660 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2661
f6a78bfc
HX
2662 return segs;
2663}
05e8ef4a
PS
2664EXPORT_SYMBOL(skb_mac_gso_segment);
2665
2666
2667/* openvswitch calls this on rx path, so we need a different check.
2668 */
2669static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2670{
2671 if (tx_path)
6e7bc478
ED
2672 return skb->ip_summed != CHECKSUM_PARTIAL &&
2673 skb->ip_summed != CHECKSUM_NONE;
2674
2675 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2676}
2677
2678/**
2679 * __skb_gso_segment - Perform segmentation on skb.
2680 * @skb: buffer to segment
2681 * @features: features for the output path (see dev->features)
2682 * @tx_path: whether it is called in TX path
2683 *
2684 * This function segments the given skb and returns a list of segments.
2685 *
2686 * It may return NULL if the skb requires no segmentation. This is
2687 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2688 *
2689 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2690 */
2691struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2692 netdev_features_t features, bool tx_path)
2693{
b2504a5d
ED
2694 struct sk_buff *segs;
2695
05e8ef4a
PS
2696 if (unlikely(skb_needs_check(skb, tx_path))) {
2697 int err;
2698
b2504a5d 2699 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2700 err = skb_cow_head(skb, 0);
2701 if (err < 0)
05e8ef4a
PS
2702 return ERR_PTR(err);
2703 }
2704
802ab55a
AD
2705 /* Only report GSO partial support if it will enable us to
2706 * support segmentation on this frame without needing additional
2707 * work.
2708 */
2709 if (features & NETIF_F_GSO_PARTIAL) {
2710 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2711 struct net_device *dev = skb->dev;
2712
2713 partial_features |= dev->features & dev->gso_partial_features;
2714 if (!skb_gso_ok(skb, features | partial_features))
2715 features &= ~NETIF_F_GSO_PARTIAL;
2716 }
2717
9207f9d4
KK
2718 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2719 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2720
68c33163 2721 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2722 SKB_GSO_CB(skb)->encap_level = 0;
2723
05e8ef4a
PS
2724 skb_reset_mac_header(skb);
2725 skb_reset_mac_len(skb);
2726
b2504a5d
ED
2727 segs = skb_mac_gso_segment(skb, features);
2728
2729 if (unlikely(skb_needs_check(skb, tx_path)))
2730 skb_warn_bad_offload(skb);
2731
2732 return segs;
05e8ef4a 2733}
12b0004d 2734EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2735
fb286bb2
HX
2736/* Take action when hardware reception checksum errors are detected. */
2737#ifdef CONFIG_BUG
2738void netdev_rx_csum_fault(struct net_device *dev)
2739{
2740 if (net_ratelimit()) {
7b6cd1ce 2741 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2742 dump_stack();
2743 }
2744}
2745EXPORT_SYMBOL(netdev_rx_csum_fault);
2746#endif
2747
1da177e4
LT
2748/* Actually, we should eliminate this check as soon as we know, that:
2749 * 1. IOMMU is present and allows to map all the memory.
2750 * 2. No high memory really exists on this machine.
2751 */
2752
c1e756bf 2753static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2754{
3d3a8533 2755#ifdef CONFIG_HIGHMEM
1da177e4 2756 int i;
f4563a75 2757
5acbbd42 2758 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2759 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2760 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 2761
ea2ab693 2762 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2763 return 1;
ea2ab693 2764 }
5acbbd42 2765 }
1da177e4 2766
5acbbd42
FT
2767 if (PCI_DMA_BUS_IS_PHYS) {
2768 struct device *pdev = dev->dev.parent;
1da177e4 2769
9092c658
ED
2770 if (!pdev)
2771 return 0;
5acbbd42 2772 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2773 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2774 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
f4563a75 2775
5acbbd42
FT
2776 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2777 return 1;
2778 }
2779 }
3d3a8533 2780#endif
1da177e4
LT
2781 return 0;
2782}
1da177e4 2783
3b392ddb
SH
2784/* If MPLS offload request, verify we are testing hardware MPLS features
2785 * instead of standard features for the netdev.
2786 */
d0edc7bf 2787#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2788static netdev_features_t net_mpls_features(struct sk_buff *skb,
2789 netdev_features_t features,
2790 __be16 type)
2791{
25cd9ba0 2792 if (eth_p_mpls(type))
3b392ddb
SH
2793 features &= skb->dev->mpls_features;
2794
2795 return features;
2796}
2797#else
2798static netdev_features_t net_mpls_features(struct sk_buff *skb,
2799 netdev_features_t features,
2800 __be16 type)
2801{
2802 return features;
2803}
2804#endif
2805
c8f44aff 2806static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2807 netdev_features_t features)
f01a5236 2808{
53d6471c 2809 int tmp;
3b392ddb
SH
2810 __be16 type;
2811
2812 type = skb_network_protocol(skb, &tmp);
2813 features = net_mpls_features(skb, features, type);
53d6471c 2814
c0d680e5 2815 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2816 !can_checksum_protocol(features, type)) {
996e8021 2817 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2818 }
7be2c82c
ED
2819 if (illegal_highdma(skb->dev, skb))
2820 features &= ~NETIF_F_SG;
f01a5236
JG
2821
2822 return features;
2823}
2824
e38f3025
TM
2825netdev_features_t passthru_features_check(struct sk_buff *skb,
2826 struct net_device *dev,
2827 netdev_features_t features)
2828{
2829 return features;
2830}
2831EXPORT_SYMBOL(passthru_features_check);
2832
8cb65d00
TM
2833static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2834 struct net_device *dev,
2835 netdev_features_t features)
2836{
2837 return vlan_features_check(skb, features);
2838}
2839
cbc53e08
AD
2840static netdev_features_t gso_features_check(const struct sk_buff *skb,
2841 struct net_device *dev,
2842 netdev_features_t features)
2843{
2844 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2845
2846 if (gso_segs > dev->gso_max_segs)
2847 return features & ~NETIF_F_GSO_MASK;
2848
802ab55a
AD
2849 /* Support for GSO partial features requires software
2850 * intervention before we can actually process the packets
2851 * so we need to strip support for any partial features now
2852 * and we can pull them back in after we have partially
2853 * segmented the frame.
2854 */
2855 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2856 features &= ~dev->gso_partial_features;
2857
2858 /* Make sure to clear the IPv4 ID mangling feature if the
2859 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2860 */
2861 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2862 struct iphdr *iph = skb->encapsulation ?
2863 inner_ip_hdr(skb) : ip_hdr(skb);
2864
2865 if (!(iph->frag_off & htons(IP_DF)))
2866 features &= ~NETIF_F_TSO_MANGLEID;
2867 }
2868
2869 return features;
2870}
2871
c1e756bf 2872netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2873{
5f35227e 2874 struct net_device *dev = skb->dev;
fcbeb976 2875 netdev_features_t features = dev->features;
58e998c6 2876
cbc53e08
AD
2877 if (skb_is_gso(skb))
2878 features = gso_features_check(skb, dev, features);
30b678d8 2879
5f35227e
JG
2880 /* If encapsulation offload request, verify we are testing
2881 * hardware encapsulation features instead of standard
2882 * features for the netdev
2883 */
2884 if (skb->encapsulation)
2885 features &= dev->hw_enc_features;
2886
f5a7fb88
TM
2887 if (skb_vlan_tagged(skb))
2888 features = netdev_intersect_features(features,
2889 dev->vlan_features |
2890 NETIF_F_HW_VLAN_CTAG_TX |
2891 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2892
5f35227e
JG
2893 if (dev->netdev_ops->ndo_features_check)
2894 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2895 features);
8cb65d00
TM
2896 else
2897 features &= dflt_features_check(skb, dev, features);
5f35227e 2898
c1e756bf 2899 return harmonize_features(skb, features);
58e998c6 2900}
c1e756bf 2901EXPORT_SYMBOL(netif_skb_features);
58e998c6 2902
2ea25513 2903static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2904 struct netdev_queue *txq, bool more)
f6a78bfc 2905{
2ea25513
DM
2906 unsigned int len;
2907 int rc;
00829823 2908
7866a621 2909 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2910 dev_queue_xmit_nit(skb, dev);
fc741216 2911
2ea25513
DM
2912 len = skb->len;
2913 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2914 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2915 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2916
2ea25513
DM
2917 return rc;
2918}
7b9c6090 2919
8dcda22a
DM
2920struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2921 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2922{
2923 struct sk_buff *skb = first;
2924 int rc = NETDEV_TX_OK;
7b9c6090 2925
7f2e870f
DM
2926 while (skb) {
2927 struct sk_buff *next = skb->next;
fc70fb64 2928
7f2e870f 2929 skb->next = NULL;
95f6b3dd 2930 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2931 if (unlikely(!dev_xmit_complete(rc))) {
2932 skb->next = next;
2933 goto out;
2934 }
6afff0ca 2935
7f2e870f
DM
2936 skb = next;
2937 if (netif_xmit_stopped(txq) && skb) {
2938 rc = NETDEV_TX_BUSY;
2939 break;
9ccb8975 2940 }
7f2e870f 2941 }
9ccb8975 2942
7f2e870f
DM
2943out:
2944 *ret = rc;
2945 return skb;
2946}
b40863c6 2947
1ff0dc94
ED
2948static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2949 netdev_features_t features)
f6a78bfc 2950{
df8a39de 2951 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2952 !vlan_hw_offload_capable(features, skb->vlan_proto))
2953 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2954 return skb;
2955}
f6a78bfc 2956
55a93b3e 2957static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2958{
2959 netdev_features_t features;
f6a78bfc 2960
eae3f88e
DM
2961 features = netif_skb_features(skb);
2962 skb = validate_xmit_vlan(skb, features);
2963 if (unlikely(!skb))
2964 goto out_null;
7b9c6090 2965
8b86a61d 2966 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2967 struct sk_buff *segs;
2968
2969 segs = skb_gso_segment(skb, features);
cecda693 2970 if (IS_ERR(segs)) {
af6dabc9 2971 goto out_kfree_skb;
cecda693
JW
2972 } else if (segs) {
2973 consume_skb(skb);
2974 skb = segs;
f6a78bfc 2975 }
eae3f88e
DM
2976 } else {
2977 if (skb_needs_linearize(skb, features) &&
2978 __skb_linearize(skb))
2979 goto out_kfree_skb;
4ec93edb 2980
f6e27114
SK
2981 if (validate_xmit_xfrm(skb, features))
2982 goto out_kfree_skb;
2983
eae3f88e
DM
2984 /* If packet is not checksummed and device does not
2985 * support checksumming for this protocol, complete
2986 * checksumming here.
2987 */
2988 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2989 if (skb->encapsulation)
2990 skb_set_inner_transport_header(skb,
2991 skb_checksum_start_offset(skb));
2992 else
2993 skb_set_transport_header(skb,
2994 skb_checksum_start_offset(skb));
a188222b 2995 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2996 skb_checksum_help(skb))
2997 goto out_kfree_skb;
7b9c6090 2998 }
0c772159 2999 }
7b9c6090 3000
eae3f88e 3001 return skb;
fc70fb64 3002
f6a78bfc
HX
3003out_kfree_skb:
3004 kfree_skb(skb);
eae3f88e 3005out_null:
d21fd63e 3006 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3007 return NULL;
3008}
6afff0ca 3009
55a93b3e
ED
3010struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3011{
3012 struct sk_buff *next, *head = NULL, *tail;
3013
bec3cfdc 3014 for (; skb != NULL; skb = next) {
55a93b3e
ED
3015 next = skb->next;
3016 skb->next = NULL;
bec3cfdc
ED
3017
3018 /* in case skb wont be segmented, point to itself */
3019 skb->prev = skb;
3020
55a93b3e 3021 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3022 if (!skb)
3023 continue;
55a93b3e 3024
bec3cfdc
ED
3025 if (!head)
3026 head = skb;
3027 else
3028 tail->next = skb;
3029 /* If skb was segmented, skb->prev points to
3030 * the last segment. If not, it still contains skb.
3031 */
3032 tail = skb->prev;
55a93b3e
ED
3033 }
3034 return head;
f6a78bfc 3035}
104ba78c 3036EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3037
1def9238
ED
3038static void qdisc_pkt_len_init(struct sk_buff *skb)
3039{
3040 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3041
3042 qdisc_skb_cb(skb)->pkt_len = skb->len;
3043
3044 /* To get more precise estimation of bytes sent on wire,
3045 * we add to pkt_len the headers size of all segments
3046 */
3047 if (shinfo->gso_size) {
757b8b1d 3048 unsigned int hdr_len;
15e5a030 3049 u16 gso_segs = shinfo->gso_segs;
1def9238 3050
757b8b1d
ED
3051 /* mac layer + network layer */
3052 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3053
3054 /* + transport layer */
1def9238
ED
3055 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3056 hdr_len += tcp_hdrlen(skb);
3057 else
3058 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3059
3060 if (shinfo->gso_type & SKB_GSO_DODGY)
3061 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3062 shinfo->gso_size);
3063
3064 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3065 }
3066}
3067
bbd8a0d3
KK
3068static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3069 struct net_device *dev,
3070 struct netdev_queue *txq)
3071{
3072 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3073 struct sk_buff *to_free = NULL;
a2da570d 3074 bool contended;
bbd8a0d3
KK
3075 int rc;
3076
a2da570d 3077 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3078 /*
3079 * Heuristic to force contended enqueues to serialize on a
3080 * separate lock before trying to get qdisc main lock.
f9eb8aea 3081 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3082 * often and dequeue packets faster.
79640a4c 3083 */
a2da570d 3084 contended = qdisc_is_running(q);
79640a4c
ED
3085 if (unlikely(contended))
3086 spin_lock(&q->busylock);
3087
bbd8a0d3
KK
3088 spin_lock(root_lock);
3089 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3090 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3091 rc = NET_XMIT_DROP;
3092 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3093 qdisc_run_begin(q)) {
bbd8a0d3
KK
3094 /*
3095 * This is a work-conserving queue; there are no old skbs
3096 * waiting to be sent out; and the qdisc is not running -
3097 * xmit the skb directly.
3098 */
bfe0d029 3099
bfe0d029
ED
3100 qdisc_bstats_update(q, skb);
3101
55a93b3e 3102 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3103 if (unlikely(contended)) {
3104 spin_unlock(&q->busylock);
3105 contended = false;
3106 }
bbd8a0d3 3107 __qdisc_run(q);
79640a4c 3108 } else
bc135b23 3109 qdisc_run_end(q);
bbd8a0d3
KK
3110
3111 rc = NET_XMIT_SUCCESS;
3112 } else {
520ac30f 3113 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3114 if (qdisc_run_begin(q)) {
3115 if (unlikely(contended)) {
3116 spin_unlock(&q->busylock);
3117 contended = false;
3118 }
3119 __qdisc_run(q);
3120 }
bbd8a0d3
KK
3121 }
3122 spin_unlock(root_lock);
520ac30f
ED
3123 if (unlikely(to_free))
3124 kfree_skb_list(to_free);
79640a4c
ED
3125 if (unlikely(contended))
3126 spin_unlock(&q->busylock);
bbd8a0d3
KK
3127 return rc;
3128}
3129
86f8515f 3130#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3131static void skb_update_prio(struct sk_buff *skb)
3132{
6977a79d 3133 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3134
91c68ce2 3135 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3136 unsigned int prioidx =
3137 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3138
3139 if (prioidx < map->priomap_len)
3140 skb->priority = map->priomap[prioidx];
3141 }
5bc1421e
NH
3142}
3143#else
3144#define skb_update_prio(skb)
3145#endif
3146
f60e5990 3147DEFINE_PER_CPU(int, xmit_recursion);
3148EXPORT_SYMBOL(xmit_recursion);
3149
95603e22
MM
3150/**
3151 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3152 * @net: network namespace this loopback is happening in
3153 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3154 * @skb: buffer to transmit
3155 */
0c4b51f0 3156int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3157{
3158 skb_reset_mac_header(skb);
3159 __skb_pull(skb, skb_network_offset(skb));
3160 skb->pkt_type = PACKET_LOOPBACK;
3161 skb->ip_summed = CHECKSUM_UNNECESSARY;
3162 WARN_ON(!skb_dst(skb));
3163 skb_dst_force(skb);
3164 netif_rx_ni(skb);
3165 return 0;
3166}
3167EXPORT_SYMBOL(dev_loopback_xmit);
3168
1f211a1b
DB
3169#ifdef CONFIG_NET_EGRESS
3170static struct sk_buff *
3171sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3172{
3173 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3174 struct tcf_result cl_res;
3175
3176 if (!cl)
3177 return skb;
3178
8dc07fdb 3179 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
1f211a1b
DB
3180 qdisc_bstats_cpu_update(cl->q, skb);
3181
3182 switch (tc_classify(skb, cl, &cl_res, false)) {
3183 case TC_ACT_OK:
3184 case TC_ACT_RECLASSIFY:
3185 skb->tc_index = TC_H_MIN(cl_res.classid);
3186 break;
3187 case TC_ACT_SHOT:
3188 qdisc_qstats_cpu_drop(cl->q);
3189 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3190 kfree_skb(skb);
3191 return NULL;
1f211a1b
DB
3192 case TC_ACT_STOLEN:
3193 case TC_ACT_QUEUED:
3194 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3195 consume_skb(skb);
1f211a1b
DB
3196 return NULL;
3197 case TC_ACT_REDIRECT:
3198 /* No need to push/pop skb's mac_header here on egress! */
3199 skb_do_redirect(skb);
3200 *ret = NET_XMIT_SUCCESS;
3201 return NULL;
3202 default:
3203 break;
3204 }
3205
3206 return skb;
3207}
3208#endif /* CONFIG_NET_EGRESS */
3209
638b2a69
JP
3210static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3211{
3212#ifdef CONFIG_XPS
3213 struct xps_dev_maps *dev_maps;
3214 struct xps_map *map;
3215 int queue_index = -1;
3216
3217 rcu_read_lock();
3218 dev_maps = rcu_dereference(dev->xps_maps);
3219 if (dev_maps) {
184c449f
AD
3220 unsigned int tci = skb->sender_cpu - 1;
3221
3222 if (dev->num_tc) {
3223 tci *= dev->num_tc;
3224 tci += netdev_get_prio_tc_map(dev, skb->priority);
3225 }
3226
3227 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3228 if (map) {
3229 if (map->len == 1)
3230 queue_index = map->queues[0];
3231 else
3232 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3233 map->len)];
3234 if (unlikely(queue_index >= dev->real_num_tx_queues))
3235 queue_index = -1;
3236 }
3237 }
3238 rcu_read_unlock();
3239
3240 return queue_index;
3241#else
3242 return -1;
3243#endif
3244}
3245
3246static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3247{
3248 struct sock *sk = skb->sk;
3249 int queue_index = sk_tx_queue_get(sk);
3250
3251 if (queue_index < 0 || skb->ooo_okay ||
3252 queue_index >= dev->real_num_tx_queues) {
3253 int new_index = get_xps_queue(dev, skb);
f4563a75 3254
638b2a69
JP
3255 if (new_index < 0)
3256 new_index = skb_tx_hash(dev, skb);
3257
3258 if (queue_index != new_index && sk &&
004a5d01 3259 sk_fullsock(sk) &&
638b2a69
JP
3260 rcu_access_pointer(sk->sk_dst_cache))
3261 sk_tx_queue_set(sk, new_index);
3262
3263 queue_index = new_index;
3264 }
3265
3266 return queue_index;
3267}
3268
3269struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3270 struct sk_buff *skb,
3271 void *accel_priv)
3272{
3273 int queue_index = 0;
3274
3275#ifdef CONFIG_XPS
52bd2d62
ED
3276 u32 sender_cpu = skb->sender_cpu - 1;
3277
3278 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3279 skb->sender_cpu = raw_smp_processor_id() + 1;
3280#endif
3281
3282 if (dev->real_num_tx_queues != 1) {
3283 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3284
638b2a69
JP
3285 if (ops->ndo_select_queue)
3286 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3287 __netdev_pick_tx);
3288 else
3289 queue_index = __netdev_pick_tx(dev, skb);
3290
3291 if (!accel_priv)
3292 queue_index = netdev_cap_txqueue(dev, queue_index);
3293 }
3294
3295 skb_set_queue_mapping(skb, queue_index);
3296 return netdev_get_tx_queue(dev, queue_index);
3297}
3298
d29f749e 3299/**
9d08dd3d 3300 * __dev_queue_xmit - transmit a buffer
d29f749e 3301 * @skb: buffer to transmit
9d08dd3d 3302 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3303 *
3304 * Queue a buffer for transmission to a network device. The caller must
3305 * have set the device and priority and built the buffer before calling
3306 * this function. The function can be called from an interrupt.
3307 *
3308 * A negative errno code is returned on a failure. A success does not
3309 * guarantee the frame will be transmitted as it may be dropped due
3310 * to congestion or traffic shaping.
3311 *
3312 * -----------------------------------------------------------------------------------
3313 * I notice this method can also return errors from the queue disciplines,
3314 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3315 * be positive.
3316 *
3317 * Regardless of the return value, the skb is consumed, so it is currently
3318 * difficult to retry a send to this method. (You can bump the ref count
3319 * before sending to hold a reference for retry if you are careful.)
3320 *
3321 * When calling this method, interrupts MUST be enabled. This is because
3322 * the BH enable code must have IRQs enabled so that it will not deadlock.
3323 * --BLG
3324 */
0a59f3a9 3325static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3326{
3327 struct net_device *dev = skb->dev;
dc2b4847 3328 struct netdev_queue *txq;
1da177e4
LT
3329 struct Qdisc *q;
3330 int rc = -ENOMEM;
3331
6d1ccff6
ED
3332 skb_reset_mac_header(skb);
3333
e7fd2885
WB
3334 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3335 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3336
4ec93edb
YH
3337 /* Disable soft irqs for various locks below. Also
3338 * stops preemption for RCU.
1da177e4 3339 */
4ec93edb 3340 rcu_read_lock_bh();
1da177e4 3341
5bc1421e
NH
3342 skb_update_prio(skb);
3343
1f211a1b
DB
3344 qdisc_pkt_len_init(skb);
3345#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3346 skb->tc_at_ingress = 0;
1f211a1b
DB
3347# ifdef CONFIG_NET_EGRESS
3348 if (static_key_false(&egress_needed)) {
3349 skb = sch_handle_egress(skb, &rc, dev);
3350 if (!skb)
3351 goto out;
3352 }
3353# endif
3354#endif
02875878
ED
3355 /* If device/qdisc don't need skb->dst, release it right now while
3356 * its hot in this cpu cache.
3357 */
3358 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3359 skb_dst_drop(skb);
3360 else
3361 skb_dst_force(skb);
3362
f663dd9a 3363 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3364 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3365
cf66ba58 3366 trace_net_dev_queue(skb);
1da177e4 3367 if (q->enqueue) {
bbd8a0d3 3368 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3369 goto out;
1da177e4
LT
3370 }
3371
3372 /* The device has no queue. Common case for software devices:
eb13da1a 3373 * loopback, all the sorts of tunnels...
1da177e4 3374
eb13da1a 3375 * Really, it is unlikely that netif_tx_lock protection is necessary
3376 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3377 * counters.)
3378 * However, it is possible, that they rely on protection
3379 * made by us here.
1da177e4 3380
eb13da1a 3381 * Check this and shot the lock. It is not prone from deadlocks.
