]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/core/dev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4
LT
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
a7862b45 98#include <linux/bpf.h>
b5cdae32 99#include <linux/bpf_trace.h>
457c4cbc 100#include <net/net_namespace.h>
1da177e4 101#include <net/sock.h>
02d62e86 102#include <net/busy_poll.h>
1da177e4 103#include <linux/rtnetlink.h>
1da177e4 104#include <linux/stat.h>
1da177e4 105#include <net/dst.h>
fc4099f1 106#include <net/dst_metadata.h>
1da177e4 107#include <net/pkt_sched.h>
87d83093 108#include <net/pkt_cls.h>
1da177e4 109#include <net/checksum.h>
44540960 110#include <net/xfrm.h>
1da177e4
LT
111#include <linux/highmem.h>
112#include <linux/init.h>
1da177e4 113#include <linux/module.h>
1da177e4
LT
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
25cd9ba0 127#include <net/mpls.h>
8f0f2223
DM
128#include <linux/ipv6.h>
129#include <linux/in.h>
b6b2fed1
DM
130#include <linux/jhash.h>
131#include <linux/random.h>
9cbc1cb8 132#include <trace/events/napi.h>
cf66ba58 133#include <trace/events/net.h>
07dc22e7 134#include <trace/events/skb.h>
5acbbd42 135#include <linux/pci.h>
caeda9b9 136#include <linux/inetdevice.h>
c445477d 137#include <linux/cpu_rmap.h>
c5905afb 138#include <linux/static_key.h>
af12fa6e 139#include <linux/hashtable.h>
60877a32 140#include <linux/vmalloc.h>
529d0489 141#include <linux/if_macvlan.h>
e7fd2885 142#include <linux/errqueue.h>
3b47d303 143#include <linux/hrtimer.h>
e687ad60 144#include <linux/netfilter_ingress.h>
40e4e713 145#include <linux/crash_dump.h>
b72b5bf6 146#include <linux/sctp.h>
ae847f40 147#include <net/udp_tunnel.h>
6621dd29 148#include <linux/net_namespace.h>
1da177e4 149
342709ef
PE
150#include "net-sysfs.h"
151
d565b0a1
HX
152/* Instead of increasing this, you should create a hash table. */
153#define MAX_GRO_SKBS 8
154
5d38a079
HX
155/* This should be increased if a protocol with a bigger head is added. */
156#define GRO_MAX_HEAD (MAX_HEADER + 128)
157
1da177e4 158static DEFINE_SPINLOCK(ptype_lock);
62532da9 159static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161struct list_head ptype_all __read_mostly; /* Taps */
62532da9 162static struct list_head offload_base __read_mostly;
1da177e4 163
ae78dbfa 164static int netif_rx_internal(struct sk_buff *skb);
54951194 165static int call_netdevice_notifiers_info(unsigned long val,
54951194 166 struct netdev_notifier_info *info);
90b602f8 167static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 168
1da177e4 169/*
7562f876 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
171 * semaphore.
172 *
c6d14c84 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
7562f876 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
1da177e4 188DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
189EXPORT_SYMBOL(dev_base_lock);
190
6c557001
FW
191static DEFINE_MUTEX(ifalias_mutex);
192
af12fa6e
ET
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
52bd2d62 196static unsigned int napi_gen_id = NR_CPUS;
6180d9de 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 198
18afa4b0 199static seqcount_t devnet_rename_seq;
c91f6df2 200
4e985ada
TG
201static inline void dev_base_seq_inc(struct net *net)
202{
643aa9cb 203 while (++net->dev_base_seq == 0)
204 ;
4e985ada
TG
205}
206
881d966b 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 208{
8387ff25 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 210
08e9897d 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
212}
213
881d966b 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 215{
7c28bd0b 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
217}
218
e36fa2f7 219static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
220{
221#ifdef CONFIG_RPS
e36fa2f7 222 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
223#endif
224}
225
e36fa2f7 226static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
227{
228#ifdef CONFIG_RPS
e36fa2f7 229 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
230#endif
231}
232
ce286d32 233/* Device list insertion */
53759be9 234static void list_netdevice(struct net_device *dev)
ce286d32 235{
c346dca1 236 struct net *net = dev_net(dev);
ce286d32
EB
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
c6d14c84 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
ce286d32 245 write_unlock_bh(&dev_base_lock);
4e985ada
TG
246
247 dev_base_seq_inc(net);
ce286d32
EB
248}
249
fb699dfd
ED
250/* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
ce286d32
EB
253static void unlist_netdevice(struct net_device *dev)
254{
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
c6d14c84 259 list_del_rcu(&dev->dev_list);
72c9528b 260 hlist_del_rcu(&dev->name_hlist);
fb699dfd 261 hlist_del_rcu(&dev->index_hlist);
ce286d32 262 write_unlock_bh(&dev_base_lock);
4e985ada
TG
263
264 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
265}
266
1da177e4
LT
267/*
268 * Our notifier list
269 */
270
f07d5b94 271static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
272
273/*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
bea3348e 277
9958da05 278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 279EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 280
cf508b12 281#ifdef CONFIG_LOCKDEP
723e98b7 282/*
c773e847 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
284 * according to dev->type
285 */
643aa9cb 286static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 302
643aa9cb 303static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
319
320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
322
323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324{
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332}
333
cf508b12
DM
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
723e98b7
JP
336{
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342}
cf508b12
DM
343
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352}
723e98b7 353#else
cf508b12
DM
354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356{
357}
358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
359{
360}
361#endif
1da177e4
LT
362
363/*******************************************************************************
eb13da1a 364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
1da177e4 368
1da177e4 369
1da177e4
LT
370/*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
c07b68e8
ED
386static inline struct list_head *ptype_head(const struct packet_type *pt)
387{
388 if (pt->type == htons(ETH_P_ALL))
7866a621 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 390 else
7866a621
SN
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
393}
394
1da177e4
LT
395/**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
4ec93edb 403 * This call does not sleep therefore it can not
1da177e4
LT
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408void dev_add_pack(struct packet_type *pt)
409{
c07b68e8 410 struct list_head *head = ptype_head(pt);
1da177e4 411
c07b68e8
ED
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
1da177e4 415}
d1b19dff 416EXPORT_SYMBOL(dev_add_pack);
1da177e4 417
1da177e4
LT
418/**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
4ec93edb 425 * returns.
1da177e4
LT
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431void __dev_remove_pack(struct packet_type *pt)
432{
c07b68e8 433 struct list_head *head = ptype_head(pt);
1da177e4
LT
434 struct packet_type *pt1;
435
c07b68e8 436 spin_lock(&ptype_lock);
1da177e4
LT
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
7b6cd1ce 445 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 446out:
c07b68e8 447 spin_unlock(&ptype_lock);
1da177e4 448}
d1b19dff
ED
449EXPORT_SYMBOL(__dev_remove_pack);
450
1da177e4
LT
451/**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463void dev_remove_pack(struct packet_type *pt)
464{
465 __dev_remove_pack(pt);
4ec93edb 466
1da177e4
LT
467 synchronize_net();
468}
d1b19dff 469EXPORT_SYMBOL(dev_remove_pack);
1da177e4 470
62532da9
VY
471
472/**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484void dev_add_offload(struct packet_offload *po)
485{
bdef7de4 486 struct packet_offload *elem;
62532da9
VY
487
488 spin_lock(&offload_lock);
bdef7de4
DM
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
494 spin_unlock(&offload_lock);
495}
496EXPORT_SYMBOL(dev_add_offload);
497
498/**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
1d143d9f 511static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
512{
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
c53aa505 516 spin_lock(&offload_lock);
62532da9
VY
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526out:
c53aa505 527 spin_unlock(&offload_lock);
62532da9 528}
62532da9
VY
529
530/**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542void dev_remove_offload(struct packet_offload *po)
543{
544 __dev_remove_offload(po);
545
546 synchronize_net();
547}
548EXPORT_SYMBOL(dev_remove_offload);
549
1da177e4 550/******************************************************************************
eb13da1a 551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
1da177e4
LT
555
556/* Boot time configuration table */
557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559/**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568static int netdev_boot_setup_add(char *name, struct ifmap *map)
569{
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 577 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584}
585
586/**
722c9a0c 587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
1da177e4 589 *
722c9a0c 590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
594 */
595int netdev_boot_setup_check(struct net_device *dev)
596{
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 602 !strcmp(dev->name, s[i].name)) {
722c9a0c 603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
607 return 1;
608 }
609 }
610 return 0;
611}
d1b19dff 612EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
613
614
615/**
722c9a0c 616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
1da177e4
LT
624 */
625unsigned long netdev_boot_base(const char *prefix, int unit)
626{
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
881d966b 637 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644}
645
646/*
647 * Saves at boot time configured settings for any netdevice.
648 */
649int __init netdev_boot_setup(char *str)
650{
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671}
672
673__setup("netdev=", netdev_boot_setup);
674
675/*******************************************************************************
eb13da1a 676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
1da177e4 680
a54acb3a
ND
681/**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689int dev_get_iflink(const struct net_device *dev)
690{
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
7a66bbc9 694 return dev->ifindex;
a54acb3a
ND
695}
696EXPORT_SYMBOL(dev_get_iflink);
697
fc4099f1
PS
698/**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708{
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721}
722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
1da177e4
LT
724/**
725 * __dev_get_by_name - find a device by its name
c4ea43c5 726 * @net: the applicable net namespace
1da177e4
LT
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
881d966b 736struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 737{
0bd8d536
ED
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 740
b67bfe0d 741 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
0bd8d536 744
1da177e4
LT
745 return NULL;
746}
d1b19dff 747EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 748
72c9528b 749/**
722c9a0c 750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
759 */
760
761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762{
72c9528b
ED
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
b67bfe0d 766 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_get_by_name_rcu);
773
1da177e4
LT
774/**
775 * dev_get_by_name - find a device by its name
c4ea43c5 776 * @net: the applicable net namespace
1da177e4
LT
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
881d966b 786struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
787{
788 struct net_device *dev;
789
72c9528b
ED
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
792 if (dev)
793 dev_hold(dev);
72c9528b 794 rcu_read_unlock();
1da177e4
LT
795 return dev;
796}
d1b19dff 797EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
798
799/**
800 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 801 * @net: the applicable net namespace
1da177e4
LT
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
881d966b 811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 812{
0bd8d536
ED
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 815
b67bfe0d 816 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
817 if (dev->ifindex == ifindex)
818 return dev;
0bd8d536 819
1da177e4
LT
820 return NULL;
821}
d1b19dff 822EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 823
fb699dfd
ED
824/**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836{
fb699dfd
ED
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
b67bfe0d 840 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845}
846EXPORT_SYMBOL(dev_get_by_index_rcu);
847
1da177e4
LT
848
849/**
850 * dev_get_by_index - find a device by its ifindex
c4ea43c5 851 * @net: the applicable net namespace
1da177e4
LT
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
881d966b 860struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
861{
862 struct net_device *dev;
863
fb699dfd
ED
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
866 if (dev)
867 dev_hold(dev);
fb699dfd 868 rcu_read_unlock();
1da177e4
LT
869 return dev;
870}
d1b19dff 871EXPORT_SYMBOL(dev_get_by_index);
1da177e4 872
90b602f8
ML
873/**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884{
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895}
896EXPORT_SYMBOL(dev_get_by_napi_id);
897
5dbe7c17
NS
898/**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908int netdev_get_name(struct net *net, char *name, int ifindex)
909{
910 struct net_device *dev;
911 unsigned int seq;
912
913retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930}
931
1da177e4 932/**
941666c2 933 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 934 * @net: the applicable net namespace
1da177e4
LT
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941666c2 941 * The returned device has not had its ref count increased
1da177e4
LT
942 * and the caller must therefore be careful about locking
943 *
1da177e4
LT
944 */
945
941666c2
ED
946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
1da177e4
LT
948{
949 struct net_device *dev;
950
941666c2 951 for_each_netdev_rcu(net, dev)
1da177e4
LT
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
954 return dev;
955
956 return NULL;
1da177e4 957}
941666c2 958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 959
881d966b 960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
961{
962 struct net_device *dev;
963
4e9cac2b 964 ASSERT_RTNL();
881d966b 965 for_each_netdev(net, dev)
4e9cac2b 966 if (dev->type == type)
7562f876
PE
967 return dev;
968
969 return NULL;
4e9cac2b 970}
4e9cac2b
PM
971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
881d966b 973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 974{
99fe3c39 975 struct net_device *dev, *ret = NULL;
4e9cac2b 976
99fe3c39
ED
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
1da177e4 986}
1da177e4
LT
987EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989/**
6c555490 990 * __dev_get_by_flags - find any device with given flags
c4ea43c5 991 * @net: the applicable net namespace
1da177e4
LT
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 996 * is not found or a pointer to the device. Must be called inside
6c555490 997 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
998 */
999
6c555490
WC
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1da177e4 1002{
7562f876 1003 struct net_device *dev, *ret;
1da177e4 1004
6c555490
WC
1005 ASSERT_RTNL();
1006
7562f876 1007 ret = NULL;
6c555490 1008 for_each_netdev(net, dev) {
1da177e4 1009 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1010 ret = dev;
1da177e4
LT
1011 break;
1012 }
1013 }
7562f876 1014 return ret;
1da177e4 1015}
6c555490 1016EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1017
1018/**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
c7fa9d18
DM
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1da177e4 1025 */
95f050bf 1026bool dev_valid_name(const char *name)
1da177e4 1027{
c7fa9d18 1028 if (*name == '\0')
95f050bf 1029 return false;
b6fe17d6 1030 if (strlen(name) >= IFNAMSIZ)
95f050bf 1031 return false;
c7fa9d18 1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1033 return false;
c7fa9d18
DM
1034
1035 while (*name) {
a4176a93 1036 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1037 return false;
c7fa9d18
DM
1038 name++;
1039 }
95f050bf 1040 return true;
1da177e4 1041}
d1b19dff 1042EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1043
1044/**
b267b179
EB
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1da177e4 1047 * @name: name format string
b267b179 1048 * @buf: scratch buffer and result name string
1da177e4
LT
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1057 */
1058
b267b179 1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1060{
1061 int i = 0;
1da177e4
LT
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1064 unsigned long *inuse;
1da177e4
LT
1065 struct net_device *d;
1066
93809105
RV
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
51f299dd 1070 p = strchr(name, '%');
1da177e4
LT
1071 if (p) {
1072 /*
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1076 */
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1079
1080 /* Use one page as a bit array of possible slots */
cfcabdcc 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1082 if (!inuse)
1083 return -ENOMEM;
1084
881d966b 1085 for_each_netdev(net, d) {
1da177e4
LT
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1090
1091 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1092 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1095 }
1096
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1099 }
1100
6224abda 1101 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1102 if (!__dev_get_by_name(net, buf))
1da177e4 1103 return i;
1da177e4
LT
1104
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1108 */
029b6d14 1109 return -ENFILE;
1da177e4
LT
1110}
1111
2c88b855
RV
1112static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1115{
1116 char buf[IFNAMSIZ];
1117 int ret;
1118
c46d7642 1119 BUG_ON(!net);
2c88b855
RV
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1da177e4
LT
1124}
1125
b267b179
EB
1126/**
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1130 *
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140int dev_alloc_name(struct net_device *dev, const char *name)
1141{
c46d7642 1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1143}
d1b19dff 1144EXPORT_SYMBOL(dev_alloc_name);
b267b179 1145
0ad646c8
CW
1146int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
828de4f6 1148{
87c320e5 1149 return dev_alloc_name_ns(net, dev, name);
d9031024 1150}
0ad646c8 1151EXPORT_SYMBOL(dev_get_valid_name);
1da177e4
LT
1152
1153/**
1154 * dev_change_name - change name of a device
1155 * @dev: device
1156 * @newname: name (or format string) must be at least IFNAMSIZ
1157 *
1158 * Change name of a device, can pass format strings "eth%d".
1159 * for wildcarding.
1160 */
cf04a4c7 1161int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1162{
238fa362 1163 unsigned char old_assign_type;
fcc5a03a 1164 char oldname[IFNAMSIZ];
1da177e4 1165 int err = 0;
fcc5a03a 1166 int ret;
881d966b 1167 struct net *net;
1da177e4
LT
1168
1169 ASSERT_RTNL();
c346dca1 1170 BUG_ON(!dev_net(dev));
1da177e4 1171
c346dca1 1172 net = dev_net(dev);
1da177e4
LT
1173 if (dev->flags & IFF_UP)
1174 return -EBUSY;
1175
30e6c9fa 1176 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1177
1178 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1179 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1180 return 0;
c91f6df2 1181 }
c8d90dca 1182
fcc5a03a
HX
1183 memcpy(oldname, dev->name, IFNAMSIZ);
1184
828de4f6 1185 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1186 if (err < 0) {
30e6c9fa 1187 write_seqcount_end(&devnet_rename_seq);
d9031024 1188 return err;
c91f6df2 1189 }
1da177e4 1190
6fe82a39
VF
1191 if (oldname[0] && !strchr(oldname, '%'))
1192 netdev_info(dev, "renamed from %s\n", oldname);
1193
238fa362
TG
1194 old_assign_type = dev->name_assign_type;
1195 dev->name_assign_type = NET_NAME_RENAMED;
1196
fcc5a03a 1197rollback:
a1b3f594
EB
1198 ret = device_rename(&dev->dev, dev->name);
1199 if (ret) {
1200 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1201 dev->name_assign_type = old_assign_type;
30e6c9fa 1202 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1203 return ret;
dcc99773 1204 }
7f988eab 1205
30e6c9fa 1206 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1207
5bb025fa
VF
1208 netdev_adjacent_rename_links(dev, oldname);
1209
7f988eab 1210 write_lock_bh(&dev_base_lock);
372b2312 1211 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1212 write_unlock_bh(&dev_base_lock);
1213
1214 synchronize_rcu();
1215
1216 write_lock_bh(&dev_base_lock);
1217 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1218 write_unlock_bh(&dev_base_lock);
1219
056925ab 1220 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1221 ret = notifier_to_errno(ret);
1222
1223 if (ret) {
91e9c07b
ED
1224 /* err >= 0 after dev_alloc_name() or stores the first errno */
1225 if (err >= 0) {
fcc5a03a 1226 err = ret;
30e6c9fa 1227 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1228 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1229 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1230 dev->name_assign_type = old_assign_type;
1231 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1232 goto rollback;
91e9c07b 1233 } else {
7b6cd1ce 1234 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1235 dev->name, ret);
fcc5a03a
HX
1236 }
1237 }
1da177e4
LT
1238
1239 return err;
1240}
1241
0b815a1a
SH
1242/**
1243 * dev_set_alias - change ifalias of a device
1244 * @dev: device
1245 * @alias: name up to IFALIASZ
f0db275a 1246 * @len: limit of bytes to copy from info
0b815a1a
SH
1247 *
1248 * Set ifalias for a device,
1249 */
1250int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1251{
6c557001 1252 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1253
1254 if (len >= IFALIASZ)
1255 return -EINVAL;
1256
6c557001
FW
1257 if (len) {
1258 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1259 if (!new_alias)
1260 return -ENOMEM;
1261
1262 memcpy(new_alias->ifalias, alias, len);
1263 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1264 }
1265
6c557001
FW
1266 mutex_lock(&ifalias_mutex);
1267 rcu_swap_protected(dev->ifalias, new_alias,
1268 mutex_is_locked(&ifalias_mutex));
1269 mutex_unlock(&ifalias_mutex);
1270
1271 if (new_alias)
1272 kfree_rcu(new_alias, rcuhead);
0b815a1a 1273
0b815a1a
SH
1274 return len;
1275}
1276
6c557001
FW
1277/**
1278 * dev_get_alias - get ifalias of a device
1279 * @dev: device
20e88320 1280 * @name: buffer to store name of ifalias
6c557001
FW
1281 * @len: size of buffer
1282 *
1283 * get ifalias for a device. Caller must make sure dev cannot go
1284 * away, e.g. rcu read lock or own a reference count to device.
1285 */
1286int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1287{
1288 const struct dev_ifalias *alias;
1289 int ret = 0;
1290
1291 rcu_read_lock();
1292 alias = rcu_dereference(dev->ifalias);
1293 if (alias)
1294 ret = snprintf(name, len, "%s", alias->ifalias);
1295 rcu_read_unlock();
1296
1297 return ret;
1298}
0b815a1a 1299
d8a33ac4 1300/**
3041a069 1301 * netdev_features_change - device changes features
d8a33ac4
SH
1302 * @dev: device to cause notification
1303 *
1304 * Called to indicate a device has changed features.
1305 */
1306void netdev_features_change(struct net_device *dev)
1307{
056925ab 1308 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1309}
1310EXPORT_SYMBOL(netdev_features_change);
1311
1da177e4
LT
1312/**
1313 * netdev_state_change - device changes state
1314 * @dev: device to cause notification
1315 *
1316 * Called to indicate a device has changed state. This function calls
1317 * the notifier chains for netdev_chain and sends a NEWLINK message
1318 * to the routing socket.
1319 */
1320void netdev_state_change(struct net_device *dev)
1321{
1322 if (dev->flags & IFF_UP) {
51d0c047
DA
1323 struct netdev_notifier_change_info change_info = {
1324 .info.dev = dev,
1325 };
54951194 1326
51d0c047 1327 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1328 &change_info.info);
7f294054 1329 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1330 }
1331}
d1b19dff 1332EXPORT_SYMBOL(netdev_state_change);
1da177e4 1333
ee89bab1 1334/**
722c9a0c 1335 * netdev_notify_peers - notify network peers about existence of @dev
1336 * @dev: network device
ee89bab1
AW
1337 *
1338 * Generate traffic such that interested network peers are aware of
1339 * @dev, such as by generating a gratuitous ARP. This may be used when
1340 * a device wants to inform the rest of the network about some sort of
1341 * reconfiguration such as a failover event or virtual machine
1342 * migration.
1343 */
1344void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1345{
ee89bab1
AW
1346 rtnl_lock();
1347 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1348 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1349 rtnl_unlock();
c1da4ac7 1350}
ee89bab1 1351EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1352
bd380811 1353static int __dev_open(struct net_device *dev)
1da177e4 1354{
d314774c 1355 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1356 int ret;
1da177e4 1357
e46b66bc
BH
1358 ASSERT_RTNL();
1359
1da177e4
LT
1360 if (!netif_device_present(dev))
1361 return -ENODEV;
1362
ca99ca14
NH
1363 /* Block netpoll from trying to do any rx path servicing.
1364 * If we don't do this there is a chance ndo_poll_controller
1365 * or ndo_poll may be running while we open the device
1366 */
66b5552f 1367 netpoll_poll_disable(dev);
ca99ca14 1368
3b8bcfd5
JB
1369 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1370 ret = notifier_to_errno(ret);
1371 if (ret)
1372 return ret;
1373
1da177e4 1374 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1375
d314774c
SH
1376 if (ops->ndo_validate_addr)
1377 ret = ops->ndo_validate_addr(dev);
bada339b 1378
d314774c
SH
1379 if (!ret && ops->ndo_open)
1380 ret = ops->ndo_open(dev);
1da177e4 1381
66b5552f 1382 netpoll_poll_enable(dev);
ca99ca14 1383
bada339b
JG
1384 if (ret)
1385 clear_bit(__LINK_STATE_START, &dev->state);
1386 else {
1da177e4 1387 dev->flags |= IFF_UP;
4417da66 1388 dev_set_rx_mode(dev);
1da177e4 1389 dev_activate(dev);
7bf23575 1390 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1391 }
bada339b 1392
1da177e4
LT
1393 return ret;
1394}
1395
1396/**
bd380811
PM
1397 * dev_open - prepare an interface for use.
1398 * @dev: device to open
1da177e4 1399 *
bd380811
PM
1400 * Takes a device from down to up state. The device's private open
1401 * function is invoked and then the multicast lists are loaded. Finally
1402 * the device is moved into the up state and a %NETDEV_UP message is
1403 * sent to the netdev notifier chain.
1404 *
1405 * Calling this function on an active interface is a nop. On a failure
1406 * a negative errno code is returned.
1da177e4 1407 */
bd380811
PM
1408int dev_open(struct net_device *dev)
1409{
1410 int ret;
1411
bd380811
PM
1412 if (dev->flags & IFF_UP)
1413 return 0;
1414
bd380811
PM
1415 ret = __dev_open(dev);
1416 if (ret < 0)
1417 return ret;
1418
7f294054 1419 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1420 call_netdevice_notifiers(NETDEV_UP, dev);
1421
1422 return ret;
1423}
1424EXPORT_SYMBOL(dev_open);
1425
7051b88a 1426static void __dev_close_many(struct list_head *head)
1da177e4 1427{
44345724 1428 struct net_device *dev;
e46b66bc 1429
bd380811 1430 ASSERT_RTNL();
9d5010db
DM
1431 might_sleep();
1432
5cde2829 1433 list_for_each_entry(dev, head, close_list) {
3f4df206 1434 /* Temporarily disable netpoll until the interface is down */
66b5552f 1435 netpoll_poll_disable(dev);
3f4df206 1436
44345724 1437 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1438
44345724 1439 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1440
44345724
OP
1441 /* Synchronize to scheduled poll. We cannot touch poll list, it
1442 * can be even on different cpu. So just clear netif_running().
1443 *
1444 * dev->stop() will invoke napi_disable() on all of it's
1445 * napi_struct instances on this device.
1446 */
4e857c58 1447 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1448 }
1da177e4 1449
44345724 1450 dev_deactivate_many(head);
d8b2a4d2 1451
5cde2829 1452 list_for_each_entry(dev, head, close_list) {
44345724 1453 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1454
44345724
OP
1455 /*
1456 * Call the device specific close. This cannot fail.
1457 * Only if device is UP
1458 *
1459 * We allow it to be called even after a DETACH hot-plug
1460 * event.
1461 */
1462 if (ops->ndo_stop)
1463 ops->ndo_stop(dev);
1464
44345724 1465 dev->flags &= ~IFF_UP;
66b5552f 1466 netpoll_poll_enable(dev);
44345724 1467 }
44345724
OP
1468}
1469
7051b88a 1470static void __dev_close(struct net_device *dev)
44345724
OP
1471{
1472 LIST_HEAD(single);
1473
5cde2829 1474 list_add(&dev->close_list, &single);
7051b88a 1475 __dev_close_many(&single);
f87e6f47 1476 list_del(&single);
44345724
OP
1477}
1478
7051b88a 1479void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1480{
1481 struct net_device *dev, *tmp;
1da177e4 1482
5cde2829
EB
1483 /* Remove the devices that don't need to be closed */
1484 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1485 if (!(dev->flags & IFF_UP))
5cde2829 1486 list_del_init(&dev->close_list);
44345724
OP
1487
1488 __dev_close_many(head);
1da177e4 1489
5cde2829 1490 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1491 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1492 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1493 if (unlink)
1494 list_del_init(&dev->close_list);
44345724 1495 }
bd380811 1496}
99c4a26a 1497EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1498
1499/**
1500 * dev_close - shutdown an interface.
1501 * @dev: device to shutdown
1502 *
1503 * This function moves an active device into down state. A
1504 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1505 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1506 * chain.
1507 */
7051b88a 1508void dev_close(struct net_device *dev)
bd380811 1509{
e14a5993
ED
1510 if (dev->flags & IFF_UP) {
1511 LIST_HEAD(single);
1da177e4 1512
5cde2829 1513 list_add(&dev->close_list, &single);
99c4a26a 1514 dev_close_many(&single, true);
e14a5993
ED
1515 list_del(&single);
1516 }
1da177e4 1517}
d1b19dff 1518EXPORT_SYMBOL(dev_close);
1da177e4
LT
1519
1520
0187bdfb
BH
1521/**
1522 * dev_disable_lro - disable Large Receive Offload on a device
1523 * @dev: device
1524 *
1525 * Disable Large Receive Offload (LRO) on a net device. Must be
1526 * called under RTNL. This is needed if received packets may be
1527 * forwarded to another interface.
1528 */
1529void dev_disable_lro(struct net_device *dev)
1530{
fbe168ba
MK
1531 struct net_device *lower_dev;
1532 struct list_head *iter;
529d0489 1533
bc5787c6
MM
1534 dev->wanted_features &= ~NETIF_F_LRO;
1535 netdev_update_features(dev);
27660515 1536
22d5969f
MM
1537 if (unlikely(dev->features & NETIF_F_LRO))
1538 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1539
1540 netdev_for_each_lower_dev(dev, lower_dev, iter)
1541 dev_disable_lro(lower_dev);
0187bdfb
BH
1542}
1543EXPORT_SYMBOL(dev_disable_lro);
1544
351638e7
JP
1545static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1546 struct net_device *dev)
1547{
51d0c047
DA
1548 struct netdev_notifier_info info = {
1549 .dev = dev,
1550 };
351638e7 1551
351638e7
JP
1552 return nb->notifier_call(nb, val, &info);
1553}
0187bdfb 1554
881d966b
EB
1555static int dev_boot_phase = 1;
1556
1da177e4 1557/**
722c9a0c 1558 * register_netdevice_notifier - register a network notifier block
1559 * @nb: notifier
1da177e4 1560 *
722c9a0c 1561 * Register a notifier to be called when network device events occur.
1562 * The notifier passed is linked into the kernel structures and must
1563 * not be reused until it has been unregistered. A negative errno code
1564 * is returned on a failure.
1da177e4 1565 *
722c9a0c 1566 * When registered all registration and up events are replayed
1567 * to the new notifier to allow device to have a race free
1568 * view of the network device list.
1da177e4
LT
1569 */
1570
1571int register_netdevice_notifier(struct notifier_block *nb)
1572{
1573 struct net_device *dev;
fcc5a03a 1574 struct net_device *last;
881d966b 1575 struct net *net;
1da177e4
LT
1576 int err;
1577
1578 rtnl_lock();
f07d5b94 1579 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1580 if (err)
1581 goto unlock;
881d966b
EB
1582 if (dev_boot_phase)
1583 goto unlock;
1584 for_each_net(net) {
1585 for_each_netdev(net, dev) {
351638e7 1586 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1587 err = notifier_to_errno(err);
1588 if (err)
1589 goto rollback;
1590
1591 if (!(dev->flags & IFF_UP))
1592 continue;
1da177e4 1593
351638e7 1594 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1595 }
1da177e4 1596 }
fcc5a03a
HX
1597
1598unlock:
1da177e4
LT
1599 rtnl_unlock();
1600 return err;
fcc5a03a
HX
1601
1602rollback:
1603 last = dev;
881d966b
EB
1604 for_each_net(net) {
1605 for_each_netdev(net, dev) {
1606 if (dev == last)
8f891489 1607 goto outroll;
fcc5a03a 1608
881d966b 1609 if (dev->flags & IFF_UP) {
351638e7
JP
1610 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1611 dev);
1612 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1613 }
351638e7 1614 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1615 }
fcc5a03a 1616 }
c67625a1 1617
8f891489 1618outroll:
c67625a1 1619 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1620 goto unlock;
1da177e4 1621}
d1b19dff 1622EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1623
1624/**
722c9a0c 1625 * unregister_netdevice_notifier - unregister a network notifier block
1626 * @nb: notifier
1da177e4 1627 *
722c9a0c 1628 * Unregister a notifier previously registered by
1629 * register_netdevice_notifier(). The notifier is unlinked into the
1630 * kernel structures and may then be reused. A negative errno code
1631 * is returned on a failure.
7d3d43da 1632 *
722c9a0c 1633 * After unregistering unregister and down device events are synthesized
1634 * for all devices on the device list to the removed notifier to remove
1635 * the need for special case cleanup code.
1da177e4
LT
1636 */
1637
1638int unregister_netdevice_notifier(struct notifier_block *nb)
1639{
7d3d43da
EB
1640 struct net_device *dev;
1641 struct net *net;
9f514950
HX
1642 int err;
1643
1644 rtnl_lock();
f07d5b94 1645 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1646 if (err)
1647 goto unlock;
1648
1649 for_each_net(net) {
1650 for_each_netdev(net, dev) {
1651 if (dev->flags & IFF_UP) {
351638e7
JP
1652 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1653 dev);
1654 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1655 }
351638e7 1656 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1657 }
1658 }
1659unlock:
9f514950
HX
1660 rtnl_unlock();
1661 return err;
1da177e4 1662}
d1b19dff 1663EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1664
351638e7
JP
1665/**
1666 * call_netdevice_notifiers_info - call all network notifier blocks
1667 * @val: value passed unmodified to notifier function
1668 * @dev: net_device pointer passed unmodified to notifier function
1669 * @info: notifier information data
1670 *
1671 * Call all network notifier blocks. Parameters and return value
1672 * are as for raw_notifier_call_chain().
