]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/core/dev.c
xdp: sample program for new bpf_redirect helper
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4
LT
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
a7862b45 98#include <linux/bpf.h>
b5cdae32 99#include <linux/bpf_trace.h>
457c4cbc 100#include <net/net_namespace.h>
1da177e4 101#include <net/sock.h>
02d62e86 102#include <net/busy_poll.h>
1da177e4 103#include <linux/rtnetlink.h>
1da177e4 104#include <linux/stat.h>
1da177e4 105#include <net/dst.h>
fc4099f1 106#include <net/dst_metadata.h>
1da177e4 107#include <net/pkt_sched.h>
87d83093 108#include <net/pkt_cls.h>
1da177e4 109#include <net/checksum.h>
44540960 110#include <net/xfrm.h>
1da177e4
LT
111#include <linux/highmem.h>
112#include <linux/init.h>
1da177e4 113#include <linux/module.h>
1da177e4
LT
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
25cd9ba0 127#include <net/mpls.h>
8f0f2223
DM
128#include <linux/ipv6.h>
129#include <linux/in.h>
b6b2fed1
DM
130#include <linux/jhash.h>
131#include <linux/random.h>
9cbc1cb8 132#include <trace/events/napi.h>
cf66ba58 133#include <trace/events/net.h>
07dc22e7 134#include <trace/events/skb.h>
5acbbd42 135#include <linux/pci.h>
caeda9b9 136#include <linux/inetdevice.h>
c445477d 137#include <linux/cpu_rmap.h>
c5905afb 138#include <linux/static_key.h>
af12fa6e 139#include <linux/hashtable.h>
60877a32 140#include <linux/vmalloc.h>
529d0489 141#include <linux/if_macvlan.h>
e7fd2885 142#include <linux/errqueue.h>
3b47d303 143#include <linux/hrtimer.h>
e687ad60 144#include <linux/netfilter_ingress.h>
40e4e713 145#include <linux/crash_dump.h>
b72b5bf6 146#include <linux/sctp.h>
1da177e4 147
342709ef
PE
148#include "net-sysfs.h"
149
d565b0a1
HX
150/* Instead of increasing this, you should create a hash table. */
151#define MAX_GRO_SKBS 8
152
5d38a079
HX
153/* This should be increased if a protocol with a bigger head is added. */
154#define GRO_MAX_HEAD (MAX_HEADER + 128)
155
1da177e4 156static DEFINE_SPINLOCK(ptype_lock);
62532da9 157static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
158struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159struct list_head ptype_all __read_mostly; /* Taps */
62532da9 160static struct list_head offload_base __read_mostly;
1da177e4 161
ae78dbfa 162static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
163static int call_netdevice_notifiers_info(unsigned long val,
164 struct net_device *dev,
165 struct netdev_notifier_info *info);
90b602f8 166static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 167
1da177e4 168/*
7562f876 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
170 * semaphore.
171 *
c6d14c84 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
173 *
174 * Writers must hold the rtnl semaphore while they loop through the
7562f876 175 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
178 *
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
182 *
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
186 */
1da177e4 187DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
188EXPORT_SYMBOL(dev_base_lock);
189
af12fa6e
ET
190/* protects napi_hash addition/deletion and napi_gen_id */
191static DEFINE_SPINLOCK(napi_hash_lock);
192
52bd2d62 193static unsigned int napi_gen_id = NR_CPUS;
6180d9de 194static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 195
18afa4b0 196static seqcount_t devnet_rename_seq;
c91f6df2 197
4e985ada
TG
198static inline void dev_base_seq_inc(struct net *net)
199{
643aa9cb 200 while (++net->dev_base_seq == 0)
201 ;
4e985ada
TG
202}
203
881d966b 204static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 205{
8387ff25 206 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 207
08e9897d 208 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
209}
210
881d966b 211static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 212{
7c28bd0b 213 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
214}
215
e36fa2f7 216static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
217{
218#ifdef CONFIG_RPS
e36fa2f7 219 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
220#endif
221}
222
e36fa2f7 223static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
224{
225#ifdef CONFIG_RPS
e36fa2f7 226 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
227#endif
228}
229
ce286d32 230/* Device list insertion */
53759be9 231static void list_netdevice(struct net_device *dev)
ce286d32 232{
c346dca1 233 struct net *net = dev_net(dev);
ce286d32
EB
234
235 ASSERT_RTNL();
236
237 write_lock_bh(&dev_base_lock);
c6d14c84 238 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 239 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
240 hlist_add_head_rcu(&dev->index_hlist,
241 dev_index_hash(net, dev->ifindex));
ce286d32 242 write_unlock_bh(&dev_base_lock);
4e985ada
TG
243
244 dev_base_seq_inc(net);
ce286d32
EB
245}
246
fb699dfd
ED
247/* Device list removal
248 * caller must respect a RCU grace period before freeing/reusing dev
249 */
ce286d32
EB
250static void unlist_netdevice(struct net_device *dev)
251{
252 ASSERT_RTNL();
253
254 /* Unlink dev from the device chain */
255 write_lock_bh(&dev_base_lock);
c6d14c84 256 list_del_rcu(&dev->dev_list);
72c9528b 257 hlist_del_rcu(&dev->name_hlist);
fb699dfd 258 hlist_del_rcu(&dev->index_hlist);
ce286d32 259 write_unlock_bh(&dev_base_lock);
4e985ada
TG
260
261 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
262}
263
1da177e4
LT
264/*
265 * Our notifier list
266 */
267
f07d5b94 268static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
269
270/*
271 * Device drivers call our routines to queue packets here. We empty the
272 * queue in the local softnet handler.
273 */
bea3348e 274
9958da05 275DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 276EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 277
cf508b12 278#ifdef CONFIG_LOCKDEP
723e98b7 279/*
c773e847 280 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
281 * according to dev->type
282 */
643aa9cb 283static const unsigned short netdev_lock_type[] = {
284 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
285 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
286 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
287 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
288 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
289 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
290 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
291 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
292 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
293 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
294 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
295 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
296 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
297 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
298 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 299
643aa9cb 300static const char *const netdev_lock_name[] = {
301 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
302 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
303 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
304 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
305 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
306 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
307 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
308 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
309 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
310 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
311 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
312 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
313 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
314 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
315 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
316
317static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 318static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
319
320static inline unsigned short netdev_lock_pos(unsigned short dev_type)
321{
322 int i;
323
324 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
325 if (netdev_lock_type[i] == dev_type)
326 return i;
327 /* the last key is used by default */
328 return ARRAY_SIZE(netdev_lock_type) - 1;
329}
330
cf508b12
DM
331static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 unsigned short dev_type)
723e98b7
JP
333{
334 int i;
335
336 i = netdev_lock_pos(dev_type);
337 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
338 netdev_lock_name[i]);
339}
cf508b12
DM
340
341static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342{
343 int i;
344
345 i = netdev_lock_pos(dev->type);
346 lockdep_set_class_and_name(&dev->addr_list_lock,
347 &netdev_addr_lock_key[i],
348 netdev_lock_name[i]);
349}
723e98b7 350#else
cf508b12
DM
351static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
352 unsigned short dev_type)
353{
354}
355static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
356{
357}
358#endif
1da177e4
LT
359
360/*******************************************************************************
eb13da1a 361 *
362 * Protocol management and registration routines
363 *
364 *******************************************************************************/
1da177e4 365
1da177e4 366
1da177e4
LT
367/*
368 * Add a protocol ID to the list. Now that the input handler is
369 * smarter we can dispense with all the messy stuff that used to be
370 * here.
371 *
372 * BEWARE!!! Protocol handlers, mangling input packets,
373 * MUST BE last in hash buckets and checking protocol handlers
374 * MUST start from promiscuous ptype_all chain in net_bh.
375 * It is true now, do not change it.
376 * Explanation follows: if protocol handler, mangling packet, will
377 * be the first on list, it is not able to sense, that packet
378 * is cloned and should be copied-on-write, so that it will
379 * change it and subsequent readers will get broken packet.
380 * --ANK (980803)
381 */
382
c07b68e8
ED
383static inline struct list_head *ptype_head(const struct packet_type *pt)
384{
385 if (pt->type == htons(ETH_P_ALL))
7866a621 386 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 387 else
7866a621
SN
388 return pt->dev ? &pt->dev->ptype_specific :
389 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
390}
391
1da177e4
LT
392/**
393 * dev_add_pack - add packet handler
394 * @pt: packet type declaration
395 *
396 * Add a protocol handler to the networking stack. The passed &packet_type
397 * is linked into kernel lists and may not be freed until it has been
398 * removed from the kernel lists.
399 *
4ec93edb 400 * This call does not sleep therefore it can not
1da177e4
LT
401 * guarantee all CPU's that are in middle of receiving packets
402 * will see the new packet type (until the next received packet).
403 */
404
405void dev_add_pack(struct packet_type *pt)
406{
c07b68e8 407 struct list_head *head = ptype_head(pt);
1da177e4 408
c07b68e8
ED
409 spin_lock(&ptype_lock);
410 list_add_rcu(&pt->list, head);
411 spin_unlock(&ptype_lock);
1da177e4 412}
d1b19dff 413EXPORT_SYMBOL(dev_add_pack);
1da177e4 414
1da177e4
LT
415/**
416 * __dev_remove_pack - remove packet handler
417 * @pt: packet type declaration
418 *
419 * Remove a protocol handler that was previously added to the kernel
420 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
421 * from the kernel lists and can be freed or reused once this function
4ec93edb 422 * returns.
1da177e4
LT
423 *
424 * The packet type might still be in use by receivers
425 * and must not be freed until after all the CPU's have gone
426 * through a quiescent state.
427 */
428void __dev_remove_pack(struct packet_type *pt)
429{
c07b68e8 430 struct list_head *head = ptype_head(pt);
1da177e4
LT
431 struct packet_type *pt1;
432
c07b68e8 433 spin_lock(&ptype_lock);
1da177e4
LT
434
435 list_for_each_entry(pt1, head, list) {
436 if (pt == pt1) {
437 list_del_rcu(&pt->list);
438 goto out;
439 }
440 }
441
7b6cd1ce 442 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 443out:
c07b68e8 444 spin_unlock(&ptype_lock);
1da177e4 445}
d1b19dff
ED
446EXPORT_SYMBOL(__dev_remove_pack);
447
1da177e4
LT
448/**
449 * dev_remove_pack - remove packet handler
450 * @pt: packet type declaration
451 *
452 * Remove a protocol handler that was previously added to the kernel
453 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
454 * from the kernel lists and can be freed or reused once this function
455 * returns.
456 *
457 * This call sleeps to guarantee that no CPU is looking at the packet
458 * type after return.
459 */
460void dev_remove_pack(struct packet_type *pt)
461{
462 __dev_remove_pack(pt);
4ec93edb 463
1da177e4
LT
464 synchronize_net();
465}
d1b19dff 466EXPORT_SYMBOL(dev_remove_pack);
1da177e4 467
62532da9
VY
468
469/**
470 * dev_add_offload - register offload handlers
471 * @po: protocol offload declaration
472 *
473 * Add protocol offload handlers to the networking stack. The passed
474 * &proto_offload is linked into kernel lists and may not be freed until
475 * it has been removed from the kernel lists.
476 *
477 * This call does not sleep therefore it can not
478 * guarantee all CPU's that are in middle of receiving packets
479 * will see the new offload handlers (until the next received packet).
480 */
481void dev_add_offload(struct packet_offload *po)
482{
bdef7de4 483 struct packet_offload *elem;
62532da9
VY
484
485 spin_lock(&offload_lock);
bdef7de4
DM
486 list_for_each_entry(elem, &offload_base, list) {
487 if (po->priority < elem->priority)
488 break;
489 }
490 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
491 spin_unlock(&offload_lock);
492}
493EXPORT_SYMBOL(dev_add_offload);
494
495/**
496 * __dev_remove_offload - remove offload handler
497 * @po: packet offload declaration
498 *
499 * Remove a protocol offload handler that was previously added to the
500 * kernel offload handlers by dev_add_offload(). The passed &offload_type
501 * is removed from the kernel lists and can be freed or reused once this
502 * function returns.
503 *
504 * The packet type might still be in use by receivers
505 * and must not be freed until after all the CPU's have gone
506 * through a quiescent state.
507 */
1d143d9f 508static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
509{
510 struct list_head *head = &offload_base;
511 struct packet_offload *po1;
512
c53aa505 513 spin_lock(&offload_lock);
62532da9
VY
514
515 list_for_each_entry(po1, head, list) {
516 if (po == po1) {
517 list_del_rcu(&po->list);
518 goto out;
519 }
520 }
521
522 pr_warn("dev_remove_offload: %p not found\n", po);
523out:
c53aa505 524 spin_unlock(&offload_lock);
62532da9 525}
62532da9
VY
526
527/**
528 * dev_remove_offload - remove packet offload handler
529 * @po: packet offload declaration
530 *
531 * Remove a packet offload handler that was previously added to the kernel
532 * offload handlers by dev_add_offload(). The passed &offload_type is
533 * removed from the kernel lists and can be freed or reused once this
534 * function returns.
535 *
536 * This call sleeps to guarantee that no CPU is looking at the packet
537 * type after return.
538 */
539void dev_remove_offload(struct packet_offload *po)
540{
541 __dev_remove_offload(po);
542
543 synchronize_net();
544}
545EXPORT_SYMBOL(dev_remove_offload);
546
1da177e4 547/******************************************************************************
eb13da1a 548 *
549 * Device Boot-time Settings Routines
550 *
551 ******************************************************************************/
1da177e4
LT
552
553/* Boot time configuration table */
554static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
555
556/**
557 * netdev_boot_setup_add - add new setup entry
558 * @name: name of the device
559 * @map: configured settings for the device
560 *
561 * Adds new setup entry to the dev_boot_setup list. The function
562 * returns 0 on error and 1 on success. This is a generic routine to
563 * all netdevices.
564 */
565static int netdev_boot_setup_add(char *name, struct ifmap *map)
566{
567 struct netdev_boot_setup *s;
568 int i;
569
570 s = dev_boot_setup;
571 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
572 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
573 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 574 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
575 memcpy(&s[i].map, map, sizeof(s[i].map));
576 break;
577 }
578 }
579
580 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
581}
582
583/**
722c9a0c 584 * netdev_boot_setup_check - check boot time settings
585 * @dev: the netdevice
1da177e4 586 *
722c9a0c 587 * Check boot time settings for the device.
588 * The found settings are set for the device to be used
589 * later in the device probing.
590 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
591 */
592int netdev_boot_setup_check(struct net_device *dev)
593{
594 struct netdev_boot_setup *s = dev_boot_setup;
595 int i;
596
597 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
598 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 599 !strcmp(dev->name, s[i].name)) {
722c9a0c 600 dev->irq = s[i].map.irq;
601 dev->base_addr = s[i].map.base_addr;
602 dev->mem_start = s[i].map.mem_start;
603 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
604 return 1;
605 }
606 }
607 return 0;
608}
d1b19dff 609EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
610
611
612/**
722c9a0c 613 * netdev_boot_base - get address from boot time settings
614 * @prefix: prefix for network device
615 * @unit: id for network device
616 *
617 * Check boot time settings for the base address of device.
618 * The found settings are set for the device to be used
619 * later in the device probing.
620 * Returns 0 if no settings found.
1da177e4
LT
621 */
622unsigned long netdev_boot_base(const char *prefix, int unit)
623{
624 const struct netdev_boot_setup *s = dev_boot_setup;
625 char name[IFNAMSIZ];
626 int i;
627
628 sprintf(name, "%s%d", prefix, unit);
629
630 /*
631 * If device already registered then return base of 1
632 * to indicate not to probe for this interface
633 */
881d966b 634 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
635 return 1;
636
637 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
638 if (!strcmp(name, s[i].name))
639 return s[i].map.base_addr;
640 return 0;
641}
642
643/*
644 * Saves at boot time configured settings for any netdevice.
645 */
646int __init netdev_boot_setup(char *str)
647{
648 int ints[5];
649 struct ifmap map;
650
651 str = get_options(str, ARRAY_SIZE(ints), ints);
652 if (!str || !*str)
653 return 0;
654
655 /* Save settings */
656 memset(&map, 0, sizeof(map));
657 if (ints[0] > 0)
658 map.irq = ints[1];
659 if (ints[0] > 1)
660 map.base_addr = ints[2];
661 if (ints[0] > 2)
662 map.mem_start = ints[3];
663 if (ints[0] > 3)
664 map.mem_end = ints[4];
665
666 /* Add new entry to the list */
667 return netdev_boot_setup_add(str, &map);
668}
669
670__setup("netdev=", netdev_boot_setup);
671
672/*******************************************************************************
eb13da1a 673 *
674 * Device Interface Subroutines
675 *
676 *******************************************************************************/
1da177e4 677
a54acb3a
ND
678/**
679 * dev_get_iflink - get 'iflink' value of a interface
680 * @dev: targeted interface
681 *
682 * Indicates the ifindex the interface is linked to.
683 * Physical interfaces have the same 'ifindex' and 'iflink' values.
684 */
685
686int dev_get_iflink(const struct net_device *dev)
687{
688 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
689 return dev->netdev_ops->ndo_get_iflink(dev);
690
7a66bbc9 691 return dev->ifindex;
a54acb3a
ND
692}
693EXPORT_SYMBOL(dev_get_iflink);
694
fc4099f1
PS
695/**
696 * dev_fill_metadata_dst - Retrieve tunnel egress information.
697 * @dev: targeted interface
698 * @skb: The packet.
699 *
700 * For better visibility of tunnel traffic OVS needs to retrieve
701 * egress tunnel information for a packet. Following API allows
702 * user to get this info.
703 */
704int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
705{
706 struct ip_tunnel_info *info;
707
708 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
709 return -EINVAL;
710
711 info = skb_tunnel_info_unclone(skb);
712 if (!info)
713 return -ENOMEM;
714 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
715 return -EINVAL;
716
717 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
718}
719EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
720
1da177e4
LT
721/**
722 * __dev_get_by_name - find a device by its name
c4ea43c5 723 * @net: the applicable net namespace
1da177e4
LT
724 * @name: name to find
725 *
726 * Find an interface by name. Must be called under RTNL semaphore
727 * or @dev_base_lock. If the name is found a pointer to the device
728 * is returned. If the name is not found then %NULL is returned. The
729 * reference counters are not incremented so the caller must be
730 * careful with locks.
731 */
732
881d966b 733struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 734{
0bd8d536
ED
735 struct net_device *dev;
736 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 737
b67bfe0d 738 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
739 if (!strncmp(dev->name, name, IFNAMSIZ))
740 return dev;
0bd8d536 741
1da177e4
LT
742 return NULL;
743}
d1b19dff 744EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 745
72c9528b 746/**
722c9a0c 747 * dev_get_by_name_rcu - find a device by its name
748 * @net: the applicable net namespace
749 * @name: name to find
750 *
751 * Find an interface by name.
752 * If the name is found a pointer to the device is returned.
753 * If the name is not found then %NULL is returned.
754 * The reference counters are not incremented so the caller must be
755 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
756 */
757
758struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759{
72c9528b
ED
760 struct net_device *dev;
761 struct hlist_head *head = dev_name_hash(net, name);
762
b67bfe0d 763 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
764 if (!strncmp(dev->name, name, IFNAMSIZ))
765 return dev;
766
767 return NULL;
768}
769EXPORT_SYMBOL(dev_get_by_name_rcu);
770
1da177e4
LT
771/**
772 * dev_get_by_name - find a device by its name
c4ea43c5 773 * @net: the applicable net namespace
1da177e4
LT
774 * @name: name to find
775 *
776 * Find an interface by name. This can be called from any
777 * context and does its own locking. The returned handle has
778 * the usage count incremented and the caller must use dev_put() to
779 * release it when it is no longer needed. %NULL is returned if no
780 * matching device is found.
781 */
782
881d966b 783struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
784{
785 struct net_device *dev;
786
72c9528b
ED
787 rcu_read_lock();
788 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
789 if (dev)
790 dev_hold(dev);
72c9528b 791 rcu_read_unlock();
1da177e4
LT
792 return dev;
793}
d1b19dff 794EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
795
796/**
797 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 798 * @net: the applicable net namespace
1da177e4
LT
799 * @ifindex: index of device
800 *
801 * Search for an interface by index. Returns %NULL if the device
802 * is not found or a pointer to the device. The device has not
803 * had its reference counter increased so the caller must be careful
804 * about locking. The caller must hold either the RTNL semaphore
805 * or @dev_base_lock.
806 */
807
881d966b 808struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 809{
0bd8d536
ED
810 struct net_device *dev;
811 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 812
b67bfe0d 813 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
814 if (dev->ifindex == ifindex)
815 return dev;
0bd8d536 816
1da177e4
LT
817 return NULL;
818}
d1b19dff 819EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 820
fb699dfd
ED
821/**
822 * dev_get_by_index_rcu - find a device by its ifindex
823 * @net: the applicable net namespace
824 * @ifindex: index of device
825 *
826 * Search for an interface by index. Returns %NULL if the device
827 * is not found or a pointer to the device. The device has not
828 * had its reference counter increased so the caller must be careful
829 * about locking. The caller must hold RCU lock.
830 */
831
832struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
833{
fb699dfd
ED
834 struct net_device *dev;
835 struct hlist_head *head = dev_index_hash(net, ifindex);
836
b67bfe0d 837 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
838 if (dev->ifindex == ifindex)
839 return dev;
840
841 return NULL;
842}
843EXPORT_SYMBOL(dev_get_by_index_rcu);
844
1da177e4
LT
845
846/**
847 * dev_get_by_index - find a device by its ifindex
c4ea43c5 848 * @net: the applicable net namespace
1da177e4
LT
849 * @ifindex: index of device
850 *
851 * Search for an interface by index. Returns NULL if the device
852 * is not found or a pointer to the device. The device returned has
853 * had a reference added and the pointer is safe until the user calls
854 * dev_put to indicate they have finished with it.
855 */
856
881d966b 857struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
858{
859 struct net_device *dev;
860
fb699dfd
ED
861 rcu_read_lock();
862 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
863 if (dev)
864 dev_hold(dev);
fb699dfd 865 rcu_read_unlock();
1da177e4
LT
866 return dev;
867}
d1b19dff 868EXPORT_SYMBOL(dev_get_by_index);
1da177e4 869
90b602f8
ML
870/**
871 * dev_get_by_napi_id - find a device by napi_id
872 * @napi_id: ID of the NAPI struct
873 *
874 * Search for an interface by NAPI ID. Returns %NULL if the device
875 * is not found or a pointer to the device. The device has not had
876 * its reference counter increased so the caller must be careful
877 * about locking. The caller must hold RCU lock.
878 */
879
880struct net_device *dev_get_by_napi_id(unsigned int napi_id)
881{
882 struct napi_struct *napi;
883
884 WARN_ON_ONCE(!rcu_read_lock_held());
885
886 if (napi_id < MIN_NAPI_ID)
887 return NULL;
888
889 napi = napi_by_id(napi_id);
890
891 return napi ? napi->dev : NULL;
892}
893EXPORT_SYMBOL(dev_get_by_napi_id);
894
5dbe7c17
NS
895/**
896 * netdev_get_name - get a netdevice name, knowing its ifindex.
897 * @net: network namespace
898 * @name: a pointer to the buffer where the name will be stored.
899 * @ifindex: the ifindex of the interface to get the name from.
900 *
901 * The use of raw_seqcount_begin() and cond_resched() before
902 * retrying is required as we want to give the writers a chance
903 * to complete when CONFIG_PREEMPT is not set.
904 */
905int netdev_get_name(struct net *net, char *name, int ifindex)
906{
907 struct net_device *dev;
908 unsigned int seq;
909
910retry:
911 seq = raw_seqcount_begin(&devnet_rename_seq);
912 rcu_read_lock();
913 dev = dev_get_by_index_rcu(net, ifindex);
914 if (!dev) {
915 rcu_read_unlock();
916 return -ENODEV;
917 }
918
919 strcpy(name, dev->name);
920 rcu_read_unlock();
921 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
922 cond_resched();
923 goto retry;
924 }
925
926 return 0;
927}
928
1da177e4 929/**
941666c2 930 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 931 * @net: the applicable net namespace
1da177e4
LT
932 * @type: media type of device
933 * @ha: hardware address
934 *
935 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
936 * is not found or a pointer to the device.
937 * The caller must hold RCU or RTNL.
941666c2 938 * The returned device has not had its ref count increased
1da177e4
LT
939 * and the caller must therefore be careful about locking
940 *
1da177e4
LT
941 */
942
941666c2
ED
943struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
944 const char *ha)
1da177e4
LT
945{
946 struct net_device *dev;
947
941666c2 948 for_each_netdev_rcu(net, dev)
1da177e4
LT
949 if (dev->type == type &&
950 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
951 return dev;
952
953 return NULL;
1da177e4 954}
941666c2 955EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 956
881d966b 957struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
958{
959 struct net_device *dev;
960
4e9cac2b 961 ASSERT_RTNL();
881d966b 962 for_each_netdev(net, dev)
4e9cac2b 963 if (dev->type == type)
7562f876
PE
964 return dev;
965
966 return NULL;
4e9cac2b 967}
4e9cac2b
PM
968EXPORT_SYMBOL(__dev_getfirstbyhwtype);
969
881d966b 970struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 971{
99fe3c39 972 struct net_device *dev, *ret = NULL;
4e9cac2b 973
99fe3c39
ED
974 rcu_read_lock();
975 for_each_netdev_rcu(net, dev)
976 if (dev->type == type) {
977 dev_hold(dev);
978 ret = dev;
979 break;
980 }
981 rcu_read_unlock();
982 return ret;
1da177e4 983}
1da177e4
LT
984EXPORT_SYMBOL(dev_getfirstbyhwtype);
985
986/**
6c555490 987 * __dev_get_by_flags - find any device with given flags
c4ea43c5 988 * @net: the applicable net namespace
1da177e4
LT
989 * @if_flags: IFF_* values
990 * @mask: bitmask of bits in if_flags to check
991 *
992 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 993 * is not found or a pointer to the device. Must be called inside
6c555490 994 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
995 */
996
6c555490
WC
997struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
998 unsigned short mask)
1da177e4 999{
7562f876 1000 struct net_device *dev, *ret;
1da177e4 1001
6c555490
WC
1002 ASSERT_RTNL();
1003
7562f876 1004 ret = NULL;
6c555490 1005 for_each_netdev(net, dev) {
1da177e4 1006 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1007 ret = dev;
1da177e4
LT
1008 break;
1009 }
1010 }
7562f876 1011 return ret;
1da177e4 1012}
6c555490 1013EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1014
1015/**
1016 * dev_valid_name - check if name is okay for network device
1017 * @name: name string
1018 *
1019 * Network device names need to be valid file names to
c7fa9d18
DM
1020 * to allow sysfs to work. We also disallow any kind of
1021 * whitespace.
1da177e4 1022 */
95f050bf 1023bool dev_valid_name(const char *name)
1da177e4 1024{
c7fa9d18 1025 if (*name == '\0')
95f050bf 1026 return false;
b6fe17d6 1027 if (strlen(name) >= IFNAMSIZ)
95f050bf 1028 return false;
c7fa9d18 1029 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1030 return false;
c7fa9d18
DM
1031
1032 while (*name) {
a4176a93 1033 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1034 return false;
c7fa9d18
DM
1035 name++;
1036 }
95f050bf 1037 return true;
1da177e4 1038}
d1b19dff 1039EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1040
1041/**
b267b179
EB
1042 * __dev_alloc_name - allocate a name for a device
1043 * @net: network namespace to allocate the device name in
1da177e4 1044 * @name: name format string
b267b179 1045 * @buf: scratch buffer and result name string
1da177e4
LT
1046 *
1047 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1048 * id. It scans list of devices to build up a free map, then chooses
1049 * the first empty slot. The caller must hold the dev_base or rtnl lock
1050 * while allocating the name and adding the device in order to avoid
1051 * duplicates.
1052 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1053 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1054 */
1055
b267b179 1056static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1057{
1058 int i = 0;
1da177e4
LT
1059 const char *p;
1060 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1061 unsigned long *inuse;
1da177e4
LT
1062 struct net_device *d;
1063
1064 p = strnchr(name, IFNAMSIZ-1, '%');
1065 if (p) {
1066 /*
1067 * Verify the string as this thing may have come from
1068 * the user. There must be either one "%d" and no other "%"
1069 * characters.
1070 */
1071 if (p[1] != 'd' || strchr(p + 2, '%'))
1072 return -EINVAL;
1073
1074 /* Use one page as a bit array of possible slots */
cfcabdcc 1075 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1076 if (!inuse)
1077 return -ENOMEM;
1078
881d966b 1079 for_each_netdev(net, d) {
1da177e4
LT
1080 if (!sscanf(d->name, name, &i))
1081 continue;
1082 if (i < 0 || i >= max_netdevices)
1083 continue;
1084
1085 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1086 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1087 if (!strncmp(buf, d->name, IFNAMSIZ))
1088 set_bit(i, inuse);
1089 }
1090
1091 i = find_first_zero_bit(inuse, max_netdevices);
1092 free_page((unsigned long) inuse);
1093 }
1094
d9031024
OP
1095 if (buf != name)
1096 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1097 if (!__dev_get_by_name(net, buf))
1da177e4 1098 return i;
1da177e4
LT
1099
1100 /* It is possible to run out of possible slots
1101 * when the name is long and there isn't enough space left
1102 * for the digits, or if all bits are used.
1103 */
1104 return -ENFILE;
1105}
1106
b267b179
EB
1107/**
1108 * dev_alloc_name - allocate a name for a device
1109 * @dev: device
1110 * @name: name format string
1111 *
1112 * Passed a format string - eg "lt%d" it will try and find a suitable
1113 * id. It scans list of devices to build up a free map, then chooses
1114 * the first empty slot. The caller must hold the dev_base or rtnl lock
1115 * while allocating the name and adding the device in order to avoid
1116 * duplicates.
1117 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118 * Returns the number of the unit assigned or a negative errno code.
1119 */
1120
1121int dev_alloc_name(struct net_device *dev, const char *name)
1122{
1123 char buf[IFNAMSIZ];
1124 struct net *net;
1125 int ret;
1126
c346dca1
YH
1127 BUG_ON(!dev_net(dev));
1128 net = dev_net(dev);
b267b179
EB
1129 ret = __dev_alloc_name(net, name, buf);
1130 if (ret >= 0)
1131 strlcpy(dev->name, buf, IFNAMSIZ);
1132 return ret;
1133}
d1b19dff 1134EXPORT_SYMBOL(dev_alloc_name);
b267b179 1135
828de4f6
G
1136static int dev_alloc_name_ns(struct net *net,
1137 struct net_device *dev,
1138 const char *name)
d9031024 1139{
828de4f6
G
1140 char buf[IFNAMSIZ];
1141 int ret;
8ce6cebc 1142
828de4f6
G
1143 ret = __dev_alloc_name(net, name, buf);
1144 if (ret >= 0)
1145 strlcpy(dev->name, buf, IFNAMSIZ);
1146 return ret;
1147}
1148
1149static int dev_get_valid_name(struct net *net,
1150 struct net_device *dev,
1151 const char *name)
1152{
1153 BUG_ON(!net);
8ce6cebc 1154
d9031024
OP
1155 if (!dev_valid_name(name))
1156 return -EINVAL;
1157
1c5cae81 1158 if (strchr(name, '%'))
828de4f6 1159 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1160 else if (__dev_get_by_name(net, name))
1161 return -EEXIST;
8ce6cebc
DL
1162 else if (dev->name != name)
1163 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1164
1165 return 0;
1166}
1da177e4
LT
1167
1168/**
1169 * dev_change_name - change name of a device
1170 * @dev: device
1171 * @newname: name (or format string) must be at least IFNAMSIZ
1172 *
1173 * Change name of a device, can pass format strings "eth%d".
1174 * for wildcarding.
1175 */
cf04a4c7 1176int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1177{
238fa362 1178 unsigned char old_assign_type;
fcc5a03a 1179 char oldname[IFNAMSIZ];
1da177e4 1180 int err = 0;
fcc5a03a 1181 int ret;
881d966b 1182 struct net *net;
1da177e4
LT
1183
1184 ASSERT_RTNL();
c346dca1 1185 BUG_ON(!dev_net(dev));
1da177e4 1186
c346dca1 1187 net = dev_net(dev);
1da177e4
LT
1188 if (dev->flags & IFF_UP)
1189 return -EBUSY;
1190
30e6c9fa 1191 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1192
1193 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1194 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1195 return 0;
c91f6df2 1196 }
c8d90dca 1197
fcc5a03a
HX
1198 memcpy(oldname, dev->name, IFNAMSIZ);
1199
828de4f6 1200 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1201 if (err < 0) {
30e6c9fa 1202 write_seqcount_end(&devnet_rename_seq);
d9031024 1203 return err;
c91f6df2 1204 }
1da177e4 1205
6fe82a39
VF
1206 if (oldname[0] && !strchr(oldname, '%'))
1207 netdev_info(dev, "renamed from %s\n", oldname);
1208
238fa362
TG
1209 old_assign_type = dev->name_assign_type;
1210 dev->name_assign_type = NET_NAME_RENAMED;
1211
fcc5a03a 1212rollback:
a1b3f594
EB
1213 ret = device_rename(&dev->dev, dev->name);
1214 if (ret) {
1215 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1216 dev->name_assign_type = old_assign_type;
30e6c9fa 1217 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1218 return ret;
dcc99773 1219 }
7f988eab 1220
30e6c9fa 1221 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1222
5bb025fa
VF
1223 netdev_adjacent_rename_links(dev, oldname);
1224
7f988eab 1225 write_lock_bh(&dev_base_lock);
372b2312 1226 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1227 write_unlock_bh(&dev_base_lock);
1228
1229 synchronize_rcu();
1230
1231 write_lock_bh(&dev_base_lock);
1232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1233 write_unlock_bh(&dev_base_lock);
1234
056925ab 1235 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1236 ret = notifier_to_errno(ret);
1237
1238 if (ret) {
91e9c07b
ED
1239 /* err >= 0 after dev_alloc_name() or stores the first errno */
1240 if (err >= 0) {
fcc5a03a 1241 err = ret;
30e6c9fa 1242 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1243 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1244 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1245 dev->name_assign_type = old_assign_type;
1246 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1247 goto rollback;
91e9c07b 1248 } else {
7b6cd1ce 1249 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1250 dev->name, ret);
fcc5a03a
HX
1251 }
1252 }
1da177e4
LT
1253
1254 return err;
1255}
1256
0b815a1a
SH
1257/**
1258 * dev_set_alias - change ifalias of a device
1259 * @dev: device
1260 * @alias: name up to IFALIASZ
f0db275a 1261 * @len: limit of bytes to copy from info
0b815a1a
SH
1262 *
1263 * Set ifalias for a device,
1264 */
1265int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1266{
7364e445
AK
1267 char *new_ifalias;
1268
0b815a1a
SH
1269 ASSERT_RTNL();
1270
1271 if (len >= IFALIASZ)
1272 return -EINVAL;
1273
96ca4a2c 1274 if (!len) {
388dfc2d
SK
1275 kfree(dev->ifalias);
1276 dev->ifalias = NULL;
96ca4a2c
OH
1277 return 0;
1278 }
1279
7364e445
AK
1280 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1281 if (!new_ifalias)
0b815a1a 1282 return -ENOMEM;
7364e445 1283 dev->ifalias = new_ifalias;
c28294b9
AP
1284 memcpy(dev->ifalias, alias, len);
1285 dev->ifalias[len] = 0;
0b815a1a 1286
0b815a1a
SH
1287 return len;
1288}
1289
1290
d8a33ac4 1291/**
3041a069 1292 * netdev_features_change - device changes features
d8a33ac4
SH
1293 * @dev: device to cause notification
1294 *
1295 * Called to indicate a device has changed features.
