]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/core/dev.c
net: fix rcu access on phonet_routes
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4
LT
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
44540960 104#include <net/xfrm.h>
1da177e4
LT
105#include <linux/highmem.h>
106#include <linux/init.h>
1da177e4 107#include <linux/module.h>
1da177e4
LT
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
1da177e4 111#include <net/iw_handler.h>
1da177e4 112#include <asm/current.h>
5bdb9886 113#include <linux/audit.h>
db217334 114#include <linux/dmaengine.h>
f6a78bfc 115#include <linux/err.h>
c7fa9d18 116#include <linux/ctype.h>
723e98b7 117#include <linux/if_arp.h>
6de329e2 118#include <linux/if_vlan.h>
8f0f2223 119#include <linux/ip.h>
ad55dcaf 120#include <net/ip.h>
8f0f2223
DM
121#include <linux/ipv6.h>
122#include <linux/in.h>
b6b2fed1
DM
123#include <linux/jhash.h>
124#include <linux/random.h>
9cbc1cb8 125#include <trace/events/napi.h>
cf66ba58 126#include <trace/events/net.h>
07dc22e7 127#include <trace/events/skb.h>
5acbbd42 128#include <linux/pci.h>
caeda9b9 129#include <linux/inetdevice.h>
c445477d 130#include <linux/cpu_rmap.h>
c5905afb 131#include <linux/static_key.h>
af12fa6e 132#include <linux/hashtable.h>
60877a32 133#include <linux/vmalloc.h>
529d0489 134#include <linux/if_macvlan.h>
e7fd2885 135#include <linux/errqueue.h>
1da177e4 136
342709ef
PE
137#include "net-sysfs.h"
138
d565b0a1
HX
139/* Instead of increasing this, you should create a hash table. */
140#define MAX_GRO_SKBS 8
141
5d38a079
HX
142/* This should be increased if a protocol with a bigger head is added. */
143#define GRO_MAX_HEAD (MAX_HEADER + 128)
144
1da177e4 145static DEFINE_SPINLOCK(ptype_lock);
62532da9 146static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
147struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148struct list_head ptype_all __read_mostly; /* Taps */
62532da9 149static struct list_head offload_base __read_mostly;
1da177e4 150
ae78dbfa 151static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
152static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
ae78dbfa 155
1da177e4 156/*
7562f876 157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
158 * semaphore.
159 *
c6d14c84 160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
7562f876 163 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
1da177e4 175DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
176EXPORT_SYMBOL(dev_base_lock);
177
af12fa6e
ET
178/* protects napi_hash addition/deletion and napi_gen_id */
179static DEFINE_SPINLOCK(napi_hash_lock);
180
181static unsigned int napi_gen_id;
182static DEFINE_HASHTABLE(napi_hash, 8);
183
18afa4b0 184static seqcount_t devnet_rename_seq;
c91f6df2 185
4e985ada
TG
186static inline void dev_base_seq_inc(struct net *net)
187{
188 while (++net->dev_base_seq == 0);
189}
190
881d966b 191static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 192{
95c96174
ED
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
08e9897d 195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
196}
197
881d966b 198static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 199{
7c28bd0b 200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
201}
202
e36fa2f7 203static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
204{
205#ifdef CONFIG_RPS
e36fa2f7 206 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
207#endif
208}
209
e36fa2f7 210static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
ce286d32 217/* Device list insertion */
53759be9 218static void list_netdevice(struct net_device *dev)
ce286d32 219{
c346dca1 220 struct net *net = dev_net(dev);
ce286d32
EB
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
c6d14c84 225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
ce286d32 229 write_unlock_bh(&dev_base_lock);
4e985ada
TG
230
231 dev_base_seq_inc(net);
ce286d32
EB
232}
233
fb699dfd
ED
234/* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
ce286d32
EB
237static void unlist_netdevice(struct net_device *dev)
238{
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
c6d14c84 243 list_del_rcu(&dev->dev_list);
72c9528b 244 hlist_del_rcu(&dev->name_hlist);
fb699dfd 245 hlist_del_rcu(&dev->index_hlist);
ce286d32 246 write_unlock_bh(&dev_base_lock);
4e985ada
TG
247
248 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
249}
250
1da177e4
LT
251/*
252 * Our notifier list
253 */
254
f07d5b94 255static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
256
257/*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
bea3348e 261
9958da05 262DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 263EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 264
cf508b12 265#ifdef CONFIG_LOCKDEP
723e98b7 266/*
c773e847 267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
268 * according to dev->type
269 */
270static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 286
36cbd3dc 287static const char *const netdev_lock_name[] =
723e98b7
JP
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
303
304static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 305static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
306
307static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308{
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316}
317
cf508b12
DM
318static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
723e98b7
JP
320{
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326}
cf508b12
DM
327
328static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329{
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336}
723e98b7 337#else
cf508b12
DM
338static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340{
341}
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
343{
344}
345#endif
1da177e4
LT
346
347/*******************************************************************************
348
349 Protocol management and registration routines
350
351*******************************************************************************/
352
1da177e4
LT
353/*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
c07b68e8
ED
369static inline struct list_head *ptype_head(const struct packet_type *pt)
370{
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375}
376
1da177e4
LT
377/**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
4ec93edb 385 * This call does not sleep therefore it can not
1da177e4
LT
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390void dev_add_pack(struct packet_type *pt)
391{
c07b68e8 392 struct list_head *head = ptype_head(pt);
1da177e4 393
c07b68e8
ED
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
1da177e4 397}
d1b19dff 398EXPORT_SYMBOL(dev_add_pack);
1da177e4 399
1da177e4
LT
400/**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
4ec93edb 407 * returns.
1da177e4
LT
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413void __dev_remove_pack(struct packet_type *pt)
414{
c07b68e8 415 struct list_head *head = ptype_head(pt);
1da177e4
LT
416 struct packet_type *pt1;
417
c07b68e8 418 spin_lock(&ptype_lock);
1da177e4
LT
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
7b6cd1ce 427 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 428out:
c07b68e8 429 spin_unlock(&ptype_lock);
1da177e4 430}
d1b19dff
ED
431EXPORT_SYMBOL(__dev_remove_pack);
432
1da177e4
LT
433/**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445void dev_remove_pack(struct packet_type *pt)
446{
447 __dev_remove_pack(pt);
4ec93edb 448
1da177e4
LT
449 synchronize_net();
450}
d1b19dff 451EXPORT_SYMBOL(dev_remove_pack);
1da177e4 452
62532da9
VY
453
454/**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466void dev_add_offload(struct packet_offload *po)
467{
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473}
474EXPORT_SYMBOL(dev_add_offload);
475
476/**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
1d143d9f 489static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
490{
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
c53aa505 494 spin_lock(&offload_lock);
62532da9
VY
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504out:
c53aa505 505 spin_unlock(&offload_lock);
62532da9 506}
62532da9
VY
507
508/**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520void dev_remove_offload(struct packet_offload *po)
521{
522 __dev_remove_offload(po);
523
524 synchronize_net();
525}
526EXPORT_SYMBOL(dev_remove_offload);
527
1da177e4
LT
528/******************************************************************************
529
530 Device Boot-time Settings Routines
531
532*******************************************************************************/
533
534/* Boot time configuration table */
535static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537/**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546static int netdev_boot_setup_add(char *name, struct ifmap *map)
547{
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 555 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562}
563
564/**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573int netdev_boot_setup_check(struct net_device *dev)
574{
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 580 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589}
d1b19dff 590EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
591
592
593/**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603unsigned long netdev_boot_base(const char *prefix, int unit)
604{
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
881d966b 615 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622}
623
624/*
625 * Saves at boot time configured settings for any netdevice.
626 */
627int __init netdev_boot_setup(char *str)
628{
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649}
650
651__setup("netdev=", netdev_boot_setup);
652
653/*******************************************************************************
654
655 Device Interface Subroutines
656
657*******************************************************************************/
658
659/**
660 * __dev_get_by_name - find a device by its name
c4ea43c5 661 * @net: the applicable net namespace
1da177e4
LT
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
881d966b 671struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 672{
0bd8d536
ED
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 675
b67bfe0d 676 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
0bd8d536 679
1da177e4
LT
680 return NULL;
681}
d1b19dff 682EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 683
72c9528b
ED
684/**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697{
72c9528b
ED
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
b67bfe0d 701 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706}
707EXPORT_SYMBOL(dev_get_by_name_rcu);
708
1da177e4
LT
709/**
710 * dev_get_by_name - find a device by its name
c4ea43c5 711 * @net: the applicable net namespace
1da177e4
LT
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
881d966b 721struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
722{
723 struct net_device *dev;
724
72c9528b
ED
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
727 if (dev)
728 dev_hold(dev);
72c9528b 729 rcu_read_unlock();
1da177e4
LT
730 return dev;
731}
d1b19dff 732EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
733
734/**
735 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 736 * @net: the applicable net namespace
1da177e4
LT
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
881d966b 746struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 747{
0bd8d536
ED
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 750
b67bfe0d 751 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
752 if (dev->ifindex == ifindex)
753 return dev;
0bd8d536 754
1da177e4
LT
755 return NULL;
756}
d1b19dff 757EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 758
fb699dfd
ED
759/**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771{
fb699dfd
ED
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
b67bfe0d 775 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780}
781EXPORT_SYMBOL(dev_get_by_index_rcu);
782
1da177e4
LT
783
784/**
785 * dev_get_by_index - find a device by its ifindex
c4ea43c5 786 * @net: the applicable net namespace
1da177e4
LT
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
881d966b 795struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
796{
797 struct net_device *dev;
798
fb699dfd
ED
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
801 if (dev)
802 dev_hold(dev);
fb699dfd 803 rcu_read_unlock();
1da177e4
LT
804 return dev;
805}
d1b19dff 806EXPORT_SYMBOL(dev_get_by_index);
1da177e4 807
5dbe7c17
NS
808/**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818int netdev_get_name(struct net *net, char *name, int ifindex)
819{
820 struct net_device *dev;
821 unsigned int seq;
822
823retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840}
841
1da177e4 842/**
941666c2 843 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 844 * @net: the applicable net namespace
1da177e4
LT
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
941666c2 851 * The returned device has not had its ref count increased
1da177e4
LT
852 * and the caller must therefore be careful about locking
853 *
1da177e4
LT
854 */
855
941666c2
ED
856struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
1da177e4
LT
858{
859 struct net_device *dev;
860
941666c2 861 for_each_netdev_rcu(net, dev)
1da177e4
LT
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
864 return dev;
865
866 return NULL;
1da177e4 867}
941666c2 868EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 869
881d966b 870struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
871{
872 struct net_device *dev;
873
4e9cac2b 874 ASSERT_RTNL();
881d966b 875 for_each_netdev(net, dev)
4e9cac2b 876 if (dev->type == type)
7562f876
PE
877 return dev;
878
879 return NULL;
4e9cac2b 880}
4e9cac2b
PM
881EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
881d966b 883struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 884{
99fe3c39 885 struct net_device *dev, *ret = NULL;
4e9cac2b 886
99fe3c39
ED
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
1da177e4 896}
1da177e4
LT
897EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899/**
6c555490 900 * __dev_get_by_flags - find any device with given flags
c4ea43c5 901 * @net: the applicable net namespace
1da177e4
LT
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 906 * is not found or a pointer to the device. Must be called inside
6c555490 907 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
908 */
909
6c555490
WC
910struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
911 unsigned short mask)
1da177e4 912{
7562f876 913 struct net_device *dev, *ret;
1da177e4 914
6c555490
WC
915 ASSERT_RTNL();
916
7562f876 917 ret = NULL;
6c555490 918 for_each_netdev(net, dev) {
1da177e4 919 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 920 ret = dev;
1da177e4
LT
921 break;
922 }
923 }
7562f876 924 return ret;
1da177e4 925}
6c555490 926EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
927
928/**
929 * dev_valid_name - check if name is okay for network device
930 * @name: name string
931 *
932 * Network device names need to be valid file names to
c7fa9d18
DM
933 * to allow sysfs to work. We also disallow any kind of
934 * whitespace.
1da177e4 935 */
95f050bf 936bool dev_valid_name(const char *name)
1da177e4 937{
c7fa9d18 938 if (*name == '\0')
95f050bf 939 return false;
b6fe17d6 940 if (strlen(name) >= IFNAMSIZ)
95f050bf 941 return false;
c7fa9d18 942 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 943 return false;
c7fa9d18
DM
944
945 while (*name) {
946 if (*name == '/' || isspace(*name))
95f050bf 947 return false;
c7fa9d18
DM
948 name++;
949 }
95f050bf 950 return true;
1da177e4 951}
d1b19dff 952EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
953
954/**
b267b179
EB
955 * __dev_alloc_name - allocate a name for a device
956 * @net: network namespace to allocate the device name in
1da177e4 957 * @name: name format string
b267b179 958 * @buf: scratch buffer and result name string
1da177e4
LT
959 *
960 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
961 * id. It scans list of devices to build up a free map, then chooses
962 * the first empty slot. The caller must hold the dev_base or rtnl lock
963 * while allocating the name and adding the device in order to avoid
964 * duplicates.
965 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
966 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
967 */
968
b267b179 969static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
970{
971 int i = 0;
1da177e4
LT
972 const char *p;
973 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 974 unsigned long *inuse;
1da177e4
LT
975 struct net_device *d;
976
977 p = strnchr(name, IFNAMSIZ-1, '%');
978 if (p) {
979 /*
980 * Verify the string as this thing may have come from
981 * the user. There must be either one "%d" and no other "%"
982 * characters.
983 */
984 if (p[1] != 'd' || strchr(p + 2, '%'))
985 return -EINVAL;
986
987 /* Use one page as a bit array of possible slots */
cfcabdcc 988 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
989 if (!inuse)
990 return -ENOMEM;
991
881d966b 992 for_each_netdev(net, d) {
1da177e4
LT
993 if (!sscanf(d->name, name, &i))
994 continue;
995 if (i < 0 || i >= max_netdevices)
996 continue;
997
998 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 999 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1000 if (!strncmp(buf, d->name, IFNAMSIZ))
1001 set_bit(i, inuse);
1002 }
1003
1004 i = find_first_zero_bit(inuse, max_netdevices);
1005 free_page((unsigned long) inuse);
1006 }
1007
d9031024
OP
1008 if (buf != name)
1009 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1010 if (!__dev_get_by_name(net, buf))
1da177e4 1011 return i;
1da177e4
LT
1012
1013 /* It is possible to run out of possible slots
1014 * when the name is long and there isn't enough space left
1015 * for the digits, or if all bits are used.
1016 */
1017 return -ENFILE;
1018}
1019
b267b179
EB
1020/**
1021 * dev_alloc_name - allocate a name for a device
1022 * @dev: device
1023 * @name: name format string
1024 *
1025 * Passed a format string - eg "lt%d" it will try and find a suitable
1026 * id. It scans list of devices to build up a free map, then chooses
1027 * the first empty slot. The caller must hold the dev_base or rtnl lock
1028 * while allocating the name and adding the device in order to avoid
1029 * duplicates.
1030 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1031 * Returns the number of the unit assigned or a negative errno code.
1032 */
1033
1034int dev_alloc_name(struct net_device *dev, const char *name)
1035{
1036 char buf[IFNAMSIZ];
1037 struct net *net;
1038 int ret;
1039
c346dca1
YH
1040 BUG_ON(!dev_net(dev));
1041 net = dev_net(dev);
b267b179
EB
1042 ret = __dev_alloc_name(net, name, buf);
1043 if (ret >= 0)
1044 strlcpy(dev->name, buf, IFNAMSIZ);
1045 return ret;
1046}
d1b19dff 1047EXPORT_SYMBOL(dev_alloc_name);
b267b179 1048
828de4f6
G
1049static int dev_alloc_name_ns(struct net *net,
1050 struct net_device *dev,
1051 const char *name)
d9031024 1052{
828de4f6
G
1053 char buf[IFNAMSIZ];
1054 int ret;
8ce6cebc 1055
828de4f6
G
1056 ret = __dev_alloc_name(net, name, buf);
1057 if (ret >= 0)
1058 strlcpy(dev->name, buf, IFNAMSIZ);
1059 return ret;
1060}
1061
1062static int dev_get_valid_name(struct net *net,
1063 struct net_device *dev,
1064 const char *name)
1065{
1066 BUG_ON(!net);
8ce6cebc 1067
d9031024
OP
1068 if (!dev_valid_name(name))
1069 return -EINVAL;
1070
1c5cae81 1071 if (strchr(name, '%'))
828de4f6 1072 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1073 else if (__dev_get_by_name(net, name))
1074 return -EEXIST;
8ce6cebc
DL
1075 else if (dev->name != name)
1076 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1077
1078 return 0;
1079}
1da177e4
LT
1080
1081/**
1082 * dev_change_name - change name of a device
1083 * @dev: device
1084 * @newname: name (or format string) must be at least IFNAMSIZ
1085 *
1086 * Change name of a device, can pass format strings "eth%d".
1087 * for wildcarding.
1088 */
cf04a4c7 1089int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1090{
238fa362 1091 unsigned char old_assign_type;
fcc5a03a 1092 char oldname[IFNAMSIZ];
1da177e4 1093 int err = 0;
fcc5a03a 1094 int ret;
881d966b 1095 struct net *net;
1da177e4
LT
1096
1097 ASSERT_RTNL();
c346dca1 1098 BUG_ON(!dev_net(dev));
1da177e4 1099
c346dca1 1100 net = dev_net(dev);
1da177e4
LT
1101 if (dev->flags & IFF_UP)
1102 return -EBUSY;
1103
30e6c9fa 1104 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1105
1106 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1107 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1108 return 0;
c91f6df2 1109 }
c8d90dca 1110
fcc5a03a
HX
1111 memcpy(oldname, dev->name, IFNAMSIZ);
1112
828de4f6 1113 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1114 if (err < 0) {
30e6c9fa 1115 write_seqcount_end(&devnet_rename_seq);
d9031024 1116 return err;
c91f6df2 1117 }
1da177e4 1118
6fe82a39
VF
1119 if (oldname[0] && !strchr(oldname, '%'))
1120 netdev_info(dev, "renamed from %s\n", oldname);
1121
238fa362
TG
1122 old_assign_type = dev->name_assign_type;
1123 dev->name_assign_type = NET_NAME_RENAMED;
1124
fcc5a03a 1125rollback:
a1b3f594
EB
1126 ret = device_rename(&dev->dev, dev->name);
1127 if (ret) {
1128 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1129 dev->name_assign_type = old_assign_type;
30e6c9fa 1130 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1131 return ret;
dcc99773 1132 }
7f988eab 1133
30e6c9fa 1134 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1135
5bb025fa
VF
1136 netdev_adjacent_rename_links(dev, oldname);
1137
7f988eab 1138 write_lock_bh(&dev_base_lock);
372b2312 1139 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1140 write_unlock_bh(&dev_base_lock);
1141
1142 synchronize_rcu();
1143
1144 write_lock_bh(&dev_base_lock);
1145 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1146 write_unlock_bh(&dev_base_lock);
1147
056925ab 1148 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1149 ret = notifier_to_errno(ret);
1150
1151 if (ret) {
91e9c07b
ED
1152 /* err >= 0 after dev_alloc_name() or stores the first errno */
1153 if (err >= 0) {
fcc5a03a 1154 err = ret;
30e6c9fa 1155 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1156 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1157 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1158 dev->name_assign_type = old_assign_type;
1159 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1160 goto rollback;
91e9c07b 1161 } else {
7b6cd1ce 1162 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1163 dev->name, ret);
fcc5a03a
HX
1164 }
1165 }
1da177e4
LT
1166
1167 return err;
1168}
1169
0b815a1a
SH
1170/**
1171 * dev_set_alias - change ifalias of a device
1172 * @dev: device
1173 * @alias: name up to IFALIASZ
f0db275a 1174 * @len: limit of bytes to copy from info
0b815a1a
SH
1175 *
1176 * Set ifalias for a device,
1177 */
1178int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1179{
7364e445
AK
1180 char *new_ifalias;
1181
0b815a1a
SH
1182 ASSERT_RTNL();
1183
1184 if (len >= IFALIASZ)
1185 return -EINVAL;
1186
96ca4a2c 1187 if (!len) {
388dfc2d
SK
1188 kfree(dev->ifalias);
1189 dev->ifalias = NULL;
96ca4a2c
OH
1190 return 0;
1191 }
1192
7364e445
AK
1193 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1194 if (!new_ifalias)
0b815a1a 1195 return -ENOMEM;
7364e445 1196 dev->ifalias = new_ifalias;
0b815a1a
SH
1197
1198 strlcpy(dev->ifalias, alias, len+1);
1199 return len;
1200}
1201
1202
d8a33ac4 1203/**
3041a069 1204 * netdev_features_change - device changes features
d8a33ac4
SH
1205 * @dev: device to cause notification
1206 *
1207 * Called to indicate a device has changed features.
1208 */
1209void netdev_features_change(struct net_device *dev)
1210{
056925ab 1211 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1212}
1213EXPORT_SYMBOL(netdev_features_change);
1214
1da177e4
LT
1215/**
1216 * netdev_state_change - device changes state
1217 * @dev: device to cause notification
1218 *
1219 * Called to indicate a device has changed state. This function calls
1220 * the notifier chains for netdev_chain and sends a NEWLINK message
1221 * to the routing socket.
1222 */
1223void netdev_state_change(struct net_device *dev)
1224{
1225 if (dev->flags & IFF_UP) {
54951194
LP
1226 struct netdev_notifier_change_info change_info;
1227
1228 change_info.flags_changed = 0;
1229 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1230 &change_info.info);
7f294054 1231 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1232 }
1233}
d1b19dff 1234EXPORT_SYMBOL(netdev_state_change);
1da177e4 1235
ee89bab1
AW
1236/**
1237 * netdev_notify_peers - notify network peers about existence of @dev
1238 * @dev: network device
1239 *
1240 * Generate traffic such that interested network peers are aware of
1241 * @dev, such as by generating a gratuitous ARP. This may be used when
1242 * a device wants to inform the rest of the network about some sort of
1243 * reconfiguration such as a failover event or virtual machine
1244 * migration.
1245 */
1246void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1247{
ee89bab1
AW
1248 rtnl_lock();
1249 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1250 rtnl_unlock();
c1da4ac7 1251}
ee89bab1 1252EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1253
bd380811 1254static int __dev_open(struct net_device *dev)
1da177e4 1255{
d314774c 1256 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1257 int ret;
1da177e4 1258
e46b66bc
BH
1259 ASSERT_RTNL();
1260
1da177e4
LT
1261 if (!netif_device_present(dev))
1262 return -ENODEV;
1263
ca99ca14
NH
1264 /* Block netpoll from trying to do any rx path servicing.
1265 * If we don't do this there is a chance ndo_poll_controller
1266 * or ndo_poll may be running while we open the device
1267 */
66b5552f 1268 netpoll_poll_disable(dev);
ca99ca14 1269
3b8bcfd5
JB
1270 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1271 ret = notifier_to_errno(ret);
1272 if (ret)
1273 return ret;
1274
1da177e4 1275 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1276
d314774c
SH
1277 if (ops->ndo_validate_addr)
1278 ret = ops->ndo_validate_addr(dev);
bada339b 1279
d314774c
SH
1280 if (!ret && ops->ndo_open)
1281 ret = ops->ndo_open(dev);
1da177e4 1282
66b5552f 1283 netpoll_poll_enable(dev);
ca99ca14 1284
bada339b
JG
1285 if (ret)
1286 clear_bit(__LINK_STATE_START, &dev->state);
1287 else {
1da177e4 1288 dev->flags |= IFF_UP;
b4bd07c2 1289 net_dmaengine_get();
4417da66 1290 dev_set_rx_mode(dev);
1da177e4 1291 dev_activate(dev);
7bf23575 1292 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1293 }
bada339b 1294
1da177e4
LT
1295 return ret;
1296}
1297
1298/**
bd380811
PM
1299 * dev_open - prepare an interface for use.
1300 * @dev: device to open
1da177e4 1301 *
bd380811
PM
1302 * Takes a device from down to up state. The device's private open
1303 * function is invoked and then the multicast lists are loaded. Finally
1304 * the device is moved into the up state and a %NETDEV_UP message is
1305 * sent to the netdev notifier chain.
1306 *
1307 * Calling this function on an active interface is a nop. On a failure
1308 * a negative errno code is returned.
1da177e4 1309 */
bd380811
PM
1310int dev_open(struct net_device *dev)
1311{
1312 int ret;
1313
bd380811
PM
1314 if (dev->flags & IFF_UP)
1315 return 0;
1316
bd380811
PM
1317 ret = __dev_open(dev);
1318 if (ret < 0)
1319 return ret;
1320
7f294054 1321 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1322 call_netdevice_notifiers(NETDEV_UP, dev);
1323
1324 return ret;
1325}
1326EXPORT_SYMBOL(dev_open);
1327
44345724 1328static int __dev_close_many(struct list_head *head)
1da177e4 1329{
44345724 1330 struct net_device *dev;
e46b66bc 1331
bd380811 1332 ASSERT_RTNL();
9d5010db
DM
1333 might_sleep();
1334
5cde2829 1335 list_for_each_entry(dev, head, close_list) {
3f4df206 1336 /* Temporarily disable netpoll until the interface is down */
66b5552f 1337 netpoll_poll_disable(dev);
3f4df206 1338
44345724 1339 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1340
44345724 1341 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1342
44345724
OP
1343 /* Synchronize to scheduled poll. We cannot touch poll list, it
1344 * can be even on different cpu. So just clear netif_running().
1345 *
1346 * dev->stop() will invoke napi_disable() on all of it's
1347 * napi_struct instances on this device.
1348 */
4e857c58 1349 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1350 }
1da177e4 1351
44345724 1352 dev_deactivate_many(head);
d8b2a4d2 1353
5cde2829 1354 list_for_each_entry(dev, head, close_list) {
44345724 1355 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1356
44345724
OP
1357 /*
1358 * Call the device specific close. This cannot fail.
1359 * Only if device is UP
1360 *
1361 * We allow it to be called even after a DETACH hot-plug
1362 * event.
1363 */
1364 if (ops->ndo_stop)
1365 ops->ndo_stop(dev);
1366
44345724 1367 dev->flags &= ~IFF_UP;
44345724 1368 net_dmaengine_put();
66b5552f 1369 netpoll_poll_enable(dev);
44345724
OP
1370 }
1371
1372 return 0;
1373}
1374
1375static int __dev_close(struct net_device *dev)
1376{
f87e6f47 1377 int retval;
44345724
OP
1378 LIST_HEAD(single);
1379
5cde2829 1380 list_add(&dev->close_list, &single);
f87e6f47
LT
1381 retval = __dev_close_many(&single);
1382 list_del(&single);
ca99ca14 1383
f87e6f47 1384 return retval;
44345724
OP
1385}
1386
3fbd8758 1387static int dev_close_many(struct list_head *head)
44345724
OP
1388{
1389 struct net_device *dev, *tmp;
1da177e4 1390
5cde2829
EB
1391 /* Remove the devices that don't need to be closed */
1392 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1393 if (!(dev->flags & IFF_UP))
5cde2829 1394 list_del_init(&dev->close_list);
44345724
OP
1395
1396 __dev_close_many(head);
1da177e4 1397
5cde2829 1398 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1399 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1400 call_netdevice_notifiers(NETDEV_DOWN, dev);
5cde2829 1401 list_del_init(&dev->close_list);
44345724 1402 }
bd380811
PM
1403
1404 return 0;
1405}
1406
1407/**
1408 * dev_close - shutdown an interface.