1673 */
1674
1d143d9f 1675static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1676 struct netdev_notifier_info *info)
351638e7
JP
1677{
1678 ASSERT_RTNL();
351638e7
JP
1679 return raw_notifier_call_chain(&netdev_chain, val, info);
1680}
351638e7 1681
1da177e4
LT
1682/**
1683 * call_netdevice_notifiers - call all network notifier blocks
1684 * @val: value passed unmodified to notifier function
c4ea43c5 1685 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1686 *
1687 * Call all network notifier blocks. Parameters and return value
f07d5b94 1688 * are as for raw_notifier_call_chain().
1da177e4
LT
1689 */
1690
ad7379d4 1691int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1692{
51d0c047
DA
1693 struct netdev_notifier_info info = {
1694 .dev = dev,
1695 };
351638e7 1696
51d0c047 1697 return call_netdevice_notifiers_info(val, &info);
1da177e4 1698}
edf947f1 1699EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1700
1cf51900 1701#ifdef CONFIG_NET_INGRESS
4577139b
DB
1702static struct static_key ingress_needed __read_mostly;
1703
1704void net_inc_ingress_queue(void)
1705{
1706 static_key_slow_inc(&ingress_needed);
1707}
1708EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1709
1710void net_dec_ingress_queue(void)
1711{
1712 static_key_slow_dec(&ingress_needed);
1713}
1714EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1715#endif
1716
1f211a1b
DB
1717#ifdef CONFIG_NET_EGRESS
1718static struct static_key egress_needed __read_mostly;
1719
1720void net_inc_egress_queue(void)
1721{
1722 static_key_slow_inc(&egress_needed);
1723}
1724EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1725
1726void net_dec_egress_queue(void)
1727{
1728 static_key_slow_dec(&egress_needed);
1729}
1730EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1731#endif
1732
c5905afb 1733static struct static_key netstamp_needed __read_mostly;
b90e5794 1734#ifdef HAVE_JUMP_LABEL
b90e5794 1735static atomic_t netstamp_needed_deferred;
13baa00a 1736static atomic_t netstamp_wanted;
5fa8bbda 1737static void netstamp_clear(struct work_struct *work)
1da177e4 1738{
b90e5794 1739 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1740 int wanted;
b90e5794 1741
13baa00a
ED
1742 wanted = atomic_add_return(deferred, &netstamp_wanted);
1743 if (wanted > 0)
1744 static_key_enable(&netstamp_needed);
1745 else
1746 static_key_disable(&netstamp_needed);
5fa8bbda
ED
1747}
1748static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1749#endif
5fa8bbda
ED
1750
1751void net_enable_timestamp(void)
1752{
13baa00a
ED
1753#ifdef HAVE_JUMP_LABEL
1754 int wanted;
1755
1756 while (1) {
1757 wanted = atomic_read(&netstamp_wanted);
1758 if (wanted <= 0)
1759 break;
1760 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1761 return;
1762 }
1763 atomic_inc(&netstamp_needed_deferred);
1764 schedule_work(&netstamp_work);
1765#else
c5905afb 1766 static_key_slow_inc(&netstamp_needed);
13baa00a 1767#endif
1da177e4 1768}
d1b19dff 1769EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1770
1771void net_disable_timestamp(void)
1772{
b90e5794 1773#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1774 int wanted;
1775
1776 while (1) {
1777 wanted = atomic_read(&netstamp_wanted);
1778 if (wanted <= 1)
1779 break;
1780 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1781 return;
1782 }
1783 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1784 schedule_work(&netstamp_work);
1785#else
c5905afb 1786 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1787#endif
1da177e4 1788}
d1b19dff 1789EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1790
3b098e2d 1791static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1792{
2456e855 1793 skb->tstamp = 0;
c5905afb 1794 if (static_key_false(&netstamp_needed))
a61bbcf2 1795 __net_timestamp(skb);
1da177e4
LT
1796}
1797
588f0330 1798#define net_timestamp_check(COND, SKB) \
c5905afb 1799 if (static_key_false(&netstamp_needed)) { \
2456e855 1800 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1801 __net_timestamp(SKB); \
1802 } \
3b098e2d 1803
f4b05d27 1804bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1805{
1806 unsigned int len;
1807
1808 if (!(dev->flags & IFF_UP))
1809 return false;
1810
1811 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1812 if (skb->len <= len)
1813 return true;
1814
1815 /* if TSO is enabled, we don't care about the length as the packet
1816 * could be forwarded without being segmented before
1817 */
1818 if (skb_is_gso(skb))
1819 return true;
1820
1821 return false;
1822}
1ee481fb 1823EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1824
a0265d28
HX
1825int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1826{
4e3264d2 1827 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1828
4e3264d2
MKL
1829 if (likely(!ret)) {
1830 skb->protocol = eth_type_trans(skb, dev);
1831 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1832 }
a0265d28 1833
4e3264d2 1834 return ret;
a0265d28
HX
1835}
1836EXPORT_SYMBOL_GPL(__dev_forward_skb);
1837
44540960
AB
1838/**
1839 * dev_forward_skb - loopback an skb to another netif
1840 *
1841 * @dev: destination network device
1842 * @skb: buffer to forward
1843 *
1844 * return values:
1845 * NET_RX_SUCCESS (no congestion)
6ec82562 1846 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1847 *
1848 * dev_forward_skb can be used for injecting an skb from the
1849 * start_xmit function of one device into the receive queue
1850 * of another device.
1851 *
1852 * The receiving device may be in another namespace, so
1853 * we have to clear all information in the skb that could
1854 * impact namespace isolation.
1855 */
1856int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1857{
a0265d28 1858 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1859}
1860EXPORT_SYMBOL_GPL(dev_forward_skb);
1861
71d9dec2
CG
1862static inline int deliver_skb(struct sk_buff *skb,
1863 struct packet_type *pt_prev,
1864 struct net_device *orig_dev)
1865{
1f8b977a 1866 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1867 return -ENOMEM;
63354797 1868 refcount_inc(&skb->users);
71d9dec2
CG
1869 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1870}
1871
7866a621
SN
1872static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1873 struct packet_type **pt,
fbcb2170
JP
1874 struct net_device *orig_dev,
1875 __be16 type,
7866a621
SN
1876 struct list_head *ptype_list)
1877{
1878 struct packet_type *ptype, *pt_prev = *pt;
1879
1880 list_for_each_entry_rcu(ptype, ptype_list, list) {
1881 if (ptype->type != type)
1882 continue;
1883 if (pt_prev)
fbcb2170 1884 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1885 pt_prev = ptype;
1886 }
1887 *pt = pt_prev;
1888}
1889
c0de08d0
EL
1890static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1891{
a3d744e9 1892 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1893 return false;
1894
1895 if (ptype->id_match)
1896 return ptype->id_match(ptype, skb->sk);
1897 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1898 return true;
1899
1900 return false;
1901}
1902
1da177e4
LT
1903/*
1904 * Support routine. Sends outgoing frames to any network
1905 * taps currently in use.
1906 */
1907
74b20582 1908void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1909{
1910 struct packet_type *ptype;
71d9dec2
CG
1911 struct sk_buff *skb2 = NULL;
1912 struct packet_type *pt_prev = NULL;
7866a621 1913 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1914
1da177e4 1915 rcu_read_lock();
7866a621
SN
1916again:
1917 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1918 /* Never send packets back to the socket
1919 * they originated from - MvS (miquels@drinkel.ow.org)
1920 */
7866a621
SN
1921 if (skb_loop_sk(ptype, skb))
1922 continue;
71d9dec2 1923
7866a621
SN
1924 if (pt_prev) {
1925 deliver_skb(skb2, pt_prev, skb->dev);
1926 pt_prev = ptype;
1927 continue;
1928 }
1da177e4 1929
7866a621
SN
1930 /* need to clone skb, done only once */
1931 skb2 = skb_clone(skb, GFP_ATOMIC);
1932 if (!skb2)
1933 goto out_unlock;
70978182 1934
7866a621 1935 net_timestamp_set(skb2);
1da177e4 1936
7866a621
SN
1937 /* skb->nh should be correctly
1938 * set by sender, so that the second statement is
1939 * just protection against buggy protocols.
1940 */
1941 skb_reset_mac_header(skb2);
1942
1943 if (skb_network_header(skb2) < skb2->data ||
1944 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1945 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1946 ntohs(skb2->protocol),
1947 dev->name);
1948 skb_reset_network_header(skb2);
1da177e4 1949 }
7866a621
SN
1950
1951 skb2->transport_header = skb2->network_header;
1952 skb2->pkt_type = PACKET_OUTGOING;
1953 pt_prev = ptype;
1954 }
1955
1956 if (ptype_list == &ptype_all) {
1957 ptype_list = &dev->ptype_all;
1958 goto again;
1da177e4 1959 }
7866a621 1960out_unlock:
581fe0ea
WB
1961 if (pt_prev) {
1962 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1963 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1964 else
1965 kfree_skb(skb2);
1966 }
1da177e4
LT
1967 rcu_read_unlock();
1968}
74b20582 1969EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1970
2c53040f
BH
1971/**
1972 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1973 * @dev: Network device
1974 * @txq: number of queues available
1975 *
1976 * If real_num_tx_queues is changed the tc mappings may no longer be
1977 * valid. To resolve this verify the tc mapping remains valid and if
1978 * not NULL the mapping. With no priorities mapping to this
1979 * offset/count pair it will no longer be used. In the worst case TC0
1980 * is invalid nothing can be done so disable priority mappings. If is
1981 * expected that drivers will fix this mapping if they can before
1982 * calling netif_set_real_num_tx_queues.
1983 */
bb134d22 1984static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1985{
1986 int i;
1987 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1988
1989 /* If TC0 is invalidated disable TC mapping */
1990 if (tc->offset + tc->count > txq) {
7b6cd1ce 1991 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1992 dev->num_tc = 0;
1993 return;
1994 }
1995
1996 /* Invalidated prio to tc mappings set to TC0 */
1997 for (i = 1; i < TC_BITMASK + 1; i++) {
1998 int q = netdev_get_prio_tc_map(dev, i);
1999
2000 tc = &dev->tc_to_txq[q];
2001 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2002 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2003 i, q);
4f57c087
JF
2004 netdev_set_prio_tc_map(dev, i, 0);
2005 }
2006 }
2007}
2008
8d059b0f
AD
2009int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2010{
2011 if (dev->num_tc) {
2012 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2013 int i;
2014
2015 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2016 if ((txq - tc->offset) < tc->count)
2017 return i;
2018 }
2019
2020 return -1;
2021 }
2022
2023 return 0;
2024}
8a5f2166 2025EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2026
537c00de
AD
2027#ifdef CONFIG_XPS
2028static DEFINE_MUTEX(xps_map_mutex);
2029#define xmap_dereference(P) \
2030 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2031
6234f874
AD
2032static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2033 int tci, u16 index)
537c00de 2034{
10cdc3f3
AD
2035 struct xps_map *map = NULL;
2036 int pos;
537c00de 2037
10cdc3f3 2038 if (dev_maps)
6234f874
AD
2039 map = xmap_dereference(dev_maps->cpu_map[tci]);
2040 if (!map)
2041 return false;
537c00de 2042
6234f874
AD
2043 for (pos = map->len; pos--;) {
2044 if (map->queues[pos] != index)
2045 continue;
2046
2047 if (map->len > 1) {
2048 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2049 break;
537c00de 2050 }
6234f874
AD
2051
2052 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2053 kfree_rcu(map, rcu);
2054 return false;
537c00de
AD
2055 }
2056
6234f874 2057 return true;
10cdc3f3
AD
2058}
2059
6234f874
AD
2060static bool remove_xps_queue_cpu(struct net_device *dev,
2061 struct xps_dev_maps *dev_maps,
2062 int cpu, u16 offset, u16 count)
2063{
184c449f
AD
2064 int num_tc = dev->num_tc ? : 1;
2065 bool active = false;
2066 int tci;
6234f874 2067
184c449f
AD
2068 for (tci = cpu * num_tc; num_tc--; tci++) {
2069 int i, j;
2070
2071 for (i = count, j = offset; i--; j++) {
2072 if (!remove_xps_queue(dev_maps, cpu, j))
2073 break;
2074 }
2075
2076 active |= i < 0;
6234f874
AD
2077 }
2078
184c449f 2079 return active;
6234f874
AD
2080}
2081
2082static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2083 u16 count)
10cdc3f3
AD
2084{
2085 struct xps_dev_maps *dev_maps;
024e9679 2086 int cpu, i;
10cdc3f3
AD
2087 bool active = false;
2088
2089 mutex_lock(&xps_map_mutex);
2090 dev_maps = xmap_dereference(dev->xps_maps);
2091
2092 if (!dev_maps)
2093 goto out_no_maps;
2094
6234f874
AD
2095 for_each_possible_cpu(cpu)
2096 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2097 offset, count);
10cdc3f3
AD
2098
2099 if (!active) {
537c00de
AD
2100 RCU_INIT_POINTER(dev->xps_maps, NULL);
2101 kfree_rcu(dev_maps, rcu);
2102 }
2103
6234f874 2104 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2105 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2106 NUMA_NO_NODE);
2107
537c00de
AD
2108out_no_maps:
2109 mutex_unlock(&xps_map_mutex);
2110}
2111
6234f874
AD
2112static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2113{
2114 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2115}
2116
01c5f864
AD
2117static struct xps_map *expand_xps_map(struct xps_map *map,
2118 int cpu, u16 index)
2119{
2120 struct xps_map *new_map;
2121 int alloc_len = XPS_MIN_MAP_ALLOC;
2122 int i, pos;
2123
2124 for (pos = 0; map && pos < map->len; pos++) {
2125 if (map->queues[pos] != index)
2126 continue;
2127 return map;
2128 }
2129
2130 /* Need to add queue to this CPU's existing map */
2131 if (map) {
2132 if (pos < map->alloc_len)
2133 return map;
2134
2135 alloc_len = map->alloc_len * 2;
2136 }
2137
2138 /* Need to allocate new map to store queue on this CPU's map */
2139 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2140 cpu_to_node(cpu));
2141 if (!new_map)
2142 return NULL;
2143
2144 for (i = 0; i < pos; i++)
2145 new_map->queues[i] = map->queues[i];
2146 new_map->alloc_len = alloc_len;
2147 new_map->len = pos;
2148
2149 return new_map;
2150}
2151
3573540c
MT
2152int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2153 u16 index)
537c00de 2154{
01c5f864 2155 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2156 int i, cpu, tci, numa_node_id = -2;
2157 int maps_sz, num_tc = 1, tc = 0;
537c00de 2158 struct xps_map *map, *new_map;
01c5f864 2159 bool active = false;
537c00de 2160
184c449f
AD
2161 if (dev->num_tc) {
2162 num_tc = dev->num_tc;
2163 tc = netdev_txq_to_tc(dev, index);
2164 if (tc < 0)
2165 return -EINVAL;
2166 }
2167
2168 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2169 if (maps_sz < L1_CACHE_BYTES)
2170 maps_sz = L1_CACHE_BYTES;
2171
537c00de
AD
2172 mutex_lock(&xps_map_mutex);
2173
2174 dev_maps = xmap_dereference(dev->xps_maps);
2175
01c5f864 2176 /* allocate memory for queue storage */
184c449f 2177 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2178 if (!new_dev_maps)
2179 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2180 if (!new_dev_maps) {
2181 mutex_unlock(&xps_map_mutex);
01c5f864 2182 return -ENOMEM;
2bb60cb9 2183 }
01c5f864 2184
184c449f
AD
2185 tci = cpu * num_tc + tc;
2186 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2187 NULL;
2188
2189 map = expand_xps_map(map, cpu, index);
2190 if (!map)
2191 goto error;
2192
184c449f 2193 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2194 }
2195
2196 if (!new_dev_maps)
2197 goto out_no_new_maps;
2198
537c00de 2199 for_each_possible_cpu(cpu) {
184c449f
AD
2200 /* copy maps belonging to foreign traffic classes */
2201 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2202 /* fill in the new device map from the old device map */
2203 map = xmap_dereference(dev_maps->cpu_map[tci]);
2204 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2205 }
2206
2207 /* We need to explicitly update tci as prevous loop
2208 * could break out early if dev_maps is NULL.
2209 */
2210 tci = cpu * num_tc + tc;
2211
01c5f864
AD
2212 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2213 /* add queue to CPU maps */
2214 int pos = 0;
2215
184c449f 2216 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2217 while ((pos < map->len) && (map->queues[pos] != index))
2218 pos++;
2219
2220 if (pos == map->len)
2221 map->queues[map->len++] = index;
537c00de 2222#ifdef CONFIG_NUMA
537c00de
AD
2223 if (numa_node_id == -2)
2224 numa_node_id = cpu_to_node(cpu);
2225 else if (numa_node_id != cpu_to_node(cpu))
2226 numa_node_id = -1;
537c00de 2227#endif
01c5f864
AD
2228 } else if (dev_maps) {
2229 /* fill in the new device map from the old device map */
184c449f
AD
2230 map = xmap_dereference(dev_maps->cpu_map[tci]);
2231 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2232 }
01c5f864 2233
184c449f
AD
2234 /* copy maps belonging to foreign traffic classes */
2235 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2236 /* fill in the new device map from the old device map */
2237 map = xmap_dereference(dev_maps->cpu_map[tci]);
2238 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2239 }
537c00de
AD
2240 }
2241
01c5f864
AD
2242 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2243
537c00de 2244 /* Cleanup old maps */
184c449f
AD
2245 if (!dev_maps)
2246 goto out_no_old_maps;
2247
2248 for_each_possible_cpu(cpu) {
2249 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2250 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2251 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2252 if (map && map != new_map)
2253 kfree_rcu(map, rcu);
2254 }
537c00de
AD
2255 }
2256
184c449f
AD
2257 kfree_rcu(dev_maps, rcu);
2258
2259out_no_old_maps:
01c5f864
AD
2260 dev_maps = new_dev_maps;
2261 active = true;
537c00de 2262
01c5f864
AD
2263out_no_new_maps:
2264 /* update Tx queue numa node */
537c00de
AD
2265 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2266 (numa_node_id >= 0) ? numa_node_id :
2267 NUMA_NO_NODE);
2268
01c5f864
AD
2269 if (!dev_maps)
2270 goto out_no_maps;
2271
2272 /* removes queue from unused CPUs */
2273 for_each_possible_cpu(cpu) {
184c449f
AD
2274 for (i = tc, tci = cpu * num_tc; i--; tci++)
2275 active |= remove_xps_queue(dev_maps, tci, index);
2276 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2277 active |= remove_xps_queue(dev_maps, tci, index);
2278 for (i = num_tc - tc, tci++; --i; tci++)
2279 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2280 }
2281
2282 /* free map if not active */
2283 if (!active) {
2284 RCU_INIT_POINTER(dev->xps_maps, NULL);
2285 kfree_rcu(dev_maps, rcu);
2286 }
2287
2288out_no_maps:
537c00de
AD
2289 mutex_unlock(&xps_map_mutex);
2290
2291 return 0;
2292error:
01c5f864
AD
2293 /* remove any maps that we added */
2294 for_each_possible_cpu(cpu) {
184c449f
AD
2295 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2296 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2297 map = dev_maps ?
2298 xmap_dereference(dev_maps->cpu_map[tci]) :
2299 NULL;
2300 if (new_map && new_map != map)
2301 kfree(new_map);
2302 }
01c5f864
AD
2303 }
2304
537c00de
AD
2305 mutex_unlock(&xps_map_mutex);
2306
537c00de
AD
2307 kfree(new_dev_maps);
2308 return -ENOMEM;
2309}
2310EXPORT_SYMBOL(netif_set_xps_queue);
2311
2312#endif
9cf1f6a8
AD
2313void netdev_reset_tc(struct net_device *dev)
2314{
6234f874
AD
2315#ifdef CONFIG_XPS
2316 netif_reset_xps_queues_gt(dev, 0);
2317#endif
9cf1f6a8
AD
2318 dev->num_tc = 0;
2319 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2320 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2321}
2322EXPORT_SYMBOL(netdev_reset_tc);
2323
2324int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2325{
2326 if (tc >= dev->num_tc)
2327 return -EINVAL;
2328
6234f874
AD
2329#ifdef CONFIG_XPS
2330 netif_reset_xps_queues(dev, offset, count);
2331#endif
9cf1f6a8
AD
2332 dev->tc_to_txq[tc].count = count;
2333 dev->tc_to_txq[tc].offset = offset;
2334 return 0;
2335}
2336EXPORT_SYMBOL(netdev_set_tc_queue);
2337
2338int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2339{
2340 if (num_tc > TC_MAX_QUEUE)
2341 return -EINVAL;
2342
6234f874
AD
2343#ifdef CONFIG_XPS
2344 netif_reset_xps_queues_gt(dev, 0);
2345#endif
9cf1f6a8
AD
2346 dev->num_tc = num_tc;
2347 return 0;
2348}
2349EXPORT_SYMBOL(netdev_set_num_tc);
2350
f0796d5c
JF
2351/*
2352 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2353 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2354 */
e6484930 2355int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2356{
1d24eb48
TH
2357 int rc;
2358
e6484930
TH
2359 if (txq < 1 || txq > dev->num_tx_queues)
2360 return -EINVAL;
f0796d5c 2361
5c56580b
BH
2362 if (dev->reg_state == NETREG_REGISTERED ||
2363 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2364 ASSERT_RTNL();
2365
1d24eb48
TH
2366 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2367 txq);
bf264145
TH
2368 if (rc)
2369 return rc;
2370
4f57c087
JF
2371 if (dev->num_tc)
2372 netif_setup_tc(dev, txq);
2373
024e9679 2374 if (txq < dev->real_num_tx_queues) {
e6484930 2375 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2376#ifdef CONFIG_XPS
2377 netif_reset_xps_queues_gt(dev, txq);
2378#endif
2379 }
f0796d5c 2380 }
e6484930
TH
2381
2382 dev->real_num_tx_queues = txq;
2383 return 0;
f0796d5c
JF
2384}
2385EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2386
a953be53 2387#ifdef CONFIG_SYSFS
62fe0b40
BH
2388/**
2389 * netif_set_real_num_rx_queues - set actual number of RX queues used
2390 * @dev: Network device
2391 * @rxq: Actual number of RX queues
2392 *
2393 * This must be called either with the rtnl_lock held or before
2394 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2395 * negative error code. If called before registration, it always
2396 * succeeds.
62fe0b40
BH
2397 */
2398int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2399{
2400 int rc;
2401
bd25fa7b
TH
2402 if (rxq < 1 || rxq > dev->num_rx_queues)
2403 return -EINVAL;
2404
62fe0b40
BH
2405 if (dev->reg_state == NETREG_REGISTERED) {
2406 ASSERT_RTNL();
2407
62fe0b40
BH
2408 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2409 rxq);
2410 if (rc)
2411 return rc;
62fe0b40
BH
2412 }
2413
2414 dev->real_num_rx_queues = rxq;
2415 return 0;
2416}
2417EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2418#endif
2419
2c53040f
BH
2420/**
2421 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2422 *
2423 * This routine should set an upper limit on the number of RSS queues
2424 * used by default by multiqueue devices.
2425 */
a55b138b 2426int netif_get_num_default_rss_queues(void)
16917b87 2427{
40e4e713
HS
2428 return is_kdump_kernel() ?
2429 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2430}
2431EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2432
3bcb846c 2433static void __netif_reschedule(struct Qdisc *q)
56079431 2434{
def82a1d
JP
2435 struct softnet_data *sd;
2436 unsigned long flags;
56079431 2437
def82a1d 2438 local_irq_save(flags);
903ceff7 2439 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2440 q->next_sched = NULL;
2441 *sd->output_queue_tailp = q;
2442 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2443 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2444 local_irq_restore(flags);
2445}
2446
2447void __netif_schedule(struct Qdisc *q)
2448{
2449 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2450 __netif_reschedule(q);
56079431
DV
2451}
2452EXPORT_SYMBOL(__netif_schedule);
2453
e6247027
ED
2454struct dev_kfree_skb_cb {
2455 enum skb_free_reason reason;
2456};
2457
2458static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2459{
e6247027
ED
2460 return (struct dev_kfree_skb_cb *)skb->cb;
2461}
2462
46e5da40
JF
2463void netif_schedule_queue(struct netdev_queue *txq)
2464{
2465 rcu_read_lock();
2466 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2467 struct Qdisc *q = rcu_dereference(txq->qdisc);
2468
2469 __netif_schedule(q);
2470 }
2471 rcu_read_unlock();
2472}
2473EXPORT_SYMBOL(netif_schedule_queue);
2474
46e5da40
JF
2475void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2476{
2477 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2478 struct Qdisc *q;
2479
2480 rcu_read_lock();
2481 q = rcu_dereference(dev_queue->qdisc);
2482 __netif_schedule(q);
2483 rcu_read_unlock();
2484 }
2485}
2486EXPORT_SYMBOL(netif_tx_wake_queue);
2487
e6247027 2488void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2489{
e6247027 2490 unsigned long flags;
56079431 2491
9899886d
MJ
2492 if (unlikely(!skb))
2493 return;
2494
63354797 2495 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2496 smp_rmb();
63354797
RE
2497 refcount_set(&skb->users, 0);
2498 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2499 return;
bea3348e 2500 }
e6247027
ED
2501 get_kfree_skb_cb(skb)->reason = reason;
2502 local_irq_save(flags);
2503 skb->next = __this_cpu_read(softnet_data.completion_queue);
2504 __this_cpu_write(softnet_data.completion_queue, skb);
2505 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2506 local_irq_restore(flags);
56079431 2507}
e6247027 2508EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2509
e6247027 2510void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2511{
2512 if (in_irq() || irqs_disabled())
e6247027 2513 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2514 else
2515 dev_kfree_skb(skb);
2516}
e6247027 2517EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2518
2519
bea3348e
SH
2520/**
2521 * netif_device_detach - mark device as removed
2522 * @dev: network device
2523 *
2524 * Mark device as removed from system and therefore no longer available.
2525 */
56079431
DV
2526void netif_device_detach(struct net_device *dev)
2527{
2528 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2529 netif_running(dev)) {
d543103a 2530 netif_tx_stop_all_queues(dev);
56079431
DV
2531 }
2532}
2533EXPORT_SYMBOL(netif_device_detach);
2534
bea3348e
SH
2535/**
2536 * netif_device_attach - mark device as attached
2537 * @dev: network device
2538 *
2539 * Mark device as attached from system and restart if needed.
2540 */
56079431
DV
2541void netif_device_attach(struct net_device *dev)
2542{
2543 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2544 netif_running(dev)) {
d543103a 2545 netif_tx_wake_all_queues(dev);
4ec93edb 2546 __netdev_watchdog_up(dev);
56079431
DV
2547 }
2548}
2549EXPORT_SYMBOL(netif_device_attach);
2550
5605c762
JP
2551/*
2552 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2553 * to be used as a distribution range.
2554 */
2555u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2556 unsigned int num_tx_queues)
2557{
2558 u32 hash;
2559 u16 qoffset = 0;
2560 u16 qcount = num_tx_queues;
2561
2562 if (skb_rx_queue_recorded(skb)) {
2563 hash = skb_get_rx_queue(skb);
2564 while (unlikely(hash >= num_tx_queues))
2565 hash -= num_tx_queues;
2566 return hash;
2567 }
2568
2569 if (dev->num_tc) {
2570 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
f4563a75 2571
5605c762
JP
2572 qoffset = dev->tc_to_txq[tc].offset;
2573 qcount = dev->tc_to_txq[tc].count;
2574 }
2575
2576 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2577}
2578EXPORT_SYMBOL(__skb_tx_hash);
2579
36c92474
BH
2580static void skb_warn_bad_offload(const struct sk_buff *skb)
2581{
84d15ae5 2582 static const netdev_features_t null_features;
36c92474 2583 struct net_device *dev = skb->dev;
88ad4175 2584 const char *name = "";
36c92474 2585
c846ad9b
BG
2586 if (!net_ratelimit())
2587 return;
2588
88ad4175
BM
2589 if (dev) {
2590 if (dev->dev.parent)
2591 name = dev_driver_string(dev->dev.parent);
2592 else
2593 name = netdev_name(dev);
2594 }
36c92474
BH
2595 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2596 "gso_type=%d ip_summed=%d\n",
88ad4175 2597 name, dev ? &dev->features : &null_features,
65e9d2fa 2598 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2599 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2600 skb_shinfo(skb)->gso_type, skb->ip_summed);
2601}
2602
1da177e4
LT
2603/*
2604 * Invalidate hardware checksum when packet is to be mangled, and
2605 * complete checksum manually on outgoing path.
2606 */
84fa7933 2607int skb_checksum_help(struct sk_buff *skb)
1da177e4 2608{
d3bc23e7 2609 __wsum csum;
663ead3b 2610 int ret = 0, offset;
1da177e4 2611
84fa7933 2612 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2613 goto out_set_summed;
2614
2615 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2616 skb_warn_bad_offload(skb);
2617 return -EINVAL;
1da177e4
LT
2618 }
2619
cef401de
ED
2620 /* Before computing a checksum, we should make sure no frag could
2621 * be modified by an external entity : checksum could be wrong.
2622 */
2623 if (skb_has_shared_frag(skb)) {
2624 ret = __skb_linearize(skb);
2625 if (ret)
2626 goto out;
2627 }
2628
55508d60 2629 offset = skb_checksum_start_offset(skb);
a030847e
HX
2630 BUG_ON(offset >= skb_headlen(skb));
2631 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2632
2633 offset += skb->csum_offset;
2634 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2635
2636 if (skb_cloned(skb) &&
2637 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2638 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2639 if (ret)
2640 goto out;
2641 }
2642
4f2e4ad5 2643 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2644out_set_summed:
1da177e4 2645 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2646out:
1da177e4
LT
2647 return ret;
2648}
d1b19dff 2649EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2650
b72b5bf6
DC
2651int skb_crc32c_csum_help(struct sk_buff *skb)
2652{
2653 __le32 crc32c_csum;
2654 int ret = 0, offset, start;
2655
2656 if (skb->ip_summed != CHECKSUM_PARTIAL)
2657 goto out;
2658
2659 if (unlikely(skb_is_gso(skb)))
2660 goto out;
2661
2662 /* Before computing a checksum, we should make sure no frag could
2663 * be modified by an external entity : checksum could be wrong.
2664 */
2665 if (unlikely(skb_has_shared_frag(skb))) {
2666 ret = __skb_linearize(skb);
2667 if (ret)
2668 goto out;
2669 }
2670 start = skb_checksum_start_offset(skb);
2671 offset = start + offsetof(struct sctphdr, checksum);
2672 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2673 ret = -EINVAL;
2674 goto out;
2675 }
2676 if (skb_cloned(skb) &&
2677 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2678 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2679 if (ret)
2680 goto out;
2681 }
2682 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2683 skb->len - start, ~(__u32)0,
2684 crc32c_csum_stub));
2685 *(__le32 *)(skb->data + offset) = crc32c_csum;
2686 skb->ip_summed = CHECKSUM_NONE;
dba00306 2687 skb->csum_not_inet = 0;
b72b5bf6
DC
2688out:
2689 return ret;
2690}
2691
53d6471c 2692__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2693{
252e3346 2694 __be16 type = skb->protocol;
f6a78bfc 2695
19acc327
PS
2696 /* Tunnel gso handlers can set protocol to ethernet. */
2697 if (type == htons(ETH_P_TEB)) {
2698 struct ethhdr *eth;
2699
2700 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2701 return 0;
2702
2703 eth = (struct ethhdr *)skb_mac_header(skb);
2704 type = eth->h_proto;
2705 }
2706
d4bcef3f 2707 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2708}
2709
2710/**
2711 * skb_mac_gso_segment - mac layer segmentation handler.
2712 * @skb: buffer to segment
2713 * @features: features for the output path (see dev->features)
2714 */
2715struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2716 netdev_features_t features)
2717{
2718 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2719 struct packet_offload *ptype;
53d6471c
VY
2720 int vlan_depth = skb->mac_len;
2721 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2722
2723 if (unlikely(!type))
2724 return ERR_PTR(-EINVAL);
2725
53d6471c 2726 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2727
2728 rcu_read_lock();
22061d80 2729 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2730 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2731 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2732 break;
2733 }
2734 }
2735 rcu_read_unlock();
2736
98e399f8 2737 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2738
f6a78bfc
HX
2739 return segs;
2740}
05e8ef4a
PS
2741EXPORT_SYMBOL(skb_mac_gso_segment);
2742
2743
2744/* openvswitch calls this on rx path, so we need a different check.