1296 */
1297void netdev_features_change(struct net_device *dev)
1298{
056925ab 1299 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1300}
1301EXPORT_SYMBOL(netdev_features_change);
1302
1da177e4
LT
1303/**
1304 * netdev_state_change - device changes state
1305 * @dev: device to cause notification
1306 *
1307 * Called to indicate a device has changed state. This function calls
1308 * the notifier chains for netdev_chain and sends a NEWLINK message
1309 * to the routing socket.
1310 */
1311void netdev_state_change(struct net_device *dev)
1312{
1313 if (dev->flags & IFF_UP) {
54951194
LP
1314 struct netdev_notifier_change_info change_info;
1315
1316 change_info.flags_changed = 0;
1317 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1318 &change_info.info);
7f294054 1319 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1320 }
1321}
d1b19dff 1322EXPORT_SYMBOL(netdev_state_change);
1da177e4 1323
ee89bab1 1324/**
722c9a0c 1325 * netdev_notify_peers - notify network peers about existence of @dev
1326 * @dev: network device
ee89bab1
AW
1327 *
1328 * Generate traffic such that interested network peers are aware of
1329 * @dev, such as by generating a gratuitous ARP. This may be used when
1330 * a device wants to inform the rest of the network about some sort of
1331 * reconfiguration such as a failover event or virtual machine
1332 * migration.
1333 */
1334void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1335{
ee89bab1
AW
1336 rtnl_lock();
1337 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1338 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1339 rtnl_unlock();
c1da4ac7 1340}
ee89bab1 1341EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1342
bd380811 1343static int __dev_open(struct net_device *dev)
1da177e4 1344{
d314774c 1345 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1346 int ret;
1da177e4 1347
e46b66bc
BH
1348 ASSERT_RTNL();
1349
1da177e4
LT
1350 if (!netif_device_present(dev))
1351 return -ENODEV;
1352
ca99ca14
NH
1353 /* Block netpoll from trying to do any rx path servicing.
1354 * If we don't do this there is a chance ndo_poll_controller
1355 * or ndo_poll may be running while we open the device
1356 */
66b5552f 1357 netpoll_poll_disable(dev);
ca99ca14 1358
3b8bcfd5
JB
1359 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1360 ret = notifier_to_errno(ret);
1361 if (ret)
1362 return ret;
1363
1da177e4 1364 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1365
d314774c
SH
1366 if (ops->ndo_validate_addr)
1367 ret = ops->ndo_validate_addr(dev);
bada339b 1368
d314774c
SH
1369 if (!ret && ops->ndo_open)
1370 ret = ops->ndo_open(dev);
1da177e4 1371
66b5552f 1372 netpoll_poll_enable(dev);
ca99ca14 1373
bada339b
JG
1374 if (ret)
1375 clear_bit(__LINK_STATE_START, &dev->state);
1376 else {
1da177e4 1377 dev->flags |= IFF_UP;
4417da66 1378 dev_set_rx_mode(dev);
1da177e4 1379 dev_activate(dev);
7bf23575 1380 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1381 }
bada339b 1382
1da177e4
LT
1383 return ret;
1384}
1385
1386/**
bd380811
PM
1387 * dev_open - prepare an interface for use.
1388 * @dev: device to open
1da177e4 1389 *
bd380811
PM
1390 * Takes a device from down to up state. The device's private open
1391 * function is invoked and then the multicast lists are loaded. Finally
1392 * the device is moved into the up state and a %NETDEV_UP message is
1393 * sent to the netdev notifier chain.
1394 *
1395 * Calling this function on an active interface is a nop. On a failure
1396 * a negative errno code is returned.
1da177e4 1397 */
bd380811
PM
1398int dev_open(struct net_device *dev)
1399{
1400 int ret;
1401
bd380811
PM
1402 if (dev->flags & IFF_UP)
1403 return 0;
1404
bd380811
PM
1405 ret = __dev_open(dev);
1406 if (ret < 0)
1407 return ret;
1408
7f294054 1409 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1410 call_netdevice_notifiers(NETDEV_UP, dev);
1411
1412 return ret;
1413}
1414EXPORT_SYMBOL(dev_open);
1415
44345724 1416static int __dev_close_many(struct list_head *head)
1da177e4 1417{
44345724 1418 struct net_device *dev;
e46b66bc 1419
bd380811 1420 ASSERT_RTNL();
9d5010db
DM
1421 might_sleep();
1422
5cde2829 1423 list_for_each_entry(dev, head, close_list) {
3f4df206 1424 /* Temporarily disable netpoll until the interface is down */
66b5552f 1425 netpoll_poll_disable(dev);
3f4df206 1426
44345724 1427 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1428
44345724 1429 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1430
44345724
OP
1431 /* Synchronize to scheduled poll. We cannot touch poll list, it
1432 * can be even on different cpu. So just clear netif_running().
1433 *
1434 * dev->stop() will invoke napi_disable() on all of it's
1435 * napi_struct instances on this device.
1436 */
4e857c58 1437 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1438 }
1da177e4 1439
44345724 1440 dev_deactivate_many(head);
d8b2a4d2 1441
5cde2829 1442 list_for_each_entry(dev, head, close_list) {
44345724 1443 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1444
44345724
OP
1445 /*
1446 * Call the device specific close. This cannot fail.
1447 * Only if device is UP
1448 *
1449 * We allow it to be called even after a DETACH hot-plug
1450 * event.
1451 */
1452 if (ops->ndo_stop)
1453 ops->ndo_stop(dev);
1454
44345724 1455 dev->flags &= ~IFF_UP;
66b5552f 1456 netpoll_poll_enable(dev);
44345724
OP
1457 }
1458
1459 return 0;
1460}
1461
1462static int __dev_close(struct net_device *dev)
1463{
f87e6f47 1464 int retval;
44345724
OP
1465 LIST_HEAD(single);
1466
5cde2829 1467 list_add(&dev->close_list, &single);
f87e6f47
LT
1468 retval = __dev_close_many(&single);
1469 list_del(&single);
ca99ca14 1470
f87e6f47 1471 return retval;
44345724
OP
1472}
1473
99c4a26a 1474int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1475{
1476 struct net_device *dev, *tmp;
1da177e4 1477
5cde2829
EB
1478 /* Remove the devices that don't need to be closed */
1479 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1480 if (!(dev->flags & IFF_UP))
5cde2829 1481 list_del_init(&dev->close_list);
44345724
OP
1482
1483 __dev_close_many(head);
1da177e4 1484
5cde2829 1485 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1486 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1487 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1488 if (unlink)
1489 list_del_init(&dev->close_list);
44345724 1490 }
bd380811
PM
1491
1492 return 0;
1493}
99c4a26a 1494EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1495
1496/**
1497 * dev_close - shutdown an interface.
1498 * @dev: device to shutdown
1499 *
1500 * This function moves an active device into down state. A
1501 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1502 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1503 * chain.
1504 */
1505int dev_close(struct net_device *dev)
1506{
e14a5993
ED
1507 if (dev->flags & IFF_UP) {
1508 LIST_HEAD(single);
1da177e4 1509
5cde2829 1510 list_add(&dev->close_list, &single);
99c4a26a 1511 dev_close_many(&single, true);
e14a5993
ED
1512 list_del(&single);
1513 }
da6e378b 1514 return 0;
1da177e4 1515}
d1b19dff 1516EXPORT_SYMBOL(dev_close);
1da177e4
LT
1517
1518
0187bdfb
BH
1519/**
1520 * dev_disable_lro - disable Large Receive Offload on a device
1521 * @dev: device
1522 *
1523 * Disable Large Receive Offload (LRO) on a net device. Must be
1524 * called under RTNL. This is needed if received packets may be
1525 * forwarded to another interface.
1526 */
1527void dev_disable_lro(struct net_device *dev)
1528{
fbe168ba
MK
1529 struct net_device *lower_dev;
1530 struct list_head *iter;
529d0489 1531
bc5787c6
MM
1532 dev->wanted_features &= ~NETIF_F_LRO;
1533 netdev_update_features(dev);
27660515 1534
22d5969f
MM
1535 if (unlikely(dev->features & NETIF_F_LRO))
1536 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1537
1538 netdev_for_each_lower_dev(dev, lower_dev, iter)
1539 dev_disable_lro(lower_dev);
0187bdfb
BH
1540}
1541EXPORT_SYMBOL(dev_disable_lro);
1542
351638e7
JP
1543static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1544 struct net_device *dev)
1545{
1546 struct netdev_notifier_info info;
1547
1548 netdev_notifier_info_init(&info, dev);
1549 return nb->notifier_call(nb, val, &info);
1550}
0187bdfb 1551
881d966b
EB
1552static int dev_boot_phase = 1;
1553
1da177e4 1554/**
722c9a0c 1555 * register_netdevice_notifier - register a network notifier block
1556 * @nb: notifier
1da177e4 1557 *
722c9a0c 1558 * Register a notifier to be called when network device events occur.
1559 * The notifier passed is linked into the kernel structures and must
1560 * not be reused until it has been unregistered. A negative errno code
1561 * is returned on a failure.
1da177e4 1562 *
722c9a0c 1563 * When registered all registration and up events are replayed
1564 * to the new notifier to allow device to have a race free
1565 * view of the network device list.
1da177e4
LT
1566 */
1567
1568int register_netdevice_notifier(struct notifier_block *nb)
1569{
1570 struct net_device *dev;
fcc5a03a 1571 struct net_device *last;
881d966b 1572 struct net *net;
1da177e4
LT
1573 int err;
1574
1575 rtnl_lock();
f07d5b94 1576 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1577 if (err)
1578 goto unlock;
881d966b
EB
1579 if (dev_boot_phase)
1580 goto unlock;
1581 for_each_net(net) {
1582 for_each_netdev(net, dev) {
351638e7 1583 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1584 err = notifier_to_errno(err);
1585 if (err)
1586 goto rollback;
1587
1588 if (!(dev->flags & IFF_UP))
1589 continue;
1da177e4 1590
351638e7 1591 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1592 }
1da177e4 1593 }
fcc5a03a
HX
1594
1595unlock:
1da177e4
LT
1596 rtnl_unlock();
1597 return err;
fcc5a03a
HX
1598
1599rollback:
1600 last = dev;
881d966b
EB
1601 for_each_net(net) {
1602 for_each_netdev(net, dev) {
1603 if (dev == last)
8f891489 1604 goto outroll;
fcc5a03a 1605
881d966b 1606 if (dev->flags & IFF_UP) {
351638e7
JP
1607 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1608 dev);
1609 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1610 }
351638e7 1611 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1612 }
fcc5a03a 1613 }
c67625a1 1614
8f891489 1615outroll:
c67625a1 1616 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1617 goto unlock;
1da177e4 1618}
d1b19dff 1619EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1620
1621/**
722c9a0c 1622 * unregister_netdevice_notifier - unregister a network notifier block
1623 * @nb: notifier
1da177e4 1624 *
722c9a0c 1625 * Unregister a notifier previously registered by
1626 * register_netdevice_notifier(). The notifier is unlinked into the
1627 * kernel structures and may then be reused. A negative errno code
1628 * is returned on a failure.
7d3d43da 1629 *
722c9a0c 1630 * After unregistering unregister and down device events are synthesized
1631 * for all devices on the device list to the removed notifier to remove
1632 * the need for special case cleanup code.
1da177e4
LT
1633 */
1634
1635int unregister_netdevice_notifier(struct notifier_block *nb)
1636{
7d3d43da
EB
1637 struct net_device *dev;
1638 struct net *net;
9f514950
HX
1639 int err;
1640
1641 rtnl_lock();
f07d5b94 1642 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1643 if (err)
1644 goto unlock;
1645
1646 for_each_net(net) {
1647 for_each_netdev(net, dev) {
1648 if (dev->flags & IFF_UP) {
351638e7
JP
1649 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1650 dev);
1651 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1652 }
351638e7 1653 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1654 }
1655 }
1656unlock:
9f514950
HX
1657 rtnl_unlock();
1658 return err;
1da177e4 1659}
d1b19dff 1660EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1661
351638e7
JP
1662/**
1663 * call_netdevice_notifiers_info - call all network notifier blocks
1664 * @val: value passed unmodified to notifier function
1665 * @dev: net_device pointer passed unmodified to notifier function
1666 * @info: notifier information data
1667 *
1668 * Call all network notifier blocks. Parameters and return value
1669 * are as for raw_notifier_call_chain().
1670 */
1671
1d143d9f 1672static int call_netdevice_notifiers_info(unsigned long val,
1673 struct net_device *dev,
1674 struct netdev_notifier_info *info)
351638e7
JP
1675{
1676 ASSERT_RTNL();
1677 netdev_notifier_info_init(info, dev);
1678 return raw_notifier_call_chain(&netdev_chain, val, info);
1679}
351638e7 1680
1da177e4
LT
1681/**
1682 * call_netdevice_notifiers - call all network notifier blocks
1683 * @val: value passed unmodified to notifier function
c4ea43c5 1684 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1685 *
1686 * Call all network notifier blocks. Parameters and return value
f07d5b94 1687 * are as for raw_notifier_call_chain().
1da177e4
LT
1688 */
1689
ad7379d4 1690int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1691{
351638e7
JP
1692 struct netdev_notifier_info info;
1693
1694 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1695}
edf947f1 1696EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1697
1cf51900 1698#ifdef CONFIG_NET_INGRESS
4577139b
DB
1699static struct static_key ingress_needed __read_mostly;
1700
1701void net_inc_ingress_queue(void)
1702{
1703 static_key_slow_inc(&ingress_needed);
1704}
1705EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1706
1707void net_dec_ingress_queue(void)
1708{
1709 static_key_slow_dec(&ingress_needed);
1710}
1711EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1712#endif
1713
1f211a1b
DB
1714#ifdef CONFIG_NET_EGRESS
1715static struct static_key egress_needed __read_mostly;
1716
1717void net_inc_egress_queue(void)
1718{
1719 static_key_slow_inc(&egress_needed);
1720}
1721EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1722
1723void net_dec_egress_queue(void)
1724{
1725 static_key_slow_dec(&egress_needed);
1726}
1727EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1728#endif
1729
c5905afb 1730static struct static_key netstamp_needed __read_mostly;
b90e5794 1731#ifdef HAVE_JUMP_LABEL
b90e5794 1732static atomic_t netstamp_needed_deferred;
13baa00a 1733static atomic_t netstamp_wanted;
5fa8bbda 1734static void netstamp_clear(struct work_struct *work)
1da177e4 1735{
b90e5794 1736 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1737 int wanted;
b90e5794 1738
13baa00a
ED
1739 wanted = atomic_add_return(deferred, &netstamp_wanted);
1740 if (wanted > 0)
1741 static_key_enable(&netstamp_needed);
1742 else
1743 static_key_disable(&netstamp_needed);
5fa8bbda
ED
1744}
1745static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1746#endif
5fa8bbda
ED
1747
1748void net_enable_timestamp(void)
1749{
13baa00a
ED
1750#ifdef HAVE_JUMP_LABEL
1751 int wanted;
1752
1753 while (1) {
1754 wanted = atomic_read(&netstamp_wanted);
1755 if (wanted <= 0)
1756 break;
1757 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1758 return;
1759 }
1760 atomic_inc(&netstamp_needed_deferred);
1761 schedule_work(&netstamp_work);
1762#else
c5905afb 1763 static_key_slow_inc(&netstamp_needed);
13baa00a 1764#endif
1da177e4 1765}
d1b19dff 1766EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1767
1768void net_disable_timestamp(void)
1769{
b90e5794 1770#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1771 int wanted;
1772
1773 while (1) {
1774 wanted = atomic_read(&netstamp_wanted);
1775 if (wanted <= 1)
1776 break;
1777 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1778 return;
1779 }
1780 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1781 schedule_work(&netstamp_work);
1782#else
c5905afb 1783 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1784#endif
1da177e4 1785}
d1b19dff 1786EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1787
3b098e2d 1788static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1789{
2456e855 1790 skb->tstamp = 0;
c5905afb 1791 if (static_key_false(&netstamp_needed))
a61bbcf2 1792 __net_timestamp(skb);
1da177e4
LT
1793}
1794
588f0330 1795#define net_timestamp_check(COND, SKB) \
c5905afb 1796 if (static_key_false(&netstamp_needed)) { \
2456e855 1797 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1798 __net_timestamp(SKB); \
1799 } \
3b098e2d 1800
f4b05d27 1801bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1802{
1803 unsigned int len;
1804
1805 if (!(dev->flags & IFF_UP))
1806 return false;
1807
1808 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1809 if (skb->len <= len)
1810 return true;
1811
1812 /* if TSO is enabled, we don't care about the length as the packet
1813 * could be forwarded without being segmented before
1814 */
1815 if (skb_is_gso(skb))
1816 return true;
1817
1818 return false;
1819}
1ee481fb 1820EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1821
a0265d28
HX
1822int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1823{
4e3264d2 1824 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1825
4e3264d2
MKL
1826 if (likely(!ret)) {
1827 skb->protocol = eth_type_trans(skb, dev);
1828 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1829 }
a0265d28 1830
4e3264d2 1831 return ret;
a0265d28
HX
1832}
1833EXPORT_SYMBOL_GPL(__dev_forward_skb);
1834
44540960
AB
1835/**
1836 * dev_forward_skb - loopback an skb to another netif
1837 *
1838 * @dev: destination network device
1839 * @skb: buffer to forward
1840 *
1841 * return values:
1842 * NET_RX_SUCCESS (no congestion)
6ec82562 1843 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1844 *
1845 * dev_forward_skb can be used for injecting an skb from the
1846 * start_xmit function of one device into the receive queue
1847 * of another device.
1848 *
1849 * The receiving device may be in another namespace, so
1850 * we have to clear all information in the skb that could
1851 * impact namespace isolation.
1852 */
1853int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854{
a0265d28 1855 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1856}
1857EXPORT_SYMBOL_GPL(dev_forward_skb);
1858
71d9dec2
CG
1859static inline int deliver_skb(struct sk_buff *skb,
1860 struct packet_type *pt_prev,
1861 struct net_device *orig_dev)
1862{
1080e512
MT
1863 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1864 return -ENOMEM;
63354797 1865 refcount_inc(&skb->users);
71d9dec2
CG
1866 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1867}
1868
7866a621
SN
1869static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1870 struct packet_type **pt,
fbcb2170
JP
1871 struct net_device *orig_dev,
1872 __be16 type,
7866a621
SN
1873 struct list_head *ptype_list)
1874{
1875 struct packet_type *ptype, *pt_prev = *pt;
1876
1877 list_for_each_entry_rcu(ptype, ptype_list, list) {
1878 if (ptype->type != type)
1879 continue;
1880 if (pt_prev)
fbcb2170 1881 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1882 pt_prev = ptype;
1883 }
1884 *pt = pt_prev;
1885}
1886
c0de08d0
EL
1887static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1888{
a3d744e9 1889 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1890 return false;
1891
1892 if (ptype->id_match)
1893 return ptype->id_match(ptype, skb->sk);
1894 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1895 return true;
1896
1897 return false;
1898}
1899
1da177e4
LT
1900/*
1901 * Support routine. Sends outgoing frames to any network
1902 * taps currently in use.
1903 */
1904
74b20582 1905void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1906{
1907 struct packet_type *ptype;
71d9dec2
CG
1908 struct sk_buff *skb2 = NULL;
1909 struct packet_type *pt_prev = NULL;
7866a621 1910 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1911
1da177e4 1912 rcu_read_lock();
7866a621
SN
1913again:
1914 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1915 /* Never send packets back to the socket
1916 * they originated from - MvS (miquels@drinkel.ow.org)
1917 */
7866a621
SN
1918 if (skb_loop_sk(ptype, skb))
1919 continue;
71d9dec2 1920
7866a621
SN
1921 if (pt_prev) {
1922 deliver_skb(skb2, pt_prev, skb->dev);
1923 pt_prev = ptype;
1924 continue;
1925 }
1da177e4 1926
7866a621
SN
1927 /* need to clone skb, done only once */
1928 skb2 = skb_clone(skb, GFP_ATOMIC);
1929 if (!skb2)
1930 goto out_unlock;
70978182 1931
7866a621 1932 net_timestamp_set(skb2);
1da177e4 1933
7866a621
SN
1934 /* skb->nh should be correctly
1935 * set by sender, so that the second statement is
1936 * just protection against buggy protocols.
1937 */
1938 skb_reset_mac_header(skb2);
1939
1940 if (skb_network_header(skb2) < skb2->data ||
1941 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1942 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1943 ntohs(skb2->protocol),
1944 dev->name);
1945 skb_reset_network_header(skb2);
1da177e4 1946 }
7866a621
SN
1947
1948 skb2->transport_header = skb2->network_header;
1949 skb2->pkt_type = PACKET_OUTGOING;
1950 pt_prev = ptype;
1951 }
1952
1953 if (ptype_list == &ptype_all) {
1954 ptype_list = &dev->ptype_all;
1955 goto again;
1da177e4 1956 }
7866a621 1957out_unlock:
71d9dec2
CG
1958 if (pt_prev)
1959 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1960 rcu_read_unlock();
1961}
74b20582 1962EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1963
2c53040f
BH
1964/**
1965 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1966 * @dev: Network device
1967 * @txq: number of queues available
1968 *
1969 * If real_num_tx_queues is changed the tc mappings may no longer be
1970 * valid. To resolve this verify the tc mapping remains valid and if
1971 * not NULL the mapping. With no priorities mapping to this
1972 * offset/count pair it will no longer be used. In the worst case TC0
1973 * is invalid nothing can be done so disable priority mappings. If is
1974 * expected that drivers will fix this mapping if they can before
1975 * calling netif_set_real_num_tx_queues.
1976 */
bb134d22 1977static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1978{
1979 int i;
1980 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1981
1982 /* If TC0 is invalidated disable TC mapping */
1983 if (tc->offset + tc->count > txq) {
7b6cd1ce 1984 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1985 dev->num_tc = 0;
1986 return;
1987 }
1988
1989 /* Invalidated prio to tc mappings set to TC0 */
1990 for (i = 1; i < TC_BITMASK + 1; i++) {
1991 int q = netdev_get_prio_tc_map(dev, i);
1992
1993 tc = &dev->tc_to_txq[q];
1994 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1995 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1996 i, q);
4f57c087
JF
1997 netdev_set_prio_tc_map(dev, i, 0);
1998 }
1999 }
2000}
2001
8d059b0f
AD
2002int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2003{
2004 if (dev->num_tc) {
2005 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2006 int i;
2007
2008 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2009 if ((txq - tc->offset) < tc->count)
2010 return i;
2011 }
2012
2013 return -1;
2014 }
2015
2016 return 0;
2017}
2018
537c00de
AD
2019#ifdef CONFIG_XPS
2020static DEFINE_MUTEX(xps_map_mutex);
2021#define xmap_dereference(P) \
2022 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2023
6234f874
AD
2024static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2025 int tci, u16 index)
537c00de 2026{
10cdc3f3
AD
2027 struct xps_map *map = NULL;
2028 int pos;
537c00de 2029
10cdc3f3 2030 if (dev_maps)
6234f874
AD
2031 map = xmap_dereference(dev_maps->cpu_map[tci]);
2032 if (!map)
2033 return false;
537c00de 2034
6234f874
AD
2035 for (pos = map->len; pos--;) {
2036 if (map->queues[pos] != index)
2037 continue;
2038
2039 if (map->len > 1) {
2040 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2041 break;
537c00de 2042 }
6234f874
AD
2043
2044 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2045 kfree_rcu(map, rcu);
2046 return false;
537c00de
AD
2047 }
2048
6234f874 2049 return true;
10cdc3f3
AD
2050}
2051
6234f874
AD
2052static bool remove_xps_queue_cpu(struct net_device *dev,
2053 struct xps_dev_maps *dev_maps,
2054 int cpu, u16 offset, u16 count)
2055{
184c449f
AD
2056 int num_tc = dev->num_tc ? : 1;
2057 bool active = false;
2058 int tci;
6234f874 2059
184c449f
AD
2060 for (tci = cpu * num_tc; num_tc--; tci++) {
2061 int i, j;
2062
2063 for (i = count, j = offset; i--; j++) {
2064 if (!remove_xps_queue(dev_maps, cpu, j))
2065 break;
2066 }
2067
2068 active |= i < 0;
6234f874
AD
2069 }
2070
184c449f 2071 return active;
6234f874
AD
2072}
2073
2074static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2075 u16 count)
10cdc3f3
AD
2076{
2077 struct xps_dev_maps *dev_maps;
024e9679 2078 int cpu, i;
10cdc3f3
AD
2079 bool active = false;
2080
2081 mutex_lock(&xps_map_mutex);
2082 dev_maps = xmap_dereference(dev->xps_maps);
2083
2084 if (!dev_maps)
2085 goto out_no_maps;
2086
6234f874
AD
2087 for_each_possible_cpu(cpu)
2088 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2089 offset, count);
10cdc3f3
AD
2090
2091 if (!active) {
537c00de
AD
2092 RCU_INIT_POINTER(dev->xps_maps, NULL);
2093 kfree_rcu(dev_maps, rcu);
2094 }
2095
6234f874 2096 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2097 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2098 NUMA_NO_NODE);
2099
537c00de
AD
2100out_no_maps:
2101 mutex_unlock(&xps_map_mutex);
2102}
2103
6234f874
AD
2104static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2105{
2106 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2107}
2108
01c5f864
AD
2109static struct xps_map *expand_xps_map(struct xps_map *map,
2110 int cpu, u16 index)
2111{
2112 struct xps_map *new_map;
2113 int alloc_len = XPS_MIN_MAP_ALLOC;
2114 int i, pos;
2115
2116 for (pos = 0; map && pos < map->len; pos++) {
2117 if (map->queues[pos] != index)
2118 continue;
2119 return map;
2120 }
2121
2122 /* Need to add queue to this CPU's existing map */
2123 if (map) {
2124 if (pos < map->alloc_len)
2125 return map;
2126
2127 alloc_len = map->alloc_len * 2;
2128 }
2129
2130 /* Need to allocate new map to store queue on this CPU's map */
2131 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2132 cpu_to_node(cpu));
2133 if (!new_map)
2134 return NULL;
2135
2136 for (i = 0; i < pos; i++)
2137 new_map->queues[i] = map->queues[i];
2138 new_map->alloc_len = alloc_len;
2139 new_map->len = pos;
2140
2141 return new_map;
2142}
2143
3573540c
MT
2144int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2145 u16 index)
537c00de 2146{
01c5f864 2147 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2148 int i, cpu, tci, numa_node_id = -2;
2149 int maps_sz, num_tc = 1, tc = 0;
537c00de 2150 struct xps_map *map, *new_map;
01c5f864 2151 bool active = false;
537c00de 2152
184c449f
AD
2153 if (dev->num_tc) {
2154 num_tc = dev->num_tc;
2155 tc = netdev_txq_to_tc(dev, index);
2156 if (tc < 0)
2157 return -EINVAL;
2158 }
2159
2160 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2161 if (maps_sz < L1_CACHE_BYTES)
2162 maps_sz = L1_CACHE_BYTES;
2163
537c00de
AD
2164 mutex_lock(&xps_map_mutex);
2165
2166 dev_maps = xmap_dereference(dev->xps_maps);
2167
01c5f864 2168 /* allocate memory for queue storage */
184c449f 2169 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2170 if (!new_dev_maps)
2171 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2172 if (!new_dev_maps) {
2173 mutex_unlock(&xps_map_mutex);
01c5f864 2174 return -ENOMEM;
2bb60cb9 2175 }
01c5f864 2176
184c449f
AD
2177 tci = cpu * num_tc + tc;
2178 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2179 NULL;
2180
2181 map = expand_xps_map(map, cpu, index);
2182 if (!map)
2183 goto error;
2184
184c449f 2185 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2186 }
2187
2188 if (!new_dev_maps)
2189 goto out_no_new_maps;
2190
537c00de 2191 for_each_possible_cpu(cpu) {
184c449f
AD
2192 /* copy maps belonging to foreign traffic classes */
2193 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2194 /* fill in the new device map from the old device map */
2195 map = xmap_dereference(dev_maps->cpu_map[tci]);
2196 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2197 }
2198
2199 /* We need to explicitly update tci as prevous loop
2200 * could break out early if dev_maps is NULL.
2201 */
2202 tci = cpu * num_tc + tc;
2203
01c5f864
AD
2204 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2205 /* add queue to CPU maps */
2206 int pos = 0;
2207
184c449f 2208 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2209 while ((pos < map->len) && (map->queues[pos] != index))
2210 pos++;
2211
2212 if (pos == map->len)
2213 map->queues[map->len++] = index;
537c00de 2214#ifdef CONFIG_NUMA
537c00de
AD
2215 if (numa_node_id == -2)
2216 numa_node_id = cpu_to_node(cpu);
2217 else if (numa_node_id != cpu_to_node(cpu))
2218 numa_node_id = -1;
537c00de 2219#endif
01c5f864
AD
2220 } else if (dev_maps) {
2221 /* fill in the new device map from the old device map */
184c449f
AD
2222 map = xmap_dereference(dev_maps->cpu_map[tci]);
2223 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2224 }
01c5f864 2225
184c449f
AD
2226 /* copy maps belonging to foreign traffic classes */
2227 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2228 /* fill in the new device map from the old device map */
2229 map = xmap_dereference(dev_maps->cpu_map[tci]);
2230 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2231 }
537c00de
AD
2232 }
2233
01c5f864
AD
2234 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2235
537c00de 2236 /* Cleanup old maps */
184c449f
AD
2237 if (!dev_maps)
2238 goto out_no_old_maps;
2239
2240 for_each_possible_cpu(cpu) {
2241 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2242 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2243 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2244 if (map && map != new_map)
2245 kfree_rcu(map, rcu);
2246 }
537c00de
AD
2247 }
2248
184c449f
AD
2249 kfree_rcu(dev_maps, rcu);
2250
2251out_no_old_maps:
01c5f864
AD
2252 dev_maps = new_dev_maps;
2253 active = true;
537c00de 2254
01c5f864
AD
2255out_no_new_maps:
2256 /* update Tx queue numa node */
537c00de
AD
2257 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2258 (numa_node_id >= 0) ? numa_node_id :
2259 NUMA_NO_NODE);
2260
01c5f864
AD
2261 if (!dev_maps)
2262 goto out_no_maps;
2263
2264 /* removes queue from unused CPUs */
2265 for_each_possible_cpu(cpu) {
184c449f
AD
2266 for (i = tc, tci = cpu * num_tc; i--; tci++)
2267 active |= remove_xps_queue(dev_maps, tci, index);
2268 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2269 active |= remove_xps_queue(dev_maps, tci, index);
2270 for (i = num_tc - tc, tci++; --i; tci++)
2271 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2272 }
2273
2274 /* free map if not active */
2275 if (!active) {
2276 RCU_INIT_POINTER(dev->xps_maps, NULL);
2277 kfree_rcu(dev_maps, rcu);
2278 }
2279
2280out_no_maps:
537c00de
AD
2281 mutex_unlock(&xps_map_mutex);
2282
2283 return 0;
2284error:
01c5f864
AD
2285 /* remove any maps that we added */
2286 for_each_possible_cpu(cpu) {
184c449f
AD
2287 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2288 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2289 map = dev_maps ?