1409 * @dev: device to shutdown
1410 *
1411 * This function moves an active device into down state. A
1412 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414 * chain.
1415 */
1416int dev_close(struct net_device *dev)
1417{
e14a5993
ED
1418 if (dev->flags & IFF_UP) {
1419 LIST_HEAD(single);
1da177e4 1420
5cde2829 1421 list_add(&dev->close_list, &single);
e14a5993
ED
1422 dev_close_many(&single);
1423 list_del(&single);
1424 }
da6e378b 1425 return 0;
1da177e4 1426}
d1b19dff 1427EXPORT_SYMBOL(dev_close);
1da177e4
LT
1428
1429
0187bdfb
BH
1430/**
1431 * dev_disable_lro - disable Large Receive Offload on a device
1432 * @dev: device
1433 *
1434 * Disable Large Receive Offload (LRO) on a net device. Must be
1435 * called under RTNL. This is needed if received packets may be
1436 * forwarded to another interface.
1437 */
1438void dev_disable_lro(struct net_device *dev)
1439{
f11970e3
NH
1440 /*
1441 * If we're trying to disable lro on a vlan device
1442 * use the underlying physical device instead
1443 */
1444 if (is_vlan_dev(dev))
1445 dev = vlan_dev_real_dev(dev);
1446
529d0489
MK
1447 /* the same for macvlan devices */
1448 if (netif_is_macvlan(dev))
1449 dev = macvlan_dev_real_dev(dev);
1450
bc5787c6
MM
1451 dev->wanted_features &= ~NETIF_F_LRO;
1452 netdev_update_features(dev);
27660515 1453
22d5969f
MM
1454 if (unlikely(dev->features & NETIF_F_LRO))
1455 netdev_WARN(dev, "failed to disable LRO!\n");
0187bdfb
BH
1456}
1457EXPORT_SYMBOL(dev_disable_lro);
1458
351638e7
JP
1459static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1460 struct net_device *dev)
1461{
1462 struct netdev_notifier_info info;
1463
1464 netdev_notifier_info_init(&info, dev);
1465 return nb->notifier_call(nb, val, &info);
1466}
0187bdfb 1467
881d966b
EB
1468static int dev_boot_phase = 1;
1469
1da177e4
LT
1470/**
1471 * register_netdevice_notifier - register a network notifier block
1472 * @nb: notifier
1473 *
1474 * Register a notifier to be called when network device events occur.
1475 * The notifier passed is linked into the kernel structures and must
1476 * not be reused until it has been unregistered. A negative errno code
1477 * is returned on a failure.
1478 *
1479 * When registered all registration and up events are replayed
4ec93edb 1480 * to the new notifier to allow device to have a race free
1da177e4
LT
1481 * view of the network device list.
1482 */
1483
1484int register_netdevice_notifier(struct notifier_block *nb)
1485{
1486 struct net_device *dev;
fcc5a03a 1487 struct net_device *last;
881d966b 1488 struct net *net;
1da177e4
LT
1489 int err;
1490
1491 rtnl_lock();
f07d5b94 1492 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1493 if (err)
1494 goto unlock;
881d966b
EB
1495 if (dev_boot_phase)
1496 goto unlock;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
351638e7 1499 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1500 err = notifier_to_errno(err);
1501 if (err)
1502 goto rollback;
1503
1504 if (!(dev->flags & IFF_UP))
1505 continue;
1da177e4 1506
351638e7 1507 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1508 }
1da177e4 1509 }
fcc5a03a
HX
1510
1511unlock:
1da177e4
LT
1512 rtnl_unlock();
1513 return err;
fcc5a03a
HX
1514
1515rollback:
1516 last = dev;
881d966b
EB
1517 for_each_net(net) {
1518 for_each_netdev(net, dev) {
1519 if (dev == last)
8f891489 1520 goto outroll;
fcc5a03a 1521
881d966b 1522 if (dev->flags & IFF_UP) {
351638e7
JP
1523 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1524 dev);
1525 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1526 }
351638e7 1527 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1528 }
fcc5a03a 1529 }
c67625a1 1530
8f891489 1531outroll:
c67625a1 1532 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1533 goto unlock;
1da177e4 1534}
d1b19dff 1535EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1536
1537/**
1538 * unregister_netdevice_notifier - unregister a network notifier block
1539 * @nb: notifier
1540 *
1541 * Unregister a notifier previously registered by
1542 * register_netdevice_notifier(). The notifier is unlinked into the
1543 * kernel structures and may then be reused. A negative errno code
1544 * is returned on a failure.
7d3d43da
EB
1545 *
1546 * After unregistering unregister and down device events are synthesized
1547 * for all devices on the device list to the removed notifier to remove
1548 * the need for special case cleanup code.
1da177e4
LT
1549 */
1550
1551int unregister_netdevice_notifier(struct notifier_block *nb)
1552{
7d3d43da
EB
1553 struct net_device *dev;
1554 struct net *net;
9f514950
HX
1555 int err;
1556
1557 rtnl_lock();
f07d5b94 1558 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1559 if (err)
1560 goto unlock;
1561
1562 for_each_net(net) {
1563 for_each_netdev(net, dev) {
1564 if (dev->flags & IFF_UP) {
351638e7
JP
1565 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1566 dev);
1567 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1568 }
351638e7 1569 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1570 }
1571 }
1572unlock:
9f514950
HX
1573 rtnl_unlock();
1574 return err;
1da177e4 1575}
d1b19dff 1576EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1577
351638e7
JP
1578/**
1579 * call_netdevice_notifiers_info - call all network notifier blocks
1580 * @val: value passed unmodified to notifier function
1581 * @dev: net_device pointer passed unmodified to notifier function
1582 * @info: notifier information data
1583 *
1584 * Call all network notifier blocks. Parameters and return value
1585 * are as for raw_notifier_call_chain().
1586 */
1587
1d143d9f 1588static int call_netdevice_notifiers_info(unsigned long val,
1589 struct net_device *dev,
1590 struct netdev_notifier_info *info)
351638e7
JP
1591{
1592 ASSERT_RTNL();
1593 netdev_notifier_info_init(info, dev);
1594 return raw_notifier_call_chain(&netdev_chain, val, info);
1595}
351638e7 1596
1da177e4
LT
1597/**
1598 * call_netdevice_notifiers - call all network notifier blocks
1599 * @val: value passed unmodified to notifier function
c4ea43c5 1600 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1601 *
1602 * Call all network notifier blocks. Parameters and return value
f07d5b94 1603 * are as for raw_notifier_call_chain().
1da177e4
LT
1604 */
1605
ad7379d4 1606int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1607{
351638e7
JP
1608 struct netdev_notifier_info info;
1609
1610 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1611}
edf947f1 1612EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1613
c5905afb 1614static struct static_key netstamp_needed __read_mostly;
b90e5794 1615#ifdef HAVE_JUMP_LABEL
c5905afb 1616/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1617 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1618 * static_key_slow_dec() calls.
b90e5794
ED
1619 */
1620static atomic_t netstamp_needed_deferred;
1621#endif
1da177e4
LT
1622
1623void net_enable_timestamp(void)
1624{
b90e5794
ED
1625#ifdef HAVE_JUMP_LABEL
1626 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1627
1628 if (deferred) {
1629 while (--deferred)
c5905afb 1630 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1631 return;
1632 }
1633#endif
c5905afb 1634 static_key_slow_inc(&netstamp_needed);
1da177e4 1635}
d1b19dff 1636EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1637
1638void net_disable_timestamp(void)
1639{
b90e5794
ED
1640#ifdef HAVE_JUMP_LABEL
1641 if (in_interrupt()) {
1642 atomic_inc(&netstamp_needed_deferred);
1643 return;
1644 }
1645#endif
c5905afb 1646 static_key_slow_dec(&netstamp_needed);
1da177e4 1647}
d1b19dff 1648EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1649
3b098e2d 1650static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1651{
588f0330 1652 skb->tstamp.tv64 = 0;
c5905afb 1653 if (static_key_false(&netstamp_needed))
a61bbcf2 1654 __net_timestamp(skb);
1da177e4
LT
1655}
1656
588f0330 1657#define net_timestamp_check(COND, SKB) \
c5905afb 1658 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1659 if ((COND) && !(SKB)->tstamp.tv64) \
1660 __net_timestamp(SKB); \
1661 } \
3b098e2d 1662
1ee481fb 1663bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1664{
1665 unsigned int len;
1666
1667 if (!(dev->flags & IFF_UP))
1668 return false;
1669
1670 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1671 if (skb->len <= len)
1672 return true;
1673
1674 /* if TSO is enabled, we don't care about the length as the packet
1675 * could be forwarded without being segmented before
1676 */
1677 if (skb_is_gso(skb))
1678 return true;
1679
1680 return false;
1681}
1ee481fb 1682EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1683
a0265d28
HX
1684int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1685{
1686 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1687 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1688 atomic_long_inc(&dev->rx_dropped);
1689 kfree_skb(skb);
1690 return NET_RX_DROP;
1691 }
1692 }
1693
1694 if (unlikely(!is_skb_forwardable(dev, skb))) {
1695 atomic_long_inc(&dev->rx_dropped);
1696 kfree_skb(skb);
1697 return NET_RX_DROP;
1698 }
1699
1700 skb_scrub_packet(skb, true);
1701 skb->protocol = eth_type_trans(skb, dev);
1702
1703 return 0;
1704}
1705EXPORT_SYMBOL_GPL(__dev_forward_skb);
1706
44540960
AB
1707/**
1708 * dev_forward_skb - loopback an skb to another netif
1709 *
1710 * @dev: destination network device
1711 * @skb: buffer to forward
1712 *
1713 * return values:
1714 * NET_RX_SUCCESS (no congestion)
6ec82562 1715 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1716 *
1717 * dev_forward_skb can be used for injecting an skb from the
1718 * start_xmit function of one device into the receive queue
1719 * of another device.
1720 *
1721 * The receiving device may be in another namespace, so
1722 * we have to clear all information in the skb that could
1723 * impact namespace isolation.
1724 */
1725int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1726{
a0265d28 1727 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1728}
1729EXPORT_SYMBOL_GPL(dev_forward_skb);
1730
71d9dec2
CG
1731static inline int deliver_skb(struct sk_buff *skb,
1732 struct packet_type *pt_prev,
1733 struct net_device *orig_dev)
1734{
1080e512
MT
1735 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1736 return -ENOMEM;
71d9dec2
CG
1737 atomic_inc(&skb->users);
1738 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1739}
1740
c0de08d0
EL
1741static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1742{
a3d744e9 1743 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1744 return false;
1745
1746 if (ptype->id_match)
1747 return ptype->id_match(ptype, skb->sk);
1748 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1749 return true;
1750
1751 return false;
1752}
1753
1da177e4
LT
1754/*
1755 * Support routine. Sends outgoing frames to any network
1756 * taps currently in use.
1757 */
1758
f6a78bfc 1759static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1760{
1761 struct packet_type *ptype;
71d9dec2
CG
1762 struct sk_buff *skb2 = NULL;
1763 struct packet_type *pt_prev = NULL;
a61bbcf2 1764
1da177e4
LT
1765 rcu_read_lock();
1766 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1767 /* Never send packets back to the socket
1768 * they originated from - MvS (miquels@drinkel.ow.org)
1769 */
1770 if ((ptype->dev == dev || !ptype->dev) &&
c0de08d0 1771 (!skb_loop_sk(ptype, skb))) {
71d9dec2
CG
1772 if (pt_prev) {
1773 deliver_skb(skb2, pt_prev, skb->dev);
1774 pt_prev = ptype;
1775 continue;
1776 }
1777
1778 skb2 = skb_clone(skb, GFP_ATOMIC);
1da177e4
LT
1779 if (!skb2)
1780 break;
1781
70978182
ED
1782 net_timestamp_set(skb2);
1783
1da177e4
LT
1784 /* skb->nh should be correctly
1785 set by sender, so that the second statement is
1786 just protection against buggy protocols.
1787 */
459a98ed 1788 skb_reset_mac_header(skb2);
1da177e4 1789
d56f90a7 1790 if (skb_network_header(skb2) < skb2->data ||
ced14f68 1791 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
e87cc472
JP
1792 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1793 ntohs(skb2->protocol),
1794 dev->name);
c1d2bbe1 1795 skb_reset_network_header(skb2);
1da177e4
LT
1796 }
1797
b0e380b1 1798 skb2->transport_header = skb2->network_header;
1da177e4 1799 skb2->pkt_type = PACKET_OUTGOING;
71d9dec2 1800 pt_prev = ptype;
1da177e4
LT
1801 }
1802 }
71d9dec2
CG
1803 if (pt_prev)
1804 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1805 rcu_read_unlock();
1806}
1807
2c53040f
BH
1808/**
1809 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1810 * @dev: Network device
1811 * @txq: number of queues available
1812 *
1813 * If real_num_tx_queues is changed the tc mappings may no longer be
1814 * valid. To resolve this verify the tc mapping remains valid and if
1815 * not NULL the mapping. With no priorities mapping to this
1816 * offset/count pair it will no longer be used. In the worst case TC0
1817 * is invalid nothing can be done so disable priority mappings. If is
1818 * expected that drivers will fix this mapping if they can before
1819 * calling netif_set_real_num_tx_queues.
1820 */
bb134d22 1821static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1822{
1823 int i;
1824 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1825
1826 /* If TC0 is invalidated disable TC mapping */
1827 if (tc->offset + tc->count > txq) {
7b6cd1ce 1828 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1829 dev->num_tc = 0;
1830 return;
1831 }
1832
1833 /* Invalidated prio to tc mappings set to TC0 */
1834 for (i = 1; i < TC_BITMASK + 1; i++) {
1835 int q = netdev_get_prio_tc_map(dev, i);
1836
1837 tc = &dev->tc_to_txq[q];
1838 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1839 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1840 i, q);
4f57c087
JF
1841 netdev_set_prio_tc_map(dev, i, 0);
1842 }
1843 }
1844}
1845
537c00de
AD
1846#ifdef CONFIG_XPS
1847static DEFINE_MUTEX(xps_map_mutex);
1848#define xmap_dereference(P) \
1849 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1850
10cdc3f3
AD
1851static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1852 int cpu, u16 index)
537c00de 1853{
10cdc3f3
AD
1854 struct xps_map *map = NULL;
1855 int pos;
537c00de 1856
10cdc3f3
AD
1857 if (dev_maps)
1858 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1859
10cdc3f3
AD
1860 for (pos = 0; map && pos < map->len; pos++) {
1861 if (map->queues[pos] == index) {
537c00de
AD
1862 if (map->len > 1) {
1863 map->queues[pos] = map->queues[--map->len];
1864 } else {
10cdc3f3 1865 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1866 kfree_rcu(map, rcu);
1867 map = NULL;
1868 }
10cdc3f3 1869 break;
537c00de 1870 }
537c00de
AD
1871 }
1872
10cdc3f3
AD
1873 return map;
1874}
1875
024e9679 1876static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1877{
1878 struct xps_dev_maps *dev_maps;
024e9679 1879 int cpu, i;
10cdc3f3
AD
1880 bool active = false;
1881
1882 mutex_lock(&xps_map_mutex);
1883 dev_maps = xmap_dereference(dev->xps_maps);
1884
1885 if (!dev_maps)
1886 goto out_no_maps;
1887
1888 for_each_possible_cpu(cpu) {
024e9679
AD
1889 for (i = index; i < dev->num_tx_queues; i++) {
1890 if (!remove_xps_queue(dev_maps, cpu, i))
1891 break;
1892 }
1893 if (i == dev->num_tx_queues)
10cdc3f3
AD
1894 active = true;
1895 }
1896
1897 if (!active) {
537c00de
AD
1898 RCU_INIT_POINTER(dev->xps_maps, NULL);
1899 kfree_rcu(dev_maps, rcu);
1900 }
1901
024e9679
AD
1902 for (i = index; i < dev->num_tx_queues; i++)
1903 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1904 NUMA_NO_NODE);
1905
537c00de
AD
1906out_no_maps:
1907 mutex_unlock(&xps_map_mutex);
1908}
1909
01c5f864
AD
1910static struct xps_map *expand_xps_map(struct xps_map *map,
1911 int cpu, u16 index)
1912{
1913 struct xps_map *new_map;
1914 int alloc_len = XPS_MIN_MAP_ALLOC;
1915 int i, pos;
1916
1917 for (pos = 0; map && pos < map->len; pos++) {
1918 if (map->queues[pos] != index)
1919 continue;
1920 return map;
1921 }
1922
1923 /* Need to add queue to this CPU's existing map */
1924 if (map) {
1925 if (pos < map->alloc_len)
1926 return map;
1927
1928 alloc_len = map->alloc_len * 2;
1929 }
1930
1931 /* Need to allocate new map to store queue on this CPU's map */
1932 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1933 cpu_to_node(cpu));
1934 if (!new_map)
1935 return NULL;
1936
1937 for (i = 0; i < pos; i++)
1938 new_map->queues[i] = map->queues[i];
1939 new_map->alloc_len = alloc_len;
1940 new_map->len = pos;
1941
1942 return new_map;
1943}
1944
3573540c
MT
1945int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1946 u16 index)
537c00de 1947{
01c5f864 1948 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 1949 struct xps_map *map, *new_map;
537c00de 1950 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
1951 int cpu, numa_node_id = -2;
1952 bool active = false;
537c00de
AD
1953
1954 mutex_lock(&xps_map_mutex);
1955
1956 dev_maps = xmap_dereference(dev->xps_maps);
1957
01c5f864
AD
1958 /* allocate memory for queue storage */
1959 for_each_online_cpu(cpu) {
1960 if (!cpumask_test_cpu(cpu, mask))
1961 continue;
1962
1963 if (!new_dev_maps)
1964 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
1965 if (!new_dev_maps) {
1966 mutex_unlock(&xps_map_mutex);
01c5f864 1967 return -ENOMEM;
2bb60cb9 1968 }
01c5f864
AD
1969
1970 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1971 NULL;
1972
1973 map = expand_xps_map(map, cpu, index);
1974 if (!map)
1975 goto error;
1976
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 }
1979
1980 if (!new_dev_maps)
1981 goto out_no_new_maps;
1982
537c00de 1983 for_each_possible_cpu(cpu) {
01c5f864
AD
1984 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1985 /* add queue to CPU maps */
1986 int pos = 0;
1987
1988 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1989 while ((pos < map->len) && (map->queues[pos] != index))
1990 pos++;
1991
1992 if (pos == map->len)
1993 map->queues[map->len++] = index;
537c00de 1994#ifdef CONFIG_NUMA
537c00de
AD
1995 if (numa_node_id == -2)
1996 numa_node_id = cpu_to_node(cpu);
1997 else if (numa_node_id != cpu_to_node(cpu))
1998 numa_node_id = -1;
537c00de 1999#endif
01c5f864
AD
2000 } else if (dev_maps) {
2001 /* fill in the new device map from the old device map */
2002 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2003 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2004 }
01c5f864 2005
537c00de
AD
2006 }
2007
01c5f864
AD
2008 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2009
537c00de 2010 /* Cleanup old maps */
01c5f864
AD
2011 if (dev_maps) {
2012 for_each_possible_cpu(cpu) {
2013 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2014 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2015 if (map && map != new_map)
2016 kfree_rcu(map, rcu);
2017 }
537c00de 2018
01c5f864 2019 kfree_rcu(dev_maps, rcu);
537c00de
AD
2020 }
2021
01c5f864
AD
2022 dev_maps = new_dev_maps;
2023 active = true;
537c00de 2024
01c5f864
AD
2025out_no_new_maps:
2026 /* update Tx queue numa node */
537c00de
AD
2027 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2028 (numa_node_id >= 0) ? numa_node_id :
2029 NUMA_NO_NODE);
2030
01c5f864
AD
2031 if (!dev_maps)
2032 goto out_no_maps;
2033
2034 /* removes queue from unused CPUs */
2035 for_each_possible_cpu(cpu) {
2036 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2037 continue;
2038
2039 if (remove_xps_queue(dev_maps, cpu, index))
2040 active = true;
2041 }
2042
2043 /* free map if not active */
2044 if (!active) {
2045 RCU_INIT_POINTER(dev->xps_maps, NULL);
2046 kfree_rcu(dev_maps, rcu);
2047 }
2048
2049out_no_maps:
537c00de
AD
2050 mutex_unlock(&xps_map_mutex);
2051
2052 return 0;
2053error:
01c5f864
AD
2054 /* remove any maps that we added */
2055 for_each_possible_cpu(cpu) {
2056 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2057 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2058 NULL;
2059 if (new_map && new_map != map)
2060 kfree(new_map);
2061 }
2062
537c00de
AD
2063 mutex_unlock(&xps_map_mutex);
2064
537c00de
AD
2065 kfree(new_dev_maps);
2066 return -ENOMEM;
2067}
2068EXPORT_SYMBOL(netif_set_xps_queue);
2069
2070#endif
f0796d5c
JF
2071/*
2072 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2073 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2074 */
e6484930 2075int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2076{
1d24eb48
TH
2077 int rc;
2078
e6484930
TH
2079 if (txq < 1 || txq > dev->num_tx_queues)
2080 return -EINVAL;
f0796d5c 2081
5c56580b
BH
2082 if (dev->reg_state == NETREG_REGISTERED ||
2083 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2084 ASSERT_RTNL();
2085
1d24eb48
TH
2086 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2087 txq);
bf264145
TH
2088 if (rc)
2089 return rc;
2090
4f57c087
JF
2091 if (dev->num_tc)
2092 netif_setup_tc(dev, txq);
2093
024e9679 2094 if (txq < dev->real_num_tx_queues) {
e6484930 2095 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2096#ifdef CONFIG_XPS
2097 netif_reset_xps_queues_gt(dev, txq);
2098#endif
2099 }
f0796d5c 2100 }
e6484930
TH
2101
2102 dev->real_num_tx_queues = txq;
2103 return 0;
f0796d5c
JF
2104}
2105EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2106
a953be53 2107#ifdef CONFIG_SYSFS
62fe0b40
BH
2108/**
2109 * netif_set_real_num_rx_queues - set actual number of RX queues used
2110 * @dev: Network device
2111 * @rxq: Actual number of RX queues
2112 *
2113 * This must be called either with the rtnl_lock held or before
2114 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2115 * negative error code. If called before registration, it always
2116 * succeeds.
62fe0b40
BH
2117 */
2118int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2119{
2120 int rc;
2121
bd25fa7b
TH
2122 if (rxq < 1 || rxq > dev->num_rx_queues)
2123 return -EINVAL;
2124
62fe0b40
BH
2125 if (dev->reg_state == NETREG_REGISTERED) {
2126 ASSERT_RTNL();
2127
62fe0b40
BH
2128 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2129 rxq);
2130 if (rc)
2131 return rc;
62fe0b40
BH
2132 }
2133
2134 dev->real_num_rx_queues = rxq;
2135 return 0;
2136}
2137EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2138#endif
2139
2c53040f
BH
2140/**
2141 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2142 *
2143 * This routine should set an upper limit on the number of RSS queues
2144 * used by default by multiqueue devices.
2145 */
a55b138b 2146int netif_get_num_default_rss_queues(void)
16917b87
YM
2147{
2148 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2149}
2150EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2151
def82a1d 2152static inline void __netif_reschedule(struct Qdisc *q)
56079431 2153{
def82a1d
JP
2154 struct softnet_data *sd;
2155 unsigned long flags;
56079431 2156
def82a1d
JP
2157 local_irq_save(flags);
2158 sd = &__get_cpu_var(softnet_data);
a9cbd588
CG
2159 q->next_sched = NULL;
2160 *sd->output_queue_tailp = q;
2161 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2162 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2163 local_irq_restore(flags);
2164}
2165
2166void __netif_schedule(struct Qdisc *q)
2167{
2168 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2169 __netif_reschedule(q);
56079431
DV
2170}
2171EXPORT_SYMBOL(__netif_schedule);
2172
e6247027
ED
2173struct dev_kfree_skb_cb {
2174 enum skb_free_reason reason;
2175};
2176
2177static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2178{
e6247027
ED
2179 return (struct dev_kfree_skb_cb *)skb->cb;
2180}
2181
46e5da40
JF
2182void netif_schedule_queue(struct netdev_queue *txq)
2183{
2184 rcu_read_lock();
2185 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2186 struct Qdisc *q = rcu_dereference(txq->qdisc);
2187
2188 __netif_schedule(q);
2189 }
2190 rcu_read_unlock();
2191}
2192EXPORT_SYMBOL(netif_schedule_queue);
2193
2194/**
2195 * netif_wake_subqueue - allow sending packets on subqueue
2196 * @dev: network device
2197 * @queue_index: sub queue index
2198 *
2199 * Resume individual transmit queue of a device with multiple transmit queues.
2200 */
2201void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2202{
2203 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2204
2205 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2206 struct Qdisc *q;
2207
2208 rcu_read_lock();
2209 q = rcu_dereference(txq->qdisc);
2210 __netif_schedule(q);
2211 rcu_read_unlock();
2212 }
2213}
2214EXPORT_SYMBOL(netif_wake_subqueue);
2215
2216void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2217{
2218 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2219 struct Qdisc *q;
2220
2221 rcu_read_lock();
2222 q = rcu_dereference(dev_queue->qdisc);
2223 __netif_schedule(q);
2224 rcu_read_unlock();
2225 }
2226}
2227EXPORT_SYMBOL(netif_tx_wake_queue);
2228
e6247027 2229void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2230{
e6247027 2231 unsigned long flags;
56079431 2232
e6247027
ED
2233 if (likely(atomic_read(&skb->users) == 1)) {
2234 smp_rmb();
2235 atomic_set(&skb->users, 0);
2236 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2237 return;
bea3348e 2238 }
e6247027
ED
2239 get_kfree_skb_cb(skb)->reason = reason;
2240 local_irq_save(flags);
2241 skb->next = __this_cpu_read(softnet_data.completion_queue);
2242 __this_cpu_write(softnet_data.completion_queue, skb);
2243 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2244 local_irq_restore(flags);
56079431 2245}
e6247027 2246EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2247
e6247027 2248void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2249{
2250 if (in_irq() || irqs_disabled())
e6247027 2251 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2252 else
2253 dev_kfree_skb(skb);
2254}
e6247027 2255EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2256
2257
bea3348e
SH
2258/**
2259 * netif_device_detach - mark device as removed
2260 * @dev: network device
2261 *
2262 * Mark device as removed from system and therefore no longer available.
2263 */
56079431
DV
2264void netif_device_detach(struct net_device *dev)
2265{
2266 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2267 netif_running(dev)) {
d543103a 2268 netif_tx_stop_all_queues(dev);
56079431
DV
2269 }
2270}
2271EXPORT_SYMBOL(netif_device_detach);
2272
bea3348e
SH
2273/**
2274 * netif_device_attach - mark device as attached
2275 * @dev: network device
2276 *
2277 * Mark device as attached from system and restart if needed.
