]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/core/dev.c
net: remove support for per driver ndo_busy_poll()
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
40e4e713 142#include <linux/crash_dump.h>
1da177e4 143
342709ef
PE
144#include "net-sysfs.h"
145
d565b0a1
HX
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
5d38a079
HX
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
1da177e4 152static DEFINE_SPINLOCK(ptype_lock);
62532da9 153static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
62532da9 156static struct list_head offload_base __read_mostly;
1da177e4 157
ae78dbfa 158static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
ae78dbfa 162
1da177e4 163/*
7562f876 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
165 * semaphore.
166 *
c6d14c84 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
7562f876 170 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
1da177e4 182DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
183EXPORT_SYMBOL(dev_base_lock);
184
af12fa6e
ET
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
52bd2d62 188static unsigned int napi_gen_id = NR_CPUS;
6180d9de 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 190
18afa4b0 191static seqcount_t devnet_rename_seq;
c91f6df2 192
4e985ada
TG
193static inline void dev_base_seq_inc(struct net *net)
194{
195 while (++net->dev_base_seq == 0);
196}
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 199{
8387ff25 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 201
08e9897d 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
203}
204
881d966b 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 206{
7c28bd0b 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
208}
209
e36fa2f7 210static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
e36fa2f7 217static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
ce286d32 224/* Device list insertion */
53759be9 225static void list_netdevice(struct net_device *dev)
ce286d32 226{
c346dca1 227 struct net *net = dev_net(dev);
ce286d32
EB
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
c6d14c84 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
ce286d32 236 write_unlock_bh(&dev_base_lock);
4e985ada
TG
237
238 dev_base_seq_inc(net);
ce286d32
EB
239}
240
fb699dfd
ED
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
ce286d32
EB
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
c6d14c84 250 list_del_rcu(&dev->dev_list);
72c9528b 251 hlist_del_rcu(&dev->name_hlist);
fb699dfd 252 hlist_del_rcu(&dev->index_hlist);
ce286d32 253 write_unlock_bh(&dev_base_lock);
4e985ada
TG
254
255 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
256}
257
1da177e4
LT
258/*
259 * Our notifier list
260 */
261
f07d5b94 262static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
263
264/*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
bea3348e 268
9958da05 269DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 270EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 271
cf508b12 272#ifdef CONFIG_LOCKDEP
723e98b7 273/*
c773e847 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
275 * according to dev->type
276 */
277static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 293
36cbd3dc 294static const char *const netdev_lock_name[] =
723e98b7
JP
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
cf508b12
DM
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
723e98b7
JP
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
cf508b12
DM
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
723e98b7 344#else
cf508b12
DM
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
350{
351}
352#endif
1da177e4
LT
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
1da177e4
LT
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
c07b68e8
ED
376static inline struct list_head *ptype_head(const struct packet_type *pt)
377{
378 if (pt->type == htons(ETH_P_ALL))
7866a621 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 380 else
7866a621
SN
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
383}
384
1da177e4
LT
385/**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
4ec93edb 393 * This call does not sleep therefore it can not
1da177e4
LT
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398void dev_add_pack(struct packet_type *pt)
399{
c07b68e8 400 struct list_head *head = ptype_head(pt);
1da177e4 401
c07b68e8
ED
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
1da177e4 405}
d1b19dff 406EXPORT_SYMBOL(dev_add_pack);
1da177e4 407
1da177e4
LT
408/**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
4ec93edb 415 * returns.
1da177e4
LT
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421void __dev_remove_pack(struct packet_type *pt)
422{
c07b68e8 423 struct list_head *head = ptype_head(pt);
1da177e4
LT
424 struct packet_type *pt1;
425
c07b68e8 426 spin_lock(&ptype_lock);
1da177e4
LT
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
7b6cd1ce 435 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 436out:
c07b68e8 437 spin_unlock(&ptype_lock);
1da177e4 438}
d1b19dff
ED
439EXPORT_SYMBOL(__dev_remove_pack);
440
1da177e4
LT
441/**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453void dev_remove_pack(struct packet_type *pt)
454{
455 __dev_remove_pack(pt);
4ec93edb 456
1da177e4
LT
457 synchronize_net();
458}
d1b19dff 459EXPORT_SYMBOL(dev_remove_pack);
1da177e4 460
62532da9
VY
461
462/**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474void dev_add_offload(struct packet_offload *po)
475{
bdef7de4 476 struct packet_offload *elem;
62532da9
VY
477
478 spin_lock(&offload_lock);
bdef7de4
DM
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
484 spin_unlock(&offload_lock);
485}
486EXPORT_SYMBOL(dev_add_offload);
487
488/**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
1d143d9f 501static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
502{
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
c53aa505 506 spin_lock(&offload_lock);
62532da9
VY
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516out:
c53aa505 517 spin_unlock(&offload_lock);
62532da9 518}
62532da9
VY
519
520/**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532void dev_remove_offload(struct packet_offload *po)
533{
534 __dev_remove_offload(po);
535
536 synchronize_net();
537}
538EXPORT_SYMBOL(dev_remove_offload);
539
1da177e4
LT
540/******************************************************************************
541
542 Device Boot-time Settings Routines
543
544*******************************************************************************/
545
546/* Boot time configuration table */
547static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549/**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558static int netdev_boot_setup_add(char *name, struct ifmap *map)
559{
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 567 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574}
575
576/**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585int netdev_boot_setup_check(struct net_device *dev)
586{
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 592 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601}
d1b19dff 602EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
603
604
605/**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615unsigned long netdev_boot_base(const char *prefix, int unit)
616{
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
881d966b 627 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634}
635
636/*
637 * Saves at boot time configured settings for any netdevice.
638 */
639int __init netdev_boot_setup(char *str)
640{
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661}
662
663__setup("netdev=", netdev_boot_setup);
664
665/*******************************************************************************
666
667 Device Interface Subroutines
668
669*******************************************************************************/
670
a54acb3a
ND
671/**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679int dev_get_iflink(const struct net_device *dev)
680{
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
7a66bbc9 684 return dev->ifindex;
a54acb3a
ND
685}
686EXPORT_SYMBOL(dev_get_iflink);
687
fc4099f1
PS
688/**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698{
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711}
712EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
1da177e4
LT
714/**
715 * __dev_get_by_name - find a device by its name
c4ea43c5 716 * @net: the applicable net namespace
1da177e4
LT
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
881d966b 726struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 727{
0bd8d536
ED
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 730
b67bfe0d 731 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
0bd8d536 734
1da177e4
LT
735 return NULL;
736}
d1b19dff 737EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 738
72c9528b
ED
739/**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752{
72c9528b
ED
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
b67bfe0d 756 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761}
762EXPORT_SYMBOL(dev_get_by_name_rcu);
763
1da177e4
LT
764/**
765 * dev_get_by_name - find a device by its name
c4ea43c5 766 * @net: the applicable net namespace
1da177e4
LT
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
881d966b 776struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
777{
778 struct net_device *dev;
779
72c9528b
ED
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
782 if (dev)
783 dev_hold(dev);
72c9528b 784 rcu_read_unlock();
1da177e4
LT
785 return dev;
786}
d1b19dff 787EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
788
789/**
790 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 791 * @net: the applicable net namespace
1da177e4
LT
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
881d966b 801struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 802{
0bd8d536
ED
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 805
b67bfe0d 806 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
807 if (dev->ifindex == ifindex)
808 return dev;
0bd8d536 809
1da177e4
LT
810 return NULL;
811}
d1b19dff 812EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 813
fb699dfd
ED
814/**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826{
fb699dfd
ED
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
b67bfe0d 830 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835}
836EXPORT_SYMBOL(dev_get_by_index_rcu);
837
1da177e4
LT
838
839/**
840 * dev_get_by_index - find a device by its ifindex
c4ea43c5 841 * @net: the applicable net namespace
1da177e4
LT
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
881d966b 850struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
851{
852 struct net_device *dev;
853
fb699dfd
ED
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
856 if (dev)
857 dev_hold(dev);
fb699dfd 858 rcu_read_unlock();
1da177e4
LT
859 return dev;
860}
d1b19dff 861EXPORT_SYMBOL(dev_get_by_index);
1da177e4 862
5dbe7c17
NS
863/**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873int netdev_get_name(struct net *net, char *name, int ifindex)
874{
875 struct net_device *dev;
876 unsigned int seq;
877
878retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895}
896
1da177e4 897/**
941666c2 898 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 899 * @net: the applicable net namespace
1da177e4
LT
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
941666c2 906 * The returned device has not had its ref count increased
1da177e4
LT
907 * and the caller must therefore be careful about locking
908 *
1da177e4
LT
909 */
910
941666c2
ED
911struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
1da177e4
LT
913{
914 struct net_device *dev;
915
941666c2 916 for_each_netdev_rcu(net, dev)
1da177e4
LT
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
919 return dev;
920
921 return NULL;
1da177e4 922}
941666c2 923EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 924
881d966b 925struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
926{
927 struct net_device *dev;
928
4e9cac2b 929 ASSERT_RTNL();
881d966b 930 for_each_netdev(net, dev)
4e9cac2b 931 if (dev->type == type)
7562f876
PE
932 return dev;
933
934 return NULL;
4e9cac2b 935}
4e9cac2b
PM
936EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
881d966b 938struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 939{
99fe3c39 940 struct net_device *dev, *ret = NULL;
4e9cac2b 941
99fe3c39
ED
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
1da177e4 951}
1da177e4
LT
952EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954/**
6c555490 955 * __dev_get_by_flags - find any device with given flags
c4ea43c5 956 * @net: the applicable net namespace
1da177e4
LT
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 961 * is not found or a pointer to the device. Must be called inside
6c555490 962 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
963 */
964
6c555490
WC
965struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
1da177e4 967{
7562f876 968 struct net_device *dev, *ret;
1da177e4 969
6c555490
WC
970 ASSERT_RTNL();
971
7562f876 972 ret = NULL;
6c555490 973 for_each_netdev(net, dev) {
1da177e4 974 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 975 ret = dev;
1da177e4
LT
976 break;
977 }
978 }
7562f876 979 return ret;
1da177e4 980}
6c555490 981EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
982
983/**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
c7fa9d18
DM
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
1da177e4 990 */
95f050bf 991bool dev_valid_name(const char *name)
1da177e4 992{
c7fa9d18 993 if (*name == '\0')
95f050bf 994 return false;
b6fe17d6 995 if (strlen(name) >= IFNAMSIZ)
95f050bf 996 return false;
c7fa9d18 997 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 998 return false;
c7fa9d18
DM
999
1000 while (*name) {
a4176a93 1001 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1002 return false;
c7fa9d18
DM
1003 name++;
1004 }
95f050bf 1005 return true;
1da177e4 1006}
d1b19dff 1007EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1008
1009/**
b267b179
EB
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1da177e4 1012 * @name: name format string
b267b179 1013 * @buf: scratch buffer and result name string
1da177e4
LT
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1022 */
1023
b267b179 1024static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1025{
1026 int i = 0;
1da177e4
LT
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1029 unsigned long *inuse;
1da177e4
LT
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
cfcabdcc 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1044 if (!inuse)
1045 return -ENOMEM;
1046
881d966b 1047 for_each_netdev(net, d) {
1da177e4
LT
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1054 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
d9031024
OP
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1065 if (!__dev_get_by_name(net, buf))
1da177e4 1066 return i;
1da177e4
LT
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073}
1074
b267b179
EB
1075/**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089int dev_alloc_name(struct net_device *dev, const char *name)
1090{
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
c346dca1
YH
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
b267b179
EB
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101}
d1b19dff 1102EXPORT_SYMBOL(dev_alloc_name);
b267b179 1103
828de4f6
G
1104static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
d9031024 1107{
828de4f6
G
1108 char buf[IFNAMSIZ];
1109 int ret;
8ce6cebc 1110
828de4f6
G
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115}
1116
1117static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120{
1121 BUG_ON(!net);
8ce6cebc 1122
d9031024
OP
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1c5cae81 1126 if (strchr(name, '%'))
828de4f6 1127 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
8ce6cebc
DL
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1132
1133 return 0;
1134}
1da177e4
LT
1135
1136/**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
cf04a4c7 1144int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1145{
238fa362 1146 unsigned char old_assign_type;
fcc5a03a 1147 char oldname[IFNAMSIZ];
1da177e4 1148 int err = 0;
fcc5a03a 1149 int ret;
881d966b 1150 struct net *net;
1da177e4
LT
1151
1152 ASSERT_RTNL();
c346dca1 1153 BUG_ON(!dev_net(dev));
1da177e4 1154
c346dca1 1155 net = dev_net(dev);
1da177e4
LT
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
30e6c9fa 1159 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1162 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1163 return 0;
c91f6df2 1164 }
c8d90dca 1165
fcc5a03a
HX
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
828de4f6 1168 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1169 if (err < 0) {
30e6c9fa 1170 write_seqcount_end(&devnet_rename_seq);
d9031024 1171 return err;
c91f6df2 1172 }
1da177e4 1173
6fe82a39
VF
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
238fa362
TG
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
fcc5a03a 1180rollback:
a1b3f594
EB
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1184 dev->name_assign_type = old_assign_type;
30e6c9fa 1185 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1186 return ret;
dcc99773 1187 }
7f988eab 1188
30e6c9fa 1189 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1190
5bb025fa
VF
1191 netdev_adjacent_rename_links(dev, oldname);
1192
7f988eab 1193 write_lock_bh(&dev_base_lock);
372b2312 1194 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1201 write_unlock_bh(&dev_base_lock);
1202
056925ab 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
91e9c07b
ED
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
fcc5a03a 1209 err = ret;
30e6c9fa 1210 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1211 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1212 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1215 goto rollback;
91e9c07b 1216 } else {
7b6cd1ce 1217 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1218 dev->name, ret);
fcc5a03a
HX
1219 }
1220 }
1da177e4
LT
1221
1222 return err;
1223}
1224
0b815a1a
SH
1225/**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
f0db275a 1229 * @len: limit of bytes to copy from info
0b815a1a
SH
1230 *
1231 * Set ifalias for a device,
1232 */
1233int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234{
7364e445
AK
1235 char *new_ifalias;
1236
0b815a1a
SH
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
96ca4a2c 1242 if (!len) {
388dfc2d
SK
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
96ca4a2c
OH
1245 return 0;
1246 }
1247
7364e445
AK
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
0b815a1a 1250 return -ENOMEM;
7364e445 1251 dev->ifalias = new_ifalias;
0b815a1a
SH
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255}
1256
1257
d8a33ac4 1258/**
3041a069 1259 * netdev_features_change - device changes features
d8a33ac4
SH
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264void netdev_features_change(struct net_device *dev)
1265{
056925ab 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1267}
1268EXPORT_SYMBOL(netdev_features_change);
1269
1da177e4
LT
1270/**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278void netdev_state_change(struct net_device *dev)
1279{
1280 if (dev->flags & IFF_UP) {
54951194
LP
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
7f294054 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1287 }
1288}
d1b19dff 1289EXPORT_SYMBOL(netdev_state_change);
1da177e4 1290
ee89bab1
AW
1291/**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1302{
ee89bab1
AW
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
c1da4ac7 1306}
ee89bab1 1307EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1308
bd380811 1309static int __dev_open(struct net_device *dev)
1da177e4 1310{
d314774c 1311 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1312 int ret;
1da177e4 1313
e46b66bc
BH
1314 ASSERT_RTNL();
1315
1da177e4
LT
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
ca99ca14
NH
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
66b5552f 1323 netpoll_poll_disable(dev);
ca99ca14 1324
3b8bcfd5
JB
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1da177e4 1330 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1331
d314774c
SH
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
bada339b 1334
d314774c
SH
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1da177e4 1337
66b5552f 1338 netpoll_poll_enable(dev);
ca99ca14 1339
bada339b
JG
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1da177e4 1343 dev->flags |= IFF_UP;
4417da66 1344 dev_set_rx_mode(dev);
1da177e4 1345 dev_activate(dev);
7bf23575 1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1347 }
bada339b 1348
1da177e4
LT
1349 return ret;
1350}
1351
1352/**
bd380811
PM
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1da177e4 1355 *
bd380811
PM
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1da177e4 1363 */
bd380811
PM
1364int dev_open(struct net_device *dev)
1365{
1366 int ret;
1367
bd380811
PM
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
bd380811
PM
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
7f294054 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379}
1380EXPORT_SYMBOL(dev_open);
1381
44345724 1382static int __dev_close_many(struct list_head *head)
1da177e4 1383{
44345724 1384 struct net_device *dev;
e46b66bc 1385
bd380811 1386 ASSERT_RTNL();
9d5010db
DM
1387 might_sleep();
1388
5cde2829 1389 list_for_each_entry(dev, head, close_list) {
3f4df206 1390 /* Temporarily disable netpoll until the interface is down */
66b5552f 1391 netpoll_poll_disable(dev);
3f4df206 1392
44345724 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1394
44345724 1395 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1396
44345724
OP
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
4e857c58 1403 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1404 }
1da177e4 1405
44345724 1406 dev_deactivate_many(head);
d8b2a4d2 1407
5cde2829 1408 list_for_each_entry(dev, head, close_list) {
44345724 1409 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1410
44345724
OP
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
44345724 1421 dev->flags &= ~IFF_UP;
66b5552f 1422 netpoll_poll_enable(dev);
44345724
OP
1423 }
1424
1425 return 0;
1426}
1427
1428static int __dev_close(struct net_device *dev)
1429{
f87e6f47 1430 int retval;
44345724
OP
1431 LIST_HEAD(single);
1432
5cde2829 1433 list_add(&dev->close_list, &single);
f87e6f47
LT
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
ca99ca14 1436
f87e6f47 1437 return retval;
44345724
OP
1438}
1439
99c4a26a 1440int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1441{
1442 struct net_device *dev, *tmp;
1da177e4 1443
5cde2829
EB
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1446 if (!(dev->flags & IFF_UP))
5cde2829 1447 list_del_init(&dev->close_list);
44345724
OP
1448
1449 __dev_close_many(head);
1da177e4 1450
5cde2829 1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1454 if (unlink)
1455 list_del_init(&dev->close_list);
44345724 1456 }
bd380811
PM
1457
1458 return 0;
1459}
99c4a26a 1460EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1461
1462/**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471int dev_close(struct net_device *dev)
1472{
e14a5993
ED
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1da177e4 1475
5cde2829 1476 list_add(&dev->close_list, &single);
99c4a26a 1477 dev_close_many(&single, true);
e14a5993
ED
1478 list_del(&single);
1479 }
da6e378b 1480 return 0;
1da177e4 1481}
d1b19dff 1482EXPORT_SYMBOL(dev_close);
1da177e4
LT
1483
1484
0187bdfb
BH
1485/**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493void dev_disable_lro(struct net_device *dev)
1494{
fbe168ba
MK
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
529d0489 1497
bc5787c6
MM
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
27660515 1500
22d5969f
MM
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
0187bdfb
BH
1506}
1507EXPORT_SYMBOL(dev_disable_lro);
1508
351638e7
JP
1509static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511{
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516}
0187bdfb 1517
881d966b
EB
1518static int dev_boot_phase = 1;
1519
1da177e4
LT
1520/**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
4ec93edb 1530 * to the new notifier to allow device to have a race free
1da177e4
LT
1531 * view of the network device list.
1532 */
1533
1534int register_netdevice_notifier(struct notifier_block *nb)
1535{
1536 struct net_device *dev;
fcc5a03a 1537 struct net_device *last;
881d966b 1538 struct net *net;
1da177e4
LT
1539 int err;
1540
1541 rtnl_lock();
f07d5b94 1542 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1543 if (err)
1544 goto unlock;
881d966b
EB
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
351638e7 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1da177e4 1556
351638e7 1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1558 }
1da177e4 1559 }
fcc5a03a
HX
1560
1561unlock:
1da177e4
LT
1562 rtnl_unlock();
1563 return err;
fcc5a03a
HX
1564
1565rollback:
1566 last = dev;
881d966b
EB
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
8f891489 1570 goto outroll;
fcc5a03a 1571
881d966b 1572 if (dev->flags & IFF_UP) {
351638e7
JP
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1576 }
351638e7 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1578 }
fcc5a03a 1579 }
c67625a1 1580
8f891489 1581outroll:
c67625a1 1582 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1583 goto unlock;
1da177e4 1584}
d1b19dff 1585EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1586
1587/**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
7d3d43da
EB
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1da177e4
LT
1599 */
1600
1601int unregister_netdevice_notifier(struct notifier_block *nb)
1602{
7d3d43da
EB
1603 struct net_device *dev;
1604 struct net *net;
9f514950
HX
1605 int err;
1606
1607 rtnl_lock();
f07d5b94 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
351638e7
JP
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1618 }
351638e7 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1620 }
1621 }
1622unlock:
9f514950
HX
1623 rtnl_unlock();
1624 return err;
1da177e4 1625}
d1b19dff 1626EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1627
351638e7
JP
1628/**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1d143d9f 1638static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
351638e7
JP
1641{
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645}
351638e7 1646
1da177e4
LT
1647/**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
c4ea43c5 1650 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1651 *
1652 * Call all network notifier blocks. Parameters and return value
f07d5b94 1653 * are as for raw_notifier_call_chain().
1da177e4
LT
1654 */
1655
ad7379d4 1656int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1657{
351638e7
JP
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1661}
edf947f1 1662EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1663
1cf51900 1664#ifdef CONFIG_NET_INGRESS
4577139b
DB
1665static struct static_key ingress_needed __read_mostly;
1666
1667void net_inc_ingress_queue(void)
1668{
1669 static_key_slow_inc(&ingress_needed);
1670}
1671EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673void net_dec_ingress_queue(void)
1674{
1675 static_key_slow_dec(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678#endif
1679
1f211a1b
DB
1680#ifdef CONFIG_NET_EGRESS
1681static struct static_key egress_needed __read_mostly;
1682
1683void net_inc_egress_queue(void)
1684{
1685 static_key_slow_inc(&egress_needed);
1686}
1687EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689void net_dec_egress_queue(void)
1690{
1691 static_key_slow_dec(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694#endif
1695
c5905afb 1696static struct static_key netstamp_needed __read_mostly;
b90e5794 1697#ifdef HAVE_JUMP_LABEL
c5905afb 1698/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1699 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1700 * static_key_slow_dec() calls.
b90e5794
ED
1701 */
1702static atomic_t netstamp_needed_deferred;
1703#endif
1da177e4
LT
1704
1705void net_enable_timestamp(void)
1706{
b90e5794
ED
1707#ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710 if (deferred) {
1711 while (--deferred)
c5905afb 1712 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1713 return;
1714 }
1715#endif
c5905afb 1716 static_key_slow_inc(&netstamp_needed);
1da177e4 1717}
d1b19dff 1718EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1719
1720void net_disable_timestamp(void)
1721{
b90e5794
ED
1722#ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1726 }
1727#endif
c5905afb 1728 static_key_slow_dec(&netstamp_needed);
1da177e4 1729}
d1b19dff 1730EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1731
3b098e2d 1732static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1733{
2456e855 1734 skb->tstamp = 0;
c5905afb 1735 if (static_key_false(&netstamp_needed))
a61bbcf2 1736 __net_timestamp(skb);
1da177e4
LT
1737}
1738
588f0330 1739#define net_timestamp_check(COND, SKB) \
c5905afb 1740 if (static_key_false(&netstamp_needed)) { \
2456e855 1741 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1742 __net_timestamp(SKB); \
1743 } \
3b098e2d 1744
f4b05d27 1745bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1746{
1747 unsigned int len;
1748
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1751
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1755
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1758 */
1759 if (skb_is_gso(skb))
1760 return true;
1761
1762 return false;
1763}
1ee481fb 1764EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1765
a0265d28
HX
1766int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767{
4e3264d2 1768 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1769
4e3264d2
MKL
1770 if (likely(!ret)) {
1771 skb->protocol = eth_type_trans(skb, dev);
1772 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773 }
a0265d28 1774
4e3264d2 1775 return ret;
a0265d28
HX
1776}
1777EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778
44540960
AB
1779/**
1780 * dev_forward_skb - loopback an skb to another netif
1781 *
1782 * @dev: destination network device
1783 * @skb: buffer to forward
1784 *
1785 * return values:
1786 * NET_RX_SUCCESS (no congestion)
6ec82562 1787 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1788 *
1789 * dev_forward_skb can be used for injecting an skb from the
1790 * start_xmit function of one device into the receive queue
1791 * of another device.
1792 *
1793 * The receiving device may be in another namespace, so
1794 * we have to clear all information in the skb that could
1795 * impact namespace isolation.
1796 */
1797int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798{
a0265d28 1799 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1800}
1801EXPORT_SYMBOL_GPL(dev_forward_skb);
1802
71d9dec2
CG
1803static inline int deliver_skb(struct sk_buff *skb,
1804 struct packet_type *pt_prev,
1805 struct net_device *orig_dev)
1806{
1080e512
MT
1807 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808 return -ENOMEM;
71d9dec2
CG
1809 atomic_inc(&skb->users);
1810 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811}
1812
7866a621
SN
1813static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814 struct packet_type **pt,
fbcb2170
JP
1815 struct net_device *orig_dev,
1816 __be16 type,
7866a621
SN
1817 struct list_head *ptype_list)
1818{
1819 struct packet_type *ptype, *pt_prev = *pt;
1820
1821 list_for_each_entry_rcu(ptype, ptype_list, list) {
1822 if (ptype->type != type)
1823 continue;
1824 if (pt_prev)
fbcb2170 1825 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1826 pt_prev = ptype;
1827 }
1828 *pt = pt_prev;
1829}
1830
c0de08d0
EL
1831static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832{
a3d744e9 1833 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1834 return false;
1835
1836 if (ptype->id_match)
1837 return ptype->id_match(ptype, skb->sk);
1838 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839 return true;
1840
1841 return false;
1842}
1843
1da177e4
LT
1844/*
1845 * Support routine. Sends outgoing frames to any network
1846 * taps currently in use.
1847 */
1848
74b20582 1849void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1850{
1851 struct packet_type *ptype;
71d9dec2
CG
1852 struct sk_buff *skb2 = NULL;
1853 struct packet_type *pt_prev = NULL;
7866a621 1854 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1855
1da177e4 1856 rcu_read_lock();
7866a621
SN
1857again:
1858 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1859 /* Never send packets back to the socket
1860 * they originated from - MvS (miquels@drinkel.ow.org)
1861 */
7866a621
SN
1862 if (skb_loop_sk(ptype, skb))
1863 continue;
71d9dec2 1864
7866a621
SN
1865 if (pt_prev) {
1866 deliver_skb(skb2, pt_prev, skb->dev);
1867 pt_prev = ptype;
1868 continue;
1869 }
1da177e4 1870
7866a621
SN
1871 /* need to clone skb, done only once */
1872 skb2 = skb_clone(skb, GFP_ATOMIC);
1873 if (!skb2)
1874 goto out_unlock;
70978182 1875
7866a621 1876 net_timestamp_set(skb2);
1da177e4 1877
7866a621
SN
1878 /* skb->nh should be correctly
1879 * set by sender, so that the second statement is
1880 * just protection against buggy protocols.
1881 */
1882 skb_reset_mac_header(skb2);
1883
1884 if (skb_network_header(skb2) < skb2->data ||
1885 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887 ntohs(skb2->protocol),
1888 dev->name);
1889 skb_reset_network_header(skb2);
1da177e4 1890 }
7866a621
SN
1891
1892 skb2->transport_header = skb2->network_header;
1893 skb2->pkt_type = PACKET_OUTGOING;
1894 pt_prev = ptype;
1895 }
1896
1897 if (ptype_list == &ptype_all) {
1898 ptype_list = &dev->ptype_all;
1899 goto again;
1da177e4 1900 }
7866a621 1901out_unlock:
71d9dec2
CG
1902 if (pt_prev)
1903 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1904 rcu_read_unlock();
1905}
74b20582 1906EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1907
2c53040f
BH
1908/**
1909 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1910 * @dev: Network device
1911 * @txq: number of queues available
1912 *
1913 * If real_num_tx_queues is changed the tc mappings may no longer be
1914 * valid. To resolve this verify the tc mapping remains valid and if
1915 * not NULL the mapping. With no priorities mapping to this
1916 * offset/count pair it will no longer be used. In the worst case TC0
1917 * is invalid nothing can be done so disable priority mappings. If is
1918 * expected that drivers will fix this mapping if they can before
1919 * calling netif_set_real_num_tx_queues.
