]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/core/dev.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
40e4e713 142#include <linux/crash_dump.h>
1da177e4 143
342709ef
PE
144#include "net-sysfs.h"
145
d565b0a1
HX
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
5d38a079
HX
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
1da177e4 152static DEFINE_SPINLOCK(ptype_lock);
62532da9 153static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
62532da9 156static struct list_head offload_base __read_mostly;
1da177e4 157
ae78dbfa 158static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
ae78dbfa 162
1da177e4 163/*
7562f876 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
165 * semaphore.
166 *
c6d14c84 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
7562f876 170 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
1da177e4 182DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
183EXPORT_SYMBOL(dev_base_lock);
184
af12fa6e
ET
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
52bd2d62 188static unsigned int napi_gen_id = NR_CPUS;
6180d9de 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 190
18afa4b0 191static seqcount_t devnet_rename_seq;
c91f6df2 192
4e985ada
TG
193static inline void dev_base_seq_inc(struct net *net)
194{
195 while (++net->dev_base_seq == 0);
196}
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 199{
8387ff25 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 201
08e9897d 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
203}
204
881d966b 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 206{
7c28bd0b 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
208}
209
e36fa2f7 210static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
e36fa2f7 217static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
ce286d32 224/* Device list insertion */
53759be9 225static void list_netdevice(struct net_device *dev)
ce286d32 226{
c346dca1 227 struct net *net = dev_net(dev);
ce286d32
EB
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
c6d14c84 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
ce286d32 236 write_unlock_bh(&dev_base_lock);
4e985ada
TG
237
238 dev_base_seq_inc(net);
ce286d32
EB
239}
240
fb699dfd
ED
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
ce286d32
EB
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
c6d14c84 250 list_del_rcu(&dev->dev_list);
72c9528b 251 hlist_del_rcu(&dev->name_hlist);
fb699dfd 252 hlist_del_rcu(&dev->index_hlist);
ce286d32 253 write_unlock_bh(&dev_base_lock);
4e985ada
TG
254
255 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
256}
257
1da177e4
LT
258/*
259 * Our notifier list
260 */
261
f07d5b94 262static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
263
264/*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
bea3348e 268
9958da05 269DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 270EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 271
cf508b12 272#ifdef CONFIG_LOCKDEP
723e98b7 273/*
c773e847 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
275 * according to dev->type
276 */
277static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 293
36cbd3dc 294static const char *const netdev_lock_name[] =
723e98b7
JP
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
cf508b12
DM
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
723e98b7
JP
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
cf508b12
DM
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
723e98b7 344#else
cf508b12
DM
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
350{
351}
352#endif
1da177e4
LT
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
1da177e4
LT
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
c07b68e8
ED
376static inline struct list_head *ptype_head(const struct packet_type *pt)
377{
378 if (pt->type == htons(ETH_P_ALL))
7866a621 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 380 else
7866a621
SN
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
383}
384
1da177e4
LT
385/**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
4ec93edb 393 * This call does not sleep therefore it can not
1da177e4
LT
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398void dev_add_pack(struct packet_type *pt)
399{
c07b68e8 400 struct list_head *head = ptype_head(pt);
1da177e4 401
c07b68e8
ED
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
1da177e4 405}
d1b19dff 406EXPORT_SYMBOL(dev_add_pack);
1da177e4 407
1da177e4
LT
408/**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
4ec93edb 415 * returns.
1da177e4
LT
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421void __dev_remove_pack(struct packet_type *pt)
422{
c07b68e8 423 struct list_head *head = ptype_head(pt);
1da177e4
LT
424 struct packet_type *pt1;
425
c07b68e8 426 spin_lock(&ptype_lock);
1da177e4
LT
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
7b6cd1ce 435 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 436out:
c07b68e8 437 spin_unlock(&ptype_lock);
1da177e4 438}
d1b19dff
ED
439EXPORT_SYMBOL(__dev_remove_pack);
440
1da177e4
LT
441/**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453void dev_remove_pack(struct packet_type *pt)
454{
455 __dev_remove_pack(pt);
4ec93edb 456
1da177e4
LT
457 synchronize_net();
458}
d1b19dff 459EXPORT_SYMBOL(dev_remove_pack);
1da177e4 460
62532da9
VY
461
462/**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474void dev_add_offload(struct packet_offload *po)
475{
bdef7de4 476 struct packet_offload *elem;
62532da9
VY
477
478 spin_lock(&offload_lock);
bdef7de4
DM
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
484 spin_unlock(&offload_lock);
485}
486EXPORT_SYMBOL(dev_add_offload);
487
488/**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
1d143d9f 501static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
502{
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
c53aa505 506 spin_lock(&offload_lock);
62532da9
VY
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516out:
c53aa505 517 spin_unlock(&offload_lock);
62532da9 518}
62532da9
VY
519
520/**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532void dev_remove_offload(struct packet_offload *po)
533{
534 __dev_remove_offload(po);
535
536 synchronize_net();
537}
538EXPORT_SYMBOL(dev_remove_offload);
539
1da177e4
LT
540/******************************************************************************
541
542 Device Boot-time Settings Routines
543
544*******************************************************************************/
545
546/* Boot time configuration table */
547static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549/**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558static int netdev_boot_setup_add(char *name, struct ifmap *map)
559{
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 567 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574}
575
576/**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585int netdev_boot_setup_check(struct net_device *dev)
586{
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 592 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601}
d1b19dff 602EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
603
604
605/**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615unsigned long netdev_boot_base(const char *prefix, int unit)
616{
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
881d966b 627 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634}
635
636/*
637 * Saves at boot time configured settings for any netdevice.
638 */
639int __init netdev_boot_setup(char *str)
640{
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661}
662
663__setup("netdev=", netdev_boot_setup);
664
665/*******************************************************************************
666
667 Device Interface Subroutines
668
669*******************************************************************************/
670
a54acb3a
ND
671/**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679int dev_get_iflink(const struct net_device *dev)
680{
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
7a66bbc9 684 return dev->ifindex;
a54acb3a
ND
685}
686EXPORT_SYMBOL(dev_get_iflink);
687
fc4099f1
PS
688/**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698{
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711}
712EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
1da177e4
LT
714/**
715 * __dev_get_by_name - find a device by its name
c4ea43c5 716 * @net: the applicable net namespace
1da177e4
LT
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
881d966b 726struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 727{
0bd8d536
ED
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 730
b67bfe0d 731 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
0bd8d536 734
1da177e4
LT
735 return NULL;
736}
d1b19dff 737EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 738
72c9528b
ED
739/**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752{
72c9528b
ED
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
b67bfe0d 756 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761}
762EXPORT_SYMBOL(dev_get_by_name_rcu);
763
1da177e4
LT
764/**
765 * dev_get_by_name - find a device by its name
c4ea43c5 766 * @net: the applicable net namespace
1da177e4
LT
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
881d966b 776struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
777{
778 struct net_device *dev;
779
72c9528b
ED
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
782 if (dev)
783 dev_hold(dev);
72c9528b 784 rcu_read_unlock();
1da177e4
LT
785 return dev;
786}
d1b19dff 787EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
788
789/**
790 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 791 * @net: the applicable net namespace
1da177e4
LT
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
881d966b 801struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 802{
0bd8d536
ED
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 805
b67bfe0d 806 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
807 if (dev->ifindex == ifindex)
808 return dev;
0bd8d536 809
1da177e4
LT
810 return NULL;
811}
d1b19dff 812EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 813
fb699dfd
ED
814/**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826{
fb699dfd
ED
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
b67bfe0d 830 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835}
836EXPORT_SYMBOL(dev_get_by_index_rcu);
837
1da177e4
LT
838
839/**
840 * dev_get_by_index - find a device by its ifindex
c4ea43c5 841 * @net: the applicable net namespace
1da177e4
LT
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
881d966b 850struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
851{
852 struct net_device *dev;
853
fb699dfd
ED
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
856 if (dev)
857 dev_hold(dev);
fb699dfd 858 rcu_read_unlock();
1da177e4
LT
859 return dev;
860}
d1b19dff 861EXPORT_SYMBOL(dev_get_by_index);
1da177e4 862
5dbe7c17
NS
863/**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873int netdev_get_name(struct net *net, char *name, int ifindex)
874{
875 struct net_device *dev;
876 unsigned int seq;
877
878retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895}
896
1da177e4 897/**
941666c2 898 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 899 * @net: the applicable net namespace
1da177e4
LT
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
941666c2 906 * The returned device has not had its ref count increased
1da177e4
LT
907 * and the caller must therefore be careful about locking
908 *
1da177e4
LT
909 */
910
941666c2
ED
911struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
1da177e4
LT
913{
914 struct net_device *dev;
915
941666c2 916 for_each_netdev_rcu(net, dev)
1da177e4
LT
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
919 return dev;
920
921 return NULL;
1da177e4 922}
941666c2 923EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 924
881d966b 925struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
926{
927 struct net_device *dev;
928
4e9cac2b 929 ASSERT_RTNL();
881d966b 930 for_each_netdev(net, dev)
4e9cac2b 931 if (dev->type == type)
7562f876
PE
932 return dev;
933
934 return NULL;
4e9cac2b 935}
4e9cac2b
PM
936EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
881d966b 938struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 939{
99fe3c39 940 struct net_device *dev, *ret = NULL;
4e9cac2b 941
99fe3c39
ED
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
1da177e4 951}
1da177e4
LT
952EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954/**
6c555490 955 * __dev_get_by_flags - find any device with given flags
c4ea43c5 956 * @net: the applicable net namespace
1da177e4
LT
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 961 * is not found or a pointer to the device. Must be called inside
6c555490 962 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
963 */
964
6c555490
WC
965struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
1da177e4 967{
7562f876 968 struct net_device *dev, *ret;
1da177e4 969
6c555490
WC
970 ASSERT_RTNL();
971
7562f876 972 ret = NULL;
6c555490 973 for_each_netdev(net, dev) {
1da177e4 974 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 975 ret = dev;
1da177e4
LT
976 break;
977 }
978 }
7562f876 979 return ret;
1da177e4 980}
6c555490 981EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
982
983/**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
c7fa9d18
DM
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
1da177e4 990 */
95f050bf 991bool dev_valid_name(const char *name)
1da177e4 992{
c7fa9d18 993 if (*name == '\0')
95f050bf 994 return false;
b6fe17d6 995 if (strlen(name) >= IFNAMSIZ)
95f050bf 996 return false;
c7fa9d18 997 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 998 return false;
c7fa9d18
DM
999
1000 while (*name) {
a4176a93 1001 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1002 return false;
c7fa9d18
DM
1003 name++;
1004 }
95f050bf 1005 return true;
1da177e4 1006}
d1b19dff 1007EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1008
1009/**
b267b179
EB
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1da177e4 1012 * @name: name format string
b267b179 1013 * @buf: scratch buffer and result name string
1da177e4
LT
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1022 */
1023
b267b179 1024static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1025{
1026 int i = 0;
1da177e4
LT
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1029 unsigned long *inuse;
1da177e4
LT
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
cfcabdcc 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1044 if (!inuse)
1045 return -ENOMEM;
1046
881d966b 1047 for_each_netdev(net, d) {
1da177e4
LT
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1054 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
d9031024
OP
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1065 if (!__dev_get_by_name(net, buf))
1da177e4 1066 return i;
1da177e4
LT
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073}
1074
b267b179
EB
1075/**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089int dev_alloc_name(struct net_device *dev, const char *name)
1090{
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
c346dca1
YH
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
b267b179
EB
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101}
d1b19dff 1102EXPORT_SYMBOL(dev_alloc_name);
b267b179 1103
828de4f6
G
1104static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
d9031024 1107{
828de4f6
G
1108 char buf[IFNAMSIZ];
1109 int ret;
8ce6cebc 1110
828de4f6
G
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115}
1116
1117static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120{
1121 BUG_ON(!net);
8ce6cebc 1122
d9031024
OP
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1c5cae81 1126 if (strchr(name, '%'))
828de4f6 1127 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
8ce6cebc
DL
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1132
1133 return 0;
1134}
1da177e4
LT
1135
1136/**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
cf04a4c7 1144int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1145{
238fa362 1146 unsigned char old_assign_type;
fcc5a03a 1147 char oldname[IFNAMSIZ];
1da177e4 1148 int err = 0;
fcc5a03a 1149 int ret;
881d966b 1150 struct net *net;
1da177e4
LT
1151
1152 ASSERT_RTNL();
c346dca1 1153 BUG_ON(!dev_net(dev));
1da177e4 1154
c346dca1 1155 net = dev_net(dev);
1da177e4
LT
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
30e6c9fa 1159 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1162 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1163 return 0;
c91f6df2 1164 }
c8d90dca 1165
fcc5a03a
HX
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
828de4f6 1168 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1169 if (err < 0) {
30e6c9fa 1170 write_seqcount_end(&devnet_rename_seq);
d9031024 1171 return err;
c91f6df2 1172 }
1da177e4 1173
6fe82a39
VF
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
238fa362
TG
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
fcc5a03a 1180rollback:
a1b3f594
EB
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1184 dev->name_assign_type = old_assign_type;
30e6c9fa 1185 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1186 return ret;
dcc99773 1187 }
7f988eab 1188
30e6c9fa 1189 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1190
5bb025fa
VF
1191 netdev_adjacent_rename_links(dev, oldname);
1192
7f988eab 1193 write_lock_bh(&dev_base_lock);
372b2312 1194 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1201 write_unlock_bh(&dev_base_lock);
1202
056925ab 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
91e9c07b
ED
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
fcc5a03a 1209 err = ret;
30e6c9fa 1210 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1211 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1212 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1215 goto rollback;
91e9c07b 1216 } else {
7b6cd1ce 1217 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1218 dev->name, ret);
fcc5a03a
HX
1219 }
1220 }
1da177e4
LT
1221
1222 return err;
1223}
1224
0b815a1a
SH
1225/**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
f0db275a 1229 * @len: limit of bytes to copy from info
0b815a1a
SH
1230 *
1231 * Set ifalias for a device,
1232 */
1233int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234{
7364e445
AK
1235 char *new_ifalias;
1236
0b815a1a
SH
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
96ca4a2c 1242 if (!len) {
388dfc2d
SK
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
96ca4a2c
OH
1245 return 0;
1246 }
1247
7364e445
AK
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
0b815a1a 1250 return -ENOMEM;
7364e445 1251 dev->ifalias = new_ifalias;
0b815a1a
SH
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255}
1256
1257
d8a33ac4 1258/**
3041a069 1259 * netdev_features_change - device changes features
d8a33ac4
SH
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264void netdev_features_change(struct net_device *dev)
1265{
056925ab 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1267}
1268EXPORT_SYMBOL(netdev_features_change);
1269
1da177e4
LT
1270/**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278void netdev_state_change(struct net_device *dev)
1279{
1280 if (dev->flags & IFF_UP) {
54951194
LP
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
7f294054 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1287 }
1288}
d1b19dff 1289EXPORT_SYMBOL(netdev_state_change);
1da177e4 1290
ee89bab1
AW
1291/**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1302{
ee89bab1
AW
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
c1da4ac7 1306}
ee89bab1 1307EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1308
bd380811 1309static int __dev_open(struct net_device *dev)
1da177e4 1310{
d314774c 1311 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1312 int ret;
1da177e4 1313
e46b66bc
BH
1314 ASSERT_RTNL();
1315
1da177e4
LT
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
ca99ca14
NH
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
66b5552f 1323 netpoll_poll_disable(dev);
ca99ca14 1324
3b8bcfd5
JB
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1da177e4 1330 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1331
d314774c
SH
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
bada339b 1334
d314774c
SH
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1da177e4 1337
66b5552f 1338 netpoll_poll_enable(dev);
ca99ca14 1339
bada339b
JG
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1da177e4 1343 dev->flags |= IFF_UP;
4417da66 1344 dev_set_rx_mode(dev);
1da177e4 1345 dev_activate(dev);
7bf23575 1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1347 }
bada339b 1348
1da177e4
LT
1349 return ret;
1350}
1351
1352/**
bd380811
PM
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1da177e4 1355 *
bd380811
PM
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1da177e4 1363 */
bd380811
PM
1364int dev_open(struct net_device *dev)
1365{
1366 int ret;
1367
bd380811
PM
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
bd380811
PM
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
7f294054 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379}
1380EXPORT_SYMBOL(dev_open);
1381
44345724 1382static int __dev_close_many(struct list_head *head)
1da177e4 1383{
44345724 1384 struct net_device *dev;
e46b66bc 1385
bd380811 1386 ASSERT_RTNL();
9d5010db
DM
1387 might_sleep();
1388
5cde2829 1389 list_for_each_entry(dev, head, close_list) {
3f4df206 1390 /* Temporarily disable netpoll until the interface is down */
66b5552f 1391 netpoll_poll_disable(dev);
3f4df206 1392
44345724 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1394
44345724 1395 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1396
44345724
OP
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
4e857c58 1403 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1404 }
1da177e4 1405
44345724 1406 dev_deactivate_many(head);
d8b2a4d2 1407
5cde2829 1408 list_for_each_entry(dev, head, close_list) {
44345724 1409 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1410
44345724
OP
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
44345724 1421 dev->flags &= ~IFF_UP;
66b5552f 1422 netpoll_poll_enable(dev);
44345724
OP
1423 }
1424
1425 return 0;
1426}
1427
1428static int __dev_close(struct net_device *dev)
1429{
f87e6f47 1430 int retval;
44345724
OP
1431 LIST_HEAD(single);
1432
5cde2829 1433 list_add(&dev->close_list, &single);
f87e6f47
LT
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
ca99ca14 1436
f87e6f47 1437 return retval;
44345724
OP
1438}
1439
99c4a26a 1440int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1441{
1442 struct net_device *dev, *tmp;
1da177e4 1443
5cde2829
EB
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1446 if (!(dev->flags & IFF_UP))
5cde2829 1447 list_del_init(&dev->close_list);
44345724
OP
1448
1449 __dev_close_many(head);
1da177e4 1450
5cde2829 1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1454 if (unlink)
1455 list_del_init(&dev->close_list);
44345724 1456 }
bd380811
PM
1457
1458 return 0;
1459}
99c4a26a 1460EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1461
1462/**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471int dev_close(struct net_device *dev)
1472{
e14a5993
ED
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1da177e4 1475
5cde2829 1476 list_add(&dev->close_list, &single);
99c4a26a 1477 dev_close_many(&single, true);
e14a5993
ED
1478 list_del(&single);
1479 }
da6e378b 1480 return 0;
1da177e4 1481}
d1b19dff 1482EXPORT_SYMBOL(dev_close);
1da177e4
LT
1483
1484
0187bdfb
BH
1485/**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493void dev_disable_lro(struct net_device *dev)
1494{
fbe168ba
MK
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
529d0489 1497
bc5787c6
MM
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
27660515 1500
22d5969f
MM
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
0187bdfb
BH
1506}
1507EXPORT_SYMBOL(dev_disable_lro);
1508
351638e7
JP
1509static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511{
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516}
0187bdfb 1517
881d966b
EB
1518static int dev_boot_phase = 1;
1519
1da177e4
LT
1520/**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
4ec93edb 1530 * to the new notifier to allow device to have a race free
1da177e4
LT
1531 * view of the network device list.
1532 */
1533
1534int register_netdevice_notifier(struct notifier_block *nb)
1535{
1536 struct net_device *dev;
fcc5a03a 1537 struct net_device *last;
881d966b 1538 struct net *net;
1da177e4
LT
1539 int err;
1540
1541 rtnl_lock();
f07d5b94 1542 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1543 if (err)
1544 goto unlock;
881d966b
EB
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
351638e7 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1da177e4 1556
351638e7 1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1558 }
1da177e4 1559 }
fcc5a03a
HX
1560
1561unlock:
1da177e4
LT
1562 rtnl_unlock();
1563 return err;
fcc5a03a
HX
1564
1565rollback:
1566 last = dev;
881d966b
EB
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
8f891489 1570 goto outroll;
fcc5a03a 1571
881d966b 1572 if (dev->flags & IFF_UP) {
351638e7
JP
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1576 }
351638e7 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1578 }
fcc5a03a 1579 }
c67625a1 1580
8f891489 1581outroll:
c67625a1 1582 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1583 goto unlock;
1da177e4 1584}
d1b19dff 1585EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1586
1587/**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
7d3d43da
EB
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1da177e4
LT
1599 */
1600
1601int unregister_netdevice_notifier(struct notifier_block *nb)
1602{
7d3d43da
EB
1603 struct net_device *dev;
1604 struct net *net;
9f514950
HX
1605 int err;
1606
1607 rtnl_lock();
f07d5b94 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
351638e7
JP
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1618 }
351638e7 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1620 }
1621 }
1622unlock:
9f514950
HX
1623 rtnl_unlock();
1624 return err;
1da177e4 1625}
d1b19dff 1626EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1627
351638e7
JP
1628/**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1d143d9f 1638static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
351638e7
JP
1641{
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645}
351638e7 1646
1da177e4
LT
1647/**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
c4ea43c5 1650 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1651 *
1652 * Call all network notifier blocks. Parameters and return value
f07d5b94 1653 * are as for raw_notifier_call_chain().
1da177e4
LT
1654 */
1655
ad7379d4 1656int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1657{
351638e7
JP
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1661}
edf947f1 1662EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1663
1cf51900 1664#ifdef CONFIG_NET_INGRESS
4577139b
DB
1665static struct static_key ingress_needed __read_mostly;
1666
1667void net_inc_ingress_queue(void)
1668{
1669 static_key_slow_inc(&ingress_needed);
1670}
1671EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673void net_dec_ingress_queue(void)
1674{
1675 static_key_slow_dec(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678#endif
1679
1f211a1b
DB
1680#ifdef CONFIG_NET_EGRESS
1681static struct static_key egress_needed __read_mostly;
1682
1683void net_inc_egress_queue(void)
1684{
1685 static_key_slow_inc(&egress_needed);
1686}
1687EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689void net_dec_egress_queue(void)
1690{
1691 static_key_slow_dec(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694#endif
1695
c5905afb 1696static struct static_key netstamp_needed __read_mostly;
b90e5794 1697#ifdef HAVE_JUMP_LABEL
c5905afb 1698/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1699 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1700 * static_key_slow_dec() calls.
b90e5794
ED
1701 */
1702static atomic_t netstamp_needed_deferred;
1703#endif
1da177e4
LT
1704
1705void net_enable_timestamp(void)
1706{
b90e5794
ED
1707#ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710 if (deferred) {
1711 while (--deferred)
c5905afb 1712 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1713 return;
1714 }
1715#endif
c5905afb 1716 static_key_slow_inc(&netstamp_needed);
1da177e4 1717}
d1b19dff 1718EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1719
1720void net_disable_timestamp(void)
1721{
b90e5794
ED
1722#ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1726 }
1727#endif
c5905afb 1728 static_key_slow_dec(&netstamp_needed);
1da177e4 1729}
d1b19dff 1730EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1731
3b098e2d 1732static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1733{
588f0330 1734 skb->tstamp.tv64 = 0;
c5905afb 1735 if (static_key_false(&netstamp_needed))
a61bbcf2 1736 __net_timestamp(skb);
1da177e4
LT
1737}
1738
588f0330 1739#define net_timestamp_check(COND, SKB) \
c5905afb 1740 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1741 if ((COND) && !(SKB)->tstamp.tv64) \
1742 __net_timestamp(SKB); \
1743 } \
3b098e2d 1744
f4b05d27 1745bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1746{
1747 unsigned int len;
1748
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1751
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1755
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1758 */
1759 if (skb_is_gso(skb))
1760 return true;
1761
1762 return false;
1763}
1ee481fb 1764EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1765
a0265d28
HX
1766int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767{
4e3264d2 1768 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1769
4e3264d2
MKL
1770 if (likely(!ret)) {
1771 skb->protocol = eth_type_trans(skb, dev);
1772 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773 }
a0265d28 1774
4e3264d2 1775 return ret;
a0265d28
HX
1776}
1777EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778
44540960
AB
1779/**
1780 * dev_forward_skb - loopback an skb to another netif
1781 *
1782 * @dev: destination network device
1783 * @skb: buffer to forward
1784 *
1785 * return values:
1786 * NET_RX_SUCCESS (no congestion)
6ec82562 1787 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1788 *
1789 * dev_forward_skb can be used for injecting an skb from the
1790 * start_xmit function of one device into the receive queue
1791 * of another device.
1792 *
1793 * The receiving device may be in another namespace, so
1794 * we have to clear all information in the skb that could
1795 * impact namespace isolation.
1796 */
1797int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798{
a0265d28 1799 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1800}
1801EXPORT_SYMBOL_GPL(dev_forward_skb);
1802
71d9dec2
CG
1803static inline int deliver_skb(struct sk_buff *skb,
1804 struct packet_type *pt_prev,
1805 struct net_device *orig_dev)
1806{
1080e512
MT
1807 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808 return -ENOMEM;
71d9dec2
CG
1809 atomic_inc(&skb->users);
1810 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811}
1812
7866a621
SN
1813static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814 struct packet_type **pt,
fbcb2170
JP
1815 struct net_device *orig_dev,
1816 __be16 type,
7866a621
SN
1817 struct list_head *ptype_list)
1818{
1819 struct packet_type *ptype, *pt_prev = *pt;
1820
1821 list_for_each_entry_rcu(ptype, ptype_list, list) {
1822 if (ptype->type != type)
1823 continue;
1824 if (pt_prev)
fbcb2170 1825 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1826 pt_prev = ptype;
1827 }
1828 *pt = pt_prev;
1829}
1830
c0de08d0
EL
1831static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832{
a3d744e9 1833 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1834 return false;
1835
1836 if (ptype->id_match)
1837 return ptype->id_match(ptype, skb->sk);
1838 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839 return true;
1840
1841 return false;
1842}
1843
1da177e4
LT
1844/*
1845 * Support routine. Sends outgoing frames to any network
1846 * taps currently in use.
1847 */
1848
74b20582 1849void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1850{
1851 struct packet_type *ptype;
71d9dec2
CG
1852 struct sk_buff *skb2 = NULL;
1853 struct packet_type *pt_prev = NULL;
7866a621 1854 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1855
1da177e4 1856 rcu_read_lock();
7866a621
SN
1857again:
1858 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1859 /* Never send packets back to the socket
1860 * they originated from - MvS (miquels@drinkel.ow.org)
1861 */
7866a621
SN
1862 if (skb_loop_sk(ptype, skb))
1863 continue;
71d9dec2 1864
7866a621
SN
1865 if (pt_prev) {
1866 deliver_skb(skb2, pt_prev, skb->dev);
1867 pt_prev = ptype;
1868 continue;
1869 }
1da177e4 1870
7866a621
SN
1871 /* need to clone skb, done only once */
1872 skb2 = skb_clone(skb, GFP_ATOMIC);
1873 if (!skb2)
1874 goto out_unlock;
70978182 1875
7866a621 1876 net_timestamp_set(skb2);
1da177e4 1877
7866a621
SN
1878 /* skb->nh should be correctly
1879 * set by sender, so that the second statement is
1880 * just protection against buggy protocols.
1881 */
1882 skb_reset_mac_header(skb2);
1883
1884 if (skb_network_header(skb2) < skb2->data ||
1885 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887 ntohs(skb2->protocol),
1888 dev->name);
1889 skb_reset_network_header(skb2);
1da177e4 1890 }
7866a621
SN
1891
1892 skb2->transport_header = skb2->network_header;
1893 skb2->pkt_type = PACKET_OUTGOING;
1894 pt_prev = ptype;
1895 }
1896
1897 if (ptype_list == &ptype_all) {
1898 ptype_list = &dev->ptype_all;
1899 goto again;
1da177e4 1900 }
7866a621 1901out_unlock:
71d9dec2
CG
1902 if (pt_prev)
1903 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1904 rcu_read_unlock();
1905}
74b20582 1906EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1907
2c53040f
BH
1908/**
1909 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1910 * @dev: Network device
1911 * @txq: number of queues available
1912 *
1913 * If real_num_tx_queues is changed the tc mappings may no longer be
1914 * valid. To resolve this verify the tc mapping remains valid and if
1915 * not NULL the mapping. With no priorities mapping to this
1916 * offset/count pair it will no longer be used. In the worst case TC0
1917 * is invalid nothing can be done so disable priority mappings. If is
1918 * expected that drivers will fix this mapping if they can before
1919 * calling netif_set_real_num_tx_queues.