2278 */
56079431
DV
2279void netif_device_attach(struct net_device *dev)
2280{
2281 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2282 netif_running(dev)) {
d543103a 2283 netif_tx_wake_all_queues(dev);
4ec93edb 2284 __netdev_watchdog_up(dev);
56079431
DV
2285 }
2286}
2287EXPORT_SYMBOL(netif_device_attach);
2288
36c92474
BH
2289static void skb_warn_bad_offload(const struct sk_buff *skb)
2290{
65e9d2fa 2291 static const netdev_features_t null_features = 0;
36c92474
BH
2292 struct net_device *dev = skb->dev;
2293 const char *driver = "";
2294
c846ad9b
BG
2295 if (!net_ratelimit())
2296 return;
2297
36c92474
BH
2298 if (dev && dev->dev.parent)
2299 driver = dev_driver_string(dev->dev.parent);
2300
2301 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2302 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2303 driver, dev ? &dev->features : &null_features,
2304 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2305 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2306 skb_shinfo(skb)->gso_type, skb->ip_summed);
2307}
2308
1da177e4
LT
2309/*
2310 * Invalidate hardware checksum when packet is to be mangled, and
2311 * complete checksum manually on outgoing path.
2312 */
84fa7933 2313int skb_checksum_help(struct sk_buff *skb)
1da177e4 2314{
d3bc23e7 2315 __wsum csum;
663ead3b 2316 int ret = 0, offset;
1da177e4 2317
84fa7933 2318 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2319 goto out_set_summed;
2320
2321 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2322 skb_warn_bad_offload(skb);
2323 return -EINVAL;
1da177e4
LT
2324 }
2325
cef401de
ED
2326 /* Before computing a checksum, we should make sure no frag could
2327 * be modified by an external entity : checksum could be wrong.
2328 */
2329 if (skb_has_shared_frag(skb)) {
2330 ret = __skb_linearize(skb);
2331 if (ret)
2332 goto out;
2333 }
2334
55508d60 2335 offset = skb_checksum_start_offset(skb);
a030847e
HX
2336 BUG_ON(offset >= skb_headlen(skb));
2337 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2338
2339 offset += skb->csum_offset;
2340 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2341
2342 if (skb_cloned(skb) &&
2343 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2344 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2345 if (ret)
2346 goto out;
2347 }
2348
a030847e 2349 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2350out_set_summed:
1da177e4 2351 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2352out:
1da177e4
LT
2353 return ret;
2354}
d1b19dff 2355EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2356
53d6471c 2357__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2358{
4b9b1cdf 2359 unsigned int vlan_depth = skb->mac_len;
252e3346 2360 __be16 type = skb->protocol;
f6a78bfc 2361
19acc327
PS
2362 /* Tunnel gso handlers can set protocol to ethernet. */
2363 if (type == htons(ETH_P_TEB)) {
2364 struct ethhdr *eth;
2365
2366 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2367 return 0;
2368
2369 eth = (struct ethhdr *)skb_mac_header(skb);
2370 type = eth->h_proto;
2371 }
2372
4b9b1cdf
NA
2373 /* if skb->protocol is 802.1Q/AD then the header should already be
2374 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2375 * ETH_HLEN otherwise
2376 */
2377 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2378 if (vlan_depth) {
80019d31 2379 if (WARN_ON(vlan_depth < VLAN_HLEN))
4b9b1cdf
NA
2380 return 0;
2381 vlan_depth -= VLAN_HLEN;
2382 } else {
2383 vlan_depth = ETH_HLEN;
2384 }
2385 do {
2386 struct vlan_hdr *vh;
2387
2388 if (unlikely(!pskb_may_pull(skb,
2389 vlan_depth + VLAN_HLEN)))
2390 return 0;
2391
2392 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2393 type = vh->h_vlan_encapsulated_proto;
2394 vlan_depth += VLAN_HLEN;
2395 } while (type == htons(ETH_P_8021Q) ||
2396 type == htons(ETH_P_8021AD));
7b9c6090
JG
2397 }
2398
53d6471c
VY
2399 *depth = vlan_depth;
2400
ec5f0615
PS
2401 return type;
2402}
2403
2404/**
2405 * skb_mac_gso_segment - mac layer segmentation handler.
2406 * @skb: buffer to segment
2407 * @features: features for the output path (see dev->features)
2408 */
2409struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2410 netdev_features_t features)
2411{
2412 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2413 struct packet_offload *ptype;
53d6471c
VY
2414 int vlan_depth = skb->mac_len;
2415 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2416
2417 if (unlikely(!type))
2418 return ERR_PTR(-EINVAL);
2419
53d6471c 2420 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2421
2422 rcu_read_lock();
22061d80 2423 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2424 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2425 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2426 break;
2427 }
2428 }
2429 rcu_read_unlock();
2430
98e399f8 2431 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2432
f6a78bfc
HX
2433 return segs;
2434}
05e8ef4a
PS
2435EXPORT_SYMBOL(skb_mac_gso_segment);
2436
2437
2438/* openvswitch calls this on rx path, so we need a different check.
2439 */
2440static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2441{
2442 if (tx_path)
2443 return skb->ip_summed != CHECKSUM_PARTIAL;
2444 else
2445 return skb->ip_summed == CHECKSUM_NONE;
2446}
2447
2448/**
2449 * __skb_gso_segment - Perform segmentation on skb.
2450 * @skb: buffer to segment
2451 * @features: features for the output path (see dev->features)
2452 * @tx_path: whether it is called in TX path
2453 *
2454 * This function segments the given skb and returns a list of segments.
2455 *
2456 * It may return NULL if the skb requires no segmentation. This is
2457 * only possible when GSO is used for verifying header integrity.
2458 */
2459struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2460 netdev_features_t features, bool tx_path)
2461{
2462 if (unlikely(skb_needs_check(skb, tx_path))) {
2463 int err;
2464
2465 skb_warn_bad_offload(skb);
2466
a40e0a66 2467 err = skb_cow_head(skb, 0);
2468 if (err < 0)
05e8ef4a
PS
2469 return ERR_PTR(err);
2470 }
2471
68c33163 2472 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2473 SKB_GSO_CB(skb)->encap_level = 0;
2474
05e8ef4a
PS
2475 skb_reset_mac_header(skb);
2476 skb_reset_mac_len(skb);
2477
2478 return skb_mac_gso_segment(skb, features);
2479}
12b0004d 2480EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2481
fb286bb2
HX
2482/* Take action when hardware reception checksum errors are detected. */
2483#ifdef CONFIG_BUG
2484void netdev_rx_csum_fault(struct net_device *dev)
2485{
2486 if (net_ratelimit()) {
7b6cd1ce 2487 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2488 dump_stack();
2489 }
2490}
2491EXPORT_SYMBOL(netdev_rx_csum_fault);
2492#endif
2493
1da177e4
LT
2494/* Actually, we should eliminate this check as soon as we know, that:
2495 * 1. IOMMU is present and allows to map all the memory.
2496 * 2. No high memory really exists on this machine.
2497 */
2498
c1e756bf 2499static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2500{
3d3a8533 2501#ifdef CONFIG_HIGHMEM
1da177e4 2502 int i;
5acbbd42 2503 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2504 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2505 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2506 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2507 return 1;
ea2ab693 2508 }
5acbbd42 2509 }
1da177e4 2510
5acbbd42
FT
2511 if (PCI_DMA_BUS_IS_PHYS) {
2512 struct device *pdev = dev->dev.parent;
1da177e4 2513
9092c658
ED
2514 if (!pdev)
2515 return 0;
5acbbd42 2516 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2517 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2518 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2519 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2520 return 1;
2521 }
2522 }
3d3a8533 2523#endif
1da177e4
LT
2524 return 0;
2525}
1da177e4 2526
3b392ddb
SH
2527/* If MPLS offload request, verify we are testing hardware MPLS features
2528 * instead of standard features for the netdev.
2529 */
2530#ifdef CONFIG_NET_MPLS_GSO
2531static netdev_features_t net_mpls_features(struct sk_buff *skb,
2532 netdev_features_t features,
2533 __be16 type)
2534{
2535 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2536 features &= skb->dev->mpls_features;
2537
2538 return features;
2539}
2540#else
2541static netdev_features_t net_mpls_features(struct sk_buff *skb,
2542 netdev_features_t features,
2543 __be16 type)
2544{
2545 return features;
2546}
2547#endif
2548
c8f44aff 2549static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2550 netdev_features_t features)
f01a5236 2551{
53d6471c 2552 int tmp;
3b392ddb
SH
2553 __be16 type;
2554
2555 type = skb_network_protocol(skb, &tmp);
2556 features = net_mpls_features(skb, features, type);
53d6471c 2557
c0d680e5 2558 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2559 !can_checksum_protocol(features, type)) {
f01a5236 2560 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2561 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2562 features &= ~NETIF_F_SG;
2563 }
2564
2565 return features;
2566}
2567
c1e756bf 2568netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2569{
fcbeb976
ED
2570 const struct net_device *dev = skb->dev;
2571 netdev_features_t features = dev->features;
2572 u16 gso_segs = skb_shinfo(skb)->gso_segs;
58e998c6
JG
2573 __be16 protocol = skb->protocol;
2574
fcbeb976 2575 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
30b678d8
BH
2576 features &= ~NETIF_F_GSO_MASK;
2577
8ad227ff 2578 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
58e998c6
JG
2579 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2580 protocol = veh->h_vlan_encapsulated_proto;
f01a5236 2581 } else if (!vlan_tx_tag_present(skb)) {
c1e756bf 2582 return harmonize_features(skb, features);
f01a5236 2583 }
58e998c6 2584
db115037 2585 features = netdev_intersect_features(features,
fcbeb976 2586 dev->vlan_features |
db115037
MK
2587 NETIF_F_HW_VLAN_CTAG_TX |
2588 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2589
cdbaa0bb 2590 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
db115037
MK
2591 features = netdev_intersect_features(features,
2592 NETIF_F_SG |
2593 NETIF_F_HIGHDMA |
2594 NETIF_F_FRAGLIST |
2595 NETIF_F_GEN_CSUM |
2596 NETIF_F_HW_VLAN_CTAG_TX |
2597 NETIF_F_HW_VLAN_STAG_TX);
cdbaa0bb 2598
c1e756bf 2599 return harmonize_features(skb, features);
58e998c6 2600}
c1e756bf 2601EXPORT_SYMBOL(netif_skb_features);
58e998c6 2602
2ea25513 2603static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2604 struct netdev_queue *txq, bool more)
2ea25513
DM
2605{
2606 unsigned int len;
2607 int rc;
2608
2609 if (!list_empty(&ptype_all))
2610 dev_queue_xmit_nit(skb, dev);
2611
2612 len = skb->len;
2613 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2614 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513
DM
2615 trace_net_dev_xmit(skb, rc, dev, len);
2616
2617 return rc;
2618}
2619
8dcda22a
DM
2620struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2621 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2622{
2623 struct sk_buff *skb = first;
2624 int rc = NETDEV_TX_OK;
2625
2626 while (skb) {
2627 struct sk_buff *next = skb->next;
2628
2629 skb->next = NULL;
95f6b3dd 2630 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2631 if (unlikely(!dev_xmit_complete(rc))) {
2632 skb->next = next;
2633 goto out;
2634 }
2635
2636 skb = next;
2637 if (netif_xmit_stopped(txq) && skb) {
2638 rc = NETDEV_TX_BUSY;
2639 break;
2640 }
2641 }
2642
2643out:
2644 *ret = rc;
2645 return skb;
2646}
2647
eae3f88e 2648struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, netdev_features_t features)
f6a78bfc 2649{
eae3f88e
DM
2650 if (vlan_tx_tag_present(skb) &&
2651 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2652 skb = __vlan_put_tag(skb, skb->vlan_proto,
2653 vlan_tx_tag_get(skb));
2654 if (skb)
2655 skb->vlan_tci = 0;
2656 }
2657 return skb;
2658}
00829823 2659
55a93b3e 2660static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2661{
2662 netdev_features_t features;
fc741216 2663
eae3f88e
DM
2664 if (skb->next)
2665 return skb;
adf30907 2666
eae3f88e
DM
2667 /* If device doesn't need skb->dst, release it right now while
2668 * its hot in this cpu cache
2669 */
2670 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2671 skb_dst_drop(skb);
fc741216 2672
eae3f88e
DM
2673 features = netif_skb_features(skb);
2674 skb = validate_xmit_vlan(skb, features);
2675 if (unlikely(!skb))
2676 goto out_null;
7b9c6090 2677
eae3f88e
DM
2678 /* If encapsulation offload request, verify we are testing
2679 * hardware encapsulation features instead of standard
2680 * features for the netdev
2681 */
2682 if (skb->encapsulation)
2683 features &= dev->hw_enc_features;
2684
2685 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2686 struct sk_buff *segs;
2687
2688 segs = skb_gso_segment(skb, features);
cecda693 2689 if (IS_ERR(segs)) {
ce93718f 2690 segs = NULL;
cecda693
JW
2691 } else if (segs) {
2692 consume_skb(skb);
2693 skb = segs;
2694 }
eae3f88e
DM
2695 } else {
2696 if (skb_needs_linearize(skb, features) &&
2697 __skb_linearize(skb))
2698 goto out_kfree_skb;
2699
2700 /* If packet is not checksummed and device does not
2701 * support checksumming for this protocol, complete
2702 * checksumming here.
2703 */
2704 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2705 if (skb->encapsulation)
2706 skb_set_inner_transport_header(skb,
2707 skb_checksum_start_offset(skb));
2708 else
2709 skb_set_transport_header(skb,
2710 skb_checksum_start_offset(skb));
2711 if (!(features & NETIF_F_ALL_CSUM) &&
2712 skb_checksum_help(skb))
2713 goto out_kfree_skb;
7b9c6090 2714 }
eae3f88e 2715 }
7b9c6090 2716
eae3f88e 2717 return skb;
fc70fb64 2718
eae3f88e
DM
2719out_kfree_skb:
2720 kfree_skb(skb);
2721out_null:
2722 return NULL;
2723}
6afff0ca 2724
55a93b3e
ED
2725struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2726{
2727 struct sk_buff *next, *head = NULL, *tail;
2728
bec3cfdc 2729 for (; skb != NULL; skb = next) {
55a93b3e
ED
2730 next = skb->next;
2731 skb->next = NULL;
bec3cfdc
ED
2732
2733 /* in case skb wont be segmented, point to itself */
2734 skb->prev = skb;
2735
55a93b3e 2736 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2737 if (!skb)
2738 continue;
55a93b3e 2739
bec3cfdc
ED
2740 if (!head)
2741 head = skb;
2742 else
2743 tail->next = skb;
2744 /* If skb was segmented, skb->prev points to
2745 * the last segment. If not, it still contains skb.
2746 */
2747 tail = skb->prev;
55a93b3e
ED
2748 }
2749 return head;
2750}
2751
1def9238
ED
2752static void qdisc_pkt_len_init(struct sk_buff *skb)
2753{
2754 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2755
2756 qdisc_skb_cb(skb)->pkt_len = skb->len;
2757
2758 /* To get more precise estimation of bytes sent on wire,
2759 * we add to pkt_len the headers size of all segments
2760 */
2761 if (shinfo->gso_size) {
757b8b1d 2762 unsigned int hdr_len;
15e5a030 2763 u16 gso_segs = shinfo->gso_segs;
1def9238 2764
757b8b1d
ED
2765 /* mac layer + network layer */
2766 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2767
2768 /* + transport layer */
1def9238
ED
2769 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2770 hdr_len += tcp_hdrlen(skb);
2771 else
2772 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2773
2774 if (shinfo->gso_type & SKB_GSO_DODGY)
2775 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2776 shinfo->gso_size);
2777
2778 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2779 }
2780}
2781
bbd8a0d3
KK
2782static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2783 struct net_device *dev,
2784 struct netdev_queue *txq)
2785{
2786 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2787 bool contended;
bbd8a0d3
KK
2788 int rc;
2789
1def9238 2790 qdisc_pkt_len_init(skb);
a2da570d 2791 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2792 /*
2793 * Heuristic to force contended enqueues to serialize on a
2794 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2795 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2796 * often and dequeue packets faster.
79640a4c 2797 */
a2da570d 2798 contended = qdisc_is_running(q);
79640a4c
ED
2799 if (unlikely(contended))
2800 spin_lock(&q->busylock);
2801
bbd8a0d3
KK
2802 spin_lock(root_lock);
2803 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2804 kfree_skb(skb);
2805 rc = NET_XMIT_DROP;
2806 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2807 qdisc_run_begin(q)) {
bbd8a0d3
KK
2808 /*
2809 * This is a work-conserving queue; there are no old skbs
2810 * waiting to be sent out; and the qdisc is not running -
2811 * xmit the skb directly.
2812 */
7fee226a
ED
2813 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2814 skb_dst_force(skb);
bfe0d029 2815
bfe0d029
ED
2816 qdisc_bstats_update(q, skb);
2817
55a93b3e 2818 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2819 if (unlikely(contended)) {
2820 spin_unlock(&q->busylock);
2821 contended = false;
2822 }
bbd8a0d3 2823 __qdisc_run(q);
79640a4c 2824 } else
bc135b23 2825 qdisc_run_end(q);
bbd8a0d3
KK
2826
2827 rc = NET_XMIT_SUCCESS;
2828 } else {
7fee226a 2829 skb_dst_force(skb);
a2da570d 2830 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2831 if (qdisc_run_begin(q)) {
2832 if (unlikely(contended)) {
2833 spin_unlock(&q->busylock);
2834 contended = false;
2835 }
2836 __qdisc_run(q);
2837 }
bbd8a0d3
KK
2838 }
2839 spin_unlock(root_lock);
79640a4c
ED
2840 if (unlikely(contended))
2841 spin_unlock(&q->busylock);
bbd8a0d3
KK
2842 return rc;
2843}
2844
86f8515f 2845#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2846static void skb_update_prio(struct sk_buff *skb)
2847{
6977a79d 2848 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2849
91c68ce2
ED
2850 if (!skb->priority && skb->sk && map) {
2851 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2852
2853 if (prioidx < map->priomap_len)
2854 skb->priority = map->priomap[prioidx];
2855 }
5bc1421e
NH
2856}
2857#else
2858#define skb_update_prio(skb)
2859#endif
2860
745e20f1 2861static DEFINE_PER_CPU(int, xmit_recursion);
11a766ce 2862#define RECURSION_LIMIT 10
745e20f1 2863
95603e22
MM
2864/**
2865 * dev_loopback_xmit - loop back @skb
2866 * @skb: buffer to transmit
2867 */
2868int dev_loopback_xmit(struct sk_buff *skb)
2869{
2870 skb_reset_mac_header(skb);
2871 __skb_pull(skb, skb_network_offset(skb));
2872 skb->pkt_type = PACKET_LOOPBACK;
2873 skb->ip_summed = CHECKSUM_UNNECESSARY;
2874 WARN_ON(!skb_dst(skb));
2875 skb_dst_force(skb);
2876 netif_rx_ni(skb);
2877 return 0;
2878}
2879EXPORT_SYMBOL(dev_loopback_xmit);
2880
d29f749e 2881/**
9d08dd3d 2882 * __dev_queue_xmit - transmit a buffer
d29f749e 2883 * @skb: buffer to transmit
9d08dd3d 2884 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
2885 *
2886 * Queue a buffer for transmission to a network device. The caller must
2887 * have set the device and priority and built the buffer before calling
2888 * this function. The function can be called from an interrupt.
2889 *
2890 * A negative errno code is returned on a failure. A success does not
2891 * guarantee the frame will be transmitted as it may be dropped due
2892 * to congestion or traffic shaping.
2893 *
2894 * -----------------------------------------------------------------------------------
2895 * I notice this method can also return errors from the queue disciplines,
2896 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2897 * be positive.
2898 *
2899 * Regardless of the return value, the skb is consumed, so it is currently
2900 * difficult to retry a send to this method. (You can bump the ref count
2901 * before sending to hold a reference for retry if you are careful.)
2902 *
2903 * When calling this method, interrupts MUST be enabled. This is because
2904 * the BH enable code must have IRQs enabled so that it will not deadlock.
2905 * --BLG
2906 */
0a59f3a9 2907static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
2908{
2909 struct net_device *dev = skb->dev;
dc2b4847 2910 struct netdev_queue *txq;
1da177e4
LT
2911 struct Qdisc *q;
2912 int rc = -ENOMEM;
2913
6d1ccff6
ED
2914 skb_reset_mac_header(skb);
2915
e7fd2885
WB
2916 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2917 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2918
4ec93edb
YH
2919 /* Disable soft irqs for various locks below. Also
2920 * stops preemption for RCU.
1da177e4 2921 */
4ec93edb 2922 rcu_read_lock_bh();
1da177e4 2923
5bc1421e
NH
2924 skb_update_prio(skb);
2925
f663dd9a 2926 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 2927 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2928
1da177e4 2929#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2930 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 2931#endif
cf66ba58 2932 trace_net_dev_queue(skb);
1da177e4 2933 if (q->enqueue) {
bbd8a0d3 2934 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2935 goto out;
1da177e4
LT
2936 }
2937
2938 /* The device has no queue. Common case for software devices:
2939 loopback, all the sorts of tunnels...
2940
932ff279
HX
2941 Really, it is unlikely that netif_tx_lock protection is necessary
2942 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2943 counters.)
2944 However, it is possible, that they rely on protection
2945 made by us here.
2946
2947 Check this and shot the lock. It is not prone from deadlocks.
2948 Either shot noqueue qdisc, it is even simpler 8)
2949 */
2950 if (dev->flags & IFF_UP) {
2951 int cpu = smp_processor_id(); /* ok because BHs are off */
2952
c773e847 2953 if (txq->xmit_lock_owner != cpu) {
1da177e4 2954
745e20f1
ED
2955 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2956 goto recursion_alert;
2957
1f59533f
JDB
2958 skb = validate_xmit_skb(skb, dev);
2959 if (!skb)
2960 goto drop;
2961
c773e847 2962 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2963
73466498 2964 if (!netif_xmit_stopped(txq)) {
745e20f1 2965 __this_cpu_inc(xmit_recursion);
ce93718f 2966 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 2967 __this_cpu_dec(xmit_recursion);
572a9d7b 2968 if (dev_xmit_complete(rc)) {
c773e847 2969 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2970 goto out;
2971 }
2972 }
c773e847 2973 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
2974 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2975 dev->name);
1da177e4
LT
2976 } else {
2977 /* Recursion is detected! It is possible,
745e20f1
ED
2978 * unfortunately
2979 */
2980recursion_alert:
e87cc472
JP
2981 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2982 dev->name);
1da177e4
LT
2983 }
2984 }
2985
2986 rc = -ENETDOWN;
1f59533f 2987drop:
d4828d85 2988 rcu_read_unlock_bh();
1da177e4 2989
015f0688 2990 atomic_long_inc(&dev->tx_dropped);
1f59533f 2991 kfree_skb_list(skb);
1da177e4
LT
2992 return rc;
2993out:
d4828d85 2994 rcu_read_unlock_bh();
1da177e4
LT
2995 return rc;
2996}
f663dd9a
JW
2997
2998int dev_queue_xmit(struct sk_buff *skb)
2999{
3000 return __dev_queue_xmit(skb, NULL);
3001}
d1b19dff 3002EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3003
f663dd9a
JW
3004int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3005{
3006 return __dev_queue_xmit(skb, accel_priv);
3007}
3008EXPORT_SYMBOL(dev_queue_xmit_accel);
3009
1da177e4
LT
3010
3011/*=======================================================================
3012 Receiver routines
3013 =======================================================================*/
3014
6b2bedc3 3015int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3016EXPORT_SYMBOL(netdev_max_backlog);
3017
3b098e2d 3018int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3019int netdev_budget __read_mostly = 300;
3020int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3021
eecfd7c4
ED
3022/* Called with irq disabled */
3023static inline void ____napi_schedule(struct softnet_data *sd,
3024 struct napi_struct *napi)
3025{
3026 list_add_tail(&napi->poll_list, &sd->poll_list);
3027 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3028}
3029
bfb564e7
KK
3030#ifdef CONFIG_RPS
3031
3032/* One global table that all flow-based protocols share. */
6e3f7faf 3033struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7
KK
3034EXPORT_SYMBOL(rps_sock_flow_table);
3035
c5905afb 3036struct static_key rps_needed __read_mostly;
adc9300e 3037
c445477d
BH
3038static struct rps_dev_flow *
3039set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3040 struct rps_dev_flow *rflow, u16 next_cpu)
3041{
09994d1b 3042 if (next_cpu != RPS_NO_CPU) {
c445477d
BH
3043#ifdef CONFIG_RFS_ACCEL
3044 struct netdev_rx_queue *rxqueue;
3045 struct rps_dev_flow_table *flow_table;
3046 struct rps_dev_flow *old_rflow;
3047 u32 flow_id;
3048 u16 rxq_index;
3049 int rc;
3050
3051 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3052 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3053 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3054 goto out;
3055 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3056 if (rxq_index == skb_get_rx_queue(skb))
3057 goto out;
3058
3059 rxqueue = dev->_rx + rxq_index;
3060 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3061 if (!flow_table)
3062 goto out;
61b905da 3063 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3064 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3065 rxq_index, flow_id);
3066 if (rc < 0)
3067 goto out;
3068 old_rflow = rflow;
3069 rflow = &flow_table->flows[flow_id];
c445477d
BH
3070 rflow->filter = rc;
3071 if (old_rflow->filter == rflow->filter)
3072 old_rflow->filter = RPS_NO_FILTER;
3073 out:
3074#endif
3075 rflow->last_qtail =
09994d1b 3076 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3077 }
3078
09994d1b 3079 rflow->cpu = next_cpu;
c445477d
BH
3080 return rflow;
3081}
3082
bfb564e7
KK
3083/*
3084 * get_rps_cpu is called from netif_receive_skb and returns the target
3085 * CPU from the RPS map of the receiving queue for a given skb.
3086 * rcu_read_lock must be held on entry.
3087 */
3088static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3089 struct rps_dev_flow **rflowp)
3090{
3091 struct netdev_rx_queue *rxqueue;
6e3f7faf 3092 struct rps_map *map;
bfb564e7
KK
3093 struct rps_dev_flow_table *flow_table;
3094 struct rps_sock_flow_table *sock_flow_table;
3095 int cpu = -1;
3096 u16 tcpu;
61b905da 3097 u32 hash;
bfb564e7
KK
3098
3099 if (skb_rx_queue_recorded(skb)) {
3100 u16 index = skb_get_rx_queue(skb);
62fe0b40
BH
3101 if (unlikely(index >= dev->real_num_rx_queues)) {
3102 WARN_ONCE(dev->real_num_rx_queues > 1,
3103 "%s received packet on queue %u, but number "
3104 "of RX queues is %u\n",
3105 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3106 goto done;
3107 }
3108 rxqueue = dev->_rx + index;
3109 } else
3110 rxqueue = dev->_rx;
3111
6e3f7faf
ED
3112 map = rcu_dereference(rxqueue->rps_map);
3113 if (map) {
85875236 3114 if (map->len == 1 &&
33d480ce 3115 !rcu_access_pointer(rxqueue->rps_flow_table)) {
6febfca9
CG
3116 tcpu = map->cpus[0];
3117 if (cpu_online(tcpu))
3118 cpu = tcpu;
3119 goto done;
3120 }
33d480ce 3121 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
bfb564e7 3122 goto done;
6febfca9 3123 }
bfb564e7 3124
2d47b459 3125 skb_reset_network_header(skb);
61b905da
TH
3126 hash = skb_get_hash(skb);
3127 if (!hash)
bfb564e7
KK
3128 goto done;
3129
fec5e652
TH
3130 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3131 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3132 if (flow_table && sock_flow_table) {
3133 u16 next_cpu;
3134 struct rps_dev_flow *rflow;
3135
61b905da 3136 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3137 tcpu = rflow->cpu;
3138
61b905da 3139 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
fec5e652
TH
3140
3141 /*
3142 * If the desired CPU (where last recvmsg was done) is
3143 * different from current CPU (one in the rx-queue flow
3144 * table entry), switch if one of the following holds:
3145 * - Current CPU is unset (equal to RPS_NO_CPU).