3382 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3383 */
3384 if (dev->flags & IFF_UP) {
3385 int cpu = smp_processor_id(); /* ok because BHs are off */
3386
c773e847 3387 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3388 if (unlikely(__this_cpu_read(xmit_recursion) >
3389 XMIT_RECURSION_LIMIT))
745e20f1
ED
3390 goto recursion_alert;
3391
1f59533f
JDB
3392 skb = validate_xmit_skb(skb, dev);
3393 if (!skb)
d21fd63e 3394 goto out;
1f59533f 3395
c773e847 3396 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3397
73466498 3398 if (!netif_xmit_stopped(txq)) {
745e20f1 3399 __this_cpu_inc(xmit_recursion);
ce93718f 3400 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3401 __this_cpu_dec(xmit_recursion);
572a9d7b 3402 if (dev_xmit_complete(rc)) {
c773e847 3403 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3404 goto out;
3405 }
3406 }
c773e847 3407 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3408 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3409 dev->name);
1da177e4
LT
3410 } else {
3411 /* Recursion is detected! It is possible,
745e20f1
ED
3412 * unfortunately
3413 */
3414recursion_alert:
e87cc472
JP
3415 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3416 dev->name);
1da177e4
LT
3417 }
3418 }
3419
3420 rc = -ENETDOWN;
d4828d85 3421 rcu_read_unlock_bh();
1da177e4 3422
015f0688 3423 atomic_long_inc(&dev->tx_dropped);
1f59533f 3424 kfree_skb_list(skb);
1da177e4
LT
3425 return rc;
3426out:
d4828d85 3427 rcu_read_unlock_bh();
1da177e4
LT
3428 return rc;
3429}
f663dd9a 3430
2b4aa3ce 3431int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3432{
3433 return __dev_queue_xmit(skb, NULL);
3434}
2b4aa3ce 3435EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3436
f663dd9a
JW
3437int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3438{
3439 return __dev_queue_xmit(skb, accel_priv);
3440}
3441EXPORT_SYMBOL(dev_queue_xmit_accel);
3442
1da177e4 3443
eb13da1a 3444/*************************************************************************
3445 * Receiver routines
3446 *************************************************************************/
1da177e4 3447
6b2bedc3 3448int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3449EXPORT_SYMBOL(netdev_max_backlog);
3450
3b098e2d 3451int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3452int netdev_budget __read_mostly = 300;
7acf8a1e 3453unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3454int weight_p __read_mostly = 64; /* old backlog weight */
3455int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3456int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3457int dev_rx_weight __read_mostly = 64;
3458int dev_tx_weight __read_mostly = 64;
1da177e4 3459
eecfd7c4
ED
3460/* Called with irq disabled */
3461static inline void ____napi_schedule(struct softnet_data *sd,
3462 struct napi_struct *napi)
3463{
3464 list_add_tail(&napi->poll_list, &sd->poll_list);
3465 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3466}
3467
bfb564e7
KK
3468#ifdef CONFIG_RPS
3469
3470/* One global table that all flow-based protocols share. */
6e3f7faf 3471struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3472EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3473u32 rps_cpu_mask __read_mostly;
3474EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3475
c5905afb 3476struct static_key rps_needed __read_mostly;
3df97ba8 3477EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3478struct static_key rfs_needed __read_mostly;
3479EXPORT_SYMBOL(rfs_needed);
adc9300e 3480
c445477d
BH
3481static struct rps_dev_flow *
3482set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483 struct rps_dev_flow *rflow, u16 next_cpu)
3484{
a31196b0 3485 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3486#ifdef CONFIG_RFS_ACCEL
3487 struct netdev_rx_queue *rxqueue;
3488 struct rps_dev_flow_table *flow_table;
3489 struct rps_dev_flow *old_rflow;
3490 u32 flow_id;
3491 u16 rxq_index;
3492 int rc;
3493
3494 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3495 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3496 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3497 goto out;
3498 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3499 if (rxq_index == skb_get_rx_queue(skb))
3500 goto out;
3501
3502 rxqueue = dev->_rx + rxq_index;
3503 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3504 if (!flow_table)
3505 goto out;
61b905da 3506 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3507 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3508 rxq_index, flow_id);
3509 if (rc < 0)
3510 goto out;
3511 old_rflow = rflow;
3512 rflow = &flow_table->flows[flow_id];
c445477d
BH
3513 rflow->filter = rc;
3514 if (old_rflow->filter == rflow->filter)
3515 old_rflow->filter = RPS_NO_FILTER;
3516 out:
3517#endif
3518 rflow->last_qtail =
09994d1b 3519 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3520 }
3521
09994d1b 3522 rflow->cpu = next_cpu;
c445477d
BH
3523 return rflow;
3524}
3525
bfb564e7
KK
3526/*
3527 * get_rps_cpu is called from netif_receive_skb and returns the target
3528 * CPU from the RPS map of the receiving queue for a given skb.
3529 * rcu_read_lock must be held on entry.
3530 */
3531static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3532 struct rps_dev_flow **rflowp)
3533{
567e4b79
ED
3534 const struct rps_sock_flow_table *sock_flow_table;
3535 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3536 struct rps_dev_flow_table *flow_table;
567e4b79 3537 struct rps_map *map;
bfb564e7 3538 int cpu = -1;
567e4b79 3539 u32 tcpu;
61b905da 3540 u32 hash;
bfb564e7
KK
3541
3542 if (skb_rx_queue_recorded(skb)) {
3543 u16 index = skb_get_rx_queue(skb);
567e4b79 3544
62fe0b40
BH
3545 if (unlikely(index >= dev->real_num_rx_queues)) {
3546 WARN_ONCE(dev->real_num_rx_queues > 1,
3547 "%s received packet on queue %u, but number "
3548 "of RX queues is %u\n",
3549 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3550 goto done;
3551 }
567e4b79
ED
3552 rxqueue += index;
3553 }
bfb564e7 3554
567e4b79
ED
3555 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3556
3557 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3558 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3559 if (!flow_table && !map)
bfb564e7
KK
3560 goto done;
3561
2d47b459 3562 skb_reset_network_header(skb);
61b905da
TH
3563 hash = skb_get_hash(skb);
3564 if (!hash)
bfb564e7
KK
3565 goto done;
3566
fec5e652
TH
3567 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3568 if (flow_table && sock_flow_table) {
fec5e652 3569 struct rps_dev_flow *rflow;
567e4b79
ED
3570 u32 next_cpu;
3571 u32 ident;
3572
3573 /* First check into global flow table if there is a match */
3574 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3575 if ((ident ^ hash) & ~rps_cpu_mask)
3576 goto try_rps;
fec5e652 3577
567e4b79
ED
3578 next_cpu = ident & rps_cpu_mask;
3579
3580 /* OK, now we know there is a match,
3581 * we can look at the local (per receive queue) flow table
3582 */
61b905da 3583 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3584 tcpu = rflow->cpu;
3585
fec5e652
TH
3586 /*
3587 * If the desired CPU (where last recvmsg was done) is
3588 * different from current CPU (one in the rx-queue flow
3589 * table entry), switch if one of the following holds:
a31196b0 3590 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3591 * - Current CPU is offline.
3592 * - The current CPU's queue tail has advanced beyond the
3593 * last packet that was enqueued using this table entry.
3594 * This guarantees that all previous packets for the flow
3595 * have been dequeued, thus preserving in order delivery.
3596 */
3597 if (unlikely(tcpu != next_cpu) &&
a31196b0 3598 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3599 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3600 rflow->last_qtail)) >= 0)) {
3601 tcpu = next_cpu;
c445477d 3602 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3603 }
c445477d 3604
a31196b0 3605 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3606 *rflowp = rflow;
3607 cpu = tcpu;
3608 goto done;
3609 }
3610 }
3611
567e4b79
ED
3612try_rps:
3613
0a9627f2 3614 if (map) {
8fc54f68 3615 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3616 if (cpu_online(tcpu)) {
3617 cpu = tcpu;
3618 goto done;
3619 }
3620 }
3621
3622done:
0a9627f2
TH
3623 return cpu;
3624}
3625
c445477d
BH
3626#ifdef CONFIG_RFS_ACCEL
3627
3628/**
3629 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3630 * @dev: Device on which the filter was set
3631 * @rxq_index: RX queue index
3632 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3633 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3634 *
3635 * Drivers that implement ndo_rx_flow_steer() should periodically call
3636 * this function for each installed filter and remove the filters for
3637 * which it returns %true.
3638 */
3639bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3640 u32 flow_id, u16 filter_id)
3641{
3642 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3643 struct rps_dev_flow_table *flow_table;
3644 struct rps_dev_flow *rflow;
3645 bool expire = true;
a31196b0 3646 unsigned int cpu;
c445477d
BH
3647
3648 rcu_read_lock();
3649 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3650 if (flow_table && flow_id <= flow_table->mask) {
3651 rflow = &flow_table->flows[flow_id];
3652 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3653 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3654 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3655 rflow->last_qtail) <
3656 (int)(10 * flow_table->mask)))
3657 expire = false;
3658 }
3659 rcu_read_unlock();
3660 return expire;
3661}
3662EXPORT_SYMBOL(rps_may_expire_flow);
3663
3664#endif /* CONFIG_RFS_ACCEL */
3665
0a9627f2 3666/* Called from hardirq (IPI) context */
e36fa2f7 3667static void rps_trigger_softirq(void *data)
0a9627f2 3668{
e36fa2f7
ED
3669 struct softnet_data *sd = data;
3670
eecfd7c4 3671 ____napi_schedule(sd, &sd->backlog);
dee42870 3672 sd->received_rps++;
0a9627f2 3673}
e36fa2f7 3674
fec5e652 3675#endif /* CONFIG_RPS */
0a9627f2 3676
e36fa2f7
ED
3677/*
3678 * Check if this softnet_data structure is another cpu one
3679 * If yes, queue it to our IPI list and return 1
3680 * If no, return 0
3681 */
3682static int rps_ipi_queued(struct softnet_data *sd)
3683{
3684#ifdef CONFIG_RPS
903ceff7 3685 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3686
3687 if (sd != mysd) {
3688 sd->rps_ipi_next = mysd->rps_ipi_list;
3689 mysd->rps_ipi_list = sd;
3690
3691 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3692 return 1;
3693 }
3694#endif /* CONFIG_RPS */
3695 return 0;
3696}
3697
99bbc707
WB
3698#ifdef CONFIG_NET_FLOW_LIMIT
3699int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3700#endif
3701
3702static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3703{
3704#ifdef CONFIG_NET_FLOW_LIMIT
3705 struct sd_flow_limit *fl;
3706 struct softnet_data *sd;
3707 unsigned int old_flow, new_flow;
3708
3709 if (qlen < (netdev_max_backlog >> 1))
3710 return false;
3711
903ceff7 3712 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3713
3714 rcu_read_lock();
3715 fl = rcu_dereference(sd->flow_limit);
3716 if (fl) {
3958afa1 3717 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3718 old_flow = fl->history[fl->history_head];
3719 fl->history[fl->history_head] = new_flow;
3720
3721 fl->history_head++;
3722 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3723
3724 if (likely(fl->buckets[old_flow]))
3725 fl->buckets[old_flow]--;
3726
3727 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3728 fl->count++;
3729 rcu_read_unlock();
3730 return true;
3731 }
3732 }
3733 rcu_read_unlock();
3734#endif
3735 return false;
3736}
3737
0a9627f2
TH
3738/*
3739 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3740 * queue (may be a remote CPU queue).
3741 */
fec5e652
TH
3742static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3743 unsigned int *qtail)
0a9627f2 3744{
e36fa2f7 3745 struct softnet_data *sd;
0a9627f2 3746 unsigned long flags;
99bbc707 3747 unsigned int qlen;
0a9627f2 3748
e36fa2f7 3749 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3750
3751 local_irq_save(flags);
0a9627f2 3752
e36fa2f7 3753 rps_lock(sd);
e9e4dd32
JA
3754 if (!netif_running(skb->dev))
3755 goto drop;
99bbc707
WB
3756 qlen = skb_queue_len(&sd->input_pkt_queue);
3757 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3758 if (qlen) {
0a9627f2 3759enqueue:
e36fa2f7 3760 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3761 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3762 rps_unlock(sd);
152102c7 3763 local_irq_restore(flags);
0a9627f2
TH
3764 return NET_RX_SUCCESS;
3765 }
3766
ebda37c2
ED
3767 /* Schedule NAPI for backlog device
3768 * We can use non atomic operation since we own the queue lock
3769 */
3770 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3771 if (!rps_ipi_queued(sd))
eecfd7c4 3772 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3773 }
3774 goto enqueue;
3775 }
3776
e9e4dd32 3777drop:
dee42870 3778 sd->dropped++;
e36fa2f7 3779 rps_unlock(sd);
0a9627f2 3780
0a9627f2
TH
3781 local_irq_restore(flags);
3782
caf586e5 3783 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3784 kfree_skb(skb);
3785 return NET_RX_DROP;
3786}
1da177e4 3787
ae78dbfa 3788static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3789{
b0e28f1e 3790 int ret;
1da177e4 3791
588f0330 3792 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3793
cf66ba58 3794 trace_netif_rx(skb);
df334545 3795#ifdef CONFIG_RPS
c5905afb 3796 if (static_key_false(&rps_needed)) {
fec5e652 3797 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3798 int cpu;
3799
cece1945 3800 preempt_disable();
b0e28f1e 3801 rcu_read_lock();
fec5e652
TH
3802
3803 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3804 if (cpu < 0)
3805 cpu = smp_processor_id();
fec5e652
TH
3806
3807 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3808
b0e28f1e 3809 rcu_read_unlock();
cece1945 3810 preempt_enable();
adc9300e
ED
3811 } else
3812#endif
fec5e652
TH
3813 {
3814 unsigned int qtail;
f4563a75 3815
fec5e652
TH
3816 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3817 put_cpu();
3818 }
b0e28f1e 3819 return ret;
1da177e4 3820}
ae78dbfa
BH
3821
3822/**
3823 * netif_rx - post buffer to the network code
3824 * @skb: buffer to post
3825 *
3826 * This function receives a packet from a device driver and queues it for
3827 * the upper (protocol) levels to process. It always succeeds. The buffer
3828 * may be dropped during processing for congestion control or by the
3829 * protocol layers.
3830 *
3831 * return values:
3832 * NET_RX_SUCCESS (no congestion)
3833 * NET_RX_DROP (packet was dropped)
3834 *
3835 */
3836
3837int netif_rx(struct sk_buff *skb)
3838{
3839 trace_netif_rx_entry(skb);
3840
3841 return netif_rx_internal(skb);
3842}
d1b19dff 3843EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3844
3845int netif_rx_ni(struct sk_buff *skb)
3846{
3847 int err;
3848
ae78dbfa
BH
3849 trace_netif_rx_ni_entry(skb);
3850
1da177e4 3851 preempt_disable();
ae78dbfa 3852 err = netif_rx_internal(skb);
1da177e4
LT
3853 if (local_softirq_pending())
3854 do_softirq();
3855 preempt_enable();
3856
3857 return err;
3858}
1da177e4
LT
3859EXPORT_SYMBOL(netif_rx_ni);
3860
0766f788 3861static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3862{
903ceff7 3863 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3864
3865 if (sd->completion_queue) {
3866 struct sk_buff *clist;
3867
3868 local_irq_disable();
3869 clist = sd->completion_queue;
3870 sd->completion_queue = NULL;
3871 local_irq_enable();
3872
3873 while (clist) {
3874 struct sk_buff *skb = clist;
f4563a75 3875
1da177e4
LT
3876 clist = clist->next;
3877
547b792c 3878 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3879 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3880 trace_consume_skb(skb);
3881 else
3882 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3883
3884 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3885 __kfree_skb(skb);
3886 else
3887 __kfree_skb_defer(skb);
1da177e4 3888 }
15fad714
JDB
3889
3890 __kfree_skb_flush();
1da177e4
LT
3891 }
3892
3893 if (sd->output_queue) {
37437bb2 3894 struct Qdisc *head;
1da177e4
LT
3895
3896 local_irq_disable();
3897 head = sd->output_queue;
3898 sd->output_queue = NULL;
a9cbd588 3899 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3900 local_irq_enable();
3901
3902 while (head) {
37437bb2
DM
3903 struct Qdisc *q = head;
3904 spinlock_t *root_lock;
3905
1da177e4
LT
3906 head = head->next_sched;
3907
5fb66229 3908 root_lock = qdisc_lock(q);
3bcb846c
ED
3909 spin_lock(root_lock);
3910 /* We need to make sure head->next_sched is read
3911 * before clearing __QDISC_STATE_SCHED
3912 */
3913 smp_mb__before_atomic();
3914 clear_bit(__QDISC_STATE_SCHED, &q->state);
3915 qdisc_run(q);
3916 spin_unlock(root_lock);
1da177e4
LT
3917 }
3918 }
3919}
3920
181402a5 3921#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3922/* This hook is defined here for ATM LANE */
3923int (*br_fdb_test_addr_hook)(struct net_device *dev,
3924 unsigned char *addr) __read_mostly;
4fb019a0 3925EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3926#endif
1da177e4 3927
1f211a1b
DB
3928static inline struct sk_buff *
3929sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3930 struct net_device *orig_dev)
f697c3e8 3931{
e7582bab 3932#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3933 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3934 struct tcf_result cl_res;
24824a09 3935
c9e99fd0
DB
3936 /* If there's at least one ingress present somewhere (so
3937 * we get here via enabled static key), remaining devices
3938 * that are not configured with an ingress qdisc will bail
d2788d34 3939 * out here.
c9e99fd0 3940 */
d2788d34 3941 if (!cl)
4577139b 3942 return skb;
f697c3e8
HX
3943 if (*pt_prev) {
3944 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3945 *pt_prev = NULL;
1da177e4
LT
3946 }
3947
3365495c 3948 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 3949 skb->tc_at_ingress = 1;
24ea591d 3950 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3951
3b3ae880 3952 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3953 case TC_ACT_OK:
3954 case TC_ACT_RECLASSIFY:
3955 skb->tc_index = TC_H_MIN(cl_res.classid);
3956 break;
3957 case TC_ACT_SHOT:
24ea591d 3958 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3959 kfree_skb(skb);
3960 return NULL;
d2788d34
DB
3961 case TC_ACT_STOLEN:
3962 case TC_ACT_QUEUED:
8a3a4c6e 3963 consume_skb(skb);
d2788d34 3964 return NULL;
27b29f63
AS
3965 case TC_ACT_REDIRECT:
3966 /* skb_mac_header check was done by cls/act_bpf, so
3967 * we can safely push the L2 header back before
3968 * redirecting to another netdev
3969 */
3970 __skb_push(skb, skb->mac_len);
3971 skb_do_redirect(skb);
3972 return NULL;
d2788d34
DB
3973 default:
3974 break;
f697c3e8 3975 }
e7582bab 3976#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3977 return skb;
3978}
1da177e4 3979
24b27fc4
MB
3980/**
3981 * netdev_is_rx_handler_busy - check if receive handler is registered
3982 * @dev: device to check
3983 *
3984 * Check if a receive handler is already registered for a given device.
3985 * Return true if there one.
3986 *
3987 * The caller must hold the rtnl_mutex.
3988 */
3989bool netdev_is_rx_handler_busy(struct net_device *dev)
3990{
3991 ASSERT_RTNL();
3992 return dev && rtnl_dereference(dev->rx_handler);
3993}
3994EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3995
ab95bfe0
JP
3996/**
3997 * netdev_rx_handler_register - register receive handler
3998 * @dev: device to register a handler for
3999 * @rx_handler: receive handler to register
93e2c32b 4000 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4001 *
e227867f 4002 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4003 * called from __netif_receive_skb. A negative errno code is returned
4004 * on a failure.
4005 *
4006 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4007 *
4008 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4009 */
4010int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4011 rx_handler_func_t *rx_handler,
4012 void *rx_handler_data)
ab95bfe0 4013{
1b7cd004 4014 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4015 return -EBUSY;
4016
00cfec37 4017 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4018 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4019 rcu_assign_pointer(dev->rx_handler, rx_handler);
4020
4021 return 0;
4022}
4023EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4024
4025/**
4026 * netdev_rx_handler_unregister - unregister receive handler
4027 * @dev: device to unregister a handler from
4028 *
166ec369 4029 * Unregister a receive handler from a device.
ab95bfe0
JP
4030 *
4031 * The caller must hold the rtnl_mutex.
4032 */
4033void netdev_rx_handler_unregister(struct net_device *dev)
4034{
4035
4036 ASSERT_RTNL();
a9b3cd7f 4037 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4038 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4039 * section has a guarantee to see a non NULL rx_handler_data
4040 * as well.
4041 */
4042 synchronize_net();
a9b3cd7f 4043 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4044}
4045EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4046
b4b9e355
MG
4047/*
4048 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4049 * the special handling of PFMEMALLOC skbs.