1920 */
bb134d22 1921static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1922{
1923 int i;
1924 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925
1926 /* If TC0 is invalidated disable TC mapping */
1927 if (tc->offset + tc->count > txq) {
7b6cd1ce 1928 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1929 dev->num_tc = 0;
1930 return;
1931 }
1932
1933 /* Invalidated prio to tc mappings set to TC0 */
1934 for (i = 1; i < TC_BITMASK + 1; i++) {
1935 int q = netdev_get_prio_tc_map(dev, i);
1936
1937 tc = &dev->tc_to_txq[q];
1938 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1939 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940 i, q);
4f57c087
JF
1941 netdev_set_prio_tc_map(dev, i, 0);
1942 }
1943 }
1944}
1945
8d059b0f
AD
1946int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947{
1948 if (dev->num_tc) {
1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950 int i;
1951
1952 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953 if ((txq - tc->offset) < tc->count)
1954 return i;
1955 }
1956
1957 return -1;
1958 }
1959
1960 return 0;
1961}
1962
537c00de
AD
1963#ifdef CONFIG_XPS
1964static DEFINE_MUTEX(xps_map_mutex);
1965#define xmap_dereference(P) \
1966 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967
6234f874
AD
1968static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969 int tci, u16 index)
537c00de 1970{
10cdc3f3
AD
1971 struct xps_map *map = NULL;
1972 int pos;
537c00de 1973
10cdc3f3 1974 if (dev_maps)
6234f874
AD
1975 map = xmap_dereference(dev_maps->cpu_map[tci]);
1976 if (!map)
1977 return false;
537c00de 1978
6234f874
AD
1979 for (pos = map->len; pos--;) {
1980 if (map->queues[pos] != index)
1981 continue;
1982
1983 if (map->len > 1) {
1984 map->queues[pos] = map->queues[--map->len];
10cdc3f3 1985 break;
537c00de 1986 }
6234f874
AD
1987
1988 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989 kfree_rcu(map, rcu);
1990 return false;
537c00de
AD
1991 }
1992
6234f874 1993 return true;
10cdc3f3
AD
1994}
1995
6234f874
AD
1996static bool remove_xps_queue_cpu(struct net_device *dev,
1997 struct xps_dev_maps *dev_maps,
1998 int cpu, u16 offset, u16 count)
1999{
184c449f
AD
2000 int num_tc = dev->num_tc ? : 1;
2001 bool active = false;
2002 int tci;
6234f874 2003
184c449f
AD
2004 for (tci = cpu * num_tc; num_tc--; tci++) {
2005 int i, j;
2006
2007 for (i = count, j = offset; i--; j++) {
2008 if (!remove_xps_queue(dev_maps, cpu, j))
2009 break;
2010 }
2011
2012 active |= i < 0;
6234f874
AD
2013 }
2014
184c449f 2015 return active;
6234f874
AD
2016}
2017
2018static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019 u16 count)
10cdc3f3
AD
2020{
2021 struct xps_dev_maps *dev_maps;
024e9679 2022 int cpu, i;
10cdc3f3
AD
2023 bool active = false;
2024
2025 mutex_lock(&xps_map_mutex);
2026 dev_maps = xmap_dereference(dev->xps_maps);
2027
2028 if (!dev_maps)
2029 goto out_no_maps;
2030
6234f874
AD
2031 for_each_possible_cpu(cpu)
2032 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033 offset, count);
10cdc3f3
AD
2034
2035 if (!active) {
537c00de
AD
2036 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037 kfree_rcu(dev_maps, rcu);
2038 }
2039
6234f874 2040 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2041 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042 NUMA_NO_NODE);
2043
537c00de
AD
2044out_no_maps:
2045 mutex_unlock(&xps_map_mutex);
2046}
2047
6234f874
AD
2048static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049{
2050 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051}
2052
01c5f864
AD
2053static struct xps_map *expand_xps_map(struct xps_map *map,
2054 int cpu, u16 index)
2055{
2056 struct xps_map *new_map;
2057 int alloc_len = XPS_MIN_MAP_ALLOC;
2058 int i, pos;
2059
2060 for (pos = 0; map && pos < map->len; pos++) {
2061 if (map->queues[pos] != index)
2062 continue;
2063 return map;
2064 }
2065
2066 /* Need to add queue to this CPU's existing map */
2067 if (map) {
2068 if (pos < map->alloc_len)
2069 return map;
2070
2071 alloc_len = map->alloc_len * 2;
2072 }
2073
2074 /* Need to allocate new map to store queue on this CPU's map */
2075 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076 cpu_to_node(cpu));
2077 if (!new_map)
2078 return NULL;
2079
2080 for (i = 0; i < pos; i++)
2081 new_map->queues[i] = map->queues[i];
2082 new_map->alloc_len = alloc_len;
2083 new_map->len = pos;
2084
2085 return new_map;
2086}
2087
3573540c
MT
2088int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089 u16 index)
537c00de 2090{
01c5f864 2091 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2092 int i, cpu, tci, numa_node_id = -2;
2093 int maps_sz, num_tc = 1, tc = 0;
537c00de 2094 struct xps_map *map, *new_map;
01c5f864 2095 bool active = false;
537c00de 2096
184c449f
AD
2097 if (dev->num_tc) {
2098 num_tc = dev->num_tc;
2099 tc = netdev_txq_to_tc(dev, index);
2100 if (tc < 0)
2101 return -EINVAL;
2102 }
2103
2104 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105 if (maps_sz < L1_CACHE_BYTES)
2106 maps_sz = L1_CACHE_BYTES;
2107
537c00de
AD
2108 mutex_lock(&xps_map_mutex);
2109
2110 dev_maps = xmap_dereference(dev->xps_maps);
2111
01c5f864 2112 /* allocate memory for queue storage */
184c449f 2113 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2114 if (!new_dev_maps)
2115 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2116 if (!new_dev_maps) {
2117 mutex_unlock(&xps_map_mutex);
01c5f864 2118 return -ENOMEM;
2bb60cb9 2119 }
01c5f864 2120
184c449f
AD
2121 tci = cpu * num_tc + tc;
2122 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2123 NULL;
2124
2125 map = expand_xps_map(map, cpu, index);
2126 if (!map)
2127 goto error;
2128
184c449f 2129 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2130 }
2131
2132 if (!new_dev_maps)
2133 goto out_no_new_maps;
2134
537c00de 2135 for_each_possible_cpu(cpu) {
184c449f
AD
2136 /* copy maps belonging to foreign traffic classes */
2137 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138 /* fill in the new device map from the old device map */
2139 map = xmap_dereference(dev_maps->cpu_map[tci]);
2140 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141 }
2142
2143 /* We need to explicitly update tci as prevous loop
2144 * could break out early if dev_maps is NULL.
2145 */
2146 tci = cpu * num_tc + tc;
2147
01c5f864
AD
2148 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149 /* add queue to CPU maps */
2150 int pos = 0;
2151
184c449f 2152 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2153 while ((pos < map->len) && (map->queues[pos] != index))
2154 pos++;
2155
2156 if (pos == map->len)
2157 map->queues[map->len++] = index;
537c00de 2158#ifdef CONFIG_NUMA
537c00de
AD
2159 if (numa_node_id == -2)
2160 numa_node_id = cpu_to_node(cpu);
2161 else if (numa_node_id != cpu_to_node(cpu))
2162 numa_node_id = -1;
537c00de 2163#endif
01c5f864
AD
2164 } else if (dev_maps) {
2165 /* fill in the new device map from the old device map */
184c449f
AD
2166 map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2168 }
01c5f864 2169
184c449f
AD
2170 /* copy maps belonging to foreign traffic classes */
2171 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172 /* fill in the new device map from the old device map */
2173 map = xmap_dereference(dev_maps->cpu_map[tci]);
2174 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175 }
537c00de
AD
2176 }
2177
01c5f864
AD
2178 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179
537c00de 2180 /* Cleanup old maps */
184c449f
AD
2181 if (!dev_maps)
2182 goto out_no_old_maps;
2183
2184 for_each_possible_cpu(cpu) {
2185 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2188 if (map && map != new_map)
2189 kfree_rcu(map, rcu);
2190 }
537c00de
AD
2191 }
2192
184c449f
AD
2193 kfree_rcu(dev_maps, rcu);
2194
2195out_no_old_maps:
01c5f864
AD
2196 dev_maps = new_dev_maps;
2197 active = true;
537c00de 2198
01c5f864
AD
2199out_no_new_maps:
2200 /* update Tx queue numa node */
537c00de
AD
2201 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202 (numa_node_id >= 0) ? numa_node_id :
2203 NUMA_NO_NODE);
2204
01c5f864
AD
2205 if (!dev_maps)
2206 goto out_no_maps;
2207
2208 /* removes queue from unused CPUs */
2209 for_each_possible_cpu(cpu) {
184c449f
AD
2210 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211 active |= remove_xps_queue(dev_maps, tci, index);
2212 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213 active |= remove_xps_queue(dev_maps, tci, index);
2214 for (i = num_tc - tc, tci++; --i; tci++)
2215 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2216 }
2217
2218 /* free map if not active */
2219 if (!active) {
2220 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221 kfree_rcu(dev_maps, rcu);
2222 }
2223
2224out_no_maps:
537c00de
AD
2225 mutex_unlock(&xps_map_mutex);
2226
2227 return 0;
2228error:
01c5f864
AD
2229 /* remove any maps that we added */
2230 for_each_possible_cpu(cpu) {
184c449f
AD
2231 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233 map = dev_maps ?
2234 xmap_dereference(dev_maps->cpu_map[tci]) :
2235 NULL;
2236 if (new_map && new_map != map)
2237 kfree(new_map);
2238 }
01c5f864
AD
2239 }
2240
537c00de
AD
2241 mutex_unlock(&xps_map_mutex);
2242
537c00de
AD
2243 kfree(new_dev_maps);
2244 return -ENOMEM;
2245}
2246EXPORT_SYMBOL(netif_set_xps_queue);
2247
2248#endif
9cf1f6a8
AD
2249void netdev_reset_tc(struct net_device *dev)
2250{
6234f874
AD
2251#ifdef CONFIG_XPS
2252 netif_reset_xps_queues_gt(dev, 0);
2253#endif
9cf1f6a8
AD
2254 dev->num_tc = 0;
2255 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257}
2258EXPORT_SYMBOL(netdev_reset_tc);
2259
2260int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261{
2262 if (tc >= dev->num_tc)
2263 return -EINVAL;
2264
6234f874
AD
2265#ifdef CONFIG_XPS
2266 netif_reset_xps_queues(dev, offset, count);
2267#endif
9cf1f6a8
AD
2268 dev->tc_to_txq[tc].count = count;
2269 dev->tc_to_txq[tc].offset = offset;
2270 return 0;
2271}
2272EXPORT_SYMBOL(netdev_set_tc_queue);
2273
2274int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275{
2276 if (num_tc > TC_MAX_QUEUE)
2277 return -EINVAL;
2278
6234f874
AD
2279#ifdef CONFIG_XPS
2280 netif_reset_xps_queues_gt(dev, 0);
2281#endif
9cf1f6a8
AD
2282 dev->num_tc = num_tc;
2283 return 0;
2284}
2285EXPORT_SYMBOL(netdev_set_num_tc);
2286
f0796d5c
JF
2287/*
2288 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290 */
e6484930 2291int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2292{
1d24eb48
TH
2293 int rc;
2294
e6484930
TH
2295 if (txq < 1 || txq > dev->num_tx_queues)
2296 return -EINVAL;
f0796d5c 2297
5c56580b
BH
2298 if (dev->reg_state == NETREG_REGISTERED ||
2299 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2300 ASSERT_RTNL();
2301
1d24eb48
TH
2302 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303 txq);
bf264145
TH
2304 if (rc)
2305 return rc;
2306
4f57c087
JF
2307 if (dev->num_tc)
2308 netif_setup_tc(dev, txq);
2309
024e9679 2310 if (txq < dev->real_num_tx_queues) {
e6484930 2311 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2312#ifdef CONFIG_XPS
2313 netif_reset_xps_queues_gt(dev, txq);
2314#endif
2315 }
f0796d5c 2316 }
e6484930
TH
2317
2318 dev->real_num_tx_queues = txq;
2319 return 0;
f0796d5c
JF
2320}
2321EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2322
a953be53 2323#ifdef CONFIG_SYSFS
62fe0b40
BH
2324/**
2325 * netif_set_real_num_rx_queues - set actual number of RX queues used
2326 * @dev: Network device
2327 * @rxq: Actual number of RX queues
2328 *
2329 * This must be called either with the rtnl_lock held or before
2330 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2331 * negative error code. If called before registration, it always
2332 * succeeds.
62fe0b40
BH
2333 */
2334int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335{
2336 int rc;
2337
bd25fa7b
TH
2338 if (rxq < 1 || rxq > dev->num_rx_queues)
2339 return -EINVAL;
2340
62fe0b40
BH
2341 if (dev->reg_state == NETREG_REGISTERED) {
2342 ASSERT_RTNL();
2343
62fe0b40
BH
2344 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345 rxq);
2346 if (rc)
2347 return rc;
62fe0b40
BH
2348 }
2349
2350 dev->real_num_rx_queues = rxq;
2351 return 0;
2352}
2353EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354#endif
2355
2c53040f
BH
2356/**
2357 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2358 *
2359 * This routine should set an upper limit on the number of RSS queues
2360 * used by default by multiqueue devices.
2361 */
a55b138b 2362int netif_get_num_default_rss_queues(void)
16917b87 2363{
40e4e713
HS
2364 return is_kdump_kernel() ?
2365 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2366}
2367EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368
3bcb846c 2369static void __netif_reschedule(struct Qdisc *q)
56079431 2370{
def82a1d
JP
2371 struct softnet_data *sd;
2372 unsigned long flags;
56079431 2373
def82a1d 2374 local_irq_save(flags);
903ceff7 2375 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2376 q->next_sched = NULL;
2377 *sd->output_queue_tailp = q;
2378 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2379 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380 local_irq_restore(flags);
2381}
2382
2383void __netif_schedule(struct Qdisc *q)
2384{
2385 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386 __netif_reschedule(q);
56079431
DV
2387}
2388EXPORT_SYMBOL(__netif_schedule);
2389
e6247027
ED
2390struct dev_kfree_skb_cb {
2391 enum skb_free_reason reason;
2392};
2393
2394static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2395{
e6247027
ED
2396 return (struct dev_kfree_skb_cb *)skb->cb;
2397}
2398
46e5da40
JF
2399void netif_schedule_queue(struct netdev_queue *txq)
2400{
2401 rcu_read_lock();
2402 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403 struct Qdisc *q = rcu_dereference(txq->qdisc);
2404
2405 __netif_schedule(q);
2406 }
2407 rcu_read_unlock();
2408}
2409EXPORT_SYMBOL(netif_schedule_queue);
2410
46e5da40
JF
2411void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2412{
2413 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2414 struct Qdisc *q;
2415
2416 rcu_read_lock();
2417 q = rcu_dereference(dev_queue->qdisc);
2418 __netif_schedule(q);
2419 rcu_read_unlock();
2420 }
2421}
2422EXPORT_SYMBOL(netif_tx_wake_queue);
2423
e6247027 2424void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2425{
e6247027 2426 unsigned long flags;
56079431 2427
e6247027
ED
2428 if (likely(atomic_read(&skb->users) == 1)) {
2429 smp_rmb();
2430 atomic_set(&skb->users, 0);
2431 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2432 return;
bea3348e 2433 }
e6247027
ED
2434 get_kfree_skb_cb(skb)->reason = reason;
2435 local_irq_save(flags);
2436 skb->next = __this_cpu_read(softnet_data.completion_queue);
2437 __this_cpu_write(softnet_data.completion_queue, skb);
2438 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2439 local_irq_restore(flags);
56079431 2440}
e6247027 2441EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2442
e6247027 2443void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2444{
2445 if (in_irq() || irqs_disabled())
e6247027 2446 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2447 else
2448 dev_kfree_skb(skb);
2449}
e6247027 2450EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2451
2452
bea3348e
SH
2453/**
2454 * netif_device_detach - mark device as removed
2455 * @dev: network device
2456 *
2457 * Mark device as removed from system and therefore no longer available.
2458 */
56079431
DV
2459void netif_device_detach(struct net_device *dev)
2460{
2461 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2462 netif_running(dev)) {
d543103a 2463 netif_tx_stop_all_queues(dev);
56079431
DV
2464 }
2465}
2466EXPORT_SYMBOL(netif_device_detach);
2467
bea3348e
SH
2468/**
2469 * netif_device_attach - mark device as attached
2470 * @dev: network device
2471 *
2472 * Mark device as attached from system and restart if needed.
2473 */
56079431
DV
2474void netif_device_attach(struct net_device *dev)
2475{
2476 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2477 netif_running(dev)) {
d543103a 2478 netif_tx_wake_all_queues(dev);
4ec93edb 2479 __netdev_watchdog_up(dev);
56079431
DV
2480 }
2481}
2482EXPORT_SYMBOL(netif_device_attach);
2483
5605c762
JP
2484/*
2485 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2486 * to be used as a distribution range.
2487 */
2488u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2489 unsigned int num_tx_queues)
2490{
2491 u32 hash;
2492 u16 qoffset = 0;
2493 u16 qcount = num_tx_queues;
2494
2495 if (skb_rx_queue_recorded(skb)) {
2496 hash = skb_get_rx_queue(skb);
2497 while (unlikely(hash >= num_tx_queues))
2498 hash -= num_tx_queues;
2499 return hash;
2500 }
2501
2502 if (dev->num_tc) {
2503 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2504 qoffset = dev->tc_to_txq[tc].offset;
2505 qcount = dev->tc_to_txq[tc].count;
2506 }
2507
2508 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2509}
2510EXPORT_SYMBOL(__skb_tx_hash);
2511
36c92474
BH
2512static void skb_warn_bad_offload(const struct sk_buff *skb)
2513{
84d15ae5 2514 static const netdev_features_t null_features;
36c92474 2515 struct net_device *dev = skb->dev;
88ad4175 2516 const char *name = "";
36c92474 2517
c846ad9b
BG
2518 if (!net_ratelimit())
2519 return;
2520
88ad4175
BM
2521 if (dev) {
2522 if (dev->dev.parent)
2523 name = dev_driver_string(dev->dev.parent);
2524 else
2525 name = netdev_name(dev);
2526 }
36c92474
BH
2527 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2528 "gso_type=%d ip_summed=%d\n",
88ad4175 2529 name, dev ? &dev->features : &null_features,
65e9d2fa 2530 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2531 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2532 skb_shinfo(skb)->gso_type, skb->ip_summed);
2533}
2534
1da177e4
LT
2535/*
2536 * Invalidate hardware checksum when packet is to be mangled, and
2537 * complete checksum manually on outgoing path.
2538 */
84fa7933 2539int skb_checksum_help(struct sk_buff *skb)
1da177e4 2540{
d3bc23e7 2541 __wsum csum;
663ead3b 2542 int ret = 0, offset;
1da177e4 2543
84fa7933 2544 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2545 goto out_set_summed;
2546
2547 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2548 skb_warn_bad_offload(skb);
2549 return -EINVAL;
1da177e4
LT
2550 }
2551
cef401de
ED
2552 /* Before computing a checksum, we should make sure no frag could
2553 * be modified by an external entity : checksum could be wrong.
2554 */
2555 if (skb_has_shared_frag(skb)) {
2556 ret = __skb_linearize(skb);
2557 if (ret)
2558 goto out;
2559 }
2560
55508d60 2561 offset = skb_checksum_start_offset(skb);
a030847e
HX
2562 BUG_ON(offset >= skb_headlen(skb));
2563 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2564
2565 offset += skb->csum_offset;
2566 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2567
2568 if (skb_cloned(skb) &&
2569 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2570 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2571 if (ret)
2572 goto out;
2573 }
2574
4f2e4ad5 2575 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2576out_set_summed:
1da177e4 2577 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2578out:
1da177e4
LT
2579 return ret;
2580}
d1b19dff 2581EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2582
53d6471c 2583__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2584{
252e3346 2585 __be16 type = skb->protocol;
f6a78bfc 2586
19acc327
PS
2587 /* Tunnel gso handlers can set protocol to ethernet. */
2588 if (type == htons(ETH_P_TEB)) {
2589 struct ethhdr *eth;
2590
2591 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2592 return 0;
2593
2594 eth = (struct ethhdr *)skb_mac_header(skb);
2595 type = eth->h_proto;
2596 }
2597
d4bcef3f 2598 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2599}
2600
2601/**
2602 * skb_mac_gso_segment - mac layer segmentation handler.
2603 * @skb: buffer to segment
2604 * @features: features for the output path (see dev->features)
2605 */
2606struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2607 netdev_features_t features)
2608{
2609 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2610 struct packet_offload *ptype;
53d6471c
VY
2611 int vlan_depth = skb->mac_len;
2612 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2613
2614 if (unlikely(!type))
2615 return ERR_PTR(-EINVAL);
2616
53d6471c 2617 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2618
2619 rcu_read_lock();
22061d80 2620 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2621 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2622 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2623 break;
2624 }
2625 }
2626 rcu_read_unlock();
2627
98e399f8 2628 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2629
f6a78bfc
HX
2630 return segs;
2631}
05e8ef4a
PS
2632EXPORT_SYMBOL(skb_mac_gso_segment);
2633
2634
2635/* openvswitch calls this on rx path, so we need a different check.
2636 */
2637static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2638{
2639 if (tx_path)
2640 return skb->ip_summed != CHECKSUM_PARTIAL;
2641 else
2642 return skb->ip_summed == CHECKSUM_NONE;
2643}
2644
2645/**
2646 * __skb_gso_segment - Perform segmentation on skb.
2647 * @skb: buffer to segment
2648 * @features: features for the output path (see dev->features)
2649 * @tx_path: whether it is called in TX path
2650 *
2651 * This function segments the given skb and returns a list of segments.
2652 *
2653 * It may return NULL if the skb requires no segmentation. This is
2654 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2655 *
2656 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2657 */
2658struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2659 netdev_features_t features, bool tx_path)
2660{
b2504a5d
ED
2661 struct sk_buff *segs;
2662
05e8ef4a
PS
2663 if (unlikely(skb_needs_check(skb, tx_path))) {
2664 int err;
2665
b2504a5d 2666 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2667 err = skb_cow_head(skb, 0);
2668 if (err < 0)
05e8ef4a
PS
2669 return ERR_PTR(err);
2670 }
2671
802ab55a
AD
2672 /* Only report GSO partial support if it will enable us to
2673 * support segmentation on this frame without needing additional
2674 * work.
2675 */
2676 if (features & NETIF_F_GSO_PARTIAL) {
2677 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2678 struct net_device *dev = skb->dev;
2679
2680 partial_features |= dev->features & dev->gso_partial_features;
2681 if (!skb_gso_ok(skb, features | partial_features))
2682 features &= ~NETIF_F_GSO_PARTIAL;
2683 }
2684
9207f9d4
KK
2685 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2686 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2687
68c33163 2688 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2689 SKB_GSO_CB(skb)->encap_level = 0;
2690
05e8ef4a
PS
2691 skb_reset_mac_header(skb);
2692 skb_reset_mac_len(skb);
2693
b2504a5d
ED
2694 segs = skb_mac_gso_segment(skb, features);
2695
2696 if (unlikely(skb_needs_check(skb, tx_path)))
2697 skb_warn_bad_offload(skb);
2698
2699 return segs;
05e8ef4a 2700}
12b0004d 2701EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2702
fb286bb2
HX
2703/* Take action when hardware reception checksum errors are detected. */
2704#ifdef CONFIG_BUG
2705void netdev_rx_csum_fault(struct net_device *dev)
2706{
2707 if (net_ratelimit()) {
7b6cd1ce 2708 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2709 dump_stack();
2710 }
2711}
2712EXPORT_SYMBOL(netdev_rx_csum_fault);
2713#endif
2714
1da177e4
LT
2715/* Actually, we should eliminate this check as soon as we know, that:
2716 * 1. IOMMU is present and allows to map all the memory.
2717 * 2. No high memory really exists on this machine.
2718 */
2719
c1e756bf 2720static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2721{
3d3a8533 2722#ifdef CONFIG_HIGHMEM
1da177e4 2723 int i;
5acbbd42 2724 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2725 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2726 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2727 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2728 return 1;
ea2ab693 2729 }
5acbbd42 2730 }
1da177e4 2731
5acbbd42
FT
2732 if (PCI_DMA_BUS_IS_PHYS) {
2733 struct device *pdev = dev->dev.parent;
1da177e4 2734
9092c658
ED
2735 if (!pdev)
2736 return 0;
5acbbd42 2737 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2738 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2739 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2740 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2741 return 1;
2742 }
2743 }
3d3a8533 2744#endif
1da177e4
LT
2745 return 0;
2746}
1da177e4 2747
3b392ddb
SH
2748/* If MPLS offload request, verify we are testing hardware MPLS features
2749 * instead of standard features for the netdev.
2750 */
d0edc7bf 2751#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2752static netdev_features_t net_mpls_features(struct sk_buff *skb,
2753 netdev_features_t features,
2754 __be16 type)
2755{
25cd9ba0 2756 if (eth_p_mpls(type))
3b392ddb
SH
2757 features &= skb->dev->mpls_features;
2758
2759 return features;
2760}
2761#else
2762static netdev_features_t net_mpls_features(struct sk_buff *skb,
2763 netdev_features_t features,
2764 __be16 type)
2765{
2766 return features;
2767}
2768#endif
2769
c8f44aff 2770static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2771 netdev_features_t features)
f01a5236 2772{
53d6471c 2773 int tmp;
3b392ddb
SH
2774 __be16 type;
2775
2776 type = skb_network_protocol(skb, &tmp);
2777 features = net_mpls_features(skb, features, type);
53d6471c 2778
c0d680e5 2779 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2780 !can_checksum_protocol(features, type)) {
996e8021 2781 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2782 }
7be2c82c
ED
2783 if (illegal_highdma(skb->dev, skb))
2784 features &= ~NETIF_F_SG;
f01a5236
JG
2785
2786 return features;
2787}
2788
e38f3025
TM
2789netdev_features_t passthru_features_check(struct sk_buff *skb,
2790 struct net_device *dev,
2791 netdev_features_t features)
2792{
2793 return features;
2794}
2795EXPORT_SYMBOL(passthru_features_check);
2796
8cb65d00
TM
2797static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2798 struct net_device *dev,
2799 netdev_features_t features)
2800{
2801 return vlan_features_check(skb, features);
2802}
2803
cbc53e08
AD
2804static netdev_features_t gso_features_check(const struct sk_buff *skb,
2805 struct net_device *dev,
2806 netdev_features_t features)
2807{
2808 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2809
2810 if (gso_segs > dev->gso_max_segs)
2811 return features & ~NETIF_F_GSO_MASK;
2812
802ab55a
AD
2813 /* Support for GSO partial features requires software
2814 * intervention before we can actually process the packets
2815 * so we need to strip support for any partial features now
2816 * and we can pull them back in after we have partially
2817 * segmented the frame.
2818 */
2819 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2820 features &= ~dev->gso_partial_features;
2821
2822 /* Make sure to clear the IPv4 ID mangling feature if the
2823 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2824 */
2825 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2826 struct iphdr *iph = skb->encapsulation ?
2827 inner_ip_hdr(skb) : ip_hdr(skb);
2828
2829 if (!(iph->frag_off & htons(IP_DF)))
2830 features &= ~NETIF_F_TSO_MANGLEID;
2831 }
2832
2833 return features;
2834}
2835
c1e756bf 2836netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2837{
5f35227e 2838 struct net_device *dev = skb->dev;
fcbeb976 2839 netdev_features_t features = dev->features;
58e998c6 2840
cbc53e08
AD
2841 if (skb_is_gso(skb))
2842 features = gso_features_check(skb, dev, features);
30b678d8 2843
5f35227e
JG
2844 /* If encapsulation offload request, verify we are testing
2845 * hardware encapsulation features instead of standard
2846 * features for the netdev
2847 */
2848 if (skb->encapsulation)
2849 features &= dev->hw_enc_features;
2850
f5a7fb88
TM
2851 if (skb_vlan_tagged(skb))
2852 features = netdev_intersect_features(features,
2853 dev->vlan_features |
2854 NETIF_F_HW_VLAN_CTAG_TX |
2855 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2856
5f35227e
JG
2857 if (dev->netdev_ops->ndo_features_check)
2858 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2859 features);
8cb65d00
TM
2860 else
2861 features &= dflt_features_check(skb, dev, features);
5f35227e 2862
c1e756bf 2863 return harmonize_features(skb, features);
58e998c6 2864}
c1e756bf 2865EXPORT_SYMBOL(netif_skb_features);
58e998c6 2866
2ea25513 2867static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2868 struct netdev_queue *txq, bool more)
f6a78bfc 2869{
2ea25513
DM
2870 unsigned int len;
2871 int rc;
00829823 2872
7866a621 2873 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2874 dev_queue_xmit_nit(skb, dev);
fc741216 2875
2ea25513
DM
2876 len = skb->len;
2877 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2878 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2879 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2880
2ea25513
DM
2881 return rc;
2882}
7b9c6090 2883
8dcda22a
DM
2884struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2885 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2886{
2887 struct sk_buff *skb = first;
2888 int rc = NETDEV_TX_OK;
7b9c6090 2889
7f2e870f
DM
2890 while (skb) {
2891 struct sk_buff *next = skb->next;
fc70fb64 2892
7f2e870f 2893 skb->next = NULL;
95f6b3dd 2894 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2895 if (unlikely(!dev_xmit_complete(rc))) {
2896 skb->next = next;
2897 goto out;
2898 }
6afff0ca 2899
7f2e870f
DM
2900 skb = next;
2901 if (netif_xmit_stopped(txq) && skb) {
2902 rc = NETDEV_TX_BUSY;
2903 break;
9ccb8975 2904 }
7f2e870f 2905 }
9ccb8975 2906
7f2e870f
DM
2907out:
2908 *ret = rc;
2909 return skb;
2910}
b40863c6 2911
1ff0dc94
ED
2912static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2913 netdev_features_t features)
f6a78bfc 2914{
df8a39de 2915 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2916 !vlan_hw_offload_capable(features, skb->vlan_proto))
2917 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2918 return skb;
2919}
f6a78bfc 2920
55a93b3e 2921static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2922{
2923 netdev_features_t features;
f6a78bfc 2924
eae3f88e
DM
2925 features = netif_skb_features(skb);
2926 skb = validate_xmit_vlan(skb, features);
2927 if (unlikely(!skb))
2928 goto out_null;
7b9c6090 2929
8b86a61d 2930 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2931 struct sk_buff *segs;
2932
2933 segs = skb_gso_segment(skb, features);
cecda693 2934 if (IS_ERR(segs)) {
af6dabc9 2935 goto out_kfree_skb;
cecda693
JW
2936 } else if (segs) {
2937 consume_skb(skb);
2938 skb = segs;
f6a78bfc 2939 }
eae3f88e
DM
2940 } else {
2941 if (skb_needs_linearize(skb, features) &&
2942 __skb_linearize(skb))
2943 goto out_kfree_skb;
4ec93edb 2944
eae3f88e
DM
2945 /* If packet is not checksummed and device does not
2946 * support checksumming for this protocol, complete
2947 * checksumming here.