1920 */
bb134d22 1921static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1922{
1923 int i;
1924 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925
1926 /* If TC0 is invalidated disable TC mapping */
1927 if (tc->offset + tc->count > txq) {
7b6cd1ce 1928 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1929 dev->num_tc = 0;
1930 return;
1931 }
1932
1933 /* Invalidated prio to tc mappings set to TC0 */
1934 for (i = 1; i < TC_BITMASK + 1; i++) {
1935 int q = netdev_get_prio_tc_map(dev, i);
1936
1937 tc = &dev->tc_to_txq[q];
1938 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1939 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940 i, q);
4f57c087
JF
1941 netdev_set_prio_tc_map(dev, i, 0);
1942 }
1943 }
1944}
1945
8d059b0f
AD
1946int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947{
1948 if (dev->num_tc) {
1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950 int i;
1951
1952 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953 if ((txq - tc->offset) < tc->count)
1954 return i;
1955 }
1956
1957 return -1;
1958 }
1959
1960 return 0;
1961}
1962
537c00de
AD
1963#ifdef CONFIG_XPS
1964static DEFINE_MUTEX(xps_map_mutex);
1965#define xmap_dereference(P) \
1966 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967
6234f874
AD
1968static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969 int tci, u16 index)
537c00de 1970{
10cdc3f3
AD
1971 struct xps_map *map = NULL;
1972 int pos;
537c00de 1973
10cdc3f3 1974 if (dev_maps)
6234f874
AD
1975 map = xmap_dereference(dev_maps->cpu_map[tci]);
1976 if (!map)
1977 return false;
537c00de 1978
6234f874
AD
1979 for (pos = map->len; pos--;) {
1980 if (map->queues[pos] != index)
1981 continue;
1982
1983 if (map->len > 1) {
1984 map->queues[pos] = map->queues[--map->len];
10cdc3f3 1985 break;
537c00de 1986 }
6234f874
AD
1987
1988 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989 kfree_rcu(map, rcu);
1990 return false;
537c00de
AD
1991 }
1992
6234f874 1993 return true;
10cdc3f3
AD
1994}
1995
6234f874
AD
1996static bool remove_xps_queue_cpu(struct net_device *dev,
1997 struct xps_dev_maps *dev_maps,
1998 int cpu, u16 offset, u16 count)
1999{
184c449f
AD
2000 int num_tc = dev->num_tc ? : 1;
2001 bool active = false;
2002 int tci;
6234f874 2003
184c449f
AD
2004 for (tci = cpu * num_tc; num_tc--; tci++) {
2005 int i, j;
2006
2007 for (i = count, j = offset; i--; j++) {
2008 if (!remove_xps_queue(dev_maps, cpu, j))
2009 break;
2010 }
2011
2012 active |= i < 0;
6234f874
AD
2013 }
2014
184c449f 2015 return active;
6234f874
AD
2016}
2017
2018static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019 u16 count)
10cdc3f3
AD
2020{
2021 struct xps_dev_maps *dev_maps;
024e9679 2022 int cpu, i;
10cdc3f3
AD
2023 bool active = false;
2024
2025 mutex_lock(&xps_map_mutex);
2026 dev_maps = xmap_dereference(dev->xps_maps);
2027
2028 if (!dev_maps)
2029 goto out_no_maps;
2030
6234f874
AD
2031 for_each_possible_cpu(cpu)
2032 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033 offset, count);
10cdc3f3
AD
2034
2035 if (!active) {
537c00de
AD
2036 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037 kfree_rcu(dev_maps, rcu);
2038 }
2039
6234f874 2040 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2041 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042 NUMA_NO_NODE);
2043
537c00de
AD
2044out_no_maps:
2045 mutex_unlock(&xps_map_mutex);
2046}
2047
6234f874
AD
2048static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049{
2050 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051}
2052
01c5f864
AD
2053static struct xps_map *expand_xps_map(struct xps_map *map,
2054 int cpu, u16 index)
2055{
2056 struct xps_map *new_map;
2057 int alloc_len = XPS_MIN_MAP_ALLOC;
2058 int i, pos;
2059
2060 for (pos = 0; map && pos < map->len; pos++) {
2061 if (map->queues[pos] != index)
2062 continue;
2063 return map;
2064 }
2065
2066 /* Need to add queue to this CPU's existing map */
2067 if (map) {
2068 if (pos < map->alloc_len)
2069 return map;
2070
2071 alloc_len = map->alloc_len * 2;
2072 }
2073
2074 /* Need to allocate new map to store queue on this CPU's map */
2075 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076 cpu_to_node(cpu));
2077 if (!new_map)
2078 return NULL;
2079
2080 for (i = 0; i < pos; i++)
2081 new_map->queues[i] = map->queues[i];
2082 new_map->alloc_len = alloc_len;
2083 new_map->len = pos;
2084
2085 return new_map;
2086}
2087
3573540c
MT
2088int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089 u16 index)
537c00de 2090{
01c5f864 2091 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2092 int i, cpu, tci, numa_node_id = -2;
2093 int maps_sz, num_tc = 1, tc = 0;
537c00de 2094 struct xps_map *map, *new_map;
01c5f864 2095 bool active = false;
537c00de 2096
184c449f
AD
2097 if (dev->num_tc) {
2098 num_tc = dev->num_tc;
2099 tc = netdev_txq_to_tc(dev, index);
2100 if (tc < 0)
2101 return -EINVAL;
2102 }
2103
2104 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105 if (maps_sz < L1_CACHE_BYTES)
2106 maps_sz = L1_CACHE_BYTES;
2107
537c00de
AD
2108 mutex_lock(&xps_map_mutex);
2109
2110 dev_maps = xmap_dereference(dev->xps_maps);
2111
01c5f864 2112 /* allocate memory for queue storage */
184c449f 2113 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2114 if (!new_dev_maps)
2115 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2116 if (!new_dev_maps) {
2117 mutex_unlock(&xps_map_mutex);
01c5f864 2118 return -ENOMEM;
2bb60cb9 2119 }
01c5f864 2120
184c449f
AD
2121 tci = cpu * num_tc + tc;
2122 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2123 NULL;
2124
2125 map = expand_xps_map(map, cpu, index);
2126 if (!map)
2127 goto error;
2128
184c449f 2129 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2130 }
2131
2132 if (!new_dev_maps)
2133 goto out_no_new_maps;
2134
537c00de 2135 for_each_possible_cpu(cpu) {
184c449f
AD
2136 /* copy maps belonging to foreign traffic classes */
2137 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138 /* fill in the new device map from the old device map */
2139 map = xmap_dereference(dev_maps->cpu_map[tci]);
2140 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141 }
2142
2143 /* We need to explicitly update tci as prevous loop
2144 * could break out early if dev_maps is NULL.
2145 */
2146 tci = cpu * num_tc + tc;
2147
01c5f864
AD
2148 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149 /* add queue to CPU maps */
2150 int pos = 0;
2151
184c449f 2152 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2153 while ((pos < map->len) && (map->queues[pos] != index))
2154 pos++;
2155
2156 if (pos == map->len)
2157 map->queues[map->len++] = index;
537c00de 2158#ifdef CONFIG_NUMA
537c00de
AD
2159 if (numa_node_id == -2)
2160 numa_node_id = cpu_to_node(cpu);
2161 else if (numa_node_id != cpu_to_node(cpu))
2162 numa_node_id = -1;
537c00de 2163#endif
01c5f864
AD
2164 } else if (dev_maps) {
2165 /* fill in the new device map from the old device map */
184c449f
AD
2166 map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2168 }
01c5f864 2169
184c449f
AD
2170 /* copy maps belonging to foreign traffic classes */
2171 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172 /* fill in the new device map from the old device map */
2173 map = xmap_dereference(dev_maps->cpu_map[tci]);
2174 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175 }
537c00de
AD
2176 }
2177
01c5f864
AD
2178 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179
537c00de 2180 /* Cleanup old maps */
184c449f
AD
2181 if (!dev_maps)
2182 goto out_no_old_maps;
2183
2184 for_each_possible_cpu(cpu) {
2185 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2188 if (map && map != new_map)
2189 kfree_rcu(map, rcu);
2190 }
537c00de
AD
2191 }
2192
184c449f
AD
2193 kfree_rcu(dev_maps, rcu);
2194
2195out_no_old_maps:
01c5f864
AD
2196 dev_maps = new_dev_maps;
2197 active = true;
537c00de 2198
01c5f864
AD
2199out_no_new_maps:
2200 /* update Tx queue numa node */
537c00de
AD
2201 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202 (numa_node_id >= 0) ? numa_node_id :
2203 NUMA_NO_NODE);
2204
01c5f864
AD
2205 if (!dev_maps)
2206 goto out_no_maps;
2207
2208 /* removes queue from unused CPUs */
2209 for_each_possible_cpu(cpu) {
184c449f
AD
2210 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211 active |= remove_xps_queue(dev_maps, tci, index);
2212 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213 active |= remove_xps_queue(dev_maps, tci, index);
2214 for (i = num_tc - tc, tci++; --i; tci++)
2215 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2216 }
2217
2218 /* free map if not active */
2219 if (!active) {
2220 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221 kfree_rcu(dev_maps, rcu);
2222 }
2223
2224out_no_maps:
537c00de
AD
2225 mutex_unlock(&xps_map_mutex);
2226
2227 return 0;
2228error:
01c5f864
AD
2229 /* remove any maps that we added */
2230 for_each_possible_cpu(cpu) {
184c449f
AD
2231 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233 map = dev_maps ?
2234 xmap_dereference(dev_maps->cpu_map[tci]) :
2235 NULL;
2236 if (new_map && new_map != map)
2237 kfree(new_map);
2238 }
01c5f864
AD
2239 }
2240
537c00de
AD
2241 mutex_unlock(&xps_map_mutex);
2242
537c00de
AD
2243 kfree(new_dev_maps);
2244 return -ENOMEM;
2245}
2246EXPORT_SYMBOL(netif_set_xps_queue);
2247
2248#endif
9cf1f6a8
AD
2249void netdev_reset_tc(struct net_device *dev)
2250{
6234f874
AD
2251#ifdef CONFIG_XPS
2252 netif_reset_xps_queues_gt(dev, 0);
2253#endif
9cf1f6a8
AD
2254 dev->num_tc = 0;
2255 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257}
2258EXPORT_SYMBOL(netdev_reset_tc);
2259
2260int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261{
2262 if (tc >= dev->num_tc)
2263 return -EINVAL;
2264
6234f874
AD
2265#ifdef CONFIG_XPS
2266 netif_reset_xps_queues(dev, offset, count);
2267#endif
9cf1f6a8
AD
2268 dev->tc_to_txq[tc].count = count;
2269 dev->tc_to_txq[tc].offset = offset;
2270 return 0;
2271}
2272EXPORT_SYMBOL(netdev_set_tc_queue);
2273
2274int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275{
2276 if (num_tc > TC_MAX_QUEUE)
2277 return -EINVAL;
2278
6234f874
AD
2279#ifdef CONFIG_XPS
2280 netif_reset_xps_queues_gt(dev, 0);
2281#endif
9cf1f6a8
AD
2282 dev->num_tc = num_tc;
2283 return 0;
2284}
2285EXPORT_SYMBOL(netdev_set_num_tc);
2286
f0796d5c
JF
2287/*
2288 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290 */
e6484930 2291int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2292{
1d24eb48
TH
2293 int rc;
2294
e6484930
TH
2295 if (txq < 1 || txq > dev->num_tx_queues)
2296 return -EINVAL;
f0796d5c 2297
5c56580b
BH
2298 if (dev->reg_state == NETREG_REGISTERED ||
2299 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2300 ASSERT_RTNL();
2301
1d24eb48
TH
2302 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303 txq);
bf264145
TH
2304 if (rc)
2305 return rc;
2306
4f57c087
JF
2307 if (dev->num_tc)
2308 netif_setup_tc(dev, txq);
2309
024e9679 2310 if (txq < dev->real_num_tx_queues) {
e6484930 2311 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2312#ifdef CONFIG_XPS
2313 netif_reset_xps_queues_gt(dev, txq);
2314#endif
2315 }
f0796d5c 2316 }
e6484930
TH
2317
2318 dev->real_num_tx_queues = txq;
2319 return 0;
f0796d5c
JF
2320}
2321EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2322
a953be53 2323#ifdef CONFIG_SYSFS
62fe0b40
BH
2324/**
2325 * netif_set_real_num_rx_queues - set actual number of RX queues used
2326 * @dev: Network device
2327 * @rxq: Actual number of RX queues
2328 *
2329 * This must be called either with the rtnl_lock held or before
2330 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2331 * negative error code. If called before registration, it always
2332 * succeeds.
62fe0b40
BH
2333 */
2334int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335{
2336 int rc;
2337
bd25fa7b
TH
2338 if (rxq < 1 || rxq > dev->num_rx_queues)
2339 return -EINVAL;
2340
62fe0b40
BH
2341 if (dev->reg_state == NETREG_REGISTERED) {
2342 ASSERT_RTNL();
2343
62fe0b40
BH
2344 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345 rxq);
2346 if (rc)
2347 return rc;
62fe0b40
BH
2348 }
2349
2350 dev->real_num_rx_queues = rxq;
2351 return 0;
2352}
2353EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354#endif
2355
2c53040f
BH
2356/**
2357 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2358 *
2359 * This routine should set an upper limit on the number of RSS queues
2360 * used by default by multiqueue devices.
2361 */
a55b138b 2362int netif_get_num_default_rss_queues(void)
16917b87 2363{
40e4e713
HS
2364 return is_kdump_kernel() ?
2365 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2366}
2367EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368
3bcb846c 2369static void __netif_reschedule(struct Qdisc *q)
56079431 2370{
def82a1d
JP
2371 struct softnet_data *sd;
2372 unsigned long flags;
56079431 2373
def82a1d 2374 local_irq_save(flags);
903ceff7 2375 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2376 q->next_sched = NULL;
2377 *sd->output_queue_tailp = q;
2378 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2379 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380 local_irq_restore(flags);
2381}
2382
2383void __netif_schedule(struct Qdisc *q)
2384{
2385 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386 __netif_reschedule(q);
56079431
DV
2387}
2388EXPORT_SYMBOL(__netif_schedule);
2389
e6247027
ED
2390struct dev_kfree_skb_cb {
2391 enum skb_free_reason reason;
2392};
2393
2394static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2395{
e6247027
ED
2396 return (struct dev_kfree_skb_cb *)skb->cb;
2397}
2398
46e5da40
JF
2399void netif_schedule_queue(struct netdev_queue *txq)
2400{
2401 rcu_read_lock();
2402 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403 struct Qdisc *q = rcu_dereference(txq->qdisc);
2404
2405 __netif_schedule(q);
2406 }
2407 rcu_read_unlock();
2408}
2409EXPORT_SYMBOL(netif_schedule_queue);
2410
2411/**
2412 * netif_wake_subqueue - allow sending packets on subqueue
2413 * @dev: network device
2414 * @queue_index: sub queue index
2415 *
2416 * Resume individual transmit queue of a device with multiple transmit queues.
2417 */
2418void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2419{
2420 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421
2422 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2423 struct Qdisc *q;
2424
2425 rcu_read_lock();
2426 q = rcu_dereference(txq->qdisc);
2427 __netif_schedule(q);
2428 rcu_read_unlock();
2429 }
2430}
2431EXPORT_SYMBOL(netif_wake_subqueue);
2432
2433void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2434{
2435 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2436 struct Qdisc *q;
2437
2438 rcu_read_lock();
2439 q = rcu_dereference(dev_queue->qdisc);
2440 __netif_schedule(q);
2441 rcu_read_unlock();
2442 }
2443}
2444EXPORT_SYMBOL(netif_tx_wake_queue);
2445
e6247027 2446void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2447{
e6247027 2448 unsigned long flags;
56079431 2449
e6247027
ED
2450 if (likely(atomic_read(&skb->users) == 1)) {
2451 smp_rmb();
2452 atomic_set(&skb->users, 0);
2453 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2454 return;
bea3348e 2455 }
e6247027
ED
2456 get_kfree_skb_cb(skb)->reason = reason;
2457 local_irq_save(flags);
2458 skb->next = __this_cpu_read(softnet_data.completion_queue);
2459 __this_cpu_write(softnet_data.completion_queue, skb);
2460 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461 local_irq_restore(flags);
56079431 2462}
e6247027 2463EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2464
e6247027 2465void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2466{
2467 if (in_irq() || irqs_disabled())
e6247027 2468 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2469 else
2470 dev_kfree_skb(skb);
2471}
e6247027 2472EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2473
2474
bea3348e
SH
2475/**
2476 * netif_device_detach - mark device as removed
2477 * @dev: network device
2478 *
2479 * Mark device as removed from system and therefore no longer available.
2480 */
56079431
DV
2481void netif_device_detach(struct net_device *dev)
2482{
2483 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2484 netif_running(dev)) {
d543103a 2485 netif_tx_stop_all_queues(dev);
56079431
DV
2486 }
2487}
2488EXPORT_SYMBOL(netif_device_detach);
2489
bea3348e
SH
2490/**
2491 * netif_device_attach - mark device as attached
2492 * @dev: network device
2493 *
2494 * Mark device as attached from system and restart if needed.
2495 */
56079431
DV
2496void netif_device_attach(struct net_device *dev)
2497{
2498 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2499 netif_running(dev)) {
d543103a 2500 netif_tx_wake_all_queues(dev);
4ec93edb 2501 __netdev_watchdog_up(dev);
56079431
DV
2502 }
2503}
2504EXPORT_SYMBOL(netif_device_attach);
2505
5605c762
JP
2506/*
2507 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2508 * to be used as a distribution range.
2509 */
2510u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2511 unsigned int num_tx_queues)
2512{
2513 u32 hash;
2514 u16 qoffset = 0;
2515 u16 qcount = num_tx_queues;
2516
2517 if (skb_rx_queue_recorded(skb)) {
2518 hash = skb_get_rx_queue(skb);
2519 while (unlikely(hash >= num_tx_queues))
2520 hash -= num_tx_queues;
2521 return hash;
2522 }
2523
2524 if (dev->num_tc) {
2525 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2526 qoffset = dev->tc_to_txq[tc].offset;
2527 qcount = dev->tc_to_txq[tc].count;
2528 }
2529
2530 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2531}
2532EXPORT_SYMBOL(__skb_tx_hash);
2533
36c92474
BH
2534static void skb_warn_bad_offload(const struct sk_buff *skb)
2535{
84d15ae5 2536 static const netdev_features_t null_features;
36c92474 2537 struct net_device *dev = skb->dev;
88ad4175 2538 const char *name = "";
36c92474 2539
c846ad9b
BG
2540 if (!net_ratelimit())
2541 return;
2542
88ad4175
BM
2543 if (dev) {
2544 if (dev->dev.parent)
2545 name = dev_driver_string(dev->dev.parent);
2546 else
2547 name = netdev_name(dev);
2548 }
36c92474
BH
2549 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2550 "gso_type=%d ip_summed=%d\n",
88ad4175 2551 name, dev ? &dev->features : &null_features,
65e9d2fa 2552 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2553 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2554 skb_shinfo(skb)->gso_type, skb->ip_summed);
2555}
2556
1da177e4
LT
2557/*
2558 * Invalidate hardware checksum when packet is to be mangled, and
2559 * complete checksum manually on outgoing path.
2560 */
84fa7933 2561int skb_checksum_help(struct sk_buff *skb)
1da177e4 2562{
d3bc23e7 2563 __wsum csum;
663ead3b 2564 int ret = 0, offset;
1da177e4 2565
84fa7933 2566 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2567 goto out_set_summed;
2568
2569 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2570 skb_warn_bad_offload(skb);
2571 return -EINVAL;
1da177e4
LT
2572 }
2573
cef401de
ED
2574 /* Before computing a checksum, we should make sure no frag could
2575 * be modified by an external entity : checksum could be wrong.
2576 */
2577 if (skb_has_shared_frag(skb)) {
2578 ret = __skb_linearize(skb);
2579 if (ret)
2580 goto out;
2581 }
2582
55508d60 2583 offset = skb_checksum_start_offset(skb);
a030847e
HX
2584 BUG_ON(offset >= skb_headlen(skb));
2585 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2586
2587 offset += skb->csum_offset;
2588 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2589
2590 if (skb_cloned(skb) &&
2591 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2592 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2593 if (ret)
2594 goto out;
2595 }
2596
4f2e4ad5 2597 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2598out_set_summed:
1da177e4 2599 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2600out:
1da177e4
LT
2601 return ret;
2602}
d1b19dff 2603EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2604
53d6471c 2605__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2606{
252e3346 2607 __be16 type = skb->protocol;
f6a78bfc 2608
19acc327
PS
2609 /* Tunnel gso handlers can set protocol to ethernet. */
2610 if (type == htons(ETH_P_TEB)) {
2611 struct ethhdr *eth;
2612
2613 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2614 return 0;
2615
2616 eth = (struct ethhdr *)skb_mac_header(skb);
2617 type = eth->h_proto;
2618 }
2619
d4bcef3f 2620 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2621}
2622
2623/**
2624 * skb_mac_gso_segment - mac layer segmentation handler.
2625 * @skb: buffer to segment
2626 * @features: features for the output path (see dev->features)
2627 */
2628struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2629 netdev_features_t features)
2630{
2631 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2632 struct packet_offload *ptype;
53d6471c
VY
2633 int vlan_depth = skb->mac_len;
2634 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2635
2636 if (unlikely(!type))
2637 return ERR_PTR(-EINVAL);
2638
53d6471c 2639 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2640
2641 rcu_read_lock();
22061d80 2642 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2643 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2644 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2645 break;
2646 }
2647 }
2648 rcu_read_unlock();
2649
98e399f8 2650 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2651
f6a78bfc
HX
2652 return segs;
2653}
05e8ef4a
PS
2654EXPORT_SYMBOL(skb_mac_gso_segment);
2655
2656
2657/* openvswitch calls this on rx path, so we need a different check.
2658 */
2659static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2660{
2661 if (tx_path)
2662 return skb->ip_summed != CHECKSUM_PARTIAL;
2663 else
2664 return skb->ip_summed == CHECKSUM_NONE;
2665}
2666
2667/**
2668 * __skb_gso_segment - Perform segmentation on skb.
2669 * @skb: buffer to segment
2670 * @features: features for the output path (see dev->features)
2671 * @tx_path: whether it is called in TX path
2672 *
2673 * This function segments the given skb and returns a list of segments.
2674 *
2675 * It may return NULL if the skb requires no segmentation. This is
2676 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2677 *
2678 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2679 */
2680struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2681 netdev_features_t features, bool tx_path)
2682{
2683 if (unlikely(skb_needs_check(skb, tx_path))) {
2684 int err;
2685
2686 skb_warn_bad_offload(skb);
2687
a40e0a66 2688 err = skb_cow_head(skb, 0);
2689 if (err < 0)
05e8ef4a
PS
2690 return ERR_PTR(err);
2691 }
2692
802ab55a
AD
2693 /* Only report GSO partial support if it will enable us to
2694 * support segmentation on this frame without needing additional
2695 * work.
2696 */
2697 if (features & NETIF_F_GSO_PARTIAL) {
2698 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2699 struct net_device *dev = skb->dev;
2700
2701 partial_features |= dev->features & dev->gso_partial_features;
2702 if (!skb_gso_ok(skb, features | partial_features))
2703 features &= ~NETIF_F_GSO_PARTIAL;
2704 }
2705
9207f9d4
KK
2706 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2707 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2708
68c33163 2709 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2710 SKB_GSO_CB(skb)->encap_level = 0;
2711
05e8ef4a
PS
2712 skb_reset_mac_header(skb);
2713 skb_reset_mac_len(skb);
2714
2715 return skb_mac_gso_segment(skb, features);
2716}
12b0004d 2717EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2718
fb286bb2
HX
2719/* Take action when hardware reception checksum errors are detected. */
2720#ifdef CONFIG_BUG
2721void netdev_rx_csum_fault(struct net_device *dev)
2722{
2723 if (net_ratelimit()) {
7b6cd1ce 2724 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2725 dump_stack();
2726 }
2727}
2728EXPORT_SYMBOL(netdev_rx_csum_fault);
2729#endif
2730
1da177e4
LT
2731/* Actually, we should eliminate this check as soon as we know, that:
2732 * 1. IOMMU is present and allows to map all the memory.
2733 * 2. No high memory really exists on this machine.
2734 */
2735
c1e756bf 2736static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2737{
3d3a8533 2738#ifdef CONFIG_HIGHMEM
1da177e4 2739 int i;
5acbbd42 2740 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2741 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2743 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2744 return 1;
ea2ab693 2745 }
5acbbd42 2746 }
1da177e4 2747
5acbbd42
FT
2748 if (PCI_DMA_BUS_IS_PHYS) {
2749 struct device *pdev = dev->dev.parent;
1da177e4 2750
9092c658
ED
2751 if (!pdev)
2752 return 0;
5acbbd42 2753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2756 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2757 return 1;
2758 }
2759 }
3d3a8533 2760#endif
1da177e4
LT
2761 return 0;
2762}
1da177e4 2763
3b392ddb
SH
2764/* If MPLS offload request, verify we are testing hardware MPLS features
2765 * instead of standard features for the netdev.
2766 */
d0edc7bf 2767#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2768static netdev_features_t net_mpls_features(struct sk_buff *skb,
2769 netdev_features_t features,
2770 __be16 type)
2771{
25cd9ba0 2772 if (eth_p_mpls(type))
3b392ddb
SH
2773 features &= skb->dev->mpls_features;
2774
2775 return features;
2776}
2777#else
2778static netdev_features_t net_mpls_features(struct sk_buff *skb,
2779 netdev_features_t features,
2780 __be16 type)
2781{
2782 return features;
2783}
2784#endif
2785
c8f44aff 2786static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2787 netdev_features_t features)
f01a5236 2788{
53d6471c 2789 int tmp;
3b392ddb
SH
2790 __be16 type;
2791
2792 type = skb_network_protocol(skb, &tmp);
2793 features = net_mpls_features(skb, features, type);
53d6471c 2794
c0d680e5 2795 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2796 !can_checksum_protocol(features, type)) {
996e8021 2797 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2798 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2799 features &= ~NETIF_F_SG;
2800 }
2801
2802 return features;
2803}
2804
e38f3025
TM
2805netdev_features_t passthru_features_check(struct sk_buff *skb,
2806 struct net_device *dev,
2807 netdev_features_t features)
2808{
2809 return features;
2810}
2811EXPORT_SYMBOL(passthru_features_check);
2812
8cb65d00
TM
2813static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2814 struct net_device *dev,
2815 netdev_features_t features)
2816{
2817 return vlan_features_check(skb, features);
2818}
2819
cbc53e08
AD
2820static netdev_features_t gso_features_check(const struct sk_buff *skb,
2821 struct net_device *dev,
2822 netdev_features_t features)
2823{
2824 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2825
2826 if (gso_segs > dev->gso_max_segs)
2827 return features & ~NETIF_F_GSO_MASK;
2828
802ab55a
AD
2829 /* Support for GSO partial features requires software
2830 * intervention before we can actually process the packets
2831 * so we need to strip support for any partial features now
2832 * and we can pull them back in after we have partially
2833 * segmented the frame.
2834 */
2835 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2836 features &= ~dev->gso_partial_features;
2837
2838 /* Make sure to clear the IPv4 ID mangling feature if the
2839 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2840 */
2841 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2842 struct iphdr *iph = skb->encapsulation ?
2843 inner_ip_hdr(skb) : ip_hdr(skb);
2844
2845 if (!(iph->frag_off & htons(IP_DF)))
2846 features &= ~NETIF_F_TSO_MANGLEID;
2847 }
2848
2849 return features;
2850}
2851
c1e756bf 2852netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2853{
5f35227e 2854 struct net_device *dev = skb->dev;
fcbeb976 2855 netdev_features_t features = dev->features;
58e998c6 2856
cbc53e08
AD
2857 if (skb_is_gso(skb))
2858 features = gso_features_check(skb, dev, features);
30b678d8 2859
5f35227e
JG
2860 /* If encapsulation offload request, verify we are testing
2861 * hardware encapsulation features instead of standard
2862 * features for the netdev
2863 */
2864 if (skb->encapsulation)
2865 features &= dev->hw_enc_features;
2866
f5a7fb88
TM
2867 if (skb_vlan_tagged(skb))
2868 features = netdev_intersect_features(features,
2869 dev->vlan_features |
2870 NETIF_F_HW_VLAN_CTAG_TX |
2871 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2872
5f35227e
JG
2873 if (dev->netdev_ops->ndo_features_check)
2874 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2875 features);
8cb65d00
TM
2876 else
2877 features &= dflt_features_check(skb, dev, features);
5f35227e 2878
c1e756bf 2879 return harmonize_features(skb, features);
58e998c6 2880}
c1e756bf 2881EXPORT_SYMBOL(netif_skb_features);
58e998c6 2882
2ea25513 2883static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2884 struct netdev_queue *txq, bool more)
f6a78bfc 2885{
2ea25513
DM
2886 unsigned int len;
2887 int rc;
00829823 2888
7866a621 2889 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2890 dev_queue_xmit_nit(skb, dev);
fc741216 2891
2ea25513
DM
2892 len = skb->len;
2893 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2894 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2895 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2896
2ea25513
DM
2897 return rc;
2898}
7b9c6090 2899
8dcda22a
DM
2900struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2901 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2902{
2903 struct sk_buff *skb = first;
2904 int rc = NETDEV_TX_OK;
7b9c6090 2905
7f2e870f
DM
2906 while (skb) {
2907 struct sk_buff *next = skb->next;
fc70fb64 2908
7f2e870f 2909 skb->next = NULL;
95f6b3dd 2910 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2911 if (unlikely(!dev_xmit_complete(rc))) {
2912 skb->next = next;
2913 goto out;
2914 }
6afff0ca 2915
7f2e870f
DM
2916 skb = next;
2917 if (netif_xmit_stopped(txq) && skb) {
2918 rc = NETDEV_TX_BUSY;
2919 break;
9ccb8975 2920 }
7f2e870f 2921 }
9ccb8975 2922
7f2e870f
DM
2923out:
2924 *ret = rc;
2925 return skb;
2926}
b40863c6 2927
1ff0dc94
ED
2928static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2929 netdev_features_t features)
f6a78bfc 2930{
df8a39de 2931 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2932 !vlan_hw_offload_capable(features, skb->vlan_proto))
2933 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2934 return skb;
2935}
f6a78bfc 2936
55a93b3e 2937static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2938{
2939 netdev_features_t features;
f6a78bfc 2940
eae3f88e
DM
2941 features = netif_skb_features(skb);
2942 skb = validate_xmit_vlan(skb, features);
2943 if (unlikely(!skb))
2944 goto out_null;
7b9c6090 2945
8b86a61d 2946 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2947 struct sk_buff *segs;
2948
2949 segs = skb_gso_segment(skb, features);
cecda693 2950 if (IS_ERR(segs)) {
af6dabc9 2951 goto out_kfree_skb;
cecda693
JW
2952 } else if (segs) {
2953 consume_skb(skb);
2954 skb = segs;
f6a78bfc 2955 }
eae3f88e
DM
2956 } else {
2957 if (skb_needs_linearize(skb, features) &&
2958 __skb_linearize(skb))
2959 goto out_kfree_skb;
4ec93edb 2960
eae3f88e
DM
2961 /* If packet is not checksummed and device does not
2962 * support checksumming for this protocol, complete
2963 * checksumming here.