2290 xmap_dereference(dev_maps->cpu_map[tci]) :
2291 NULL;
2292 if (new_map && new_map != map)
2293 kfree(new_map);
2294 }
01c5f864
AD
2295 }
2296
537c00de
AD
2297 mutex_unlock(&xps_map_mutex);
2298
537c00de
AD
2299 kfree(new_dev_maps);
2300 return -ENOMEM;
2301}
2302EXPORT_SYMBOL(netif_set_xps_queue);
2303
2304#endif
9cf1f6a8
AD
2305void netdev_reset_tc(struct net_device *dev)
2306{
6234f874
AD
2307#ifdef CONFIG_XPS
2308 netif_reset_xps_queues_gt(dev, 0);
2309#endif
9cf1f6a8
AD
2310 dev->num_tc = 0;
2311 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2312 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2313}
2314EXPORT_SYMBOL(netdev_reset_tc);
2315
2316int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2317{
2318 if (tc >= dev->num_tc)
2319 return -EINVAL;
2320
6234f874
AD
2321#ifdef CONFIG_XPS
2322 netif_reset_xps_queues(dev, offset, count);
2323#endif
9cf1f6a8
AD
2324 dev->tc_to_txq[tc].count = count;
2325 dev->tc_to_txq[tc].offset = offset;
2326 return 0;
2327}
2328EXPORT_SYMBOL(netdev_set_tc_queue);
2329
2330int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2331{
2332 if (num_tc > TC_MAX_QUEUE)
2333 return -EINVAL;
2334
6234f874
AD
2335#ifdef CONFIG_XPS
2336 netif_reset_xps_queues_gt(dev, 0);
2337#endif
9cf1f6a8
AD
2338 dev->num_tc = num_tc;
2339 return 0;
2340}
2341EXPORT_SYMBOL(netdev_set_num_tc);
2342
f0796d5c
JF
2343/*
2344 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2345 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2346 */
e6484930 2347int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2348{
1d24eb48
TH
2349 int rc;
2350
e6484930
TH
2351 if (txq < 1 || txq > dev->num_tx_queues)
2352 return -EINVAL;
f0796d5c 2353
5c56580b
BH
2354 if (dev->reg_state == NETREG_REGISTERED ||
2355 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2356 ASSERT_RTNL();
2357
1d24eb48
TH
2358 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2359 txq);
bf264145
TH
2360 if (rc)
2361 return rc;
2362
4f57c087
JF
2363 if (dev->num_tc)
2364 netif_setup_tc(dev, txq);
2365
024e9679 2366 if (txq < dev->real_num_tx_queues) {
e6484930 2367 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2368#ifdef CONFIG_XPS
2369 netif_reset_xps_queues_gt(dev, txq);
2370#endif
2371 }
f0796d5c 2372 }
e6484930
TH
2373
2374 dev->real_num_tx_queues = txq;
2375 return 0;
f0796d5c
JF
2376}
2377EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2378
a953be53 2379#ifdef CONFIG_SYSFS
62fe0b40
BH
2380/**
2381 * netif_set_real_num_rx_queues - set actual number of RX queues used
2382 * @dev: Network device
2383 * @rxq: Actual number of RX queues
2384 *
2385 * This must be called either with the rtnl_lock held or before
2386 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2387 * negative error code. If called before registration, it always
2388 * succeeds.
62fe0b40
BH
2389 */
2390int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2391{
2392 int rc;
2393
bd25fa7b
TH
2394 if (rxq < 1 || rxq > dev->num_rx_queues)
2395 return -EINVAL;
2396
62fe0b40
BH
2397 if (dev->reg_state == NETREG_REGISTERED) {
2398 ASSERT_RTNL();
2399
62fe0b40
BH
2400 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2401 rxq);
2402 if (rc)
2403 return rc;
62fe0b40
BH
2404 }
2405
2406 dev->real_num_rx_queues = rxq;
2407 return 0;
2408}
2409EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2410#endif
2411
2c53040f
BH
2412/**
2413 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2414 *
2415 * This routine should set an upper limit on the number of RSS queues
2416 * used by default by multiqueue devices.
2417 */
a55b138b 2418int netif_get_num_default_rss_queues(void)
16917b87 2419{
40e4e713
HS
2420 return is_kdump_kernel() ?
2421 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2422}
2423EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2424
3bcb846c 2425static void __netif_reschedule(struct Qdisc *q)
56079431 2426{
def82a1d
JP
2427 struct softnet_data *sd;
2428 unsigned long flags;
56079431 2429
def82a1d 2430 local_irq_save(flags);
903ceff7 2431 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2432 q->next_sched = NULL;
2433 *sd->output_queue_tailp = q;
2434 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2435 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2436 local_irq_restore(flags);
2437}
2438
2439void __netif_schedule(struct Qdisc *q)
2440{
2441 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2442 __netif_reschedule(q);
56079431
DV
2443}
2444EXPORT_SYMBOL(__netif_schedule);
2445
e6247027
ED
2446struct dev_kfree_skb_cb {
2447 enum skb_free_reason reason;
2448};
2449
2450static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2451{
e6247027
ED
2452 return (struct dev_kfree_skb_cb *)skb->cb;
2453}
2454
46e5da40
JF
2455void netif_schedule_queue(struct netdev_queue *txq)
2456{
2457 rcu_read_lock();
2458 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2459 struct Qdisc *q = rcu_dereference(txq->qdisc);
2460
2461 __netif_schedule(q);
2462 }
2463 rcu_read_unlock();
2464}
2465EXPORT_SYMBOL(netif_schedule_queue);
2466
46e5da40
JF
2467void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2468{
2469 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2470 struct Qdisc *q;
2471
2472 rcu_read_lock();
2473 q = rcu_dereference(dev_queue->qdisc);
2474 __netif_schedule(q);
2475 rcu_read_unlock();
2476 }
2477}
2478EXPORT_SYMBOL(netif_tx_wake_queue);
2479
e6247027 2480void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2481{
e6247027 2482 unsigned long flags;
56079431 2483
9899886d
MJ
2484 if (unlikely(!skb))
2485 return;
2486
63354797 2487 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2488 smp_rmb();
63354797
RE
2489 refcount_set(&skb->users, 0);
2490 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2491 return;
bea3348e 2492 }
e6247027
ED
2493 get_kfree_skb_cb(skb)->reason = reason;
2494 local_irq_save(flags);
2495 skb->next = __this_cpu_read(softnet_data.completion_queue);
2496 __this_cpu_write(softnet_data.completion_queue, skb);
2497 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2498 local_irq_restore(flags);
56079431 2499}
e6247027 2500EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2501
e6247027 2502void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2503{
2504 if (in_irq() || irqs_disabled())
e6247027 2505 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2506 else
2507 dev_kfree_skb(skb);
2508}
e6247027 2509EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2510
2511
bea3348e
SH
2512/**
2513 * netif_device_detach - mark device as removed
2514 * @dev: network device
2515 *
2516 * Mark device as removed from system and therefore no longer available.
2517 */
56079431
DV
2518void netif_device_detach(struct net_device *dev)
2519{
2520 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2521 netif_running(dev)) {
d543103a 2522 netif_tx_stop_all_queues(dev);
56079431
DV
2523 }
2524}
2525EXPORT_SYMBOL(netif_device_detach);
2526
bea3348e
SH
2527/**
2528 * netif_device_attach - mark device as attached
2529 * @dev: network device
2530 *
2531 * Mark device as attached from system and restart if needed.
2532 */
56079431
DV
2533void netif_device_attach(struct net_device *dev)
2534{
2535 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2536 netif_running(dev)) {
d543103a 2537 netif_tx_wake_all_queues(dev);
4ec93edb 2538 __netdev_watchdog_up(dev);
56079431
DV
2539 }
2540}
2541EXPORT_SYMBOL(netif_device_attach);
2542
5605c762
JP
2543/*
2544 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2545 * to be used as a distribution range.
2546 */
2547u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2548 unsigned int num_tx_queues)
2549{
2550 u32 hash;
2551 u16 qoffset = 0;
2552 u16 qcount = num_tx_queues;
2553
2554 if (skb_rx_queue_recorded(skb)) {
2555 hash = skb_get_rx_queue(skb);
2556 while (unlikely(hash >= num_tx_queues))
2557 hash -= num_tx_queues;
2558 return hash;
2559 }
2560
2561 if (dev->num_tc) {
2562 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
f4563a75 2563
5605c762
JP
2564 qoffset = dev->tc_to_txq[tc].offset;
2565 qcount = dev->tc_to_txq[tc].count;
2566 }
2567
2568 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2569}
2570EXPORT_SYMBOL(__skb_tx_hash);
2571
36c92474
BH
2572static void skb_warn_bad_offload(const struct sk_buff *skb)
2573{
84d15ae5 2574 static const netdev_features_t null_features;
36c92474 2575 struct net_device *dev = skb->dev;
88ad4175 2576 const char *name = "";
36c92474 2577
c846ad9b
BG
2578 if (!net_ratelimit())
2579 return;
2580
88ad4175
BM
2581 if (dev) {
2582 if (dev->dev.parent)
2583 name = dev_driver_string(dev->dev.parent);
2584 else
2585 name = netdev_name(dev);
2586 }
36c92474
BH
2587 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2588 "gso_type=%d ip_summed=%d\n",
88ad4175 2589 name, dev ? &dev->features : &null_features,
65e9d2fa 2590 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2591 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2592 skb_shinfo(skb)->gso_type, skb->ip_summed);
2593}
2594
1da177e4
LT
2595/*
2596 * Invalidate hardware checksum when packet is to be mangled, and
2597 * complete checksum manually on outgoing path.
2598 */
84fa7933 2599int skb_checksum_help(struct sk_buff *skb)
1da177e4 2600{
d3bc23e7 2601 __wsum csum;
663ead3b 2602 int ret = 0, offset;
1da177e4 2603
84fa7933 2604 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2605 goto out_set_summed;
2606
2607 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2608 skb_warn_bad_offload(skb);
2609 return -EINVAL;
1da177e4
LT
2610 }
2611
cef401de
ED
2612 /* Before computing a checksum, we should make sure no frag could
2613 * be modified by an external entity : checksum could be wrong.
2614 */
2615 if (skb_has_shared_frag(skb)) {
2616 ret = __skb_linearize(skb);
2617 if (ret)
2618 goto out;
2619 }
2620
55508d60 2621 offset = skb_checksum_start_offset(skb);
a030847e
HX
2622 BUG_ON(offset >= skb_headlen(skb));
2623 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2624
2625 offset += skb->csum_offset;
2626 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2627
2628 if (skb_cloned(skb) &&
2629 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2630 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2631 if (ret)
2632 goto out;
2633 }
2634
4f2e4ad5 2635 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2636out_set_summed:
1da177e4 2637 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2638out:
1da177e4
LT
2639 return ret;
2640}
d1b19dff 2641EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2642
b72b5bf6
DC
2643int skb_crc32c_csum_help(struct sk_buff *skb)
2644{
2645 __le32 crc32c_csum;
2646 int ret = 0, offset, start;
2647
2648 if (skb->ip_summed != CHECKSUM_PARTIAL)
2649 goto out;
2650
2651 if (unlikely(skb_is_gso(skb)))
2652 goto out;
2653
2654 /* Before computing a checksum, we should make sure no frag could
2655 * be modified by an external entity : checksum could be wrong.
2656 */
2657 if (unlikely(skb_has_shared_frag(skb))) {
2658 ret = __skb_linearize(skb);
2659 if (ret)
2660 goto out;
2661 }
2662 start = skb_checksum_start_offset(skb);
2663 offset = start + offsetof(struct sctphdr, checksum);
2664 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2665 ret = -EINVAL;
2666 goto out;
2667 }
2668 if (skb_cloned(skb) &&
2669 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2670 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2671 if (ret)
2672 goto out;
2673 }
2674 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2675 skb->len - start, ~(__u32)0,
2676 crc32c_csum_stub));
2677 *(__le32 *)(skb->data + offset) = crc32c_csum;
2678 skb->ip_summed = CHECKSUM_NONE;
dba00306 2679 skb->csum_not_inet = 0;
b72b5bf6
DC
2680out:
2681 return ret;
2682}
2683
53d6471c 2684__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2685{
252e3346 2686 __be16 type = skb->protocol;
f6a78bfc 2687
19acc327
PS
2688 /* Tunnel gso handlers can set protocol to ethernet. */
2689 if (type == htons(ETH_P_TEB)) {
2690 struct ethhdr *eth;
2691
2692 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2693 return 0;
2694
2695 eth = (struct ethhdr *)skb_mac_header(skb);
2696 type = eth->h_proto;
2697 }
2698
d4bcef3f 2699 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2700}
2701
2702/**
2703 * skb_mac_gso_segment - mac layer segmentation handler.
2704 * @skb: buffer to segment
2705 * @features: features for the output path (see dev->features)
2706 */
2707struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2708 netdev_features_t features)
2709{
2710 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2711 struct packet_offload *ptype;
53d6471c
VY
2712 int vlan_depth = skb->mac_len;
2713 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2714
2715 if (unlikely(!type))
2716 return ERR_PTR(-EINVAL);
2717
53d6471c 2718 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2719
2720 rcu_read_lock();
22061d80 2721 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2722 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2723 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2724 break;
2725 }
2726 }
2727 rcu_read_unlock();
2728
98e399f8 2729 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2730
f6a78bfc
HX
2731 return segs;
2732}
05e8ef4a
PS
2733EXPORT_SYMBOL(skb_mac_gso_segment);
2734
2735
2736/* openvswitch calls this on rx path, so we need a different check.
2737 */
2738static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2739{
2740 if (tx_path)
6e7bc478
ED
2741 return skb->ip_summed != CHECKSUM_PARTIAL &&
2742 skb->ip_summed != CHECKSUM_NONE;
2743
2744 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2745}
2746
2747/**
2748 * __skb_gso_segment - Perform segmentation on skb.
2749 * @skb: buffer to segment
2750 * @features: features for the output path (see dev->features)
2751 * @tx_path: whether it is called in TX path
2752 *
2753 * This function segments the given skb and returns a list of segments.
2754 *
2755 * It may return NULL if the skb requires no segmentation. This is
2756 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2757 *
2758 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2759 */
2760struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2761 netdev_features_t features, bool tx_path)
2762{
b2504a5d
ED
2763 struct sk_buff *segs;
2764
05e8ef4a
PS
2765 if (unlikely(skb_needs_check(skb, tx_path))) {
2766 int err;
2767
b2504a5d 2768 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2769 err = skb_cow_head(skb, 0);
2770 if (err < 0)
05e8ef4a
PS
2771 return ERR_PTR(err);
2772 }
2773
802ab55a
AD
2774 /* Only report GSO partial support if it will enable us to
2775 * support segmentation on this frame without needing additional
2776 * work.
2777 */
2778 if (features & NETIF_F_GSO_PARTIAL) {
2779 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2780 struct net_device *dev = skb->dev;
2781
2782 partial_features |= dev->features & dev->gso_partial_features;
2783 if (!skb_gso_ok(skb, features | partial_features))
2784 features &= ~NETIF_F_GSO_PARTIAL;
2785 }
2786
9207f9d4
KK
2787 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2788 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2789
68c33163 2790 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2791 SKB_GSO_CB(skb)->encap_level = 0;
2792
05e8ef4a
PS
2793 skb_reset_mac_header(skb);
2794 skb_reset_mac_len(skb);
2795
b2504a5d
ED
2796 segs = skb_mac_gso_segment(skb, features);
2797
2798 if (unlikely(skb_needs_check(skb, tx_path)))
2799 skb_warn_bad_offload(skb);
2800
2801 return segs;
05e8ef4a 2802}
12b0004d 2803EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2804
fb286bb2
HX
2805/* Take action when hardware reception checksum errors are detected. */
2806#ifdef CONFIG_BUG
2807void netdev_rx_csum_fault(struct net_device *dev)
2808{
2809 if (net_ratelimit()) {
7b6cd1ce 2810 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2811 dump_stack();
2812 }
2813}
2814EXPORT_SYMBOL(netdev_rx_csum_fault);
2815#endif
2816
1da177e4
LT
2817/* Actually, we should eliminate this check as soon as we know, that:
2818 * 1. IOMMU is present and allows to map all the memory.
2819 * 2. No high memory really exists on this machine.
2820 */
2821
c1e756bf 2822static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2823{
3d3a8533 2824#ifdef CONFIG_HIGHMEM
1da177e4 2825 int i;
f4563a75 2826
5acbbd42 2827 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2828 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2829 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 2830
ea2ab693 2831 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2832 return 1;
ea2ab693 2833 }
5acbbd42 2834 }
1da177e4 2835
5acbbd42
FT
2836 if (PCI_DMA_BUS_IS_PHYS) {
2837 struct device *pdev = dev->dev.parent;
1da177e4 2838
9092c658
ED
2839 if (!pdev)
2840 return 0;
5acbbd42 2841 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2842 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2843 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
f4563a75 2844
5acbbd42
FT
2845 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2846 return 1;
2847 }
2848 }
3d3a8533 2849#endif
1da177e4
LT
2850 return 0;
2851}
1da177e4 2852
3b392ddb
SH
2853/* If MPLS offload request, verify we are testing hardware MPLS features
2854 * instead of standard features for the netdev.
2855 */
d0edc7bf 2856#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2857static netdev_features_t net_mpls_features(struct sk_buff *skb,
2858 netdev_features_t features,
2859 __be16 type)
2860{
25cd9ba0 2861 if (eth_p_mpls(type))
3b392ddb
SH
2862 features &= skb->dev->mpls_features;
2863
2864 return features;
2865}
2866#else
2867static netdev_features_t net_mpls_features(struct sk_buff *skb,
2868 netdev_features_t features,
2869 __be16 type)
2870{
2871 return features;
2872}
2873#endif
2874
c8f44aff 2875static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2876 netdev_features_t features)
f01a5236 2877{
53d6471c 2878 int tmp;
3b392ddb
SH
2879 __be16 type;
2880
2881 type = skb_network_protocol(skb, &tmp);
2882 features = net_mpls_features(skb, features, type);
53d6471c 2883
c0d680e5 2884 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2885 !can_checksum_protocol(features, type)) {
996e8021 2886 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2887 }
7be2c82c
ED
2888 if (illegal_highdma(skb->dev, skb))
2889 features &= ~NETIF_F_SG;
f01a5236
JG
2890
2891 return features;
2892}
2893
e38f3025
TM
2894netdev_features_t passthru_features_check(struct sk_buff *skb,
2895 struct net_device *dev,
2896 netdev_features_t features)
2897{
2898 return features;
2899}
2900EXPORT_SYMBOL(passthru_features_check);
2901
8cb65d00
TM
2902static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2903 struct net_device *dev,
2904 netdev_features_t features)
2905{
2906 return vlan_features_check(skb, features);
2907}
2908
cbc53e08
AD
2909static netdev_features_t gso_features_check(const struct sk_buff *skb,
2910 struct net_device *dev,
2911 netdev_features_t features)
2912{
2913 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2914
2915 if (gso_segs > dev->gso_max_segs)
2916 return features & ~NETIF_F_GSO_MASK;
2917
802ab55a
AD
2918 /* Support for GSO partial features requires software
2919 * intervention before we can actually process the packets
2920 * so we need to strip support for any partial features now
2921 * and we can pull them back in after we have partially
2922 * segmented the frame.
2923 */
2924 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2925 features &= ~dev->gso_partial_features;
2926
2927 /* Make sure to clear the IPv4 ID mangling feature if the
2928 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2929 */
2930 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2931 struct iphdr *iph = skb->encapsulation ?
2932 inner_ip_hdr(skb) : ip_hdr(skb);
2933
2934 if (!(iph->frag_off & htons(IP_DF)))
2935 features &= ~NETIF_F_TSO_MANGLEID;
2936 }
2937
2938 return features;
2939}
2940
c1e756bf 2941netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2942{
5f35227e 2943 struct net_device *dev = skb->dev;
fcbeb976 2944 netdev_features_t features = dev->features;
58e998c6 2945
cbc53e08
AD
2946 if (skb_is_gso(skb))
2947 features = gso_features_check(skb, dev, features);
30b678d8 2948
5f35227e
JG
2949 /* If encapsulation offload request, verify we are testing
2950 * hardware encapsulation features instead of standard
2951 * features for the netdev
2952 */
2953 if (skb->encapsulation)
2954 features &= dev->hw_enc_features;
2955
f5a7fb88
TM
2956 if (skb_vlan_tagged(skb))
2957 features = netdev_intersect_features(features,
2958 dev->vlan_features |
2959 NETIF_F_HW_VLAN_CTAG_TX |
2960 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2961
5f35227e
JG
2962 if (dev->netdev_ops->ndo_features_check)
2963 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2964 features);
8cb65d00
TM
2965 else
2966 features &= dflt_features_check(skb, dev, features);
5f35227e 2967
c1e756bf 2968 return harmonize_features(skb, features);
58e998c6 2969}
c1e756bf 2970EXPORT_SYMBOL(netif_skb_features);
58e998c6 2971
2ea25513 2972static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2973 struct netdev_queue *txq, bool more)
f6a78bfc 2974{
2ea25513
DM
2975 unsigned int len;
2976 int rc;
00829823 2977
7866a621 2978 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2979 dev_queue_xmit_nit(skb, dev);
fc741216 2980
2ea25513
DM
2981 len = skb->len;
2982 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2983 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2984 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2985
2ea25513
DM
2986 return rc;
2987}
7b9c6090 2988
8dcda22a
DM
2989struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2990 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2991{
2992 struct sk_buff *skb = first;
2993 int rc = NETDEV_TX_OK;
7b9c6090 2994
7f2e870f
DM
2995 while (skb) {
2996 struct sk_buff *next = skb->next;
fc70fb64 2997
7f2e870f 2998 skb->next = NULL;
95f6b3dd 2999 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3000 if (unlikely(!dev_xmit_complete(rc))) {
3001 skb->next = next;
3002 goto out;
3003 }
6afff0ca 3004
7f2e870f
DM
3005 skb = next;
3006 if (netif_xmit_stopped(txq) && skb) {
3007 rc = NETDEV_TX_BUSY;
3008 break;
9ccb8975 3009 }
7f2e870f 3010 }
9ccb8975 3011
7f2e870f
DM
3012out:
3013 *ret = rc;
3014 return skb;
3015}
b40863c6 3016
1ff0dc94
ED
3017static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3018 netdev_features_t features)
f6a78bfc 3019{
df8a39de 3020 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3021 !vlan_hw_offload_capable(features, skb->vlan_proto))
3022 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3023 return skb;
3024}
f6a78bfc 3025
43c26a1a
DC
3026int skb_csum_hwoffload_help(struct sk_buff *skb,
3027 const netdev_features_t features)
3028{
3029 if (unlikely(skb->csum_not_inet))
3030 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3031 skb_crc32c_csum_help(skb);
3032
3033 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3034}
3035EXPORT_SYMBOL(skb_csum_hwoffload_help);
3036
55a93b3e 3037static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
3038{
3039 netdev_features_t features;
f6a78bfc 3040
eae3f88e
DM
3041 features = netif_skb_features(skb);
3042 skb = validate_xmit_vlan(skb, features);
3043 if (unlikely(!skb))
3044 goto out_null;
7b9c6090 3045
8b86a61d 3046 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3047 struct sk_buff *segs;
3048
3049 segs = skb_gso_segment(skb, features);
cecda693 3050 if (IS_ERR(segs)) {
af6dabc9 3051 goto out_kfree_skb;
cecda693
JW
3052 } else if (segs) {
3053 consume_skb(skb);
3054 skb = segs;
f6a78bfc 3055 }
eae3f88e
DM
3056 } else {
3057 if (skb_needs_linearize(skb, features) &&
3058 __skb_linearize(skb))
3059 goto out_kfree_skb;
4ec93edb 3060
f6e27114
SK
3061 if (validate_xmit_xfrm(skb, features))
3062 goto out_kfree_skb;
3063
eae3f88e
DM
3064 /* If packet is not checksummed and device does not
3065 * support checksumming for this protocol, complete
3066 * checksumming here.
3067 */
3068 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3069 if (skb->encapsulation)
3070 skb_set_inner_transport_header(skb,
3071 skb_checksum_start_offset(skb));
3072 else
3073 skb_set_transport_header(skb,
3074 skb_checksum_start_offset(skb));
43c26a1a 3075 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3076 goto out_kfree_skb;
7b9c6090 3077 }
0c772159 3078 }
7b9c6090 3079
eae3f88e 3080 return skb;
fc70fb64 3081
f6a78bfc
HX
3082out_kfree_skb:
3083 kfree_skb(skb);
eae3f88e 3084out_null:
d21fd63e 3085 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3086 return NULL;
3087}
6afff0ca 3088
55a93b3e
ED
3089struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3090{
3091 struct sk_buff *next, *head = NULL, *tail;
3092
bec3cfdc 3093 for (; skb != NULL; skb = next) {
55a93b3e
ED
3094 next = skb->next;
3095 skb->next = NULL;
bec3cfdc
ED
3096
3097 /* in case skb wont be segmented, point to itself */
3098 skb->prev = skb;
3099
55a93b3e 3100 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3101 if (!skb)
3102 continue;
55a93b3e 3103
bec3cfdc
ED
3104 if (!head)
3105 head = skb;
3106 else
3107 tail->next = skb;
3108 /* If skb was segmented, skb->prev points to
3109 * the last segment. If not, it still contains skb.
3110 */
3111 tail = skb->prev;
55a93b3e
ED
3112 }
3113 return head;
f6a78bfc 3114}
104ba78c 3115EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3116
1def9238
ED
3117static void qdisc_pkt_len_init(struct sk_buff *skb)
3118{
3119 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3120
3121 qdisc_skb_cb(skb)->pkt_len = skb->len;
3122
3123 /* To get more precise estimation of bytes sent on wire,
3124 * we add to pkt_len the headers size of all segments
3125 */
3126 if (shinfo->gso_size) {
757b8b1d 3127 unsigned int hdr_len;
15e5a030 3128 u16 gso_segs = shinfo->gso_segs;
1def9238 3129
757b8b1d
ED
3130 /* mac layer + network layer */
3131 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3132
3133 /* + transport layer */
1def9238
ED
3134 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3135 hdr_len += tcp_hdrlen(skb);
3136 else
3137 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3138
3139 if (shinfo->gso_type & SKB_GSO_DODGY)
3140 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3141 shinfo->gso_size);
3142
3143 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3144 }
3145}
3146
bbd8a0d3
KK
3147static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3148 struct net_device *dev,
3149 struct netdev_queue *txq)
3150{
3151 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3152 struct sk_buff *to_free = NULL;
a2da570d 3153 bool contended;
bbd8a0d3
KK
3154 int rc;
3155
a2da570d 3156 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3157 /*
3158 * Heuristic to force contended enqueues to serialize on a
3159 * separate lock before trying to get qdisc main lock.
f9eb8aea 3160 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3161 * often and dequeue packets faster.
79640a4c 3162 */
a2da570d 3163 contended = qdisc_is_running(q);
79640a4c
ED
3164 if (unlikely(contended))
3165 spin_lock(&q->busylock);
3166
bbd8a0d3
KK
3167 spin_lock(root_lock);
3168 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3169 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3170 rc = NET_XMIT_DROP;
3171 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3172 qdisc_run_begin(q)) {
bbd8a0d3
KK
3173 /*
3174 * This is a work-conserving queue; there are no old skbs
3175 * waiting to be sent out; and the qdisc is not running -
3176 * xmit the skb directly.
3177 */
bfe0d029 3178
bfe0d029
ED
3179 qdisc_bstats_update(q, skb);
3180
55a93b3e 3181 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3182 if (unlikely(contended)) {
3183 spin_unlock(&q->busylock);
3184 contended = false;
3185 }
bbd8a0d3 3186 __qdisc_run(q);
79640a4c 3187 } else
bc135b23 3188 qdisc_run_end(q);
bbd8a0d3
KK
3189
3190 rc = NET_XMIT_SUCCESS;
3191 } else {
520ac30f 3192 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3193 if (qdisc_run_begin(q)) {
3194 if (unlikely(contended)) {
3195 spin_unlock(&q->busylock);
3196 contended = false;
3197 }
3198 __qdisc_run(q);
3199 }
bbd8a0d3
KK
3200 }
3201 spin_unlock(root_lock);
520ac30f
ED
3202 if (unlikely(to_free))
3203 kfree_skb_list(to_free);
79640a4c
ED
3204 if (unlikely(contended))
3205 spin_unlock(&q->busylock);
bbd8a0d3
KK
3206 return rc;
3207}
3208
86f8515f 3209#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3210static void skb_update_prio(struct sk_buff *skb)
3211{
6977a79d 3212 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3213
91c68ce2 3214 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3215 unsigned int prioidx =
3216 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3217
3218 if (prioidx < map->priomap_len)
3219 skb->priority = map->priomap[prioidx];
3220 }
5bc1421e
NH
3221}
3222#else
3223#define skb_update_prio(skb)
3224#endif
3225
f60e5990 3226DEFINE_PER_CPU(int, xmit_recursion);
3227EXPORT_SYMBOL(xmit_recursion);
3228
95603e22
MM
3229/**
3230 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3231 * @net: network namespace this loopback is happening in
3232 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3233 * @skb: buffer to transmit
3234 */
0c4b51f0 3235int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3236{
3237 skb_reset_mac_header(skb);
3238 __skb_pull(skb, skb_network_offset(skb));
3239 skb->pkt_type = PACKET_LOOPBACK;
3240 skb->ip_summed = CHECKSUM_UNNECESSARY;
3241 WARN_ON(!skb_dst(skb));
3242 skb_dst_force(skb);
3243 netif_rx_ni(skb);
3244 return 0;
3245}
3246EXPORT_SYMBOL(dev_loopback_xmit);
3247
1f211a1b
DB
3248#ifdef CONFIG_NET_EGRESS
3249static struct sk_buff *
3250sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3251{
3252 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3253 struct tcf_result cl_res;
3254
3255 if (!cl)
3256 return skb;
3257
8dc07fdb 3258 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
1f211a1b
DB
3259 qdisc_bstats_cpu_update(cl->q, skb);
3260
87d83093 3261 switch (tcf_classify(skb, cl, &cl_res, false)) {
1f211a1b
DB
3262 case TC_ACT_OK:
3263 case TC_ACT_RECLASSIFY:
3264 skb->tc_index = TC_H_MIN(cl_res.classid);
3265 break;
3266 case TC_ACT_SHOT:
3267 qdisc_qstats_cpu_drop(cl->q);
3268 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3269 kfree_skb(skb);
3270 return NULL;
1f211a1b
DB
3271 case TC_ACT_STOLEN:
3272 case TC_ACT_QUEUED:
e25ea21f 3273 case TC_ACT_TRAP:
1f211a1b 3274 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3275 consume_skb(skb);
1f211a1b
DB
3276 return NULL;
3277 case TC_ACT_REDIRECT:
3278 /* No need to push/pop skb's mac_header here on egress! */
3279 skb_do_redirect(skb);
3280 *ret = NET_XMIT_SUCCESS;
3281 return NULL;
3282 default:
3283 break;
3284 }
3285
3286 return skb;
3287}
3288#endif /* CONFIG_NET_EGRESS */
3289
638b2a69
JP
3290static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3291{
3292#ifdef CONFIG_XPS
3293 struct xps_dev_maps *dev_maps;
3294 struct xps_map *map;
3295 int queue_index = -1;
3296
3297 rcu_read_lock();
3298 dev_maps = rcu_dereference(dev->xps_maps);
3299 if (dev_maps) {
184c449f
AD
3300 unsigned int tci = skb->sender_cpu - 1;
3301
3302 if (dev->num_tc) {
3303 tci *= dev->num_tc;
3304 tci += netdev_get_prio_tc_map(dev, skb->priority);
3305 }
3306
3307 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3308 if (map) {
3309 if (map->len == 1)
3310 queue_index = map->queues[0];
3311 else
3312 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3313 map->len)];
3314 if (unlikely(queue_index >= dev->real_num_tx_queues))
3315 queue_index = -1;
3316 }
3317 }
3318 rcu_read_unlock();
3319
3320 return queue_index;
3321#else
3322 return -1;
3323#endif
3324}
3325
3326static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3327{
3328 struct sock *sk = skb->sk;
3329 int queue_index = sk_tx_queue_get(sk);
3330
3331 if (queue_index < 0 || skb->ooo_okay ||
3332 queue_index >= dev->real_num_tx_queues) {
3333 int new_index = get_xps_queue(dev, skb);
f4563a75 3334
638b2a69
JP
3335 if (new_index < 0)
3336 new_index = skb_tx_hash(dev, skb);
3337
3338 if (queue_index != new_index && sk &&
004a5d01 3339 sk_fullsock(sk) &&
638b2a69
JP
3340 rcu_access_pointer(sk->sk_dst_cache))
3341 sk_tx_queue_set(sk, new_index);
3342
3343 queue_index = new_index;
3344 }
3345
3346 return queue_index;
3347}
3348
3349struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3350 struct sk_buff *skb,
3351 void *accel_priv)
3352{
3353 int queue_index = 0;
3354
3355#ifdef CONFIG_XPS
52bd2d62
ED
3356 u32 sender_cpu = skb->sender_cpu - 1;
3357
3358 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3359 skb->sender_cpu = raw_smp_processor_id() + 1;
3360#endif
3361
3362 if (dev->real_num_tx_queues != 1) {
3363 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3364
638b2a69
JP
3365 if (ops->ndo_select_queue)
3366 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3367 __netdev_pick_tx);
3368 else
3369 queue_index = __netdev_pick_tx(dev, skb);
3370
3371 if (!accel_priv)
3372 queue_index = netdev_cap_txqueue(dev, queue_index);
3373 }
3374
3375 skb_set_queue_mapping(skb, queue_index);
3376 return netdev_get_tx_queue(dev, queue_index);
3377}
3378
d29f749e 3379/**
9d08dd3d 3380 * __dev_queue_xmit - transmit a buffer
d29f749e 3381 * @skb: buffer to transmit
9d08dd3d 3382 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3383 *
3384 * Queue a buffer for transmission to a network device. The caller must
3385 * have set the device and priority and built the buffer before calling
3386 * this function. The function can be called from an interrupt.
3387 *
3388 * A negative errno code is returned on a failure. A success does not
3389 * guarantee the frame will be transmitted as it may be dropped due
3390 * to congestion or traffic shaping.
3391 *
3392 * -----------------------------------------------------------------------------------
3393 * I notice this method can also return errors from the queue disciplines,
3394 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3395 * be positive.
3396 *
3397 * Regardless of the return value, the skb is consumed, so it is currently
3398 * difficult to retry a send to this method. (You can bump the ref count
3399 * before sending to hold a reference for retry if you are careful.)