2948 */
2949 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2950 if (skb->encapsulation)
2951 skb_set_inner_transport_header(skb,
2952 skb_checksum_start_offset(skb));
2953 else
2954 skb_set_transport_header(skb,
2955 skb_checksum_start_offset(skb));
a188222b 2956 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2957 skb_checksum_help(skb))
2958 goto out_kfree_skb;
7b9c6090 2959 }
0c772159 2960 }
7b9c6090 2961
eae3f88e 2962 return skb;
fc70fb64 2963
f6a78bfc
HX
2964out_kfree_skb:
2965 kfree_skb(skb);
eae3f88e 2966out_null:
d21fd63e 2967 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
2968 return NULL;
2969}
6afff0ca 2970
55a93b3e
ED
2971struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2972{
2973 struct sk_buff *next, *head = NULL, *tail;
2974
bec3cfdc 2975 for (; skb != NULL; skb = next) {
55a93b3e
ED
2976 next = skb->next;
2977 skb->next = NULL;
bec3cfdc
ED
2978
2979 /* in case skb wont be segmented, point to itself */
2980 skb->prev = skb;
2981
55a93b3e 2982 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2983 if (!skb)
2984 continue;
55a93b3e 2985
bec3cfdc
ED
2986 if (!head)
2987 head = skb;
2988 else
2989 tail->next = skb;
2990 /* If skb was segmented, skb->prev points to
2991 * the last segment. If not, it still contains skb.
2992 */
2993 tail = skb->prev;
55a93b3e
ED
2994 }
2995 return head;
f6a78bfc 2996}
104ba78c 2997EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 2998
1def9238
ED
2999static void qdisc_pkt_len_init(struct sk_buff *skb)
3000{
3001 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3002
3003 qdisc_skb_cb(skb)->pkt_len = skb->len;
3004
3005 /* To get more precise estimation of bytes sent on wire,
3006 * we add to pkt_len the headers size of all segments
3007 */
3008 if (shinfo->gso_size) {
757b8b1d 3009 unsigned int hdr_len;
15e5a030 3010 u16 gso_segs = shinfo->gso_segs;
1def9238 3011
757b8b1d
ED
3012 /* mac layer + network layer */
3013 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3014
3015 /* + transport layer */
1def9238
ED
3016 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3017 hdr_len += tcp_hdrlen(skb);
3018 else
3019 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3020
3021 if (shinfo->gso_type & SKB_GSO_DODGY)
3022 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3023 shinfo->gso_size);
3024
3025 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3026 }
3027}
3028
bbd8a0d3
KK
3029static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3030 struct net_device *dev,
3031 struct netdev_queue *txq)
3032{
3033 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3034 struct sk_buff *to_free = NULL;
a2da570d 3035 bool contended;
bbd8a0d3
KK
3036 int rc;
3037
a2da570d 3038 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3039 /*
3040 * Heuristic to force contended enqueues to serialize on a
3041 * separate lock before trying to get qdisc main lock.
f9eb8aea 3042 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3043 * often and dequeue packets faster.
79640a4c 3044 */
a2da570d 3045 contended = qdisc_is_running(q);
79640a4c
ED
3046 if (unlikely(contended))
3047 spin_lock(&q->busylock);
3048
bbd8a0d3
KK
3049 spin_lock(root_lock);
3050 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3051 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3052 rc = NET_XMIT_DROP;
3053 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3054 qdisc_run_begin(q)) {
bbd8a0d3
KK
3055 /*
3056 * This is a work-conserving queue; there are no old skbs
3057 * waiting to be sent out; and the qdisc is not running -
3058 * xmit the skb directly.
3059 */
bfe0d029 3060
bfe0d029
ED
3061 qdisc_bstats_update(q, skb);
3062
55a93b3e 3063 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3064 if (unlikely(contended)) {
3065 spin_unlock(&q->busylock);
3066 contended = false;
3067 }
bbd8a0d3 3068 __qdisc_run(q);
79640a4c 3069 } else
bc135b23 3070 qdisc_run_end(q);
bbd8a0d3
KK
3071
3072 rc = NET_XMIT_SUCCESS;
3073 } else {
520ac30f 3074 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3075 if (qdisc_run_begin(q)) {
3076 if (unlikely(contended)) {
3077 spin_unlock(&q->busylock);
3078 contended = false;
3079 }
3080 __qdisc_run(q);
3081 }
bbd8a0d3
KK
3082 }
3083 spin_unlock(root_lock);
520ac30f
ED
3084 if (unlikely(to_free))
3085 kfree_skb_list(to_free);
79640a4c
ED
3086 if (unlikely(contended))
3087 spin_unlock(&q->busylock);
bbd8a0d3
KK
3088 return rc;
3089}
3090
86f8515f 3091#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3092static void skb_update_prio(struct sk_buff *skb)
3093{
6977a79d 3094 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3095
91c68ce2 3096 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3097 unsigned int prioidx =
3098 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3099
3100 if (prioidx < map->priomap_len)
3101 skb->priority = map->priomap[prioidx];
3102 }
5bc1421e
NH
3103}
3104#else
3105#define skb_update_prio(skb)
3106#endif
3107
f60e5990 3108DEFINE_PER_CPU(int, xmit_recursion);
3109EXPORT_SYMBOL(xmit_recursion);
3110
95603e22
MM
3111/**
3112 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3113 * @net: network namespace this loopback is happening in
3114 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3115 * @skb: buffer to transmit
3116 */
0c4b51f0 3117int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3118{
3119 skb_reset_mac_header(skb);
3120 __skb_pull(skb, skb_network_offset(skb));
3121 skb->pkt_type = PACKET_LOOPBACK;
3122 skb->ip_summed = CHECKSUM_UNNECESSARY;
3123 WARN_ON(!skb_dst(skb));
3124 skb_dst_force(skb);
3125 netif_rx_ni(skb);
3126 return 0;
3127}
3128EXPORT_SYMBOL(dev_loopback_xmit);
3129
1f211a1b
DB
3130#ifdef CONFIG_NET_EGRESS
3131static struct sk_buff *
3132sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3133{
3134 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3135 struct tcf_result cl_res;
3136
3137 if (!cl)
3138 return skb;
3139
8dc07fdb 3140 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
1f211a1b
DB
3141 qdisc_bstats_cpu_update(cl->q, skb);
3142
3143 switch (tc_classify(skb, cl, &cl_res, false)) {
3144 case TC_ACT_OK:
3145 case TC_ACT_RECLASSIFY:
3146 skb->tc_index = TC_H_MIN(cl_res.classid);
3147 break;
3148 case TC_ACT_SHOT:
3149 qdisc_qstats_cpu_drop(cl->q);
3150 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3151 kfree_skb(skb);
3152 return NULL;
1f211a1b
DB
3153 case TC_ACT_STOLEN:
3154 case TC_ACT_QUEUED:
3155 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3156 consume_skb(skb);
1f211a1b
DB
3157 return NULL;
3158 case TC_ACT_REDIRECT:
3159 /* No need to push/pop skb's mac_header here on egress! */
3160 skb_do_redirect(skb);
3161 *ret = NET_XMIT_SUCCESS;
3162 return NULL;
3163 default:
3164 break;
3165 }
3166
3167 return skb;
3168}
3169#endif /* CONFIG_NET_EGRESS */
3170
638b2a69
JP
3171static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3172{
3173#ifdef CONFIG_XPS
3174 struct xps_dev_maps *dev_maps;
3175 struct xps_map *map;
3176 int queue_index = -1;
3177
3178 rcu_read_lock();
3179 dev_maps = rcu_dereference(dev->xps_maps);
3180 if (dev_maps) {
184c449f
AD
3181 unsigned int tci = skb->sender_cpu - 1;
3182
3183 if (dev->num_tc) {
3184 tci *= dev->num_tc;
3185 tci += netdev_get_prio_tc_map(dev, skb->priority);
3186 }
3187
3188 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3189 if (map) {
3190 if (map->len == 1)
3191 queue_index = map->queues[0];
3192 else
3193 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3194 map->len)];
3195 if (unlikely(queue_index >= dev->real_num_tx_queues))
3196 queue_index = -1;
3197 }
3198 }
3199 rcu_read_unlock();
3200
3201 return queue_index;
3202#else
3203 return -1;
3204#endif
3205}
3206
3207static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3208{
3209 struct sock *sk = skb->sk;
3210 int queue_index = sk_tx_queue_get(sk);
3211
3212 if (queue_index < 0 || skb->ooo_okay ||
3213 queue_index >= dev->real_num_tx_queues) {
3214 int new_index = get_xps_queue(dev, skb);
3215 if (new_index < 0)
3216 new_index = skb_tx_hash(dev, skb);
3217
3218 if (queue_index != new_index && sk &&
004a5d01 3219 sk_fullsock(sk) &&
638b2a69
JP
3220 rcu_access_pointer(sk->sk_dst_cache))
3221 sk_tx_queue_set(sk, new_index);
3222
3223 queue_index = new_index;
3224 }
3225
3226 return queue_index;
3227}
3228
3229struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3230 struct sk_buff *skb,
3231 void *accel_priv)
3232{
3233 int queue_index = 0;
3234
3235#ifdef CONFIG_XPS
52bd2d62
ED
3236 u32 sender_cpu = skb->sender_cpu - 1;
3237
3238 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3239 skb->sender_cpu = raw_smp_processor_id() + 1;
3240#endif
3241
3242 if (dev->real_num_tx_queues != 1) {
3243 const struct net_device_ops *ops = dev->netdev_ops;
3244 if (ops->ndo_select_queue)
3245 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3246 __netdev_pick_tx);
3247 else
3248 queue_index = __netdev_pick_tx(dev, skb);
3249
3250 if (!accel_priv)
3251 queue_index = netdev_cap_txqueue(dev, queue_index);
3252 }
3253
3254 skb_set_queue_mapping(skb, queue_index);
3255 return netdev_get_tx_queue(dev, queue_index);
3256}
3257
d29f749e 3258/**
9d08dd3d 3259 * __dev_queue_xmit - transmit a buffer
d29f749e 3260 * @skb: buffer to transmit
9d08dd3d 3261 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3262 *
3263 * Queue a buffer for transmission to a network device. The caller must
3264 * have set the device and priority and built the buffer before calling
3265 * this function. The function can be called from an interrupt.
3266 *
3267 * A negative errno code is returned on a failure. A success does not
3268 * guarantee the frame will be transmitted as it may be dropped due
3269 * to congestion or traffic shaping.
3270 *
3271 * -----------------------------------------------------------------------------------
3272 * I notice this method can also return errors from the queue disciplines,
3273 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3274 * be positive.
3275 *
3276 * Regardless of the return value, the skb is consumed, so it is currently
3277 * difficult to retry a send to this method. (You can bump the ref count
3278 * before sending to hold a reference for retry if you are careful.)
3279 *
3280 * When calling this method, interrupts MUST be enabled. This is because
3281 * the BH enable code must have IRQs enabled so that it will not deadlock.
3282 * --BLG
3283 */
0a59f3a9 3284static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3285{
3286 struct net_device *dev = skb->dev;
dc2b4847 3287 struct netdev_queue *txq;
1da177e4
LT
3288 struct Qdisc *q;
3289 int rc = -ENOMEM;
3290
6d1ccff6
ED
3291 skb_reset_mac_header(skb);
3292
e7fd2885
WB
3293 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3294 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3295
4ec93edb
YH
3296 /* Disable soft irqs for various locks below. Also
3297 * stops preemption for RCU.
1da177e4 3298 */
4ec93edb 3299 rcu_read_lock_bh();
1da177e4 3300
5bc1421e
NH
3301 skb_update_prio(skb);
3302
1f211a1b
DB
3303 qdisc_pkt_len_init(skb);
3304#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3305 skb->tc_at_ingress = 0;
1f211a1b
DB
3306# ifdef CONFIG_NET_EGRESS
3307 if (static_key_false(&egress_needed)) {
3308 skb = sch_handle_egress(skb, &rc, dev);
3309 if (!skb)
3310 goto out;
3311 }
3312# endif
3313#endif
02875878
ED
3314 /* If device/qdisc don't need skb->dst, release it right now while
3315 * its hot in this cpu cache.
3316 */
3317 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3318 skb_dst_drop(skb);
3319 else
3320 skb_dst_force(skb);
3321
f663dd9a 3322 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3323 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3324
cf66ba58 3325 trace_net_dev_queue(skb);
1da177e4 3326 if (q->enqueue) {
bbd8a0d3 3327 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3328 goto out;
1da177e4
LT
3329 }
3330
3331 /* The device has no queue. Common case for software devices:
3332 loopback, all the sorts of tunnels...
3333
932ff279
HX
3334 Really, it is unlikely that netif_tx_lock protection is necessary
3335 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3336 counters.)
3337 However, it is possible, that they rely on protection
3338 made by us here.
3339
3340 Check this and shot the lock. It is not prone from deadlocks.
3341 Either shot noqueue qdisc, it is even simpler 8)
3342 */
3343 if (dev->flags & IFF_UP) {
3344 int cpu = smp_processor_id(); /* ok because BHs are off */
3345
c773e847 3346 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3347 if (unlikely(__this_cpu_read(xmit_recursion) >
3348 XMIT_RECURSION_LIMIT))
745e20f1
ED
3349 goto recursion_alert;
3350
1f59533f
JDB
3351 skb = validate_xmit_skb(skb, dev);
3352 if (!skb)
d21fd63e 3353 goto out;
1f59533f 3354
c773e847 3355 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3356
73466498 3357 if (!netif_xmit_stopped(txq)) {
745e20f1 3358 __this_cpu_inc(xmit_recursion);
ce93718f 3359 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3360 __this_cpu_dec(xmit_recursion);
572a9d7b 3361 if (dev_xmit_complete(rc)) {
c773e847 3362 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3363 goto out;
3364 }
3365 }
c773e847 3366 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3367 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3368 dev->name);
1da177e4
LT
3369 } else {
3370 /* Recursion is detected! It is possible,
745e20f1
ED
3371 * unfortunately
3372 */
3373recursion_alert:
e87cc472
JP
3374 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3375 dev->name);
1da177e4
LT
3376 }
3377 }
3378
3379 rc = -ENETDOWN;
d4828d85 3380 rcu_read_unlock_bh();
1da177e4 3381
015f0688 3382 atomic_long_inc(&dev->tx_dropped);
1f59533f 3383 kfree_skb_list(skb);
1da177e4
LT
3384 return rc;
3385out:
d4828d85 3386 rcu_read_unlock_bh();
1da177e4
LT
3387 return rc;
3388}
f663dd9a 3389
2b4aa3ce 3390int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3391{
3392 return __dev_queue_xmit(skb, NULL);
3393}
2b4aa3ce 3394EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3395
f663dd9a
JW
3396int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3397{
3398 return __dev_queue_xmit(skb, accel_priv);
3399}
3400EXPORT_SYMBOL(dev_queue_xmit_accel);
3401
1da177e4
LT
3402
3403/*=======================================================================
3404 Receiver routines
3405 =======================================================================*/
3406
6b2bedc3 3407int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3408EXPORT_SYMBOL(netdev_max_backlog);
3409
3b098e2d 3410int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3411int netdev_budget __read_mostly = 300;
3d48b53f
MT
3412int weight_p __read_mostly = 64; /* old backlog weight */
3413int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3414int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3415int dev_rx_weight __read_mostly = 64;
3416int dev_tx_weight __read_mostly = 64;
1da177e4 3417
eecfd7c4
ED
3418/* Called with irq disabled */
3419static inline void ____napi_schedule(struct softnet_data *sd,
3420 struct napi_struct *napi)
3421{
3422 list_add_tail(&napi->poll_list, &sd->poll_list);
3423 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3424}
3425
bfb564e7
KK
3426#ifdef CONFIG_RPS
3427
3428/* One global table that all flow-based protocols share. */
6e3f7faf 3429struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3430EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3431u32 rps_cpu_mask __read_mostly;
3432EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3433
c5905afb 3434struct static_key rps_needed __read_mostly;
3df97ba8 3435EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3436struct static_key rfs_needed __read_mostly;
3437EXPORT_SYMBOL(rfs_needed);
adc9300e 3438
c445477d
BH
3439static struct rps_dev_flow *
3440set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3441 struct rps_dev_flow *rflow, u16 next_cpu)
3442{
a31196b0 3443 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3444#ifdef CONFIG_RFS_ACCEL
3445 struct netdev_rx_queue *rxqueue;
3446 struct rps_dev_flow_table *flow_table;
3447 struct rps_dev_flow *old_rflow;
3448 u32 flow_id;
3449 u16 rxq_index;
3450 int rc;
3451
3452 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3453 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3454 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3455 goto out;
3456 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3457 if (rxq_index == skb_get_rx_queue(skb))
3458 goto out;
3459
3460 rxqueue = dev->_rx + rxq_index;
3461 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3462 if (!flow_table)
3463 goto out;
61b905da 3464 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3465 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3466 rxq_index, flow_id);
3467 if (rc < 0)
3468 goto out;
3469 old_rflow = rflow;
3470 rflow = &flow_table->flows[flow_id];
c445477d
BH
3471 rflow->filter = rc;
3472 if (old_rflow->filter == rflow->filter)
3473 old_rflow->filter = RPS_NO_FILTER;
3474 out:
3475#endif
3476 rflow->last_qtail =
09994d1b 3477 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3478 }
3479
09994d1b 3480 rflow->cpu = next_cpu;
c445477d
BH
3481 return rflow;
3482}
3483
bfb564e7
KK
3484/*
3485 * get_rps_cpu is called from netif_receive_skb and returns the target
3486 * CPU from the RPS map of the receiving queue for a given skb.
3487 * rcu_read_lock must be held on entry.
3488 */
3489static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3490 struct rps_dev_flow **rflowp)
3491{
567e4b79
ED
3492 const struct rps_sock_flow_table *sock_flow_table;
3493 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3494 struct rps_dev_flow_table *flow_table;
567e4b79 3495 struct rps_map *map;
bfb564e7 3496 int cpu = -1;
567e4b79 3497 u32 tcpu;
61b905da 3498 u32 hash;
bfb564e7
KK
3499
3500 if (skb_rx_queue_recorded(skb)) {
3501 u16 index = skb_get_rx_queue(skb);
567e4b79 3502
62fe0b40
BH
3503 if (unlikely(index >= dev->real_num_rx_queues)) {
3504 WARN_ONCE(dev->real_num_rx_queues > 1,
3505 "%s received packet on queue %u, but number "
3506 "of RX queues is %u\n",
3507 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3508 goto done;
3509 }
567e4b79
ED
3510 rxqueue += index;
3511 }
bfb564e7 3512
567e4b79
ED
3513 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3514
3515 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3516 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3517 if (!flow_table && !map)
bfb564e7
KK
3518 goto done;
3519
2d47b459 3520 skb_reset_network_header(skb);
61b905da
TH
3521 hash = skb_get_hash(skb);
3522 if (!hash)
bfb564e7
KK
3523 goto done;
3524
fec5e652
TH
3525 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3526 if (flow_table && sock_flow_table) {
fec5e652 3527 struct rps_dev_flow *rflow;
567e4b79
ED
3528 u32 next_cpu;
3529 u32 ident;
3530
3531 /* First check into global flow table if there is a match */
3532 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3533 if ((ident ^ hash) & ~rps_cpu_mask)
3534 goto try_rps;
fec5e652 3535
567e4b79
ED
3536 next_cpu = ident & rps_cpu_mask;
3537
3538 /* OK, now we know there is a match,
3539 * we can look at the local (per receive queue) flow table
3540 */
61b905da 3541 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3542 tcpu = rflow->cpu;
3543
fec5e652
TH
3544 /*
3545 * If the desired CPU (where last recvmsg was done) is
3546 * different from current CPU (one in the rx-queue flow
3547 * table entry), switch if one of the following holds:
a31196b0 3548 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3549 * - Current CPU is offline.
3550 * - The current CPU's queue tail has advanced beyond the
3551 * last packet that was enqueued using this table entry.
3552 * This guarantees that all previous packets for the flow
3553 * have been dequeued, thus preserving in order delivery.
3554 */
3555 if (unlikely(tcpu != next_cpu) &&
a31196b0 3556 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3557 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3558 rflow->last_qtail)) >= 0)) {
3559 tcpu = next_cpu;
c445477d 3560 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3561 }
c445477d 3562
a31196b0 3563 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3564 *rflowp = rflow;
3565 cpu = tcpu;
3566 goto done;
3567 }
3568 }
3569
567e4b79
ED
3570try_rps:
3571
0a9627f2 3572 if (map) {
8fc54f68 3573 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3574 if (cpu_online(tcpu)) {
3575 cpu = tcpu;
3576 goto done;
3577 }
3578 }
3579
3580done:
0a9627f2
TH
3581 return cpu;
3582}
3583
c445477d
BH
3584#ifdef CONFIG_RFS_ACCEL
3585
3586/**
3587 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3588 * @dev: Device on which the filter was set
3589 * @rxq_index: RX queue index
3590 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3591 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3592 *
3593 * Drivers that implement ndo_rx_flow_steer() should periodically call
3594 * this function for each installed filter and remove the filters for
3595 * which it returns %true.
3596 */
3597bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3598 u32 flow_id, u16 filter_id)
3599{
3600 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3601 struct rps_dev_flow_table *flow_table;
3602 struct rps_dev_flow *rflow;
3603 bool expire = true;
a31196b0 3604 unsigned int cpu;
c445477d
BH
3605
3606 rcu_read_lock();
3607 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3608 if (flow_table && flow_id <= flow_table->mask) {
3609 rflow = &flow_table->flows[flow_id];
3610 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3611 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3612 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3613 rflow->last_qtail) <
3614 (int)(10 * flow_table->mask)))
3615 expire = false;
3616 }
3617 rcu_read_unlock();
3618 return expire;
3619}
3620EXPORT_SYMBOL(rps_may_expire_flow);
3621
3622#endif /* CONFIG_RFS_ACCEL */
3623
0a9627f2 3624/* Called from hardirq (IPI) context */
e36fa2f7 3625static void rps_trigger_softirq(void *data)
0a9627f2 3626{
e36fa2f7
ED
3627 struct softnet_data *sd = data;
3628
eecfd7c4 3629 ____napi_schedule(sd, &sd->backlog);
dee42870 3630 sd->received_rps++;
0a9627f2 3631}
e36fa2f7 3632
fec5e652 3633#endif /* CONFIG_RPS */
0a9627f2 3634
e36fa2f7
ED
3635/*
3636 * Check if this softnet_data structure is another cpu one
3637 * If yes, queue it to our IPI list and return 1
3638 * If no, return 0
3639 */
3640static int rps_ipi_queued(struct softnet_data *sd)
3641{
3642#ifdef CONFIG_RPS
903ceff7 3643 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3644
3645 if (sd != mysd) {
3646 sd->rps_ipi_next = mysd->rps_ipi_list;
3647 mysd->rps_ipi_list = sd;
3648
3649 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3650 return 1;
3651 }
3652#endif /* CONFIG_RPS */
3653 return 0;
3654}
3655
99bbc707
WB
3656#ifdef CONFIG_NET_FLOW_LIMIT
3657int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3658#endif
3659
3660static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3661{
3662#ifdef CONFIG_NET_FLOW_LIMIT
3663 struct sd_flow_limit *fl;
3664 struct softnet_data *sd;
3665 unsigned int old_flow, new_flow;
3666
3667 if (qlen < (netdev_max_backlog >> 1))
3668 return false;
3669
903ceff7 3670 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3671
3672 rcu_read_lock();
3673 fl = rcu_dereference(sd->flow_limit);
3674 if (fl) {
3958afa1 3675 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3676 old_flow = fl->history[fl->history_head];
3677 fl->history[fl->history_head] = new_flow;
3678
3679 fl->history_head++;
3680 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3681
3682 if (likely(fl->buckets[old_flow]))
3683 fl->buckets[old_flow]--;
3684
3685 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3686 fl->count++;
3687 rcu_read_unlock();
3688 return true;
3689 }
3690 }
3691 rcu_read_unlock();
3692#endif
3693 return false;
3694}
3695
0a9627f2
TH
3696/*
3697 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3698 * queue (may be a remote CPU queue).
3699 */
fec5e652
TH
3700static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3701 unsigned int *qtail)
0a9627f2 3702{
e36fa2f7 3703 struct softnet_data *sd;
0a9627f2 3704 unsigned long flags;
99bbc707 3705 unsigned int qlen;
0a9627f2 3706
e36fa2f7 3707 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3708
3709 local_irq_save(flags);
0a9627f2 3710
e36fa2f7 3711 rps_lock(sd);
e9e4dd32
JA
3712 if (!netif_running(skb->dev))
3713 goto drop;
99bbc707
WB
3714 qlen = skb_queue_len(&sd->input_pkt_queue);
3715 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3716 if (qlen) {
0a9627f2 3717enqueue:
e36fa2f7 3718 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3719 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3720 rps_unlock(sd);
152102c7 3721 local_irq_restore(flags);
0a9627f2
TH
3722 return NET_RX_SUCCESS;
3723 }
3724
ebda37c2
ED
3725 /* Schedule NAPI for backlog device
3726 * We can use non atomic operation since we own the queue lock
3727 */
3728 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3729 if (!rps_ipi_queued(sd))
eecfd7c4 3730 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3731 }
3732 goto enqueue;
3733 }
3734
e9e4dd32 3735drop:
dee42870 3736 sd->dropped++;
e36fa2f7 3737 rps_unlock(sd);
0a9627f2 3738
0a9627f2
TH
3739 local_irq_restore(flags);
3740
caf586e5 3741 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3742 kfree_skb(skb);
3743 return NET_RX_DROP;
3744}
1da177e4 3745
ae78dbfa 3746static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3747{
b0e28f1e 3748 int ret;
1da177e4 3749
588f0330 3750 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3751
cf66ba58 3752 trace_netif_rx(skb);
df334545 3753#ifdef CONFIG_RPS
c5905afb 3754 if (static_key_false(&rps_needed)) {
fec5e652 3755 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3756 int cpu;
3757
cece1945 3758 preempt_disable();
b0e28f1e 3759 rcu_read_lock();
fec5e652
TH
3760
3761 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3762 if (cpu < 0)
3763 cpu = smp_processor_id();
fec5e652
TH
3764
3765 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3766
b0e28f1e 3767 rcu_read_unlock();
cece1945 3768 preempt_enable();
adc9300e
ED
3769 } else
3770#endif
fec5e652
TH
3771 {
3772 unsigned int qtail;
3773 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3774 put_cpu();
3775 }
b0e28f1e 3776 return ret;
1da177e4 3777}
ae78dbfa
BH
3778
3779/**
3780 * netif_rx - post buffer to the network code
3781 * @skb: buffer to post
3782 *
3783 * This function receives a packet from a device driver and queues it for
3784 * the upper (protocol) levels to process. It always succeeds. The buffer
3785 * may be dropped during processing for congestion control or by the
3786 * protocol layers.