3146 * - Current CPU is offline.
3147 * - The current CPU's queue tail has advanced beyond the
3148 * last packet that was enqueued using this table entry.
3149 * This guarantees that all previous packets for the flow
3150 * have been dequeued, thus preserving in order delivery.
3151 */
3152 if (unlikely(tcpu != next_cpu) &&
3153 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3154 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3155 rflow->last_qtail)) >= 0)) {
3156 tcpu = next_cpu;
c445477d 3157 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3158 }
c445477d 3159
fec5e652
TH
3160 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3161 *rflowp = rflow;
3162 cpu = tcpu;
3163 goto done;
3164 }
3165 }
3166
0a9627f2 3167 if (map) {
8fc54f68 3168 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3169 if (cpu_online(tcpu)) {
3170 cpu = tcpu;
3171 goto done;
3172 }
3173 }
3174
3175done:
0a9627f2
TH
3176 return cpu;
3177}
3178
c445477d
BH
3179#ifdef CONFIG_RFS_ACCEL
3180
3181/**
3182 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3183 * @dev: Device on which the filter was set
3184 * @rxq_index: RX queue index
3185 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3186 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3187 *
3188 * Drivers that implement ndo_rx_flow_steer() should periodically call
3189 * this function for each installed filter and remove the filters for
3190 * which it returns %true.
3191 */
3192bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3193 u32 flow_id, u16 filter_id)
3194{
3195 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3196 struct rps_dev_flow_table *flow_table;
3197 struct rps_dev_flow *rflow;
3198 bool expire = true;
3199 int cpu;
3200
3201 rcu_read_lock();
3202 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3203 if (flow_table && flow_id <= flow_table->mask) {
3204 rflow = &flow_table->flows[flow_id];
3205 cpu = ACCESS_ONCE(rflow->cpu);
3206 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3207 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3208 rflow->last_qtail) <
3209 (int)(10 * flow_table->mask)))
3210 expire = false;
3211 }
3212 rcu_read_unlock();
3213 return expire;
3214}
3215EXPORT_SYMBOL(rps_may_expire_flow);
3216
3217#endif /* CONFIG_RFS_ACCEL */
3218
0a9627f2 3219/* Called from hardirq (IPI) context */
e36fa2f7 3220static void rps_trigger_softirq(void *data)
0a9627f2 3221{
e36fa2f7
ED
3222 struct softnet_data *sd = data;
3223
eecfd7c4 3224 ____napi_schedule(sd, &sd->backlog);
dee42870 3225 sd->received_rps++;
0a9627f2 3226}
e36fa2f7 3227
fec5e652 3228#endif /* CONFIG_RPS */
0a9627f2 3229
e36fa2f7
ED
3230/*
3231 * Check if this softnet_data structure is another cpu one
3232 * If yes, queue it to our IPI list and return 1
3233 * If no, return 0
3234 */
3235static int rps_ipi_queued(struct softnet_data *sd)
3236{
3237#ifdef CONFIG_RPS
3238 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3239
3240 if (sd != mysd) {
3241 sd->rps_ipi_next = mysd->rps_ipi_list;
3242 mysd->rps_ipi_list = sd;
3243
3244 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3245 return 1;
3246 }
3247#endif /* CONFIG_RPS */
3248 return 0;
3249}
3250
99bbc707
WB
3251#ifdef CONFIG_NET_FLOW_LIMIT
3252int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3253#endif
3254
3255static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3256{
3257#ifdef CONFIG_NET_FLOW_LIMIT
3258 struct sd_flow_limit *fl;
3259 struct softnet_data *sd;
3260 unsigned int old_flow, new_flow;
3261
3262 if (qlen < (netdev_max_backlog >> 1))
3263 return false;
3264
3265 sd = &__get_cpu_var(softnet_data);
3266
3267 rcu_read_lock();
3268 fl = rcu_dereference(sd->flow_limit);
3269 if (fl) {
3958afa1 3270 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3271 old_flow = fl->history[fl->history_head];
3272 fl->history[fl->history_head] = new_flow;
3273
3274 fl->history_head++;
3275 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3276
3277 if (likely(fl->buckets[old_flow]))
3278 fl->buckets[old_flow]--;
3279
3280 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3281 fl->count++;
3282 rcu_read_unlock();
3283 return true;
3284 }
3285 }
3286 rcu_read_unlock();
3287#endif
3288 return false;
3289}
3290
0a9627f2
TH
3291/*
3292 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3293 * queue (may be a remote CPU queue).
3294 */
fec5e652
TH
3295static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3296 unsigned int *qtail)
0a9627f2 3297{
e36fa2f7 3298 struct softnet_data *sd;
0a9627f2 3299 unsigned long flags;
99bbc707 3300 unsigned int qlen;
0a9627f2 3301
e36fa2f7 3302 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3303
3304 local_irq_save(flags);
0a9627f2 3305
e36fa2f7 3306 rps_lock(sd);
99bbc707
WB
3307 qlen = skb_queue_len(&sd->input_pkt_queue);
3308 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
6e7676c1 3309 if (skb_queue_len(&sd->input_pkt_queue)) {
0a9627f2 3310enqueue:
e36fa2f7 3311 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3312 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3313 rps_unlock(sd);
152102c7 3314 local_irq_restore(flags);
0a9627f2
TH
3315 return NET_RX_SUCCESS;
3316 }
3317
ebda37c2
ED
3318 /* Schedule NAPI for backlog device
3319 * We can use non atomic operation since we own the queue lock
3320 */
3321 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3322 if (!rps_ipi_queued(sd))
eecfd7c4 3323 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3324 }
3325 goto enqueue;
3326 }
3327
dee42870 3328 sd->dropped++;
e36fa2f7 3329 rps_unlock(sd);
0a9627f2 3330
0a9627f2
TH
3331 local_irq_restore(flags);
3332
caf586e5 3333 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3334 kfree_skb(skb);
3335 return NET_RX_DROP;
3336}
1da177e4 3337
ae78dbfa 3338static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3339{
b0e28f1e 3340 int ret;
1da177e4 3341
588f0330 3342 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3343
cf66ba58 3344 trace_netif_rx(skb);
df334545 3345#ifdef CONFIG_RPS
c5905afb 3346 if (static_key_false(&rps_needed)) {
fec5e652 3347 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3348 int cpu;
3349
cece1945 3350 preempt_disable();
b0e28f1e 3351 rcu_read_lock();
fec5e652
TH
3352
3353 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3354 if (cpu < 0)
3355 cpu = smp_processor_id();
fec5e652
TH
3356
3357 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3358
b0e28f1e 3359 rcu_read_unlock();
cece1945 3360 preempt_enable();
adc9300e
ED
3361 } else
3362#endif
fec5e652
TH
3363 {
3364 unsigned int qtail;
3365 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3366 put_cpu();
3367 }
b0e28f1e 3368 return ret;
1da177e4 3369}
ae78dbfa
BH
3370
3371/**
3372 * netif_rx - post buffer to the network code
3373 * @skb: buffer to post
3374 *
3375 * This function receives a packet from a device driver and queues it for
3376 * the upper (protocol) levels to process. It always succeeds. The buffer
3377 * may be dropped during processing for congestion control or by the
3378 * protocol layers.
3379 *
3380 * return values:
3381 * NET_RX_SUCCESS (no congestion)
3382 * NET_RX_DROP (packet was dropped)
3383 *
3384 */
3385
3386int netif_rx(struct sk_buff *skb)
3387{
3388 trace_netif_rx_entry(skb);
3389
3390 return netif_rx_internal(skb);
3391}
d1b19dff 3392EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3393
3394int netif_rx_ni(struct sk_buff *skb)
3395{
3396 int err;
3397
ae78dbfa
BH
3398 trace_netif_rx_ni_entry(skb);
3399
1da177e4 3400 preempt_disable();
ae78dbfa 3401 err = netif_rx_internal(skb);
1da177e4
LT
3402 if (local_softirq_pending())
3403 do_softirq();
3404 preempt_enable();
3405
3406 return err;
3407}
1da177e4
LT
3408EXPORT_SYMBOL(netif_rx_ni);
3409
1da177e4
LT
3410static void net_tx_action(struct softirq_action *h)
3411{
3412 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3413
3414 if (sd->completion_queue) {
3415 struct sk_buff *clist;
3416
3417 local_irq_disable();
3418 clist = sd->completion_queue;
3419 sd->completion_queue = NULL;
3420 local_irq_enable();
3421
3422 while (clist) {
3423 struct sk_buff *skb = clist;
3424 clist = clist->next;
3425
547b792c 3426 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3427 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3428 trace_consume_skb(skb);
3429 else
3430 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3431 __kfree_skb(skb);
3432 }
3433 }
3434
3435 if (sd->output_queue) {
37437bb2 3436 struct Qdisc *head;
1da177e4
LT
3437
3438 local_irq_disable();
3439 head = sd->output_queue;
3440 sd->output_queue = NULL;
a9cbd588 3441 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3442 local_irq_enable();
3443
3444 while (head) {
37437bb2
DM
3445 struct Qdisc *q = head;
3446 spinlock_t *root_lock;
3447
1da177e4
LT
3448 head = head->next_sched;
3449
5fb66229 3450 root_lock = qdisc_lock(q);
37437bb2 3451 if (spin_trylock(root_lock)) {
4e857c58 3452 smp_mb__before_atomic();
def82a1d
JP
3453 clear_bit(__QDISC_STATE_SCHED,
3454 &q->state);
37437bb2
DM
3455 qdisc_run(q);
3456 spin_unlock(root_lock);
1da177e4 3457 } else {
195648bb 3458 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3459 &q->state)) {
195648bb 3460 __netif_reschedule(q);
e8a83e10 3461 } else {
4e857c58 3462 smp_mb__before_atomic();
e8a83e10
JP
3463 clear_bit(__QDISC_STATE_SCHED,
3464 &q->state);
3465 }
1da177e4
LT
3466 }
3467 }
3468 }
3469}
3470
ab95bfe0
JP
3471#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3472 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3473/* This hook is defined here for ATM LANE */
3474int (*br_fdb_test_addr_hook)(struct net_device *dev,
3475 unsigned char *addr) __read_mostly;
4fb019a0 3476EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3477#endif
1da177e4 3478
1da177e4
LT
3479#ifdef CONFIG_NET_CLS_ACT
3480/* TODO: Maybe we should just force sch_ingress to be compiled in
3481 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3482 * a compare and 2 stores extra right now if we dont have it on
3483 * but have CONFIG_NET_CLS_ACT
25985edc
LDM
3484 * NOTE: This doesn't stop any functionality; if you dont have
3485 * the ingress scheduler, you just can't add policies on ingress.
1da177e4
LT
3486 *
3487 */
24824a09 3488static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
1da177e4 3489{
1da177e4 3490 struct net_device *dev = skb->dev;
f697c3e8 3491 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
3492 int result = TC_ACT_OK;
3493 struct Qdisc *q;
4ec93edb 3494
de384830 3495 if (unlikely(MAX_RED_LOOP < ttl++)) {
e87cc472
JP
3496 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3497 skb->skb_iif, dev->ifindex);
f697c3e8
HX
3498 return TC_ACT_SHOT;
3499 }
1da177e4 3500
f697c3e8
HX
3501 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3502 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 3503
46e5da40 3504 q = rcu_dereference(rxq->qdisc);
8d50b53d 3505 if (q != &noop_qdisc) {
83874000 3506 spin_lock(qdisc_lock(q));
a9312ae8
DM
3507 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3508 result = qdisc_enqueue_root(skb, q);
83874000
DM
3509 spin_unlock(qdisc_lock(q));
3510 }
f697c3e8
HX
3511
3512 return result;
3513}
86e65da9 3514
f697c3e8
HX
3515static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3516 struct packet_type **pt_prev,
3517 int *ret, struct net_device *orig_dev)
3518{
24824a09
ED
3519 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3520
46e5da40 3521 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
f697c3e8 3522 goto out;
1da177e4 3523
f697c3e8
HX
3524 if (*pt_prev) {
3525 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3526 *pt_prev = NULL;
1da177e4
LT
3527 }
3528
24824a09 3529 switch (ing_filter(skb, rxq)) {
f697c3e8
HX
3530 case TC_ACT_SHOT:
3531 case TC_ACT_STOLEN:
3532 kfree_skb(skb);
3533 return NULL;
3534 }
3535
3536out:
3537 skb->tc_verd = 0;
3538 return skb;
1da177e4
LT
3539}
3540#endif
3541
ab95bfe0
JP
3542/**
3543 * netdev_rx_handler_register - register receive handler
3544 * @dev: device to register a handler for
3545 * @rx_handler: receive handler to register
93e2c32b 3546 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3547 *
e227867f 3548 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3549 * called from __netif_receive_skb. A negative errno code is returned
3550 * on a failure.
3551 *
3552 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3553 *
3554 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3555 */
3556int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3557 rx_handler_func_t *rx_handler,
3558 void *rx_handler_data)
ab95bfe0
JP
3559{
3560 ASSERT_RTNL();
3561
3562 if (dev->rx_handler)
3563 return -EBUSY;
3564
00cfec37 3565 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3566 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3567 rcu_assign_pointer(dev->rx_handler, rx_handler);
3568
3569 return 0;
3570}
3571EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3572
3573/**
3574 * netdev_rx_handler_unregister - unregister receive handler
3575 * @dev: device to unregister a handler from
3576 *
166ec369 3577 * Unregister a receive handler from a device.
ab95bfe0
JP
3578 *
3579 * The caller must hold the rtnl_mutex.
3580 */
3581void netdev_rx_handler_unregister(struct net_device *dev)
3582{
3583
3584 ASSERT_RTNL();
a9b3cd7f 3585 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3586 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3587 * section has a guarantee to see a non NULL rx_handler_data
3588 * as well.
3589 */
3590 synchronize_net();
a9b3cd7f 3591 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3592}
3593EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3594
b4b9e355
MG
3595/*
3596 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3597 * the special handling of PFMEMALLOC skbs.
3598 */
3599static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3600{
3601 switch (skb->protocol) {
2b8837ae
JP
3602 case htons(ETH_P_ARP):
3603 case htons(ETH_P_IP):
3604 case htons(ETH_P_IPV6):
3605 case htons(ETH_P_8021Q):
3606 case htons(ETH_P_8021AD):
b4b9e355
MG
3607 return true;
3608 default:
3609 return false;
3610 }
3611}
3612
9754e293 3613static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3614{
3615 struct packet_type *ptype, *pt_prev;
ab95bfe0 3616 rx_handler_func_t *rx_handler;
f2ccd8fa 3617 struct net_device *orig_dev;
63d8ea7f 3618 struct net_device *null_or_dev;
8a4eb573 3619 bool deliver_exact = false;
1da177e4 3620 int ret = NET_RX_DROP;
252e3346 3621 __be16 type;
1da177e4 3622
588f0330 3623 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3624
cf66ba58 3625 trace_netif_receive_skb(skb);
9b22ea56 3626
cc9bd5ce 3627 orig_dev = skb->dev;
8f903c70 3628
c1d2bbe1 3629 skb_reset_network_header(skb);
fda55eca
ED
3630 if (!skb_transport_header_was_set(skb))
3631 skb_reset_transport_header(skb);
0b5c9db1 3632 skb_reset_mac_len(skb);
1da177e4
LT
3633
3634 pt_prev = NULL;
3635
3636 rcu_read_lock();
3637
63d8ea7f 3638another_round:
b6858177 3639 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3640
3641 __this_cpu_inc(softnet_data.processed);
3642
8ad227ff
PM
3643 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3644 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3645 skb = skb_vlan_untag(skb);
bcc6d479 3646 if (unlikely(!skb))
b4b9e355 3647 goto unlock;
bcc6d479
JP
3648 }
3649
1da177e4
LT
3650#ifdef CONFIG_NET_CLS_ACT
3651 if (skb->tc_verd & TC_NCLS) {
3652 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3653 goto ncls;
3654 }
3655#endif
3656
9754e293 3657 if (pfmemalloc)
b4b9e355
MG
3658 goto skip_taps;
3659
1da177e4 3660 list_for_each_entry_rcu(ptype, &ptype_all, list) {
63d8ea7f 3661 if (!ptype->dev || ptype->dev == skb->dev) {
4ec93edb 3662 if (pt_prev)
f2ccd8fa 3663 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
3664 pt_prev = ptype;
3665 }
3666 }
3667
b4b9e355 3668skip_taps:
1da177e4 3669#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
3670 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3671 if (!skb)
b4b9e355 3672 goto unlock;
1da177e4
LT
3673ncls:
3674#endif
3675
9754e293 3676 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3677 goto drop;
3678
2425717b
JF
3679 if (vlan_tx_tag_present(skb)) {
3680 if (pt_prev) {
3681 ret = deliver_skb(skb, pt_prev, orig_dev);
3682 pt_prev = NULL;
3683 }
48cc32d3 3684 if (vlan_do_receive(&skb))
2425717b
JF
3685 goto another_round;
3686 else if (unlikely(!skb))
b4b9e355 3687 goto unlock;
2425717b
JF
3688 }
3689
48cc32d3 3690 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3691 if (rx_handler) {
3692 if (pt_prev) {
3693 ret = deliver_skb(skb, pt_prev, orig_dev);
3694 pt_prev = NULL;
3695 }
8a4eb573
JP
3696 switch (rx_handler(&skb)) {
3697 case RX_HANDLER_CONSUMED:
3bc1b1ad 3698 ret = NET_RX_SUCCESS;
b4b9e355 3699 goto unlock;
8a4eb573 3700 case RX_HANDLER_ANOTHER:
63d8ea7f 3701 goto another_round;
8a4eb573
JP
3702 case RX_HANDLER_EXACT:
3703 deliver_exact = true;
3704 case RX_HANDLER_PASS:
3705 break;
3706 default:
3707 BUG();
3708 }
ab95bfe0 3709 }
1da177e4 3710
d4b812de
ED
3711 if (unlikely(vlan_tx_tag_present(skb))) {
3712 if (vlan_tx_tag_get_id(skb))
3713 skb->pkt_type = PACKET_OTHERHOST;
3714 /* Note: we might in the future use prio bits
3715 * and set skb->priority like in vlan_do_receive()
3716 * For the time being, just ignore Priority Code Point
3717 */
3718 skb->vlan_tci = 0;
3719 }
48cc32d3 3720
63d8ea7f 3721 /* deliver only exact match when indicated */
8a4eb573 3722 null_or_dev = deliver_exact ? skb->dev : NULL;
1f3c8804 3723
1da177e4 3724 type = skb->protocol;
82d8a867
PE
3725 list_for_each_entry_rcu(ptype,
3726 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
63d8ea7f 3727 if (ptype->type == type &&
e3f48d37
JP
3728 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3729 ptype->dev == orig_dev)) {
4ec93edb 3730 if (pt_prev)
f2ccd8fa 3731 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
3732 pt_prev = ptype;
3733 }
3734 }
3735
3736 if (pt_prev) {
1080e512 3737 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3738 goto drop;
1080e512
MT
3739 else
3740 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3741 } else {
b4b9e355 3742drop:
caf586e5 3743 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3744 kfree_skb(skb);
3745 /* Jamal, now you will not able to escape explaining
3746 * me how you were going to use this. :-)
3747 */
3748 ret = NET_RX_DROP;
3749 }
3750
b4b9e355 3751unlock:
1da177e4 3752 rcu_read_unlock();
9754e293
DM
3753 return ret;
3754}
3755
3756static int __netif_receive_skb(struct sk_buff *skb)
3757{
3758 int ret;
3759
3760 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3761 unsigned long pflags = current->flags;
3762
3763 /*
3764 * PFMEMALLOC skbs are special, they should
3765 * - be delivered to SOCK_MEMALLOC sockets only
3766 * - stay away from userspace
3767 * - have bounded memory usage
3768 *
3769 * Use PF_MEMALLOC as this saves us from propagating the allocation
3770 * context down to all allocation sites.
3771 */
3772 current->flags |= PF_MEMALLOC;
3773 ret = __netif_receive_skb_core(skb, true);
3774 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3775 } else
3776 ret = __netif_receive_skb_core(skb, false);
3777
1da177e4
LT
3778 return ret;
3779}
0a9627f2 3780
ae78dbfa 3781static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3782{
588f0330 3783 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3784
c1f19b51
RC
3785 if (skb_defer_rx_timestamp(skb))
3786 return NET_RX_SUCCESS;
3787
df334545 3788#ifdef CONFIG_RPS
c5905afb 3789 if (static_key_false(&rps_needed)) {
3b098e2d
ED
3790 struct rps_dev_flow voidflow, *rflow = &voidflow;
3791 int cpu, ret;
fec5e652 3792
3b098e2d
ED
3793 rcu_read_lock();
3794
3795 cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3796
3b098e2d
ED
3797 if (cpu >= 0) {
3798 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3799 rcu_read_unlock();
adc9300e 3800 return ret;
3b098e2d 3801 }
adc9300e 3802 rcu_read_unlock();
fec5e652 3803 }
1e94d72f 3804#endif
adc9300e 3805 return __netif_receive_skb(skb);
0a9627f2 3806}
ae78dbfa
BH
3807
3808/**
3809 * netif_receive_skb - process receive buffer from network
3810 * @skb: buffer to process
3811 *
3812 * netif_receive_skb() is the main receive data processing function.
3813 * It always succeeds. The buffer may be dropped during processing
3814 * for congestion control or by the protocol layers.
3815 *
3816 * This function may only be called from softirq context and interrupts
3817 * should be enabled.
3818 *
3819 * Return values (usually ignored):
3820 * NET_RX_SUCCESS: no congestion
3821 * NET_RX_DROP: packet was dropped
3822 */
3823int netif_receive_skb(struct sk_buff *skb)
3824{
3825 trace_netif_receive_skb_entry(skb);
3826
3827 return netif_receive_skb_internal(skb);
3828}
d1b19dff 3829EXPORT_SYMBOL(netif_receive_skb);
1da177e4 3830
88751275
ED
3831/* Network device is going away, flush any packets still pending
3832 * Called with irqs disabled.
3833 */
152102c7 3834static void flush_backlog(void *arg)
6e583ce5 3835{
152102c7 3836 struct net_device *dev = arg;
e36fa2f7 3837 struct softnet_data *sd = &__get_cpu_var(softnet_data);
6e583ce5
SH
3838 struct sk_buff *skb, *tmp;
3839
e36fa2f7 3840 rps_lock(sd);
6e7676c1 3841 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 3842 if (skb->dev == dev) {
e36fa2f7 3843 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 3844 kfree_skb(skb);
76cc8b13 3845 input_queue_head_incr(sd);
6e583ce5 3846 }
6e7676c1 3847 }
e36fa2f7 3848 rps_unlock(sd);
6e7676c1
CG
3849
3850 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3851 if (skb->dev == dev) {
3852 __skb_unlink(skb, &sd->process_queue);
3853 kfree_skb(skb);
76cc8b13 3854 input_queue_head_incr(sd);
6e7676c1
CG
3855 }
3856 }
6e583ce5
SH
3857}
3858
d565b0a1
HX
3859static int napi_gro_complete(struct sk_buff *skb)
3860{
22061d80 3861 struct packet_offload *ptype;
d565b0a1 3862 __be16 type = skb->protocol;
22061d80 3863 struct list_head *head = &offload_base;
d565b0a1
HX
3864 int err = -ENOENT;
3865
c3c7c254
ED
3866 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3867
fc59f9a3
HX
3868 if (NAPI_GRO_CB(skb)->count == 1) {
3869 skb_shinfo(skb)->gso_size = 0;
d565b0a1 3870 goto out;
fc59f9a3 3871 }
d565b0a1
HX
3872
3873 rcu_read_lock();
3874 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3875 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
3876 continue;
3877
299603e8 3878 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
3879 break;
3880 }
3881 rcu_read_unlock();
3882
3883 if (err) {
3884 WARN_ON(&ptype->list == head);
3885 kfree_skb(skb);
3886 return NET_RX_SUCCESS;
3887 }
3888
3889out:
ae78dbfa 3890 return netif_receive_skb_internal(skb);
d565b0a1
HX
3891}
3892
2e71a6f8
ED
3893/* napi->gro_list contains packets ordered by age.
3894 * youngest packets at the head of it.
3895 * Complete skbs in reverse order to reduce latencies.