2745 */
2746static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2747{
2748 if (tx_path)
0c19f846
WB
2749 return skb->ip_summed != CHECKSUM_PARTIAL &&
2750 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
2751
2752 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2753}
2754
2755/**
2756 * __skb_gso_segment - Perform segmentation on skb.
2757 * @skb: buffer to segment
2758 * @features: features for the output path (see dev->features)
2759 * @tx_path: whether it is called in TX path
2760 *
2761 * This function segments the given skb and returns a list of segments.
2762 *
2763 * It may return NULL if the skb requires no segmentation. This is
2764 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2765 *
2766 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2767 */
2768struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2769 netdev_features_t features, bool tx_path)
2770{
b2504a5d
ED
2771 struct sk_buff *segs;
2772
05e8ef4a
PS
2773 if (unlikely(skb_needs_check(skb, tx_path))) {
2774 int err;
2775
b2504a5d 2776 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2777 err = skb_cow_head(skb, 0);
2778 if (err < 0)
05e8ef4a
PS
2779 return ERR_PTR(err);
2780 }
2781
802ab55a
AD
2782 /* Only report GSO partial support if it will enable us to
2783 * support segmentation on this frame without needing additional
2784 * work.
2785 */
2786 if (features & NETIF_F_GSO_PARTIAL) {
2787 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2788 struct net_device *dev = skb->dev;
2789
2790 partial_features |= dev->features & dev->gso_partial_features;
2791 if (!skb_gso_ok(skb, features | partial_features))
2792 features &= ~NETIF_F_GSO_PARTIAL;
2793 }
2794
9207f9d4
KK
2795 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2796 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2797
68c33163 2798 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2799 SKB_GSO_CB(skb)->encap_level = 0;
2800
05e8ef4a
PS
2801 skb_reset_mac_header(skb);
2802 skb_reset_mac_len(skb);
2803
b2504a5d
ED
2804 segs = skb_mac_gso_segment(skb, features);
2805
2806 if (unlikely(skb_needs_check(skb, tx_path)))
2807 skb_warn_bad_offload(skb);
2808
2809 return segs;
05e8ef4a 2810}
12b0004d 2811EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2812
fb286bb2
HX
2813/* Take action when hardware reception checksum errors are detected. */
2814#ifdef CONFIG_BUG
2815void netdev_rx_csum_fault(struct net_device *dev)
2816{
2817 if (net_ratelimit()) {
7b6cd1ce 2818 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2819 dump_stack();
2820 }
2821}
2822EXPORT_SYMBOL(netdev_rx_csum_fault);
2823#endif
2824
1da177e4
LT
2825/* Actually, we should eliminate this check as soon as we know, that:
2826 * 1. IOMMU is present and allows to map all the memory.
2827 * 2. No high memory really exists on this machine.
2828 */
2829
c1e756bf 2830static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2831{
3d3a8533 2832#ifdef CONFIG_HIGHMEM
1da177e4 2833 int i;
f4563a75 2834
5acbbd42 2835 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2836 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2837 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 2838
ea2ab693 2839 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2840 return 1;
ea2ab693 2841 }
5acbbd42 2842 }
1da177e4 2843
5acbbd42
FT
2844 if (PCI_DMA_BUS_IS_PHYS) {
2845 struct device *pdev = dev->dev.parent;
1da177e4 2846
9092c658
ED
2847 if (!pdev)
2848 return 0;
5acbbd42 2849 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2850 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2851 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
f4563a75 2852
5acbbd42
FT
2853 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2854 return 1;
2855 }
2856 }
3d3a8533 2857#endif
1da177e4
LT
2858 return 0;
2859}
1da177e4 2860
3b392ddb
SH
2861/* If MPLS offload request, verify we are testing hardware MPLS features
2862 * instead of standard features for the netdev.
2863 */
d0edc7bf 2864#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2865static netdev_features_t net_mpls_features(struct sk_buff *skb,
2866 netdev_features_t features,
2867 __be16 type)
2868{
25cd9ba0 2869 if (eth_p_mpls(type))
3b392ddb
SH
2870 features &= skb->dev->mpls_features;
2871
2872 return features;
2873}
2874#else
2875static netdev_features_t net_mpls_features(struct sk_buff *skb,
2876 netdev_features_t features,
2877 __be16 type)
2878{
2879 return features;
2880}
2881#endif
2882
c8f44aff 2883static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2884 netdev_features_t features)
f01a5236 2885{
53d6471c 2886 int tmp;
3b392ddb
SH
2887 __be16 type;
2888
2889 type = skb_network_protocol(skb, &tmp);
2890 features = net_mpls_features(skb, features, type);
53d6471c 2891
c0d680e5 2892 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2893 !can_checksum_protocol(features, type)) {
996e8021 2894 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2895 }
7be2c82c
ED
2896 if (illegal_highdma(skb->dev, skb))
2897 features &= ~NETIF_F_SG;
f01a5236
JG
2898
2899 return features;
2900}
2901
e38f3025
TM
2902netdev_features_t passthru_features_check(struct sk_buff *skb,
2903 struct net_device *dev,
2904 netdev_features_t features)
2905{
2906 return features;
2907}
2908EXPORT_SYMBOL(passthru_features_check);
2909
8cb65d00
TM
2910static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2911 struct net_device *dev,
2912 netdev_features_t features)
2913{
2914 return vlan_features_check(skb, features);
2915}
2916
cbc53e08
AD
2917static netdev_features_t gso_features_check(const struct sk_buff *skb,
2918 struct net_device *dev,
2919 netdev_features_t features)
2920{
2921 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2922
2923 if (gso_segs > dev->gso_max_segs)
2924 return features & ~NETIF_F_GSO_MASK;
2925
802ab55a
AD
2926 /* Support for GSO partial features requires software
2927 * intervention before we can actually process the packets
2928 * so we need to strip support for any partial features now
2929 * and we can pull them back in after we have partially
2930 * segmented the frame.
2931 */
2932 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2933 features &= ~dev->gso_partial_features;
2934
2935 /* Make sure to clear the IPv4 ID mangling feature if the
2936 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2937 */
2938 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2939 struct iphdr *iph = skb->encapsulation ?
2940 inner_ip_hdr(skb) : ip_hdr(skb);
2941
2942 if (!(iph->frag_off & htons(IP_DF)))
2943 features &= ~NETIF_F_TSO_MANGLEID;
2944 }
2945
2946 return features;
2947}
2948
c1e756bf 2949netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2950{
5f35227e 2951 struct net_device *dev = skb->dev;
fcbeb976 2952 netdev_features_t features = dev->features;
58e998c6 2953
cbc53e08
AD
2954 if (skb_is_gso(skb))
2955 features = gso_features_check(skb, dev, features);
30b678d8 2956
5f35227e
JG
2957 /* If encapsulation offload request, verify we are testing
2958 * hardware encapsulation features instead of standard
2959 * features for the netdev
2960 */
2961 if (skb->encapsulation)
2962 features &= dev->hw_enc_features;
2963
f5a7fb88
TM
2964 if (skb_vlan_tagged(skb))
2965 features = netdev_intersect_features(features,
2966 dev->vlan_features |
2967 NETIF_F_HW_VLAN_CTAG_TX |
2968 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2969
5f35227e
JG
2970 if (dev->netdev_ops->ndo_features_check)
2971 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2972 features);
8cb65d00
TM
2973 else
2974 features &= dflt_features_check(skb, dev, features);
5f35227e 2975
c1e756bf 2976 return harmonize_features(skb, features);
58e998c6 2977}
c1e756bf 2978EXPORT_SYMBOL(netif_skb_features);
58e998c6 2979
2ea25513 2980static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2981 struct netdev_queue *txq, bool more)
f6a78bfc 2982{
2ea25513
DM
2983 unsigned int len;
2984 int rc;
00829823 2985
7866a621 2986 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2987 dev_queue_xmit_nit(skb, dev);
fc741216 2988
2ea25513
DM
2989 len = skb->len;
2990 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2991 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2992 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2993
2ea25513
DM
2994 return rc;
2995}
7b9c6090 2996
8dcda22a
DM
2997struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2998 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2999{
3000 struct sk_buff *skb = first;
3001 int rc = NETDEV_TX_OK;
7b9c6090 3002
7f2e870f
DM
3003 while (skb) {
3004 struct sk_buff *next = skb->next;
fc70fb64 3005
7f2e870f 3006 skb->next = NULL;
95f6b3dd 3007 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3008 if (unlikely(!dev_xmit_complete(rc))) {
3009 skb->next = next;
3010 goto out;
3011 }
6afff0ca 3012
7f2e870f
DM
3013 skb = next;
3014 if (netif_xmit_stopped(txq) && skb) {
3015 rc = NETDEV_TX_BUSY;
3016 break;
9ccb8975 3017 }
7f2e870f 3018 }
9ccb8975 3019
7f2e870f
DM
3020out:
3021 *ret = rc;
3022 return skb;
3023}
b40863c6 3024
1ff0dc94
ED
3025static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3026 netdev_features_t features)
f6a78bfc 3027{
df8a39de 3028 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3029 !vlan_hw_offload_capable(features, skb->vlan_proto))
3030 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3031 return skb;
3032}
f6a78bfc 3033
43c26a1a
DC
3034int skb_csum_hwoffload_help(struct sk_buff *skb,
3035 const netdev_features_t features)
3036{
3037 if (unlikely(skb->csum_not_inet))
3038 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3039 skb_crc32c_csum_help(skb);
3040
3041 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3042}
3043EXPORT_SYMBOL(skb_csum_hwoffload_help);
3044
55a93b3e 3045static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
3046{
3047 netdev_features_t features;
f6a78bfc 3048
eae3f88e
DM
3049 features = netif_skb_features(skb);
3050 skb = validate_xmit_vlan(skb, features);
3051 if (unlikely(!skb))
3052 goto out_null;
7b9c6090 3053
8b86a61d 3054 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3055 struct sk_buff *segs;
3056
3057 segs = skb_gso_segment(skb, features);
cecda693 3058 if (IS_ERR(segs)) {
af6dabc9 3059 goto out_kfree_skb;
cecda693
JW
3060 } else if (segs) {
3061 consume_skb(skb);
3062 skb = segs;
f6a78bfc 3063 }
eae3f88e
DM
3064 } else {
3065 if (skb_needs_linearize(skb, features) &&
3066 __skb_linearize(skb))
3067 goto out_kfree_skb;
4ec93edb 3068
f6e27114
SK
3069 if (validate_xmit_xfrm(skb, features))
3070 goto out_kfree_skb;
3071
eae3f88e
DM
3072 /* If packet is not checksummed and device does not
3073 * support checksumming for this protocol, complete
3074 * checksumming here.
3075 */
3076 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3077 if (skb->encapsulation)
3078 skb_set_inner_transport_header(skb,
3079 skb_checksum_start_offset(skb));
3080 else
3081 skb_set_transport_header(skb,
3082 skb_checksum_start_offset(skb));
43c26a1a 3083 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3084 goto out_kfree_skb;
7b9c6090 3085 }
0c772159 3086 }
7b9c6090 3087
eae3f88e 3088 return skb;
fc70fb64 3089
f6a78bfc
HX
3090out_kfree_skb:
3091 kfree_skb(skb);
eae3f88e 3092out_null:
d21fd63e 3093 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3094 return NULL;
3095}
6afff0ca 3096
55a93b3e
ED
3097struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3098{
3099 struct sk_buff *next, *head = NULL, *tail;
3100
bec3cfdc 3101 for (; skb != NULL; skb = next) {
55a93b3e
ED
3102 next = skb->next;
3103 skb->next = NULL;
bec3cfdc
ED
3104
3105 /* in case skb wont be segmented, point to itself */
3106 skb->prev = skb;
3107
55a93b3e 3108 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3109 if (!skb)
3110 continue;
55a93b3e 3111
bec3cfdc
ED
3112 if (!head)
3113 head = skb;
3114 else
3115 tail->next = skb;
3116 /* If skb was segmented, skb->prev points to
3117 * the last segment. If not, it still contains skb.
3118 */
3119 tail = skb->prev;
55a93b3e
ED
3120 }
3121 return head;
f6a78bfc 3122}
104ba78c 3123EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3124
1def9238
ED
3125static void qdisc_pkt_len_init(struct sk_buff *skb)
3126{
3127 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3128
3129 qdisc_skb_cb(skb)->pkt_len = skb->len;
3130
3131 /* To get more precise estimation of bytes sent on wire,
3132 * we add to pkt_len the headers size of all segments
3133 */
3134 if (shinfo->gso_size) {
757b8b1d 3135 unsigned int hdr_len;
15e5a030 3136 u16 gso_segs = shinfo->gso_segs;
1def9238 3137
757b8b1d
ED
3138 /* mac layer + network layer */
3139 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3140
3141 /* + transport layer */
1def9238
ED
3142 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3143 hdr_len += tcp_hdrlen(skb);
3144 else
3145 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3146
3147 if (shinfo->gso_type & SKB_GSO_DODGY)
3148 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3149 shinfo->gso_size);
3150
3151 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3152 }
3153}
3154
bbd8a0d3
KK
3155static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3156 struct net_device *dev,
3157 struct netdev_queue *txq)
3158{
3159 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3160 struct sk_buff *to_free = NULL;
a2da570d 3161 bool contended;
bbd8a0d3
KK
3162 int rc;
3163
a2da570d 3164 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3165 /*
3166 * Heuristic to force contended enqueues to serialize on a
3167 * separate lock before trying to get qdisc main lock.
f9eb8aea 3168 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3169 * often and dequeue packets faster.
79640a4c 3170 */
a2da570d 3171 contended = qdisc_is_running(q);
79640a4c
ED
3172 if (unlikely(contended))
3173 spin_lock(&q->busylock);
3174
bbd8a0d3
KK
3175 spin_lock(root_lock);
3176 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3177 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3178 rc = NET_XMIT_DROP;
3179 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3180 qdisc_run_begin(q)) {
bbd8a0d3
KK
3181 /*
3182 * This is a work-conserving queue; there are no old skbs
3183 * waiting to be sent out; and the qdisc is not running -
3184 * xmit the skb directly.
3185 */
bfe0d029 3186
bfe0d029
ED
3187 qdisc_bstats_update(q, skb);
3188
55a93b3e 3189 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3190 if (unlikely(contended)) {
3191 spin_unlock(&q->busylock);
3192 contended = false;
3193 }
bbd8a0d3 3194 __qdisc_run(q);
79640a4c 3195 } else
bc135b23 3196 qdisc_run_end(q);
bbd8a0d3
KK
3197
3198 rc = NET_XMIT_SUCCESS;
3199 } else {
520ac30f 3200 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3201 if (qdisc_run_begin(q)) {
3202 if (unlikely(contended)) {
3203 spin_unlock(&q->busylock);
3204 contended = false;
3205 }
3206 __qdisc_run(q);
3207 }
bbd8a0d3
KK
3208 }
3209 spin_unlock(root_lock);
520ac30f
ED
3210 if (unlikely(to_free))
3211 kfree_skb_list(to_free);
79640a4c
ED
3212 if (unlikely(contended))
3213 spin_unlock(&q->busylock);
bbd8a0d3
KK
3214 return rc;
3215}
3216
86f8515f 3217#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3218static void skb_update_prio(struct sk_buff *skb)
3219{
6977a79d 3220 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3221
91c68ce2 3222 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3223 unsigned int prioidx =
3224 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3225
3226 if (prioidx < map->priomap_len)
3227 skb->priority = map->priomap[prioidx];
3228 }
5bc1421e
NH
3229}
3230#else
3231#define skb_update_prio(skb)
3232#endif
3233
f60e5990 3234DEFINE_PER_CPU(int, xmit_recursion);
3235EXPORT_SYMBOL(xmit_recursion);
3236
95603e22
MM
3237/**
3238 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3239 * @net: network namespace this loopback is happening in
3240 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3241 * @skb: buffer to transmit
3242 */
0c4b51f0 3243int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3244{
3245 skb_reset_mac_header(skb);
3246 __skb_pull(skb, skb_network_offset(skb));
3247 skb->pkt_type = PACKET_LOOPBACK;
3248 skb->ip_summed = CHECKSUM_UNNECESSARY;
3249 WARN_ON(!skb_dst(skb));
3250 skb_dst_force(skb);
3251 netif_rx_ni(skb);
3252 return 0;
3253}
3254EXPORT_SYMBOL(dev_loopback_xmit);
3255
1f211a1b
DB
3256#ifdef CONFIG_NET_EGRESS
3257static struct sk_buff *
3258sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3259{
46209401 3260 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3261 struct tcf_result cl_res;
3262
46209401 3263 if (!miniq)
1f211a1b
DB
3264 return skb;
3265
8dc07fdb 3266 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3267 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3268
46209401 3269 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3270 case TC_ACT_OK:
3271 case TC_ACT_RECLASSIFY:
3272 skb->tc_index = TC_H_MIN(cl_res.classid);
3273 break;
3274 case TC_ACT_SHOT:
46209401 3275 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3276 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3277 kfree_skb(skb);
3278 return NULL;
1f211a1b
DB
3279 case TC_ACT_STOLEN:
3280 case TC_ACT_QUEUED:
e25ea21f 3281 case TC_ACT_TRAP:
1f211a1b 3282 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3283 consume_skb(skb);
1f211a1b
DB
3284 return NULL;
3285 case TC_ACT_REDIRECT:
3286 /* No need to push/pop skb's mac_header here on egress! */
3287 skb_do_redirect(skb);
3288 *ret = NET_XMIT_SUCCESS;
3289 return NULL;
3290 default:
3291 break;
3292 }
3293
3294 return skb;
3295}
3296#endif /* CONFIG_NET_EGRESS */
3297
638b2a69
JP
3298static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3299{
3300#ifdef CONFIG_XPS
3301 struct xps_dev_maps *dev_maps;
3302 struct xps_map *map;
3303 int queue_index = -1;
3304
3305 rcu_read_lock();
3306 dev_maps = rcu_dereference(dev->xps_maps);
3307 if (dev_maps) {
184c449f
AD
3308 unsigned int tci = skb->sender_cpu - 1;
3309
3310 if (dev->num_tc) {
3311 tci *= dev->num_tc;
3312 tci += netdev_get_prio_tc_map(dev, skb->priority);
3313 }
3314
3315 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3316 if (map) {
3317 if (map->len == 1)
3318 queue_index = map->queues[0];
3319 else
3320 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3321 map->len)];
3322 if (unlikely(queue_index >= dev->real_num_tx_queues))
3323 queue_index = -1;
3324 }
3325 }
3326 rcu_read_unlock();
3327
3328 return queue_index;
3329#else
3330 return -1;
3331#endif
3332}
3333
3334static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3335{
3336 struct sock *sk = skb->sk;
3337 int queue_index = sk_tx_queue_get(sk);
3338
3339 if (queue_index < 0 || skb->ooo_okay ||
3340 queue_index >= dev->real_num_tx_queues) {
3341 int new_index = get_xps_queue(dev, skb);
f4563a75 3342
638b2a69
JP
3343 if (new_index < 0)
3344 new_index = skb_tx_hash(dev, skb);
3345
3346 if (queue_index != new_index && sk &&
004a5d01 3347 sk_fullsock(sk) &&
638b2a69
JP
3348 rcu_access_pointer(sk->sk_dst_cache))
3349 sk_tx_queue_set(sk, new_index);
3350
3351 queue_index = new_index;
3352 }
3353
3354 return queue_index;
3355}
3356
3357struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3358 struct sk_buff *skb,
3359 void *accel_priv)
3360{
3361 int queue_index = 0;
3362
3363#ifdef CONFIG_XPS
52bd2d62
ED
3364 u32 sender_cpu = skb->sender_cpu - 1;
3365
3366 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3367 skb->sender_cpu = raw_smp_processor_id() + 1;
3368#endif
3369
3370 if (dev->real_num_tx_queues != 1) {
3371 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3372
638b2a69
JP
3373 if (ops->ndo_select_queue)
3374 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3375 __netdev_pick_tx);
3376 else
3377 queue_index = __netdev_pick_tx(dev, skb);
3378
3379 if (!accel_priv)
3380 queue_index = netdev_cap_txqueue(dev, queue_index);
3381 }
3382
3383 skb_set_queue_mapping(skb, queue_index);
3384 return netdev_get_tx_queue(dev, queue_index);
3385}
3386
d29f749e 3387/**
9d08dd3d 3388 * __dev_queue_xmit - transmit a buffer
d29f749e 3389 * @skb: buffer to transmit
9d08dd3d 3390 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3391 *
3392 * Queue a buffer for transmission to a network device. The caller must
3393 * have set the device and priority and built the buffer before calling
3394 * this function. The function can be called from an interrupt.
3395 *
3396 * A negative errno code is returned on a failure. A success does not
3397 * guarantee the frame will be transmitted as it may be dropped due
3398 * to congestion or traffic shaping.
3399 *
3400 * -----------------------------------------------------------------------------------
3401 * I notice this method can also return errors from the queue disciplines,
3402 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3403 * be positive.
3404 *
3405 * Regardless of the return value, the skb is consumed, so it is currently
3406 * difficult to retry a send to this method. (You can bump the ref count
3407 * before sending to hold a reference for retry if you are careful.)
3408 *
3409 * When calling this method, interrupts MUST be enabled. This is because
3410 * the BH enable code must have IRQs enabled so that it will not deadlock.
3411 * --BLG
3412 */
0a59f3a9 3413static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3414{
3415 struct net_device *dev = skb->dev;
dc2b4847 3416 struct netdev_queue *txq;
1da177e4
LT
3417 struct Qdisc *q;
3418 int rc = -ENOMEM;
3419
6d1ccff6
ED
3420 skb_reset_mac_header(skb);
3421
e7fd2885
WB
3422 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3423 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3424
4ec93edb
YH
3425 /* Disable soft irqs for various locks below. Also
3426 * stops preemption for RCU.
1da177e4 3427 */
4ec93edb 3428 rcu_read_lock_bh();
1da177e4 3429
5bc1421e
NH
3430 skb_update_prio(skb);
3431
1f211a1b
DB
3432 qdisc_pkt_len_init(skb);
3433#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3434 skb->tc_at_ingress = 0;
1f211a1b
DB
3435# ifdef CONFIG_NET_EGRESS
3436 if (static_key_false(&egress_needed)) {
3437 skb = sch_handle_egress(skb, &rc, dev);
3438 if (!skb)
3439 goto out;
3440 }
3441# endif
3442#endif
02875878
ED
3443 /* If device/qdisc don't need skb->dst, release it right now while
3444 * its hot in this cpu cache.
3445 */
3446 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3447 skb_dst_drop(skb);
3448 else
3449 skb_dst_force(skb);
3450
f663dd9a 3451 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3452 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3453
cf66ba58 3454 trace_net_dev_queue(skb);
1da177e4 3455 if (q->enqueue) {
bbd8a0d3 3456 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3457 goto out;
1da177e4
LT
3458 }
3459
3460 /* The device has no queue. Common case for software devices:
eb13da1a 3461 * loopback, all the sorts of tunnels...
1da177e4 3462
eb13da1a 3463 * Really, it is unlikely that netif_tx_lock protection is necessary
3464 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3465 * counters.)
3466 * However, it is possible, that they rely on protection
3467 * made by us here.
1da177e4 3468
eb13da1a 3469 * Check this and shot the lock. It is not prone from deadlocks.
3470 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3471 */
3472 if (dev->flags & IFF_UP) {
3473 int cpu = smp_processor_id(); /* ok because BHs are off */
3474
c773e847 3475 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3476 if (unlikely(__this_cpu_read(xmit_recursion) >
3477 XMIT_RECURSION_LIMIT))
745e20f1
ED
3478 goto recursion_alert;
3479
1f59533f
JDB
3480 skb = validate_xmit_skb(skb, dev);
3481 if (!skb)
d21fd63e 3482 goto out;
1f59533f 3483
c773e847 3484 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3485
73466498 3486 if (!netif_xmit_stopped(txq)) {
745e20f1 3487 __this_cpu_inc(xmit_recursion);
ce93718f 3488 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3489 __this_cpu_dec(xmit_recursion);
572a9d7b 3490 if (dev_xmit_complete(rc)) {
c773e847 3491 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3492 goto out;
3493 }
3494 }
c773e847 3495 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3496 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3497 dev->name);
1da177e4
LT
3498 } else {
3499 /* Recursion is detected! It is possible,
745e20f1
ED
3500 * unfortunately
3501 */
3502recursion_alert:
e87cc472
JP
3503 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3504 dev->name);
1da177e4
LT
3505 }
3506 }
3507
3508 rc = -ENETDOWN;
d4828d85 3509 rcu_read_unlock_bh();
1da177e4 3510
015f0688 3511 atomic_long_inc(&dev->tx_dropped);
1f59533f 3512 kfree_skb_list(skb);
1da177e4
LT
3513 return rc;
3514out:
d4828d85 3515 rcu_read_unlock_bh();
1da177e4
LT
3516 return rc;
3517}
f663dd9a 3518
2b4aa3ce 3519int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3520{
3521 return __dev_queue_xmit(skb, NULL);
3522}
2b4aa3ce 3523EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3524
f663dd9a
JW
3525int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3526{
3527 return __dev_queue_xmit(skb, accel_priv);
3528}
3529EXPORT_SYMBOL(dev_queue_xmit_accel);
3530
1da177e4 3531
eb13da1a 3532/*************************************************************************
3533 * Receiver routines
3534 *************************************************************************/
1da177e4 3535
6b2bedc3 3536int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3537EXPORT_SYMBOL(netdev_max_backlog);
3538
3b098e2d 3539int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3540int netdev_budget __read_mostly = 300;
7acf8a1e 3541unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3542int weight_p __read_mostly = 64; /* old backlog weight */
3543int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3544int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3545int dev_rx_weight __read_mostly = 64;
3546int dev_tx_weight __read_mostly = 64;
1da177e4 3547
eecfd7c4
ED
3548/* Called with irq disabled */
3549static inline void ____napi_schedule(struct softnet_data *sd,
3550 struct napi_struct *napi)
3551{
3552 list_add_tail(&napi->poll_list, &sd->poll_list);
3553 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3554}
3555
bfb564e7
KK
3556#ifdef CONFIG_RPS
3557
3558/* One global table that all flow-based protocols share. */
6e3f7faf 3559struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3560EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3561u32 rps_cpu_mask __read_mostly;
3562EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3563
c5905afb 3564struct static_key rps_needed __read_mostly;
3df97ba8 3565EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3566struct static_key rfs_needed __read_mostly;
3567EXPORT_SYMBOL(rfs_needed);
adc9300e 3568
c445477d
BH
3569static struct rps_dev_flow *
3570set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3571 struct rps_dev_flow *rflow, u16 next_cpu)
3572{
a31196b0 3573 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3574#ifdef CONFIG_RFS_ACCEL
3575 struct netdev_rx_queue *rxqueue;
3576 struct rps_dev_flow_table *flow_table;
3577 struct rps_dev_flow *old_rflow;
3578 u32 flow_id;
3579 u16 rxq_index;
3580 int rc;
3581
3582 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3583 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3584 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3585 goto out;
3586 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3587 if (rxq_index == skb_get_rx_queue(skb))
3588 goto out;
3589
3590 rxqueue = dev->_rx + rxq_index;
3591 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3592 if (!flow_table)
3593 goto out;
61b905da 3594 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3595 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3596 rxq_index, flow_id);
3597 if (rc < 0)
3598 goto out;
3599 old_rflow = rflow;
3600 rflow = &flow_table->flows[flow_id];
c445477d
BH
3601 rflow->filter = rc;
3602 if (old_rflow->filter == rflow->filter)
3603 old_rflow->filter = RPS_NO_FILTER;
3604 out:
3605#endif
3606 rflow->last_qtail =
09994d1b 3607 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3608 }
3609
09994d1b 3610 rflow->cpu = next_cpu;
c445477d
BH
3611 return rflow;
3612}
3613
bfb564e7
KK
3614/*
3615 * get_rps_cpu is called from netif_receive_skb and returns the target
3616 * CPU from the RPS map of the receiving queue for a given skb.
3617 * rcu_read_lock must be held on entry.
3618 */
3619static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3620 struct rps_dev_flow **rflowp)
3621{
567e4b79
ED
3622 const struct rps_sock_flow_table *sock_flow_table;
3623 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3624 struct rps_dev_flow_table *flow_table;
567e4b79 3625 struct rps_map *map;
bfb564e7 3626 int cpu = -1;
567e4b79 3627 u32 tcpu;
61b905da 3628 u32 hash;
bfb564e7
KK
3629
3630 if (skb_rx_queue_recorded(skb)) {
3631 u16 index = skb_get_rx_queue(skb);
567e4b79 3632
62fe0b40
BH
3633 if (unlikely(index >= dev->real_num_rx_queues)) {
3634 WARN_ONCE(dev->real_num_rx_queues > 1,
3635 "%s received packet on queue %u, but number "
3636 "of RX queues is %u\n",
3637 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3638 goto done;
3639 }
567e4b79
ED
3640 rxqueue += index;
3641 }
bfb564e7 3642
567e4b79
ED
3643 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3644
3645 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3646 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3647 if (!flow_table && !map)
bfb564e7
KK
3648 goto done;
3649
2d47b459 3650 skb_reset_network_header(skb);
61b905da
TH
3651 hash = skb_get_hash(skb);
3652 if (!hash)
bfb564e7
KK
3653 goto done;
3654
fec5e652
TH
3655 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3656 if (flow_table && sock_flow_table) {
fec5e652 3657 struct rps_dev_flow *rflow;
567e4b79
ED
3658 u32 next_cpu;
3659 u32 ident;
3660
3661 /* First check into global flow table if there is a match */
3662 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3663 if ((ident ^ hash) & ~rps_cpu_mask)
3664 goto try_rps;
fec5e652 3665
567e4b79
ED
3666 next_cpu = ident & rps_cpu_mask;
3667
3668 /* OK, now we know there is a match,
3669 * we can look at the local (per receive queue) flow table
3670 */
61b905da 3671 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3672 tcpu = rflow->cpu;
3673
fec5e652
TH
3674 /*
3675 * If the desired CPU (where last recvmsg was done) is
3676 * different from current CPU (one in the rx-queue flow
3677 * table entry), switch if one of the following holds:
a31196b0 3678 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3679 * - Current CPU is offline.
3680 * - The current CPU's queue tail has advanced beyond the
3681 * last packet that was enqueued using this table entry.
3682 * This guarantees that all previous packets for the flow
3683 * have been dequeued, thus preserving in order delivery.
3684 */
3685 if (unlikely(tcpu != next_cpu) &&
a31196b0 3686 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3687 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3688 rflow->last_qtail)) >= 0)) {
3689 tcpu = next_cpu;
c445477d 3690 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3691 }
c445477d 3692
a31196b0 3693 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3694 *rflowp = rflow;
3695 cpu = tcpu;
3696 goto done;
3697 }
3698 }
3699
567e4b79
ED
3700try_rps:
3701
0a9627f2 3702 if (map) {
8fc54f68 3703 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3704 if (cpu_online(tcpu)) {
3705 cpu = tcpu;
3706 goto done;
3707 }
3708 }
3709
3710done:
0a9627f2
TH
3711 return cpu;
3712}
3713
c445477d
BH
3714#ifdef CONFIG_RFS_ACCEL
3715
3716/**
3717 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3718 * @dev: Device on which the filter was set
3719 * @rxq_index: RX queue index
3720 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3721 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3722 *
3723 * Drivers that implement ndo_rx_flow_steer() should periodically call
3724 * this function for each installed filter and remove the filters for
3725 * which it returns %true.