4050 */
4051static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4052{
4053 switch (skb->protocol) {
2b8837ae
JP
4054 case htons(ETH_P_ARP):
4055 case htons(ETH_P_IP):
4056 case htons(ETH_P_IPV6):
4057 case htons(ETH_P_8021Q):
4058 case htons(ETH_P_8021AD):
b4b9e355
MG
4059 return true;
4060 default:
4061 return false;
4062 }
4063}
4064
e687ad60
PN
4065static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4066 int *ret, struct net_device *orig_dev)
4067{
e7582bab 4068#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4069 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4070 int ingress_retval;
4071
e687ad60
PN
4072 if (*pt_prev) {
4073 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4074 *pt_prev = NULL;
4075 }
4076
2c1e2703
AC
4077 rcu_read_lock();
4078 ingress_retval = nf_hook_ingress(skb);
4079 rcu_read_unlock();
4080 return ingress_retval;
e687ad60 4081 }
e7582bab 4082#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4083 return 0;
4084}
e687ad60 4085
9754e293 4086static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4087{
4088 struct packet_type *ptype, *pt_prev;
ab95bfe0 4089 rx_handler_func_t *rx_handler;
f2ccd8fa 4090 struct net_device *orig_dev;
8a4eb573 4091 bool deliver_exact = false;
1da177e4 4092 int ret = NET_RX_DROP;
252e3346 4093 __be16 type;
1da177e4 4094
588f0330 4095 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4096
cf66ba58 4097 trace_netif_receive_skb(skb);
9b22ea56 4098
cc9bd5ce 4099 orig_dev = skb->dev;
8f903c70 4100
c1d2bbe1 4101 skb_reset_network_header(skb);
fda55eca
ED
4102 if (!skb_transport_header_was_set(skb))
4103 skb_reset_transport_header(skb);
0b5c9db1 4104 skb_reset_mac_len(skb);
1da177e4
LT
4105
4106 pt_prev = NULL;
4107
63d8ea7f 4108another_round:
b6858177 4109 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4110
4111 __this_cpu_inc(softnet_data.processed);
4112
8ad227ff
PM
4113 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4114 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4115 skb = skb_vlan_untag(skb);
bcc6d479 4116 if (unlikely(!skb))
2c17d27c 4117 goto out;
bcc6d479
JP
4118 }
4119
e7246e12
WB
4120 if (skb_skip_tc_classify(skb))
4121 goto skip_classify;
1da177e4 4122
9754e293 4123 if (pfmemalloc)
b4b9e355
MG
4124 goto skip_taps;
4125
1da177e4 4126 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4127 if (pt_prev)
4128 ret = deliver_skb(skb, pt_prev, orig_dev);
4129 pt_prev = ptype;
4130 }
4131
4132 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4133 if (pt_prev)
4134 ret = deliver_skb(skb, pt_prev, orig_dev);
4135 pt_prev = ptype;
1da177e4
LT
4136 }
4137
b4b9e355 4138skip_taps:
1cf51900 4139#ifdef CONFIG_NET_INGRESS
4577139b 4140 if (static_key_false(&ingress_needed)) {
1f211a1b 4141 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4142 if (!skb)
2c17d27c 4143 goto out;
e687ad60
PN
4144
4145 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4146 goto out;
4577139b 4147 }
1cf51900 4148#endif
a5135bcf 4149 skb_reset_tc(skb);
e7246e12 4150skip_classify:
9754e293 4151 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4152 goto drop;
4153
df8a39de 4154 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4155 if (pt_prev) {
4156 ret = deliver_skb(skb, pt_prev, orig_dev);
4157 pt_prev = NULL;
4158 }
48cc32d3 4159 if (vlan_do_receive(&skb))
2425717b
JF
4160 goto another_round;
4161 else if (unlikely(!skb))
2c17d27c 4162 goto out;
2425717b
JF
4163 }
4164
48cc32d3 4165 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4166 if (rx_handler) {
4167 if (pt_prev) {
4168 ret = deliver_skb(skb, pt_prev, orig_dev);
4169 pt_prev = NULL;
4170 }
8a4eb573
JP
4171 switch (rx_handler(&skb)) {
4172 case RX_HANDLER_CONSUMED:
3bc1b1ad 4173 ret = NET_RX_SUCCESS;
2c17d27c 4174 goto out;
8a4eb573 4175 case RX_HANDLER_ANOTHER:
63d8ea7f 4176 goto another_round;
8a4eb573
JP
4177 case RX_HANDLER_EXACT:
4178 deliver_exact = true;
4179 case RX_HANDLER_PASS:
4180 break;
4181 default:
4182 BUG();
4183 }
ab95bfe0 4184 }
1da177e4 4185
df8a39de
JP
4186 if (unlikely(skb_vlan_tag_present(skb))) {
4187 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4188 skb->pkt_type = PACKET_OTHERHOST;
4189 /* Note: we might in the future use prio bits
4190 * and set skb->priority like in vlan_do_receive()
4191 * For the time being, just ignore Priority Code Point
4192 */
4193 skb->vlan_tci = 0;
4194 }
48cc32d3 4195
7866a621
SN
4196 type = skb->protocol;
4197
63d8ea7f 4198 /* deliver only exact match when indicated */
7866a621
SN
4199 if (likely(!deliver_exact)) {
4200 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201 &ptype_base[ntohs(type) &
4202 PTYPE_HASH_MASK]);
4203 }
1f3c8804 4204
7866a621
SN
4205 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4206 &orig_dev->ptype_specific);
4207
4208 if (unlikely(skb->dev != orig_dev)) {
4209 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4210 &skb->dev->ptype_specific);
1da177e4
LT
4211 }
4212
4213 if (pt_prev) {
1080e512 4214 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4215 goto drop;
1080e512
MT
4216 else
4217 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4218 } else {
b4b9e355 4219drop:
6e7333d3
JW
4220 if (!deliver_exact)
4221 atomic_long_inc(&skb->dev->rx_dropped);
4222 else
4223 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4224 kfree_skb(skb);
4225 /* Jamal, now you will not able to escape explaining
4226 * me how you were going to use this. :-)
4227 */
4228 ret = NET_RX_DROP;
4229 }
4230
2c17d27c 4231out:
9754e293
DM
4232 return ret;
4233}
4234
4235static int __netif_receive_skb(struct sk_buff *skb)
4236{
4237 int ret;
4238
4239 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 4240 unsigned int noreclaim_flag;
9754e293
DM
4241
4242 /*
4243 * PFMEMALLOC skbs are special, they should
4244 * - be delivered to SOCK_MEMALLOC sockets only
4245 * - stay away from userspace
4246 * - have bounded memory usage
4247 *
4248 * Use PF_MEMALLOC as this saves us from propagating the allocation
4249 * context down to all allocation sites.
4250 */
f1083048 4251 noreclaim_flag = memalloc_noreclaim_save();
9754e293 4252 ret = __netif_receive_skb_core(skb, true);
f1083048 4253 memalloc_noreclaim_restore(noreclaim_flag);
9754e293
DM
4254 } else
4255 ret = __netif_receive_skb_core(skb, false);
4256
1da177e4
LT
4257 return ret;
4258}
0a9627f2 4259
b5cdae32
DM
4260static struct static_key generic_xdp_needed __read_mostly;
4261
4262static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4263{
4264 struct bpf_prog *new = xdp->prog;
4265 int ret = 0;
4266
4267 switch (xdp->command) {
4268 case XDP_SETUP_PROG: {
4269 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4270
4271 rcu_assign_pointer(dev->xdp_prog, new);
4272 if (old)
4273 bpf_prog_put(old);
4274
4275 if (old && !new) {
4276 static_key_slow_dec(&generic_xdp_needed);
4277 } else if (new && !old) {
4278 static_key_slow_inc(&generic_xdp_needed);
4279 dev_disable_lro(dev);
4280 }
4281 break;
4282 }
4283
4284 case XDP_QUERY_PROG:
4285 xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog);
4286 break;
4287
4288 default:
4289 ret = -EINVAL;
4290 break;
4291 }
4292
4293 return ret;
4294}
4295
4296static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4297 struct bpf_prog *xdp_prog)
4298{
4299 struct xdp_buff xdp;
4300 u32 act = XDP_DROP;
4301 void *orig_data;
4302 int hlen, off;
4303 u32 mac_len;
4304
4305 /* Reinjected packets coming from act_mirred or similar should
4306 * not get XDP generic processing.
4307 */
4308 if (skb_cloned(skb))
4309 return XDP_PASS;
4310
4311 if (skb_linearize(skb))
4312 goto do_drop;
4313
4314 /* The XDP program wants to see the packet starting at the MAC
4315 * header.
4316 */
4317 mac_len = skb->data - skb_mac_header(skb);
4318 hlen = skb_headlen(skb) + mac_len;
4319 xdp.data = skb->data - mac_len;
4320 xdp.data_end = xdp.data + hlen;
4321 xdp.data_hard_start = skb->data - skb_headroom(skb);
4322 orig_data = xdp.data;
4323
4324 act = bpf_prog_run_xdp(xdp_prog, &xdp);
4325
4326 off = xdp.data - orig_data;
4327 if (off > 0)
4328 __skb_pull(skb, off);
4329 else if (off < 0)
4330 __skb_push(skb, -off);
4331
4332 switch (act) {
4333 case XDP_TX:
4334 __skb_push(skb, mac_len);
4335 /* fall through */
4336 case XDP_PASS:
4337 break;
4338
4339 default:
4340 bpf_warn_invalid_xdp_action(act);
4341 /* fall through */
4342 case XDP_ABORTED:
4343 trace_xdp_exception(skb->dev, xdp_prog, act);
4344 /* fall through */
4345 case XDP_DROP:
4346 do_drop:
4347 kfree_skb(skb);
4348 break;
4349 }
4350
4351 return act;
4352}
4353
4354/* When doing generic XDP we have to bypass the qdisc layer and the
4355 * network taps in order to match in-driver-XDP behavior.
4356 */
4357static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4358{
4359 struct net_device *dev = skb->dev;
4360 struct netdev_queue *txq;
4361 bool free_skb = true;
4362 int cpu, rc;
4363
4364 txq = netdev_pick_tx(dev, skb, NULL);
4365 cpu = smp_processor_id();
4366 HARD_TX_LOCK(dev, txq, cpu);
4367 if (!netif_xmit_stopped(txq)) {
4368 rc = netdev_start_xmit(skb, dev, txq, 0);
4369 if (dev_xmit_complete(rc))
4370 free_skb = false;
4371 }
4372 HARD_TX_UNLOCK(dev, txq);
4373 if (free_skb) {
4374 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4375 kfree_skb(skb);
4376 }
4377}
4378
ae78dbfa 4379static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4380{
2c17d27c
JA
4381 int ret;
4382
588f0330 4383 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4384
c1f19b51
RC
4385 if (skb_defer_rx_timestamp(skb))
4386 return NET_RX_SUCCESS;
4387
2c17d27c
JA
4388 rcu_read_lock();
4389
b5cdae32
DM
4390 if (static_key_false(&generic_xdp_needed)) {
4391 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4392
4393 if (xdp_prog) {
4394 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4395
4396 if (act != XDP_PASS) {
4397 rcu_read_unlock();
4398 if (act == XDP_TX)
4399 generic_xdp_tx(skb, xdp_prog);
4400 return NET_RX_DROP;
4401 }
4402 }
4403 }
4404
df334545 4405#ifdef CONFIG_RPS
c5905afb 4406 if (static_key_false(&rps_needed)) {
3b098e2d 4407 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4408 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4409
3b098e2d
ED
4410 if (cpu >= 0) {
4411 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4412 rcu_read_unlock();
adc9300e 4413 return ret;
3b098e2d 4414 }
fec5e652 4415 }
1e94d72f 4416#endif
2c17d27c
JA
4417 ret = __netif_receive_skb(skb);
4418 rcu_read_unlock();
4419 return ret;
0a9627f2 4420}
ae78dbfa
BH
4421
4422/**
4423 * netif_receive_skb - process receive buffer from network
4424 * @skb: buffer to process
4425 *
4426 * netif_receive_skb() is the main receive data processing function.
4427 * It always succeeds. The buffer may be dropped during processing
4428 * for congestion control or by the protocol layers.
4429 *
4430 * This function may only be called from softirq context and interrupts
4431 * should be enabled.
4432 *
4433 * Return values (usually ignored):
4434 * NET_RX_SUCCESS: no congestion
4435 * NET_RX_DROP: packet was dropped
4436 */
04eb4489 4437int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4438{
4439 trace_netif_receive_skb_entry(skb);
4440
4441 return netif_receive_skb_internal(skb);
4442}
04eb4489 4443EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4444
41852497 4445DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4446
4447/* Network device is going away, flush any packets still pending */
4448static void flush_backlog(struct work_struct *work)
6e583ce5 4449{
6e583ce5 4450 struct sk_buff *skb, *tmp;
145dd5f9
PA
4451 struct softnet_data *sd;
4452
4453 local_bh_disable();
4454 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4455
145dd5f9 4456 local_irq_disable();
e36fa2f7 4457 rps_lock(sd);
6e7676c1 4458 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4459 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4460 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4461 kfree_skb(skb);
76cc8b13 4462 input_queue_head_incr(sd);
6e583ce5 4463 }
6e7676c1 4464 }
e36fa2f7 4465 rps_unlock(sd);
145dd5f9 4466 local_irq_enable();
6e7676c1
CG
4467
4468 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4469 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4470 __skb_unlink(skb, &sd->process_queue);
4471 kfree_skb(skb);
76cc8b13 4472 input_queue_head_incr(sd);
6e7676c1
CG
4473 }
4474 }
145dd5f9
PA
4475 local_bh_enable();
4476}
4477
41852497 4478static void flush_all_backlogs(void)
145dd5f9
PA
4479{
4480 unsigned int cpu;
4481
4482 get_online_cpus();
4483
41852497
ED
4484 for_each_online_cpu(cpu)
4485 queue_work_on(cpu, system_highpri_wq,
4486 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4487
4488 for_each_online_cpu(cpu)
41852497 4489 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4490
4491 put_online_cpus();
6e583ce5
SH
4492}
4493
d565b0a1
HX
4494static int napi_gro_complete(struct sk_buff *skb)
4495{
22061d80 4496 struct packet_offload *ptype;
d565b0a1 4497 __be16 type = skb->protocol;
22061d80 4498 struct list_head *head = &offload_base;
d565b0a1
HX
4499 int err = -ENOENT;
4500
c3c7c254
ED
4501 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4502
fc59f9a3
HX
4503 if (NAPI_GRO_CB(skb)->count == 1) {
4504 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4505 goto out;
fc59f9a3 4506 }
d565b0a1
HX
4507
4508 rcu_read_lock();
4509 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4510 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4511 continue;
4512
299603e8 4513 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4514 break;
4515 }
4516 rcu_read_unlock();
4517
4518 if (err) {
4519 WARN_ON(&ptype->list == head);
4520 kfree_skb(skb);
4521 return NET_RX_SUCCESS;
4522 }
4523
4524out:
ae78dbfa 4525 return netif_receive_skb_internal(skb);
d565b0a1
HX
4526}
4527
2e71a6f8
ED
4528/* napi->gro_list contains packets ordered by age.
4529 * youngest packets at the head of it.
4530 * Complete skbs in reverse order to reduce latencies.
4531 */
4532void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4533{
2e71a6f8 4534 struct sk_buff *skb, *prev = NULL;
d565b0a1 4535
2e71a6f8
ED
4536 /* scan list and build reverse chain */
4537 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4538 skb->prev = prev;
4539 prev = skb;
4540 }
4541
4542 for (skb = prev; skb; skb = prev) {
d565b0a1 4543 skb->next = NULL;
2e71a6f8
ED
4544
4545 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4546 return;
4547
4548 prev = skb->prev;
d565b0a1 4549 napi_gro_complete(skb);
2e71a6f8 4550 napi->gro_count--;
d565b0a1
HX
4551 }
4552
4553 napi->gro_list = NULL;
4554}
86cac58b 4555EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4556
89c5fa33
ED
4557static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4558{
4559 struct sk_buff *p;
4560 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4561 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4562
4563 for (p = napi->gro_list; p; p = p->next) {
4564 unsigned long diffs;
4565
0b4cec8c
TH
4566 NAPI_GRO_CB(p)->flush = 0;
4567
4568 if (hash != skb_get_hash_raw(p)) {
4569 NAPI_GRO_CB(p)->same_flow = 0;
4570 continue;
4571 }
4572
89c5fa33
ED
4573 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4574 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4575 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4576 if (maclen == ETH_HLEN)
4577 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4578 skb_mac_header(skb));
89c5fa33
ED
4579 else if (!diffs)
4580 diffs = memcmp(skb_mac_header(p),
a50e233c 4581 skb_mac_header(skb),
89c5fa33
ED
4582 maclen);
4583 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4584 }
4585}
4586
299603e8
JC
4587static void skb_gro_reset_offset(struct sk_buff *skb)
4588{
4589 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4590 const skb_frag_t *frag0 = &pinfo->frags[0];
4591
4592 NAPI_GRO_CB(skb)->data_offset = 0;
4593 NAPI_GRO_CB(skb)->frag0 = NULL;
4594 NAPI_GRO_CB(skb)->frag0_len = 0;
4595
4596 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4597 pinfo->nr_frags &&
4598 !PageHighMem(skb_frag_page(frag0))) {
4599 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4600 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4601 skb_frag_size(frag0),
4602 skb->end - skb->tail);
89c5fa33
ED
4603 }
4604}
4605
a50e233c
ED
4606static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4607{
4608 struct skb_shared_info *pinfo = skb_shinfo(skb);
4609
4610 BUG_ON(skb->end - skb->tail < grow);
4611
4612 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4613
4614 skb->data_len -= grow;
4615 skb->tail += grow;
4616
4617 pinfo->frags[0].page_offset += grow;
4618 skb_frag_size_sub(&pinfo->frags[0], grow);
4619
4620 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4621 skb_frag_unref(skb, 0);
4622 memmove(pinfo->frags, pinfo->frags + 1,
4623 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4624 }
4625}
4626
bb728820 4627static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4628{
4629 struct sk_buff **pp = NULL;
22061d80 4630 struct packet_offload *ptype;
d565b0a1 4631 __be16 type = skb->protocol;
22061d80 4632 struct list_head *head = &offload_base;
0da2afd5 4633 int same_flow;
5b252f0c 4634 enum gro_result ret;
a50e233c 4635 int grow;
d565b0a1 4636
b5cdae32 4637 if (netif_elide_gro(skb->dev))
d565b0a1
HX
4638 goto normal;
4639
d61d072e 4640 if (skb->csum_bad)
f17f5c91
HX
4641 goto normal;
4642
89c5fa33
ED
4643 gro_list_prepare(napi, skb);
4644
d565b0a1
HX
4645 rcu_read_lock();
4646 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4647 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4648 continue;
4649
86911732 4650 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4651 skb_reset_mac_len(skb);
d565b0a1 4652 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4653 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4654 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4655 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4656 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4657 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4658 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4659 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4660
662880f4
TH
4661 /* Setup for GRO checksum validation */
4662 switch (skb->ip_summed) {
4663 case CHECKSUM_COMPLETE:
4664 NAPI_GRO_CB(skb)->csum = skb->csum;
4665 NAPI_GRO_CB(skb)->csum_valid = 1;
4666 NAPI_GRO_CB(skb)->csum_cnt = 0;
4667 break;
4668 case CHECKSUM_UNNECESSARY:
4669 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4670 NAPI_GRO_CB(skb)->csum_valid = 0;
4671 break;
4672 default:
4673 NAPI_GRO_CB(skb)->csum_cnt = 0;
4674 NAPI_GRO_CB(skb)->csum_valid = 0;
4675 }
d565b0a1 4676
f191a1d1 4677 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4678 break;
4679 }
4680 rcu_read_unlock();
4681
4682 if (&ptype->list == head)
4683 goto normal;
4684
25393d3f
SK
4685 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4686 ret = GRO_CONSUMED;
4687 goto ok;
4688 }
4689
0da2afd5 4690 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4691 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4692
d565b0a1
HX
4693 if (pp) {
4694 struct sk_buff *nskb = *pp;
4695
4696 *pp = nskb->next;
4697 nskb->next = NULL;
4698 napi_gro_complete(nskb);
4ae5544f 4699 napi->gro_count--;
d565b0a1
HX
4700 }
4701
0da2afd5 4702 if (same_flow)
d565b0a1
HX
4703 goto ok;
4704
600adc18 4705 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4706 goto normal;
d565b0a1 4707
600adc18
ED
4708 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4709 struct sk_buff *nskb = napi->gro_list;
4710
4711 /* locate the end of the list to select the 'oldest' flow */
4712 while (nskb->next) {
4713 pp = &nskb->next;
4714 nskb = *pp;
4715 }
4716 *pp = NULL;
4717 nskb->next = NULL;
4718 napi_gro_complete(nskb);
4719 } else {
4720 napi->gro_count++;
4721 }
d565b0a1 4722 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4723 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4724 NAPI_GRO_CB(skb)->last = skb;
86911732 4725 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4726 skb->next = napi->gro_list;
4727 napi->gro_list = skb;
5d0d9be8 4728 ret = GRO_HELD;
d565b0a1 4729
ad0f9904 4730pull:
a50e233c
ED
4731 grow = skb_gro_offset(skb) - skb_headlen(skb);
4732 if (grow > 0)
4733 gro_pull_from_frag0(skb, grow);
d565b0a1 4734ok:
5d0d9be8 4735 return ret;
d565b0a1
HX
4736
4737normal:
ad0f9904
HX
4738 ret = GRO_NORMAL;
4739 goto pull;
5d38a079 4740}
96e93eab 4741
bf5a755f
JC
4742struct packet_offload *gro_find_receive_by_type(__be16 type)
4743{
4744 struct list_head *offload_head = &offload_base;
4745 struct packet_offload *ptype;
4746
4747 list_for_each_entry_rcu(ptype, offload_head, list) {
4748 if (ptype->type != type || !ptype->callbacks.gro_receive)
4749 continue;
4750 return ptype;
4751 }
4752 return NULL;
4753}
e27a2f83 4754EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4755
4756struct packet_offload *gro_find_complete_by_type(__be16 type)
4757{
4758 struct list_head *offload_head = &offload_base;
4759 struct packet_offload *ptype;
4760
4761 list_for_each_entry_rcu(ptype, offload_head, list) {
4762 if (ptype->type != type || !ptype->callbacks.gro_complete)
4763 continue;
4764 return ptype;
4765 }
4766 return NULL;
4767}
e27a2f83 4768EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4769
bb728820 4770static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4771{
5d0d9be8
HX
4772 switch (ret) {
4773 case GRO_NORMAL:
ae78dbfa 4774 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4775 ret = GRO_DROP;
4776 break;
5d38a079 4777
5d0d9be8 4778 case GRO_DROP:
5d38a079
HX
4779 kfree_skb(skb);
4780 break;
5b252f0c 4781
daa86548 4782 case GRO_MERGED_FREE:
ce87fc6c
JG
4783 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4784 skb_dst_drop(skb);
f991bb9d 4785 secpath_reset(skb);
d7e8883c 4786 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4787 } else {
d7e8883c 4788 __kfree_skb(skb);
ce87fc6c 4789 }
daa86548
ED
4790 break;
4791
5b252f0c
BH
4792 case GRO_HELD:
4793 case GRO_MERGED:
25393d3f 4794 case GRO_CONSUMED:
5b252f0c 4795 break;
5d38a079
HX
4796 }
4797
c7c4b3b6 4798 return ret;
5d0d9be8 4799}
5d0d9be8 4800
c7c4b3b6 4801gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4802{
93f93a44 4803 skb_mark_napi_id(skb, napi);
ae78dbfa 4804 trace_napi_gro_receive_entry(skb);
86911732 4805
a50e233c
ED
4806 skb_gro_reset_offset(skb);
4807
89c5fa33 4808 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4809}
4810EXPORT_SYMBOL(napi_gro_receive);
4811
d0c2b0d2 4812static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4813{
93a35f59
ED
4814 if (unlikely(skb->pfmemalloc)) {
4815 consume_skb(skb);
4816 return;
4817 }
96e93eab 4818 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4819 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4820 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4821 skb->vlan_tci = 0;
66c46d74 4822 skb->dev = napi->dev;
6d152e23 4823 skb->skb_iif = 0;
c3caf119
JC
4824 skb->encapsulation = 0;
4825 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4826 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 4827 secpath_reset(skb);
96e93eab
HX
4828
4829 napi->skb = skb;
4830}
96e93eab 4831
76620aaf 4832struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4833{
5d38a079 4834 struct sk_buff *skb = napi->skb;
5d38a079
HX
4835
4836 if (!skb) {
fd11a83d 4837 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4838 if (skb) {
4839 napi->skb = skb;
4840 skb_mark_napi_id(skb, napi);
4841 }
80595d59 4842 }
96e93eab
HX
4843 return skb;
4844}
76620aaf 4845EXPORT_SYMBOL(napi_get_frags);
96e93eab 4846
a50e233c
ED
4847static gro_result_t napi_frags_finish(struct napi_struct *napi,
4848 struct sk_buff *skb,
4849 gro_result_t ret)
96e93eab 4850{
5d0d9be8
HX
4851 switch (ret) {
4852 case GRO_NORMAL:
a50e233c
ED
4853 case GRO_HELD:
4854 __skb_push(skb, ETH_HLEN);
4855 skb->protocol = eth_type_trans(skb, skb->dev);
4856 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4857 ret = GRO_DROP;
86911732 4858 break;
5d38a079 4859
5d0d9be8 4860 case GRO_DROP:
5d0d9be8
HX
4861 case GRO_MERGED_FREE:
4862 napi_reuse_skb(napi, skb);
4863 break;
5b252f0c
BH
4864
4865 case GRO_MERGED:
25393d3f 4866 case GRO_CONSUMED:
5b252f0c 4867 break;
5d0d9be8 4868 }
5d38a079 4869
c7c4b3b6 4870 return ret;
5d38a079 4871}
5d0d9be8 4872
a50e233c
ED
4873/* Upper GRO stack assumes network header starts at gro_offset=0
4874 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4875 * We copy ethernet header into skb->data to have a common layout.
4876 */
4adb9c4a 4877static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4878{
4879 struct sk_buff *skb = napi->skb;
a50e233c
ED
4880 const struct ethhdr *eth;
4881 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4882
4883 napi->skb = NULL;
4884
a50e233c
ED
4885 skb_reset_mac_header(skb);
4886 skb_gro_reset_offset(skb);
4887
4888 eth = skb_gro_header_fast(skb, 0);
4889 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4890 eth = skb_gro_header_slow(skb, hlen, 0);
4891 if (unlikely(!eth)) {
4da46ceb
AC
4892 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4893 __func__, napi->dev->name);
a50e233c
ED
4894 napi_reuse_skb(napi, skb);
4895 return NULL;
4896 }
4897 } else {
4898 gro_pull_from_frag0(skb, hlen);
4899 NAPI_GRO_CB(skb)->frag0 += hlen;
4900 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4901 }
a50e233c
ED
4902 __skb_pull(skb, hlen);
4903
4904 /*
4905 * This works because the only protocols we care about don't require
4906 * special handling.