2964 */
2965 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2966 if (skb->encapsulation)
2967 skb_set_inner_transport_header(skb,
2968 skb_checksum_start_offset(skb));
2969 else
2970 skb_set_transport_header(skb,
2971 skb_checksum_start_offset(skb));
a188222b 2972 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2973 skb_checksum_help(skb))
2974 goto out_kfree_skb;
7b9c6090 2975 }
0c772159 2976 }
7b9c6090 2977
eae3f88e 2978 return skb;
fc70fb64 2979
f6a78bfc
HX
2980out_kfree_skb:
2981 kfree_skb(skb);
eae3f88e 2982out_null:
d21fd63e 2983 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
2984 return NULL;
2985}
6afff0ca 2986
55a93b3e
ED
2987struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2988{
2989 struct sk_buff *next, *head = NULL, *tail;
2990
bec3cfdc 2991 for (; skb != NULL; skb = next) {
55a93b3e
ED
2992 next = skb->next;
2993 skb->next = NULL;
bec3cfdc
ED
2994
2995 /* in case skb wont be segmented, point to itself */
2996 skb->prev = skb;
2997
55a93b3e 2998 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2999 if (!skb)
3000 continue;
55a93b3e 3001
bec3cfdc
ED
3002 if (!head)
3003 head = skb;
3004 else
3005 tail->next = skb;
3006 /* If skb was segmented, skb->prev points to
3007 * the last segment. If not, it still contains skb.
3008 */
3009 tail = skb->prev;
55a93b3e
ED
3010 }
3011 return head;
f6a78bfc 3012}
104ba78c 3013EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3014
1def9238
ED
3015static void qdisc_pkt_len_init(struct sk_buff *skb)
3016{
3017 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3018
3019 qdisc_skb_cb(skb)->pkt_len = skb->len;
3020
3021 /* To get more precise estimation of bytes sent on wire,
3022 * we add to pkt_len the headers size of all segments
3023 */
3024 if (shinfo->gso_size) {
757b8b1d 3025 unsigned int hdr_len;
15e5a030 3026 u16 gso_segs = shinfo->gso_segs;
1def9238 3027
757b8b1d
ED
3028 /* mac layer + network layer */
3029 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3030
3031 /* + transport layer */
1def9238
ED
3032 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033 hdr_len += tcp_hdrlen(skb);
3034 else
3035 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3036
3037 if (shinfo->gso_type & SKB_GSO_DODGY)
3038 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3039 shinfo->gso_size);
3040
3041 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3042 }
3043}
3044
bbd8a0d3
KK
3045static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046 struct net_device *dev,
3047 struct netdev_queue *txq)
3048{
3049 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3050 struct sk_buff *to_free = NULL;
a2da570d 3051 bool contended;
bbd8a0d3
KK
3052 int rc;
3053
a2da570d 3054 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3055 /*
3056 * Heuristic to force contended enqueues to serialize on a
3057 * separate lock before trying to get qdisc main lock.
f9eb8aea 3058 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3059 * often and dequeue packets faster.
79640a4c 3060 */
a2da570d 3061 contended = qdisc_is_running(q);
79640a4c
ED
3062 if (unlikely(contended))
3063 spin_lock(&q->busylock);
3064
bbd8a0d3
KK
3065 spin_lock(root_lock);
3066 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3067 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3068 rc = NET_XMIT_DROP;
3069 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3070 qdisc_run_begin(q)) {
bbd8a0d3
KK
3071 /*
3072 * This is a work-conserving queue; there are no old skbs
3073 * waiting to be sent out; and the qdisc is not running -
3074 * xmit the skb directly.
3075 */
bfe0d029 3076
bfe0d029
ED
3077 qdisc_bstats_update(q, skb);
3078
55a93b3e 3079 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3080 if (unlikely(contended)) {
3081 spin_unlock(&q->busylock);
3082 contended = false;
3083 }
bbd8a0d3 3084 __qdisc_run(q);
79640a4c 3085 } else
bc135b23 3086 qdisc_run_end(q);
bbd8a0d3
KK
3087
3088 rc = NET_XMIT_SUCCESS;
3089 } else {
520ac30f 3090 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3091 if (qdisc_run_begin(q)) {
3092 if (unlikely(contended)) {
3093 spin_unlock(&q->busylock);
3094 contended = false;
3095 }
3096 __qdisc_run(q);
3097 }
bbd8a0d3
KK
3098 }
3099 spin_unlock(root_lock);
520ac30f
ED
3100 if (unlikely(to_free))
3101 kfree_skb_list(to_free);
79640a4c
ED
3102 if (unlikely(contended))
3103 spin_unlock(&q->busylock);
bbd8a0d3
KK
3104 return rc;
3105}
3106
86f8515f 3107#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3108static void skb_update_prio(struct sk_buff *skb)
3109{
6977a79d 3110 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3111
91c68ce2 3112 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3113 unsigned int prioidx =
3114 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3115
3116 if (prioidx < map->priomap_len)
3117 skb->priority = map->priomap[prioidx];
3118 }
5bc1421e
NH
3119}
3120#else
3121#define skb_update_prio(skb)
3122#endif
3123
f60e5990 3124DEFINE_PER_CPU(int, xmit_recursion);
3125EXPORT_SYMBOL(xmit_recursion);
3126
95603e22
MM
3127/**
3128 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3129 * @net: network namespace this loopback is happening in
3130 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3131 * @skb: buffer to transmit
3132 */
0c4b51f0 3133int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3134{
3135 skb_reset_mac_header(skb);
3136 __skb_pull(skb, skb_network_offset(skb));
3137 skb->pkt_type = PACKET_LOOPBACK;
3138 skb->ip_summed = CHECKSUM_UNNECESSARY;
3139 WARN_ON(!skb_dst(skb));
3140 skb_dst_force(skb);
3141 netif_rx_ni(skb);
3142 return 0;
3143}
3144EXPORT_SYMBOL(dev_loopback_xmit);
3145
1f211a1b
DB
3146#ifdef CONFIG_NET_EGRESS
3147static struct sk_buff *
3148sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3149{
3150 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3151 struct tcf_result cl_res;
3152
3153 if (!cl)
3154 return skb;
3155
3156 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3157 * earlier by the caller.
3158 */
3159 qdisc_bstats_cpu_update(cl->q, skb);
3160
3161 switch (tc_classify(skb, cl, &cl_res, false)) {
3162 case TC_ACT_OK:
3163 case TC_ACT_RECLASSIFY:
3164 skb->tc_index = TC_H_MIN(cl_res.classid);
3165 break;
3166 case TC_ACT_SHOT:
3167 qdisc_qstats_cpu_drop(cl->q);
3168 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3169 kfree_skb(skb);
3170 return NULL;
1f211a1b
DB
3171 case TC_ACT_STOLEN:
3172 case TC_ACT_QUEUED:
3173 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3174 consume_skb(skb);
1f211a1b
DB
3175 return NULL;
3176 case TC_ACT_REDIRECT:
3177 /* No need to push/pop skb's mac_header here on egress! */
3178 skb_do_redirect(skb);
3179 *ret = NET_XMIT_SUCCESS;
3180 return NULL;
3181 default:
3182 break;
3183 }
3184
3185 return skb;
3186}
3187#endif /* CONFIG_NET_EGRESS */
3188
638b2a69
JP
3189static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3190{
3191#ifdef CONFIG_XPS
3192 struct xps_dev_maps *dev_maps;
3193 struct xps_map *map;
3194 int queue_index = -1;
3195
3196 rcu_read_lock();
3197 dev_maps = rcu_dereference(dev->xps_maps);
3198 if (dev_maps) {
184c449f
AD
3199 unsigned int tci = skb->sender_cpu - 1;
3200
3201 if (dev->num_tc) {
3202 tci *= dev->num_tc;
3203 tci += netdev_get_prio_tc_map(dev, skb->priority);
3204 }
3205
3206 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3207 if (map) {
3208 if (map->len == 1)
3209 queue_index = map->queues[0];
3210 else
3211 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3212 map->len)];
3213 if (unlikely(queue_index >= dev->real_num_tx_queues))
3214 queue_index = -1;
3215 }
3216 }
3217 rcu_read_unlock();
3218
3219 return queue_index;
3220#else
3221 return -1;
3222#endif
3223}
3224
3225static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3226{
3227 struct sock *sk = skb->sk;
3228 int queue_index = sk_tx_queue_get(sk);
3229
3230 if (queue_index < 0 || skb->ooo_okay ||
3231 queue_index >= dev->real_num_tx_queues) {
3232 int new_index = get_xps_queue(dev, skb);
3233 if (new_index < 0)
3234 new_index = skb_tx_hash(dev, skb);
3235
3236 if (queue_index != new_index && sk &&
004a5d01 3237 sk_fullsock(sk) &&
638b2a69
JP
3238 rcu_access_pointer(sk->sk_dst_cache))
3239 sk_tx_queue_set(sk, new_index);
3240
3241 queue_index = new_index;
3242 }
3243
3244 return queue_index;
3245}
3246
3247struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3248 struct sk_buff *skb,
3249 void *accel_priv)
3250{
3251 int queue_index = 0;
3252
3253#ifdef CONFIG_XPS
52bd2d62
ED
3254 u32 sender_cpu = skb->sender_cpu - 1;
3255
3256 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3257 skb->sender_cpu = raw_smp_processor_id() + 1;
3258#endif
3259
3260 if (dev->real_num_tx_queues != 1) {
3261 const struct net_device_ops *ops = dev->netdev_ops;
3262 if (ops->ndo_select_queue)
3263 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3264 __netdev_pick_tx);
3265 else
3266 queue_index = __netdev_pick_tx(dev, skb);
3267
3268 if (!accel_priv)
3269 queue_index = netdev_cap_txqueue(dev, queue_index);
3270 }
3271
3272 skb_set_queue_mapping(skb, queue_index);
3273 return netdev_get_tx_queue(dev, queue_index);
3274}
3275
d29f749e 3276/**
9d08dd3d 3277 * __dev_queue_xmit - transmit a buffer
d29f749e 3278 * @skb: buffer to transmit
9d08dd3d 3279 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3280 *
3281 * Queue a buffer for transmission to a network device. The caller must
3282 * have set the device and priority and built the buffer before calling
3283 * this function. The function can be called from an interrupt.
3284 *
3285 * A negative errno code is returned on a failure. A success does not
3286 * guarantee the frame will be transmitted as it may be dropped due
3287 * to congestion or traffic shaping.
3288 *
3289 * -----------------------------------------------------------------------------------
3290 * I notice this method can also return errors from the queue disciplines,
3291 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3292 * be positive.
3293 *
3294 * Regardless of the return value, the skb is consumed, so it is currently
3295 * difficult to retry a send to this method. (You can bump the ref count
3296 * before sending to hold a reference for retry if you are careful.)
3297 *
3298 * When calling this method, interrupts MUST be enabled. This is because
3299 * the BH enable code must have IRQs enabled so that it will not deadlock.
3300 * --BLG
3301 */
0a59f3a9 3302static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3303{
3304 struct net_device *dev = skb->dev;
dc2b4847 3305 struct netdev_queue *txq;
1da177e4
LT
3306 struct Qdisc *q;
3307 int rc = -ENOMEM;
3308
6d1ccff6
ED
3309 skb_reset_mac_header(skb);
3310
e7fd2885
WB
3311 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3312 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3313
4ec93edb
YH
3314 /* Disable soft irqs for various locks below. Also
3315 * stops preemption for RCU.
1da177e4 3316 */
4ec93edb 3317 rcu_read_lock_bh();
1da177e4 3318
5bc1421e
NH
3319 skb_update_prio(skb);
3320
1f211a1b
DB
3321 qdisc_pkt_len_init(skb);
3322#ifdef CONFIG_NET_CLS_ACT
3323 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3324# ifdef CONFIG_NET_EGRESS
3325 if (static_key_false(&egress_needed)) {
3326 skb = sch_handle_egress(skb, &rc, dev);
3327 if (!skb)
3328 goto out;
3329 }
3330# endif
3331#endif
02875878
ED
3332 /* If device/qdisc don't need skb->dst, release it right now while
3333 * its hot in this cpu cache.
3334 */
3335 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3336 skb_dst_drop(skb);
3337 else
3338 skb_dst_force(skb);
3339
f663dd9a 3340 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3341 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3342
cf66ba58 3343 trace_net_dev_queue(skb);
1da177e4 3344 if (q->enqueue) {
bbd8a0d3 3345 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3346 goto out;
1da177e4
LT
3347 }
3348
3349 /* The device has no queue. Common case for software devices:
3350 loopback, all the sorts of tunnels...
3351
932ff279
HX
3352 Really, it is unlikely that netif_tx_lock protection is necessary
3353 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3354 counters.)
3355 However, it is possible, that they rely on protection
3356 made by us here.
3357
3358 Check this and shot the lock. It is not prone from deadlocks.
3359 Either shot noqueue qdisc, it is even simpler 8)
3360 */
3361 if (dev->flags & IFF_UP) {
3362 int cpu = smp_processor_id(); /* ok because BHs are off */
3363
c773e847 3364 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3365 if (unlikely(__this_cpu_read(xmit_recursion) >
3366 XMIT_RECURSION_LIMIT))
745e20f1
ED
3367 goto recursion_alert;
3368
1f59533f
JDB
3369 skb = validate_xmit_skb(skb, dev);
3370 if (!skb)
d21fd63e 3371 goto out;
1f59533f 3372
c773e847 3373 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3374
73466498 3375 if (!netif_xmit_stopped(txq)) {
745e20f1 3376 __this_cpu_inc(xmit_recursion);
ce93718f 3377 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3378 __this_cpu_dec(xmit_recursion);
572a9d7b 3379 if (dev_xmit_complete(rc)) {
c773e847 3380 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3381 goto out;
3382 }
3383 }
c773e847 3384 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3385 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3386 dev->name);
1da177e4
LT
3387 } else {
3388 /* Recursion is detected! It is possible,
745e20f1
ED
3389 * unfortunately
3390 */
3391recursion_alert:
e87cc472
JP
3392 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3393 dev->name);
1da177e4
LT
3394 }
3395 }
3396
3397 rc = -ENETDOWN;
d4828d85 3398 rcu_read_unlock_bh();
1da177e4 3399
015f0688 3400 atomic_long_inc(&dev->tx_dropped);
1f59533f 3401 kfree_skb_list(skb);
1da177e4
LT
3402 return rc;
3403out:
d4828d85 3404 rcu_read_unlock_bh();
1da177e4
LT
3405 return rc;
3406}
f663dd9a 3407
2b4aa3ce 3408int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3409{
3410 return __dev_queue_xmit(skb, NULL);
3411}
2b4aa3ce 3412EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3413
f663dd9a
JW
3414int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3415{
3416 return __dev_queue_xmit(skb, accel_priv);
3417}
3418EXPORT_SYMBOL(dev_queue_xmit_accel);
3419
1da177e4
LT
3420
3421/*=======================================================================
3422 Receiver routines
3423 =======================================================================*/
3424
6b2bedc3 3425int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3426EXPORT_SYMBOL(netdev_max_backlog);
3427
3b098e2d 3428int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3429int netdev_budget __read_mostly = 300;
3430int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3431
eecfd7c4
ED
3432/* Called with irq disabled */
3433static inline void ____napi_schedule(struct softnet_data *sd,
3434 struct napi_struct *napi)
3435{
3436 list_add_tail(&napi->poll_list, &sd->poll_list);
3437 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3438}
3439
bfb564e7
KK
3440#ifdef CONFIG_RPS
3441
3442/* One global table that all flow-based protocols share. */
6e3f7faf 3443struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3444EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3445u32 rps_cpu_mask __read_mostly;
3446EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3447
c5905afb 3448struct static_key rps_needed __read_mostly;
3df97ba8 3449EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3450struct static_key rfs_needed __read_mostly;
3451EXPORT_SYMBOL(rfs_needed);
adc9300e 3452
c445477d
BH
3453static struct rps_dev_flow *
3454set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3455 struct rps_dev_flow *rflow, u16 next_cpu)
3456{
a31196b0 3457 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3458#ifdef CONFIG_RFS_ACCEL
3459 struct netdev_rx_queue *rxqueue;
3460 struct rps_dev_flow_table *flow_table;
3461 struct rps_dev_flow *old_rflow;
3462 u32 flow_id;
3463 u16 rxq_index;
3464 int rc;
3465
3466 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3467 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3468 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3469 goto out;
3470 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3471 if (rxq_index == skb_get_rx_queue(skb))
3472 goto out;
3473
3474 rxqueue = dev->_rx + rxq_index;
3475 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3476 if (!flow_table)
3477 goto out;
61b905da 3478 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3479 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3480 rxq_index, flow_id);
3481 if (rc < 0)
3482 goto out;
3483 old_rflow = rflow;
3484 rflow = &flow_table->flows[flow_id];
c445477d
BH
3485 rflow->filter = rc;
3486 if (old_rflow->filter == rflow->filter)
3487 old_rflow->filter = RPS_NO_FILTER;
3488 out:
3489#endif
3490 rflow->last_qtail =
09994d1b 3491 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3492 }
3493
09994d1b 3494 rflow->cpu = next_cpu;
c445477d
BH
3495 return rflow;
3496}
3497
bfb564e7
KK
3498/*
3499 * get_rps_cpu is called from netif_receive_skb and returns the target
3500 * CPU from the RPS map of the receiving queue for a given skb.
3501 * rcu_read_lock must be held on entry.
3502 */
3503static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3504 struct rps_dev_flow **rflowp)
3505{
567e4b79
ED
3506 const struct rps_sock_flow_table *sock_flow_table;
3507 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3508 struct rps_dev_flow_table *flow_table;
567e4b79 3509 struct rps_map *map;
bfb564e7 3510 int cpu = -1;
567e4b79 3511 u32 tcpu;
61b905da 3512 u32 hash;
bfb564e7
KK
3513
3514 if (skb_rx_queue_recorded(skb)) {
3515 u16 index = skb_get_rx_queue(skb);
567e4b79 3516
62fe0b40
BH
3517 if (unlikely(index >= dev->real_num_rx_queues)) {
3518 WARN_ONCE(dev->real_num_rx_queues > 1,
3519 "%s received packet on queue %u, but number "
3520 "of RX queues is %u\n",
3521 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3522 goto done;
3523 }
567e4b79
ED
3524 rxqueue += index;
3525 }
bfb564e7 3526
567e4b79
ED
3527 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3528
3529 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3530 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3531 if (!flow_table && !map)
bfb564e7
KK
3532 goto done;
3533
2d47b459 3534 skb_reset_network_header(skb);
61b905da
TH
3535 hash = skb_get_hash(skb);
3536 if (!hash)
bfb564e7
KK
3537 goto done;
3538
fec5e652
TH
3539 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3540 if (flow_table && sock_flow_table) {
fec5e652 3541 struct rps_dev_flow *rflow;
567e4b79
ED
3542 u32 next_cpu;
3543 u32 ident;
3544
3545 /* First check into global flow table if there is a match */
3546 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3547 if ((ident ^ hash) & ~rps_cpu_mask)
3548 goto try_rps;
fec5e652 3549
567e4b79
ED
3550 next_cpu = ident & rps_cpu_mask;
3551
3552 /* OK, now we know there is a match,
3553 * we can look at the local (per receive queue) flow table
3554 */
61b905da 3555 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3556 tcpu = rflow->cpu;
3557
fec5e652
TH
3558 /*
3559 * If the desired CPU (where last recvmsg was done) is
3560 * different from current CPU (one in the rx-queue flow
3561 * table entry), switch if one of the following holds:
a31196b0 3562 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3563 * - Current CPU is offline.
3564 * - The current CPU's queue tail has advanced beyond the
3565 * last packet that was enqueued using this table entry.
3566 * This guarantees that all previous packets for the flow
3567 * have been dequeued, thus preserving in order delivery.
3568 */
3569 if (unlikely(tcpu != next_cpu) &&
a31196b0 3570 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3571 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3572 rflow->last_qtail)) >= 0)) {
3573 tcpu = next_cpu;
c445477d 3574 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3575 }
c445477d 3576
a31196b0 3577 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3578 *rflowp = rflow;
3579 cpu = tcpu;
3580 goto done;
3581 }
3582 }
3583
567e4b79
ED
3584try_rps:
3585
0a9627f2 3586 if (map) {
8fc54f68 3587 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3588 if (cpu_online(tcpu)) {
3589 cpu = tcpu;
3590 goto done;
3591 }
3592 }
3593
3594done:
0a9627f2
TH
3595 return cpu;
3596}
3597
c445477d
BH
3598#ifdef CONFIG_RFS_ACCEL
3599
3600/**
3601 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3602 * @dev: Device on which the filter was set
3603 * @rxq_index: RX queue index
3604 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3605 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3606 *
3607 * Drivers that implement ndo_rx_flow_steer() should periodically call
3608 * this function for each installed filter and remove the filters for
3609 * which it returns %true.
3610 */
3611bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3612 u32 flow_id, u16 filter_id)
3613{
3614 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3615 struct rps_dev_flow_table *flow_table;
3616 struct rps_dev_flow *rflow;
3617 bool expire = true;
a31196b0 3618 unsigned int cpu;
c445477d
BH
3619
3620 rcu_read_lock();
3621 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3622 if (flow_table && flow_id <= flow_table->mask) {
3623 rflow = &flow_table->flows[flow_id];
3624 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3625 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3626 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3627 rflow->last_qtail) <
3628 (int)(10 * flow_table->mask)))
3629 expire = false;
3630 }
3631 rcu_read_unlock();
3632 return expire;
3633}
3634EXPORT_SYMBOL(rps_may_expire_flow);
3635
3636#endif /* CONFIG_RFS_ACCEL */
3637
0a9627f2 3638/* Called from hardirq (IPI) context */
e36fa2f7 3639static void rps_trigger_softirq(void *data)
0a9627f2 3640{
e36fa2f7
ED
3641 struct softnet_data *sd = data;
3642
eecfd7c4 3643 ____napi_schedule(sd, &sd->backlog);
dee42870 3644 sd->received_rps++;
0a9627f2 3645}
e36fa2f7 3646
fec5e652 3647#endif /* CONFIG_RPS */
0a9627f2 3648
e36fa2f7
ED
3649/*
3650 * Check if this softnet_data structure is another cpu one
3651 * If yes, queue it to our IPI list and return 1
3652 * If no, return 0
3653 */
3654static int rps_ipi_queued(struct softnet_data *sd)
3655{
3656#ifdef CONFIG_RPS
903ceff7 3657 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3658
3659 if (sd != mysd) {
3660 sd->rps_ipi_next = mysd->rps_ipi_list;
3661 mysd->rps_ipi_list = sd;
3662
3663 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3664 return 1;
3665 }
3666#endif /* CONFIG_RPS */
3667 return 0;
3668}
3669
99bbc707
WB
3670#ifdef CONFIG_NET_FLOW_LIMIT
3671int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3672#endif
3673
3674static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3675{
3676#ifdef CONFIG_NET_FLOW_LIMIT
3677 struct sd_flow_limit *fl;
3678 struct softnet_data *sd;
3679 unsigned int old_flow, new_flow;
3680
3681 if (qlen < (netdev_max_backlog >> 1))
3682 return false;
3683
903ceff7 3684 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3685
3686 rcu_read_lock();
3687 fl = rcu_dereference(sd->flow_limit);
3688 if (fl) {
3958afa1 3689 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3690 old_flow = fl->history[fl->history_head];
3691 fl->history[fl->history_head] = new_flow;
3692
3693 fl->history_head++;
3694 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3695
3696 if (likely(fl->buckets[old_flow]))
3697 fl->buckets[old_flow]--;
3698
3699 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3700 fl->count++;
3701 rcu_read_unlock();
3702 return true;
3703 }
3704 }
3705 rcu_read_unlock();
3706#endif
3707 return false;
3708}
3709
0a9627f2
TH
3710/*
3711 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3712 * queue (may be a remote CPU queue).
3713 */
fec5e652
TH
3714static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3715 unsigned int *qtail)
0a9627f2 3716{
e36fa2f7 3717 struct softnet_data *sd;
0a9627f2 3718 unsigned long flags;
99bbc707 3719 unsigned int qlen;
0a9627f2 3720
e36fa2f7 3721 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3722
3723 local_irq_save(flags);
0a9627f2 3724
e36fa2f7 3725 rps_lock(sd);
e9e4dd32
JA
3726 if (!netif_running(skb->dev))
3727 goto drop;
99bbc707
WB
3728 qlen = skb_queue_len(&sd->input_pkt_queue);
3729 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3730 if (qlen) {
0a9627f2 3731enqueue:
e36fa2f7 3732 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3733 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3734 rps_unlock(sd);
152102c7 3735 local_irq_restore(flags);
0a9627f2
TH
3736 return NET_RX_SUCCESS;
3737 }
3738
ebda37c2
ED
3739 /* Schedule NAPI for backlog device
3740 * We can use non atomic operation since we own the queue lock
3741 */
3742 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3743 if (!rps_ipi_queued(sd))
eecfd7c4 3744 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3745 }
3746 goto enqueue;
3747 }
3748
e9e4dd32 3749drop:
dee42870 3750 sd->dropped++;
e36fa2f7 3751 rps_unlock(sd);
0a9627f2 3752
0a9627f2
TH
3753 local_irq_restore(flags);
3754
caf586e5 3755 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3756 kfree_skb(skb);
3757 return NET_RX_DROP;
3758}
1da177e4 3759
ae78dbfa 3760static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3761{
b0e28f1e 3762 int ret;
1da177e4 3763
588f0330 3764 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3765
cf66ba58 3766 trace_netif_rx(skb);
df334545 3767#ifdef CONFIG_RPS
c5905afb 3768 if (static_key_false(&rps_needed)) {
fec5e652 3769 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3770 int cpu;
3771
cece1945 3772 preempt_disable();
b0e28f1e 3773 rcu_read_lock();
fec5e652
TH
3774
3775 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3776 if (cpu < 0)
3777 cpu = smp_processor_id();
fec5e652
TH
3778
3779 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3780
b0e28f1e 3781 rcu_read_unlock();
cece1945 3782 preempt_enable();
adc9300e
ED
3783 } else
3784#endif
fec5e652
TH
3785 {
3786 unsigned int qtail;
3787 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3788 put_cpu();
3789 }
b0e28f1e 3790 return ret;
1da177e4 3791}
ae78dbfa
BH
3792
3793/**
3794 * netif_rx - post buffer to the network code
3795 * @skb: buffer to post
3796 *
3797 * This function receives a packet from a device driver and queues it for
3798 * the upper (protocol) levels to process. It always succeeds. The buffer
3799 * may be dropped during processing for congestion control or by the
3800 * protocol layers.