3726 */
3727bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3728 u32 flow_id, u16 filter_id)
3729{
3730 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3731 struct rps_dev_flow_table *flow_table;
3732 struct rps_dev_flow *rflow;
3733 bool expire = true;
a31196b0 3734 unsigned int cpu;
c445477d
BH
3735
3736 rcu_read_lock();
3737 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3738 if (flow_table && flow_id <= flow_table->mask) {
3739 rflow = &flow_table->flows[flow_id];
6aa7de05 3740 cpu = READ_ONCE(rflow->cpu);
a31196b0 3741 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3742 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3743 rflow->last_qtail) <
3744 (int)(10 * flow_table->mask)))
3745 expire = false;
3746 }
3747 rcu_read_unlock();
3748 return expire;
3749}
3750EXPORT_SYMBOL(rps_may_expire_flow);
3751
3752#endif /* CONFIG_RFS_ACCEL */
3753
0a9627f2 3754/* Called from hardirq (IPI) context */
e36fa2f7 3755static void rps_trigger_softirq(void *data)
0a9627f2 3756{
e36fa2f7
ED
3757 struct softnet_data *sd = data;
3758
eecfd7c4 3759 ____napi_schedule(sd, &sd->backlog);
dee42870 3760 sd->received_rps++;
0a9627f2 3761}
e36fa2f7 3762
fec5e652 3763#endif /* CONFIG_RPS */
0a9627f2 3764
e36fa2f7
ED
3765/*
3766 * Check if this softnet_data structure is another cpu one
3767 * If yes, queue it to our IPI list and return 1
3768 * If no, return 0
3769 */
3770static int rps_ipi_queued(struct softnet_data *sd)
3771{
3772#ifdef CONFIG_RPS
903ceff7 3773 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3774
3775 if (sd != mysd) {
3776 sd->rps_ipi_next = mysd->rps_ipi_list;
3777 mysd->rps_ipi_list = sd;
3778
3779 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3780 return 1;
3781 }
3782#endif /* CONFIG_RPS */
3783 return 0;
3784}
3785
99bbc707
WB
3786#ifdef CONFIG_NET_FLOW_LIMIT
3787int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3788#endif
3789
3790static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3791{
3792#ifdef CONFIG_NET_FLOW_LIMIT
3793 struct sd_flow_limit *fl;
3794 struct softnet_data *sd;
3795 unsigned int old_flow, new_flow;
3796
3797 if (qlen < (netdev_max_backlog >> 1))
3798 return false;
3799
903ceff7 3800 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3801
3802 rcu_read_lock();
3803 fl = rcu_dereference(sd->flow_limit);
3804 if (fl) {
3958afa1 3805 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3806 old_flow = fl->history[fl->history_head];
3807 fl->history[fl->history_head] = new_flow;
3808
3809 fl->history_head++;
3810 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3811
3812 if (likely(fl->buckets[old_flow]))
3813 fl->buckets[old_flow]--;
3814
3815 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3816 fl->count++;
3817 rcu_read_unlock();
3818 return true;
3819 }
3820 }
3821 rcu_read_unlock();
3822#endif
3823 return false;
3824}
3825
0a9627f2
TH
3826/*
3827 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3828 * queue (may be a remote CPU queue).
3829 */
fec5e652
TH
3830static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3831 unsigned int *qtail)
0a9627f2 3832{
e36fa2f7 3833 struct softnet_data *sd;
0a9627f2 3834 unsigned long flags;
99bbc707 3835 unsigned int qlen;
0a9627f2 3836
e36fa2f7 3837 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3838
3839 local_irq_save(flags);
0a9627f2 3840
e36fa2f7 3841 rps_lock(sd);
e9e4dd32
JA
3842 if (!netif_running(skb->dev))
3843 goto drop;
99bbc707
WB
3844 qlen = skb_queue_len(&sd->input_pkt_queue);
3845 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3846 if (qlen) {
0a9627f2 3847enqueue:
e36fa2f7 3848 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3849 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3850 rps_unlock(sd);
152102c7 3851 local_irq_restore(flags);
0a9627f2
TH
3852 return NET_RX_SUCCESS;
3853 }
3854
ebda37c2
ED
3855 /* Schedule NAPI for backlog device
3856 * We can use non atomic operation since we own the queue lock
3857 */
3858 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3859 if (!rps_ipi_queued(sd))
eecfd7c4 3860 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3861 }
3862 goto enqueue;
3863 }
3864
e9e4dd32 3865drop:
dee42870 3866 sd->dropped++;
e36fa2f7 3867 rps_unlock(sd);
0a9627f2 3868
0a9627f2
TH
3869 local_irq_restore(flags);
3870
caf586e5 3871 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3872 kfree_skb(skb);
3873 return NET_RX_DROP;
3874}
1da177e4 3875
d4455169
JF
3876static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3877 struct bpf_prog *xdp_prog)
3878{
de8f3a83 3879 u32 metalen, act = XDP_DROP;
d4455169 3880 struct xdp_buff xdp;
d4455169
JF
3881 void *orig_data;
3882 int hlen, off;
3883 u32 mac_len;
3884
3885 /* Reinjected packets coming from act_mirred or similar should
3886 * not get XDP generic processing.
3887 */
3888 if (skb_cloned(skb))
3889 return XDP_PASS;
3890
de8f3a83
DB
3891 /* XDP packets must be linear and must have sufficient headroom
3892 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3893 * native XDP provides, thus we need to do it here as well.
3894 */
3895 if (skb_is_nonlinear(skb) ||
3896 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3897 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3898 int troom = skb->tail + skb->data_len - skb->end;
3899
3900 /* In case we have to go down the path and also linearize,
3901 * then lets do the pskb_expand_head() work just once here.
3902 */
3903 if (pskb_expand_head(skb,
3904 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3905 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3906 goto do_drop;
3907 if (troom > 0 && __skb_linearize(skb))
3908 goto do_drop;
3909 }
d4455169
JF
3910
3911 /* The XDP program wants to see the packet starting at the MAC
3912 * header.
3913 */
3914 mac_len = skb->data - skb_mac_header(skb);
3915 hlen = skb_headlen(skb) + mac_len;
3916 xdp.data = skb->data - mac_len;
de8f3a83 3917 xdp.data_meta = xdp.data;
d4455169
JF
3918 xdp.data_end = xdp.data + hlen;
3919 xdp.data_hard_start = skb->data - skb_headroom(skb);
3920 orig_data = xdp.data;
3921
3922 act = bpf_prog_run_xdp(xdp_prog, &xdp);
3923
3924 off = xdp.data - orig_data;
3925 if (off > 0)
3926 __skb_pull(skb, off);
3927 else if (off < 0)
3928 __skb_push(skb, -off);
92dd5452 3929 skb->mac_header += off;
d4455169
JF
3930
3931 switch (act) {
6103aa96 3932 case XDP_REDIRECT:
d4455169
JF
3933 case XDP_TX:
3934 __skb_push(skb, mac_len);
de8f3a83 3935 break;
d4455169 3936 case XDP_PASS:
de8f3a83
DB
3937 metalen = xdp.data - xdp.data_meta;
3938 if (metalen)
3939 skb_metadata_set(skb, metalen);
d4455169 3940 break;
d4455169
JF
3941 default:
3942 bpf_warn_invalid_xdp_action(act);
3943 /* fall through */
3944 case XDP_ABORTED:
3945 trace_xdp_exception(skb->dev, xdp_prog, act);
3946 /* fall through */
3947 case XDP_DROP:
3948 do_drop:
3949 kfree_skb(skb);
3950 break;
3951 }
3952
3953 return act;
3954}
3955
3956/* When doing generic XDP we have to bypass the qdisc layer and the
3957 * network taps in order to match in-driver-XDP behavior.
3958 */
7c497478 3959void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
3960{
3961 struct net_device *dev = skb->dev;
3962 struct netdev_queue *txq;
3963 bool free_skb = true;
3964 int cpu, rc;
3965
3966 txq = netdev_pick_tx(dev, skb, NULL);
3967 cpu = smp_processor_id();
3968 HARD_TX_LOCK(dev, txq, cpu);
3969 if (!netif_xmit_stopped(txq)) {
3970 rc = netdev_start_xmit(skb, dev, txq, 0);
3971 if (dev_xmit_complete(rc))
3972 free_skb = false;
3973 }
3974 HARD_TX_UNLOCK(dev, txq);
3975 if (free_skb) {
3976 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3977 kfree_skb(skb);
3978 }
3979}
7c497478 3980EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169
JF
3981
3982static struct static_key generic_xdp_needed __read_mostly;
3983
7c497478 3984int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 3985{
d4455169
JF
3986 if (xdp_prog) {
3987 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
6103aa96 3988 int err;
d4455169
JF
3989
3990 if (act != XDP_PASS) {
6103aa96
JF
3991 switch (act) {
3992 case XDP_REDIRECT:
2facaad6
JDB
3993 err = xdp_do_generic_redirect(skb->dev, skb,
3994 xdp_prog);
6103aa96
JF
3995 if (err)
3996 goto out_redir;
3997 /* fallthru to submit skb */
3998 case XDP_TX:
d4455169 3999 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4000 break;
4001 }
d4455169
JF
4002 return XDP_DROP;
4003 }
4004 }
4005 return XDP_PASS;
6103aa96 4006out_redir:
6103aa96
JF
4007 kfree_skb(skb);
4008 return XDP_DROP;
d4455169 4009}
7c497478 4010EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4011
ae78dbfa 4012static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4013{
b0e28f1e 4014 int ret;
1da177e4 4015
588f0330 4016 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4017
cf66ba58 4018 trace_netif_rx(skb);
d4455169
JF
4019
4020 if (static_key_false(&generic_xdp_needed)) {
bbbe211c
JF
4021 int ret;
4022
4023 preempt_disable();
4024 rcu_read_lock();
4025 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4026 rcu_read_unlock();
4027 preempt_enable();
d4455169 4028
6103aa96
JF
4029 /* Consider XDP consuming the packet a success from
4030 * the netdev point of view we do not want to count
4031 * this as an error.
4032 */
d4455169 4033 if (ret != XDP_PASS)
6103aa96 4034 return NET_RX_SUCCESS;
d4455169
JF
4035 }
4036
df334545 4037#ifdef CONFIG_RPS
c5905afb 4038 if (static_key_false(&rps_needed)) {
fec5e652 4039 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4040 int cpu;
4041
cece1945 4042 preempt_disable();
b0e28f1e 4043 rcu_read_lock();
fec5e652
TH
4044
4045 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4046 if (cpu < 0)
4047 cpu = smp_processor_id();
fec5e652
TH
4048
4049 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4050
b0e28f1e 4051 rcu_read_unlock();
cece1945 4052 preempt_enable();
adc9300e
ED
4053 } else
4054#endif
fec5e652
TH
4055 {
4056 unsigned int qtail;
f4563a75 4057
fec5e652
TH
4058 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4059 put_cpu();
4060 }
b0e28f1e 4061 return ret;
1da177e4 4062}
ae78dbfa
BH
4063
4064/**
4065 * netif_rx - post buffer to the network code
4066 * @skb: buffer to post
4067 *
4068 * This function receives a packet from a device driver and queues it for
4069 * the upper (protocol) levels to process. It always succeeds. The buffer
4070 * may be dropped during processing for congestion control or by the
4071 * protocol layers.
4072 *
4073 * return values:
4074 * NET_RX_SUCCESS (no congestion)
4075 * NET_RX_DROP (packet was dropped)
4076 *
4077 */
4078
4079int netif_rx(struct sk_buff *skb)
4080{
4081 trace_netif_rx_entry(skb);
4082
4083 return netif_rx_internal(skb);
4084}
d1b19dff 4085EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4086
4087int netif_rx_ni(struct sk_buff *skb)
4088{
4089 int err;
4090
ae78dbfa
BH
4091 trace_netif_rx_ni_entry(skb);
4092
1da177e4 4093 preempt_disable();
ae78dbfa 4094 err = netif_rx_internal(skb);
1da177e4
LT
4095 if (local_softirq_pending())
4096 do_softirq();
4097 preempt_enable();
4098
4099 return err;
4100}
1da177e4
LT
4101EXPORT_SYMBOL(netif_rx_ni);
4102
0766f788 4103static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4104{
903ceff7 4105 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4106
4107 if (sd->completion_queue) {
4108 struct sk_buff *clist;
4109
4110 local_irq_disable();
4111 clist = sd->completion_queue;
4112 sd->completion_queue = NULL;
4113 local_irq_enable();
4114
4115 while (clist) {
4116 struct sk_buff *skb = clist;
f4563a75 4117
1da177e4
LT
4118 clist = clist->next;
4119
63354797 4120 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4121 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4122 trace_consume_skb(skb);
4123 else
4124 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4125
4126 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4127 __kfree_skb(skb);
4128 else
4129 __kfree_skb_defer(skb);
1da177e4 4130 }
15fad714
JDB
4131
4132 __kfree_skb_flush();
1da177e4
LT
4133 }
4134
4135 if (sd->output_queue) {
37437bb2 4136 struct Qdisc *head;
1da177e4
LT
4137
4138 local_irq_disable();
4139 head = sd->output_queue;
4140 sd->output_queue = NULL;
a9cbd588 4141 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4142 local_irq_enable();
4143
4144 while (head) {
37437bb2
DM
4145 struct Qdisc *q = head;
4146 spinlock_t *root_lock;
4147
1da177e4
LT
4148 head = head->next_sched;
4149
5fb66229 4150 root_lock = qdisc_lock(q);
3bcb846c
ED
4151 spin_lock(root_lock);
4152 /* We need to make sure head->next_sched is read
4153 * before clearing __QDISC_STATE_SCHED
4154 */
4155 smp_mb__before_atomic();
4156 clear_bit(__QDISC_STATE_SCHED, &q->state);
4157 qdisc_run(q);
4158 spin_unlock(root_lock);
1da177e4
LT
4159 }
4160 }
4161}
4162
181402a5 4163#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4164/* This hook is defined here for ATM LANE */
4165int (*br_fdb_test_addr_hook)(struct net_device *dev,
4166 unsigned char *addr) __read_mostly;
4fb019a0 4167EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4168#endif
1da177e4 4169
1f211a1b
DB
4170static inline struct sk_buff *
4171sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4172 struct net_device *orig_dev)
f697c3e8 4173{
e7582bab 4174#ifdef CONFIG_NET_CLS_ACT
46209401 4175 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4176 struct tcf_result cl_res;
24824a09 4177
c9e99fd0
DB
4178 /* If there's at least one ingress present somewhere (so
4179 * we get here via enabled static key), remaining devices
4180 * that are not configured with an ingress qdisc will bail
d2788d34 4181 * out here.
c9e99fd0 4182 */
46209401 4183 if (!miniq)
4577139b 4184 return skb;
46209401 4185
f697c3e8
HX
4186 if (*pt_prev) {
4187 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4188 *pt_prev = NULL;
1da177e4
LT
4189 }
4190
3365495c 4191 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4192 skb->tc_at_ingress = 1;
46209401 4193 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4194
46209401 4195 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
4196 case TC_ACT_OK:
4197 case TC_ACT_RECLASSIFY:
4198 skb->tc_index = TC_H_MIN(cl_res.classid);
4199 break;
4200 case TC_ACT_SHOT:
46209401 4201 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4202 kfree_skb(skb);
4203 return NULL;
d2788d34
DB
4204 case TC_ACT_STOLEN:
4205 case TC_ACT_QUEUED:
e25ea21f 4206 case TC_ACT_TRAP:
8a3a4c6e 4207 consume_skb(skb);
d2788d34 4208 return NULL;
27b29f63
AS
4209 case TC_ACT_REDIRECT:
4210 /* skb_mac_header check was done by cls/act_bpf, so
4211 * we can safely push the L2 header back before
4212 * redirecting to another netdev
4213 */
4214 __skb_push(skb, skb->mac_len);
4215 skb_do_redirect(skb);
4216 return NULL;
d2788d34
DB
4217 default:
4218 break;
f697c3e8 4219 }
e7582bab 4220#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4221 return skb;
4222}
1da177e4 4223
24b27fc4
MB
4224/**
4225 * netdev_is_rx_handler_busy - check if receive handler is registered
4226 * @dev: device to check
4227 *
4228 * Check if a receive handler is already registered for a given device.
4229 * Return true if there one.
4230 *
4231 * The caller must hold the rtnl_mutex.
4232 */
4233bool netdev_is_rx_handler_busy(struct net_device *dev)
4234{
4235 ASSERT_RTNL();
4236 return dev && rtnl_dereference(dev->rx_handler);
4237}
4238EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4239
ab95bfe0
JP
4240/**
4241 * netdev_rx_handler_register - register receive handler
4242 * @dev: device to register a handler for
4243 * @rx_handler: receive handler to register
93e2c32b 4244 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4245 *
e227867f 4246 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4247 * called from __netif_receive_skb. A negative errno code is returned
4248 * on a failure.
4249 *
4250 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4251 *
4252 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4253 */
4254int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4255 rx_handler_func_t *rx_handler,
4256 void *rx_handler_data)
ab95bfe0 4257{
1b7cd004 4258 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4259 return -EBUSY;
4260
00cfec37 4261 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4262 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4263 rcu_assign_pointer(dev->rx_handler, rx_handler);
4264
4265 return 0;
4266}
4267EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4268
4269/**
4270 * netdev_rx_handler_unregister - unregister receive handler
4271 * @dev: device to unregister a handler from
4272 *
166ec369 4273 * Unregister a receive handler from a device.
ab95bfe0
JP
4274 *
4275 * The caller must hold the rtnl_mutex.
4276 */
4277void netdev_rx_handler_unregister(struct net_device *dev)
4278{
4279
4280 ASSERT_RTNL();
a9b3cd7f 4281 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4282 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4283 * section has a guarantee to see a non NULL rx_handler_data
4284 * as well.
4285 */
4286 synchronize_net();
a9b3cd7f 4287 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4288}
4289EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4290
b4b9e355
MG
4291/*
4292 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4293 * the special handling of PFMEMALLOC skbs.
4294 */
4295static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4296{
4297 switch (skb->protocol) {
2b8837ae
JP
4298 case htons(ETH_P_ARP):
4299 case htons(ETH_P_IP):
4300 case htons(ETH_P_IPV6):
4301 case htons(ETH_P_8021Q):
4302 case htons(ETH_P_8021AD):
b4b9e355
MG
4303 return true;
4304 default:
4305 return false;
4306 }
4307}
4308
e687ad60
PN
4309static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4310 int *ret, struct net_device *orig_dev)
4311{
e7582bab 4312#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4313 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4314 int ingress_retval;
4315
e687ad60
PN
4316 if (*pt_prev) {
4317 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4318 *pt_prev = NULL;
4319 }
4320
2c1e2703
AC
4321 rcu_read_lock();
4322 ingress_retval = nf_hook_ingress(skb);
4323 rcu_read_unlock();
4324 return ingress_retval;
e687ad60 4325 }
e7582bab 4326#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4327 return 0;
4328}
e687ad60 4329
9754e293 4330static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4331{
4332 struct packet_type *ptype, *pt_prev;
ab95bfe0 4333 rx_handler_func_t *rx_handler;
f2ccd8fa 4334 struct net_device *orig_dev;
8a4eb573 4335 bool deliver_exact = false;
1da177e4 4336 int ret = NET_RX_DROP;
252e3346 4337 __be16 type;
1da177e4 4338
588f0330 4339 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4340
cf66ba58 4341 trace_netif_receive_skb(skb);
9b22ea56 4342
cc9bd5ce 4343 orig_dev = skb->dev;
8f903c70 4344
c1d2bbe1 4345 skb_reset_network_header(skb);
fda55eca
ED
4346 if (!skb_transport_header_was_set(skb))
4347 skb_reset_transport_header(skb);
0b5c9db1 4348 skb_reset_mac_len(skb);
1da177e4
LT
4349
4350 pt_prev = NULL;
4351
63d8ea7f 4352another_round:
b6858177 4353 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4354
4355 __this_cpu_inc(softnet_data.processed);
4356
8ad227ff
PM
4357 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4358 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4359 skb = skb_vlan_untag(skb);
bcc6d479 4360 if (unlikely(!skb))
2c17d27c 4361 goto out;
bcc6d479
JP
4362 }
4363
e7246e12
WB
4364 if (skb_skip_tc_classify(skb))
4365 goto skip_classify;
1da177e4 4366
9754e293 4367 if (pfmemalloc)
b4b9e355
MG
4368 goto skip_taps;
4369
1da177e4 4370 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4371 if (pt_prev)
4372 ret = deliver_skb(skb, pt_prev, orig_dev);
4373 pt_prev = ptype;
4374 }
4375
4376 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4377 if (pt_prev)
4378 ret = deliver_skb(skb, pt_prev, orig_dev);
4379 pt_prev = ptype;
1da177e4
LT
4380 }
4381
b4b9e355 4382skip_taps:
1cf51900 4383#ifdef CONFIG_NET_INGRESS
4577139b 4384 if (static_key_false(&ingress_needed)) {
1f211a1b 4385 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4386 if (!skb)
2c17d27c 4387 goto out;
e687ad60
PN
4388
4389 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4390 goto out;
4577139b 4391 }
1cf51900 4392#endif
a5135bcf 4393 skb_reset_tc(skb);
e7246e12 4394skip_classify:
9754e293 4395 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4396 goto drop;
4397
df8a39de 4398 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4399 if (pt_prev) {
4400 ret = deliver_skb(skb, pt_prev, orig_dev);
4401 pt_prev = NULL;
4402 }
48cc32d3 4403 if (vlan_do_receive(&skb))
2425717b
JF
4404 goto another_round;
4405 else if (unlikely(!skb))
2c17d27c 4406 goto out;
2425717b
JF
4407 }
4408
48cc32d3 4409 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4410 if (rx_handler) {
4411 if (pt_prev) {
4412 ret = deliver_skb(skb, pt_prev, orig_dev);
4413 pt_prev = NULL;
4414 }
8a4eb573
JP
4415 switch (rx_handler(&skb)) {
4416 case RX_HANDLER_CONSUMED:
3bc1b1ad 4417 ret = NET_RX_SUCCESS;
2c17d27c 4418 goto out;
8a4eb573 4419 case RX_HANDLER_ANOTHER:
63d8ea7f 4420 goto another_round;
8a4eb573
JP
4421 case RX_HANDLER_EXACT:
4422 deliver_exact = true;
4423 case RX_HANDLER_PASS:
4424 break;
4425 default:
4426 BUG();
4427 }
ab95bfe0 4428 }
1da177e4 4429
df8a39de
JP
4430 if (unlikely(skb_vlan_tag_present(skb))) {
4431 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4432 skb->pkt_type = PACKET_OTHERHOST;
4433 /* Note: we might in the future use prio bits
4434 * and set skb->priority like in vlan_do_receive()
4435 * For the time being, just ignore Priority Code Point
4436 */
4437 skb->vlan_tci = 0;
4438 }
48cc32d3 4439
7866a621
SN
4440 type = skb->protocol;
4441
63d8ea7f 4442 /* deliver only exact match when indicated */
7866a621
SN
4443 if (likely(!deliver_exact)) {
4444 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4445 &ptype_base[ntohs(type) &
4446 PTYPE_HASH_MASK]);
4447 }
1f3c8804 4448
7866a621
SN
4449 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4450 &orig_dev->ptype_specific);
4451
4452 if (unlikely(skb->dev != orig_dev)) {
4453 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4454 &skb->dev->ptype_specific);
1da177e4
LT
4455 }
4456
4457 if (pt_prev) {
1f8b977a 4458 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4459 goto drop;
1080e512
MT
4460 else
4461 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4462 } else {
b4b9e355 4463drop:
6e7333d3
JW
4464 if (!deliver_exact)
4465 atomic_long_inc(&skb->dev->rx_dropped);
4466 else
4467 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4468 kfree_skb(skb);
4469 /* Jamal, now you will not able to escape explaining
4470 * me how you were going to use this. :-)
4471 */
4472 ret = NET_RX_DROP;
4473 }
4474
2c17d27c 4475out:
9754e293
DM
4476 return ret;
4477}
4478
1c601d82
JDB
4479/**
4480 * netif_receive_skb_core - special purpose version of netif_receive_skb
4481 * @skb: buffer to process
4482 *
4483 * More direct receive version of netif_receive_skb(). It should
4484 * only be used by callers that have a need to skip RPS and Generic XDP.
4485 * Caller must also take care of handling if (page_is_)pfmemalloc.
4486 *
4487 * This function may only be called from softirq context and interrupts
4488 * should be enabled.
4489 *
4490 * Return values (usually ignored):
4491 * NET_RX_SUCCESS: no congestion
4492 * NET_RX_DROP: packet was dropped
4493 */
4494int netif_receive_skb_core(struct sk_buff *skb)
4495{
4496 int ret;
4497
4498 rcu_read_lock();
4499 ret = __netif_receive_skb_core(skb, false);
4500 rcu_read_unlock();
4501
4502 return ret;
4503}
4504EXPORT_SYMBOL(netif_receive_skb_core);
4505
9754e293
DM
4506static int __netif_receive_skb(struct sk_buff *skb)
4507{
4508 int ret;
4509
4510 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 4511 unsigned int noreclaim_flag;
9754e293
DM
4512
4513 /*
4514 * PFMEMALLOC skbs are special, they should
4515 * - be delivered to SOCK_MEMALLOC sockets only
4516 * - stay away from userspace
4517 * - have bounded memory usage
4518 *
4519 * Use PF_MEMALLOC as this saves us from propagating the allocation
4520 * context down to all allocation sites.
4521 */
f1083048 4522 noreclaim_flag = memalloc_noreclaim_save();
9754e293 4523 ret = __netif_receive_skb_core(skb, true);
f1083048 4524 memalloc_noreclaim_restore(noreclaim_flag);
9754e293
DM
4525 } else
4526 ret = __netif_receive_skb_core(skb, false);
4527
1da177e4
LT
4528 return ret;
4529}
0a9627f2 4530
f4e63525 4531static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 4532{
58038695 4533 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
4534 struct bpf_prog *new = xdp->prog;
4535 int ret = 0;
4536
4537 switch (xdp->command) {
58038695 4538 case XDP_SETUP_PROG:
b5cdae32
DM
4539 rcu_assign_pointer(dev->xdp_prog, new);
4540 if (old)
4541 bpf_prog_put(old);
4542
4543 if (old && !new) {
4544 static_key_slow_dec(&generic_xdp_needed);
4545 } else if (new && !old) {
4546 static_key_slow_inc(&generic_xdp_needed);
4547 dev_disable_lro(dev);
4548 }
4549 break;
b5cdae32
DM
4550
4551 case XDP_QUERY_PROG:
58038695
MKL
4552 xdp->prog_attached = !!old;
4553 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
4554 break;
4555
4556 default:
4557 ret = -EINVAL;
4558 break;
4559 }
4560
4561 return ret;
4562}
4563
ae78dbfa 4564static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4565{
2c17d27c
JA
4566 int ret;
4567
588f0330 4568 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4569
c1f19b51
RC
4570 if (skb_defer_rx_timestamp(skb))
4571 return NET_RX_SUCCESS;
4572
b5cdae32 4573 if (static_key_false(&generic_xdp_needed)) {
bbbe211c 4574 int ret;
b5cdae32 4575
bbbe211c
JF
4576 preempt_disable();
4577 rcu_read_lock();
4578 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4579 rcu_read_unlock();
4580 preempt_enable();
4581
4582 if (ret != XDP_PASS)
d4455169 4583 return NET_RX_DROP;
b5cdae32
DM
4584 }
4585
bbbe211c 4586 rcu_read_lock();
df334545 4587#ifdef CONFIG_RPS
c5905afb 4588 if (static_key_false(&rps_needed)) {
3b098e2d 4589 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4590 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4591
3b098e2d
ED
4592 if (cpu >= 0) {
4593 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4594 rcu_read_unlock();
adc9300e 4595 return ret;
3b098e2d 4596 }
fec5e652 4597 }
1e94d72f 4598#endif
2c17d27c
JA
4599 ret = __netif_receive_skb(skb);
4600 rcu_read_unlock();
4601 return ret;
0a9627f2 4602}
ae78dbfa
BH
4603
4604/**
4605 * netif_receive_skb - process receive buffer from network
4606 * @skb: buffer to process
4607 *
4608 * netif_receive_skb() is the main receive data processing function.
4609 * It always succeeds. The buffer may be dropped during processing
4610 * for congestion control or by the protocol layers.
4611 *
4612 * This function may only be called from softirq context and interrupts
4613 * should be enabled.
4614 *
4615 * Return values (usually ignored):
4616 * NET_RX_SUCCESS: no congestion
4617 * NET_RX_DROP: packet was dropped
4618 */
04eb4489 4619int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4620{
4621 trace_netif_receive_skb_entry(skb);
4622
4623 return netif_receive_skb_internal(skb);
4624}
04eb4489 4625EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4626
41852497 4627DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4628
4629/* Network device is going away, flush any packets still pending */
4630static void flush_backlog(struct work_struct *work)
6e583ce5 4631{
6e583ce5 4632 struct sk_buff *skb, *tmp;
145dd5f9
PA
4633 struct softnet_data *sd;
4634
4635 local_bh_disable();
4636 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4637
145dd5f9 4638 local_irq_disable();
e36fa2f7 4639 rps_lock(sd);
6e7676c1 4640 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4641 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4642 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4643 kfree_skb(skb);
76cc8b13 4644 input_queue_head_incr(sd);
6e583ce5 4645 }
6e7676c1 4646 }
e36fa2f7 4647 rps_unlock(sd);
145dd5f9 4648 local_irq_enable();
6e7676c1
CG
4649
4650 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4651 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4652 __skb_unlink(skb, &sd->process_queue);
4653 kfree_skb(skb);
76cc8b13 4654 input_queue_head_incr(sd);
6e7676c1
CG
4655 }
4656 }
145dd5f9
PA
4657 local_bh_enable();
4658}
4659
41852497 4660static void flush_all_backlogs(void)
145dd5f9
PA
4661{
4662 unsigned int cpu;
4663
4664 get_online_cpus();
4665
41852497
ED
4666 for_each_online_cpu(cpu)
4667 queue_work_on(cpu, system_highpri_wq,
4668 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4669
4670 for_each_online_cpu(cpu)
41852497 4671 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4672
4673 put_online_cpus();
6e583ce5
SH
4674}
4675
d565b0a1
HX
4676static int napi_gro_complete(struct sk_buff *skb)
4677{
22061d80 4678 struct packet_offload *ptype;
d565b0a1 4679 __be16 type = skb->protocol;
22061d80 4680 struct list_head *head = &offload_base;
d565b0a1
HX
4681 int err = -ENOENT;
4682
c3c7c254
ED
4683 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4684
fc59f9a3
HX
4685 if (NAPI_GRO_CB(skb)->count == 1) {
4686 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4687 goto out;
fc59f9a3 4688 }
d565b0a1
HX
4689
4690 rcu_read_lock();
4691 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4692 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4693 continue;
4694
299603e8 4695 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4696 break;
4697 }
4698 rcu_read_unlock();
4699
4700 if (err) {
4701 WARN_ON(&ptype->list == head);
4702 kfree_skb(skb);
4703 return NET_RX_SUCCESS;
4704 }
4705
4706out:
ae78dbfa 4707 return netif_receive_skb_internal(skb);
d565b0a1
HX
4708}
4709
2e71a6f8
ED
4710/* napi->gro_list contains packets ordered by age.
4711 * youngest packets at the head of it.
4712 * Complete skbs in reverse order to reduce latencies.