3787 *
3788 * return values:
3789 * NET_RX_SUCCESS (no congestion)
3790 * NET_RX_DROP (packet was dropped)
3791 *
3792 */
3793
3794int netif_rx(struct sk_buff *skb)
3795{
3796 trace_netif_rx_entry(skb);
3797
3798 return netif_rx_internal(skb);
3799}
d1b19dff 3800EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3801
3802int netif_rx_ni(struct sk_buff *skb)
3803{
3804 int err;
3805
ae78dbfa
BH
3806 trace_netif_rx_ni_entry(skb);
3807
1da177e4 3808 preempt_disable();
ae78dbfa 3809 err = netif_rx_internal(skb);
1da177e4
LT
3810 if (local_softirq_pending())
3811 do_softirq();
3812 preempt_enable();
3813
3814 return err;
3815}
1da177e4
LT
3816EXPORT_SYMBOL(netif_rx_ni);
3817
0766f788 3818static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3819{
903ceff7 3820 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3821
3822 if (sd->completion_queue) {
3823 struct sk_buff *clist;
3824
3825 local_irq_disable();
3826 clist = sd->completion_queue;
3827 sd->completion_queue = NULL;
3828 local_irq_enable();
3829
3830 while (clist) {
3831 struct sk_buff *skb = clist;
3832 clist = clist->next;
3833
547b792c 3834 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3835 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3836 trace_consume_skb(skb);
3837 else
3838 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3839
3840 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3841 __kfree_skb(skb);
3842 else
3843 __kfree_skb_defer(skb);
1da177e4 3844 }
15fad714
JDB
3845
3846 __kfree_skb_flush();
1da177e4
LT
3847 }
3848
3849 if (sd->output_queue) {
37437bb2 3850 struct Qdisc *head;
1da177e4
LT
3851
3852 local_irq_disable();
3853 head = sd->output_queue;
3854 sd->output_queue = NULL;
a9cbd588 3855 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3856 local_irq_enable();
3857
3858 while (head) {
37437bb2
DM
3859 struct Qdisc *q = head;
3860 spinlock_t *root_lock;
3861
1da177e4
LT
3862 head = head->next_sched;
3863
5fb66229 3864 root_lock = qdisc_lock(q);
3bcb846c
ED
3865 spin_lock(root_lock);
3866 /* We need to make sure head->next_sched is read
3867 * before clearing __QDISC_STATE_SCHED
3868 */
3869 smp_mb__before_atomic();
3870 clear_bit(__QDISC_STATE_SCHED, &q->state);
3871 qdisc_run(q);
3872 spin_unlock(root_lock);
1da177e4
LT
3873 }
3874 }
3875}
3876
181402a5 3877#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3878/* This hook is defined here for ATM LANE */
3879int (*br_fdb_test_addr_hook)(struct net_device *dev,
3880 unsigned char *addr) __read_mostly;
4fb019a0 3881EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3882#endif
1da177e4 3883
1f211a1b
DB
3884static inline struct sk_buff *
3885sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3886 struct net_device *orig_dev)
f697c3e8 3887{
e7582bab 3888#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3889 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3890 struct tcf_result cl_res;
24824a09 3891
c9e99fd0
DB
3892 /* If there's at least one ingress present somewhere (so
3893 * we get here via enabled static key), remaining devices
3894 * that are not configured with an ingress qdisc will bail
d2788d34 3895 * out here.
c9e99fd0 3896 */
d2788d34 3897 if (!cl)
4577139b 3898 return skb;
f697c3e8
HX
3899 if (*pt_prev) {
3900 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3901 *pt_prev = NULL;
1da177e4
LT
3902 }
3903
3365495c 3904 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 3905 skb->tc_at_ingress = 1;
24ea591d 3906 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3907
3b3ae880 3908 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3909 case TC_ACT_OK:
3910 case TC_ACT_RECLASSIFY:
3911 skb->tc_index = TC_H_MIN(cl_res.classid);
3912 break;
3913 case TC_ACT_SHOT:
24ea591d 3914 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3915 kfree_skb(skb);
3916 return NULL;
d2788d34
DB
3917 case TC_ACT_STOLEN:
3918 case TC_ACT_QUEUED:
8a3a4c6e 3919 consume_skb(skb);
d2788d34 3920 return NULL;
27b29f63
AS
3921 case TC_ACT_REDIRECT:
3922 /* skb_mac_header check was done by cls/act_bpf, so
3923 * we can safely push the L2 header back before
3924 * redirecting to another netdev
3925 */
3926 __skb_push(skb, skb->mac_len);
3927 skb_do_redirect(skb);
3928 return NULL;
d2788d34
DB
3929 default:
3930 break;
f697c3e8 3931 }
e7582bab 3932#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3933 return skb;
3934}
1da177e4 3935
24b27fc4
MB
3936/**
3937 * netdev_is_rx_handler_busy - check if receive handler is registered
3938 * @dev: device to check
3939 *
3940 * Check if a receive handler is already registered for a given device.
3941 * Return true if there one.
3942 *
3943 * The caller must hold the rtnl_mutex.
3944 */
3945bool netdev_is_rx_handler_busy(struct net_device *dev)
3946{
3947 ASSERT_RTNL();
3948 return dev && rtnl_dereference(dev->rx_handler);
3949}
3950EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3951
ab95bfe0
JP
3952/**
3953 * netdev_rx_handler_register - register receive handler
3954 * @dev: device to register a handler for
3955 * @rx_handler: receive handler to register
93e2c32b 3956 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3957 *
e227867f 3958 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3959 * called from __netif_receive_skb. A negative errno code is returned
3960 * on a failure.
3961 *
3962 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3963 *
3964 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3965 */
3966int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3967 rx_handler_func_t *rx_handler,
3968 void *rx_handler_data)
ab95bfe0 3969{
1b7cd004 3970 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
3971 return -EBUSY;
3972
00cfec37 3973 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3974 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3975 rcu_assign_pointer(dev->rx_handler, rx_handler);
3976
3977 return 0;
3978}
3979EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3980
3981/**
3982 * netdev_rx_handler_unregister - unregister receive handler
3983 * @dev: device to unregister a handler from
3984 *
166ec369 3985 * Unregister a receive handler from a device.
ab95bfe0
JP
3986 *
3987 * The caller must hold the rtnl_mutex.
3988 */
3989void netdev_rx_handler_unregister(struct net_device *dev)
3990{
3991
3992 ASSERT_RTNL();
a9b3cd7f 3993 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3994 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3995 * section has a guarantee to see a non NULL rx_handler_data
3996 * as well.
3997 */
3998 synchronize_net();
a9b3cd7f 3999 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4000}
4001EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4002
b4b9e355
MG
4003/*
4004 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4005 * the special handling of PFMEMALLOC skbs.
4006 */
4007static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4008{
4009 switch (skb->protocol) {
2b8837ae
JP
4010 case htons(ETH_P_ARP):
4011 case htons(ETH_P_IP):
4012 case htons(ETH_P_IPV6):
4013 case htons(ETH_P_8021Q):
4014 case htons(ETH_P_8021AD):
b4b9e355
MG
4015 return true;
4016 default:
4017 return false;
4018 }
4019}
4020
e687ad60
PN
4021static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4022 int *ret, struct net_device *orig_dev)
4023{
e7582bab 4024#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4025 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4026 int ingress_retval;
4027
e687ad60
PN
4028 if (*pt_prev) {
4029 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4030 *pt_prev = NULL;
4031 }
4032
2c1e2703
AC
4033 rcu_read_lock();
4034 ingress_retval = nf_hook_ingress(skb);
4035 rcu_read_unlock();
4036 return ingress_retval;
e687ad60 4037 }
e7582bab 4038#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4039 return 0;
4040}
e687ad60 4041
9754e293 4042static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4043{
4044 struct packet_type *ptype, *pt_prev;
ab95bfe0 4045 rx_handler_func_t *rx_handler;
f2ccd8fa 4046 struct net_device *orig_dev;
8a4eb573 4047 bool deliver_exact = false;
1da177e4 4048 int ret = NET_RX_DROP;
252e3346 4049 __be16 type;
1da177e4 4050
588f0330 4051 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4052
cf66ba58 4053 trace_netif_receive_skb(skb);
9b22ea56 4054
cc9bd5ce 4055 orig_dev = skb->dev;
8f903c70 4056
c1d2bbe1 4057 skb_reset_network_header(skb);
fda55eca
ED
4058 if (!skb_transport_header_was_set(skb))
4059 skb_reset_transport_header(skb);
0b5c9db1 4060 skb_reset_mac_len(skb);
1da177e4
LT
4061
4062 pt_prev = NULL;
4063
63d8ea7f 4064another_round:
b6858177 4065 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4066
4067 __this_cpu_inc(softnet_data.processed);
4068
8ad227ff
PM
4069 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4070 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4071 skb = skb_vlan_untag(skb);
bcc6d479 4072 if (unlikely(!skb))
2c17d27c 4073 goto out;
bcc6d479
JP
4074 }
4075
e7246e12
WB
4076 if (skb_skip_tc_classify(skb))
4077 goto skip_classify;
1da177e4 4078
9754e293 4079 if (pfmemalloc)
b4b9e355
MG
4080 goto skip_taps;
4081
1da177e4 4082 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4083 if (pt_prev)
4084 ret = deliver_skb(skb, pt_prev, orig_dev);
4085 pt_prev = ptype;
4086 }
4087
4088 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4089 if (pt_prev)
4090 ret = deliver_skb(skb, pt_prev, orig_dev);
4091 pt_prev = ptype;
1da177e4
LT
4092 }
4093
b4b9e355 4094skip_taps:
1cf51900 4095#ifdef CONFIG_NET_INGRESS
4577139b 4096 if (static_key_false(&ingress_needed)) {
1f211a1b 4097 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4098 if (!skb)
2c17d27c 4099 goto out;
e687ad60
PN
4100
4101 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4102 goto out;
4577139b 4103 }
1cf51900 4104#endif
a5135bcf 4105 skb_reset_tc(skb);
e7246e12 4106skip_classify:
9754e293 4107 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4108 goto drop;
4109
df8a39de 4110 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4111 if (pt_prev) {
4112 ret = deliver_skb(skb, pt_prev, orig_dev);
4113 pt_prev = NULL;
4114 }
48cc32d3 4115 if (vlan_do_receive(&skb))
2425717b
JF
4116 goto another_round;
4117 else if (unlikely(!skb))
2c17d27c 4118 goto out;
2425717b
JF
4119 }
4120
48cc32d3 4121 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4122 if (rx_handler) {
4123 if (pt_prev) {
4124 ret = deliver_skb(skb, pt_prev, orig_dev);
4125 pt_prev = NULL;
4126 }
8a4eb573
JP
4127 switch (rx_handler(&skb)) {
4128 case RX_HANDLER_CONSUMED:
3bc1b1ad 4129 ret = NET_RX_SUCCESS;
2c17d27c 4130 goto out;
8a4eb573 4131 case RX_HANDLER_ANOTHER:
63d8ea7f 4132 goto another_round;
8a4eb573
JP
4133 case RX_HANDLER_EXACT:
4134 deliver_exact = true;
4135 case RX_HANDLER_PASS:
4136 break;
4137 default:
4138 BUG();
4139 }
ab95bfe0 4140 }
1da177e4 4141
df8a39de
JP
4142 if (unlikely(skb_vlan_tag_present(skb))) {
4143 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4144 skb->pkt_type = PACKET_OTHERHOST;
4145 /* Note: we might in the future use prio bits
4146 * and set skb->priority like in vlan_do_receive()
4147 * For the time being, just ignore Priority Code Point
4148 */
4149 skb->vlan_tci = 0;
4150 }
48cc32d3 4151
7866a621
SN
4152 type = skb->protocol;
4153
63d8ea7f 4154 /* deliver only exact match when indicated */
7866a621
SN
4155 if (likely(!deliver_exact)) {
4156 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4157 &ptype_base[ntohs(type) &
4158 PTYPE_HASH_MASK]);
4159 }
1f3c8804 4160
7866a621
SN
4161 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4162 &orig_dev->ptype_specific);
4163
4164 if (unlikely(skb->dev != orig_dev)) {
4165 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4166 &skb->dev->ptype_specific);
1da177e4
LT
4167 }
4168
4169 if (pt_prev) {
1080e512 4170 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4171 goto drop;
1080e512
MT
4172 else
4173 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4174 } else {
b4b9e355 4175drop:
6e7333d3
JW
4176 if (!deliver_exact)
4177 atomic_long_inc(&skb->dev->rx_dropped);
4178 else
4179 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4180 kfree_skb(skb);
4181 /* Jamal, now you will not able to escape explaining
4182 * me how you were going to use this. :-)
4183 */
4184 ret = NET_RX_DROP;
4185 }
4186
2c17d27c 4187out:
9754e293
DM
4188 return ret;
4189}
4190
4191static int __netif_receive_skb(struct sk_buff *skb)
4192{
4193 int ret;
4194
4195 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4196 unsigned long pflags = current->flags;
4197
4198 /*
4199 * PFMEMALLOC skbs are special, they should
4200 * - be delivered to SOCK_MEMALLOC sockets only
4201 * - stay away from userspace
4202 * - have bounded memory usage
4203 *
4204 * Use PF_MEMALLOC as this saves us from propagating the allocation
4205 * context down to all allocation sites.
4206 */
4207 current->flags |= PF_MEMALLOC;
4208 ret = __netif_receive_skb_core(skb, true);
4209 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4210 } else
4211 ret = __netif_receive_skb_core(skb, false);
4212
1da177e4
LT
4213 return ret;
4214}
0a9627f2 4215
ae78dbfa 4216static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4217{
2c17d27c
JA
4218 int ret;
4219
588f0330 4220 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4221
c1f19b51
RC
4222 if (skb_defer_rx_timestamp(skb))
4223 return NET_RX_SUCCESS;
4224
2c17d27c
JA
4225 rcu_read_lock();
4226
df334545 4227#ifdef CONFIG_RPS
c5905afb 4228 if (static_key_false(&rps_needed)) {
3b098e2d 4229 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4230 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4231
3b098e2d
ED
4232 if (cpu >= 0) {
4233 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4234 rcu_read_unlock();
adc9300e 4235 return ret;
3b098e2d 4236 }
fec5e652 4237 }
1e94d72f 4238#endif
2c17d27c
JA
4239 ret = __netif_receive_skb(skb);
4240 rcu_read_unlock();
4241 return ret;
0a9627f2 4242}
ae78dbfa
BH
4243
4244/**
4245 * netif_receive_skb - process receive buffer from network
4246 * @skb: buffer to process
4247 *
4248 * netif_receive_skb() is the main receive data processing function.
4249 * It always succeeds. The buffer may be dropped during processing
4250 * for congestion control or by the protocol layers.
4251 *
4252 * This function may only be called from softirq context and interrupts
4253 * should be enabled.
4254 *
4255 * Return values (usually ignored):
4256 * NET_RX_SUCCESS: no congestion
4257 * NET_RX_DROP: packet was dropped
4258 */
04eb4489 4259int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4260{
4261 trace_netif_receive_skb_entry(skb);
4262
4263 return netif_receive_skb_internal(skb);
4264}
04eb4489 4265EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4266
41852497 4267DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4268
4269/* Network device is going away, flush any packets still pending */
4270static void flush_backlog(struct work_struct *work)
6e583ce5 4271{
6e583ce5 4272 struct sk_buff *skb, *tmp;
145dd5f9
PA
4273 struct softnet_data *sd;
4274
4275 local_bh_disable();
4276 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4277
145dd5f9 4278 local_irq_disable();
e36fa2f7 4279 rps_lock(sd);
6e7676c1 4280 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4281 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4282 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4283 kfree_skb(skb);
76cc8b13 4284 input_queue_head_incr(sd);
6e583ce5 4285 }
6e7676c1 4286 }
e36fa2f7 4287 rps_unlock(sd);
145dd5f9 4288 local_irq_enable();
6e7676c1
CG
4289
4290 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4291 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4292 __skb_unlink(skb, &sd->process_queue);
4293 kfree_skb(skb);
76cc8b13 4294 input_queue_head_incr(sd);
6e7676c1
CG
4295 }
4296 }
145dd5f9
PA
4297 local_bh_enable();
4298}
4299
41852497 4300static void flush_all_backlogs(void)
145dd5f9
PA
4301{
4302 unsigned int cpu;
4303
4304 get_online_cpus();
4305
41852497
ED
4306 for_each_online_cpu(cpu)
4307 queue_work_on(cpu, system_highpri_wq,
4308 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4309
4310 for_each_online_cpu(cpu)
41852497 4311 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4312
4313 put_online_cpus();
6e583ce5
SH
4314}
4315
d565b0a1
HX
4316static int napi_gro_complete(struct sk_buff *skb)
4317{
22061d80 4318 struct packet_offload *ptype;
d565b0a1 4319 __be16 type = skb->protocol;
22061d80 4320 struct list_head *head = &offload_base;
d565b0a1
HX
4321 int err = -ENOENT;
4322
c3c7c254
ED
4323 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4324
fc59f9a3
HX
4325 if (NAPI_GRO_CB(skb)->count == 1) {
4326 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4327 goto out;
fc59f9a3 4328 }
d565b0a1
HX
4329
4330 rcu_read_lock();
4331 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4332 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4333 continue;
4334
299603e8 4335 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4336 break;
4337 }
4338 rcu_read_unlock();
4339
4340 if (err) {
4341 WARN_ON(&ptype->list == head);
4342 kfree_skb(skb);
4343 return NET_RX_SUCCESS;
4344 }
4345
4346out:
ae78dbfa 4347 return netif_receive_skb_internal(skb);
d565b0a1
HX
4348}
4349
2e71a6f8
ED
4350/* napi->gro_list contains packets ordered by age.
4351 * youngest packets at the head of it.
4352 * Complete skbs in reverse order to reduce latencies.
4353 */
4354void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4355{
2e71a6f8 4356 struct sk_buff *skb, *prev = NULL;
d565b0a1 4357
2e71a6f8
ED
4358 /* scan list and build reverse chain */
4359 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4360 skb->prev = prev;
4361 prev = skb;
4362 }
4363
4364 for (skb = prev; skb; skb = prev) {
d565b0a1 4365 skb->next = NULL;
2e71a6f8
ED
4366
4367 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4368 return;
4369
4370 prev = skb->prev;
d565b0a1 4371 napi_gro_complete(skb);
2e71a6f8 4372 napi->gro_count--;
d565b0a1
HX
4373 }
4374
4375 napi->gro_list = NULL;
4376}
86cac58b 4377EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4378
89c5fa33
ED
4379static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4380{
4381 struct sk_buff *p;
4382 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4383 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4384
4385 for (p = napi->gro_list; p; p = p->next) {
4386 unsigned long diffs;
4387
0b4cec8c
TH
4388 NAPI_GRO_CB(p)->flush = 0;
4389
4390 if (hash != skb_get_hash_raw(p)) {
4391 NAPI_GRO_CB(p)->same_flow = 0;
4392 continue;
4393 }
4394
89c5fa33
ED
4395 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4396 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4397 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4398 if (maclen == ETH_HLEN)
4399 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4400 skb_mac_header(skb));
89c5fa33
ED
4401 else if (!diffs)
4402 diffs = memcmp(skb_mac_header(p),
a50e233c 4403 skb_mac_header(skb),
89c5fa33
ED
4404 maclen);
4405 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4406 }
4407}
4408
299603e8
JC
4409static void skb_gro_reset_offset(struct sk_buff *skb)
4410{
4411 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4412 const skb_frag_t *frag0 = &pinfo->frags[0];
4413
4414 NAPI_GRO_CB(skb)->data_offset = 0;
4415 NAPI_GRO_CB(skb)->frag0 = NULL;
4416 NAPI_GRO_CB(skb)->frag0_len = 0;
4417
4418 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4419 pinfo->nr_frags &&
4420 !PageHighMem(skb_frag_page(frag0))) {
4421 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4422 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4423 skb_frag_size(frag0),
4424 skb->end - skb->tail);
89c5fa33
ED
4425 }
4426}
4427
a50e233c
ED
4428static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4429{
4430 struct skb_shared_info *pinfo = skb_shinfo(skb);
4431
4432 BUG_ON(skb->end - skb->tail < grow);
4433
4434 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4435
4436 skb->data_len -= grow;
4437 skb->tail += grow;
4438
4439 pinfo->frags[0].page_offset += grow;
4440 skb_frag_size_sub(&pinfo->frags[0], grow);
4441
4442 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4443 skb_frag_unref(skb, 0);
4444 memmove(pinfo->frags, pinfo->frags + 1,
4445 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4446 }
4447}
4448
bb728820 4449static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4450{
4451 struct sk_buff **pp = NULL;
22061d80 4452 struct packet_offload *ptype;
d565b0a1 4453 __be16 type = skb->protocol;
22061d80 4454 struct list_head *head = &offload_base;
0da2afd5 4455 int same_flow;
5b252f0c 4456 enum gro_result ret;
a50e233c 4457 int grow;
d565b0a1 4458
9c62a68d 4459 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4460 goto normal;
4461
d61d072e 4462 if (skb->csum_bad)
f17f5c91
HX
4463 goto normal;
4464
89c5fa33
ED
4465 gro_list_prepare(napi, skb);
4466
d565b0a1
HX
4467 rcu_read_lock();
4468 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4469 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4470 continue;
4471
86911732 4472 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4473 skb_reset_mac_len(skb);
d565b0a1 4474 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4475 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4476 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4477 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4478 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4479 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4480 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4481 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4482
662880f4
TH
4483 /* Setup for GRO checksum validation */
4484 switch (skb->ip_summed) {
4485 case CHECKSUM_COMPLETE:
4486 NAPI_GRO_CB(skb)->csum = skb->csum;
4487 NAPI_GRO_CB(skb)->csum_valid = 1;
4488 NAPI_GRO_CB(skb)->csum_cnt = 0;
4489 break;
4490 case CHECKSUM_UNNECESSARY:
4491 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4492 NAPI_GRO_CB(skb)->csum_valid = 0;
4493 break;
4494 default:
4495 NAPI_GRO_CB(skb)->csum_cnt = 0;
4496 NAPI_GRO_CB(skb)->csum_valid = 0;
4497 }
d565b0a1 4498
f191a1d1 4499 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4500 break;
4501 }
4502 rcu_read_unlock();
4503
4504 if (&ptype->list == head)
4505 goto normal;
4506
0da2afd5 4507 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4508 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4509
d565b0a1
HX
4510 if (pp) {
4511 struct sk_buff *nskb = *pp;
4512
4513 *pp = nskb->next;
4514 nskb->next = NULL;
4515 napi_gro_complete(nskb);
4ae5544f 4516 napi->gro_count--;
d565b0a1
HX
4517 }
4518
0da2afd5 4519 if (same_flow)
d565b0a1
HX
4520 goto ok;
4521
600adc18 4522 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4523 goto normal;
d565b0a1 4524
600adc18
ED
4525 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4526 struct sk_buff *nskb = napi->gro_list;
4527
4528 /* locate the end of the list to select the 'oldest' flow */
4529 while (nskb->next) {
4530 pp = &nskb->next;
4531 nskb = *pp;
4532 }
4533 *pp = NULL;
4534 nskb->next = NULL;
4535 napi_gro_complete(nskb);
4536 } else {
4537 napi->gro_count++;
4538 }
d565b0a1 4539 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4540 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4541 NAPI_GRO_CB(skb)->last = skb;
86911732 4542 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4543 skb->next = napi->gro_list;
4544 napi->gro_list = skb;
5d0d9be8 4545 ret = GRO_HELD;
d565b0a1 4546
ad0f9904 4547pull:
a50e233c
ED
4548 grow = skb_gro_offset(skb) - skb_headlen(skb);
4549 if (grow > 0)
4550 gro_pull_from_frag0(skb, grow);
d565b0a1 4551ok:
5d0d9be8 4552 return ret;
d565b0a1
HX
4553
4554normal:
ad0f9904
HX
4555 ret = GRO_NORMAL;
4556 goto pull;
5d38a079 4557}
96e93eab 4558
bf5a755f
JC
4559struct packet_offload *gro_find_receive_by_type(__be16 type)
4560{
4561 struct list_head *offload_head = &offload_base;
4562 struct packet_offload *ptype;
4563
4564 list_for_each_entry_rcu(ptype, offload_head, list) {
4565 if (ptype->type != type || !ptype->callbacks.gro_receive)
4566 continue;
4567 return ptype;
4568 }
4569 return NULL;
4570}
e27a2f83 4571EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4572
4573struct packet_offload *gro_find_complete_by_type(__be16 type)
4574{
4575 struct list_head *offload_head = &offload_base;
4576 struct packet_offload *ptype;
4577
4578 list_for_each_entry_rcu(ptype, offload_head, list) {
4579 if (ptype->type != type || !ptype->callbacks.gro_complete)
4580 continue;
4581 return ptype;
4582 }
4583 return NULL;
4584}
e27a2f83 4585EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4586
bb728820 4587static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4588{
5d0d9be8
HX
4589 switch (ret) {
4590 case GRO_NORMAL:
ae78dbfa 4591 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4592 ret = GRO_DROP;
4593 break;
5d38a079 4594
5d0d9be8 4595 case GRO_DROP:
5d38a079
HX
4596 kfree_skb(skb);
4597 break;
5b252f0c 4598
daa86548 4599 case GRO_MERGED_FREE:
ce87fc6c
JG
4600 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4601 skb_dst_drop(skb);
f991bb9d 4602 secpath_reset(skb);
d7e8883c 4603 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4604 } else {
d7e8883c 4605 __kfree_skb(skb);
ce87fc6c 4606 }
daa86548
ED
4607 break;
4608
5b252f0c
BH
4609 case GRO_HELD:
4610 case GRO_MERGED:
4611 break;
5d38a079
HX
4612 }
4613
c7c4b3b6 4614 return ret;
5d0d9be8 4615}
5d0d9be8 4616
c7c4b3b6 4617gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4618{
93f93a44 4619 skb_mark_napi_id(skb, napi);
ae78dbfa 4620 trace_napi_gro_receive_entry(skb);
86911732 4621
a50e233c
ED
4622 skb_gro_reset_offset(skb);
4623
89c5fa33 4624 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4625}
4626EXPORT_SYMBOL(napi_gro_receive);
4627
d0c2b0d2 4628static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4629{
93a35f59
ED
4630 if (unlikely(skb->pfmemalloc)) {
4631 consume_skb(skb);
4632 return;
4633 }
96e93eab 4634 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4635 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4636 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4637 skb->vlan_tci = 0;
66c46d74 4638 skb->dev = napi->dev;
6d152e23 4639 skb->skb_iif = 0;
c3caf119
JC
4640 skb->encapsulation = 0;
4641 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4642 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 4643 secpath_reset(skb);
96e93eab
HX
4644
4645 napi->skb = skb;
4646}
96e93eab 4647
76620aaf 4648struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4649{
5d38a079 4650 struct sk_buff *skb = napi->skb;
5d38a079
HX
4651
4652 if (!skb) {
fd11a83d 4653 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4654 if (skb) {
4655 napi->skb = skb;
4656 skb_mark_napi_id(skb, napi);
4657 }
80595d59 4658 }
96e93eab
HX
4659 return skb;
4660}
76620aaf 4661EXPORT_SYMBOL(napi_get_frags);
96e93eab 4662
a50e233c
ED
4663static gro_result_t napi_frags_finish(struct napi_struct *napi,
4664 struct sk_buff *skb,
4665 gro_result_t ret)
96e93eab 4666{
5d0d9be8
HX
4667 switch (ret) {
4668 case GRO_NORMAL:
a50e233c
ED
4669 case GRO_HELD:
4670 __skb_push(skb, ETH_HLEN);
4671 skb->protocol = eth_type_trans(skb, skb->dev);
4672 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4673 ret = GRO_DROP;
86911732 4674 break;
5d38a079 4675
5d0d9be8 4676 case GRO_DROP:
5d0d9be8
HX
4677 case GRO_MERGED_FREE:
4678 napi_reuse_skb(napi, skb);
4679 break;
5b252f0c
BH
4680
4681 case GRO_MERGED:
4682 break;
5d0d9be8 4683 }
5d38a079 4684
c7c4b3b6 4685 return ret;
5d38a079 4686}
5d0d9be8 4687
a50e233c
ED
4688/* Upper GRO stack assumes network header starts at gro_offset=0
4689 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4690 * We copy ethernet header into skb->data to have a common layout.
4691 */
4adb9c4a 4692static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4693{
4694 struct sk_buff *skb = napi->skb;
a50e233c
ED
4695 const struct ethhdr *eth;
4696 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4697
4698 napi->skb = NULL;
4699
a50e233c
ED
4700 skb_reset_mac_header(skb);
4701 skb_gro_reset_offset(skb);
4702
4703 eth = skb_gro_header_fast(skb, 0);
4704 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4705 eth = skb_gro_header_slow(skb, hlen, 0);
4706 if (unlikely(!eth)) {
4da46ceb
AC
4707 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4708 __func__, napi->dev->name);
a50e233c
ED
4709 napi_reuse_skb(napi, skb);
4710 return NULL;
4711 }
4712 } else {
4713 gro_pull_from_frag0(skb, hlen);
4714 NAPI_GRO_CB(skb)->frag0 += hlen;
4715 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4716 }
a50e233c
ED
4717 __skb_pull(skb, hlen);
4718
4719 /*
4720 * This works because the only protocols we care about don't require
4721 * special handling.