3801 *
3802 * return values:
3803 * NET_RX_SUCCESS (no congestion)
3804 * NET_RX_DROP (packet was dropped)
3805 *
3806 */
3807
3808int netif_rx(struct sk_buff *skb)
3809{
3810 trace_netif_rx_entry(skb);
3811
3812 return netif_rx_internal(skb);
3813}
d1b19dff 3814EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3815
3816int netif_rx_ni(struct sk_buff *skb)
3817{
3818 int err;
3819
ae78dbfa
BH
3820 trace_netif_rx_ni_entry(skb);
3821
1da177e4 3822 preempt_disable();
ae78dbfa 3823 err = netif_rx_internal(skb);
1da177e4
LT
3824 if (local_softirq_pending())
3825 do_softirq();
3826 preempt_enable();
3827
3828 return err;
3829}
1da177e4
LT
3830EXPORT_SYMBOL(netif_rx_ni);
3831
0766f788 3832static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3833{
903ceff7 3834 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3835
3836 if (sd->completion_queue) {
3837 struct sk_buff *clist;
3838
3839 local_irq_disable();
3840 clist = sd->completion_queue;
3841 sd->completion_queue = NULL;
3842 local_irq_enable();
3843
3844 while (clist) {
3845 struct sk_buff *skb = clist;
3846 clist = clist->next;
3847
547b792c 3848 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3849 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3850 trace_consume_skb(skb);
3851 else
3852 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3853
3854 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3855 __kfree_skb(skb);
3856 else
3857 __kfree_skb_defer(skb);
1da177e4 3858 }
15fad714
JDB
3859
3860 __kfree_skb_flush();
1da177e4
LT
3861 }
3862
3863 if (sd->output_queue) {
37437bb2 3864 struct Qdisc *head;
1da177e4
LT
3865
3866 local_irq_disable();
3867 head = sd->output_queue;
3868 sd->output_queue = NULL;
a9cbd588 3869 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3870 local_irq_enable();
3871
3872 while (head) {
37437bb2
DM
3873 struct Qdisc *q = head;
3874 spinlock_t *root_lock;
3875
1da177e4
LT
3876 head = head->next_sched;
3877
5fb66229 3878 root_lock = qdisc_lock(q);
3bcb846c
ED
3879 spin_lock(root_lock);
3880 /* We need to make sure head->next_sched is read
3881 * before clearing __QDISC_STATE_SCHED
3882 */
3883 smp_mb__before_atomic();
3884 clear_bit(__QDISC_STATE_SCHED, &q->state);
3885 qdisc_run(q);
3886 spin_unlock(root_lock);
1da177e4
LT
3887 }
3888 }
3889}
3890
181402a5 3891#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3892/* This hook is defined here for ATM LANE */
3893int (*br_fdb_test_addr_hook)(struct net_device *dev,
3894 unsigned char *addr) __read_mostly;
4fb019a0 3895EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3896#endif
1da177e4 3897
1f211a1b
DB
3898static inline struct sk_buff *
3899sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3900 struct net_device *orig_dev)
f697c3e8 3901{
e7582bab 3902#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3903 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3904 struct tcf_result cl_res;
24824a09 3905
c9e99fd0
DB
3906 /* If there's at least one ingress present somewhere (so
3907 * we get here via enabled static key), remaining devices
3908 * that are not configured with an ingress qdisc will bail
d2788d34 3909 * out here.
c9e99fd0 3910 */
d2788d34 3911 if (!cl)
4577139b 3912 return skb;
f697c3e8
HX
3913 if (*pt_prev) {
3914 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3915 *pt_prev = NULL;
1da177e4
LT
3916 }
3917
3365495c 3918 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3919 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3920 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3921
3b3ae880 3922 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3923 case TC_ACT_OK:
3924 case TC_ACT_RECLASSIFY:
3925 skb->tc_index = TC_H_MIN(cl_res.classid);
3926 break;
3927 case TC_ACT_SHOT:
24ea591d 3928 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3929 kfree_skb(skb);
3930 return NULL;
d2788d34
DB
3931 case TC_ACT_STOLEN:
3932 case TC_ACT_QUEUED:
8a3a4c6e 3933 consume_skb(skb);
d2788d34 3934 return NULL;
27b29f63
AS
3935 case TC_ACT_REDIRECT:
3936 /* skb_mac_header check was done by cls/act_bpf, so
3937 * we can safely push the L2 header back before
3938 * redirecting to another netdev
3939 */
3940 __skb_push(skb, skb->mac_len);
3941 skb_do_redirect(skb);
3942 return NULL;
d2788d34
DB
3943 default:
3944 break;
f697c3e8 3945 }
e7582bab 3946#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3947 return skb;
3948}
1da177e4 3949
24b27fc4
MB
3950/**
3951 * netdev_is_rx_handler_busy - check if receive handler is registered
3952 * @dev: device to check
3953 *
3954 * Check if a receive handler is already registered for a given device.
3955 * Return true if there one.
3956 *
3957 * The caller must hold the rtnl_mutex.
3958 */
3959bool netdev_is_rx_handler_busy(struct net_device *dev)
3960{
3961 ASSERT_RTNL();
3962 return dev && rtnl_dereference(dev->rx_handler);
3963}
3964EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3965
ab95bfe0
JP
3966/**
3967 * netdev_rx_handler_register - register receive handler
3968 * @dev: device to register a handler for
3969 * @rx_handler: receive handler to register
93e2c32b 3970 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3971 *
e227867f 3972 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3973 * called from __netif_receive_skb. A negative errno code is returned
3974 * on a failure.
3975 *
3976 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3977 *
3978 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3979 */
3980int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3981 rx_handler_func_t *rx_handler,
3982 void *rx_handler_data)
ab95bfe0
JP
3983{
3984 ASSERT_RTNL();
3985
3986 if (dev->rx_handler)
3987 return -EBUSY;
3988
00cfec37 3989 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3990 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3991 rcu_assign_pointer(dev->rx_handler, rx_handler);
3992
3993 return 0;
3994}
3995EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3996
3997/**
3998 * netdev_rx_handler_unregister - unregister receive handler
3999 * @dev: device to unregister a handler from
4000 *
166ec369 4001 * Unregister a receive handler from a device.
ab95bfe0
JP
4002 *
4003 * The caller must hold the rtnl_mutex.
4004 */
4005void netdev_rx_handler_unregister(struct net_device *dev)
4006{
4007
4008 ASSERT_RTNL();
a9b3cd7f 4009 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4010 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4011 * section has a guarantee to see a non NULL rx_handler_data
4012 * as well.
4013 */
4014 synchronize_net();
a9b3cd7f 4015 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4016}
4017EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4018
b4b9e355
MG
4019/*
4020 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4021 * the special handling of PFMEMALLOC skbs.
4022 */
4023static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4024{
4025 switch (skb->protocol) {
2b8837ae
JP
4026 case htons(ETH_P_ARP):
4027 case htons(ETH_P_IP):
4028 case htons(ETH_P_IPV6):
4029 case htons(ETH_P_8021Q):
4030 case htons(ETH_P_8021AD):
b4b9e355
MG
4031 return true;
4032 default:
4033 return false;
4034 }
4035}
4036
e687ad60
PN
4037static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4038 int *ret, struct net_device *orig_dev)
4039{
e7582bab 4040#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4041 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4042 int ingress_retval;
4043
e687ad60
PN
4044 if (*pt_prev) {
4045 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4046 *pt_prev = NULL;
4047 }
4048
2c1e2703
AC
4049 rcu_read_lock();
4050 ingress_retval = nf_hook_ingress(skb);
4051 rcu_read_unlock();
4052 return ingress_retval;
e687ad60 4053 }
e7582bab 4054#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4055 return 0;
4056}
e687ad60 4057
9754e293 4058static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4059{
4060 struct packet_type *ptype, *pt_prev;
ab95bfe0 4061 rx_handler_func_t *rx_handler;
f2ccd8fa 4062 struct net_device *orig_dev;
8a4eb573 4063 bool deliver_exact = false;
1da177e4 4064 int ret = NET_RX_DROP;
252e3346 4065 __be16 type;
1da177e4 4066
588f0330 4067 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4068
cf66ba58 4069 trace_netif_receive_skb(skb);
9b22ea56 4070
cc9bd5ce 4071 orig_dev = skb->dev;
8f903c70 4072
c1d2bbe1 4073 skb_reset_network_header(skb);
fda55eca
ED
4074 if (!skb_transport_header_was_set(skb))
4075 skb_reset_transport_header(skb);
0b5c9db1 4076 skb_reset_mac_len(skb);
1da177e4
LT
4077
4078 pt_prev = NULL;
4079
63d8ea7f 4080another_round:
b6858177 4081 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4082
4083 __this_cpu_inc(softnet_data.processed);
4084
8ad227ff
PM
4085 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4086 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4087 skb = skb_vlan_untag(skb);
bcc6d479 4088 if (unlikely(!skb))
2c17d27c 4089 goto out;
bcc6d479
JP
4090 }
4091
1da177e4
LT
4092#ifdef CONFIG_NET_CLS_ACT
4093 if (skb->tc_verd & TC_NCLS) {
4094 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4095 goto ncls;
4096 }
4097#endif
4098
9754e293 4099 if (pfmemalloc)
b4b9e355
MG
4100 goto skip_taps;
4101
1da177e4 4102 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4103 if (pt_prev)
4104 ret = deliver_skb(skb, pt_prev, orig_dev);
4105 pt_prev = ptype;
4106 }
4107
4108 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4109 if (pt_prev)
4110 ret = deliver_skb(skb, pt_prev, orig_dev);
4111 pt_prev = ptype;
1da177e4
LT
4112 }
4113
b4b9e355 4114skip_taps:
1cf51900 4115#ifdef CONFIG_NET_INGRESS
4577139b 4116 if (static_key_false(&ingress_needed)) {
1f211a1b 4117 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4118 if (!skb)
2c17d27c 4119 goto out;
e687ad60
PN
4120
4121 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4122 goto out;
4577139b 4123 }
1cf51900
PN
4124#endif
4125#ifdef CONFIG_NET_CLS_ACT
4577139b 4126 skb->tc_verd = 0;
1da177e4
LT
4127ncls:
4128#endif
9754e293 4129 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4130 goto drop;
4131
df8a39de 4132 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4133 if (pt_prev) {
4134 ret = deliver_skb(skb, pt_prev, orig_dev);
4135 pt_prev = NULL;
4136 }
48cc32d3 4137 if (vlan_do_receive(&skb))
2425717b
JF
4138 goto another_round;
4139 else if (unlikely(!skb))
2c17d27c 4140 goto out;
2425717b
JF
4141 }
4142
48cc32d3 4143 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4144 if (rx_handler) {
4145 if (pt_prev) {
4146 ret = deliver_skb(skb, pt_prev, orig_dev);
4147 pt_prev = NULL;
4148 }
8a4eb573
JP
4149 switch (rx_handler(&skb)) {
4150 case RX_HANDLER_CONSUMED:
3bc1b1ad 4151 ret = NET_RX_SUCCESS;
2c17d27c 4152 goto out;
8a4eb573 4153 case RX_HANDLER_ANOTHER:
63d8ea7f 4154 goto another_round;
8a4eb573
JP
4155 case RX_HANDLER_EXACT:
4156 deliver_exact = true;
4157 case RX_HANDLER_PASS:
4158 break;
4159 default:
4160 BUG();
4161 }
ab95bfe0 4162 }
1da177e4 4163
df8a39de
JP
4164 if (unlikely(skb_vlan_tag_present(skb))) {
4165 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4166 skb->pkt_type = PACKET_OTHERHOST;
4167 /* Note: we might in the future use prio bits
4168 * and set skb->priority like in vlan_do_receive()
4169 * For the time being, just ignore Priority Code Point
4170 */
4171 skb->vlan_tci = 0;
4172 }
48cc32d3 4173
7866a621
SN
4174 type = skb->protocol;
4175
63d8ea7f 4176 /* deliver only exact match when indicated */
7866a621
SN
4177 if (likely(!deliver_exact)) {
4178 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4179 &ptype_base[ntohs(type) &
4180 PTYPE_HASH_MASK]);
4181 }
1f3c8804 4182
7866a621
SN
4183 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4184 &orig_dev->ptype_specific);
4185
4186 if (unlikely(skb->dev != orig_dev)) {
4187 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4188 &skb->dev->ptype_specific);
1da177e4
LT
4189 }
4190
4191 if (pt_prev) {
1080e512 4192 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4193 goto drop;
1080e512
MT
4194 else
4195 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4196 } else {
b4b9e355 4197drop:
6e7333d3
JW
4198 if (!deliver_exact)
4199 atomic_long_inc(&skb->dev->rx_dropped);
4200 else
4201 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4202 kfree_skb(skb);
4203 /* Jamal, now you will not able to escape explaining
4204 * me how you were going to use this. :-)
4205 */
4206 ret = NET_RX_DROP;
4207 }
4208
2c17d27c 4209out:
9754e293
DM
4210 return ret;
4211}
4212
4213static int __netif_receive_skb(struct sk_buff *skb)
4214{
4215 int ret;
4216
4217 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4218 unsigned long pflags = current->flags;
4219
4220 /*
4221 * PFMEMALLOC skbs are special, they should
4222 * - be delivered to SOCK_MEMALLOC sockets only
4223 * - stay away from userspace
4224 * - have bounded memory usage
4225 *
4226 * Use PF_MEMALLOC as this saves us from propagating the allocation
4227 * context down to all allocation sites.
4228 */
4229 current->flags |= PF_MEMALLOC;
4230 ret = __netif_receive_skb_core(skb, true);
4231 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4232 } else
4233 ret = __netif_receive_skb_core(skb, false);
4234
1da177e4
LT
4235 return ret;
4236}
0a9627f2 4237
ae78dbfa 4238static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4239{
2c17d27c
JA
4240 int ret;
4241
588f0330 4242 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4243
c1f19b51
RC
4244 if (skb_defer_rx_timestamp(skb))
4245 return NET_RX_SUCCESS;
4246
2c17d27c
JA
4247 rcu_read_lock();
4248
df334545 4249#ifdef CONFIG_RPS
c5905afb 4250 if (static_key_false(&rps_needed)) {
3b098e2d 4251 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4252 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4253
3b098e2d
ED
4254 if (cpu >= 0) {
4255 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4256 rcu_read_unlock();
adc9300e 4257 return ret;
3b098e2d 4258 }
fec5e652 4259 }
1e94d72f 4260#endif
2c17d27c
JA
4261 ret = __netif_receive_skb(skb);
4262 rcu_read_unlock();
4263 return ret;
0a9627f2 4264}
ae78dbfa
BH
4265
4266/**
4267 * netif_receive_skb - process receive buffer from network
4268 * @skb: buffer to process
4269 *
4270 * netif_receive_skb() is the main receive data processing function.
4271 * It always succeeds. The buffer may be dropped during processing
4272 * for congestion control or by the protocol layers.
4273 *
4274 * This function may only be called from softirq context and interrupts
4275 * should be enabled.
4276 *
4277 * Return values (usually ignored):
4278 * NET_RX_SUCCESS: no congestion
4279 * NET_RX_DROP: packet was dropped
4280 */
04eb4489 4281int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4282{
4283 trace_netif_receive_skb_entry(skb);
4284
4285 return netif_receive_skb_internal(skb);
4286}
04eb4489 4287EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4288
41852497 4289DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4290
4291/* Network device is going away, flush any packets still pending */
4292static void flush_backlog(struct work_struct *work)
6e583ce5 4293{
6e583ce5 4294 struct sk_buff *skb, *tmp;
145dd5f9
PA
4295 struct softnet_data *sd;
4296
4297 local_bh_disable();
4298 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4299
145dd5f9 4300 local_irq_disable();
e36fa2f7 4301 rps_lock(sd);
6e7676c1 4302 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4303 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4304 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4305 kfree_skb(skb);
76cc8b13 4306 input_queue_head_incr(sd);
6e583ce5 4307 }
6e7676c1 4308 }
e36fa2f7 4309 rps_unlock(sd);
145dd5f9 4310 local_irq_enable();
6e7676c1
CG
4311
4312 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4313 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4314 __skb_unlink(skb, &sd->process_queue);
4315 kfree_skb(skb);
76cc8b13 4316 input_queue_head_incr(sd);
6e7676c1
CG
4317 }
4318 }
145dd5f9
PA
4319 local_bh_enable();
4320}
4321
41852497 4322static void flush_all_backlogs(void)
145dd5f9
PA
4323{
4324 unsigned int cpu;
4325
4326 get_online_cpus();
4327
41852497
ED
4328 for_each_online_cpu(cpu)
4329 queue_work_on(cpu, system_highpri_wq,
4330 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4331
4332 for_each_online_cpu(cpu)
41852497 4333 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4334
4335 put_online_cpus();
6e583ce5
SH
4336}
4337
d565b0a1
HX
4338static int napi_gro_complete(struct sk_buff *skb)
4339{
22061d80 4340 struct packet_offload *ptype;
d565b0a1 4341 __be16 type = skb->protocol;
22061d80 4342 struct list_head *head = &offload_base;
d565b0a1
HX
4343 int err = -ENOENT;
4344
c3c7c254
ED
4345 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4346
fc59f9a3
HX
4347 if (NAPI_GRO_CB(skb)->count == 1) {
4348 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4349 goto out;
fc59f9a3 4350 }
d565b0a1
HX
4351
4352 rcu_read_lock();
4353 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4354 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4355 continue;
4356
299603e8 4357 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4358 break;
4359 }
4360 rcu_read_unlock();
4361
4362 if (err) {
4363 WARN_ON(&ptype->list == head);
4364 kfree_skb(skb);
4365 return NET_RX_SUCCESS;
4366 }
4367
4368out:
ae78dbfa 4369 return netif_receive_skb_internal(skb);
d565b0a1
HX
4370}
4371
2e71a6f8
ED
4372/* napi->gro_list contains packets ordered by age.
4373 * youngest packets at the head of it.
4374 * Complete skbs in reverse order to reduce latencies.
4375 */
4376void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4377{
2e71a6f8 4378 struct sk_buff *skb, *prev = NULL;
d565b0a1 4379
2e71a6f8
ED
4380 /* scan list and build reverse chain */
4381 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4382 skb->prev = prev;
4383 prev = skb;
4384 }
4385
4386 for (skb = prev; skb; skb = prev) {
d565b0a1 4387 skb->next = NULL;
2e71a6f8
ED
4388
4389 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4390 return;
4391
4392 prev = skb->prev;
d565b0a1 4393 napi_gro_complete(skb);
2e71a6f8 4394 napi->gro_count--;
d565b0a1
HX
4395 }
4396
4397 napi->gro_list = NULL;
4398}
86cac58b 4399EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4400
89c5fa33
ED
4401static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4402{
4403 struct sk_buff *p;
4404 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4405 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4406
4407 for (p = napi->gro_list; p; p = p->next) {
4408 unsigned long diffs;
4409
0b4cec8c
TH
4410 NAPI_GRO_CB(p)->flush = 0;
4411
4412 if (hash != skb_get_hash_raw(p)) {
4413 NAPI_GRO_CB(p)->same_flow = 0;
4414 continue;
4415 }
4416
89c5fa33
ED
4417 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4418 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4419 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4420 if (maclen == ETH_HLEN)
4421 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4422 skb_mac_header(skb));
89c5fa33
ED
4423 else if (!diffs)
4424 diffs = memcmp(skb_mac_header(p),
a50e233c 4425 skb_mac_header(skb),
89c5fa33
ED
4426 maclen);
4427 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4428 }
4429}
4430
299603e8
JC
4431static void skb_gro_reset_offset(struct sk_buff *skb)
4432{
4433 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4434 const skb_frag_t *frag0 = &pinfo->frags[0];
4435
4436 NAPI_GRO_CB(skb)->data_offset = 0;
4437 NAPI_GRO_CB(skb)->frag0 = NULL;
4438 NAPI_GRO_CB(skb)->frag0_len = 0;
4439
4440 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4441 pinfo->nr_frags &&
4442 !PageHighMem(skb_frag_page(frag0))) {
4443 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4444 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4445 }
4446}
4447
a50e233c
ED
4448static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4449{
4450 struct skb_shared_info *pinfo = skb_shinfo(skb);
4451
4452 BUG_ON(skb->end - skb->tail < grow);
4453
4454 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4455
4456 skb->data_len -= grow;
4457 skb->tail += grow;
4458
4459 pinfo->frags[0].page_offset += grow;
4460 skb_frag_size_sub(&pinfo->frags[0], grow);
4461
4462 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4463 skb_frag_unref(skb, 0);
4464 memmove(pinfo->frags, pinfo->frags + 1,
4465 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4466 }
4467}
4468
bb728820 4469static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4470{
4471 struct sk_buff **pp = NULL;
22061d80 4472 struct packet_offload *ptype;
d565b0a1 4473 __be16 type = skb->protocol;
22061d80 4474 struct list_head *head = &offload_base;
0da2afd5 4475 int same_flow;
5b252f0c 4476 enum gro_result ret;
a50e233c 4477 int grow;
d565b0a1 4478
9c62a68d 4479 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4480 goto normal;
4481
d61d072e 4482 if (skb->csum_bad)
f17f5c91
HX
4483 goto normal;
4484
89c5fa33
ED
4485 gro_list_prepare(napi, skb);
4486
d565b0a1
HX
4487 rcu_read_lock();
4488 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4489 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4490 continue;
4491
86911732 4492 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4493 skb_reset_mac_len(skb);
d565b0a1 4494 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4495 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4496 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4497 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4498 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4499 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4500 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4501 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4502
662880f4
TH
4503 /* Setup for GRO checksum validation */
4504 switch (skb->ip_summed) {
4505 case CHECKSUM_COMPLETE:
4506 NAPI_GRO_CB(skb)->csum = skb->csum;
4507 NAPI_GRO_CB(skb)->csum_valid = 1;
4508 NAPI_GRO_CB(skb)->csum_cnt = 0;
4509 break;
4510 case CHECKSUM_UNNECESSARY:
4511 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4512 NAPI_GRO_CB(skb)->csum_valid = 0;
4513 break;
4514 default:
4515 NAPI_GRO_CB(skb)->csum_cnt = 0;
4516 NAPI_GRO_CB(skb)->csum_valid = 0;
4517 }
d565b0a1 4518
f191a1d1 4519 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4520 break;
4521 }
4522 rcu_read_unlock();
4523
4524 if (&ptype->list == head)
4525 goto normal;
4526
0da2afd5 4527 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4528 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4529
d565b0a1
HX
4530 if (pp) {
4531 struct sk_buff *nskb = *pp;
4532
4533 *pp = nskb->next;
4534 nskb->next = NULL;
4535 napi_gro_complete(nskb);
4ae5544f 4536 napi->gro_count--;
d565b0a1
HX
4537 }
4538
0da2afd5 4539 if (same_flow)
d565b0a1
HX
4540 goto ok;
4541
600adc18 4542 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4543 goto normal;
d565b0a1 4544
600adc18
ED
4545 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4546 struct sk_buff *nskb = napi->gro_list;
4547
4548 /* locate the end of the list to select the 'oldest' flow */
4549 while (nskb->next) {
4550 pp = &nskb->next;
4551 nskb = *pp;
4552 }
4553 *pp = NULL;
4554 nskb->next = NULL;
4555 napi_gro_complete(nskb);
4556 } else {
4557 napi->gro_count++;
4558 }
d565b0a1 4559 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4560 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4561 NAPI_GRO_CB(skb)->last = skb;
86911732 4562 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4563 skb->next = napi->gro_list;
4564 napi->gro_list = skb;
5d0d9be8 4565 ret = GRO_HELD;
d565b0a1 4566
ad0f9904 4567pull:
a50e233c
ED
4568 grow = skb_gro_offset(skb) - skb_headlen(skb);
4569 if (grow > 0)
4570 gro_pull_from_frag0(skb, grow);
d565b0a1 4571ok:
5d0d9be8 4572 return ret;
d565b0a1
HX
4573
4574normal:
ad0f9904
HX
4575 ret = GRO_NORMAL;
4576 goto pull;
5d38a079 4577}
96e93eab 4578
bf5a755f
JC
4579struct packet_offload *gro_find_receive_by_type(__be16 type)
4580{
4581 struct list_head *offload_head = &offload_base;
4582 struct packet_offload *ptype;
4583
4584 list_for_each_entry_rcu(ptype, offload_head, list) {
4585 if (ptype->type != type || !ptype->callbacks.gro_receive)
4586 continue;
4587 return ptype;
4588 }
4589 return NULL;
4590}
e27a2f83 4591EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4592
4593struct packet_offload *gro_find_complete_by_type(__be16 type)
4594{
4595 struct list_head *offload_head = &offload_base;
4596 struct packet_offload *ptype;
4597
4598 list_for_each_entry_rcu(ptype, offload_head, list) {
4599 if (ptype->type != type || !ptype->callbacks.gro_complete)
4600 continue;
4601 return ptype;
4602 }
4603 return NULL;
4604}
e27a2f83 4605EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4606
bb728820 4607static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4608{
5d0d9be8
HX
4609 switch (ret) {
4610 case GRO_NORMAL:
ae78dbfa 4611 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4612 ret = GRO_DROP;
4613 break;
5d38a079 4614
5d0d9be8 4615 case GRO_DROP:
5d38a079
HX
4616 kfree_skb(skb);
4617 break;
5b252f0c 4618
daa86548 4619 case GRO_MERGED_FREE:
ce87fc6c
JG
4620 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4621 skb_dst_drop(skb);
d7e8883c 4622 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4623 } else {
d7e8883c 4624 __kfree_skb(skb);
ce87fc6c 4625 }
daa86548
ED
4626 break;
4627
5b252f0c
BH
4628 case GRO_HELD:
4629 case GRO_MERGED:
4630 break;
5d38a079
HX
4631 }
4632
c7c4b3b6 4633 return ret;
5d0d9be8 4634}
5d0d9be8 4635
c7c4b3b6 4636gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4637{
93f93a44 4638 skb_mark_napi_id(skb, napi);
ae78dbfa 4639 trace_napi_gro_receive_entry(skb);
86911732 4640
a50e233c
ED
4641 skb_gro_reset_offset(skb);
4642
89c5fa33 4643 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4644}
4645EXPORT_SYMBOL(napi_gro_receive);
4646
d0c2b0d2 4647static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4648{
93a35f59
ED
4649 if (unlikely(skb->pfmemalloc)) {
4650 consume_skb(skb);
4651 return;
4652 }
96e93eab 4653 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4654 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4655 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4656 skb->vlan_tci = 0;
66c46d74 4657 skb->dev = napi->dev;
6d152e23 4658 skb->skb_iif = 0;
c3caf119
JC
4659 skb->encapsulation = 0;
4660 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4661 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4662
4663 napi->skb = skb;
4664}
96e93eab 4665
76620aaf 4666struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4667{
5d38a079 4668 struct sk_buff *skb = napi->skb;
5d38a079
HX
4669
4670 if (!skb) {
fd11a83d 4671 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4672 if (skb) {
4673 napi->skb = skb;
4674 skb_mark_napi_id(skb, napi);
4675 }
80595d59 4676 }
96e93eab
HX
4677 return skb;
4678}
76620aaf 4679EXPORT_SYMBOL(napi_get_frags);
96e93eab 4680
a50e233c
ED
4681static gro_result_t napi_frags_finish(struct napi_struct *napi,
4682 struct sk_buff *skb,
4683 gro_result_t ret)
96e93eab 4684{
5d0d9be8
HX
4685 switch (ret) {
4686 case GRO_NORMAL:
a50e233c
ED
4687 case GRO_HELD:
4688 __skb_push(skb, ETH_HLEN);
4689 skb->protocol = eth_type_trans(skb, skb->dev);
4690 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4691 ret = GRO_DROP;
86911732 4692 break;
5d38a079 4693
5d0d9be8 4694 case GRO_DROP:
5d0d9be8
HX
4695 case GRO_MERGED_FREE:
4696 napi_reuse_skb(napi, skb);
4697 break;
5b252f0c
BH
4698
4699 case GRO_MERGED:
4700 break;
5d0d9be8 4701 }
5d38a079 4702
c7c4b3b6 4703 return ret;
5d38a079 4704}
5d0d9be8 4705
a50e233c
ED
4706/* Upper GRO stack assumes network header starts at gro_offset=0
4707 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4708 * We copy ethernet header into skb->data to have a common layout.
4709 */
4adb9c4a 4710static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4711{
4712 struct sk_buff *skb = napi->skb;
a50e233c
ED
4713 const struct ethhdr *eth;
4714 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4715
4716 napi->skb = NULL;
4717
a50e233c
ED
4718 skb_reset_mac_header(skb);
4719 skb_gro_reset_offset(skb);
4720
4721 eth = skb_gro_header_fast(skb, 0);
4722 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4723 eth = skb_gro_header_slow(skb, hlen, 0);
4724 if (unlikely(!eth)) {
4da46ceb
AC
4725 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4726 __func__, napi->dev->name);
a50e233c
ED
4727 napi_reuse_skb(napi, skb);
4728 return NULL;
4729 }
4730 } else {
4731 gro_pull_from_frag0(skb, hlen);
4732 NAPI_GRO_CB(skb)->frag0 += hlen;
4733 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4734 }
a50e233c
ED
4735 __skb_pull(skb, hlen);
4736
4737 /*
4738 * This works because the only protocols we care about don't require
4739 * special handling.