3400 *
3401 * When calling this method, interrupts MUST be enabled. This is because
3402 * the BH enable code must have IRQs enabled so that it will not deadlock.
3403 * --BLG
3404 */
0a59f3a9 3405static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3406{
3407 struct net_device *dev = skb->dev;
dc2b4847 3408 struct netdev_queue *txq;
1da177e4
LT
3409 struct Qdisc *q;
3410 int rc = -ENOMEM;
3411
6d1ccff6
ED
3412 skb_reset_mac_header(skb);
3413
e7fd2885
WB
3414 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3415 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3416
4ec93edb
YH
3417 /* Disable soft irqs for various locks below. Also
3418 * stops preemption for RCU.
1da177e4 3419 */
4ec93edb 3420 rcu_read_lock_bh();
1da177e4 3421
5bc1421e
NH
3422 skb_update_prio(skb);
3423
1f211a1b
DB
3424 qdisc_pkt_len_init(skb);
3425#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3426 skb->tc_at_ingress = 0;
1f211a1b
DB
3427# ifdef CONFIG_NET_EGRESS
3428 if (static_key_false(&egress_needed)) {
3429 skb = sch_handle_egress(skb, &rc, dev);
3430 if (!skb)
3431 goto out;
3432 }
3433# endif
3434#endif
02875878
ED
3435 /* If device/qdisc don't need skb->dst, release it right now while
3436 * its hot in this cpu cache.
3437 */
3438 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3439 skb_dst_drop(skb);
3440 else
3441 skb_dst_force(skb);
3442
f663dd9a 3443 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3444 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3445
cf66ba58 3446 trace_net_dev_queue(skb);
1da177e4 3447 if (q->enqueue) {
bbd8a0d3 3448 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3449 goto out;
1da177e4
LT
3450 }
3451
3452 /* The device has no queue. Common case for software devices:
eb13da1a 3453 * loopback, all the sorts of tunnels...
1da177e4 3454
eb13da1a 3455 * Really, it is unlikely that netif_tx_lock protection is necessary
3456 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3457 * counters.)
3458 * However, it is possible, that they rely on protection
3459 * made by us here.
1da177e4 3460
eb13da1a 3461 * Check this and shot the lock. It is not prone from deadlocks.
3462 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3463 */
3464 if (dev->flags & IFF_UP) {
3465 int cpu = smp_processor_id(); /* ok because BHs are off */
3466
c773e847 3467 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3468 if (unlikely(__this_cpu_read(xmit_recursion) >
3469 XMIT_RECURSION_LIMIT))
745e20f1
ED
3470 goto recursion_alert;
3471
1f59533f
JDB
3472 skb = validate_xmit_skb(skb, dev);
3473 if (!skb)
d21fd63e 3474 goto out;
1f59533f 3475
c773e847 3476 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3477
73466498 3478 if (!netif_xmit_stopped(txq)) {
745e20f1 3479 __this_cpu_inc(xmit_recursion);
ce93718f 3480 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3481 __this_cpu_dec(xmit_recursion);
572a9d7b 3482 if (dev_xmit_complete(rc)) {
c773e847 3483 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3484 goto out;
3485 }
3486 }
c773e847 3487 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3488 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3489 dev->name);
1da177e4
LT
3490 } else {
3491 /* Recursion is detected! It is possible,
745e20f1
ED
3492 * unfortunately
3493 */
3494recursion_alert:
e87cc472
JP
3495 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3496 dev->name);
1da177e4
LT
3497 }
3498 }
3499
3500 rc = -ENETDOWN;
d4828d85 3501 rcu_read_unlock_bh();
1da177e4 3502
015f0688 3503 atomic_long_inc(&dev->tx_dropped);
1f59533f 3504 kfree_skb_list(skb);
1da177e4
LT
3505 return rc;
3506out:
d4828d85 3507 rcu_read_unlock_bh();
1da177e4
LT
3508 return rc;
3509}
f663dd9a 3510
2b4aa3ce 3511int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3512{
3513 return __dev_queue_xmit(skb, NULL);
3514}
2b4aa3ce 3515EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3516
f663dd9a
JW
3517int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3518{
3519 return __dev_queue_xmit(skb, accel_priv);
3520}
3521EXPORT_SYMBOL(dev_queue_xmit_accel);
3522
1da177e4 3523
eb13da1a 3524/*************************************************************************
3525 * Receiver routines
3526 *************************************************************************/
1da177e4 3527
6b2bedc3 3528int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3529EXPORT_SYMBOL(netdev_max_backlog);
3530
3b098e2d 3531int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3532int netdev_budget __read_mostly = 300;
7acf8a1e 3533unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3534int weight_p __read_mostly = 64; /* old backlog weight */
3535int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3536int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3537int dev_rx_weight __read_mostly = 64;
3538int dev_tx_weight __read_mostly = 64;
1da177e4 3539
eecfd7c4
ED
3540/* Called with irq disabled */
3541static inline void ____napi_schedule(struct softnet_data *sd,
3542 struct napi_struct *napi)
3543{
3544 list_add_tail(&napi->poll_list, &sd->poll_list);
3545 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3546}
3547
bfb564e7
KK
3548#ifdef CONFIG_RPS
3549
3550/* One global table that all flow-based protocols share. */
6e3f7faf 3551struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3552EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3553u32 rps_cpu_mask __read_mostly;
3554EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3555
c5905afb 3556struct static_key rps_needed __read_mostly;
3df97ba8 3557EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3558struct static_key rfs_needed __read_mostly;
3559EXPORT_SYMBOL(rfs_needed);
adc9300e 3560
c445477d
BH
3561static struct rps_dev_flow *
3562set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3563 struct rps_dev_flow *rflow, u16 next_cpu)
3564{
a31196b0 3565 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3566#ifdef CONFIG_RFS_ACCEL
3567 struct netdev_rx_queue *rxqueue;
3568 struct rps_dev_flow_table *flow_table;
3569 struct rps_dev_flow *old_rflow;
3570 u32 flow_id;
3571 u16 rxq_index;
3572 int rc;
3573
3574 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3575 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3576 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3577 goto out;
3578 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3579 if (rxq_index == skb_get_rx_queue(skb))
3580 goto out;
3581
3582 rxqueue = dev->_rx + rxq_index;
3583 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3584 if (!flow_table)
3585 goto out;
61b905da 3586 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3587 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3588 rxq_index, flow_id);
3589 if (rc < 0)
3590 goto out;
3591 old_rflow = rflow;
3592 rflow = &flow_table->flows[flow_id];
c445477d
BH
3593 rflow->filter = rc;
3594 if (old_rflow->filter == rflow->filter)
3595 old_rflow->filter = RPS_NO_FILTER;
3596 out:
3597#endif
3598 rflow->last_qtail =
09994d1b 3599 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3600 }
3601
09994d1b 3602 rflow->cpu = next_cpu;
c445477d
BH
3603 return rflow;
3604}
3605
bfb564e7
KK
3606/*
3607 * get_rps_cpu is called from netif_receive_skb and returns the target
3608 * CPU from the RPS map of the receiving queue for a given skb.
3609 * rcu_read_lock must be held on entry.
3610 */
3611static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3612 struct rps_dev_flow **rflowp)
3613{
567e4b79
ED
3614 const struct rps_sock_flow_table *sock_flow_table;
3615 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3616 struct rps_dev_flow_table *flow_table;
567e4b79 3617 struct rps_map *map;
bfb564e7 3618 int cpu = -1;
567e4b79 3619 u32 tcpu;
61b905da 3620 u32 hash;
bfb564e7
KK
3621
3622 if (skb_rx_queue_recorded(skb)) {
3623 u16 index = skb_get_rx_queue(skb);
567e4b79 3624
62fe0b40
BH
3625 if (unlikely(index >= dev->real_num_rx_queues)) {
3626 WARN_ONCE(dev->real_num_rx_queues > 1,
3627 "%s received packet on queue %u, but number "
3628 "of RX queues is %u\n",
3629 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3630 goto done;
3631 }
567e4b79
ED
3632 rxqueue += index;
3633 }
bfb564e7 3634
567e4b79
ED
3635 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3636
3637 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3638 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3639 if (!flow_table && !map)
bfb564e7
KK
3640 goto done;
3641
2d47b459 3642 skb_reset_network_header(skb);
61b905da
TH
3643 hash = skb_get_hash(skb);
3644 if (!hash)
bfb564e7
KK
3645 goto done;
3646
fec5e652
TH
3647 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3648 if (flow_table && sock_flow_table) {
fec5e652 3649 struct rps_dev_flow *rflow;
567e4b79
ED
3650 u32 next_cpu;
3651 u32 ident;
3652
3653 /* First check into global flow table if there is a match */
3654 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3655 if ((ident ^ hash) & ~rps_cpu_mask)
3656 goto try_rps;
fec5e652 3657
567e4b79
ED
3658 next_cpu = ident & rps_cpu_mask;
3659
3660 /* OK, now we know there is a match,
3661 * we can look at the local (per receive queue) flow table
3662 */
61b905da 3663 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3664 tcpu = rflow->cpu;
3665
fec5e652
TH
3666 /*
3667 * If the desired CPU (where last recvmsg was done) is
3668 * different from current CPU (one in the rx-queue flow
3669 * table entry), switch if one of the following holds:
a31196b0 3670 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3671 * - Current CPU is offline.
3672 * - The current CPU's queue tail has advanced beyond the
3673 * last packet that was enqueued using this table entry.
3674 * This guarantees that all previous packets for the flow
3675 * have been dequeued, thus preserving in order delivery.
3676 */
3677 if (unlikely(tcpu != next_cpu) &&
a31196b0 3678 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3679 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3680 rflow->last_qtail)) >= 0)) {
3681 tcpu = next_cpu;
c445477d 3682 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3683 }
c445477d 3684
a31196b0 3685 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3686 *rflowp = rflow;
3687 cpu = tcpu;
3688 goto done;
3689 }
3690 }
3691
567e4b79
ED
3692try_rps:
3693
0a9627f2 3694 if (map) {
8fc54f68 3695 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3696 if (cpu_online(tcpu)) {
3697 cpu = tcpu;
3698 goto done;
3699 }
3700 }
3701
3702done:
0a9627f2
TH
3703 return cpu;
3704}
3705
c445477d
BH
3706#ifdef CONFIG_RFS_ACCEL
3707
3708/**
3709 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3710 * @dev: Device on which the filter was set
3711 * @rxq_index: RX queue index
3712 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3713 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3714 *
3715 * Drivers that implement ndo_rx_flow_steer() should periodically call
3716 * this function for each installed filter and remove the filters for
3717 * which it returns %true.
3718 */
3719bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3720 u32 flow_id, u16 filter_id)
3721{
3722 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3723 struct rps_dev_flow_table *flow_table;
3724 struct rps_dev_flow *rflow;
3725 bool expire = true;
a31196b0 3726 unsigned int cpu;
c445477d
BH
3727
3728 rcu_read_lock();
3729 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3730 if (flow_table && flow_id <= flow_table->mask) {
3731 rflow = &flow_table->flows[flow_id];
3732 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3733 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3734 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3735 rflow->last_qtail) <
3736 (int)(10 * flow_table->mask)))
3737 expire = false;
3738 }
3739 rcu_read_unlock();
3740 return expire;
3741}
3742EXPORT_SYMBOL(rps_may_expire_flow);
3743
3744#endif /* CONFIG_RFS_ACCEL */
3745
0a9627f2 3746/* Called from hardirq (IPI) context */
e36fa2f7 3747static void rps_trigger_softirq(void *data)
0a9627f2 3748{
e36fa2f7
ED
3749 struct softnet_data *sd = data;
3750
eecfd7c4 3751 ____napi_schedule(sd, &sd->backlog);
dee42870 3752 sd->received_rps++;
0a9627f2 3753}
e36fa2f7 3754
fec5e652 3755#endif /* CONFIG_RPS */
0a9627f2 3756
e36fa2f7
ED
3757/*
3758 * Check if this softnet_data structure is another cpu one
3759 * If yes, queue it to our IPI list and return 1
3760 * If no, return 0
3761 */
3762static int rps_ipi_queued(struct softnet_data *sd)
3763{
3764#ifdef CONFIG_RPS
903ceff7 3765 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3766
3767 if (sd != mysd) {
3768 sd->rps_ipi_next = mysd->rps_ipi_list;
3769 mysd->rps_ipi_list = sd;
3770
3771 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3772 return 1;
3773 }
3774#endif /* CONFIG_RPS */
3775 return 0;
3776}
3777
99bbc707
WB
3778#ifdef CONFIG_NET_FLOW_LIMIT
3779int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3780#endif
3781
3782static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3783{
3784#ifdef CONFIG_NET_FLOW_LIMIT
3785 struct sd_flow_limit *fl;
3786 struct softnet_data *sd;
3787 unsigned int old_flow, new_flow;
3788
3789 if (qlen < (netdev_max_backlog >> 1))
3790 return false;
3791
903ceff7 3792 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3793
3794 rcu_read_lock();
3795 fl = rcu_dereference(sd->flow_limit);
3796 if (fl) {
3958afa1 3797 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3798 old_flow = fl->history[fl->history_head];
3799 fl->history[fl->history_head] = new_flow;
3800
3801 fl->history_head++;
3802 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3803
3804 if (likely(fl->buckets[old_flow]))
3805 fl->buckets[old_flow]--;
3806
3807 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3808 fl->count++;
3809 rcu_read_unlock();
3810 return true;
3811 }
3812 }
3813 rcu_read_unlock();
3814#endif
3815 return false;
3816}
3817
0a9627f2
TH
3818/*
3819 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3820 * queue (may be a remote CPU queue).
3821 */
fec5e652
TH
3822static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3823 unsigned int *qtail)
0a9627f2 3824{
e36fa2f7 3825 struct softnet_data *sd;
0a9627f2 3826 unsigned long flags;
99bbc707 3827 unsigned int qlen;
0a9627f2 3828
e36fa2f7 3829 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3830
3831 local_irq_save(flags);
0a9627f2 3832
e36fa2f7 3833 rps_lock(sd);
e9e4dd32
JA
3834 if (!netif_running(skb->dev))
3835 goto drop;
99bbc707
WB
3836 qlen = skb_queue_len(&sd->input_pkt_queue);
3837 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3838 if (qlen) {
0a9627f2 3839enqueue:
e36fa2f7 3840 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3841 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3842 rps_unlock(sd);
152102c7 3843 local_irq_restore(flags);
0a9627f2
TH
3844 return NET_RX_SUCCESS;
3845 }
3846
ebda37c2
ED
3847 /* Schedule NAPI for backlog device
3848 * We can use non atomic operation since we own the queue lock
3849 */
3850 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3851 if (!rps_ipi_queued(sd))
eecfd7c4 3852 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3853 }
3854 goto enqueue;
3855 }
3856
e9e4dd32 3857drop:
dee42870 3858 sd->dropped++;
e36fa2f7 3859 rps_unlock(sd);
0a9627f2 3860
0a9627f2
TH
3861 local_irq_restore(flags);
3862
caf586e5 3863 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3864 kfree_skb(skb);
3865 return NET_RX_DROP;
3866}
1da177e4 3867
d4455169
JF
3868static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3869 struct bpf_prog *xdp_prog)
3870{
3871 struct xdp_buff xdp;
3872 u32 act = XDP_DROP;
3873 void *orig_data;
3874 int hlen, off;
3875 u32 mac_len;
3876
3877 /* Reinjected packets coming from act_mirred or similar should
3878 * not get XDP generic processing.
3879 */
3880 if (skb_cloned(skb))
3881 return XDP_PASS;
3882
3883 if (skb_linearize(skb))
3884 goto do_drop;
3885
3886 /* The XDP program wants to see the packet starting at the MAC
3887 * header.
3888 */
3889 mac_len = skb->data - skb_mac_header(skb);
3890 hlen = skb_headlen(skb) + mac_len;
3891 xdp.data = skb->data - mac_len;
3892 xdp.data_end = xdp.data + hlen;
3893 xdp.data_hard_start = skb->data - skb_headroom(skb);
3894 orig_data = xdp.data;
3895
3896 act = bpf_prog_run_xdp(xdp_prog, &xdp);
3897
3898 off = xdp.data - orig_data;
3899 if (off > 0)
3900 __skb_pull(skb, off);
3901 else if (off < 0)
3902 __skb_push(skb, -off);
3903
3904 switch (act) {
3905 case XDP_TX:
3906 __skb_push(skb, mac_len);
3907 /* fall through */
3908 case XDP_PASS:
3909 break;
3910
3911 default:
3912 bpf_warn_invalid_xdp_action(act);
3913 /* fall through */
3914 case XDP_ABORTED:
3915 trace_xdp_exception(skb->dev, xdp_prog, act);
3916 /* fall through */
3917 case XDP_DROP:
3918 do_drop:
3919 kfree_skb(skb);
3920 break;
3921 }
3922
3923 return act;
3924}
3925
3926/* When doing generic XDP we have to bypass the qdisc layer and the
3927 * network taps in order to match in-driver-XDP behavior.
3928 */
3929static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3930{
3931 struct net_device *dev = skb->dev;
3932 struct netdev_queue *txq;
3933 bool free_skb = true;
3934 int cpu, rc;
3935
3936 txq = netdev_pick_tx(dev, skb, NULL);
3937 cpu = smp_processor_id();
3938 HARD_TX_LOCK(dev, txq, cpu);
3939 if (!netif_xmit_stopped(txq)) {
3940 rc = netdev_start_xmit(skb, dev, txq, 0);
3941 if (dev_xmit_complete(rc))
3942 free_skb = false;
3943 }
3944 HARD_TX_UNLOCK(dev, txq);
3945 if (free_skb) {
3946 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3947 kfree_skb(skb);
3948 }
3949}
3950
3951static struct static_key generic_xdp_needed __read_mostly;
3952
3953static int do_xdp_generic(struct sk_buff *skb)
3954{
3955 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
3956
3957 if (xdp_prog) {
3958 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
3959
3960 if (act != XDP_PASS) {
3961 if (act == XDP_TX)
3962 generic_xdp_tx(skb, xdp_prog);
3963 return XDP_DROP;
3964 }
3965 }
3966 return XDP_PASS;
3967}
3968
ae78dbfa 3969static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3970{
b0e28f1e 3971 int ret;
1da177e4 3972
588f0330 3973 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3974
cf66ba58 3975 trace_netif_rx(skb);
d4455169
JF
3976
3977 if (static_key_false(&generic_xdp_needed)) {
3978 int ret = do_xdp_generic(skb);
3979
3980 if (ret != XDP_PASS)
3981 return NET_RX_DROP;
3982 }
3983
df334545 3984#ifdef CONFIG_RPS
c5905afb 3985 if (static_key_false(&rps_needed)) {
fec5e652 3986 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3987 int cpu;
3988
cece1945 3989 preempt_disable();
b0e28f1e 3990 rcu_read_lock();
fec5e652
TH
3991
3992 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3993 if (cpu < 0)
3994 cpu = smp_processor_id();
fec5e652
TH
3995
3996 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3997
b0e28f1e 3998 rcu_read_unlock();
cece1945 3999 preempt_enable();
adc9300e
ED
4000 } else
4001#endif
fec5e652
TH
4002 {
4003 unsigned int qtail;
f4563a75 4004
fec5e652
TH
4005 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4006 put_cpu();
4007 }
b0e28f1e 4008 return ret;
1da177e4 4009}
ae78dbfa
BH
4010
4011/**
4012 * netif_rx - post buffer to the network code
4013 * @skb: buffer to post
4014 *
4015 * This function receives a packet from a device driver and queues it for
4016 * the upper (protocol) levels to process. It always succeeds. The buffer
4017 * may be dropped during processing for congestion control or by the
4018 * protocol layers.
4019 *
4020 * return values:
4021 * NET_RX_SUCCESS (no congestion)
4022 * NET_RX_DROP (packet was dropped)
4023 *
4024 */
4025
4026int netif_rx(struct sk_buff *skb)
4027{
4028 trace_netif_rx_entry(skb);
4029
4030 return netif_rx_internal(skb);
4031}
d1b19dff 4032EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4033
4034int netif_rx_ni(struct sk_buff *skb)
4035{
4036 int err;
4037
ae78dbfa
BH
4038 trace_netif_rx_ni_entry(skb);
4039
1da177e4 4040 preempt_disable();
ae78dbfa 4041 err = netif_rx_internal(skb);
1da177e4
LT
4042 if (local_softirq_pending())
4043 do_softirq();
4044 preempt_enable();
4045
4046 return err;
4047}
1da177e4
LT
4048EXPORT_SYMBOL(netif_rx_ni);
4049
0766f788 4050static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4051{
903ceff7 4052 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4053
4054 if (sd->completion_queue) {
4055 struct sk_buff *clist;
4056
4057 local_irq_disable();
4058 clist = sd->completion_queue;
4059 sd->completion_queue = NULL;
4060 local_irq_enable();
4061
4062 while (clist) {
4063 struct sk_buff *skb = clist;
f4563a75 4064
1da177e4
LT
4065 clist = clist->next;
4066
63354797 4067 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4068 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4069 trace_consume_skb(skb);
4070 else
4071 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4072
4073 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4074 __kfree_skb(skb);
4075 else
4076 __kfree_skb_defer(skb);
1da177e4 4077 }
15fad714
JDB
4078
4079 __kfree_skb_flush();
1da177e4
LT
4080 }
4081
4082 if (sd->output_queue) {
37437bb2 4083 struct Qdisc *head;
1da177e4
LT
4084
4085 local_irq_disable();
4086 head = sd->output_queue;
4087 sd->output_queue = NULL;
a9cbd588 4088 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4089 local_irq_enable();
4090
4091 while (head) {
37437bb2
DM
4092 struct Qdisc *q = head;
4093 spinlock_t *root_lock;
4094
1da177e4
LT
4095 head = head->next_sched;
4096
5fb66229 4097 root_lock = qdisc_lock(q);
3bcb846c
ED
4098 spin_lock(root_lock);
4099 /* We need to make sure head->next_sched is read
4100 * before clearing __QDISC_STATE_SCHED
4101 */
4102 smp_mb__before_atomic();
4103 clear_bit(__QDISC_STATE_SCHED, &q->state);
4104 qdisc_run(q);
4105 spin_unlock(root_lock);
1da177e4
LT
4106 }
4107 }
4108}
4109
181402a5 4110#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4111/* This hook is defined here for ATM LANE */
4112int (*br_fdb_test_addr_hook)(struct net_device *dev,
4113 unsigned char *addr) __read_mostly;
4fb019a0 4114EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4115#endif
1da177e4 4116
1f211a1b
DB
4117static inline struct sk_buff *
4118sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4119 struct net_device *orig_dev)
f697c3e8 4120{
e7582bab 4121#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
4122 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4123 struct tcf_result cl_res;
24824a09 4124
c9e99fd0
DB
4125 /* If there's at least one ingress present somewhere (so
4126 * we get here via enabled static key), remaining devices
4127 * that are not configured with an ingress qdisc will bail
d2788d34 4128 * out here.
c9e99fd0 4129 */
d2788d34 4130 if (!cl)
4577139b 4131 return skb;
f697c3e8
HX
4132 if (*pt_prev) {
4133 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4134 *pt_prev = NULL;
1da177e4
LT
4135 }
4136
3365495c 4137 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4138 skb->tc_at_ingress = 1;
24ea591d 4139 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 4140
87d83093 4141 switch (tcf_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
4142 case TC_ACT_OK:
4143 case TC_ACT_RECLASSIFY:
4144 skb->tc_index = TC_H_MIN(cl_res.classid);
4145 break;
4146 case TC_ACT_SHOT:
24ea591d 4147 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
4148 kfree_skb(skb);
4149 return NULL;
d2788d34
DB
4150 case TC_ACT_STOLEN:
4151 case TC_ACT_QUEUED:
e25ea21f 4152 case TC_ACT_TRAP:
8a3a4c6e 4153 consume_skb(skb);
d2788d34 4154 return NULL;
27b29f63
AS
4155 case TC_ACT_REDIRECT:
4156 /* skb_mac_header check was done by cls/act_bpf, so
4157 * we can safely push the L2 header back before
4158 * redirecting to another netdev
4159 */
4160 __skb_push(skb, skb->mac_len);
4161 skb_do_redirect(skb);
4162 return NULL;
d2788d34
DB
4163 default:
4164 break;
f697c3e8 4165 }
e7582bab 4166#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4167 return skb;
4168}
1da177e4 4169
24b27fc4
MB
4170/**
4171 * netdev_is_rx_handler_busy - check if receive handler is registered
4172 * @dev: device to check
4173 *
4174 * Check if a receive handler is already registered for a given device.
4175 * Return true if there one.
4176 *
4177 * The caller must hold the rtnl_mutex.
4178 */
4179bool netdev_is_rx_handler_busy(struct net_device *dev)
4180{
4181 ASSERT_RTNL();
4182 return dev && rtnl_dereference(dev->rx_handler);
4183}
4184EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4185
ab95bfe0
JP
4186/**
4187 * netdev_rx_handler_register - register receive handler
4188 * @dev: device to register a handler for
4189 * @rx_handler: receive handler to register
93e2c32b 4190 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4191 *
e227867f 4192 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4193 * called from __netif_receive_skb. A negative errno code is returned
4194 * on a failure.
4195 *
4196 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4197 *
4198 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4199 */
4200int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4201 rx_handler_func_t *rx_handler,
4202 void *rx_handler_data)
ab95bfe0 4203{
1b7cd004 4204 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4205 return -EBUSY;
4206
00cfec37 4207 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4208 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4209 rcu_assign_pointer(dev->rx_handler, rx_handler);
4210
4211 return 0;
4212}
4213EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4214
4215/**
4216 * netdev_rx_handler_unregister - unregister receive handler
4217 * @dev: device to unregister a handler from
4218 *
166ec369 4219 * Unregister a receive handler from a device.
ab95bfe0
JP
4220 *
4221 * The caller must hold the rtnl_mutex.
4222 */
4223void netdev_rx_handler_unregister(struct net_device *dev)
4224{
4225
4226 ASSERT_RTNL();
a9b3cd7f 4227 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4228 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4229 * section has a guarantee to see a non NULL rx_handler_data
4230 * as well.
4231 */
4232 synchronize_net();
a9b3cd7f 4233 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4234}
4235EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4236
b4b9e355
MG
4237/*
4238 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4239 * the special handling of PFMEMALLOC skbs.
4240 */
4241static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4242{
4243 switch (skb->protocol) {
2b8837ae
JP
4244 case htons(ETH_P_ARP):
4245 case htons(ETH_P_IP):
4246 case htons(ETH_P_IPV6):
4247 case htons(ETH_P_8021Q):
4248 case htons(ETH_P_8021AD):
b4b9e355
MG
4249 return true;
4250 default:
4251 return false;
4252 }
4253}
4254
e687ad60
PN
4255static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4256 int *ret, struct net_device *orig_dev)
4257{
e7582bab 4258#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4259 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4260 int ingress_retval;
4261
e687ad60
PN
4262 if (*pt_prev) {
4263 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4264 *pt_prev = NULL;
4265 }
4266
2c1e2703
AC
4267 rcu_read_lock();
4268 ingress_retval = nf_hook_ingress(skb);
4269 rcu_read_unlock();
4270 return ingress_retval;
e687ad60 4271 }
e7582bab 4272#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4273 return 0;
4274}
e687ad60 4275
9754e293 4276static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4277{
4278 struct packet_type *ptype, *pt_prev;
ab95bfe0 4279 rx_handler_func_t *rx_handler;
f2ccd8fa 4280 struct net_device *orig_dev;
8a4eb573 4281 bool deliver_exact = false;
1da177e4 4282 int ret = NET_RX_DROP;
252e3346 4283 __be16 type;
1da177e4 4284
588f0330 4285 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4286
cf66ba58 4287 trace_netif_receive_skb(skb);
9b22ea56 4288
cc9bd5ce 4289 orig_dev = skb->dev;
8f903c70 4290
c1d2bbe1 4291 skb_reset_network_header(skb);
fda55eca
ED
4292 if (!skb_transport_header_was_set(skb))
4293 skb_reset_transport_header(skb);
0b5c9db1 4294 skb_reset_mac_len(skb);
1da177e4
LT
4295
4296 pt_prev = NULL;
4297
63d8ea7f 4298another_round:
b6858177 4299 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4300
4301 __this_cpu_inc(softnet_data.processed);
4302
8ad227ff
PM
4303 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4304 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4305 skb = skb_vlan_untag(skb);
bcc6d479 4306 if (unlikely(!skb))
2c17d27c 4307 goto out;
bcc6d479
JP
4308 }
4309
e7246e12
WB
4310 if (skb_skip_tc_classify(skb))
4311 goto skip_classify;
1da177e4 4312
9754e293 4313 if (pfmemalloc)
b4b9e355
MG
4314 goto skip_taps;
4315
1da177e4 4316 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4317 if (pt_prev)
4318 ret = deliver_skb(skb, pt_prev, orig_dev);
4319 pt_prev = ptype;
4320 }
4321
4322 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4323 if (pt_prev)
4324 ret = deliver_skb(skb, pt_prev, orig_dev);
4325 pt_prev = ptype;
1da177e4
LT
4326 }
4327
b4b9e355 4328skip_taps:
1cf51900 4329#ifdef CONFIG_NET_INGRESS
4577139b 4330 if (static_key_false(&ingress_needed)) {
1f211a1b 4331 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4332 if (!skb)
2c17d27c 4333 goto out;
e687ad60
PN
4334
4335 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4336 goto out;
4577139b 4337 }
1cf51900 4338#endif
a5135bcf 4339 skb_reset_tc(skb);
e7246e12 4340skip_classify:
9754e293 4341 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4342 goto drop;
4343
df8a39de 4344 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4345 if (pt_prev) {
4346 ret = deliver_skb(skb, pt_prev, orig_dev);
4347 pt_prev = NULL;
4348 }
48cc32d3 4349 if (vlan_do_receive(&skb))
2425717b
JF
4350 goto another_round;
4351 else if (unlikely(!skb))
2c17d27c 4352 goto out;
2425717b
JF
4353 }
4354
48cc32d3 4355 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4356 if (rx_handler) {
4357 if (pt_prev) {
4358 ret = deliver_skb(skb, pt_prev, orig_dev);
4359 pt_prev = NULL;
4360 }
8a4eb573
JP
4361 switch (rx_handler(&skb)) {
4362 case RX_HANDLER_CONSUMED:
3bc1b1ad 4363 ret = NET_RX_SUCCESS;
2c17d27c 4364 goto out;
8a4eb573 4365 case RX_HANDLER_ANOTHER:
63d8ea7f 4366 goto another_round;
8a4eb573
JP
4367 case RX_HANDLER_EXACT:
4368 deliver_exact = true;
4369 case RX_HANDLER_PASS:
4370 break;
4371 default:
4372 BUG();
4373 }
ab95bfe0 4374 }
1da177e4 4375
df8a39de
JP
4376 if (unlikely(skb_vlan_tag_present(skb))) {
4377 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4378 skb->pkt_type = PACKET_OTHERHOST;
4379 /* Note: we might in the future use prio bits
4380 * and set skb->priority like in vlan_do_receive()
4381 * For the time being, just ignore Priority Code Point
4382 */
4383 skb->vlan_tci = 0;
4384 }
48cc32d3 4385
7866a621
SN
4386 type = skb->protocol;
4387
63d8ea7f 4388 /* deliver only exact match when indicated */
7866a621
SN
4389 if (likely(!deliver_exact)) {
4390 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4391 &ptype_base[ntohs(type) &
4392 PTYPE_HASH_MASK]);
4393 }
1f3c8804 4394
7866a621
SN
4395 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4396 &orig_dev->ptype_specific);
4397
4398 if (unlikely(skb->dev != orig_dev)) {
4399 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4400 &skb->dev->ptype_specific);
1da177e4
LT
4401 }
4402
4403 if (pt_prev) {
1080e512 4404 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4405 goto drop;
1080e512
MT
4406 else
4407 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4408 } else {
b4b9e355 4409drop:
6e7333d3
JW
4410 if (!deliver_exact)
4411 atomic_long_inc(&skb->dev->rx_dropped);
4412 else
4413 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4414 kfree_skb(skb);
4415 /* Jamal, now you will not able to escape explaining
4416 * me how you were going to use this. :-)
4417 */
4418 ret = NET_RX_DROP;
4419 }
4420
2c17d27c 4421out:
9754e293
DM
4422 return ret;
4423}
4424
4425static int __netif_receive_skb(struct sk_buff *skb)
4426{
4427 int ret;
4428
4429 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 4430 unsigned int noreclaim_flag;
9754e293
DM
4431
4432 /*
4433 * PFMEMALLOC skbs are special, they should
4434 * - be delivered to SOCK_MEMALLOC sockets only
4435 * - stay away from userspace
4436 * - have bounded memory usage
4437 *
4438 * Use PF_MEMALLOC as this saves us from propagating the allocation
4439 * context down to all allocation sites.