4713 */
4714void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4715{
2e71a6f8 4716 struct sk_buff *skb, *prev = NULL;
d565b0a1 4717
2e71a6f8
ED
4718 /* scan list and build reverse chain */
4719 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4720 skb->prev = prev;
4721 prev = skb;
4722 }
4723
4724 for (skb = prev; skb; skb = prev) {
d565b0a1 4725 skb->next = NULL;
2e71a6f8
ED
4726
4727 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4728 return;
4729
4730 prev = skb->prev;
d565b0a1 4731 napi_gro_complete(skb);
2e71a6f8 4732 napi->gro_count--;
d565b0a1
HX
4733 }
4734
4735 napi->gro_list = NULL;
4736}
86cac58b 4737EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4738
89c5fa33
ED
4739static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4740{
4741 struct sk_buff *p;
4742 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4743 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4744
4745 for (p = napi->gro_list; p; p = p->next) {
4746 unsigned long diffs;
4747
0b4cec8c
TH
4748 NAPI_GRO_CB(p)->flush = 0;
4749
4750 if (hash != skb_get_hash_raw(p)) {
4751 NAPI_GRO_CB(p)->same_flow = 0;
4752 continue;
4753 }
4754
89c5fa33
ED
4755 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4756 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4757 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 4758 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
4759 if (maclen == ETH_HLEN)
4760 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4761 skb_mac_header(skb));
89c5fa33
ED
4762 else if (!diffs)
4763 diffs = memcmp(skb_mac_header(p),
a50e233c 4764 skb_mac_header(skb),
89c5fa33
ED
4765 maclen);
4766 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4767 }
4768}
4769
299603e8
JC
4770static void skb_gro_reset_offset(struct sk_buff *skb)
4771{
4772 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4773 const skb_frag_t *frag0 = &pinfo->frags[0];
4774
4775 NAPI_GRO_CB(skb)->data_offset = 0;
4776 NAPI_GRO_CB(skb)->frag0 = NULL;
4777 NAPI_GRO_CB(skb)->frag0_len = 0;
4778
4779 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4780 pinfo->nr_frags &&
4781 !PageHighMem(skb_frag_page(frag0))) {
4782 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4783 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4784 skb_frag_size(frag0),
4785 skb->end - skb->tail);
89c5fa33
ED
4786 }
4787}
4788
a50e233c
ED
4789static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4790{
4791 struct skb_shared_info *pinfo = skb_shinfo(skb);
4792
4793 BUG_ON(skb->end - skb->tail < grow);
4794
4795 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4796
4797 skb->data_len -= grow;
4798 skb->tail += grow;
4799
4800 pinfo->frags[0].page_offset += grow;
4801 skb_frag_size_sub(&pinfo->frags[0], grow);
4802
4803 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4804 skb_frag_unref(skb, 0);
4805 memmove(pinfo->frags, pinfo->frags + 1,
4806 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4807 }
4808}
4809
bb728820 4810static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4811{
4812 struct sk_buff **pp = NULL;
22061d80 4813 struct packet_offload *ptype;
d565b0a1 4814 __be16 type = skb->protocol;
22061d80 4815 struct list_head *head = &offload_base;
0da2afd5 4816 int same_flow;
5b252f0c 4817 enum gro_result ret;
a50e233c 4818 int grow;
d565b0a1 4819
b5cdae32 4820 if (netif_elide_gro(skb->dev))
d565b0a1
HX
4821 goto normal;
4822
89c5fa33
ED
4823 gro_list_prepare(napi, skb);
4824
d565b0a1
HX
4825 rcu_read_lock();
4826 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4827 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4828 continue;
4829
86911732 4830 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4831 skb_reset_mac_len(skb);
d565b0a1 4832 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4833 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4834 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4835 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4836 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4837 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4838 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4839 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4840
662880f4
TH
4841 /* Setup for GRO checksum validation */
4842 switch (skb->ip_summed) {
4843 case CHECKSUM_COMPLETE:
4844 NAPI_GRO_CB(skb)->csum = skb->csum;
4845 NAPI_GRO_CB(skb)->csum_valid = 1;
4846 NAPI_GRO_CB(skb)->csum_cnt = 0;
4847 break;
4848 case CHECKSUM_UNNECESSARY:
4849 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4850 NAPI_GRO_CB(skb)->csum_valid = 0;
4851 break;
4852 default:
4853 NAPI_GRO_CB(skb)->csum_cnt = 0;
4854 NAPI_GRO_CB(skb)->csum_valid = 0;
4855 }
d565b0a1 4856
f191a1d1 4857 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4858 break;
4859 }
4860 rcu_read_unlock();
4861
4862 if (&ptype->list == head)
4863 goto normal;
4864
25393d3f
SK
4865 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4866 ret = GRO_CONSUMED;
4867 goto ok;
4868 }
4869
0da2afd5 4870 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4871 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4872
d565b0a1
HX
4873 if (pp) {
4874 struct sk_buff *nskb = *pp;
4875
4876 *pp = nskb->next;
4877 nskb->next = NULL;
4878 napi_gro_complete(nskb);
4ae5544f 4879 napi->gro_count--;
d565b0a1
HX
4880 }
4881
0da2afd5 4882 if (same_flow)
d565b0a1
HX
4883 goto ok;
4884
600adc18 4885 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4886 goto normal;
d565b0a1 4887
600adc18
ED
4888 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4889 struct sk_buff *nskb = napi->gro_list;
4890
4891 /* locate the end of the list to select the 'oldest' flow */
4892 while (nskb->next) {
4893 pp = &nskb->next;
4894 nskb = *pp;
4895 }
4896 *pp = NULL;
4897 nskb->next = NULL;
4898 napi_gro_complete(nskb);
4899 } else {
4900 napi->gro_count++;
4901 }
d565b0a1 4902 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4903 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4904 NAPI_GRO_CB(skb)->last = skb;
86911732 4905 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4906 skb->next = napi->gro_list;
4907 napi->gro_list = skb;
5d0d9be8 4908 ret = GRO_HELD;
d565b0a1 4909
ad0f9904 4910pull:
a50e233c
ED
4911 grow = skb_gro_offset(skb) - skb_headlen(skb);
4912 if (grow > 0)
4913 gro_pull_from_frag0(skb, grow);
d565b0a1 4914ok:
5d0d9be8 4915 return ret;
d565b0a1
HX
4916
4917normal:
ad0f9904
HX
4918 ret = GRO_NORMAL;
4919 goto pull;
5d38a079 4920}
96e93eab 4921
bf5a755f
JC
4922struct packet_offload *gro_find_receive_by_type(__be16 type)
4923{
4924 struct list_head *offload_head = &offload_base;
4925 struct packet_offload *ptype;
4926
4927 list_for_each_entry_rcu(ptype, offload_head, list) {
4928 if (ptype->type != type || !ptype->callbacks.gro_receive)
4929 continue;
4930 return ptype;
4931 }
4932 return NULL;
4933}
e27a2f83 4934EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4935
4936struct packet_offload *gro_find_complete_by_type(__be16 type)
4937{
4938 struct list_head *offload_head = &offload_base;
4939 struct packet_offload *ptype;
4940
4941 list_for_each_entry_rcu(ptype, offload_head, list) {
4942 if (ptype->type != type || !ptype->callbacks.gro_complete)
4943 continue;
4944 return ptype;
4945 }
4946 return NULL;
4947}
e27a2f83 4948EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4949
e44699d2
MK
4950static void napi_skb_free_stolen_head(struct sk_buff *skb)
4951{
4952 skb_dst_drop(skb);
4953 secpath_reset(skb);
4954 kmem_cache_free(skbuff_head_cache, skb);
4955}
4956
bb728820 4957static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4958{
5d0d9be8
HX
4959 switch (ret) {
4960 case GRO_NORMAL:
ae78dbfa 4961 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4962 ret = GRO_DROP;
4963 break;
5d38a079 4964
5d0d9be8 4965 case GRO_DROP:
5d38a079
HX
4966 kfree_skb(skb);
4967 break;
5b252f0c 4968
daa86548 4969 case GRO_MERGED_FREE:
e44699d2
MK
4970 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4971 napi_skb_free_stolen_head(skb);
4972 else
d7e8883c 4973 __kfree_skb(skb);
daa86548
ED
4974 break;
4975
5b252f0c
BH
4976 case GRO_HELD:
4977 case GRO_MERGED:
25393d3f 4978 case GRO_CONSUMED:
5b252f0c 4979 break;
5d38a079
HX
4980 }
4981
c7c4b3b6 4982 return ret;
5d0d9be8 4983}
5d0d9be8 4984
c7c4b3b6 4985gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4986{
93f93a44 4987 skb_mark_napi_id(skb, napi);
ae78dbfa 4988 trace_napi_gro_receive_entry(skb);
86911732 4989
a50e233c
ED
4990 skb_gro_reset_offset(skb);
4991
89c5fa33 4992 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4993}
4994EXPORT_SYMBOL(napi_gro_receive);
4995
d0c2b0d2 4996static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4997{
93a35f59
ED
4998 if (unlikely(skb->pfmemalloc)) {
4999 consume_skb(skb);
5000 return;
5001 }
96e93eab 5002 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5003 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5004 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 5005 skb->vlan_tci = 0;
66c46d74 5006 skb->dev = napi->dev;
6d152e23 5007 skb->skb_iif = 0;
c3caf119
JC
5008 skb->encapsulation = 0;
5009 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5010 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 5011 secpath_reset(skb);
96e93eab
HX
5012
5013 napi->skb = skb;
5014}
96e93eab 5015
76620aaf 5016struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5017{
5d38a079 5018 struct sk_buff *skb = napi->skb;
5d38a079
HX
5019
5020 if (!skb) {
fd11a83d 5021 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5022 if (skb) {
5023 napi->skb = skb;
5024 skb_mark_napi_id(skb, napi);
5025 }
80595d59 5026 }
96e93eab
HX
5027 return skb;
5028}
76620aaf 5029EXPORT_SYMBOL(napi_get_frags);
96e93eab 5030
a50e233c
ED
5031static gro_result_t napi_frags_finish(struct napi_struct *napi,
5032 struct sk_buff *skb,
5033 gro_result_t ret)
96e93eab 5034{
5d0d9be8
HX
5035 switch (ret) {
5036 case GRO_NORMAL:
a50e233c
ED
5037 case GRO_HELD:
5038 __skb_push(skb, ETH_HLEN);
5039 skb->protocol = eth_type_trans(skb, skb->dev);
5040 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 5041 ret = GRO_DROP;
86911732 5042 break;
5d38a079 5043
5d0d9be8 5044 case GRO_DROP:
5d0d9be8
HX
5045 napi_reuse_skb(napi, skb);
5046 break;
5b252f0c 5047
e44699d2
MK
5048 case GRO_MERGED_FREE:
5049 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5050 napi_skb_free_stolen_head(skb);
5051 else
5052 napi_reuse_skb(napi, skb);
5053 break;
5054
5b252f0c 5055 case GRO_MERGED:
25393d3f 5056 case GRO_CONSUMED:
5b252f0c 5057 break;
5d0d9be8 5058 }
5d38a079 5059
c7c4b3b6 5060 return ret;
5d38a079 5061}
5d0d9be8 5062
a50e233c
ED
5063/* Upper GRO stack assumes network header starts at gro_offset=0
5064 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5065 * We copy ethernet header into skb->data to have a common layout.
5066 */
4adb9c4a 5067static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5068{
5069 struct sk_buff *skb = napi->skb;
a50e233c
ED
5070 const struct ethhdr *eth;
5071 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5072
5073 napi->skb = NULL;
5074
a50e233c
ED
5075 skb_reset_mac_header(skb);
5076 skb_gro_reset_offset(skb);
5077
5078 eth = skb_gro_header_fast(skb, 0);
5079 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5080 eth = skb_gro_header_slow(skb, hlen, 0);
5081 if (unlikely(!eth)) {
4da46ceb
AC
5082 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5083 __func__, napi->dev->name);
a50e233c
ED
5084 napi_reuse_skb(napi, skb);
5085 return NULL;
5086 }
5087 } else {
5088 gro_pull_from_frag0(skb, hlen);
5089 NAPI_GRO_CB(skb)->frag0 += hlen;
5090 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5091 }
a50e233c
ED
5092 __skb_pull(skb, hlen);
5093
5094 /*
5095 * This works because the only protocols we care about don't require
5096 * special handling.
5097 * We'll fix it up properly in napi_frags_finish()
5098 */
5099 skb->protocol = eth->h_proto;
76620aaf 5100
76620aaf
HX
5101 return skb;
5102}
76620aaf 5103
c7c4b3b6 5104gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5105{
76620aaf 5106 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5107
5108 if (!skb)
c7c4b3b6 5109 return GRO_DROP;
5d0d9be8 5110
ae78dbfa
BH
5111 trace_napi_gro_frags_entry(skb);
5112
89c5fa33 5113 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 5114}
5d38a079
HX
5115EXPORT_SYMBOL(napi_gro_frags);
5116
573e8fca
TH
5117/* Compute the checksum from gro_offset and return the folded value
5118 * after adding in any pseudo checksum.
5119 */
5120__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5121{
5122 __wsum wsum;
5123 __sum16 sum;
5124
5125 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5126
5127 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5128 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5129 if (likely(!sum)) {
5130 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5131 !skb->csum_complete_sw)
5132 netdev_rx_csum_fault(skb->dev);
5133 }
5134
5135 NAPI_GRO_CB(skb)->csum = wsum;
5136 NAPI_GRO_CB(skb)->csum_valid = 1;
5137
5138 return sum;
5139}
5140EXPORT_SYMBOL(__skb_gro_checksum_complete);
5141
773fc8f6 5142static void net_rps_send_ipi(struct softnet_data *remsd)
5143{
5144#ifdef CONFIG_RPS
5145 while (remsd) {
5146 struct softnet_data *next = remsd->rps_ipi_next;
5147
5148 if (cpu_online(remsd->cpu))
5149 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5150 remsd = next;
5151 }
5152#endif
5153}
5154
e326bed2 5155/*
855abcf0 5156 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5157 * Note: called with local irq disabled, but exits with local irq enabled.
5158 */
5159static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5160{
5161#ifdef CONFIG_RPS
5162 struct softnet_data *remsd = sd->rps_ipi_list;
5163
5164 if (remsd) {
5165 sd->rps_ipi_list = NULL;
5166
5167 local_irq_enable();
5168
5169 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5170 net_rps_send_ipi(remsd);
e326bed2
ED
5171 } else
5172#endif
5173 local_irq_enable();
5174}
5175
d75b1ade
ED
5176static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5177{
5178#ifdef CONFIG_RPS
5179 return sd->rps_ipi_list != NULL;
5180#else
5181 return false;
5182#endif
5183}
5184
bea3348e 5185static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5186{
eecfd7c4 5187 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5188 bool again = true;
5189 int work = 0;
1da177e4 5190
e326bed2
ED
5191 /* Check if we have pending ipi, its better to send them now,
5192 * not waiting net_rx_action() end.
5193 */
d75b1ade 5194 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5195 local_irq_disable();
5196 net_rps_action_and_irq_enable(sd);
5197 }
d75b1ade 5198
3d48b53f 5199 napi->weight = dev_rx_weight;
145dd5f9 5200 while (again) {
1da177e4 5201 struct sk_buff *skb;
6e7676c1
CG
5202
5203 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5204 rcu_read_lock();
6e7676c1 5205 __netif_receive_skb(skb);
2c17d27c 5206 rcu_read_unlock();
76cc8b13 5207 input_queue_head_incr(sd);
145dd5f9 5208 if (++work >= quota)
76cc8b13 5209 return work;
145dd5f9 5210
6e7676c1 5211 }
1da177e4 5212
145dd5f9 5213 local_irq_disable();
e36fa2f7 5214 rps_lock(sd);
11ef7a89 5215 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5216 /*
5217 * Inline a custom version of __napi_complete().
5218 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5219 * and NAPI_STATE_SCHED is the only possible flag set
5220 * on backlog.
5221 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5222 * and we dont need an smp_mb() memory barrier.
5223 */
eecfd7c4 5224 napi->state = 0;
145dd5f9
PA
5225 again = false;
5226 } else {
5227 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5228 &sd->process_queue);
bea3348e 5229 }
e36fa2f7 5230 rps_unlock(sd);
145dd5f9 5231 local_irq_enable();
6e7676c1 5232 }
1da177e4 5233
bea3348e
SH
5234 return work;
5235}
1da177e4 5236
bea3348e
SH
5237/**
5238 * __napi_schedule - schedule for receive
c4ea43c5 5239 * @n: entry to schedule
bea3348e 5240 *
bc9ad166
ED
5241 * The entry's receive function will be scheduled to run.
5242 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5243 */
b5606c2d 5244void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5245{
5246 unsigned long flags;
1da177e4 5247
bea3348e 5248 local_irq_save(flags);
903ceff7 5249 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5250 local_irq_restore(flags);
1da177e4 5251}
bea3348e
SH
5252EXPORT_SYMBOL(__napi_schedule);
5253
39e6c820
ED
5254/**
5255 * napi_schedule_prep - check if napi can be scheduled
5256 * @n: napi context
5257 *
5258 * Test if NAPI routine is already running, and if not mark
5259 * it as running. This is used as a condition variable
5260 * insure only one NAPI poll instance runs. We also make
5261 * sure there is no pending NAPI disable.
5262 */
5263bool napi_schedule_prep(struct napi_struct *n)
5264{
5265 unsigned long val, new;
5266
5267 do {
5268 val = READ_ONCE(n->state);
5269 if (unlikely(val & NAPIF_STATE_DISABLE))
5270 return false;
5271 new = val | NAPIF_STATE_SCHED;
5272
5273 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5274 * This was suggested by Alexander Duyck, as compiler
5275 * emits better code than :
5276 * if (val & NAPIF_STATE_SCHED)
5277 * new |= NAPIF_STATE_MISSED;
5278 */
5279 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5280 NAPIF_STATE_MISSED;
5281 } while (cmpxchg(&n->state, val, new) != val);
5282
5283 return !(val & NAPIF_STATE_SCHED);
5284}
5285EXPORT_SYMBOL(napi_schedule_prep);
5286
bc9ad166
ED
5287/**
5288 * __napi_schedule_irqoff - schedule for receive
5289 * @n: entry to schedule
5290 *
5291 * Variant of __napi_schedule() assuming hard irqs are masked
5292 */
5293void __napi_schedule_irqoff(struct napi_struct *n)
5294{
5295 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5296}
5297EXPORT_SYMBOL(__napi_schedule_irqoff);
5298
364b6055 5299bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5300{
39e6c820 5301 unsigned long flags, val, new;
d565b0a1
HX
5302
5303 /*
217f6974
ED
5304 * 1) Don't let napi dequeue from the cpu poll list
5305 * just in case its running on a different cpu.
5306 * 2) If we are busy polling, do nothing here, we have
5307 * the guarantee we will be called later.
d565b0a1 5308 */
217f6974
ED
5309 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5310 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5311 return false;
d565b0a1 5312
3b47d303
ED
5313 if (n->gro_list) {
5314 unsigned long timeout = 0;
d75b1ade 5315
3b47d303
ED
5316 if (work_done)
5317 timeout = n->dev->gro_flush_timeout;
5318
5319 if (timeout)
5320 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5321 HRTIMER_MODE_REL_PINNED);
5322 else
5323 napi_gro_flush(n, false);
5324 }
02c1602e 5325 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5326 /* If n->poll_list is not empty, we need to mask irqs */
5327 local_irq_save(flags);
02c1602e 5328 list_del_init(&n->poll_list);
d75b1ade
ED
5329 local_irq_restore(flags);
5330 }
39e6c820
ED
5331
5332 do {
5333 val = READ_ONCE(n->state);
5334
5335 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5336
5337 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5338
5339 /* If STATE_MISSED was set, leave STATE_SCHED set,
5340 * because we will call napi->poll() one more time.
5341 * This C code was suggested by Alexander Duyck to help gcc.
5342 */
5343 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5344 NAPIF_STATE_SCHED;
5345 } while (cmpxchg(&n->state, val, new) != val);
5346
5347 if (unlikely(val & NAPIF_STATE_MISSED)) {
5348 __napi_schedule(n);
5349 return false;
5350 }
5351
364b6055 5352 return true;
d565b0a1 5353}
3b47d303 5354EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5355
af12fa6e 5356/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5357static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5358{
5359 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5360 struct napi_struct *napi;
5361
5362 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5363 if (napi->napi_id == napi_id)
5364 return napi;
5365
5366 return NULL;
5367}
02d62e86
ED
5368
5369#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5370
ce6aea93 5371#define BUSY_POLL_BUDGET 8
217f6974
ED
5372
5373static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5374{
5375 int rc;
5376
39e6c820
ED
5377 /* Busy polling means there is a high chance device driver hard irq
5378 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5379 * set in napi_schedule_prep().
5380 * Since we are about to call napi->poll() once more, we can safely
5381 * clear NAPI_STATE_MISSED.
5382 *
5383 * Note: x86 could use a single "lock and ..." instruction
5384 * to perform these two clear_bit()
5385 */
5386 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5387 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5388
5389 local_bh_disable();
5390
5391 /* All we really want here is to re-enable device interrupts.
5392 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5393 */
5394 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1e22391e 5395 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974
ED
5396 netpoll_poll_unlock(have_poll_lock);
5397 if (rc == BUSY_POLL_BUDGET)
5398 __napi_schedule(napi);
5399 local_bh_enable();
217f6974
ED
5400}
5401
7db6b048
SS
5402void napi_busy_loop(unsigned int napi_id,
5403 bool (*loop_end)(void *, unsigned long),
5404 void *loop_end_arg)
02d62e86 5405{
7db6b048 5406 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 5407 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 5408 void *have_poll_lock = NULL;
02d62e86 5409 struct napi_struct *napi;
217f6974
ED
5410
5411restart:
217f6974 5412 napi_poll = NULL;
02d62e86 5413
2a028ecb 5414 rcu_read_lock();
02d62e86 5415
545cd5e5 5416 napi = napi_by_id(napi_id);
02d62e86
ED
5417 if (!napi)
5418 goto out;
5419
217f6974
ED
5420 preempt_disable();
5421 for (;;) {
2b5cd0df
AD
5422 int work = 0;
5423
2a028ecb 5424 local_bh_disable();
217f6974
ED
5425 if (!napi_poll) {
5426 unsigned long val = READ_ONCE(napi->state);
5427
5428 /* If multiple threads are competing for this napi,
5429 * we avoid dirtying napi->state as much as we can.
5430 */
5431 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5432 NAPIF_STATE_IN_BUSY_POLL))
5433 goto count;
5434 if (cmpxchg(&napi->state, val,
5435 val | NAPIF_STATE_IN_BUSY_POLL |
5436 NAPIF_STATE_SCHED) != val)
5437 goto count;
5438 have_poll_lock = netpoll_poll_lock(napi);
5439 napi_poll = napi->poll;
5440 }
2b5cd0df
AD
5441 work = napi_poll(napi, BUSY_POLL_BUDGET);
5442 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 5443count:
2b5cd0df 5444 if (work > 0)
7db6b048 5445 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 5446 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 5447 local_bh_enable();
02d62e86 5448
7db6b048 5449 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 5450 break;
02d62e86 5451
217f6974
ED
5452 if (unlikely(need_resched())) {
5453 if (napi_poll)
5454 busy_poll_stop(napi, have_poll_lock);
5455 preempt_enable();
5456 rcu_read_unlock();
5457 cond_resched();
7db6b048 5458 if (loop_end(loop_end_arg, start_time))
2b5cd0df 5459 return;
217f6974
ED
5460 goto restart;
5461 }
6cdf89b1 5462 cpu_relax();
217f6974
ED
5463 }
5464 if (napi_poll)
5465 busy_poll_stop(napi, have_poll_lock);
5466 preempt_enable();
02d62e86 5467out:
2a028ecb 5468 rcu_read_unlock();
02d62e86 5469}
7db6b048 5470EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
5471
5472#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5473
149d6ad8 5474static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5475{
d64b5e85
ED
5476 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5477 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5478 return;
af12fa6e 5479
52bd2d62 5480 spin_lock(&napi_hash_lock);
af12fa6e 5481
545cd5e5 5482 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 5483 do {
545cd5e5
AD
5484 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5485 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
5486 } while (napi_by_id(napi_gen_id));
5487 napi->napi_id = napi_gen_id;
af12fa6e 5488
52bd2d62
ED
5489 hlist_add_head_rcu(&napi->napi_hash_node,
5490 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5491
52bd2d62 5492 spin_unlock(&napi_hash_lock);
af12fa6e 5493}
af12fa6e
ET
5494
5495/* Warning : caller is responsible to make sure rcu grace period
5496 * is respected before freeing memory containing @napi
5497 */
34cbe27e 5498bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5499{
34cbe27e
ED
5500 bool rcu_sync_needed = false;
5501
af12fa6e
ET
5502 spin_lock(&napi_hash_lock);
5503
34cbe27e
ED
5504 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5505 rcu_sync_needed = true;
af12fa6e 5506 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5507 }
af12fa6e 5508 spin_unlock(&napi_hash_lock);
34cbe27e 5509 return rcu_sync_needed;
af12fa6e
ET
5510}
5511EXPORT_SYMBOL_GPL(napi_hash_del);
5512
3b47d303
ED
5513static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5514{
5515 struct napi_struct *napi;
5516
5517 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
5518
5519 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5520 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5521 */
5522 if (napi->gro_list && !napi_disable_pending(napi) &&
5523 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5524 __napi_schedule_irqoff(napi);
3b47d303
ED
5525
5526 return HRTIMER_NORESTART;
5527}
5528
d565b0a1
HX
5529void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5530 int (*poll)(struct napi_struct *, int), int weight)
5531{
5532 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5533 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5534 napi->timer.function = napi_watchdog;
4ae5544f 5535 napi->gro_count = 0;
d565b0a1 5536 napi->gro_list = NULL;
5d38a079 5537 napi->skb = NULL;
d565b0a1 5538 napi->poll = poll;
82dc3c63
ED
5539 if (weight > NAPI_POLL_WEIGHT)
5540 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5541 weight, dev->name);
d565b0a1
HX
5542 napi->weight = weight;
5543 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5544 napi->dev = dev;
5d38a079 5545#ifdef CONFIG_NETPOLL
d565b0a1
HX
5546 napi->poll_owner = -1;
5547#endif
5548 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5549 napi_hash_add(napi);
d565b0a1
HX
5550}
5551EXPORT_SYMBOL(netif_napi_add);
5552
3b47d303
ED
5553void napi_disable(struct napi_struct *n)
5554{
5555 might_sleep();
5556 set_bit(NAPI_STATE_DISABLE, &n->state);
5557
5558 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5559 msleep(1);
2d8bff12
NH
5560 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5561 msleep(1);
3b47d303
ED
5562
5563 hrtimer_cancel(&n->timer);
5564
5565 clear_bit(NAPI_STATE_DISABLE, &n->state);
5566}
5567EXPORT_SYMBOL(napi_disable);
5568
93d05d4a 5569/* Must be called in process context */
d565b0a1
HX
5570void netif_napi_del(struct napi_struct *napi)
5571{
93d05d4a
ED
5572 might_sleep();
5573 if (napi_hash_del(napi))
5574 synchronize_net();
d7b06636 5575 list_del_init(&napi->dev_list);
76620aaf 5576 napi_free_frags(napi);
d565b0a1 5577
289dccbe 5578 kfree_skb_list(napi->gro_list);
d565b0a1 5579 napi->gro_list = NULL;
4ae5544f 5580 napi->gro_count = 0;
d565b0a1
HX
5581}
5582EXPORT_SYMBOL(netif_napi_del);
5583
726ce70e
HX
5584static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5585{
5586 void *have;
5587 int work, weight;
5588
5589 list_del_init(&n->poll_list);
5590
5591 have = netpoll_poll_lock(n);
5592
5593 weight = n->weight;
5594
5595 /* This NAPI_STATE_SCHED test is for avoiding a race
5596 * with netpoll's poll_napi(). Only the entity which
5597 * obtains the lock and sees NAPI_STATE_SCHED set will
5598 * actually make the ->poll() call. Therefore we avoid
5599 * accidentally calling ->poll() when NAPI is not scheduled.
5600 */
5601 work = 0;
5602 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5603 work = n->poll(n, weight);
1db19db7 5604 trace_napi_poll(n, work, weight);
726ce70e
HX
5605 }
5606
5607 WARN_ON_ONCE(work > weight);
5608
5609 if (likely(work < weight))
5610 goto out_unlock;
5611
5612 /* Drivers must not modify the NAPI state if they
5613 * consume the entire weight. In such cases this code
5614 * still "owns" the NAPI instance and therefore can
5615 * move the instance around on the list at-will.
5616 */
5617 if (unlikely(napi_disable_pending(n))) {
5618 napi_complete(n);
5619 goto out_unlock;
5620 }
5621
5622 if (n->gro_list) {
5623 /* flush too old packets
5624 * If HZ < 1000, flush all packets.
5625 */
5626 napi_gro_flush(n, HZ >= 1000);
5627 }
5628
001ce546
HX
5629 /* Some drivers may have called napi_schedule
5630 * prior to exhausting their budget.
5631 */
5632 if (unlikely(!list_empty(&n->poll_list))) {
5633 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5634 n->dev ? n->dev->name : "backlog");
5635 goto out_unlock;
5636 }
5637
726ce70e
HX
5638 list_add_tail(&n->poll_list, repoll);
5639
5640out_unlock:
5641 netpoll_poll_unlock(have);
5642
5643 return work;
5644}
5645
0766f788 5646static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5647{
903ceff7 5648 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
5649 unsigned long time_limit = jiffies +
5650 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 5651 int budget = netdev_budget;
d75b1ade
ED
5652 LIST_HEAD(list);
5653 LIST_HEAD(repoll);
53fb95d3 5654
1da177e4 5655 local_irq_disable();
d75b1ade
ED
5656 list_splice_init(&sd->poll_list, &list);
5657 local_irq_enable();
1da177e4 5658
ceb8d5bf 5659 for (;;) {
bea3348e 5660 struct napi_struct *n;
1da177e4 5661
ceb8d5bf
HX
5662 if (list_empty(&list)) {
5663 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5664 goto out;
ceb8d5bf
HX
5665 break;
5666 }
5667
6bd373eb
HX
5668 n = list_first_entry(&list, struct napi_struct, poll_list);
5669 budget -= napi_poll(n, &repoll);
5670
d75b1ade 5671 /* If softirq window is exhausted then punt.
24f8b238
SH
5672 * Allow this to run for 2 jiffies since which will allow
5673 * an average latency of 1.5/HZ.
bea3348e 5674 */
ceb8d5bf
HX
5675 if (unlikely(budget <= 0 ||
5676 time_after_eq(jiffies, time_limit))) {
5677 sd->time_squeeze++;
5678 break;
5679 }
1da177e4 5680 }
d75b1ade 5681
d75b1ade
ED
5682 local_irq_disable();
5683
5684 list_splice_tail_init(&sd->poll_list, &list);
5685 list_splice_tail(&repoll, &list);
5686 list_splice(&list, &sd->poll_list);
5687 if (!list_empty(&sd->poll_list))
5688 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5689
e326bed2 5690 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5691out:
5692 __kfree_skb_flush();
1da177e4
LT
5693}
5694
aa9d8560 5695struct netdev_adjacent {
9ff162a8 5696 struct net_device *dev;
5d261913
VF
5697
5698 /* upper master flag, there can only be one master device per list */
9ff162a8 5699 bool master;
5d261913 5700
5d261913
VF
5701 /* counter for the number of times this device was added to us */
5702 u16 ref_nr;
5703
402dae96
VF
5704 /* private field for the users */
5705 void *private;
5706
9ff162a8
JP
5707 struct list_head list;
5708 struct rcu_head rcu;
9ff162a8
JP
5709};
5710
6ea29da1 5711static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5712 struct list_head *adj_list)
9ff162a8 5713{
5d261913 5714 struct netdev_adjacent *adj;
5d261913 5715
2f268f12 5716 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5717 if (adj->dev == adj_dev)
5718 return adj;
9ff162a8
JP
5719 }
5720 return NULL;
5721}
5722
f1170fd4
DA
5723static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5724{
5725 struct net_device *dev = data;
5726
5727 return upper_dev == dev;
5728}
5729
9ff162a8
JP
5730/**
5731 * netdev_has_upper_dev - Check if device is linked to an upper device
5732 * @dev: device
5733 * @upper_dev: upper device to check
5734 *
5735 * Find out if a device is linked to specified upper device and return true
5736 * in case it is. Note that this checks only immediate upper device,
5737 * not through a complete stack of devices. The caller must hold the RTNL lock.
5738 */
5739bool netdev_has_upper_dev(struct net_device *dev,
5740 struct net_device *upper_dev)
5741{
5742 ASSERT_RTNL();
5743
f1170fd4
DA
5744 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5745 upper_dev);
9ff162a8
JP
5746}
5747EXPORT_SYMBOL(netdev_has_upper_dev);
5748
1a3f060c
DA
5749/**
5750 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5751 * @dev: device
5752 * @upper_dev: upper device to check
5753 *
5754 * Find out if a device is linked to specified upper device and return true
5755 * in case it is. Note that this checks the entire upper device chain.
5756 * The caller must hold rcu lock.
5757 */
5758
1a3f060c
DA
5759bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5760 struct net_device *upper_dev)
5761{
5762 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5763 upper_dev);
5764}
5765EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5766
9ff162a8
JP
5767/**
5768 * netdev_has_any_upper_dev - Check if device is linked to some device
5769 * @dev: device
5770 *
5771 * Find out if a device is linked to an upper device and return true in case
5772 * it is. The caller must hold the RTNL lock.
5773 */
25cc72a3 5774bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5775{
5776 ASSERT_RTNL();
5777
f1170fd4 5778 return !list_empty(&dev->adj_list.upper);
9ff162a8 5779}
25cc72a3 5780EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
5781
5782/**
5783 * netdev_master_upper_dev_get - Get master upper device
5784 * @dev: device
5785 *
5786 * Find a master upper device and return pointer to it or NULL in case
5787 * it's not there. The caller must hold the RTNL lock.
5788 */
5789struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5790{
aa9d8560 5791 struct netdev_adjacent *upper;
9ff162a8
JP
5792
5793 ASSERT_RTNL();
5794
2f268f12 5795 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5796 return NULL;
5797
2f268f12 5798 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5799 struct netdev_adjacent, list);
9ff162a8
JP
5800 if (likely(upper->master))
5801 return upper->dev;
5802 return NULL;
5803}
5804EXPORT_SYMBOL(netdev_master_upper_dev_get);
5805
0f524a80
DA
5806/**
5807 * netdev_has_any_lower_dev - Check if device is linked to some device
5808 * @dev: device
5809 *
5810 * Find out if a device is linked to a lower device and return true in case
5811 * it is. The caller must hold the RTNL lock.