4740 * We'll fix it up properly in napi_frags_finish()
4741 */
4742 skb->protocol = eth->h_proto;
76620aaf 4743
76620aaf
HX
4744 return skb;
4745}
76620aaf 4746
c7c4b3b6 4747gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4748{
76620aaf 4749 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4750
4751 if (!skb)
c7c4b3b6 4752 return GRO_DROP;
5d0d9be8 4753
ae78dbfa
BH
4754 trace_napi_gro_frags_entry(skb);
4755
89c5fa33 4756 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4757}
5d38a079
HX
4758EXPORT_SYMBOL(napi_gro_frags);
4759
573e8fca
TH
4760/* Compute the checksum from gro_offset and return the folded value
4761 * after adding in any pseudo checksum.
4762 */
4763__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4764{
4765 __wsum wsum;
4766 __sum16 sum;
4767
4768 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4769
4770 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4771 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4772 if (likely(!sum)) {
4773 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4774 !skb->csum_complete_sw)
4775 netdev_rx_csum_fault(skb->dev);
4776 }
4777
4778 NAPI_GRO_CB(skb)->csum = wsum;
4779 NAPI_GRO_CB(skb)->csum_valid = 1;
4780
4781 return sum;
4782}
4783EXPORT_SYMBOL(__skb_gro_checksum_complete);
4784
e326bed2 4785/*
855abcf0 4786 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4787 * Note: called with local irq disabled, but exits with local irq enabled.
4788 */
4789static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4790{
4791#ifdef CONFIG_RPS
4792 struct softnet_data *remsd = sd->rps_ipi_list;
4793
4794 if (remsd) {
4795 sd->rps_ipi_list = NULL;
4796
4797 local_irq_enable();
4798
4799 /* Send pending IPI's to kick RPS processing on remote cpus. */
4800 while (remsd) {
4801 struct softnet_data *next = remsd->rps_ipi_next;
4802
4803 if (cpu_online(remsd->cpu))
c46fff2a 4804 smp_call_function_single_async(remsd->cpu,
fce8ad15 4805 &remsd->csd);
e326bed2
ED
4806 remsd = next;
4807 }
4808 } else
4809#endif
4810 local_irq_enable();
4811}
4812
d75b1ade
ED
4813static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4814{
4815#ifdef CONFIG_RPS
4816 return sd->rps_ipi_list != NULL;
4817#else
4818 return false;
4819#endif
4820}
4821
bea3348e 4822static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4823{
eecfd7c4 4824 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4825 bool again = true;
4826 int work = 0;
1da177e4 4827
e326bed2
ED
4828 /* Check if we have pending ipi, its better to send them now,
4829 * not waiting net_rx_action() end.
4830 */
d75b1ade 4831 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4832 local_irq_disable();
4833 net_rps_action_and_irq_enable(sd);
4834 }
d75b1ade 4835
bea3348e 4836 napi->weight = weight_p;
145dd5f9 4837 while (again) {
1da177e4 4838 struct sk_buff *skb;
6e7676c1
CG
4839
4840 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4841 rcu_read_lock();
6e7676c1 4842 __netif_receive_skb(skb);
2c17d27c 4843 rcu_read_unlock();
76cc8b13 4844 input_queue_head_incr(sd);
145dd5f9 4845 if (++work >= quota)
76cc8b13 4846 return work;
145dd5f9 4847
6e7676c1 4848 }
1da177e4 4849
145dd5f9 4850 local_irq_disable();
e36fa2f7 4851 rps_lock(sd);
11ef7a89 4852 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4853 /*
4854 * Inline a custom version of __napi_complete().
4855 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4856 * and NAPI_STATE_SCHED is the only possible flag set
4857 * on backlog.
4858 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4859 * and we dont need an smp_mb() memory barrier.
4860 */
eecfd7c4 4861 napi->state = 0;
145dd5f9
PA
4862 again = false;
4863 } else {
4864 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4865 &sd->process_queue);
bea3348e 4866 }
e36fa2f7 4867 rps_unlock(sd);
145dd5f9 4868 local_irq_enable();
6e7676c1 4869 }
1da177e4 4870
bea3348e
SH
4871 return work;
4872}
1da177e4 4873
bea3348e
SH
4874/**
4875 * __napi_schedule - schedule for receive
c4ea43c5 4876 * @n: entry to schedule
bea3348e 4877 *
bc9ad166
ED
4878 * The entry's receive function will be scheduled to run.
4879 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4880 */
b5606c2d 4881void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4882{
4883 unsigned long flags;
1da177e4 4884
bea3348e 4885 local_irq_save(flags);
903ceff7 4886 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4887 local_irq_restore(flags);
1da177e4 4888}
bea3348e
SH
4889EXPORT_SYMBOL(__napi_schedule);
4890
bc9ad166
ED
4891/**
4892 * __napi_schedule_irqoff - schedule for receive
4893 * @n: entry to schedule
4894 *
4895 * Variant of __napi_schedule() assuming hard irqs are masked
4896 */
4897void __napi_schedule_irqoff(struct napi_struct *n)
4898{
4899 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4900}
4901EXPORT_SYMBOL(__napi_schedule_irqoff);
4902
364b6055 4903bool __napi_complete(struct napi_struct *n)
d565b0a1
HX
4904{
4905 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4906
217f6974
ED
4907 /* Some drivers call us directly, instead of calling
4908 * napi_complete_done().
4909 */
4910 if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
364b6055 4911 return false;
217f6974 4912
d75b1ade 4913 list_del_init(&n->poll_list);
4e857c58 4914 smp_mb__before_atomic();
d565b0a1 4915 clear_bit(NAPI_STATE_SCHED, &n->state);
364b6055 4916 return true;
d565b0a1
HX
4917}
4918EXPORT_SYMBOL(__napi_complete);
4919
364b6055 4920bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4921{
4922 unsigned long flags;
4923
4924 /*
217f6974
ED
4925 * 1) Don't let napi dequeue from the cpu poll list
4926 * just in case its running on a different cpu.
4927 * 2) If we are busy polling, do nothing here, we have
4928 * the guarantee we will be called later.
d565b0a1 4929 */
217f6974
ED
4930 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4931 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 4932 return false;
d565b0a1 4933
3b47d303
ED
4934 if (n->gro_list) {
4935 unsigned long timeout = 0;
d75b1ade 4936
3b47d303
ED
4937 if (work_done)
4938 timeout = n->dev->gro_flush_timeout;
4939
4940 if (timeout)
4941 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4942 HRTIMER_MODE_REL_PINNED);
4943 else
4944 napi_gro_flush(n, false);
4945 }
d75b1ade
ED
4946 if (likely(list_empty(&n->poll_list))) {
4947 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4948 } else {
4949 /* If n->poll_list is not empty, we need to mask irqs */
4950 local_irq_save(flags);
4951 __napi_complete(n);
4952 local_irq_restore(flags);
4953 }
364b6055 4954 return true;
d565b0a1 4955}
3b47d303 4956EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4957
af12fa6e 4958/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4959static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4960{
4961 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4962 struct napi_struct *napi;
4963
4964 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4965 if (napi->napi_id == napi_id)
4966 return napi;
4967
4968 return NULL;
4969}
02d62e86
ED
4970
4971#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 4972
ce6aea93 4973#define BUSY_POLL_BUDGET 8
217f6974
ED
4974
4975static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4976{
4977 int rc;
4978
4979 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4980
4981 local_bh_disable();
4982
4983 /* All we really want here is to re-enable device interrupts.
4984 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4985 */
4986 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4987 netpoll_poll_unlock(have_poll_lock);
4988 if (rc == BUSY_POLL_BUDGET)
4989 __napi_schedule(napi);
4990 local_bh_enable();
4991 if (local_softirq_pending())
4992 do_softirq();
4993}
4994
02d62e86
ED
4995bool sk_busy_loop(struct sock *sk, int nonblock)
4996{
4997 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
217f6974 4998 int (*napi_poll)(struct napi_struct *napi, int budget);
ce6aea93 4999 int (*busy_poll)(struct napi_struct *dev);
217f6974 5000 void *have_poll_lock = NULL;
02d62e86 5001 struct napi_struct *napi;
217f6974
ED
5002 int rc;
5003
5004restart:
5005 rc = false;
5006 napi_poll = NULL;
02d62e86 5007
2a028ecb 5008 rcu_read_lock();
02d62e86
ED
5009
5010 napi = napi_by_id(sk->sk_napi_id);
5011 if (!napi)
5012 goto out;
5013
ce6aea93
ED
5014 /* Note: ndo_busy_poll method is optional in linux-4.5 */
5015 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86 5016
217f6974
ED
5017 preempt_disable();
5018 for (;;) {
ce6aea93 5019 rc = 0;
2a028ecb 5020 local_bh_disable();
ce6aea93
ED
5021 if (busy_poll) {
5022 rc = busy_poll(napi);
217f6974 5023 goto count;
ce6aea93 5024 }
217f6974
ED
5025 if (!napi_poll) {
5026 unsigned long val = READ_ONCE(napi->state);
5027
5028 /* If multiple threads are competing for this napi,
5029 * we avoid dirtying napi->state as much as we can.
5030 */
5031 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5032 NAPIF_STATE_IN_BUSY_POLL))
5033 goto count;
5034 if (cmpxchg(&napi->state, val,
5035 val | NAPIF_STATE_IN_BUSY_POLL |
5036 NAPIF_STATE_SCHED) != val)
5037 goto count;
5038 have_poll_lock = netpoll_poll_lock(napi);
5039 napi_poll = napi->poll;
5040 }
5041 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5042 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5043count:
2a028ecb 5044 if (rc > 0)
02a1d6e7
ED
5045 __NET_ADD_STATS(sock_net(sk),
5046 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 5047 local_bh_enable();
02d62e86
ED
5048
5049 if (rc == LL_FLUSH_FAILED)
5050 break; /* permanent failure */
5051
217f6974
ED
5052 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5053 busy_loop_timeout(end_time))
5054 break;
02d62e86 5055
217f6974
ED
5056 if (unlikely(need_resched())) {
5057 if (napi_poll)
5058 busy_poll_stop(napi, have_poll_lock);
5059 preempt_enable();
5060 rcu_read_unlock();
5061 cond_resched();
5062 rc = !skb_queue_empty(&sk->sk_receive_queue);
5063 if (rc || busy_loop_timeout(end_time))
5064 return rc;
5065 goto restart;
5066 }
6cdf89b1 5067 cpu_relax();
217f6974
ED
5068 }
5069 if (napi_poll)
5070 busy_poll_stop(napi, have_poll_lock);
5071 preempt_enable();
02d62e86
ED
5072 rc = !skb_queue_empty(&sk->sk_receive_queue);
5073out:
2a028ecb 5074 rcu_read_unlock();
02d62e86
ED
5075 return rc;
5076}
5077EXPORT_SYMBOL(sk_busy_loop);
5078
5079#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5080
149d6ad8 5081static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5082{
d64b5e85
ED
5083 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5084 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5085 return;
af12fa6e 5086
52bd2d62 5087 spin_lock(&napi_hash_lock);
af12fa6e 5088
52bd2d62
ED
5089 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5090 do {
5091 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5092 napi_gen_id = NR_CPUS + 1;
5093 } while (napi_by_id(napi_gen_id));
5094 napi->napi_id = napi_gen_id;
af12fa6e 5095
52bd2d62
ED
5096 hlist_add_head_rcu(&napi->napi_hash_node,
5097 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5098
52bd2d62 5099 spin_unlock(&napi_hash_lock);
af12fa6e 5100}
af12fa6e
ET
5101
5102/* Warning : caller is responsible to make sure rcu grace period
5103 * is respected before freeing memory containing @napi
5104 */
34cbe27e 5105bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5106{
34cbe27e
ED
5107 bool rcu_sync_needed = false;
5108
af12fa6e
ET
5109 spin_lock(&napi_hash_lock);
5110
34cbe27e
ED
5111 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5112 rcu_sync_needed = true;
af12fa6e 5113 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5114 }
af12fa6e 5115 spin_unlock(&napi_hash_lock);
34cbe27e 5116 return rcu_sync_needed;
af12fa6e
ET
5117}
5118EXPORT_SYMBOL_GPL(napi_hash_del);
5119
3b47d303
ED
5120static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5121{
5122 struct napi_struct *napi;
5123
5124 napi = container_of(timer, struct napi_struct, timer);
5125 if (napi->gro_list)
5126 napi_schedule(napi);
5127
5128 return HRTIMER_NORESTART;
5129}
5130
d565b0a1
HX
5131void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5132 int (*poll)(struct napi_struct *, int), int weight)
5133{
5134 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5135 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5136 napi->timer.function = napi_watchdog;
4ae5544f 5137 napi->gro_count = 0;
d565b0a1 5138 napi->gro_list = NULL;
5d38a079 5139 napi->skb = NULL;
d565b0a1 5140 napi->poll = poll;
82dc3c63
ED
5141 if (weight > NAPI_POLL_WEIGHT)
5142 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5143 weight, dev->name);
d565b0a1
HX
5144 napi->weight = weight;
5145 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5146 napi->dev = dev;
5d38a079 5147#ifdef CONFIG_NETPOLL
d565b0a1
HX
5148 napi->poll_owner = -1;
5149#endif
5150 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5151 napi_hash_add(napi);
d565b0a1
HX
5152}
5153EXPORT_SYMBOL(netif_napi_add);
5154
3b47d303
ED
5155void napi_disable(struct napi_struct *n)
5156{
5157 might_sleep();
5158 set_bit(NAPI_STATE_DISABLE, &n->state);
5159
5160 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5161 msleep(1);
2d8bff12
NH
5162 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5163 msleep(1);
3b47d303
ED
5164
5165 hrtimer_cancel(&n->timer);
5166
5167 clear_bit(NAPI_STATE_DISABLE, &n->state);
5168}
5169EXPORT_SYMBOL(napi_disable);
5170
93d05d4a 5171/* Must be called in process context */
d565b0a1
HX
5172void netif_napi_del(struct napi_struct *napi)
5173{
93d05d4a
ED
5174 might_sleep();
5175 if (napi_hash_del(napi))
5176 synchronize_net();
d7b06636 5177 list_del_init(&napi->dev_list);
76620aaf 5178 napi_free_frags(napi);
d565b0a1 5179
289dccbe 5180 kfree_skb_list(napi->gro_list);
d565b0a1 5181 napi->gro_list = NULL;
4ae5544f 5182 napi->gro_count = 0;
d565b0a1
HX
5183}
5184EXPORT_SYMBOL(netif_napi_del);
5185
726ce70e
HX
5186static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5187{
5188 void *have;
5189 int work, weight;
5190
5191 list_del_init(&n->poll_list);
5192
5193 have = netpoll_poll_lock(n);
5194
5195 weight = n->weight;
5196
5197 /* This NAPI_STATE_SCHED test is for avoiding a race
5198 * with netpoll's poll_napi(). Only the entity which
5199 * obtains the lock and sees NAPI_STATE_SCHED set will
5200 * actually make the ->poll() call. Therefore we avoid
5201 * accidentally calling ->poll() when NAPI is not scheduled.
5202 */
5203 work = 0;
5204 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5205 work = n->poll(n, weight);
1db19db7 5206 trace_napi_poll(n, work, weight);
726ce70e
HX
5207 }
5208
5209 WARN_ON_ONCE(work > weight);
5210
5211 if (likely(work < weight))
5212 goto out_unlock;
5213
5214 /* Drivers must not modify the NAPI state if they
5215 * consume the entire weight. In such cases this code
5216 * still "owns" the NAPI instance and therefore can
5217 * move the instance around on the list at-will.
5218 */
5219 if (unlikely(napi_disable_pending(n))) {
5220 napi_complete(n);
5221 goto out_unlock;
5222 }
5223
5224 if (n->gro_list) {
5225 /* flush too old packets
5226 * If HZ < 1000, flush all packets.
5227 */
5228 napi_gro_flush(n, HZ >= 1000);
5229 }
5230
001ce546
HX
5231 /* Some drivers may have called napi_schedule
5232 * prior to exhausting their budget.
5233 */
5234 if (unlikely(!list_empty(&n->poll_list))) {
5235 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5236 n->dev ? n->dev->name : "backlog");
5237 goto out_unlock;
5238 }
5239
726ce70e
HX
5240 list_add_tail(&n->poll_list, repoll);
5241
5242out_unlock:
5243 netpoll_poll_unlock(have);
5244
5245 return work;
5246}
5247
0766f788 5248static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5249{
903ceff7 5250 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5251 unsigned long time_limit = jiffies + 2;
51b0bded 5252 int budget = netdev_budget;
d75b1ade
ED
5253 LIST_HEAD(list);
5254 LIST_HEAD(repoll);
53fb95d3 5255
1da177e4 5256 local_irq_disable();
d75b1ade
ED
5257 list_splice_init(&sd->poll_list, &list);
5258 local_irq_enable();
1da177e4 5259
ceb8d5bf 5260 for (;;) {
bea3348e 5261 struct napi_struct *n;
1da177e4 5262
ceb8d5bf
HX
5263 if (list_empty(&list)) {
5264 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5265 goto out;
ceb8d5bf
HX
5266 break;
5267 }
5268
6bd373eb
HX
5269 n = list_first_entry(&list, struct napi_struct, poll_list);
5270 budget -= napi_poll(n, &repoll);
5271
d75b1ade 5272 /* If softirq window is exhausted then punt.
24f8b238
SH
5273 * Allow this to run for 2 jiffies since which will allow
5274 * an average latency of 1.5/HZ.
bea3348e 5275 */
ceb8d5bf
HX
5276 if (unlikely(budget <= 0 ||
5277 time_after_eq(jiffies, time_limit))) {
5278 sd->time_squeeze++;
5279 break;
5280 }
1da177e4 5281 }
d75b1ade 5282
d75b1ade
ED
5283 local_irq_disable();
5284
5285 list_splice_tail_init(&sd->poll_list, &list);
5286 list_splice_tail(&repoll, &list);
5287 list_splice(&list, &sd->poll_list);
5288 if (!list_empty(&sd->poll_list))
5289 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5290
e326bed2 5291 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5292out:
5293 __kfree_skb_flush();
1da177e4
LT
5294}
5295
aa9d8560 5296struct netdev_adjacent {
9ff162a8 5297 struct net_device *dev;
5d261913
VF
5298
5299 /* upper master flag, there can only be one master device per list */
9ff162a8 5300 bool master;
5d261913 5301
5d261913
VF
5302 /* counter for the number of times this device was added to us */
5303 u16 ref_nr;
5304
402dae96
VF
5305 /* private field for the users */
5306 void *private;
5307
9ff162a8
JP
5308 struct list_head list;
5309 struct rcu_head rcu;
9ff162a8
JP
5310};
5311
6ea29da1 5312static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5313 struct list_head *adj_list)
9ff162a8 5314{
5d261913 5315 struct netdev_adjacent *adj;
5d261913 5316
2f268f12 5317 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5318 if (adj->dev == adj_dev)
5319 return adj;
9ff162a8
JP
5320 }
5321 return NULL;
5322}
5323
f1170fd4
DA
5324static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5325{
5326 struct net_device *dev = data;
5327
5328 return upper_dev == dev;
5329}
5330
9ff162a8
JP
5331/**
5332 * netdev_has_upper_dev - Check if device is linked to an upper device
5333 * @dev: device
5334 * @upper_dev: upper device to check
5335 *
5336 * Find out if a device is linked to specified upper device and return true
5337 * in case it is. Note that this checks only immediate upper device,
5338 * not through a complete stack of devices. The caller must hold the RTNL lock.
5339 */
5340bool netdev_has_upper_dev(struct net_device *dev,
5341 struct net_device *upper_dev)
5342{
5343 ASSERT_RTNL();
5344
f1170fd4
DA
5345 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5346 upper_dev);
9ff162a8
JP
5347}
5348EXPORT_SYMBOL(netdev_has_upper_dev);
5349
1a3f060c
DA
5350/**
5351 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5352 * @dev: device
5353 * @upper_dev: upper device to check
5354 *
5355 * Find out if a device is linked to specified upper device and return true
5356 * in case it is. Note that this checks the entire upper device chain.
5357 * The caller must hold rcu lock.
5358 */
5359
1a3f060c
DA
5360bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5361 struct net_device *upper_dev)
5362{
5363 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5364 upper_dev);
5365}
5366EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5367
9ff162a8
JP
5368/**
5369 * netdev_has_any_upper_dev - Check if device is linked to some device
5370 * @dev: device
5371 *
5372 * Find out if a device is linked to an upper device and return true in case
5373 * it is. The caller must hold the RTNL lock.
5374 */
1d143d9f 5375static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5376{
5377 ASSERT_RTNL();
5378
f1170fd4 5379 return !list_empty(&dev->adj_list.upper);
9ff162a8 5380}
9ff162a8
JP
5381
5382/**
5383 * netdev_master_upper_dev_get - Get master upper device
5384 * @dev: device
5385 *
5386 * Find a master upper device and return pointer to it or NULL in case
5387 * it's not there. The caller must hold the RTNL lock.
5388 */
5389struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5390{
aa9d8560 5391 struct netdev_adjacent *upper;
9ff162a8
JP
5392
5393 ASSERT_RTNL();
5394
2f268f12 5395 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5396 return NULL;
5397
2f268f12 5398 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5399 struct netdev_adjacent, list);
9ff162a8
JP
5400 if (likely(upper->master))
5401 return upper->dev;
5402 return NULL;
5403}
5404EXPORT_SYMBOL(netdev_master_upper_dev_get);
5405
0f524a80
DA
5406/**
5407 * netdev_has_any_lower_dev - Check if device is linked to some device
5408 * @dev: device
5409 *
5410 * Find out if a device is linked to a lower device and return true in case
5411 * it is. The caller must hold the RTNL lock.
5412 */
5413static bool netdev_has_any_lower_dev(struct net_device *dev)
5414{
5415 ASSERT_RTNL();
5416
5417 return !list_empty(&dev->adj_list.lower);
5418}
5419
b6ccba4c
VF
5420void *netdev_adjacent_get_private(struct list_head *adj_list)
5421{
5422 struct netdev_adjacent *adj;
5423
5424 adj = list_entry(adj_list, struct netdev_adjacent, list);
5425
5426 return adj->private;
5427}
5428EXPORT_SYMBOL(netdev_adjacent_get_private);
5429
44a40855
VY
5430/**
5431 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5432 * @dev: device
5433 * @iter: list_head ** of the current position
5434 *
5435 * Gets the next device from the dev's upper list, starting from iter
5436 * position. The caller must hold RCU read lock.
5437 */
5438struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5439 struct list_head **iter)
5440{
5441 struct netdev_adjacent *upper;
5442
5443 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5444
5445 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5446
5447 if (&upper->list == &dev->adj_list.upper)
5448 return NULL;
5449
5450 *iter = &upper->list;
5451
5452 return upper->dev;
5453}
5454EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5455
1a3f060c
DA
5456static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5457 struct list_head **iter)
5458{
5459 struct netdev_adjacent *upper;
5460
5461 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5462
5463 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5464
5465 if (&upper->list == &dev->adj_list.upper)
5466 return NULL;
5467
5468 *iter = &upper->list;
5469
5470 return upper->dev;
5471}
5472
5473int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5474 int (*fn)(struct net_device *dev,
5475 void *data),
5476 void *data)
5477{
5478 struct net_device *udev;
5479 struct list_head *iter;
5480 int ret;
5481
5482 for (iter = &dev->adj_list.upper,
5483 udev = netdev_next_upper_dev_rcu(dev, &iter);
5484 udev;
5485 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5486 /* first is the upper device itself */
5487 ret = fn(udev, data);
5488 if (ret)
5489 return ret;
5490
5491 /* then look at all of its upper devices */
5492 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5493 if (ret)
5494 return ret;
5495 }
5496
5497 return 0;
5498}
5499EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5500
31088a11
VF
5501/**
5502 * netdev_lower_get_next_private - Get the next ->private from the
5503 * lower neighbour list
5504 * @dev: device
5505 * @iter: list_head ** of the current position
5506 *
5507 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5508 * list, starting from iter position. The caller must hold either hold the
5509 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5510 * list will remain unchanged.
31088a11
VF
5511 */
5512void *netdev_lower_get_next_private(struct net_device *dev,
5513 struct list_head **iter)
5514{
5515 struct netdev_adjacent *lower;
5516
5517 lower = list_entry(*iter, struct netdev_adjacent, list);
5518
5519 if (&lower->list == &dev->adj_list.lower)
5520 return NULL;
5521
6859e7df 5522 *iter = lower->list.next;
31088a11
VF
5523
5524 return lower->private;
5525}
5526EXPORT_SYMBOL(netdev_lower_get_next_private);
5527
5528/**
5529 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5530 * lower neighbour list, RCU
5531 * variant
5532 * @dev: device
5533 * @iter: list_head ** of the current position
5534 *
5535 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5536 * list, starting from iter position. The caller must hold RCU read lock.
5537 */
5538void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5539 struct list_head **iter)
5540{
5541 struct netdev_adjacent *lower;
5542
5543 WARN_ON_ONCE(!rcu_read_lock_held());
5544
5545 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5546
5547 if (&lower->list == &dev->adj_list.lower)
5548 return NULL;
5549
6859e7df 5550 *iter = &lower->list;
31088a11
VF
5551
5552 return lower->private;
5553}
5554EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5555
4085ebe8
VY
5556/**
5557 * netdev_lower_get_next - Get the next device from the lower neighbour
5558 * list
5559 * @dev: device
5560 * @iter: list_head ** of the current position
5561 *
5562 * Gets the next netdev_adjacent from the dev's lower neighbour
5563 * list, starting from iter position. The caller must hold RTNL lock or
5564 * its own locking that guarantees that the neighbour lower
b469139e 5565 * list will remain unchanged.
4085ebe8
VY
5566 */
5567void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5568{
5569 struct netdev_adjacent *lower;
5570
cfdd28be 5571 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5572
5573 if (&lower->list == &dev->adj_list.lower)
5574 return NULL;
5575
cfdd28be 5576 *iter = lower->list.next;
4085ebe8
VY
5577
5578 return lower->dev;
5579}
5580EXPORT_SYMBOL(netdev_lower_get_next);
5581
1a3f060c
DA
5582static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5583 struct list_head **iter)
5584{
5585 struct netdev_adjacent *lower;
5586
46b5ab1a 5587 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5588
5589 if (&lower->list == &dev->adj_list.lower)
5590 return NULL;
5591
46b5ab1a 5592 *iter = &lower->list;
1a3f060c
DA
5593
5594 return lower->dev;
5595}
5596
5597int netdev_walk_all_lower_dev(struct net_device *dev,
5598 int (*fn)(struct net_device *dev,
5599 void *data),
5600 void *data)
5601{
5602 struct net_device *ldev;
5603 struct list_head *iter;
5604 int ret;
5605
5606 for (iter = &dev->adj_list.lower,
5607 ldev = netdev_next_lower_dev(dev, &iter);
5608 ldev;
5609 ldev = netdev_next_lower_dev(dev, &iter)) {
5610 /* first is the lower device itself */
5611 ret = fn(ldev, data);
5612 if (ret)
5613 return ret;
5614
5615 /* then look at all of its lower devices */
5616 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5617 if (ret)
5618 return ret;
5619 }
5620
5621 return 0;
5622}
5623EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5624
1a3f060c
DA
5625static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5626 struct list_head **iter)
5627{
5628 struct netdev_adjacent *lower;
5629
5630 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5631 if (&lower->list == &dev->adj_list.lower)
5632 return NULL;
5633
5634 *iter = &lower->list;
5635
5636 return lower->dev;
5637}
5638
5639int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5640 int (*fn)(struct net_device *dev,
5641 void *data),
5642 void *data)
5643{
5644 struct net_device *ldev;
5645 struct list_head *iter;
5646 int ret;
5647
5648 for (iter = &dev->adj_list.lower,
5649 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5650 ldev;
5651 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5652 /* first is the lower device itself */
5653 ret = fn(ldev, data);
5654 if (ret)
5655 return ret;
5656
5657 /* then look at all of its lower devices */
5658 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5659 if (ret)
5660 return ret;
5661 }
5662
5663 return 0;
5664}
5665EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5666
e001bfad 5667/**
5668 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5669 * lower neighbour list, RCU
5670 * variant
5671 * @dev: device
5672 *
5673 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5674 * list. The caller must hold RCU read lock.
5675 */
5676void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5677{
5678 struct netdev_adjacent *lower;
5679
5680 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5681 struct netdev_adjacent, list);
5682 if (lower)
5683 return lower->private;
5684 return NULL;
5685}
5686EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5687
9ff162a8
JP
5688/**
5689 * netdev_master_upper_dev_get_rcu - Get master upper device
5690 * @dev: device
5691 *
5692 * Find a master upper device and return pointer to it or NULL in case
5693 * it's not there. The caller must hold the RCU read lock.