3896 */
3897void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 3898{
2e71a6f8 3899 struct sk_buff *skb, *prev = NULL;
d565b0a1 3900
2e71a6f8
ED
3901 /* scan list and build reverse chain */
3902 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3903 skb->prev = prev;
3904 prev = skb;
3905 }
3906
3907 for (skb = prev; skb; skb = prev) {
d565b0a1 3908 skb->next = NULL;
2e71a6f8
ED
3909
3910 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3911 return;
3912
3913 prev = skb->prev;
d565b0a1 3914 napi_gro_complete(skb);
2e71a6f8 3915 napi->gro_count--;
d565b0a1
HX
3916 }
3917
3918 napi->gro_list = NULL;
3919}
86cac58b 3920EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 3921
89c5fa33
ED
3922static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3923{
3924 struct sk_buff *p;
3925 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 3926 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
3927
3928 for (p = napi->gro_list; p; p = p->next) {
3929 unsigned long diffs;
3930
0b4cec8c
TH
3931 NAPI_GRO_CB(p)->flush = 0;
3932
3933 if (hash != skb_get_hash_raw(p)) {
3934 NAPI_GRO_CB(p)->same_flow = 0;
3935 continue;
3936 }
3937
89c5fa33
ED
3938 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3939 diffs |= p->vlan_tci ^ skb->vlan_tci;
3940 if (maclen == ETH_HLEN)
3941 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 3942 skb_mac_header(skb));
89c5fa33
ED
3943 else if (!diffs)
3944 diffs = memcmp(skb_mac_header(p),
a50e233c 3945 skb_mac_header(skb),
89c5fa33
ED
3946 maclen);
3947 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
3948 }
3949}
3950
299603e8
JC
3951static void skb_gro_reset_offset(struct sk_buff *skb)
3952{
3953 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3954 const skb_frag_t *frag0 = &pinfo->frags[0];
3955
3956 NAPI_GRO_CB(skb)->data_offset = 0;
3957 NAPI_GRO_CB(skb)->frag0 = NULL;
3958 NAPI_GRO_CB(skb)->frag0_len = 0;
3959
3960 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3961 pinfo->nr_frags &&
3962 !PageHighMem(skb_frag_page(frag0))) {
3963 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3964 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
3965 }
3966}
3967
a50e233c
ED
3968static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3969{
3970 struct skb_shared_info *pinfo = skb_shinfo(skb);
3971
3972 BUG_ON(skb->end - skb->tail < grow);
3973
3974 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3975
3976 skb->data_len -= grow;
3977 skb->tail += grow;
3978
3979 pinfo->frags[0].page_offset += grow;
3980 skb_frag_size_sub(&pinfo->frags[0], grow);
3981
3982 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3983 skb_frag_unref(skb, 0);
3984 memmove(pinfo->frags, pinfo->frags + 1,
3985 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3986 }
3987}
3988
bb728820 3989static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
3990{
3991 struct sk_buff **pp = NULL;
22061d80 3992 struct packet_offload *ptype;
d565b0a1 3993 __be16 type = skb->protocol;
22061d80 3994 struct list_head *head = &offload_base;
0da2afd5 3995 int same_flow;
5b252f0c 3996 enum gro_result ret;
a50e233c 3997 int grow;
d565b0a1 3998
9c62a68d 3999 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4000 goto normal;
4001
5a212329 4002 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4003 goto normal;
4004
89c5fa33 4005 gro_list_prepare(napi, skb);
573e8fca 4006
d565b0a1
HX
4007 rcu_read_lock();
4008 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4009 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4010 continue;
4011
86911732 4012 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4013 skb_reset_mac_len(skb);
d565b0a1
HX
4014 NAPI_GRO_CB(skb)->same_flow = 0;
4015 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4016 NAPI_GRO_CB(skb)->free = 0;
b582ef09 4017 NAPI_GRO_CB(skb)->udp_mark = 0;
662880f4
TH
4018
4019 /* Setup for GRO checksum validation */
4020 switch (skb->ip_summed) {
4021 case CHECKSUM_COMPLETE:
4022 NAPI_GRO_CB(skb)->csum = skb->csum;
4023 NAPI_GRO_CB(skb)->csum_valid = 1;
4024 NAPI_GRO_CB(skb)->csum_cnt = 0;
4025 break;
4026 case CHECKSUM_UNNECESSARY:
4027 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4028 NAPI_GRO_CB(skb)->csum_valid = 0;
4029 break;
4030 default:
4031 NAPI_GRO_CB(skb)->csum_cnt = 0;
4032 NAPI_GRO_CB(skb)->csum_valid = 0;
4033 }
d565b0a1 4034
f191a1d1 4035 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4036 break;
4037 }
4038 rcu_read_unlock();
4039
4040 if (&ptype->list == head)
4041 goto normal;
4042
0da2afd5 4043 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4044 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4045
d565b0a1
HX
4046 if (pp) {
4047 struct sk_buff *nskb = *pp;
4048
4049 *pp = nskb->next;
4050 nskb->next = NULL;
4051 napi_gro_complete(nskb);
4ae5544f 4052 napi->gro_count--;
d565b0a1
HX
4053 }
4054
0da2afd5 4055 if (same_flow)
d565b0a1
HX
4056 goto ok;
4057
600adc18 4058 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4059 goto normal;
d565b0a1 4060
600adc18
ED
4061 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4062 struct sk_buff *nskb = napi->gro_list;
4063
4064 /* locate the end of the list to select the 'oldest' flow */
4065 while (nskb->next) {
4066 pp = &nskb->next;
4067 nskb = *pp;
4068 }
4069 *pp = NULL;
4070 nskb->next = NULL;
4071 napi_gro_complete(nskb);
4072 } else {
4073 napi->gro_count++;
4074 }
d565b0a1 4075 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4076 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4077 NAPI_GRO_CB(skb)->last = skb;
86911732 4078 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4079 skb->next = napi->gro_list;
4080 napi->gro_list = skb;
5d0d9be8 4081 ret = GRO_HELD;
d565b0a1 4082
ad0f9904 4083pull:
a50e233c
ED
4084 grow = skb_gro_offset(skb) - skb_headlen(skb);
4085 if (grow > 0)
4086 gro_pull_from_frag0(skb, grow);
d565b0a1 4087ok:
5d0d9be8 4088 return ret;
d565b0a1
HX
4089
4090normal:
ad0f9904
HX
4091 ret = GRO_NORMAL;
4092 goto pull;
5d38a079 4093}
96e93eab 4094
bf5a755f
JC
4095struct packet_offload *gro_find_receive_by_type(__be16 type)
4096{
4097 struct list_head *offload_head = &offload_base;
4098 struct packet_offload *ptype;
4099
4100 list_for_each_entry_rcu(ptype, offload_head, list) {
4101 if (ptype->type != type || !ptype->callbacks.gro_receive)
4102 continue;
4103 return ptype;
4104 }
4105 return NULL;
4106}
e27a2f83 4107EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4108
4109struct packet_offload *gro_find_complete_by_type(__be16 type)
4110{
4111 struct list_head *offload_head = &offload_base;
4112 struct packet_offload *ptype;
4113
4114 list_for_each_entry_rcu(ptype, offload_head, list) {
4115 if (ptype->type != type || !ptype->callbacks.gro_complete)
4116 continue;
4117 return ptype;
4118 }
4119 return NULL;
4120}
e27a2f83 4121EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4122
bb728820 4123static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4124{
5d0d9be8
HX
4125 switch (ret) {
4126 case GRO_NORMAL:
ae78dbfa 4127 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4128 ret = GRO_DROP;
4129 break;
5d38a079 4130
5d0d9be8 4131 case GRO_DROP:
5d38a079
HX
4132 kfree_skb(skb);
4133 break;
5b252f0c 4134
daa86548 4135 case GRO_MERGED_FREE:
d7e8883c
ED
4136 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4137 kmem_cache_free(skbuff_head_cache, skb);
4138 else
4139 __kfree_skb(skb);
daa86548
ED
4140 break;
4141
5b252f0c
BH
4142 case GRO_HELD:
4143 case GRO_MERGED:
4144 break;
5d38a079
HX
4145 }
4146
c7c4b3b6 4147 return ret;
5d0d9be8 4148}
5d0d9be8 4149
c7c4b3b6 4150gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4151{
ae78dbfa 4152 trace_napi_gro_receive_entry(skb);
86911732 4153
a50e233c
ED
4154 skb_gro_reset_offset(skb);
4155
89c5fa33 4156 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4157}
4158EXPORT_SYMBOL(napi_gro_receive);
4159
d0c2b0d2 4160static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4161{
96e93eab 4162 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4163 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4164 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4165 skb->vlan_tci = 0;
66c46d74 4166 skb->dev = napi->dev;
6d152e23 4167 skb->skb_iif = 0;
c3caf119
JC
4168 skb->encapsulation = 0;
4169 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4170 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4171
4172 napi->skb = skb;
4173}
96e93eab 4174
76620aaf 4175struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4176{
5d38a079 4177 struct sk_buff *skb = napi->skb;
5d38a079
HX
4178
4179 if (!skb) {
89d71a66 4180 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
84b9cd63 4181 napi->skb = skb;
80595d59 4182 }
96e93eab
HX
4183 return skb;
4184}
76620aaf 4185EXPORT_SYMBOL(napi_get_frags);
96e93eab 4186
a50e233c
ED
4187static gro_result_t napi_frags_finish(struct napi_struct *napi,
4188 struct sk_buff *skb,
4189 gro_result_t ret)
96e93eab 4190{
5d0d9be8
HX
4191 switch (ret) {
4192 case GRO_NORMAL:
a50e233c
ED
4193 case GRO_HELD:
4194 __skb_push(skb, ETH_HLEN);
4195 skb->protocol = eth_type_trans(skb, skb->dev);
4196 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4197 ret = GRO_DROP;
86911732 4198 break;
5d38a079 4199
5d0d9be8 4200 case GRO_DROP:
5d0d9be8
HX
4201 case GRO_MERGED_FREE:
4202 napi_reuse_skb(napi, skb);
4203 break;
5b252f0c
BH
4204
4205 case GRO_MERGED:
4206 break;
5d0d9be8 4207 }
5d38a079 4208
c7c4b3b6 4209 return ret;
5d38a079 4210}
5d0d9be8 4211
a50e233c
ED
4212/* Upper GRO stack assumes network header starts at gro_offset=0
4213 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4214 * We copy ethernet header into skb->data to have a common layout.
4215 */
4adb9c4a 4216static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4217{
4218 struct sk_buff *skb = napi->skb;
a50e233c
ED
4219 const struct ethhdr *eth;
4220 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4221
4222 napi->skb = NULL;
4223
a50e233c
ED
4224 skb_reset_mac_header(skb);
4225 skb_gro_reset_offset(skb);
4226
4227 eth = skb_gro_header_fast(skb, 0);
4228 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4229 eth = skb_gro_header_slow(skb, hlen, 0);
4230 if (unlikely(!eth)) {
4231 napi_reuse_skb(napi, skb);
4232 return NULL;
4233 }
4234 } else {
4235 gro_pull_from_frag0(skb, hlen);
4236 NAPI_GRO_CB(skb)->frag0 += hlen;
4237 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4238 }
a50e233c
ED
4239 __skb_pull(skb, hlen);
4240
4241 /*
4242 * This works because the only protocols we care about don't require
4243 * special handling.
4244 * We'll fix it up properly in napi_frags_finish()
4245 */
4246 skb->protocol = eth->h_proto;
76620aaf 4247
76620aaf
HX
4248 return skb;
4249}
76620aaf 4250
c7c4b3b6 4251gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4252{
76620aaf 4253 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4254
4255 if (!skb)
c7c4b3b6 4256 return GRO_DROP;
5d0d9be8 4257
ae78dbfa
BH
4258 trace_napi_gro_frags_entry(skb);
4259
89c5fa33 4260 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4261}
5d38a079
HX
4262EXPORT_SYMBOL(napi_gro_frags);
4263
573e8fca
TH
4264/* Compute the checksum from gro_offset and return the folded value
4265 * after adding in any pseudo checksum.
4266 */
4267__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4268{
4269 __wsum wsum;
4270 __sum16 sum;
4271
4272 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4273
4274 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4275 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4276 if (likely(!sum)) {
4277 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4278 !skb->csum_complete_sw)
4279 netdev_rx_csum_fault(skb->dev);
4280 }
4281
4282 NAPI_GRO_CB(skb)->csum = wsum;
4283 NAPI_GRO_CB(skb)->csum_valid = 1;
4284
4285 return sum;
4286}
4287EXPORT_SYMBOL(__skb_gro_checksum_complete);
4288
e326bed2 4289/*
855abcf0 4290 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4291 * Note: called with local irq disabled, but exits with local irq enabled.
4292 */
4293static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4294{
4295#ifdef CONFIG_RPS
4296 struct softnet_data *remsd = sd->rps_ipi_list;
4297
4298 if (remsd) {
4299 sd->rps_ipi_list = NULL;
4300
4301 local_irq_enable();
4302
4303 /* Send pending IPI's to kick RPS processing on remote cpus. */
4304 while (remsd) {
4305 struct softnet_data *next = remsd->rps_ipi_next;
4306
4307 if (cpu_online(remsd->cpu))
c46fff2a 4308 smp_call_function_single_async(remsd->cpu,
fce8ad15 4309 &remsd->csd);
e326bed2
ED
4310 remsd = next;
4311 }
4312 } else
4313#endif
4314 local_irq_enable();
4315}
4316
bea3348e 4317static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4318{
4319 int work = 0;
eecfd7c4 4320 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4321
e326bed2
ED
4322#ifdef CONFIG_RPS
4323 /* Check if we have pending ipi, its better to send them now,
4324 * not waiting net_rx_action() end.
4325 */
4326 if (sd->rps_ipi_list) {
4327 local_irq_disable();
4328 net_rps_action_and_irq_enable(sd);
4329 }
4330#endif
bea3348e 4331 napi->weight = weight_p;
6e7676c1 4332 local_irq_disable();
11ef7a89 4333 while (1) {
1da177e4 4334 struct sk_buff *skb;
6e7676c1
CG
4335
4336 while ((skb = __skb_dequeue(&sd->process_queue))) {
4337 local_irq_enable();
4338 __netif_receive_skb(skb);
6e7676c1 4339 local_irq_disable();
76cc8b13
TH
4340 input_queue_head_incr(sd);
4341 if (++work >= quota) {
4342 local_irq_enable();
4343 return work;
4344 }
6e7676c1 4345 }
1da177e4 4346
e36fa2f7 4347 rps_lock(sd);
11ef7a89 4348 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4349 /*
4350 * Inline a custom version of __napi_complete().
4351 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4352 * and NAPI_STATE_SCHED is the only possible flag set
4353 * on backlog.
4354 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4355 * and we dont need an smp_mb() memory barrier.
4356 */
4357 list_del(&napi->poll_list);
4358 napi->state = 0;
11ef7a89 4359 rps_unlock(sd);
eecfd7c4 4360
11ef7a89 4361 break;
bea3348e 4362 }
11ef7a89
TH
4363
4364 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4365 &sd->process_queue);
e36fa2f7 4366 rps_unlock(sd);
6e7676c1
CG
4367 }
4368 local_irq_enable();
1da177e4 4369
bea3348e
SH
4370 return work;
4371}
1da177e4 4372
bea3348e
SH
4373/**
4374 * __napi_schedule - schedule for receive
c4ea43c5 4375 * @n: entry to schedule
bea3348e
SH
4376 *
4377 * The entry's receive function will be scheduled to run
4378 */
b5606c2d 4379void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4380{
4381 unsigned long flags;
1da177e4 4382
bea3348e 4383 local_irq_save(flags);
eecfd7c4 4384 ____napi_schedule(&__get_cpu_var(softnet_data), n);
bea3348e 4385 local_irq_restore(flags);
1da177e4 4386}
bea3348e
SH
4387EXPORT_SYMBOL(__napi_schedule);
4388
d565b0a1
HX
4389void __napi_complete(struct napi_struct *n)
4390{
4391 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4392 BUG_ON(n->gro_list);
4393
4394 list_del(&n->poll_list);
4e857c58 4395 smp_mb__before_atomic();
d565b0a1
HX
4396 clear_bit(NAPI_STATE_SCHED, &n->state);
4397}
4398EXPORT_SYMBOL(__napi_complete);
4399
4400void napi_complete(struct napi_struct *n)
4401{
4402 unsigned long flags;
4403
4404 /*
4405 * don't let napi dequeue from the cpu poll list
4406 * just in case its running on a different cpu
4407 */
4408 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4409 return;
4410
2e71a6f8 4411 napi_gro_flush(n, false);
d565b0a1
HX
4412 local_irq_save(flags);
4413 __napi_complete(n);
4414 local_irq_restore(flags);
4415}
4416EXPORT_SYMBOL(napi_complete);
4417
af12fa6e
ET
4418/* must be called under rcu_read_lock(), as we dont take a reference */
4419struct napi_struct *napi_by_id(unsigned int napi_id)
4420{
4421 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4422 struct napi_struct *napi;
4423
4424 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4425 if (napi->napi_id == napi_id)
4426 return napi;
4427
4428 return NULL;
4429}
4430EXPORT_SYMBOL_GPL(napi_by_id);
4431
4432void napi_hash_add(struct napi_struct *napi)
4433{
4434 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4435
4436 spin_lock(&napi_hash_lock);
4437
4438 /* 0 is not a valid id, we also skip an id that is taken
4439 * we expect both events to be extremely rare
4440 */
4441 napi->napi_id = 0;
4442 while (!napi->napi_id) {
4443 napi->napi_id = ++napi_gen_id;
4444 if (napi_by_id(napi->napi_id))
4445 napi->napi_id = 0;
4446 }
4447
4448 hlist_add_head_rcu(&napi->napi_hash_node,
4449 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4450
4451 spin_unlock(&napi_hash_lock);
4452 }
4453}
4454EXPORT_SYMBOL_GPL(napi_hash_add);
4455
4456/* Warning : caller is responsible to make sure rcu grace period
4457 * is respected before freeing memory containing @napi
4458 */
4459void napi_hash_del(struct napi_struct *napi)
4460{
4461 spin_lock(&napi_hash_lock);
4462
4463 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4464 hlist_del_rcu(&napi->napi_hash_node);
4465
4466 spin_unlock(&napi_hash_lock);
4467}
4468EXPORT_SYMBOL_GPL(napi_hash_del);
4469
d565b0a1
HX
4470void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4471 int (*poll)(struct napi_struct *, int), int weight)
4472{
4473 INIT_LIST_HEAD(&napi->poll_list);
4ae5544f 4474 napi->gro_count = 0;
d565b0a1 4475 napi->gro_list = NULL;
5d38a079 4476 napi->skb = NULL;
d565b0a1 4477 napi->poll = poll;
82dc3c63
ED
4478 if (weight > NAPI_POLL_WEIGHT)
4479 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4480 weight, dev->name);
d565b0a1
HX
4481 napi->weight = weight;
4482 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4483 napi->dev = dev;
5d38a079 4484#ifdef CONFIG_NETPOLL
d565b0a1
HX
4485 spin_lock_init(&napi->poll_lock);
4486 napi->poll_owner = -1;
4487#endif
4488 set_bit(NAPI_STATE_SCHED, &napi->state);
4489}
4490EXPORT_SYMBOL(netif_napi_add);
4491
4492void netif_napi_del(struct napi_struct *napi)
4493{
d7b06636 4494 list_del_init(&napi->dev_list);
76620aaf 4495 napi_free_frags(napi);
d565b0a1 4496
289dccbe 4497 kfree_skb_list(napi->gro_list);
d565b0a1 4498 napi->gro_list = NULL;
4ae5544f 4499 napi->gro_count = 0;
d565b0a1
HX
4500}
4501EXPORT_SYMBOL(netif_napi_del);
4502
1da177e4
LT
4503static void net_rx_action(struct softirq_action *h)
4504{
e326bed2 4505 struct softnet_data *sd = &__get_cpu_var(softnet_data);
24f8b238 4506 unsigned long time_limit = jiffies + 2;
51b0bded 4507 int budget = netdev_budget;
53fb95d3
MM
4508 void *have;
4509
1da177e4
LT
4510 local_irq_disable();
4511
e326bed2 4512 while (!list_empty(&sd->poll_list)) {
bea3348e
SH
4513 struct napi_struct *n;
4514 int work, weight;
1da177e4 4515
bea3348e 4516 /* If softirq window is exhuasted then punt.
24f8b238
SH
4517 * Allow this to run for 2 jiffies since which will allow
4518 * an average latency of 1.5/HZ.
bea3348e 4519 */
d1f41b67 4520 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
1da177e4
LT
4521 goto softnet_break;
4522
4523 local_irq_enable();
4524
bea3348e
SH
4525 /* Even though interrupts have been re-enabled, this
4526 * access is safe because interrupts can only add new
4527 * entries to the tail of this list, and only ->poll()
4528 * calls can remove this head entry from the list.
4529 */
e326bed2 4530 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
1da177e4 4531
bea3348e
SH
4532 have = netpoll_poll_lock(n);
4533
4534 weight = n->weight;
4535
0a7606c1
DM
4536 /* This NAPI_STATE_SCHED test is for avoiding a race
4537 * with netpoll's poll_napi(). Only the entity which
4538 * obtains the lock and sees NAPI_STATE_SCHED set will
4539 * actually make the ->poll() call. Therefore we avoid
25985edc 4540 * accidentally calling ->poll() when NAPI is not scheduled.
0a7606c1
DM
4541 */
4542 work = 0;
4ea7e386 4543 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
0a7606c1 4544 work = n->poll(n, weight);
4ea7e386
NH
4545 trace_napi_poll(n);
4546 }
bea3348e
SH
4547
4548 WARN_ON_ONCE(work > weight);
4549
4550 budget -= work;
4551
4552 local_irq_disable();
4553
4554 /* Drivers must not modify the NAPI state if they
4555 * consume the entire weight. In such cases this code
4556 * still "owns" the NAPI instance and therefore can
4557 * move the instance around on the list at-will.
4558 */
fed17f30 4559 if (unlikely(work == weight)) {
ff780cd8
HX
4560 if (unlikely(napi_disable_pending(n))) {
4561 local_irq_enable();
4562 napi_complete(n);
4563 local_irq_disable();
2e71a6f8
ED
4564 } else {
4565 if (n->gro_list) {
4566 /* flush too old packets
4567 * If HZ < 1000, flush all packets.
4568 */
4569 local_irq_enable();
4570 napi_gro_flush(n, HZ >= 1000);
4571 local_irq_disable();
4572 }
e326bed2 4573 list_move_tail(&n->poll_list, &sd->poll_list);
2e71a6f8 4574 }
fed17f30 4575 }
bea3348e
SH
4576
4577 netpoll_poll_unlock(have);
1da177e4
LT
4578 }
4579out:
e326bed2 4580 net_rps_action_and_irq_enable(sd);
0a9627f2 4581
db217334
CL
4582#ifdef CONFIG_NET_DMA
4583 /*
4584 * There may not be any more sk_buffs coming right now, so push
4585 * any pending DMA copies to hardware
4586 */
2ba05622 4587 dma_issue_pending_all();
db217334 4588#endif
bea3348e 4589
1da177e4
LT
4590 return;
4591
4592softnet_break:
dee42870 4593 sd->time_squeeze++;
1da177e4
LT
4594 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4595 goto out;
4596}
4597
aa9d8560 4598struct netdev_adjacent {
9ff162a8 4599 struct net_device *dev;
5d261913
VF
4600
4601 /* upper master flag, there can only be one master device per list */
9ff162a8 4602 bool master;
5d261913 4603
5d261913
VF
4604 /* counter for the number of times this device was added to us */
4605 u16 ref_nr;
4606
402dae96
VF
4607 /* private field for the users */
4608 void *private;
4609
9ff162a8
JP
4610 struct list_head list;
4611 struct rcu_head rcu;
9ff162a8
JP
4612};
4613
5d261913
VF
4614static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4615 struct net_device *adj_dev,
2f268f12 4616 struct list_head *adj_list)
9ff162a8 4617{
5d261913 4618 struct netdev_adjacent *adj;
5d261913 4619
2f268f12 4620 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4621 if (adj->dev == adj_dev)
4622 return adj;
9ff162a8
JP
4623 }
4624 return NULL;
4625}
4626
4627/**
4628 * netdev_has_upper_dev - Check if device is linked to an upper device
4629 * @dev: device
4630 * @upper_dev: upper device to check
4631 *
4632 * Find out if a device is linked to specified upper device and return true
4633 * in case it is. Note that this checks only immediate upper device,
4634 * not through a complete stack of devices. The caller must hold the RTNL lock.
4635 */
4636bool netdev_has_upper_dev(struct net_device *dev,
4637 struct net_device *upper_dev)
4638{
4639 ASSERT_RTNL();
4640
2f268f12 4641 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4642}
4643EXPORT_SYMBOL(netdev_has_upper_dev);
4644
4645/**
4646 * netdev_has_any_upper_dev - Check if device is linked to some device
4647 * @dev: device
4648 *
4649 * Find out if a device is linked to an upper device and return true in case
4650 * it is. The caller must hold the RTNL lock.
4651 */
1d143d9f 4652static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4653{
4654 ASSERT_RTNL();
4655
2f268f12 4656 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4657}
9ff162a8
JP
4658
4659/**
4660 * netdev_master_upper_dev_get - Get master upper device
4661 * @dev: device
4662 *
4663 * Find a master upper device and return pointer to it or NULL in case
4664 * it's not there. The caller must hold the RTNL lock.
4665 */
4666struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4667{
aa9d8560 4668 struct netdev_adjacent *upper;
9ff162a8
JP
4669
4670 ASSERT_RTNL();
4671
2f268f12 4672 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4673 return NULL;
4674
2f268f12 4675 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4676 struct netdev_adjacent, list);
9ff162a8
JP
4677 if (likely(upper->master))
4678 return upper->dev;
4679 return NULL;
4680}
4681EXPORT_SYMBOL(netdev_master_upper_dev_get);
4682
b6ccba4c
VF
4683void *netdev_adjacent_get_private(struct list_head *adj_list)
4684{
4685 struct netdev_adjacent *adj;
4686
4687 adj = list_entry(adj_list, struct netdev_adjacent, list);
4688
4689 return adj->private;
4690}
4691EXPORT_SYMBOL(netdev_adjacent_get_private);
4692
44a40855
VY
4693/**
4694 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4695 * @dev: device
4696 * @iter: list_head ** of the current position
4697 *
4698 * Gets the next device from the dev's upper list, starting from iter
4699 * position. The caller must hold RCU read lock.
4700 */
4701struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4702 struct list_head **iter)
4703{
4704 struct netdev_adjacent *upper;
4705
4706 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4707
4708 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4709
4710 if (&upper->list == &dev->adj_list.upper)
4711 return NULL;
4712
4713 *iter = &upper->list;
4714
4715 return upper->dev;
4716}
4717EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4718
31088a11
VF
4719/**
4720 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4721 * @dev: device
4722 * @iter: list_head ** of the current position
4723 *
4724 * Gets the next device from the dev's upper list, starting from iter
4725 * position. The caller must hold RCU read lock.
4726 */
2f268f12
VF
4727struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4728 struct list_head **iter)
48311f46
VF
4729{
4730 struct netdev_adjacent *upper;
4731
85328240 4732 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
4733
4734 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4735
2f268f12 4736 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
4737 return NULL;
4738
4739 *iter = &upper->list;
4740
4741 return upper->dev;
4742}
2f268f12 4743EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 4744
31088a11
VF
4745/**
4746 * netdev_lower_get_next_private - Get the next ->private from the
4747 * lower neighbour list
4748 * @dev: device
4749 * @iter: list_head ** of the current position
4750 *
4751 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4752 * list, starting from iter position. The caller must hold either hold the
4753 * RTNL lock or its own locking that guarantees that the neighbour lower
4754 * list will remain unchainged.
4755 */
4756void *netdev_lower_get_next_private(struct net_device *dev,
4757 struct list_head **iter)
4758{
4759 struct netdev_adjacent *lower;
4760
4761 lower = list_entry(*iter, struct netdev_adjacent, list);
4762
4763 if (&lower->list == &dev->adj_list.lower)
4764 return NULL;
4765
6859e7df 4766 *iter = lower->list.next;
31088a11
VF
4767
4768 return lower->private;
4769}
4770EXPORT_SYMBOL(netdev_lower_get_next_private);
4771
4772/**
4773 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4774 * lower neighbour list, RCU
4775 * variant
4776 * @dev: device
4777 * @iter: list_head ** of the current position
4778 *
4779 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4780 * list, starting from iter position. The caller must hold RCU read lock.
4781 */
4782void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4783 struct list_head **iter)
4784{
4785 struct netdev_adjacent *lower;
4786
4787 WARN_ON_ONCE(!rcu_read_lock_held());
4788
4789 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4790
4791 if (&lower->list == &dev->adj_list.lower)
4792 return NULL;
4793
6859e7df 4794 *iter = &lower->list;
31088a11
VF
4795
4796 return lower->private;
4797}
4798EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4799
4085ebe8
VY
4800/**
4801 * netdev_lower_get_next - Get the next device from the lower neighbour
4802 * list
4803 * @dev: device
4804 * @iter: list_head ** of the current position
4805 *
4806 * Gets the next netdev_adjacent from the dev's lower neighbour
4807 * list, starting from iter position. The caller must hold RTNL lock or
4808 * its own locking that guarantees that the neighbour lower
4809 * list will remain unchainged.
4810 */
4811void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4812{
4813 struct netdev_adjacent *lower;
4814
4815 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4816
4817 if (&lower->list == &dev->adj_list.lower)
4818 return NULL;
4819
4820 *iter = &lower->list;
4821
4822 return lower->dev;
4823}
4824EXPORT_SYMBOL(netdev_lower_get_next);
4825
e001bfad 4826/**
4827 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4828 * lower neighbour list, RCU
4829 * variant
4830 * @dev: device
4831 *
4832 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4833 * list. The caller must hold RCU read lock.