4722 * We'll fix it up properly in napi_frags_finish()
4723 */
4724 skb->protocol = eth->h_proto;
76620aaf 4725
76620aaf
HX
4726 return skb;
4727}
76620aaf 4728
c7c4b3b6 4729gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4730{
76620aaf 4731 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4732
4733 if (!skb)
c7c4b3b6 4734 return GRO_DROP;
5d0d9be8 4735
ae78dbfa
BH
4736 trace_napi_gro_frags_entry(skb);
4737
89c5fa33 4738 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4739}
5d38a079
HX
4740EXPORT_SYMBOL(napi_gro_frags);
4741
573e8fca
TH
4742/* Compute the checksum from gro_offset and return the folded value
4743 * after adding in any pseudo checksum.
4744 */
4745__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4746{
4747 __wsum wsum;
4748 __sum16 sum;
4749
4750 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4751
4752 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4753 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4754 if (likely(!sum)) {
4755 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4756 !skb->csum_complete_sw)
4757 netdev_rx_csum_fault(skb->dev);
4758 }
4759
4760 NAPI_GRO_CB(skb)->csum = wsum;
4761 NAPI_GRO_CB(skb)->csum_valid = 1;
4762
4763 return sum;
4764}
4765EXPORT_SYMBOL(__skb_gro_checksum_complete);
4766
e326bed2 4767/*
855abcf0 4768 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4769 * Note: called with local irq disabled, but exits with local irq enabled.
4770 */
4771static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4772{
4773#ifdef CONFIG_RPS
4774 struct softnet_data *remsd = sd->rps_ipi_list;
4775
4776 if (remsd) {
4777 sd->rps_ipi_list = NULL;
4778
4779 local_irq_enable();
4780
4781 /* Send pending IPI's to kick RPS processing on remote cpus. */
4782 while (remsd) {
4783 struct softnet_data *next = remsd->rps_ipi_next;
4784
4785 if (cpu_online(remsd->cpu))
c46fff2a 4786 smp_call_function_single_async(remsd->cpu,
fce8ad15 4787 &remsd->csd);
e326bed2
ED
4788 remsd = next;
4789 }
4790 } else
4791#endif
4792 local_irq_enable();
4793}
4794
d75b1ade
ED
4795static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4796{
4797#ifdef CONFIG_RPS
4798 return sd->rps_ipi_list != NULL;
4799#else
4800 return false;
4801#endif
4802}
4803
bea3348e 4804static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4805{
eecfd7c4 4806 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4807 bool again = true;
4808 int work = 0;
1da177e4 4809
e326bed2
ED
4810 /* Check if we have pending ipi, its better to send them now,
4811 * not waiting net_rx_action() end.
4812 */
d75b1ade 4813 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4814 local_irq_disable();
4815 net_rps_action_and_irq_enable(sd);
4816 }
d75b1ade 4817
3d48b53f 4818 napi->weight = dev_rx_weight;
145dd5f9 4819 while (again) {
1da177e4 4820 struct sk_buff *skb;
6e7676c1
CG
4821
4822 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4823 rcu_read_lock();
6e7676c1 4824 __netif_receive_skb(skb);
2c17d27c 4825 rcu_read_unlock();
76cc8b13 4826 input_queue_head_incr(sd);
145dd5f9 4827 if (++work >= quota)
76cc8b13 4828 return work;
145dd5f9 4829
6e7676c1 4830 }
1da177e4 4831
145dd5f9 4832 local_irq_disable();
e36fa2f7 4833 rps_lock(sd);
11ef7a89 4834 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4835 /*
4836 * Inline a custom version of __napi_complete().
4837 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4838 * and NAPI_STATE_SCHED is the only possible flag set
4839 * on backlog.
4840 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4841 * and we dont need an smp_mb() memory barrier.
4842 */
eecfd7c4 4843 napi->state = 0;
145dd5f9
PA
4844 again = false;
4845 } else {
4846 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4847 &sd->process_queue);
bea3348e 4848 }
e36fa2f7 4849 rps_unlock(sd);
145dd5f9 4850 local_irq_enable();
6e7676c1 4851 }
1da177e4 4852
bea3348e
SH
4853 return work;
4854}
1da177e4 4855
bea3348e
SH
4856/**
4857 * __napi_schedule - schedule for receive
c4ea43c5 4858 * @n: entry to schedule
bea3348e 4859 *
bc9ad166
ED
4860 * The entry's receive function will be scheduled to run.
4861 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4862 */
b5606c2d 4863void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4864{
4865 unsigned long flags;
1da177e4 4866
bea3348e 4867 local_irq_save(flags);
903ceff7 4868 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4869 local_irq_restore(flags);
1da177e4 4870}
bea3348e
SH
4871EXPORT_SYMBOL(__napi_schedule);
4872
bc9ad166
ED
4873/**
4874 * __napi_schedule_irqoff - schedule for receive
4875 * @n: entry to schedule
4876 *
4877 * Variant of __napi_schedule() assuming hard irqs are masked
4878 */
4879void __napi_schedule_irqoff(struct napi_struct *n)
4880{
4881 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4882}
4883EXPORT_SYMBOL(__napi_schedule_irqoff);
4884
364b6055 4885bool __napi_complete(struct napi_struct *n)
d565b0a1
HX
4886{
4887 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4888
217f6974
ED
4889 /* Some drivers call us directly, instead of calling
4890 * napi_complete_done().
4891 */
4892 if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
364b6055 4893 return false;
217f6974 4894
d75b1ade 4895 list_del_init(&n->poll_list);
4e857c58 4896 smp_mb__before_atomic();
d565b0a1 4897 clear_bit(NAPI_STATE_SCHED, &n->state);
364b6055 4898 return true;
d565b0a1
HX
4899}
4900EXPORT_SYMBOL(__napi_complete);
4901
364b6055 4902bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4903{
4904 unsigned long flags;
4905
4906 /*
217f6974
ED
4907 * 1) Don't let napi dequeue from the cpu poll list
4908 * just in case its running on a different cpu.
4909 * 2) If we are busy polling, do nothing here, we have
4910 * the guarantee we will be called later.
d565b0a1 4911 */
217f6974
ED
4912 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4913 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 4914 return false;
d565b0a1 4915
3b47d303
ED
4916 if (n->gro_list) {
4917 unsigned long timeout = 0;
d75b1ade 4918
3b47d303
ED
4919 if (work_done)
4920 timeout = n->dev->gro_flush_timeout;
4921
4922 if (timeout)
4923 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4924 HRTIMER_MODE_REL_PINNED);
4925 else
4926 napi_gro_flush(n, false);
4927 }
d75b1ade
ED
4928 if (likely(list_empty(&n->poll_list))) {
4929 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4930 } else {
4931 /* If n->poll_list is not empty, we need to mask irqs */
4932 local_irq_save(flags);
4933 __napi_complete(n);
4934 local_irq_restore(flags);
4935 }
364b6055 4936 return true;
d565b0a1 4937}
3b47d303 4938EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4939
af12fa6e 4940/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4941static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4942{
4943 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4944 struct napi_struct *napi;
4945
4946 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4947 if (napi->napi_id == napi_id)
4948 return napi;
4949
4950 return NULL;
4951}
02d62e86
ED
4952
4953#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 4954
ce6aea93 4955#define BUSY_POLL_BUDGET 8
217f6974
ED
4956
4957static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4958{
4959 int rc;
4960
4961 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4962
4963 local_bh_disable();
4964
4965 /* All we really want here is to re-enable device interrupts.
4966 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4967 */
4968 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4969 netpoll_poll_unlock(have_poll_lock);
4970 if (rc == BUSY_POLL_BUDGET)
4971 __napi_schedule(napi);
4972 local_bh_enable();
4973 if (local_softirq_pending())
4974 do_softirq();
4975}
4976
02d62e86
ED
4977bool sk_busy_loop(struct sock *sk, int nonblock)
4978{
4979 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
217f6974 4980 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 4981 void *have_poll_lock = NULL;
02d62e86 4982 struct napi_struct *napi;
217f6974
ED
4983 int rc;
4984
4985restart:
4986 rc = false;
4987 napi_poll = NULL;
02d62e86 4988
2a028ecb 4989 rcu_read_lock();
02d62e86
ED
4990
4991 napi = napi_by_id(sk->sk_napi_id);
4992 if (!napi)
4993 goto out;
4994
217f6974
ED
4995 preempt_disable();
4996 for (;;) {
ce6aea93 4997 rc = 0;
2a028ecb 4998 local_bh_disable();
217f6974
ED
4999 if (!napi_poll) {
5000 unsigned long val = READ_ONCE(napi->state);
5001
5002 /* If multiple threads are competing for this napi,
5003 * we avoid dirtying napi->state as much as we can.
5004 */
5005 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5006 NAPIF_STATE_IN_BUSY_POLL))
5007 goto count;
5008 if (cmpxchg(&napi->state, val,
5009 val | NAPIF_STATE_IN_BUSY_POLL |
5010 NAPIF_STATE_SCHED) != val)
5011 goto count;
5012 have_poll_lock = netpoll_poll_lock(napi);
5013 napi_poll = napi->poll;
5014 }
5015 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5016 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5017count:
2a028ecb 5018 if (rc > 0)
02a1d6e7
ED
5019 __NET_ADD_STATS(sock_net(sk),
5020 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 5021 local_bh_enable();
02d62e86
ED
5022
5023 if (rc == LL_FLUSH_FAILED)
5024 break; /* permanent failure */
5025
217f6974
ED
5026 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5027 busy_loop_timeout(end_time))
5028 break;
02d62e86 5029
217f6974
ED
5030 if (unlikely(need_resched())) {
5031 if (napi_poll)
5032 busy_poll_stop(napi, have_poll_lock);
5033 preempt_enable();
5034 rcu_read_unlock();
5035 cond_resched();
5036 rc = !skb_queue_empty(&sk->sk_receive_queue);
5037 if (rc || busy_loop_timeout(end_time))
5038 return rc;
5039 goto restart;
5040 }
6cdf89b1 5041 cpu_relax();
217f6974
ED
5042 }
5043 if (napi_poll)
5044 busy_poll_stop(napi, have_poll_lock);
5045 preempt_enable();
02d62e86
ED
5046 rc = !skb_queue_empty(&sk->sk_receive_queue);
5047out:
2a028ecb 5048 rcu_read_unlock();
02d62e86
ED
5049 return rc;
5050}
5051EXPORT_SYMBOL(sk_busy_loop);
5052
5053#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5054
149d6ad8 5055static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5056{
d64b5e85
ED
5057 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5058 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5059 return;
af12fa6e 5060
52bd2d62 5061 spin_lock(&napi_hash_lock);
af12fa6e 5062
52bd2d62
ED
5063 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5064 do {
5065 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5066 napi_gen_id = NR_CPUS + 1;
5067 } while (napi_by_id(napi_gen_id));
5068 napi->napi_id = napi_gen_id;
af12fa6e 5069
52bd2d62
ED
5070 hlist_add_head_rcu(&napi->napi_hash_node,
5071 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5072
52bd2d62 5073 spin_unlock(&napi_hash_lock);
af12fa6e 5074}
af12fa6e
ET
5075
5076/* Warning : caller is responsible to make sure rcu grace period
5077 * is respected before freeing memory containing @napi
5078 */
34cbe27e 5079bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5080{
34cbe27e
ED
5081 bool rcu_sync_needed = false;
5082
af12fa6e
ET
5083 spin_lock(&napi_hash_lock);
5084
34cbe27e
ED
5085 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5086 rcu_sync_needed = true;
af12fa6e 5087 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5088 }
af12fa6e 5089 spin_unlock(&napi_hash_lock);
34cbe27e 5090 return rcu_sync_needed;
af12fa6e
ET
5091}
5092EXPORT_SYMBOL_GPL(napi_hash_del);
5093
3b47d303
ED
5094static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5095{
5096 struct napi_struct *napi;
5097
5098 napi = container_of(timer, struct napi_struct, timer);
5099 if (napi->gro_list)
5100 napi_schedule(napi);
5101
5102 return HRTIMER_NORESTART;
5103}
5104
d565b0a1
HX
5105void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5106 int (*poll)(struct napi_struct *, int), int weight)
5107{
5108 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5109 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5110 napi->timer.function = napi_watchdog;
4ae5544f 5111 napi->gro_count = 0;
d565b0a1 5112 napi->gro_list = NULL;
5d38a079 5113 napi->skb = NULL;
d565b0a1 5114 napi->poll = poll;
82dc3c63
ED
5115 if (weight > NAPI_POLL_WEIGHT)
5116 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5117 weight, dev->name);
d565b0a1
HX
5118 napi->weight = weight;
5119 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5120 napi->dev = dev;
5d38a079 5121#ifdef CONFIG_NETPOLL
d565b0a1
HX
5122 napi->poll_owner = -1;
5123#endif
5124 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5125 napi_hash_add(napi);
d565b0a1
HX
5126}
5127EXPORT_SYMBOL(netif_napi_add);
5128
3b47d303
ED
5129void napi_disable(struct napi_struct *n)
5130{
5131 might_sleep();
5132 set_bit(NAPI_STATE_DISABLE, &n->state);
5133
5134 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5135 msleep(1);
2d8bff12
NH
5136 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5137 msleep(1);
3b47d303
ED
5138
5139 hrtimer_cancel(&n->timer);
5140
5141 clear_bit(NAPI_STATE_DISABLE, &n->state);
5142}
5143EXPORT_SYMBOL(napi_disable);
5144
93d05d4a 5145/* Must be called in process context */
d565b0a1
HX
5146void netif_napi_del(struct napi_struct *napi)
5147{
93d05d4a
ED
5148 might_sleep();
5149 if (napi_hash_del(napi))
5150 synchronize_net();
d7b06636 5151 list_del_init(&napi->dev_list);
76620aaf 5152 napi_free_frags(napi);
d565b0a1 5153
289dccbe 5154 kfree_skb_list(napi->gro_list);
d565b0a1 5155 napi->gro_list = NULL;
4ae5544f 5156 napi->gro_count = 0;
d565b0a1
HX
5157}
5158EXPORT_SYMBOL(netif_napi_del);
5159
726ce70e
HX
5160static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5161{
5162 void *have;
5163 int work, weight;
5164
5165 list_del_init(&n->poll_list);
5166
5167 have = netpoll_poll_lock(n);
5168
5169 weight = n->weight;
5170
5171 /* This NAPI_STATE_SCHED test is for avoiding a race
5172 * with netpoll's poll_napi(). Only the entity which
5173 * obtains the lock and sees NAPI_STATE_SCHED set will
5174 * actually make the ->poll() call. Therefore we avoid
5175 * accidentally calling ->poll() when NAPI is not scheduled.
5176 */
5177 work = 0;
5178 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5179 work = n->poll(n, weight);
1db19db7 5180 trace_napi_poll(n, work, weight);
726ce70e
HX
5181 }
5182
5183 WARN_ON_ONCE(work > weight);
5184
5185 if (likely(work < weight))
5186 goto out_unlock;
5187
5188 /* Drivers must not modify the NAPI state if they
5189 * consume the entire weight. In such cases this code
5190 * still "owns" the NAPI instance and therefore can
5191 * move the instance around on the list at-will.
5192 */
5193 if (unlikely(napi_disable_pending(n))) {
5194 napi_complete(n);
5195 goto out_unlock;
5196 }
5197
5198 if (n->gro_list) {
5199 /* flush too old packets
5200 * If HZ < 1000, flush all packets.
5201 */
5202 napi_gro_flush(n, HZ >= 1000);
5203 }
5204
001ce546
HX
5205 /* Some drivers may have called napi_schedule
5206 * prior to exhausting their budget.
5207 */
5208 if (unlikely(!list_empty(&n->poll_list))) {
5209 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5210 n->dev ? n->dev->name : "backlog");
5211 goto out_unlock;
5212 }
5213
726ce70e
HX
5214 list_add_tail(&n->poll_list, repoll);
5215
5216out_unlock:
5217 netpoll_poll_unlock(have);
5218
5219 return work;
5220}
5221
0766f788 5222static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5223{
903ceff7 5224 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5225 unsigned long time_limit = jiffies + 2;
51b0bded 5226 int budget = netdev_budget;
d75b1ade
ED
5227 LIST_HEAD(list);
5228 LIST_HEAD(repoll);
53fb95d3 5229
1da177e4 5230 local_irq_disable();
d75b1ade
ED
5231 list_splice_init(&sd->poll_list, &list);
5232 local_irq_enable();
1da177e4 5233
ceb8d5bf 5234 for (;;) {
bea3348e 5235 struct napi_struct *n;
1da177e4 5236
ceb8d5bf
HX
5237 if (list_empty(&list)) {
5238 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5239 goto out;
ceb8d5bf
HX
5240 break;
5241 }
5242
6bd373eb
HX
5243 n = list_first_entry(&list, struct napi_struct, poll_list);
5244 budget -= napi_poll(n, &repoll);
5245
d75b1ade 5246 /* If softirq window is exhausted then punt.
24f8b238
SH
5247 * Allow this to run for 2 jiffies since which will allow
5248 * an average latency of 1.5/HZ.
bea3348e 5249 */
ceb8d5bf
HX
5250 if (unlikely(budget <= 0 ||
5251 time_after_eq(jiffies, time_limit))) {
5252 sd->time_squeeze++;
5253 break;
5254 }
1da177e4 5255 }
d75b1ade 5256
d75b1ade
ED
5257 local_irq_disable();
5258
5259 list_splice_tail_init(&sd->poll_list, &list);
5260 list_splice_tail(&repoll, &list);
5261 list_splice(&list, &sd->poll_list);
5262 if (!list_empty(&sd->poll_list))
5263 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5264
e326bed2 5265 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5266out:
5267 __kfree_skb_flush();
1da177e4
LT
5268}
5269
aa9d8560 5270struct netdev_adjacent {
9ff162a8 5271 struct net_device *dev;
5d261913
VF
5272
5273 /* upper master flag, there can only be one master device per list */
9ff162a8 5274 bool master;
5d261913 5275
5d261913
VF
5276 /* counter for the number of times this device was added to us */
5277 u16 ref_nr;
5278
402dae96
VF
5279 /* private field for the users */
5280 void *private;
5281
9ff162a8
JP
5282 struct list_head list;
5283 struct rcu_head rcu;
9ff162a8
JP
5284};
5285
6ea29da1 5286static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5287 struct list_head *adj_list)
9ff162a8 5288{
5d261913 5289 struct netdev_adjacent *adj;
5d261913 5290
2f268f12 5291 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5292 if (adj->dev == adj_dev)
5293 return adj;
9ff162a8
JP
5294 }
5295 return NULL;
5296}
5297
f1170fd4
DA
5298static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5299{
5300 struct net_device *dev = data;
5301
5302 return upper_dev == dev;
5303}
5304
9ff162a8
JP
5305/**
5306 * netdev_has_upper_dev - Check if device is linked to an upper device
5307 * @dev: device
5308 * @upper_dev: upper device to check
5309 *
5310 * Find out if a device is linked to specified upper device and return true
5311 * in case it is. Note that this checks only immediate upper device,
5312 * not through a complete stack of devices. The caller must hold the RTNL lock.
5313 */
5314bool netdev_has_upper_dev(struct net_device *dev,
5315 struct net_device *upper_dev)
5316{
5317 ASSERT_RTNL();
5318
f1170fd4
DA
5319 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5320 upper_dev);
9ff162a8
JP
5321}
5322EXPORT_SYMBOL(netdev_has_upper_dev);
5323
1a3f060c
DA
5324/**
5325 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5326 * @dev: device
5327 * @upper_dev: upper device to check
5328 *
5329 * Find out if a device is linked to specified upper device and return true
5330 * in case it is. Note that this checks the entire upper device chain.
5331 * The caller must hold rcu lock.
5332 */
5333
1a3f060c
DA
5334bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5335 struct net_device *upper_dev)
5336{
5337 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5338 upper_dev);
5339}
5340EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5341
9ff162a8
JP
5342/**
5343 * netdev_has_any_upper_dev - Check if device is linked to some device
5344 * @dev: device
5345 *
5346 * Find out if a device is linked to an upper device and return true in case
5347 * it is. The caller must hold the RTNL lock.
5348 */
1d143d9f 5349static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5350{
5351 ASSERT_RTNL();
5352
f1170fd4 5353 return !list_empty(&dev->adj_list.upper);
9ff162a8 5354}
9ff162a8
JP
5355
5356/**
5357 * netdev_master_upper_dev_get - Get master upper device
5358 * @dev: device
5359 *
5360 * Find a master upper device and return pointer to it or NULL in case
5361 * it's not there. The caller must hold the RTNL lock.
5362 */
5363struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5364{
aa9d8560 5365 struct netdev_adjacent *upper;
9ff162a8
JP
5366
5367 ASSERT_RTNL();
5368
2f268f12 5369 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5370 return NULL;
5371
2f268f12 5372 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5373 struct netdev_adjacent, list);
9ff162a8
JP
5374 if (likely(upper->master))
5375 return upper->dev;
5376 return NULL;
5377}
5378EXPORT_SYMBOL(netdev_master_upper_dev_get);
5379
0f524a80
DA
5380/**
5381 * netdev_has_any_lower_dev - Check if device is linked to some device
5382 * @dev: device
5383 *
5384 * Find out if a device is linked to a lower device and return true in case
5385 * it is. The caller must hold the RTNL lock.
5386 */
5387static bool netdev_has_any_lower_dev(struct net_device *dev)
5388{
5389 ASSERT_RTNL();
5390
5391 return !list_empty(&dev->adj_list.lower);
5392}
5393
b6ccba4c
VF
5394void *netdev_adjacent_get_private(struct list_head *adj_list)
5395{
5396 struct netdev_adjacent *adj;
5397
5398 adj = list_entry(adj_list, struct netdev_adjacent, list);
5399
5400 return adj->private;
5401}
5402EXPORT_SYMBOL(netdev_adjacent_get_private);
5403
44a40855
VY
5404/**
5405 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5406 * @dev: device
5407 * @iter: list_head ** of the current position
5408 *
5409 * Gets the next device from the dev's upper list, starting from iter
5410 * position. The caller must hold RCU read lock.
5411 */
5412struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5413 struct list_head **iter)
5414{
5415 struct netdev_adjacent *upper;
5416
5417 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5418
5419 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5420
5421 if (&upper->list == &dev->adj_list.upper)
5422 return NULL;
5423
5424 *iter = &upper->list;
5425
5426 return upper->dev;
5427}
5428EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5429
1a3f060c
DA
5430static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5431 struct list_head **iter)
5432{
5433 struct netdev_adjacent *upper;
5434
5435 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5436
5437 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5438
5439 if (&upper->list == &dev->adj_list.upper)
5440 return NULL;
5441
5442 *iter = &upper->list;
5443
5444 return upper->dev;
5445}
5446
5447int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5448 int (*fn)(struct net_device *dev,
5449 void *data),
5450 void *data)
5451{
5452 struct net_device *udev;
5453 struct list_head *iter;
5454 int ret;
5455
5456 for (iter = &dev->adj_list.upper,
5457 udev = netdev_next_upper_dev_rcu(dev, &iter);
5458 udev;
5459 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5460 /* first is the upper device itself */
5461 ret = fn(udev, data);
5462 if (ret)
5463 return ret;
5464
5465 /* then look at all of its upper devices */
5466 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5467 if (ret)
5468 return ret;
5469 }
5470
5471 return 0;
5472}
5473EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5474
31088a11
VF
5475/**
5476 * netdev_lower_get_next_private - Get the next ->private from the
5477 * lower neighbour list
5478 * @dev: device
5479 * @iter: list_head ** of the current position
5480 *
5481 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5482 * list, starting from iter position. The caller must hold either hold the
5483 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5484 * list will remain unchanged.
31088a11
VF
5485 */
5486void *netdev_lower_get_next_private(struct net_device *dev,
5487 struct list_head **iter)
5488{
5489 struct netdev_adjacent *lower;
5490
5491 lower = list_entry(*iter, struct netdev_adjacent, list);
5492
5493 if (&lower->list == &dev->adj_list.lower)
5494 return NULL;
5495
6859e7df 5496 *iter = lower->list.next;
31088a11
VF
5497
5498 return lower->private;
5499}
5500EXPORT_SYMBOL(netdev_lower_get_next_private);
5501
5502/**
5503 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5504 * lower neighbour list, RCU
5505 * variant
5506 * @dev: device
5507 * @iter: list_head ** of the current position
5508 *
5509 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5510 * list, starting from iter position. The caller must hold RCU read lock.
5511 */
5512void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5513 struct list_head **iter)
5514{
5515 struct netdev_adjacent *lower;
5516
5517 WARN_ON_ONCE(!rcu_read_lock_held());
5518
5519 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5520
5521 if (&lower->list == &dev->adj_list.lower)
5522 return NULL;
5523
6859e7df 5524 *iter = &lower->list;
31088a11
VF
5525
5526 return lower->private;
5527}
5528EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5529
4085ebe8
VY
5530/**
5531 * netdev_lower_get_next - Get the next device from the lower neighbour
5532 * list
5533 * @dev: device
5534 * @iter: list_head ** of the current position
5535 *
5536 * Gets the next netdev_adjacent from the dev's lower neighbour
5537 * list, starting from iter position. The caller must hold RTNL lock or
5538 * its own locking that guarantees that the neighbour lower
b469139e 5539 * list will remain unchanged.
4085ebe8
VY
5540 */
5541void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5542{
5543 struct netdev_adjacent *lower;
5544
cfdd28be 5545 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5546
5547 if (&lower->list == &dev->adj_list.lower)
5548 return NULL;
5549
cfdd28be 5550 *iter = lower->list.next;
4085ebe8
VY
5551
5552 return lower->dev;
5553}
5554EXPORT_SYMBOL(netdev_lower_get_next);
5555
1a3f060c
DA
5556static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5557 struct list_head **iter)
5558{
5559 struct netdev_adjacent *lower;
5560
46b5ab1a 5561 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5562
5563 if (&lower->list == &dev->adj_list.lower)
5564 return NULL;
5565
46b5ab1a 5566 *iter = &lower->list;
1a3f060c
DA
5567
5568 return lower->dev;
5569}
5570
5571int netdev_walk_all_lower_dev(struct net_device *dev,
5572 int (*fn)(struct net_device *dev,
5573 void *data),
5574 void *data)
5575{
5576 struct net_device *ldev;
5577 struct list_head *iter;
5578 int ret;
5579
5580 for (iter = &dev->adj_list.lower,
5581 ldev = netdev_next_lower_dev(dev, &iter);
5582 ldev;
5583 ldev = netdev_next_lower_dev(dev, &iter)) {
5584 /* first is the lower device itself */
5585 ret = fn(ldev, data);
5586 if (ret)
5587 return ret;
5588
5589 /* then look at all of its lower devices */
5590 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5591 if (ret)
5592 return ret;
5593 }
5594
5595 return 0;
5596}
5597EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5598
1a3f060c
DA
5599static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5600 struct list_head **iter)
5601{
5602 struct netdev_adjacent *lower;
5603
5604 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5605 if (&lower->list == &dev->adj_list.lower)
5606 return NULL;
5607
5608 *iter = &lower->list;
5609
5610 return lower->dev;
5611}
5612
5613int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5614 int (*fn)(struct net_device *dev,
5615 void *data),
5616 void *data)
5617{
5618 struct net_device *ldev;
5619 struct list_head *iter;
5620 int ret;
5621
5622 for (iter = &dev->adj_list.lower,
5623 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5624 ldev;
5625 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5626 /* first is the lower device itself */
5627 ret = fn(ldev, data);
5628 if (ret)
5629 return ret;
5630
5631 /* then look at all of its lower devices */
5632 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5633 if (ret)
5634 return ret;
5635 }
5636
5637 return 0;
5638}
5639EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5640
e001bfad 5641/**
5642 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5643 * lower neighbour list, RCU
5644 * variant
5645 * @dev: device
5646 *
5647 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5648 * list. The caller must hold RCU read lock.
5649 */
5650void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5651{
5652 struct netdev_adjacent *lower;
5653
5654 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5655 struct netdev_adjacent, list);
5656 if (lower)
5657 return lower->private;
5658 return NULL;
5659}
5660EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5661
9ff162a8
JP
5662/**
5663 * netdev_master_upper_dev_get_rcu - Get master upper device
5664 * @dev: device
5665 *
5666 * Find a master upper device and return pointer to it or NULL in case
5667 * it's not there. The caller must hold the RCU read lock.