5694 */
5695struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5696{
aa9d8560 5697 struct netdev_adjacent *upper;
9ff162a8 5698
2f268f12 5699 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5700 struct netdev_adjacent, list);
9ff162a8
JP
5701 if (upper && likely(upper->master))
5702 return upper->dev;
5703 return NULL;
5704}
5705EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5706
0a59f3a9 5707static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5708 struct net_device *adj_dev,
5709 struct list_head *dev_list)
5710{
5711 char linkname[IFNAMSIZ+7];
5712 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5713 "upper_%s" : "lower_%s", adj_dev->name);
5714 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5715 linkname);
5716}
0a59f3a9 5717static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5718 char *name,
5719 struct list_head *dev_list)
5720{
5721 char linkname[IFNAMSIZ+7];
5722 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5723 "upper_%s" : "lower_%s", name);
5724 sysfs_remove_link(&(dev->dev.kobj), linkname);
5725}
5726
7ce64c79
AF
5727static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5728 struct net_device *adj_dev,
5729 struct list_head *dev_list)
5730{
5731 return (dev_list == &dev->adj_list.upper ||
5732 dev_list == &dev->adj_list.lower) &&
5733 net_eq(dev_net(dev), dev_net(adj_dev));
5734}
3ee32707 5735
5d261913
VF
5736static int __netdev_adjacent_dev_insert(struct net_device *dev,
5737 struct net_device *adj_dev,
7863c054 5738 struct list_head *dev_list,
402dae96 5739 void *private, bool master)
5d261913
VF
5740{
5741 struct netdev_adjacent *adj;
842d67a7 5742 int ret;
5d261913 5743
6ea29da1 5744 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5745
5746 if (adj) {
790510d9 5747 adj->ref_nr += 1;
67b62f98
DA
5748 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5749 dev->name, adj_dev->name, adj->ref_nr);
5750
5d261913
VF
5751 return 0;
5752 }
5753
5754 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5755 if (!adj)
5756 return -ENOMEM;
5757
5758 adj->dev = adj_dev;
5759 adj->master = master;
790510d9 5760 adj->ref_nr = 1;
402dae96 5761 adj->private = private;
5d261913 5762 dev_hold(adj_dev);
2f268f12 5763
67b62f98
DA
5764 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5765 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 5766
7ce64c79 5767 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5768 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5769 if (ret)
5770 goto free_adj;
5771 }
5772
7863c054 5773 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5774 if (master) {
5775 ret = sysfs_create_link(&(dev->dev.kobj),
5776 &(adj_dev->dev.kobj), "master");
5777 if (ret)
5831d66e 5778 goto remove_symlinks;
842d67a7 5779
7863c054 5780 list_add_rcu(&adj->list, dev_list);
842d67a7 5781 } else {
7863c054 5782 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5783 }
5d261913
VF
5784
5785 return 0;
842d67a7 5786
5831d66e 5787remove_symlinks:
7ce64c79 5788 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5789 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5790free_adj:
5791 kfree(adj);
974daef7 5792 dev_put(adj_dev);
842d67a7
VF
5793
5794 return ret;
5d261913
VF
5795}
5796
1d143d9f 5797static void __netdev_adjacent_dev_remove(struct net_device *dev,
5798 struct net_device *adj_dev,
93409033 5799 u16 ref_nr,
1d143d9f 5800 struct list_head *dev_list)
5d261913
VF
5801{
5802 struct netdev_adjacent *adj;
5803
67b62f98
DA
5804 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5805 dev->name, adj_dev->name, ref_nr);
5806
6ea29da1 5807 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5808
2f268f12 5809 if (!adj) {
67b62f98 5810 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 5811 dev->name, adj_dev->name);
67b62f98
DA
5812 WARN_ON(1);
5813 return;
2f268f12 5814 }
5d261913 5815
93409033 5816 if (adj->ref_nr > ref_nr) {
67b62f98
DA
5817 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5818 dev->name, adj_dev->name, ref_nr,
5819 adj->ref_nr - ref_nr);
93409033 5820 adj->ref_nr -= ref_nr;
5d261913
VF
5821 return;
5822 }
5823
842d67a7
VF
5824 if (adj->master)
5825 sysfs_remove_link(&(dev->dev.kobj), "master");
5826
7ce64c79 5827 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5828 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5829
5d261913 5830 list_del_rcu(&adj->list);
67b62f98 5831 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 5832 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5833 dev_put(adj_dev);
5834 kfree_rcu(adj, rcu);
5835}
5836
1d143d9f 5837static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5838 struct net_device *upper_dev,
5839 struct list_head *up_list,
5840 struct list_head *down_list,
5841 void *private, bool master)
5d261913
VF
5842{
5843 int ret;
5844
790510d9 5845 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 5846 private, master);
5d261913
VF
5847 if (ret)
5848 return ret;
5849
790510d9 5850 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 5851 private, false);
5d261913 5852 if (ret) {
790510d9 5853 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
5854 return ret;
5855 }
5856
5857 return 0;
5858}
5859
1d143d9f 5860static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5861 struct net_device *upper_dev,
93409033 5862 u16 ref_nr,
1d143d9f 5863 struct list_head *up_list,
5864 struct list_head *down_list)
5d261913 5865{
93409033
AC
5866 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5867 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5868}
5869
1d143d9f 5870static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5871 struct net_device *upper_dev,
5872 void *private, bool master)
2f268f12 5873{
f1170fd4
DA
5874 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5875 &dev->adj_list.upper,
5876 &upper_dev->adj_list.lower,
5877 private, master);
5d261913
VF
5878}
5879
1d143d9f 5880static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5881 struct net_device *upper_dev)
2f268f12 5882{
93409033 5883 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5884 &dev->adj_list.upper,
5885 &upper_dev->adj_list.lower);
5886}
5d261913 5887
9ff162a8 5888static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5889 struct net_device *upper_dev, bool master,
29bf24af 5890 void *upper_priv, void *upper_info)
9ff162a8 5891{
0e4ead9d 5892 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5893 int ret = 0;
9ff162a8
JP
5894
5895 ASSERT_RTNL();
5896
5897 if (dev == upper_dev)
5898 return -EBUSY;
5899
5900 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 5901 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
5902 return -EBUSY;
5903
f1170fd4 5904 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
5905 return -EEXIST;
5906
5907 if (master && netdev_master_upper_dev_get(dev))
5908 return -EBUSY;
5909
0e4ead9d
JP
5910 changeupper_info.upper_dev = upper_dev;
5911 changeupper_info.master = master;
5912 changeupper_info.linking = true;
29bf24af 5913 changeupper_info.upper_info = upper_info;
0e4ead9d 5914
573c7ba0
JP
5915 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5916 &changeupper_info.info);
5917 ret = notifier_to_errno(ret);
5918 if (ret)
5919 return ret;
5920
6dffb044 5921 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5922 master);
5d261913
VF
5923 if (ret)
5924 return ret;
9ff162a8 5925
b03804e7
IS
5926 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5927 &changeupper_info.info);
5928 ret = notifier_to_errno(ret);
5929 if (ret)
f1170fd4 5930 goto rollback;
b03804e7 5931
9ff162a8 5932 return 0;
5d261913 5933
f1170fd4 5934rollback:
2f268f12 5935 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5936
5937 return ret;
9ff162a8
JP
5938}
5939
5940/**
5941 * netdev_upper_dev_link - Add a link to the upper device
5942 * @dev: device
5943 * @upper_dev: new upper device
5944 *
5945 * Adds a link to device which is upper to this one. The caller must hold
5946 * the RTNL lock. On a failure a negative errno code is returned.
5947 * On success the reference counts are adjusted and the function
5948 * returns zero.
5949 */
5950int netdev_upper_dev_link(struct net_device *dev,
5951 struct net_device *upper_dev)
5952{
29bf24af 5953 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5954}
5955EXPORT_SYMBOL(netdev_upper_dev_link);
5956
5957/**
5958 * netdev_master_upper_dev_link - Add a master link to the upper device
5959 * @dev: device
5960 * @upper_dev: new upper device
6dffb044 5961 * @upper_priv: upper device private
29bf24af 5962 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5963 *
5964 * Adds a link to device which is upper to this one. In this case, only
5965 * one master upper device can be linked, although other non-master devices
5966 * might be linked as well. The caller must hold the RTNL lock.
5967 * On a failure a negative errno code is returned. On success the reference
5968 * counts are adjusted and the function returns zero.
5969 */
5970int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5971 struct net_device *upper_dev,
29bf24af 5972 void *upper_priv, void *upper_info)
9ff162a8 5973{
29bf24af
JP
5974 return __netdev_upper_dev_link(dev, upper_dev, true,
5975 upper_priv, upper_info);
9ff162a8
JP
5976}
5977EXPORT_SYMBOL(netdev_master_upper_dev_link);
5978
5979/**
5980 * netdev_upper_dev_unlink - Removes a link to upper device
5981 * @dev: device
5982 * @upper_dev: new upper device
5983 *
5984 * Removes a link to device which is upper to this one. The caller must hold
5985 * the RTNL lock.
5986 */
5987void netdev_upper_dev_unlink(struct net_device *dev,
5988 struct net_device *upper_dev)
5989{
0e4ead9d 5990 struct netdev_notifier_changeupper_info changeupper_info;
9ff162a8
JP
5991 ASSERT_RTNL();
5992
0e4ead9d
JP
5993 changeupper_info.upper_dev = upper_dev;
5994 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5995 changeupper_info.linking = false;
5996
573c7ba0
JP
5997 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5998 &changeupper_info.info);
5999
2f268f12 6000 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6001
0e4ead9d
JP
6002 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6003 &changeupper_info.info);
9ff162a8
JP
6004}
6005EXPORT_SYMBOL(netdev_upper_dev_unlink);
6006
61bd3857
MS
6007/**
6008 * netdev_bonding_info_change - Dispatch event about slave change
6009 * @dev: device
4a26e453 6010 * @bonding_info: info to dispatch
61bd3857
MS
6011 *
6012 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6013 * The caller must hold the RTNL lock.
6014 */
6015void netdev_bonding_info_change(struct net_device *dev,
6016 struct netdev_bonding_info *bonding_info)
6017{
6018 struct netdev_notifier_bonding_info info;
6019
6020 memcpy(&info.bonding_info, bonding_info,
6021 sizeof(struct netdev_bonding_info));
6022 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6023 &info.info);
6024}
6025EXPORT_SYMBOL(netdev_bonding_info_change);
6026
2ce1ee17 6027static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6028{
6029 struct netdev_adjacent *iter;
6030
6031 struct net *net = dev_net(dev);
6032
6033 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6034 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6035 continue;
6036 netdev_adjacent_sysfs_add(iter->dev, dev,
6037 &iter->dev->adj_list.lower);
6038 netdev_adjacent_sysfs_add(dev, iter->dev,
6039 &dev->adj_list.upper);
6040 }
6041
6042 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6043 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6044 continue;
6045 netdev_adjacent_sysfs_add(iter->dev, dev,
6046 &iter->dev->adj_list.upper);
6047 netdev_adjacent_sysfs_add(dev, iter->dev,
6048 &dev->adj_list.lower);
6049 }
6050}
6051
2ce1ee17 6052static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6053{
6054 struct netdev_adjacent *iter;
6055
6056 struct net *net = dev_net(dev);
6057
6058 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6059 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6060 continue;
6061 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6062 &iter->dev->adj_list.lower);
6063 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6064 &dev->adj_list.upper);
6065 }
6066
6067 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6068 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6069 continue;
6070 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6071 &iter->dev->adj_list.upper);
6072 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6073 &dev->adj_list.lower);
6074 }
6075}
6076
5bb025fa 6077void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6078{
5bb025fa 6079 struct netdev_adjacent *iter;
402dae96 6080
4c75431a
AF
6081 struct net *net = dev_net(dev);
6082
5bb025fa 6083 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6084 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6085 continue;
5bb025fa
VF
6086 netdev_adjacent_sysfs_del(iter->dev, oldname,
6087 &iter->dev->adj_list.lower);
6088 netdev_adjacent_sysfs_add(iter->dev, dev,
6089 &iter->dev->adj_list.lower);
6090 }
402dae96 6091
5bb025fa 6092 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6093 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6094 continue;
5bb025fa
VF
6095 netdev_adjacent_sysfs_del(iter->dev, oldname,
6096 &iter->dev->adj_list.upper);
6097 netdev_adjacent_sysfs_add(iter->dev, dev,
6098 &iter->dev->adj_list.upper);
6099 }
402dae96 6100}
402dae96
VF
6101
6102void *netdev_lower_dev_get_private(struct net_device *dev,
6103 struct net_device *lower_dev)
6104{
6105 struct netdev_adjacent *lower;
6106
6107 if (!lower_dev)
6108 return NULL;
6ea29da1 6109 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6110 if (!lower)
6111 return NULL;
6112
6113 return lower->private;
6114}
6115EXPORT_SYMBOL(netdev_lower_dev_get_private);
6116
4085ebe8 6117
952fcfd0 6118int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6119{
6120 struct net_device *lower = NULL;
6121 struct list_head *iter;
6122 int max_nest = -1;
6123 int nest;
6124
6125 ASSERT_RTNL();
6126
6127 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6128 nest = dev_get_nest_level(lower);
4085ebe8
VY
6129 if (max_nest < nest)
6130 max_nest = nest;
6131 }
6132
952fcfd0 6133 return max_nest + 1;
4085ebe8
VY
6134}
6135EXPORT_SYMBOL(dev_get_nest_level);
6136
04d48266
JP
6137/**
6138 * netdev_lower_change - Dispatch event about lower device state change
6139 * @lower_dev: device
6140 * @lower_state_info: state to dispatch
6141 *
6142 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6143 * The caller must hold the RTNL lock.
6144 */
6145void netdev_lower_state_changed(struct net_device *lower_dev,
6146 void *lower_state_info)
6147{
6148 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6149
6150 ASSERT_RTNL();
6151 changelowerstate_info.lower_state_info = lower_state_info;
6152 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6153 &changelowerstate_info.info);
6154}
6155EXPORT_SYMBOL(netdev_lower_state_changed);
6156
18bfb924
JP
6157int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6158 struct neighbour *n)
6159{
6160 struct net_device *lower_dev, *stop_dev;
6161 struct list_head *iter;
6162 int err;
6163
6164 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6165 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6166 continue;
6167 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6168 if (err) {
6169 stop_dev = lower_dev;
6170 goto rollback;
6171 }
6172 }
6173 return 0;
6174
6175rollback:
6176 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6177 if (lower_dev == stop_dev)
6178 break;
6179 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6180 continue;
6181 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6182 }
6183 return err;
6184}
6185EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6186
6187void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6188 struct neighbour *n)
6189{
6190 struct net_device *lower_dev;
6191 struct list_head *iter;
6192
6193 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6194 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6195 continue;
6196 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6197 }
6198}
6199EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6200
b6c40d68
PM
6201static void dev_change_rx_flags(struct net_device *dev, int flags)
6202{
d314774c
SH
6203 const struct net_device_ops *ops = dev->netdev_ops;
6204
d2615bf4 6205 if (ops->ndo_change_rx_flags)
d314774c 6206 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6207}
6208
991fb3f7 6209static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6210{
b536db93 6211 unsigned int old_flags = dev->flags;
d04a48b0
EB
6212 kuid_t uid;
6213 kgid_t gid;
1da177e4 6214
24023451
PM
6215 ASSERT_RTNL();
6216
dad9b335
WC
6217 dev->flags |= IFF_PROMISC;
6218 dev->promiscuity += inc;
6219 if (dev->promiscuity == 0) {
6220 /*
6221 * Avoid overflow.
6222 * If inc causes overflow, untouch promisc and return error.
6223 */
6224 if (inc < 0)
6225 dev->flags &= ~IFF_PROMISC;
6226 else {
6227 dev->promiscuity -= inc;
7b6cd1ce
JP
6228 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6229 dev->name);
dad9b335
WC
6230 return -EOVERFLOW;
6231 }
6232 }
52609c0b 6233 if (dev->flags != old_flags) {
7b6cd1ce
JP
6234 pr_info("device %s %s promiscuous mode\n",
6235 dev->name,
6236 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6237 if (audit_enabled) {
6238 current_uid_gid(&uid, &gid);
7759db82
KHK
6239 audit_log(current->audit_context, GFP_ATOMIC,
6240 AUDIT_ANOM_PROMISCUOUS,
6241 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6242 dev->name, (dev->flags & IFF_PROMISC),
6243 (old_flags & IFF_PROMISC),
e1760bd5 6244 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6245 from_kuid(&init_user_ns, uid),
6246 from_kgid(&init_user_ns, gid),
7759db82 6247 audit_get_sessionid(current));
8192b0c4 6248 }
24023451 6249
b6c40d68 6250 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6251 }
991fb3f7
ND
6252 if (notify)
6253 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6254 return 0;
1da177e4
LT
6255}
6256
4417da66
PM
6257/**
6258 * dev_set_promiscuity - update promiscuity count on a device
6259 * @dev: device
6260 * @inc: modifier
6261 *
6262 * Add or remove promiscuity from a device. While the count in the device
6263 * remains above zero the interface remains promiscuous. Once it hits zero
6264 * the device reverts back to normal filtering operation. A negative inc
6265 * value is used to drop promiscuity on the device.
dad9b335 6266 * Return 0 if successful or a negative errno code on error.
4417da66 6267 */
dad9b335 6268int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6269{
b536db93 6270 unsigned int old_flags = dev->flags;
dad9b335 6271 int err;
4417da66 6272
991fb3f7 6273 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6274 if (err < 0)
dad9b335 6275 return err;
4417da66
PM
6276 if (dev->flags != old_flags)
6277 dev_set_rx_mode(dev);
dad9b335 6278 return err;
4417da66 6279}
d1b19dff 6280EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6281
991fb3f7 6282static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6283{
991fb3f7 6284 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6285
24023451
PM
6286 ASSERT_RTNL();
6287
1da177e4 6288 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6289 dev->allmulti += inc;
6290 if (dev->allmulti == 0) {
6291 /*
6292 * Avoid overflow.
6293 * If inc causes overflow, untouch allmulti and return error.
6294 */
6295 if (inc < 0)
6296 dev->flags &= ~IFF_ALLMULTI;
6297 else {
6298 dev->allmulti -= inc;
7b6cd1ce
JP
6299 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6300 dev->name);
dad9b335
WC
6301 return -EOVERFLOW;
6302 }
6303 }
24023451 6304 if (dev->flags ^ old_flags) {
b6c40d68 6305 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6306 dev_set_rx_mode(dev);
991fb3f7
ND
6307 if (notify)
6308 __dev_notify_flags(dev, old_flags,
6309 dev->gflags ^ old_gflags);
24023451 6310 }
dad9b335 6311 return 0;
4417da66 6312}
991fb3f7
ND
6313
6314/**
6315 * dev_set_allmulti - update allmulti count on a device
6316 * @dev: device
6317 * @inc: modifier
6318 *
6319 * Add or remove reception of all multicast frames to a device. While the
6320 * count in the device remains above zero the interface remains listening
6321 * to all interfaces. Once it hits zero the device reverts back to normal
6322 * filtering operation. A negative @inc value is used to drop the counter
6323 * when releasing a resource needing all multicasts.
6324 * Return 0 if successful or a negative errno code on error.
6325 */
6326
6327int dev_set_allmulti(struct net_device *dev, int inc)
6328{
6329 return __dev_set_allmulti(dev, inc, true);
6330}
d1b19dff 6331EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6332
6333/*
6334 * Upload unicast and multicast address lists to device and
6335 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6336 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6337 * are present.
6338 */
6339void __dev_set_rx_mode(struct net_device *dev)
6340{
d314774c
SH
6341 const struct net_device_ops *ops = dev->netdev_ops;
6342
4417da66
PM
6343 /* dev_open will call this function so the list will stay sane. */
6344 if (!(dev->flags&IFF_UP))
6345 return;
6346
6347 if (!netif_device_present(dev))
40b77c94 6348 return;
4417da66 6349
01789349 6350 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6351 /* Unicast addresses changes may only happen under the rtnl,
6352 * therefore calling __dev_set_promiscuity here is safe.
6353 */
32e7bfc4 6354 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6355 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6356 dev->uc_promisc = true;
32e7bfc4 6357 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6358 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6359 dev->uc_promisc = false;
4417da66 6360 }
4417da66 6361 }
01789349
JP
6362
6363 if (ops->ndo_set_rx_mode)
6364 ops->ndo_set_rx_mode(dev);
4417da66
PM
6365}
6366
6367void dev_set_rx_mode(struct net_device *dev)
6368{
b9e40857 6369 netif_addr_lock_bh(dev);
4417da66 6370 __dev_set_rx_mode(dev);
b9e40857 6371 netif_addr_unlock_bh(dev);
1da177e4
LT
6372}
6373
f0db275a
SH
6374/**
6375 * dev_get_flags - get flags reported to userspace
6376 * @dev: device
6377 *
6378 * Get the combination of flag bits exported through APIs to userspace.
6379 */
95c96174 6380unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6381{
95c96174 6382 unsigned int flags;
1da177e4
LT
6383
6384 flags = (dev->flags & ~(IFF_PROMISC |
6385 IFF_ALLMULTI |
b00055aa
SR
6386 IFF_RUNNING |
6387 IFF_LOWER_UP |
6388 IFF_DORMANT)) |
1da177e4
LT
6389 (dev->gflags & (IFF_PROMISC |
6390 IFF_ALLMULTI));
6391
b00055aa
SR
6392 if (netif_running(dev)) {
6393 if (netif_oper_up(dev))
6394 flags |= IFF_RUNNING;
6395 if (netif_carrier_ok(dev))
6396 flags |= IFF_LOWER_UP;
6397 if (netif_dormant(dev))
6398 flags |= IFF_DORMANT;
6399 }
1da177e4
LT
6400
6401 return flags;
6402}
d1b19dff 6403EXPORT_SYMBOL(dev_get_flags);
1da177e4 6404
bd380811 6405int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6406{
b536db93 6407 unsigned int old_flags = dev->flags;
bd380811 6408 int ret;
1da177e4 6409
24023451
PM
6410 ASSERT_RTNL();
6411
1da177e4
LT
6412 /*
6413 * Set the flags on our device.
6414 */
6415
6416 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6417 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6418 IFF_AUTOMEDIA)) |
6419 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6420 IFF_ALLMULTI));
6421
6422 /*
6423 * Load in the correct multicast list now the flags have changed.
6424 */
6425
b6c40d68
PM
6426 if ((old_flags ^ flags) & IFF_MULTICAST)
6427 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6428
4417da66 6429 dev_set_rx_mode(dev);
1da177e4
LT
6430
6431 /*
6432 * Have we downed the interface. We handle IFF_UP ourselves
6433 * according to user attempts to set it, rather than blindly
6434 * setting it.
6435 */
6436
6437 ret = 0;
d215d10f 6438 if ((old_flags ^ flags) & IFF_UP)
bd380811 6439 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6440
1da177e4 6441 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6442 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6443 unsigned int old_flags = dev->flags;
d1b19dff 6444
1da177e4 6445 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6446
6447 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6448 if (dev->flags != old_flags)
6449 dev_set_rx_mode(dev);
1da177e4
LT
6450 }
6451
6452 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6453 is important. Some (broken) drivers set IFF_PROMISC, when
6454 IFF_ALLMULTI is requested not asking us and not reporting.
6455 */
6456 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6457 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6458
1da177e4 6459 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6460 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6461 }
6462
bd380811
PM
6463 return ret;
6464}
6465
a528c219
ND
6466void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6467 unsigned int gchanges)
bd380811
PM
6468{
6469 unsigned int changes = dev->flags ^ old_flags;
6470
a528c219 6471 if (gchanges)
7f294054 6472 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6473
bd380811
PM
6474 if (changes & IFF_UP) {
6475 if (dev->flags & IFF_UP)
6476 call_netdevice_notifiers(NETDEV_UP, dev);
6477 else
6478 call_netdevice_notifiers(NETDEV_DOWN, dev);
6479 }
6480
6481 if (dev->flags & IFF_UP &&
be9efd36
JP
6482 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6483 struct netdev_notifier_change_info change_info;
6484
6485 change_info.flags_changed = changes;
6486 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6487 &change_info.info);
6488 }
bd380811
PM
6489}
6490
6491/**
6492 * dev_change_flags - change device settings
6493 * @dev: device
6494 * @flags: device state flags
6495 *
6496 * Change settings on device based state flags. The flags are
6497 * in the userspace exported format.
6498 */
b536db93 6499int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6500{
b536db93 6501 int ret;
991fb3f7 6502 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6503
6504 ret = __dev_change_flags(dev, flags);
6505 if (ret < 0)
6506 return ret;
6507
991fb3f7 6508 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6509 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6510 return ret;
6511}
d1b19dff 6512EXPORT_SYMBOL(dev_change_flags);
1da177e4 6513
2315dc91
VF
6514static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6515{
6516 const struct net_device_ops *ops = dev->netdev_ops;
6517
6518 if (ops->ndo_change_mtu)
6519 return ops->ndo_change_mtu(dev, new_mtu);
6520
6521 dev->mtu = new_mtu;
6522 return 0;
6523}
6524
f0db275a
SH
6525/**
6526 * dev_set_mtu - Change maximum transfer unit
6527 * @dev: device
6528 * @new_mtu: new transfer unit
6529 *
6530 * Change the maximum transfer size of the network device.
6531 */
1da177e4
LT
6532int dev_set_mtu(struct net_device *dev, int new_mtu)
6533{
2315dc91 6534 int err, orig_mtu;
1da177e4
LT
6535
6536 if (new_mtu == dev->mtu)
6537 return 0;
6538
61e84623
JW
6539 /* MTU must be positive, and in range */
6540 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6541 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6542 dev->name, new_mtu, dev->min_mtu);
1da177e4 6543 return -EINVAL;
61e84623
JW
6544 }
6545
6546 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6547 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6548 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6549 return -EINVAL;
6550 }
1da177e4
LT
6551
6552 if (!netif_device_present(dev))
6553 return -ENODEV;
6554
1d486bfb
VF
6555 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6556 err = notifier_to_errno(err);
6557 if (err)
6558 return err;
d314774c 6559
2315dc91
VF
6560 orig_mtu = dev->mtu;
6561 err = __dev_set_mtu(dev, new_mtu);
d314774c 6562
2315dc91
VF
6563 if (!err) {
6564 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6565 err = notifier_to_errno(err);
6566 if (err) {
6567 /* setting mtu back and notifying everyone again,
6568 * so that they have a chance to revert changes.
6569 */
6570 __dev_set_mtu(dev, orig_mtu);
6571 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6572 }
6573 }
1da177e4
LT
6574 return err;
6575}
d1b19dff 6576EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6577
cbda10fa
VD
6578/**
6579 * dev_set_group - Change group this device belongs to
6580 * @dev: device
6581 * @new_group: group this device should belong to
6582 */
6583void dev_set_group(struct net_device *dev, int new_group)
6584{
6585 dev->group = new_group;
6586}
6587EXPORT_SYMBOL(dev_set_group);
6588
f0db275a
SH
6589/**
6590 * dev_set_mac_address - Change Media Access Control Address
6591 * @dev: device
6592 * @sa: new address
6593 *
6594 * Change the hardware (MAC) address of the device
6595 */
1da177e4
LT
6596int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6597{
d314774c 6598 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6599 int err;
6600
d314774c 6601 if (!ops->ndo_set_mac_address)
1da177e4
LT
6602 return -EOPNOTSUPP;
6603 if (sa->sa_family != dev->type)
6604 return -EINVAL;
6605 if (!netif_device_present(dev))
6606 return -ENODEV;
d314774c 6607 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6608 if (err)
6609 return err;
fbdeca2d 6610 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6611 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6612 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6613 return 0;
1da177e4 6614}
d1b19dff 6615EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6616
4bf84c35
JP
6617/**
6618 * dev_change_carrier - Change device carrier
6619 * @dev: device
691b3b7e 6620 * @new_carrier: new value
4bf84c35
JP
6621 *
6622 * Change device carrier
6623 */
6624int dev_change_carrier(struct net_device *dev, bool new_carrier)
6625{
6626 const struct net_device_ops *ops = dev->netdev_ops;
6627
6628 if (!ops->ndo_change_carrier)
6629 return -EOPNOTSUPP;
6630 if (!netif_device_present(dev))
6631 return -ENODEV;
6632 return ops->ndo_change_carrier(dev, new_carrier);
6633}
6634EXPORT_SYMBOL(dev_change_carrier);
6635
66b52b0d
JP
6636/**
6637 * dev_get_phys_port_id - Get device physical port ID
6638 * @dev: device
6639 * @ppid: port ID
6640 *
6641 * Get device physical port ID
6642 */
6643int dev_get_phys_port_id(struct net_device *dev,
02637fce 6644 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6645{
6646 const struct net_device_ops *ops = dev->netdev_ops;
6647
6648 if (!ops->ndo_get_phys_port_id)
6649 return -EOPNOTSUPP;
6650 return ops->ndo_get_phys_port_id(dev, ppid);
6651}
6652EXPORT_SYMBOL(dev_get_phys_port_id);
6653
db24a904
DA
6654/**
6655 * dev_get_phys_port_name - Get device physical port name
6656 * @dev: device
6657 * @name: port name
ed49e650 6658 * @len: limit of bytes to copy to name
db24a904
DA
6659 *
6660 * Get device physical port name
6661 */
6662int dev_get_phys_port_name(struct net_device *dev,
6663 char *name, size_t len)
6664{
6665 const struct net_device_ops *ops = dev->netdev_ops;
6666
6667 if (!ops->ndo_get_phys_port_name)
6668 return -EOPNOTSUPP;
6669 return ops->ndo_get_phys_port_name(dev, name, len);
6670}
6671EXPORT_SYMBOL(dev_get_phys_port_name);
6672
d746d707
AK
6673/**
6674 * dev_change_proto_down - update protocol port state information
6675 * @dev: device
6676 * @proto_down: new value
6677 *
6678 * This info can be used by switch drivers to set the phys state of the
6679 * port.