4440 */
f1083048 4441 noreclaim_flag = memalloc_noreclaim_save();
9754e293 4442 ret = __netif_receive_skb_core(skb, true);
f1083048 4443 memalloc_noreclaim_restore(noreclaim_flag);
9754e293
DM
4444 } else
4445 ret = __netif_receive_skb_core(skb, false);
4446
1da177e4
LT
4447 return ret;
4448}
0a9627f2 4449
b5cdae32
DM
4450static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4451{
58038695 4452 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
4453 struct bpf_prog *new = xdp->prog;
4454 int ret = 0;
4455
4456 switch (xdp->command) {
58038695 4457 case XDP_SETUP_PROG:
b5cdae32
DM
4458 rcu_assign_pointer(dev->xdp_prog, new);
4459 if (old)
4460 bpf_prog_put(old);
4461
4462 if (old && !new) {
4463 static_key_slow_dec(&generic_xdp_needed);
4464 } else if (new && !old) {
4465 static_key_slow_inc(&generic_xdp_needed);
4466 dev_disable_lro(dev);
4467 }
4468 break;
b5cdae32
DM
4469
4470 case XDP_QUERY_PROG:
58038695
MKL
4471 xdp->prog_attached = !!old;
4472 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
4473 break;
4474
4475 default:
4476 ret = -EINVAL;
4477 break;
4478 }
4479
4480 return ret;
4481}
4482
ae78dbfa 4483static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4484{
2c17d27c
JA
4485 int ret;
4486
588f0330 4487 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4488
c1f19b51
RC
4489 if (skb_defer_rx_timestamp(skb))
4490 return NET_RX_SUCCESS;
4491
2c17d27c
JA
4492 rcu_read_lock();
4493
b5cdae32 4494 if (static_key_false(&generic_xdp_needed)) {
d4455169 4495 int ret = do_xdp_generic(skb);
b5cdae32 4496
d4455169
JF
4497 if (ret != XDP_PASS) {
4498 rcu_read_unlock();
4499 return NET_RX_DROP;
b5cdae32
DM
4500 }
4501 }
4502
df334545 4503#ifdef CONFIG_RPS
c5905afb 4504 if (static_key_false(&rps_needed)) {
3b098e2d 4505 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4506 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4507
3b098e2d
ED
4508 if (cpu >= 0) {
4509 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4510 rcu_read_unlock();
adc9300e 4511 return ret;
3b098e2d 4512 }
fec5e652 4513 }
1e94d72f 4514#endif
2c17d27c
JA
4515 ret = __netif_receive_skb(skb);
4516 rcu_read_unlock();
4517 return ret;
0a9627f2 4518}
ae78dbfa
BH
4519
4520/**
4521 * netif_receive_skb - process receive buffer from network
4522 * @skb: buffer to process
4523 *
4524 * netif_receive_skb() is the main receive data processing function.
4525 * It always succeeds. The buffer may be dropped during processing
4526 * for congestion control or by the protocol layers.
4527 *
4528 * This function may only be called from softirq context and interrupts
4529 * should be enabled.
4530 *
4531 * Return values (usually ignored):
4532 * NET_RX_SUCCESS: no congestion
4533 * NET_RX_DROP: packet was dropped
4534 */
04eb4489 4535int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4536{
4537 trace_netif_receive_skb_entry(skb);
4538
4539 return netif_receive_skb_internal(skb);
4540}
04eb4489 4541EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4542
41852497 4543DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4544
4545/* Network device is going away, flush any packets still pending */
4546static void flush_backlog(struct work_struct *work)
6e583ce5 4547{
6e583ce5 4548 struct sk_buff *skb, *tmp;
145dd5f9
PA
4549 struct softnet_data *sd;
4550
4551 local_bh_disable();
4552 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4553
145dd5f9 4554 local_irq_disable();
e36fa2f7 4555 rps_lock(sd);
6e7676c1 4556 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4557 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4558 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4559 kfree_skb(skb);
76cc8b13 4560 input_queue_head_incr(sd);
6e583ce5 4561 }
6e7676c1 4562 }
e36fa2f7 4563 rps_unlock(sd);
145dd5f9 4564 local_irq_enable();
6e7676c1
CG
4565
4566 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4567 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4568 __skb_unlink(skb, &sd->process_queue);
4569 kfree_skb(skb);
76cc8b13 4570 input_queue_head_incr(sd);
6e7676c1
CG
4571 }
4572 }
145dd5f9
PA
4573 local_bh_enable();
4574}
4575
41852497 4576static void flush_all_backlogs(void)
145dd5f9
PA
4577{
4578 unsigned int cpu;
4579
4580 get_online_cpus();
4581
41852497
ED
4582 for_each_online_cpu(cpu)
4583 queue_work_on(cpu, system_highpri_wq,
4584 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4585
4586 for_each_online_cpu(cpu)
41852497 4587 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4588
4589 put_online_cpus();
6e583ce5
SH
4590}
4591
d565b0a1
HX
4592static int napi_gro_complete(struct sk_buff *skb)
4593{
22061d80 4594 struct packet_offload *ptype;
d565b0a1 4595 __be16 type = skb->protocol;
22061d80 4596 struct list_head *head = &offload_base;
d565b0a1
HX
4597 int err = -ENOENT;
4598
c3c7c254
ED
4599 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4600
fc59f9a3
HX
4601 if (NAPI_GRO_CB(skb)->count == 1) {
4602 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4603 goto out;
fc59f9a3 4604 }
d565b0a1
HX
4605
4606 rcu_read_lock();
4607 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4608 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4609 continue;
4610
299603e8 4611 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4612 break;
4613 }
4614 rcu_read_unlock();
4615
4616 if (err) {
4617 WARN_ON(&ptype->list == head);
4618 kfree_skb(skb);
4619 return NET_RX_SUCCESS;
4620 }
4621
4622out:
ae78dbfa 4623 return netif_receive_skb_internal(skb);
d565b0a1
HX
4624}
4625
2e71a6f8
ED
4626/* napi->gro_list contains packets ordered by age.
4627 * youngest packets at the head of it.
4628 * Complete skbs in reverse order to reduce latencies.
4629 */
4630void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4631{
2e71a6f8 4632 struct sk_buff *skb, *prev = NULL;
d565b0a1 4633
2e71a6f8
ED
4634 /* scan list and build reverse chain */
4635 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4636 skb->prev = prev;
4637 prev = skb;
4638 }
4639
4640 for (skb = prev; skb; skb = prev) {
d565b0a1 4641 skb->next = NULL;
2e71a6f8
ED
4642
4643 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4644 return;
4645
4646 prev = skb->prev;
d565b0a1 4647 napi_gro_complete(skb);
2e71a6f8 4648 napi->gro_count--;
d565b0a1
HX
4649 }
4650
4651 napi->gro_list = NULL;
4652}
86cac58b 4653EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4654
89c5fa33
ED
4655static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4656{
4657 struct sk_buff *p;
4658 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4659 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4660
4661 for (p = napi->gro_list; p; p = p->next) {
4662 unsigned long diffs;
4663
0b4cec8c
TH
4664 NAPI_GRO_CB(p)->flush = 0;
4665
4666 if (hash != skb_get_hash_raw(p)) {
4667 NAPI_GRO_CB(p)->same_flow = 0;
4668 continue;
4669 }
4670
89c5fa33
ED
4671 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4672 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4673 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4674 if (maclen == ETH_HLEN)
4675 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4676 skb_mac_header(skb));
89c5fa33
ED
4677 else if (!diffs)
4678 diffs = memcmp(skb_mac_header(p),
a50e233c 4679 skb_mac_header(skb),
89c5fa33
ED
4680 maclen);
4681 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4682 }
4683}
4684
299603e8
JC
4685static void skb_gro_reset_offset(struct sk_buff *skb)
4686{
4687 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4688 const skb_frag_t *frag0 = &pinfo->frags[0];
4689
4690 NAPI_GRO_CB(skb)->data_offset = 0;
4691 NAPI_GRO_CB(skb)->frag0 = NULL;
4692 NAPI_GRO_CB(skb)->frag0_len = 0;
4693
4694 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4695 pinfo->nr_frags &&
4696 !PageHighMem(skb_frag_page(frag0))) {
4697 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4698 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4699 skb_frag_size(frag0),
4700 skb->end - skb->tail);
89c5fa33
ED
4701 }
4702}
4703
a50e233c
ED
4704static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4705{
4706 struct skb_shared_info *pinfo = skb_shinfo(skb);
4707
4708 BUG_ON(skb->end - skb->tail < grow);
4709
4710 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4711
4712 skb->data_len -= grow;
4713 skb->tail += grow;
4714
4715 pinfo->frags[0].page_offset += grow;
4716 skb_frag_size_sub(&pinfo->frags[0], grow);
4717
4718 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4719 skb_frag_unref(skb, 0);
4720 memmove(pinfo->frags, pinfo->frags + 1,
4721 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4722 }
4723}
4724
bb728820 4725static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4726{
4727 struct sk_buff **pp = NULL;
22061d80 4728 struct packet_offload *ptype;
d565b0a1 4729 __be16 type = skb->protocol;
22061d80 4730 struct list_head *head = &offload_base;
0da2afd5 4731 int same_flow;
5b252f0c 4732 enum gro_result ret;
a50e233c 4733 int grow;
d565b0a1 4734
b5cdae32 4735 if (netif_elide_gro(skb->dev))
d565b0a1
HX
4736 goto normal;
4737
89c5fa33
ED
4738 gro_list_prepare(napi, skb);
4739
d565b0a1
HX
4740 rcu_read_lock();
4741 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4742 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4743 continue;
4744
86911732 4745 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4746 skb_reset_mac_len(skb);
d565b0a1 4747 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4748 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4749 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4750 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4751 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4752 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4753 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4754 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4755
662880f4
TH
4756 /* Setup for GRO checksum validation */
4757 switch (skb->ip_summed) {
4758 case CHECKSUM_COMPLETE:
4759 NAPI_GRO_CB(skb)->csum = skb->csum;
4760 NAPI_GRO_CB(skb)->csum_valid = 1;
4761 NAPI_GRO_CB(skb)->csum_cnt = 0;
4762 break;
4763 case CHECKSUM_UNNECESSARY:
4764 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4765 NAPI_GRO_CB(skb)->csum_valid = 0;
4766 break;
4767 default:
4768 NAPI_GRO_CB(skb)->csum_cnt = 0;
4769 NAPI_GRO_CB(skb)->csum_valid = 0;
4770 }
d565b0a1 4771
f191a1d1 4772 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4773 break;
4774 }
4775 rcu_read_unlock();
4776
4777 if (&ptype->list == head)
4778 goto normal;
4779
25393d3f
SK
4780 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4781 ret = GRO_CONSUMED;
4782 goto ok;
4783 }
4784
0da2afd5 4785 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4786 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4787
d565b0a1
HX
4788 if (pp) {
4789 struct sk_buff *nskb = *pp;
4790
4791 *pp = nskb->next;
4792 nskb->next = NULL;
4793 napi_gro_complete(nskb);
4ae5544f 4794 napi->gro_count--;
d565b0a1
HX
4795 }
4796
0da2afd5 4797 if (same_flow)
d565b0a1
HX
4798 goto ok;
4799
600adc18 4800 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4801 goto normal;
d565b0a1 4802
600adc18
ED
4803 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4804 struct sk_buff *nskb = napi->gro_list;
4805
4806 /* locate the end of the list to select the 'oldest' flow */
4807 while (nskb->next) {
4808 pp = &nskb->next;
4809 nskb = *pp;
4810 }
4811 *pp = NULL;
4812 nskb->next = NULL;
4813 napi_gro_complete(nskb);
4814 } else {
4815 napi->gro_count++;
4816 }
d565b0a1 4817 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4818 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4819 NAPI_GRO_CB(skb)->last = skb;
86911732 4820 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4821 skb->next = napi->gro_list;
4822 napi->gro_list = skb;
5d0d9be8 4823 ret = GRO_HELD;
d565b0a1 4824
ad0f9904 4825pull:
a50e233c
ED
4826 grow = skb_gro_offset(skb) - skb_headlen(skb);
4827 if (grow > 0)
4828 gro_pull_from_frag0(skb, grow);
d565b0a1 4829ok:
5d0d9be8 4830 return ret;
d565b0a1
HX
4831
4832normal:
ad0f9904
HX
4833 ret = GRO_NORMAL;
4834 goto pull;
5d38a079 4835}
96e93eab 4836
bf5a755f
JC
4837struct packet_offload *gro_find_receive_by_type(__be16 type)
4838{
4839 struct list_head *offload_head = &offload_base;
4840 struct packet_offload *ptype;
4841
4842 list_for_each_entry_rcu(ptype, offload_head, list) {
4843 if (ptype->type != type || !ptype->callbacks.gro_receive)
4844 continue;
4845 return ptype;
4846 }
4847 return NULL;
4848}
e27a2f83 4849EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4850
4851struct packet_offload *gro_find_complete_by_type(__be16 type)
4852{
4853 struct list_head *offload_head = &offload_base;
4854 struct packet_offload *ptype;
4855
4856 list_for_each_entry_rcu(ptype, offload_head, list) {
4857 if (ptype->type != type || !ptype->callbacks.gro_complete)
4858 continue;
4859 return ptype;
4860 }
4861 return NULL;
4862}
e27a2f83 4863EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4864
e44699d2
MK
4865static void napi_skb_free_stolen_head(struct sk_buff *skb)
4866{
4867 skb_dst_drop(skb);
4868 secpath_reset(skb);
4869 kmem_cache_free(skbuff_head_cache, skb);
4870}
4871
bb728820 4872static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4873{
5d0d9be8
HX
4874 switch (ret) {
4875 case GRO_NORMAL:
ae78dbfa 4876 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4877 ret = GRO_DROP;
4878 break;
5d38a079 4879
5d0d9be8 4880 case GRO_DROP:
5d38a079
HX
4881 kfree_skb(skb);
4882 break;
5b252f0c 4883
daa86548 4884 case GRO_MERGED_FREE:
e44699d2
MK
4885 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4886 napi_skb_free_stolen_head(skb);
4887 else
d7e8883c 4888 __kfree_skb(skb);
daa86548
ED
4889 break;
4890
5b252f0c
BH
4891 case GRO_HELD:
4892 case GRO_MERGED:
25393d3f 4893 case GRO_CONSUMED:
5b252f0c 4894 break;
5d38a079
HX
4895 }
4896
c7c4b3b6 4897 return ret;
5d0d9be8 4898}
5d0d9be8 4899
c7c4b3b6 4900gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4901{
93f93a44 4902 skb_mark_napi_id(skb, napi);
ae78dbfa 4903 trace_napi_gro_receive_entry(skb);
86911732 4904
a50e233c
ED
4905 skb_gro_reset_offset(skb);
4906
89c5fa33 4907 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4908}
4909EXPORT_SYMBOL(napi_gro_receive);
4910
d0c2b0d2 4911static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4912{
93a35f59
ED
4913 if (unlikely(skb->pfmemalloc)) {
4914 consume_skb(skb);
4915 return;
4916 }
96e93eab 4917 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4918 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4919 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4920 skb->vlan_tci = 0;
66c46d74 4921 skb->dev = napi->dev;
6d152e23 4922 skb->skb_iif = 0;
c3caf119
JC
4923 skb->encapsulation = 0;
4924 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4925 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 4926 secpath_reset(skb);
96e93eab
HX
4927
4928 napi->skb = skb;
4929}
96e93eab 4930
76620aaf 4931struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4932{
5d38a079 4933 struct sk_buff *skb = napi->skb;
5d38a079
HX
4934
4935 if (!skb) {
fd11a83d 4936 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4937 if (skb) {
4938 napi->skb = skb;
4939 skb_mark_napi_id(skb, napi);
4940 }
80595d59 4941 }
96e93eab
HX
4942 return skb;
4943}
76620aaf 4944EXPORT_SYMBOL(napi_get_frags);
96e93eab 4945
a50e233c
ED
4946static gro_result_t napi_frags_finish(struct napi_struct *napi,
4947 struct sk_buff *skb,
4948 gro_result_t ret)
96e93eab 4949{
5d0d9be8
HX
4950 switch (ret) {
4951 case GRO_NORMAL:
a50e233c
ED
4952 case GRO_HELD:
4953 __skb_push(skb, ETH_HLEN);
4954 skb->protocol = eth_type_trans(skb, skb->dev);
4955 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4956 ret = GRO_DROP;
86911732 4957 break;
5d38a079 4958
5d0d9be8 4959 case GRO_DROP:
5d0d9be8
HX
4960 napi_reuse_skb(napi, skb);
4961 break;
5b252f0c 4962
e44699d2
MK
4963 case GRO_MERGED_FREE:
4964 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4965 napi_skb_free_stolen_head(skb);
4966 else
4967 napi_reuse_skb(napi, skb);
4968 break;
4969
5b252f0c 4970 case GRO_MERGED:
25393d3f 4971 case GRO_CONSUMED:
5b252f0c 4972 break;
5d0d9be8 4973 }
5d38a079 4974
c7c4b3b6 4975 return ret;
5d38a079 4976}
5d0d9be8 4977
a50e233c
ED
4978/* Upper GRO stack assumes network header starts at gro_offset=0
4979 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4980 * We copy ethernet header into skb->data to have a common layout.
4981 */
4adb9c4a 4982static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4983{
4984 struct sk_buff *skb = napi->skb;
a50e233c
ED
4985 const struct ethhdr *eth;
4986 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4987
4988 napi->skb = NULL;
4989
a50e233c
ED
4990 skb_reset_mac_header(skb);
4991 skb_gro_reset_offset(skb);
4992
4993 eth = skb_gro_header_fast(skb, 0);
4994 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4995 eth = skb_gro_header_slow(skb, hlen, 0);
4996 if (unlikely(!eth)) {
4da46ceb
AC
4997 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4998 __func__, napi->dev->name);
a50e233c
ED
4999 napi_reuse_skb(napi, skb);
5000 return NULL;
5001 }
5002 } else {
5003 gro_pull_from_frag0(skb, hlen);
5004 NAPI_GRO_CB(skb)->frag0 += hlen;
5005 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5006 }
a50e233c
ED
5007 __skb_pull(skb, hlen);
5008
5009 /*
5010 * This works because the only protocols we care about don't require
5011 * special handling.
5012 * We'll fix it up properly in napi_frags_finish()
5013 */
5014 skb->protocol = eth->h_proto;
76620aaf 5015
76620aaf
HX
5016 return skb;
5017}
76620aaf 5018
c7c4b3b6 5019gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5020{
76620aaf 5021 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5022
5023 if (!skb)
c7c4b3b6 5024 return GRO_DROP;
5d0d9be8 5025
ae78dbfa
BH
5026 trace_napi_gro_frags_entry(skb);
5027
89c5fa33 5028 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 5029}
5d38a079
HX
5030EXPORT_SYMBOL(napi_gro_frags);
5031
573e8fca
TH
5032/* Compute the checksum from gro_offset and return the folded value
5033 * after adding in any pseudo checksum.
5034 */
5035__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5036{
5037 __wsum wsum;
5038 __sum16 sum;
5039
5040 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5041
5042 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5043 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5044 if (likely(!sum)) {
5045 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5046 !skb->csum_complete_sw)
5047 netdev_rx_csum_fault(skb->dev);
5048 }
5049
5050 NAPI_GRO_CB(skb)->csum = wsum;
5051 NAPI_GRO_CB(skb)->csum_valid = 1;
5052
5053 return sum;
5054}
5055EXPORT_SYMBOL(__skb_gro_checksum_complete);
5056
773fc8f6 5057static void net_rps_send_ipi(struct softnet_data *remsd)
5058{
5059#ifdef CONFIG_RPS
5060 while (remsd) {
5061 struct softnet_data *next = remsd->rps_ipi_next;
5062
5063 if (cpu_online(remsd->cpu))
5064 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5065 remsd = next;
5066 }
5067#endif
5068}
5069
e326bed2 5070/*
855abcf0 5071 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5072 * Note: called with local irq disabled, but exits with local irq enabled.
5073 */
5074static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5075{
5076#ifdef CONFIG_RPS
5077 struct softnet_data *remsd = sd->rps_ipi_list;
5078
5079 if (remsd) {
5080 sd->rps_ipi_list = NULL;
5081
5082 local_irq_enable();
5083
5084 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5085 net_rps_send_ipi(remsd);
e326bed2
ED
5086 } else
5087#endif
5088 local_irq_enable();
5089}
5090
d75b1ade
ED
5091static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5092{
5093#ifdef CONFIG_RPS
5094 return sd->rps_ipi_list != NULL;
5095#else
5096 return false;
5097#endif
5098}
5099
bea3348e 5100static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5101{
eecfd7c4 5102 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5103 bool again = true;
5104 int work = 0;
1da177e4 5105
e326bed2
ED
5106 /* Check if we have pending ipi, its better to send them now,
5107 * not waiting net_rx_action() end.
5108 */
d75b1ade 5109 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5110 local_irq_disable();
5111 net_rps_action_and_irq_enable(sd);
5112 }
d75b1ade 5113
3d48b53f 5114 napi->weight = dev_rx_weight;
145dd5f9 5115 while (again) {
1da177e4 5116 struct sk_buff *skb;
6e7676c1
CG
5117
5118 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5119 rcu_read_lock();
6e7676c1 5120 __netif_receive_skb(skb);
2c17d27c 5121 rcu_read_unlock();
76cc8b13 5122 input_queue_head_incr(sd);
145dd5f9 5123 if (++work >= quota)
76cc8b13 5124 return work;
145dd5f9 5125
6e7676c1 5126 }
1da177e4 5127
145dd5f9 5128 local_irq_disable();
e36fa2f7 5129 rps_lock(sd);
11ef7a89 5130 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5131 /*
5132 * Inline a custom version of __napi_complete().
5133 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5134 * and NAPI_STATE_SCHED is the only possible flag set
5135 * on backlog.
5136 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5137 * and we dont need an smp_mb() memory barrier.
5138 */
eecfd7c4 5139 napi->state = 0;
145dd5f9
PA
5140 again = false;
5141 } else {
5142 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5143 &sd->process_queue);
bea3348e 5144 }
e36fa2f7 5145 rps_unlock(sd);
145dd5f9 5146 local_irq_enable();
6e7676c1 5147 }
1da177e4 5148
bea3348e
SH
5149 return work;
5150}
1da177e4 5151
bea3348e
SH
5152/**
5153 * __napi_schedule - schedule for receive
c4ea43c5 5154 * @n: entry to schedule
bea3348e 5155 *
bc9ad166
ED
5156 * The entry's receive function will be scheduled to run.
5157 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5158 */
b5606c2d 5159void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5160{
5161 unsigned long flags;
1da177e4 5162
bea3348e 5163 local_irq_save(flags);
903ceff7 5164 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5165 local_irq_restore(flags);
1da177e4 5166}
bea3348e
SH
5167EXPORT_SYMBOL(__napi_schedule);
5168
39e6c820
ED
5169/**
5170 * napi_schedule_prep - check if napi can be scheduled
5171 * @n: napi context
5172 *
5173 * Test if NAPI routine is already running, and if not mark
5174 * it as running. This is used as a condition variable
5175 * insure only one NAPI poll instance runs. We also make
5176 * sure there is no pending NAPI disable.
5177 */
5178bool napi_schedule_prep(struct napi_struct *n)
5179{
5180 unsigned long val, new;
5181
5182 do {
5183 val = READ_ONCE(n->state);
5184 if (unlikely(val & NAPIF_STATE_DISABLE))
5185 return false;
5186 new = val | NAPIF_STATE_SCHED;
5187
5188 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5189 * This was suggested by Alexander Duyck, as compiler
5190 * emits better code than :
5191 * if (val & NAPIF_STATE_SCHED)
5192 * new |= NAPIF_STATE_MISSED;
5193 */
5194 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5195 NAPIF_STATE_MISSED;
5196 } while (cmpxchg(&n->state, val, new) != val);
5197
5198 return !(val & NAPIF_STATE_SCHED);
5199}
5200EXPORT_SYMBOL(napi_schedule_prep);
5201
bc9ad166
ED
5202/**
5203 * __napi_schedule_irqoff - schedule for receive
5204 * @n: entry to schedule
5205 *
5206 * Variant of __napi_schedule() assuming hard irqs are masked
5207 */
5208void __napi_schedule_irqoff(struct napi_struct *n)
5209{
5210 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5211}
5212EXPORT_SYMBOL(__napi_schedule_irqoff);
5213
364b6055 5214bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5215{
39e6c820 5216 unsigned long flags, val, new;
d565b0a1
HX
5217
5218 /*
217f6974
ED
5219 * 1) Don't let napi dequeue from the cpu poll list
5220 * just in case its running on a different cpu.
5221 * 2) If we are busy polling, do nothing here, we have
5222 * the guarantee we will be called later.
d565b0a1 5223 */
217f6974
ED
5224 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5225 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5226 return false;
d565b0a1 5227
3b47d303
ED
5228 if (n->gro_list) {
5229 unsigned long timeout = 0;
d75b1ade 5230
3b47d303
ED
5231 if (work_done)
5232 timeout = n->dev->gro_flush_timeout;
5233
5234 if (timeout)
5235 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5236 HRTIMER_MODE_REL_PINNED);
5237 else
5238 napi_gro_flush(n, false);
5239 }
02c1602e 5240 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5241 /* If n->poll_list is not empty, we need to mask irqs */
5242 local_irq_save(flags);
02c1602e 5243 list_del_init(&n->poll_list);
d75b1ade
ED
5244 local_irq_restore(flags);
5245 }
39e6c820
ED
5246
5247 do {
5248 val = READ_ONCE(n->state);
5249
5250 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5251
5252 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5253
5254 /* If STATE_MISSED was set, leave STATE_SCHED set,
5255 * because we will call napi->poll() one more time.
5256 * This C code was suggested by Alexander Duyck to help gcc.
5257 */
5258 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5259 NAPIF_STATE_SCHED;
5260 } while (cmpxchg(&n->state, val, new) != val);
5261
5262 if (unlikely(val & NAPIF_STATE_MISSED)) {
5263 __napi_schedule(n);
5264 return false;
5265 }
5266
364b6055 5267 return true;
d565b0a1 5268}
3b47d303 5269EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5270
af12fa6e 5271/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5272static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5273{
5274 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5275 struct napi_struct *napi;
5276
5277 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5278 if (napi->napi_id == napi_id)
5279 return napi;
5280
5281 return NULL;
5282}
02d62e86
ED
5283
5284#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5285
ce6aea93 5286#define BUSY_POLL_BUDGET 8
217f6974
ED
5287
5288static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5289{
5290 int rc;
5291
39e6c820
ED
5292 /* Busy polling means there is a high chance device driver hard irq
5293 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5294 * set in napi_schedule_prep().
5295 * Since we are about to call napi->poll() once more, we can safely
5296 * clear NAPI_STATE_MISSED.
5297 *
5298 * Note: x86 could use a single "lock and ..." instruction
5299 * to perform these two clear_bit()
5300 */
5301 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5302 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5303
5304 local_bh_disable();
5305
5306 /* All we really want here is to re-enable device interrupts.
5307 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5308 */
5309 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5310 netpoll_poll_unlock(have_poll_lock);
5311 if (rc == BUSY_POLL_BUDGET)
5312 __napi_schedule(napi);
5313 local_bh_enable();
217f6974
ED
5314}
5315
7db6b048
SS
5316void napi_busy_loop(unsigned int napi_id,
5317 bool (*loop_end)(void *, unsigned long),
5318 void *loop_end_arg)
02d62e86 5319{
7db6b048 5320 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 5321 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 5322 void *have_poll_lock = NULL;
02d62e86 5323 struct napi_struct *napi;
217f6974
ED
5324
5325restart:
217f6974 5326 napi_poll = NULL;
02d62e86 5327
2a028ecb 5328 rcu_read_lock();
02d62e86 5329
545cd5e5 5330 napi = napi_by_id(napi_id);
02d62e86
ED
5331 if (!napi)
5332 goto out;
5333
217f6974
ED
5334 preempt_disable();
5335 for (;;) {
2b5cd0df
AD
5336 int work = 0;
5337
2a028ecb 5338 local_bh_disable();
217f6974
ED
5339 if (!napi_poll) {
5340 unsigned long val = READ_ONCE(napi->state);
5341
5342 /* If multiple threads are competing for this napi,
5343 * we avoid dirtying napi->state as much as we can.
5344 */
5345 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5346 NAPIF_STATE_IN_BUSY_POLL))
5347 goto count;
5348 if (cmpxchg(&napi->state, val,
5349 val | NAPIF_STATE_IN_BUSY_POLL |
5350 NAPIF_STATE_SCHED) != val)
5351 goto count;
5352 have_poll_lock = netpoll_poll_lock(napi);
5353 napi_poll = napi->poll;
5354 }
2b5cd0df
AD
5355 work = napi_poll(napi, BUSY_POLL_BUDGET);
5356 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 5357count:
2b5cd0df 5358 if (work > 0)
7db6b048 5359 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 5360 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 5361 local_bh_enable();
02d62e86 5362
7db6b048 5363 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 5364 break;
02d62e86 5365
217f6974
ED
5366 if (unlikely(need_resched())) {
5367 if (napi_poll)
5368 busy_poll_stop(napi, have_poll_lock);
5369 preempt_enable();
5370 rcu_read_unlock();
5371 cond_resched();
7db6b048 5372 if (loop_end(loop_end_arg, start_time))
2b5cd0df 5373 return;
217f6974
ED
5374 goto restart;
5375 }
6cdf89b1 5376 cpu_relax();
217f6974
ED
5377 }
5378 if (napi_poll)
5379 busy_poll_stop(napi, have_poll_lock);
5380 preempt_enable();
02d62e86 5381out:
2a028ecb 5382 rcu_read_unlock();
02d62e86 5383}
7db6b048 5384EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
5385
5386#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5387
149d6ad8 5388static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5389{
d64b5e85
ED
5390 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5391 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5392 return;
af12fa6e 5393
52bd2d62 5394 spin_lock(&napi_hash_lock);
af12fa6e 5395
545cd5e5 5396 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 5397 do {
545cd5e5
AD
5398 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5399 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
5400 } while (napi_by_id(napi_gen_id));
5401 napi->napi_id = napi_gen_id;
af12fa6e 5402
52bd2d62
ED
5403 hlist_add_head_rcu(&napi->napi_hash_node,
5404 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5405
52bd2d62 5406 spin_unlock(&napi_hash_lock);
af12fa6e 5407}
af12fa6e
ET
5408
5409/* Warning : caller is responsible to make sure rcu grace period
5410 * is respected before freeing memory containing @napi
5411 */
34cbe27e 5412bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5413{
34cbe27e
ED
5414 bool rcu_sync_needed = false;
5415
af12fa6e
ET
5416 spin_lock(&napi_hash_lock);
5417
34cbe27e
ED
5418 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5419 rcu_sync_needed = true;
af12fa6e 5420 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5421 }
af12fa6e 5422 spin_unlock(&napi_hash_lock);
34cbe27e 5423 return rcu_sync_needed;
af12fa6e
ET
5424}
5425EXPORT_SYMBOL_GPL(napi_hash_del);
5426
3b47d303
ED
5427static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5428{
5429 struct napi_struct *napi;
5430
5431 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
5432
5433 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5434 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5435 */
5436 if (napi->gro_list && !napi_disable_pending(napi) &&
5437 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5438 __napi_schedule_irqoff(napi);
3b47d303
ED
5439
5440 return HRTIMER_NORESTART;
5441}
5442
d565b0a1
HX
5443void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5444 int (*poll)(struct napi_struct *, int), int weight)
5445{
5446 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5447 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5448 napi->timer.function = napi_watchdog;
4ae5544f 5449 napi->gro_count = 0;
d565b0a1 5450 napi->gro_list = NULL;
5d38a079 5451 napi->skb = NULL;
d565b0a1 5452 napi->poll = poll;
82dc3c63
ED
5453 if (weight > NAPI_POLL_WEIGHT)
5454 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5455 weight, dev->name);
d565b0a1
HX
5456 napi->weight = weight;
5457 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5458 napi->dev = dev;
5d38a079 5459#ifdef CONFIG_NETPOLL
d565b0a1
HX
5460 napi->poll_owner = -1;
5461#endif
5462 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5463 napi_hash_add(napi);
d565b0a1
HX
5464}
5465EXPORT_SYMBOL(netif_napi_add);
5466
3b47d303
ED
5467void napi_disable(struct napi_struct *n)
5468{
5469 might_sleep();
5470 set_bit(NAPI_STATE_DISABLE, &n->state);
5471
5472 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5473 msleep(1);
2d8bff12
NH
5474 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5475 msleep(1);
3b47d303
ED
5476
5477 hrtimer_cancel(&n->timer);
5478
5479 clear_bit(NAPI_STATE_DISABLE, &n->state);
5480}
5481EXPORT_SYMBOL(napi_disable);
5482
93d05d4a 5483/* Must be called in process context */
d565b0a1
HX
5484void netif_napi_del(struct napi_struct *napi)
5485{
93d05d4a
ED
5486 might_sleep();
5487 if (napi_hash_del(napi))
5488 synchronize_net();
d7b06636 5489 list_del_init(&napi->dev_list);
76620aaf 5490 napi_free_frags(napi);
d565b0a1 5491
289dccbe 5492 kfree_skb_list(napi->gro_list);
d565b0a1 5493 napi->gro_list = NULL;
4ae5544f 5494 napi->gro_count = 0;
d565b0a1
HX
5495}
5496EXPORT_SYMBOL(netif_napi_del);
5497
726ce70e
HX
5498static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5499{
5500 void *have;
5501 int work, weight;
5502
5503 list_del_init(&n->poll_list);
5504
5505 have = netpoll_poll_lock(n);
5506
5507 weight = n->weight;
5508
5509 /* This NAPI_STATE_SCHED test is for avoiding a race
5510 * with netpoll's poll_napi(). Only the entity which
5511 * obtains the lock and sees NAPI_STATE_SCHED set will
5512 * actually make the ->poll() call. Therefore we avoid
5513 * accidentally calling ->poll() when NAPI is not scheduled.
5514 */
5515 work = 0;
5516 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5517 work = n->poll(n, weight);
1db19db7 5518 trace_napi_poll(n, work, weight);
726ce70e
HX
5519 }
5520
5521 WARN_ON_ONCE(work > weight);
5522
5523 if (likely(work < weight))
5524 goto out_unlock;
5525
5526 /* Drivers must not modify the NAPI state if they
5527 * consume the entire weight. In such cases this code
5528 * still "owns" the NAPI instance and therefore can
5529 * move the instance around on the list at-will.
5530 */
5531 if (unlikely(napi_disable_pending(n))) {
5532 napi_complete(n);
5533 goto out_unlock;
5534 }
5535
5536 if (n->gro_list) {
5537 /* flush too old packets
5538 * If HZ < 1000, flush all packets.