5668 */
5669struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5670{
aa9d8560 5671 struct netdev_adjacent *upper;
9ff162a8 5672
2f268f12 5673 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5674 struct netdev_adjacent, list);
9ff162a8
JP
5675 if (upper && likely(upper->master))
5676 return upper->dev;
5677 return NULL;
5678}
5679EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5680
0a59f3a9 5681static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5682 struct net_device *adj_dev,
5683 struct list_head *dev_list)
5684{
5685 char linkname[IFNAMSIZ+7];
5686 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5687 "upper_%s" : "lower_%s", adj_dev->name);
5688 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5689 linkname);
5690}
0a59f3a9 5691static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5692 char *name,
5693 struct list_head *dev_list)
5694{
5695 char linkname[IFNAMSIZ+7];
5696 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5697 "upper_%s" : "lower_%s", name);
5698 sysfs_remove_link(&(dev->dev.kobj), linkname);
5699}
5700
7ce64c79
AF
5701static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5702 struct net_device *adj_dev,
5703 struct list_head *dev_list)
5704{
5705 return (dev_list == &dev->adj_list.upper ||
5706 dev_list == &dev->adj_list.lower) &&
5707 net_eq(dev_net(dev), dev_net(adj_dev));
5708}
3ee32707 5709
5d261913
VF
5710static int __netdev_adjacent_dev_insert(struct net_device *dev,
5711 struct net_device *adj_dev,
7863c054 5712 struct list_head *dev_list,
402dae96 5713 void *private, bool master)
5d261913
VF
5714{
5715 struct netdev_adjacent *adj;
842d67a7 5716 int ret;
5d261913 5717
6ea29da1 5718 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5719
5720 if (adj) {
790510d9 5721 adj->ref_nr += 1;
67b62f98
DA
5722 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5723 dev->name, adj_dev->name, adj->ref_nr);
5724
5d261913
VF
5725 return 0;
5726 }
5727
5728 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5729 if (!adj)
5730 return -ENOMEM;
5731
5732 adj->dev = adj_dev;
5733 adj->master = master;
790510d9 5734 adj->ref_nr = 1;
402dae96 5735 adj->private = private;
5d261913 5736 dev_hold(adj_dev);
2f268f12 5737
67b62f98
DA
5738 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5739 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 5740
7ce64c79 5741 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5742 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5743 if (ret)
5744 goto free_adj;
5745 }
5746
7863c054 5747 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5748 if (master) {
5749 ret = sysfs_create_link(&(dev->dev.kobj),
5750 &(adj_dev->dev.kobj), "master");
5751 if (ret)
5831d66e 5752 goto remove_symlinks;
842d67a7 5753
7863c054 5754 list_add_rcu(&adj->list, dev_list);
842d67a7 5755 } else {
7863c054 5756 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5757 }
5d261913
VF
5758
5759 return 0;
842d67a7 5760
5831d66e 5761remove_symlinks:
7ce64c79 5762 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5763 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5764free_adj:
5765 kfree(adj);
974daef7 5766 dev_put(adj_dev);
842d67a7
VF
5767
5768 return ret;
5d261913
VF
5769}
5770
1d143d9f 5771static void __netdev_adjacent_dev_remove(struct net_device *dev,
5772 struct net_device *adj_dev,
93409033 5773 u16 ref_nr,
1d143d9f 5774 struct list_head *dev_list)
5d261913
VF
5775{
5776 struct netdev_adjacent *adj;
5777
67b62f98
DA
5778 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5779 dev->name, adj_dev->name, ref_nr);
5780
6ea29da1 5781 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5782
2f268f12 5783 if (!adj) {
67b62f98 5784 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 5785 dev->name, adj_dev->name);
67b62f98
DA
5786 WARN_ON(1);
5787 return;
2f268f12 5788 }
5d261913 5789
93409033 5790 if (adj->ref_nr > ref_nr) {
67b62f98
DA
5791 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5792 dev->name, adj_dev->name, ref_nr,
5793 adj->ref_nr - ref_nr);
93409033 5794 adj->ref_nr -= ref_nr;
5d261913
VF
5795 return;
5796 }
5797
842d67a7
VF
5798 if (adj->master)
5799 sysfs_remove_link(&(dev->dev.kobj), "master");
5800
7ce64c79 5801 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5802 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5803
5d261913 5804 list_del_rcu(&adj->list);
67b62f98 5805 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 5806 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5807 dev_put(adj_dev);
5808 kfree_rcu(adj, rcu);
5809}
5810
1d143d9f 5811static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5812 struct net_device *upper_dev,
5813 struct list_head *up_list,
5814 struct list_head *down_list,
5815 void *private, bool master)
5d261913
VF
5816{
5817 int ret;
5818
790510d9 5819 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 5820 private, master);
5d261913
VF
5821 if (ret)
5822 return ret;
5823
790510d9 5824 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 5825 private, false);
5d261913 5826 if (ret) {
790510d9 5827 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
5828 return ret;
5829 }
5830
5831 return 0;
5832}
5833
1d143d9f 5834static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5835 struct net_device *upper_dev,
93409033 5836 u16 ref_nr,
1d143d9f 5837 struct list_head *up_list,
5838 struct list_head *down_list)
5d261913 5839{
93409033
AC
5840 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5841 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5842}
5843
1d143d9f 5844static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5845 struct net_device *upper_dev,
5846 void *private, bool master)
2f268f12 5847{
f1170fd4
DA
5848 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5849 &dev->adj_list.upper,
5850 &upper_dev->adj_list.lower,
5851 private, master);
5d261913
VF
5852}
5853
1d143d9f 5854static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5855 struct net_device *upper_dev)
2f268f12 5856{
93409033 5857 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5858 &dev->adj_list.upper,
5859 &upper_dev->adj_list.lower);
5860}
5d261913 5861
9ff162a8 5862static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5863 struct net_device *upper_dev, bool master,
29bf24af 5864 void *upper_priv, void *upper_info)
9ff162a8 5865{
0e4ead9d 5866 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5867 int ret = 0;
9ff162a8
JP
5868
5869 ASSERT_RTNL();
5870
5871 if (dev == upper_dev)
5872 return -EBUSY;
5873
5874 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 5875 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
5876 return -EBUSY;
5877
f1170fd4 5878 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
5879 return -EEXIST;
5880
5881 if (master && netdev_master_upper_dev_get(dev))
5882 return -EBUSY;
5883
0e4ead9d
JP
5884 changeupper_info.upper_dev = upper_dev;
5885 changeupper_info.master = master;
5886 changeupper_info.linking = true;
29bf24af 5887 changeupper_info.upper_info = upper_info;
0e4ead9d 5888
573c7ba0
JP
5889 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5890 &changeupper_info.info);
5891 ret = notifier_to_errno(ret);
5892 if (ret)
5893 return ret;
5894
6dffb044 5895 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5896 master);
5d261913
VF
5897 if (ret)
5898 return ret;
9ff162a8 5899
b03804e7
IS
5900 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5901 &changeupper_info.info);
5902 ret = notifier_to_errno(ret);
5903 if (ret)
f1170fd4 5904 goto rollback;
b03804e7 5905
9ff162a8 5906 return 0;
5d261913 5907
f1170fd4 5908rollback:
2f268f12 5909 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5910
5911 return ret;
9ff162a8
JP
5912}
5913
5914/**
5915 * netdev_upper_dev_link - Add a link to the upper device
5916 * @dev: device
5917 * @upper_dev: new upper device
5918 *
5919 * Adds a link to device which is upper to this one. The caller must hold
5920 * the RTNL lock. On a failure a negative errno code is returned.
5921 * On success the reference counts are adjusted and the function
5922 * returns zero.
5923 */
5924int netdev_upper_dev_link(struct net_device *dev,
5925 struct net_device *upper_dev)
5926{
29bf24af 5927 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5928}
5929EXPORT_SYMBOL(netdev_upper_dev_link);
5930
5931/**
5932 * netdev_master_upper_dev_link - Add a master link to the upper device
5933 * @dev: device
5934 * @upper_dev: new upper device
6dffb044 5935 * @upper_priv: upper device private
29bf24af 5936 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5937 *
5938 * Adds a link to device which is upper to this one. In this case, only
5939 * one master upper device can be linked, although other non-master devices
5940 * might be linked as well. The caller must hold the RTNL lock.
5941 * On a failure a negative errno code is returned. On success the reference
5942 * counts are adjusted and the function returns zero.
5943 */
5944int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5945 struct net_device *upper_dev,
29bf24af 5946 void *upper_priv, void *upper_info)
9ff162a8 5947{
29bf24af
JP
5948 return __netdev_upper_dev_link(dev, upper_dev, true,
5949 upper_priv, upper_info);
9ff162a8
JP
5950}
5951EXPORT_SYMBOL(netdev_master_upper_dev_link);
5952
5953/**
5954 * netdev_upper_dev_unlink - Removes a link to upper device
5955 * @dev: device
5956 * @upper_dev: new upper device
5957 *
5958 * Removes a link to device which is upper to this one. The caller must hold
5959 * the RTNL lock.
5960 */
5961void netdev_upper_dev_unlink(struct net_device *dev,
5962 struct net_device *upper_dev)
5963{
0e4ead9d 5964 struct netdev_notifier_changeupper_info changeupper_info;
9ff162a8
JP
5965 ASSERT_RTNL();
5966
0e4ead9d
JP
5967 changeupper_info.upper_dev = upper_dev;
5968 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5969 changeupper_info.linking = false;
5970
573c7ba0
JP
5971 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5972 &changeupper_info.info);
5973
2f268f12 5974 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 5975
0e4ead9d
JP
5976 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5977 &changeupper_info.info);
9ff162a8
JP
5978}
5979EXPORT_SYMBOL(netdev_upper_dev_unlink);
5980
61bd3857
MS
5981/**
5982 * netdev_bonding_info_change - Dispatch event about slave change
5983 * @dev: device
4a26e453 5984 * @bonding_info: info to dispatch
61bd3857
MS
5985 *
5986 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5987 * The caller must hold the RTNL lock.
5988 */
5989void netdev_bonding_info_change(struct net_device *dev,
5990 struct netdev_bonding_info *bonding_info)
5991{
5992 struct netdev_notifier_bonding_info info;
5993
5994 memcpy(&info.bonding_info, bonding_info,
5995 sizeof(struct netdev_bonding_info));
5996 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5997 &info.info);
5998}
5999EXPORT_SYMBOL(netdev_bonding_info_change);
6000
2ce1ee17 6001static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6002{
6003 struct netdev_adjacent *iter;
6004
6005 struct net *net = dev_net(dev);
6006
6007 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6008 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6009 continue;
6010 netdev_adjacent_sysfs_add(iter->dev, dev,
6011 &iter->dev->adj_list.lower);
6012 netdev_adjacent_sysfs_add(dev, iter->dev,
6013 &dev->adj_list.upper);
6014 }
6015
6016 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6017 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6018 continue;
6019 netdev_adjacent_sysfs_add(iter->dev, dev,
6020 &iter->dev->adj_list.upper);
6021 netdev_adjacent_sysfs_add(dev, iter->dev,
6022 &dev->adj_list.lower);
6023 }
6024}
6025
2ce1ee17 6026static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6027{
6028 struct netdev_adjacent *iter;
6029
6030 struct net *net = dev_net(dev);
6031
6032 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6033 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6034 continue;
6035 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6036 &iter->dev->adj_list.lower);
6037 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6038 &dev->adj_list.upper);
6039 }
6040
6041 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6042 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6043 continue;
6044 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6045 &iter->dev->adj_list.upper);
6046 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6047 &dev->adj_list.lower);
6048 }
6049}
6050
5bb025fa 6051void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6052{
5bb025fa 6053 struct netdev_adjacent *iter;
402dae96 6054
4c75431a
AF
6055 struct net *net = dev_net(dev);
6056
5bb025fa 6057 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6058 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6059 continue;
5bb025fa
VF
6060 netdev_adjacent_sysfs_del(iter->dev, oldname,
6061 &iter->dev->adj_list.lower);
6062 netdev_adjacent_sysfs_add(iter->dev, dev,
6063 &iter->dev->adj_list.lower);
6064 }
402dae96 6065
5bb025fa 6066 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6067 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6068 continue;
5bb025fa
VF
6069 netdev_adjacent_sysfs_del(iter->dev, oldname,
6070 &iter->dev->adj_list.upper);
6071 netdev_adjacent_sysfs_add(iter->dev, dev,
6072 &iter->dev->adj_list.upper);
6073 }
402dae96 6074}
402dae96
VF
6075
6076void *netdev_lower_dev_get_private(struct net_device *dev,
6077 struct net_device *lower_dev)
6078{
6079 struct netdev_adjacent *lower;
6080
6081 if (!lower_dev)
6082 return NULL;
6ea29da1 6083 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6084 if (!lower)
6085 return NULL;
6086
6087 return lower->private;
6088}
6089EXPORT_SYMBOL(netdev_lower_dev_get_private);
6090
4085ebe8 6091
952fcfd0 6092int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6093{
6094 struct net_device *lower = NULL;
6095 struct list_head *iter;
6096 int max_nest = -1;
6097 int nest;
6098
6099 ASSERT_RTNL();
6100
6101 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6102 nest = dev_get_nest_level(lower);
4085ebe8
VY
6103 if (max_nest < nest)
6104 max_nest = nest;
6105 }
6106
952fcfd0 6107 return max_nest + 1;
4085ebe8
VY
6108}
6109EXPORT_SYMBOL(dev_get_nest_level);
6110
04d48266
JP
6111/**
6112 * netdev_lower_change - Dispatch event about lower device state change
6113 * @lower_dev: device
6114 * @lower_state_info: state to dispatch
6115 *
6116 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6117 * The caller must hold the RTNL lock.
6118 */
6119void netdev_lower_state_changed(struct net_device *lower_dev,
6120 void *lower_state_info)
6121{
6122 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6123
6124 ASSERT_RTNL();
6125 changelowerstate_info.lower_state_info = lower_state_info;
6126 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6127 &changelowerstate_info.info);
6128}
6129EXPORT_SYMBOL(netdev_lower_state_changed);
6130
18bfb924
JP
6131int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6132 struct neighbour *n)
6133{
6134 struct net_device *lower_dev, *stop_dev;
6135 struct list_head *iter;
6136 int err;
6137
6138 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6139 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6140 continue;
6141 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6142 if (err) {
6143 stop_dev = lower_dev;
6144 goto rollback;
6145 }
6146 }
6147 return 0;
6148
6149rollback:
6150 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6151 if (lower_dev == stop_dev)
6152 break;
6153 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6154 continue;
6155 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6156 }
6157 return err;
6158}
6159EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6160
6161void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6162 struct neighbour *n)
6163{
6164 struct net_device *lower_dev;
6165 struct list_head *iter;
6166
6167 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6168 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6169 continue;
6170 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6171 }
6172}
6173EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6174
b6c40d68
PM
6175static void dev_change_rx_flags(struct net_device *dev, int flags)
6176{
d314774c
SH
6177 const struct net_device_ops *ops = dev->netdev_ops;
6178
d2615bf4 6179 if (ops->ndo_change_rx_flags)
d314774c 6180 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6181}
6182
991fb3f7 6183static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6184{
b536db93 6185 unsigned int old_flags = dev->flags;
d04a48b0
EB
6186 kuid_t uid;
6187 kgid_t gid;
1da177e4 6188
24023451
PM
6189 ASSERT_RTNL();
6190
dad9b335
WC
6191 dev->flags |= IFF_PROMISC;
6192 dev->promiscuity += inc;
6193 if (dev->promiscuity == 0) {
6194 /*
6195 * Avoid overflow.
6196 * If inc causes overflow, untouch promisc and return error.
6197 */
6198 if (inc < 0)
6199 dev->flags &= ~IFF_PROMISC;
6200 else {
6201 dev->promiscuity -= inc;
7b6cd1ce
JP
6202 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6203 dev->name);
dad9b335
WC
6204 return -EOVERFLOW;
6205 }
6206 }
52609c0b 6207 if (dev->flags != old_flags) {
7b6cd1ce
JP
6208 pr_info("device %s %s promiscuous mode\n",
6209 dev->name,
6210 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6211 if (audit_enabled) {
6212 current_uid_gid(&uid, &gid);
7759db82
KHK
6213 audit_log(current->audit_context, GFP_ATOMIC,
6214 AUDIT_ANOM_PROMISCUOUS,
6215 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6216 dev->name, (dev->flags & IFF_PROMISC),
6217 (old_flags & IFF_PROMISC),
e1760bd5 6218 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6219 from_kuid(&init_user_ns, uid),
6220 from_kgid(&init_user_ns, gid),
7759db82 6221 audit_get_sessionid(current));
8192b0c4 6222 }
24023451 6223
b6c40d68 6224 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6225 }
991fb3f7
ND
6226 if (notify)
6227 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6228 return 0;
1da177e4
LT
6229}
6230
4417da66
PM
6231/**
6232 * dev_set_promiscuity - update promiscuity count on a device
6233 * @dev: device
6234 * @inc: modifier
6235 *
6236 * Add or remove promiscuity from a device. While the count in the device
6237 * remains above zero the interface remains promiscuous. Once it hits zero
6238 * the device reverts back to normal filtering operation. A negative inc
6239 * value is used to drop promiscuity on the device.
dad9b335 6240 * Return 0 if successful or a negative errno code on error.
4417da66 6241 */
dad9b335 6242int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6243{
b536db93 6244 unsigned int old_flags = dev->flags;
dad9b335 6245 int err;
4417da66 6246
991fb3f7 6247 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6248 if (err < 0)
dad9b335 6249 return err;
4417da66
PM
6250 if (dev->flags != old_flags)
6251 dev_set_rx_mode(dev);
dad9b335 6252 return err;
4417da66 6253}
d1b19dff 6254EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6255
991fb3f7 6256static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6257{
991fb3f7 6258 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6259
24023451
PM
6260 ASSERT_RTNL();
6261
1da177e4 6262 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6263 dev->allmulti += inc;
6264 if (dev->allmulti == 0) {
6265 /*
6266 * Avoid overflow.
6267 * If inc causes overflow, untouch allmulti and return error.
6268 */
6269 if (inc < 0)
6270 dev->flags &= ~IFF_ALLMULTI;
6271 else {
6272 dev->allmulti -= inc;
7b6cd1ce
JP
6273 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6274 dev->name);
dad9b335
WC
6275 return -EOVERFLOW;
6276 }
6277 }
24023451 6278 if (dev->flags ^ old_flags) {
b6c40d68 6279 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6280 dev_set_rx_mode(dev);
991fb3f7
ND
6281 if (notify)
6282 __dev_notify_flags(dev, old_flags,
6283 dev->gflags ^ old_gflags);
24023451 6284 }
dad9b335 6285 return 0;
4417da66 6286}
991fb3f7
ND
6287
6288/**
6289 * dev_set_allmulti - update allmulti count on a device
6290 * @dev: device
6291 * @inc: modifier
6292 *
6293 * Add or remove reception of all multicast frames to a device. While the
6294 * count in the device remains above zero the interface remains listening
6295 * to all interfaces. Once it hits zero the device reverts back to normal
6296 * filtering operation. A negative @inc value is used to drop the counter
6297 * when releasing a resource needing all multicasts.
6298 * Return 0 if successful or a negative errno code on error.
6299 */
6300
6301int dev_set_allmulti(struct net_device *dev, int inc)
6302{
6303 return __dev_set_allmulti(dev, inc, true);
6304}
d1b19dff 6305EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6306
6307/*
6308 * Upload unicast and multicast address lists to device and
6309 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6310 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6311 * are present.
6312 */
6313void __dev_set_rx_mode(struct net_device *dev)
6314{
d314774c
SH
6315 const struct net_device_ops *ops = dev->netdev_ops;
6316
4417da66
PM
6317 /* dev_open will call this function so the list will stay sane. */
6318 if (!(dev->flags&IFF_UP))
6319 return;
6320
6321 if (!netif_device_present(dev))
40b77c94 6322 return;
4417da66 6323
01789349 6324 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6325 /* Unicast addresses changes may only happen under the rtnl,
6326 * therefore calling __dev_set_promiscuity here is safe.
6327 */
32e7bfc4 6328 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6329 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6330 dev->uc_promisc = true;
32e7bfc4 6331 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6332 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6333 dev->uc_promisc = false;
4417da66 6334 }
4417da66 6335 }
01789349
JP
6336
6337 if (ops->ndo_set_rx_mode)
6338 ops->ndo_set_rx_mode(dev);
4417da66
PM
6339}
6340
6341void dev_set_rx_mode(struct net_device *dev)
6342{
b9e40857 6343 netif_addr_lock_bh(dev);
4417da66 6344 __dev_set_rx_mode(dev);
b9e40857 6345 netif_addr_unlock_bh(dev);
1da177e4
LT
6346}
6347
f0db275a
SH
6348/**
6349 * dev_get_flags - get flags reported to userspace
6350 * @dev: device
6351 *
6352 * Get the combination of flag bits exported through APIs to userspace.
6353 */
95c96174 6354unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6355{
95c96174 6356 unsigned int flags;
1da177e4
LT
6357
6358 flags = (dev->flags & ~(IFF_PROMISC |
6359 IFF_ALLMULTI |
b00055aa
SR
6360 IFF_RUNNING |
6361 IFF_LOWER_UP |
6362 IFF_DORMANT)) |
1da177e4
LT
6363 (dev->gflags & (IFF_PROMISC |
6364 IFF_ALLMULTI));
6365
b00055aa
SR
6366 if (netif_running(dev)) {
6367 if (netif_oper_up(dev))
6368 flags |= IFF_RUNNING;
6369 if (netif_carrier_ok(dev))
6370 flags |= IFF_LOWER_UP;
6371 if (netif_dormant(dev))
6372 flags |= IFF_DORMANT;
6373 }
1da177e4
LT
6374
6375 return flags;
6376}
d1b19dff 6377EXPORT_SYMBOL(dev_get_flags);
1da177e4 6378
bd380811 6379int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6380{
b536db93 6381 unsigned int old_flags = dev->flags;
bd380811 6382 int ret;
1da177e4 6383
24023451
PM
6384 ASSERT_RTNL();
6385
1da177e4
LT
6386 /*
6387 * Set the flags on our device.
6388 */
6389
6390 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6391 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6392 IFF_AUTOMEDIA)) |
6393 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6394 IFF_ALLMULTI));
6395
6396 /*
6397 * Load in the correct multicast list now the flags have changed.
6398 */
6399
b6c40d68
PM
6400 if ((old_flags ^ flags) & IFF_MULTICAST)
6401 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6402
4417da66 6403 dev_set_rx_mode(dev);
1da177e4
LT
6404
6405 /*
6406 * Have we downed the interface. We handle IFF_UP ourselves
6407 * according to user attempts to set it, rather than blindly
6408 * setting it.
6409 */
6410
6411 ret = 0;
d215d10f 6412 if ((old_flags ^ flags) & IFF_UP)
bd380811 6413 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6414
1da177e4 6415 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6416 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6417 unsigned int old_flags = dev->flags;
d1b19dff 6418
1da177e4 6419 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6420
6421 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6422 if (dev->flags != old_flags)
6423 dev_set_rx_mode(dev);
1da177e4
LT
6424 }
6425
6426 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6427 is important. Some (broken) drivers set IFF_PROMISC, when
6428 IFF_ALLMULTI is requested not asking us and not reporting.
6429 */
6430 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6431 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6432
1da177e4 6433 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6434 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6435 }
6436
bd380811
PM
6437 return ret;
6438}
6439
a528c219
ND
6440void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6441 unsigned int gchanges)
bd380811
PM
6442{
6443 unsigned int changes = dev->flags ^ old_flags;
6444
a528c219 6445 if (gchanges)
7f294054 6446 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6447
bd380811
PM
6448 if (changes & IFF_UP) {
6449 if (dev->flags & IFF_UP)
6450 call_netdevice_notifiers(NETDEV_UP, dev);
6451 else
6452 call_netdevice_notifiers(NETDEV_DOWN, dev);
6453 }
6454
6455 if (dev->flags & IFF_UP &&
be9efd36
JP
6456 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6457 struct netdev_notifier_change_info change_info;
6458
6459 change_info.flags_changed = changes;
6460 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6461 &change_info.info);
6462 }
bd380811
PM
6463}
6464
6465/**
6466 * dev_change_flags - change device settings
6467 * @dev: device
6468 * @flags: device state flags
6469 *
6470 * Change settings on device based state flags. The flags are
6471 * in the userspace exported format.
6472 */
b536db93 6473int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6474{
b536db93 6475 int ret;
991fb3f7 6476 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6477
6478 ret = __dev_change_flags(dev, flags);
6479 if (ret < 0)
6480 return ret;
6481
991fb3f7 6482 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6483 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6484 return ret;
6485}
d1b19dff 6486EXPORT_SYMBOL(dev_change_flags);
1da177e4 6487
2315dc91
VF
6488static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6489{
6490 const struct net_device_ops *ops = dev->netdev_ops;
6491
6492 if (ops->ndo_change_mtu)
6493 return ops->ndo_change_mtu(dev, new_mtu);
6494
6495 dev->mtu = new_mtu;
6496 return 0;
6497}
6498
f0db275a
SH
6499/**
6500 * dev_set_mtu - Change maximum transfer unit
6501 * @dev: device
6502 * @new_mtu: new transfer unit
6503 *
6504 * Change the maximum transfer size of the network device.
6505 */
1da177e4
LT
6506int dev_set_mtu(struct net_device *dev, int new_mtu)
6507{
2315dc91 6508 int err, orig_mtu;
1da177e4
LT
6509
6510 if (new_mtu == dev->mtu)
6511 return 0;
6512
61e84623
JW
6513 /* MTU must be positive, and in range */
6514 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6515 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6516 dev->name, new_mtu, dev->min_mtu);
1da177e4 6517 return -EINVAL;
61e84623
JW
6518 }
6519
6520 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6521 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6522 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6523 return -EINVAL;
6524 }
1da177e4
LT
6525
6526 if (!netif_device_present(dev))
6527 return -ENODEV;
6528
1d486bfb
VF
6529 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6530 err = notifier_to_errno(err);
6531 if (err)
6532 return err;
d314774c 6533
2315dc91
VF
6534 orig_mtu = dev->mtu;
6535 err = __dev_set_mtu(dev, new_mtu);
d314774c 6536
2315dc91
VF
6537 if (!err) {
6538 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6539 err = notifier_to_errno(err);
6540 if (err) {
6541 /* setting mtu back and notifying everyone again,
6542 * so that they have a chance to revert changes.
6543 */
6544 __dev_set_mtu(dev, orig_mtu);
6545 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6546 }
6547 }
1da177e4
LT
6548 return err;
6549}
d1b19dff 6550EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6551
cbda10fa
VD
6552/**
6553 * dev_set_group - Change group this device belongs to
6554 * @dev: device
6555 * @new_group: group this device should belong to
6556 */
6557void dev_set_group(struct net_device *dev, int new_group)
6558{
6559 dev->group = new_group;
6560}
6561EXPORT_SYMBOL(dev_set_group);
6562
f0db275a
SH
6563/**
6564 * dev_set_mac_address - Change Media Access Control Address
6565 * @dev: device
6566 * @sa: new address
6567 *
6568 * Change the hardware (MAC) address of the device
6569 */
1da177e4
LT
6570int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6571{
d314774c 6572 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6573 int err;
6574
d314774c 6575 if (!ops->ndo_set_mac_address)
1da177e4
LT
6576 return -EOPNOTSUPP;
6577 if (sa->sa_family != dev->type)
6578 return -EINVAL;
6579 if (!netif_device_present(dev))
6580 return -ENODEV;
d314774c 6581 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6582 if (err)
6583 return err;
fbdeca2d 6584 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6585 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6586 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6587 return 0;
1da177e4 6588}
d1b19dff 6589EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6590
4bf84c35
JP
6591/**
6592 * dev_change_carrier - Change device carrier
6593 * @dev: device
691b3b7e 6594 * @new_carrier: new value
4bf84c35
JP
6595 *
6596 * Change device carrier
6597 */
6598int dev_change_carrier(struct net_device *dev, bool new_carrier)
6599{
6600 const struct net_device_ops *ops = dev->netdev_ops;
6601
6602 if (!ops->ndo_change_carrier)
6603 return -EOPNOTSUPP;
6604 if (!netif_device_present(dev))
6605 return -ENODEV;
6606 return ops->ndo_change_carrier(dev, new_carrier);
6607}
6608EXPORT_SYMBOL(dev_change_carrier);
6609
66b52b0d
JP
6610/**
6611 * dev_get_phys_port_id - Get device physical port ID
6612 * @dev: device
6613 * @ppid: port ID
6614 *
6615 * Get device physical port ID
6616 */
6617int dev_get_phys_port_id(struct net_device *dev,
02637fce 6618 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6619{
6620 const struct net_device_ops *ops = dev->netdev_ops;
6621
6622 if (!ops->ndo_get_phys_port_id)
6623 return -EOPNOTSUPP;
6624 return ops->ndo_get_phys_port_id(dev, ppid);
6625}
6626EXPORT_SYMBOL(dev_get_phys_port_id);
6627
db24a904
DA
6628/**
6629 * dev_get_phys_port_name - Get device physical port name
6630 * @dev: device
6631 * @name: port name
ed49e650 6632 * @len: limit of bytes to copy to name
db24a904
DA
6633 *
6634 * Get device physical port name
6635 */
6636int dev_get_phys_port_name(struct net_device *dev,
6637 char *name, size_t len)
6638{
6639 const struct net_device_ops *ops = dev->netdev_ops;
6640
6641 if (!ops->ndo_get_phys_port_name)
6642 return -EOPNOTSUPP;
6643 return ops->ndo_get_phys_port_name(dev, name, len);
6644}
6645EXPORT_SYMBOL(dev_get_phys_port_name);
6646
d746d707
AK
6647/**
6648 * dev_change_proto_down - update protocol port state information
6649 * @dev: device
6650 * @proto_down: new value
6651 *
6652 * This info can be used by switch drivers to set the phys state of the
6653 * port.