5812 */
5813static bool netdev_has_any_lower_dev(struct net_device *dev)
5814{
5815 ASSERT_RTNL();
5816
5817 return !list_empty(&dev->adj_list.lower);
5818}
5819
b6ccba4c
VF
5820void *netdev_adjacent_get_private(struct list_head *adj_list)
5821{
5822 struct netdev_adjacent *adj;
5823
5824 adj = list_entry(adj_list, struct netdev_adjacent, list);
5825
5826 return adj->private;
5827}
5828EXPORT_SYMBOL(netdev_adjacent_get_private);
5829
44a40855
VY
5830/**
5831 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5832 * @dev: device
5833 * @iter: list_head ** of the current position
5834 *
5835 * Gets the next device from the dev's upper list, starting from iter
5836 * position. The caller must hold RCU read lock.
5837 */
5838struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5839 struct list_head **iter)
5840{
5841 struct netdev_adjacent *upper;
5842
5843 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5844
5845 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5846
5847 if (&upper->list == &dev->adj_list.upper)
5848 return NULL;
5849
5850 *iter = &upper->list;
5851
5852 return upper->dev;
5853}
5854EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5855
1a3f060c
DA
5856static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5857 struct list_head **iter)
5858{
5859 struct netdev_adjacent *upper;
5860
5861 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5862
5863 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5864
5865 if (&upper->list == &dev->adj_list.upper)
5866 return NULL;
5867
5868 *iter = &upper->list;
5869
5870 return upper->dev;
5871}
5872
5873int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5874 int (*fn)(struct net_device *dev,
5875 void *data),
5876 void *data)
5877{
5878 struct net_device *udev;
5879 struct list_head *iter;
5880 int ret;
5881
5882 for (iter = &dev->adj_list.upper,
5883 udev = netdev_next_upper_dev_rcu(dev, &iter);
5884 udev;
5885 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5886 /* first is the upper device itself */
5887 ret = fn(udev, data);
5888 if (ret)
5889 return ret;
5890
5891 /* then look at all of its upper devices */
5892 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5893 if (ret)
5894 return ret;
5895 }
5896
5897 return 0;
5898}
5899EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5900
31088a11
VF
5901/**
5902 * netdev_lower_get_next_private - Get the next ->private from the
5903 * lower neighbour list
5904 * @dev: device
5905 * @iter: list_head ** of the current position
5906 *
5907 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5908 * list, starting from iter position. The caller must hold either hold the
5909 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5910 * list will remain unchanged.
31088a11
VF
5911 */
5912void *netdev_lower_get_next_private(struct net_device *dev,
5913 struct list_head **iter)
5914{
5915 struct netdev_adjacent *lower;
5916
5917 lower = list_entry(*iter, struct netdev_adjacent, list);
5918
5919 if (&lower->list == &dev->adj_list.lower)
5920 return NULL;
5921
6859e7df 5922 *iter = lower->list.next;
31088a11
VF
5923
5924 return lower->private;
5925}
5926EXPORT_SYMBOL(netdev_lower_get_next_private);
5927
5928/**
5929 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5930 * lower neighbour list, RCU
5931 * variant
5932 * @dev: device
5933 * @iter: list_head ** of the current position
5934 *
5935 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5936 * list, starting from iter position. The caller must hold RCU read lock.
5937 */
5938void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5939 struct list_head **iter)
5940{
5941 struct netdev_adjacent *lower;
5942
5943 WARN_ON_ONCE(!rcu_read_lock_held());
5944
5945 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5946
5947 if (&lower->list == &dev->adj_list.lower)
5948 return NULL;
5949
6859e7df 5950 *iter = &lower->list;
31088a11
VF
5951
5952 return lower->private;
5953}
5954EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5955
4085ebe8
VY
5956/**
5957 * netdev_lower_get_next - Get the next device from the lower neighbour
5958 * list
5959 * @dev: device
5960 * @iter: list_head ** of the current position
5961 *
5962 * Gets the next netdev_adjacent from the dev's lower neighbour
5963 * list, starting from iter position. The caller must hold RTNL lock or
5964 * its own locking that guarantees that the neighbour lower
b469139e 5965 * list will remain unchanged.
4085ebe8
VY
5966 */
5967void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5968{
5969 struct netdev_adjacent *lower;
5970
cfdd28be 5971 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5972
5973 if (&lower->list == &dev->adj_list.lower)
5974 return NULL;
5975
cfdd28be 5976 *iter = lower->list.next;
4085ebe8
VY
5977
5978 return lower->dev;
5979}
5980EXPORT_SYMBOL(netdev_lower_get_next);
5981
1a3f060c
DA
5982static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5983 struct list_head **iter)
5984{
5985 struct netdev_adjacent *lower;
5986
46b5ab1a 5987 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
5988
5989 if (&lower->list == &dev->adj_list.lower)
5990 return NULL;
5991
46b5ab1a 5992 *iter = &lower->list;
1a3f060c
DA
5993
5994 return lower->dev;
5995}
5996
5997int netdev_walk_all_lower_dev(struct net_device *dev,
5998 int (*fn)(struct net_device *dev,
5999 void *data),
6000 void *data)
6001{
6002 struct net_device *ldev;
6003 struct list_head *iter;
6004 int ret;
6005
6006 for (iter = &dev->adj_list.lower,
6007 ldev = netdev_next_lower_dev(dev, &iter);
6008 ldev;
6009 ldev = netdev_next_lower_dev(dev, &iter)) {
6010 /* first is the lower device itself */
6011 ret = fn(ldev, data);
6012 if (ret)
6013 return ret;
6014
6015 /* then look at all of its lower devices */
6016 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6017 if (ret)
6018 return ret;
6019 }
6020
6021 return 0;
6022}
6023EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6024
1a3f060c
DA
6025static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6026 struct list_head **iter)
6027{
6028 struct netdev_adjacent *lower;
6029
6030 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6031 if (&lower->list == &dev->adj_list.lower)
6032 return NULL;
6033
6034 *iter = &lower->list;
6035
6036 return lower->dev;
6037}
6038
6039int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6040 int (*fn)(struct net_device *dev,
6041 void *data),
6042 void *data)
6043{
6044 struct net_device *ldev;
6045 struct list_head *iter;
6046 int ret;
6047
6048 for (iter = &dev->adj_list.lower,
6049 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6050 ldev;
6051 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6052 /* first is the lower device itself */
6053 ret = fn(ldev, data);
6054 if (ret)
6055 return ret;
6056
6057 /* then look at all of its lower devices */
6058 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6059 if (ret)
6060 return ret;
6061 }
6062
6063 return 0;
6064}
6065EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6066
e001bfad 6067/**
6068 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6069 * lower neighbour list, RCU
6070 * variant
6071 * @dev: device
6072 *
6073 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6074 * list. The caller must hold RCU read lock.
6075 */
6076void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6077{
6078 struct netdev_adjacent *lower;
6079
6080 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6081 struct netdev_adjacent, list);
6082 if (lower)
6083 return lower->private;
6084 return NULL;
6085}
6086EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6087
9ff162a8
JP
6088/**
6089 * netdev_master_upper_dev_get_rcu - Get master upper device
6090 * @dev: device
6091 *
6092 * Find a master upper device and return pointer to it or NULL in case
6093 * it's not there. The caller must hold the RCU read lock.
6094 */
6095struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6096{
aa9d8560 6097 struct netdev_adjacent *upper;
9ff162a8 6098
2f268f12 6099 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6100 struct netdev_adjacent, list);
9ff162a8
JP
6101 if (upper && likely(upper->master))
6102 return upper->dev;
6103 return NULL;
6104}
6105EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6106
0a59f3a9 6107static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6108 struct net_device *adj_dev,
6109 struct list_head *dev_list)
6110{
6111 char linkname[IFNAMSIZ+7];
f4563a75 6112
3ee32707
VF
6113 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6114 "upper_%s" : "lower_%s", adj_dev->name);
6115 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6116 linkname);
6117}
0a59f3a9 6118static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6119 char *name,
6120 struct list_head *dev_list)
6121{
6122 char linkname[IFNAMSIZ+7];
f4563a75 6123
3ee32707
VF
6124 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6125 "upper_%s" : "lower_%s", name);
6126 sysfs_remove_link(&(dev->dev.kobj), linkname);
6127}
6128
7ce64c79
AF
6129static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6130 struct net_device *adj_dev,
6131 struct list_head *dev_list)
6132{
6133 return (dev_list == &dev->adj_list.upper ||
6134 dev_list == &dev->adj_list.lower) &&
6135 net_eq(dev_net(dev), dev_net(adj_dev));
6136}
3ee32707 6137
5d261913
VF
6138static int __netdev_adjacent_dev_insert(struct net_device *dev,
6139 struct net_device *adj_dev,
7863c054 6140 struct list_head *dev_list,
402dae96 6141 void *private, bool master)
5d261913
VF
6142{
6143 struct netdev_adjacent *adj;
842d67a7 6144 int ret;
5d261913 6145
6ea29da1 6146 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6147
6148 if (adj) {
790510d9 6149 adj->ref_nr += 1;
67b62f98
DA
6150 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6151 dev->name, adj_dev->name, adj->ref_nr);
6152
5d261913
VF
6153 return 0;
6154 }
6155
6156 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6157 if (!adj)
6158 return -ENOMEM;
6159
6160 adj->dev = adj_dev;
6161 adj->master = master;
790510d9 6162 adj->ref_nr = 1;
402dae96 6163 adj->private = private;
5d261913 6164 dev_hold(adj_dev);
2f268f12 6165
67b62f98
DA
6166 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6167 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6168
7ce64c79 6169 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6170 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6171 if (ret)
6172 goto free_adj;
6173 }
6174
7863c054 6175 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6176 if (master) {
6177 ret = sysfs_create_link(&(dev->dev.kobj),
6178 &(adj_dev->dev.kobj), "master");
6179 if (ret)
5831d66e 6180 goto remove_symlinks;
842d67a7 6181
7863c054 6182 list_add_rcu(&adj->list, dev_list);
842d67a7 6183 } else {
7863c054 6184 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6185 }
5d261913
VF
6186
6187 return 0;
842d67a7 6188
5831d66e 6189remove_symlinks:
7ce64c79 6190 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6191 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6192free_adj:
6193 kfree(adj);
974daef7 6194 dev_put(adj_dev);
842d67a7
VF
6195
6196 return ret;
5d261913
VF
6197}
6198
1d143d9f 6199static void __netdev_adjacent_dev_remove(struct net_device *dev,
6200 struct net_device *adj_dev,
93409033 6201 u16 ref_nr,
1d143d9f 6202 struct list_head *dev_list)
5d261913
VF
6203{
6204 struct netdev_adjacent *adj;
6205
67b62f98
DA
6206 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6207 dev->name, adj_dev->name, ref_nr);
6208
6ea29da1 6209 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6210
2f268f12 6211 if (!adj) {
67b62f98 6212 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6213 dev->name, adj_dev->name);
67b62f98
DA
6214 WARN_ON(1);
6215 return;
2f268f12 6216 }
5d261913 6217
93409033 6218 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6219 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6220 dev->name, adj_dev->name, ref_nr,
6221 adj->ref_nr - ref_nr);
93409033 6222 adj->ref_nr -= ref_nr;
5d261913
VF
6223 return;
6224 }
6225
842d67a7
VF
6226 if (adj->master)
6227 sysfs_remove_link(&(dev->dev.kobj), "master");
6228
7ce64c79 6229 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6230 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6231
5d261913 6232 list_del_rcu(&adj->list);
67b62f98 6233 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6234 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6235 dev_put(adj_dev);
6236 kfree_rcu(adj, rcu);
6237}
6238
1d143d9f 6239static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6240 struct net_device *upper_dev,
6241 struct list_head *up_list,
6242 struct list_head *down_list,
6243 void *private, bool master)
5d261913
VF
6244{
6245 int ret;
6246
790510d9 6247 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6248 private, master);
5d261913
VF
6249 if (ret)
6250 return ret;
6251
790510d9 6252 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 6253 private, false);
5d261913 6254 if (ret) {
790510d9 6255 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
6256 return ret;
6257 }
6258
6259 return 0;
6260}
6261
1d143d9f 6262static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6263 struct net_device *upper_dev,
93409033 6264 u16 ref_nr,
1d143d9f 6265 struct list_head *up_list,
6266 struct list_head *down_list)
5d261913 6267{
93409033
AC
6268 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6269 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
6270}
6271
1d143d9f 6272static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6273 struct net_device *upper_dev,
6274 void *private, bool master)
2f268f12 6275{
f1170fd4
DA
6276 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6277 &dev->adj_list.upper,
6278 &upper_dev->adj_list.lower,
6279 private, master);
5d261913
VF
6280}
6281
1d143d9f 6282static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6283 struct net_device *upper_dev)
2f268f12 6284{
93409033 6285 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
6286 &dev->adj_list.upper,
6287 &upper_dev->adj_list.lower);
6288}
5d261913 6289
9ff162a8 6290static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 6291 struct net_device *upper_dev, bool master,
42ab19ee
DA
6292 void *upper_priv, void *upper_info,
6293 struct netlink_ext_ack *extack)
9ff162a8 6294{
51d0c047
DA
6295 struct netdev_notifier_changeupper_info changeupper_info = {
6296 .info = {
6297 .dev = dev,
42ab19ee 6298 .extack = extack,
51d0c047
DA
6299 },
6300 .upper_dev = upper_dev,
6301 .master = master,
6302 .linking = true,
6303 .upper_info = upper_info,
6304 };
5d261913 6305 int ret = 0;
9ff162a8
JP
6306
6307 ASSERT_RTNL();
6308
6309 if (dev == upper_dev)
6310 return -EBUSY;
6311
6312 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 6313 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
6314 return -EBUSY;
6315
f1170fd4 6316 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
6317 return -EEXIST;
6318
6319 if (master && netdev_master_upper_dev_get(dev))
6320 return -EBUSY;
6321
51d0c047 6322 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
6323 &changeupper_info.info);
6324 ret = notifier_to_errno(ret);
6325 if (ret)
6326 return ret;
6327
6dffb044 6328 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 6329 master);
5d261913
VF
6330 if (ret)
6331 return ret;
9ff162a8 6332
51d0c047 6333 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
6334 &changeupper_info.info);
6335 ret = notifier_to_errno(ret);
6336 if (ret)
f1170fd4 6337 goto rollback;
b03804e7 6338
9ff162a8 6339 return 0;
5d261913 6340
f1170fd4 6341rollback:
2f268f12 6342 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
6343
6344 return ret;
9ff162a8
JP
6345}
6346
6347/**
6348 * netdev_upper_dev_link - Add a link to the upper device
6349 * @dev: device
6350 * @upper_dev: new upper device
6351 *
6352 * Adds a link to device which is upper to this one. The caller must hold
6353 * the RTNL lock. On a failure a negative errno code is returned.
6354 * On success the reference counts are adjusted and the function
6355 * returns zero.
6356 */
6357int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
6358 struct net_device *upper_dev,
6359 struct netlink_ext_ack *extack)
9ff162a8 6360{
42ab19ee
DA
6361 return __netdev_upper_dev_link(dev, upper_dev, false,
6362 NULL, NULL, extack);
9ff162a8
JP
6363}
6364EXPORT_SYMBOL(netdev_upper_dev_link);
6365
6366/**
6367 * netdev_master_upper_dev_link - Add a master link to the upper device
6368 * @dev: device
6369 * @upper_dev: new upper device
6dffb044 6370 * @upper_priv: upper device private
29bf24af 6371 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
6372 *
6373 * Adds a link to device which is upper to this one. In this case, only
6374 * one master upper device can be linked, although other non-master devices
6375 * might be linked as well. The caller must hold the RTNL lock.
6376 * On a failure a negative errno code is returned. On success the reference
6377 * counts are adjusted and the function returns zero.
6378 */
6379int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 6380 struct net_device *upper_dev,
42ab19ee
DA
6381 void *upper_priv, void *upper_info,
6382 struct netlink_ext_ack *extack)
9ff162a8 6383{
29bf24af 6384 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 6385 upper_priv, upper_info, extack);
9ff162a8
JP
6386}
6387EXPORT_SYMBOL(netdev_master_upper_dev_link);
6388
6389/**
6390 * netdev_upper_dev_unlink - Removes a link to upper device
6391 * @dev: device
6392 * @upper_dev: new upper device
6393 *
6394 * Removes a link to device which is upper to this one. The caller must hold
6395 * the RTNL lock.
6396 */
6397void netdev_upper_dev_unlink(struct net_device *dev,
6398 struct net_device *upper_dev)
6399{
51d0c047
DA
6400 struct netdev_notifier_changeupper_info changeupper_info = {
6401 .info = {
6402 .dev = dev,
6403 },
6404 .upper_dev = upper_dev,
6405 .linking = false,
6406 };
f4563a75 6407
9ff162a8
JP
6408 ASSERT_RTNL();
6409
0e4ead9d 6410 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 6411
51d0c047 6412 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
6413 &changeupper_info.info);
6414
2f268f12 6415 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6416
51d0c047 6417 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 6418 &changeupper_info.info);
9ff162a8
JP
6419}
6420EXPORT_SYMBOL(netdev_upper_dev_unlink);
6421
61bd3857
MS
6422/**
6423 * netdev_bonding_info_change - Dispatch event about slave change
6424 * @dev: device
4a26e453 6425 * @bonding_info: info to dispatch
61bd3857
MS
6426 *
6427 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6428 * The caller must hold the RTNL lock.
6429 */
6430void netdev_bonding_info_change(struct net_device *dev,
6431 struct netdev_bonding_info *bonding_info)
6432{
51d0c047
DA
6433 struct netdev_notifier_bonding_info info = {
6434 .info.dev = dev,
6435 };
61bd3857
MS
6436
6437 memcpy(&info.bonding_info, bonding_info,
6438 sizeof(struct netdev_bonding_info));
51d0c047 6439 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
6440 &info.info);
6441}
6442EXPORT_SYMBOL(netdev_bonding_info_change);
6443
2ce1ee17 6444static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6445{
6446 struct netdev_adjacent *iter;
6447
6448 struct net *net = dev_net(dev);
6449
6450 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6451 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6452 continue;
6453 netdev_adjacent_sysfs_add(iter->dev, dev,
6454 &iter->dev->adj_list.lower);
6455 netdev_adjacent_sysfs_add(dev, iter->dev,
6456 &dev->adj_list.upper);
6457 }
6458
6459 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6460 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6461 continue;
6462 netdev_adjacent_sysfs_add(iter->dev, dev,
6463 &iter->dev->adj_list.upper);
6464 netdev_adjacent_sysfs_add(dev, iter->dev,
6465 &dev->adj_list.lower);
6466 }
6467}
6468
2ce1ee17 6469static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6470{
6471 struct netdev_adjacent *iter;
6472
6473 struct net *net = dev_net(dev);
6474
6475 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6476 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6477 continue;
6478 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6479 &iter->dev->adj_list.lower);
6480 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6481 &dev->adj_list.upper);
6482 }
6483
6484 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6485 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6486 continue;
6487 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6488 &iter->dev->adj_list.upper);
6489 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6490 &dev->adj_list.lower);
6491 }
6492}
6493
5bb025fa 6494void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6495{
5bb025fa 6496 struct netdev_adjacent *iter;
402dae96 6497
4c75431a
AF
6498 struct net *net = dev_net(dev);
6499
5bb025fa 6500 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6501 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6502 continue;
5bb025fa
VF
6503 netdev_adjacent_sysfs_del(iter->dev, oldname,
6504 &iter->dev->adj_list.lower);
6505 netdev_adjacent_sysfs_add(iter->dev, dev,
6506 &iter->dev->adj_list.lower);
6507 }
402dae96 6508
5bb025fa 6509 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6510 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6511 continue;
5bb025fa
VF
6512 netdev_adjacent_sysfs_del(iter->dev, oldname,
6513 &iter->dev->adj_list.upper);
6514 netdev_adjacent_sysfs_add(iter->dev, dev,
6515 &iter->dev->adj_list.upper);
6516 }
402dae96 6517}
402dae96
VF
6518
6519void *netdev_lower_dev_get_private(struct net_device *dev,
6520 struct net_device *lower_dev)
6521{
6522 struct netdev_adjacent *lower;
6523
6524 if (!lower_dev)
6525 return NULL;
6ea29da1 6526 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6527 if (!lower)
6528 return NULL;
6529
6530 return lower->private;
6531}
6532EXPORT_SYMBOL(netdev_lower_dev_get_private);
6533
4085ebe8 6534
952fcfd0 6535int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6536{
6537 struct net_device *lower = NULL;
6538 struct list_head *iter;
6539 int max_nest = -1;
6540 int nest;
6541
6542 ASSERT_RTNL();
6543
6544 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6545 nest = dev_get_nest_level(lower);
4085ebe8
VY
6546 if (max_nest < nest)
6547 max_nest = nest;
6548 }
6549
952fcfd0 6550 return max_nest + 1;
4085ebe8
VY
6551}
6552EXPORT_SYMBOL(dev_get_nest_level);
6553
04d48266
JP
6554/**
6555 * netdev_lower_change - Dispatch event about lower device state change
6556 * @lower_dev: device
6557 * @lower_state_info: state to dispatch
6558 *
6559 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6560 * The caller must hold the RTNL lock.
6561 */
6562void netdev_lower_state_changed(struct net_device *lower_dev,
6563 void *lower_state_info)
6564{
51d0c047
DA
6565 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6566 .info.dev = lower_dev,
6567 };
04d48266
JP
6568
6569 ASSERT_RTNL();
6570 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 6571 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
6572 &changelowerstate_info.info);
6573}
6574EXPORT_SYMBOL(netdev_lower_state_changed);
6575
b6c40d68
PM
6576static void dev_change_rx_flags(struct net_device *dev, int flags)
6577{
d314774c
SH
6578 const struct net_device_ops *ops = dev->netdev_ops;
6579
d2615bf4 6580 if (ops->ndo_change_rx_flags)
d314774c 6581 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6582}
6583
991fb3f7 6584static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6585{
b536db93 6586 unsigned int old_flags = dev->flags;
d04a48b0
EB
6587 kuid_t uid;
6588 kgid_t gid;
1da177e4 6589
24023451
PM
6590 ASSERT_RTNL();
6591
dad9b335
WC
6592 dev->flags |= IFF_PROMISC;
6593 dev->promiscuity += inc;
6594 if (dev->promiscuity == 0) {
6595 /*
6596 * Avoid overflow.
6597 * If inc causes overflow, untouch promisc and return error.
6598 */
6599 if (inc < 0)
6600 dev->flags &= ~IFF_PROMISC;
6601 else {
6602 dev->promiscuity -= inc;
7b6cd1ce
JP
6603 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6604 dev->name);
dad9b335
WC
6605 return -EOVERFLOW;
6606 }
6607 }
52609c0b 6608 if (dev->flags != old_flags) {
7b6cd1ce
JP
6609 pr_info("device %s %s promiscuous mode\n",
6610 dev->name,
6611 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6612 if (audit_enabled) {
6613 current_uid_gid(&uid, &gid);
7759db82
KHK
6614 audit_log(current->audit_context, GFP_ATOMIC,
6615 AUDIT_ANOM_PROMISCUOUS,
6616 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6617 dev->name, (dev->flags & IFF_PROMISC),
6618 (old_flags & IFF_PROMISC),
e1760bd5 6619 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6620 from_kuid(&init_user_ns, uid),
6621 from_kgid(&init_user_ns, gid),
7759db82 6622 audit_get_sessionid(current));
8192b0c4 6623 }
24023451 6624
b6c40d68 6625 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6626 }
991fb3f7
ND
6627 if (notify)
6628 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6629 return 0;
1da177e4
LT
6630}
6631
4417da66
PM
6632/**
6633 * dev_set_promiscuity - update promiscuity count on a device
6634 * @dev: device
6635 * @inc: modifier
6636 *
6637 * Add or remove promiscuity from a device. While the count in the device
6638 * remains above zero the interface remains promiscuous. Once it hits zero
6639 * the device reverts back to normal filtering operation. A negative inc
6640 * value is used to drop promiscuity on the device.
dad9b335 6641 * Return 0 if successful or a negative errno code on error.
4417da66 6642 */
dad9b335 6643int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6644{
b536db93 6645 unsigned int old_flags = dev->flags;
dad9b335 6646 int err;
4417da66 6647
991fb3f7 6648 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6649 if (err < 0)
dad9b335 6650 return err;
4417da66
PM
6651 if (dev->flags != old_flags)
6652 dev_set_rx_mode(dev);
dad9b335 6653 return err;
4417da66 6654}
d1b19dff 6655EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6656
991fb3f7 6657static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6658{
991fb3f7 6659 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6660
24023451
PM
6661 ASSERT_RTNL();
6662
1da177e4 6663 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6664 dev->allmulti += inc;
6665 if (dev->allmulti == 0) {
6666 /*
6667 * Avoid overflow.
6668 * If inc causes overflow, untouch allmulti and return error.
6669 */
6670 if (inc < 0)
6671 dev->flags &= ~IFF_ALLMULTI;
6672 else {
6673 dev->allmulti -= inc;
7b6cd1ce
JP
6674 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6675 dev->name);
dad9b335
WC
6676 return -EOVERFLOW;
6677 }
6678 }
24023451 6679 if (dev->flags ^ old_flags) {
b6c40d68 6680 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6681 dev_set_rx_mode(dev);
991fb3f7
ND
6682 if (notify)
6683 __dev_notify_flags(dev, old_flags,
6684 dev->gflags ^ old_gflags);
24023451 6685 }
dad9b335 6686 return 0;
4417da66 6687}
991fb3f7
ND
6688
6689/**
6690 * dev_set_allmulti - update allmulti count on a device
6691 * @dev: device
6692 * @inc: modifier
6693 *
6694 * Add or remove reception of all multicast frames to a device. While the
6695 * count in the device remains above zero the interface remains listening
6696 * to all interfaces. Once it hits zero the device reverts back to normal
6697 * filtering operation. A negative @inc value is used to drop the counter
6698 * when releasing a resource needing all multicasts.
6699 * Return 0 if successful or a negative errno code on error.
6700 */
6701
6702int dev_set_allmulti(struct net_device *dev, int inc)
6703{
6704 return __dev_set_allmulti(dev, inc, true);
6705}
d1b19dff 6706EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6707
6708/*
6709 * Upload unicast and multicast address lists to device and
6710 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6711 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6712 * are present.
6713 */
6714void __dev_set_rx_mode(struct net_device *dev)
6715{
d314774c
SH
6716 const struct net_device_ops *ops = dev->netdev_ops;
6717
4417da66
PM
6718 /* dev_open will call this function so the list will stay sane. */
6719 if (!(dev->flags&IFF_UP))
6720 return;
6721
6722 if (!netif_device_present(dev))
40b77c94 6723 return;
4417da66 6724
01789349 6725 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6726 /* Unicast addresses changes may only happen under the rtnl,
6727 * therefore calling __dev_set_promiscuity here is safe.
6728 */
32e7bfc4 6729 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6730 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6731 dev->uc_promisc = true;
32e7bfc4 6732 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6733 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6734 dev->uc_promisc = false;
4417da66 6735 }
4417da66 6736 }
01789349
JP
6737
6738 if (ops->ndo_set_rx_mode)
6739 ops->ndo_set_rx_mode(dev);
4417da66
PM
6740}
6741
6742void dev_set_rx_mode(struct net_device *dev)
6743{
b9e40857 6744 netif_addr_lock_bh(dev);
4417da66 6745 __dev_set_rx_mode(dev);
b9e40857 6746 netif_addr_unlock_bh(dev);
1da177e4
LT
6747}
6748
f0db275a
SH
6749/**
6750 * dev_get_flags - get flags reported to userspace
6751 * @dev: device
6752 *
6753 * Get the combination of flag bits exported through APIs to userspace.
6754 */
95c96174 6755unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6756{
95c96174 6757 unsigned int flags;
1da177e4
LT
6758
6759 flags = (dev->flags & ~(IFF_PROMISC |
6760 IFF_ALLMULTI |
b00055aa
SR
6761 IFF_RUNNING |
6762 IFF_LOWER_UP |
6763 IFF_DORMANT)) |
1da177e4
LT
6764 (dev->gflags & (IFF_PROMISC |
6765 IFF_ALLMULTI));
6766
b00055aa
SR
6767 if (netif_running(dev)) {
6768 if (netif_oper_up(dev))
6769 flags |= IFF_RUNNING;
6770 if (netif_carrier_ok(dev))
6771 flags |= IFF_LOWER_UP;
6772 if (netif_dormant(dev))
6773 flags |= IFF_DORMANT;
6774 }
1da177e4
LT
6775
6776 return flags;
6777}
d1b19dff 6778EXPORT_SYMBOL(dev_get_flags);
1da177e4 6779
bd380811 6780int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6781{
b536db93 6782 unsigned int old_flags = dev->flags;
bd380811 6783 int ret;
1da177e4 6784
24023451
PM
6785 ASSERT_RTNL();
6786
1da177e4
LT
6787 /*
6788 * Set the flags on our device.
6789 */
6790
6791 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6792 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6793 IFF_AUTOMEDIA)) |
6794 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6795 IFF_ALLMULTI));
6796
6797 /*
6798 * Load in the correct multicast list now the flags have changed.
6799 */
6800
b6c40d68
PM
6801 if ((old_flags ^ flags) & IFF_MULTICAST)
6802 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6803
4417da66 6804 dev_set_rx_mode(dev);
1da177e4
LT
6805
6806 /*
6807 * Have we downed the interface. We handle IFF_UP ourselves
6808 * according to user attempts to set it, rather than blindly
6809 * setting it.
6810 */
6811
6812 ret = 0;
7051b88a 6813 if ((old_flags ^ flags) & IFF_UP) {
6814 if (old_flags & IFF_UP)
6815 __dev_close(dev);
6816 else
6817 ret = __dev_open(dev);
6818 }
1da177e4 6819
1da177e4 6820 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6821 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6822 unsigned int old_flags = dev->flags;
d1b19dff 6823
1da177e4 6824 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6825
6826 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6827 if (dev->flags != old_flags)
6828 dev_set_rx_mode(dev);
1da177e4
LT
6829 }
6830
6831 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 6832 * is important. Some (broken) drivers set IFF_PROMISC, when
6833 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
6834 */
6835 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6836 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6837
1da177e4 6838 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6839 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6840 }
6841
bd380811
PM
6842 return ret;
6843}
6844
a528c219
ND
6845void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6846 unsigned int gchanges)
bd380811
PM
6847{
6848 unsigned int changes = dev->flags ^ old_flags;
6849
a528c219 6850 if (gchanges)
7f294054 6851 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6852
bd380811
PM
6853 if (changes & IFF_UP) {
6854 if (dev->flags & IFF_UP)
6855 call_netdevice_notifiers(NETDEV_UP, dev);
6856 else
6857 call_netdevice_notifiers(NETDEV_DOWN, dev);
6858 }
6859
6860 if (dev->flags & IFF_UP &&
be9efd36 6861 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
6862 struct netdev_notifier_change_info change_info = {
6863 .info = {
6864 .dev = dev,
6865 },
6866 .flags_changed = changes,
6867 };
be9efd36 6868
51d0c047 6869 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 6870 }
bd380811
PM
6871}
6872
6873/**
6874 * dev_change_flags - change device settings
6875 * @dev: device
6876 * @flags: device state flags
6877 *
6878 * Change settings on device based state flags. The flags are
6879 * in the userspace exported format.
6880 */
b536db93 6881int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6882{
b536db93 6883 int ret;
991fb3f7 6884 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6885
6886 ret = __dev_change_flags(dev, flags);
6887 if (ret < 0)
6888 return ret;
6889
991fb3f7 6890 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6891 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6892 return ret;
6893}
d1b19dff 6894EXPORT_SYMBOL(dev_change_flags);
1da177e4 6895
f51048c3 6896int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
6897{
6898 const struct net_device_ops *ops = dev->netdev_ops;
6899
6900 if (ops->ndo_change_mtu)
6901 return ops->ndo_change_mtu(dev, new_mtu);
6902
6903 dev->mtu = new_mtu;
6904 return 0;
6905}
f51048c3 6906EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 6907
f0db275a
SH
6908/**
6909 * dev_set_mtu - Change maximum transfer unit
6910 * @dev: device
6911 * @new_mtu: new transfer unit
6912 *
6913 * Change the maximum transfer size of the network device.