4907 * We'll fix it up properly in napi_frags_finish()
4908 */
4909 skb->protocol = eth->h_proto;
76620aaf 4910
76620aaf
HX
4911 return skb;
4912}
76620aaf 4913
c7c4b3b6 4914gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4915{
76620aaf 4916 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4917
4918 if (!skb)
c7c4b3b6 4919 return GRO_DROP;
5d0d9be8 4920
ae78dbfa
BH
4921 trace_napi_gro_frags_entry(skb);
4922
89c5fa33 4923 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4924}
5d38a079
HX
4925EXPORT_SYMBOL(napi_gro_frags);
4926
573e8fca
TH
4927/* Compute the checksum from gro_offset and return the folded value
4928 * after adding in any pseudo checksum.
4929 */
4930__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4931{
4932 __wsum wsum;
4933 __sum16 sum;
4934
4935 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4936
4937 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4938 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4939 if (likely(!sum)) {
4940 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4941 !skb->csum_complete_sw)
4942 netdev_rx_csum_fault(skb->dev);
4943 }
4944
4945 NAPI_GRO_CB(skb)->csum = wsum;
4946 NAPI_GRO_CB(skb)->csum_valid = 1;
4947
4948 return sum;
4949}
4950EXPORT_SYMBOL(__skb_gro_checksum_complete);
4951
773fc8f6 4952static void net_rps_send_ipi(struct softnet_data *remsd)
4953{
4954#ifdef CONFIG_RPS
4955 while (remsd) {
4956 struct softnet_data *next = remsd->rps_ipi_next;
4957
4958 if (cpu_online(remsd->cpu))
4959 smp_call_function_single_async(remsd->cpu, &remsd->csd);
4960 remsd = next;
4961 }
4962#endif
4963}
4964
e326bed2 4965/*
855abcf0 4966 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4967 * Note: called with local irq disabled, but exits with local irq enabled.
4968 */
4969static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4970{
4971#ifdef CONFIG_RPS
4972 struct softnet_data *remsd = sd->rps_ipi_list;
4973
4974 if (remsd) {
4975 sd->rps_ipi_list = NULL;
4976
4977 local_irq_enable();
4978
4979 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 4980 net_rps_send_ipi(remsd);
e326bed2
ED
4981 } else
4982#endif
4983 local_irq_enable();
4984}
4985
d75b1ade
ED
4986static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4987{
4988#ifdef CONFIG_RPS
4989 return sd->rps_ipi_list != NULL;
4990#else
4991 return false;
4992#endif
4993}
4994
bea3348e 4995static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4996{
eecfd7c4 4997 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4998 bool again = true;
4999 int work = 0;
1da177e4 5000
e326bed2
ED
5001 /* Check if we have pending ipi, its better to send them now,
5002 * not waiting net_rx_action() end.
5003 */
d75b1ade 5004 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5005 local_irq_disable();
5006 net_rps_action_and_irq_enable(sd);
5007 }
d75b1ade 5008
3d48b53f 5009 napi->weight = dev_rx_weight;
145dd5f9 5010 while (again) {
1da177e4 5011 struct sk_buff *skb;
6e7676c1
CG
5012
5013 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5014 rcu_read_lock();
6e7676c1 5015 __netif_receive_skb(skb);
2c17d27c 5016 rcu_read_unlock();
76cc8b13 5017 input_queue_head_incr(sd);
145dd5f9 5018 if (++work >= quota)
76cc8b13 5019 return work;
145dd5f9 5020
6e7676c1 5021 }
1da177e4 5022
145dd5f9 5023 local_irq_disable();
e36fa2f7 5024 rps_lock(sd);
11ef7a89 5025 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5026 /*
5027 * Inline a custom version of __napi_complete().
5028 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5029 * and NAPI_STATE_SCHED is the only possible flag set
5030 * on backlog.
5031 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5032 * and we dont need an smp_mb() memory barrier.
5033 */
eecfd7c4 5034 napi->state = 0;
145dd5f9
PA
5035 again = false;
5036 } else {
5037 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5038 &sd->process_queue);
bea3348e 5039 }
e36fa2f7 5040 rps_unlock(sd);
145dd5f9 5041 local_irq_enable();
6e7676c1 5042 }
1da177e4 5043
bea3348e
SH
5044 return work;
5045}
1da177e4 5046
bea3348e
SH
5047/**
5048 * __napi_schedule - schedule for receive
c4ea43c5 5049 * @n: entry to schedule
bea3348e 5050 *
bc9ad166
ED
5051 * The entry's receive function will be scheduled to run.
5052 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5053 */
b5606c2d 5054void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5055{
5056 unsigned long flags;
1da177e4 5057
bea3348e 5058 local_irq_save(flags);
903ceff7 5059 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5060 local_irq_restore(flags);
1da177e4 5061}
bea3348e
SH
5062EXPORT_SYMBOL(__napi_schedule);
5063
39e6c820
ED
5064/**
5065 * napi_schedule_prep - check if napi can be scheduled
5066 * @n: napi context
5067 *
5068 * Test if NAPI routine is already running, and if not mark
5069 * it as running. This is used as a condition variable
5070 * insure only one NAPI poll instance runs. We also make
5071 * sure there is no pending NAPI disable.
5072 */
5073bool napi_schedule_prep(struct napi_struct *n)
5074{
5075 unsigned long val, new;
5076
5077 do {
5078 val = READ_ONCE(n->state);
5079 if (unlikely(val & NAPIF_STATE_DISABLE))
5080 return false;
5081 new = val | NAPIF_STATE_SCHED;
5082
5083 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5084 * This was suggested by Alexander Duyck, as compiler
5085 * emits better code than :
5086 * if (val & NAPIF_STATE_SCHED)
5087 * new |= NAPIF_STATE_MISSED;
5088 */
5089 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5090 NAPIF_STATE_MISSED;
5091 } while (cmpxchg(&n->state, val, new) != val);
5092
5093 return !(val & NAPIF_STATE_SCHED);
5094}
5095EXPORT_SYMBOL(napi_schedule_prep);
5096
bc9ad166
ED
5097/**
5098 * __napi_schedule_irqoff - schedule for receive
5099 * @n: entry to schedule
5100 *
5101 * Variant of __napi_schedule() assuming hard irqs are masked
5102 */
5103void __napi_schedule_irqoff(struct napi_struct *n)
5104{
5105 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5106}
5107EXPORT_SYMBOL(__napi_schedule_irqoff);
5108
364b6055 5109bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5110{
39e6c820 5111 unsigned long flags, val, new;
d565b0a1
HX
5112
5113 /*
217f6974
ED
5114 * 1) Don't let napi dequeue from the cpu poll list
5115 * just in case its running on a different cpu.
5116 * 2) If we are busy polling, do nothing here, we have
5117 * the guarantee we will be called later.
d565b0a1 5118 */
217f6974
ED
5119 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5120 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5121 return false;
d565b0a1 5122
3b47d303
ED
5123 if (n->gro_list) {
5124 unsigned long timeout = 0;
d75b1ade 5125
3b47d303
ED
5126 if (work_done)
5127 timeout = n->dev->gro_flush_timeout;
5128
5129 if (timeout)
5130 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5131 HRTIMER_MODE_REL_PINNED);
5132 else
5133 napi_gro_flush(n, false);
5134 }
02c1602e 5135 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5136 /* If n->poll_list is not empty, we need to mask irqs */
5137 local_irq_save(flags);
02c1602e 5138 list_del_init(&n->poll_list);
d75b1ade
ED
5139 local_irq_restore(flags);
5140 }
39e6c820
ED
5141
5142 do {
5143 val = READ_ONCE(n->state);
5144
5145 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5146
5147 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5148
5149 /* If STATE_MISSED was set, leave STATE_SCHED set,
5150 * because we will call napi->poll() one more time.
5151 * This C code was suggested by Alexander Duyck to help gcc.
5152 */
5153 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5154 NAPIF_STATE_SCHED;
5155 } while (cmpxchg(&n->state, val, new) != val);
5156
5157 if (unlikely(val & NAPIF_STATE_MISSED)) {
5158 __napi_schedule(n);
5159 return false;
5160 }
5161
364b6055 5162 return true;
d565b0a1 5163}
3b47d303 5164EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5165
af12fa6e 5166/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5167static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5168{
5169 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5170 struct napi_struct *napi;
5171
5172 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5173 if (napi->napi_id == napi_id)
5174 return napi;
5175
5176 return NULL;
5177}
02d62e86
ED
5178
5179#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5180
ce6aea93 5181#define BUSY_POLL_BUDGET 8
217f6974
ED
5182
5183static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5184{
5185 int rc;
5186
39e6c820
ED
5187 /* Busy polling means there is a high chance device driver hard irq
5188 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5189 * set in napi_schedule_prep().
5190 * Since we are about to call napi->poll() once more, we can safely
5191 * clear NAPI_STATE_MISSED.
5192 *
5193 * Note: x86 could use a single "lock and ..." instruction
5194 * to perform these two clear_bit()
5195 */
5196 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5197 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5198
5199 local_bh_disable();
5200
5201 /* All we really want here is to re-enable device interrupts.
5202 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5203 */
5204 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5205 netpoll_poll_unlock(have_poll_lock);
5206 if (rc == BUSY_POLL_BUDGET)
5207 __napi_schedule(napi);
5208 local_bh_enable();
217f6974
ED
5209}
5210
7db6b048
SS
5211void napi_busy_loop(unsigned int napi_id,
5212 bool (*loop_end)(void *, unsigned long),
5213 void *loop_end_arg)
02d62e86 5214{
7db6b048 5215 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 5216 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 5217 void *have_poll_lock = NULL;
02d62e86 5218 struct napi_struct *napi;
217f6974
ED
5219
5220restart:
217f6974 5221 napi_poll = NULL;
02d62e86 5222
2a028ecb 5223 rcu_read_lock();
02d62e86 5224
545cd5e5 5225 napi = napi_by_id(napi_id);
02d62e86
ED
5226 if (!napi)
5227 goto out;
5228
217f6974
ED
5229 preempt_disable();
5230 for (;;) {
2b5cd0df
AD
5231 int work = 0;
5232
2a028ecb 5233 local_bh_disable();
217f6974
ED
5234 if (!napi_poll) {
5235 unsigned long val = READ_ONCE(napi->state);
5236
5237 /* If multiple threads are competing for this napi,
5238 * we avoid dirtying napi->state as much as we can.
5239 */
5240 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5241 NAPIF_STATE_IN_BUSY_POLL))
5242 goto count;
5243 if (cmpxchg(&napi->state, val,
5244 val | NAPIF_STATE_IN_BUSY_POLL |
5245 NAPIF_STATE_SCHED) != val)
5246 goto count;
5247 have_poll_lock = netpoll_poll_lock(napi);
5248 napi_poll = napi->poll;
5249 }
2b5cd0df
AD
5250 work = napi_poll(napi, BUSY_POLL_BUDGET);
5251 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 5252count:
2b5cd0df 5253 if (work > 0)
7db6b048 5254 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 5255 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 5256 local_bh_enable();
02d62e86 5257
7db6b048 5258 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 5259 break;
02d62e86 5260
217f6974
ED
5261 if (unlikely(need_resched())) {
5262 if (napi_poll)
5263 busy_poll_stop(napi, have_poll_lock);
5264 preempt_enable();
5265 rcu_read_unlock();
5266 cond_resched();
7db6b048 5267 if (loop_end(loop_end_arg, start_time))
2b5cd0df 5268 return;
217f6974
ED
5269 goto restart;
5270 }
6cdf89b1 5271 cpu_relax();
217f6974
ED
5272 }
5273 if (napi_poll)
5274 busy_poll_stop(napi, have_poll_lock);
5275 preempt_enable();
02d62e86 5276out:
2a028ecb 5277 rcu_read_unlock();
02d62e86 5278}
7db6b048 5279EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
5280
5281#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5282
149d6ad8 5283static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5284{
d64b5e85
ED
5285 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5286 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5287 return;
af12fa6e 5288
52bd2d62 5289 spin_lock(&napi_hash_lock);
af12fa6e 5290
545cd5e5 5291 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 5292 do {
545cd5e5
AD
5293 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5294 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
5295 } while (napi_by_id(napi_gen_id));
5296 napi->napi_id = napi_gen_id;
af12fa6e 5297
52bd2d62
ED
5298 hlist_add_head_rcu(&napi->napi_hash_node,
5299 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5300
52bd2d62 5301 spin_unlock(&napi_hash_lock);
af12fa6e 5302}
af12fa6e
ET
5303
5304/* Warning : caller is responsible to make sure rcu grace period
5305 * is respected before freeing memory containing @napi
5306 */
34cbe27e 5307bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5308{
34cbe27e
ED
5309 bool rcu_sync_needed = false;
5310
af12fa6e
ET
5311 spin_lock(&napi_hash_lock);
5312
34cbe27e
ED
5313 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5314 rcu_sync_needed = true;
af12fa6e 5315 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5316 }
af12fa6e 5317 spin_unlock(&napi_hash_lock);
34cbe27e 5318 return rcu_sync_needed;
af12fa6e
ET
5319}
5320EXPORT_SYMBOL_GPL(napi_hash_del);
5321
3b47d303
ED
5322static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5323{
5324 struct napi_struct *napi;
5325
5326 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
5327
5328 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5329 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5330 */
5331 if (napi->gro_list && !napi_disable_pending(napi) &&
5332 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5333 __napi_schedule_irqoff(napi);
3b47d303
ED
5334
5335 return HRTIMER_NORESTART;
5336}
5337
d565b0a1
HX
5338void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5339 int (*poll)(struct napi_struct *, int), int weight)
5340{
5341 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5342 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5343 napi->timer.function = napi_watchdog;
4ae5544f 5344 napi->gro_count = 0;
d565b0a1 5345 napi->gro_list = NULL;
5d38a079 5346 napi->skb = NULL;
d565b0a1 5347 napi->poll = poll;
82dc3c63
ED
5348 if (weight > NAPI_POLL_WEIGHT)
5349 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5350 weight, dev->name);
d565b0a1
HX
5351 napi->weight = weight;
5352 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5353 napi->dev = dev;
5d38a079 5354#ifdef CONFIG_NETPOLL
d565b0a1
HX
5355 napi->poll_owner = -1;
5356#endif
5357 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5358 napi_hash_add(napi);
d565b0a1
HX
5359}
5360EXPORT_SYMBOL(netif_napi_add);
5361
3b47d303
ED
5362void napi_disable(struct napi_struct *n)
5363{
5364 might_sleep();
5365 set_bit(NAPI_STATE_DISABLE, &n->state);
5366
5367 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5368 msleep(1);
2d8bff12
NH
5369 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5370 msleep(1);
3b47d303
ED
5371
5372 hrtimer_cancel(&n->timer);
5373
5374 clear_bit(NAPI_STATE_DISABLE, &n->state);
5375}
5376EXPORT_SYMBOL(napi_disable);
5377
93d05d4a 5378/* Must be called in process context */
d565b0a1
HX
5379void netif_napi_del(struct napi_struct *napi)
5380{
93d05d4a
ED
5381 might_sleep();
5382 if (napi_hash_del(napi))
5383 synchronize_net();
d7b06636 5384 list_del_init(&napi->dev_list);
76620aaf 5385 napi_free_frags(napi);
d565b0a1 5386
289dccbe 5387 kfree_skb_list(napi->gro_list);
d565b0a1 5388 napi->gro_list = NULL;
4ae5544f 5389 napi->gro_count = 0;
d565b0a1
HX
5390}
5391EXPORT_SYMBOL(netif_napi_del);
5392
726ce70e
HX
5393static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5394{
5395 void *have;
5396 int work, weight;
5397
5398 list_del_init(&n->poll_list);
5399
5400 have = netpoll_poll_lock(n);
5401
5402 weight = n->weight;
5403
5404 /* This NAPI_STATE_SCHED test is for avoiding a race
5405 * with netpoll's poll_napi(). Only the entity which
5406 * obtains the lock and sees NAPI_STATE_SCHED set will
5407 * actually make the ->poll() call. Therefore we avoid
5408 * accidentally calling ->poll() when NAPI is not scheduled.
5409 */
5410 work = 0;
5411 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5412 work = n->poll(n, weight);
1db19db7 5413 trace_napi_poll(n, work, weight);
726ce70e
HX
5414 }
5415
5416 WARN_ON_ONCE(work > weight);
5417
5418 if (likely(work < weight))
5419 goto out_unlock;
5420
5421 /* Drivers must not modify the NAPI state if they
5422 * consume the entire weight. In such cases this code
5423 * still "owns" the NAPI instance and therefore can
5424 * move the instance around on the list at-will.
5425 */
5426 if (unlikely(napi_disable_pending(n))) {
5427 napi_complete(n);
5428 goto out_unlock;
5429 }
5430
5431 if (n->gro_list) {
5432 /* flush too old packets
5433 * If HZ < 1000, flush all packets.
5434 */
5435 napi_gro_flush(n, HZ >= 1000);
5436 }
5437
001ce546
HX
5438 /* Some drivers may have called napi_schedule
5439 * prior to exhausting their budget.
5440 */
5441 if (unlikely(!list_empty(&n->poll_list))) {
5442 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5443 n->dev ? n->dev->name : "backlog");
5444 goto out_unlock;
5445 }
5446
726ce70e
HX
5447 list_add_tail(&n->poll_list, repoll);
5448
5449out_unlock:
5450 netpoll_poll_unlock(have);
5451
5452 return work;
5453}
5454
0766f788 5455static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5456{
903ceff7 5457 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
5458 unsigned long time_limit = jiffies +
5459 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 5460 int budget = netdev_budget;
d75b1ade
ED
5461 LIST_HEAD(list);
5462 LIST_HEAD(repoll);
53fb95d3 5463
1da177e4 5464 local_irq_disable();
d75b1ade
ED
5465 list_splice_init(&sd->poll_list, &list);
5466 local_irq_enable();
1da177e4 5467
ceb8d5bf 5468 for (;;) {
bea3348e 5469 struct napi_struct *n;
1da177e4 5470
ceb8d5bf
HX
5471 if (list_empty(&list)) {
5472 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5473 goto out;
ceb8d5bf
HX
5474 break;
5475 }
5476
6bd373eb
HX
5477 n = list_first_entry(&list, struct napi_struct, poll_list);
5478 budget -= napi_poll(n, &repoll);
5479
d75b1ade 5480 /* If softirq window is exhausted then punt.
24f8b238
SH
5481 * Allow this to run for 2 jiffies since which will allow
5482 * an average latency of 1.5/HZ.
bea3348e 5483 */
ceb8d5bf
HX
5484 if (unlikely(budget <= 0 ||
5485 time_after_eq(jiffies, time_limit))) {
5486 sd->time_squeeze++;
5487 break;
5488 }
1da177e4 5489 }
d75b1ade 5490
d75b1ade
ED
5491 local_irq_disable();
5492
5493 list_splice_tail_init(&sd->poll_list, &list);
5494 list_splice_tail(&repoll, &list);
5495 list_splice(&list, &sd->poll_list);
5496 if (!list_empty(&sd->poll_list))
5497 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5498
e326bed2 5499 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5500out:
5501 __kfree_skb_flush();
1da177e4
LT
5502}
5503
aa9d8560 5504struct netdev_adjacent {
9ff162a8 5505 struct net_device *dev;
5d261913
VF
5506
5507 /* upper master flag, there can only be one master device per list */
9ff162a8 5508 bool master;
5d261913 5509
5d261913
VF
5510 /* counter for the number of times this device was added to us */
5511 u16 ref_nr;
5512
402dae96
VF
5513 /* private field for the users */
5514 void *private;
5515
9ff162a8
JP
5516 struct list_head list;
5517 struct rcu_head rcu;
9ff162a8
JP
5518};
5519
6ea29da1 5520static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5521 struct list_head *adj_list)
9ff162a8 5522{
5d261913 5523 struct netdev_adjacent *adj;
5d261913 5524
2f268f12 5525 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5526 if (adj->dev == adj_dev)
5527 return adj;
9ff162a8
JP
5528 }
5529 return NULL;
5530}
5531
f1170fd4
DA
5532static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5533{
5534 struct net_device *dev = data;
5535
5536 return upper_dev == dev;
5537}
5538
9ff162a8
JP
5539/**
5540 * netdev_has_upper_dev - Check if device is linked to an upper device
5541 * @dev: device
5542 * @upper_dev: upper device to check
5543 *
5544 * Find out if a device is linked to specified upper device and return true
5545 * in case it is. Note that this checks only immediate upper device,
5546 * not through a complete stack of devices. The caller must hold the RTNL lock.
5547 */
5548bool netdev_has_upper_dev(struct net_device *dev,
5549 struct net_device *upper_dev)
5550{
5551 ASSERT_RTNL();
5552
f1170fd4
DA
5553 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5554 upper_dev);
9ff162a8
JP
5555}
5556EXPORT_SYMBOL(netdev_has_upper_dev);
5557
1a3f060c
DA
5558/**
5559 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5560 * @dev: device
5561 * @upper_dev: upper device to check
5562 *
5563 * Find out if a device is linked to specified upper device and return true
5564 * in case it is. Note that this checks the entire upper device chain.
5565 * The caller must hold rcu lock.
5566 */
5567
1a3f060c
DA
5568bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5569 struct net_device *upper_dev)
5570{
5571 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5572 upper_dev);
5573}
5574EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5575
9ff162a8
JP
5576/**
5577 * netdev_has_any_upper_dev - Check if device is linked to some device
5578 * @dev: device
5579 *
5580 * Find out if a device is linked to an upper device and return true in case
5581 * it is. The caller must hold the RTNL lock.
5582 */
1d143d9f 5583static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5584{
5585 ASSERT_RTNL();
5586
f1170fd4 5587 return !list_empty(&dev->adj_list.upper);
9ff162a8 5588}
9ff162a8
JP
5589
5590/**
5591 * netdev_master_upper_dev_get - Get master upper device
5592 * @dev: device
5593 *
5594 * Find a master upper device and return pointer to it or NULL in case
5595 * it's not there. The caller must hold the RTNL lock.
5596 */
5597struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5598{
aa9d8560 5599 struct netdev_adjacent *upper;
9ff162a8
JP
5600
5601 ASSERT_RTNL();
5602
2f268f12 5603 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5604 return NULL;
5605
2f268f12 5606 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5607 struct netdev_adjacent, list);
9ff162a8
JP
5608 if (likely(upper->master))
5609 return upper->dev;
5610 return NULL;
5611}
5612EXPORT_SYMBOL(netdev_master_upper_dev_get);
5613
0f524a80
DA
5614/**
5615 * netdev_has_any_lower_dev - Check if device is linked to some device
5616 * @dev: device
5617 *
5618 * Find out if a device is linked to a lower device and return true in case
5619 * it is. The caller must hold the RTNL lock.
5620 */
5621static bool netdev_has_any_lower_dev(struct net_device *dev)
5622{
5623 ASSERT_RTNL();
5624
5625 return !list_empty(&dev->adj_list.lower);
5626}
5627
b6ccba4c
VF
5628void *netdev_adjacent_get_private(struct list_head *adj_list)
5629{
5630 struct netdev_adjacent *adj;
5631
5632 adj = list_entry(adj_list, struct netdev_adjacent, list);
5633
5634 return adj->private;
5635}
5636EXPORT_SYMBOL(netdev_adjacent_get_private);
5637
44a40855
VY
5638/**
5639 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5640 * @dev: device
5641 * @iter: list_head ** of the current position
5642 *
5643 * Gets the next device from the dev's upper list, starting from iter
5644 * position. The caller must hold RCU read lock.