6654 */
6655int dev_change_proto_down(struct net_device *dev, bool proto_down)
6656{
6657 const struct net_device_ops *ops = dev->netdev_ops;
6658
6659 if (!ops->ndo_change_proto_down)
6660 return -EOPNOTSUPP;
6661 if (!netif_device_present(dev))
6662 return -ENODEV;
6663 return ops->ndo_change_proto_down(dev, proto_down);
6664}
6665EXPORT_SYMBOL(dev_change_proto_down);
6666
a7862b45
BB
6667/**
6668 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6669 * @dev: device
6670 * @fd: new program fd or negative value to clear
85de8576 6671 * @flags: xdp-related flags
a7862b45
BB
6672 *
6673 * Set or clear a bpf program for a device
6674 */
85de8576 6675int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
a7862b45
BB
6676{
6677 const struct net_device_ops *ops = dev->netdev_ops;
6678 struct bpf_prog *prog = NULL;
85de8576 6679 struct netdev_xdp xdp;
a7862b45
BB
6680 int err;
6681
85de8576
DB
6682 ASSERT_RTNL();
6683
a7862b45
BB
6684 if (!ops->ndo_xdp)
6685 return -EOPNOTSUPP;
6686 if (fd >= 0) {
85de8576
DB
6687 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6688 memset(&xdp, 0, sizeof(xdp));
6689 xdp.command = XDP_QUERY_PROG;
6690
6691 err = ops->ndo_xdp(dev, &xdp);
6692 if (err < 0)
6693 return err;
6694 if (xdp.prog_attached)
6695 return -EBUSY;
6696 }
6697
a7862b45
BB
6698 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6699 if (IS_ERR(prog))
6700 return PTR_ERR(prog);
6701 }
6702
85de8576 6703 memset(&xdp, 0, sizeof(xdp));
a7862b45
BB
6704 xdp.command = XDP_SETUP_PROG;
6705 xdp.prog = prog;
85de8576 6706
a7862b45
BB
6707 err = ops->ndo_xdp(dev, &xdp);
6708 if (err < 0 && prog)
6709 bpf_prog_put(prog);
6710
6711 return err;
6712}
6713EXPORT_SYMBOL(dev_change_xdp_fd);
6714
1da177e4
LT
6715/**
6716 * dev_new_index - allocate an ifindex
c4ea43c5 6717 * @net: the applicable net namespace
1da177e4
LT
6718 *
6719 * Returns a suitable unique value for a new device interface
6720 * number. The caller must hold the rtnl semaphore or the
6721 * dev_base_lock to be sure it remains unique.
6722 */
881d966b 6723static int dev_new_index(struct net *net)
1da177e4 6724{
aa79e66e 6725 int ifindex = net->ifindex;
1da177e4
LT
6726 for (;;) {
6727 if (++ifindex <= 0)
6728 ifindex = 1;
881d966b 6729 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6730 return net->ifindex = ifindex;
1da177e4
LT
6731 }
6732}
6733
1da177e4 6734/* Delayed registration/unregisteration */
3b5b34fd 6735static LIST_HEAD(net_todo_list);
200b916f 6736DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6737
6f05f629 6738static void net_set_todo(struct net_device *dev)
1da177e4 6739{
1da177e4 6740 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6741 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6742}
6743
9b5e383c 6744static void rollback_registered_many(struct list_head *head)
93ee31f1 6745{
e93737b0 6746 struct net_device *dev, *tmp;
5cde2829 6747 LIST_HEAD(close_head);
9b5e383c 6748
93ee31f1
DL
6749 BUG_ON(dev_boot_phase);
6750 ASSERT_RTNL();
6751
e93737b0 6752 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6753 /* Some devices call without registering
e93737b0
KK
6754 * for initialization unwind. Remove those
6755 * devices and proceed with the remaining.
9b5e383c
ED
6756 */
6757 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6758 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6759 dev->name, dev);
93ee31f1 6760
9b5e383c 6761 WARN_ON(1);
e93737b0
KK
6762 list_del(&dev->unreg_list);
6763 continue;
9b5e383c 6764 }
449f4544 6765 dev->dismantle = true;
9b5e383c 6766 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6767 }
93ee31f1 6768
44345724 6769 /* If device is running, close it first. */
5cde2829
EB
6770 list_for_each_entry(dev, head, unreg_list)
6771 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6772 dev_close_many(&close_head, true);
93ee31f1 6773
44345724 6774 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6775 /* And unlink it from device chain. */
6776 unlist_netdevice(dev);
93ee31f1 6777
9b5e383c
ED
6778 dev->reg_state = NETREG_UNREGISTERING;
6779 }
41852497 6780 flush_all_backlogs();
93ee31f1
DL
6781
6782 synchronize_net();
6783
9b5e383c 6784 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6785 struct sk_buff *skb = NULL;
6786
9b5e383c
ED
6787 /* Shutdown queueing discipline. */
6788 dev_shutdown(dev);
93ee31f1
DL
6789
6790
9b5e383c
ED
6791 /* Notify protocols, that we are about to destroy
6792 this device. They should clean all the things.
6793 */
6794 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6795
395eea6c
MB
6796 if (!dev->rtnl_link_ops ||
6797 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6798 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6799 GFP_KERNEL);
6800
9b5e383c
ED
6801 /*
6802 * Flush the unicast and multicast chains
6803 */
a748ee24 6804 dev_uc_flush(dev);
22bedad3 6805 dev_mc_flush(dev);
93ee31f1 6806
9b5e383c
ED
6807 if (dev->netdev_ops->ndo_uninit)
6808 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6809
395eea6c
MB
6810 if (skb)
6811 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6812
9ff162a8
JP
6813 /* Notifier chain MUST detach us all upper devices. */
6814 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 6815 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 6816
9b5e383c
ED
6817 /* Remove entries from kobject tree */
6818 netdev_unregister_kobject(dev);
024e9679
AD
6819#ifdef CONFIG_XPS
6820 /* Remove XPS queueing entries */
6821 netif_reset_xps_queues_gt(dev, 0);
6822#endif
9b5e383c 6823 }
93ee31f1 6824
850a545b 6825 synchronize_net();
395264d5 6826
a5ee1551 6827 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6828 dev_put(dev);
6829}
6830
6831static void rollback_registered(struct net_device *dev)
6832{
6833 LIST_HEAD(single);
6834
6835 list_add(&dev->unreg_list, &single);
6836 rollback_registered_many(&single);
ceaaec98 6837 list_del(&single);
93ee31f1
DL
6838}
6839
fd867d51
JW
6840static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6841 struct net_device *upper, netdev_features_t features)
6842{
6843 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6844 netdev_features_t feature;
5ba3f7d6 6845 int feature_bit;
fd867d51 6846
5ba3f7d6
JW
6847 for_each_netdev_feature(&upper_disables, feature_bit) {
6848 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6849 if (!(upper->wanted_features & feature)
6850 && (features & feature)) {
6851 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6852 &feature, upper->name);
6853 features &= ~feature;
6854 }
6855 }
6856
6857 return features;
6858}
6859
6860static void netdev_sync_lower_features(struct net_device *upper,
6861 struct net_device *lower, netdev_features_t features)
6862{
6863 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6864 netdev_features_t feature;
5ba3f7d6 6865 int feature_bit;
fd867d51 6866
5ba3f7d6
JW
6867 for_each_netdev_feature(&upper_disables, feature_bit) {
6868 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6869 if (!(features & feature) && (lower->features & feature)) {
6870 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6871 &feature, lower->name);
6872 lower->wanted_features &= ~feature;
6873 netdev_update_features(lower);
6874
6875 if (unlikely(lower->features & feature))
6876 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6877 &feature, lower->name);
6878 }
6879 }
6880}
6881
c8f44aff
MM
6882static netdev_features_t netdev_fix_features(struct net_device *dev,
6883 netdev_features_t features)
b63365a2 6884{
57422dc5
MM
6885 /* Fix illegal checksum combinations */
6886 if ((features & NETIF_F_HW_CSUM) &&
6887 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6888 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6889 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6890 }
6891
b63365a2 6892 /* TSO requires that SG is present as well. */
ea2d3688 6893 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6894 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6895 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6896 }
6897
ec5f0615
PS
6898 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6899 !(features & NETIF_F_IP_CSUM)) {
6900 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6901 features &= ~NETIF_F_TSO;
6902 features &= ~NETIF_F_TSO_ECN;
6903 }
6904
6905 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6906 !(features & NETIF_F_IPV6_CSUM)) {
6907 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6908 features &= ~NETIF_F_TSO6;
6909 }
6910
b1dc497b
AD
6911 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6912 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6913 features &= ~NETIF_F_TSO_MANGLEID;
6914
31d8b9e0
BH
6915 /* TSO ECN requires that TSO is present as well. */
6916 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6917 features &= ~NETIF_F_TSO_ECN;
6918
212b573f
MM
6919 /* Software GSO depends on SG. */
6920 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6921 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6922 features &= ~NETIF_F_GSO;
6923 }
6924
acd1130e 6925 /* UFO needs SG and checksumming */
b63365a2 6926 if (features & NETIF_F_UFO) {
79032644 6927 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6928 if (!(features & NETIF_F_HW_CSUM) &&
6929 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6930 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6931 netdev_dbg(dev,
acd1130e 6932 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6933 features &= ~NETIF_F_UFO;
6934 }
6935
6936 if (!(features & NETIF_F_SG)) {
6f404e44 6937 netdev_dbg(dev,
acd1130e 6938 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6939 features &= ~NETIF_F_UFO;
6940 }
6941 }
6942
802ab55a
AD
6943 /* GSO partial features require GSO partial be set */
6944 if ((features & dev->gso_partial_features) &&
6945 !(features & NETIF_F_GSO_PARTIAL)) {
6946 netdev_dbg(dev,
6947 "Dropping partially supported GSO features since no GSO partial.\n");
6948 features &= ~dev->gso_partial_features;
6949 }
6950
b63365a2
HX
6951 return features;
6952}
b63365a2 6953
6cb6a27c 6954int __netdev_update_features(struct net_device *dev)
5455c699 6955{
fd867d51 6956 struct net_device *upper, *lower;
c8f44aff 6957 netdev_features_t features;
fd867d51 6958 struct list_head *iter;
e7868a85 6959 int err = -1;
5455c699 6960
87267485
MM
6961 ASSERT_RTNL();
6962
5455c699
MM
6963 features = netdev_get_wanted_features(dev);
6964
6965 if (dev->netdev_ops->ndo_fix_features)
6966 features = dev->netdev_ops->ndo_fix_features(dev, features);
6967
6968 /* driver might be less strict about feature dependencies */
6969 features = netdev_fix_features(dev, features);
6970
fd867d51
JW
6971 /* some features can't be enabled if they're off an an upper device */
6972 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6973 features = netdev_sync_upper_features(dev, upper, features);
6974
5455c699 6975 if (dev->features == features)
e7868a85 6976 goto sync_lower;
5455c699 6977
c8f44aff
MM
6978 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6979 &dev->features, &features);
5455c699
MM
6980
6981 if (dev->netdev_ops->ndo_set_features)
6982 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6983 else
6984 err = 0;
5455c699 6985
6cb6a27c 6986 if (unlikely(err < 0)) {
5455c699 6987 netdev_err(dev,
c8f44aff
MM
6988 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6989 err, &features, &dev->features);
17b85d29
NA
6990 /* return non-0 since some features might have changed and
6991 * it's better to fire a spurious notification than miss it
6992 */
6993 return -1;
6cb6a27c
MM
6994 }
6995
e7868a85 6996sync_lower:
fd867d51
JW
6997 /* some features must be disabled on lower devices when disabled
6998 * on an upper device (think: bonding master or bridge)
6999 */
7000 netdev_for_each_lower_dev(dev, lower, iter)
7001 netdev_sync_lower_features(dev, lower, features);
7002
6cb6a27c
MM
7003 if (!err)
7004 dev->features = features;
7005
e7868a85 7006 return err < 0 ? 0 : 1;
6cb6a27c
MM
7007}
7008
afe12cc8
MM
7009/**
7010 * netdev_update_features - recalculate device features
7011 * @dev: the device to check
7012 *
7013 * Recalculate dev->features set and send notifications if it
7014 * has changed. Should be called after driver or hardware dependent
7015 * conditions might have changed that influence the features.
7016 */
6cb6a27c
MM
7017void netdev_update_features(struct net_device *dev)
7018{
7019 if (__netdev_update_features(dev))
7020 netdev_features_change(dev);
5455c699
MM
7021}
7022EXPORT_SYMBOL(netdev_update_features);
7023
afe12cc8
MM
7024/**
7025 * netdev_change_features - recalculate device features
7026 * @dev: the device to check
7027 *
7028 * Recalculate dev->features set and send notifications even
7029 * if they have not changed. Should be called instead of
7030 * netdev_update_features() if also dev->vlan_features might
7031 * have changed to allow the changes to be propagated to stacked
7032 * VLAN devices.
7033 */
7034void netdev_change_features(struct net_device *dev)
7035{
7036 __netdev_update_features(dev);
7037 netdev_features_change(dev);
7038}
7039EXPORT_SYMBOL(netdev_change_features);
7040
fc4a7489
PM
7041/**
7042 * netif_stacked_transfer_operstate - transfer operstate
7043 * @rootdev: the root or lower level device to transfer state from
7044 * @dev: the device to transfer operstate to
7045 *
7046 * Transfer operational state from root to device. This is normally
7047 * called when a stacking relationship exists between the root
7048 * device and the device(a leaf device).
7049 */
7050void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7051 struct net_device *dev)
7052{
7053 if (rootdev->operstate == IF_OPER_DORMANT)
7054 netif_dormant_on(dev);
7055 else
7056 netif_dormant_off(dev);
7057
7058 if (netif_carrier_ok(rootdev)) {
7059 if (!netif_carrier_ok(dev))
7060 netif_carrier_on(dev);
7061 } else {
7062 if (netif_carrier_ok(dev))
7063 netif_carrier_off(dev);
7064 }
7065}
7066EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7067
a953be53 7068#ifdef CONFIG_SYSFS
1b4bf461
ED
7069static int netif_alloc_rx_queues(struct net_device *dev)
7070{
1b4bf461 7071 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7072 struct netdev_rx_queue *rx;
10595902 7073 size_t sz = count * sizeof(*rx);
1b4bf461 7074
bd25fa7b 7075 BUG_ON(count < 1);
1b4bf461 7076
10595902
PG
7077 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7078 if (!rx) {
7079 rx = vzalloc(sz);
7080 if (!rx)
7081 return -ENOMEM;
7082 }
bd25fa7b
TH
7083 dev->_rx = rx;
7084
bd25fa7b 7085 for (i = 0; i < count; i++)
fe822240 7086 rx[i].dev = dev;
1b4bf461
ED
7087 return 0;
7088}
bf264145 7089#endif
1b4bf461 7090
aa942104
CG
7091static void netdev_init_one_queue(struct net_device *dev,
7092 struct netdev_queue *queue, void *_unused)
7093{
7094 /* Initialize queue lock */
7095 spin_lock_init(&queue->_xmit_lock);
7096 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7097 queue->xmit_lock_owner = -1;
b236da69 7098 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7099 queue->dev = dev;
114cf580
TH
7100#ifdef CONFIG_BQL
7101 dql_init(&queue->dql, HZ);
7102#endif
aa942104
CG
7103}
7104
60877a32
ED
7105static void netif_free_tx_queues(struct net_device *dev)
7106{
4cb28970 7107 kvfree(dev->_tx);
60877a32
ED
7108}
7109
e6484930
TH
7110static int netif_alloc_netdev_queues(struct net_device *dev)
7111{
7112 unsigned int count = dev->num_tx_queues;
7113 struct netdev_queue *tx;
60877a32 7114 size_t sz = count * sizeof(*tx);
e6484930 7115
d339727c
ED
7116 if (count < 1 || count > 0xffff)
7117 return -EINVAL;
62b5942a 7118
60877a32
ED
7119 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7120 if (!tx) {
7121 tx = vzalloc(sz);
7122 if (!tx)
7123 return -ENOMEM;
7124 }
e6484930 7125 dev->_tx = tx;
1d24eb48 7126
e6484930
TH
7127 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7128 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7129
7130 return 0;
e6484930
TH
7131}
7132
a2029240
DV
7133void netif_tx_stop_all_queues(struct net_device *dev)
7134{
7135 unsigned int i;
7136
7137 for (i = 0; i < dev->num_tx_queues; i++) {
7138 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7139 netif_tx_stop_queue(txq);
7140 }
7141}
7142EXPORT_SYMBOL(netif_tx_stop_all_queues);
7143
1da177e4
LT
7144/**
7145 * register_netdevice - register a network device
7146 * @dev: device to register
7147 *
7148 * Take a completed network device structure and add it to the kernel
7149 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7150 * chain. 0 is returned on success. A negative errno code is returned
7151 * on a failure to set up the device, or if the name is a duplicate.
7152 *
7153 * Callers must hold the rtnl semaphore. You may want
7154 * register_netdev() instead of this.
7155 *
7156 * BUGS:
7157 * The locking appears insufficient to guarantee two parallel registers
7158 * will not get the same name.
7159 */
7160
7161int register_netdevice(struct net_device *dev)
7162{
1da177e4 7163 int ret;
d314774c 7164 struct net *net = dev_net(dev);
1da177e4
LT
7165
7166 BUG_ON(dev_boot_phase);
7167 ASSERT_RTNL();
7168
b17a7c17
SH
7169 might_sleep();
7170
1da177e4
LT
7171 /* When net_device's are persistent, this will be fatal. */
7172 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7173 BUG_ON(!net);
1da177e4 7174
f1f28aa3 7175 spin_lock_init(&dev->addr_list_lock);
cf508b12 7176 netdev_set_addr_lockdep_class(dev);
1da177e4 7177
828de4f6 7178 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7179 if (ret < 0)
7180 goto out;
7181
1da177e4 7182 /* Init, if this function is available */
d314774c
SH
7183 if (dev->netdev_ops->ndo_init) {
7184 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7185 if (ret) {
7186 if (ret > 0)
7187 ret = -EIO;
90833aa4 7188 goto out;
1da177e4
LT
7189 }
7190 }
4ec93edb 7191
f646968f
PM
7192 if (((dev->hw_features | dev->features) &
7193 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7194 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7195 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7196 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7197 ret = -EINVAL;
7198 goto err_uninit;
7199 }
7200
9c7dafbf
PE
7201 ret = -EBUSY;
7202 if (!dev->ifindex)
7203 dev->ifindex = dev_new_index(net);
7204 else if (__dev_get_by_index(net, dev->ifindex))
7205 goto err_uninit;
7206
5455c699
MM
7207 /* Transfer changeable features to wanted_features and enable
7208 * software offloads (GSO and GRO).
7209 */
7210 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7211 dev->features |= NETIF_F_SOFT_FEATURES;
7212 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7213
cbc53e08 7214 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7215 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7216
7f348a60
AD
7217 /* If IPv4 TCP segmentation offload is supported we should also
7218 * allow the device to enable segmenting the frame with the option
7219 * of ignoring a static IP ID value. This doesn't enable the
7220 * feature itself but allows the user to enable it later.
7221 */
cbc53e08
AD
7222 if (dev->hw_features & NETIF_F_TSO)
7223 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7224 if (dev->vlan_features & NETIF_F_TSO)
7225 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7226 if (dev->mpls_features & NETIF_F_TSO)
7227 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7228 if (dev->hw_enc_features & NETIF_F_TSO)
7229 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7230
1180e7d6 7231 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7232 */
1180e7d6 7233 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7234
ee579677
PS
7235 /* Make NETIF_F_SG inheritable to tunnel devices.
7236 */
802ab55a 7237 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7238
0d89d203
SH
7239 /* Make NETIF_F_SG inheritable to MPLS.
7240 */
7241 dev->mpls_features |= NETIF_F_SG;
7242
7ffbe3fd
JB
7243 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7244 ret = notifier_to_errno(ret);
7245 if (ret)
7246 goto err_uninit;
7247
8b41d188 7248 ret = netdev_register_kobject(dev);
b17a7c17 7249 if (ret)
7ce1b0ed 7250 goto err_uninit;
b17a7c17
SH
7251 dev->reg_state = NETREG_REGISTERED;
7252
6cb6a27c 7253 __netdev_update_features(dev);
8e9b59b2 7254
1da177e4
LT
7255 /*
7256 * Default initial state at registry is that the
7257 * device is present.
7258 */
7259
7260 set_bit(__LINK_STATE_PRESENT, &dev->state);
7261
8f4cccbb
BH
7262 linkwatch_init_dev(dev);
7263
1da177e4 7264 dev_init_scheduler(dev);
1da177e4 7265 dev_hold(dev);
ce286d32 7266 list_netdevice(dev);
7bf23575 7267 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7268
948b337e
JP
7269 /* If the device has permanent device address, driver should
7270 * set dev_addr and also addr_assign_type should be set to
7271 * NET_ADDR_PERM (default value).
7272 */
7273 if (dev->addr_assign_type == NET_ADDR_PERM)
7274 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7275
1da177e4 7276 /* Notify protocols, that a new device appeared. */
056925ab 7277 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7278 ret = notifier_to_errno(ret);
93ee31f1
DL
7279 if (ret) {
7280 rollback_registered(dev);
7281 dev->reg_state = NETREG_UNREGISTERED;
7282 }
d90a909e
EB
7283 /*
7284 * Prevent userspace races by waiting until the network
7285 * device is fully setup before sending notifications.
7286 */
a2835763
PM
7287 if (!dev->rtnl_link_ops ||
7288 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7289 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7290
7291out:
7292 return ret;
7ce1b0ed
HX
7293
7294err_uninit:
d314774c
SH
7295 if (dev->netdev_ops->ndo_uninit)
7296 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7297 goto out;
1da177e4 7298}
d1b19dff 7299EXPORT_SYMBOL(register_netdevice);
1da177e4 7300
937f1ba5
BH
7301/**
7302 * init_dummy_netdev - init a dummy network device for NAPI
7303 * @dev: device to init
7304 *
7305 * This takes a network device structure and initialize the minimum
7306 * amount of fields so it can be used to schedule NAPI polls without
7307 * registering a full blown interface. This is to be used by drivers
7308 * that need to tie several hardware interfaces to a single NAPI
7309 * poll scheduler due to HW limitations.
7310 */
7311int init_dummy_netdev(struct net_device *dev)
7312{
7313 /* Clear everything. Note we don't initialize spinlocks
7314 * are they aren't supposed to be taken by any of the
7315 * NAPI code and this dummy netdev is supposed to be
7316 * only ever used for NAPI polls
7317 */
7318 memset(dev, 0, sizeof(struct net_device));
7319
7320 /* make sure we BUG if trying to hit standard
7321 * register/unregister code path
7322 */
7323 dev->reg_state = NETREG_DUMMY;
7324
937f1ba5
BH
7325 /* NAPI wants this */
7326 INIT_LIST_HEAD(&dev->napi_list);
7327
7328 /* a dummy interface is started by default */
7329 set_bit(__LINK_STATE_PRESENT, &dev->state);
7330 set_bit(__LINK_STATE_START, &dev->state);
7331
29b4433d
ED
7332 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7333 * because users of this 'device' dont need to change
7334 * its refcount.
7335 */
7336
937f1ba5
BH
7337 return 0;
7338}
7339EXPORT_SYMBOL_GPL(init_dummy_netdev);
7340
7341
1da177e4
LT
7342/**
7343 * register_netdev - register a network device
7344 * @dev: device to register
7345 *
7346 * Take a completed network device structure and add it to the kernel
7347 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7348 * chain. 0 is returned on success. A negative errno code is returned
7349 * on a failure to set up the device, or if the name is a duplicate.
7350 *
38b4da38 7351 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7352 * and expands the device name if you passed a format string to
7353 * alloc_netdev.
7354 */
7355int register_netdev(struct net_device *dev)
7356{
7357 int err;
7358
7359 rtnl_lock();
1da177e4 7360 err = register_netdevice(dev);
1da177e4
LT
7361 rtnl_unlock();
7362 return err;
7363}
7364EXPORT_SYMBOL(register_netdev);
7365
29b4433d
ED
7366int netdev_refcnt_read(const struct net_device *dev)
7367{
7368 int i, refcnt = 0;
7369
7370 for_each_possible_cpu(i)
7371 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7372 return refcnt;
7373}
7374EXPORT_SYMBOL(netdev_refcnt_read);
7375
2c53040f 7376/**
1da177e4 7377 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7378 * @dev: target net_device
1da177e4
LT
7379 *
7380 * This is called when unregistering network devices.
7381 *
7382 * Any protocol or device that holds a reference should register
7383 * for netdevice notification, and cleanup and put back the
7384 * reference if they receive an UNREGISTER event.
7385 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7386 * call dev_put.
1da177e4
LT
7387 */
7388static void netdev_wait_allrefs(struct net_device *dev)
7389{
7390 unsigned long rebroadcast_time, warning_time;
29b4433d 7391 int refcnt;
1da177e4 7392
e014debe
ED
7393 linkwatch_forget_dev(dev);
7394
1da177e4 7395 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7396 refcnt = netdev_refcnt_read(dev);
7397
7398 while (refcnt != 0) {
1da177e4 7399 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7400 rtnl_lock();
1da177e4
LT
7401
7402 /* Rebroadcast unregister notification */
056925ab 7403 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7404
748e2d93 7405 __rtnl_unlock();
0115e8e3 7406 rcu_barrier();
748e2d93
ED
7407 rtnl_lock();
7408
0115e8e3 7409 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7410 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7411 &dev->state)) {
7412 /* We must not have linkwatch events
7413 * pending on unregister. If this
7414 * happens, we simply run the queue
7415 * unscheduled, resulting in a noop
7416 * for this device.
7417 */
7418 linkwatch_run_queue();
7419 }
7420
6756ae4b 7421 __rtnl_unlock();
1da177e4
LT
7422
7423 rebroadcast_time = jiffies;
7424 }
7425
7426 msleep(250);
7427
29b4433d
ED
7428 refcnt = netdev_refcnt_read(dev);
7429
1da177e4 7430 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7431 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7432 dev->name, refcnt);
1da177e4
LT
7433 warning_time = jiffies;
7434 }
7435 }
7436}
7437
7438/* The sequence is:
7439 *
7440 * rtnl_lock();
7441 * ...
7442 * register_netdevice(x1);
7443 * register_netdevice(x2);
7444 * ...
7445 * unregister_netdevice(y1);
7446 * unregister_netdevice(y2);
7447 * ...
7448 * rtnl_unlock();
7449 * free_netdev(y1);
7450 * free_netdev(y2);
7451 *
58ec3b4d 7452 * We are invoked by rtnl_unlock().
1da177e4 7453 * This allows us to deal with problems:
b17a7c17 7454 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7455 * without deadlocking with linkwatch via keventd.
7456 * 2) Since we run with the RTNL semaphore not held, we can sleep
7457 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7458 *
7459 * We must not return until all unregister events added during
7460 * the interval the lock was held have been completed.
1da177e4 7461 */
1da177e4
LT
7462void netdev_run_todo(void)
7463{
626ab0e6 7464 struct list_head list;
1da177e4 7465
1da177e4 7466 /* Snapshot list, allow later requests */
626ab0e6 7467 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7468
7469 __rtnl_unlock();
626ab0e6 7470
0115e8e3
ED
7471
7472 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7473 if (!list_empty(&list))
7474 rcu_barrier();
7475
1da177e4
LT
7476 while (!list_empty(&list)) {
7477 struct net_device *dev
e5e26d75 7478 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7479 list_del(&dev->todo_list);
7480
748e2d93 7481 rtnl_lock();
0115e8e3 7482 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7483 __rtnl_unlock();
0115e8e3 7484
b17a7c17 7485 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7486 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7487 dev->name, dev->reg_state);
7488 dump_stack();
7489 continue;
7490 }
1da177e4 7491
b17a7c17 7492 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7493
b17a7c17 7494 netdev_wait_allrefs(dev);
1da177e4 7495
b17a7c17 7496 /* paranoia */
29b4433d 7497 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7498 BUG_ON(!list_empty(&dev->ptype_all));
7499 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7500 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7501 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7502 WARN_ON(dev->dn_ptr);
1da177e4 7503
b17a7c17
SH
7504 if (dev->destructor)
7505 dev->destructor(dev);
9093bbb2 7506
50624c93
EB
7507 /* Report a network device has been unregistered */
7508 rtnl_lock();
7509 dev_net(dev)->dev_unreg_count--;
7510 __rtnl_unlock();
7511 wake_up(&netdev_unregistering_wq);
7512
9093bbb2
SH
7513 /* Free network device */
7514 kobject_put(&dev->dev.kobj);
1da177e4 7515 }
1da177e4
LT
7516}
7517
9256645a
JW
7518/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7519 * all the same fields in the same order as net_device_stats, with only
7520 * the type differing, but rtnl_link_stats64 may have additional fields
7521 * at the end for newer counters.