4834 */
4835void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4836{
4837 struct netdev_adjacent *lower;
4838
4839 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4840 struct netdev_adjacent, list);
4841 if (lower)
4842 return lower->private;
4843 return NULL;
4844}
4845EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4846
9ff162a8
JP
4847/**
4848 * netdev_master_upper_dev_get_rcu - Get master upper device
4849 * @dev: device
4850 *
4851 * Find a master upper device and return pointer to it or NULL in case
4852 * it's not there. The caller must hold the RCU read lock.
4853 */
4854struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4855{
aa9d8560 4856 struct netdev_adjacent *upper;
9ff162a8 4857
2f268f12 4858 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 4859 struct netdev_adjacent, list);
9ff162a8
JP
4860 if (upper && likely(upper->master))
4861 return upper->dev;
4862 return NULL;
4863}
4864EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4865
0a59f3a9 4866static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
4867 struct net_device *adj_dev,
4868 struct list_head *dev_list)
4869{
4870 char linkname[IFNAMSIZ+7];
4871 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4872 "upper_%s" : "lower_%s", adj_dev->name);
4873 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4874 linkname);
4875}
0a59f3a9 4876static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
4877 char *name,
4878 struct list_head *dev_list)
4879{
4880 char linkname[IFNAMSIZ+7];
4881 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4882 "upper_%s" : "lower_%s", name);
4883 sysfs_remove_link(&(dev->dev.kobj), linkname);
4884}
4885
7ce64c79
AF
4886static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4887 struct net_device *adj_dev,
4888 struct list_head *dev_list)
4889{
4890 return (dev_list == &dev->adj_list.upper ||
4891 dev_list == &dev->adj_list.lower) &&
4892 net_eq(dev_net(dev), dev_net(adj_dev));
4893}
3ee32707 4894
5d261913
VF
4895static int __netdev_adjacent_dev_insert(struct net_device *dev,
4896 struct net_device *adj_dev,
7863c054 4897 struct list_head *dev_list,
402dae96 4898 void *private, bool master)
5d261913
VF
4899{
4900 struct netdev_adjacent *adj;
842d67a7 4901 int ret;
5d261913 4902
7863c054 4903 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913
VF
4904
4905 if (adj) {
5d261913
VF
4906 adj->ref_nr++;
4907 return 0;
4908 }
4909
4910 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4911 if (!adj)
4912 return -ENOMEM;
4913
4914 adj->dev = adj_dev;
4915 adj->master = master;
5d261913 4916 adj->ref_nr = 1;
402dae96 4917 adj->private = private;
5d261913 4918 dev_hold(adj_dev);
2f268f12
VF
4919
4920 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4921 adj_dev->name, dev->name, adj_dev->name);
5d261913 4922
7ce64c79 4923 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 4924 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
4925 if (ret)
4926 goto free_adj;
4927 }
4928
7863c054 4929 /* Ensure that master link is always the first item in list. */
842d67a7
VF
4930 if (master) {
4931 ret = sysfs_create_link(&(dev->dev.kobj),
4932 &(adj_dev->dev.kobj), "master");
4933 if (ret)
5831d66e 4934 goto remove_symlinks;
842d67a7 4935
7863c054 4936 list_add_rcu(&adj->list, dev_list);
842d67a7 4937 } else {
7863c054 4938 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 4939 }
5d261913
VF
4940
4941 return 0;
842d67a7 4942
5831d66e 4943remove_symlinks:
7ce64c79 4944 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 4945 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
4946free_adj:
4947 kfree(adj);
974daef7 4948 dev_put(adj_dev);
842d67a7
VF
4949
4950 return ret;
5d261913
VF
4951}
4952
1d143d9f 4953static void __netdev_adjacent_dev_remove(struct net_device *dev,
4954 struct net_device *adj_dev,
4955 struct list_head *dev_list)
5d261913
VF
4956{
4957 struct netdev_adjacent *adj;
4958
7863c054 4959 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913 4960
2f268f12
VF
4961 if (!adj) {
4962 pr_err("tried to remove device %s from %s\n",
4963 dev->name, adj_dev->name);
5d261913 4964 BUG();
2f268f12 4965 }
5d261913
VF
4966
4967 if (adj->ref_nr > 1) {
2f268f12
VF
4968 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4969 adj->ref_nr-1);
5d261913
VF
4970 adj->ref_nr--;
4971 return;
4972 }
4973
842d67a7
VF
4974 if (adj->master)
4975 sysfs_remove_link(&(dev->dev.kobj), "master");
4976
7ce64c79 4977 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 4978 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 4979
5d261913 4980 list_del_rcu(&adj->list);
2f268f12
VF
4981 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4982 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
4983 dev_put(adj_dev);
4984 kfree_rcu(adj, rcu);
4985}
4986
1d143d9f 4987static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4988 struct net_device *upper_dev,
4989 struct list_head *up_list,
4990 struct list_head *down_list,
4991 void *private, bool master)
5d261913
VF
4992{
4993 int ret;
4994
402dae96
VF
4995 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4996 master);
5d261913
VF
4997 if (ret)
4998 return ret;
4999
402dae96
VF
5000 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5001 false);
5d261913 5002 if (ret) {
2f268f12 5003 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5004 return ret;
5005 }
5006
5007 return 0;
5008}
5009
1d143d9f 5010static int __netdev_adjacent_dev_link(struct net_device *dev,
5011 struct net_device *upper_dev)
5d261913 5012{
2f268f12
VF
5013 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5014 &dev->all_adj_list.upper,
5015 &upper_dev->all_adj_list.lower,
402dae96 5016 NULL, false);
5d261913
VF
5017}
5018
1d143d9f 5019static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5020 struct net_device *upper_dev,
5021 struct list_head *up_list,
5022 struct list_head *down_list)
5d261913 5023{
2f268f12
VF
5024 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5025 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5026}
5027
1d143d9f 5028static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5029 struct net_device *upper_dev)
5d261913 5030{
2f268f12
VF
5031 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5032 &dev->all_adj_list.upper,
5033 &upper_dev->all_adj_list.lower);
5034}
5035
1d143d9f 5036static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5037 struct net_device *upper_dev,
5038 void *private, bool master)
2f268f12
VF
5039{
5040 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5041
5042 if (ret)
5043 return ret;
5044
5045 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5046 &dev->adj_list.upper,
5047 &upper_dev->adj_list.lower,
402dae96 5048 private, master);
2f268f12
VF
5049 if (ret) {
5050 __netdev_adjacent_dev_unlink(dev, upper_dev);
5051 return ret;
5052 }
5053
5054 return 0;
5d261913
VF
5055}
5056
1d143d9f 5057static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5058 struct net_device *upper_dev)
2f268f12
VF
5059{
5060 __netdev_adjacent_dev_unlink(dev, upper_dev);
5061 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5062 &dev->adj_list.upper,
5063 &upper_dev->adj_list.lower);
5064}
5d261913 5065
9ff162a8 5066static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
5067 struct net_device *upper_dev, bool master,
5068 void *private)
9ff162a8 5069{
5d261913
VF
5070 struct netdev_adjacent *i, *j, *to_i, *to_j;
5071 int ret = 0;
9ff162a8
JP
5072
5073 ASSERT_RTNL();
5074
5075 if (dev == upper_dev)
5076 return -EBUSY;
5077
5078 /* To prevent loops, check if dev is not upper device to upper_dev. */
2f268f12 5079 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5080 return -EBUSY;
5081
2f268f12 5082 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
9ff162a8
JP
5083 return -EEXIST;
5084
5085 if (master && netdev_master_upper_dev_get(dev))
5086 return -EBUSY;
5087
402dae96
VF
5088 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5089 master);
5d261913
VF
5090 if (ret)
5091 return ret;
9ff162a8 5092
5d261913 5093 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5094 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5095 * versa, and don't forget the devices itself. All of these
5096 * links are non-neighbours.
5097 */
2f268f12
VF
5098 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5099 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5100 pr_debug("Interlinking %s with %s, non-neighbour\n",
5101 i->dev->name, j->dev->name);
5d261913
VF
5102 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5103 if (ret)
5104 goto rollback_mesh;
5105 }
5106 }
5107
5108 /* add dev to every upper_dev's upper device */
2f268f12
VF
5109 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5110 pr_debug("linking %s's upper device %s with %s\n",
5111 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5112 ret = __netdev_adjacent_dev_link(dev, i->dev);
5113 if (ret)
5114 goto rollback_upper_mesh;
5115 }
5116
5117 /* add upper_dev to every dev's lower device */
2f268f12
VF
5118 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5119 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5120 i->dev->name, upper_dev->name);
5d261913
VF
5121 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5122 if (ret)
5123 goto rollback_lower_mesh;
5124 }
9ff162a8 5125
42e52bf9 5126 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8 5127 return 0;
5d261913
VF
5128
5129rollback_lower_mesh:
5130 to_i = i;
2f268f12 5131 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5132 if (i == to_i)
5133 break;
5134 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5135 }
5136
5137 i = NULL;
5138
5139rollback_upper_mesh:
5140 to_i = i;
2f268f12 5141 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5142 if (i == to_i)
5143 break;
5144 __netdev_adjacent_dev_unlink(dev, i->dev);
5145 }
5146
5147 i = j = NULL;
5148
5149rollback_mesh:
5150 to_i = i;
5151 to_j = j;
2f268f12
VF
5152 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5153 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5154 if (i == to_i && j == to_j)
5155 break;
5156 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5157 }
5158 if (i == to_i)
5159 break;
5160 }
5161
2f268f12 5162 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5163
5164 return ret;
9ff162a8
JP
5165}
5166
5167/**
5168 * netdev_upper_dev_link - Add a link to the upper device
5169 * @dev: device
5170 * @upper_dev: new upper device
5171 *
5172 * Adds a link to device which is upper to this one. The caller must hold
5173 * the RTNL lock. On a failure a negative errno code is returned.
5174 * On success the reference counts are adjusted and the function
5175 * returns zero.
5176 */
5177int netdev_upper_dev_link(struct net_device *dev,
5178 struct net_device *upper_dev)
5179{
402dae96 5180 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5181}
5182EXPORT_SYMBOL(netdev_upper_dev_link);
5183
5184/**
5185 * netdev_master_upper_dev_link - Add a master link to the upper device
5186 * @dev: device
5187 * @upper_dev: new upper device
5188 *
5189 * Adds a link to device which is upper to this one. In this case, only
5190 * one master upper device can be linked, although other non-master devices
5191 * might be linked as well. The caller must hold the RTNL lock.
5192 * On a failure a negative errno code is returned. On success the reference
5193 * counts are adjusted and the function returns zero.
5194 */
5195int netdev_master_upper_dev_link(struct net_device *dev,
5196 struct net_device *upper_dev)
5197{
402dae96 5198 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5199}
5200EXPORT_SYMBOL(netdev_master_upper_dev_link);
5201
402dae96
VF
5202int netdev_master_upper_dev_link_private(struct net_device *dev,
5203 struct net_device *upper_dev,
5204 void *private)
5205{
5206 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5207}
5208EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5209
9ff162a8
JP
5210/**
5211 * netdev_upper_dev_unlink - Removes a link to upper device
5212 * @dev: device
5213 * @upper_dev: new upper device
5214 *
5215 * Removes a link to device which is upper to this one. The caller must hold
5216 * the RTNL lock.
5217 */
5218void netdev_upper_dev_unlink(struct net_device *dev,
5219 struct net_device *upper_dev)
5220{
5d261913 5221 struct netdev_adjacent *i, *j;
9ff162a8
JP
5222 ASSERT_RTNL();
5223
2f268f12 5224 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5225
5226 /* Here is the tricky part. We must remove all dev's lower
5227 * devices from all upper_dev's upper devices and vice
5228 * versa, to maintain the graph relationship.
5229 */
2f268f12
VF
5230 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5231 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5232 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5233
5234 /* remove also the devices itself from lower/upper device
5235 * list
5236 */
2f268f12 5237 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5238 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5239
2f268f12 5240 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5241 __netdev_adjacent_dev_unlink(dev, i->dev);
5242
42e52bf9 5243 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8
JP
5244}
5245EXPORT_SYMBOL(netdev_upper_dev_unlink);
5246
4c75431a
AF
5247void netdev_adjacent_add_links(struct net_device *dev)
5248{
5249 struct netdev_adjacent *iter;
5250
5251 struct net *net = dev_net(dev);
5252
5253 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5254 if (!net_eq(net,dev_net(iter->dev)))
5255 continue;
5256 netdev_adjacent_sysfs_add(iter->dev, dev,
5257 &iter->dev->adj_list.lower);
5258 netdev_adjacent_sysfs_add(dev, iter->dev,
5259 &dev->adj_list.upper);
5260 }
5261
5262 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5263 if (!net_eq(net,dev_net(iter->dev)))
5264 continue;
5265 netdev_adjacent_sysfs_add(iter->dev, dev,
5266 &iter->dev->adj_list.upper);
5267 netdev_adjacent_sysfs_add(dev, iter->dev,
5268 &dev->adj_list.lower);
5269 }
5270}
5271
5272void netdev_adjacent_del_links(struct net_device *dev)
5273{
5274 struct netdev_adjacent *iter;
5275
5276 struct net *net = dev_net(dev);
5277
5278 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5279 if (!net_eq(net,dev_net(iter->dev)))
5280 continue;
5281 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5282 &iter->dev->adj_list.lower);
5283 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5284 &dev->adj_list.upper);
5285 }
5286
5287 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5288 if (!net_eq(net,dev_net(iter->dev)))
5289 continue;
5290 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5291 &iter->dev->adj_list.upper);
5292 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5293 &dev->adj_list.lower);
5294 }
5295}
5296
5bb025fa 5297void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5298{
5bb025fa 5299 struct netdev_adjacent *iter;
402dae96 5300
4c75431a
AF
5301 struct net *net = dev_net(dev);
5302
5bb025fa 5303 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5304 if (!net_eq(net,dev_net(iter->dev)))
5305 continue;
5bb025fa
VF
5306 netdev_adjacent_sysfs_del(iter->dev, oldname,
5307 &iter->dev->adj_list.lower);
5308 netdev_adjacent_sysfs_add(iter->dev, dev,
5309 &iter->dev->adj_list.lower);
5310 }
402dae96 5311
5bb025fa 5312 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5313 if (!net_eq(net,dev_net(iter->dev)))
5314 continue;
5bb025fa
VF
5315 netdev_adjacent_sysfs_del(iter->dev, oldname,
5316 &iter->dev->adj_list.upper);
5317 netdev_adjacent_sysfs_add(iter->dev, dev,
5318 &iter->dev->adj_list.upper);
5319 }
402dae96 5320}
402dae96
VF
5321
5322void *netdev_lower_dev_get_private(struct net_device *dev,
5323 struct net_device *lower_dev)
5324{
5325 struct netdev_adjacent *lower;
5326
5327 if (!lower_dev)
5328 return NULL;
5329 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5330 if (!lower)
5331 return NULL;
5332
5333 return lower->private;
5334}
5335EXPORT_SYMBOL(netdev_lower_dev_get_private);
5336
4085ebe8
VY
5337
5338int dev_get_nest_level(struct net_device *dev,
5339 bool (*type_check)(struct net_device *dev))
5340{
5341 struct net_device *lower = NULL;
5342 struct list_head *iter;
5343 int max_nest = -1;
5344 int nest;
5345
5346 ASSERT_RTNL();
5347
5348 netdev_for_each_lower_dev(dev, lower, iter) {
5349 nest = dev_get_nest_level(lower, type_check);
5350 if (max_nest < nest)
5351 max_nest = nest;
5352 }
5353
5354 if (type_check(dev))
5355 max_nest++;
5356
5357 return max_nest;
5358}
5359EXPORT_SYMBOL(dev_get_nest_level);
5360
b6c40d68
PM
5361static void dev_change_rx_flags(struct net_device *dev, int flags)
5362{
d314774c
SH
5363 const struct net_device_ops *ops = dev->netdev_ops;
5364
d2615bf4 5365 if (ops->ndo_change_rx_flags)
d314774c 5366 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5367}
5368
991fb3f7 5369static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5370{
b536db93 5371 unsigned int old_flags = dev->flags;
d04a48b0
EB
5372 kuid_t uid;
5373 kgid_t gid;
1da177e4 5374
24023451
PM
5375 ASSERT_RTNL();
5376
dad9b335
WC
5377 dev->flags |= IFF_PROMISC;
5378 dev->promiscuity += inc;
5379 if (dev->promiscuity == 0) {
5380 /*
5381 * Avoid overflow.
5382 * If inc causes overflow, untouch promisc and return error.
5383 */
5384 if (inc < 0)
5385 dev->flags &= ~IFF_PROMISC;
5386 else {
5387 dev->promiscuity -= inc;
7b6cd1ce
JP
5388 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5389 dev->name);
dad9b335
WC
5390 return -EOVERFLOW;
5391 }
5392 }
52609c0b 5393 if (dev->flags != old_flags) {
7b6cd1ce
JP
5394 pr_info("device %s %s promiscuous mode\n",
5395 dev->name,
5396 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5397 if (audit_enabled) {
5398 current_uid_gid(&uid, &gid);
7759db82
KHK
5399 audit_log(current->audit_context, GFP_ATOMIC,
5400 AUDIT_ANOM_PROMISCUOUS,
5401 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5402 dev->name, (dev->flags & IFF_PROMISC),
5403 (old_flags & IFF_PROMISC),
e1760bd5 5404 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5405 from_kuid(&init_user_ns, uid),
5406 from_kgid(&init_user_ns, gid),
7759db82 5407 audit_get_sessionid(current));
8192b0c4 5408 }
24023451 5409
b6c40d68 5410 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5411 }
991fb3f7
ND
5412 if (notify)
5413 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5414 return 0;
1da177e4
LT
5415}
5416
4417da66
PM
5417/**
5418 * dev_set_promiscuity - update promiscuity count on a device
5419 * @dev: device
5420 * @inc: modifier
5421 *
5422 * Add or remove promiscuity from a device. While the count in the device
5423 * remains above zero the interface remains promiscuous. Once it hits zero
5424 * the device reverts back to normal filtering operation. A negative inc
5425 * value is used to drop promiscuity on the device.
dad9b335 5426 * Return 0 if successful or a negative errno code on error.
4417da66 5427 */
dad9b335 5428int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5429{
b536db93 5430 unsigned int old_flags = dev->flags;
dad9b335 5431 int err;
4417da66 5432
991fb3f7 5433 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5434 if (err < 0)
dad9b335 5435 return err;
4417da66
PM
5436 if (dev->flags != old_flags)
5437 dev_set_rx_mode(dev);
dad9b335 5438 return err;
4417da66 5439}
d1b19dff 5440EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5441
991fb3f7 5442static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5443{
991fb3f7 5444 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5445
24023451
PM
5446 ASSERT_RTNL();
5447
1da177e4 5448 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5449 dev->allmulti += inc;
5450 if (dev->allmulti == 0) {
5451 /*
5452 * Avoid overflow.
5453 * If inc causes overflow, untouch allmulti and return error.
5454 */
5455 if (inc < 0)
5456 dev->flags &= ~IFF_ALLMULTI;
5457 else {
5458 dev->allmulti -= inc;
7b6cd1ce
JP
5459 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5460 dev->name);
dad9b335
WC
5461 return -EOVERFLOW;
5462 }
5463 }
24023451 5464 if (dev->flags ^ old_flags) {
b6c40d68 5465 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5466 dev_set_rx_mode(dev);
991fb3f7
ND
5467 if (notify)
5468 __dev_notify_flags(dev, old_flags,
5469 dev->gflags ^ old_gflags);
24023451 5470 }
dad9b335 5471 return 0;
4417da66 5472}
991fb3f7
ND
5473
5474/**
5475 * dev_set_allmulti - update allmulti count on a device
5476 * @dev: device
5477 * @inc: modifier
5478 *
5479 * Add or remove reception of all multicast frames to a device. While the
5480 * count in the device remains above zero the interface remains listening
5481 * to all interfaces. Once it hits zero the device reverts back to normal
5482 * filtering operation. A negative @inc value is used to drop the counter
5483 * when releasing a resource needing all multicasts.
5484 * Return 0 if successful or a negative errno code on error.
5485 */
5486
5487int dev_set_allmulti(struct net_device *dev, int inc)
5488{
5489 return __dev_set_allmulti(dev, inc, true);
5490}
d1b19dff 5491EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5492
5493/*
5494 * Upload unicast and multicast address lists to device and
5495 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5496 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5497 * are present.
5498 */
5499void __dev_set_rx_mode(struct net_device *dev)
5500{
d314774c
SH
5501 const struct net_device_ops *ops = dev->netdev_ops;
5502
4417da66
PM
5503 /* dev_open will call this function so the list will stay sane. */
5504 if (!(dev->flags&IFF_UP))
5505 return;
5506
5507 if (!netif_device_present(dev))
40b77c94 5508 return;
4417da66 5509
01789349 5510 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5511 /* Unicast addresses changes may only happen under the rtnl,
5512 * therefore calling __dev_set_promiscuity here is safe.
5513 */
32e7bfc4 5514 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5515 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5516 dev->uc_promisc = true;
32e7bfc4 5517 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5518 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5519 dev->uc_promisc = false;
4417da66 5520 }
4417da66 5521 }
01789349
JP
5522
5523 if (ops->ndo_set_rx_mode)
5524 ops->ndo_set_rx_mode(dev);
4417da66
PM
5525}
5526
5527void dev_set_rx_mode(struct net_device *dev)
5528{
b9e40857 5529 netif_addr_lock_bh(dev);
4417da66 5530 __dev_set_rx_mode(dev);
b9e40857 5531 netif_addr_unlock_bh(dev);
1da177e4
LT
5532}
5533
f0db275a
SH
5534/**
5535 * dev_get_flags - get flags reported to userspace
5536 * @dev: device
5537 *
5538 * Get the combination of flag bits exported through APIs to userspace.
5539 */
95c96174 5540unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5541{
95c96174 5542 unsigned int flags;
1da177e4
LT
5543
5544 flags = (dev->flags & ~(IFF_PROMISC |
5545 IFF_ALLMULTI |
b00055aa
SR
5546 IFF_RUNNING |
5547 IFF_LOWER_UP |
5548 IFF_DORMANT)) |
1da177e4
LT
5549 (dev->gflags & (IFF_PROMISC |
5550 IFF_ALLMULTI));
5551
b00055aa
SR
5552 if (netif_running(dev)) {
5553 if (netif_oper_up(dev))
5554 flags |= IFF_RUNNING;
5555 if (netif_carrier_ok(dev))
5556 flags |= IFF_LOWER_UP;
5557 if (netif_dormant(dev))
5558 flags |= IFF_DORMANT;
5559 }
1da177e4
LT
5560
5561 return flags;
5562}
d1b19dff 5563EXPORT_SYMBOL(dev_get_flags);
1da177e4 5564
bd380811 5565int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5566{
b536db93 5567 unsigned int old_flags = dev->flags;
bd380811 5568 int ret;
1da177e4 5569
24023451
PM
5570 ASSERT_RTNL();
5571
1da177e4
LT
5572 /*
5573 * Set the flags on our device.
5574 */
5575
5576 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5577 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5578 IFF_AUTOMEDIA)) |
5579 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5580 IFF_ALLMULTI));
5581
5582 /*
5583 * Load in the correct multicast list now the flags have changed.
5584 */
5585
b6c40d68
PM
5586 if ((old_flags ^ flags) & IFF_MULTICAST)
5587 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5588
4417da66 5589 dev_set_rx_mode(dev);
1da177e4
LT
5590
5591 /*
5592 * Have we downed the interface. We handle IFF_UP ourselves
5593 * according to user attempts to set it, rather than blindly
5594 * setting it.
5595 */
5596
5597 ret = 0;
d215d10f 5598 if ((old_flags ^ flags) & IFF_UP)
bd380811 5599 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5600
1da177e4 5601 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5602 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5603 unsigned int old_flags = dev->flags;
d1b19dff 5604
1da177e4 5605 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5606
5607 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5608 if (dev->flags != old_flags)
5609 dev_set_rx_mode(dev);
1da177e4
LT
5610 }
5611
5612 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5613 is important. Some (broken) drivers set IFF_PROMISC, when
5614 IFF_ALLMULTI is requested not asking us and not reporting.
5615 */
5616 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5617 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5618
1da177e4 5619 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5620 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5621 }
5622
bd380811
PM
5623 return ret;
5624}
5625
a528c219
ND
5626void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5627 unsigned int gchanges)
bd380811
PM
5628{
5629 unsigned int changes = dev->flags ^ old_flags;
5630
a528c219 5631 if (gchanges)
7f294054 5632 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5633
bd380811
PM
5634 if (changes & IFF_UP) {
5635 if (dev->flags & IFF_UP)
5636 call_netdevice_notifiers(NETDEV_UP, dev);
5637 else
5638 call_netdevice_notifiers(NETDEV_DOWN, dev);
5639 }
5640
5641 if (dev->flags & IFF_UP &&
be9efd36
JP
5642 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5643 struct netdev_notifier_change_info change_info;
5644
5645 change_info.flags_changed = changes;
5646 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5647 &change_info.info);
5648 }
bd380811
PM
5649}
5650
5651/**
5652 * dev_change_flags - change device settings
5653 * @dev: device
5654 * @flags: device state flags
5655 *
5656 * Change settings on device based state flags. The flags are
5657 * in the userspace exported format.
5658 */
b536db93 5659int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5660{
b536db93 5661 int ret;
991fb3f7 5662 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5663
5664 ret = __dev_change_flags(dev, flags);
5665 if (ret < 0)
5666 return ret;
5667
991fb3f7 5668 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5669 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5670 return ret;
5671}
d1b19dff 5672EXPORT_SYMBOL(dev_change_flags);
1da177e4 5673
2315dc91
VF
5674static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5675{
5676 const struct net_device_ops *ops = dev->netdev_ops;
5677
5678 if (ops->ndo_change_mtu)
5679 return ops->ndo_change_mtu(dev, new_mtu);
5680
5681 dev->mtu = new_mtu;
5682 return 0;
5683}
5684
f0db275a
SH
5685/**
5686 * dev_set_mtu - Change maximum transfer unit
5687 * @dev: device
5688 * @new_mtu: new transfer unit
5689 *
5690 * Change the maximum transfer size of the network device.
5691 */
1da177e4
LT
5692int dev_set_mtu(struct net_device *dev, int new_mtu)
5693{
2315dc91 5694 int err, orig_mtu;
1da177e4
LT
5695
5696 if (new_mtu == dev->mtu)
5697 return 0;
5698
5699 /* MTU must be positive. */
5700 if (new_mtu < 0)
5701 return -EINVAL;
5702
5703 if (!netif_device_present(dev))
5704 return -ENODEV;
5705
1d486bfb
VF
5706 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5707 err = notifier_to_errno(err);
5708 if (err)
5709 return err;
d314774c 5710
2315dc91
VF
5711 orig_mtu = dev->mtu;
5712 err = __dev_set_mtu(dev, new_mtu);
d314774c 5713
2315dc91
VF
5714 if (!err) {
5715 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5716 err = notifier_to_errno(err);
5717 if (err) {
5718 /* setting mtu back and notifying everyone again,
5719 * so that they have a chance to revert changes.