5539 */
5540 napi_gro_flush(n, HZ >= 1000);
5541 }
5542
001ce546
HX
5543 /* Some drivers may have called napi_schedule
5544 * prior to exhausting their budget.
5545 */
5546 if (unlikely(!list_empty(&n->poll_list))) {
5547 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5548 n->dev ? n->dev->name : "backlog");
5549 goto out_unlock;
5550 }
5551
726ce70e
HX
5552 list_add_tail(&n->poll_list, repoll);
5553
5554out_unlock:
5555 netpoll_poll_unlock(have);
5556
5557 return work;
5558}
5559
0766f788 5560static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5561{
903ceff7 5562 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
5563 unsigned long time_limit = jiffies +
5564 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 5565 int budget = netdev_budget;
d75b1ade
ED
5566 LIST_HEAD(list);
5567 LIST_HEAD(repoll);
53fb95d3 5568
1da177e4 5569 local_irq_disable();
d75b1ade
ED
5570 list_splice_init(&sd->poll_list, &list);
5571 local_irq_enable();
1da177e4 5572
ceb8d5bf 5573 for (;;) {
bea3348e 5574 struct napi_struct *n;
1da177e4 5575
ceb8d5bf
HX
5576 if (list_empty(&list)) {
5577 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5578 goto out;
ceb8d5bf
HX
5579 break;
5580 }
5581
6bd373eb
HX
5582 n = list_first_entry(&list, struct napi_struct, poll_list);
5583 budget -= napi_poll(n, &repoll);
5584
d75b1ade 5585 /* If softirq window is exhausted then punt.
24f8b238
SH
5586 * Allow this to run for 2 jiffies since which will allow
5587 * an average latency of 1.5/HZ.
bea3348e 5588 */
ceb8d5bf
HX
5589 if (unlikely(budget <= 0 ||
5590 time_after_eq(jiffies, time_limit))) {
5591 sd->time_squeeze++;
5592 break;
5593 }
1da177e4 5594 }
d75b1ade 5595
d75b1ade
ED
5596 local_irq_disable();
5597
5598 list_splice_tail_init(&sd->poll_list, &list);
5599 list_splice_tail(&repoll, &list);
5600 list_splice(&list, &sd->poll_list);
5601 if (!list_empty(&sd->poll_list))
5602 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5603
e326bed2 5604 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5605out:
5606 __kfree_skb_flush();
1da177e4
LT
5607}
5608
aa9d8560 5609struct netdev_adjacent {
9ff162a8 5610 struct net_device *dev;
5d261913
VF
5611
5612 /* upper master flag, there can only be one master device per list */
9ff162a8 5613 bool master;
5d261913 5614
5d261913
VF
5615 /* counter for the number of times this device was added to us */
5616 u16 ref_nr;
5617
402dae96
VF
5618 /* private field for the users */
5619 void *private;
5620
9ff162a8
JP
5621 struct list_head list;
5622 struct rcu_head rcu;
9ff162a8
JP
5623};
5624
6ea29da1 5625static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5626 struct list_head *adj_list)
9ff162a8 5627{
5d261913 5628 struct netdev_adjacent *adj;
5d261913 5629
2f268f12 5630 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5631 if (adj->dev == adj_dev)
5632 return adj;
9ff162a8
JP
5633 }
5634 return NULL;
5635}
5636
f1170fd4
DA
5637static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5638{
5639 struct net_device *dev = data;
5640
5641 return upper_dev == dev;
5642}
5643
9ff162a8
JP
5644/**
5645 * netdev_has_upper_dev - Check if device is linked to an upper device
5646 * @dev: device
5647 * @upper_dev: upper device to check
5648 *
5649 * Find out if a device is linked to specified upper device and return true
5650 * in case it is. Note that this checks only immediate upper device,
5651 * not through a complete stack of devices. The caller must hold the RTNL lock.
5652 */
5653bool netdev_has_upper_dev(struct net_device *dev,
5654 struct net_device *upper_dev)
5655{
5656 ASSERT_RTNL();
5657
f1170fd4
DA
5658 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5659 upper_dev);
9ff162a8
JP
5660}
5661EXPORT_SYMBOL(netdev_has_upper_dev);
5662
1a3f060c
DA
5663/**
5664 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5665 * @dev: device
5666 * @upper_dev: upper device to check
5667 *
5668 * Find out if a device is linked to specified upper device and return true
5669 * in case it is. Note that this checks the entire upper device chain.
5670 * The caller must hold rcu lock.
5671 */
5672
1a3f060c
DA
5673bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5674 struct net_device *upper_dev)
5675{
5676 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5677 upper_dev);
5678}
5679EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5680
9ff162a8
JP
5681/**
5682 * netdev_has_any_upper_dev - Check if device is linked to some device
5683 * @dev: device
5684 *
5685 * Find out if a device is linked to an upper device and return true in case
5686 * it is. The caller must hold the RTNL lock.
5687 */
1d143d9f 5688static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5689{
5690 ASSERT_RTNL();
5691
f1170fd4 5692 return !list_empty(&dev->adj_list.upper);
9ff162a8 5693}
9ff162a8
JP
5694
5695/**
5696 * netdev_master_upper_dev_get - Get master upper device
5697 * @dev: device
5698 *
5699 * Find a master upper device and return pointer to it or NULL in case
5700 * it's not there. The caller must hold the RTNL lock.
5701 */
5702struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5703{
aa9d8560 5704 struct netdev_adjacent *upper;
9ff162a8
JP
5705
5706 ASSERT_RTNL();
5707
2f268f12 5708 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5709 return NULL;
5710
2f268f12 5711 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5712 struct netdev_adjacent, list);
9ff162a8
JP
5713 if (likely(upper->master))
5714 return upper->dev;
5715 return NULL;
5716}
5717EXPORT_SYMBOL(netdev_master_upper_dev_get);
5718
0f524a80
DA
5719/**
5720 * netdev_has_any_lower_dev - Check if device is linked to some device
5721 * @dev: device
5722 *
5723 * Find out if a device is linked to a lower device and return true in case
5724 * it is. The caller must hold the RTNL lock.
5725 */
5726static bool netdev_has_any_lower_dev(struct net_device *dev)
5727{
5728 ASSERT_RTNL();
5729
5730 return !list_empty(&dev->adj_list.lower);
5731}
5732
b6ccba4c
VF
5733void *netdev_adjacent_get_private(struct list_head *adj_list)
5734{
5735 struct netdev_adjacent *adj;
5736
5737 adj = list_entry(adj_list, struct netdev_adjacent, list);
5738
5739 return adj->private;
5740}
5741EXPORT_SYMBOL(netdev_adjacent_get_private);
5742
44a40855
VY
5743/**
5744 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5745 * @dev: device
5746 * @iter: list_head ** of the current position
5747 *
5748 * Gets the next device from the dev's upper list, starting from iter
5749 * position. The caller must hold RCU read lock.
5750 */
5751struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5752 struct list_head **iter)
5753{
5754 struct netdev_adjacent *upper;
5755
5756 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5757
5758 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5759
5760 if (&upper->list == &dev->adj_list.upper)
5761 return NULL;
5762
5763 *iter = &upper->list;
5764
5765 return upper->dev;
5766}
5767EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5768
1a3f060c
DA
5769static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5770 struct list_head **iter)
5771{
5772 struct netdev_adjacent *upper;
5773
5774 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5775
5776 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5777
5778 if (&upper->list == &dev->adj_list.upper)
5779 return NULL;
5780
5781 *iter = &upper->list;
5782
5783 return upper->dev;
5784}
5785
5786int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5787 int (*fn)(struct net_device *dev,
5788 void *data),
5789 void *data)
5790{
5791 struct net_device *udev;
5792 struct list_head *iter;
5793 int ret;
5794
5795 for (iter = &dev->adj_list.upper,
5796 udev = netdev_next_upper_dev_rcu(dev, &iter);
5797 udev;
5798 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5799 /* first is the upper device itself */
5800 ret = fn(udev, data);
5801 if (ret)
5802 return ret;
5803
5804 /* then look at all of its upper devices */
5805 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5806 if (ret)
5807 return ret;
5808 }
5809
5810 return 0;
5811}
5812EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5813
31088a11
VF
5814/**
5815 * netdev_lower_get_next_private - Get the next ->private from the
5816 * lower neighbour list
5817 * @dev: device
5818 * @iter: list_head ** of the current position
5819 *
5820 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5821 * list, starting from iter position. The caller must hold either hold the
5822 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5823 * list will remain unchanged.
31088a11
VF
5824 */
5825void *netdev_lower_get_next_private(struct net_device *dev,
5826 struct list_head **iter)
5827{
5828 struct netdev_adjacent *lower;
5829
5830 lower = list_entry(*iter, struct netdev_adjacent, list);
5831
5832 if (&lower->list == &dev->adj_list.lower)
5833 return NULL;
5834
6859e7df 5835 *iter = lower->list.next;
31088a11
VF
5836
5837 return lower->private;
5838}
5839EXPORT_SYMBOL(netdev_lower_get_next_private);
5840
5841/**
5842 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5843 * lower neighbour list, RCU
5844 * variant
5845 * @dev: device
5846 * @iter: list_head ** of the current position
5847 *
5848 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5849 * list, starting from iter position. The caller must hold RCU read lock.
5850 */
5851void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5852 struct list_head **iter)
5853{
5854 struct netdev_adjacent *lower;
5855
5856 WARN_ON_ONCE(!rcu_read_lock_held());
5857
5858 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5859
5860 if (&lower->list == &dev->adj_list.lower)
5861 return NULL;
5862
6859e7df 5863 *iter = &lower->list;
31088a11
VF
5864
5865 return lower->private;
5866}
5867EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5868
4085ebe8
VY
5869/**
5870 * netdev_lower_get_next - Get the next device from the lower neighbour
5871 * list
5872 * @dev: device
5873 * @iter: list_head ** of the current position
5874 *
5875 * Gets the next netdev_adjacent from the dev's lower neighbour
5876 * list, starting from iter position. The caller must hold RTNL lock or
5877 * its own locking that guarantees that the neighbour lower
b469139e 5878 * list will remain unchanged.
4085ebe8
VY
5879 */
5880void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5881{
5882 struct netdev_adjacent *lower;
5883
cfdd28be 5884 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5885
5886 if (&lower->list == &dev->adj_list.lower)
5887 return NULL;
5888
cfdd28be 5889 *iter = lower->list.next;
4085ebe8
VY
5890
5891 return lower->dev;
5892}
5893EXPORT_SYMBOL(netdev_lower_get_next);
5894
1a3f060c
DA
5895static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5896 struct list_head **iter)
5897{
5898 struct netdev_adjacent *lower;
5899
46b5ab1a 5900 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5901
5902 if (&lower->list == &dev->adj_list.lower)
5903 return NULL;
5904
46b5ab1a 5905 *iter = &lower->list;
1a3f060c
DA
5906
5907 return lower->dev;
5908}
5909
5910int netdev_walk_all_lower_dev(struct net_device *dev,
5911 int (*fn)(struct net_device *dev,
5912 void *data),
5913 void *data)
5914{
5915 struct net_device *ldev;
5916 struct list_head *iter;
5917 int ret;
5918
5919 for (iter = &dev->adj_list.lower,
5920 ldev = netdev_next_lower_dev(dev, &iter);
5921 ldev;
5922 ldev = netdev_next_lower_dev(dev, &iter)) {
5923 /* first is the lower device itself */
5924 ret = fn(ldev, data);
5925 if (ret)
5926 return ret;
5927
5928 /* then look at all of its lower devices */
5929 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5930 if (ret)
5931 return ret;
5932 }
5933
5934 return 0;
5935}
5936EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5937
1a3f060c
DA
5938static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5939 struct list_head **iter)
5940{
5941 struct netdev_adjacent *lower;
5942
5943 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5944 if (&lower->list == &dev->adj_list.lower)
5945 return NULL;
5946
5947 *iter = &lower->list;
5948
5949 return lower->dev;
5950}
5951
5952int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5953 int (*fn)(struct net_device *dev,
5954 void *data),
5955 void *data)
5956{
5957 struct net_device *ldev;
5958 struct list_head *iter;
5959 int ret;
5960
5961 for (iter = &dev->adj_list.lower,
5962 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5963 ldev;
5964 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5965 /* first is the lower device itself */
5966 ret = fn(ldev, data);
5967 if (ret)
5968 return ret;
5969
5970 /* then look at all of its lower devices */
5971 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5972 if (ret)
5973 return ret;
5974 }
5975
5976 return 0;
5977}
5978EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5979
e001bfad 5980/**
5981 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5982 * lower neighbour list, RCU
5983 * variant
5984 * @dev: device
5985 *
5986 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5987 * list. The caller must hold RCU read lock.
5988 */
5989void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5990{
5991 struct netdev_adjacent *lower;
5992
5993 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5994 struct netdev_adjacent, list);
5995 if (lower)
5996 return lower->private;
5997 return NULL;
5998}
5999EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6000
9ff162a8
JP
6001/**
6002 * netdev_master_upper_dev_get_rcu - Get master upper device
6003 * @dev: device
6004 *
6005 * Find a master upper device and return pointer to it or NULL in case
6006 * it's not there. The caller must hold the RCU read lock.
6007 */
6008struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6009{
aa9d8560 6010 struct netdev_adjacent *upper;
9ff162a8 6011
2f268f12 6012 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6013 struct netdev_adjacent, list);
9ff162a8
JP
6014 if (upper && likely(upper->master))
6015 return upper->dev;
6016 return NULL;
6017}
6018EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6019
0a59f3a9 6020static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6021 struct net_device *adj_dev,
6022 struct list_head *dev_list)
6023{
6024 char linkname[IFNAMSIZ+7];
f4563a75 6025
3ee32707
VF
6026 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6027 "upper_%s" : "lower_%s", adj_dev->name);
6028 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6029 linkname);
6030}
0a59f3a9 6031static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6032 char *name,
6033 struct list_head *dev_list)
6034{
6035 char linkname[IFNAMSIZ+7];
f4563a75 6036
3ee32707
VF
6037 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6038 "upper_%s" : "lower_%s", name);
6039 sysfs_remove_link(&(dev->dev.kobj), linkname);
6040}
6041
7ce64c79
AF
6042static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6043 struct net_device *adj_dev,
6044 struct list_head *dev_list)
6045{
6046 return (dev_list == &dev->adj_list.upper ||
6047 dev_list == &dev->adj_list.lower) &&
6048 net_eq(dev_net(dev), dev_net(adj_dev));
6049}
3ee32707 6050
5d261913
VF
6051static int __netdev_adjacent_dev_insert(struct net_device *dev,
6052 struct net_device *adj_dev,
7863c054 6053 struct list_head *dev_list,
402dae96 6054 void *private, bool master)
5d261913
VF
6055{
6056 struct netdev_adjacent *adj;
842d67a7 6057 int ret;
5d261913 6058
6ea29da1 6059 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6060
6061 if (adj) {
790510d9 6062 adj->ref_nr += 1;
67b62f98
DA
6063 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6064 dev->name, adj_dev->name, adj->ref_nr);
6065
5d261913
VF
6066 return 0;
6067 }
6068
6069 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6070 if (!adj)
6071 return -ENOMEM;
6072
6073 adj->dev = adj_dev;
6074 adj->master = master;
790510d9 6075 adj->ref_nr = 1;
402dae96 6076 adj->private = private;
5d261913 6077 dev_hold(adj_dev);
2f268f12 6078
67b62f98
DA
6079 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6080 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6081
7ce64c79 6082 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6083 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6084 if (ret)
6085 goto free_adj;
6086 }
6087
7863c054 6088 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6089 if (master) {
6090 ret = sysfs_create_link(&(dev->dev.kobj),
6091 &(adj_dev->dev.kobj), "master");
6092 if (ret)
5831d66e 6093 goto remove_symlinks;
842d67a7 6094
7863c054 6095 list_add_rcu(&adj->list, dev_list);
842d67a7 6096 } else {
7863c054 6097 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6098 }
5d261913
VF
6099
6100 return 0;
842d67a7 6101
5831d66e 6102remove_symlinks:
7ce64c79 6103 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6104 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6105free_adj:
6106 kfree(adj);
974daef7 6107 dev_put(adj_dev);
842d67a7
VF
6108
6109 return ret;
5d261913
VF
6110}
6111
1d143d9f 6112static void __netdev_adjacent_dev_remove(struct net_device *dev,
6113 struct net_device *adj_dev,
93409033 6114 u16 ref_nr,
1d143d9f 6115 struct list_head *dev_list)
5d261913
VF
6116{
6117 struct netdev_adjacent *adj;
6118
67b62f98
DA
6119 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6120 dev->name, adj_dev->name, ref_nr);
6121
6ea29da1 6122 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6123
2f268f12 6124 if (!adj) {
67b62f98 6125 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6126 dev->name, adj_dev->name);
67b62f98
DA
6127 WARN_ON(1);
6128 return;
2f268f12 6129 }
5d261913 6130
93409033 6131 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6132 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6133 dev->name, adj_dev->name, ref_nr,
6134 adj->ref_nr - ref_nr);
93409033 6135 adj->ref_nr -= ref_nr;
5d261913
VF
6136 return;
6137 }
6138
842d67a7
VF
6139 if (adj->master)
6140 sysfs_remove_link(&(dev->dev.kobj), "master");
6141
7ce64c79 6142 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6143 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6144
5d261913 6145 list_del_rcu(&adj->list);
67b62f98 6146 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6147 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6148 dev_put(adj_dev);
6149 kfree_rcu(adj, rcu);
6150}
6151
1d143d9f 6152static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6153 struct net_device *upper_dev,
6154 struct list_head *up_list,
6155 struct list_head *down_list,
6156 void *private, bool master)
5d261913
VF
6157{
6158 int ret;
6159
790510d9 6160 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6161 private, master);
5d261913
VF
6162 if (ret)
6163 return ret;
6164
790510d9 6165 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 6166 private, false);
5d261913 6167 if (ret) {
790510d9 6168 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
6169 return ret;
6170 }
6171
6172 return 0;
6173}
6174
1d143d9f 6175static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6176 struct net_device *upper_dev,
93409033 6177 u16 ref_nr,
1d143d9f 6178 struct list_head *up_list,
6179 struct list_head *down_list)
5d261913 6180{
93409033
AC
6181 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6182 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
6183}
6184
1d143d9f 6185static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6186 struct net_device *upper_dev,
6187 void *private, bool master)
2f268f12 6188{
f1170fd4
DA
6189 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6190 &dev->adj_list.upper,
6191 &upper_dev->adj_list.lower,
6192 private, master);
5d261913
VF
6193}
6194
1d143d9f 6195static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6196 struct net_device *upper_dev)
2f268f12 6197{
93409033 6198 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
6199 &dev->adj_list.upper,
6200 &upper_dev->adj_list.lower);
6201}
5d261913 6202
9ff162a8 6203static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 6204 struct net_device *upper_dev, bool master,
29bf24af 6205 void *upper_priv, void *upper_info)
9ff162a8 6206{
0e4ead9d 6207 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 6208 int ret = 0;
9ff162a8
JP
6209
6210 ASSERT_RTNL();
6211
6212 if (dev == upper_dev)
6213 return -EBUSY;
6214
6215 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 6216 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
6217 return -EBUSY;
6218
f1170fd4 6219 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
6220 return -EEXIST;
6221
6222 if (master && netdev_master_upper_dev_get(dev))
6223 return -EBUSY;
6224
0e4ead9d
JP
6225 changeupper_info.upper_dev = upper_dev;
6226 changeupper_info.master = master;
6227 changeupper_info.linking = true;
29bf24af 6228 changeupper_info.upper_info = upper_info;
0e4ead9d 6229
573c7ba0
JP
6230 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6231 &changeupper_info.info);
6232 ret = notifier_to_errno(ret);
6233 if (ret)
6234 return ret;
6235
6dffb044 6236 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 6237 master);
5d261913
VF
6238 if (ret)
6239 return ret;
9ff162a8 6240
b03804e7
IS
6241 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6242 &changeupper_info.info);
6243 ret = notifier_to_errno(ret);
6244 if (ret)
f1170fd4 6245 goto rollback;
b03804e7 6246
9ff162a8 6247 return 0;
5d261913 6248
f1170fd4 6249rollback:
2f268f12 6250 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
6251
6252 return ret;
9ff162a8
JP
6253}
6254
6255/**
6256 * netdev_upper_dev_link - Add a link to the upper device
6257 * @dev: device
6258 * @upper_dev: new upper device
6259 *
6260 * Adds a link to device which is upper to this one. The caller must hold
6261 * the RTNL lock. On a failure a negative errno code is returned.
6262 * On success the reference counts are adjusted and the function
6263 * returns zero.
6264 */
6265int netdev_upper_dev_link(struct net_device *dev,
6266 struct net_device *upper_dev)
6267{
29bf24af 6268 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
6269}
6270EXPORT_SYMBOL(netdev_upper_dev_link);
6271
6272/**
6273 * netdev_master_upper_dev_link - Add a master link to the upper device
6274 * @dev: device
6275 * @upper_dev: new upper device
6dffb044 6276 * @upper_priv: upper device private
29bf24af 6277 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
6278 *
6279 * Adds a link to device which is upper to this one. In this case, only
6280 * one master upper device can be linked, although other non-master devices
6281 * might be linked as well. The caller must hold the RTNL lock.
6282 * On a failure a negative errno code is returned. On success the reference
6283 * counts are adjusted and the function returns zero.
6284 */
6285int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 6286 struct net_device *upper_dev,
29bf24af 6287 void *upper_priv, void *upper_info)
9ff162a8 6288{
29bf24af
JP
6289 return __netdev_upper_dev_link(dev, upper_dev, true,
6290 upper_priv, upper_info);
9ff162a8
JP
6291}
6292EXPORT_SYMBOL(netdev_master_upper_dev_link);
6293
6294/**
6295 * netdev_upper_dev_unlink - Removes a link to upper device
6296 * @dev: device
6297 * @upper_dev: new upper device
6298 *
6299 * Removes a link to device which is upper to this one. The caller must hold
6300 * the RTNL lock.
6301 */
6302void netdev_upper_dev_unlink(struct net_device *dev,
6303 struct net_device *upper_dev)
6304{
0e4ead9d 6305 struct netdev_notifier_changeupper_info changeupper_info;
f4563a75 6306
9ff162a8
JP
6307 ASSERT_RTNL();
6308
0e4ead9d
JP
6309 changeupper_info.upper_dev = upper_dev;
6310 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6311 changeupper_info.linking = false;
6312
573c7ba0
JP
6313 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6314 &changeupper_info.info);
6315
2f268f12 6316 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6317
0e4ead9d
JP
6318 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6319 &changeupper_info.info);
9ff162a8
JP
6320}
6321EXPORT_SYMBOL(netdev_upper_dev_unlink);
6322
61bd3857
MS
6323/**
6324 * netdev_bonding_info_change - Dispatch event about slave change
6325 * @dev: device
4a26e453 6326 * @bonding_info: info to dispatch
61bd3857
MS
6327 *
6328 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6329 * The caller must hold the RTNL lock.
6330 */
6331void netdev_bonding_info_change(struct net_device *dev,
6332 struct netdev_bonding_info *bonding_info)
6333{
6334 struct netdev_notifier_bonding_info info;
6335
6336 memcpy(&info.bonding_info, bonding_info,
6337 sizeof(struct netdev_bonding_info));
6338 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6339 &info.info);
6340}
6341EXPORT_SYMBOL(netdev_bonding_info_change);
6342
2ce1ee17 6343static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6344{
6345 struct netdev_adjacent *iter;
6346
6347 struct net *net = dev_net(dev);
6348
6349 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6350 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6351 continue;
6352 netdev_adjacent_sysfs_add(iter->dev, dev,
6353 &iter->dev->adj_list.lower);
6354 netdev_adjacent_sysfs_add(dev, iter->dev,
6355 &dev->adj_list.upper);
6356 }
6357
6358 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6359 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6360 continue;
6361 netdev_adjacent_sysfs_add(iter->dev, dev,
6362 &iter->dev->adj_list.upper);
6363 netdev_adjacent_sysfs_add(dev, iter->dev,
6364 &dev->adj_list.lower);
6365 }
6366}
6367
2ce1ee17 6368static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6369{
6370 struct netdev_adjacent *iter;
6371
6372 struct net *net = dev_net(dev);
6373
6374 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6375 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6376 continue;
6377 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6378 &iter->dev->adj_list.lower);
6379 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6380 &dev->adj_list.upper);
6381 }
6382
6383 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6384 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6385 continue;
6386 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6387 &iter->dev->adj_list.upper);
6388 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6389 &dev->adj_list.lower);
6390 }
6391}
6392
5bb025fa 6393void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6394{
5bb025fa 6395 struct netdev_adjacent *iter;
402dae96 6396
4c75431a
AF
6397 struct net *net = dev_net(dev);
6398
5bb025fa 6399 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6400 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6401 continue;
5bb025fa
VF
6402 netdev_adjacent_sysfs_del(iter->dev, oldname,
6403 &iter->dev->adj_list.lower);
6404 netdev_adjacent_sysfs_add(iter->dev, dev,
6405 &iter->dev->adj_list.lower);
6406 }
402dae96 6407
5bb025fa 6408 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6409 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6410 continue;
5bb025fa
VF
6411 netdev_adjacent_sysfs_del(iter->dev, oldname,
6412 &iter->dev->adj_list.upper);
6413 netdev_adjacent_sysfs_add(iter->dev, dev,
6414 &iter->dev->adj_list.upper);
6415 }
402dae96 6416}
402dae96
VF
6417
6418void *netdev_lower_dev_get_private(struct net_device *dev,
6419 struct net_device *lower_dev)
6420{
6421 struct netdev_adjacent *lower;
6422
6423 if (!lower_dev)
6424 return NULL;
6ea29da1 6425 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6426 if (!lower)
6427 return NULL;
6428
6429 return lower->private;
6430}
6431EXPORT_SYMBOL(netdev_lower_dev_get_private);
6432
4085ebe8 6433
952fcfd0 6434int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6435{
6436 struct net_device *lower = NULL;
6437 struct list_head *iter;
6438 int max_nest = -1;
6439 int nest;
6440
6441 ASSERT_RTNL();
6442
6443 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6444 nest = dev_get_nest_level(lower);
4085ebe8
VY
6445 if (max_nest < nest)
6446 max_nest = nest;
6447 }
6448
952fcfd0 6449 return max_nest + 1;
4085ebe8
VY
6450}
6451EXPORT_SYMBOL(dev_get_nest_level);
6452
04d48266
JP
6453/**
6454 * netdev_lower_change - Dispatch event about lower device state change
6455 * @lower_dev: device
6456 * @lower_state_info: state to dispatch
6457 *
6458 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6459 * The caller must hold the RTNL lock.
6460 */
6461void netdev_lower_state_changed(struct net_device *lower_dev,
6462 void *lower_state_info)
6463{
6464 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6465
6466 ASSERT_RTNL();
6467 changelowerstate_info.lower_state_info = lower_state_info;
6468 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6469 &changelowerstate_info.info);
6470}
6471EXPORT_SYMBOL(netdev_lower_state_changed);
6472
b6c40d68
PM
6473static void dev_change_rx_flags(struct net_device *dev, int flags)
6474{
d314774c
SH
6475 const struct net_device_ops *ops = dev->netdev_ops;
6476
d2615bf4 6477 if (ops->ndo_change_rx_flags)
d314774c 6478 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6479}
6480
991fb3f7 6481static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6482{
b536db93 6483 unsigned int old_flags = dev->flags;
d04a48b0
EB
6484 kuid_t uid;
6485 kgid_t gid;
1da177e4 6486
24023451
PM
6487 ASSERT_RTNL();
6488
dad9b335
WC
6489 dev->flags |= IFF_PROMISC;
6490 dev->promiscuity += inc;
6491 if (dev->promiscuity == 0) {
6492 /*
6493 * Avoid overflow.
6494 * If inc causes overflow, untouch promisc and return error.
6495 */
6496 if (inc < 0)
6497 dev->flags &= ~IFF_PROMISC;
6498 else {
6499 dev->promiscuity -= inc;
7b6cd1ce
JP
6500 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6501 dev->name);
dad9b335
WC
6502 return -EOVERFLOW;
6503 }
6504 }
52609c0b 6505 if (dev->flags != old_flags) {
7b6cd1ce
JP
6506 pr_info("device %s %s promiscuous mode\n",
6507 dev->name,
6508 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6509 if (audit_enabled) {
6510 current_uid_gid(&uid, &gid);
7759db82
KHK
6511 audit_log(current->audit_context, GFP_ATOMIC,
6512 AUDIT_ANOM_PROMISCUOUS,
6513 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6514 dev->name, (dev->flags & IFF_PROMISC),
6515 (old_flags & IFF_PROMISC),
e1760bd5 6516 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6517 from_kuid(&init_user_ns, uid),
6518 from_kgid(&init_user_ns, gid),
7759db82 6519 audit_get_sessionid(current));
8192b0c4 6520 }
24023451 6521
b6c40d68 6522 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6523 }
991fb3f7
ND
6524 if (notify)
6525 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6526 return 0;
1da177e4
LT
6527}
6528
4417da66
PM
6529/**
6530 * dev_set_promiscuity - update promiscuity count on a device
6531 * @dev: device
6532 * @inc: modifier
6533 *
6534 * Add or remove promiscuity from a device. While the count in the device
6535 * remains above zero the interface remains promiscuous. Once it hits zero
6536 * the device reverts back to normal filtering operation. A negative inc
6537 * value is used to drop promiscuity on the device.
dad9b335 6538 * Return 0 if successful or a negative errno code on error.
4417da66 6539 */
dad9b335 6540int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6541{
b536db93 6542 unsigned int old_flags = dev->flags;
dad9b335 6543 int err;
4417da66 6544
991fb3f7 6545 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6546 if (err < 0)
dad9b335 6547 return err;
4417da66
PM
6548 if (dev->flags != old_flags)
6549 dev_set_rx_mode(dev);
dad9b335 6550 return err;
4417da66 6551}
d1b19dff 6552EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6553
991fb3f7 6554static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6555{
991fb3f7 6556 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6557
24023451
PM
6558 ASSERT_RTNL();
6559
1da177e4 6560 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6561 dev->allmulti += inc;
6562 if (dev->allmulti == 0) {
6563 /*
6564 * Avoid overflow.
6565 * If inc causes overflow, untouch allmulti and return error.
6566 */
6567 if (inc < 0)
6568 dev->flags &= ~IFF_ALLMULTI;
6569 else {
6570 dev->allmulti -= inc;
7b6cd1ce
JP
6571 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6572 dev->name);
dad9b335
WC
6573 return -EOVERFLOW;
6574 }
6575 }
24023451 6576 if (dev->flags ^ old_flags) {
b6c40d68 6577 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6578 dev_set_rx_mode(dev);
991fb3f7
ND
6579 if (notify)
6580 __dev_notify_flags(dev, old_flags,
6581 dev->gflags ^ old_gflags);
24023451 6582 }
dad9b335 6583 return 0;
4417da66 6584}
991fb3f7
ND
6585
6586/**
6587 * dev_set_allmulti - update allmulti count on a device
6588 * @dev: device
6589 * @inc: modifier
6590 *
6591 * Add or remove reception of all multicast frames to a device. While the
6592 * count in the device remains above zero the interface remains listening
6593 * to all interfaces. Once it hits zero the device reverts back to normal
6594 * filtering operation. A negative @inc value is used to drop the counter
6595 * when releasing a resource needing all multicasts.
6596 * Return 0 if successful or a negative errno code on error.
6597 */
6598
6599int dev_set_allmulti(struct net_device *dev, int inc)
6600{
6601 return __dev_set_allmulti(dev, inc, true);
6602}
d1b19dff 6603EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6604
6605/*
6606 * Upload unicast and multicast address lists to device and
6607 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6608 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6609 * are present.
6610 */
6611void __dev_set_rx_mode(struct net_device *dev)
6612{
d314774c
SH
6613 const struct net_device_ops *ops = dev->netdev_ops;
6614
4417da66
PM
6615 /* dev_open will call this function so the list will stay sane. */
6616 if (!(dev->flags&IFF_UP))
6617 return;
6618
6619 if (!netif_device_present(dev))
40b77c94 6620 return;
4417da66 6621
01789349 6622 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6623 /* Unicast addresses changes may only happen under the rtnl,
6624 * therefore calling __dev_set_promiscuity here is safe.
6625 */
32e7bfc4 6626 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6627 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6628 dev->uc_promisc = true;
32e7bfc4 6629 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6630 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6631 dev->uc_promisc = false;
4417da66 6632 }
4417da66 6633 }
01789349
JP
6634
6635 if (ops->ndo_set_rx_mode)
6636 ops->ndo_set_rx_mode(dev);
4417da66
PM
6637}
6638
6639void dev_set_rx_mode(struct net_device *dev)
6640{
b9e40857 6641 netif_addr_lock_bh(dev);
4417da66 6642 __dev_set_rx_mode(dev);
b9e40857 6643 netif_addr_unlock_bh(dev);
1da177e4
LT
6644}
6645
f0db275a
SH
6646/**
6647 * dev_get_flags - get flags reported to userspace
6648 * @dev: device
6649 *
6650 * Get the combination of flag bits exported through APIs to userspace.
6651 */
95c96174 6652unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6653{
95c96174 6654 unsigned int flags;
1da177e4
LT
6655
6656 flags = (dev->flags & ~(IFF_PROMISC |
6657 IFF_ALLMULTI |
b00055aa
SR
6658 IFF_RUNNING |
6659 IFF_LOWER_UP |
6660 IFF_DORMANT)) |
1da177e4
LT
6661 (dev->gflags & (IFF_PROMISC |
6662 IFF_ALLMULTI));
6663
b00055aa
SR
6664 if (netif_running(dev)) {
6665 if (netif_oper_up(dev))
6666 flags |= IFF_RUNNING;
6667 if (netif_carrier_ok(dev))
6668 flags |= IFF_LOWER_UP;
6669 if (netif_dormant(dev))
6670 flags |= IFF_DORMANT;
6671 }
1da177e4
LT
6672
6673 return flags;
6674}
d1b19dff 6675EXPORT_SYMBOL(dev_get_flags);
1da177e4 6676
bd380811 6677int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6678{
b536db93 6679 unsigned int old_flags = dev->flags;
bd380811 6680 int ret;
1da177e4 6681
24023451
PM
6682 ASSERT_RTNL();
6683
1da177e4
LT
6684 /*
6685 * Set the flags on our device.