5645 */
5646struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5647 struct list_head **iter)
5648{
5649 struct netdev_adjacent *upper;
5650
5651 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5652
5653 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5654
5655 if (&upper->list == &dev->adj_list.upper)
5656 return NULL;
5657
5658 *iter = &upper->list;
5659
5660 return upper->dev;
5661}
5662EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5663
1a3f060c
DA
5664static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5665 struct list_head **iter)
5666{
5667 struct netdev_adjacent *upper;
5668
5669 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5670
5671 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5672
5673 if (&upper->list == &dev->adj_list.upper)
5674 return NULL;
5675
5676 *iter = &upper->list;
5677
5678 return upper->dev;
5679}
5680
5681int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5682 int (*fn)(struct net_device *dev,
5683 void *data),
5684 void *data)
5685{
5686 struct net_device *udev;
5687 struct list_head *iter;
5688 int ret;
5689
5690 for (iter = &dev->adj_list.upper,
5691 udev = netdev_next_upper_dev_rcu(dev, &iter);
5692 udev;
5693 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5694 /* first is the upper device itself */
5695 ret = fn(udev, data);
5696 if (ret)
5697 return ret;
5698
5699 /* then look at all of its upper devices */
5700 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5701 if (ret)
5702 return ret;
5703 }
5704
5705 return 0;
5706}
5707EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5708
31088a11
VF
5709/**
5710 * netdev_lower_get_next_private - Get the next ->private from the
5711 * lower neighbour list
5712 * @dev: device
5713 * @iter: list_head ** of the current position
5714 *
5715 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5716 * list, starting from iter position. The caller must hold either hold the
5717 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5718 * list will remain unchanged.
31088a11
VF
5719 */
5720void *netdev_lower_get_next_private(struct net_device *dev,
5721 struct list_head **iter)
5722{
5723 struct netdev_adjacent *lower;
5724
5725 lower = list_entry(*iter, struct netdev_adjacent, list);
5726
5727 if (&lower->list == &dev->adj_list.lower)
5728 return NULL;
5729
6859e7df 5730 *iter = lower->list.next;
31088a11
VF
5731
5732 return lower->private;
5733}
5734EXPORT_SYMBOL(netdev_lower_get_next_private);
5735
5736/**
5737 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5738 * lower neighbour list, RCU
5739 * variant
5740 * @dev: device
5741 * @iter: list_head ** of the current position
5742 *
5743 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5744 * list, starting from iter position. The caller must hold RCU read lock.
5745 */
5746void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5747 struct list_head **iter)
5748{
5749 struct netdev_adjacent *lower;
5750
5751 WARN_ON_ONCE(!rcu_read_lock_held());
5752
5753 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5754
5755 if (&lower->list == &dev->adj_list.lower)
5756 return NULL;
5757
6859e7df 5758 *iter = &lower->list;
31088a11
VF
5759
5760 return lower->private;
5761}
5762EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5763
4085ebe8
VY
5764/**
5765 * netdev_lower_get_next - Get the next device from the lower neighbour
5766 * list
5767 * @dev: device
5768 * @iter: list_head ** of the current position
5769 *
5770 * Gets the next netdev_adjacent from the dev's lower neighbour
5771 * list, starting from iter position. The caller must hold RTNL lock or
5772 * its own locking that guarantees that the neighbour lower
b469139e 5773 * list will remain unchanged.
4085ebe8
VY
5774 */
5775void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5776{
5777 struct netdev_adjacent *lower;
5778
cfdd28be 5779 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5780
5781 if (&lower->list == &dev->adj_list.lower)
5782 return NULL;
5783
cfdd28be 5784 *iter = lower->list.next;
4085ebe8
VY
5785
5786 return lower->dev;
5787}
5788EXPORT_SYMBOL(netdev_lower_get_next);
5789
1a3f060c
DA
5790static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5791 struct list_head **iter)
5792{
5793 struct netdev_adjacent *lower;
5794
46b5ab1a 5795 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5796
5797 if (&lower->list == &dev->adj_list.lower)
5798 return NULL;
5799
46b5ab1a 5800 *iter = &lower->list;
1a3f060c
DA
5801
5802 return lower->dev;
5803}
5804
5805int netdev_walk_all_lower_dev(struct net_device *dev,
5806 int (*fn)(struct net_device *dev,
5807 void *data),
5808 void *data)
5809{
5810 struct net_device *ldev;
5811 struct list_head *iter;
5812 int ret;
5813
5814 for (iter = &dev->adj_list.lower,
5815 ldev = netdev_next_lower_dev(dev, &iter);
5816 ldev;
5817 ldev = netdev_next_lower_dev(dev, &iter)) {
5818 /* first is the lower device itself */
5819 ret = fn(ldev, data);
5820 if (ret)
5821 return ret;
5822
5823 /* then look at all of its lower devices */
5824 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5825 if (ret)
5826 return ret;
5827 }
5828
5829 return 0;
5830}
5831EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5832
1a3f060c
DA
5833static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5834 struct list_head **iter)
5835{
5836 struct netdev_adjacent *lower;
5837
5838 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5839 if (&lower->list == &dev->adj_list.lower)
5840 return NULL;
5841
5842 *iter = &lower->list;
5843
5844 return lower->dev;
5845}
5846
5847int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5848 int (*fn)(struct net_device *dev,
5849 void *data),
5850 void *data)
5851{
5852 struct net_device *ldev;
5853 struct list_head *iter;
5854 int ret;
5855
5856 for (iter = &dev->adj_list.lower,
5857 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5858 ldev;
5859 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5860 /* first is the lower device itself */
5861 ret = fn(ldev, data);
5862 if (ret)
5863 return ret;
5864
5865 /* then look at all of its lower devices */
5866 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5867 if (ret)
5868 return ret;
5869 }
5870
5871 return 0;
5872}
5873EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5874
e001bfad 5875/**
5876 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5877 * lower neighbour list, RCU
5878 * variant
5879 * @dev: device
5880 *
5881 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5882 * list. The caller must hold RCU read lock.
5883 */
5884void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5885{
5886 struct netdev_adjacent *lower;
5887
5888 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5889 struct netdev_adjacent, list);
5890 if (lower)
5891 return lower->private;
5892 return NULL;
5893}
5894EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5895
9ff162a8
JP
5896/**
5897 * netdev_master_upper_dev_get_rcu - Get master upper device
5898 * @dev: device
5899 *
5900 * Find a master upper device and return pointer to it or NULL in case
5901 * it's not there. The caller must hold the RCU read lock.
5902 */
5903struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5904{
aa9d8560 5905 struct netdev_adjacent *upper;
9ff162a8 5906
2f268f12 5907 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5908 struct netdev_adjacent, list);
9ff162a8
JP
5909 if (upper && likely(upper->master))
5910 return upper->dev;
5911 return NULL;
5912}
5913EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5914
0a59f3a9 5915static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5916 struct net_device *adj_dev,
5917 struct list_head *dev_list)
5918{
5919 char linkname[IFNAMSIZ+7];
f4563a75 5920
3ee32707
VF
5921 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5922 "upper_%s" : "lower_%s", adj_dev->name);
5923 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5924 linkname);
5925}
0a59f3a9 5926static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5927 char *name,
5928 struct list_head *dev_list)
5929{
5930 char linkname[IFNAMSIZ+7];
f4563a75 5931
3ee32707
VF
5932 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5933 "upper_%s" : "lower_%s", name);
5934 sysfs_remove_link(&(dev->dev.kobj), linkname);
5935}
5936
7ce64c79
AF
5937static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5938 struct net_device *adj_dev,
5939 struct list_head *dev_list)
5940{
5941 return (dev_list == &dev->adj_list.upper ||
5942 dev_list == &dev->adj_list.lower) &&
5943 net_eq(dev_net(dev), dev_net(adj_dev));
5944}
3ee32707 5945
5d261913
VF
5946static int __netdev_adjacent_dev_insert(struct net_device *dev,
5947 struct net_device *adj_dev,
7863c054 5948 struct list_head *dev_list,
402dae96 5949 void *private, bool master)
5d261913
VF
5950{
5951 struct netdev_adjacent *adj;
842d67a7 5952 int ret;
5d261913 5953
6ea29da1 5954 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5955
5956 if (adj) {
790510d9 5957 adj->ref_nr += 1;
67b62f98
DA
5958 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5959 dev->name, adj_dev->name, adj->ref_nr);
5960
5d261913
VF
5961 return 0;
5962 }
5963
5964 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5965 if (!adj)
5966 return -ENOMEM;
5967
5968 adj->dev = adj_dev;
5969 adj->master = master;
790510d9 5970 adj->ref_nr = 1;
402dae96 5971 adj->private = private;
5d261913 5972 dev_hold(adj_dev);
2f268f12 5973
67b62f98
DA
5974 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5975 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 5976
7ce64c79 5977 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5978 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5979 if (ret)
5980 goto free_adj;
5981 }
5982
7863c054 5983 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5984 if (master) {
5985 ret = sysfs_create_link(&(dev->dev.kobj),
5986 &(adj_dev->dev.kobj), "master");
5987 if (ret)
5831d66e 5988 goto remove_symlinks;
842d67a7 5989
7863c054 5990 list_add_rcu(&adj->list, dev_list);
842d67a7 5991 } else {
7863c054 5992 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5993 }
5d261913
VF
5994
5995 return 0;
842d67a7 5996
5831d66e 5997remove_symlinks:
7ce64c79 5998 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5999 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6000free_adj:
6001 kfree(adj);
974daef7 6002 dev_put(adj_dev);
842d67a7
VF
6003
6004 return ret;
5d261913
VF
6005}
6006
1d143d9f 6007static void __netdev_adjacent_dev_remove(struct net_device *dev,
6008 struct net_device *adj_dev,
93409033 6009 u16 ref_nr,
1d143d9f 6010 struct list_head *dev_list)
5d261913
VF
6011{
6012 struct netdev_adjacent *adj;
6013
67b62f98
DA
6014 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6015 dev->name, adj_dev->name, ref_nr);
6016
6ea29da1 6017 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6018
2f268f12 6019 if (!adj) {
67b62f98 6020 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6021 dev->name, adj_dev->name);
67b62f98
DA
6022 WARN_ON(1);
6023 return;
2f268f12 6024 }
5d261913 6025
93409033 6026 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6027 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6028 dev->name, adj_dev->name, ref_nr,
6029 adj->ref_nr - ref_nr);
93409033 6030 adj->ref_nr -= ref_nr;
5d261913
VF
6031 return;
6032 }
6033
842d67a7
VF
6034 if (adj->master)
6035 sysfs_remove_link(&(dev->dev.kobj), "master");
6036
7ce64c79 6037 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6038 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6039
5d261913 6040 list_del_rcu(&adj->list);
67b62f98 6041 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6042 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6043 dev_put(adj_dev);
6044 kfree_rcu(adj, rcu);
6045}
6046
1d143d9f 6047static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6048 struct net_device *upper_dev,
6049 struct list_head *up_list,
6050 struct list_head *down_list,
6051 void *private, bool master)
5d261913
VF
6052{
6053 int ret;
6054
790510d9 6055 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6056 private, master);
5d261913
VF
6057 if (ret)
6058 return ret;
6059
790510d9 6060 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 6061 private, false);
5d261913 6062 if (ret) {
790510d9 6063 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
6064 return ret;
6065 }
6066
6067 return 0;
6068}
6069
1d143d9f 6070static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6071 struct net_device *upper_dev,
93409033 6072 u16 ref_nr,
1d143d9f 6073 struct list_head *up_list,
6074 struct list_head *down_list)
5d261913 6075{
93409033
AC
6076 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6077 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
6078}
6079
1d143d9f 6080static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6081 struct net_device *upper_dev,
6082 void *private, bool master)
2f268f12 6083{
f1170fd4
DA
6084 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6085 &dev->adj_list.upper,
6086 &upper_dev->adj_list.lower,
6087 private, master);
5d261913
VF
6088}
6089
1d143d9f 6090static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6091 struct net_device *upper_dev)
2f268f12 6092{
93409033 6093 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
6094 &dev->adj_list.upper,
6095 &upper_dev->adj_list.lower);
6096}
5d261913 6097
9ff162a8 6098static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 6099 struct net_device *upper_dev, bool master,
29bf24af 6100 void *upper_priv, void *upper_info)
9ff162a8 6101{
0e4ead9d 6102 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 6103 int ret = 0;
9ff162a8
JP
6104
6105 ASSERT_RTNL();
6106
6107 if (dev == upper_dev)
6108 return -EBUSY;
6109
6110 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 6111 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
6112 return -EBUSY;
6113
f1170fd4 6114 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
6115 return -EEXIST;
6116
6117 if (master && netdev_master_upper_dev_get(dev))
6118 return -EBUSY;
6119
0e4ead9d
JP
6120 changeupper_info.upper_dev = upper_dev;
6121 changeupper_info.master = master;
6122 changeupper_info.linking = true;
29bf24af 6123 changeupper_info.upper_info = upper_info;
0e4ead9d 6124
573c7ba0
JP
6125 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6126 &changeupper_info.info);
6127 ret = notifier_to_errno(ret);
6128 if (ret)
6129 return ret;
6130
6dffb044 6131 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 6132 master);
5d261913
VF
6133 if (ret)
6134 return ret;
9ff162a8 6135
b03804e7
IS
6136 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6137 &changeupper_info.info);
6138 ret = notifier_to_errno(ret);
6139 if (ret)
f1170fd4 6140 goto rollback;
b03804e7 6141
9ff162a8 6142 return 0;
5d261913 6143
f1170fd4 6144rollback:
2f268f12 6145 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
6146
6147 return ret;
9ff162a8
JP
6148}
6149
6150/**
6151 * netdev_upper_dev_link - Add a link to the upper device
6152 * @dev: device
6153 * @upper_dev: new upper device
6154 *
6155 * Adds a link to device which is upper to this one. The caller must hold
6156 * the RTNL lock. On a failure a negative errno code is returned.
6157 * On success the reference counts are adjusted and the function
6158 * returns zero.
6159 */
6160int netdev_upper_dev_link(struct net_device *dev,
6161 struct net_device *upper_dev)
6162{
29bf24af 6163 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
6164}
6165EXPORT_SYMBOL(netdev_upper_dev_link);
6166
6167/**
6168 * netdev_master_upper_dev_link - Add a master link to the upper device
6169 * @dev: device
6170 * @upper_dev: new upper device
6dffb044 6171 * @upper_priv: upper device private
29bf24af 6172 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
6173 *
6174 * Adds a link to device which is upper to this one. In this case, only
6175 * one master upper device can be linked, although other non-master devices
6176 * might be linked as well. The caller must hold the RTNL lock.
6177 * On a failure a negative errno code is returned. On success the reference
6178 * counts are adjusted and the function returns zero.
6179 */
6180int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 6181 struct net_device *upper_dev,
29bf24af 6182 void *upper_priv, void *upper_info)
9ff162a8 6183{
29bf24af
JP
6184 return __netdev_upper_dev_link(dev, upper_dev, true,
6185 upper_priv, upper_info);
9ff162a8
JP
6186}
6187EXPORT_SYMBOL(netdev_master_upper_dev_link);
6188
6189/**
6190 * netdev_upper_dev_unlink - Removes a link to upper device
6191 * @dev: device
6192 * @upper_dev: new upper device
6193 *
6194 * Removes a link to device which is upper to this one. The caller must hold
6195 * the RTNL lock.
6196 */
6197void netdev_upper_dev_unlink(struct net_device *dev,
6198 struct net_device *upper_dev)
6199{
0e4ead9d 6200 struct netdev_notifier_changeupper_info changeupper_info;
f4563a75 6201
9ff162a8
JP
6202 ASSERT_RTNL();
6203
0e4ead9d
JP
6204 changeupper_info.upper_dev = upper_dev;
6205 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6206 changeupper_info.linking = false;
6207
573c7ba0
JP
6208 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6209 &changeupper_info.info);
6210
2f268f12 6211 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6212
0e4ead9d
JP
6213 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6214 &changeupper_info.info);
9ff162a8
JP
6215}
6216EXPORT_SYMBOL(netdev_upper_dev_unlink);
6217
61bd3857
MS
6218/**
6219 * netdev_bonding_info_change - Dispatch event about slave change
6220 * @dev: device
4a26e453 6221 * @bonding_info: info to dispatch
61bd3857
MS
6222 *
6223 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6224 * The caller must hold the RTNL lock.
6225 */
6226void netdev_bonding_info_change(struct net_device *dev,
6227 struct netdev_bonding_info *bonding_info)
6228{
6229 struct netdev_notifier_bonding_info info;
6230
6231 memcpy(&info.bonding_info, bonding_info,
6232 sizeof(struct netdev_bonding_info));
6233 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6234 &info.info);
6235}
6236EXPORT_SYMBOL(netdev_bonding_info_change);
6237
2ce1ee17 6238static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6239{
6240 struct netdev_adjacent *iter;
6241
6242 struct net *net = dev_net(dev);
6243
6244 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6245 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6246 continue;
6247 netdev_adjacent_sysfs_add(iter->dev, dev,
6248 &iter->dev->adj_list.lower);
6249 netdev_adjacent_sysfs_add(dev, iter->dev,
6250 &dev->adj_list.upper);
6251 }
6252
6253 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6254 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6255 continue;
6256 netdev_adjacent_sysfs_add(iter->dev, dev,
6257 &iter->dev->adj_list.upper);
6258 netdev_adjacent_sysfs_add(dev, iter->dev,
6259 &dev->adj_list.lower);
6260 }
6261}
6262
2ce1ee17 6263static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6264{
6265 struct netdev_adjacent *iter;
6266
6267 struct net *net = dev_net(dev);
6268
6269 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6270 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6271 continue;
6272 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6273 &iter->dev->adj_list.lower);
6274 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6275 &dev->adj_list.upper);
6276 }
6277
6278 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6279 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6280 continue;
6281 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6282 &iter->dev->adj_list.upper);
6283 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6284 &dev->adj_list.lower);
6285 }
6286}
6287
5bb025fa 6288void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6289{
5bb025fa 6290 struct netdev_adjacent *iter;
402dae96 6291
4c75431a
AF
6292 struct net *net = dev_net(dev);
6293
5bb025fa 6294 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6295 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6296 continue;
5bb025fa
VF
6297 netdev_adjacent_sysfs_del(iter->dev, oldname,
6298 &iter->dev->adj_list.lower);
6299 netdev_adjacent_sysfs_add(iter->dev, dev,
6300 &iter->dev->adj_list.lower);
6301 }
402dae96 6302
5bb025fa 6303 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6304 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6305 continue;
5bb025fa
VF
6306 netdev_adjacent_sysfs_del(iter->dev, oldname,
6307 &iter->dev->adj_list.upper);
6308 netdev_adjacent_sysfs_add(iter->dev, dev,
6309 &iter->dev->adj_list.upper);
6310 }
402dae96 6311}
402dae96
VF
6312
6313void *netdev_lower_dev_get_private(struct net_device *dev,
6314 struct net_device *lower_dev)
6315{
6316 struct netdev_adjacent *lower;
6317
6318 if (!lower_dev)
6319 return NULL;
6ea29da1 6320 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6321 if (!lower)
6322 return NULL;
6323
6324 return lower->private;
6325}
6326EXPORT_SYMBOL(netdev_lower_dev_get_private);
6327
4085ebe8 6328
952fcfd0 6329int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6330{
6331 struct net_device *lower = NULL;
6332 struct list_head *iter;
6333 int max_nest = -1;
6334 int nest;
6335
6336 ASSERT_RTNL();
6337
6338 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6339 nest = dev_get_nest_level(lower);
4085ebe8
VY
6340 if (max_nest < nest)
6341 max_nest = nest;
6342 }
6343
952fcfd0 6344 return max_nest + 1;
4085ebe8
VY
6345}
6346EXPORT_SYMBOL(dev_get_nest_level);
6347
04d48266
JP
6348/**
6349 * netdev_lower_change - Dispatch event about lower device state change
6350 * @lower_dev: device
6351 * @lower_state_info: state to dispatch
6352 *
6353 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6354 * The caller must hold the RTNL lock.
6355 */
6356void netdev_lower_state_changed(struct net_device *lower_dev,
6357 void *lower_state_info)
6358{
6359 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6360
6361 ASSERT_RTNL();
6362 changelowerstate_info.lower_state_info = lower_state_info;
6363 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6364 &changelowerstate_info.info);
6365}
6366EXPORT_SYMBOL(netdev_lower_state_changed);
6367
b6c40d68
PM
6368static void dev_change_rx_flags(struct net_device *dev, int flags)
6369{
d314774c
SH
6370 const struct net_device_ops *ops = dev->netdev_ops;
6371
d2615bf4 6372 if (ops->ndo_change_rx_flags)
d314774c 6373 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6374}
6375
991fb3f7 6376static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6377{
b536db93 6378 unsigned int old_flags = dev->flags;
d04a48b0
EB
6379 kuid_t uid;
6380 kgid_t gid;
1da177e4 6381
24023451
PM
6382 ASSERT_RTNL();
6383
dad9b335
WC
6384 dev->flags |= IFF_PROMISC;
6385 dev->promiscuity += inc;
6386 if (dev->promiscuity == 0) {
6387 /*
6388 * Avoid overflow.
6389 * If inc causes overflow, untouch promisc and return error.
6390 */
6391 if (inc < 0)
6392 dev->flags &= ~IFF_PROMISC;
6393 else {
6394 dev->promiscuity -= inc;
7b6cd1ce
JP
6395 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6396 dev->name);
dad9b335
WC
6397 return -EOVERFLOW;
6398 }
6399 }
52609c0b 6400 if (dev->flags != old_flags) {
7b6cd1ce
JP
6401 pr_info("device %s %s promiscuous mode\n",
6402 dev->name,
6403 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6404 if (audit_enabled) {
6405 current_uid_gid(&uid, &gid);
7759db82
KHK
6406 audit_log(current->audit_context, GFP_ATOMIC,
6407 AUDIT_ANOM_PROMISCUOUS,
6408 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6409 dev->name, (dev->flags & IFF_PROMISC),
6410 (old_flags & IFF_PROMISC),
e1760bd5 6411 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6412 from_kuid(&init_user_ns, uid),
6413 from_kgid(&init_user_ns, gid),
7759db82 6414 audit_get_sessionid(current));
8192b0c4 6415 }
24023451 6416
b6c40d68 6417 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6418 }
991fb3f7
ND
6419 if (notify)
6420 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6421 return 0;
1da177e4
LT
6422}
6423
4417da66
PM
6424/**
6425 * dev_set_promiscuity - update promiscuity count on a device
6426 * @dev: device
6427 * @inc: modifier
6428 *
6429 * Add or remove promiscuity from a device. While the count in the device
6430 * remains above zero the interface remains promiscuous. Once it hits zero
6431 * the device reverts back to normal filtering operation. A negative inc
6432 * value is used to drop promiscuity on the device.
dad9b335 6433 * Return 0 if successful or a negative errno code on error.
4417da66 6434 */
dad9b335 6435int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6436{
b536db93 6437 unsigned int old_flags = dev->flags;
dad9b335 6438 int err;
4417da66 6439
991fb3f7 6440 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6441 if (err < 0)
dad9b335 6442 return err;
4417da66
PM
6443 if (dev->flags != old_flags)
6444 dev_set_rx_mode(dev);
dad9b335 6445 return err;
4417da66 6446}
d1b19dff 6447EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6448
991fb3f7 6449static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6450{
991fb3f7 6451 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6452
24023451
PM
6453 ASSERT_RTNL();
6454
1da177e4 6455 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6456 dev->allmulti += inc;
6457 if (dev->allmulti == 0) {
6458 /*
6459 * Avoid overflow.