6680 */
6681int dev_change_proto_down(struct net_device *dev, bool proto_down)
6682{
6683 const struct net_device_ops *ops = dev->netdev_ops;
6684
6685 if (!ops->ndo_change_proto_down)
6686 return -EOPNOTSUPP;
6687 if (!netif_device_present(dev))
6688 return -ENODEV;
6689 return ops->ndo_change_proto_down(dev, proto_down);
6690}
6691EXPORT_SYMBOL(dev_change_proto_down);
6692
a7862b45
BB
6693/**
6694 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6695 * @dev: device
6696 * @fd: new program fd or negative value to clear
85de8576 6697 * @flags: xdp-related flags
a7862b45
BB
6698 *
6699 * Set or clear a bpf program for a device
6700 */
85de8576 6701int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
a7862b45
BB
6702{
6703 const struct net_device_ops *ops = dev->netdev_ops;
6704 struct bpf_prog *prog = NULL;
85de8576 6705 struct netdev_xdp xdp;
a7862b45
BB
6706 int err;
6707
85de8576
DB
6708 ASSERT_RTNL();
6709
a7862b45
BB
6710 if (!ops->ndo_xdp)
6711 return -EOPNOTSUPP;
6712 if (fd >= 0) {
85de8576
DB
6713 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6714 memset(&xdp, 0, sizeof(xdp));
6715 xdp.command = XDP_QUERY_PROG;
6716
6717 err = ops->ndo_xdp(dev, &xdp);
6718 if (err < 0)
6719 return err;
6720 if (xdp.prog_attached)
6721 return -EBUSY;
6722 }
6723
a7862b45
BB
6724 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6725 if (IS_ERR(prog))
6726 return PTR_ERR(prog);
6727 }
6728
85de8576 6729 memset(&xdp, 0, sizeof(xdp));
a7862b45
BB
6730 xdp.command = XDP_SETUP_PROG;
6731 xdp.prog = prog;
85de8576 6732
a7862b45
BB
6733 err = ops->ndo_xdp(dev, &xdp);
6734 if (err < 0 && prog)
6735 bpf_prog_put(prog);
6736
6737 return err;
6738}
6739EXPORT_SYMBOL(dev_change_xdp_fd);
6740
1da177e4
LT
6741/**
6742 * dev_new_index - allocate an ifindex
c4ea43c5 6743 * @net: the applicable net namespace
1da177e4
LT
6744 *
6745 * Returns a suitable unique value for a new device interface
6746 * number. The caller must hold the rtnl semaphore or the
6747 * dev_base_lock to be sure it remains unique.
6748 */
881d966b 6749static int dev_new_index(struct net *net)
1da177e4 6750{
aa79e66e 6751 int ifindex = net->ifindex;
1da177e4
LT
6752 for (;;) {
6753 if (++ifindex <= 0)
6754 ifindex = 1;
881d966b 6755 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6756 return net->ifindex = ifindex;
1da177e4
LT
6757 }
6758}
6759
1da177e4 6760/* Delayed registration/unregisteration */
3b5b34fd 6761static LIST_HEAD(net_todo_list);
200b916f 6762DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6763
6f05f629 6764static void net_set_todo(struct net_device *dev)
1da177e4 6765{
1da177e4 6766 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6767 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6768}
6769
9b5e383c 6770static void rollback_registered_many(struct list_head *head)
93ee31f1 6771{
e93737b0 6772 struct net_device *dev, *tmp;
5cde2829 6773 LIST_HEAD(close_head);
9b5e383c 6774
93ee31f1
DL
6775 BUG_ON(dev_boot_phase);
6776 ASSERT_RTNL();
6777
e93737b0 6778 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6779 /* Some devices call without registering
e93737b0
KK
6780 * for initialization unwind. Remove those
6781 * devices and proceed with the remaining.
9b5e383c
ED
6782 */
6783 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6784 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6785 dev->name, dev);
93ee31f1 6786
9b5e383c 6787 WARN_ON(1);
e93737b0
KK
6788 list_del(&dev->unreg_list);
6789 continue;
9b5e383c 6790 }
449f4544 6791 dev->dismantle = true;
9b5e383c 6792 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6793 }
93ee31f1 6794
44345724 6795 /* If device is running, close it first. */
5cde2829
EB
6796 list_for_each_entry(dev, head, unreg_list)
6797 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6798 dev_close_many(&close_head, true);
93ee31f1 6799
44345724 6800 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6801 /* And unlink it from device chain. */
6802 unlist_netdevice(dev);
93ee31f1 6803
9b5e383c
ED
6804 dev->reg_state = NETREG_UNREGISTERING;
6805 }
41852497 6806 flush_all_backlogs();
93ee31f1
DL
6807
6808 synchronize_net();
6809
9b5e383c 6810 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6811 struct sk_buff *skb = NULL;
6812
9b5e383c
ED
6813 /* Shutdown queueing discipline. */
6814 dev_shutdown(dev);
93ee31f1
DL
6815
6816
9b5e383c
ED
6817 /* Notify protocols, that we are about to destroy
6818 this device. They should clean all the things.
6819 */
6820 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6821
395eea6c
MB
6822 if (!dev->rtnl_link_ops ||
6823 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6824 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6825 GFP_KERNEL);
6826
9b5e383c
ED
6827 /*
6828 * Flush the unicast and multicast chains
6829 */
a748ee24 6830 dev_uc_flush(dev);
22bedad3 6831 dev_mc_flush(dev);
93ee31f1 6832
9b5e383c
ED
6833 if (dev->netdev_ops->ndo_uninit)
6834 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6835
395eea6c
MB
6836 if (skb)
6837 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6838
9ff162a8
JP
6839 /* Notifier chain MUST detach us all upper devices. */
6840 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 6841 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 6842
9b5e383c
ED
6843 /* Remove entries from kobject tree */
6844 netdev_unregister_kobject(dev);
024e9679
AD
6845#ifdef CONFIG_XPS
6846 /* Remove XPS queueing entries */
6847 netif_reset_xps_queues_gt(dev, 0);
6848#endif
9b5e383c 6849 }
93ee31f1 6850
850a545b 6851 synchronize_net();
395264d5 6852
a5ee1551 6853 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6854 dev_put(dev);
6855}
6856
6857static void rollback_registered(struct net_device *dev)
6858{
6859 LIST_HEAD(single);
6860
6861 list_add(&dev->unreg_list, &single);
6862 rollback_registered_many(&single);
ceaaec98 6863 list_del(&single);
93ee31f1
DL
6864}
6865
fd867d51
JW
6866static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6867 struct net_device *upper, netdev_features_t features)
6868{
6869 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6870 netdev_features_t feature;
5ba3f7d6 6871 int feature_bit;
fd867d51 6872
5ba3f7d6
JW
6873 for_each_netdev_feature(&upper_disables, feature_bit) {
6874 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6875 if (!(upper->wanted_features & feature)
6876 && (features & feature)) {
6877 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6878 &feature, upper->name);
6879 features &= ~feature;
6880 }
6881 }
6882
6883 return features;
6884}
6885
6886static void netdev_sync_lower_features(struct net_device *upper,
6887 struct net_device *lower, netdev_features_t features)
6888{
6889 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6890 netdev_features_t feature;
5ba3f7d6 6891 int feature_bit;
fd867d51 6892
5ba3f7d6
JW
6893 for_each_netdev_feature(&upper_disables, feature_bit) {
6894 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6895 if (!(features & feature) && (lower->features & feature)) {
6896 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6897 &feature, lower->name);
6898 lower->wanted_features &= ~feature;
6899 netdev_update_features(lower);
6900
6901 if (unlikely(lower->features & feature))
6902 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6903 &feature, lower->name);
6904 }
6905 }
6906}
6907
c8f44aff
MM
6908static netdev_features_t netdev_fix_features(struct net_device *dev,
6909 netdev_features_t features)
b63365a2 6910{
57422dc5
MM
6911 /* Fix illegal checksum combinations */
6912 if ((features & NETIF_F_HW_CSUM) &&
6913 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6914 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6915 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6916 }
6917
b63365a2 6918 /* TSO requires that SG is present as well. */
ea2d3688 6919 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6920 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6921 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6922 }
6923
ec5f0615
PS
6924 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6925 !(features & NETIF_F_IP_CSUM)) {
6926 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6927 features &= ~NETIF_F_TSO;
6928 features &= ~NETIF_F_TSO_ECN;
6929 }
6930
6931 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6932 !(features & NETIF_F_IPV6_CSUM)) {
6933 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6934 features &= ~NETIF_F_TSO6;
6935 }
6936
b1dc497b
AD
6937 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6938 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6939 features &= ~NETIF_F_TSO_MANGLEID;
6940
31d8b9e0
BH
6941 /* TSO ECN requires that TSO is present as well. */
6942 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6943 features &= ~NETIF_F_TSO_ECN;
6944
212b573f
MM
6945 /* Software GSO depends on SG. */
6946 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6947 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6948 features &= ~NETIF_F_GSO;
6949 }
6950
acd1130e 6951 /* UFO needs SG and checksumming */
b63365a2 6952 if (features & NETIF_F_UFO) {
79032644 6953 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6954 if (!(features & NETIF_F_HW_CSUM) &&
6955 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6956 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6957 netdev_dbg(dev,
acd1130e 6958 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6959 features &= ~NETIF_F_UFO;
6960 }
6961
6962 if (!(features & NETIF_F_SG)) {
6f404e44 6963 netdev_dbg(dev,
acd1130e 6964 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6965 features &= ~NETIF_F_UFO;
6966 }
6967 }
6968
802ab55a
AD
6969 /* GSO partial features require GSO partial be set */
6970 if ((features & dev->gso_partial_features) &&
6971 !(features & NETIF_F_GSO_PARTIAL)) {
6972 netdev_dbg(dev,
6973 "Dropping partially supported GSO features since no GSO partial.\n");
6974 features &= ~dev->gso_partial_features;
6975 }
6976
d0290214
JP
6977#ifdef CONFIG_NET_RX_BUSY_POLL
6978 if (dev->netdev_ops->ndo_busy_poll)
6979 features |= NETIF_F_BUSY_POLL;
6980 else
6981#endif
6982 features &= ~NETIF_F_BUSY_POLL;
6983
b63365a2
HX
6984 return features;
6985}
b63365a2 6986
6cb6a27c 6987int __netdev_update_features(struct net_device *dev)
5455c699 6988{
fd867d51 6989 struct net_device *upper, *lower;
c8f44aff 6990 netdev_features_t features;
fd867d51 6991 struct list_head *iter;
e7868a85 6992 int err = -1;
5455c699 6993
87267485
MM
6994 ASSERT_RTNL();
6995
5455c699
MM
6996 features = netdev_get_wanted_features(dev);
6997
6998 if (dev->netdev_ops->ndo_fix_features)
6999 features = dev->netdev_ops->ndo_fix_features(dev, features);
7000
7001 /* driver might be less strict about feature dependencies */
7002 features = netdev_fix_features(dev, features);
7003
fd867d51
JW
7004 /* some features can't be enabled if they're off an an upper device */
7005 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7006 features = netdev_sync_upper_features(dev, upper, features);
7007
5455c699 7008 if (dev->features == features)
e7868a85 7009 goto sync_lower;
5455c699 7010
c8f44aff
MM
7011 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7012 &dev->features, &features);
5455c699
MM
7013
7014 if (dev->netdev_ops->ndo_set_features)
7015 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7016 else
7017 err = 0;
5455c699 7018
6cb6a27c 7019 if (unlikely(err < 0)) {
5455c699 7020 netdev_err(dev,
c8f44aff
MM
7021 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7022 err, &features, &dev->features);
17b85d29
NA
7023 /* return non-0 since some features might have changed and
7024 * it's better to fire a spurious notification than miss it
7025 */
7026 return -1;
6cb6a27c
MM
7027 }
7028
e7868a85 7029sync_lower:
fd867d51
JW
7030 /* some features must be disabled on lower devices when disabled
7031 * on an upper device (think: bonding master or bridge)
7032 */
7033 netdev_for_each_lower_dev(dev, lower, iter)
7034 netdev_sync_lower_features(dev, lower, features);
7035
6cb6a27c
MM
7036 if (!err)
7037 dev->features = features;
7038
e7868a85 7039 return err < 0 ? 0 : 1;
6cb6a27c
MM
7040}
7041
afe12cc8
MM
7042/**
7043 * netdev_update_features - recalculate device features
7044 * @dev: the device to check
7045 *
7046 * Recalculate dev->features set and send notifications if it
7047 * has changed. Should be called after driver or hardware dependent
7048 * conditions might have changed that influence the features.
7049 */
6cb6a27c
MM
7050void netdev_update_features(struct net_device *dev)
7051{
7052 if (__netdev_update_features(dev))
7053 netdev_features_change(dev);
5455c699
MM
7054}
7055EXPORT_SYMBOL(netdev_update_features);
7056
afe12cc8
MM
7057/**
7058 * netdev_change_features - recalculate device features
7059 * @dev: the device to check
7060 *
7061 * Recalculate dev->features set and send notifications even
7062 * if they have not changed. Should be called instead of
7063 * netdev_update_features() if also dev->vlan_features might
7064 * have changed to allow the changes to be propagated to stacked
7065 * VLAN devices.
7066 */
7067void netdev_change_features(struct net_device *dev)
7068{
7069 __netdev_update_features(dev);
7070 netdev_features_change(dev);
7071}
7072EXPORT_SYMBOL(netdev_change_features);
7073
fc4a7489
PM
7074/**
7075 * netif_stacked_transfer_operstate - transfer operstate
7076 * @rootdev: the root or lower level device to transfer state from
7077 * @dev: the device to transfer operstate to
7078 *
7079 * Transfer operational state from root to device. This is normally
7080 * called when a stacking relationship exists between the root
7081 * device and the device(a leaf device).
7082 */
7083void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7084 struct net_device *dev)
7085{
7086 if (rootdev->operstate == IF_OPER_DORMANT)
7087 netif_dormant_on(dev);
7088 else
7089 netif_dormant_off(dev);
7090
7091 if (netif_carrier_ok(rootdev)) {
7092 if (!netif_carrier_ok(dev))
7093 netif_carrier_on(dev);
7094 } else {
7095 if (netif_carrier_ok(dev))
7096 netif_carrier_off(dev);
7097 }
7098}
7099EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7100
a953be53 7101#ifdef CONFIG_SYSFS
1b4bf461
ED
7102static int netif_alloc_rx_queues(struct net_device *dev)
7103{
1b4bf461 7104 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7105 struct netdev_rx_queue *rx;
10595902 7106 size_t sz = count * sizeof(*rx);
1b4bf461 7107
bd25fa7b 7108 BUG_ON(count < 1);
1b4bf461 7109
10595902
PG
7110 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7111 if (!rx) {
7112 rx = vzalloc(sz);
7113 if (!rx)
7114 return -ENOMEM;
7115 }
bd25fa7b
TH
7116 dev->_rx = rx;
7117
bd25fa7b 7118 for (i = 0; i < count; i++)
fe822240 7119 rx[i].dev = dev;
1b4bf461
ED
7120 return 0;
7121}
bf264145 7122#endif
1b4bf461 7123
aa942104
CG
7124static void netdev_init_one_queue(struct net_device *dev,
7125 struct netdev_queue *queue, void *_unused)
7126{
7127 /* Initialize queue lock */
7128 spin_lock_init(&queue->_xmit_lock);
7129 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7130 queue->xmit_lock_owner = -1;
b236da69 7131 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7132 queue->dev = dev;
114cf580
TH
7133#ifdef CONFIG_BQL
7134 dql_init(&queue->dql, HZ);
7135#endif
aa942104
CG
7136}
7137
60877a32
ED
7138static void netif_free_tx_queues(struct net_device *dev)
7139{
4cb28970 7140 kvfree(dev->_tx);
60877a32
ED
7141}
7142
e6484930
TH
7143static int netif_alloc_netdev_queues(struct net_device *dev)
7144{
7145 unsigned int count = dev->num_tx_queues;
7146 struct netdev_queue *tx;
60877a32 7147 size_t sz = count * sizeof(*tx);
e6484930 7148
d339727c
ED
7149 if (count < 1 || count > 0xffff)
7150 return -EINVAL;
62b5942a 7151
60877a32
ED
7152 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7153 if (!tx) {
7154 tx = vzalloc(sz);
7155 if (!tx)
7156 return -ENOMEM;
7157 }
e6484930 7158 dev->_tx = tx;
1d24eb48 7159
e6484930
TH
7160 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7161 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7162
7163 return 0;
e6484930
TH
7164}
7165
a2029240
DV
7166void netif_tx_stop_all_queues(struct net_device *dev)
7167{
7168 unsigned int i;
7169
7170 for (i = 0; i < dev->num_tx_queues; i++) {
7171 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7172 netif_tx_stop_queue(txq);
7173 }
7174}
7175EXPORT_SYMBOL(netif_tx_stop_all_queues);
7176
1da177e4
LT
7177/**
7178 * register_netdevice - register a network device
7179 * @dev: device to register
7180 *
7181 * Take a completed network device structure and add it to the kernel
7182 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7183 * chain. 0 is returned on success. A negative errno code is returned
7184 * on a failure to set up the device, or if the name is a duplicate.
7185 *
7186 * Callers must hold the rtnl semaphore. You may want
7187 * register_netdev() instead of this.
7188 *
7189 * BUGS:
7190 * The locking appears insufficient to guarantee two parallel registers
7191 * will not get the same name.
7192 */
7193
7194int register_netdevice(struct net_device *dev)
7195{
1da177e4 7196 int ret;
d314774c 7197 struct net *net = dev_net(dev);
1da177e4
LT
7198
7199 BUG_ON(dev_boot_phase);
7200 ASSERT_RTNL();
7201
b17a7c17
SH
7202 might_sleep();
7203
1da177e4
LT
7204 /* When net_device's are persistent, this will be fatal. */
7205 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7206 BUG_ON(!net);
1da177e4 7207
f1f28aa3 7208 spin_lock_init(&dev->addr_list_lock);
cf508b12 7209 netdev_set_addr_lockdep_class(dev);
1da177e4 7210
828de4f6 7211 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7212 if (ret < 0)
7213 goto out;
7214
1da177e4 7215 /* Init, if this function is available */
d314774c
SH
7216 if (dev->netdev_ops->ndo_init) {
7217 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7218 if (ret) {
7219 if (ret > 0)
7220 ret = -EIO;
90833aa4 7221 goto out;
1da177e4
LT
7222 }
7223 }
4ec93edb 7224
f646968f
PM
7225 if (((dev->hw_features | dev->features) &
7226 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7227 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7228 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7229 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7230 ret = -EINVAL;
7231 goto err_uninit;
7232 }
7233
9c7dafbf
PE
7234 ret = -EBUSY;
7235 if (!dev->ifindex)
7236 dev->ifindex = dev_new_index(net);
7237 else if (__dev_get_by_index(net, dev->ifindex))
7238 goto err_uninit;
7239
5455c699
MM
7240 /* Transfer changeable features to wanted_features and enable
7241 * software offloads (GSO and GRO).
7242 */
7243 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7244 dev->features |= NETIF_F_SOFT_FEATURES;
7245 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7246
cbc53e08 7247 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7248 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7249
7f348a60
AD
7250 /* If IPv4 TCP segmentation offload is supported we should also
7251 * allow the device to enable segmenting the frame with the option
7252 * of ignoring a static IP ID value. This doesn't enable the
7253 * feature itself but allows the user to enable it later.
7254 */
cbc53e08
AD
7255 if (dev->hw_features & NETIF_F_TSO)
7256 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7257 if (dev->vlan_features & NETIF_F_TSO)
7258 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7259 if (dev->mpls_features & NETIF_F_TSO)
7260 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7261 if (dev->hw_enc_features & NETIF_F_TSO)
7262 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7263
1180e7d6 7264 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7265 */
1180e7d6 7266 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7267
ee579677
PS
7268 /* Make NETIF_F_SG inheritable to tunnel devices.
7269 */
802ab55a 7270 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7271
0d89d203
SH
7272 /* Make NETIF_F_SG inheritable to MPLS.
7273 */
7274 dev->mpls_features |= NETIF_F_SG;
7275
7ffbe3fd
JB
7276 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7277 ret = notifier_to_errno(ret);
7278 if (ret)
7279 goto err_uninit;
7280
8b41d188 7281 ret = netdev_register_kobject(dev);
b17a7c17 7282 if (ret)
7ce1b0ed 7283 goto err_uninit;
b17a7c17
SH
7284 dev->reg_state = NETREG_REGISTERED;
7285
6cb6a27c 7286 __netdev_update_features(dev);
8e9b59b2 7287
1da177e4
LT
7288 /*
7289 * Default initial state at registry is that the
7290 * device is present.
7291 */
7292
7293 set_bit(__LINK_STATE_PRESENT, &dev->state);
7294
8f4cccbb
BH
7295 linkwatch_init_dev(dev);
7296
1da177e4 7297 dev_init_scheduler(dev);
1da177e4 7298 dev_hold(dev);
ce286d32 7299 list_netdevice(dev);
7bf23575 7300 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7301
948b337e
JP
7302 /* If the device has permanent device address, driver should
7303 * set dev_addr and also addr_assign_type should be set to
7304 * NET_ADDR_PERM (default value).
7305 */
7306 if (dev->addr_assign_type == NET_ADDR_PERM)
7307 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7308
1da177e4 7309 /* Notify protocols, that a new device appeared. */
056925ab 7310 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7311 ret = notifier_to_errno(ret);
93ee31f1
DL
7312 if (ret) {
7313 rollback_registered(dev);
7314 dev->reg_state = NETREG_UNREGISTERED;
7315 }
d90a909e
EB
7316 /*
7317 * Prevent userspace races by waiting until the network
7318 * device is fully setup before sending notifications.
7319 */
a2835763
PM
7320 if (!dev->rtnl_link_ops ||
7321 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7322 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7323
7324out:
7325 return ret;
7ce1b0ed
HX
7326
7327err_uninit:
d314774c
SH
7328 if (dev->netdev_ops->ndo_uninit)
7329 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7330 goto out;
1da177e4 7331}
d1b19dff 7332EXPORT_SYMBOL(register_netdevice);
1da177e4 7333
937f1ba5
BH
7334/**
7335 * init_dummy_netdev - init a dummy network device for NAPI
7336 * @dev: device to init
7337 *
7338 * This takes a network device structure and initialize the minimum
7339 * amount of fields so it can be used to schedule NAPI polls without
7340 * registering a full blown interface. This is to be used by drivers
7341 * that need to tie several hardware interfaces to a single NAPI
7342 * poll scheduler due to HW limitations.
7343 */
7344int init_dummy_netdev(struct net_device *dev)
7345{
7346 /* Clear everything. Note we don't initialize spinlocks
7347 * are they aren't supposed to be taken by any of the
7348 * NAPI code and this dummy netdev is supposed to be
7349 * only ever used for NAPI polls
7350 */
7351 memset(dev, 0, sizeof(struct net_device));
7352
7353 /* make sure we BUG if trying to hit standard
7354 * register/unregister code path
7355 */
7356 dev->reg_state = NETREG_DUMMY;
7357
937f1ba5
BH
7358 /* NAPI wants this */
7359 INIT_LIST_HEAD(&dev->napi_list);
7360
7361 /* a dummy interface is started by default */
7362 set_bit(__LINK_STATE_PRESENT, &dev->state);
7363 set_bit(__LINK_STATE_START, &dev->state);
7364
29b4433d
ED
7365 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7366 * because users of this 'device' dont need to change
7367 * its refcount.
7368 */
7369
937f1ba5
BH
7370 return 0;
7371}
7372EXPORT_SYMBOL_GPL(init_dummy_netdev);
7373
7374
1da177e4
LT
7375/**
7376 * register_netdev - register a network device
7377 * @dev: device to register
7378 *
7379 * Take a completed network device structure and add it to the kernel
7380 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7381 * chain. 0 is returned on success. A negative errno code is returned
7382 * on a failure to set up the device, or if the name is a duplicate.
7383 *
38b4da38 7384 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7385 * and expands the device name if you passed a format string to
7386 * alloc_netdev.
7387 */
7388int register_netdev(struct net_device *dev)
7389{
7390 int err;
7391
7392 rtnl_lock();
1da177e4 7393 err = register_netdevice(dev);
1da177e4
LT
7394 rtnl_unlock();
7395 return err;
7396}
7397EXPORT_SYMBOL(register_netdev);
7398
29b4433d
ED
7399int netdev_refcnt_read(const struct net_device *dev)
7400{
7401 int i, refcnt = 0;
7402
7403 for_each_possible_cpu(i)
7404 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7405 return refcnt;
7406}
7407EXPORT_SYMBOL(netdev_refcnt_read);
7408
2c53040f 7409/**
1da177e4 7410 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7411 * @dev: target net_device
1da177e4
LT
7412 *
7413 * This is called when unregistering network devices.
7414 *
7415 * Any protocol or device that holds a reference should register
7416 * for netdevice notification, and cleanup and put back the
7417 * reference if they receive an UNREGISTER event.
7418 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7419 * call dev_put.
1da177e4
LT
7420 */
7421static void netdev_wait_allrefs(struct net_device *dev)
7422{
7423 unsigned long rebroadcast_time, warning_time;
29b4433d 7424 int refcnt;
1da177e4 7425
e014debe
ED
7426 linkwatch_forget_dev(dev);
7427
1da177e4 7428 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7429 refcnt = netdev_refcnt_read(dev);
7430
7431 while (refcnt != 0) {
1da177e4 7432 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7433 rtnl_lock();
1da177e4
LT
7434
7435 /* Rebroadcast unregister notification */
056925ab 7436 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7437
748e2d93 7438 __rtnl_unlock();
0115e8e3 7439 rcu_barrier();
748e2d93
ED
7440 rtnl_lock();
7441
0115e8e3 7442 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7443 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7444 &dev->state)) {
7445 /* We must not have linkwatch events
7446 * pending on unregister. If this
7447 * happens, we simply run the queue
7448 * unscheduled, resulting in a noop
7449 * for this device.
7450 */
7451 linkwatch_run_queue();
7452 }
7453
6756ae4b 7454 __rtnl_unlock();
1da177e4
LT
7455
7456 rebroadcast_time = jiffies;
7457 }
7458
7459 msleep(250);
7460
29b4433d
ED
7461 refcnt = netdev_refcnt_read(dev);
7462
1da177e4 7463 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7464 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7465 dev->name, refcnt);
1da177e4
LT
7466 warning_time = jiffies;
7467 }
7468 }
7469}
7470
7471/* The sequence is:
7472 *
7473 * rtnl_lock();
7474 * ...
7475 * register_netdevice(x1);
7476 * register_netdevice(x2);
7477 * ...
7478 * unregister_netdevice(y1);
7479 * unregister_netdevice(y2);
7480 * ...
7481 * rtnl_unlock();
7482 * free_netdev(y1);
7483 * free_netdev(y2);
7484 *
58ec3b4d 7485 * We are invoked by rtnl_unlock().
1da177e4 7486 * This allows us to deal with problems:
b17a7c17 7487 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7488 * without deadlocking with linkwatch via keventd.
7489 * 2) Since we run with the RTNL semaphore not held, we can sleep
7490 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7491 *
7492 * We must not return until all unregister events added during
7493 * the interval the lock was held have been completed.
1da177e4 7494 */
1da177e4
LT
7495void netdev_run_todo(void)
7496{
626ab0e6 7497 struct list_head list;
1da177e4 7498
1da177e4 7499 /* Snapshot list, allow later requests */
626ab0e6 7500 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7501
7502 __rtnl_unlock();
626ab0e6 7503
0115e8e3
ED
7504
7505 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7506 if (!list_empty(&list))
7507 rcu_barrier();
7508
1da177e4
LT
7509 while (!list_empty(&list)) {
7510 struct net_device *dev
e5e26d75 7511 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7512 list_del(&dev->todo_list);
7513
748e2d93 7514 rtnl_lock();
0115e8e3 7515 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7516 __rtnl_unlock();
0115e8e3 7517
b17a7c17 7518 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7519 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7520 dev->name, dev->reg_state);
7521 dump_stack();
7522 continue;
7523 }
1da177e4 7524
b17a7c17 7525 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7526
b17a7c17 7527 netdev_wait_allrefs(dev);
1da177e4 7528
b17a7c17 7529 /* paranoia */
29b4433d 7530 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7531 BUG_ON(!list_empty(&dev->ptype_all));
7532 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7533 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7534 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7535 WARN_ON(dev->dn_ptr);
1da177e4 7536
b17a7c17
SH
7537 if (dev->destructor)
7538 dev->destructor(dev);
9093bbb2 7539
50624c93
EB
7540 /* Report a network device has been unregistered */
7541 rtnl_lock();
7542 dev_net(dev)->dev_unreg_count--;
7543 __rtnl_unlock();
7544 wake_up(&netdev_unregistering_wq);
7545
9093bbb2
SH
7546 /* Free network device */
7547 kobject_put(&dev->dev.kobj);
1da177e4 7548 }
1da177e4
LT
7549}
7550
9256645a
JW
7551/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7552 * all the same fields in the same order as net_device_stats, with only
7553 * the type differing, but rtnl_link_stats64 may have additional fields
7554 * at the end for newer counters.