6686 */
6687
6688 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6689 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6690 IFF_AUTOMEDIA)) |
6691 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6692 IFF_ALLMULTI));
6693
6694 /*
6695 * Load in the correct multicast list now the flags have changed.
6696 */
6697
b6c40d68
PM
6698 if ((old_flags ^ flags) & IFF_MULTICAST)
6699 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6700
4417da66 6701 dev_set_rx_mode(dev);
1da177e4
LT
6702
6703 /*
6704 * Have we downed the interface. We handle IFF_UP ourselves
6705 * according to user attempts to set it, rather than blindly
6706 * setting it.
6707 */
6708
6709 ret = 0;
d215d10f 6710 if ((old_flags ^ flags) & IFF_UP)
bd380811 6711 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6712
1da177e4 6713 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6714 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6715 unsigned int old_flags = dev->flags;
d1b19dff 6716
1da177e4 6717 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6718
6719 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6720 if (dev->flags != old_flags)
6721 dev_set_rx_mode(dev);
1da177e4
LT
6722 }
6723
6724 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 6725 * is important. Some (broken) drivers set IFF_PROMISC, when
6726 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
6727 */
6728 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6729 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6730
1da177e4 6731 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6732 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6733 }
6734
bd380811
PM
6735 return ret;
6736}
6737
a528c219
ND
6738void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6739 unsigned int gchanges)
bd380811
PM
6740{
6741 unsigned int changes = dev->flags ^ old_flags;
6742
a528c219 6743 if (gchanges)
7f294054 6744 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6745
bd380811
PM
6746 if (changes & IFF_UP) {
6747 if (dev->flags & IFF_UP)
6748 call_netdevice_notifiers(NETDEV_UP, dev);
6749 else
6750 call_netdevice_notifiers(NETDEV_DOWN, dev);
6751 }
6752
6753 if (dev->flags & IFF_UP &&
be9efd36
JP
6754 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6755 struct netdev_notifier_change_info change_info;
6756
6757 change_info.flags_changed = changes;
6758 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6759 &change_info.info);
6760 }
bd380811
PM
6761}
6762
6763/**
6764 * dev_change_flags - change device settings
6765 * @dev: device
6766 * @flags: device state flags
6767 *
6768 * Change settings on device based state flags. The flags are
6769 * in the userspace exported format.
6770 */
b536db93 6771int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6772{
b536db93 6773 int ret;
991fb3f7 6774 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6775
6776 ret = __dev_change_flags(dev, flags);
6777 if (ret < 0)
6778 return ret;
6779
991fb3f7 6780 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6781 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6782 return ret;
6783}
d1b19dff 6784EXPORT_SYMBOL(dev_change_flags);
1da177e4 6785
f51048c3 6786int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
6787{
6788 const struct net_device_ops *ops = dev->netdev_ops;
6789
6790 if (ops->ndo_change_mtu)
6791 return ops->ndo_change_mtu(dev, new_mtu);
6792
6793 dev->mtu = new_mtu;
6794 return 0;
6795}
f51048c3 6796EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 6797
f0db275a
SH
6798/**
6799 * dev_set_mtu - Change maximum transfer unit
6800 * @dev: device
6801 * @new_mtu: new transfer unit
6802 *
6803 * Change the maximum transfer size of the network device.
6804 */
1da177e4
LT
6805int dev_set_mtu(struct net_device *dev, int new_mtu)
6806{
2315dc91 6807 int err, orig_mtu;
1da177e4
LT
6808
6809 if (new_mtu == dev->mtu)
6810 return 0;
6811
61e84623
JW
6812 /* MTU must be positive, and in range */
6813 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6814 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6815 dev->name, new_mtu, dev->min_mtu);
1da177e4 6816 return -EINVAL;
61e84623
JW
6817 }
6818
6819 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6820 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6821 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6822 return -EINVAL;
6823 }
1da177e4
LT
6824
6825 if (!netif_device_present(dev))
6826 return -ENODEV;
6827
1d486bfb
VF
6828 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6829 err = notifier_to_errno(err);
6830 if (err)
6831 return err;
d314774c 6832
2315dc91
VF
6833 orig_mtu = dev->mtu;
6834 err = __dev_set_mtu(dev, new_mtu);
d314774c 6835
2315dc91
VF
6836 if (!err) {
6837 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6838 err = notifier_to_errno(err);
6839 if (err) {
6840 /* setting mtu back and notifying everyone again,
6841 * so that they have a chance to revert changes.
6842 */
6843 __dev_set_mtu(dev, orig_mtu);
6844 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6845 }
6846 }
1da177e4
LT
6847 return err;
6848}
d1b19dff 6849EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6850
cbda10fa
VD
6851/**
6852 * dev_set_group - Change group this device belongs to
6853 * @dev: device
6854 * @new_group: group this device should belong to
6855 */
6856void dev_set_group(struct net_device *dev, int new_group)
6857{
6858 dev->group = new_group;
6859}
6860EXPORT_SYMBOL(dev_set_group);
6861
f0db275a
SH
6862/**
6863 * dev_set_mac_address - Change Media Access Control Address
6864 * @dev: device
6865 * @sa: new address
6866 *
6867 * Change the hardware (MAC) address of the device
6868 */
1da177e4
LT
6869int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6870{
d314774c 6871 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6872 int err;
6873
d314774c 6874 if (!ops->ndo_set_mac_address)
1da177e4
LT
6875 return -EOPNOTSUPP;
6876 if (sa->sa_family != dev->type)
6877 return -EINVAL;
6878 if (!netif_device_present(dev))
6879 return -ENODEV;
d314774c 6880 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6881 if (err)
6882 return err;
fbdeca2d 6883 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6884 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6885 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6886 return 0;
1da177e4 6887}
d1b19dff 6888EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6889
4bf84c35
JP
6890/**
6891 * dev_change_carrier - Change device carrier
6892 * @dev: device
691b3b7e 6893 * @new_carrier: new value
4bf84c35
JP
6894 *
6895 * Change device carrier
6896 */
6897int dev_change_carrier(struct net_device *dev, bool new_carrier)
6898{
6899 const struct net_device_ops *ops = dev->netdev_ops;
6900
6901 if (!ops->ndo_change_carrier)
6902 return -EOPNOTSUPP;
6903 if (!netif_device_present(dev))
6904 return -ENODEV;
6905 return ops->ndo_change_carrier(dev, new_carrier);
6906}
6907EXPORT_SYMBOL(dev_change_carrier);
6908
66b52b0d
JP
6909/**
6910 * dev_get_phys_port_id - Get device physical port ID
6911 * @dev: device
6912 * @ppid: port ID
6913 *
6914 * Get device physical port ID
6915 */
6916int dev_get_phys_port_id(struct net_device *dev,
02637fce 6917 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6918{
6919 const struct net_device_ops *ops = dev->netdev_ops;
6920
6921 if (!ops->ndo_get_phys_port_id)
6922 return -EOPNOTSUPP;
6923 return ops->ndo_get_phys_port_id(dev, ppid);
6924}
6925EXPORT_SYMBOL(dev_get_phys_port_id);
6926
db24a904
DA
6927/**
6928 * dev_get_phys_port_name - Get device physical port name
6929 * @dev: device
6930 * @name: port name
ed49e650 6931 * @len: limit of bytes to copy to name
db24a904
DA
6932 *
6933 * Get device physical port name
6934 */
6935int dev_get_phys_port_name(struct net_device *dev,
6936 char *name, size_t len)
6937{
6938 const struct net_device_ops *ops = dev->netdev_ops;
6939
6940 if (!ops->ndo_get_phys_port_name)
6941 return -EOPNOTSUPP;
6942 return ops->ndo_get_phys_port_name(dev, name, len);
6943}
6944EXPORT_SYMBOL(dev_get_phys_port_name);
6945
d746d707
AK
6946/**
6947 * dev_change_proto_down - update protocol port state information
6948 * @dev: device
6949 * @proto_down: new value
6950 *
6951 * This info can be used by switch drivers to set the phys state of the
6952 * port.
6953 */
6954int dev_change_proto_down(struct net_device *dev, bool proto_down)
6955{
6956 const struct net_device_ops *ops = dev->netdev_ops;
6957
6958 if (!ops->ndo_change_proto_down)
6959 return -EOPNOTSUPP;
6960 if (!netif_device_present(dev))
6961 return -ENODEV;
6962 return ops->ndo_change_proto_down(dev, proto_down);
6963}
6964EXPORT_SYMBOL(dev_change_proto_down);
6965
ce158e58 6966u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
d67b9cd2
DB
6967{
6968 struct netdev_xdp xdp;
6969
6970 memset(&xdp, 0, sizeof(xdp));
6971 xdp.command = XDP_QUERY_PROG;
6972
6973 /* Query must always succeed. */
6974 WARN_ON(xdp_op(dev, &xdp) < 0);
58038695
MKL
6975 if (prog_id)
6976 *prog_id = xdp.prog_id;
6977
d67b9cd2
DB
6978 return xdp.prog_attached;
6979}
6980
6981static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
32d60277 6982 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
6983 struct bpf_prog *prog)
6984{
6985 struct netdev_xdp xdp;
6986
6987 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
6988 if (flags & XDP_FLAGS_HW_MODE)
6989 xdp.command = XDP_SETUP_PROG_HW;
6990 else
6991 xdp.command = XDP_SETUP_PROG;
d67b9cd2 6992 xdp.extack = extack;
32d60277 6993 xdp.flags = flags;
d67b9cd2
DB
6994 xdp.prog = prog;
6995
6996 return xdp_op(dev, &xdp);
6997}
6998
a7862b45
BB
6999/**
7000 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7001 * @dev: device
b5d60989 7002 * @extack: netlink extended ack
a7862b45 7003 * @fd: new program fd or negative value to clear
85de8576 7004 * @flags: xdp-related flags
a7862b45
BB
7005 *
7006 * Set or clear a bpf program for a device
7007 */
ddf9f970
JK
7008int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7009 int fd, u32 flags)
a7862b45
BB
7010{
7011 const struct net_device_ops *ops = dev->netdev_ops;
7012 struct bpf_prog *prog = NULL;
d67b9cd2 7013 xdp_op_t xdp_op, xdp_chk;
a7862b45
BB
7014 int err;
7015
85de8576
DB
7016 ASSERT_RTNL();
7017
d67b9cd2 7018 xdp_op = xdp_chk = ops->ndo_xdp;
ee5d032f 7019 if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
0489df9a 7020 return -EOPNOTSUPP;
b5cdae32
DM
7021 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7022 xdp_op = generic_xdp_install;
d67b9cd2
DB
7023 if (xdp_op == xdp_chk)
7024 xdp_chk = generic_xdp_install;
b5cdae32 7025
a7862b45 7026 if (fd >= 0) {
58038695 7027 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
d67b9cd2
DB
7028 return -EEXIST;
7029 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
58038695 7030 __dev_xdp_attached(dev, xdp_op, NULL))
d67b9cd2 7031 return -EBUSY;
85de8576 7032
a7862b45
BB
7033 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7034 if (IS_ERR(prog))
7035 return PTR_ERR(prog);
7036 }
7037
32d60277 7038 err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
a7862b45
BB
7039 if (err < 0 && prog)
7040 bpf_prog_put(prog);
7041
7042 return err;
7043}
a7862b45 7044
1da177e4
LT
7045/**
7046 * dev_new_index - allocate an ifindex
c4ea43c5 7047 * @net: the applicable net namespace
1da177e4
LT
7048 *
7049 * Returns a suitable unique value for a new device interface
7050 * number. The caller must hold the rtnl semaphore or the
7051 * dev_base_lock to be sure it remains unique.
7052 */
881d966b 7053static int dev_new_index(struct net *net)
1da177e4 7054{
aa79e66e 7055 int ifindex = net->ifindex;
f4563a75 7056
1da177e4
LT
7057 for (;;) {
7058 if (++ifindex <= 0)
7059 ifindex = 1;
881d966b 7060 if (!__dev_get_by_index(net, ifindex))
aa79e66e 7061 return net->ifindex = ifindex;
1da177e4
LT
7062 }
7063}
7064
1da177e4 7065/* Delayed registration/unregisteration */
3b5b34fd 7066static LIST_HEAD(net_todo_list);
200b916f 7067DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 7068
6f05f629 7069static void net_set_todo(struct net_device *dev)
1da177e4 7070{
1da177e4 7071 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 7072 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
7073}
7074
9b5e383c 7075static void rollback_registered_many(struct list_head *head)
93ee31f1 7076{
e93737b0 7077 struct net_device *dev, *tmp;
5cde2829 7078 LIST_HEAD(close_head);
9b5e383c 7079
93ee31f1
DL
7080 BUG_ON(dev_boot_phase);
7081 ASSERT_RTNL();
7082
e93737b0 7083 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 7084 /* Some devices call without registering
e93737b0
KK
7085 * for initialization unwind. Remove those
7086 * devices and proceed with the remaining.
9b5e383c
ED
7087 */
7088 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
7089 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7090 dev->name, dev);
93ee31f1 7091
9b5e383c 7092 WARN_ON(1);
e93737b0
KK
7093 list_del(&dev->unreg_list);
7094 continue;
9b5e383c 7095 }
449f4544 7096 dev->dismantle = true;
9b5e383c 7097 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 7098 }
93ee31f1 7099
44345724 7100 /* If device is running, close it first. */
5cde2829
EB
7101 list_for_each_entry(dev, head, unreg_list)
7102 list_add_tail(&dev->close_list, &close_head);
99c4a26a 7103 dev_close_many(&close_head, true);
93ee31f1 7104
44345724 7105 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
7106 /* And unlink it from device chain. */
7107 unlist_netdevice(dev);
93ee31f1 7108
9b5e383c
ED
7109 dev->reg_state = NETREG_UNREGISTERING;
7110 }
41852497 7111 flush_all_backlogs();
93ee31f1
DL
7112
7113 synchronize_net();
7114
9b5e383c 7115 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
7116 struct sk_buff *skb = NULL;
7117
9b5e383c
ED
7118 /* Shutdown queueing discipline. */
7119 dev_shutdown(dev);
93ee31f1
DL
7120
7121
9b5e383c 7122 /* Notify protocols, that we are about to destroy
eb13da1a 7123 * this device. They should clean all the things.
7124 */
9b5e383c 7125 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 7126
395eea6c
MB
7127 if (!dev->rtnl_link_ops ||
7128 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 7129 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
395eea6c
MB
7130 GFP_KERNEL);
7131
9b5e383c
ED
7132 /*
7133 * Flush the unicast and multicast chains
7134 */
a748ee24 7135 dev_uc_flush(dev);
22bedad3 7136 dev_mc_flush(dev);
93ee31f1 7137
9b5e383c
ED
7138 if (dev->netdev_ops->ndo_uninit)
7139 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 7140
395eea6c
MB
7141 if (skb)
7142 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 7143
9ff162a8
JP
7144 /* Notifier chain MUST detach us all upper devices. */
7145 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 7146 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 7147
9b5e383c
ED
7148 /* Remove entries from kobject tree */
7149 netdev_unregister_kobject(dev);
024e9679
AD
7150#ifdef CONFIG_XPS
7151 /* Remove XPS queueing entries */
7152 netif_reset_xps_queues_gt(dev, 0);
7153#endif
9b5e383c 7154 }
93ee31f1 7155
850a545b 7156 synchronize_net();
395264d5 7157
a5ee1551 7158 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
7159 dev_put(dev);
7160}
7161
7162static void rollback_registered(struct net_device *dev)
7163{
7164 LIST_HEAD(single);
7165
7166 list_add(&dev->unreg_list, &single);
7167 rollback_registered_many(&single);
ceaaec98 7168 list_del(&single);
93ee31f1
DL
7169}
7170
fd867d51
JW
7171static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7172 struct net_device *upper, netdev_features_t features)
7173{
7174 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7175 netdev_features_t feature;
5ba3f7d6 7176 int feature_bit;
fd867d51 7177
5ba3f7d6
JW
7178 for_each_netdev_feature(&upper_disables, feature_bit) {
7179 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7180 if (!(upper->wanted_features & feature)
7181 && (features & feature)) {
7182 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7183 &feature, upper->name);
7184 features &= ~feature;
7185 }
7186 }
7187
7188 return features;
7189}
7190
7191static void netdev_sync_lower_features(struct net_device *upper,
7192 struct net_device *lower, netdev_features_t features)
7193{
7194 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7195 netdev_features_t feature;
5ba3f7d6 7196 int feature_bit;
fd867d51 7197
5ba3f7d6
JW
7198 for_each_netdev_feature(&upper_disables, feature_bit) {
7199 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7200 if (!(features & feature) && (lower->features & feature)) {
7201 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7202 &feature, lower->name);
7203 lower->wanted_features &= ~feature;
7204 netdev_update_features(lower);
7205
7206 if (unlikely(lower->features & feature))
7207 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7208 &feature, lower->name);
7209 }
7210 }
7211}
7212
c8f44aff
MM
7213static netdev_features_t netdev_fix_features(struct net_device *dev,
7214 netdev_features_t features)
b63365a2 7215{
57422dc5
MM
7216 /* Fix illegal checksum combinations */
7217 if ((features & NETIF_F_HW_CSUM) &&
7218 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 7219 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
7220 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7221 }
7222
b63365a2 7223 /* TSO requires that SG is present as well. */
ea2d3688 7224 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 7225 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 7226 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
7227 }
7228
ec5f0615
PS
7229 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7230 !(features & NETIF_F_IP_CSUM)) {
7231 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7232 features &= ~NETIF_F_TSO;
7233 features &= ~NETIF_F_TSO_ECN;
7234 }
7235
7236 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7237 !(features & NETIF_F_IPV6_CSUM)) {
7238 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7239 features &= ~NETIF_F_TSO6;
7240 }
7241
b1dc497b
AD
7242 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7243 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7244 features &= ~NETIF_F_TSO_MANGLEID;
7245
31d8b9e0
BH
7246 /* TSO ECN requires that TSO is present as well. */
7247 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7248 features &= ~NETIF_F_TSO_ECN;
7249
212b573f
MM
7250 /* Software GSO depends on SG. */
7251 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 7252 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
7253 features &= ~NETIF_F_GSO;
7254 }
7255
acd1130e 7256 /* UFO needs SG and checksumming */
b63365a2 7257 if (features & NETIF_F_UFO) {
79032644 7258 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
7259 if (!(features & NETIF_F_HW_CSUM) &&
7260 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7261 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 7262 netdev_dbg(dev,
acd1130e 7263 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
7264 features &= ~NETIF_F_UFO;
7265 }
7266
7267 if (!(features & NETIF_F_SG)) {
6f404e44 7268 netdev_dbg(dev,
acd1130e 7269 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
7270 features &= ~NETIF_F_UFO;
7271 }
7272 }
7273
802ab55a
AD
7274 /* GSO partial features require GSO partial be set */
7275 if ((features & dev->gso_partial_features) &&
7276 !(features & NETIF_F_GSO_PARTIAL)) {
7277 netdev_dbg(dev,
7278 "Dropping partially supported GSO features since no GSO partial.\n");
7279 features &= ~dev->gso_partial_features;
7280 }
7281
b63365a2
HX
7282 return features;
7283}
b63365a2 7284
6cb6a27c 7285int __netdev_update_features(struct net_device *dev)
5455c699 7286{
fd867d51 7287 struct net_device *upper, *lower;
c8f44aff 7288 netdev_features_t features;
fd867d51 7289 struct list_head *iter;
e7868a85 7290 int err = -1;
5455c699 7291
87267485
MM
7292 ASSERT_RTNL();
7293
5455c699
MM
7294 features = netdev_get_wanted_features(dev);
7295
7296 if (dev->netdev_ops->ndo_fix_features)
7297 features = dev->netdev_ops->ndo_fix_features(dev, features);
7298
7299 /* driver might be less strict about feature dependencies */
7300 features = netdev_fix_features(dev, features);
7301
fd867d51
JW
7302 /* some features can't be enabled if they're off an an upper device */
7303 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7304 features = netdev_sync_upper_features(dev, upper, features);
7305
5455c699 7306 if (dev->features == features)
e7868a85 7307 goto sync_lower;
5455c699 7308
c8f44aff
MM
7309 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7310 &dev->features, &features);
5455c699
MM
7311
7312 if (dev->netdev_ops->ndo_set_features)
7313 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7314 else
7315 err = 0;
5455c699 7316
6cb6a27c 7317 if (unlikely(err < 0)) {
5455c699 7318 netdev_err(dev,
c8f44aff
MM
7319 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7320 err, &features, &dev->features);
17b85d29
NA
7321 /* return non-0 since some features might have changed and
7322 * it's better to fire a spurious notification than miss it
7323 */
7324 return -1;
6cb6a27c
MM
7325 }
7326
e7868a85 7327sync_lower:
fd867d51
JW
7328 /* some features must be disabled on lower devices when disabled
7329 * on an upper device (think: bonding master or bridge)
7330 */
7331 netdev_for_each_lower_dev(dev, lower, iter)
7332 netdev_sync_lower_features(dev, lower, features);
7333
6cb6a27c
MM
7334 if (!err)
7335 dev->features = features;
7336
e7868a85 7337 return err < 0 ? 0 : 1;
6cb6a27c
MM
7338}
7339
afe12cc8
MM
7340/**
7341 * netdev_update_features - recalculate device features
7342 * @dev: the device to check
7343 *
7344 * Recalculate dev->features set and send notifications if it
7345 * has changed. Should be called after driver or hardware dependent
7346 * conditions might have changed that influence the features.
7347 */
6cb6a27c
MM
7348void netdev_update_features(struct net_device *dev)
7349{
7350 if (__netdev_update_features(dev))
7351 netdev_features_change(dev);
5455c699
MM
7352}
7353EXPORT_SYMBOL(netdev_update_features);
7354
afe12cc8
MM
7355/**
7356 * netdev_change_features - recalculate device features
7357 * @dev: the device to check
7358 *
7359 * Recalculate dev->features set and send notifications even
7360 * if they have not changed. Should be called instead of
7361 * netdev_update_features() if also dev->vlan_features might
7362 * have changed to allow the changes to be propagated to stacked
7363 * VLAN devices.
7364 */
7365void netdev_change_features(struct net_device *dev)
7366{
7367 __netdev_update_features(dev);
7368 netdev_features_change(dev);
7369}
7370EXPORT_SYMBOL(netdev_change_features);
7371
fc4a7489
PM
7372/**
7373 * netif_stacked_transfer_operstate - transfer operstate
7374 * @rootdev: the root or lower level device to transfer state from
7375 * @dev: the device to transfer operstate to
7376 *
7377 * Transfer operational state from root to device. This is normally
7378 * called when a stacking relationship exists between the root
7379 * device and the device(a leaf device).
7380 */
7381void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7382 struct net_device *dev)
7383{
7384 if (rootdev->operstate == IF_OPER_DORMANT)
7385 netif_dormant_on(dev);
7386 else
7387 netif_dormant_off(dev);
7388
0575c86b
ZS
7389 if (netif_carrier_ok(rootdev))
7390 netif_carrier_on(dev);
7391 else
7392 netif_carrier_off(dev);
fc4a7489
PM
7393}
7394EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7395
a953be53 7396#ifdef CONFIG_SYSFS
1b4bf461
ED
7397static int netif_alloc_rx_queues(struct net_device *dev)
7398{
1b4bf461 7399 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7400 struct netdev_rx_queue *rx;
10595902 7401 size_t sz = count * sizeof(*rx);
1b4bf461 7402
bd25fa7b 7403 BUG_ON(count < 1);
1b4bf461 7404
da6bc57a
MH
7405 rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7406 if (!rx)
7407 return -ENOMEM;
7408
bd25fa7b
TH
7409 dev->_rx = rx;
7410
bd25fa7b 7411 for (i = 0; i < count; i++)
fe822240 7412 rx[i].dev = dev;
1b4bf461
ED
7413 return 0;
7414}
bf264145 7415#endif
1b4bf461 7416
aa942104
CG
7417static void netdev_init_one_queue(struct net_device *dev,
7418 struct netdev_queue *queue, void *_unused)
7419{
7420 /* Initialize queue lock */
7421 spin_lock_init(&queue->_xmit_lock);
7422 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7423 queue->xmit_lock_owner = -1;
b236da69 7424 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7425 queue->dev = dev;
114cf580
TH
7426#ifdef CONFIG_BQL
7427 dql_init(&queue->dql, HZ);
7428#endif
aa942104
CG
7429}
7430
60877a32
ED
7431static void netif_free_tx_queues(struct net_device *dev)
7432{
4cb28970 7433 kvfree(dev->_tx);
60877a32
ED
7434}
7435
e6484930
TH
7436static int netif_alloc_netdev_queues(struct net_device *dev)
7437{
7438 unsigned int count = dev->num_tx_queues;
7439 struct netdev_queue *tx;
60877a32 7440 size_t sz = count * sizeof(*tx);
e6484930 7441
d339727c
ED
7442 if (count < 1 || count > 0xffff)
7443 return -EINVAL;
62b5942a 7444
da6bc57a
MH
7445 tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7446 if (!tx)
7447 return -ENOMEM;
7448
e6484930 7449 dev->_tx = tx;
1d24eb48 7450
e6484930
TH
7451 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7452 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7453
7454 return 0;
e6484930
TH
7455}
7456
a2029240
DV
7457void netif_tx_stop_all_queues(struct net_device *dev)
7458{
7459 unsigned int i;
7460
7461 for (i = 0; i < dev->num_tx_queues; i++) {
7462 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 7463
a2029240
DV
7464 netif_tx_stop_queue(txq);
7465 }
7466}
7467EXPORT_SYMBOL(netif_tx_stop_all_queues);
7468
1da177e4
LT
7469/**
7470 * register_netdevice - register a network device
7471 * @dev: device to register
7472 *
7473 * Take a completed network device structure and add it to the kernel
7474 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7475 * chain. 0 is returned on success. A negative errno code is returned
7476 * on a failure to set up the device, or if the name is a duplicate.
7477 *
7478 * Callers must hold the rtnl semaphore. You may want
7479 * register_netdev() instead of this.
7480 *
7481 * BUGS:
7482 * The locking appears insufficient to guarantee two parallel registers
7483 * will not get the same name.
7484 */
7485
7486int register_netdevice(struct net_device *dev)
7487{
1da177e4 7488 int ret;
d314774c 7489 struct net *net = dev_net(dev);
1da177e4
LT
7490
7491 BUG_ON(dev_boot_phase);
7492 ASSERT_RTNL();
7493
b17a7c17
SH
7494 might_sleep();
7495
1da177e4
LT
7496 /* When net_device's are persistent, this will be fatal. */
7497 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7498 BUG_ON(!net);
1da177e4 7499
f1f28aa3 7500 spin_lock_init(&dev->addr_list_lock);
cf508b12 7501 netdev_set_addr_lockdep_class(dev);
1da177e4 7502
828de4f6 7503 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7504 if (ret < 0)
7505 goto out;
7506
1da177e4 7507 /* Init, if this function is available */
d314774c
SH
7508 if (dev->netdev_ops->ndo_init) {
7509 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7510 if (ret) {
7511 if (ret > 0)
7512 ret = -EIO;
90833aa4 7513 goto out;
1da177e4
LT
7514 }
7515 }
4ec93edb 7516
f646968f
PM
7517 if (((dev->hw_features | dev->features) &
7518 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7519 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7520 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7521 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7522 ret = -EINVAL;
7523 goto err_uninit;
7524 }
7525
9c7dafbf
PE
7526 ret = -EBUSY;
7527 if (!dev->ifindex)
7528 dev->ifindex = dev_new_index(net);
7529 else if (__dev_get_by_index(net, dev->ifindex))
7530 goto err_uninit;
7531
5455c699
MM
7532 /* Transfer changeable features to wanted_features and enable
7533 * software offloads (GSO and GRO).
7534 */
7535 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7536 dev->features |= NETIF_F_SOFT_FEATURES;
7537 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7538
cbc53e08 7539 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7540 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7541
7f348a60
AD
7542 /* If IPv4 TCP segmentation offload is supported we should also
7543 * allow the device to enable segmenting the frame with the option
7544 * of ignoring a static IP ID value. This doesn't enable the
7545 * feature itself but allows the user to enable it later.
7546 */
cbc53e08
AD
7547 if (dev->hw_features & NETIF_F_TSO)
7548 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7549 if (dev->vlan_features & NETIF_F_TSO)
7550 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7551 if (dev->mpls_features & NETIF_F_TSO)
7552 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7553 if (dev->hw_enc_features & NETIF_F_TSO)
7554 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7555
1180e7d6 7556 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7557 */
1180e7d6 7558 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7559
ee579677
PS
7560 /* Make NETIF_F_SG inheritable to tunnel devices.
7561 */
802ab55a 7562 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7563
0d89d203
SH
7564 /* Make NETIF_F_SG inheritable to MPLS.
7565 */
7566 dev->mpls_features |= NETIF_F_SG;
7567
7ffbe3fd
JB
7568 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7569 ret = notifier_to_errno(ret);
7570 if (ret)
7571 goto err_uninit;
7572
8b41d188 7573 ret = netdev_register_kobject(dev);
b17a7c17 7574 if (ret)
7ce1b0ed 7575 goto err_uninit;
b17a7c17
SH
7576 dev->reg_state = NETREG_REGISTERED;
7577
6cb6a27c 7578 __netdev_update_features(dev);
8e9b59b2 7579
1da177e4
LT
7580 /*
7581 * Default initial state at registry is that the
7582 * device is present.
7583 */
7584
7585 set_bit(__LINK_STATE_PRESENT, &dev->state);
7586
8f4cccbb
BH
7587 linkwatch_init_dev(dev);
7588
1da177e4 7589 dev_init_scheduler(dev);
1da177e4 7590 dev_hold(dev);
ce286d32 7591 list_netdevice(dev);
7bf23575 7592 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7593
948b337e
JP
7594 /* If the device has permanent device address, driver should
7595 * set dev_addr and also addr_assign_type should be set to
7596 * NET_ADDR_PERM (default value).
7597 */
7598 if (dev->addr_assign_type == NET_ADDR_PERM)
7599 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7600
1da177e4 7601 /* Notify protocols, that a new device appeared. */
056925ab 7602 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7603 ret = notifier_to_errno(ret);
93ee31f1
DL
7604 if (ret) {
7605 rollback_registered(dev);
7606 dev->reg_state = NETREG_UNREGISTERED;
7607 }
d90a909e
EB
7608 /*
7609 * Prevent userspace races by waiting until the network
7610 * device is fully setup before sending notifications.
7611 */
a2835763
PM
7612 if (!dev->rtnl_link_ops ||
7613 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7614 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7615
7616out:
7617 return ret;
7ce1b0ed
HX
7618
7619err_uninit:
d314774c
SH
7620 if (dev->netdev_ops->ndo_uninit)
7621 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
7622 if (dev->priv_destructor)
7623 dev->priv_destructor(dev);
7ce1b0ed 7624 goto out;
1da177e4 7625}
d1b19dff 7626EXPORT_SYMBOL(register_netdevice);
1da177e4 7627
937f1ba5
BH
7628/**
7629 * init_dummy_netdev - init a dummy network device for NAPI
7630 * @dev: device to init
7631 *
7632 * This takes a network device structure and initialize the minimum
7633 * amount of fields so it can be used to schedule NAPI polls without
7634 * registering a full blown interface. This is to be used by drivers
7635 * that need to tie several hardware interfaces to a single NAPI
7636 * poll scheduler due to HW limitations.
7637 */
7638int init_dummy_netdev(struct net_device *dev)
7639{
7640 /* Clear everything. Note we don't initialize spinlocks
7641 * are they aren't supposed to be taken by any of the
7642 * NAPI code and this dummy netdev is supposed to be
7643 * only ever used for NAPI polls
7644 */
7645 memset(dev, 0, sizeof(struct net_device));
7646
7647 /* make sure we BUG if trying to hit standard
7648 * register/unregister code path
7649 */
7650 dev->reg_state = NETREG_DUMMY;
7651
937f1ba5
BH
7652 /* NAPI wants this */
7653 INIT_LIST_HEAD(&dev->napi_list);
7654
7655 /* a dummy interface is started by default */
7656 set_bit(__LINK_STATE_PRESENT, &dev->state);
7657 set_bit(__LINK_STATE_START, &dev->state);
7658
29b4433d
ED
7659 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7660 * because users of this 'device' dont need to change
7661 * its refcount.
7662 */
7663
937f1ba5
BH
7664 return 0;
7665}
7666EXPORT_SYMBOL_GPL(init_dummy_netdev);
7667
7668
1da177e4
LT
7669/**
7670 * register_netdev - register a network device
7671 * @dev: device to register
7672 *
7673 * Take a completed network device structure and add it to the kernel
7674 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7675 * chain. 0 is returned on success. A negative errno code is returned
7676 * on a failure to set up the device, or if the name is a duplicate.
7677 *
38b4da38 7678 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7679 * and expands the device name if you passed a format string to
7680 * alloc_netdev.
7681 */
7682int register_netdev(struct net_device *dev)
7683{
7684 int err;
7685
7686 rtnl_lock();
1da177e4 7687 err = register_netdevice(dev);
1da177e4
LT
7688 rtnl_unlock();
7689 return err;
7690}
7691EXPORT_SYMBOL(register_netdev);
7692
29b4433d
ED
7693int netdev_refcnt_read(const struct net_device *dev)
7694{
7695 int i, refcnt = 0;
7696
7697 for_each_possible_cpu(i)
7698 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7699 return refcnt;
7700}
7701EXPORT_SYMBOL(netdev_refcnt_read);
7702
2c53040f 7703/**
1da177e4 7704 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7705 * @dev: target net_device
1da177e4
LT
7706 *
7707 * This is called when unregistering network devices.