3cfde79c 7522 */
77a1abf5
ED
7523void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7524 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7525{
7526#if BITS_PER_LONG == 64
9256645a 7527 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7528 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7529 /* zero out counters that only exist in rtnl_link_stats64 */
7530 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7531 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7532#else
9256645a 7533 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7534 const unsigned long *src = (const unsigned long *)netdev_stats;
7535 u64 *dst = (u64 *)stats64;
7536
9256645a 7537 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7538 for (i = 0; i < n; i++)
7539 dst[i] = src[i];
9256645a
JW
7540 /* zero out counters that only exist in rtnl_link_stats64 */
7541 memset((char *)stats64 + n * sizeof(u64), 0,
7542 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7543#endif
7544}
77a1abf5 7545EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7546
eeda3fd6
SH
7547/**
7548 * dev_get_stats - get network device statistics
7549 * @dev: device to get statistics from
28172739 7550 * @storage: place to store stats
eeda3fd6 7551 *
d7753516
BH
7552 * Get network statistics from device. Return @storage.
7553 * The device driver may provide its own method by setting
7554 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7555 * otherwise the internal statistics structure is used.
eeda3fd6 7556 */
d7753516
BH
7557struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7558 struct rtnl_link_stats64 *storage)
7004bf25 7559{
eeda3fd6
SH
7560 const struct net_device_ops *ops = dev->netdev_ops;
7561
28172739
ED
7562 if (ops->ndo_get_stats64) {
7563 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7564 ops->ndo_get_stats64(dev, storage);
7565 } else if (ops->ndo_get_stats) {
3cfde79c 7566 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7567 } else {
7568 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7569 }
caf586e5 7570 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7571 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7572 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7573 return storage;
c45d286e 7574}
eeda3fd6 7575EXPORT_SYMBOL(dev_get_stats);
c45d286e 7576
24824a09 7577struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7578{
24824a09 7579 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7580
24824a09
ED
7581#ifdef CONFIG_NET_CLS_ACT
7582 if (queue)
7583 return queue;
7584 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7585 if (!queue)
7586 return NULL;
7587 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7588 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7589 queue->qdisc_sleeping = &noop_qdisc;
7590 rcu_assign_pointer(dev->ingress_queue, queue);
7591#endif
7592 return queue;
bb949fbd
DM
7593}
7594
2c60db03
ED
7595static const struct ethtool_ops default_ethtool_ops;
7596
d07d7507
SG
7597void netdev_set_default_ethtool_ops(struct net_device *dev,
7598 const struct ethtool_ops *ops)
7599{
7600 if (dev->ethtool_ops == &default_ethtool_ops)
7601 dev->ethtool_ops = ops;
7602}
7603EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7604
74d332c1
ED
7605void netdev_freemem(struct net_device *dev)
7606{
7607 char *addr = (char *)dev - dev->padded;
7608
4cb28970 7609 kvfree(addr);
74d332c1
ED
7610}
7611
1da177e4 7612/**
36909ea4 7613 * alloc_netdev_mqs - allocate network device
c835a677
TG
7614 * @sizeof_priv: size of private data to allocate space for
7615 * @name: device name format string
7616 * @name_assign_type: origin of device name
7617 * @setup: callback to initialize device
7618 * @txqs: the number of TX subqueues to allocate
7619 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7620 *
7621 * Allocates a struct net_device with private data area for driver use
90e51adf 7622 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7623 * for each queue on the device.
1da177e4 7624 */
36909ea4 7625struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7626 unsigned char name_assign_type,
36909ea4
TH
7627 void (*setup)(struct net_device *),
7628 unsigned int txqs, unsigned int rxqs)
1da177e4 7629{
1da177e4 7630 struct net_device *dev;
7943986c 7631 size_t alloc_size;
1ce8e7b5 7632 struct net_device *p;
1da177e4 7633
b6fe17d6
SH
7634 BUG_ON(strlen(name) >= sizeof(dev->name));
7635
36909ea4 7636 if (txqs < 1) {
7b6cd1ce 7637 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7638 return NULL;
7639 }
7640
a953be53 7641#ifdef CONFIG_SYSFS
36909ea4 7642 if (rxqs < 1) {
7b6cd1ce 7643 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7644 return NULL;
7645 }
7646#endif
7647
fd2ea0a7 7648 alloc_size = sizeof(struct net_device);
d1643d24
AD
7649 if (sizeof_priv) {
7650 /* ensure 32-byte alignment of private area */
1ce8e7b5 7651 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7652 alloc_size += sizeof_priv;
7653 }
7654 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7655 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7656
74d332c1
ED
7657 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7658 if (!p)
7659 p = vzalloc(alloc_size);
62b5942a 7660 if (!p)
1da177e4 7661 return NULL;
1da177e4 7662
1ce8e7b5 7663 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7664 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7665
29b4433d
ED
7666 dev->pcpu_refcnt = alloc_percpu(int);
7667 if (!dev->pcpu_refcnt)
74d332c1 7668 goto free_dev;
ab9c73cc 7669
ab9c73cc 7670 if (dev_addr_init(dev))
29b4433d 7671 goto free_pcpu;
ab9c73cc 7672
22bedad3 7673 dev_mc_init(dev);
a748ee24 7674 dev_uc_init(dev);
ccffad25 7675
c346dca1 7676 dev_net_set(dev, &init_net);
1da177e4 7677
8d3bdbd5 7678 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7679 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7680
8d3bdbd5
DM
7681 INIT_LIST_HEAD(&dev->napi_list);
7682 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7683 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7684 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7685 INIT_LIST_HEAD(&dev->adj_list.upper);
7686 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
7687 INIT_LIST_HEAD(&dev->ptype_all);
7688 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7689#ifdef CONFIG_NET_SCHED
7690 hash_init(dev->qdisc_hash);
7691#endif
02875878 7692 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7693 setup(dev);
7694
a813104d 7695 if (!dev->tx_queue_len) {
f84bb1ea 7696 dev->priv_flags |= IFF_NO_QUEUE;
11597084 7697 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 7698 }
906470c1 7699
36909ea4
TH
7700 dev->num_tx_queues = txqs;
7701 dev->real_num_tx_queues = txqs;
ed9af2e8 7702 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7703 goto free_all;
e8a0464c 7704
a953be53 7705#ifdef CONFIG_SYSFS
36909ea4
TH
7706 dev->num_rx_queues = rxqs;
7707 dev->real_num_rx_queues = rxqs;
fe822240 7708 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7709 goto free_all;
df334545 7710#endif
0a9627f2 7711
1da177e4 7712 strcpy(dev->name, name);
c835a677 7713 dev->name_assign_type = name_assign_type;
cbda10fa 7714 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7715 if (!dev->ethtool_ops)
7716 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7717
7718 nf_hook_ingress_init(dev);
7719
1da177e4 7720 return dev;
ab9c73cc 7721
8d3bdbd5
DM
7722free_all:
7723 free_netdev(dev);
7724 return NULL;
7725
29b4433d
ED
7726free_pcpu:
7727 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7728free_dev:
7729 netdev_freemem(dev);
ab9c73cc 7730 return NULL;
1da177e4 7731}
36909ea4 7732EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7733
7734/**
7735 * free_netdev - free network device
7736 * @dev: device
7737 *
4ec93edb
YH
7738 * This function does the last stage of destroying an allocated device
7739 * interface. The reference to the device object is released.
1da177e4 7740 * If this is the last reference then it will be freed.
93d05d4a 7741 * Must be called in process context.
1da177e4
LT
7742 */
7743void free_netdev(struct net_device *dev)
7744{
d565b0a1
HX
7745 struct napi_struct *p, *n;
7746
93d05d4a 7747 might_sleep();
60877a32 7748 netif_free_tx_queues(dev);
a953be53 7749#ifdef CONFIG_SYSFS
10595902 7750 kvfree(dev->_rx);
fe822240 7751#endif
e8a0464c 7752
33d480ce 7753 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7754
f001fde5
JP
7755 /* Flush device addresses */
7756 dev_addr_flush(dev);
7757
d565b0a1
HX
7758 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7759 netif_napi_del(p);
7760
29b4433d
ED
7761 free_percpu(dev->pcpu_refcnt);
7762 dev->pcpu_refcnt = NULL;
7763
3041a069 7764 /* Compatibility with error handling in drivers */
1da177e4 7765 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7766 netdev_freemem(dev);
1da177e4
LT
7767 return;
7768 }
7769
7770 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7771 dev->reg_state = NETREG_RELEASED;
7772
43cb76d9
GKH
7773 /* will free via device release */
7774 put_device(&dev->dev);
1da177e4 7775}
d1b19dff 7776EXPORT_SYMBOL(free_netdev);
4ec93edb 7777
f0db275a
SH
7778/**
7779 * synchronize_net - Synchronize with packet receive processing
7780 *
7781 * Wait for packets currently being received to be done.
7782 * Does not block later packets from starting.
7783 */
4ec93edb 7784void synchronize_net(void)
1da177e4
LT
7785{
7786 might_sleep();
be3fc413
ED
7787 if (rtnl_is_locked())
7788 synchronize_rcu_expedited();
7789 else
7790 synchronize_rcu();
1da177e4 7791}
d1b19dff 7792EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7793
7794/**
44a0873d 7795 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7796 * @dev: device
44a0873d 7797 * @head: list
6ebfbc06 7798 *
1da177e4 7799 * This function shuts down a device interface and removes it
d59b54b1 7800 * from the kernel tables.
44a0873d 7801 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7802 *
7803 * Callers must hold the rtnl semaphore. You may want
7804 * unregister_netdev() instead of this.
7805 */
7806
44a0873d 7807void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7808{
a6620712
HX
7809 ASSERT_RTNL();
7810
44a0873d 7811 if (head) {
9fdce099 7812 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7813 } else {
7814 rollback_registered(dev);
7815 /* Finish processing unregister after unlock */
7816 net_set_todo(dev);
7817 }
1da177e4 7818}
44a0873d 7819EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7820
9b5e383c
ED
7821/**
7822 * unregister_netdevice_many - unregister many devices
7823 * @head: list of devices
87757a91
ED
7824 *
7825 * Note: As most callers use a stack allocated list_head,
7826 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7827 */
7828void unregister_netdevice_many(struct list_head *head)
7829{
7830 struct net_device *dev;
7831
7832 if (!list_empty(head)) {
7833 rollback_registered_many(head);
7834 list_for_each_entry(dev, head, unreg_list)
7835 net_set_todo(dev);
87757a91 7836 list_del(head);
9b5e383c
ED
7837 }
7838}
63c8099d 7839EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7840
1da177e4
LT
7841/**
7842 * unregister_netdev - remove device from the kernel
7843 * @dev: device
7844 *
7845 * This function shuts down a device interface and removes it
d59b54b1 7846 * from the kernel tables.
1da177e4
LT
7847 *
7848 * This is just a wrapper for unregister_netdevice that takes
7849 * the rtnl semaphore. In general you want to use this and not
7850 * unregister_netdevice.
7851 */
7852void unregister_netdev(struct net_device *dev)
7853{
7854 rtnl_lock();
7855 unregister_netdevice(dev);
7856 rtnl_unlock();
7857}
1da177e4
LT
7858EXPORT_SYMBOL(unregister_netdev);
7859
ce286d32
EB
7860/**
7861 * dev_change_net_namespace - move device to different nethost namespace
7862 * @dev: device
7863 * @net: network namespace
7864 * @pat: If not NULL name pattern to try if the current device name
7865 * is already taken in the destination network namespace.
7866 *
7867 * This function shuts down a device interface and moves it
7868 * to a new network namespace. On success 0 is returned, on
7869 * a failure a netagive errno code is returned.
7870 *
7871 * Callers must hold the rtnl semaphore.
7872 */
7873
7874int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7875{
ce286d32
EB
7876 int err;
7877
7878 ASSERT_RTNL();
7879
7880 /* Don't allow namespace local devices to be moved. */
7881 err = -EINVAL;
7882 if (dev->features & NETIF_F_NETNS_LOCAL)
7883 goto out;
7884
7885 /* Ensure the device has been registrered */
ce286d32
EB
7886 if (dev->reg_state != NETREG_REGISTERED)
7887 goto out;
7888
7889 /* Get out if there is nothing todo */
7890 err = 0;
878628fb 7891 if (net_eq(dev_net(dev), net))
ce286d32
EB
7892 goto out;
7893
7894 /* Pick the destination device name, and ensure
7895 * we can use it in the destination network namespace.
7896 */
7897 err = -EEXIST;
d9031024 7898 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7899 /* We get here if we can't use the current device name */
7900 if (!pat)
7901 goto out;
828de4f6 7902 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7903 goto out;
7904 }
7905
7906 /*
7907 * And now a mini version of register_netdevice unregister_netdevice.
7908 */
7909
7910 /* If device is running close it first. */
9b772652 7911 dev_close(dev);
ce286d32
EB
7912
7913 /* And unlink it from device chain */
7914 err = -ENODEV;
7915 unlist_netdevice(dev);
7916
7917 synchronize_net();
7918
7919 /* Shutdown queueing discipline. */
7920 dev_shutdown(dev);
7921
7922 /* Notify protocols, that we are about to destroy
7923 this device. They should clean all the things.
3b27e105
DL
7924
7925 Note that dev->reg_state stays at NETREG_REGISTERED.
7926 This is wanted because this way 8021q and macvlan know
7927 the device is just moving and can keep their slaves up.
ce286d32
EB
7928 */
7929 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7930 rcu_barrier();
7931 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7932 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7933
7934 /*
7935 * Flush the unicast and multicast chains
7936 */
a748ee24 7937 dev_uc_flush(dev);
22bedad3 7938 dev_mc_flush(dev);
ce286d32 7939
4e66ae2e
SH
7940 /* Send a netdev-removed uevent to the old namespace */
7941 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7942 netdev_adjacent_del_links(dev);
4e66ae2e 7943
ce286d32 7944 /* Actually switch the network namespace */
c346dca1 7945 dev_net_set(dev, net);
ce286d32 7946
ce286d32 7947 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7948 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7949 dev->ifindex = dev_new_index(net);
ce286d32 7950
4e66ae2e
SH
7951 /* Send a netdev-add uevent to the new namespace */
7952 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7953 netdev_adjacent_add_links(dev);
4e66ae2e 7954
8b41d188 7955 /* Fixup kobjects */
a1b3f594 7956 err = device_rename(&dev->dev, dev->name);
8b41d188 7957 WARN_ON(err);
ce286d32
EB
7958
7959 /* Add the device back in the hashes */
7960 list_netdevice(dev);
7961
7962 /* Notify protocols, that a new device appeared. */
7963 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7964
d90a909e
EB
7965 /*
7966 * Prevent userspace races by waiting until the network
7967 * device is fully setup before sending notifications.
7968 */
7f294054 7969 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7970
ce286d32
EB
7971 synchronize_net();
7972 err = 0;
7973out:
7974 return err;
7975}
463d0183 7976EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7977
f0bf90de 7978static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
7979{
7980 struct sk_buff **list_skb;
1da177e4 7981 struct sk_buff *skb;
f0bf90de 7982 unsigned int cpu;
1da177e4
LT
7983 struct softnet_data *sd, *oldsd;
7984
1da177e4
LT
7985 local_irq_disable();
7986 cpu = smp_processor_id();
7987 sd = &per_cpu(softnet_data, cpu);
7988 oldsd = &per_cpu(softnet_data, oldcpu);
7989
7990 /* Find end of our completion_queue. */
7991 list_skb = &sd->completion_queue;
7992 while (*list_skb)
7993 list_skb = &(*list_skb)->next;
7994 /* Append completion queue from offline CPU. */
7995 *list_skb = oldsd->completion_queue;
7996 oldsd->completion_queue = NULL;
7997
1da177e4 7998 /* Append output queue from offline CPU. */
a9cbd588
CG
7999 if (oldsd->output_queue) {
8000 *sd->output_queue_tailp = oldsd->output_queue;
8001 sd->output_queue_tailp = oldsd->output_queue_tailp;
8002 oldsd->output_queue = NULL;
8003 oldsd->output_queue_tailp = &oldsd->output_queue;
8004 }
ac64da0b
ED
8005 /* Append NAPI poll list from offline CPU, with one exception :
8006 * process_backlog() must be called by cpu owning percpu backlog.
8007 * We properly handle process_queue & input_pkt_queue later.
8008 */
8009 while (!list_empty(&oldsd->poll_list)) {
8010 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8011 struct napi_struct,
8012 poll_list);
8013
8014 list_del_init(&napi->poll_list);
8015 if (napi->poll == process_backlog)
8016 napi->state = 0;
8017 else
8018 ____napi_schedule(sd, napi);
264524d5 8019 }
1da177e4
LT
8020
8021 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8022 local_irq_enable();
8023
8024 /* Process offline CPU's input_pkt_queue */
76cc8b13 8025 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8026 netif_rx_ni(skb);
76cc8b13 8027 input_queue_head_incr(oldsd);
fec5e652 8028 }
ac64da0b 8029 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8030 netif_rx_ni(skb);
76cc8b13
TH
8031 input_queue_head_incr(oldsd);
8032 }
1da177e4 8033
f0bf90de 8034 return 0;
1da177e4 8035}
1da177e4 8036
7f353bf2 8037/**
b63365a2
HX
8038 * netdev_increment_features - increment feature set by one
8039 * @all: current feature set
8040 * @one: new feature set
8041 * @mask: mask feature set
7f353bf2
HX
8042 *
8043 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8044 * @one to the master device with current feature set @all. Will not
8045 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8046 */
c8f44aff
MM
8047netdev_features_t netdev_increment_features(netdev_features_t all,
8048 netdev_features_t one, netdev_features_t mask)
b63365a2 8049{
c8cd0989 8050 if (mask & NETIF_F_HW_CSUM)
a188222b 8051 mask |= NETIF_F_CSUM_MASK;
1742f183 8052 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8053
a188222b 8054 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8055 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8056
1742f183 8057 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8058 if (all & NETIF_F_HW_CSUM)
8059 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8060
8061 return all;
8062}
b63365a2 8063EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8064
430f03cd 8065static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8066{
8067 int i;
8068 struct hlist_head *hash;
8069
8070 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8071 if (hash != NULL)
8072 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8073 INIT_HLIST_HEAD(&hash[i]);
8074
8075 return hash;
8076}
8077
881d966b 8078/* Initialize per network namespace state */
4665079c 8079static int __net_init netdev_init(struct net *net)
881d966b 8080{
734b6541
RM
8081 if (net != &init_net)
8082 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8083
30d97d35
PE
8084 net->dev_name_head = netdev_create_hash();
8085 if (net->dev_name_head == NULL)
8086 goto err_name;
881d966b 8087
30d97d35
PE
8088 net->dev_index_head = netdev_create_hash();
8089 if (net->dev_index_head == NULL)
8090 goto err_idx;
881d966b
EB
8091
8092 return 0;
30d97d35
PE
8093
8094err_idx:
8095 kfree(net->dev_name_head);
8096err_name:
8097 return -ENOMEM;
881d966b
EB
8098}
8099
f0db275a
SH
8100/**
8101 * netdev_drivername - network driver for the device
8102 * @dev: network device
f0db275a
SH
8103 *
8104 * Determine network driver for device.
8105 */
3019de12 8106const char *netdev_drivername(const struct net_device *dev)
6579e57b 8107{
cf04a4c7
SH
8108 const struct device_driver *driver;
8109 const struct device *parent;
3019de12 8110 const char *empty = "";
6579e57b
AV
8111
8112 parent = dev->dev.parent;
6579e57b 8113 if (!parent)
3019de12 8114 return empty;
6579e57b
AV
8115
8116 driver = parent->driver;
8117 if (driver && driver->name)
3019de12
DM
8118 return driver->name;
8119 return empty;
6579e57b
AV
8120}
8121
6ea754eb
JP
8122static void __netdev_printk(const char *level, const struct net_device *dev,
8123 struct va_format *vaf)
256df2f3 8124{
b004ff49 8125 if (dev && dev->dev.parent) {
6ea754eb
JP
8126 dev_printk_emit(level[1] - '0',
8127 dev->dev.parent,
8128 "%s %s %s%s: %pV",
8129 dev_driver_string(dev->dev.parent),
8130 dev_name(dev->dev.parent),
8131 netdev_name(dev), netdev_reg_state(dev),
8132 vaf);
b004ff49 8133 } else if (dev) {
6ea754eb
JP
8134 printk("%s%s%s: %pV",
8135 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8136 } else {
6ea754eb 8137 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8138 }
256df2f3
JP
8139}
8140
6ea754eb
JP
8141void netdev_printk(const char *level, const struct net_device *dev,
8142 const char *format, ...)
256df2f3
JP
8143{
8144 struct va_format vaf;
8145 va_list args;
256df2f3
JP
8146
8147 va_start(args, format);
8148
8149 vaf.fmt = format;
8150 vaf.va = &args;
8151
6ea754eb 8152 __netdev_printk(level, dev, &vaf);
b004ff49 8153
256df2f3 8154 va_end(args);
256df2f3
JP
8155}
8156EXPORT_SYMBOL(netdev_printk);
8157
8158#define define_netdev_printk_level(func, level) \
6ea754eb 8159void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8160{ \
256df2f3
JP
8161 struct va_format vaf; \
8162 va_list args; \
8163 \
8164 va_start(args, fmt); \
8165 \
8166 vaf.fmt = fmt; \
8167 vaf.va = &args; \
8168 \
6ea754eb 8169 __netdev_printk(level, dev, &vaf); \
b004ff49 8170 \
256df2f3 8171 va_end(args); \
256df2f3
JP
8172} \
8173EXPORT_SYMBOL(func);
8174
8175define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8176define_netdev_printk_level(netdev_alert, KERN_ALERT);
8177define_netdev_printk_level(netdev_crit, KERN_CRIT);
8178define_netdev_printk_level(netdev_err, KERN_ERR);
8179define_netdev_printk_level(netdev_warn, KERN_WARNING);
8180define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8181define_netdev_printk_level(netdev_info, KERN_INFO);
8182
4665079c 8183static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8184{
8185 kfree(net->dev_name_head);
8186 kfree(net->dev_index_head);
8187}
8188
022cbae6 8189static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8190 .init = netdev_init,
8191 .exit = netdev_exit,
8192};
8193
4665079c 8194static void __net_exit default_device_exit(struct net *net)
ce286d32 8195{
e008b5fc 8196 struct net_device *dev, *aux;
ce286d32 8197 /*
e008b5fc 8198 * Push all migratable network devices back to the
ce286d32
EB
8199 * initial network namespace
8200 */
8201 rtnl_lock();
e008b5fc 8202 for_each_netdev_safe(net, dev, aux) {
ce286d32 8203 int err;
aca51397 8204 char fb_name[IFNAMSIZ];
ce286d32
EB
8205
8206 /* Ignore unmoveable devices (i.e. loopback) */
8207 if (dev->features & NETIF_F_NETNS_LOCAL)
8208 continue;
8209
e008b5fc
EB
8210 /* Leave virtual devices for the generic cleanup */
8211 if (dev->rtnl_link_ops)
8212 continue;
d0c082ce 8213
25985edc 8214 /* Push remaining network devices to init_net */
aca51397
PE
8215 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8216 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8217 if (err) {
7b6cd1ce
JP
8218 pr_emerg("%s: failed to move %s to init_net: %d\n",
8219 __func__, dev->name, err);
aca51397 8220 BUG();
ce286d32
EB
8221 }
8222 }
8223 rtnl_unlock();
8224}
8225
50624c93
EB
8226static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8227{
8228 /* Return with the rtnl_lock held when there are no network
8229 * devices unregistering in any network namespace in net_list.
8230 */
8231 struct net *net;
8232 bool unregistering;
ff960a73 8233 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8234
ff960a73 8235 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8236 for (;;) {
50624c93
EB
8237 unregistering = false;
8238 rtnl_lock();
8239 list_for_each_entry(net, net_list, exit_list) {
8240 if (net->dev_unreg_count > 0) {
8241 unregistering = true;
8242 break;
8243 }
8244 }
8245 if (!unregistering)
8246 break;
8247 __rtnl_unlock();
ff960a73
PZ
8248
8249 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8250 }
ff960a73 8251 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8252}
8253
04dc7f6b
EB
8254static void __net_exit default_device_exit_batch(struct list_head *net_list)
8255{
8256 /* At exit all network devices most be removed from a network
b595076a 8257 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8258 * Do this across as many network namespaces as possible to
8259 * improve batching efficiency.
8260 */
8261 struct net_device *dev;
8262 struct net *net;
8263 LIST_HEAD(dev_kill_list);
8264
50624c93
EB
8265 /* To prevent network device cleanup code from dereferencing
8266 * loopback devices or network devices that have been freed
8267 * wait here for all pending unregistrations to complete,
8268 * before unregistring the loopback device and allowing the
8269 * network namespace be freed.
8270 *
8271 * The netdev todo list containing all network devices
8272 * unregistrations that happen in default_device_exit_batch
8273 * will run in the rtnl_unlock() at the end of
8274 * default_device_exit_batch.
8275 */
8276 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8277 list_for_each_entry(net, net_list, exit_list) {
8278 for_each_netdev_reverse(net, dev) {
b0ab2fab 8279 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8280 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8281 else
8282 unregister_netdevice_queue(dev, &dev_kill_list);
8283 }
8284 }
8285 unregister_netdevice_many(&dev_kill_list);
8286 rtnl_unlock();
8287}
8288
022cbae6 8289static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8290 .exit = default_device_exit,
04dc7f6b 8291 .exit_batch = default_device_exit_batch,
ce286d32
EB
8292};
8293
1da177e4
LT
8294/*
8295 * Initialize the DEV module. At boot time this walks the device list and
8296 * unhooks any devices that fail to initialise (normally hardware not
8297 * present) and leaves us with a valid list of present and active devices.
8298 *
8299 */
8300
8301/*
8302 * This is called single threaded during boot, so no need
8303 * to take the rtnl semaphore.
8304 */
8305static int __init net_dev_init(void)
8306{
8307 int i, rc = -ENOMEM;
8308
8309 BUG_ON(!dev_boot_phase);
8310
1da177e4
LT
8311 if (dev_proc_init())
8312 goto out;
8313
8b41d188 8314 if (netdev_kobject_init())
1da177e4
LT
8315 goto out;
8316
8317 INIT_LIST_HEAD(&ptype_all);
82d8a867 8318 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8319 INIT_LIST_HEAD(&ptype_base[i]);
8320
62532da9
VY
8321 INIT_LIST_HEAD(&offload_base);
8322
881d966b
EB
8323 if (register_pernet_subsys(&netdev_net_ops))
8324 goto out;
1da177e4
LT
8325
8326 /*
8327 * Initialise the packet receive queues.
8328 */
8329
6f912042 8330 for_each_possible_cpu(i) {
41852497 8331 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8332 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8333
41852497
ED
8334 INIT_WORK(flush, flush_backlog);
8335
e36fa2f7 8336 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8337 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8338 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8339 sd->output_queue_tailp = &sd->output_queue;
df334545 8340#ifdef CONFIG_RPS
e36fa2f7
ED
8341 sd->csd.func = rps_trigger_softirq;
8342 sd->csd.info = sd;
e36fa2f7 8343 sd->cpu = i;
1e94d72f 8344#endif
0a9627f2 8345
e36fa2f7
ED
8346 sd->backlog.poll = process_backlog;
8347 sd->backlog.weight = weight_p;
1da177e4
LT
8348 }
8349
1da177e4
LT
8350 dev_boot_phase = 0;
8351
505d4f73
EB
8352 /* The loopback device is special if any other network devices
8353 * is present in a network namespace the loopback device must
8354 * be present. Since we now dynamically allocate and free the
8355 * loopback device ensure this invariant is maintained by
8356 * keeping the loopback device as the first device on the
8357 * list of network devices. Ensuring the loopback devices
8358 * is the first device that appears and the last network device
8359 * that disappears.
8360 */
8361 if (register_pernet_device(&loopback_net_ops))
8362 goto out;
8363
8364 if (register_pernet_device(&default_device_ops))
8365 goto out;
8366
962cf36c
CM
8367 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8368 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8369
f0bf90de
SAS
8370 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8371 NULL, dev_cpu_dead);
8372 WARN_ON(rc < 0);
f38a9eb1 8373 dst_subsys_init();
1da177e4
LT
8374 rc = 0;
8375out:
8376 return rc;
8377}
8378
8379subsys_initcall(net_dev_init);