6914 */
1da177e4
LT
6915int dev_set_mtu(struct net_device *dev, int new_mtu)
6916{
2315dc91 6917 int err, orig_mtu;
1da177e4
LT
6918
6919 if (new_mtu == dev->mtu)
6920 return 0;
6921
61e84623
JW
6922 /* MTU must be positive, and in range */
6923 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6924 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6925 dev->name, new_mtu, dev->min_mtu);
1da177e4 6926 return -EINVAL;
61e84623
JW
6927 }
6928
6929 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6930 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6931 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6932 return -EINVAL;
6933 }
1da177e4
LT
6934
6935 if (!netif_device_present(dev))
6936 return -ENODEV;
6937
1d486bfb
VF
6938 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6939 err = notifier_to_errno(err);
6940 if (err)
6941 return err;
d314774c 6942
2315dc91
VF
6943 orig_mtu = dev->mtu;
6944 err = __dev_set_mtu(dev, new_mtu);
d314774c 6945
2315dc91
VF
6946 if (!err) {
6947 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6948 err = notifier_to_errno(err);
6949 if (err) {
6950 /* setting mtu back and notifying everyone again,
6951 * so that they have a chance to revert changes.
6952 */
6953 __dev_set_mtu(dev, orig_mtu);
6954 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6955 }
6956 }
1da177e4
LT
6957 return err;
6958}
d1b19dff 6959EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6960
cbda10fa
VD
6961/**
6962 * dev_set_group - Change group this device belongs to
6963 * @dev: device
6964 * @new_group: group this device should belong to
6965 */
6966void dev_set_group(struct net_device *dev, int new_group)
6967{
6968 dev->group = new_group;
6969}
6970EXPORT_SYMBOL(dev_set_group);
6971
f0db275a
SH
6972/**
6973 * dev_set_mac_address - Change Media Access Control Address
6974 * @dev: device
6975 * @sa: new address
6976 *
6977 * Change the hardware (MAC) address of the device
6978 */
1da177e4
LT
6979int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6980{
d314774c 6981 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6982 int err;
6983
d314774c 6984 if (!ops->ndo_set_mac_address)
1da177e4
LT
6985 return -EOPNOTSUPP;
6986 if (sa->sa_family != dev->type)
6987 return -EINVAL;
6988 if (!netif_device_present(dev))
6989 return -ENODEV;
d314774c 6990 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6991 if (err)
6992 return err;
fbdeca2d 6993 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6994 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6995 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6996 return 0;
1da177e4 6997}
d1b19dff 6998EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6999
4bf84c35
JP
7000/**
7001 * dev_change_carrier - Change device carrier
7002 * @dev: device
691b3b7e 7003 * @new_carrier: new value
4bf84c35
JP
7004 *
7005 * Change device carrier
7006 */
7007int dev_change_carrier(struct net_device *dev, bool new_carrier)
7008{
7009 const struct net_device_ops *ops = dev->netdev_ops;
7010
7011 if (!ops->ndo_change_carrier)
7012 return -EOPNOTSUPP;
7013 if (!netif_device_present(dev))
7014 return -ENODEV;
7015 return ops->ndo_change_carrier(dev, new_carrier);
7016}
7017EXPORT_SYMBOL(dev_change_carrier);
7018
66b52b0d
JP
7019/**
7020 * dev_get_phys_port_id - Get device physical port ID
7021 * @dev: device
7022 * @ppid: port ID
7023 *
7024 * Get device physical port ID
7025 */
7026int dev_get_phys_port_id(struct net_device *dev,
02637fce 7027 struct netdev_phys_item_id *ppid)
66b52b0d
JP
7028{
7029 const struct net_device_ops *ops = dev->netdev_ops;
7030
7031 if (!ops->ndo_get_phys_port_id)
7032 return -EOPNOTSUPP;
7033 return ops->ndo_get_phys_port_id(dev, ppid);
7034}
7035EXPORT_SYMBOL(dev_get_phys_port_id);
7036
db24a904
DA
7037/**
7038 * dev_get_phys_port_name - Get device physical port name
7039 * @dev: device
7040 * @name: port name
ed49e650 7041 * @len: limit of bytes to copy to name
db24a904
DA
7042 *
7043 * Get device physical port name
7044 */
7045int dev_get_phys_port_name(struct net_device *dev,
7046 char *name, size_t len)
7047{
7048 const struct net_device_ops *ops = dev->netdev_ops;
7049
7050 if (!ops->ndo_get_phys_port_name)
7051 return -EOPNOTSUPP;
7052 return ops->ndo_get_phys_port_name(dev, name, len);
7053}
7054EXPORT_SYMBOL(dev_get_phys_port_name);
7055
d746d707
AK
7056/**
7057 * dev_change_proto_down - update protocol port state information
7058 * @dev: device
7059 * @proto_down: new value
7060 *
7061 * This info can be used by switch drivers to set the phys state of the
7062 * port.
7063 */
7064int dev_change_proto_down(struct net_device *dev, bool proto_down)
7065{
7066 const struct net_device_ops *ops = dev->netdev_ops;
7067
7068 if (!ops->ndo_change_proto_down)
7069 return -EOPNOTSUPP;
7070 if (!netif_device_present(dev))
7071 return -ENODEV;
7072 return ops->ndo_change_proto_down(dev, proto_down);
7073}
7074EXPORT_SYMBOL(dev_change_proto_down);
7075
f4e63525 7076u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id)
d67b9cd2 7077{
f4e63525 7078 struct netdev_bpf xdp;
d67b9cd2
DB
7079
7080 memset(&xdp, 0, sizeof(xdp));
7081 xdp.command = XDP_QUERY_PROG;
7082
7083 /* Query must always succeed. */
f4e63525 7084 WARN_ON(bpf_op(dev, &xdp) < 0);
58038695
MKL
7085 if (prog_id)
7086 *prog_id = xdp.prog_id;
7087
d67b9cd2
DB
7088 return xdp.prog_attached;
7089}
7090
f4e63525 7091static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 7092 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
7093 struct bpf_prog *prog)
7094{
f4e63525 7095 struct netdev_bpf xdp;
d67b9cd2
DB
7096
7097 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
7098 if (flags & XDP_FLAGS_HW_MODE)
7099 xdp.command = XDP_SETUP_PROG_HW;
7100 else
7101 xdp.command = XDP_SETUP_PROG;
d67b9cd2 7102 xdp.extack = extack;
32d60277 7103 xdp.flags = flags;
d67b9cd2
DB
7104 xdp.prog = prog;
7105
f4e63525 7106 return bpf_op(dev, &xdp);
d67b9cd2
DB
7107}
7108
a7862b45
BB
7109/**
7110 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7111 * @dev: device
b5d60989 7112 * @extack: netlink extended ack
a7862b45 7113 * @fd: new program fd or negative value to clear
85de8576 7114 * @flags: xdp-related flags
a7862b45
BB
7115 *
7116 * Set or clear a bpf program for a device
7117 */
ddf9f970
JK
7118int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7119 int fd, u32 flags)
a7862b45
BB
7120{
7121 const struct net_device_ops *ops = dev->netdev_ops;
7122 struct bpf_prog *prog = NULL;
f4e63525 7123 bpf_op_t bpf_op, bpf_chk;
a7862b45
BB
7124 int err;
7125
85de8576
DB
7126 ASSERT_RTNL();
7127
f4e63525
JK
7128 bpf_op = bpf_chk = ops->ndo_bpf;
7129 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
0489df9a 7130 return -EOPNOTSUPP;
f4e63525
JK
7131 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7132 bpf_op = generic_xdp_install;
7133 if (bpf_op == bpf_chk)
7134 bpf_chk = generic_xdp_install;
b5cdae32 7135
a7862b45 7136 if (fd >= 0) {
f4e63525 7137 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL))
d67b9cd2
DB
7138 return -EEXIST;
7139 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
f4e63525 7140 __dev_xdp_attached(dev, bpf_op, NULL))
d67b9cd2 7141 return -EBUSY;
85de8576 7142
288b3de5
JK
7143 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7144 bpf_op == ops->ndo_bpf);
a7862b45
BB
7145 if (IS_ERR(prog))
7146 return PTR_ERR(prog);
441a3303
JK
7147
7148 if (!(flags & XDP_FLAGS_HW_MODE) &&
7149 bpf_prog_is_dev_bound(prog->aux)) {
7150 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7151 bpf_prog_put(prog);
7152 return -EINVAL;
7153 }
a7862b45
BB
7154 }
7155
f4e63525 7156 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
7157 if (err < 0 && prog)
7158 bpf_prog_put(prog);
7159
7160 return err;
7161}
a7862b45 7162
1da177e4
LT
7163/**
7164 * dev_new_index - allocate an ifindex
c4ea43c5 7165 * @net: the applicable net namespace
1da177e4
LT
7166 *
7167 * Returns a suitable unique value for a new device interface
7168 * number. The caller must hold the rtnl semaphore or the
7169 * dev_base_lock to be sure it remains unique.
7170 */
881d966b 7171static int dev_new_index(struct net *net)
1da177e4 7172{
aa79e66e 7173 int ifindex = net->ifindex;
f4563a75 7174
1da177e4
LT
7175 for (;;) {
7176 if (++ifindex <= 0)
7177 ifindex = 1;
881d966b 7178 if (!__dev_get_by_index(net, ifindex))
aa79e66e 7179 return net->ifindex = ifindex;
1da177e4
LT
7180 }
7181}
7182
1da177e4 7183/* Delayed registration/unregisteration */
3b5b34fd 7184static LIST_HEAD(net_todo_list);
200b916f 7185DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 7186
6f05f629 7187static void net_set_todo(struct net_device *dev)
1da177e4 7188{
1da177e4 7189 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 7190 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
7191}
7192
9b5e383c 7193static void rollback_registered_many(struct list_head *head)
93ee31f1 7194{
e93737b0 7195 struct net_device *dev, *tmp;
5cde2829 7196 LIST_HEAD(close_head);
9b5e383c 7197
93ee31f1
DL
7198 BUG_ON(dev_boot_phase);
7199 ASSERT_RTNL();
7200
e93737b0 7201 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 7202 /* Some devices call without registering
e93737b0
KK
7203 * for initialization unwind. Remove those
7204 * devices and proceed with the remaining.
9b5e383c
ED
7205 */
7206 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
7207 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7208 dev->name, dev);
93ee31f1 7209
9b5e383c 7210 WARN_ON(1);
e93737b0
KK
7211 list_del(&dev->unreg_list);
7212 continue;
9b5e383c 7213 }
449f4544 7214 dev->dismantle = true;
9b5e383c 7215 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 7216 }
93ee31f1 7217
44345724 7218 /* If device is running, close it first. */
5cde2829
EB
7219 list_for_each_entry(dev, head, unreg_list)
7220 list_add_tail(&dev->close_list, &close_head);
99c4a26a 7221 dev_close_many(&close_head, true);
93ee31f1 7222
44345724 7223 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
7224 /* And unlink it from device chain. */
7225 unlist_netdevice(dev);
93ee31f1 7226
9b5e383c
ED
7227 dev->reg_state = NETREG_UNREGISTERING;
7228 }
41852497 7229 flush_all_backlogs();
93ee31f1
DL
7230
7231 synchronize_net();
7232
9b5e383c 7233 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
7234 struct sk_buff *skb = NULL;
7235
9b5e383c
ED
7236 /* Shutdown queueing discipline. */
7237 dev_shutdown(dev);
93ee31f1
DL
7238
7239
9b5e383c 7240 /* Notify protocols, that we are about to destroy
eb13da1a 7241 * this device. They should clean all the things.
7242 */
9b5e383c 7243 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 7244
395eea6c
MB
7245 if (!dev->rtnl_link_ops ||
7246 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 7247 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
6621dd29 7248 GFP_KERNEL, NULL);
395eea6c 7249
9b5e383c
ED
7250 /*
7251 * Flush the unicast and multicast chains
7252 */
a748ee24 7253 dev_uc_flush(dev);
22bedad3 7254 dev_mc_flush(dev);
93ee31f1 7255
9b5e383c
ED
7256 if (dev->netdev_ops->ndo_uninit)
7257 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 7258
395eea6c
MB
7259 if (skb)
7260 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 7261
9ff162a8
JP
7262 /* Notifier chain MUST detach us all upper devices. */
7263 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 7264 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 7265
9b5e383c
ED
7266 /* Remove entries from kobject tree */
7267 netdev_unregister_kobject(dev);
024e9679
AD
7268#ifdef CONFIG_XPS
7269 /* Remove XPS queueing entries */
7270 netif_reset_xps_queues_gt(dev, 0);
7271#endif
9b5e383c 7272 }
93ee31f1 7273
850a545b 7274 synchronize_net();
395264d5 7275
a5ee1551 7276 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
7277 dev_put(dev);
7278}
7279
7280static void rollback_registered(struct net_device *dev)
7281{
7282 LIST_HEAD(single);
7283
7284 list_add(&dev->unreg_list, &single);
7285 rollback_registered_many(&single);
ceaaec98 7286 list_del(&single);
93ee31f1
DL
7287}
7288
fd867d51
JW
7289static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7290 struct net_device *upper, netdev_features_t features)
7291{
7292 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7293 netdev_features_t feature;
5ba3f7d6 7294 int feature_bit;
fd867d51 7295
5ba3f7d6
JW
7296 for_each_netdev_feature(&upper_disables, feature_bit) {
7297 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7298 if (!(upper->wanted_features & feature)
7299 && (features & feature)) {
7300 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7301 &feature, upper->name);
7302 features &= ~feature;
7303 }
7304 }
7305
7306 return features;
7307}
7308
7309static void netdev_sync_lower_features(struct net_device *upper,
7310 struct net_device *lower, netdev_features_t features)
7311{
7312 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7313 netdev_features_t feature;
5ba3f7d6 7314 int feature_bit;
fd867d51 7315
5ba3f7d6
JW
7316 for_each_netdev_feature(&upper_disables, feature_bit) {
7317 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7318 if (!(features & feature) && (lower->features & feature)) {
7319 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7320 &feature, lower->name);
7321 lower->wanted_features &= ~feature;
7322 netdev_update_features(lower);
7323
7324 if (unlikely(lower->features & feature))
7325 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7326 &feature, lower->name);
7327 }
7328 }
7329}
7330
c8f44aff
MM
7331static netdev_features_t netdev_fix_features(struct net_device *dev,
7332 netdev_features_t features)
b63365a2 7333{
57422dc5
MM
7334 /* Fix illegal checksum combinations */
7335 if ((features & NETIF_F_HW_CSUM) &&
7336 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 7337 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
7338 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7339 }
7340
b63365a2 7341 /* TSO requires that SG is present as well. */
ea2d3688 7342 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 7343 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 7344 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
7345 }
7346
ec5f0615
PS
7347 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7348 !(features & NETIF_F_IP_CSUM)) {
7349 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7350 features &= ~NETIF_F_TSO;
7351 features &= ~NETIF_F_TSO_ECN;
7352 }
7353
7354 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7355 !(features & NETIF_F_IPV6_CSUM)) {
7356 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7357 features &= ~NETIF_F_TSO6;
7358 }
7359
b1dc497b
AD
7360 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7361 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7362 features &= ~NETIF_F_TSO_MANGLEID;
7363
31d8b9e0
BH
7364 /* TSO ECN requires that TSO is present as well. */
7365 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7366 features &= ~NETIF_F_TSO_ECN;
7367
212b573f
MM
7368 /* Software GSO depends on SG. */
7369 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 7370 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
7371 features &= ~NETIF_F_GSO;
7372 }
7373
802ab55a
AD
7374 /* GSO partial features require GSO partial be set */
7375 if ((features & dev->gso_partial_features) &&
7376 !(features & NETIF_F_GSO_PARTIAL)) {
7377 netdev_dbg(dev,
7378 "Dropping partially supported GSO features since no GSO partial.\n");
7379 features &= ~dev->gso_partial_features;
7380 }
7381
b63365a2
HX
7382 return features;
7383}
b63365a2 7384
6cb6a27c 7385int __netdev_update_features(struct net_device *dev)
5455c699 7386{
fd867d51 7387 struct net_device *upper, *lower;
c8f44aff 7388 netdev_features_t features;
fd867d51 7389 struct list_head *iter;
e7868a85 7390 int err = -1;
5455c699 7391
87267485
MM
7392 ASSERT_RTNL();
7393
5455c699
MM
7394 features = netdev_get_wanted_features(dev);
7395
7396 if (dev->netdev_ops->ndo_fix_features)
7397 features = dev->netdev_ops->ndo_fix_features(dev, features);
7398
7399 /* driver might be less strict about feature dependencies */
7400 features = netdev_fix_features(dev, features);
7401
fd867d51
JW
7402 /* some features can't be enabled if they're off an an upper device */
7403 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7404 features = netdev_sync_upper_features(dev, upper, features);
7405
5455c699 7406 if (dev->features == features)
e7868a85 7407 goto sync_lower;
5455c699 7408
c8f44aff
MM
7409 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7410 &dev->features, &features);
5455c699
MM
7411
7412 if (dev->netdev_ops->ndo_set_features)
7413 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7414 else
7415 err = 0;
5455c699 7416
6cb6a27c 7417 if (unlikely(err < 0)) {
5455c699 7418 netdev_err(dev,
c8f44aff
MM
7419 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7420 err, &features, &dev->features);
17b85d29
NA
7421 /* return non-0 since some features might have changed and
7422 * it's better to fire a spurious notification than miss it
7423 */
7424 return -1;
6cb6a27c
MM
7425 }
7426
e7868a85 7427sync_lower:
fd867d51
JW
7428 /* some features must be disabled on lower devices when disabled
7429 * on an upper device (think: bonding master or bridge)
7430 */
7431 netdev_for_each_lower_dev(dev, lower, iter)
7432 netdev_sync_lower_features(dev, lower, features);
7433
ae847f40
SD
7434 if (!err) {
7435 netdev_features_t diff = features ^ dev->features;
7436
7437 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7438 /* udp_tunnel_{get,drop}_rx_info both need
7439 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7440 * device, or they won't do anything.
7441 * Thus we need to update dev->features
7442 * *before* calling udp_tunnel_get_rx_info,
7443 * but *after* calling udp_tunnel_drop_rx_info.
7444 */
7445 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7446 dev->features = features;
7447 udp_tunnel_get_rx_info(dev);
7448 } else {
7449 udp_tunnel_drop_rx_info(dev);
7450 }
7451 }
7452
6cb6a27c 7453 dev->features = features;
ae847f40 7454 }
6cb6a27c 7455
e7868a85 7456 return err < 0 ? 0 : 1;
6cb6a27c
MM
7457}
7458
afe12cc8
MM
7459/**
7460 * netdev_update_features - recalculate device features
7461 * @dev: the device to check
7462 *
7463 * Recalculate dev->features set and send notifications if it
7464 * has changed. Should be called after driver or hardware dependent
7465 * conditions might have changed that influence the features.
7466 */
6cb6a27c
MM
7467void netdev_update_features(struct net_device *dev)
7468{
7469 if (__netdev_update_features(dev))
7470 netdev_features_change(dev);
5455c699
MM
7471}
7472EXPORT_SYMBOL(netdev_update_features);
7473
afe12cc8
MM
7474/**
7475 * netdev_change_features - recalculate device features
7476 * @dev: the device to check
7477 *
7478 * Recalculate dev->features set and send notifications even
7479 * if they have not changed. Should be called instead of
7480 * netdev_update_features() if also dev->vlan_features might
7481 * have changed to allow the changes to be propagated to stacked
7482 * VLAN devices.
7483 */
7484void netdev_change_features(struct net_device *dev)
7485{
7486 __netdev_update_features(dev);
7487 netdev_features_change(dev);
7488}
7489EXPORT_SYMBOL(netdev_change_features);
7490
fc4a7489
PM
7491/**
7492 * netif_stacked_transfer_operstate - transfer operstate
7493 * @rootdev: the root or lower level device to transfer state from
7494 * @dev: the device to transfer operstate to
7495 *
7496 * Transfer operational state from root to device. This is normally
7497 * called when a stacking relationship exists between the root
7498 * device and the device(a leaf device).
7499 */
7500void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7501 struct net_device *dev)
7502{
7503 if (rootdev->operstate == IF_OPER_DORMANT)
7504 netif_dormant_on(dev);
7505 else
7506 netif_dormant_off(dev);
7507
0575c86b
ZS
7508 if (netif_carrier_ok(rootdev))
7509 netif_carrier_on(dev);
7510 else
7511 netif_carrier_off(dev);
fc4a7489
PM
7512}
7513EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7514
a953be53 7515#ifdef CONFIG_SYSFS
1b4bf461
ED
7516static int netif_alloc_rx_queues(struct net_device *dev)
7517{
1b4bf461 7518 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7519 struct netdev_rx_queue *rx;
10595902 7520 size_t sz = count * sizeof(*rx);
1b4bf461 7521
bd25fa7b 7522 BUG_ON(count < 1);
1b4bf461 7523
dcda9b04 7524 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7525 if (!rx)
7526 return -ENOMEM;
7527
bd25fa7b
TH
7528 dev->_rx = rx;
7529
bd25fa7b 7530 for (i = 0; i < count; i++)
fe822240 7531 rx[i].dev = dev;
1b4bf461
ED
7532 return 0;
7533}
bf264145 7534#endif
1b4bf461 7535
aa942104
CG
7536static void netdev_init_one_queue(struct net_device *dev,
7537 struct netdev_queue *queue, void *_unused)
7538{
7539 /* Initialize queue lock */
7540 spin_lock_init(&queue->_xmit_lock);
7541 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7542 queue->xmit_lock_owner = -1;
b236da69 7543 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7544 queue->dev = dev;
114cf580
TH
7545#ifdef CONFIG_BQL
7546 dql_init(&queue->dql, HZ);
7547#endif
aa942104
CG
7548}
7549
60877a32
ED
7550static void netif_free_tx_queues(struct net_device *dev)
7551{
4cb28970 7552 kvfree(dev->_tx);
60877a32
ED
7553}
7554
e6484930
TH
7555static int netif_alloc_netdev_queues(struct net_device *dev)
7556{
7557 unsigned int count = dev->num_tx_queues;
7558 struct netdev_queue *tx;
60877a32 7559 size_t sz = count * sizeof(*tx);
e6484930 7560
d339727c
ED
7561 if (count < 1 || count > 0xffff)
7562 return -EINVAL;
62b5942a 7563
dcda9b04 7564 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7565 if (!tx)
7566 return -ENOMEM;
7567
e6484930 7568 dev->_tx = tx;
1d24eb48 7569
e6484930
TH
7570 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7571 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7572
7573 return 0;
e6484930
TH
7574}
7575
a2029240
DV
7576void netif_tx_stop_all_queues(struct net_device *dev)
7577{
7578 unsigned int i;
7579
7580 for (i = 0; i < dev->num_tx_queues; i++) {
7581 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 7582
a2029240
DV
7583 netif_tx_stop_queue(txq);
7584 }
7585}
7586EXPORT_SYMBOL(netif_tx_stop_all_queues);
7587
1da177e4
LT
7588/**
7589 * register_netdevice - register a network device
7590 * @dev: device to register
7591 *
7592 * Take a completed network device structure and add it to the kernel
7593 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7594 * chain. 0 is returned on success. A negative errno code is returned
7595 * on a failure to set up the device, or if the name is a duplicate.
7596 *
7597 * Callers must hold the rtnl semaphore. You may want
7598 * register_netdev() instead of this.
7599 *
7600 * BUGS:
7601 * The locking appears insufficient to guarantee two parallel registers
7602 * will not get the same name.
7603 */
7604
7605int register_netdevice(struct net_device *dev)
7606{
1da177e4 7607 int ret;
d314774c 7608 struct net *net = dev_net(dev);
1da177e4
LT
7609
7610 BUG_ON(dev_boot_phase);
7611 ASSERT_RTNL();
7612
b17a7c17
SH
7613 might_sleep();
7614
1da177e4
LT
7615 /* When net_device's are persistent, this will be fatal. */
7616 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7617 BUG_ON(!net);
1da177e4 7618
f1f28aa3 7619 spin_lock_init(&dev->addr_list_lock);
cf508b12 7620 netdev_set_addr_lockdep_class(dev);
1da177e4 7621
828de4f6 7622 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7623 if (ret < 0)
7624 goto out;
7625
1da177e4 7626 /* Init, if this function is available */
d314774c
SH
7627 if (dev->netdev_ops->ndo_init) {
7628 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7629 if (ret) {
7630 if (ret > 0)
7631 ret = -EIO;
90833aa4 7632 goto out;
1da177e4
LT
7633 }
7634 }
4ec93edb 7635
f646968f
PM
7636 if (((dev->hw_features | dev->features) &
7637 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7638 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7639 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7640 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7641 ret = -EINVAL;
7642 goto err_uninit;
7643 }
7644
9c7dafbf
PE
7645 ret = -EBUSY;
7646 if (!dev->ifindex)
7647 dev->ifindex = dev_new_index(net);
7648 else if (__dev_get_by_index(net, dev->ifindex))
7649 goto err_uninit;
7650
5455c699
MM
7651 /* Transfer changeable features to wanted_features and enable
7652 * software offloads (GSO and GRO).
7653 */
7654 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 7655 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
7656
7657 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7658 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7659 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7660 }
7661
14d1232f 7662 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7663
cbc53e08 7664 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7665 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7666
7f348a60
AD
7667 /* If IPv4 TCP segmentation offload is supported we should also
7668 * allow the device to enable segmenting the frame with the option
7669 * of ignoring a static IP ID value. This doesn't enable the
7670 * feature itself but allows the user to enable it later.
7671 */
cbc53e08
AD
7672 if (dev->hw_features & NETIF_F_TSO)
7673 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7674 if (dev->vlan_features & NETIF_F_TSO)
7675 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7676 if (dev->mpls_features & NETIF_F_TSO)
7677 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7678 if (dev->hw_enc_features & NETIF_F_TSO)
7679 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7680
1180e7d6 7681 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7682 */
1180e7d6 7683 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7684
ee579677
PS
7685 /* Make NETIF_F_SG inheritable to tunnel devices.
7686 */
802ab55a 7687 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7688
0d89d203
SH
7689 /* Make NETIF_F_SG inheritable to MPLS.
7690 */
7691 dev->mpls_features |= NETIF_F_SG;
7692
7ffbe3fd
JB
7693 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7694 ret = notifier_to_errno(ret);
7695 if (ret)
7696 goto err_uninit;
7697
8b41d188 7698 ret = netdev_register_kobject(dev);
b17a7c17 7699 if (ret)
7ce1b0ed 7700 goto err_uninit;
b17a7c17
SH
7701 dev->reg_state = NETREG_REGISTERED;
7702
6cb6a27c 7703 __netdev_update_features(dev);
8e9b59b2 7704
1da177e4
LT
7705 /*
7706 * Default initial state at registry is that the
7707 * device is present.
7708 */
7709
7710 set_bit(__LINK_STATE_PRESENT, &dev->state);
7711
8f4cccbb
BH
7712 linkwatch_init_dev(dev);
7713
1da177e4 7714 dev_init_scheduler(dev);
1da177e4 7715 dev_hold(dev);
ce286d32 7716 list_netdevice(dev);
7bf23575 7717 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7718
948b337e
JP
7719 /* If the device has permanent device address, driver should
7720 * set dev_addr and also addr_assign_type should be set to
7721 * NET_ADDR_PERM (default value).
7722 */
7723 if (dev->addr_assign_type == NET_ADDR_PERM)
7724 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7725
1da177e4 7726 /* Notify protocols, that a new device appeared. */
056925ab 7727 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7728 ret = notifier_to_errno(ret);
93ee31f1
DL
7729 if (ret) {
7730 rollback_registered(dev);
7731 dev->reg_state = NETREG_UNREGISTERED;
7732 }
d90a909e
EB
7733 /*
7734 * Prevent userspace races by waiting until the network
7735 * device is fully setup before sending notifications.
7736 */
a2835763
PM
7737 if (!dev->rtnl_link_ops ||
7738 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7739 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7740
7741out:
7742 return ret;
7ce1b0ed
HX
7743
7744err_uninit:
d314774c
SH
7745 if (dev->netdev_ops->ndo_uninit)
7746 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
7747 if (dev->priv_destructor)
7748 dev->priv_destructor(dev);
7ce1b0ed 7749 goto out;
1da177e4 7750}
d1b19dff 7751EXPORT_SYMBOL(register_netdevice);
1da177e4 7752
937f1ba5
BH
7753/**
7754 * init_dummy_netdev - init a dummy network device for NAPI
7755 * @dev: device to init
7756 *
7757 * This takes a network device structure and initialize the minimum
7758 * amount of fields so it can be used to schedule NAPI polls without
7759 * registering a full blown interface. This is to be used by drivers
7760 * that need to tie several hardware interfaces to a single NAPI
7761 * poll scheduler due to HW limitations.
7762 */
7763int init_dummy_netdev(struct net_device *dev)
7764{
7765 /* Clear everything. Note we don't initialize spinlocks
7766 * are they aren't supposed to be taken by any of the
7767 * NAPI code and this dummy netdev is supposed to be
7768 * only ever used for NAPI polls
7769 */
7770 memset(dev, 0, sizeof(struct net_device));
7771
7772 /* make sure we BUG if trying to hit standard
7773 * register/unregister code path
7774 */
7775 dev->reg_state = NETREG_DUMMY;
7776
937f1ba5
BH
7777 /* NAPI wants this */
7778 INIT_LIST_HEAD(&dev->napi_list);
7779
7780 /* a dummy interface is started by default */
7781 set_bit(__LINK_STATE_PRESENT, &dev->state);
7782 set_bit(__LINK_STATE_START, &dev->state);
7783
29b4433d
ED
7784 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7785 * because users of this 'device' dont need to change
7786 * its refcount.
7787 */
7788
937f1ba5
BH
7789 return 0;
7790}
7791EXPORT_SYMBOL_GPL(init_dummy_netdev);
7792
7793
1da177e4
LT
7794/**
7795 * register_netdev - register a network device
7796 * @dev: device to register
7797 *
7798 * Take a completed network device structure and add it to the kernel
7799 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7800 * chain. 0 is returned on success. A negative errno code is returned
7801 * on a failure to set up the device, or if the name is a duplicate.
7802 *
38b4da38 7803 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7804 * and expands the device name if you passed a format string to
7805 * alloc_netdev.
7806 */
7807int register_netdev(struct net_device *dev)
7808{
7809 int err;
7810
7811 rtnl_lock();
1da177e4 7812 err = register_netdevice(dev);
1da177e4
LT
7813 rtnl_unlock();
7814 return err;
7815}
7816EXPORT_SYMBOL(register_netdev);
7817
29b4433d
ED
7818int netdev_refcnt_read(const struct net_device *dev)
7819{
7820 int i, refcnt = 0;
7821
7822 for_each_possible_cpu(i)
7823 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7824 return refcnt;
7825}
7826EXPORT_SYMBOL(netdev_refcnt_read);
7827
2c53040f 7828/**
1da177e4 7829 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7830 * @dev: target net_device
1da177e4
LT
7831 *
7832 * This is called when unregistering network devices.
7833 *
7834 * Any protocol or device that holds a reference should register
7835 * for netdevice notification, and cleanup and put back the
7836 * reference if they receive an UNREGISTER event.
7837 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7838 * call dev_put.
1da177e4
LT
7839 */
7840static void netdev_wait_allrefs(struct net_device *dev)
7841{
7842 unsigned long rebroadcast_time, warning_time;
29b4433d 7843 int refcnt;
1da177e4 7844
e014debe
ED
7845 linkwatch_forget_dev(dev);
7846
1da177e4 7847 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7848 refcnt = netdev_refcnt_read(dev);
7849
7850 while (refcnt != 0) {
1da177e4 7851 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7852 rtnl_lock();
1da177e4
LT
7853
7854 /* Rebroadcast unregister notification */
056925ab 7855 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7856
748e2d93 7857 __rtnl_unlock();
0115e8e3 7858 rcu_barrier();
748e2d93
ED
7859 rtnl_lock();
7860
0115e8e3 7861 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7862 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7863 &dev->state)) {
7864 /* We must not have linkwatch events
7865 * pending on unregister. If this
7866 * happens, we simply run the queue
7867 * unscheduled, resulting in a noop
7868 * for this device.
7869 */
7870 linkwatch_run_queue();
7871 }
7872
6756ae4b 7873 __rtnl_unlock();
1da177e4
LT
7874
7875 rebroadcast_time = jiffies;
7876 }
7877
7878 msleep(250);
7879
29b4433d
ED
7880 refcnt = netdev_refcnt_read(dev);
7881
1da177e4 7882 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7883 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7884 dev->name, refcnt);
1da177e4
LT
7885 warning_time = jiffies;
7886 }
7887 }
7888}
7889
7890/* The sequence is:
7891 *
7892 * rtnl_lock();
7893 * ...