6460 * If inc causes overflow, untouch allmulti and return error.
6461 */
6462 if (inc < 0)
6463 dev->flags &= ~IFF_ALLMULTI;
6464 else {
6465 dev->allmulti -= inc;
7b6cd1ce
JP
6466 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6467 dev->name);
dad9b335
WC
6468 return -EOVERFLOW;
6469 }
6470 }
24023451 6471 if (dev->flags ^ old_flags) {
b6c40d68 6472 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6473 dev_set_rx_mode(dev);
991fb3f7
ND
6474 if (notify)
6475 __dev_notify_flags(dev, old_flags,
6476 dev->gflags ^ old_gflags);
24023451 6477 }
dad9b335 6478 return 0;
4417da66 6479}
991fb3f7
ND
6480
6481/**
6482 * dev_set_allmulti - update allmulti count on a device
6483 * @dev: device
6484 * @inc: modifier
6485 *
6486 * Add or remove reception of all multicast frames to a device. While the
6487 * count in the device remains above zero the interface remains listening
6488 * to all interfaces. Once it hits zero the device reverts back to normal
6489 * filtering operation. A negative @inc value is used to drop the counter
6490 * when releasing a resource needing all multicasts.
6491 * Return 0 if successful or a negative errno code on error.
6492 */
6493
6494int dev_set_allmulti(struct net_device *dev, int inc)
6495{
6496 return __dev_set_allmulti(dev, inc, true);
6497}
d1b19dff 6498EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6499
6500/*
6501 * Upload unicast and multicast address lists to device and
6502 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6503 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6504 * are present.
6505 */
6506void __dev_set_rx_mode(struct net_device *dev)
6507{
d314774c
SH
6508 const struct net_device_ops *ops = dev->netdev_ops;
6509
4417da66
PM
6510 /* dev_open will call this function so the list will stay sane. */
6511 if (!(dev->flags&IFF_UP))
6512 return;
6513
6514 if (!netif_device_present(dev))
40b77c94 6515 return;
4417da66 6516
01789349 6517 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6518 /* Unicast addresses changes may only happen under the rtnl,
6519 * therefore calling __dev_set_promiscuity here is safe.
6520 */
32e7bfc4 6521 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6522 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6523 dev->uc_promisc = true;
32e7bfc4 6524 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6525 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6526 dev->uc_promisc = false;
4417da66 6527 }
4417da66 6528 }
01789349
JP
6529
6530 if (ops->ndo_set_rx_mode)
6531 ops->ndo_set_rx_mode(dev);
4417da66
PM
6532}
6533
6534void dev_set_rx_mode(struct net_device *dev)
6535{
b9e40857 6536 netif_addr_lock_bh(dev);
4417da66 6537 __dev_set_rx_mode(dev);
b9e40857 6538 netif_addr_unlock_bh(dev);
1da177e4
LT
6539}
6540
f0db275a
SH
6541/**
6542 * dev_get_flags - get flags reported to userspace
6543 * @dev: device
6544 *
6545 * Get the combination of flag bits exported through APIs to userspace.
6546 */
95c96174 6547unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6548{
95c96174 6549 unsigned int flags;
1da177e4
LT
6550
6551 flags = (dev->flags & ~(IFF_PROMISC |
6552 IFF_ALLMULTI |
b00055aa
SR
6553 IFF_RUNNING |
6554 IFF_LOWER_UP |
6555 IFF_DORMANT)) |
1da177e4
LT
6556 (dev->gflags & (IFF_PROMISC |
6557 IFF_ALLMULTI));
6558
b00055aa
SR
6559 if (netif_running(dev)) {
6560 if (netif_oper_up(dev))
6561 flags |= IFF_RUNNING;
6562 if (netif_carrier_ok(dev))
6563 flags |= IFF_LOWER_UP;
6564 if (netif_dormant(dev))
6565 flags |= IFF_DORMANT;
6566 }
1da177e4
LT
6567
6568 return flags;
6569}
d1b19dff 6570EXPORT_SYMBOL(dev_get_flags);
1da177e4 6571
bd380811 6572int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6573{
b536db93 6574 unsigned int old_flags = dev->flags;
bd380811 6575 int ret;
1da177e4 6576
24023451
PM
6577 ASSERT_RTNL();
6578
1da177e4
LT
6579 /*
6580 * Set the flags on our device.
6581 */
6582
6583 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6584 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6585 IFF_AUTOMEDIA)) |
6586 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6587 IFF_ALLMULTI));
6588
6589 /*
6590 * Load in the correct multicast list now the flags have changed.
6591 */
6592
b6c40d68
PM
6593 if ((old_flags ^ flags) & IFF_MULTICAST)
6594 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6595
4417da66 6596 dev_set_rx_mode(dev);
1da177e4
LT
6597
6598 /*
6599 * Have we downed the interface. We handle IFF_UP ourselves
6600 * according to user attempts to set it, rather than blindly
6601 * setting it.
6602 */
6603
6604 ret = 0;
d215d10f 6605 if ((old_flags ^ flags) & IFF_UP)
bd380811 6606 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6607
1da177e4 6608 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6609 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6610 unsigned int old_flags = dev->flags;
d1b19dff 6611
1da177e4 6612 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6613
6614 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6615 if (dev->flags != old_flags)
6616 dev_set_rx_mode(dev);
1da177e4
LT
6617 }
6618
6619 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 6620 * is important. Some (broken) drivers set IFF_PROMISC, when
6621 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
6622 */
6623 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6624 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6625
1da177e4 6626 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6627 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6628 }
6629
bd380811
PM
6630 return ret;
6631}
6632
a528c219
ND
6633void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6634 unsigned int gchanges)
bd380811
PM
6635{
6636 unsigned int changes = dev->flags ^ old_flags;
6637
a528c219 6638 if (gchanges)
7f294054 6639 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6640
bd380811
PM
6641 if (changes & IFF_UP) {
6642 if (dev->flags & IFF_UP)
6643 call_netdevice_notifiers(NETDEV_UP, dev);
6644 else
6645 call_netdevice_notifiers(NETDEV_DOWN, dev);
6646 }
6647
6648 if (dev->flags & IFF_UP &&
be9efd36
JP
6649 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6650 struct netdev_notifier_change_info change_info;
6651
6652 change_info.flags_changed = changes;
6653 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6654 &change_info.info);
6655 }
bd380811
PM
6656}
6657
6658/**
6659 * dev_change_flags - change device settings
6660 * @dev: device
6661 * @flags: device state flags
6662 *
6663 * Change settings on device based state flags. The flags are
6664 * in the userspace exported format.
6665 */
b536db93 6666int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6667{
b536db93 6668 int ret;
991fb3f7 6669 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6670
6671 ret = __dev_change_flags(dev, flags);
6672 if (ret < 0)
6673 return ret;
6674
991fb3f7 6675 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6676 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6677 return ret;
6678}
d1b19dff 6679EXPORT_SYMBOL(dev_change_flags);
1da177e4 6680
2315dc91
VF
6681static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6682{
6683 const struct net_device_ops *ops = dev->netdev_ops;
6684
6685 if (ops->ndo_change_mtu)
6686 return ops->ndo_change_mtu(dev, new_mtu);
6687
6688 dev->mtu = new_mtu;
6689 return 0;
6690}
6691
f0db275a
SH
6692/**
6693 * dev_set_mtu - Change maximum transfer unit
6694 * @dev: device
6695 * @new_mtu: new transfer unit
6696 *
6697 * Change the maximum transfer size of the network device.
6698 */
1da177e4
LT
6699int dev_set_mtu(struct net_device *dev, int new_mtu)
6700{
2315dc91 6701 int err, orig_mtu;
1da177e4
LT
6702
6703 if (new_mtu == dev->mtu)
6704 return 0;
6705
61e84623
JW
6706 /* MTU must be positive, and in range */
6707 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6708 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6709 dev->name, new_mtu, dev->min_mtu);
1da177e4 6710 return -EINVAL;
61e84623
JW
6711 }
6712
6713 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6714 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6715 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6716 return -EINVAL;
6717 }
1da177e4
LT
6718
6719 if (!netif_device_present(dev))
6720 return -ENODEV;
6721
1d486bfb
VF
6722 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6723 err = notifier_to_errno(err);
6724 if (err)
6725 return err;
d314774c 6726
2315dc91
VF
6727 orig_mtu = dev->mtu;
6728 err = __dev_set_mtu(dev, new_mtu);
d314774c 6729
2315dc91
VF
6730 if (!err) {
6731 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6732 err = notifier_to_errno(err);
6733 if (err) {
6734 /* setting mtu back and notifying everyone again,
6735 * so that they have a chance to revert changes.
6736 */
6737 __dev_set_mtu(dev, orig_mtu);
6738 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6739 }
6740 }
1da177e4
LT
6741 return err;
6742}
d1b19dff 6743EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6744
cbda10fa
VD
6745/**
6746 * dev_set_group - Change group this device belongs to
6747 * @dev: device
6748 * @new_group: group this device should belong to
6749 */
6750void dev_set_group(struct net_device *dev, int new_group)
6751{
6752 dev->group = new_group;
6753}
6754EXPORT_SYMBOL(dev_set_group);
6755
f0db275a
SH
6756/**
6757 * dev_set_mac_address - Change Media Access Control Address
6758 * @dev: device
6759 * @sa: new address
6760 *
6761 * Change the hardware (MAC) address of the device
6762 */
1da177e4
LT
6763int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6764{
d314774c 6765 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6766 int err;
6767
d314774c 6768 if (!ops->ndo_set_mac_address)
1da177e4
LT
6769 return -EOPNOTSUPP;
6770 if (sa->sa_family != dev->type)
6771 return -EINVAL;
6772 if (!netif_device_present(dev))
6773 return -ENODEV;
d314774c 6774 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6775 if (err)
6776 return err;
fbdeca2d 6777 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6778 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6779 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6780 return 0;
1da177e4 6781}
d1b19dff 6782EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6783
4bf84c35
JP
6784/**
6785 * dev_change_carrier - Change device carrier
6786 * @dev: device
691b3b7e 6787 * @new_carrier: new value
4bf84c35
JP
6788 *
6789 * Change device carrier
6790 */
6791int dev_change_carrier(struct net_device *dev, bool new_carrier)
6792{
6793 const struct net_device_ops *ops = dev->netdev_ops;
6794
6795 if (!ops->ndo_change_carrier)
6796 return -EOPNOTSUPP;
6797 if (!netif_device_present(dev))
6798 return -ENODEV;
6799 return ops->ndo_change_carrier(dev, new_carrier);
6800}
6801EXPORT_SYMBOL(dev_change_carrier);
6802
66b52b0d
JP
6803/**
6804 * dev_get_phys_port_id - Get device physical port ID
6805 * @dev: device
6806 * @ppid: port ID
6807 *
6808 * Get device physical port ID
6809 */
6810int dev_get_phys_port_id(struct net_device *dev,
02637fce 6811 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6812{
6813 const struct net_device_ops *ops = dev->netdev_ops;
6814
6815 if (!ops->ndo_get_phys_port_id)
6816 return -EOPNOTSUPP;
6817 return ops->ndo_get_phys_port_id(dev, ppid);
6818}
6819EXPORT_SYMBOL(dev_get_phys_port_id);
6820
db24a904
DA
6821/**
6822 * dev_get_phys_port_name - Get device physical port name
6823 * @dev: device
6824 * @name: port name
ed49e650 6825 * @len: limit of bytes to copy to name
db24a904
DA
6826 *
6827 * Get device physical port name
6828 */
6829int dev_get_phys_port_name(struct net_device *dev,
6830 char *name, size_t len)
6831{
6832 const struct net_device_ops *ops = dev->netdev_ops;
6833
6834 if (!ops->ndo_get_phys_port_name)
6835 return -EOPNOTSUPP;
6836 return ops->ndo_get_phys_port_name(dev, name, len);
6837}
6838EXPORT_SYMBOL(dev_get_phys_port_name);
6839
d746d707
AK
6840/**
6841 * dev_change_proto_down - update protocol port state information
6842 * @dev: device
6843 * @proto_down: new value
6844 *
6845 * This info can be used by switch drivers to set the phys state of the
6846 * port.
6847 */
6848int dev_change_proto_down(struct net_device *dev, bool proto_down)
6849{
6850 const struct net_device_ops *ops = dev->netdev_ops;
6851
6852 if (!ops->ndo_change_proto_down)
6853 return -EOPNOTSUPP;
6854 if (!netif_device_present(dev))
6855 return -ENODEV;
6856 return ops->ndo_change_proto_down(dev, proto_down);
6857}
6858EXPORT_SYMBOL(dev_change_proto_down);
6859
d67b9cd2
DB
6860bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op)
6861{
6862 struct netdev_xdp xdp;
6863
6864 memset(&xdp, 0, sizeof(xdp));
6865 xdp.command = XDP_QUERY_PROG;
6866
6867 /* Query must always succeed. */
6868 WARN_ON(xdp_op(dev, &xdp) < 0);
6869 return xdp.prog_attached;
6870}
6871
6872static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6873 struct netlink_ext_ack *extack,
6874 struct bpf_prog *prog)
6875{
6876 struct netdev_xdp xdp;
6877
6878 memset(&xdp, 0, sizeof(xdp));
6879 xdp.command = XDP_SETUP_PROG;
6880 xdp.extack = extack;
6881 xdp.prog = prog;
6882
6883 return xdp_op(dev, &xdp);
6884}
6885
a7862b45
BB
6886/**
6887 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6888 * @dev: device
b5d60989 6889 * @extack: netlink extended ack
a7862b45 6890 * @fd: new program fd or negative value to clear
85de8576 6891 * @flags: xdp-related flags
a7862b45
BB
6892 *
6893 * Set or clear a bpf program for a device
6894 */
ddf9f970
JK
6895int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6896 int fd, u32 flags)
a7862b45
BB
6897{
6898 const struct net_device_ops *ops = dev->netdev_ops;
6899 struct bpf_prog *prog = NULL;
d67b9cd2 6900 xdp_op_t xdp_op, xdp_chk;
a7862b45
BB
6901 int err;
6902
85de8576
DB
6903 ASSERT_RTNL();
6904
d67b9cd2 6905 xdp_op = xdp_chk = ops->ndo_xdp;
0489df9a
DB
6906 if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE))
6907 return -EOPNOTSUPP;
b5cdae32
DM
6908 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
6909 xdp_op = generic_xdp_install;
d67b9cd2
DB
6910 if (xdp_op == xdp_chk)
6911 xdp_chk = generic_xdp_install;
b5cdae32 6912
a7862b45 6913 if (fd >= 0) {
d67b9cd2
DB
6914 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk))
6915 return -EEXIST;
6916 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
6917 __dev_xdp_attached(dev, xdp_op))
6918 return -EBUSY;
85de8576 6919
a7862b45
BB
6920 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6921 if (IS_ERR(prog))
6922 return PTR_ERR(prog);
6923 }
6924
d67b9cd2 6925 err = dev_xdp_install(dev, xdp_op, extack, prog);
a7862b45
BB
6926 if (err < 0 && prog)
6927 bpf_prog_put(prog);
6928
6929 return err;
6930}
a7862b45 6931
1da177e4
LT
6932/**
6933 * dev_new_index - allocate an ifindex
c4ea43c5 6934 * @net: the applicable net namespace
1da177e4
LT
6935 *
6936 * Returns a suitable unique value for a new device interface
6937 * number. The caller must hold the rtnl semaphore or the
6938 * dev_base_lock to be sure it remains unique.
6939 */
881d966b 6940static int dev_new_index(struct net *net)
1da177e4 6941{
aa79e66e 6942 int ifindex = net->ifindex;
f4563a75 6943
1da177e4
LT
6944 for (;;) {
6945 if (++ifindex <= 0)
6946 ifindex = 1;
881d966b 6947 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6948 return net->ifindex = ifindex;
1da177e4
LT
6949 }
6950}
6951
1da177e4 6952/* Delayed registration/unregisteration */
3b5b34fd 6953static LIST_HEAD(net_todo_list);
200b916f 6954DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6955
6f05f629 6956static void net_set_todo(struct net_device *dev)
1da177e4 6957{
1da177e4 6958 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6959 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6960}
6961
9b5e383c 6962static void rollback_registered_many(struct list_head *head)
93ee31f1 6963{
e93737b0 6964 struct net_device *dev, *tmp;
5cde2829 6965 LIST_HEAD(close_head);
9b5e383c 6966
93ee31f1
DL
6967 BUG_ON(dev_boot_phase);
6968 ASSERT_RTNL();
6969
e93737b0 6970 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6971 /* Some devices call without registering
e93737b0
KK
6972 * for initialization unwind. Remove those
6973 * devices and proceed with the remaining.
9b5e383c
ED
6974 */
6975 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6976 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6977 dev->name, dev);
93ee31f1 6978
9b5e383c 6979 WARN_ON(1);
e93737b0
KK
6980 list_del(&dev->unreg_list);
6981 continue;
9b5e383c 6982 }
449f4544 6983 dev->dismantle = true;
9b5e383c 6984 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6985 }
93ee31f1 6986
44345724 6987 /* If device is running, close it first. */
5cde2829
EB
6988 list_for_each_entry(dev, head, unreg_list)
6989 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6990 dev_close_many(&close_head, true);
93ee31f1 6991
44345724 6992 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6993 /* And unlink it from device chain. */
6994 unlist_netdevice(dev);
93ee31f1 6995
9b5e383c
ED
6996 dev->reg_state = NETREG_UNREGISTERING;
6997 }
41852497 6998 flush_all_backlogs();
93ee31f1
DL
6999
7000 synchronize_net();
7001
9b5e383c 7002 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
7003 struct sk_buff *skb = NULL;
7004
9b5e383c
ED
7005 /* Shutdown queueing discipline. */
7006 dev_shutdown(dev);
93ee31f1
DL
7007
7008
9b5e383c 7009 /* Notify protocols, that we are about to destroy
eb13da1a 7010 * this device. They should clean all the things.
7011 */
9b5e383c 7012 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 7013
395eea6c
MB
7014 if (!dev->rtnl_link_ops ||
7015 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7016 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
7017 GFP_KERNEL);
7018
9b5e383c
ED
7019 /*
7020 * Flush the unicast and multicast chains
7021 */
a748ee24 7022 dev_uc_flush(dev);
22bedad3 7023 dev_mc_flush(dev);
93ee31f1 7024
9b5e383c
ED
7025 if (dev->netdev_ops->ndo_uninit)
7026 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 7027
395eea6c
MB
7028 if (skb)
7029 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 7030
9ff162a8
JP
7031 /* Notifier chain MUST detach us all upper devices. */
7032 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 7033 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 7034
9b5e383c
ED
7035 /* Remove entries from kobject tree */
7036 netdev_unregister_kobject(dev);
024e9679
AD
7037#ifdef CONFIG_XPS
7038 /* Remove XPS queueing entries */
7039 netif_reset_xps_queues_gt(dev, 0);
7040#endif
9b5e383c 7041 }
93ee31f1 7042
850a545b 7043 synchronize_net();
395264d5 7044
a5ee1551 7045 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
7046 dev_put(dev);
7047}
7048
7049static void rollback_registered(struct net_device *dev)
7050{
7051 LIST_HEAD(single);
7052
7053 list_add(&dev->unreg_list, &single);
7054 rollback_registered_many(&single);
ceaaec98 7055 list_del(&single);
93ee31f1
DL
7056}
7057
fd867d51
JW
7058static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7059 struct net_device *upper, netdev_features_t features)
7060{
7061 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7062 netdev_features_t feature;
5ba3f7d6 7063 int feature_bit;
fd867d51 7064
5ba3f7d6
JW
7065 for_each_netdev_feature(&upper_disables, feature_bit) {
7066 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7067 if (!(upper->wanted_features & feature)
7068 && (features & feature)) {
7069 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7070 &feature, upper->name);
7071 features &= ~feature;
7072 }
7073 }
7074
7075 return features;
7076}
7077
7078static void netdev_sync_lower_features(struct net_device *upper,
7079 struct net_device *lower, netdev_features_t features)
7080{
7081 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7082 netdev_features_t feature;
5ba3f7d6 7083 int feature_bit;
fd867d51 7084
5ba3f7d6
JW
7085 for_each_netdev_feature(&upper_disables, feature_bit) {
7086 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7087 if (!(features & feature) && (lower->features & feature)) {
7088 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7089 &feature, lower->name);
7090 lower->wanted_features &= ~feature;
7091 netdev_update_features(lower);
7092
7093 if (unlikely(lower->features & feature))
7094 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7095 &feature, lower->name);
7096 }
7097 }
7098}
7099
c8f44aff
MM
7100static netdev_features_t netdev_fix_features(struct net_device *dev,
7101 netdev_features_t features)
b63365a2 7102{
57422dc5
MM
7103 /* Fix illegal checksum combinations */
7104 if ((features & NETIF_F_HW_CSUM) &&
7105 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 7106 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
7107 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7108 }
7109
b63365a2 7110 /* TSO requires that SG is present as well. */
ea2d3688 7111 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 7112 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 7113 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
7114 }
7115
ec5f0615
PS
7116 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7117 !(features & NETIF_F_IP_CSUM)) {
7118 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7119 features &= ~NETIF_F_TSO;
7120 features &= ~NETIF_F_TSO_ECN;
7121 }
7122
7123 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7124 !(features & NETIF_F_IPV6_CSUM)) {
7125 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7126 features &= ~NETIF_F_TSO6;
7127 }
7128
b1dc497b
AD
7129 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7130 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7131 features &= ~NETIF_F_TSO_MANGLEID;
7132
31d8b9e0
BH
7133 /* TSO ECN requires that TSO is present as well. */
7134 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7135 features &= ~NETIF_F_TSO_ECN;
7136
212b573f
MM
7137 /* Software GSO depends on SG. */
7138 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 7139 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
7140 features &= ~NETIF_F_GSO;
7141 }
7142
acd1130e 7143 /* UFO needs SG and checksumming */
b63365a2 7144 if (features & NETIF_F_UFO) {
79032644 7145 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
7146 if (!(features & NETIF_F_HW_CSUM) &&
7147 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7148 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 7149 netdev_dbg(dev,
acd1130e 7150 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
7151 features &= ~NETIF_F_UFO;
7152 }
7153
7154 if (!(features & NETIF_F_SG)) {
6f404e44 7155 netdev_dbg(dev,
acd1130e 7156 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
7157 features &= ~NETIF_F_UFO;
7158 }
7159 }
7160
802ab55a
AD
7161 /* GSO partial features require GSO partial be set */
7162 if ((features & dev->gso_partial_features) &&
7163 !(features & NETIF_F_GSO_PARTIAL)) {
7164 netdev_dbg(dev,
7165 "Dropping partially supported GSO features since no GSO partial.\n");
7166 features &= ~dev->gso_partial_features;
7167 }
7168
b63365a2
HX
7169 return features;
7170}
b63365a2 7171
6cb6a27c 7172int __netdev_update_features(struct net_device *dev)
5455c699 7173{
fd867d51 7174 struct net_device *upper, *lower;
c8f44aff 7175 netdev_features_t features;
fd867d51 7176 struct list_head *iter;
e7868a85 7177 int err = -1;
5455c699 7178
87267485
MM
7179 ASSERT_RTNL();
7180
5455c699
MM
7181 features = netdev_get_wanted_features(dev);
7182
7183 if (dev->netdev_ops->ndo_fix_features)
7184 features = dev->netdev_ops->ndo_fix_features(dev, features);
7185
7186 /* driver might be less strict about feature dependencies */
7187 features = netdev_fix_features(dev, features);
7188
fd867d51
JW
7189 /* some features can't be enabled if they're off an an upper device */
7190 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7191 features = netdev_sync_upper_features(dev, upper, features);
7192
5455c699 7193 if (dev->features == features)
e7868a85 7194 goto sync_lower;
5455c699 7195
c8f44aff
MM
7196 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7197 &dev->features, &features);
5455c699
MM
7198
7199 if (dev->netdev_ops->ndo_set_features)
7200 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7201 else
7202 err = 0;
5455c699 7203
6cb6a27c 7204 if (unlikely(err < 0)) {
5455c699 7205 netdev_err(dev,
c8f44aff
MM
7206 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7207 err, &features, &dev->features);
17b85d29
NA
7208 /* return non-0 since some features might have changed and
7209 * it's better to fire a spurious notification than miss it
7210 */
7211 return -1;
6cb6a27c
MM
7212 }
7213
e7868a85 7214sync_lower:
fd867d51
JW
7215 /* some features must be disabled on lower devices when disabled
7216 * on an upper device (think: bonding master or bridge)
7217 */
7218 netdev_for_each_lower_dev(dev, lower, iter)
7219 netdev_sync_lower_features(dev, lower, features);
7220
6cb6a27c
MM
7221 if (!err)
7222 dev->features = features;
7223
e7868a85 7224 return err < 0 ? 0 : 1;
6cb6a27c
MM
7225}
7226
afe12cc8
MM
7227/**
7228 * netdev_update_features - recalculate device features
7229 * @dev: the device to check
7230 *
7231 * Recalculate dev->features set and send notifications if it
7232 * has changed. Should be called after driver or hardware dependent
7233 * conditions might have changed that influence the features.