5720 */
5721 __dev_set_mtu(dev, orig_mtu);
5722 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5723 }
5724 }
1da177e4
LT
5725 return err;
5726}
d1b19dff 5727EXPORT_SYMBOL(dev_set_mtu);
1da177e4 5728
cbda10fa
VD
5729/**
5730 * dev_set_group - Change group this device belongs to
5731 * @dev: device
5732 * @new_group: group this device should belong to
5733 */
5734void dev_set_group(struct net_device *dev, int new_group)
5735{
5736 dev->group = new_group;
5737}
5738EXPORT_SYMBOL(dev_set_group);
5739
f0db275a
SH
5740/**
5741 * dev_set_mac_address - Change Media Access Control Address
5742 * @dev: device
5743 * @sa: new address
5744 *
5745 * Change the hardware (MAC) address of the device
5746 */
1da177e4
LT
5747int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5748{
d314774c 5749 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
5750 int err;
5751
d314774c 5752 if (!ops->ndo_set_mac_address)
1da177e4
LT
5753 return -EOPNOTSUPP;
5754 if (sa->sa_family != dev->type)
5755 return -EINVAL;
5756 if (!netif_device_present(dev))
5757 return -ENODEV;
d314774c 5758 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
5759 if (err)
5760 return err;
fbdeca2d 5761 dev->addr_assign_type = NET_ADDR_SET;
f6521516 5762 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 5763 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 5764 return 0;
1da177e4 5765}
d1b19dff 5766EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 5767
4bf84c35
JP
5768/**
5769 * dev_change_carrier - Change device carrier
5770 * @dev: device
691b3b7e 5771 * @new_carrier: new value
4bf84c35
JP
5772 *
5773 * Change device carrier
5774 */
5775int dev_change_carrier(struct net_device *dev, bool new_carrier)
5776{
5777 const struct net_device_ops *ops = dev->netdev_ops;
5778
5779 if (!ops->ndo_change_carrier)
5780 return -EOPNOTSUPP;
5781 if (!netif_device_present(dev))
5782 return -ENODEV;
5783 return ops->ndo_change_carrier(dev, new_carrier);
5784}
5785EXPORT_SYMBOL(dev_change_carrier);
5786
66b52b0d
JP
5787/**
5788 * dev_get_phys_port_id - Get device physical port ID
5789 * @dev: device
5790 * @ppid: port ID
5791 *
5792 * Get device physical port ID
5793 */
5794int dev_get_phys_port_id(struct net_device *dev,
5795 struct netdev_phys_port_id *ppid)
5796{
5797 const struct net_device_ops *ops = dev->netdev_ops;
5798
5799 if (!ops->ndo_get_phys_port_id)
5800 return -EOPNOTSUPP;
5801 return ops->ndo_get_phys_port_id(dev, ppid);
5802}
5803EXPORT_SYMBOL(dev_get_phys_port_id);
5804
1da177e4
LT
5805/**
5806 * dev_new_index - allocate an ifindex
c4ea43c5 5807 * @net: the applicable net namespace
1da177e4
LT
5808 *
5809 * Returns a suitable unique value for a new device interface
5810 * number. The caller must hold the rtnl semaphore or the
5811 * dev_base_lock to be sure it remains unique.
5812 */
881d966b 5813static int dev_new_index(struct net *net)
1da177e4 5814{
aa79e66e 5815 int ifindex = net->ifindex;
1da177e4
LT
5816 for (;;) {
5817 if (++ifindex <= 0)
5818 ifindex = 1;
881d966b 5819 if (!__dev_get_by_index(net, ifindex))
aa79e66e 5820 return net->ifindex = ifindex;
1da177e4
LT
5821 }
5822}
5823
1da177e4 5824/* Delayed registration/unregisteration */
3b5b34fd 5825static LIST_HEAD(net_todo_list);
200b916f 5826DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 5827
6f05f629 5828static void net_set_todo(struct net_device *dev)
1da177e4 5829{
1da177e4 5830 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 5831 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
5832}
5833
9b5e383c 5834static void rollback_registered_many(struct list_head *head)
93ee31f1 5835{
e93737b0 5836 struct net_device *dev, *tmp;
5cde2829 5837 LIST_HEAD(close_head);
9b5e383c 5838
93ee31f1
DL
5839 BUG_ON(dev_boot_phase);
5840 ASSERT_RTNL();
5841
e93737b0 5842 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5843 /* Some devices call without registering
e93737b0
KK
5844 * for initialization unwind. Remove those
5845 * devices and proceed with the remaining.
9b5e383c
ED
5846 */
5847 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
5848 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5849 dev->name, dev);
93ee31f1 5850
9b5e383c 5851 WARN_ON(1);
e93737b0
KK
5852 list_del(&dev->unreg_list);
5853 continue;
9b5e383c 5854 }
449f4544 5855 dev->dismantle = true;
9b5e383c 5856 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 5857 }
93ee31f1 5858
44345724 5859 /* If device is running, close it first. */
5cde2829
EB
5860 list_for_each_entry(dev, head, unreg_list)
5861 list_add_tail(&dev->close_list, &close_head);
5862 dev_close_many(&close_head);
93ee31f1 5863
44345724 5864 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
5865 /* And unlink it from device chain. */
5866 unlist_netdevice(dev);
93ee31f1 5867
9b5e383c
ED
5868 dev->reg_state = NETREG_UNREGISTERING;
5869 }
93ee31f1
DL
5870
5871 synchronize_net();
5872
9b5e383c
ED
5873 list_for_each_entry(dev, head, unreg_list) {
5874 /* Shutdown queueing discipline. */
5875 dev_shutdown(dev);
93ee31f1
DL
5876
5877
9b5e383c
ED
5878 /* Notify protocols, that we are about to destroy
5879 this device. They should clean all the things.
5880 */
5881 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 5882
9b5e383c
ED
5883 /*
5884 * Flush the unicast and multicast chains
5885 */
a748ee24 5886 dev_uc_flush(dev);
22bedad3 5887 dev_mc_flush(dev);
93ee31f1 5888
9b5e383c
ED
5889 if (dev->netdev_ops->ndo_uninit)
5890 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 5891
56bfa7ee
RP
5892 if (!dev->rtnl_link_ops ||
5893 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5894 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5895
9ff162a8
JP
5896 /* Notifier chain MUST detach us all upper devices. */
5897 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 5898
9b5e383c
ED
5899 /* Remove entries from kobject tree */
5900 netdev_unregister_kobject(dev);
024e9679
AD
5901#ifdef CONFIG_XPS
5902 /* Remove XPS queueing entries */
5903 netif_reset_xps_queues_gt(dev, 0);
5904#endif
9b5e383c 5905 }
93ee31f1 5906
850a545b 5907 synchronize_net();
395264d5 5908
a5ee1551 5909 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
5910 dev_put(dev);
5911}
5912
5913static void rollback_registered(struct net_device *dev)
5914{
5915 LIST_HEAD(single);
5916
5917 list_add(&dev->unreg_list, &single);
5918 rollback_registered_many(&single);
ceaaec98 5919 list_del(&single);
93ee31f1
DL
5920}
5921
c8f44aff
MM
5922static netdev_features_t netdev_fix_features(struct net_device *dev,
5923 netdev_features_t features)
b63365a2 5924{
57422dc5
MM
5925 /* Fix illegal checksum combinations */
5926 if ((features & NETIF_F_HW_CSUM) &&
5927 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 5928 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
5929 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5930 }
5931
b63365a2 5932 /* TSO requires that SG is present as well. */
ea2d3688 5933 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 5934 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 5935 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
5936 }
5937
ec5f0615
PS
5938 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5939 !(features & NETIF_F_IP_CSUM)) {
5940 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5941 features &= ~NETIF_F_TSO;
5942 features &= ~NETIF_F_TSO_ECN;
5943 }
5944
5945 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5946 !(features & NETIF_F_IPV6_CSUM)) {
5947 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5948 features &= ~NETIF_F_TSO6;
5949 }
5950
31d8b9e0
BH
5951 /* TSO ECN requires that TSO is present as well. */
5952 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5953 features &= ~NETIF_F_TSO_ECN;
5954
212b573f
MM
5955 /* Software GSO depends on SG. */
5956 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 5957 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
5958 features &= ~NETIF_F_GSO;
5959 }
5960
acd1130e 5961 /* UFO needs SG and checksumming */
b63365a2 5962 if (features & NETIF_F_UFO) {
79032644
MM
5963 /* maybe split UFO into V4 and V6? */
5964 if (!((features & NETIF_F_GEN_CSUM) ||
5965 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5966 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 5967 netdev_dbg(dev,
acd1130e 5968 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
5969 features &= ~NETIF_F_UFO;
5970 }
5971
5972 if (!(features & NETIF_F_SG)) {
6f404e44 5973 netdev_dbg(dev,
acd1130e 5974 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
5975 features &= ~NETIF_F_UFO;
5976 }
5977 }
5978
d0290214
JP
5979#ifdef CONFIG_NET_RX_BUSY_POLL
5980 if (dev->netdev_ops->ndo_busy_poll)
5981 features |= NETIF_F_BUSY_POLL;
5982 else
5983#endif
5984 features &= ~NETIF_F_BUSY_POLL;
5985
b63365a2
HX
5986 return features;
5987}
b63365a2 5988
6cb6a27c 5989int __netdev_update_features(struct net_device *dev)
5455c699 5990{
c8f44aff 5991 netdev_features_t features;
5455c699
MM
5992 int err = 0;
5993
87267485
MM
5994 ASSERT_RTNL();
5995
5455c699
MM
5996 features = netdev_get_wanted_features(dev);
5997
5998 if (dev->netdev_ops->ndo_fix_features)
5999 features = dev->netdev_ops->ndo_fix_features(dev, features);
6000
6001 /* driver might be less strict about feature dependencies */
6002 features = netdev_fix_features(dev, features);
6003
6004 if (dev->features == features)
6cb6a27c 6005 return 0;
5455c699 6006
c8f44aff
MM
6007 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6008 &dev->features, &features);
5455c699
MM
6009
6010 if (dev->netdev_ops->ndo_set_features)
6011 err = dev->netdev_ops->ndo_set_features(dev, features);
6012
6cb6a27c 6013 if (unlikely(err < 0)) {
5455c699 6014 netdev_err(dev,
c8f44aff
MM
6015 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6016 err, &features, &dev->features);
6cb6a27c
MM
6017 return -1;
6018 }
6019
6020 if (!err)
6021 dev->features = features;
6022
6023 return 1;
6024}
6025
afe12cc8
MM
6026/**
6027 * netdev_update_features - recalculate device features
6028 * @dev: the device to check
6029 *
6030 * Recalculate dev->features set and send notifications if it
6031 * has changed. Should be called after driver or hardware dependent
6032 * conditions might have changed that influence the features.
6033 */
6cb6a27c
MM
6034void netdev_update_features(struct net_device *dev)
6035{
6036 if (__netdev_update_features(dev))
6037 netdev_features_change(dev);
5455c699
MM
6038}
6039EXPORT_SYMBOL(netdev_update_features);
6040
afe12cc8
MM
6041/**
6042 * netdev_change_features - recalculate device features
6043 * @dev: the device to check
6044 *
6045 * Recalculate dev->features set and send notifications even
6046 * if they have not changed. Should be called instead of
6047 * netdev_update_features() if also dev->vlan_features might
6048 * have changed to allow the changes to be propagated to stacked
6049 * VLAN devices.
6050 */
6051void netdev_change_features(struct net_device *dev)
6052{
6053 __netdev_update_features(dev);
6054 netdev_features_change(dev);
6055}
6056EXPORT_SYMBOL(netdev_change_features);
6057
fc4a7489
PM
6058/**
6059 * netif_stacked_transfer_operstate - transfer operstate
6060 * @rootdev: the root or lower level device to transfer state from
6061 * @dev: the device to transfer operstate to
6062 *
6063 * Transfer operational state from root to device. This is normally
6064 * called when a stacking relationship exists between the root
6065 * device and the device(a leaf device).
6066 */
6067void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6068 struct net_device *dev)
6069{
6070 if (rootdev->operstate == IF_OPER_DORMANT)
6071 netif_dormant_on(dev);
6072 else
6073 netif_dormant_off(dev);
6074
6075 if (netif_carrier_ok(rootdev)) {
6076 if (!netif_carrier_ok(dev))
6077 netif_carrier_on(dev);
6078 } else {
6079 if (netif_carrier_ok(dev))
6080 netif_carrier_off(dev);
6081 }
6082}
6083EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6084
a953be53 6085#ifdef CONFIG_SYSFS
1b4bf461
ED
6086static int netif_alloc_rx_queues(struct net_device *dev)
6087{
1b4bf461 6088 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6089 struct netdev_rx_queue *rx;
1b4bf461 6090
bd25fa7b 6091 BUG_ON(count < 1);
1b4bf461 6092
bd25fa7b 6093 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
62b5942a 6094 if (!rx)
bd25fa7b 6095 return -ENOMEM;
62b5942a 6096
bd25fa7b
TH
6097 dev->_rx = rx;
6098
bd25fa7b 6099 for (i = 0; i < count; i++)
fe822240 6100 rx[i].dev = dev;
1b4bf461
ED
6101 return 0;
6102}
bf264145 6103#endif
1b4bf461 6104
aa942104
CG
6105static void netdev_init_one_queue(struct net_device *dev,
6106 struct netdev_queue *queue, void *_unused)
6107{
6108 /* Initialize queue lock */
6109 spin_lock_init(&queue->_xmit_lock);
6110 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6111 queue->xmit_lock_owner = -1;
b236da69 6112 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6113 queue->dev = dev;
114cf580
TH
6114#ifdef CONFIG_BQL
6115 dql_init(&queue->dql, HZ);
6116#endif
aa942104
CG
6117}
6118
60877a32
ED
6119static void netif_free_tx_queues(struct net_device *dev)
6120{
4cb28970 6121 kvfree(dev->_tx);
60877a32
ED
6122}
6123
e6484930
TH
6124static int netif_alloc_netdev_queues(struct net_device *dev)
6125{
6126 unsigned int count = dev->num_tx_queues;
6127 struct netdev_queue *tx;
60877a32 6128 size_t sz = count * sizeof(*tx);
e6484930 6129
60877a32 6130 BUG_ON(count < 1 || count > 0xffff);
62b5942a 6131
60877a32
ED
6132 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6133 if (!tx) {
6134 tx = vzalloc(sz);
6135 if (!tx)
6136 return -ENOMEM;
6137 }
e6484930 6138 dev->_tx = tx;
1d24eb48 6139
e6484930
TH
6140 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6141 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6142
6143 return 0;
e6484930
TH
6144}
6145
1da177e4
LT
6146/**
6147 * register_netdevice - register a network device
6148 * @dev: device to register
6149 *
6150 * Take a completed network device structure and add it to the kernel
6151 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6152 * chain. 0 is returned on success. A negative errno code is returned
6153 * on a failure to set up the device, or if the name is a duplicate.
6154 *
6155 * Callers must hold the rtnl semaphore. You may want
6156 * register_netdev() instead of this.
6157 *
6158 * BUGS:
6159 * The locking appears insufficient to guarantee two parallel registers
6160 * will not get the same name.
6161 */
6162
6163int register_netdevice(struct net_device *dev)
6164{
1da177e4 6165 int ret;
d314774c 6166 struct net *net = dev_net(dev);
1da177e4
LT
6167
6168 BUG_ON(dev_boot_phase);
6169 ASSERT_RTNL();
6170
b17a7c17
SH
6171 might_sleep();
6172
1da177e4
LT
6173 /* When net_device's are persistent, this will be fatal. */
6174 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6175 BUG_ON(!net);
1da177e4 6176
f1f28aa3 6177 spin_lock_init(&dev->addr_list_lock);
cf508b12 6178 netdev_set_addr_lockdep_class(dev);
1da177e4 6179
1da177e4
LT
6180 dev->iflink = -1;
6181
828de4f6 6182 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6183 if (ret < 0)
6184 goto out;
6185
1da177e4 6186 /* Init, if this function is available */
d314774c
SH
6187 if (dev->netdev_ops->ndo_init) {
6188 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6189 if (ret) {
6190 if (ret > 0)
6191 ret = -EIO;
90833aa4 6192 goto out;
1da177e4
LT
6193 }
6194 }
4ec93edb 6195
f646968f
PM
6196 if (((dev->hw_features | dev->features) &
6197 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6198 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6199 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6200 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6201 ret = -EINVAL;
6202 goto err_uninit;
6203 }
6204
9c7dafbf
PE
6205 ret = -EBUSY;
6206 if (!dev->ifindex)
6207 dev->ifindex = dev_new_index(net);
6208 else if (__dev_get_by_index(net, dev->ifindex))
6209 goto err_uninit;
6210
1da177e4
LT
6211 if (dev->iflink == -1)
6212 dev->iflink = dev->ifindex;
6213
5455c699
MM
6214 /* Transfer changeable features to wanted_features and enable
6215 * software offloads (GSO and GRO).
6216 */
6217 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6218 dev->features |= NETIF_F_SOFT_FEATURES;
6219 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6220
34324dc2
MM
6221 if (!(dev->flags & IFF_LOOPBACK)) {
6222 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6223 }
6224
1180e7d6 6225 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6226 */
1180e7d6 6227 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6228
ee579677
PS
6229 /* Make NETIF_F_SG inheritable to tunnel devices.
6230 */
6231 dev->hw_enc_features |= NETIF_F_SG;
6232
0d89d203
SH
6233 /* Make NETIF_F_SG inheritable to MPLS.
6234 */
6235 dev->mpls_features |= NETIF_F_SG;
6236
7ffbe3fd
JB
6237 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6238 ret = notifier_to_errno(ret);
6239 if (ret)
6240 goto err_uninit;
6241
8b41d188 6242 ret = netdev_register_kobject(dev);
b17a7c17 6243 if (ret)
7ce1b0ed 6244 goto err_uninit;
b17a7c17
SH
6245 dev->reg_state = NETREG_REGISTERED;
6246
6cb6a27c 6247 __netdev_update_features(dev);
8e9b59b2 6248
1da177e4
LT
6249 /*
6250 * Default initial state at registry is that the
6251 * device is present.
6252 */
6253
6254 set_bit(__LINK_STATE_PRESENT, &dev->state);
6255
8f4cccbb
BH
6256 linkwatch_init_dev(dev);
6257
1da177e4 6258 dev_init_scheduler(dev);
1da177e4 6259 dev_hold(dev);
ce286d32 6260 list_netdevice(dev);
7bf23575 6261 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6262
948b337e
JP
6263 /* If the device has permanent device address, driver should
6264 * set dev_addr and also addr_assign_type should be set to
6265 * NET_ADDR_PERM (default value).
6266 */
6267 if (dev->addr_assign_type == NET_ADDR_PERM)
6268 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6269
1da177e4 6270 /* Notify protocols, that a new device appeared. */
056925ab 6271 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6272 ret = notifier_to_errno(ret);
93ee31f1
DL
6273 if (ret) {
6274 rollback_registered(dev);
6275 dev->reg_state = NETREG_UNREGISTERED;
6276 }
d90a909e
EB
6277 /*
6278 * Prevent userspace races by waiting until the network
6279 * device is fully setup before sending notifications.
6280 */
a2835763
PM
6281 if (!dev->rtnl_link_ops ||
6282 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6283 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6284
6285out:
6286 return ret;
7ce1b0ed
HX
6287
6288err_uninit:
d314774c
SH
6289 if (dev->netdev_ops->ndo_uninit)
6290 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6291 goto out;
1da177e4 6292}
d1b19dff 6293EXPORT_SYMBOL(register_netdevice);
1da177e4 6294
937f1ba5
BH
6295/**
6296 * init_dummy_netdev - init a dummy network device for NAPI
6297 * @dev: device to init
6298 *
6299 * This takes a network device structure and initialize the minimum
6300 * amount of fields so it can be used to schedule NAPI polls without
6301 * registering a full blown interface. This is to be used by drivers
6302 * that need to tie several hardware interfaces to a single NAPI
6303 * poll scheduler due to HW limitations.
6304 */
6305int init_dummy_netdev(struct net_device *dev)
6306{
6307 /* Clear everything. Note we don't initialize spinlocks
6308 * are they aren't supposed to be taken by any of the
6309 * NAPI code and this dummy netdev is supposed to be
6310 * only ever used for NAPI polls
6311 */
6312 memset(dev, 0, sizeof(struct net_device));
6313
6314 /* make sure we BUG if trying to hit standard
6315 * register/unregister code path
6316 */
6317 dev->reg_state = NETREG_DUMMY;
6318
937f1ba5
BH
6319 /* NAPI wants this */
6320 INIT_LIST_HEAD(&dev->napi_list);
6321
6322 /* a dummy interface is started by default */
6323 set_bit(__LINK_STATE_PRESENT, &dev->state);
6324 set_bit(__LINK_STATE_START, &dev->state);
6325
29b4433d
ED
6326 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6327 * because users of this 'device' dont need to change
6328 * its refcount.
6329 */
6330
937f1ba5
BH
6331 return 0;
6332}
6333EXPORT_SYMBOL_GPL(init_dummy_netdev);
6334
6335
1da177e4
LT
6336/**
6337 * register_netdev - register a network device
6338 * @dev: device to register
6339 *
6340 * Take a completed network device structure and add it to the kernel
6341 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6342 * chain. 0 is returned on success. A negative errno code is returned
6343 * on a failure to set up the device, or if the name is a duplicate.
6344 *
38b4da38 6345 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6346 * and expands the device name if you passed a format string to
6347 * alloc_netdev.
6348 */
6349int register_netdev(struct net_device *dev)
6350{
6351 int err;
6352
6353 rtnl_lock();
1da177e4 6354 err = register_netdevice(dev);
1da177e4
LT
6355 rtnl_unlock();
6356 return err;
6357}
6358EXPORT_SYMBOL(register_netdev);
6359
29b4433d
ED
6360int netdev_refcnt_read(const struct net_device *dev)
6361{
6362 int i, refcnt = 0;
6363
6364 for_each_possible_cpu(i)
6365 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6366 return refcnt;
6367}
6368EXPORT_SYMBOL(netdev_refcnt_read);
6369
2c53040f 6370/**
1da177e4 6371 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6372 * @dev: target net_device
1da177e4
LT
6373 *
6374 * This is called when unregistering network devices.
6375 *
6376 * Any protocol or device that holds a reference should register
6377 * for netdevice notification, and cleanup and put back the
6378 * reference if they receive an UNREGISTER event.
6379 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6380 * call dev_put.
1da177e4
LT
6381 */
6382static void netdev_wait_allrefs(struct net_device *dev)
6383{
6384 unsigned long rebroadcast_time, warning_time;
29b4433d 6385 int refcnt;
1da177e4 6386
e014debe
ED
6387 linkwatch_forget_dev(dev);
6388
1da177e4 6389 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6390 refcnt = netdev_refcnt_read(dev);
6391
6392 while (refcnt != 0) {
1da177e4 6393 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6394 rtnl_lock();
1da177e4
LT
6395
6396 /* Rebroadcast unregister notification */
056925ab 6397 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6398
748e2d93 6399 __rtnl_unlock();
0115e8e3 6400 rcu_barrier();
748e2d93
ED
6401 rtnl_lock();
6402
0115e8e3 6403 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6404 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6405 &dev->state)) {
6406 /* We must not have linkwatch events
6407 * pending on unregister. If this
6408 * happens, we simply run the queue
6409 * unscheduled, resulting in a noop
6410 * for this device.
6411 */
6412 linkwatch_run_queue();
6413 }
6414
6756ae4b 6415 __rtnl_unlock();
1da177e4
LT
6416
6417 rebroadcast_time = jiffies;
6418 }
6419
6420 msleep(250);
6421
29b4433d
ED
6422 refcnt = netdev_refcnt_read(dev);
6423
1da177e4 6424 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6425 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6426 dev->name, refcnt);
1da177e4
LT
6427 warning_time = jiffies;
6428 }
6429 }
6430}
6431
6432/* The sequence is:
6433 *
6434 * rtnl_lock();
6435 * ...
6436 * register_netdevice(x1);
6437 * register_netdevice(x2);
6438 * ...
6439 * unregister_netdevice(y1);
6440 * unregister_netdevice(y2);
6441 * ...
6442 * rtnl_unlock();
6443 * free_netdev(y1);
6444 * free_netdev(y2);
6445 *
58ec3b4d 6446 * We are invoked by rtnl_unlock().
1da177e4 6447 * This allows us to deal with problems:
b17a7c17 6448 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6449 * without deadlocking with linkwatch via keventd.
6450 * 2) Since we run with the RTNL semaphore not held, we can sleep
6451 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6452 *
6453 * We must not return until all unregister events added during
6454 * the interval the lock was held have been completed.
1da177e4 6455 */
1da177e4
LT
6456void netdev_run_todo(void)
6457{
626ab0e6 6458 struct list_head list;
1da177e4 6459
1da177e4 6460 /* Snapshot list, allow later requests */
626ab0e6 6461 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6462
6463 __rtnl_unlock();
626ab0e6 6464
0115e8e3
ED
6465
6466 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6467 if (!list_empty(&list))
6468 rcu_barrier();
6469
1da177e4
LT
6470 while (!list_empty(&list)) {
6471 struct net_device *dev
e5e26d75 6472 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6473 list_del(&dev->todo_list);
6474
748e2d93 6475 rtnl_lock();
0115e8e3 6476 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6477 __rtnl_unlock();
0115e8e3 6478
b17a7c17 6479 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6480 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6481 dev->name, dev->reg_state);
6482 dump_stack();
6483 continue;
6484 }
1da177e4 6485
b17a7c17 6486 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6487
152102c7 6488 on_each_cpu(flush_backlog, dev, 1);
6e583ce5 6489
b17a7c17 6490 netdev_wait_allrefs(dev);
1da177e4 6491
b17a7c17 6492 /* paranoia */
29b4433d 6493 BUG_ON(netdev_refcnt_read(dev));
33d480ce
ED
6494 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6495 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6496 WARN_ON(dev->dn_ptr);
1da177e4 6497
b17a7c17
SH
6498 if (dev->destructor)
6499 dev->destructor(dev);
9093bbb2 6500
50624c93
EB
6501 /* Report a network device has been unregistered */
6502 rtnl_lock();
6503 dev_net(dev)->dev_unreg_count--;
6504 __rtnl_unlock();
6505 wake_up(&netdev_unregistering_wq);
6506
9093bbb2
SH
6507 /* Free network device */
6508 kobject_put(&dev->dev.kobj);
1da177e4 6509 }
1da177e4
LT
6510}
6511
3cfde79c
BH
6512/* Convert net_device_stats to rtnl_link_stats64. They have the same
6513 * fields in the same order, with only the type differing.
6514 */
77a1abf5
ED
6515void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6516 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6517{
6518#if BITS_PER_LONG == 64
77a1abf5
ED
6519 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6520 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6521#else
6522 size_t i, n = sizeof(*stats64) / sizeof(u64);
6523 const unsigned long *src = (const unsigned long *)netdev_stats;
6524 u64 *dst = (u64 *)stats64;
6525
6526 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6527 sizeof(*stats64) / sizeof(u64));
6528 for (i = 0; i < n; i++)
6529 dst[i] = src[i];
6530#endif
6531}
77a1abf5 6532EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6533
eeda3fd6
SH
6534/**
6535 * dev_get_stats - get network device statistics
6536 * @dev: device to get statistics from
28172739 6537 * @storage: place to store stats
eeda3fd6 6538 *
d7753516
BH
6539 * Get network statistics from device. Return @storage.