7708 *
7709 * Any protocol or device that holds a reference should register
7710 * for netdevice notification, and cleanup and put back the
7711 * reference if they receive an UNREGISTER event.
7712 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7713 * call dev_put.
1da177e4
LT
7714 */
7715static void netdev_wait_allrefs(struct net_device *dev)
7716{
7717 unsigned long rebroadcast_time, warning_time;
29b4433d 7718 int refcnt;
1da177e4 7719
e014debe
ED
7720 linkwatch_forget_dev(dev);
7721
1da177e4 7722 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7723 refcnt = netdev_refcnt_read(dev);
7724
7725 while (refcnt != 0) {
1da177e4 7726 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7727 rtnl_lock();
1da177e4
LT
7728
7729 /* Rebroadcast unregister notification */
056925ab 7730 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7731
748e2d93 7732 __rtnl_unlock();
0115e8e3 7733 rcu_barrier();
748e2d93
ED
7734 rtnl_lock();
7735
0115e8e3 7736 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7737 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7738 &dev->state)) {
7739 /* We must not have linkwatch events
7740 * pending on unregister. If this
7741 * happens, we simply run the queue
7742 * unscheduled, resulting in a noop
7743 * for this device.
7744 */
7745 linkwatch_run_queue();
7746 }
7747
6756ae4b 7748 __rtnl_unlock();
1da177e4
LT
7749
7750 rebroadcast_time = jiffies;
7751 }
7752
7753 msleep(250);
7754
29b4433d
ED
7755 refcnt = netdev_refcnt_read(dev);
7756
1da177e4 7757 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7758 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7759 dev->name, refcnt);
1da177e4
LT
7760 warning_time = jiffies;
7761 }
7762 }
7763}
7764
7765/* The sequence is:
7766 *
7767 * rtnl_lock();
7768 * ...
7769 * register_netdevice(x1);
7770 * register_netdevice(x2);
7771 * ...
7772 * unregister_netdevice(y1);
7773 * unregister_netdevice(y2);
7774 * ...
7775 * rtnl_unlock();
7776 * free_netdev(y1);
7777 * free_netdev(y2);
7778 *
58ec3b4d 7779 * We are invoked by rtnl_unlock().
1da177e4 7780 * This allows us to deal with problems:
b17a7c17 7781 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7782 * without deadlocking with linkwatch via keventd.
7783 * 2) Since we run with the RTNL semaphore not held, we can sleep
7784 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7785 *
7786 * We must not return until all unregister events added during
7787 * the interval the lock was held have been completed.
1da177e4 7788 */
1da177e4
LT
7789void netdev_run_todo(void)
7790{
626ab0e6 7791 struct list_head list;
1da177e4 7792
1da177e4 7793 /* Snapshot list, allow later requests */
626ab0e6 7794 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7795
7796 __rtnl_unlock();
626ab0e6 7797
0115e8e3
ED
7798
7799 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7800 if (!list_empty(&list))
7801 rcu_barrier();
7802
1da177e4
LT
7803 while (!list_empty(&list)) {
7804 struct net_device *dev
e5e26d75 7805 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7806 list_del(&dev->todo_list);
7807
748e2d93 7808 rtnl_lock();
0115e8e3 7809 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7810 __rtnl_unlock();
0115e8e3 7811
b17a7c17 7812 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7813 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7814 dev->name, dev->reg_state);
7815 dump_stack();
7816 continue;
7817 }
1da177e4 7818
b17a7c17 7819 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7820
b17a7c17 7821 netdev_wait_allrefs(dev);
1da177e4 7822
b17a7c17 7823 /* paranoia */
29b4433d 7824 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7825 BUG_ON(!list_empty(&dev->ptype_all));
7826 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7827 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7828 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7829 WARN_ON(dev->dn_ptr);
1da177e4 7830
cf124db5
DM
7831 if (dev->priv_destructor)
7832 dev->priv_destructor(dev);
7833 if (dev->needs_free_netdev)
7834 free_netdev(dev);
9093bbb2 7835
50624c93
EB
7836 /* Report a network device has been unregistered */
7837 rtnl_lock();
7838 dev_net(dev)->dev_unreg_count--;
7839 __rtnl_unlock();
7840 wake_up(&netdev_unregistering_wq);
7841
9093bbb2
SH
7842 /* Free network device */
7843 kobject_put(&dev->dev.kobj);
1da177e4 7844 }
1da177e4
LT
7845}
7846
9256645a
JW
7847/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7848 * all the same fields in the same order as net_device_stats, with only
7849 * the type differing, but rtnl_link_stats64 may have additional fields
7850 * at the end for newer counters.
3cfde79c 7851 */
77a1abf5
ED
7852void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7853 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7854{
7855#if BITS_PER_LONG == 64
9256645a 7856 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 7857 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
7858 /* zero out counters that only exist in rtnl_link_stats64 */
7859 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7860 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7861#else
9256645a 7862 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7863 const unsigned long *src = (const unsigned long *)netdev_stats;
7864 u64 *dst = (u64 *)stats64;
7865
9256645a 7866 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7867 for (i = 0; i < n; i++)
7868 dst[i] = src[i];
9256645a
JW
7869 /* zero out counters that only exist in rtnl_link_stats64 */
7870 memset((char *)stats64 + n * sizeof(u64), 0,
7871 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7872#endif
7873}
77a1abf5 7874EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7875
eeda3fd6
SH
7876/**
7877 * dev_get_stats - get network device statistics
7878 * @dev: device to get statistics from
28172739 7879 * @storage: place to store stats
eeda3fd6 7880 *
d7753516
BH
7881 * Get network statistics from device. Return @storage.
7882 * The device driver may provide its own method by setting
7883 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7884 * otherwise the internal statistics structure is used.
eeda3fd6 7885 */
d7753516
BH
7886struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7887 struct rtnl_link_stats64 *storage)
7004bf25 7888{
eeda3fd6
SH
7889 const struct net_device_ops *ops = dev->netdev_ops;
7890
28172739
ED
7891 if (ops->ndo_get_stats64) {
7892 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7893 ops->ndo_get_stats64(dev, storage);
7894 } else if (ops->ndo_get_stats) {
3cfde79c 7895 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7896 } else {
7897 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7898 }
6f64ec74
ED
7899 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7900 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7901 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 7902 return storage;
c45d286e 7903}
eeda3fd6 7904EXPORT_SYMBOL(dev_get_stats);
c45d286e 7905
24824a09 7906struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7907{
24824a09 7908 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7909
24824a09
ED
7910#ifdef CONFIG_NET_CLS_ACT
7911 if (queue)
7912 return queue;
7913 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7914 if (!queue)
7915 return NULL;
7916 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7917 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7918 queue->qdisc_sleeping = &noop_qdisc;
7919 rcu_assign_pointer(dev->ingress_queue, queue);
7920#endif
7921 return queue;
bb949fbd
DM
7922}
7923
2c60db03
ED
7924static const struct ethtool_ops default_ethtool_ops;
7925
d07d7507
SG
7926void netdev_set_default_ethtool_ops(struct net_device *dev,
7927 const struct ethtool_ops *ops)
7928{
7929 if (dev->ethtool_ops == &default_ethtool_ops)
7930 dev->ethtool_ops = ops;
7931}
7932EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7933
74d332c1
ED
7934void netdev_freemem(struct net_device *dev)
7935{
7936 char *addr = (char *)dev - dev->padded;
7937
4cb28970 7938 kvfree(addr);
74d332c1
ED
7939}
7940
1da177e4 7941/**
722c9a0c 7942 * alloc_netdev_mqs - allocate network device
7943 * @sizeof_priv: size of private data to allocate space for
7944 * @name: device name format string
7945 * @name_assign_type: origin of device name
7946 * @setup: callback to initialize device
7947 * @txqs: the number of TX subqueues to allocate
7948 * @rxqs: the number of RX subqueues to allocate
7949 *
7950 * Allocates a struct net_device with private data area for driver use
7951 * and performs basic initialization. Also allocates subqueue structs
7952 * for each queue on the device.
1da177e4 7953 */
36909ea4 7954struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7955 unsigned char name_assign_type,
36909ea4
TH
7956 void (*setup)(struct net_device *),
7957 unsigned int txqs, unsigned int rxqs)
1da177e4 7958{
1da177e4 7959 struct net_device *dev;
7943986c 7960 size_t alloc_size;
1ce8e7b5 7961 struct net_device *p;
1da177e4 7962
b6fe17d6
SH
7963 BUG_ON(strlen(name) >= sizeof(dev->name));
7964
36909ea4 7965 if (txqs < 1) {
7b6cd1ce 7966 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7967 return NULL;
7968 }
7969
a953be53 7970#ifdef CONFIG_SYSFS
36909ea4 7971 if (rxqs < 1) {
7b6cd1ce 7972 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7973 return NULL;
7974 }
7975#endif
7976
fd2ea0a7 7977 alloc_size = sizeof(struct net_device);
d1643d24
AD
7978 if (sizeof_priv) {
7979 /* ensure 32-byte alignment of private area */
1ce8e7b5 7980 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7981 alloc_size += sizeof_priv;
7982 }
7983 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7984 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7985
da6bc57a 7986 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
62b5942a 7987 if (!p)
1da177e4 7988 return NULL;
1da177e4 7989
1ce8e7b5 7990 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7991 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7992
29b4433d
ED
7993 dev->pcpu_refcnt = alloc_percpu(int);
7994 if (!dev->pcpu_refcnt)
74d332c1 7995 goto free_dev;
ab9c73cc 7996
ab9c73cc 7997 if (dev_addr_init(dev))
29b4433d 7998 goto free_pcpu;
ab9c73cc 7999
22bedad3 8000 dev_mc_init(dev);
a748ee24 8001 dev_uc_init(dev);
ccffad25 8002
c346dca1 8003 dev_net_set(dev, &init_net);
1da177e4 8004
8d3bdbd5 8005 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 8006 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 8007
8d3bdbd5
DM
8008 INIT_LIST_HEAD(&dev->napi_list);
8009 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 8010 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 8011 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
8012 INIT_LIST_HEAD(&dev->adj_list.upper);
8013 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
8014 INIT_LIST_HEAD(&dev->ptype_all);
8015 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
8016#ifdef CONFIG_NET_SCHED
8017 hash_init(dev->qdisc_hash);
8018#endif
02875878 8019 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
8020 setup(dev);
8021
a813104d 8022 if (!dev->tx_queue_len) {
f84bb1ea 8023 dev->priv_flags |= IFF_NO_QUEUE;
11597084 8024 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 8025 }
906470c1 8026
36909ea4
TH
8027 dev->num_tx_queues = txqs;
8028 dev->real_num_tx_queues = txqs;
ed9af2e8 8029 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 8030 goto free_all;
e8a0464c 8031
a953be53 8032#ifdef CONFIG_SYSFS
36909ea4
TH
8033 dev->num_rx_queues = rxqs;
8034 dev->real_num_rx_queues = rxqs;
fe822240 8035 if (netif_alloc_rx_queues(dev))
8d3bdbd5 8036 goto free_all;
df334545 8037#endif
0a9627f2 8038
1da177e4 8039 strcpy(dev->name, name);
c835a677 8040 dev->name_assign_type = name_assign_type;
cbda10fa 8041 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
8042 if (!dev->ethtool_ops)
8043 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
8044
8045 nf_hook_ingress_init(dev);
8046
1da177e4 8047 return dev;
ab9c73cc 8048
8d3bdbd5
DM
8049free_all:
8050 free_netdev(dev);
8051 return NULL;
8052
29b4433d
ED
8053free_pcpu:
8054 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
8055free_dev:
8056 netdev_freemem(dev);
ab9c73cc 8057 return NULL;
1da177e4 8058}
36909ea4 8059EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
8060
8061/**
722c9a0c 8062 * free_netdev - free network device
8063 * @dev: device
1da177e4 8064 *
722c9a0c 8065 * This function does the last stage of destroying an allocated device
8066 * interface. The reference to the device object is released. If this
8067 * is the last reference then it will be freed.Must be called in process
8068 * context.
1da177e4
LT
8069 */
8070void free_netdev(struct net_device *dev)
8071{
d565b0a1 8072 struct napi_struct *p, *n;
b5cdae32 8073 struct bpf_prog *prog;
d565b0a1 8074
93d05d4a 8075 might_sleep();
60877a32 8076 netif_free_tx_queues(dev);
a953be53 8077#ifdef CONFIG_SYSFS
10595902 8078 kvfree(dev->_rx);
fe822240 8079#endif
e8a0464c 8080
33d480ce 8081 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 8082
f001fde5
JP
8083 /* Flush device addresses */
8084 dev_addr_flush(dev);
8085
d565b0a1
HX
8086 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8087 netif_napi_del(p);
8088
29b4433d
ED
8089 free_percpu(dev->pcpu_refcnt);
8090 dev->pcpu_refcnt = NULL;
8091
b5cdae32
DM
8092 prog = rcu_dereference_protected(dev->xdp_prog, 1);
8093 if (prog) {
8094 bpf_prog_put(prog);
8095 static_key_slow_dec(&generic_xdp_needed);
8096 }
8097
3041a069 8098 /* Compatibility with error handling in drivers */
1da177e4 8099 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 8100 netdev_freemem(dev);
1da177e4
LT
8101 return;
8102 }
8103
8104 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8105 dev->reg_state = NETREG_RELEASED;
8106
43cb76d9
GKH
8107 /* will free via device release */
8108 put_device(&dev->dev);
1da177e4 8109}
d1b19dff 8110EXPORT_SYMBOL(free_netdev);
4ec93edb 8111
f0db275a
SH
8112/**
8113 * synchronize_net - Synchronize with packet receive processing
8114 *
8115 * Wait for packets currently being received to be done.
8116 * Does not block later packets from starting.
8117 */
4ec93edb 8118void synchronize_net(void)
1da177e4
LT
8119{
8120 might_sleep();
be3fc413
ED
8121 if (rtnl_is_locked())
8122 synchronize_rcu_expedited();
8123 else
8124 synchronize_rcu();
1da177e4 8125}
d1b19dff 8126EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
8127
8128/**
44a0873d 8129 * unregister_netdevice_queue - remove device from the kernel
1da177e4 8130 * @dev: device
44a0873d 8131 * @head: list
6ebfbc06 8132 *
1da177e4 8133 * This function shuts down a device interface and removes it
d59b54b1 8134 * from the kernel tables.
44a0873d 8135 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
8136 *
8137 * Callers must hold the rtnl semaphore. You may want
8138 * unregister_netdev() instead of this.
8139 */
8140
44a0873d 8141void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 8142{
a6620712
HX
8143 ASSERT_RTNL();
8144
44a0873d 8145 if (head) {
9fdce099 8146 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
8147 } else {
8148 rollback_registered(dev);
8149 /* Finish processing unregister after unlock */
8150 net_set_todo(dev);
8151 }
1da177e4 8152}
44a0873d 8153EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 8154
9b5e383c
ED
8155/**
8156 * unregister_netdevice_many - unregister many devices
8157 * @head: list of devices
87757a91
ED
8158 *
8159 * Note: As most callers use a stack allocated list_head,
8160 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
8161 */
8162void unregister_netdevice_many(struct list_head *head)
8163{
8164 struct net_device *dev;
8165
8166 if (!list_empty(head)) {
8167 rollback_registered_many(head);
8168 list_for_each_entry(dev, head, unreg_list)
8169 net_set_todo(dev);
87757a91 8170 list_del(head);
9b5e383c
ED
8171 }
8172}
63c8099d 8173EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 8174
1da177e4
LT
8175/**
8176 * unregister_netdev - remove device from the kernel
8177 * @dev: device
8178 *
8179 * This function shuts down a device interface and removes it
d59b54b1 8180 * from the kernel tables.
1da177e4
LT
8181 *
8182 * This is just a wrapper for unregister_netdevice that takes
8183 * the rtnl semaphore. In general you want to use this and not
8184 * unregister_netdevice.
8185 */
8186void unregister_netdev(struct net_device *dev)
8187{
8188 rtnl_lock();
8189 unregister_netdevice(dev);
8190 rtnl_unlock();
8191}
1da177e4
LT
8192EXPORT_SYMBOL(unregister_netdev);
8193
ce286d32
EB
8194/**
8195 * dev_change_net_namespace - move device to different nethost namespace
8196 * @dev: device
8197 * @net: network namespace
8198 * @pat: If not NULL name pattern to try if the current device name
8199 * is already taken in the destination network namespace.
8200 *
8201 * This function shuts down a device interface and moves it
8202 * to a new network namespace. On success 0 is returned, on
8203 * a failure a netagive errno code is returned.
8204 *
8205 * Callers must hold the rtnl semaphore.
8206 */
8207
8208int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8209{
ce286d32
EB
8210 int err;
8211
8212 ASSERT_RTNL();
8213
8214 /* Don't allow namespace local devices to be moved. */
8215 err = -EINVAL;
8216 if (dev->features & NETIF_F_NETNS_LOCAL)
8217 goto out;
8218
8219 /* Ensure the device has been registrered */
ce286d32
EB
8220 if (dev->reg_state != NETREG_REGISTERED)
8221 goto out;
8222
8223 /* Get out if there is nothing todo */
8224 err = 0;
878628fb 8225 if (net_eq(dev_net(dev), net))
ce286d32
EB
8226 goto out;
8227
8228 /* Pick the destination device name, and ensure
8229 * we can use it in the destination network namespace.
8230 */
8231 err = -EEXIST;
d9031024 8232 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
8233 /* We get here if we can't use the current device name */
8234 if (!pat)
8235 goto out;
828de4f6 8236 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
8237 goto out;
8238 }
8239
8240 /*
8241 * And now a mini version of register_netdevice unregister_netdevice.
8242 */
8243
8244 /* If device is running close it first. */
9b772652 8245 dev_close(dev);
ce286d32
EB
8246
8247 /* And unlink it from device chain */
8248 err = -ENODEV;
8249 unlist_netdevice(dev);
8250
8251 synchronize_net();
8252
8253 /* Shutdown queueing discipline. */
8254 dev_shutdown(dev);
8255
8256 /* Notify protocols, that we are about to destroy
eb13da1a 8257 * this device. They should clean all the things.
8258 *
8259 * Note that dev->reg_state stays at NETREG_REGISTERED.
8260 * This is wanted because this way 8021q and macvlan know
8261 * the device is just moving and can keep their slaves up.
8262 */
ce286d32 8263 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
8264 rcu_barrier();
8265 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 8266 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
8267
8268 /*
8269 * Flush the unicast and multicast chains
8270 */
a748ee24 8271 dev_uc_flush(dev);
22bedad3 8272 dev_mc_flush(dev);
ce286d32 8273
4e66ae2e
SH
8274 /* Send a netdev-removed uevent to the old namespace */
8275 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 8276 netdev_adjacent_del_links(dev);
4e66ae2e 8277
ce286d32 8278 /* Actually switch the network namespace */
c346dca1 8279 dev_net_set(dev, net);
ce286d32 8280
ce286d32 8281 /* If there is an ifindex conflict assign a new one */
7a66bbc9 8282 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 8283 dev->ifindex = dev_new_index(net);
ce286d32 8284
4e66ae2e
SH
8285 /* Send a netdev-add uevent to the new namespace */
8286 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 8287 netdev_adjacent_add_links(dev);
4e66ae2e 8288
8b41d188 8289 /* Fixup kobjects */
a1b3f594 8290 err = device_rename(&dev->dev, dev->name);
8b41d188 8291 WARN_ON(err);
ce286d32
EB
8292
8293 /* Add the device back in the hashes */
8294 list_netdevice(dev);
8295
8296 /* Notify protocols, that a new device appeared. */
8297 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8298
d90a909e
EB
8299 /*
8300 * Prevent userspace races by waiting until the network
8301 * device is fully setup before sending notifications.
8302 */
7f294054 8303 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8304
ce286d32
EB
8305 synchronize_net();
8306 err = 0;
8307out:
8308 return err;
8309}
463d0183 8310EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8311
f0bf90de 8312static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8313{
8314 struct sk_buff **list_skb;
1da177e4 8315 struct sk_buff *skb;
f0bf90de 8316 unsigned int cpu;
97d8b6e3 8317 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 8318
1da177e4
LT
8319 local_irq_disable();
8320 cpu = smp_processor_id();
8321 sd = &per_cpu(softnet_data, cpu);
8322 oldsd = &per_cpu(softnet_data, oldcpu);
8323
8324 /* Find end of our completion_queue. */
8325 list_skb = &sd->completion_queue;
8326 while (*list_skb)
8327 list_skb = &(*list_skb)->next;
8328 /* Append completion queue from offline CPU. */
8329 *list_skb = oldsd->completion_queue;
8330 oldsd->completion_queue = NULL;
8331
1da177e4 8332 /* Append output queue from offline CPU. */
a9cbd588
CG
8333 if (oldsd->output_queue) {
8334 *sd->output_queue_tailp = oldsd->output_queue;
8335 sd->output_queue_tailp = oldsd->output_queue_tailp;
8336 oldsd->output_queue = NULL;
8337 oldsd->output_queue_tailp = &oldsd->output_queue;
8338 }
ac64da0b
ED
8339 /* Append NAPI poll list from offline CPU, with one exception :
8340 * process_backlog() must be called by cpu owning percpu backlog.
8341 * We properly handle process_queue & input_pkt_queue later.
8342 */
8343 while (!list_empty(&oldsd->poll_list)) {
8344 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8345 struct napi_struct,
8346 poll_list);
8347
8348 list_del_init(&napi->poll_list);
8349 if (napi->poll == process_backlog)
8350 napi->state = 0;
8351 else
8352 ____napi_schedule(sd, napi);
264524d5 8353 }
1da177e4
LT
8354
8355 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8356 local_irq_enable();
8357
773fc8f6 8358#ifdef CONFIG_RPS
8359 remsd = oldsd->rps_ipi_list;
8360 oldsd->rps_ipi_list = NULL;
8361#endif
8362 /* send out pending IPI's on offline CPU */
8363 net_rps_send_ipi(remsd);
8364
1da177e4 8365 /* Process offline CPU's input_pkt_queue */
76cc8b13 8366 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8367 netif_rx_ni(skb);
76cc8b13 8368 input_queue_head_incr(oldsd);
fec5e652 8369 }
ac64da0b 8370 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8371 netif_rx_ni(skb);
76cc8b13
TH
8372 input_queue_head_incr(oldsd);
8373 }
1da177e4 8374
f0bf90de 8375 return 0;
1da177e4 8376}
1da177e4 8377
7f353bf2 8378/**
b63365a2
HX
8379 * netdev_increment_features - increment feature set by one
8380 * @all: current feature set
8381 * @one: new feature set
8382 * @mask: mask feature set
7f353bf2
HX
8383 *
8384 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8385 * @one to the master device with current feature set @all. Will not
8386 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8387 */
c8f44aff
MM
8388netdev_features_t netdev_increment_features(netdev_features_t all,
8389 netdev_features_t one, netdev_features_t mask)
b63365a2 8390{
c8cd0989 8391 if (mask & NETIF_F_HW_CSUM)
a188222b 8392 mask |= NETIF_F_CSUM_MASK;
1742f183 8393 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8394
a188222b 8395 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8396 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8397
1742f183 8398 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8399 if (all & NETIF_F_HW_CSUM)
8400 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8401
8402 return all;
8403}
b63365a2 8404EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8405
430f03cd 8406static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8407{
8408 int i;
8409 struct hlist_head *hash;
8410
8411 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8412 if (hash != NULL)
8413 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8414 INIT_HLIST_HEAD(&hash[i]);
8415
8416 return hash;
8417}
8418
881d966b 8419/* Initialize per network namespace state */
4665079c 8420static int __net_init netdev_init(struct net *net)
881d966b 8421{
734b6541
RM
8422 if (net != &init_net)
8423 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8424
30d97d35
PE
8425 net->dev_name_head = netdev_create_hash();
8426 if (net->dev_name_head == NULL)
8427 goto err_name;
881d966b 8428
30d97d35
PE
8429 net->dev_index_head = netdev_create_hash();
8430 if (net->dev_index_head == NULL)
8431 goto err_idx;
881d966b
EB
8432
8433 return 0;
30d97d35
PE
8434
8435err_idx:
8436 kfree(net->dev_name_head);
8437err_name:
8438 return -ENOMEM;
881d966b
EB
8439}
8440
f0db275a
SH
8441/**
8442 * netdev_drivername - network driver for the device
8443 * @dev: network device
f0db275a
SH
8444 *
8445 * Determine network driver for device.
8446 */
3019de12 8447const char *netdev_drivername(const struct net_device *dev)
6579e57b 8448{
cf04a4c7
SH
8449 const struct device_driver *driver;
8450 const struct device *parent;
3019de12 8451 const char *empty = "";
6579e57b
AV
8452
8453 parent = dev->dev.parent;
6579e57b 8454 if (!parent)
3019de12 8455 return empty;
6579e57b
AV
8456
8457 driver = parent->driver;
8458 if (driver && driver->name)
3019de12
DM
8459 return driver->name;
8460 return empty;
6579e57b
AV
8461}
8462
6ea754eb
JP
8463static void __netdev_printk(const char *level, const struct net_device *dev,
8464 struct va_format *vaf)
256df2f3 8465{
b004ff49 8466 if (dev && dev->dev.parent) {
6ea754eb
JP
8467 dev_printk_emit(level[1] - '0',
8468 dev->dev.parent,
8469 "%s %s %s%s: %pV",
8470 dev_driver_string(dev->dev.parent),
8471 dev_name(dev->dev.parent),
8472 netdev_name(dev), netdev_reg_state(dev),
8473 vaf);
b004ff49 8474 } else if (dev) {
6ea754eb
JP
8475 printk("%s%s%s: %pV",
8476 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8477 } else {
6ea754eb 8478 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8479 }
256df2f3
JP
8480}
8481
6ea754eb
JP
8482void netdev_printk(const char *level, const struct net_device *dev,
8483 const char *format, ...)
256df2f3
JP
8484{
8485 struct va_format vaf;
8486 va_list args;
256df2f3
JP
8487
8488 va_start(args, format);
8489
8490 vaf.fmt = format;
8491 vaf.va = &args;
8492
6ea754eb 8493 __netdev_printk(level, dev, &vaf);
b004ff49 8494
256df2f3 8495 va_end(args);
256df2f3
JP
8496}
8497EXPORT_SYMBOL(netdev_printk);
8498
8499#define define_netdev_printk_level(func, level) \
6ea754eb 8500void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8501{ \
256df2f3
JP
8502 struct va_format vaf; \
8503 va_list args; \
8504 \
8505 va_start(args, fmt); \
8506 \
8507 vaf.fmt = fmt; \
8508 vaf.va = &args; \
8509 \
6ea754eb 8510 __netdev_printk(level, dev, &vaf); \
b004ff49 8511 \
256df2f3 8512 va_end(args); \
256df2f3
JP
8513} \
8514EXPORT_SYMBOL(func);
8515
8516define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8517define_netdev_printk_level(netdev_alert, KERN_ALERT);
8518define_netdev_printk_level(netdev_crit, KERN_CRIT);
8519define_netdev_printk_level(netdev_err, KERN_ERR);
8520define_netdev_printk_level(netdev_warn, KERN_WARNING);
8521define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8522define_netdev_printk_level(netdev_info, KERN_INFO);
8523
4665079c 8524static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8525{
8526 kfree(net->dev_name_head);
8527 kfree(net->dev_index_head);
8528}
8529
022cbae6 8530static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8531 .init = netdev_init,
8532 .exit = netdev_exit,
8533};
8534
4665079c 8535static void __net_exit default_device_exit(struct net *net)
ce286d32 8536{
e008b5fc 8537 struct net_device *dev, *aux;
ce286d32 8538 /*
e008b5fc 8539 * Push all migratable network devices back to the
ce286d32
EB
8540 * initial network namespace
8541 */
8542 rtnl_lock();
e008b5fc 8543 for_each_netdev_safe(net, dev, aux) {
ce286d32 8544 int err;
aca51397 8545 char fb_name[IFNAMSIZ];
ce286d32
EB
8546
8547 /* Ignore unmoveable devices (i.e. loopback) */
8548 if (dev->features & NETIF_F_NETNS_LOCAL)
8549 continue;
8550
e008b5fc
EB
8551 /* Leave virtual devices for the generic cleanup */
8552 if (dev->rtnl_link_ops)
8553 continue;
d0c082ce 8554
25985edc 8555 /* Push remaining network devices to init_net */
aca51397
PE
8556 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8557 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8558 if (err) {
7b6cd1ce
JP
8559 pr_emerg("%s: failed to move %s to init_net: %d\n",
8560 __func__, dev->name, err);
aca51397 8561 BUG();
ce286d32
EB
8562 }
8563 }
8564 rtnl_unlock();
8565}
8566
50624c93
EB
8567static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8568{
8569 /* Return with the rtnl_lock held when there are no network
8570 * devices unregistering in any network namespace in net_list.
8571 */
8572 struct net *net;
8573 bool unregistering;
ff960a73 8574 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8575
ff960a73 8576 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8577 for (;;) {
50624c93
EB
8578 unregistering = false;
8579 rtnl_lock();
8580 list_for_each_entry(net, net_list, exit_list) {
8581 if (net->dev_unreg_count > 0) {
8582 unregistering = true;
8583 break;
8584 }
8585 }
8586 if (!unregistering)
8587 break;
8588 __rtnl_unlock();
ff960a73
PZ
8589
8590 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8591 }
ff960a73 8592 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8593}
8594
04dc7f6b
EB
8595static void __net_exit default_device_exit_batch(struct list_head *net_list)
8596{
8597 /* At exit all network devices most be removed from a network
b595076a 8598 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8599 * Do this across as many network namespaces as possible to
8600 * improve batching efficiency.
8601 */
8602 struct net_device *dev;
8603 struct net *net;
8604 LIST_HEAD(dev_kill_list);
8605
50624c93
EB
8606 /* To prevent network device cleanup code from dereferencing
8607 * loopback devices or network devices that have been freed
8608 * wait here for all pending unregistrations to complete,
8609 * before unregistring the loopback device and allowing the
8610 * network namespace be freed.
8611 *
8612 * The netdev todo list containing all network devices
8613 * unregistrations that happen in default_device_exit_batch
8614 * will run in the rtnl_unlock() at the end of
8615 * default_device_exit_batch.
8616 */
8617 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8618 list_for_each_entry(net, net_list, exit_list) {
8619 for_each_netdev_reverse(net, dev) {
b0ab2fab 8620 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8621 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8622 else
8623 unregister_netdevice_queue(dev, &dev_kill_list);
8624 }
8625 }
8626 unregister_netdevice_many(&dev_kill_list);
8627 rtnl_unlock();
8628}
8629
022cbae6 8630static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8631 .exit = default_device_exit,
04dc7f6b 8632 .exit_batch = default_device_exit_batch,
ce286d32
EB
8633};
8634
1da177e4
LT
8635/*
8636 * Initialize the DEV module. At boot time this walks the device list and
8637 * unhooks any devices that fail to initialise (normally hardware not
8638 * present) and leaves us with a valid list of present and active devices.
8639 *
8640 */
8641
8642/*
8643 * This is called single threaded during boot, so no need
8644 * to take the rtnl semaphore.
8645 */
8646static int __init net_dev_init(void)
8647{
8648 int i, rc = -ENOMEM;
8649
8650 BUG_ON(!dev_boot_phase);
8651
1da177e4
LT
8652 if (dev_proc_init())
8653 goto out;
8654
8b41d188 8655 if (netdev_kobject_init())
1da177e4
LT
8656 goto out;
8657
8658 INIT_LIST_HEAD(&ptype_all);
82d8a867 8659 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8660 INIT_LIST_HEAD(&ptype_base[i]);
8661
62532da9
VY
8662 INIT_LIST_HEAD(&offload_base);
8663
881d966b
EB
8664 if (register_pernet_subsys(&netdev_net_ops))
8665 goto out;
1da177e4
LT
8666
8667 /*
8668 * Initialise the packet receive queues.
8669 */
8670
6f912042 8671 for_each_possible_cpu(i) {
41852497 8672 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8673 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8674
41852497
ED
8675 INIT_WORK(flush, flush_backlog);
8676
e36fa2f7 8677 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8678 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8679 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8680 sd->output_queue_tailp = &sd->output_queue;
df334545 8681#ifdef CONFIG_RPS
e36fa2f7
ED
8682 sd->csd.func = rps_trigger_softirq;
8683 sd->csd.info = sd;
e36fa2f7 8684 sd->cpu = i;
1e94d72f 8685#endif
0a9627f2 8686
e36fa2f7
ED
8687 sd->backlog.poll = process_backlog;
8688 sd->backlog.weight = weight_p;
1da177e4
LT
8689 }
8690
1da177e4
LT
8691 dev_boot_phase = 0;
8692
505d4f73
EB
8693 /* The loopback device is special if any other network devices
8694 * is present in a network namespace the loopback device must
8695 * be present. Since we now dynamically allocate and free the
8696 * loopback device ensure this invariant is maintained by
8697 * keeping the loopback device as the first device on the
8698 * list of network devices. Ensuring the loopback devices
8699 * is the first device that appears and the last network device
8700 * that disappears.
8701 */
8702 if (register_pernet_device(&loopback_net_ops))
8703 goto out;
8704
8705 if (register_pernet_device(&default_device_ops))
8706 goto out;
8707
962cf36c
CM
8708 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8709 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8710
f0bf90de
SAS
8711 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8712 NULL, dev_cpu_dead);
8713 WARN_ON(rc < 0);
1da177e4
LT
8714 rc = 0;
8715out:
8716 return rc;
8717}
8718
8719subsys_initcall(net_dev_init);