7234 */
6cb6a27c
MM
7235void netdev_update_features(struct net_device *dev)
7236{
7237 if (__netdev_update_features(dev))
7238 netdev_features_change(dev);
5455c699
MM
7239}
7240EXPORT_SYMBOL(netdev_update_features);
7241
afe12cc8
MM
7242/**
7243 * netdev_change_features - recalculate device features
7244 * @dev: the device to check
7245 *
7246 * Recalculate dev->features set and send notifications even
7247 * if they have not changed. Should be called instead of
7248 * netdev_update_features() if also dev->vlan_features might
7249 * have changed to allow the changes to be propagated to stacked
7250 * VLAN devices.
7251 */
7252void netdev_change_features(struct net_device *dev)
7253{
7254 __netdev_update_features(dev);
7255 netdev_features_change(dev);
7256}
7257EXPORT_SYMBOL(netdev_change_features);
7258
fc4a7489
PM
7259/**
7260 * netif_stacked_transfer_operstate - transfer operstate
7261 * @rootdev: the root or lower level device to transfer state from
7262 * @dev: the device to transfer operstate to
7263 *
7264 * Transfer operational state from root to device. This is normally
7265 * called when a stacking relationship exists between the root
7266 * device and the device(a leaf device).
7267 */
7268void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7269 struct net_device *dev)
7270{
7271 if (rootdev->operstate == IF_OPER_DORMANT)
7272 netif_dormant_on(dev);
7273 else
7274 netif_dormant_off(dev);
7275
0575c86b
ZS
7276 if (netif_carrier_ok(rootdev))
7277 netif_carrier_on(dev);
7278 else
7279 netif_carrier_off(dev);
fc4a7489
PM
7280}
7281EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7282
a953be53 7283#ifdef CONFIG_SYSFS
1b4bf461
ED
7284static int netif_alloc_rx_queues(struct net_device *dev)
7285{
1b4bf461 7286 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7287 struct netdev_rx_queue *rx;
10595902 7288 size_t sz = count * sizeof(*rx);
1b4bf461 7289
bd25fa7b 7290 BUG_ON(count < 1);
1b4bf461 7291
da6bc57a
MH
7292 rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7293 if (!rx)
7294 return -ENOMEM;
7295
bd25fa7b
TH
7296 dev->_rx = rx;
7297
bd25fa7b 7298 for (i = 0; i < count; i++)
fe822240 7299 rx[i].dev = dev;
1b4bf461
ED
7300 return 0;
7301}
bf264145 7302#endif
1b4bf461 7303
aa942104
CG
7304static void netdev_init_one_queue(struct net_device *dev,
7305 struct netdev_queue *queue, void *_unused)
7306{
7307 /* Initialize queue lock */
7308 spin_lock_init(&queue->_xmit_lock);
7309 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7310 queue->xmit_lock_owner = -1;
b236da69 7311 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7312 queue->dev = dev;
114cf580
TH
7313#ifdef CONFIG_BQL
7314 dql_init(&queue->dql, HZ);
7315#endif
aa942104
CG
7316}
7317
60877a32
ED
7318static void netif_free_tx_queues(struct net_device *dev)
7319{
4cb28970 7320 kvfree(dev->_tx);
60877a32
ED
7321}
7322
e6484930
TH
7323static int netif_alloc_netdev_queues(struct net_device *dev)
7324{
7325 unsigned int count = dev->num_tx_queues;
7326 struct netdev_queue *tx;
60877a32 7327 size_t sz = count * sizeof(*tx);
e6484930 7328
d339727c
ED
7329 if (count < 1 || count > 0xffff)
7330 return -EINVAL;
62b5942a 7331
da6bc57a
MH
7332 tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7333 if (!tx)
7334 return -ENOMEM;
7335
e6484930 7336 dev->_tx = tx;
1d24eb48 7337
e6484930
TH
7338 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7339 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7340
7341 return 0;
e6484930
TH
7342}
7343
a2029240
DV
7344void netif_tx_stop_all_queues(struct net_device *dev)
7345{
7346 unsigned int i;
7347
7348 for (i = 0; i < dev->num_tx_queues; i++) {
7349 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 7350
a2029240
DV
7351 netif_tx_stop_queue(txq);
7352 }
7353}
7354EXPORT_SYMBOL(netif_tx_stop_all_queues);
7355
1da177e4
LT
7356/**
7357 * register_netdevice - register a network device
7358 * @dev: device to register
7359 *
7360 * Take a completed network device structure and add it to the kernel
7361 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7362 * chain. 0 is returned on success. A negative errno code is returned
7363 * on a failure to set up the device, or if the name is a duplicate.
7364 *
7365 * Callers must hold the rtnl semaphore. You may want
7366 * register_netdev() instead of this.
7367 *
7368 * BUGS:
7369 * The locking appears insufficient to guarantee two parallel registers
7370 * will not get the same name.
7371 */
7372
7373int register_netdevice(struct net_device *dev)
7374{
1da177e4 7375 int ret;
d314774c 7376 struct net *net = dev_net(dev);
1da177e4
LT
7377
7378 BUG_ON(dev_boot_phase);
7379 ASSERT_RTNL();
7380
b17a7c17
SH
7381 might_sleep();
7382
1da177e4
LT
7383 /* When net_device's are persistent, this will be fatal. */
7384 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7385 BUG_ON(!net);
1da177e4 7386
f1f28aa3 7387 spin_lock_init(&dev->addr_list_lock);
cf508b12 7388 netdev_set_addr_lockdep_class(dev);
1da177e4 7389
828de4f6 7390 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7391 if (ret < 0)
7392 goto out;
7393
1da177e4 7394 /* Init, if this function is available */
d314774c
SH
7395 if (dev->netdev_ops->ndo_init) {
7396 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7397 if (ret) {
7398 if (ret > 0)
7399 ret = -EIO;
90833aa4 7400 goto out;
1da177e4
LT
7401 }
7402 }
4ec93edb 7403
f646968f
PM
7404 if (((dev->hw_features | dev->features) &
7405 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7406 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7407 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7408 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7409 ret = -EINVAL;
7410 goto err_uninit;
7411 }
7412
9c7dafbf
PE
7413 ret = -EBUSY;
7414 if (!dev->ifindex)
7415 dev->ifindex = dev_new_index(net);
7416 else if (__dev_get_by_index(net, dev->ifindex))
7417 goto err_uninit;
7418
5455c699
MM
7419 /* Transfer changeable features to wanted_features and enable
7420 * software offloads (GSO and GRO).
7421 */
7422 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7423 dev->features |= NETIF_F_SOFT_FEATURES;
7424 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7425
cbc53e08 7426 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7427 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7428
7f348a60
AD
7429 /* If IPv4 TCP segmentation offload is supported we should also
7430 * allow the device to enable segmenting the frame with the option
7431 * of ignoring a static IP ID value. This doesn't enable the
7432 * feature itself but allows the user to enable it later.
7433 */
cbc53e08
AD
7434 if (dev->hw_features & NETIF_F_TSO)
7435 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7436 if (dev->vlan_features & NETIF_F_TSO)
7437 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7438 if (dev->mpls_features & NETIF_F_TSO)
7439 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7440 if (dev->hw_enc_features & NETIF_F_TSO)
7441 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7442
1180e7d6 7443 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7444 */
1180e7d6 7445 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7446
ee579677
PS
7447 /* Make NETIF_F_SG inheritable to tunnel devices.
7448 */
802ab55a 7449 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7450
0d89d203
SH
7451 /* Make NETIF_F_SG inheritable to MPLS.
7452 */
7453 dev->mpls_features |= NETIF_F_SG;
7454
7ffbe3fd
JB
7455 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7456 ret = notifier_to_errno(ret);
7457 if (ret)
7458 goto err_uninit;
7459
8b41d188 7460 ret = netdev_register_kobject(dev);
b17a7c17 7461 if (ret)
7ce1b0ed 7462 goto err_uninit;
b17a7c17
SH
7463 dev->reg_state = NETREG_REGISTERED;
7464
6cb6a27c 7465 __netdev_update_features(dev);
8e9b59b2 7466
1da177e4
LT
7467 /*
7468 * Default initial state at registry is that the
7469 * device is present.
7470 */
7471
7472 set_bit(__LINK_STATE_PRESENT, &dev->state);
7473
8f4cccbb
BH
7474 linkwatch_init_dev(dev);
7475
1da177e4 7476 dev_init_scheduler(dev);
1da177e4 7477 dev_hold(dev);
ce286d32 7478 list_netdevice(dev);
7bf23575 7479 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7480
948b337e
JP
7481 /* If the device has permanent device address, driver should
7482 * set dev_addr and also addr_assign_type should be set to
7483 * NET_ADDR_PERM (default value).
7484 */
7485 if (dev->addr_assign_type == NET_ADDR_PERM)
7486 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7487
1da177e4 7488 /* Notify protocols, that a new device appeared. */
056925ab 7489 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7490 ret = notifier_to_errno(ret);
93ee31f1
DL
7491 if (ret) {
7492 rollback_registered(dev);
7493 dev->reg_state = NETREG_UNREGISTERED;
7494 }
d90a909e
EB
7495 /*
7496 * Prevent userspace races by waiting until the network
7497 * device is fully setup before sending notifications.
7498 */
a2835763
PM
7499 if (!dev->rtnl_link_ops ||
7500 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7501 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7502
7503out:
7504 return ret;
7ce1b0ed
HX
7505
7506err_uninit:
d314774c
SH
7507 if (dev->netdev_ops->ndo_uninit)
7508 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
7509 if (dev->priv_destructor)
7510 dev->priv_destructor(dev);
7ce1b0ed 7511 goto out;
1da177e4 7512}
d1b19dff 7513EXPORT_SYMBOL(register_netdevice);
1da177e4 7514
937f1ba5
BH
7515/**
7516 * init_dummy_netdev - init a dummy network device for NAPI
7517 * @dev: device to init
7518 *
7519 * This takes a network device structure and initialize the minimum
7520 * amount of fields so it can be used to schedule NAPI polls without
7521 * registering a full blown interface. This is to be used by drivers
7522 * that need to tie several hardware interfaces to a single NAPI
7523 * poll scheduler due to HW limitations.
7524 */
7525int init_dummy_netdev(struct net_device *dev)
7526{
7527 /* Clear everything. Note we don't initialize spinlocks
7528 * are they aren't supposed to be taken by any of the
7529 * NAPI code and this dummy netdev is supposed to be
7530 * only ever used for NAPI polls
7531 */
7532 memset(dev, 0, sizeof(struct net_device));
7533
7534 /* make sure we BUG if trying to hit standard
7535 * register/unregister code path
7536 */
7537 dev->reg_state = NETREG_DUMMY;
7538
937f1ba5
BH
7539 /* NAPI wants this */
7540 INIT_LIST_HEAD(&dev->napi_list);
7541
7542 /* a dummy interface is started by default */
7543 set_bit(__LINK_STATE_PRESENT, &dev->state);
7544 set_bit(__LINK_STATE_START, &dev->state);
7545
29b4433d
ED
7546 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7547 * because users of this 'device' dont need to change
7548 * its refcount.
7549 */
7550
937f1ba5
BH
7551 return 0;
7552}
7553EXPORT_SYMBOL_GPL(init_dummy_netdev);
7554
7555
1da177e4
LT
7556/**
7557 * register_netdev - register a network device
7558 * @dev: device to register
7559 *
7560 * Take a completed network device structure and add it to the kernel
7561 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7562 * chain. 0 is returned on success. A negative errno code is returned
7563 * on a failure to set up the device, or if the name is a duplicate.
7564 *
38b4da38 7565 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7566 * and expands the device name if you passed a format string to
7567 * alloc_netdev.
7568 */
7569int register_netdev(struct net_device *dev)
7570{
7571 int err;
7572
7573 rtnl_lock();
1da177e4 7574 err = register_netdevice(dev);
1da177e4
LT
7575 rtnl_unlock();
7576 return err;
7577}
7578EXPORT_SYMBOL(register_netdev);
7579
29b4433d
ED
7580int netdev_refcnt_read(const struct net_device *dev)
7581{
7582 int i, refcnt = 0;
7583
7584 for_each_possible_cpu(i)
7585 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7586 return refcnt;
7587}
7588EXPORT_SYMBOL(netdev_refcnt_read);
7589
2c53040f 7590/**
1da177e4 7591 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7592 * @dev: target net_device
1da177e4
LT
7593 *
7594 * This is called when unregistering network devices.
7595 *
7596 * Any protocol or device that holds a reference should register
7597 * for netdevice notification, and cleanup and put back the
7598 * reference if they receive an UNREGISTER event.
7599 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7600 * call dev_put.
1da177e4
LT
7601 */
7602static void netdev_wait_allrefs(struct net_device *dev)
7603{
7604 unsigned long rebroadcast_time, warning_time;
29b4433d 7605 int refcnt;
1da177e4 7606
e014debe
ED
7607 linkwatch_forget_dev(dev);
7608
1da177e4 7609 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7610 refcnt = netdev_refcnt_read(dev);
7611
7612 while (refcnt != 0) {
1da177e4 7613 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7614 rtnl_lock();
1da177e4
LT
7615
7616 /* Rebroadcast unregister notification */
056925ab 7617 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7618
748e2d93 7619 __rtnl_unlock();
0115e8e3 7620 rcu_barrier();
748e2d93
ED
7621 rtnl_lock();
7622
0115e8e3 7623 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7624 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7625 &dev->state)) {
7626 /* We must not have linkwatch events
7627 * pending on unregister. If this
7628 * happens, we simply run the queue
7629 * unscheduled, resulting in a noop
7630 * for this device.
7631 */
7632 linkwatch_run_queue();
7633 }
7634
6756ae4b 7635 __rtnl_unlock();
1da177e4
LT
7636
7637 rebroadcast_time = jiffies;
7638 }
7639
7640 msleep(250);
7641
29b4433d
ED
7642 refcnt = netdev_refcnt_read(dev);
7643
1da177e4 7644 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7645 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7646 dev->name, refcnt);
1da177e4
LT
7647 warning_time = jiffies;
7648 }
7649 }
7650}
7651
7652/* The sequence is:
7653 *
7654 * rtnl_lock();
7655 * ...
7656 * register_netdevice(x1);
7657 * register_netdevice(x2);
7658 * ...
7659 * unregister_netdevice(y1);
7660 * unregister_netdevice(y2);
7661 * ...
7662 * rtnl_unlock();
7663 * free_netdev(y1);
7664 * free_netdev(y2);
7665 *
58ec3b4d 7666 * We are invoked by rtnl_unlock().
1da177e4 7667 * This allows us to deal with problems:
b17a7c17 7668 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7669 * without deadlocking with linkwatch via keventd.
7670 * 2) Since we run with the RTNL semaphore not held, we can sleep
7671 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7672 *
7673 * We must not return until all unregister events added during
7674 * the interval the lock was held have been completed.
1da177e4 7675 */
1da177e4
LT
7676void netdev_run_todo(void)
7677{
626ab0e6 7678 struct list_head list;
1da177e4 7679
1da177e4 7680 /* Snapshot list, allow later requests */
626ab0e6 7681 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7682
7683 __rtnl_unlock();
626ab0e6 7684
0115e8e3
ED
7685
7686 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7687 if (!list_empty(&list))
7688 rcu_barrier();
7689
1da177e4
LT
7690 while (!list_empty(&list)) {
7691 struct net_device *dev
e5e26d75 7692 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7693 list_del(&dev->todo_list);
7694
748e2d93 7695 rtnl_lock();
0115e8e3 7696 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7697 __rtnl_unlock();
0115e8e3 7698
b17a7c17 7699 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7700 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7701 dev->name, dev->reg_state);
7702 dump_stack();
7703 continue;
7704 }
1da177e4 7705
b17a7c17 7706 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7707
b17a7c17 7708 netdev_wait_allrefs(dev);
1da177e4 7709
b17a7c17 7710 /* paranoia */
29b4433d 7711 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7712 BUG_ON(!list_empty(&dev->ptype_all));
7713 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7714 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7715 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7716 WARN_ON(dev->dn_ptr);
1da177e4 7717
cf124db5
DM
7718 if (dev->priv_destructor)
7719 dev->priv_destructor(dev);
7720 if (dev->needs_free_netdev)
7721 free_netdev(dev);
9093bbb2 7722
50624c93
EB
7723 /* Report a network device has been unregistered */
7724 rtnl_lock();
7725 dev_net(dev)->dev_unreg_count--;
7726 __rtnl_unlock();
7727 wake_up(&netdev_unregistering_wq);
7728
9093bbb2
SH
7729 /* Free network device */
7730 kobject_put(&dev->dev.kobj);
1da177e4 7731 }
1da177e4
LT
7732}
7733
9256645a
JW
7734/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7735 * all the same fields in the same order as net_device_stats, with only
7736 * the type differing, but rtnl_link_stats64 may have additional fields
7737 * at the end for newer counters.
3cfde79c 7738 */
77a1abf5
ED
7739void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7740 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7741{
7742#if BITS_PER_LONG == 64
9256645a 7743 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7744 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7745 /* zero out counters that only exist in rtnl_link_stats64 */
7746 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7747 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7748#else
9256645a 7749 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7750 const unsigned long *src = (const unsigned long *)netdev_stats;
7751 u64 *dst = (u64 *)stats64;
7752
9256645a 7753 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7754 for (i = 0; i < n; i++)
7755 dst[i] = src[i];
9256645a
JW
7756 /* zero out counters that only exist in rtnl_link_stats64 */
7757 memset((char *)stats64 + n * sizeof(u64), 0,
7758 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7759#endif
7760}
77a1abf5 7761EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7762
eeda3fd6
SH
7763/**
7764 * dev_get_stats - get network device statistics
7765 * @dev: device to get statistics from
28172739 7766 * @storage: place to store stats
eeda3fd6 7767 *
d7753516
BH
7768 * Get network statistics from device. Return @storage.
7769 * The device driver may provide its own method by setting
7770 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7771 * otherwise the internal statistics structure is used.
eeda3fd6 7772 */
d7753516
BH
7773struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7774 struct rtnl_link_stats64 *storage)
7004bf25 7775{
eeda3fd6
SH
7776 const struct net_device_ops *ops = dev->netdev_ops;
7777
28172739
ED
7778 if (ops->ndo_get_stats64) {
7779 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7780 ops->ndo_get_stats64(dev, storage);
7781 } else if (ops->ndo_get_stats) {
3cfde79c 7782 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7783 } else {
7784 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7785 }
6f64ec74
ED
7786 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7787 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7788 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 7789 return storage;
c45d286e 7790}
eeda3fd6 7791EXPORT_SYMBOL(dev_get_stats);
c45d286e 7792
24824a09 7793struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7794{
24824a09 7795 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7796
24824a09
ED
7797#ifdef CONFIG_NET_CLS_ACT
7798 if (queue)
7799 return queue;
7800 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7801 if (!queue)
7802 return NULL;
7803 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7804 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7805 queue->qdisc_sleeping = &noop_qdisc;
7806 rcu_assign_pointer(dev->ingress_queue, queue);
7807#endif
7808 return queue;
bb949fbd
DM
7809}
7810
2c60db03
ED
7811static const struct ethtool_ops default_ethtool_ops;
7812
d07d7507
SG
7813void netdev_set_default_ethtool_ops(struct net_device *dev,
7814 const struct ethtool_ops *ops)
7815{
7816 if (dev->ethtool_ops == &default_ethtool_ops)
7817 dev->ethtool_ops = ops;
7818}
7819EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7820
74d332c1
ED
7821void netdev_freemem(struct net_device *dev)
7822{
7823 char *addr = (char *)dev - dev->padded;
7824
4cb28970 7825 kvfree(addr);
74d332c1
ED
7826}
7827
1da177e4 7828/**
722c9a0c 7829 * alloc_netdev_mqs - allocate network device
7830 * @sizeof_priv: size of private data to allocate space for
7831 * @name: device name format string
7832 * @name_assign_type: origin of device name
7833 * @setup: callback to initialize device
7834 * @txqs: the number of TX subqueues to allocate
7835 * @rxqs: the number of RX subqueues to allocate
7836 *
7837 * Allocates a struct net_device with private data area for driver use
7838 * and performs basic initialization. Also allocates subqueue structs
7839 * for each queue on the device.
1da177e4 7840 */
36909ea4 7841struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7842 unsigned char name_assign_type,
36909ea4
TH
7843 void (*setup)(struct net_device *),
7844 unsigned int txqs, unsigned int rxqs)
1da177e4 7845{
1da177e4 7846 struct net_device *dev;
7943986c 7847 size_t alloc_size;
1ce8e7b5 7848 struct net_device *p;
1da177e4 7849
b6fe17d6
SH
7850 BUG_ON(strlen(name) >= sizeof(dev->name));
7851
36909ea4 7852 if (txqs < 1) {
7b6cd1ce 7853 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7854 return NULL;
7855 }
7856
a953be53 7857#ifdef CONFIG_SYSFS
36909ea4 7858 if (rxqs < 1) {
7b6cd1ce 7859 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7860 return NULL;
7861 }
7862#endif
7863
fd2ea0a7 7864 alloc_size = sizeof(struct net_device);
d1643d24
AD
7865 if (sizeof_priv) {
7866 /* ensure 32-byte alignment of private area */
1ce8e7b5 7867 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7868 alloc_size += sizeof_priv;
7869 }
7870 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7871 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7872
da6bc57a 7873 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
62b5942a 7874 if (!p)
1da177e4 7875 return NULL;
1da177e4 7876
1ce8e7b5 7877 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7878 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7879
29b4433d
ED
7880 dev->pcpu_refcnt = alloc_percpu(int);
7881 if (!dev->pcpu_refcnt)
74d332c1 7882 goto free_dev;
ab9c73cc 7883
ab9c73cc 7884 if (dev_addr_init(dev))
29b4433d 7885 goto free_pcpu;
ab9c73cc 7886
22bedad3 7887 dev_mc_init(dev);
a748ee24 7888 dev_uc_init(dev);
ccffad25 7889
c346dca1 7890 dev_net_set(dev, &init_net);
1da177e4 7891
8d3bdbd5 7892 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7893 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7894
8d3bdbd5
DM
7895 INIT_LIST_HEAD(&dev->napi_list);
7896 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7897 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7898 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7899 INIT_LIST_HEAD(&dev->adj_list.upper);
7900 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
7901 INIT_LIST_HEAD(&dev->ptype_all);
7902 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7903#ifdef CONFIG_NET_SCHED
7904 hash_init(dev->qdisc_hash);
7905#endif
02875878 7906 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7907 setup(dev);
7908
a813104d 7909 if (!dev->tx_queue_len) {
f84bb1ea 7910 dev->priv_flags |= IFF_NO_QUEUE;
11597084 7911 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 7912 }
906470c1 7913
36909ea4
TH
7914 dev->num_tx_queues = txqs;
7915 dev->real_num_tx_queues = txqs;
ed9af2e8 7916 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7917 goto free_all;
e8a0464c 7918
a953be53 7919#ifdef CONFIG_SYSFS
36909ea4
TH
7920 dev->num_rx_queues = rxqs;
7921 dev->real_num_rx_queues = rxqs;
fe822240 7922 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7923 goto free_all;
df334545 7924#endif
0a9627f2 7925
1da177e4 7926 strcpy(dev->name, name);
c835a677 7927 dev->name_assign_type = name_assign_type;
cbda10fa 7928 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7929 if (!dev->ethtool_ops)
7930 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7931
7932 nf_hook_ingress_init(dev);
7933
1da177e4 7934 return dev;
ab9c73cc 7935
8d3bdbd5
DM
7936free_all:
7937 free_netdev(dev);
7938 return NULL;
7939
29b4433d
ED
7940free_pcpu:
7941 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7942free_dev:
7943 netdev_freemem(dev);
ab9c73cc 7944 return NULL;
1da177e4 7945}
36909ea4 7946EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7947
7948/**
722c9a0c 7949 * free_netdev - free network device
7950 * @dev: device
1da177e4 7951 *
722c9a0c 7952 * This function does the last stage of destroying an allocated device
7953 * interface. The reference to the device object is released. If this
7954 * is the last reference then it will be freed.Must be called in process
7955 * context.