6540 * The device driver may provide its own method by setting
6541 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6542 * otherwise the internal statistics structure is used.
eeda3fd6 6543 */
d7753516
BH
6544struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6545 struct rtnl_link_stats64 *storage)
7004bf25 6546{
eeda3fd6
SH
6547 const struct net_device_ops *ops = dev->netdev_ops;
6548
28172739
ED
6549 if (ops->ndo_get_stats64) {
6550 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6551 ops->ndo_get_stats64(dev, storage);
6552 } else if (ops->ndo_get_stats) {
3cfde79c 6553 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6554 } else {
6555 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6556 }
caf586e5 6557 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6558 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6559 return storage;
c45d286e 6560}
eeda3fd6 6561EXPORT_SYMBOL(dev_get_stats);
c45d286e 6562
24824a09 6563struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6564{
24824a09 6565 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6566
24824a09
ED
6567#ifdef CONFIG_NET_CLS_ACT
6568 if (queue)
6569 return queue;
6570 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6571 if (!queue)
6572 return NULL;
6573 netdev_init_one_queue(dev, queue, NULL);
24824a09
ED
6574 queue->qdisc = &noop_qdisc;
6575 queue->qdisc_sleeping = &noop_qdisc;
6576 rcu_assign_pointer(dev->ingress_queue, queue);
6577#endif
6578 return queue;
bb949fbd
DM
6579}
6580
2c60db03
ED
6581static const struct ethtool_ops default_ethtool_ops;
6582
d07d7507
SG
6583void netdev_set_default_ethtool_ops(struct net_device *dev,
6584 const struct ethtool_ops *ops)
6585{
6586 if (dev->ethtool_ops == &default_ethtool_ops)
6587 dev->ethtool_ops = ops;
6588}
6589EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6590
74d332c1
ED
6591void netdev_freemem(struct net_device *dev)
6592{
6593 char *addr = (char *)dev - dev->padded;
6594
4cb28970 6595 kvfree(addr);
74d332c1
ED
6596}
6597
1da177e4 6598/**
36909ea4 6599 * alloc_netdev_mqs - allocate network device
c835a677
TG
6600 * @sizeof_priv: size of private data to allocate space for
6601 * @name: device name format string
6602 * @name_assign_type: origin of device name
6603 * @setup: callback to initialize device
6604 * @txqs: the number of TX subqueues to allocate
6605 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6606 *
6607 * Allocates a struct net_device with private data area for driver use
90e51adf 6608 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6609 * for each queue on the device.
1da177e4 6610 */
36909ea4 6611struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6612 unsigned char name_assign_type,
36909ea4
TH
6613 void (*setup)(struct net_device *),
6614 unsigned int txqs, unsigned int rxqs)
1da177e4 6615{
1da177e4 6616 struct net_device *dev;
7943986c 6617 size_t alloc_size;
1ce8e7b5 6618 struct net_device *p;
1da177e4 6619
b6fe17d6
SH
6620 BUG_ON(strlen(name) >= sizeof(dev->name));
6621
36909ea4 6622 if (txqs < 1) {
7b6cd1ce 6623 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6624 return NULL;
6625 }
6626
a953be53 6627#ifdef CONFIG_SYSFS
36909ea4 6628 if (rxqs < 1) {
7b6cd1ce 6629 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6630 return NULL;
6631 }
6632#endif
6633
fd2ea0a7 6634 alloc_size = sizeof(struct net_device);
d1643d24
AD
6635 if (sizeof_priv) {
6636 /* ensure 32-byte alignment of private area */
1ce8e7b5 6637 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6638 alloc_size += sizeof_priv;
6639 }
6640 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 6641 alloc_size += NETDEV_ALIGN - 1;
1da177e4 6642
74d332c1
ED
6643 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6644 if (!p)
6645 p = vzalloc(alloc_size);
62b5942a 6646 if (!p)
1da177e4 6647 return NULL;
1da177e4 6648
1ce8e7b5 6649 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 6650 dev->padded = (char *)dev - (char *)p;
ab9c73cc 6651
29b4433d
ED
6652 dev->pcpu_refcnt = alloc_percpu(int);
6653 if (!dev->pcpu_refcnt)
74d332c1 6654 goto free_dev;
ab9c73cc 6655
ab9c73cc 6656 if (dev_addr_init(dev))
29b4433d 6657 goto free_pcpu;
ab9c73cc 6658
22bedad3 6659 dev_mc_init(dev);
a748ee24 6660 dev_uc_init(dev);
ccffad25 6661
c346dca1 6662 dev_net_set(dev, &init_net);
1da177e4 6663
8d3bdbd5 6664 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 6665 dev->gso_max_segs = GSO_MAX_SEGS;
fcbeb976 6666 dev->gso_min_segs = 0;
8d3bdbd5 6667
8d3bdbd5
DM
6668 INIT_LIST_HEAD(&dev->napi_list);
6669 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 6670 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 6671 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
6672 INIT_LIST_HEAD(&dev->adj_list.upper);
6673 INIT_LIST_HEAD(&dev->adj_list.lower);
6674 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6675 INIT_LIST_HEAD(&dev->all_adj_list.lower);
8d3bdbd5
DM
6676 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6677 setup(dev);
6678
36909ea4
TH
6679 dev->num_tx_queues = txqs;
6680 dev->real_num_tx_queues = txqs;
ed9af2e8 6681 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 6682 goto free_all;
e8a0464c 6683
a953be53 6684#ifdef CONFIG_SYSFS
36909ea4
TH
6685 dev->num_rx_queues = rxqs;
6686 dev->real_num_rx_queues = rxqs;
fe822240 6687 if (netif_alloc_rx_queues(dev))
8d3bdbd5 6688 goto free_all;
df334545 6689#endif
0a9627f2 6690
1da177e4 6691 strcpy(dev->name, name);
c835a677 6692 dev->name_assign_type = name_assign_type;
cbda10fa 6693 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
6694 if (!dev->ethtool_ops)
6695 dev->ethtool_ops = &default_ethtool_ops;
1da177e4 6696 return dev;
ab9c73cc 6697
8d3bdbd5
DM
6698free_all:
6699 free_netdev(dev);
6700 return NULL;
6701
29b4433d
ED
6702free_pcpu:
6703 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
6704free_dev:
6705 netdev_freemem(dev);
ab9c73cc 6706 return NULL;
1da177e4 6707}
36909ea4 6708EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
6709
6710/**
6711 * free_netdev - free network device
6712 * @dev: device
6713 *
4ec93edb
YH
6714 * This function does the last stage of destroying an allocated device
6715 * interface. The reference to the device object is released.
1da177e4
LT
6716 * If this is the last reference then it will be freed.
6717 */
6718void free_netdev(struct net_device *dev)
6719{
d565b0a1
HX
6720 struct napi_struct *p, *n;
6721
f3005d7f
DL
6722 release_net(dev_net(dev));
6723
60877a32 6724 netif_free_tx_queues(dev);
a953be53 6725#ifdef CONFIG_SYSFS
fe822240
TH
6726 kfree(dev->_rx);
6727#endif
e8a0464c 6728
33d480ce 6729 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 6730
f001fde5
JP
6731 /* Flush device addresses */
6732 dev_addr_flush(dev);
6733
d565b0a1
HX
6734 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6735 netif_napi_del(p);
6736
29b4433d
ED
6737 free_percpu(dev->pcpu_refcnt);
6738 dev->pcpu_refcnt = NULL;
6739
3041a069 6740 /* Compatibility with error handling in drivers */
1da177e4 6741 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 6742 netdev_freemem(dev);
1da177e4
LT
6743 return;
6744 }
6745
6746 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6747 dev->reg_state = NETREG_RELEASED;
6748
43cb76d9
GKH
6749 /* will free via device release */
6750 put_device(&dev->dev);
1da177e4 6751}
d1b19dff 6752EXPORT_SYMBOL(free_netdev);
4ec93edb 6753
f0db275a
SH
6754/**
6755 * synchronize_net - Synchronize with packet receive processing
6756 *
6757 * Wait for packets currently being received to be done.
6758 * Does not block later packets from starting.
6759 */
4ec93edb 6760void synchronize_net(void)
1da177e4
LT
6761{
6762 might_sleep();
be3fc413
ED
6763 if (rtnl_is_locked())
6764 synchronize_rcu_expedited();
6765 else
6766 synchronize_rcu();
1da177e4 6767}
d1b19dff 6768EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
6769
6770/**
44a0873d 6771 * unregister_netdevice_queue - remove device from the kernel
1da177e4 6772 * @dev: device
44a0873d 6773 * @head: list
6ebfbc06 6774 *
1da177e4 6775 * This function shuts down a device interface and removes it
d59b54b1 6776 * from the kernel tables.
44a0873d 6777 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
6778 *
6779 * Callers must hold the rtnl semaphore. You may want
6780 * unregister_netdev() instead of this.
6781 */
6782
44a0873d 6783void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 6784{
a6620712
HX
6785 ASSERT_RTNL();
6786
44a0873d 6787 if (head) {
9fdce099 6788 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
6789 } else {
6790 rollback_registered(dev);
6791 /* Finish processing unregister after unlock */
6792 net_set_todo(dev);
6793 }
1da177e4 6794}
44a0873d 6795EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 6796
9b5e383c
ED
6797/**
6798 * unregister_netdevice_many - unregister many devices
6799 * @head: list of devices
87757a91
ED
6800 *
6801 * Note: As most callers use a stack allocated list_head,
6802 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
6803 */
6804void unregister_netdevice_many(struct list_head *head)
6805{
6806 struct net_device *dev;
6807
6808 if (!list_empty(head)) {
6809 rollback_registered_many(head);
6810 list_for_each_entry(dev, head, unreg_list)
6811 net_set_todo(dev);
87757a91 6812 list_del(head);
9b5e383c
ED
6813 }
6814}
63c8099d 6815EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 6816
1da177e4
LT
6817/**
6818 * unregister_netdev - remove device from the kernel
6819 * @dev: device
6820 *
6821 * This function shuts down a device interface and removes it
d59b54b1 6822 * from the kernel tables.
1da177e4
LT
6823 *
6824 * This is just a wrapper for unregister_netdevice that takes
6825 * the rtnl semaphore. In general you want to use this and not
6826 * unregister_netdevice.
6827 */
6828void unregister_netdev(struct net_device *dev)
6829{
6830 rtnl_lock();
6831 unregister_netdevice(dev);
6832 rtnl_unlock();
6833}
1da177e4
LT
6834EXPORT_SYMBOL(unregister_netdev);
6835
ce286d32
EB
6836/**
6837 * dev_change_net_namespace - move device to different nethost namespace
6838 * @dev: device
6839 * @net: network namespace
6840 * @pat: If not NULL name pattern to try if the current device name
6841 * is already taken in the destination network namespace.
6842 *
6843 * This function shuts down a device interface and moves it
6844 * to a new network namespace. On success 0 is returned, on
6845 * a failure a netagive errno code is returned.
6846 *
6847 * Callers must hold the rtnl semaphore.
6848 */
6849
6850int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6851{
ce286d32
EB
6852 int err;
6853
6854 ASSERT_RTNL();
6855
6856 /* Don't allow namespace local devices to be moved. */
6857 err = -EINVAL;
6858 if (dev->features & NETIF_F_NETNS_LOCAL)
6859 goto out;
6860
6861 /* Ensure the device has been registrered */
ce286d32
EB
6862 if (dev->reg_state != NETREG_REGISTERED)
6863 goto out;
6864
6865 /* Get out if there is nothing todo */
6866 err = 0;
878628fb 6867 if (net_eq(dev_net(dev), net))
ce286d32
EB
6868 goto out;
6869
6870 /* Pick the destination device name, and ensure
6871 * we can use it in the destination network namespace.
6872 */
6873 err = -EEXIST;
d9031024 6874 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
6875 /* We get here if we can't use the current device name */
6876 if (!pat)
6877 goto out;
828de4f6 6878 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
6879 goto out;
6880 }
6881
6882 /*
6883 * And now a mini version of register_netdevice unregister_netdevice.
6884 */
6885
6886 /* If device is running close it first. */
9b772652 6887 dev_close(dev);
ce286d32
EB
6888
6889 /* And unlink it from device chain */
6890 err = -ENODEV;
6891 unlist_netdevice(dev);
6892
6893 synchronize_net();
6894
6895 /* Shutdown queueing discipline. */
6896 dev_shutdown(dev);
6897
6898 /* Notify protocols, that we are about to destroy
6899 this device. They should clean all the things.
3b27e105
DL
6900
6901 Note that dev->reg_state stays at NETREG_REGISTERED.
6902 This is wanted because this way 8021q and macvlan know
6903 the device is just moving and can keep their slaves up.
ce286d32
EB
6904 */
6905 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
6906 rcu_barrier();
6907 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 6908 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
6909
6910 /*
6911 * Flush the unicast and multicast chains
6912 */
a748ee24 6913 dev_uc_flush(dev);
22bedad3 6914 dev_mc_flush(dev);
ce286d32 6915
4e66ae2e
SH
6916 /* Send a netdev-removed uevent to the old namespace */
6917 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 6918 netdev_adjacent_del_links(dev);
4e66ae2e 6919
ce286d32 6920 /* Actually switch the network namespace */
c346dca1 6921 dev_net_set(dev, net);
ce286d32 6922
ce286d32
EB
6923 /* If there is an ifindex conflict assign a new one */
6924 if (__dev_get_by_index(net, dev->ifindex)) {
6925 int iflink = (dev->iflink == dev->ifindex);
6926 dev->ifindex = dev_new_index(net);
6927 if (iflink)
6928 dev->iflink = dev->ifindex;
6929 }
6930
4e66ae2e
SH
6931 /* Send a netdev-add uevent to the new namespace */
6932 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 6933 netdev_adjacent_add_links(dev);
4e66ae2e 6934
8b41d188 6935 /* Fixup kobjects */
a1b3f594 6936 err = device_rename(&dev->dev, dev->name);
8b41d188 6937 WARN_ON(err);
ce286d32
EB
6938
6939 /* Add the device back in the hashes */
6940 list_netdevice(dev);
6941
6942 /* Notify protocols, that a new device appeared. */
6943 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6944
d90a909e
EB
6945 /*
6946 * Prevent userspace races by waiting until the network
6947 * device is fully setup before sending notifications.
6948 */
7f294054 6949 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 6950
ce286d32
EB
6951 synchronize_net();
6952 err = 0;
6953out:
6954 return err;
6955}
463d0183 6956EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 6957
1da177e4
LT
6958static int dev_cpu_callback(struct notifier_block *nfb,
6959 unsigned long action,
6960 void *ocpu)
6961{
6962 struct sk_buff **list_skb;
1da177e4
LT
6963 struct sk_buff *skb;
6964 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6965 struct softnet_data *sd, *oldsd;
6966
8bb78442 6967 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
6968 return NOTIFY_OK;
6969
6970 local_irq_disable();
6971 cpu = smp_processor_id();
6972 sd = &per_cpu(softnet_data, cpu);
6973 oldsd = &per_cpu(softnet_data, oldcpu);
6974
6975 /* Find end of our completion_queue. */
6976 list_skb = &sd->completion_queue;
6977 while (*list_skb)
6978 list_skb = &(*list_skb)->next;
6979 /* Append completion queue from offline CPU. */
6980 *list_skb = oldsd->completion_queue;
6981 oldsd->completion_queue = NULL;
6982
1da177e4 6983 /* Append output queue from offline CPU. */
a9cbd588
CG
6984 if (oldsd->output_queue) {
6985 *sd->output_queue_tailp = oldsd->output_queue;
6986 sd->output_queue_tailp = oldsd->output_queue_tailp;
6987 oldsd->output_queue = NULL;
6988 oldsd->output_queue_tailp = &oldsd->output_queue;
6989 }
264524d5
HC
6990 /* Append NAPI poll list from offline CPU. */
6991 if (!list_empty(&oldsd->poll_list)) {
6992 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6993 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6994 }
1da177e4
LT
6995
6996 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6997 local_irq_enable();
6998
6999 /* Process offline CPU's input_pkt_queue */
76cc8b13 7000 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
ae78dbfa 7001 netif_rx_internal(skb);
76cc8b13 7002 input_queue_head_incr(oldsd);
fec5e652 7003 }
76cc8b13 7004 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
ae78dbfa 7005 netif_rx_internal(skb);
76cc8b13
TH
7006 input_queue_head_incr(oldsd);
7007 }
1da177e4
LT
7008
7009 return NOTIFY_OK;
7010}
1da177e4
LT
7011
7012
7f353bf2 7013/**
b63365a2
HX
7014 * netdev_increment_features - increment feature set by one
7015 * @all: current feature set
7016 * @one: new feature set
7017 * @mask: mask feature set
7f353bf2
HX
7018 *
7019 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7020 * @one to the master device with current feature set @all. Will not
7021 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7022 */
c8f44aff
MM
7023netdev_features_t netdev_increment_features(netdev_features_t all,
7024 netdev_features_t one, netdev_features_t mask)
b63365a2 7025{
1742f183
MM
7026 if (mask & NETIF_F_GEN_CSUM)
7027 mask |= NETIF_F_ALL_CSUM;
7028 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7029
1742f183
MM
7030 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7031 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7032
1742f183
MM
7033 /* If one device supports hw checksumming, set for all. */
7034 if (all & NETIF_F_GEN_CSUM)
7035 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
7036
7037 return all;
7038}
b63365a2 7039EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7040
430f03cd 7041static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7042{
7043 int i;
7044 struct hlist_head *hash;
7045
7046 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7047 if (hash != NULL)
7048 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7049 INIT_HLIST_HEAD(&hash[i]);
7050
7051 return hash;
7052}
7053
881d966b 7054/* Initialize per network namespace state */
4665079c 7055static int __net_init netdev_init(struct net *net)
881d966b 7056{
734b6541
RM
7057 if (net != &init_net)
7058 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7059
30d97d35
PE
7060 net->dev_name_head = netdev_create_hash();
7061 if (net->dev_name_head == NULL)
7062 goto err_name;
881d966b 7063
30d97d35
PE
7064 net->dev_index_head = netdev_create_hash();
7065 if (net->dev_index_head == NULL)
7066 goto err_idx;
881d966b
EB
7067
7068 return 0;
30d97d35
PE
7069
7070err_idx:
7071 kfree(net->dev_name_head);
7072err_name:
7073 return -ENOMEM;
881d966b
EB
7074}
7075
f0db275a
SH
7076/**
7077 * netdev_drivername - network driver for the device
7078 * @dev: network device
f0db275a
SH
7079 *
7080 * Determine network driver for device.
7081 */
3019de12 7082const char *netdev_drivername(const struct net_device *dev)
6579e57b 7083{
cf04a4c7
SH
7084 const struct device_driver *driver;
7085 const struct device *parent;
3019de12 7086 const char *empty = "";
6579e57b
AV
7087
7088 parent = dev->dev.parent;
6579e57b 7089 if (!parent)
3019de12 7090 return empty;
6579e57b
AV
7091
7092 driver = parent->driver;
7093 if (driver && driver->name)
3019de12
DM
7094 return driver->name;
7095 return empty;
6579e57b
AV
7096}
7097
6ea754eb
JP
7098static void __netdev_printk(const char *level, const struct net_device *dev,
7099 struct va_format *vaf)
256df2f3 7100{
b004ff49 7101 if (dev && dev->dev.parent) {
6ea754eb
JP
7102 dev_printk_emit(level[1] - '0',
7103 dev->dev.parent,
7104 "%s %s %s%s: %pV",
7105 dev_driver_string(dev->dev.parent),
7106 dev_name(dev->dev.parent),
7107 netdev_name(dev), netdev_reg_state(dev),
7108 vaf);
b004ff49 7109 } else if (dev) {
6ea754eb
JP
7110 printk("%s%s%s: %pV",
7111 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7112 } else {
6ea754eb 7113 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7114 }
256df2f3
JP
7115}
7116
6ea754eb
JP
7117void netdev_printk(const char *level, const struct net_device *dev,
7118 const char *format, ...)
256df2f3
JP
7119{
7120 struct va_format vaf;
7121 va_list args;
256df2f3
JP
7122
7123 va_start(args, format);
7124
7125 vaf.fmt = format;
7126 vaf.va = &args;
7127
6ea754eb 7128 __netdev_printk(level, dev, &vaf);
b004ff49 7129
256df2f3 7130 va_end(args);
256df2f3
JP
7131}
7132EXPORT_SYMBOL(netdev_printk);
7133
7134#define define_netdev_printk_level(func, level) \
6ea754eb 7135void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7136{ \
256df2f3
JP
7137 struct va_format vaf; \
7138 va_list args; \
7139 \
7140 va_start(args, fmt); \
7141 \
7142 vaf.fmt = fmt; \
7143 vaf.va = &args; \
7144 \
6ea754eb 7145 __netdev_printk(level, dev, &vaf); \
b004ff49 7146 \
256df2f3 7147 va_end(args); \
256df2f3
JP
7148} \
7149EXPORT_SYMBOL(func);
7150
7151define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7152define_netdev_printk_level(netdev_alert, KERN_ALERT);
7153define_netdev_printk_level(netdev_crit, KERN_CRIT);
7154define_netdev_printk_level(netdev_err, KERN_ERR);
7155define_netdev_printk_level(netdev_warn, KERN_WARNING);
7156define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7157define_netdev_printk_level(netdev_info, KERN_INFO);
7158
4665079c 7159static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7160{
7161 kfree(net->dev_name_head);
7162 kfree(net->dev_index_head);
7163}
7164
022cbae6 7165static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7166 .init = netdev_init,
7167 .exit = netdev_exit,
7168};
7169
4665079c 7170static void __net_exit default_device_exit(struct net *net)
ce286d32 7171{
e008b5fc 7172 struct net_device *dev, *aux;
ce286d32 7173 /*
e008b5fc 7174 * Push all migratable network devices back to the
ce286d32
EB
7175 * initial network namespace
7176 */
7177 rtnl_lock();
e008b5fc 7178 for_each_netdev_safe(net, dev, aux) {
ce286d32 7179 int err;
aca51397 7180 char fb_name[IFNAMSIZ];
ce286d32
EB
7181
7182 /* Ignore unmoveable devices (i.e. loopback) */
7183 if (dev->features & NETIF_F_NETNS_LOCAL)
7184 continue;
7185
e008b5fc
EB
7186 /* Leave virtual devices for the generic cleanup */
7187 if (dev->rtnl_link_ops)
7188 continue;
d0c082ce 7189
25985edc 7190 /* Push remaining network devices to init_net */
aca51397
PE
7191 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7192 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7193 if (err) {
7b6cd1ce
JP
7194 pr_emerg("%s: failed to move %s to init_net: %d\n",
7195 __func__, dev->name, err);
aca51397 7196 BUG();
ce286d32
EB
7197 }
7198 }
7199 rtnl_unlock();
7200}
7201
50624c93
EB
7202static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7203{
7204 /* Return with the rtnl_lock held when there are no network
7205 * devices unregistering in any network namespace in net_list.
7206 */
7207 struct net *net;
7208 bool unregistering;
7209 DEFINE_WAIT(wait);
7210
7211 for (;;) {
7212 prepare_to_wait(&netdev_unregistering_wq, &wait,
7213 TASK_UNINTERRUPTIBLE);
7214 unregistering = false;
7215 rtnl_lock();
7216 list_for_each_entry(net, net_list, exit_list) {
7217 if (net->dev_unreg_count > 0) {
7218 unregistering = true;
7219 break;
7220 }
7221 }
7222 if (!unregistering)
7223 break;
7224 __rtnl_unlock();
7225 schedule();
7226 }
7227 finish_wait(&netdev_unregistering_wq, &wait);
7228}
7229
04dc7f6b
EB
7230static void __net_exit default_device_exit_batch(struct list_head *net_list)
7231{
7232 /* At exit all network devices most be removed from a network
b595076a 7233 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7234 * Do this across as many network namespaces as possible to
7235 * improve batching efficiency.
7236 */
7237 struct net_device *dev;
7238 struct net *net;
7239 LIST_HEAD(dev_kill_list);
7240
50624c93
EB
7241 /* To prevent network device cleanup code from dereferencing
7242 * loopback devices or network devices that have been freed
7243 * wait here for all pending unregistrations to complete,
7244 * before unregistring the loopback device and allowing the
7245 * network namespace be freed.
7246 *
7247 * The netdev todo list containing all network devices
7248 * unregistrations that happen in default_device_exit_batch
7249 * will run in the rtnl_unlock() at the end of
7250 * default_device_exit_batch.
7251 */
7252 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7253 list_for_each_entry(net, net_list, exit_list) {
7254 for_each_netdev_reverse(net, dev) {
b0ab2fab 7255 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7256 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7257 else
7258 unregister_netdevice_queue(dev, &dev_kill_list);
7259 }
7260 }
7261 unregister_netdevice_many(&dev_kill_list);
7262 rtnl_unlock();
7263}
7264
022cbae6 7265static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7266 .exit = default_device_exit,
04dc7f6b 7267 .exit_batch = default_device_exit_batch,
ce286d32
EB
7268};
7269
1da177e4
LT
7270/*
7271 * Initialize the DEV module. At boot time this walks the device list and
7272 * unhooks any devices that fail to initialise (normally hardware not
7273 * present) and leaves us with a valid list of present and active devices.
7274 *
7275 */
7276
7277/*
7278 * This is called single threaded during boot, so no need
7279 * to take the rtnl semaphore.
7280 */
7281static int __init net_dev_init(void)
7282{
7283 int i, rc = -ENOMEM;
7284
7285 BUG_ON(!dev_boot_phase);
7286
1da177e4
LT
7287 if (dev_proc_init())
7288 goto out;
7289
8b41d188 7290 if (netdev_kobject_init())
1da177e4
LT
7291 goto out;
7292
7293 INIT_LIST_HEAD(&ptype_all);
82d8a867 7294 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7295 INIT_LIST_HEAD(&ptype_base[i]);
7296
62532da9
VY
7297 INIT_LIST_HEAD(&offload_base);
7298
881d966b
EB
7299 if (register_pernet_subsys(&netdev_net_ops))
7300 goto out;
1da177e4
LT
7301
7302 /*
7303 * Initialise the packet receive queues.
7304 */
7305
6f912042 7306 for_each_possible_cpu(i) {
e36fa2f7 7307 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7308
e36fa2f7 7309 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7310 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7311 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7312 sd->output_queue_tailp = &sd->output_queue;
df334545 7313#ifdef CONFIG_RPS
e36fa2f7
ED
7314 sd->csd.func = rps_trigger_softirq;
7315 sd->csd.info = sd;
e36fa2f7 7316 sd->cpu = i;
1e94d72f 7317#endif
0a9627f2 7318
e36fa2f7
ED
7319 sd->backlog.poll = process_backlog;
7320 sd->backlog.weight = weight_p;
1da177e4
LT
7321 }
7322
1da177e4
LT
7323 dev_boot_phase = 0;
7324
505d4f73
EB
7325 /* The loopback device is special if any other network devices
7326 * is present in a network namespace the loopback device must
7327 * be present. Since we now dynamically allocate and free the
7328 * loopback device ensure this invariant is maintained by
7329 * keeping the loopback device as the first device on the
7330 * list of network devices. Ensuring the loopback devices
7331 * is the first device that appears and the last network device
7332 * that disappears.
7333 */
7334 if (register_pernet_device(&loopback_net_ops))
7335 goto out;
7336
7337 if (register_pernet_device(&default_device_ops))
7338 goto out;
7339
962cf36c
CM
7340 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7341 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7342
7343 hotcpu_notifier(dev_cpu_callback, 0);
7344 dst_init();
1da177e4
LT
7345 rc = 0;
7346out:
7347 return rc;
7348}
7349
7350subsys_initcall(net_dev_init);