3cfde79c 7555 */
77a1abf5
ED
7556void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7557 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7558{
7559#if BITS_PER_LONG == 64
9256645a 7560 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7561 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7562 /* zero out counters that only exist in rtnl_link_stats64 */
7563 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7564 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7565#else
9256645a 7566 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7567 const unsigned long *src = (const unsigned long *)netdev_stats;
7568 u64 *dst = (u64 *)stats64;
7569
9256645a 7570 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7571 for (i = 0; i < n; i++)
7572 dst[i] = src[i];
9256645a
JW
7573 /* zero out counters that only exist in rtnl_link_stats64 */
7574 memset((char *)stats64 + n * sizeof(u64), 0,
7575 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7576#endif
7577}
77a1abf5 7578EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7579
eeda3fd6
SH
7580/**
7581 * dev_get_stats - get network device statistics
7582 * @dev: device to get statistics from
28172739 7583 * @storage: place to store stats
eeda3fd6 7584 *
d7753516
BH
7585 * Get network statistics from device. Return @storage.
7586 * The device driver may provide its own method by setting
7587 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7588 * otherwise the internal statistics structure is used.
eeda3fd6 7589 */
d7753516
BH
7590struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7591 struct rtnl_link_stats64 *storage)
7004bf25 7592{
eeda3fd6
SH
7593 const struct net_device_ops *ops = dev->netdev_ops;
7594
28172739
ED
7595 if (ops->ndo_get_stats64) {
7596 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7597 ops->ndo_get_stats64(dev, storage);
7598 } else if (ops->ndo_get_stats) {
3cfde79c 7599 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7600 } else {
7601 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7602 }
caf586e5 7603 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7604 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7605 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7606 return storage;
c45d286e 7607}
eeda3fd6 7608EXPORT_SYMBOL(dev_get_stats);
c45d286e 7609
24824a09 7610struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7611{
24824a09 7612 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7613
24824a09
ED
7614#ifdef CONFIG_NET_CLS_ACT
7615 if (queue)
7616 return queue;
7617 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7618 if (!queue)
7619 return NULL;
7620 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7621 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7622 queue->qdisc_sleeping = &noop_qdisc;
7623 rcu_assign_pointer(dev->ingress_queue, queue);
7624#endif
7625 return queue;
bb949fbd
DM
7626}
7627
2c60db03
ED
7628static const struct ethtool_ops default_ethtool_ops;
7629
d07d7507
SG
7630void netdev_set_default_ethtool_ops(struct net_device *dev,
7631 const struct ethtool_ops *ops)
7632{
7633 if (dev->ethtool_ops == &default_ethtool_ops)
7634 dev->ethtool_ops = ops;
7635}
7636EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7637
74d332c1
ED
7638void netdev_freemem(struct net_device *dev)
7639{
7640 char *addr = (char *)dev - dev->padded;
7641
4cb28970 7642 kvfree(addr);
74d332c1
ED
7643}
7644
1da177e4 7645/**
36909ea4 7646 * alloc_netdev_mqs - allocate network device
c835a677
TG
7647 * @sizeof_priv: size of private data to allocate space for
7648 * @name: device name format string
7649 * @name_assign_type: origin of device name
7650 * @setup: callback to initialize device
7651 * @txqs: the number of TX subqueues to allocate
7652 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7653 *
7654 * Allocates a struct net_device with private data area for driver use
90e51adf 7655 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7656 * for each queue on the device.
1da177e4 7657 */
36909ea4 7658struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7659 unsigned char name_assign_type,
36909ea4
TH
7660 void (*setup)(struct net_device *),
7661 unsigned int txqs, unsigned int rxqs)
1da177e4 7662{
1da177e4 7663 struct net_device *dev;
7943986c 7664 size_t alloc_size;
1ce8e7b5 7665 struct net_device *p;
1da177e4 7666
b6fe17d6
SH
7667 BUG_ON(strlen(name) >= sizeof(dev->name));
7668
36909ea4 7669 if (txqs < 1) {
7b6cd1ce 7670 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7671 return NULL;
7672 }
7673
a953be53 7674#ifdef CONFIG_SYSFS
36909ea4 7675 if (rxqs < 1) {
7b6cd1ce 7676 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7677 return NULL;
7678 }
7679#endif
7680
fd2ea0a7 7681 alloc_size = sizeof(struct net_device);
d1643d24
AD
7682 if (sizeof_priv) {
7683 /* ensure 32-byte alignment of private area */
1ce8e7b5 7684 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7685 alloc_size += sizeof_priv;
7686 }
7687 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7688 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7689
74d332c1
ED
7690 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7691 if (!p)
7692 p = vzalloc(alloc_size);
62b5942a 7693 if (!p)
1da177e4 7694 return NULL;
1da177e4 7695
1ce8e7b5 7696 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7697 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7698
29b4433d
ED
7699 dev->pcpu_refcnt = alloc_percpu(int);
7700 if (!dev->pcpu_refcnt)
74d332c1 7701 goto free_dev;
ab9c73cc 7702
ab9c73cc 7703 if (dev_addr_init(dev))
29b4433d 7704 goto free_pcpu;
ab9c73cc 7705
22bedad3 7706 dev_mc_init(dev);
a748ee24 7707 dev_uc_init(dev);
ccffad25 7708
c346dca1 7709 dev_net_set(dev, &init_net);
1da177e4 7710
8d3bdbd5 7711 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7712 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7713
8d3bdbd5
DM
7714 INIT_LIST_HEAD(&dev->napi_list);
7715 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7716 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7717 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7718 INIT_LIST_HEAD(&dev->adj_list.upper);
7719 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
7720 INIT_LIST_HEAD(&dev->ptype_all);
7721 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7722#ifdef CONFIG_NET_SCHED
7723 hash_init(dev->qdisc_hash);
7724#endif
02875878 7725 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7726 setup(dev);
7727
a813104d 7728 if (!dev->tx_queue_len) {
f84bb1ea 7729 dev->priv_flags |= IFF_NO_QUEUE;
11597084 7730 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 7731 }
906470c1 7732
36909ea4
TH
7733 dev->num_tx_queues = txqs;
7734 dev->real_num_tx_queues = txqs;
ed9af2e8 7735 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7736 goto free_all;
e8a0464c 7737
a953be53 7738#ifdef CONFIG_SYSFS
36909ea4
TH
7739 dev->num_rx_queues = rxqs;
7740 dev->real_num_rx_queues = rxqs;
fe822240 7741 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7742 goto free_all;
df334545 7743#endif
0a9627f2 7744
1da177e4 7745 strcpy(dev->name, name);
c835a677 7746 dev->name_assign_type = name_assign_type;
cbda10fa 7747 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7748 if (!dev->ethtool_ops)
7749 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7750
7751 nf_hook_ingress_init(dev);
7752
1da177e4 7753 return dev;
ab9c73cc 7754
8d3bdbd5
DM
7755free_all:
7756 free_netdev(dev);
7757 return NULL;
7758
29b4433d
ED
7759free_pcpu:
7760 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7761free_dev:
7762 netdev_freemem(dev);
ab9c73cc 7763 return NULL;
1da177e4 7764}
36909ea4 7765EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7766
7767/**
7768 * free_netdev - free network device
7769 * @dev: device
7770 *
4ec93edb
YH
7771 * This function does the last stage of destroying an allocated device
7772 * interface. The reference to the device object is released.
1da177e4 7773 * If this is the last reference then it will be freed.
93d05d4a 7774 * Must be called in process context.
1da177e4
LT
7775 */
7776void free_netdev(struct net_device *dev)
7777{
d565b0a1
HX
7778 struct napi_struct *p, *n;
7779
93d05d4a 7780 might_sleep();
60877a32 7781 netif_free_tx_queues(dev);
a953be53 7782#ifdef CONFIG_SYSFS
10595902 7783 kvfree(dev->_rx);
fe822240 7784#endif
e8a0464c 7785
33d480ce 7786 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7787
f001fde5
JP
7788 /* Flush device addresses */
7789 dev_addr_flush(dev);
7790
d565b0a1
HX
7791 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7792 netif_napi_del(p);
7793
29b4433d
ED
7794 free_percpu(dev->pcpu_refcnt);
7795 dev->pcpu_refcnt = NULL;
7796
3041a069 7797 /* Compatibility with error handling in drivers */
1da177e4 7798 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7799 netdev_freemem(dev);
1da177e4
LT
7800 return;
7801 }
7802
7803 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7804 dev->reg_state = NETREG_RELEASED;
7805
43cb76d9
GKH
7806 /* will free via device release */
7807 put_device(&dev->dev);
1da177e4 7808}
d1b19dff 7809EXPORT_SYMBOL(free_netdev);
4ec93edb 7810
f0db275a
SH
7811/**
7812 * synchronize_net - Synchronize with packet receive processing
7813 *
7814 * Wait for packets currently being received to be done.
7815 * Does not block later packets from starting.
7816 */
4ec93edb 7817void synchronize_net(void)
1da177e4
LT
7818{
7819 might_sleep();
be3fc413
ED
7820 if (rtnl_is_locked())
7821 synchronize_rcu_expedited();
7822 else
7823 synchronize_rcu();
1da177e4 7824}
d1b19dff 7825EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7826
7827/**
44a0873d 7828 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7829 * @dev: device
44a0873d 7830 * @head: list
6ebfbc06 7831 *
1da177e4 7832 * This function shuts down a device interface and removes it
d59b54b1 7833 * from the kernel tables.
44a0873d 7834 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7835 *
7836 * Callers must hold the rtnl semaphore. You may want
7837 * unregister_netdev() instead of this.
7838 */
7839
44a0873d 7840void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7841{
a6620712
HX
7842 ASSERT_RTNL();
7843
44a0873d 7844 if (head) {
9fdce099 7845 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7846 } else {
7847 rollback_registered(dev);
7848 /* Finish processing unregister after unlock */
7849 net_set_todo(dev);
7850 }
1da177e4 7851}
44a0873d 7852EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7853
9b5e383c
ED
7854/**
7855 * unregister_netdevice_many - unregister many devices
7856 * @head: list of devices
87757a91
ED
7857 *
7858 * Note: As most callers use a stack allocated list_head,
7859 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7860 */
7861void unregister_netdevice_many(struct list_head *head)
7862{
7863 struct net_device *dev;
7864
7865 if (!list_empty(head)) {
7866 rollback_registered_many(head);
7867 list_for_each_entry(dev, head, unreg_list)
7868 net_set_todo(dev);
87757a91 7869 list_del(head);
9b5e383c
ED
7870 }
7871}
63c8099d 7872EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7873
1da177e4
LT
7874/**
7875 * unregister_netdev - remove device from the kernel
7876 * @dev: device
7877 *
7878 * This function shuts down a device interface and removes it
d59b54b1 7879 * from the kernel tables.
1da177e4
LT
7880 *
7881 * This is just a wrapper for unregister_netdevice that takes
7882 * the rtnl semaphore. In general you want to use this and not
7883 * unregister_netdevice.
7884 */
7885void unregister_netdev(struct net_device *dev)
7886{
7887 rtnl_lock();
7888 unregister_netdevice(dev);
7889 rtnl_unlock();
7890}
1da177e4
LT
7891EXPORT_SYMBOL(unregister_netdev);
7892
ce286d32
EB
7893/**
7894 * dev_change_net_namespace - move device to different nethost namespace
7895 * @dev: device
7896 * @net: network namespace
7897 * @pat: If not NULL name pattern to try if the current device name
7898 * is already taken in the destination network namespace.
7899 *
7900 * This function shuts down a device interface and moves it
7901 * to a new network namespace. On success 0 is returned, on
7902 * a failure a netagive errno code is returned.
7903 *
7904 * Callers must hold the rtnl semaphore.
7905 */
7906
7907int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7908{
ce286d32
EB
7909 int err;
7910
7911 ASSERT_RTNL();
7912
7913 /* Don't allow namespace local devices to be moved. */
7914 err = -EINVAL;
7915 if (dev->features & NETIF_F_NETNS_LOCAL)
7916 goto out;
7917
7918 /* Ensure the device has been registrered */
ce286d32
EB
7919 if (dev->reg_state != NETREG_REGISTERED)
7920 goto out;
7921
7922 /* Get out if there is nothing todo */
7923 err = 0;
878628fb 7924 if (net_eq(dev_net(dev), net))
ce286d32
EB
7925 goto out;
7926
7927 /* Pick the destination device name, and ensure
7928 * we can use it in the destination network namespace.
7929 */
7930 err = -EEXIST;
d9031024 7931 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7932 /* We get here if we can't use the current device name */
7933 if (!pat)
7934 goto out;
828de4f6 7935 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7936 goto out;
7937 }
7938
7939 /*
7940 * And now a mini version of register_netdevice unregister_netdevice.
7941 */
7942
7943 /* If device is running close it first. */
9b772652 7944 dev_close(dev);
ce286d32
EB
7945
7946 /* And unlink it from device chain */
7947 err = -ENODEV;
7948 unlist_netdevice(dev);
7949
7950 synchronize_net();
7951
7952 /* Shutdown queueing discipline. */
7953 dev_shutdown(dev);
7954
7955 /* Notify protocols, that we are about to destroy
7956 this device. They should clean all the things.
3b27e105
DL
7957
7958 Note that dev->reg_state stays at NETREG_REGISTERED.
7959 This is wanted because this way 8021q and macvlan know
7960 the device is just moving and can keep their slaves up.
ce286d32
EB
7961 */
7962 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7963 rcu_barrier();
7964 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7965 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7966
7967 /*
7968 * Flush the unicast and multicast chains
7969 */
a748ee24 7970 dev_uc_flush(dev);
22bedad3 7971 dev_mc_flush(dev);
ce286d32 7972
4e66ae2e
SH
7973 /* Send a netdev-removed uevent to the old namespace */
7974 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7975 netdev_adjacent_del_links(dev);
4e66ae2e 7976
ce286d32 7977 /* Actually switch the network namespace */
c346dca1 7978 dev_net_set(dev, net);
ce286d32 7979
ce286d32 7980 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7981 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7982 dev->ifindex = dev_new_index(net);
ce286d32 7983
4e66ae2e
SH
7984 /* Send a netdev-add uevent to the new namespace */
7985 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7986 netdev_adjacent_add_links(dev);
4e66ae2e 7987
8b41d188 7988 /* Fixup kobjects */
a1b3f594 7989 err = device_rename(&dev->dev, dev->name);
8b41d188 7990 WARN_ON(err);
ce286d32
EB
7991
7992 /* Add the device back in the hashes */
7993 list_netdevice(dev);
7994
7995 /* Notify protocols, that a new device appeared. */
7996 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7997
d90a909e
EB
7998 /*
7999 * Prevent userspace races by waiting until the network
8000 * device is fully setup before sending notifications.
8001 */
7f294054 8002 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8003
ce286d32
EB
8004 synchronize_net();
8005 err = 0;
8006out:
8007 return err;
8008}
463d0183 8009EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8010
f0bf90de 8011static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8012{
8013 struct sk_buff **list_skb;
1da177e4 8014 struct sk_buff *skb;
f0bf90de 8015 unsigned int cpu;
1da177e4
LT
8016 struct softnet_data *sd, *oldsd;
8017
1da177e4
LT
8018 local_irq_disable();
8019 cpu = smp_processor_id();
8020 sd = &per_cpu(softnet_data, cpu);
8021 oldsd = &per_cpu(softnet_data, oldcpu);
8022
8023 /* Find end of our completion_queue. */
8024 list_skb = &sd->completion_queue;
8025 while (*list_skb)
8026 list_skb = &(*list_skb)->next;
8027 /* Append completion queue from offline CPU. */
8028 *list_skb = oldsd->completion_queue;
8029 oldsd->completion_queue = NULL;
8030
1da177e4 8031 /* Append output queue from offline CPU. */
a9cbd588
CG
8032 if (oldsd->output_queue) {
8033 *sd->output_queue_tailp = oldsd->output_queue;
8034 sd->output_queue_tailp = oldsd->output_queue_tailp;
8035 oldsd->output_queue = NULL;
8036 oldsd->output_queue_tailp = &oldsd->output_queue;
8037 }
ac64da0b
ED
8038 /* Append NAPI poll list from offline CPU, with one exception :
8039 * process_backlog() must be called by cpu owning percpu backlog.
8040 * We properly handle process_queue & input_pkt_queue later.
8041 */
8042 while (!list_empty(&oldsd->poll_list)) {
8043 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8044 struct napi_struct,
8045 poll_list);
8046
8047 list_del_init(&napi->poll_list);
8048 if (napi->poll == process_backlog)
8049 napi->state = 0;
8050 else
8051 ____napi_schedule(sd, napi);
264524d5 8052 }
1da177e4
LT
8053
8054 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8055 local_irq_enable();
8056
8057 /* Process offline CPU's input_pkt_queue */
76cc8b13 8058 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8059 netif_rx_ni(skb);
76cc8b13 8060 input_queue_head_incr(oldsd);
fec5e652 8061 }
ac64da0b 8062 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8063 netif_rx_ni(skb);
76cc8b13
TH
8064 input_queue_head_incr(oldsd);
8065 }
1da177e4 8066
f0bf90de 8067 return 0;
1da177e4 8068}
1da177e4 8069
7f353bf2 8070/**
b63365a2
HX
8071 * netdev_increment_features - increment feature set by one
8072 * @all: current feature set
8073 * @one: new feature set
8074 * @mask: mask feature set
7f353bf2
HX
8075 *
8076 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8077 * @one to the master device with current feature set @all. Will not
8078 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8079 */
c8f44aff
MM
8080netdev_features_t netdev_increment_features(netdev_features_t all,
8081 netdev_features_t one, netdev_features_t mask)
b63365a2 8082{
c8cd0989 8083 if (mask & NETIF_F_HW_CSUM)
a188222b 8084 mask |= NETIF_F_CSUM_MASK;
1742f183 8085 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8086
a188222b 8087 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8088 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8089
1742f183 8090 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8091 if (all & NETIF_F_HW_CSUM)
8092 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8093
8094 return all;
8095}
b63365a2 8096EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8097
430f03cd 8098static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8099{
8100 int i;
8101 struct hlist_head *hash;
8102
8103 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8104 if (hash != NULL)
8105 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8106 INIT_HLIST_HEAD(&hash[i]);
8107
8108 return hash;
8109}
8110
881d966b 8111/* Initialize per network namespace state */
4665079c 8112static int __net_init netdev_init(struct net *net)
881d966b 8113{
734b6541
RM
8114 if (net != &init_net)
8115 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8116
30d97d35
PE
8117 net->dev_name_head = netdev_create_hash();
8118 if (net->dev_name_head == NULL)
8119 goto err_name;
881d966b 8120
30d97d35
PE
8121 net->dev_index_head = netdev_create_hash();
8122 if (net->dev_index_head == NULL)
8123 goto err_idx;
881d966b
EB
8124
8125 return 0;
30d97d35
PE
8126
8127err_idx:
8128 kfree(net->dev_name_head);
8129err_name:
8130 return -ENOMEM;
881d966b
EB
8131}
8132
f0db275a
SH
8133/**
8134 * netdev_drivername - network driver for the device
8135 * @dev: network device
f0db275a
SH
8136 *
8137 * Determine network driver for device.
8138 */
3019de12 8139const char *netdev_drivername(const struct net_device *dev)
6579e57b 8140{
cf04a4c7
SH
8141 const struct device_driver *driver;
8142 const struct device *parent;
3019de12 8143 const char *empty = "";
6579e57b
AV
8144
8145 parent = dev->dev.parent;
6579e57b 8146 if (!parent)
3019de12 8147 return empty;
6579e57b
AV
8148
8149 driver = parent->driver;
8150 if (driver && driver->name)
3019de12
DM
8151 return driver->name;
8152 return empty;
6579e57b
AV
8153}
8154
6ea754eb
JP
8155static void __netdev_printk(const char *level, const struct net_device *dev,
8156 struct va_format *vaf)
256df2f3 8157{
b004ff49 8158 if (dev && dev->dev.parent) {
6ea754eb
JP
8159 dev_printk_emit(level[1] - '0',
8160 dev->dev.parent,
8161 "%s %s %s%s: %pV",
8162 dev_driver_string(dev->dev.parent),
8163 dev_name(dev->dev.parent),
8164 netdev_name(dev), netdev_reg_state(dev),
8165 vaf);
b004ff49 8166 } else if (dev) {
6ea754eb
JP
8167 printk("%s%s%s: %pV",
8168 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8169 } else {
6ea754eb 8170 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8171 }
256df2f3
JP
8172}
8173
6ea754eb
JP
8174void netdev_printk(const char *level, const struct net_device *dev,
8175 const char *format, ...)
256df2f3
JP
8176{
8177 struct va_format vaf;
8178 va_list args;
256df2f3
JP
8179
8180 va_start(args, format);
8181
8182 vaf.fmt = format;
8183 vaf.va = &args;
8184
6ea754eb 8185 __netdev_printk(level, dev, &vaf);
b004ff49 8186
256df2f3 8187 va_end(args);
256df2f3
JP
8188}
8189EXPORT_SYMBOL(netdev_printk);
8190
8191#define define_netdev_printk_level(func, level) \
6ea754eb 8192void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8193{ \
256df2f3
JP
8194 struct va_format vaf; \
8195 va_list args; \
8196 \
8197 va_start(args, fmt); \
8198 \
8199 vaf.fmt = fmt; \
8200 vaf.va = &args; \
8201 \
6ea754eb 8202 __netdev_printk(level, dev, &vaf); \
b004ff49 8203 \
256df2f3 8204 va_end(args); \
256df2f3
JP
8205} \
8206EXPORT_SYMBOL(func);
8207
8208define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8209define_netdev_printk_level(netdev_alert, KERN_ALERT);
8210define_netdev_printk_level(netdev_crit, KERN_CRIT);
8211define_netdev_printk_level(netdev_err, KERN_ERR);
8212define_netdev_printk_level(netdev_warn, KERN_WARNING);
8213define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8214define_netdev_printk_level(netdev_info, KERN_INFO);
8215
4665079c 8216static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8217{
8218 kfree(net->dev_name_head);
8219 kfree(net->dev_index_head);
8220}
8221
022cbae6 8222static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8223 .init = netdev_init,
8224 .exit = netdev_exit,
8225};
8226
4665079c 8227static void __net_exit default_device_exit(struct net *net)
ce286d32 8228{
e008b5fc 8229 struct net_device *dev, *aux;
ce286d32 8230 /*
e008b5fc 8231 * Push all migratable network devices back to the
ce286d32
EB
8232 * initial network namespace
8233 */
8234 rtnl_lock();
e008b5fc 8235 for_each_netdev_safe(net, dev, aux) {
ce286d32 8236 int err;
aca51397 8237 char fb_name[IFNAMSIZ];
ce286d32
EB
8238
8239 /* Ignore unmoveable devices (i.e. loopback) */
8240 if (dev->features & NETIF_F_NETNS_LOCAL)
8241 continue;
8242
e008b5fc
EB
8243 /* Leave virtual devices for the generic cleanup */
8244 if (dev->rtnl_link_ops)
8245 continue;
d0c082ce 8246
25985edc 8247 /* Push remaining network devices to init_net */
aca51397
PE
8248 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8249 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8250 if (err) {
7b6cd1ce
JP
8251 pr_emerg("%s: failed to move %s to init_net: %d\n",
8252 __func__, dev->name, err);
aca51397 8253 BUG();
ce286d32
EB
8254 }
8255 }
8256 rtnl_unlock();
8257}
8258
50624c93
EB
8259static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8260{
8261 /* Return with the rtnl_lock held when there are no network
8262 * devices unregistering in any network namespace in net_list.
8263 */
8264 struct net *net;
8265 bool unregistering;
ff960a73 8266 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8267
ff960a73 8268 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8269 for (;;) {
50624c93
EB
8270 unregistering = false;
8271 rtnl_lock();
8272 list_for_each_entry(net, net_list, exit_list) {
8273 if (net->dev_unreg_count > 0) {
8274 unregistering = true;
8275 break;
8276 }
8277 }
8278 if (!unregistering)
8279 break;
8280 __rtnl_unlock();
ff960a73
PZ
8281
8282 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8283 }
ff960a73 8284 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8285}
8286
04dc7f6b
EB
8287static void __net_exit default_device_exit_batch(struct list_head *net_list)
8288{
8289 /* At exit all network devices most be removed from a network
b595076a 8290 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8291 * Do this across as many network namespaces as possible to
8292 * improve batching efficiency.
8293 */
8294 struct net_device *dev;
8295 struct net *net;
8296 LIST_HEAD(dev_kill_list);
8297
50624c93
EB
8298 /* To prevent network device cleanup code from dereferencing
8299 * loopback devices or network devices that have been freed
8300 * wait here for all pending unregistrations to complete,
8301 * before unregistring the loopback device and allowing the
8302 * network namespace be freed.
8303 *
8304 * The netdev todo list containing all network devices
8305 * unregistrations that happen in default_device_exit_batch
8306 * will run in the rtnl_unlock() at the end of
8307 * default_device_exit_batch.
8308 */
8309 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8310 list_for_each_entry(net, net_list, exit_list) {
8311 for_each_netdev_reverse(net, dev) {
b0ab2fab 8312 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8313 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8314 else
8315 unregister_netdevice_queue(dev, &dev_kill_list);
8316 }
8317 }
8318 unregister_netdevice_many(&dev_kill_list);
8319 rtnl_unlock();
8320}
8321
022cbae6 8322static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8323 .exit = default_device_exit,
04dc7f6b 8324 .exit_batch = default_device_exit_batch,
ce286d32
EB
8325};
8326
1da177e4
LT
8327/*
8328 * Initialize the DEV module. At boot time this walks the device list and
8329 * unhooks any devices that fail to initialise (normally hardware not
8330 * present) and leaves us with a valid list of present and active devices.
8331 *
8332 */
8333
8334/*
8335 * This is called single threaded during boot, so no need
8336 * to take the rtnl semaphore.
8337 */
8338static int __init net_dev_init(void)
8339{
8340 int i, rc = -ENOMEM;
8341
8342 BUG_ON(!dev_boot_phase);
8343
1da177e4
LT
8344 if (dev_proc_init())
8345 goto out;
8346
8b41d188 8347 if (netdev_kobject_init())
1da177e4
LT
8348 goto out;
8349
8350 INIT_LIST_HEAD(&ptype_all);
82d8a867 8351 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8352 INIT_LIST_HEAD(&ptype_base[i]);
8353
62532da9
VY
8354 INIT_LIST_HEAD(&offload_base);
8355
881d966b
EB
8356 if (register_pernet_subsys(&netdev_net_ops))
8357 goto out;
1da177e4
LT
8358
8359 /*
8360 * Initialise the packet receive queues.
8361 */
8362
6f912042 8363 for_each_possible_cpu(i) {
41852497 8364 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8365 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8366
41852497
ED
8367 INIT_WORK(flush, flush_backlog);
8368
e36fa2f7 8369 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8370 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8371 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8372 sd->output_queue_tailp = &sd->output_queue;
df334545 8373#ifdef CONFIG_RPS
e36fa2f7
ED
8374 sd->csd.func = rps_trigger_softirq;
8375 sd->csd.info = sd;
e36fa2f7 8376 sd->cpu = i;
1e94d72f 8377#endif
0a9627f2 8378
e36fa2f7
ED
8379 sd->backlog.poll = process_backlog;
8380 sd->backlog.weight = weight_p;
1da177e4
LT
8381 }
8382
1da177e4
LT
8383 dev_boot_phase = 0;
8384
505d4f73
EB
8385 /* The loopback device is special if any other network devices
8386 * is present in a network namespace the loopback device must
8387 * be present. Since we now dynamically allocate and free the
8388 * loopback device ensure this invariant is maintained by
8389 * keeping the loopback device as the first device on the
8390 * list of network devices. Ensuring the loopback devices
8391 * is the first device that appears and the last network device
8392 * that disappears.
8393 */
8394 if (register_pernet_device(&loopback_net_ops))
8395 goto out;
8396
8397 if (register_pernet_device(&default_device_ops))
8398 goto out;
8399
962cf36c
CM
8400 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8401 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8402
f0bf90de
SAS
8403 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8404 NULL, dev_cpu_dead);
8405 WARN_ON(rc < 0);
f38a9eb1 8406 dst_subsys_init();
1da177e4
LT
8407 rc = 0;
8408out:
8409 return rc;
8410}
8411
8412subsys_initcall(net_dev_init);