1da177e4
LT
7956 */
7957void free_netdev(struct net_device *dev)
7958{
d565b0a1 7959 struct napi_struct *p, *n;
b5cdae32 7960 struct bpf_prog *prog;
d565b0a1 7961
93d05d4a 7962 might_sleep();
60877a32 7963 netif_free_tx_queues(dev);
a953be53 7964#ifdef CONFIG_SYSFS
10595902 7965 kvfree(dev->_rx);
fe822240 7966#endif
e8a0464c 7967
33d480ce 7968 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7969
f001fde5
JP
7970 /* Flush device addresses */
7971 dev_addr_flush(dev);
7972
d565b0a1
HX
7973 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7974 netif_napi_del(p);
7975
29b4433d
ED
7976 free_percpu(dev->pcpu_refcnt);
7977 dev->pcpu_refcnt = NULL;
7978
b5cdae32
DM
7979 prog = rcu_dereference_protected(dev->xdp_prog, 1);
7980 if (prog) {
7981 bpf_prog_put(prog);
7982 static_key_slow_dec(&generic_xdp_needed);
7983 }
7984
3041a069 7985 /* Compatibility with error handling in drivers */
1da177e4 7986 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7987 netdev_freemem(dev);
1da177e4
LT
7988 return;
7989 }
7990
7991 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7992 dev->reg_state = NETREG_RELEASED;
7993
43cb76d9
GKH
7994 /* will free via device release */
7995 put_device(&dev->dev);
1da177e4 7996}
d1b19dff 7997EXPORT_SYMBOL(free_netdev);
4ec93edb 7998
f0db275a
SH
7999/**
8000 * synchronize_net - Synchronize with packet receive processing
8001 *
8002 * Wait for packets currently being received to be done.
8003 * Does not block later packets from starting.
8004 */
4ec93edb 8005void synchronize_net(void)
1da177e4
LT
8006{
8007 might_sleep();
be3fc413
ED
8008 if (rtnl_is_locked())
8009 synchronize_rcu_expedited();
8010 else
8011 synchronize_rcu();
1da177e4 8012}
d1b19dff 8013EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
8014
8015/**
44a0873d 8016 * unregister_netdevice_queue - remove device from the kernel
1da177e4 8017 * @dev: device
44a0873d 8018 * @head: list
6ebfbc06 8019 *
1da177e4 8020 * This function shuts down a device interface and removes it
d59b54b1 8021 * from the kernel tables.
44a0873d 8022 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
8023 *
8024 * Callers must hold the rtnl semaphore. You may want
8025 * unregister_netdev() instead of this.
8026 */
8027
44a0873d 8028void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 8029{
a6620712
HX
8030 ASSERT_RTNL();
8031
44a0873d 8032 if (head) {
9fdce099 8033 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
8034 } else {
8035 rollback_registered(dev);
8036 /* Finish processing unregister after unlock */
8037 net_set_todo(dev);
8038 }
1da177e4 8039}
44a0873d 8040EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 8041
9b5e383c
ED
8042/**
8043 * unregister_netdevice_many - unregister many devices
8044 * @head: list of devices
87757a91
ED
8045 *
8046 * Note: As most callers use a stack allocated list_head,
8047 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
8048 */
8049void unregister_netdevice_many(struct list_head *head)
8050{
8051 struct net_device *dev;
8052
8053 if (!list_empty(head)) {
8054 rollback_registered_many(head);
8055 list_for_each_entry(dev, head, unreg_list)
8056 net_set_todo(dev);
87757a91 8057 list_del(head);
9b5e383c
ED
8058 }
8059}
63c8099d 8060EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 8061
1da177e4
LT
8062/**
8063 * unregister_netdev - remove device from the kernel
8064 * @dev: device
8065 *
8066 * This function shuts down a device interface and removes it
d59b54b1 8067 * from the kernel tables.
1da177e4
LT
8068 *
8069 * This is just a wrapper for unregister_netdevice that takes
8070 * the rtnl semaphore. In general you want to use this and not
8071 * unregister_netdevice.
8072 */
8073void unregister_netdev(struct net_device *dev)
8074{
8075 rtnl_lock();
8076 unregister_netdevice(dev);
8077 rtnl_unlock();
8078}
1da177e4
LT
8079EXPORT_SYMBOL(unregister_netdev);
8080
ce286d32
EB
8081/**
8082 * dev_change_net_namespace - move device to different nethost namespace
8083 * @dev: device
8084 * @net: network namespace
8085 * @pat: If not NULL name pattern to try if the current device name
8086 * is already taken in the destination network namespace.
8087 *
8088 * This function shuts down a device interface and moves it
8089 * to a new network namespace. On success 0 is returned, on
8090 * a failure a netagive errno code is returned.
8091 *
8092 * Callers must hold the rtnl semaphore.
8093 */
8094
8095int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8096{
ce286d32
EB
8097 int err;
8098
8099 ASSERT_RTNL();
8100
8101 /* Don't allow namespace local devices to be moved. */
8102 err = -EINVAL;
8103 if (dev->features & NETIF_F_NETNS_LOCAL)
8104 goto out;
8105
8106 /* Ensure the device has been registrered */
ce286d32
EB
8107 if (dev->reg_state != NETREG_REGISTERED)
8108 goto out;
8109
8110 /* Get out if there is nothing todo */
8111 err = 0;
878628fb 8112 if (net_eq(dev_net(dev), net))
ce286d32
EB
8113 goto out;
8114
8115 /* Pick the destination device name, and ensure
8116 * we can use it in the destination network namespace.
8117 */
8118 err = -EEXIST;
d9031024 8119 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
8120 /* We get here if we can't use the current device name */
8121 if (!pat)
8122 goto out;
828de4f6 8123 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
8124 goto out;
8125 }
8126
8127 /*
8128 * And now a mini version of register_netdevice unregister_netdevice.
8129 */
8130
8131 /* If device is running close it first. */
9b772652 8132 dev_close(dev);
ce286d32
EB
8133
8134 /* And unlink it from device chain */
8135 err = -ENODEV;
8136 unlist_netdevice(dev);
8137
8138 synchronize_net();
8139
8140 /* Shutdown queueing discipline. */
8141 dev_shutdown(dev);
8142
8143 /* Notify protocols, that we are about to destroy
eb13da1a 8144 * this device. They should clean all the things.
8145 *
8146 * Note that dev->reg_state stays at NETREG_REGISTERED.
8147 * This is wanted because this way 8021q and macvlan know
8148 * the device is just moving and can keep their slaves up.
8149 */
ce286d32 8150 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
8151 rcu_barrier();
8152 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 8153 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
8154
8155 /*
8156 * Flush the unicast and multicast chains
8157 */
a748ee24 8158 dev_uc_flush(dev);
22bedad3 8159 dev_mc_flush(dev);
ce286d32 8160
4e66ae2e
SH
8161 /* Send a netdev-removed uevent to the old namespace */
8162 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 8163 netdev_adjacent_del_links(dev);
4e66ae2e 8164
ce286d32 8165 /* Actually switch the network namespace */
c346dca1 8166 dev_net_set(dev, net);
ce286d32 8167
ce286d32 8168 /* If there is an ifindex conflict assign a new one */
7a66bbc9 8169 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 8170 dev->ifindex = dev_new_index(net);
ce286d32 8171
4e66ae2e
SH
8172 /* Send a netdev-add uevent to the new namespace */
8173 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 8174 netdev_adjacent_add_links(dev);
4e66ae2e 8175
8b41d188 8176 /* Fixup kobjects */
a1b3f594 8177 err = device_rename(&dev->dev, dev->name);
8b41d188 8178 WARN_ON(err);
ce286d32
EB
8179
8180 /* Add the device back in the hashes */
8181 list_netdevice(dev);
8182
8183 /* Notify protocols, that a new device appeared. */
8184 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8185
d90a909e
EB
8186 /*
8187 * Prevent userspace races by waiting until the network
8188 * device is fully setup before sending notifications.
8189 */
7f294054 8190 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8191
ce286d32
EB
8192 synchronize_net();
8193 err = 0;
8194out:
8195 return err;
8196}
463d0183 8197EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8198
f0bf90de 8199static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8200{
8201 struct sk_buff **list_skb;
1da177e4 8202 struct sk_buff *skb;
f0bf90de 8203 unsigned int cpu;
97d8b6e3 8204 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 8205
1da177e4
LT
8206 local_irq_disable();
8207 cpu = smp_processor_id();
8208 sd = &per_cpu(softnet_data, cpu);
8209 oldsd = &per_cpu(softnet_data, oldcpu);
8210
8211 /* Find end of our completion_queue. */
8212 list_skb = &sd->completion_queue;
8213 while (*list_skb)
8214 list_skb = &(*list_skb)->next;
8215 /* Append completion queue from offline CPU. */
8216 *list_skb = oldsd->completion_queue;
8217 oldsd->completion_queue = NULL;
8218
1da177e4 8219 /* Append output queue from offline CPU. */
a9cbd588
CG
8220 if (oldsd->output_queue) {
8221 *sd->output_queue_tailp = oldsd->output_queue;
8222 sd->output_queue_tailp = oldsd->output_queue_tailp;
8223 oldsd->output_queue = NULL;
8224 oldsd->output_queue_tailp = &oldsd->output_queue;
8225 }
ac64da0b
ED
8226 /* Append NAPI poll list from offline CPU, with one exception :
8227 * process_backlog() must be called by cpu owning percpu backlog.
8228 * We properly handle process_queue & input_pkt_queue later.
8229 */
8230 while (!list_empty(&oldsd->poll_list)) {
8231 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8232 struct napi_struct,
8233 poll_list);
8234
8235 list_del_init(&napi->poll_list);
8236 if (napi->poll == process_backlog)
8237 napi->state = 0;
8238 else
8239 ____napi_schedule(sd, napi);
264524d5 8240 }
1da177e4
LT
8241
8242 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8243 local_irq_enable();
8244
773fc8f6 8245#ifdef CONFIG_RPS
8246 remsd = oldsd->rps_ipi_list;
8247 oldsd->rps_ipi_list = NULL;
8248#endif
8249 /* send out pending IPI's on offline CPU */
8250 net_rps_send_ipi(remsd);
8251
1da177e4 8252 /* Process offline CPU's input_pkt_queue */
76cc8b13 8253 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8254 netif_rx_ni(skb);
76cc8b13 8255 input_queue_head_incr(oldsd);
fec5e652 8256 }
ac64da0b 8257 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8258 netif_rx_ni(skb);
76cc8b13
TH
8259 input_queue_head_incr(oldsd);
8260 }
1da177e4 8261
f0bf90de 8262 return 0;
1da177e4 8263}
1da177e4 8264
7f353bf2 8265/**
b63365a2
HX
8266 * netdev_increment_features - increment feature set by one
8267 * @all: current feature set
8268 * @one: new feature set
8269 * @mask: mask feature set
7f353bf2
HX
8270 *
8271 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8272 * @one to the master device with current feature set @all. Will not
8273 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8274 */
c8f44aff
MM
8275netdev_features_t netdev_increment_features(netdev_features_t all,
8276 netdev_features_t one, netdev_features_t mask)
b63365a2 8277{
c8cd0989 8278 if (mask & NETIF_F_HW_CSUM)
a188222b 8279 mask |= NETIF_F_CSUM_MASK;
1742f183 8280 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8281
a188222b 8282 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8283 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8284
1742f183 8285 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8286 if (all & NETIF_F_HW_CSUM)
8287 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8288
8289 return all;
8290}
b63365a2 8291EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8292
430f03cd 8293static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8294{
8295 int i;
8296 struct hlist_head *hash;
8297
8298 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8299 if (hash != NULL)
8300 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8301 INIT_HLIST_HEAD(&hash[i]);
8302
8303 return hash;
8304}
8305
881d966b 8306/* Initialize per network namespace state */
4665079c 8307static int __net_init netdev_init(struct net *net)
881d966b 8308{
734b6541
RM
8309 if (net != &init_net)
8310 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8311
30d97d35
PE
8312 net->dev_name_head = netdev_create_hash();
8313 if (net->dev_name_head == NULL)
8314 goto err_name;
881d966b 8315
30d97d35
PE
8316 net->dev_index_head = netdev_create_hash();
8317 if (net->dev_index_head == NULL)
8318 goto err_idx;
881d966b
EB
8319
8320 return 0;
30d97d35
PE
8321
8322err_idx:
8323 kfree(net->dev_name_head);
8324err_name:
8325 return -ENOMEM;
881d966b
EB
8326}
8327
f0db275a
SH
8328/**
8329 * netdev_drivername - network driver for the device
8330 * @dev: network device
f0db275a
SH
8331 *
8332 * Determine network driver for device.
8333 */
3019de12 8334const char *netdev_drivername(const struct net_device *dev)
6579e57b 8335{
cf04a4c7
SH
8336 const struct device_driver *driver;
8337 const struct device *parent;
3019de12 8338 const char *empty = "";
6579e57b
AV
8339
8340 parent = dev->dev.parent;
6579e57b 8341 if (!parent)
3019de12 8342 return empty;
6579e57b
AV
8343
8344 driver = parent->driver;
8345 if (driver && driver->name)
3019de12
DM
8346 return driver->name;
8347 return empty;
6579e57b
AV
8348}
8349
6ea754eb
JP
8350static void __netdev_printk(const char *level, const struct net_device *dev,
8351 struct va_format *vaf)
256df2f3 8352{
b004ff49 8353 if (dev && dev->dev.parent) {
6ea754eb
JP
8354 dev_printk_emit(level[1] - '0',
8355 dev->dev.parent,
8356 "%s %s %s%s: %pV",
8357 dev_driver_string(dev->dev.parent),
8358 dev_name(dev->dev.parent),
8359 netdev_name(dev), netdev_reg_state(dev),
8360 vaf);
b004ff49 8361 } else if (dev) {
6ea754eb
JP
8362 printk("%s%s%s: %pV",
8363 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8364 } else {
6ea754eb 8365 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8366 }
256df2f3
JP
8367}
8368
6ea754eb
JP
8369void netdev_printk(const char *level, const struct net_device *dev,
8370 const char *format, ...)
256df2f3
JP
8371{
8372 struct va_format vaf;
8373 va_list args;
256df2f3
JP
8374
8375 va_start(args, format);
8376
8377 vaf.fmt = format;
8378 vaf.va = &args;
8379
6ea754eb 8380 __netdev_printk(level, dev, &vaf);
b004ff49 8381
256df2f3 8382 va_end(args);
256df2f3
JP
8383}
8384EXPORT_SYMBOL(netdev_printk);
8385
8386#define define_netdev_printk_level(func, level) \
6ea754eb 8387void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8388{ \
256df2f3
JP
8389 struct va_format vaf; \
8390 va_list args; \
8391 \
8392 va_start(args, fmt); \
8393 \
8394 vaf.fmt = fmt; \
8395 vaf.va = &args; \
8396 \
6ea754eb 8397 __netdev_printk(level, dev, &vaf); \
b004ff49 8398 \
256df2f3 8399 va_end(args); \
256df2f3
JP
8400} \
8401EXPORT_SYMBOL(func);
8402
8403define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8404define_netdev_printk_level(netdev_alert, KERN_ALERT);
8405define_netdev_printk_level(netdev_crit, KERN_CRIT);
8406define_netdev_printk_level(netdev_err, KERN_ERR);
8407define_netdev_printk_level(netdev_warn, KERN_WARNING);
8408define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8409define_netdev_printk_level(netdev_info, KERN_INFO);
8410
4665079c 8411static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8412{
8413 kfree(net->dev_name_head);
8414 kfree(net->dev_index_head);
8415}
8416
022cbae6 8417static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8418 .init = netdev_init,
8419 .exit = netdev_exit,
8420};
8421
4665079c 8422static void __net_exit default_device_exit(struct net *net)
ce286d32 8423{
e008b5fc 8424 struct net_device *dev, *aux;
ce286d32 8425 /*
e008b5fc 8426 * Push all migratable network devices back to the
ce286d32
EB
8427 * initial network namespace
8428 */
8429 rtnl_lock();
e008b5fc 8430 for_each_netdev_safe(net, dev, aux) {
ce286d32 8431 int err;
aca51397 8432 char fb_name[IFNAMSIZ];
ce286d32
EB
8433
8434 /* Ignore unmoveable devices (i.e. loopback) */
8435 if (dev->features & NETIF_F_NETNS_LOCAL)
8436 continue;
8437
e008b5fc
EB
8438 /* Leave virtual devices for the generic cleanup */
8439 if (dev->rtnl_link_ops)
8440 continue;
d0c082ce 8441
25985edc 8442 /* Push remaining network devices to init_net */
aca51397
PE
8443 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8444 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8445 if (err) {
7b6cd1ce
JP
8446 pr_emerg("%s: failed to move %s to init_net: %d\n",
8447 __func__, dev->name, err);
aca51397 8448 BUG();
ce286d32
EB
8449 }
8450 }
8451 rtnl_unlock();
8452}
8453
50624c93
EB
8454static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8455{
8456 /* Return with the rtnl_lock held when there are no network
8457 * devices unregistering in any network namespace in net_list.
8458 */
8459 struct net *net;
8460 bool unregistering;
ff960a73 8461 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8462
ff960a73 8463 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8464 for (;;) {
50624c93
EB
8465 unregistering = false;
8466 rtnl_lock();
8467 list_for_each_entry(net, net_list, exit_list) {
8468 if (net->dev_unreg_count > 0) {
8469 unregistering = true;
8470 break;
8471 }
8472 }
8473 if (!unregistering)
8474 break;
8475 __rtnl_unlock();
ff960a73
PZ
8476
8477 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8478 }
ff960a73 8479 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8480}
8481
04dc7f6b
EB
8482static void __net_exit default_device_exit_batch(struct list_head *net_list)
8483{
8484 /* At exit all network devices most be removed from a network
b595076a 8485 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8486 * Do this across as many network namespaces as possible to
8487 * improve batching efficiency.
8488 */
8489 struct net_device *dev;
8490 struct net *net;
8491 LIST_HEAD(dev_kill_list);
8492
50624c93
EB
8493 /* To prevent network device cleanup code from dereferencing
8494 * loopback devices or network devices that have been freed
8495 * wait here for all pending unregistrations to complete,
8496 * before unregistring the loopback device and allowing the
8497 * network namespace be freed.
8498 *
8499 * The netdev todo list containing all network devices
8500 * unregistrations that happen in default_device_exit_batch
8501 * will run in the rtnl_unlock() at the end of
8502 * default_device_exit_batch.
8503 */
8504 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8505 list_for_each_entry(net, net_list, exit_list) {
8506 for_each_netdev_reverse(net, dev) {
b0ab2fab 8507 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8508 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8509 else
8510 unregister_netdevice_queue(dev, &dev_kill_list);
8511 }
8512 }
8513 unregister_netdevice_many(&dev_kill_list);
8514 rtnl_unlock();
8515}
8516
022cbae6 8517static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8518 .exit = default_device_exit,
04dc7f6b 8519 .exit_batch = default_device_exit_batch,
ce286d32
EB
8520};
8521
1da177e4
LT
8522/*
8523 * Initialize the DEV module. At boot time this walks the device list and
8524 * unhooks any devices that fail to initialise (normally hardware not
8525 * present) and leaves us with a valid list of present and active devices.
8526 *
8527 */
8528
8529/*
8530 * This is called single threaded during boot, so no need
8531 * to take the rtnl semaphore.
8532 */
8533static int __init net_dev_init(void)
8534{
8535 int i, rc = -ENOMEM;
8536
8537 BUG_ON(!dev_boot_phase);
8538
1da177e4
LT
8539 if (dev_proc_init())
8540 goto out;
8541
8b41d188 8542 if (netdev_kobject_init())
1da177e4
LT
8543 goto out;
8544
8545 INIT_LIST_HEAD(&ptype_all);
82d8a867 8546 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8547 INIT_LIST_HEAD(&ptype_base[i]);
8548
62532da9
VY
8549 INIT_LIST_HEAD(&offload_base);
8550
881d966b
EB
8551 if (register_pernet_subsys(&netdev_net_ops))
8552 goto out;
1da177e4
LT
8553
8554 /*
8555 * Initialise the packet receive queues.
8556 */
8557
6f912042 8558 for_each_possible_cpu(i) {
41852497 8559 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8560 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8561
41852497
ED
8562 INIT_WORK(flush, flush_backlog);
8563
e36fa2f7 8564 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8565 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8566 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8567 sd->output_queue_tailp = &sd->output_queue;
df334545 8568#ifdef CONFIG_RPS
e36fa2f7
ED
8569 sd->csd.func = rps_trigger_softirq;
8570 sd->csd.info = sd;
e36fa2f7 8571 sd->cpu = i;
1e94d72f 8572#endif
0a9627f2 8573
e36fa2f7
ED
8574 sd->backlog.poll = process_backlog;
8575 sd->backlog.weight = weight_p;
1da177e4
LT
8576 }
8577
1da177e4
LT
8578 dev_boot_phase = 0;
8579
505d4f73
EB
8580 /* The loopback device is special if any other network devices
8581 * is present in a network namespace the loopback device must
8582 * be present. Since we now dynamically allocate and free the
8583 * loopback device ensure this invariant is maintained by
8584 * keeping the loopback device as the first device on the
8585 * list of network devices. Ensuring the loopback devices
8586 * is the first device that appears and the last network device
8587 * that disappears.
8588 */
8589 if (register_pernet_device(&loopback_net_ops))
8590 goto out;
8591
8592 if (register_pernet_device(&default_device_ops))
8593 goto out;
8594
962cf36c
CM
8595 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8596 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8597
f0bf90de
SAS
8598 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8599 NULL, dev_cpu_dead);
8600 WARN_ON(rc < 0);
f38a9eb1 8601 dst_subsys_init();
1da177e4
LT
8602 rc = 0;
8603out:
8604 return rc;
8605}
8606
8607subsys_initcall(net_dev_init);