7894 * register_netdevice(x1);
7895 * register_netdevice(x2);
7896 * ...
7897 * unregister_netdevice(y1);
7898 * unregister_netdevice(y2);
7899 * ...
7900 * rtnl_unlock();
7901 * free_netdev(y1);
7902 * free_netdev(y2);
7903 *
58ec3b4d 7904 * We are invoked by rtnl_unlock().
1da177e4 7905 * This allows us to deal with problems:
b17a7c17 7906 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7907 * without deadlocking with linkwatch via keventd.
7908 * 2) Since we run with the RTNL semaphore not held, we can sleep
7909 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7910 *
7911 * We must not return until all unregister events added during
7912 * the interval the lock was held have been completed.
1da177e4 7913 */
1da177e4
LT
7914void netdev_run_todo(void)
7915{
626ab0e6 7916 struct list_head list;
1da177e4 7917
1da177e4 7918 /* Snapshot list, allow later requests */
626ab0e6 7919 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7920
7921 __rtnl_unlock();
626ab0e6 7922
0115e8e3
ED
7923
7924 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7925 if (!list_empty(&list))
7926 rcu_barrier();
7927
1da177e4
LT
7928 while (!list_empty(&list)) {
7929 struct net_device *dev
e5e26d75 7930 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7931 list_del(&dev->todo_list);
7932
748e2d93 7933 rtnl_lock();
0115e8e3 7934 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7935 __rtnl_unlock();
0115e8e3 7936
b17a7c17 7937 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7938 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7939 dev->name, dev->reg_state);
7940 dump_stack();
7941 continue;
7942 }
1da177e4 7943
b17a7c17 7944 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7945
b17a7c17 7946 netdev_wait_allrefs(dev);
1da177e4 7947
b17a7c17 7948 /* paranoia */
29b4433d 7949 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7950 BUG_ON(!list_empty(&dev->ptype_all));
7951 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7952 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7953 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7954 WARN_ON(dev->dn_ptr);
1da177e4 7955
cf124db5
DM
7956 if (dev->priv_destructor)
7957 dev->priv_destructor(dev);
7958 if (dev->needs_free_netdev)
7959 free_netdev(dev);
9093bbb2 7960
50624c93
EB
7961 /* Report a network device has been unregistered */
7962 rtnl_lock();
7963 dev_net(dev)->dev_unreg_count--;
7964 __rtnl_unlock();
7965 wake_up(&netdev_unregistering_wq);
7966
9093bbb2
SH
7967 /* Free network device */
7968 kobject_put(&dev->dev.kobj);
1da177e4 7969 }
1da177e4
LT
7970}
7971
9256645a
JW
7972/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7973 * all the same fields in the same order as net_device_stats, with only
7974 * the type differing, but rtnl_link_stats64 may have additional fields
7975 * at the end for newer counters.
3cfde79c 7976 */
77a1abf5
ED
7977void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7978 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7979{
7980#if BITS_PER_LONG == 64
9256645a 7981 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 7982 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
7983 /* zero out counters that only exist in rtnl_link_stats64 */
7984 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7985 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7986#else
9256645a 7987 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7988 const unsigned long *src = (const unsigned long *)netdev_stats;
7989 u64 *dst = (u64 *)stats64;
7990
9256645a 7991 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7992 for (i = 0; i < n; i++)
7993 dst[i] = src[i];
9256645a
JW
7994 /* zero out counters that only exist in rtnl_link_stats64 */
7995 memset((char *)stats64 + n * sizeof(u64), 0,
7996 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7997#endif
7998}
77a1abf5 7999EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 8000
eeda3fd6
SH
8001/**
8002 * dev_get_stats - get network device statistics
8003 * @dev: device to get statistics from
28172739 8004 * @storage: place to store stats
eeda3fd6 8005 *
d7753516
BH
8006 * Get network statistics from device. Return @storage.
8007 * The device driver may provide its own method by setting
8008 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8009 * otherwise the internal statistics structure is used.
eeda3fd6 8010 */
d7753516
BH
8011struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8012 struct rtnl_link_stats64 *storage)
7004bf25 8013{
eeda3fd6
SH
8014 const struct net_device_ops *ops = dev->netdev_ops;
8015
28172739
ED
8016 if (ops->ndo_get_stats64) {
8017 memset(storage, 0, sizeof(*storage));
caf586e5
ED
8018 ops->ndo_get_stats64(dev, storage);
8019 } else if (ops->ndo_get_stats) {
3cfde79c 8020 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
8021 } else {
8022 netdev_stats_to_stats64(storage, &dev->stats);
28172739 8023 }
6f64ec74
ED
8024 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8025 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8026 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 8027 return storage;
c45d286e 8028}
eeda3fd6 8029EXPORT_SYMBOL(dev_get_stats);
c45d286e 8030
24824a09 8031struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 8032{
24824a09 8033 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 8034
24824a09
ED
8035#ifdef CONFIG_NET_CLS_ACT
8036 if (queue)
8037 return queue;
8038 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8039 if (!queue)
8040 return NULL;
8041 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 8042 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
8043 queue->qdisc_sleeping = &noop_qdisc;
8044 rcu_assign_pointer(dev->ingress_queue, queue);
8045#endif
8046 return queue;
bb949fbd
DM
8047}
8048
2c60db03
ED
8049static const struct ethtool_ops default_ethtool_ops;
8050
d07d7507
SG
8051void netdev_set_default_ethtool_ops(struct net_device *dev,
8052 const struct ethtool_ops *ops)
8053{
8054 if (dev->ethtool_ops == &default_ethtool_ops)
8055 dev->ethtool_ops = ops;
8056}
8057EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8058
74d332c1
ED
8059void netdev_freemem(struct net_device *dev)
8060{
8061 char *addr = (char *)dev - dev->padded;
8062
4cb28970 8063 kvfree(addr);
74d332c1
ED
8064}
8065
1da177e4 8066/**
722c9a0c 8067 * alloc_netdev_mqs - allocate network device
8068 * @sizeof_priv: size of private data to allocate space for
8069 * @name: device name format string
8070 * @name_assign_type: origin of device name
8071 * @setup: callback to initialize device
8072 * @txqs: the number of TX subqueues to allocate
8073 * @rxqs: the number of RX subqueues to allocate
8074 *
8075 * Allocates a struct net_device with private data area for driver use
8076 * and performs basic initialization. Also allocates subqueue structs
8077 * for each queue on the device.
1da177e4 8078 */
36909ea4 8079struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 8080 unsigned char name_assign_type,
36909ea4
TH
8081 void (*setup)(struct net_device *),
8082 unsigned int txqs, unsigned int rxqs)
1da177e4 8083{
1da177e4 8084 struct net_device *dev;
52a59bd5 8085 unsigned int alloc_size;
1ce8e7b5 8086 struct net_device *p;
1da177e4 8087
b6fe17d6
SH
8088 BUG_ON(strlen(name) >= sizeof(dev->name));
8089
36909ea4 8090 if (txqs < 1) {
7b6cd1ce 8091 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
8092 return NULL;
8093 }
8094
a953be53 8095#ifdef CONFIG_SYSFS
36909ea4 8096 if (rxqs < 1) {
7b6cd1ce 8097 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
8098 return NULL;
8099 }
8100#endif
8101
fd2ea0a7 8102 alloc_size = sizeof(struct net_device);
d1643d24
AD
8103 if (sizeof_priv) {
8104 /* ensure 32-byte alignment of private area */
1ce8e7b5 8105 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
8106 alloc_size += sizeof_priv;
8107 }
8108 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 8109 alloc_size += NETDEV_ALIGN - 1;
1da177e4 8110
dcda9b04 8111 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 8112 if (!p)
1da177e4 8113 return NULL;
1da177e4 8114
1ce8e7b5 8115 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 8116 dev->padded = (char *)dev - (char *)p;
ab9c73cc 8117
29b4433d
ED
8118 dev->pcpu_refcnt = alloc_percpu(int);
8119 if (!dev->pcpu_refcnt)
74d332c1 8120 goto free_dev;
ab9c73cc 8121
ab9c73cc 8122 if (dev_addr_init(dev))
29b4433d 8123 goto free_pcpu;
ab9c73cc 8124
22bedad3 8125 dev_mc_init(dev);
a748ee24 8126 dev_uc_init(dev);
ccffad25 8127
c346dca1 8128 dev_net_set(dev, &init_net);
1da177e4 8129
8d3bdbd5 8130 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 8131 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 8132
8d3bdbd5
DM
8133 INIT_LIST_HEAD(&dev->napi_list);
8134 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 8135 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 8136 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
8137 INIT_LIST_HEAD(&dev->adj_list.upper);
8138 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
8139 INIT_LIST_HEAD(&dev->ptype_all);
8140 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
8141#ifdef CONFIG_NET_SCHED
8142 hash_init(dev->qdisc_hash);
8143#endif
02875878 8144 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
8145 setup(dev);
8146
a813104d 8147 if (!dev->tx_queue_len) {
f84bb1ea 8148 dev->priv_flags |= IFF_NO_QUEUE;
11597084 8149 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 8150 }
906470c1 8151
36909ea4
TH
8152 dev->num_tx_queues = txqs;
8153 dev->real_num_tx_queues = txqs;
ed9af2e8 8154 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 8155 goto free_all;
e8a0464c 8156
a953be53 8157#ifdef CONFIG_SYSFS
36909ea4
TH
8158 dev->num_rx_queues = rxqs;
8159 dev->real_num_rx_queues = rxqs;
fe822240 8160 if (netif_alloc_rx_queues(dev))
8d3bdbd5 8161 goto free_all;
df334545 8162#endif
0a9627f2 8163
1da177e4 8164 strcpy(dev->name, name);
c835a677 8165 dev->name_assign_type = name_assign_type;
cbda10fa 8166 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
8167 if (!dev->ethtool_ops)
8168 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
8169
8170 nf_hook_ingress_init(dev);
8171
1da177e4 8172 return dev;
ab9c73cc 8173
8d3bdbd5
DM
8174free_all:
8175 free_netdev(dev);
8176 return NULL;
8177
29b4433d
ED
8178free_pcpu:
8179 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
8180free_dev:
8181 netdev_freemem(dev);
ab9c73cc 8182 return NULL;
1da177e4 8183}
36909ea4 8184EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
8185
8186/**
722c9a0c 8187 * free_netdev - free network device
8188 * @dev: device
1da177e4 8189 *
722c9a0c 8190 * This function does the last stage of destroying an allocated device
8191 * interface. The reference to the device object is released. If this
8192 * is the last reference then it will be freed.Must be called in process
8193 * context.
1da177e4
LT
8194 */
8195void free_netdev(struct net_device *dev)
8196{
d565b0a1 8197 struct napi_struct *p, *n;
b5cdae32 8198 struct bpf_prog *prog;
d565b0a1 8199
93d05d4a 8200 might_sleep();
60877a32 8201 netif_free_tx_queues(dev);
a953be53 8202#ifdef CONFIG_SYSFS
10595902 8203 kvfree(dev->_rx);
fe822240 8204#endif
e8a0464c 8205
33d480ce 8206 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 8207
f001fde5
JP
8208 /* Flush device addresses */
8209 dev_addr_flush(dev);
8210
d565b0a1
HX
8211 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8212 netif_napi_del(p);
8213
29b4433d
ED
8214 free_percpu(dev->pcpu_refcnt);
8215 dev->pcpu_refcnt = NULL;
8216
b5cdae32
DM
8217 prog = rcu_dereference_protected(dev->xdp_prog, 1);
8218 if (prog) {
8219 bpf_prog_put(prog);
8220 static_key_slow_dec(&generic_xdp_needed);
8221 }
8222
3041a069 8223 /* Compatibility with error handling in drivers */
1da177e4 8224 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 8225 netdev_freemem(dev);
1da177e4
LT
8226 return;
8227 }
8228
8229 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8230 dev->reg_state = NETREG_RELEASED;
8231
43cb76d9
GKH
8232 /* will free via device release */
8233 put_device(&dev->dev);
1da177e4 8234}
d1b19dff 8235EXPORT_SYMBOL(free_netdev);
4ec93edb 8236
f0db275a
SH
8237/**
8238 * synchronize_net - Synchronize with packet receive processing
8239 *
8240 * Wait for packets currently being received to be done.
8241 * Does not block later packets from starting.
8242 */
4ec93edb 8243void synchronize_net(void)
1da177e4
LT
8244{
8245 might_sleep();
be3fc413
ED
8246 if (rtnl_is_locked())
8247 synchronize_rcu_expedited();
8248 else
8249 synchronize_rcu();
1da177e4 8250}
d1b19dff 8251EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
8252
8253/**
44a0873d 8254 * unregister_netdevice_queue - remove device from the kernel
1da177e4 8255 * @dev: device
44a0873d 8256 * @head: list
6ebfbc06 8257 *
1da177e4 8258 * This function shuts down a device interface and removes it
d59b54b1 8259 * from the kernel tables.
44a0873d 8260 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
8261 *
8262 * Callers must hold the rtnl semaphore. You may want
8263 * unregister_netdev() instead of this.
8264 */
8265
44a0873d 8266void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 8267{
a6620712
HX
8268 ASSERT_RTNL();
8269
44a0873d 8270 if (head) {
9fdce099 8271 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
8272 } else {
8273 rollback_registered(dev);
8274 /* Finish processing unregister after unlock */
8275 net_set_todo(dev);
8276 }
1da177e4 8277}
44a0873d 8278EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 8279
9b5e383c
ED
8280/**
8281 * unregister_netdevice_many - unregister many devices
8282 * @head: list of devices
87757a91
ED
8283 *
8284 * Note: As most callers use a stack allocated list_head,
8285 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
8286 */
8287void unregister_netdevice_many(struct list_head *head)
8288{
8289 struct net_device *dev;
8290
8291 if (!list_empty(head)) {
8292 rollback_registered_many(head);
8293 list_for_each_entry(dev, head, unreg_list)
8294 net_set_todo(dev);
87757a91 8295 list_del(head);
9b5e383c
ED
8296 }
8297}
63c8099d 8298EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 8299
1da177e4
LT
8300/**
8301 * unregister_netdev - remove device from the kernel
8302 * @dev: device
8303 *
8304 * This function shuts down a device interface and removes it
d59b54b1 8305 * from the kernel tables.
1da177e4
LT
8306 *
8307 * This is just a wrapper for unregister_netdevice that takes
8308 * the rtnl semaphore. In general you want to use this and not
8309 * unregister_netdevice.
8310 */
8311void unregister_netdev(struct net_device *dev)
8312{
8313 rtnl_lock();
8314 unregister_netdevice(dev);
8315 rtnl_unlock();
8316}
1da177e4
LT
8317EXPORT_SYMBOL(unregister_netdev);
8318
ce286d32
EB
8319/**
8320 * dev_change_net_namespace - move device to different nethost namespace
8321 * @dev: device
8322 * @net: network namespace
8323 * @pat: If not NULL name pattern to try if the current device name
8324 * is already taken in the destination network namespace.
8325 *
8326 * This function shuts down a device interface and moves it
8327 * to a new network namespace. On success 0 is returned, on
8328 * a failure a netagive errno code is returned.
8329 *
8330 * Callers must hold the rtnl semaphore.
8331 */
8332
8333int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8334{
6621dd29 8335 int err, new_nsid;
ce286d32
EB
8336
8337 ASSERT_RTNL();
8338
8339 /* Don't allow namespace local devices to be moved. */
8340 err = -EINVAL;
8341 if (dev->features & NETIF_F_NETNS_LOCAL)
8342 goto out;
8343
8344 /* Ensure the device has been registrered */
ce286d32
EB
8345 if (dev->reg_state != NETREG_REGISTERED)
8346 goto out;
8347
8348 /* Get out if there is nothing todo */
8349 err = 0;
878628fb 8350 if (net_eq(dev_net(dev), net))
ce286d32
EB
8351 goto out;
8352
8353 /* Pick the destination device name, and ensure
8354 * we can use it in the destination network namespace.
8355 */
8356 err = -EEXIST;
d9031024 8357 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
8358 /* We get here if we can't use the current device name */
8359 if (!pat)
8360 goto out;
828de4f6 8361 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
8362 goto out;
8363 }
8364
8365 /*
8366 * And now a mini version of register_netdevice unregister_netdevice.
8367 */
8368
8369 /* If device is running close it first. */
9b772652 8370 dev_close(dev);
ce286d32
EB
8371
8372 /* And unlink it from device chain */
8373 err = -ENODEV;
8374 unlist_netdevice(dev);
8375
8376 synchronize_net();
8377
8378 /* Shutdown queueing discipline. */
8379 dev_shutdown(dev);
8380
8381 /* Notify protocols, that we are about to destroy
eb13da1a 8382 * this device. They should clean all the things.
8383 *
8384 * Note that dev->reg_state stays at NETREG_REGISTERED.
8385 * This is wanted because this way 8021q and macvlan know
8386 * the device is just moving and can keep their slaves up.
8387 */
ce286d32 8388 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
8389 rcu_barrier();
8390 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6621dd29
ND
8391 if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8392 new_nsid = peernet2id_alloc(dev_net(dev), net);
8393 else
8394 new_nsid = peernet2id(dev_net(dev), net);
8395 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
ce286d32
EB
8396
8397 /*
8398 * Flush the unicast and multicast chains
8399 */
a748ee24 8400 dev_uc_flush(dev);
22bedad3 8401 dev_mc_flush(dev);
ce286d32 8402
4e66ae2e
SH
8403 /* Send a netdev-removed uevent to the old namespace */
8404 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 8405 netdev_adjacent_del_links(dev);
4e66ae2e 8406
ce286d32 8407 /* Actually switch the network namespace */
c346dca1 8408 dev_net_set(dev, net);
ce286d32 8409
ce286d32 8410 /* If there is an ifindex conflict assign a new one */
7a66bbc9 8411 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 8412 dev->ifindex = dev_new_index(net);
ce286d32 8413
4e66ae2e
SH
8414 /* Send a netdev-add uevent to the new namespace */
8415 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 8416 netdev_adjacent_add_links(dev);
4e66ae2e 8417
8b41d188 8418 /* Fixup kobjects */
a1b3f594 8419 err = device_rename(&dev->dev, dev->name);
8b41d188 8420 WARN_ON(err);
ce286d32
EB
8421
8422 /* Add the device back in the hashes */
8423 list_netdevice(dev);
8424
8425 /* Notify protocols, that a new device appeared. */
8426 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8427
d90a909e
EB
8428 /*
8429 * Prevent userspace races by waiting until the network
8430 * device is fully setup before sending notifications.
8431 */
7f294054 8432 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8433
ce286d32
EB
8434 synchronize_net();
8435 err = 0;
8436out:
8437 return err;
8438}
463d0183 8439EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8440
f0bf90de 8441static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8442{
8443 struct sk_buff **list_skb;
1da177e4 8444 struct sk_buff *skb;
f0bf90de 8445 unsigned int cpu;
97d8b6e3 8446 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 8447
1da177e4
LT
8448 local_irq_disable();
8449 cpu = smp_processor_id();
8450 sd = &per_cpu(softnet_data, cpu);
8451 oldsd = &per_cpu(softnet_data, oldcpu);
8452
8453 /* Find end of our completion_queue. */
8454 list_skb = &sd->completion_queue;
8455 while (*list_skb)
8456 list_skb = &(*list_skb)->next;
8457 /* Append completion queue from offline CPU. */
8458 *list_skb = oldsd->completion_queue;
8459 oldsd->completion_queue = NULL;
8460
1da177e4 8461 /* Append output queue from offline CPU. */
a9cbd588
CG
8462 if (oldsd->output_queue) {
8463 *sd->output_queue_tailp = oldsd->output_queue;
8464 sd->output_queue_tailp = oldsd->output_queue_tailp;
8465 oldsd->output_queue = NULL;
8466 oldsd->output_queue_tailp = &oldsd->output_queue;
8467 }
ac64da0b
ED
8468 /* Append NAPI poll list from offline CPU, with one exception :
8469 * process_backlog() must be called by cpu owning percpu backlog.
8470 * We properly handle process_queue & input_pkt_queue later.
8471 */
8472 while (!list_empty(&oldsd->poll_list)) {
8473 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8474 struct napi_struct,
8475 poll_list);
8476
8477 list_del_init(&napi->poll_list);
8478 if (napi->poll == process_backlog)
8479 napi->state = 0;
8480 else
8481 ____napi_schedule(sd, napi);
264524d5 8482 }
1da177e4
LT
8483
8484 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8485 local_irq_enable();
8486
773fc8f6 8487#ifdef CONFIG_RPS
8488 remsd = oldsd->rps_ipi_list;
8489 oldsd->rps_ipi_list = NULL;
8490#endif
8491 /* send out pending IPI's on offline CPU */
8492 net_rps_send_ipi(remsd);
8493
1da177e4 8494 /* Process offline CPU's input_pkt_queue */
76cc8b13 8495 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8496 netif_rx_ni(skb);
76cc8b13 8497 input_queue_head_incr(oldsd);
fec5e652 8498 }
ac64da0b 8499 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8500 netif_rx_ni(skb);
76cc8b13
TH
8501 input_queue_head_incr(oldsd);
8502 }
1da177e4 8503
f0bf90de 8504 return 0;
1da177e4 8505}
1da177e4 8506
7f353bf2 8507/**
b63365a2
HX
8508 * netdev_increment_features - increment feature set by one
8509 * @all: current feature set
8510 * @one: new feature set
8511 * @mask: mask feature set
7f353bf2
HX
8512 *
8513 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8514 * @one to the master device with current feature set @all. Will not
8515 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8516 */
c8f44aff
MM
8517netdev_features_t netdev_increment_features(netdev_features_t all,
8518 netdev_features_t one, netdev_features_t mask)
b63365a2 8519{
c8cd0989 8520 if (mask & NETIF_F_HW_CSUM)
a188222b 8521 mask |= NETIF_F_CSUM_MASK;
1742f183 8522 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8523
a188222b 8524 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8525 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8526
1742f183 8527 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8528 if (all & NETIF_F_HW_CSUM)
8529 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8530
8531 return all;
8532}
b63365a2 8533EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8534
430f03cd 8535static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8536{
8537 int i;
8538 struct hlist_head *hash;
8539
8540 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8541 if (hash != NULL)
8542 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8543 INIT_HLIST_HEAD(&hash[i]);
8544
8545 return hash;
8546}
8547
881d966b 8548/* Initialize per network namespace state */
4665079c 8549static int __net_init netdev_init(struct net *net)
881d966b 8550{
734b6541
RM
8551 if (net != &init_net)
8552 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8553
30d97d35
PE
8554 net->dev_name_head = netdev_create_hash();
8555 if (net->dev_name_head == NULL)
8556 goto err_name;
881d966b 8557
30d97d35
PE
8558 net->dev_index_head = netdev_create_hash();
8559 if (net->dev_index_head == NULL)
8560 goto err_idx;
881d966b
EB
8561
8562 return 0;
30d97d35
PE
8563
8564err_idx:
8565 kfree(net->dev_name_head);
8566err_name:
8567 return -ENOMEM;
881d966b
EB
8568}
8569
f0db275a
SH
8570/**
8571 * netdev_drivername - network driver for the device
8572 * @dev: network device
f0db275a
SH
8573 *
8574 * Determine network driver for device.
8575 */
3019de12 8576const char *netdev_drivername(const struct net_device *dev)
6579e57b 8577{
cf04a4c7
SH
8578 const struct device_driver *driver;
8579 const struct device *parent;
3019de12 8580 const char *empty = "";
6579e57b
AV
8581
8582 parent = dev->dev.parent;
6579e57b 8583 if (!parent)
3019de12 8584 return empty;
6579e57b
AV
8585
8586 driver = parent->driver;
8587 if (driver && driver->name)
3019de12
DM
8588 return driver->name;
8589 return empty;
6579e57b
AV
8590}
8591
6ea754eb
JP
8592static void __netdev_printk(const char *level, const struct net_device *dev,
8593 struct va_format *vaf)
256df2f3 8594{
b004ff49 8595 if (dev && dev->dev.parent) {
6ea754eb
JP
8596 dev_printk_emit(level[1] - '0',
8597 dev->dev.parent,
8598 "%s %s %s%s: %pV",
8599 dev_driver_string(dev->dev.parent),
8600 dev_name(dev->dev.parent),
8601 netdev_name(dev), netdev_reg_state(dev),
8602 vaf);
b004ff49 8603 } else if (dev) {
6ea754eb
JP
8604 printk("%s%s%s: %pV",
8605 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8606 } else {
6ea754eb 8607 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8608 }
256df2f3
JP
8609}
8610
6ea754eb
JP
8611void netdev_printk(const char *level, const struct net_device *dev,
8612 const char *format, ...)
256df2f3
JP
8613{
8614 struct va_format vaf;
8615 va_list args;
256df2f3
JP
8616
8617 va_start(args, format);
8618
8619 vaf.fmt = format;
8620 vaf.va = &args;
8621
6ea754eb 8622 __netdev_printk(level, dev, &vaf);
b004ff49 8623
256df2f3 8624 va_end(args);
256df2f3
JP
8625}
8626EXPORT_SYMBOL(netdev_printk);
8627
8628#define define_netdev_printk_level(func, level) \
6ea754eb 8629void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8630{ \
256df2f3
JP
8631 struct va_format vaf; \
8632 va_list args; \
8633 \
8634 va_start(args, fmt); \
8635 \
8636 vaf.fmt = fmt; \
8637 vaf.va = &args; \
8638 \
6ea754eb 8639 __netdev_printk(level, dev, &vaf); \
b004ff49 8640 \
256df2f3 8641 va_end(args); \
256df2f3
JP
8642} \
8643EXPORT_SYMBOL(func);
8644
8645define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8646define_netdev_printk_level(netdev_alert, KERN_ALERT);
8647define_netdev_printk_level(netdev_crit, KERN_CRIT);
8648define_netdev_printk_level(netdev_err, KERN_ERR);
8649define_netdev_printk_level(netdev_warn, KERN_WARNING);
8650define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8651define_netdev_printk_level(netdev_info, KERN_INFO);
8652
4665079c 8653static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8654{
8655 kfree(net->dev_name_head);
8656 kfree(net->dev_index_head);
ee21b18b
VA
8657 if (net != &init_net)
8658 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
8659}
8660
022cbae6 8661static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8662 .init = netdev_init,
8663 .exit = netdev_exit,
8664};
8665
4665079c 8666static void __net_exit default_device_exit(struct net *net)
ce286d32 8667{
e008b5fc 8668 struct net_device *dev, *aux;
ce286d32 8669 /*
e008b5fc 8670 * Push all migratable network devices back to the
ce286d32
EB
8671 * initial network namespace
8672 */
8673 rtnl_lock();
e008b5fc 8674 for_each_netdev_safe(net, dev, aux) {
ce286d32 8675 int err;
aca51397 8676 char fb_name[IFNAMSIZ];
ce286d32
EB
8677
8678 /* Ignore unmoveable devices (i.e. loopback) */
8679 if (dev->features & NETIF_F_NETNS_LOCAL)
8680 continue;
8681
e008b5fc
EB
8682 /* Leave virtual devices for the generic cleanup */
8683 if (dev->rtnl_link_ops)
8684 continue;
d0c082ce 8685
25985edc 8686 /* Push remaining network devices to init_net */
aca51397
PE
8687 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8688 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8689 if (err) {
7b6cd1ce
JP
8690 pr_emerg("%s: failed to move %s to init_net: %d\n",
8691 __func__, dev->name, err);
aca51397 8692 BUG();
ce286d32
EB
8693 }
8694 }
8695 rtnl_unlock();
8696}
8697
50624c93
EB
8698static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8699{
8700 /* Return with the rtnl_lock held when there are no network
8701 * devices unregistering in any network namespace in net_list.
8702 */
8703 struct net *net;
8704 bool unregistering;
ff960a73 8705 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8706
ff960a73 8707 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8708 for (;;) {
50624c93
EB
8709 unregistering = false;
8710 rtnl_lock();
8711 list_for_each_entry(net, net_list, exit_list) {
8712 if (net->dev_unreg_count > 0) {
8713 unregistering = true;
8714 break;
8715 }
8716 }
8717 if (!unregistering)
8718 break;
8719 __rtnl_unlock();
ff960a73
PZ
8720
8721 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8722 }
ff960a73 8723 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8724}
8725
04dc7f6b
EB
8726static void __net_exit default_device_exit_batch(struct list_head *net_list)
8727{
8728 /* At exit all network devices most be removed from a network
b595076a 8729 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8730 * Do this across as many network namespaces as possible to
8731 * improve batching efficiency.
8732 */
8733 struct net_device *dev;
8734 struct net *net;
8735 LIST_HEAD(dev_kill_list);
8736
50624c93
EB
8737 /* To prevent network device cleanup code from dereferencing
8738 * loopback devices or network devices that have been freed
8739 * wait here for all pending unregistrations to complete,
8740 * before unregistring the loopback device and allowing the
8741 * network namespace be freed.
8742 *
8743 * The netdev todo list containing all network devices
8744 * unregistrations that happen in default_device_exit_batch
8745 * will run in the rtnl_unlock() at the end of
8746 * default_device_exit_batch.
8747 */
8748 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8749 list_for_each_entry(net, net_list, exit_list) {
8750 for_each_netdev_reverse(net, dev) {
b0ab2fab 8751 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8752 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8753 else
8754 unregister_netdevice_queue(dev, &dev_kill_list);
8755 }
8756 }
8757 unregister_netdevice_many(&dev_kill_list);
8758 rtnl_unlock();
8759}
8760
022cbae6 8761static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8762 .exit = default_device_exit,
04dc7f6b 8763 .exit_batch = default_device_exit_batch,
ce286d32
EB
8764};
8765
1da177e4
LT
8766/*
8767 * Initialize the DEV module. At boot time this walks the device list and
8768 * unhooks any devices that fail to initialise (normally hardware not
8769 * present) and leaves us with a valid list of present and active devices.
8770 *
8771 */
8772
8773/*
8774 * This is called single threaded during boot, so no need
8775 * to take the rtnl semaphore.
8776 */
8777static int __init net_dev_init(void)
8778{
8779 int i, rc = -ENOMEM;
8780
8781 BUG_ON(!dev_boot_phase);
8782
1da177e4
LT
8783 if (dev_proc_init())
8784 goto out;
8785
8b41d188 8786 if (netdev_kobject_init())
1da177e4
LT
8787 goto out;
8788
8789 INIT_LIST_HEAD(&ptype_all);
82d8a867 8790 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8791 INIT_LIST_HEAD(&ptype_base[i]);
8792
62532da9
VY
8793 INIT_LIST_HEAD(&offload_base);
8794
881d966b
EB
8795 if (register_pernet_subsys(&netdev_net_ops))
8796 goto out;
1da177e4
LT
8797
8798 /*
8799 * Initialise the packet receive queues.
8800 */
8801
6f912042 8802 for_each_possible_cpu(i) {
41852497 8803 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8804 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8805
41852497
ED
8806 INIT_WORK(flush, flush_backlog);
8807
e36fa2f7 8808 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8809 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8810 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8811 sd->output_queue_tailp = &sd->output_queue;
df334545 8812#ifdef CONFIG_RPS
e36fa2f7
ED
8813 sd->csd.func = rps_trigger_softirq;
8814 sd->csd.info = sd;
e36fa2f7 8815 sd->cpu = i;
1e94d72f 8816#endif
0a9627f2 8817
e36fa2f7
ED
8818 sd->backlog.poll = process_backlog;
8819 sd->backlog.weight = weight_p;
1da177e4
LT
8820 }
8821
1da177e4
LT
8822 dev_boot_phase = 0;
8823
505d4f73
EB
8824 /* The loopback device is special if any other network devices
8825 * is present in a network namespace the loopback device must
8826 * be present. Since we now dynamically allocate and free the
8827 * loopback device ensure this invariant is maintained by
8828 * keeping the loopback device as the first device on the
8829 * list of network devices. Ensuring the loopback devices
8830 * is the first device that appears and the last network device
8831 * that disappears.
8832 */
8833 if (register_pernet_device(&loopback_net_ops))
8834 goto out;
8835
8836 if (register_pernet_device(&default_device_ops))
8837 goto out;
8838
962cf36c
CM
8839 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8840 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8841
f0bf90de
SAS
8842 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8843 NULL, dev_cpu_dead);
8844 WARN_ON(rc < 0);
1da177e4
LT
8845 rc = 0;
8846out:
8847 return rc;
8848}
8849
8850subsys_initcall(net_dev_init);